Introductory Industrial Technology I. Laboratory Activities.
ERIC Educational Resources Information Center
Towler, Alan L.; And Others
This guide contains 36 learning modules intended for use by technology teachers and students in grades 7 and 8. Each module includes a student laboratory activity and instructor's resource sheet. Each student activity includes the following: activity topic and overview, challenge statement, objectives, vocabulary/concepts reinforced,…
Introductory Industrial Technology II. Laboratory Activities.
ERIC Educational Resources Information Center
Towler, Alan L.
This guide contains 29 learning modules intended for use by technology teachers and students in grade 8. Each module includes a student laboratory activity and instructor's resource sheet. Each student activity includes the following: activity topic and overview, challenge statement, objectives, vocabulary/concepts reinforced, equipment/supplies,…
Hernick, Marcy
2015-09-25
Objective. To develop a series of active-learning modules that would improve pharmacy students' performance on summative assessments. Design. A series of optional online active-learning modules containing questions with multiple formats for topics in a first-year (P1) course was created using a test-enhanced learning approach. A subset of module questions was modified and included on summative assessments. Assessment. Student performance on module questions improved with repeated attempts and was predictive of student performance on summative assessments. Performance on examination questions was higher for students with access to modules than for those without access to modules. Module use appeared to have the most impact on low performing students. Conclusion. Test-enhanced learning modules with immediate feedback provide pharmacy students with a learning tool that improves student performance on summative assessments and also may improve metacognitive and test-taking skills.
ERIC Educational Resources Information Center
Wolman, Jean
This module on owning and operating a health spa is one of 36 in a series on entrepreneurship. The introduction tells the student what topics will be covered and suggests other modules to read in related occupations. Each unit includes student goals, a case study, and a discussion of the unit subject matter. Learning activities are divided into…
ERIC Educational Resources Information Center
Rassen, Rachel L.
This module on owning and operating a travel agency is one of 36 modules in a series on entrepreneurship. The introduction tells the student what topics will be covered and suggests other modules to read in related occupations. Each unit includes student goals, a case study, and a discussion of the unit subject matter. Learning activities are…
2015-01-01
Objective. To develop a series of active-learning modules that would improve pharmacy students’ performance on summative assessments. Design. A series of optional online active-learning modules containing questions with multiple formats for topics in a first-year (P1) course was created using a test-enhanced learning approach. A subset of module questions was modified and included on summative assessments. Assessment. Student performance on module questions improved with repeated attempts and was predictive of student performance on summative assessments. Performance on examination questions was higher for students with access to modules than for those without access to modules. Module use appeared to have the most impact on low performing students. Conclusion. Test-enhanced learning modules with immediate feedback provide pharmacy students with a learning tool that improves student performance on summative assessments and also may improve metacognitive and test-taking skills. PMID:27168610
ERIC Educational Resources Information Center
Bader, Morris
Presented are the teacher's guide and student manual for one of a series of self-instructional, computer-based learning modules for an introductory, undergraduate chemistry course. The student manual for this unit on the colligative properties of solutions includes objectives, prerequisites, pretest, discussion, and 20 problem sets. Included in…
ERIC Educational Resources Information Center
Sanderson, Barbara
This module on owning and operating a plumbing business is one of 36 in a series on entrepreneurship. The introduction tells the student what topics will be covered and suggests other modules to read in related occupations. Each unit includes student goals, a case study, and a discussion of the unit subject matter. Learning activities are divided…
ERIC Educational Resources Information Center
Colby, Pamela G.
This module on owning and operating a guard service is one of 36 in a series on entrepreneurship. The introduction tells the student what topics will be covered and suggests other modules to read in related occupations. Each unit includes student goals, a case study, and a discussion of the unit subject matter. Learning activities are divided into…
ERIC Educational Resources Information Center
Gall, Joyce P.
This module on owning and operating a welding business is one of 36 in a series on entrepreneurship. The introduction tells the student what topics will be covered and suggests other modules to read in related occupations. Each unit includes student goals, a case study, and a discussion of the unit subject matter. Learning activities are divided…
ERIC Educational Resources Information Center
Sanderson, Barbara
This module on owning and operating a bicycle store is one of 36 in a series on entrepreneurship. The introduction tells the student what topics will be covered and suggests other modules to read in related occupations. Each unit includes student goals, a case study, and a discussion of the unit subject matter. Learning activities are divided into…
ERIC Educational Resources Information Center
Colby, Pamela G.
This module on owning and operating a pest control service is one of 36 in a series on entrepreneurship. The introduction tells the student what topics will be covered and suggests other modules to read in related occupations. Each unit includes student goals, a case study, and a discussion of the unit subject matter. Learning activities are…
ERIC Educational Resources Information Center
Shapiro, Norma
This module on owning and operating an answering service is one of 36 in a series on entrepreneurship. The introduction tells the student what topics will be covered and suggests other modules to read in related occupations. Each unit includes student goals, a case study, and a discussion of the unit subject matter. Learning activities are divided…
ERIC Educational Resources Information Center
Gall, Joyce P.
This module on owning and operating a construction electrician business is one of 36 in a series on entrepreneurship. The introduction tells the student what topics will be covered and suggests other modules to read in related occupations. Each unit includes student goals, a case study, and a discussion of the unit subject matter. Learning…
ERIC Educational Resources Information Center
Shapiro, Norma
This module on owning and operating a bookkeeping service is one of 36 in a series on entrepreneurship. The introduction tells the student what topics will be covered and suggests other modules to read in related occupations. Each unit includes student goals, a case study, and a discussion of the unit subject matter. Learning activities are…
ERIC Educational Resources Information Center
McFarlane, Carolyn
This module on owning and operating a housecleaning service is one of 36 in a series on entrepreneurship. The introduction tells the student what topics will be covered and suggests other modules to read in related occupations. Each unit includes student goals, a case study, and a discussion of the unit subject matter. Learning activities are…
ERIC Educational Resources Information Center
Rassen, Rachel L.
This module on owning and operating a specialty food store is one of 36 in a series on entrepreneurship. The introduction tells the student what topics will be covered and suggests other modules to read in related occupations. Each unit includes student goals, a case study, and a discussion of the unit subject matter. Learning activities are…
ERIC Educational Resources Information Center
Shapiro, Norma
This module on owning and operating a word processing service is one of 36 in a series on entrepreneurship. The introduction tells the student what topics will be covered and suggests other modules to read in related occupations. Each unit includes student goals, a case study, and a discussion of the unit subject matter. Learning activities are…
ERIC Educational Resources Information Center
McBain, Susan
This module on owning and operating a farm equipment repair business is one of 36 in a series on entrepreneurship. The introduction tells the student what topics will be covered and suggests other modules to read in related occupations. Each unit includes student goals, a case study, and a discussion of the unit subject matter. Learning…
ERIC Educational Resources Information Center
Sanderson, Barbara
This module on owning and operating a home attendant service is one of 36 in a series on entrepreneurship. The introduction tells the student what topics will be covered and suggests other modules to read in related occupations. Each unit includes student goals, a case study, and a discussion of the unit subject matter. Learning activities are…
ERIC Educational Resources Information Center
McBain, Susan L.
This module on owning and operating a fertilizer and pesticide service is one of 36 in a series on entrepreneurship. The introduction tells the student what topics will be covered and suggests other modules to read in related occupations. Each unit includes student goals, a case study, and a discussion of the unit subject matter. Learning…
ERIC Educational Resources Information Center
McBain, Susan L.
This module on owning and operating a garden center is one of 36 in a series on entrepreneurship. The introduction tells the student what topics will be covered and suggests other modules to read in related occupations. Each unit includes student goals, a case study, and a discussion of the unit subject matter. Learning activities are divided into…
ERIC Educational Resources Information Center
Shapiro, Norma
This module on owning and operating a software design company is one of 36 in a series on entrepreneurship. The introduction tells the student what topics will be covered and suggests other modules to read in related occupations. Each unit includes student goals, a case study, and a discussion of the unit subject matter. Learning activities are…
ERIC Educational Resources Information Center
Gall, Joyce P.
This module on owning and operating a carpentry business is one of 36 in a series on entrepreneurship. The introduction tells the student what topics will be covered and suggests other modules to read in related occupations. Each unit includes student goals, a case study, and a discussion of the unit subject matter. Learning activities are divided…
ERIC Educational Resources Information Center
Kingi, Marcella
This module on owning and operating a sewing service is one of 36 in a series on entrepreneurship. The introduction tells the student what topics will be covered and suggests other modules to read in related occupations. Each unit includes student goals, a case study, and a discussion of the unit subject matter. Learning activities are divided…
ERIC Educational Resources Information Center
Kingi, Marcella
This module on owning and operating a restaurant is one of 36 in a series on entrepreneurship. The introduction tells the student what topics will be covered and suggests other modules to read in related occupations. Each unit includes student goals, a case study, and a discussion of the unit subject matter. Learning activities are divided into…
ERIC Educational Resources Information Center
Colby, Pamela G.
This module on owning and operating an energy specialist service is one of 36 in a series on entrepreneurship. The introduction tells the student what topics will be covered and suggests other modules to read in related occupations. Each unit includes student goals, a case study, and a discussion of the unit subject matter. Learning activities are…
ERIC Educational Resources Information Center
Wolman, Jean
This module on owning and operating a wheelchair transportation service is one of 36 in a series on entrepreneurship. The introduction tells the student what topics will be covered and suggests other modules to read in related occupations. Each unit includes student goals, a case study, and a discussion of the unit subject matter. Learning…
ERIC Educational Resources Information Center
Shapiro, Norma
This module on owning and operating a secretarial service is one of 36 in a series on entrepreneurship. The introduction tells the student what topics will be covered and suggests other modules to read in related occupations. Each unit includes student goals, a case study, and a discussion of the unit subject matter. Learning activities are…
ERIC Educational Resources Information Center
Wolman, Jean
This module on owning and operating a nursing service is one of 36 in a series on entrepreneurship. The introduction tells the student what topics will be covered and suggests other modules to read in related occupations. Each unit includes student goals, a case study, and a discussion of the unit subject matter. Learning activities are divided…
ERIC Educational Resources Information Center
McBain, Susan L.
This module on owning and operating a dairy farm is one of 36 in a series on entrepreneurship. The introduction tells the student what topics will be covered and suggests other modules to read in related occupations. Each unit includes student goals, a case study, and a discussion of the unit subject matter. Learning activities are divided into…
ERIC Educational Resources Information Center
Rassen, Rachel L.
This module on owning and operating an apparel store is one of 36 in a series on entrepreneurship. The introduction tells the student what topics will be covered and suggests other modules to read in related occupations. Each unit includes student goals, a case study, and a discussion of the unit subject matter. Learning activities are divided…
ERIC Educational Resources Information Center
Rassen, Rachel L.
This module on owning and operating an inn is one of 36 in a series on entrepreneurship. The introduction tells the student what topics will be covered and suggests other modules to read in related occupations. Each unit includes student goals, a case study, and a discussion of the unit subject matter. Learning activities are divided into…
Le journal: une introduction (The Newspaper: An Introduction). Teacher's Guide [and Module].
ERIC Educational Resources Information Center
Scane, Joyce; Ullmann, Rebecca
A reading activity module based on the newspaper was designed for students in grades 6-8 who have had two years of instruction in French as a second language. The module includes the teacher's guide, the facsimile newspaper, and transparencies for class activities. Module objectives are to introduce students to both newspaper reading and…
Occupational Safety. Hand Tools. Pre-Apprenticeship Phase 1 Training.
ERIC Educational Resources Information Center
Lane Community Coll., Eugene, OR.
This self-paced student training module on safety when using hand tools is one of a number of modules developed for Pre-apprenticeship Phase 1 Training. Purpose of the module is to teach students the correct safety techniques for operating common hand- and arm-powered tools, including selection, maintenance, technique, and uses. The module may…
ERIC Educational Resources Information Center
Rassen, Rachel L.
This module on owning and operating a flower and plant store is one of 36 in a series on entrepreneurship. The introduction tells the student what topics will be covered and suggests other modules to read in related occupations. Each unit includes student goals, a case study, and a discussion of the unit subject matter. Learning activities are…
ERIC Educational Resources Information Center
Sanderson, Barbara
This module on owning and operating an air conditioning and heating service is one of 36 in a series on entrepreneurship. The introduction tells the student what topics will be covered and suggests other modules to read in related occupations. Each unit includes student goals, a case study, and a discussion of the unit subject matter. Learning…
ERIC Educational Resources Information Center
Rassen, Rachel L.
This module on owning and operating a business and personal service is one of 36 in a series on entrepreneurship. The introduction tells the student what topics will be covered and suggests other modules to read in related occupations. Each unit includes student goals, a case study, and a discussion of the unit subject matter. Learning activities…
ERIC Educational Resources Information Center
McFarlane, Carolyn
This module on owning and operating an auto repair shop is one of 36 in a series on entrepreneurship. The introduction tells the student what topics will be covered and suggests other modules to read in related occupations. Each unit includes student goals, a case study, and a discussion of the unit subject matter. Learning activities are divided…
ERIC Educational Resources Information Center
Kingi, Marcella
This module on owning and operating a day care center is one of 36 in a series on entrepreneurship. The introduction tells the student what topics will be covered and suggests other modules to read in related occupations. Each unit includes student goals, a case study, and a discussion of the unit subject matter. Learning activities are divided…
ERIC Educational Resources Information Center
Shapiro, Norma
This module on owning and operating a tree service is one of 36 in a series on entrepreneurship. The introduction tells the student what topics will be covered and suggests other modules to read in related occupations. Each unit includes student goals, a case study, and a discussion of the unit activity. Units (and subject matter) in this module…
ERIC Educational Resources Information Center
Gall, Joyce P.
This module on owning and operating a hair styling shop is one of 36 in a series on entrepreneurship. The introduction tells the student what topics will be covered and suggests other modules to read in related occupations. Each unit includes student goals, a case study, and a discussion of the unit subject matter. Learning activities are divided…
Taking "The Math You Need When You Need It" Modules Beyond Introductory Geology Courses
NASA Astrophysics Data System (ADS)
Baer, E. M.; Wenner, J. M.; Burn, H. E.
2012-12-01
"The Math You Need, When You Need It" (TMYN) modules are finding use well beyond the courses for which they were originally written. However, faculty survey responses indicate that the modules are used in similar ways, suggesting that the overall design of the modules is effective. TMYN modules are online resources designed to help students develop quantitative skills in conjunction with introductory geology courses. Since 2010, 29 faculty members at 26 institutions used these asynchronous resources at in 68 different courses nationwide, impacting about 3000 students. After each use of the modules, instructors responded to a survey about their use of the modules and the impact on each course and student cohort. Of the 29 instructors, 16 responded with a total of 36 implementations, a 52% response rate. Survey responses indicate use of TMYN modules in classes well beyond their original design. The modules were originally designed for students in introductory geology classes, especially those targeted at non-geoscience majors. Sixty-nine percent (22/32) of TMYN courses included introductory geology courses such as Physical Geology, Earth System Science and Environmental Geology. The remainder of courses included multiple uses in oceanography and meteorology courses and more specialized geoscience courses such as geomorphology, structural geology and hydrology. Surveys suggest that only 63% of courses that used TMYN (20/32) were targeted to students in general education courses. Nine percent (3/32) of courses were targeted to STEM majors and 19% (6/32) were specifically targeted to geoscience majors, including upper-level courses. Despite the wide variety of institutions, instructors, classes, and student educational goals, faculty incorporated the modules into their curriculum in as originally designed, indicating that the overall design of the modules is effective. Twenty-two respondents indicate that modules were assigned immediately prior to using a skill in the classroom (either in lab exercises or a lecture period). Almost all instructors employed pre- and posttests to gauge learning. More than ¾ of survey respondents introduced the modules within the first week of class. In all but one instance, students were instructed to complete an online quiz immediately after working through the online modules and most (77%) designed these post-module quizzes as formative assessments allowing at least 3 attempts. The grades on these modules contributed to students' grades but were relatively low stakes with 88% reporting that the modules contributed to less than 10% of a student's course grade. Given the use beyond the introductory geology classroom and the similarity of the use of these modules in a wide variety of courses, it appears that the design of the modules is sound. However, previous studies have indicated that mathematical skills are not easily transferred (e.g. Bassok. and Holyoak, 1989) suggesting the adaptation of the modules for use outside the geosciences.
Adaptive Physical Education: Instructional Module for Special Education Minors.
ERIC Educational Resources Information Center
Smyser, Sheryl; And Others
This module is designed to familiarize students preparing to be special education teachers with the physical needs of the exceptional student. Information is given on how to structure an adaptive physical education program designed to meet those needs, including development of an individualized education program (IEP). The module covers such…
Instructor's Guide for Human Development Student Modules.
ERIC Educational Resources Information Center
South Carolina State Dept. of Education, Columbia. Office of Vocational Education.
This instructor's guide is designed for use with an accompanying set of 61 student learning modules on human development. Included among the topics covered in the individual modules are the following: consumer and homemaking education (health and nutrition, personal appearance and grooming, puberty, menstruation, the human reproductive system,…
Analogy-Integrated e-Learning Module: Facilitating Students' Conceptual Understanding
ERIC Educational Resources Information Center
Florida, Jennifer
2012-01-01
The study deals with the development of an analogy-integrated e-learning module on Cellular Respiration, which is intended to facilitate conceptual understanding of students with different brain hemisphere dominance and learning styles. The module includes eight analogies originally conceptualized following the specific steps used to prepare…
Safety with Hand and Portable Power Tools. Module SH-14. Safety and Health.
ERIC Educational Resources Information Center
Center for Occupational Research and Development, Inc., Waco, TX.
This student module on safety with hand and portable power tools is one of 50 modules concerned with job safety and health. This module discusses the proper use and maintenance of tools, including the need for protective equipment for the worker. Following the introduction, 16 objectives (each keyed to a page in the text) the student is expected…
GED Math for Workplace Students.
ERIC Educational Resources Information Center
Goschen, Claire
This curriculum module contains lesson plans and application activities that were developed to help adult students master the mathematics skills needed to earn a general high school equivalency diploma. Included in the module are materials designed to help students improve their understanding of mathematics and achieve the following objectives:…
A Module on Death and Dying to Develop Empathy in Student Pharmacists
Olin, Jacqueline L.; Thornton, Phillip L.; Dolder, Christian R.; Hanrahan, Conor
2011-01-01
Objective To implement an integrated module on death and dying into a 15-week bioethics course and determine whether it increased student pharmacists’ empathy. Design Students participated in a 5-week death and dying module that included presentation of the film Wit, an interactive lecture on hospice, and a lecture on the ethics of pain management. Assessment Fifty-six students completed the 30-item Balanced Emotional Empathy Scale (BEES) before and after completing the module and wrote a reflective essay. Students demonstrated an appreciation of patient-specific values in their essay. Quantitative data collected via BEES scores demonstrated significant improvement in measured empathy. Conclusion A 5-week instructional model on death and dying significantly increased student empathy. PMID:21769147
The Single Needle Lockstitch Machine. [Constructing Darts.] Module 3.
ERIC Educational Resources Information Center
South Carolina State Dept. of Education, Columbia. Office of Vocational Education.
This module on constructing darts, one in a series on the single needle lockstitch sewing machine for student self-study, contains two sections. Each section includes the following parts: an introduction, directions, an objective, learning activities, student information, student self-check, check-out activities, and an instructor's final…
Basic Reading Instruction for Students in Automotive Occupations. Student's Handbook.
ERIC Educational Resources Information Center
General Behavioral Systems, Inc., Torrance, CA.
The basic reading course outlined in this student handbook emphasizes the decoding process. The contents consist of a letter-and-sound spelling chart and 87 course modules which are based on single-letter and letter-combination sounds. Many of the modules include exercises, and some contain reading material. (JM)
The Single Needle Lockstitch Machine. [Setting Zippers.] Module 8.
ERIC Educational Resources Information Center
South Carolina State Dept. of Education, Columbia. Office of Vocational Education.
This module on setting zippers, one in a series on the single needle lockstitch sewing machine for student self-study, contains five sections. Each section includes the following parts: an introduction, directions, an objective, learning activities, student information, student self-check, check-out activities, and an instructor's final checklist.…
Boyd, Sara E; Sanders, Carla L; Kleinert, Harold L; Huff, Marlene B; Lock, Sharon; Johnson, Stephanie; Clevenger, Kim; Bush, Nathania A; Van Dyke, Eileen; Clark, Tara L
2008-01-01
A multimedia virtual patient module, involving the case of a young woman with mild intellectual disabilities with a complaint of diffuse abdominal pain, was developed as a clinical training tool for students in health care professions. Primary objectives following use of the module included improved knowledge and reduced perception of difficulty in treating women's health patients with intellectual disabilities. The module was developed using an iterative, collaborative process of a core development team that included medical professionals, multimedia specialists, the parent of a child with intellectual disability, and a disability advocate. Over the course of the module, students were required to identify appropriate and effective clinician-patient interactions in addition to relevant medical and developmental concerns for this patient population. Pilot data from a sample of nursing, physician assistant, and medical students suggest that the module is an effective tool for both improving students' knowledge and reducing their perception of difficulty in providing care to women's health patients with intellectual disabilities.
Students' Design of Experiments: An Inquiry Module on the Conduction of Heat
ERIC Educational Resources Information Center
Hatzikraniotis, E.; Kallery, M.; Molohidis, A.; Psillos, D.
2010-01-01
This article examines secondary students' design of experiments after engagement in an innovative and inquiry-oriented module on heat transfer. The module consists of an integration of hands-on experiments, simulated experiments and microscopic model simulations, includes a structured series of guided investigative tasks and was implemented for a…
Advanced Mathematics 305--Optional Half Credit. Interim Guide.
ERIC Educational Resources Information Center
Manitoba Dept. of Education, Winnipeg.
This manual outlines an advanced mathematics course for secondary school students in Manitoba (Canada). Included are eight different topics for a total of ten modules, with each module accounting for 18 40-minute periods. Teachers, or teachers and students cooperatively, should select the equivalent of five modules from the eight topics covered.…
Attack of the Killer Fungus: A Hypothesis-Driven Lab Module †
Sato, Brian K.
2013-01-01
Discovery-driven experiments in undergraduate laboratory courses have been shown to increase student learning and critical thinking abilities. To this end, a lab module involving worm capture by a nematophagous fungus was developed. The goals of this module are to enhance scientific understanding of the regulation of worm capture by soil-dwelling fungi and for students to attain a set of established learning goals, including the ability to develop a testable hypothesis and search for primary literature for data analysis, among others. Students in a ten-week majors lab course completed the lab module and generated novel data as well as data that agrees with the published literature. In addition, learning gains were achieved as seen through a pre-module and post-module test, student self-assessment, class exam, and lab report. Overall, this lab module enables students to become active participants in the scientific method while contributing to the understanding of an ecologically relevant model organism. PMID:24358387
Salzmann-Erikson, Martin; Bjuhr, Marie; Mårtensson, Gunilla
2017-04-01
This study aimed not only to describe the development and implementation of the module but also to evaluate the nursing students' perceptions. A cross-sectional design including 101 students who were asked to participate and answer a survey. We describe the development of the pedagogic module Students Active Learning via Internet Observations based on situated learning. The findings show that learning about service users' own lived experiences via web-based platforms was instructive according to the students: 81% agreed to a high or very high degree. Another important finding was that 96% of students responded that the module had clinical relevance for nursing work. We argue that learning that engages students with data that are contextually and culturally situated is important for developing competence in caregiving. © 2015 Wiley Periodicals, Inc.
HERO HELPS for Home Economics Related Occupation Coordinators. Volume II.
ERIC Educational Resources Information Center
Northern Arizona Univ., Flagstaff. Center for Vocational Education.
These 26 modules for independent study comprise the second volume of a two-volume set of HERO (Home Economics Related Occupations) HELPS for student use in competency-based professional development. Each module contains teacher and student materials. Teacher materials include an information sheet listing resources and materials needed by students,…
Payroll. Computer Module for Use in a Mathematics Laboratory Setting.
ERIC Educational Resources Information Center
Barker, Karen; And Others
This is one of a series of computer modules designed for use by secondary students who have access to a computer. The module, designed to help students understand various aspects of payroll calculation, includes a statement of objectives, a time schedule, a list of materials, an outline for each section, and several computer programs. (MK)
Occupational Safety. Hygiene Safety. Pre-Apprenticeship Phase 1 Training.
ERIC Educational Resources Information Center
Lane Community Coll., Eugene, OR.
This self-paced student training module on hygiene safety is one of a number of modules developed for Pre-apprenticeship Phase 1 Training. Purpose of the module is to familiarize students with the different types of airborne contaminants--including noise--which may be health hazards and with the proper hygienic measures for dealing with them. The…
Japanese Migration and the Americas: An Introduction to the Study of Migration.
ERIC Educational Resources Information Center
Mukai, Gary; Brunette, Rachel
This curriculum module introduces students to the study of migration, including a brief overview of some categories of migration and reasons why people migrate. As a case study, the module uses the Japanese migration experience in the United States, Peru, Brazil, Canada, Mexico, Argentina, Bolivia, and Paraguay. The module introduces students to…
Pierce, Richard; Fox, Jeremy
2012-12-12
To implement a "flipped classroom" model for a renal pharmacotherapy topic module and assess the impact on pharmacy students' performance and attitudes. Students viewed vodcasts (video podcasts) of lectures prior to the scheduled class and then discussed interactive cases of patients with end-stage renal disease in class. A process-oriented guided inquiry learning (POGIL) activity was developed and implemented that complemented, summarized, and allowed for application of the material contained in the previously viewed lectures. Students' performance on the final examination significantly improved compared to performance of students the previous year who completed the same module in a traditional classroom setting. Students' opinions of the POGIL activity and the flipped classroom instructional model were mostly positive. Implementing a flipped classroom model to teach a renal pharmacotherapy module resulted in improved student performance and favorable student perceptions about the instructional approach. Some of the factors that may have contributed to students' improved scores included: student mediated contact with the course material prior to classes, benchmark and formative assessments administered during the module, and the interactive class activities.
Mineral Physics Educational Modules for Advanced Undergraduates and Graduate Students
NASA Astrophysics Data System (ADS)
Burnley, P. C.; Thomas, S.; Honn, D. K.
2011-12-01
We are assembling a group of web-based educational modules for a course entitled "Introduction to Mineral Physics". Although the modules are designed to function as part of a full semester course, each module will also be able to stand alone. The modules are targeted at entry level graduate students and advanced undergraduate students. Learning outcomes for the course are being developed in consultation with educators throughout the mineral physics community. Potential users include mineral physicists teaching "bricks and mortar" graduate classes at their own institutions, mineral physicists teaching graduate classes in a distance education setting, mineralogy teachers interested in including supplementary material in their undergraduate mineralogy class, undergraduates doing independent study projects and graduate students and colleagues in other subdisciplines who wish to brush up on mineral physics topics. The modules reside on the Science Education Resource Center at Carleton College web site in the On the Cutting Edge - Teaching Mineralogy collection. Links to the materials will be posted on the Consortium for Materials Properties Research in Earth Sciences website. The modules will be piloted in a graduate level distance education course in mineral physics taught from UNLV during the spring 2012 semester. This course and others like it can address the current problems faced by faculty in state universities where rising minimum enrollments are making it difficult to teach a suitable graduate course to incoming students.
Technology Systems. Laboratory Activities.
ERIC Educational Resources Information Center
Brame, Ray; And Others
This guide contains 43 modules of laboratory activities for technology education courses. Each module includes an instructor's resource sheet and the student laboratory activity. Instructor's resource sheets include some or all of the following elements: module number, course title, activity topic, estimated time, essential elements, objectives,…
ERIC Educational Resources Information Center
Chief of Naval Education and Training Support, Pensacola, FL.
This student guidebook is designed for use with the study booklets in modules 32 through 34 included in the military-developed course on basic electricity and electronics. The course is one of a number of military-developed curriculum packages selected for adaptation to vocational instructional and curriculum development in a civilian setting. An…
ERIC Educational Resources Information Center
Jameson, A. Keith
Presented are the teacher's guide and student materials for one of a series of self-instructional, computer-based learning modules for an introductory, undergraduate chemistry course. The student manual for this unit on Le Chatelier's principle includes objectives, prerequisites, pretest, instructions for executing the computer program, and…
ERIC Educational Resources Information Center
McCombs, Barbara L.; And Others
The Computer Managed Instruction (CMI) Student Skills Project was developed and evaluated within the context of the Air Force Advanced Instructional System (AIS), with student study skill modules designed as short packages to be assigned near the beginning of any military technical training course; strategies or procedures included were expected…
ERIC Educational Resources Information Center
Williams, Michelle; Linn, Marcia C.; Hollowell, Gail P.
2008-01-01
The Technology-Enhanced Learning in Science (TELS) center, a National Science Foundation-funded Center for Learning and Teaching, offers research-tested science modules for students in grades 6-12 (Linn et al. 2006). These free, online modules engage students in scientific inquiry through collaborative activities that include online…
Wallen, M; Pandit, A
2009-05-01
In addressing the task of developing an undergraduate module in the field of tissue engineering, the greatest challenge lies in managing to capture what is a growing and rapidly changing field. Acknowledging the call for the development of greater critical thinking and interpersonal skills among the next generation of engineers as well as encouraging students to engage actively with the dynamic nature of research in the field, the module was developed to include both project-based and cooperative-learning experiences. These learning activities include developing hypotheses for the application of newly introduced laboratory procedures, a collaborative mock grant submission, and debates on ethical issues in which students are assigned roles as various stakeholders. Feedback from module evaluations has indicated that, while students find the expectations challenging, they are able to gain an advanced insight into a dynamic field. More importantly, students develop research competencies by engaging in activities that require them to link current research directions with their own development of hypotheses for future tissue-engineering applications.
NASA Astrophysics Data System (ADS)
Manley, J.; Chegwidden, D.; Mote, A. S.; Ledley, T. S.; Lynds, S. E.; Haddad, N.; Ellins, K.
2016-02-01
EarthLabs, envisioned as a national model for high school Earth or Environmental Science lab courses, is adaptable for both undergraduate middle school students. The collection includes ten online modules that combine to feature a global view of our planet as a dynamic, interconnected system, by engaging learners in extended investigations. EarthLabs support state and national guidelines, including the NGSS, for science content. Four modules directly guide students to discover vital aspects of the oceans while five other modules incorporate ocean sciences in order to complete an understanding of Earth's climate system. Students gain a broad perspective on the key role oceans play in fishing industry, droughts, coral reefs, hurricanes, the carbon cycle, as well as life on land and in the seas to drive our changing climate by interacting with scientific research data, manipulating satellite imagery, numerical data, computer visualizations, experiments, and video tutorials. Students explore Earth system processes and build quantitative skills that enable them to objectively evaluate scientific findings for themselves as they move through ordered sequences that guide the learning. As a robust collection, EarthLabs modules engage students in extended, rigorous investigations allowing a deeper understanding of the ocean, climate and weather. This presentation provides an overview of the ten curriculum modules that comprise the EarthLabs collection developed by TERC and found at http://serc.carleton.edu/earthlabs/index.html. Evaluation data on the effectiveness and use in secondary education classrooms will be summarized.
ERIC Educational Resources Information Center
Scarbrough, Will J.; Case, Jennifer M.
2006-01-01
A new module in a first year mechanical drawing course was designed with the primary goal of exciting chemical engineering students about mechanical things. Other goals included increasing student ability and confidence to explain how things work. A variety of high intensity, hands-on, facilitated group activities using pumps and valves were…
NASA Astrophysics Data System (ADS)
Pratt-Sitaula, B. A.; Walker, B.; Douglas, B. J.; Charlevoix, D. J.; Miller, M. M.
2015-12-01
The GETSI project, funded by NSF TUES, is developing and disseminating teaching and learning materials that feature geodesy data applied to critical societal issues such as climate change, water resource management, and natural hazards (serc.carleton.edu/getsi). It is collaborative between UNAVCO (NSF's geodetic facility), Mt San Antonio College, and Indiana University. GETSI was initiated after requests by geoscience faculty for geodetic teaching resources for introductory and majors-level students. Full modules take two weeks but module subsets can also be used. Modules are developed and tested by two co-authors and also tested in a third classroom. GETSI is working in partnership with the Science Education Resource Center's (SERC) InTeGrate project on the development, assessment, and dissemination to ensure compatibility with the growing number of resources for geoscience education. Two GETSI modules are being published in October 2015. "Ice mass and sea level changes" includes geodetic data from GRACE, satellite altimetry, and GPS time series. "Imaging Active Tectonics" has students analyzing InSAR and LiDAR data to assess infrastructure earthquake vulnerability. Another three modules are in testing during fall 2015 and will be published in 2016. "Surface process hazards" investigates mass wasting hazard and risk using LiDAR data. "Water resources and geodesy" uses GRACE, vertical GPS, and reflection GPS data to have students investigating droughts in California and the High Great Plains. "GPS, strain, and earthquakes" helps students learn about infinitesimal and coseismic strain through analysis of horizontal GPS data and includes an extension module on the Napa 2014 earthquake. In addition to teaching resources, the GETSI project is compiling recommendations on successful development of geodesy curricula. The chief recommendations so far are the critical importance of including scientific experts in the authorship team and investing significant resources in data preparation (student interns can be excellent for this). GETSI also includes a research element on the way instructors adapt or adopt the resources. After publication, 4 additional testers will be recruited per module. They will provide feedback on how they choose to use the module elements in their courses.
OSHA. Training Module 4.330.3.77.
ERIC Educational Resources Information Center
Fillenwarth, Lynn; Bonnstetter, Ron
This document is an instructional module package prepared in objective form for use by an instructor familiar with the Federal and Iowa Occupational Safety and Health Act (OSHA). Included are objectives, instructor guides, and student handouts. This module includes an overview of OSHA administration, analysis of OSHA standards including…
Ecology: A Teaching Module. Occasional Paper No. 94.
ERIC Educational Resources Information Center
Brehm, Shirley; And Others
Designed to address conceptual problems associated with ecology, this module can be used with high school students or college nonscience majors including those in elementary education. The materials offer guidance to teachers in diagnosing student deficiencies, in creating dissatisfaction with misconceptions, and in providing opportunities for…
Tracking Student Progress Through an On-Line Astro101 Module
NASA Astrophysics Data System (ADS)
Howard, W. H., II; Hufnagel, B.
2004-05-01
We present an on-line module that helps introductory-level, non-science undergraduates extract information about neutron star binary star systems from X-ray light curves. The students interface directly with the High Energy Astrophysics Science Archive Research Center (HEASARC) data through CollegeHera. Hera is a new service offered by HEASARC that enables complete interactive analysis of archived data products (see the separate Lochner & Pence paper this meeting). One of the innovative features of this module is that it records detailed student progress and automatically reports this to the professor. As the student moves through the module, student answers to multiple choice and free response questions are recorded in a personal file on the server. This is an authenticated process. The student must fill out a registration form that includes their name, course, email, professor, and professor's email. This creates a session cookie for the student that stores the unique ID given to the user by the server. In turn, the unique ID is linked to the one file that records the student's responses. When the module is completed, a brief confirmation email is sent to the student, excluding the student's unique answers to discourage sharing with other students. Simultaneously, the professor entered during the registration receives an email with the student responses and their time of entry. PERL is used for all server-side programming, and form validation functions were written in JavaScript. A laptop with internet access will be available at the poster for participants to explore the module. Learning goals and other education information for the module are at a related paper in this meeting, Hufnagel, Lochner & Howard. This module required extensive cooperation with the Hera team, and was based on a module developed by James Lochner. Irina Nelson, formerly of the Office of University Programs at GSFC, conceived the overall project. Support for this work was provided by the Southeast Regional Clearinghouse (SERCH) and the Maryland Space Grant Consortium.
Brewing for Students: An Inquiry-Based Microbiology Lab †
Sato, Brian K.; Alam, Usman; Dacanay, Samantha J.; Lee, Amanda K.; Shaffer, Justin F.
2015-01-01
In an effort to improve and assess student learning, there has been a push to increase the incorporation of discovery-driven modules and those that contain real-world relevance into laboratory curricula. To further this effort, we have developed, implemented, and assessed an undergraduate microbiology laboratory experiment that requires students to use the scientific method while brewing beer. The experiment allows students to brew their own beer and characterize it based on taste, alcohol content, calorie content, pH, and standard reference method. In addition, we assessed whether students were capable of achieving the module learning objectives through a pre-/posttest, student self-evaluation, exam-embedded questions, and an associated worksheet. These objectives included describing the role of the brewing ingredients and predicting how altering the ingredients would affect the characteristics of the beer, amongst others. By completing this experimental module, students accomplished the module objectives, had greater interest in brewing, and were more likely to view beer in scientific terms. Journal of Microbiology & Biology Education PMID:26753030
Brewing for Students: An Inquiry-Based Microbiology Lab.
Sato, Brian K; Alam, Usman; Dacanay, Samantha J; Lee, Amanda K; Shaffer, Justin F
2015-12-01
In an effort to improve and assess student learning, there has been a push to increase the incorporation of discovery-driven modules and those that contain real-world relevance into laboratory curricula. To further this effort, we have developed, implemented, and assessed an undergraduate microbiology laboratory experiment that requires students to use the scientific method while brewing beer. The experiment allows students to brew their own beer and characterize it based on taste, alcohol content, calorie content, pH, and standard reference method. In addition, we assessed whether students were capable of achieving the module learning objectives through a pre-/posttest, student self-evaluation, exam-embedded questions, and an associated worksheet. These objectives included describing the role of the brewing ingredients and predicting how altering the ingredients would affect the characteristics of the beer, amongst others. By completing this experimental module, students accomplished the module objectives, had greater interest in brewing, and were more likely to view beer in scientific terms. Journal of Microbiology & Biology Education.
ERIC Educational Resources Information Center
Washington Consulting Group, Inc., Washington, DC.
The fourth module in a self-instructional course for student financial aid administrator neophytes provides an introduction to the management of federal financial aid programs authorized by the Higher Education Act Title IV with an emphasis on the role of the financial aid office. Areas covered in Module 4 include how to recognize the basic areas…
Student Flow Model SFM-IA: System Documentation. Technical Report 41B. Preliminary Edition.
ERIC Educational Resources Information Center
Busby, John C.; Johnson, Richard S.
Technical specifications, operating procedures, and reference information for the National Center for Higher Education Management Systems' (NCHEMS) Student Flow Model (SFM) computer programs are presented. Included are narrative descriptions of the system and its modules, specific program documentation for each of the modules, system flowcharts,…
Tilesetting. Pre-Apprenticeship Phase 2 Training. Instructor's Guide.
ERIC Educational Resources Information Center
Ausland, Greg
This instructor's guide accompanies the self-paced student training modules on tilesetting, available separately as CE 031 564. Introductory materials include a description of the components of the pre-apprenticeship project, discussion of teacher's role in students' completion of the modules, and scope and contents of Phase 2 training. Each of…
ERIC Educational Resources Information Center
West, Joyce
2017-01-01
Vocabulary knowledge plays an important role in determining a person's language proficiency level. This study investigates the role vocabulary plays in determining students' performance within research modules at private higher education institutions (HEIs). The discipline-specific vocabulary in this study includes target words, sampled from an…
A Case-Based Toxicology Module on Agricultural- and Mining-Related Occupational Exposures
2012-01-01
Objective. To develop and assess a toxicology module to teach pharmacy students about farming- and mining-related occupational exposures in the context of an existing toxicology elective course. Design. A teaching unit that included lectures and case studies was developed to address the unique occupational exposures of patients working in agricultural and mining environments. Upon completion of this 4-hour (2 class periods) module, students were expected to recognize the clinical signs and symptoms associated with these occupational exposures and propose acceptable therapeutic plans. Assessment. After completing the module, students scored significantly higher on a patient case involving suicide resulting from pesticide consumption. Seventy-three percent of the students scored higher than 90% on a 33-item multiple-choice examination. Eighty-two percent of students were able to correctly read a product label to determine the type of pesticide involved in an occupational exposure. Conclusion. Pharmacy students who completed a module on occupation exposure demonstrated competence in distinguishing occupational exposures from each other and from exposure to prescription and nonprescription drugs. This module can be used to educate future pharmacists about occupational health issues, some of which may be more prevalent in a rural setting. PMID:23049108
NASA Astrophysics Data System (ADS)
Meixner, T.; Gougis, R.; O'Reilly, C.; Klug, J.; Richardson, D.; Castendyk, D.; Carey, C.; Bader, N.; Stomberg, J.; Soule, D. C.
2016-12-01
High-frequency sensor data are driving a shift in the Earth and environmental sciences. The availability of high-frequency data creates an engagement opportunity for undergraduate students in primary research by using large, long-term, and sensor-based, data directly in the scientific curriculum. Project EDDIE (Environmental Data-Driven Inquiry & Exploration) has developed flexible classroom activity modules designed to meet a series of pedagogical goals that include (1) developing skills required to manipulate large datasets at different scales to conduct inquiry-based investigations; (2) developing students' reasoning about statistical variation; and (3) fostering accurate student conceptions about the nature of environmental science. The modules cover a wide range of topics, including lake physics and metabolism, stream discharge, water quality, soil respiration, seismology, and climate change. In this presentation we will focus on a sequence of modules of particular interest to hydrologists - stream discharge, water quality and nutrient loading. Assessment results show that our modules are effective at making students more comfortable analyzing data, improved understanding of statistical concepts, and stronger data analysis capability. This project is funded by an NSF TUES grant (NSF DEB 1245707).
Pourmand, Ali; Tanski, Mary; Davis, Steven; Shokoohi, Hamid; Lucas, Raymond; Zaver, Fareen
2015-01-01
Asynchronous online training has become an increasingly popular educational format in the new era of technology-based professional development. We sought to evaluate the impact of an online asynchronous training module on the ability of medical students and emergency medicine (EM) residents to detect electrocardiogram (ECG) abnormalities of an acute myocardial infarction (AMI). We developed an online ECG training and testing module on AMI, with emphasis on recognizing ST elevation myocardial infarction (MI) and early activation of cardiac catheterization resources. Study participants included senior medical students and EM residents at all post-graduate levels rotating in our emergency department (ED). Participants were given a baseline set of ECGs for interpretation. This was followed by a brief interactive online training module on normal ECGs as well as abnormal ECGs representing an acute MI. Participants then underwent a post-test with a set of ECGs in which they had to interpret and decide appropriate intervention including catheterization lab activation. 148 students and 35 EM residents participated in this training in the 2012-2013 academic year. Students and EM residents showed significant improvements in recognizing ECG abnormalities after taking the asynchronous online training module. The mean score on the testing module for students improved from 5.9 (95% CI [5.7-6.1]) to 7.3 (95% CI [7.1-7.5]), with a mean difference of 1.4 (95% CI [1.12-1.68]) (p<0.0001). The mean score for residents improved significantly from 6.5 (95% CI [6.2-6.9]) to 7.8 (95% CI [7.4-8.2]) (p<0.0001). An online interactive module of training improved the ability of medical students and EM residents to correctly recognize the ECG evidence of an acute MI.
Project EDDIE: Improving Big Data skills in the classroom
NASA Astrophysics Data System (ADS)
Soule, D. C.; Bader, N.; Carey, C.; Castendyk, D.; Fuller, R.; Gibson, C.; Gougis, R.; Klug, J.; Meixner, T.; Nave, L. E.; O'Reilly, C.; Richardson, D.; Stomberg, J.
2015-12-01
High-frequency sensor-based datasets are driving a paradigm shift in the study of environmental processes. The online availability of high-frequency data creates an opportunity to engage undergraduate students in primary research by using large, long-term, and sensor-based, datasets for science courses. Project EDDIE (Environmental Data-Driven Inquiry & Exploration) is developing flexible classroom activity modules designed to (1) improve quantitative and reasoning skills; (2) develop the ability to engage in scientific discourse and argument; and (3) increase students' engagement in science. A team of interdisciplinary faculty from private and public research universities and undergraduate institutions have developed these modules to meet a series of pedagogical goals that include (1) developing skills required to manipulate large datasets at different scales to conduct inquiry-based investigations; (2) developing students' reasoning about statistical variation; and (3) fostering accurate student conceptions about the nature of environmental science. The modules cover a wide range of topics, including lake physics and metabolism, stream discharge, water quality, soil respiration, seismology, and climate change. Assessment data from questionnaire and recordings collected during the 2014-2015 academic year show that our modules are effective at making students more comfortable analyzing data. Continued development is focused on improving student learning outcomes with statistical concepts like variation, randomness and sampling, and fostering scientific discourse during module engagement. In the coming year, increased sample size will expand our assessment opportunities to comparison groups in upper division courses and allow for evaluation of module-specific conceptual knowledge learned. This project is funded by an NSF TUES grant (NSF DEB 1245707).
Snow, Rosamund; Crocker, Joanna; Talbot, Katherine; Moore, Jane; Salisbury, Helen
2016-12-01
Medical education increasingly includes patient perspectives, but few studies look at the impact on students' proficiency in standard examinations. We explored students' exam performance after viewing video of patients' experiences. Eighty-eight medical students were randomized to one of two e-learning modules. The experimental group saw video clips of patients describing their colposcopy, while the control group viewed a clinician describing the procedure. Students then completed a Multiple Choice Questionnaire (MCQ) and were assessed by a blinded clinical examiner in an Objective Structured Clinical Examination (OSCE) with a blinded simulated patient (SP). The SP scored students using the Doctors' Interpersonal Skills Questionnaire (DISQ). Students rated the module's effect on their skills and confidence. Regression analyses were used to compare the effect of the two modules on these outcomes, adjusting for gender and graduate entry. The experimental group performed better in the OSCE than the control group (odds ratio 2.7 [95%CI 1.2-6.1]; p = 0.016). They also reported significantly more confidence in key areas, including comfort with patients' emotions (odds ratio 6.4 [95%CI 2.7-14.9]; p < 0.0005). There were no other significant differences. Teaching that included recorded elements of real patient experience significantly improved students' examination performance and confidence.
NASA Astrophysics Data System (ADS)
Baer, E. M.; Wenner, J. M.
2014-12-01
Implementation of "The Math You Need, When You Need It" (TMYN) modules at a wide variety of institutions suggests a broad need for faculty support in helping students develop quantitative skills necessary in introductory geoscience courses. Designed to support students in applying geoscience relevant quantitative skills, TMYN modules are web-based, self-paced and commonly assigned outside of class. They include topics such as calculating slope, rearranging equations, and unit conversions and provide several applications of the mathematical technique to geoscience problems. Each instructor chooses modules that are applicable to the content in his/her individual course and students typically work through the module immediately before the module topic is applied in lab or class. Instructors assigned TMYN modules in their courses at more than 40 diverse institutions, including four-year colleges and universities (4YCs) that vary from non-selective to highly selective and open-door two-year colleges (2YCs). Analysis of module topics assigned, frequency of module use, and institutional characteristics reveals similarities and differences among faculty perception of required quantitative skills and incoming student ability at variably selective institutions. Results indicate that institutional type and selectivity are not correlated with module topic; that is, faculty apply similar quantitative skills in all introductory geoscience courses. For example, nearly every instructor assigned the unit conversions module, whereas very few required the trigonometry module. However, differences in number of assigned modules and faculty expectations are observed between 2YCs and 4YCs (no matter the selectivity). Two-year college faculty typically assign a higher number of modules per course and faculty at 4YCs more often combine portions of multiple modules or cover multiple mathematical concepts in a single assignment. These observations suggest that quantitative skills required for introductory geoscience courses are similar among all higher-education institution types. However, faculty at 4YCs may expect students to acquire and apply multiple quantitative skills in the same class/lab, whereas 2YC faculty may structure assignments to introduce and apply only one quantitative technique at a time.
ERIC Educational Resources Information Center
Chief of Naval Education and Training Support, Pensacola, FL.
This student guidebook is designed for use with the study booklets in modules 30-31 included in the military-developed course on basic electricity and electronics. The course is one of a number of military-developed curriculum packages selected for adaptation to vocational instructional and curriculum development in a civilian setting. An…
Marsh, Karen R; Giffin, Bruce F; Lowrie, Donald J
2008-01-01
The purpose of this project was to develop Web-based learning modules that combine (1) animated 3D graphics; (2) 3D models that a student can manipulate independently; (3) passage of time in embryonic development; and (4) animated 2D graphics, including 2D cross-sections that represent different "slices" of the embryo, and animate in parallel. These elements were presented in two tutorials, one depicting embryonic folding and the other showing development of the nervous system after neural tube formation. The goal was to enhance the traditional teaching format-lecture combined with printed diagrams, text, and existing computer animations-with customized, guided, Web-based learning modules that surpassed existing resources. To assess module effectiveness, we compared quiz performance of control groups who attended lecture and did not use a supporting module, with study groups who used a module in addition to attending lecture. We also assessed our students' long-term retention of the material, comparing classes who had used the module with students from a previous year that had not seen the module. Our data analysis suggests that students who used a module performed better than those given only traditional resources if they used the module after they were already somewhat familiar with the material. The findings suggest that our modules-and possibly computer-assisted-instruction modules in general-are more useful if used toward the later stages of learning, rather than as an initial resource. Furthermore, our data suggest that the animation aids in long-term retention. Both medical students at the University of Cincinnati and medical faculty from across the country commented favorably on their experiences with the embryonic development modules. Copyright 2008 American Association of Anatomists
Drywall. Pre-Apprenticeship Phase 2 Training. Instructor's Guide.
ERIC Educational Resources Information Center
Moore, Doug
This instructor's guide accompanies the self-paced student training modules on drywall available separately as CE 031 574. Introductory materials include a description of the components of the pre-apprenticeship project, discussion of teacher's role in students' completion of the modules, and scope and contents of Phase 2 training. Each of the 18…
Bricklaying. Pre-Apprenticeship Phase 2 Training. Instructor's Guide.
ERIC Educational Resources Information Center
Cholewinski, Scott
This instructor's guide accompanies the self-paced student training modules on bricklaying available separately as CE 031 568. Introductory materials include a description of the components of the pre-apprenticeship project, discussion of teacher's role in students' completion of the modules, and scope and contents of Phase 2 training. Each of the…
Parts Counter. Pre-Apprenticeship Phase 2 Training. Instructor's Guide.
ERIC Educational Resources Information Center
Snyder, James A.
This instructor's guide accompanies the self-paced student training modules on parts counter, available separately as CE 031 572. Introductory materials include a description of the components of the pre-apprenticeship project, discussion of teacher's role in students' completion of the modules, and scope and contents of Phase 2 training. Each of…
Effectiveness of Diversity Infusion Modules on Students' Attitudes, Behavior, and Knowledge
ERIC Educational Resources Information Center
Saleh, Mahasin F.; Anngela-Cole, Linda; Boateng, Alice
2011-01-01
The purpose of this study was to evaluate the effectiveness of diversity infusion modules provided to university students in a predominantly white homogeneous community. A mixed-method approach using a pre-post retrospective design was used to measure attitudes, behaviors, and knowledge about diversity issues, and included a comparison group…
Cement Finishing. Pre-Apprenticeship Phase 2 Training. Instructor's Guide.
ERIC Educational Resources Information Center
Nama, Joe
This instructor's guide accompanies the self-paced student training modules on cement finishing, available separately as CE 031 576. Introductory materials include a description of the components of the pre-apprenticeship project, discussion of teacher's role in students' completion of the modules, and scope and contents of Phase 2 training. Each…
Blazeck, Alice M; Katrancha, Elizabeth; Drahnak, Dawn; Sowko, Lucille Ann; Faett, Becky
2016-05-01
Nursing students rarely are afforded the opportunity to provide discharge teaching in the acute care environment, especially at the sophomore level. Three video modules were developed that presented examples of effective and ineffective education for patients with complex chronic conditions. Students viewed modules during postconference using portable technology. A training manual that included objectives, lesson plans, evidence-based teaching points, and a discussion model guided presentation. The modules were presented to 216 sophomore nursing students. Following course completion, 20 students and 10 faculty were randomly selected to participate in two focus groups. Students commented positively on the format and illustration of effective teaching. Faculty rated the teaching strategy positively and the format as easy to use. Interactive video modules can be used to foster patient teaching skills early in the nursing curriculum. Future studies are needed to evaluate the ability to transfer skills learned to the clinical setting. [J Nurs Educ. 2016;55(5):296-299.]. Copyright 2016, SLACK Incorporated.
NASA Astrophysics Data System (ADS)
Gordon, E. S.
2011-12-01
Fitchburg State University has a diverse student population comprised largely of students traditionally underrepresented in higher education, including first-generation, low-income, and/or students with disabilities. Approximately half of our incoming students require developmental math coursework, but often enroll in science classes prior to completing those courses. Since our introductory geoscience courses (Oceanography, Meteorology, Geology, Earth Systems Science) do not have prerequisites, many students who take them lack basic math skills, but are taking these courses alongside science majors. In order to provide supplemental math instruction without sacrificing time for content, "The Math You Need, When You Need It (TMYN), a set of online math tutorials placed in a geoscience context, will be implemented in three of our introductory courses (Oceanography, Meteorology, and Earth Systems Science) during Fall, 2011. Students will complete 5-6 modules asynchronously, the topics of which include graphing skills, calculating rates, unit conversions, and rearranging equations. Assessment of quantitative skills will be tracked with students' pre- and post-test results, as well as individual module quiz scores. In addition, student assessment results from Oceanography will be compared to student data from Academic Year 2010-11, during which quantitative skills were evaluated with pre- and post-test questions, but students did not receive online supplemental instruction.
Tuchman, Ellen; Hanley, Kathleen; Naegle, Madeline; More, Frederick; Bereket, Sewit; Gourevitch, Marc N
2017-01-01
The Substance Abuse Research and Education Training (SARET) program is funded by the National Institutes of Drug Abuse in 2006 as a novel approach to spark interest in substance abuse research among medical, dental, nursing, and social work graduate students through a Web-based curriculum and research mentorships. This report presents the initial integration of the intervention in a Master of Social Work (MSW) program, the components of the program, and the mixed-methods evaluation of its effect on students' attitudes towards substance abuse research and treatment. SARET comprises 2 main components: stipend-supported research mentorships and a Web-based module series, consisting of 6 interactive, multimedia modules addressing core SA research topics, delivered via course curricula and in the research mentorships. An initial evaluation was designed to assess SARET's acceptability and short-term impact on participants' interest in SA research. The components of this Web-based curriculum evaluation include focus group feedback on the relevance of the modules to SW students, number of courses into which the modules were integrated with number of module completions, changes in interest in SA research associated with module completion. The full series of Web-based modules has been integrated across several courses in the social work curriculum, and social work students have become integral participants in the summer mentored research experience. One hundred eighteen students completed at least 1 module and 42 students completed all 6 modules. Neurobiology, Screening, and Epidemiology were the most widely viewed modules. Students reported positive impact on their vision of SA-related clinical care, more positive attitudes about conducting research, and in some cases, change in career. The SARET program's modules and summer mentored research increased clinical and research interest related to SUDs, as well as interprofessional attitudes among social work students. Participants have shown some early research success. Longer-term follow-up will enable us to continue to assess the effectiveness of the program.
Climate Curriculum Modules on Volcanic Eruptions, Geoengineering, and Nuclear Winter
NASA Astrophysics Data System (ADS)
Robock, A.
2014-12-01
To support a climate dynamics multidisciplinary curriculum for graduate and senior university students, I will describe on-line modules on volcanic eruptions and climate, geoengineering, and nuclear winter. Each of these topics involves aerosols in the stratosphere and the response of the climate system, but each is distinct, and each is evolving as more research becomes available. As reported for the first time in the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, volcanic eruptions are a natural analog for the climate impacts of potential anthropogenic aerosol injections into the stratosphere, either sulfates from potential attempts to cool the climate to counteract global warming, or smoke that would be produced from fires in cities and industrial targets in a nuclear war. The volcanic eruptions module would stand alone, and would also serve as a prerequisite for each of the other two modules, which could be taught independently of each other. Each module includes consideration of the physical climate system as well as impacts of the resulting climate change. Geoengineering includes both solar radiation management and carbon dioxide reduction. The geoengineering and nuclear winter modules also include consideration of policy and governance issues. Each module includes a slide set for use in lecturing, links to related resources, and student exercises. The modules will be regularly updated.
2011-01-01
Background Paintings have been used in Medical Humanities modules in Nepal at Manipal College of Medical Sciences and KIST Medical College. Detailed participant feedback about the paintings used, the activities carried out, problems with using paintings and the role of paintings in future modules has not been previously done. Hence the present study was carried out. Methods The present module for first year medical students was conducted from February to August 2010 at KIST Medical College, Nepal. Paintings used were by Western artists and obtained from the Literature, Arts and Medicine database. The activities undertaken by the students include answering the questions 'What do you see' and 'What do you feel' about the painting, creating a story of 100 words about the scene depicted, and interpreting the painting using role plays and poems/songs. Feedback was not obtained about the last two activities. In August 2010 we obtained detailed feedback about the paintings used. Results Seventy-eight of the 100 students (78%) participated. Thirty-four students (43.6%) were male. The most common overall comments about the use of paintings were "they helped me feel what I saw" (12 respondents), "enjoyed the sessions" (12 respondents), "some paintings were hard to interpret" (10 respondents) and "were in tune with module objectives" (10 respondents). Forty-eight (61.5%) felt the use of western paintings was appropriate. Suggestions to make annotations about paintings more useful were to make them shorter and more precise, simplify the language and properly introduce the artist. Forty-one students (52.6%) had difficulty with the exercise 'what do you feel'. Seventy-four students (94.9%) wanted paintings from Nepal to be included. Conclusions Participant response was positive and they were satisfied with use of paintings in the module. Use of more paintings from Nepal and South Asia can be considered. Further studies may be required to understand whether use of paintings succeeded in fulfilling module objectives. PMID:21385427
Minuti, Aurelia; Sorensen, Karen; Schwartz, Rachel; King, Winifred S; Glassman, Nancy R; Habousha, Racheline G
2018-01-01
This article describes the development of a flipped classroom instructional module designed by librarians to teach first- and second-year medical students how to search the literature and find evidence-based articles. The pre-class module consists of an online component that includes reading, videos, and exercises relating to a clinical case. The in-class sessions, designed to reinforce important concepts, include various interactive activities. The specifics of designing both components are included for other health sciences librarians interested in presenting similar instruction. Challenges encountered, particularly in the live sessions, are detailed, as are the results of evaluations submitted by the students, who largely enjoyed the online component. Future plans are contingent on solving technical problems encountered during the in-class sessions.
The Contemporary Issues Module: Its Use in the Science Methods Class
ERIC Educational Resources Information Center
Kuhn, David J.
1973-01-01
Author conducts preservice education for science teachers by engaging students in modules stressing contemporary issues. Basic features of the modules include providing individualized instruction and stressing the interdisciplinary aspects of pure applied and social sciences. (PS)
NASA Astrophysics Data System (ADS)
Hanna, Philip; Allen, Angela; Kane, Russell; Anderson, Neil; McGowan, Aidan; Collins, Matthew; Hutchison, Malcolm
2015-07-01
This paper outlines a means of improving the employability skills of first-year university students through a closely integrated model of employer engagement within computer science modules. The outlined approach illustrates how employability skills, including communication, teamwork and time management skills, can be contextualised in a manner that directly relates to student learning but can still be linked forward into employment. The paper tests the premise that developing employability skills early within the curriculum will result in improved student engagement and learning within later modules. The paper concludes that embedding employer participation within first-year models can help relate a distant notion of employability into something of more immediate relevance in terms of how students can best approach learning. Further, by enhancing employability skills early within the curriculum, it becomes possible to improve academic attainment within later modules.
de Jong, N; Verstegen, D M L; Tan, F E S; O'Connor, S J
2013-05-01
This case-study compared traditional, face-to-face classroom-based teaching with asynchronous online learning and teaching methods in two sets of students undertaking a problem-based learning module in the multilevel and exploratory factor analysis of longitudinal data as part of a Masters degree in Public Health at Maastricht University. Students were allocated to one of the two study variants on the basis of their enrolment status as full-time or part-time students. Full-time students (n = 11) followed the classroom-based variant and part-time students (n = 12) followed the online asynchronous variant which included video recorded lectures and a series of asynchronous online group or individual SPSS activities with synchronous tutor feedback. A validated student motivation questionnaire was administered to both groups of students at the start of the study and a second questionnaire was administered at the end of the module. This elicited data about student satisfaction with the module content, teaching and learning methods, and tutor feedback. The module coordinator and problem-based learning tutor were also interviewed about their experience of delivering the experimental online variant and asked to evaluate its success in relation to student attainment of the module's learning outcomes. Student examination results were also compared between the two groups. Asynchronous online teaching and learning methods proved to be an acceptable alternative to classroom-based teaching for both students and staff. Educational outcomes were similar for both groups, but importantly, there was no evidence that the asynchronous online delivery of module content disadvantaged part-time students in comparison to their full-time counterparts.
Integration of a Communicating Science Module into an Advanced Chemistry Laboratory Course
ERIC Educational Resources Information Center
Renaud, Jessica; Squier, Christopher; Larsen, Sarah C.
2006-01-01
A communicating science module was introduced into an advanced undergraduate physical chemistry laboratory course. The module was integrated into the course such that students received formal instruction in communicating science interwoven with the chemistry laboratory curriculum. The content of the communicating science module included three…
Exploring the benefits of an optional theatre module on medical student well-being.
Nagji, Alim; Brett-MacLean, Pamela; Breault, Lorraine
2013-01-01
Medical students struggle with varied stressors and developing adequate coping mechanisms is essential. This study examined medical student perceptions of the well-being impact of a theatre-based course. Eighteen 1st-year medical students at the University of Alberta participated in 3 focus groups following the conclusion of a theatre-based module that was piloted in the first quarter of 2010. A semistructured protocol was used to guide the focus groups, which were audiotaped and transcribed. Along with general feedback, impact on personal development and student well-being were discussed. Thematic aspects of these discussions were qualitatively analyzed. During the focus groups, medical students identified three aspects of the theatre-based module that contributed to their sense of overall well-being. These included (a) fun/relaxation, (b) enhanced relationships with each other, and (c) personal growth/resilience. Our findings suggest that participating in an optional theatre module can enhance medical student well-being. Our analysis suggests the need to consider novel, humanities-based curriculum offerings in relation to personal development and well- being.
Man and Energy, Module C. Fourth Grade. Pilot Form.
ERIC Educational Resources Information Center
Pasco County Schools, Dade City, FL.
This booklet is one of a set of learning modules on energy for use by students and teachers in the fourth grade. This module investigates solar energy, ecology, and fossil fuels. Included are laboratory activities and values exercises. (BT)
NASA Astrophysics Data System (ADS)
Doser, D. I.; Villalobos, J. I.; Henry, I. E.
2014-12-01
InTeGrate (Interdisciplinary Teaching about Earth for a Sustainable Future) has developed teaching modules that focus on Earth sustainability and Earth-centered societal issues. We have begun to implement modules on climate change, earth materials and freshwater into introductory geology and environmental science courses taught at the University of Texas at El Paso (UTEP), El Paso Community College (EPCC) and local early college high schools (ECHS) for classes of 20 to 220 students. Our eventual goal is to insure students taking introductory classes at any institution will be exposed to comparable content and be similarly prepared for advanced courses. Our initial results suggest that the modules' use of case studies and analysis of authentic data sets are very appealing to our student body (over 70% Hispanic). Since many students do not speak English at home, they were challenged by vocabulary presented in some modules. Modules containing glossaries and extensive background material (such as concept maps and annotated figures) proved very helpful to these students. The use of pre-activity quizzes insured that the students had mastered basic concepts needed for in-class activities. Modifications required to teach these modules in larger classes included condensing materials and reducing the amount of color figures to save paper and printer costs, streamlining dissemination/collection of in-class group assignments, and adapting assignments such as jigsaws and gallery walks to the confines of a large lecture hall with fixed seating. Student reflections indicated students were able to make connections to societal issues and retain these ideas through the end of the courses.
NASA Astrophysics Data System (ADS)
Olgin, J. G.; Güereque, M.; Pennington, D. D.; Everett, A.; Dixon, J. G.; Reyes, A.; Houser, P. I. Q.; Baker, J. A.; Stocks, E.; Ellins, K.
2015-12-01
The Geological Sciences department at the University of Texas at El Paso (UTEP) hosted the EarthTech outreach program - a one-week intensive summer camp for low-income, at-risk high school students. The EarthTech program engaged students in STEM activities from geological and environmental sciences. Developed and led by university student-mentors with guidance from a supervising faculty member, the course engaged Upward Bound students with lectures, interactive projects, and excursions to local ecological preserves and geological sites around El Paso, Texas. Topics covered plant and animal distribution and diversity, water and soil dynamics, evolution and paleontology, geohazards, and planetary science. Field trips were combined with hands-on activities, including activities from DIG Texas teaching modules. The NSF-funded DIG Texas Instructional Blueprints project is organizing vetted, high quality online educational resources and learning activities into teaching modules. The modules follow a storyline and demonstrate congruency with the Next Generation Science Standards. Selected DIG Texas resources were included in the daily curriculum to complement the field trip and other hands-on activities. EarthTech students created ESRI Online GIS story maps in which they showed the locations of the field trips, incorporated photographs they had taken, and provided written reflections about their camp experiences. The DIG Texas project evaluation collected survey and interview data from the university student mentors throughout the week to ascertain the efficacy of the program. This poster presentation will include an overview of the program, including examples of work and evaluation results.
NASA Astrophysics Data System (ADS)
Taylor, H.; Charlevoix, D. J.; Pritchard, M. E.; Lohman, R. B.
2013-12-01
In the last several decades, advances in geodetic technology have allowed us to significantly expand our knowledge of processes acting on and beneath the Earth's surface. Many of these advances have come as a result of EarthScope, a community of scientists conducting multidisciplinary Earth science research utilizing freely accessible data from a variety of instruments. The geodetic component of EarthScope includes the acquisition of synthetic aperture radar (SAR) images, which are archived at the UNAVCO facility. Interferometric SAR complements the spatial and temporal coverage of GPS and allows monitoring of ground deformation in remote areas worldwide. However, because of the complex software required for processing, InSAR data are not readily accessible to most students. Even with these challenges, exposure at the undergraduate level is important for showing how geodesy can be applied in various areas of the geosciences and for promoting geodesy as a future career path. Here we present a module focused on exploring the tectonics of the western United States using InSAR data for use in undergraduate tectonics and geophysics classes. The module has two major objectives: address topics concerning tectonics in the western U.S. including Basin and Range extension, Yellowstone hotspot activity, and creep in southern California, and familiarize students with how imperfect real-world data can be manipulated and interpreted. Module questions promote critical thinking skills and data literacy by prompting students to use the information given to confront and question assumptions (e.g. 'Is there a consistency between seismic rates and permanent earthquake deformation? What other factors might need to be considered besides seismicity?'). The module consists of an introduction to the basics of InSAR and three student exercises, each focused on one of the topics listed above. Students analyze pre-processed InSAR data using MATLAB, or an Excel equivalent, and draw on GPS and creepmeter datasets for comparison. Exercises were developed following Backward Design and initial feedback was provided by curriculum experts and several undergraduate students. Evaluation of the impact of the module on student understanding of InSAR will be conducted in the fall with volunteers from tectonics and geophysics classes. Students will be given pre- and post-module surveys to evaluate overall effectiveness and areas for improvement. This module will be disseminated on the UNAVCO website after finalization.
ERIC Educational Resources Information Center
Bessent, E. Wailand; And Others
Provided in the manual are background material, problems, and worksheets designed for graduate students involved in a computer assisted instruction (CAI) approach to supervisor training. Included are a faculty handbook for a simulated school in a mythical community, a practice problem to familiarize the student with terminal operation, and eight…
An Interprofessional Learning Module on Asthma Health Promotion
Shah, Smita; Kearey, Phoebe; Bosnic-Anticevich, Sinthia; Grootjans, John; Armour, Carol
2011-01-01
Objective To develop, implement, and evaluate a new interprofessional learning module that focused on asthma health promotion called Taking Action Together for Asthma. Design Faculty members in medicine, nursing, and pharmacy courses recruited 10 students each to participate in a 3-day interprofessional learning module. Students received extensive materials including a workbook to document their expectations and experience; completed a 1-day interprofessional workshop; received training in the Triple A (Adolescent Asthma Action) program; and went into high schools and taught the Triple A program to students in interprofessional teams. Assessment Before and after participating in the module, students completed a questionnaire consisting of 3 previously validated instruments: the Asthma Knowledge for Health Professionals Scale, Attitudes Toward Health Care Teams Scale, and Readiness for Interprofessional Learning Scale (RIPLS). Seventeen students completed both the pre- and post-module scales and significant changes were seen only in means scores for the Attitude Toward Healthcare Teams (81.0 ± 4.7 to 85.2 ± 5.9) and the Teamwork and Collaboration subscale of the RIPLS (41.4 ± 2.7 to 43.2 ± 2.7). Conclusion Health promotion activities offer a viable mechanism for fostering interprofessional learning among health professions students. PMID:21519420
An interprofessional learning module on asthma health promotion.
Saini, Bandana; Shah, Smita; Kearey, Phoebe; Bosnic-Anticevich, Sinthia; Grootjans, John; Armour, Carol
2011-03-10
To develop, implement, and evaluate a new interprofessional learning module that focused on asthma health promotion called Taking Action Together for Asthma. Faculty members in medicine, nursing, and pharmacy courses recruited 10 students each to participate in a 3-day interprofessional learning module. Students received extensive materials including a workbook to document their expectations and experience; completed a 1-day interprofessional workshop; received training in the Triple A (Adolescent Asthma Action) program; and went into high schools and taught the Triple A program to students in interprofessional teams. Before and after participating in the module, students completed a questionnaire consisting of 3 previously validated instruments: the Asthma Knowledge for Health Professionals Scale, Attitudes Toward Health Care Teams Scale, and Readiness for Interprofessional Learning Scale (RIPLS). Seventeen students completed both the pre- and post-module scales and significant changes were seen only in means scores for the Attitude Toward Healthcare Teams (81.0 ± 4.7 to 85.2 ± 5.9) and the Teamwork and Collaboration subscale of the RIPLS (41.4 ± 2.7 to 43.2 ± 2.7). Health promotion activities offer a viable mechanism for fostering interprofessional learning among health professions students.
NASA Astrophysics Data System (ADS)
Wulandari, N. A. D.; Sukestiyarno, Y. L.
2017-04-01
This research aims to develop an OQALE based reference module for school geometry subject that meets the criteria of a valid and practical. OQALE approach is learning by of O = observation, Q = question, A = Analyze, L = Logic, E = Express. Geometry subject presented in the module are a triangle, the Pythagorean theorem, and rectangular. Mathematical skills of creative thinking shown from four aspects: fluency, flexibility, originality and elaboration. Research procedures in the development of reference module using a strategy of the investigation and development described by [2], which is limited to the sixth stage is leading field testing. The focus of this research is to develop a reference module that is valid, practical and able to increase the mathematical creative thinking skills of students. The testing is limited to three teachers, nine students and two mathematic readers using purposive sampling technique. The data validity, practicality, and creative thinking skills upgrading collected through questionnaires, observations, and interviews and analysed with a valid test, practical test, gain test and qualitative descriptive. The results were obtained (1) the validity of the module = 4.52, which is 4.20 ≤ Vm< 5.00 included in the category of very valid; (2) the results of the questionnaire responses of teachers = 4.53, which is 4.20 ≤ Rg< 5.00 included in the category of very good; (3) the results of the survey responses of students = 3.13, which is 2.80 ≤ Rpd< 3.40 included in the category of good with an average percentage of 78%; and (4) increasing skills of creative thinking mathematically nine students through the test of the gain included in the high and medium category. The conclusions of this research are the generated OQALE based reference module for school geometry subjectis valid and practical.
Dankbaar, Mary E W; Richters, Olivier; Kalkman, Cor J; Prins, Gerrie; Ten Cate, Olle T J; van Merrienboer, Jeroen J G; Schuit, Stephanie C E
2017-02-02
Serious games have the potential to teach complex cognitive skills in an engaging way, at relatively low costs. Their flexibility in use and scalability makes them an attractive learning tool, but more research is needed on the effectiveness of serious games compared to more traditional formats such e-modules. We investigated whether undergraduate medical students developed better knowledge and awareness and were more motivated after learning about patient-safety through a serious game than peers who studied the same topics using an e-module. Fourth-year medical students were randomly assigned to either a serious game that included video-lectures, biofeedback exercises and patient missions (n = 32) or an e-module, that included text-based lectures on the same topics (n = 34). A third group acted as a historical control-group without extra education (n = 37). After the intervention, which took place during the clinical introduction course, before the start of the first rotation, all students completed a knowledge test, a self-efficacy test and a motivation questionnaire. During the following 10-week clinical rotation they filled out weekly questionnaires on patient-safety awareness and stress. The results showed patient safety knowledge had equally improved in the game group and e-module group compared to controls, who received no extra education. Average learning-time was 3 h for the game and 1 h for the e-module-group. The serious game was evaluated as more engaging; the e-module as more easy to use. During rotations, students in the three groups reported low and similar levels of patient-safety awareness and stress. Students who had treated patients successfully during game missions experienced higher self-efficacy and less stress during their rotation than students who treated patients unsuccessfully. Video-lectures (in a game) and text-based lectures (in an e-module) can be equally effective in developing knowledge on specific topics. Although serious games are strongly engaging for students and stimulate them to study longer, they do not necessarily result in better performance in patient safety issues.
COMPRES Mineral Physics Educational Modules for Advanced Undergraduates and Graduate Students
NASA Astrophysics Data System (ADS)
Burnley, P. C.; Thomas, S.
2012-12-01
The Consortium for Materials Properties Research in Earth Sciences (COMPRES) is a community-based consortium whose goal is to advance and facilitate experimental high pressure research in the Earth Sciences. An important aspect of this goal is sharing our knowledge with the next generation of researchers. To facilitate this, we have created a group of web-based educational modules on mineral physics topics. The modules reside in the On Cutting Edge, Teaching Mineralogy collection on the Science Education Resource Center (SERC) website. Although the modules are designed to function as part of a full semester course, each module can also stand alone. Potential users of the modules include mineral physics faculty teaching "bricks and mortar" classes at their own institutions, or in distance education setting, mineralogy teachers interested in including supplementary material in their mineralogy class, undergraduates doing independent study projects and graduate students and colleagues in other sub-disciplines who wish to brush up on a mineral physics topic. We used the modules to teach an on-line course entitled "Introduction to Mineral Physics" during the spring 2012 semester. More than 20 students and postdocs as well as 15 faculty and senior scientists participated in the course which met twice weekly as a webinar. Recordings of faculty lectures and student-led discussions of journal articles are now available upon request and edited versions of the lectures will be incorporated into the educational modules. Our experience in creating the modules and the course indicates that the use of 1) community-generated internet-based resources and 2) webinars to enable shared teaching between faculty at different universities, has the potential to both enrich graduate education and create efficiencies for university faculty.;
Advanced Chemical Precipitation Softening. Training Module 2.217.4.77.
ERIC Educational Resources Information Center
McMullen, L. D.
This document is an instructional module package prepared in objective form for use by an instructor familiar with the operation and maintenance of a chemical precipitation softening system. Included are objectives, instructor guides, student handouts and transparency masters. This is the third level of a three module series. This module considers…
Written Communications: Module IV--Spelling and Vocabulary. Instructor/Student Guide.
ERIC Educational Resources Information Center
Limback, Rebecca
As one of five modules focusing on writing skills, this module on spelling and vocabulary is intended for use in a one-semester course on written communication or as a supplement to other courses where written communication skills are included. Designed for both teacher-directed and individualized learning situations, this module contains learning…
Intermediate Chemical Precipitation Softening. Training Module 2.216.3.77.
ERIC Educational Resources Information Center
McMullen, L. D.
This document is an instructional module package prepared in objective form for use by an instructor familiar with the operation and maintenance of a chemical precipitation softening system. Included are objectives, instructor guides, student handouts and transparency masters. This is the second level of a three module series. The module considers…
Nuclear Technology. Course 28: Welding Inspection. Module 28-9, Weld Repair Control.
ERIC Educational Resources Information Center
Espy, John
This ninth in a series of ten modules for a course titled Welding Inspection describes the purposes, essential elements, and application of a weld control program. The module follows a typical format that includes the following sections: (1) introduction, (2) module prerequisites, (3) objectives, (4) notes to instructor/student, (5) subject…
Nuclear Technology. Course 28: Welding Inspection. Module 28-6, Process Controls.
ERIC Educational Resources Information Center
Espy, John
This sixth in a series of ten modules for a course titled Welding Inspection describes procedures review, process monitoring, and weld defect analysis. The module follows a typical format that includes the following sections: (1) introduction, (2) module prerequisites, (3) objectives, (4) notes to instructor/student, (5) subject matter, (6)…
NASA Astrophysics Data System (ADS)
Howard, Emma; Meehan, Maria; Parnell, Andrew
2018-05-01
In Maths for Business, a mathematics module for non-mathematics specialists, students are given the choice of completing the module content via short online videos, live lectures or a combination of both. In this study, we identify students' specific usage patterns with both of these resources and discuss their reasons for the preferences they exhibit. In 2015-2016, we collected quantitative data on each student's resource usage (attendance at live lectures and access of online videos) for the entire class of 522 students and employed model-based clustering which identified four distinct resource usage patterns with lectures and/or videos. We also collected qualitative data on students' perceptions of resource usage through a survey administered at the end of the semester, to which 161 students responded. The 161 survey responses were linked to each cluster and analysed using thematic analysis. Perceived benefits of videos include flexibility of scheduling and pace, and avoidance of large, long lectures. In contrast, the main perceived advantages of lectures are the ability to engage in group tasks, to ask questions, and to learn 'gradually'. Students in the two clusters with high lecture attendance achieved, on average, higher marks in the module.
Preparing Teachers to Support the Development of Climate Literate Students
NASA Astrophysics Data System (ADS)
Haddad, N.; Ledley, T. S.; Ellins, K. K.; Bardar, E. W.; Youngman, E.; Dunlap, C.; Lockwood, J.; Mote, A. S.; McNeal, K.; Libarkin, J. C.; Lynds, S. E.; Gold, A. U.
2014-12-01
The EarthLabs climate project includes curriculum development, teacher professional development, teacher leadership development, and research on student learning, all directed at increasing high school teachers' and students' understanding of the factors that shape our planet's climate. The project has developed four new modules which focus on climate literacy and which are part of the larger Web based EarthLabs collection of Earth science modules. Climate related themes highlighted in the new modules include the Earth system with its positive and negative feedback loops; the range of temporal and spatial scales at which climate, weather, and other Earth system processes occur; and the recurring question, "How do we know what we know about Earth's past and present climate?" which addresses proxy data and scientific instrumentation. EarthLabs climate modules use two central strategies to help students navigate the multiple challenges inherent in understanding climate science. The first is to actively engage students with the content by using a variety of learning modes, and by allowing students to pace themselves through interactive visualizations that address particularly challenging content. The second strategy, which is the focus of this presentation, is to support teachers in a subject area where few have substantive content knowledge or technical skills. Teachers who grasp the processes and interactions that give Earth its climate and the technical skills to engage with relevant data and visualizations are more likely to be successful in supporting students' understanding of climate's complexities. This presentation will briefly introduce the EarthLabs project and will describe the steps the project takes to prepare climate literate teachers, including Web based resources, teacher workshops, and the development of a cadre of teacher leaders who are prepared to continue leading the workshops after project funding ends.
NASA Astrophysics Data System (ADS)
Penniston-Dorland, S.; Stern, R. J.; Edwards, B. R.; Kincaid, C. R.
2014-12-01
The NSF-MARGINS Program funded a decade of research on continental margin processes. The NSF-GeoPRISMS Mini-lesson Project, funded by NSF-TUES, is designed to integrate fundamental results from the MARGINS program into open-source college-level curriculum. Three Subduction Factory (SubFac) mini-lessons were developed as part of this project. These include hands-on examinations of data sets representing 3 key components of the subduction zone system: 1) Heat transfer in the subducted slab; 2) Metamorphic processes happening at the plate interface; and 3) Typical magmatic products of arc systems above subduction zones. Module 1: "Slab Temperatures Control Melting in Subduction Zones, What Controls Slab Temperature?" allows students to work in groups using beads rolling down slopes as an analog for the mathematics of heat flow. Using this hands-on, exploration-based approach, students develop an intuition for the mathematics of heatflow and learn about heat conduction and advection in the subduction zone environment. Module 2: "Subduction zone metamorphism" introduces students to the metamorphic rocks that form as the subducted slab descends and the mineral reactions that characterize subduction-related metamorphism. This module includes a suite of metamorphic rocks available for instructors to use in a lab, and exercises in which students compare pressure-temperature estimates obtained from metamorphic rocks to predictions from thermal models. Module 3: "Central American Arc Volcanoes, Petrology and Geochemistry" introduces students to basic concepts in igneous petrology using the Central American volcanic arc, a MARGINS Subduction Factory focus site, as an example. The module relates data from two different volcanoes - basaltic Cerro Negro (Nicaragua) and andesitic Ilopango (El Salvador) including hand sample observations and major element geochemistry - to explore processes of mantle and crustal melting and differentiation in arc volcanism.
ERIC Educational Resources Information Center
Derfoufi, Sanae; Benmoussa, Adnane; El Harti, Jaouad; Ramli, Youssef; Taoufik, Jamal; Chaouir, Souad
2015-01-01
This study investigates the positive impact of the Case Method implemented during a 4- hours tutorial in "therapeutic chemistry module." We view the Case Method as one particular approach within the broader spectrum of problem based or inquiry based learning approaches. Sixty students were included in data analysis. A pre-test and…
Ammonia. Training Module 5.110.2.77.
ERIC Educational Resources Information Center
Kirkwood Community Coll., Cedar Rapids, IA.
This document is an instructional module package prepared in objective form for use by an instructor familiar with analytical procedures for determining ammonia nitrogen concentrations in a water or wastewater sample. Included are objectives, instructor guides, student handouts, and transparency masters. This module considers preliminary…
Nature's Energy, Module B. Fourth Grade. Pilot Form.
ERIC Educational Resources Information Center
Pasco County Schools, Dade City, FL.
This booklet is one of a set of learning modules on energy for use by students and teachers in the fourth grade. This module examines man's use of fossil fuels, electricity production, and other energy sources. Included are laboratory activities and values exercises. (BT)
Dutch Research on Knowledge-Based Instructional Systems: Introduction to the Special Issue.
ERIC Educational Resources Information Center
van Merrienboer, Jeroen J. G.
1994-01-01
Provides an overview of this issue that reviews Dutch research concerning knowledge-based instructional systems. Topics discussed include experimental research, conceptual models, design considerations, and guidelines; the design of student diagnostic modules, instructional modules, and interface modules; second-language teaching; intelligent…
The Impact of Project-Based Climate Change Learning Experiences on Students' Broad Climate Literacy
NASA Astrophysics Data System (ADS)
DeWaters, J.; Powers, S. E.; Dhaniyala, S.
2014-12-01
Evidence-based pedagogical approaches such as project- and inquiry-based techniques have been shown to promote effective learning in science and engineering. The impact of project-based learning experiences on middle school (MS), high school (HS), and undergraduate (UG) students' climate literacy was investigated as part of a NASA Innovations in Climate Education (NICE) project. Project-based modules were developed and taught by MS and HS teachers who participated in climate change education workshops. UG students enrolled in a climate science course completed independent research projects that provided the basis for several of the HS/MS modules. All modules required students to acquire and analyze historical temperature data and future climate predictions, and apply their analysis to the solution of a societal or environmental problem related to our changing climate. Three versions of a quantitative survey were developed and used in a pre-test/post-test research design to help evaluate the project's impact on MS, HS, and UG students' climate literacy, which includes broad climate knowledge as well as affective and behavioral aspects. Content objectives were guided primarily by the 2009 document, Climate Literacy: The Essential Principles of Climate Sciences. All three groups of students made modest but statistically significant cognitive (p<<0.001) and affective (p<0.01) gains; UG students also showed an increase in behavior scores (p=0.001). Results of an ANCOVA showed significant differences in students' cognitive (p<0.001), behavioral (p=0.005) and self-efficacy (p=0.012) outcomes among the 9 participating MS and HS classrooms, where both teacher and module content varied. The presentation will include a description of some key aspects of the project-based curricula developed and used in this research, the development and content of the climate literacy survey, and the interpretation of specific pre/post changes in participating students relative to the content of and approach used in the project-based modules.
Senior Science Enrichment Modules. S.S.T.A. Research Centre Report No. 58.
ERIC Educational Resources Information Center
Fedorak, Allen; And Others
Presented is a set of learning modules intended for teaching science to students in grades eleven and twelve. Each module incorporates problem solving using the scientific viewpoint and emphasizing the interface between science and society. The fifteen modules presented include the following topics: group dynamics; the value of science; a puzzle…
Advanced Ion Exchange Softening. Training Module 2.212.4.77.
ERIC Educational Resources Information Center
McMullen, L. D.
This document is an instructional module package prepared in objective form for use by an instructor familiar with the operation of an ion exchange softening system. It includes objectives, an instructor guide, student handouts and transparency masters. This is the third level of a three module series. This module considers the theory of ion…
ERIC Educational Resources Information Center
Wisconsin Univ., Madison. Univ. Extension.
Twelve modules are presented for the education of gifted and talented students. Modules include a brief introduction; list of objectives; overview of the content; and suggestions for core, application, and quest (further study) activities. The modules focus on the following topics: definitions of giftedness; history of their educational treatment;…
ERIC Educational Resources Information Center
Pelton, Rick; Espy, John
This third in a series of seven modules for a course titled Nondestructive Examination (NDE) Techniques I describes the principles and practices associated with hydrostatic testing. The module follows a typical format that includes the following sections: (1) introduction, (2) module prerequisites, (3) objectives, (4) notes to instructor/student,…
Anaerobic Digestion Analysis. Training Module 5.120.2.77.
ERIC Educational Resources Information Center
Kirkwood Community Coll., Cedar Rapids, IA.
This document is an instructional module package prepared in objective form for use by an instructor familiar with alkalinity, volatile acids and carbon dioxide determinations for an anaerobic sludge digester. Included are objectives, instructor guides, student handouts and transparency masters. This module considers total and bicarbonate…
Financial. Training Module 4.310.3.77.
ERIC Educational Resources Information Center
Miller, Pat; Bonnstetter, Ron
This document is an instructional module package prepared in objective form for use by an instructor familiar with inventory records, purchasing and budgeting for water and wastewater treatment plants. Included are objectives, instructor guides, student handouts, and transparency masters. The module considers methods of inventory control, proper…
Self-Directed Digital Learning: When Do Dental Students Study?
Jackson, Tate H; Zhong, James; Phillips, Ceib; Koroluk, Lorne D
2018-04-01
The Growth and Development (G&D) curriculum at the University of North Carolina at Chapel Hill School of Dentistry uses self-directed web-based learning modules in the place of lectures and includes scheduled self-study times during the 8 am-5 pm school hours. The aim of this study was to use direct observation to evaluate dental students' access patterns with the self-directed, web-based learning modules in relation to planned self-study time allocated across the curriculum, proximity to course examinations, and course performance. Module access for all 80 students in the DDS Class of 2014 was recorded for date and time across the four G&D courses. Module access data were used to determine likelihood of usage during scheduled time and frequency of usage in three timeframes: >7, 3 to 7, and 0 to 2 days before the final exam. The results showed a statistically significant difference in the likelihood of module access during scheduled time across the curriculum (p<0.0001). Among the students, 64% accessed modules at least once during scheduled time in G&D1, but only 10%, 19%, and 18% in G&D2, G&D3, and G&D4, respectively. For all courses, the proportion of module accesses was significantly higher 0-2 days before an exam compared to the other two timeframes. Module access also differed significantly within each timeframe across all four courses (p<0.001). There was no association between module access and course performance. In this non-traditional, non-lecture, self-directed curriculum, students rarely accessed learning modules during syllabus-budgeted self-study time and accessed modules more frequently as course exams approached.
Cultural sensitivity or professional acculturation in early clinical experience?
Whitford, David L; Hubail, Amal Redha
2014-11-01
This study aimed to explore the early clinical experience of medical students following the adaptation of an Early Patient Contact curriculum from a European culture in Ireland to an Arab culture in Bahrain. Medical students in Bahrain took part in an Early Patient Contact module modelled on a similar module from a partner medical school in Ireland. We used a qualitative approach employing thematic analysis of 54 student reflective logbooks. Particular attention was placed on reflections of cultural influences of experience in the course. Medical students undergoing this module received reported documented benefits of early clinical experience. However, students in Bahrain were exposed to cultural norms of the local Arab society including gender values, visiting the homes of strangers, language barriers and generous hospitality that led to additional challenges and learning for the medical students in acculturating to norms of the medical profession. Modules intended for curriculum adaptation between two cultures would be best served by a group of "core" learning outcomes with "secondary" outcomes culturally appropriate to each site. Within the context of the Arab culture, early clinical experience has the added benefit of allowing students to learn about both local and professional cultural norms, thereby facilitating integration of these two cultures.
Fox, Jeremy
2012-01-01
Objective. To implement a “flipped classroom” model for a renal pharmacotherapy topic module and assess the impact on pharmacy students’ performance and attitudes. Design. Students viewed vodcasts (video podcasts) of lectures prior to the scheduled class and then discussed interactive cases of patients with end-stage renal disease in class. A process-oriented guided inquiry learning (POGIL) activity was developed and implemented that complemented, summarized, and allowed for application of the material contained in the previously viewed lectures. Assessment. Students’ performance on the final examination significantly improved compared to performance of students the previous year who completed the same module in a traditional classroom setting. Students’ opinions of the POGIL activity and the flipped classroom instructional model were mostly positive. Conclusion. Implementing a flipped classroom model to teach a renal pharmacotherapy module resulted in improved student performance and favorable student perceptions about the instructional approach. Some of the factors that may have contributed to students’ improved scores included: student mediated contact with the course material prior to classes, benchmark and formative assessments administered during the module, and the interactive class activities. PMID:23275661
Development of a Web-Based 3D Module for Enhanced Neuroanatomy Education.
Allen, Lauren K; Ren, He Zhen; Eagleson, Roy; de Ribaupierre, Sandrine
2016-01-01
Neuroanatomy is a challenging subject, with novice medical students often experiencing difficulty grasping the intricate 3D spatial relationships. Most of the anatomical teaching in undergraduate medicine utilizes conventional 2D resources. E-learning technologies facilitate the development of learner-centered educational tools that can be tailored to meet each student's educational needs, and may foster improved learning in neuroanatomy, however this has yet to be examined fully in the literature. An interactive 3D e-learning module was developed to complement gross anatomy laboratory instruction. Incorporating such 3D modules may provide additional support for students in areas of anatomy that are spatially challenging, such as neuroanatomy. Specific anatomical structures and their relative spatial positions to other structures can be clearly defined in the 3D virtual environment from viewpoints that may not readily be available using cadaveric or 2D image modalities. Providing an interactive user interface for the 3D module in which the student controls many factors may enable the student to develop an improved understanding of the spatial relationships. This work outlines the process for the development of a 3D interactive module of the cerebral structures included in the anatomy curriculum for undergraduate medical students in their second year of study.
Advanced Hydraulics for Operators. Training Module 1.331.3.77.
ERIC Educational Resources Information Center
Bengston, Harlan H.
This document is an instructional module package prepared in objective form for use by an instructor familiar with the application of hydraulic principles to water supply and water pollution control systems including water distribution systems and sewer systems. Included are objectives, instructor guides, student handouts and transparency masters.…
Geometry in Nature: Patterns. Environmental Module for Use in a Mathematics Laboratory Setting.
ERIC Educational Resources Information Center
Trojan, Arthur; And Others
This module, designed to help students find and identify various geometric shapes and solids, contains 26 worksheets. Topics covered by these worksheets include: identification and grouping of objects with particular patterns, work with pentagons, hexagons, spirals, and symmetry. Teaching suggestions are included. (MK)
NASA Astrophysics Data System (ADS)
Egger, A. E.; Awad, A. A.; Baldwin, K. A.; Birnbaum, S. J.; Bruckner, M. Z.; DeBari, S. M.; Dechaine, J.; Ebert, J. R.; Gray, K. R.; Hauge, R.; Linneman, S. R.; Monet, J.; Thomas, J.; Varrella, G.
2014-12-01
As part of InTeGrate, teams of 3 instructors at 3 different institutions developed modules that help prepare pre-service teachers to teach Earth science aligned with the NGSS. Modules were evaluated against a rubric, which addresses InTeGrate's five guiding principles, learning objectives and outcomes, assessment and measurement, resources and materials, instructional strategies and alignment. As all modules must address one or more Earth-related grand challenge facing society, develop student ability to address interdisciplinary problems, improve student understanding of the methods of geoscience, use authentic geoscience data, and incorporate systems thinking, they align well with the NGSS. Once modules passed the rubric, they were tested by the authors in their classrooms. Testing included pre- and post-assessment of geoscience literacy and assessment of student learning towards the module goal; materials were revised based on the results of testing. In "Exploring Geoscience Methods with Secondary Education Students," pre-service science teachers compare geoscientific thinking with the classic (experimental) scientific method, investigate global climate change and its impacts on human systems, and prepare an interdisciplinary lesson plan that addresses geoscience methods in context of a socioscientific issue. In "Soils and Society," pre-service elementary teachers explore societal issues where soil is important, develop skills to describe and test soil properties, and create a standards-based Soils and Society Kit that consists of lessons and supporting materials to teach K-8 students about a soil-and-society issue. In "Interactions between Water, Earth's Surface, and Human Activity," students explore the effects of running water on shaping Earth's surface both over geologic time and through short-term flooding events, and produce a brochure to inform citizens of the impact of living near a river. The modules are freely available at http://serc.carleton.edu/integrate/teaching_materials/modules_courses.html and include Instructor Stories, where each author describes how they adapted the module to their teaching environment. The goal of showing different implementations of the materialst is to facilitate adoption and adaption beyond the team of authors.
A Series of MATLAB Learning Modules to Enhance Numerical Competency in Applied Marine Sciences
NASA Astrophysics Data System (ADS)
Fischer, A. M.; Lucieer, V.; Burke, C.
2016-12-01
Enhanced numerical competency to navigate the massive data landscapes are critical skills students need to effectively explore, analyse and visualize complex patterns in high-dimensional data for addressing the complexity of many of the world's problems. This is especially the case for interdisciplinary, undergraduate applied marine science programs, where students are required to demonstrate competency in methods and ideas across multiple disciplines. In response to this challenge, we have developed a series of repository-based data exploration, analysis and visualization modules in MATLAB for integration across various attending and online classes within the University of Tasmania. The primary focus of these modules is to teach students to collect, aggregate and interpret data from large on-line marine scientific data repositories to, 1) gain technical skills in discovering, accessing, managing and visualising large, numerous data sources, 2) interpret, analyse and design approaches to visualise these data, and 3) to address, through numerical approaches, complex, real-world problems, that the traditional scientific methods cannot address. All modules, implemented through a MATLAB live script, include a short recorded lecture to introduce the topic, a handout that gives an overview of the activities, an instructor's manual with a detailed methodology and discussion points, a student assessment (quiz and level-specific challenge task), and a survey. The marine science themes addressed through these modules include biodiversity, habitat mapping, algal blooms and sea surface temperature change and utilize a series of marine science and oceanographic data portals. Through these modules students, with minimal experience in MATLAB or numerical methods are introduced to array indexing, concatenation, sorting, and reshaping, principal component analysis, spectral analysis and unsupervised classification within the context of oceanographic processes, marine geology and marine community ecology.
Chattanooga Math Trail: Community Mathematics Modules, Volume 1.
ERIC Educational Resources Information Center
McAllister, Deborah A.; Mealer, Adrian; Moyer, Peggy S.; McDonald, Shirley A.; Peoples, John B.
This collection of community mathematics modules, or "math trail", is appropriate for middle grades and high school students (grades 5-12). Collectively, the modules pay attention to all 10 of the National Council of Teachers of Mathematics (NCTM) standards which include five content standards (Number and Operations, Algebra, Geometry,…
Advanced Trickling Filters. Training Module 2.112.4.77.
ERIC Educational Resources Information Center
Layton, Ronald F.
This document is an instructional module package prepared in objective form for use by an instructor familiar with operation and maintenance of a trickling filter wastewater treatment plant. Included are objectives, instructor guides, student handouts and transparency masters. This is the third level of a three module series and considers…
General Electronics Technician.
ERIC Educational Resources Information Center
Vorderstrasse, Ron; Huston, Jane, Ed.
This module follows the "Basic Electronics" module as a guide for a course preparing students for job entry or further education. It includes those additional tasks required above Basic Electronics for job entry in the electronics field. The module contains eight instructional units that cover the following topics: (1) test equipment; (2)…
Chlorine Analysis - Wastewater. Training Module 5.125.2.77.
ERIC Educational Resources Information Center
Kirkwood Community Coll., Cedar Rapids, IA.
This document is an instructional module package prepared in objective form for use by an instructor familiar with the laboratory procedures for determining the combined chlorine residual of a wastewater sample. Included are objectives, instructor guides, student handouts, and transparency masters. This module considers the amperometric, DPD,…
Chlorine Analysis - Water. Training Module 5.260.2.77.
ERIC Educational Resources Information Center
Kirkwood Community Coll., Cedar Rapids, IA.
This document is an instructional module package prepared in objective form for use by an instructor familiar with the procedures for chlorine residual analysis. It includes objectives, an instructor guide, and student handouts. The module addresses the determination of combined and free residual chlorine in water supply samples using three…
ERIC Educational Resources Information Center
O'Brien, George, Ed.
This collection of instruction modules studies the interactions of science, technology, and society (STS) using five activity sets. The introduction module includes activities which show students the STS relationships in their world, develop good organizational skills, develop an understanding of who and what a scientist is, develop graphing…
Research Report for the Organizing for Diversity Project.
ERIC Educational Resources Information Center
Betsinger, Alicia M.; Garcia, Shernaz B.; Guerra, Patricia L.
This report describes the Organizing for Diversity Project, which generated professional development modules to prepare teachers to work more effectively with diverse students. Prototype modules were developed in collaboration with teacher volunteers, then field tested. The final 11 modules, which included 33 hours of training, were designed for…
Legal. Training Module 4.315.3.77.
ERIC Educational Resources Information Center
Fillenwarth, Lynn; Bonnstetter, Ron
This document is an instructional module package prepared in objective form for use by an instructor familiar with Federal and Iowa laws relating to public water supply and water pollution control, local code enforcement and right-of-way acquisition. Included are objectives, instructor guides, and student handouts. The module considers an overview…
Basic Stabilization. Training Module 2.225.2.77.
ERIC Educational Resources Information Center
Paulson, W. L.
This document is an instructional module package prepared in objective form for use by an instructor familiar with water stabilization and deposition and corrosion control in a water supply system. Included are objectives, an instructor guide, student handouts and transparency masters. The module considers water stability, water chemistry,…
Basic Activated Sludge. Training Module 2.115.2.77.
ERIC Educational Resources Information Center
Kirkwood Community Coll., Cedar Rapids, IA.
This document is an instructional module package prepared in objective form for use by an instructor familiar with operation of activated sludge wastewater treatment plants. Included are objectives, instructor guides, student handouts, and transparency masters. This is the first of a three module series and considers definition of terms, design…
Intermediate Activated Sludge. Training Module 2.116.3.77.
ERIC Educational Resources Information Center
Kirkwood Community Coll., Cedar Rapids, IA.
This document is an instructional module package prepared in objective form for use by an instructor familiar with operation of activated sludge wastewater treatment plants. Included are objectives, instructor guides, student handouts and transparency masters. This is the second level of a three module series and considers aeration devices,…
Fluoride Analysis. Training Module 5.200.2.77.
ERIC Educational Resources Information Center
Kirkwood Community Coll., Cedar Rapids, IA.
This document is an instructional module package prepared in objective form for use by an instructor familiar with fluoride analysis procedures. Included are objectives, an instructor guide, student handouts, and a list of reference material. This module considers the determination of fluoride in water supplies using the SPANDS and electrode…
Turbidity. Training Module 5.240.2.77.
ERIC Educational Resources Information Center
Bonte, John L.; Davidson, Arnold C.
This document is an instructional module package prepared in objective form for use by an instructor familiar with candle turbidimeter and the nephelometric method of turbidity analysis. Included are objectives, an instructor guide, student handout, and transparency masters. A video tape is also available from the author. This module considers use…
Basic Electricity. Training Module 3.325.1.77.
ERIC Educational Resources Information Center
Kirkwood Community Coll., Cedar Rapids, IA.
This document is an instructional module package prepared in objective form for use by an instructor familiar with the basic concepts of electricity as applied to water and wastewater treatment. Included are objectives, instructor guides, student handouts, and transparency masters. This module considers definition of terms, voltage, current…
Making Authentic Data Accessible: The Sensing the Environment Inquiry Module
ERIC Educational Resources Information Center
Griffis, Kathy; Thadani, Vandana; Wise, Joe
2008-01-01
We report on the development of a middle school life sciences inquiry module, Sensing the Environment. This "data-enriched" inquiry module includes a series of activities exploring the nature of science, photosynthesis, transpiration, and natural selection, which culminates in students' querying authentic environmental data to support a scientific…
Pre-Treatment. Training Module 2.102.2.77.
ERIC Educational Resources Information Center
Kirkwood Community Coll., Cedar Rapids, IA.
This document is an instructional module package designed in the objective format for use by an instructor familiar with pre-treatment unit operation. Included are objectives, instructor guide, student handouts and transparency masters. The module considers design, operation, maintenance, and safety of common methods of grit removal, screening,…
Fecal Coliform Determinations. Training Module 5.115.3.77.
ERIC Educational Resources Information Center
Kirkwood Community Coll., Cedar Rapids, IA.
This document is an instructional module package prepared in objective form for use by an instructor familiar with multiple tube and membrane filter techniques for determining fecal coliform concentrations in a wastewater sample. Included are objectives, instructor guides, student handouts and transparency masters. This module considers proper…
Total Coliform Determinations. Training Module 5.205.3.77.
ERIC Educational Resources Information Center
Kirkwood Community Coll., Cedar Rapids, IA.
This document is an instructional module package prepared in objective form for use by an instructor familiar with multiple tube and membrane filter techniques for determining total coliform concentration of a water supply. Included are objectives, instructor guides, student handouts and transparency masters. This module considers proper…
Custom Sewing, Modules One, Two, and Three. Instructor Guide.
ERIC Educational Resources Information Center
Missouri Univ., Columbia. Instructional Materials Lab.
This document consists of three modules designed for a custom apparel and garment sewing program teaching students to construct, alter, and prepare garments and home fashions to customer specifications. Each module includes some or all of the following components: performance objectives, lesson plans, suggested activities, information sheets,…
NASA Astrophysics Data System (ADS)
Latham, Patricia S.
The purpose of this quantitative experimental study was to test the impact of three learning interventions on student learning and satisfaction when the interventions were embedded in the instructional design of case-based, Computer-Assisted Instruction (CAI) modules for learning liver pathology in an in-class, self-study, laboratory exercise during a Year-2 medical school Pathology course. The hypothesis was that inclusion of the learning interventions would enhance student satisfaction in using the CAI and improve subsequent CAI-directed exam performance. Three learning interventions were studied, including the use of microscopic virtual slides instead of only static images, the use of interactive image annotations instead of only still annotations, and the use of guiding questions before presenting new information. Students were randomly assigned to with one of eight CAI learning modules configured to control for each of the three learning interventions. Effectiveness of the CAI for student learning was assessed by student performance on questions included in subsequent CAI-directed exams in a pretest and on posttests immediately after the lab exercise, at two weeks and two months. Student satisfaction and perceived learning was assessed by a student survey. Results showed that the learning interventions did not improve subsequent student exam performance, although satisfaction and perceived learning with use of the CAI learning modules was enhanced. Student class rank was evaluated to determine if the learning interventions might have a differential effect based on class rank, but there were no significant differences. Class rank at the time of the lab exercise was itself the strongest predictor of exam performance. The findings suggest that the addition of virtual slides, interactive annotations and guiding questions as learning interventions in self-study, case-based CAI for learning liver pathology in a medical class room setting are not likely to increase performance on subsequent MCQ-based exams, but student satisfaction with use of the CAI can be enhanced, which could provide to be an incentive for students to use similar CAI learning modules for future self-directed learning.
ERIC Educational Resources Information Center
Espy, John; Selleck, Ben
This sixth in a series of six modules for a course titled Nondestructive Examination (NDE) Techniques II details eddy current examination of steam generator tubing. The module follows a typical format that includes the following sections: (1) introduction, (2) module prerequisites, (3) objectives, (4) notes to instructor/student, (5) subject…
NASA Astrophysics Data System (ADS)
Wenner, J. M.; Burn, H.; Baer, E. M.
2009-12-01
Requiring introductory geoscience students to apply mathematical concepts and solve quantitative problems can be an arduous task because these courses tend to attract students with diverse levels of mathematical preparedness. Perhaps more significantly, geoscience instructors grapple with quantitative content because of the difficulties students have transferring their prior mathematical learning to common geological problems. As a result, instructors can choose to eliminate the mathematics, spend valuable class time teaching basic mathematical skills or let students flounder in the hope that they will learn on their own. None of these choices are ideal. Instead, research suggests that introductory geoscience courses are opportune places to increase students’ quantitative abilities but that students need effective support at their own skill level. To provide such support, we developed The Math You Need, When You Need It (TMYN): a set of online geoscience context-rich tutorials that students complete just before they encounter a mathematical or numerical skill in their introductory course. The tutorials are modular; each mathematical topic has a set of pages that students work through toward a final assessment. The 11 modules currently available, including unit conversions, graphing, calculating density, and rearranging equations, touch on quantitative topics that cross a number of geologic contexts. TMYN modules are designed to be stand-alone and flexible - faculty members can choose modules appropriate for their courses and implement them at any time throughout the term. The flexible and adaptable nature of TMYN enables faculty to provide a supportive learning environment that remediates math for those who need it without taking significant classroom time. Since spring 2008, seven instructors at Highline Community College and University of Wisconsin Oshkosh successfully implemented TMYN in six geoscience courses with diverse student audiences. Evaluation of pilot implementations suggests that the flexibility of TYMN is one of its strengths. Specifically, faculty members responded positively to the ability to choose relevant topics and provide students with competence in pertinent mathematical concepts; students liked the supportive, contextual environment and the ability to work at their own pace. And, despite the fact that each implementation varied in the number and type of modules used, the timing of module use, grading stakes, and course size, pre/post test results consistently showed improvement in student skills associated with a given module, suggesting that all implementations were successful. Post-module surveys likewise revealed that both instructors and students found the experience valuable. We present the wide variety of successful implementations with an eye toward exploring future directions for the project, including soliciting new and diverse ways in which other institutions and instructors might adapt and apply TMYN to their own courses.
Hays, Judith C; Davis, Jeffrey A; Miranda, Marie Lynn
2006-01-01
Environmental quality is a leading indicator of population health. Environmental health content has been integrated into the curriculum of an Accelerated Bachelor of Science in Nursing program for second-degree students through development of an environmental health nursing module for the final-semester community health nursing course. The module was developed through collaboration between two professional schools at Duke University (the School of Nursing and the Nicholas School of the Environment and Earth Sciences). It focused on the role of the built environment in community health and featured a mix of teaching strategies, including five components: (1) classroom lecture with associated readings, (2) two rounds of online small-group student discussions, (3) assessment of the built environment in local neighborhoods by student teams, (4) team presentation of the neighborhood assessments, and (5) individual student papers synthesizing the conclusions from all team presentations. The goal of the module was to provide nursing students with an organizing framework for integrating environmental health into clinical practice and an innovative tool for understanding community-level components of public health.
Materials Degradation & Failure: Assessment of Structure and Properties. Resources in Technology.
ERIC Educational Resources Information Center
Technology Teacher, 1991
1991-01-01
This module provides information on materials destruction (through corrosion, oxidation, and degradation) and failure. A design brief includes objective, student challenge, resources, student outcomes, and quiz. (SK)
Dietetics students' perceptions and experiences of interprofessional education.
Earland, J; Gilchrist, M; McFarland, L; Harrison, K
2011-04-01
Interprofessional education (IPE) is a process through which students are provided with learning opportunities with other professions aiming to improve client care. The need to include effective IPE in preregistration programmes for health professionals is increasingly being recognised. The overall aim of the present study was to explore the perceptions and experiences of final-year dietetics students of IPE delivered through interactive online learning groups. A questionnaire was developed to evaluate the students' satisfaction with the IPE modules, including importance to their clinical placements, and their understanding of the roles of other professions. Six dietetics students took part in a focus group that addressed the impact of participating in the IPE modules. The focus group discussion was recorded, transcribed and subjected to content analysis. Twenty students completed the questionnaire (77% of the cohort). Satisfaction with the IPE modules increased as the programme progressed, with 65%, 90% and 95% of the respondents, respectively, being satisfied with the content, assessment and access of the final module. Participating in the programme enhanced the students' opinions on the value of the roles of other professionals (80%) and enhanced their awareness of interprofessional issues (75%). Four key areas of interest emerged from the focus group analysis: key impressions; understanding the role of the dietitian and other professionals; the advantages and disadvantages of online delivery; and interprofessional working in the work environment. The most important outcome of participating in IPE was that students' knowledge of other professions was enhanced, which had a positive impact on placements. An effective information technology infrastructure and appropriate scenarios are key requirements for the online delivery of IPE. © 2011 The Authors. Journal compilation © 2011 The British Dietetic Association Ltd.
ERIC Educational Resources Information Center
Hsu, Shun-Yi
An instructional model based on a learning cycle including correlation, analysis, and generalization (CAG) was developed and applied to design an instructional module for grade 8 students in Taiwan, Republic of China. The CAG model was based on Piagetian theory and a concept model (Pella, 1975). The module developed for heat and temperature was…
Preparing PharmD Students to Participate in Medicare Part D Education and Enrollment
Zagar, Michelle
2007-01-01
Objective To create and implement a teaching module that prepares students to assist Medicare beneficiaries in evaluating and enrolling in Medicare Part D plans. Design A 6-hour module entitled “Medicare 2006: This Year, It's Different!”1 was developed and first presented to students in February 2006. Material describing provisions of Medicare Part D was included as well as instructions on using the plan selection tools available on the Medicare web site. Learning activities developed included listing the top 10 things a Medicare beneficiary should know about Medicare Part D, participating in a mock patient counseling activity, selecting an appropriate Medicare prescription drug plan for a given list of drugs, and writing a paper explaining features of the plan they selected and justifying their selection. Assessment Assessment of the 64 students who completed the module was based on completion of individual Top 10 lists, participation in mock counseling sessions, and appropriate drug plan recommendations in plan selection assignments. Overall student response to the series was overwhelmingly positive. Conclusion Given opportunities to apply Medicare Part D knowledge in the classroom setting, PharmD students were able to empathize with the plight of elderly patients and took the initiative to participate in Part D education and enrollment efforts in their communities. PMID:17786265
Stanley, A G; Jackson, D; Barnett, D B
2005-01-01
Collaboration between the medical school at Leicester and a local pharmaceutical company, AstraZeneca, led to the design and implementation of an optional third year special science skills module teaching medical students about drug discovery and development. The module includes didactic teaching about the complexities of the drug discovery process leading to development of candidate drugs for clinical investigation as well as practical experience of the processes involved in drug evaluation preclinically and clinically. It highlights the major ethical and regulatory issues concerned with the production and testing of novel therapies in industry and the NHS. In addition it helps to reinforce other areas of the medical school curriculum, particularly the understanding of clinical study design and critical appraisal. The module is assessed on the basis of a written dissertation and the critical appraisal of a drug advertisement. This paper describes the objectives of the module and its content. In addition we outline the results of an initial student evaluation of the module and an assessment of its impact on student knowledge and the opinion of the pharmaceutical industry partner. This module has proven to be popular with medical students, who acquire a greater understanding of the work required for drug development and therefore reflect more favourably on the role of pharmaceutical companies in the UK. PMID:15801942
Parts Counter. Pre-Apprenticeship Phase 1 Training. Instructor's Guide.
ERIC Educational Resources Information Center
Lane Community Coll., Eugene, OR.
This instructor's guide is designed to accompany self-paced student training modules on the Parts Counter Trade. Introductory materials include an introduction to pre-apprenticeship training, and a course outline. Teaching outlines are then provided for the 11 modules that comprise this course. For each module some or all of this material may be…
Modules in Agricultural Education for Agricultural Production.
ERIC Educational Resources Information Center
New York State Education Dept., Albany. Bureau of Occupational and Career Curriculum Development.
Each of the 61 modules in this packet contains a brief description of the module contents, a list of the major division of units, the overall objectives, objectives by units, content outline, and suggested teaching method, student application activities, and evaluation procedures. A list of resource materials is also included for each. Some of the…
Environmental Microbiology Modules. Final Report.
ERIC Educational Resources Information Center
Walke, Raymond H.; Walke, Jayne G.
This publication is the result of a project to develop microbiology instructional materials for vocational college students. These materials are a series of self-paced modules. Each module includes a pre-test, an introduction and historical packet, an organizational packet to set the framework for in-depth study, one or more in-depth packets, a…
EdVentures in Population Education. Teacher's Guide.
ERIC Educational Resources Information Center
Zero Population Growth, Inc., Washington, DC.
This kit contains 16 comprehensive activity modules that elementary and secondary teachers can use to introduce students to a wide range of population trends. The modules may also be used to introduce these trends to citizens in the community. Each module includes: (1) recommended educational level; (2) curriculum area (science, social studies,…
Advanced Stabilization. Training Module 2.226.3.77.
ERIC Educational Resources Information Center
Paulson, W. L.
This document is an instructional module package prepared in objective form for use by an instructor knowledgeable in the chemistry of water stabilization and familiar with control of deposition and corrosion in a water supply system. This is the second level of a two module series. Included are objectives, instructor guides, student handouts and…
Basic Trickling Filters. Training Module 2.110.2.77.
ERIC Educational Resources Information Center
Layton, Ronald F.
This document is an instructional module package prepared in objective form for use by an instructor familiar with operation and maintenance of a trickling filter wastewater treatment system. Included are objectives, instructor guides, student handouts and transparency masters. This is the first level of a three module series and considers the…
Intermediate Trickling Filters. Training Module 2.111.3.77.
ERIC Educational Resources Information Center
Layton, Ronald F.
This document is an instructional module package prepared in objective form for use by an instructor familiar with operation and maintenance of a trickling filter wastewater treatment plant. Included are objectives, instructor guides, student handouts and transparency masters. This is the second level of a three module series and considers types…
ERIC Educational Resources Information Center
Lillo, Robert E.; Soffiotto, Nicholas S.
Designed for students in the ninth grade, this electricity/electronics curriculum guide contains instructional modules for twenty-four units of instruction. Among the modules included are (1) introduction to the world of electricity, (2) electrical safety, (3) the electrical team, (4) resistance and resistors, (5) electric lamps and heating…
ERIC Educational Resources Information Center
Ohio State Dept. of Education, Columbus. Div. of Vocational Education.
This student manual, the fifth in a set of 14 modules, is designed to train emergency medical technicians (EMTs) in Ohio. The module contains two sections covering the following course content; cardiopulmonary resuscitation (CPR) (including artificial ventilation, foreign body obstructions, adjunctive equipment and special techniques, artificial…
Advanced Mathematics. Training Module 1.303.3.77.
ERIC Educational Resources Information Center
Kirkwood Community Coll., Cedar Rapids, IA.
This document is an instructional module prepared in objective form for use by an instructor familiar with mathematics as applied to water and wastewater treatment plant operation. Included are objectives, instructor guides and student handouts. This is the third level of a three module series and is concerned with statistics, total head, steady…
Advanced Chemistry for Operators. Training Module 1.321.3.77.
ERIC Educational Resources Information Center
Kirkwood Community Coll., Cedar Rapids, IA.
This document is an instructional module package prepared in objective form for use by an instructor familiar with inorganic and general organic chemistry as applied to water and wastewater treatment. Included are objectives, instructor guides, and student handouts. The module contains material related to chemical reactions in water solutions,…
Flow Measurement. Training Module 3.315.2.77.
ERIC Educational Resources Information Center
Kirkwood Community Coll., Cedar Rapids, IA.
This document is an instructional module package prepared in objective form for use by an instructor familiar with the principles of liquid flow and the methods of measuring open channel and fuel pipe flow rates. Included are objectives, instructor guides, student handouts, and transparency masters. The module addresses the basic flow formula, and…
ERIC Educational Resources Information Center
Smith, Walter S.
Twelve instructional modules for Project BECOMING were administered to an undergraduate class of elementary education majors as part of their social studies methods course, in order to promote sex blindness, prevent sex-role stereotyping, and develop teachers who were supportive of students trying out new roles. The modules included: Values…
Advanced Rotating Biological Surface Operation. Training Module 2.122.4.77.
ERIC Educational Resources Information Center
Paulson, W. L.
This document is an instructional module package prepared in objective form for use by an instructor familiar with operation and maintenance of a rotating biological surface (RBS) wastewater treatment system. Included are objectives, instructor guides, student handouts, and transparency masters. This is the third level of a three module series and…
Business as Usual: Sex Stereotyping in Business Education.
ERIC Educational Resources Information Center
Project on Sex Stereotyping in Education, Red Bank, NJ.
The module described in this document is part of a series of instructional modules on sex-role stereotyping in education. This document (including all but the cassette tape) is the module that explores the myths and stereotypes that have limited women in the world of work. The material provides suggestions for helping students expand occupational…
NASA Astrophysics Data System (ADS)
Liu, Yuling; Wang, Xiaoping; Zhu, Yuhui; Fei, Lanlan
2017-08-01
This paper introduces a Comprehensively Functional Integrated Management Information System designed for the Optical Engineering Major by the College of Optical Science and Engineering, Zhejiang University, which combines the functions of teaching, students learning, educational assessment and management. The system consists of 5 modules, major overview, online curriculum, experiment teaching management, graduation project management and teaching quality feedback. The major overview module introduces the development history, training program, curriculums and experiment syllabus and teaching achievements of optical engineering major in Zhejiang University. The Management Information System is convenient for students to learn in a mobile and personalized way. The online curriculum module makes it very easy for teachers to setup a website for new curriculums. On the website, teachers can help students on their problems about the curriculums in time and collect their homework online. The experiment teaching management module and the graduation project management module enables the students to fulfill their experiment process and graduation thesis under the help of their supervisors. Before students take an experiment in the lab, they must pass the pre-experiment quiz on the corresponding module. After the experiment, students need to submit the experiment report to the web server. Moreover, the module contains experiment process video recordings, which are very helpful to improve the effect of the experiment education. The management of the entire process of a student's graduation program, including the project selection, mid-term inspection, progress report of every two weeks, final thesis, et al, is completed by the graduation project management module. The teaching quality feedback module is not only helpful for teachers to know whether the education effect of curriculum is good or not, but also helpful for the administrators of the college to know whether the design of syllabus is reasonable or not. The Management Information System changes the management object from the education results to the entire education processes. And it improves the efficiency of the management. It provides an effective method to promote curriculum construction management by supervision and evaluation, which improves students' learning outcomes and the quality of curriculums. As a result, it promotes the quality system of education obviously.
A model for the use of blended learning in large group teaching sessions.
Herbert, Cristan; Velan, Gary M; Pryor, Wendy M; Kumar, Rakesh K
2017-11-09
Although blended learning has the potential to enhance the student experience, both in terms of engagement and flexibility, it can be difficult to effectively restructure existing courses. To achieve these goals for an introductory Pathology course, offered to more than 250 undergraduate students at UNSW Sydney, we devised a novel approach. For each topic presented over 2-3 weeks, a single face-to-face overview lecture was retained. The remaining content that had previously been delivered as conventional lectures was converted into short (12-18 min) online modules. These were based on lecture slides with added animations/highlights, plus narration using edited excerpts of previous lecture recordings. The modules also incorporated interactive questions and review quizzes with feedback which used various question types. Modules were developed in PowerPoint and iSpring and uploaded to Moodle as SCORM packages. Each topic concluded with an interactive large-group session focussing on integration of the content, with in-class questions to which students could respond via the Echo360 Active Learning Platform (ALP). Overall, more than 50% of face-to-face lecture time was replaced by online modules and interactive large-group sessions. Quantitative evaluation data included usage statistics from 264 students and feedback via online survey responses from 41 students. Qualitative evaluation data consisted of reflective commentaries from 160 student ePortfolios, which were analysed to identify factors affecting learning benefits and user acceptability. All of the modules were completed by 74% of students and on average, 83.1% of students eventually passed the optional review quizzes. Notably, 88.4% of students responded to in-class questions during the integration and feedback sessions via the ALP. Student reflections emphasised that the modules promoted understanding, which was reinforced through active learning. The modules were described as enjoyable, motivating and were appreciated for their flexibility, which enabled students to work at their own pace. In transforming this introductory Pathology course, we have demonstrated a model for the use of blended learning in large group teaching sessions, which achieved high levels of completion, satisfaction and value for learning.
Teaching Thinking Skills in Context-Based Learning: Teachers' Challenges and Assessment Knowledge
NASA Astrophysics Data System (ADS)
Avargil, Shirly; Herscovitz, Orit; Dori, Yehudit Judy
2012-04-01
For an educational reform to succeed, teachers need to adjust their perceptions to the reform's new curricula and strategies and cope with new content, as well as new teaching and assessment strategies. Developing students' scientific literacy through context-based chemistry and higher order thinking skills was the framework for establishing a new chemistry curriculum for Israeli high school students. As part of this endeavor, we developed the Taste of Chemistry module, which focuses on context-based chemistry, chemical understanding, and higher order thinking skills. Our research objectives were (a) to identify the challenges and difficulties chemistry teachers faced, as well as the advantages they found, while teaching and assessing the Taste of Chemistry module; and (b) to investigate how they coped with teaching and assessing thinking skills that include analyzing data from graphs and tables, transferring between multiple representations and, transferring between chemistry understanding levels. Research participants included eight teachers who taught the module. Research tools included interviews, classroom observations, teachers-designed students' assignments, and developers-designed students' assignments. We documented different challenges teachers had faced while teaching the module and found that the teachers developed different ways of coping with these challenges. Developing teachers' assessment knowledge (AK) was found to be the highest stage in teachers' professional growth, building on teachers' content knowledge (CK), pedagogy knowledge (PK), and pedagogical-content knowledge (PCK). We propose the use of assignments designed by teachers as an instrument for determining their professional growth.
Supplementing research ethics training in psychiatry residents: A five-tier approach.
Viswanath, Biju; Jayarajan, Rajan Nishanth; Chandra, Prabha S; Chaturvedi, Santosh K
2018-04-01
Ethics training is a key step in the research supervision of psychiatry trainees and there is need for a structured educational module. We developed a new research ethics training module for psychiatry residents - The Five-Tier Approach. Twenty-five first year psychiatry residents of an academic psychiatric training centre in India participated in this multi-session workshop. Module 1 included the completion of NIH online certification course for research ethics training. Module 2 was a one-hour interactive group discussion on ethical principles in research. Module 3 was a two-hour session consisting of case-based group discussion of nine selected research vignettes. Module 4 involved preparation of an informed consent form. Module 5 was a mock ethics committee role-played by seven students while the larger group observed using a Fish Bowl technique and provided feedback. Assessments were done during the third and final modules. During the third module, understanding regarding certain areas - autonomy, benefits and justice was found to be inadequate. In the final step, all ethical aspects were covered by the students. This five-tier approach seems like a superior tool for research ethics training in academic institutions, especially in Southeast Asia, where the student-teacher ratios are generally very high. Copyright © 2018 Elsevier B.V. All rights reserved.
Development of an e-Learning Research Module Using Multimedia Instruction Approach.
Kowitlawakul, Yanika; Chan, Moon Fai; Tan, Sharon Swee Lin; Soong, Alan Swee Kit; Chan, Sally Wai Chi
2017-03-01
Students nowadays feel more comfortable with new technologies, which increase their motivation and, as a result, improve their academic performance. In the last two decades, the use of information communication technology has been increasing in many disciplines in higher education. Online learning or e-learning has been used and integrated into the curriculum around the world. A team of nursing faculty and educational technology specialists have developed an e-learning research module and integrate it into the nursing curriculum. The aim was to assist master of nursing and postgraduate nursing students in developing their research knowledge before and throughout their enrollment in the research course. This e-learning module includes interactive multimedia such as audiovisual presentation, graphical theme, animation, case-based learning, and pretest and posttest for each topic area. The module focuses on three main topic areas: (1) basic research principles (for review), (2) quantitative method, and (3) qualitative method. The e-learning module is an innovative use of the information and communication technology to enhance student engagement and learning outcomes in a local context. This article discusses the development journey, piloting process, including the variety of evaluation perspectives, and the ways in which the results influenced the e-learning resource before its wider distribution.
Aronoff, Nell; Stellrecht, Elizabeth; Lyons, Amy G; Zafron, Michelle L; Glogowski, Maryruth; Grabowski, Jeremiah; Ohtake, Patricia J
2017-10-01
The research assessed online learning modules designed to teach health professions students evidence-based practice (EBP) principles in an interprofessional context across two institutions. Students from nine health professions at two institutions were recruited to participate in this pilot project consisting of two online learning modules designed to prepare students for an in-person case-based interprofessional activity. Librarians and an instructional designer created two EBP modules. Students' competence in EBP was assessed before and after the modules as well as after the in-person activity. Students evaluated the online learning modules and their impact on the students' learning after the in-person session. A total of 39 students from 8 health professions programs participated in the project. Average quiz scores for online EBP module 1 and module 2 were 83% and 76%, respectively. Following completion of the learning modules, adapted Fresno test of competence in EBP scores increased ( p =0.001), indicating that the modules improved EBP skill competence. Student evaluations of the learning modules were positive. Students indicated that they acquired new information skills that contributed to their ability to develop a patient care plan and that they would use these information skills in their future clinical practice. Online EBP learning modules were effective in developing EBP knowledge and skills for health professions students. Using the same modules ensured that students from different health professions at different stages of their professional programs had consistent knowledge and enabled each student to fully engage in an interprofessional evidence-based activity. Student feedback indicated the modules were valued and beneficial.
Using Mouse Mammary Tumor Cells to Teach Core Biology Concepts: A Simple Lab Module.
McIlrath, Victoria; Trye, Alice; Aguanno, Ann
2015-06-18
Undergraduate biology students are required to learn, understand and apply a variety of cellular and molecular biology concepts and techniques in preparation for biomedical, graduate and professional programs or careers in science. To address this, a simple laboratory module was devised to teach the concepts of cell division, cellular communication and cancer through the application of animal cell culture techniques. Here the mouse mammary tumor (MMT) cell line is used to model for breast cancer. Students learn to grow and characterize these animal cells in culture and test the effects of traditional and non-traditional chemotherapy agents on cell proliferation. Specifically, students determine the optimal cell concentration for plating and growing cells, learn how to prepare and dilute drug solutions, identify the best dosage and treatment time course of the antiproliferative agents, and ascertain the rate of cell death in response to various treatments. The module employs both a standard cell counting technique using a hemocytometer and a novel cell counting method using microscopy software. The experimental procedure lends to open-ended inquiry as students can modify critical steps of the protocol, including testing homeopathic agents and over-the-counter drugs. In short, this lab module requires students to use the scientific process to apply their knowledge of the cell cycle, cellular signaling pathways, cancer and modes of treatment, all while developing an array of laboratory skills including cell culture and analysis of experimental data not routinely taught in the undergraduate classroom.
ERIC Educational Resources Information Center
Lowe, Phyllis; And Others
This module, one of ten competency based modules developed for vocational home economics teachers, is based on a job cluster in window treatment services. It can be used for various types of learners such as the handicapped, slowlearners, high school students, and adults including senior citizens. Focusing on the specific job title of window…
Textile Science Leader's Guide. 4-H Textile Science.
ERIC Educational Resources Information Center
Scholl, Jan
This instructor's guide provides an overview of 4-H student project modules in the textile sciences area. The guide includes short notes explaining how to use the project modules, a flowchart chart showing how the project areas are sequenced, a synopsis of the design and content of the modules, and some program planning tips. For each of the…
pH. Training Module 5.305.2.77.
ERIC Educational Resources Information Center
Kirkwood Community Coll., Cedar Rapids, IA.
This document is an instructional module package prepared in objective form for use by an instructor familiar with pH, measurement of pH with a pH meter and maintenance of pH meter electrodes. Included are objectives, instructor guides, student handouts and transparency masters. This module considers the definition of pH, types of electrodes and…
ERIC Educational Resources Information Center
Kentucky State Dept. of Education, Frankfort.
This package contains instructor's guide sheets and student task assignment sheets for Modules R 1-45 of the competency-based curriculum in retailing developed for use in secondary and postsecondary schools in Kentucky. Some of the topics covered in the modules include the following: retailing--past, present, and future; retailing occupations;…
NASA Astrophysics Data System (ADS)
Scharfenberg, Franz-Josef; Bogner, Franz X.
2016-10-01
How pre-service teachers (PST) develop pedagogical content knowledge (PCK) during science teacher education is an open research question. Our teacher education module, theoretically based on PCK, specifically combines biology PSTs' education with high school students' biology education and includes an innovative role change approach. Altogether, 41 PSTs each participated in three subsequent module days with students ( N = 823) from 50 classes. The module's content dealt with the syllabus topic Genetic Fingerprinting. During participation, the PSTs changed their role by assuming a student's role on the first day, a tutor's role on the second day, and a teacher's role on the third day. By quasi-experimentally administering pre- and delayed posttests, we qualitatively monitored, then content-analytically categorized, and finally quantitatively analyzed three specific PCK components. In contrast to a control group (which did not participate in the module), our treatment preferentially changed the PSTs' orientations toward teaching biology to a more student-centered orientation (both intra- and inter-group differences with medium effect sizes). Additionally, the PSTs who participated in the three modules days differed before and after module participation in how they addressed potential student learning difficulties and identified potential instructional strategies for avoiding these difficulties. The changes in these PCK components point to a step-by-step development of the PSTs' PCK. In this process, our participating PSTs assessed the importance of their three roles on the 3 days quite differently; most notably, we found one relationship between the teacher role and the PSTs' student-centeredness. We specifically discuss the potential and importance of our role change approach within science teacher education.
NASA Astrophysics Data System (ADS)
Buhr, S. M.; Lynds, S. E.; McCaffrey, M. S.; Morton, E.
2010-12-01
Inspiring Climate Education Excellence (ICEE) is a NASA-funded project to develop online course modules and self-directed learning resources aligned with the Essential Principles of Climate Science. Following a national needs assessment survey and a face to face workshop to pilot test topics, a suite of online modules is being developed suitable for self-directed learning by secondary science teachers. Modules are designed around concepts and topics in which teachers express the most interest and need for instruction. Module design also includes attention to effective teaching strategies, such as awareness of student misconceptions, strategies for forestalling controversy and advice from master teachers on implementation and curriculum development. The resources are being developed in partnership with GLOBE, and the National Science Digital Library (NSDL) and is informed by the work of the Climate Literacy and Energy Awareness Network (CLEAN) project. ICEE will help to meet the professional development needs of teachers, including those participating in the GLOBE Student Climate Research Campaign. Modules and self-directed learning resources will be developed and disseminated in partnership with the National Science Digital Library (NSDL). This presentation introduces the needs assessment and pilot workshop data upon which the modules are based, and describes the modules that are available and in development.
How we launched a developmental student-as-teacher (SAT) program for all medical students.
Blanco, Maria A; Maderer, Ann; Oriel, Amanda; Epstein, Scott K
2014-05-01
Teaching is a necessary skill for medical trainees and physicians. We designed and launched a developmental Student-as-Teacher program for all students, beginning with the class of 2016. A task force of faculty and students designed the program. The goal is to enable all students to acquire basic principles of teaching and learning at different stages in their four-year medical school career. Upon completion, students will achieve twenty-eight learning objectives grouped within four competency domains: (1) Adult and Practice-Based Learning; (2) Learning Environment; (3) Instructional Design and Performance; and, (4) Learner's Assessment and Evaluation. The program combines online learning modules and a field teaching experience. The entire class of 2016 (N = 200) completed the first online module. Students found the module effective, and 70% reported an increase in their level of knowledge. Although most students are expected to complete their field teaching experience in fourth year, twelve students completed their field experience in first year. Reported strengths of these experiences include reinforcement of their medical knowledge and improvement of their adult teaching skills. The program was successfully launched, and students are already experiencing the benefits of training in basic teaching skills in the first year of the program.
Interactive Video in the Special Classroom: A Pilot Study.
ERIC Educational Resources Information Center
Browning, Philip; And Others
1986-01-01
Describes a courseware development project at the University of Oregon which explored use of interactive video with mentally disabled students to teach life enhancement skills. Discussion of the results of a pilot study of one of the modules includes information on student achievement and teacher and student reactions. (MBR)
Managing the Office Environment. Instructor's Guide. Student Activity Packet. Office Occupations.
ERIC Educational Resources Information Center
Johnson, Diane E.
This training package, one in a series of instructional modules consisting of an instructor's guide and a student activity packet, deals with managing the office environment. Included in the instructor's guide are general directions for implementing the presentation; a detailed guide for teaching the lesson that includes performance objectives,…
NASA Astrophysics Data System (ADS)
Usmeldi
2018-05-01
The preliminary study shows that many students are difficult to master the concept of physics. There are still many students who have not mastery learning physics. Teachers and students still use textbooks. Students rarely do experiments in the laboratory. One model of learning that can improve students’ competence is a research-based learning with Predict- Observe-Explain (POE) strategies. To implement this learning, research-based physics learning modules with POE strategy are used. The research aims to find out the effectiveness of implementation of research-based physics learning modules with POE strategy to improving the students’ competence. The research used a quasi-experimental with pretest-posttest group control design. Data were collected using observation sheets, achievement test, skill assessment sheets, questionnaire of attitude and student responses to learning implementation. The results of research showed that research-based physics learning modules with POE strategy was effective to improve the students’ competence, in the case of (1) mastery learning of physics has been achieved by majority of students, (2) improving the students competency of experimental class including high category, (3) there is a significant difference between the average score of students’ competence of experimental class and the control class, (4) the average score of the students competency of experimental class is higher than the control class, (5) the average score of the students’ responses to the learning implementation is very good category, this means that most students can implement research-based learning with POE strategies.
Project-based Modules from two STEM Learning Teams in Howard County, Maryland
NASA Astrophysics Data System (ADS)
Griffiths, L. N.; Bradley, L. A.
2011-12-01
In 2009, two Maryland school districts-Howard County Public School System and Prince George's County Public Schools-and the Goddard Space Flight Center of the National Aeronautics and Space Administration (NASA) partnered with the National Commission on Teaching and America's Future (NCTAF) to develop NASA 21st Century Learning Studios. In 2010, NCTAF expanded the program to include Learning Studios at two additional Maryland school districts (Anne Arundel County Public Schools and Baltimore County Public Schools), partnering with the United States Naval Academy and the University of Maryland. Overall, the focus of these Learning Studios is to combine the expertise of scientists with that of educators through Learning Teams to improve teaching and learning in science, technology, engineering and mathematics (STEM) fields, while delivering project-based modules to be implemented in other school districts. The focus of this paper is to summarize the experience and outcomes from two Learning Teams from the Howard County Public School System. STEM Learning Teams were established at Centennial High School and Hammond High School in Maryland. Each Team worked together for two years to create interdisciplinary units of study for their students with a focus on Earth Science. To maximize student interest, teachers worked with NASA scientists five times a year to develop four learning modules using practical examples and incorporating real scientific observations. A weathering and erosion module challenges students to collect appropriate field observations and determine erosion and deposition rates in a nearby lake. A plate tectonics module requires students to use measures of plate motion from the National Oceanic and Atmospheric Administration to estimate rates of convergence in southern Asia. A third module for lessons in climate change requires students to find open source climate data, determine changes in the atmosphere and estimate anthropogenic impacts. A follow-up exercise challenges students to find ways to alter their schools, homes and individual activities for reducing carbon footprints. A fourth module requires students to model solar and lunar eclipses in different ways, and to combine this understanding with the personal experiences of a NASA scientist. The intended outcomes from an implementation of these four modules are: to present real-world practical problems to be solved by the students; to expose students to areas of active research; and to expose students to careers in STEM. Such experience should improve their preparations for new opportunities after high school.
D'Abundo, Michelle Lee; Marinaro, Laura Marie; Fiala, Kelly Ann
2010-01-01
The purpose of this research was to pilot-test the effectiveness of an online learning module focused on smoking for an undergraduate general education fitness and wellness course. Students enrolled in a required fitness and wellness course were given the opportunity to participate. Participants (n = 510) completed a brief demographic questionnaire and a 10-question pretest about the effects of smoking before viewing a 15-minute presentation about the effects of smoking and completing the same 10 questions as a post-test. Repeated measures ANOVAs were conducted to evaluate knowledge gains. An overall time effect was observed (pretest score 4.9 +/- 1.3, post-test score 7.2 +/- 2.1). Significantly greater knowledge gains were found in nonsmokers (2.1 +/- 2.2) than in smokers (1.1 +/- 2.2). Females (2.3 +/- 2.3) had significantly greater knowledge gains than males (1.5 +/- 2.2). Evidence supporting the effectiveness of the online learning module included significant knowledge gains for both smokers and nonsmokers, and the participants who smoked agreed the online learning module encouraged them to quit. In this research, students were also grouped by major (health-related majors vs non-health-related). There were 118 health-related majors in the sample, with 110 of those students completing the entire learning module. In this research, a learning module for college students was developed, but practical applications are provided not only for college health instructors but also for allied health professionals.
ERIC Educational Resources Information Center
Jacobs, James A.
1994-01-01
This learning module on composites such as polymer matrix, metal matrix, ceramic matrix, particulate, and laminar includes a design brief giving context, objectives, evaluation, student outcomes, and quiz. (SK)
Rein, Benjamin A; McNeil, Daniel W; Hayes, Allison R; Hawkins, T Anne; Ng, H Mei; Yura, Catherine A
2018-07-01
Training programs exist that prepare college students, faculty, and staff to identify and support students potentially at risk for suicide. Kognito is an online program that trains users through simulated interactions with virtual humans. This study evaluated Kognito's effectiveness in preparing users to intervene with at-risk students. Training was completed by 2,727 university students, faculty, and staff from April, 2014 through September, 2015. Voluntary and mandatory participants at a land-grant university completed Kognito modules designed for higher education, along with pre- and post-assessments. All modules produced significant gains in reported Preparedness, Likelihood, and Self-Efficacy in intervening with troubled students. Despite initial disparities in reported abilities, after training participants reported being similarly capable of assisting at-risk students, including LGBTQ and veteran students. Kognito training appears to be effective, on a large scale, in educating users to act in a facilitative role for at-risk college students.
NASA Astrophysics Data System (ADS)
Tarboton, D. G.; Habib, E. H.; Deshotel, M.; Merck, M. F.; Lall, U.; Farnham, D. J.
2016-12-01
Traditional approaches to undergraduate hydrology and water resource education are textbook based, adopt unit processes and rely on idealized examples of specific applications, rather than examining the contextual relations in the processes and the dynamics connecting climate and ecosystems. The overarching goal of this project is to address the needed paradigm shift in undergraduate education of engineering hydrology and water resources education to reflect parallel advances in hydrologic research and technology, mainly in the areas of new observational settings, data and modeling resources and web-based technologies. This study presents efforts to develop a set of learning modules that are case-based, data and simulation driven and delivered via a web user interface. The modules are based on real-world case studies from three regional hydrologic settings: Coastal Louisiana, Utah Rocky Mountains and Florida Everglades. These three systems provide unique learning opportunities on topics such as: regional-scale budget analysis, hydrologic effects of human and natural changes, flashflood protection, climate-hydrology teleconnections and water resource management scenarios. The technical design and contents of the modules aim to support students' ability for transforming their learning outcomes and skills to hydrologic systems other than those used by the specific activity. To promote active learning, the modules take students through a set of highly engaging learning activities that are based on analysis of hydrologic data and model simulations. The modules include user support in the form of feedback and self-assessment mechanisms that are integrated within the online modules. Module effectiveness is assessed through an improvement-focused evaluation model using a mixed-method research approach guiding collection and analysis of evaluation data. Both qualitative and quantitative data are collected through student learning data, product analysis, and staff interviews. The presentation shares with the audience lessons learned from the development and implementation of the modules, students' feedback, guidelines on design and content attributes that support active learning in hydrology, and challenges encountered during the class implementation and evaluation of the modules.
Peer mentoring: Enhancing the transition from student to professional.
Fisher, Margaret; Stanyer, Rachel
2018-05-01
to share the experience of a model of peer mentoring in a pre-qualification midwifery programme DESIGN: description of the framework and benefits of the model SETTING: University and practice PARTICIPANTS: third year midwifery students INTERVENTIONS: practical activities meeting regulatory body requirements in a pre-qualification mentorship module MEASUREMENTS AND FINDINGS: informal evaluations by students of key activities undertaken during peer mentoring demonstrated a range of positive outcomes. These included enhanced confidence, self-awareness, interpersonal and teaching skills, team-working and leadership - factors also associated with emotional intelligence. Students developed an appreciation of the accountability of the mentor including making practice assessment decisions. They stated that the learning achieved had aided their professional development and enhanced employability. this module equips students with skills for their future role in facilitating learners and contributes to development of a 'professional persona', enhancing their transition to qualified midwives. The Peer Mentoring Model would be easily adapted to other programmes and professional contexts. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Benson, T.; Galica, C.; McCredie, P.; Storm, R.
2003-01-01
This guide was produced by the NASA Glenn Research Center Office of Educational Programs in Cleveland, OH, and the NASA Aerospace Educational Coordinating Committee. It includes activity modules for students, including the history of the Wright Brothers and their family in Dayton, Ohio and flight experimentation in Kitty Hawk, North Carolina. Student activities such as building models of the Wright Brothers glider and writing press releases of the initial flight are included.
The use of high-frequency data to engage students in quantitative reasoning and scientific discourse
NASA Astrophysics Data System (ADS)
O'Reilly, C.; Meixner, T.; Bader, N.; Carey, C.; Castendyk, D.; Gougis-Darner, R.; Fuller, R.; Gibson, C.; Klug, J.; Richardson, D.; Stomberg, J.
2014-12-01
Scientists are increasingly using sensor-collected, high-frequency datasets to study environmental processes. To expose undergraduate students to similar experiences, our team has developed six classroom modules that utilize large, long-term, and sensor-based, datasets for science courses designed to: 1) Improve quantitative skills and reasoning; 2) Develop scientific discourse and argumentation; and 3) Increase student engagement in science. A team of ten interdisciplinary faculty from both private and public research universities and undergraduate institutions have developed flexible modules suitable for a variety of undergraduate courses. These modules meet a series of pedagogical goals that include: 1) Developing skills required to manipulate large datasets at different scales to conduct inquiry-based investigations; 2) Developing students' reasoning about statistical variation; and 3) Fostering desirable conceptions about the nature of environmental science. Six modules on the following topics are being piloted during the 2014-15 and 2015-16 academic years prior to broad dissemination: 1) Temporal stream discharge evaluation using USGS data; 2) Temporal stream nutrient loads and eutrophication risk using USGS and MCM-LTER data; 3) Climate change using NOAA weather and Vostok ice core data; 4) Lake ice-off dates using GLEON data; 5) Thermal dynamics in lakes using GLEON data; and 6) Lake metabolism dynamics using GLEON data. To assess achievement of the pedagogical goals, we will use pre/post questionnaires and video-recordings of students working on modules. Questionnaires will contain modified items from the Experimental Design Ability Test (Sirum & Humberg 2011), the Views on the Nature of Science questionnaire (Lederman et al. 2001), and a validated instrument to measure students' ideas about variation (Watson et al. 2003). Information gained from these assessments and recordings will allow us to determine whether our modules are effective at engaging students and increasing their quantitative skills. Feedback will also be used by the faculty to revise the modules before they are posted online for widespread dissemination in 2016. This project is funded by an NSF TUES grant.
NASA Astrophysics Data System (ADS)
Burn, H. E.; Wenner, J. M.; Baer, E. M.
2011-12-01
The quantitative components of introductory geoscience courses can pose significant barriers to students. Many academic departments respond by stripping courses of their quantitative components or by attaching prerequisite mathematics courses [PMC]. PMCs cause students to incur additional costs and credits and may deter enrollment in introductory courses; yet, stripping quantitative content from geoscience courses masks the data-rich, quantitative nature of geoscience. Furthermore, the diversity of math skills required in geoscience and students' difficulty with transferring mathematical knowledge across domains suggest that PMCs may be ineffective. Instead, this study explores an alternative strategy -- to remediate students' mathematical skills using online modules that provide students with opportunities to build contextual quantitative reasoning skills. The Math You Need, When You Need It [TMYN] is a set of modular online student resources that address mathematical concepts in the context of the geosciences. TMYN modules are online resources that employ a "just-in-time" approach - giving students access to skills and then immediately providing opportunities to apply them. Each module places the mathematical concept in multiple geoscience contexts. Such an approach illustrates the immediate application of a principle and provides repeated exposure to a mathematical skill, enhancing long-term retention. At the same time, placing mathematics directly in several geoscience contexts better promotes transfer of learning by using similar discourse (words, tools, representations) and context that students will encounter when applying mathematics in the future. This study uses quantitative and qualitative data to explore the effectiveness of TMYN modules in remediating students' mathematical skills. Quantitative data derive from ten geoscience courses that used TMYN modules during the fall 2010 and spring 2011 semesters; none of the courses had a PMC. In all courses, students completed a pretest, the assigned modules, and a posttest. Success in remediation was measured using normalized gain scores, which measures the change in score divided by the maximum possible increase: (posttest-pretest)/(1-pretest). To compare across courses, normalized gain scores were standardized. Additional analysis included disaggregating normalized gain scores by quartiles based on pretest scores. The results were supplemented by qualitative data from faculty interviews and information provided by faculty on a web form upon completion of the course. Results suggest TMYN modules remediate mathematical skills effectively, and that normalized gains tend to be higher for students in the lower quartiles on the pretest. Students indicate finding the modules helpful, though sometimes difficult. Faculty interview data triangulate these findings and provide further evidence that online, modularized remediation is an effective alternative to assigning prerequisite mathematical courses to remediate mathematical skills.
ERIC Educational Resources Information Center
Spaulding, Bruce
This first in a series of six modules for a course titled Nondestructive Examination (NDE) Techniques II introduces the student/trainee to the basic behavior of ultrasound, describes ultrasonic test equipment, and outlines the principal methods of ultrasonic testing. The module follows a typical format that includes the following sections: (1)…
ERIC Educational Resources Information Center
Volusia County Schools, Daytona Beach, FL.
This fourth in a series of six teaching modules on decision making/beginning competency is part of the Special Partnership in Career Education (SPICE) program, which was designed to provide career awareness and exploration information to junior high-aged educable mentally handicapped students. The module follows a typical format that includes two…
ERIC Educational Resources Information Center
Volusia County Schools, Daytona Beach, FL.
This second in a series of six teaching modules on attitudes and appreciations is part of the Special Partnership in Career Education (SPICE) program, which was designed to provide career awareness and exploration information to junior high-aged educable mentally handicapped students. The module follows a typical format that includes two major…
ERIC Educational Resources Information Center
Volusia County Schools, Daytona Beach, FL.
This third in a series of six teaching modules on career/educational awareness is part of the Special Partnership in Career Education (SPICE) program, which was designed to provide career awareness and exploration information to junior high-aged educable mentally handicapped students. The module follows a typical format that includes two major…
Project S.P.I.C.E. Special Partnership in Career Education. Self-Awareness. A Teaching Module.
ERIC Educational Resources Information Center
Volusia County Schools, Daytona Beach, FL.
This first in a series of six teaching modules on self-awareness is part of the Special Partnership in Career Education (SPICE) program, which was designed to provide career awareness and exploration information to junior high-aged educable mentally handicapped students. The module follows a typical format that includes two major sections:…
Project S.P.I.C.E. Special Partnership in Career Education. Economic Awareness. A Teaching Module.
ERIC Educational Resources Information Center
Volusia County Schools, Daytona Beach, FL.
This fifth in a series of six modules on economic awareness is part of the Special Partnership in Career Education (SPICE) program, which was designed to provide career awareness and exploration information to junior high-aged educable mentally handicapped students. The module follows a typical format that includes two major sections: overview and…
Project S.P.I.C.E. Special Partnership in Career Education. Employability Skills. A Teaching Module.
ERIC Educational Resources Information Center
Volusia County Schools, Daytona Beach, FL.
This sixth in a series of six teaching modules on employability skills is part of the Special Partnership in Career Education (SPICE) program, which was designed to provide career awareness and exploration information to junior high-aged educable mentally handicapped students. The module follows a typical format that includes two major sections:…
Modules to enhance smart lighting education
NASA Astrophysics Data System (ADS)
Bunch, Robert M.; Joenathan, Charles; Connor, Kenneth; Chouikha, Mohamed
2012-10-01
Over the past several years there has been a rapid advancement in solid state lighting applications brought on by the development of high efficiency light emitting diodes. Development of lighting devices, systems and products that meet the demands of the future lighting marketplace requires workers from many disciplines including engineers, scientists, designers and architects. The National Science Foundation has recognized this fact and established the Smart Lighting Engineering Research Center that promotes research leading to smart lighting systems, partners with industry to enhance innovation and educates a diverse, world-class workforce. The lead institution is Rensselaer Polytechnic Institute with core partners Boston University and The University of New Mexico. Outreach partners include Howard University, Morgan State University, and Rose-Hulman Institute of Technology. Because of the multidisciplinary nature of advanced smart lighting systems workers often have little or no formal education in basic optics, lighting and illumination. This paper describes the initial stages of the development of self-contained and universally applicable educational modules that target essential optics topics needed for lighting applications. The modules are intended to be easily incorporated into new and existing courses by a variety of educators and/or to be used in a series of stand-alone, asynchronous training exercises by new graduate students. The ultimate goal of this effort is to produce resources such as video lectures, video presentations of students-teaching-students, classroom activities, assessment tools, student research projects and laboratories integrated into learning modules. Sample modules and resources will be highlighted. Other outreach activities such as plans for coursework, undergraduate research, design projects, and high school enrichment programs will be discussed.
NASA Astrophysics Data System (ADS)
Hidayati, A.; Rahmi, A.; Yohandri; Ratnawulan
2018-04-01
The importance of teaching materials in accordance with the characteristics of students became the main reason for the development of basic electronics I module integrated character values based on conceptual change teaching model. The module development in this research follows the development procedure of Plomp which includes preliminary research, prototyping phase and assessment phase. In the first year of this research, the module is validated. Content validity is seen from the conformity of the module with the development theory in accordance with the demands of learning model characteristics. The validity of the construct is seen from the linkage and consistency of each module component developed with the characteristic of the integrated learning model of character values obtained through validator assessment. The average validation value assessed by the validator belongs to a very valid category. Based on the validator assessment then revised the basic electronics I module integrated character values based on conceptual change teaching model.
ERIC Educational Resources Information Center
Schertz, Karen
This introductory module on drafting includes the technical content and tasks necessary for a student to be employed in an entry-level drafting occupation. The module contains 18 instructional units that cover the following topics: introduction to drafting; tools and equipment; supplies and materials; sketching; scales; drawing format; lettering;…
Into Adolescence: A Menu for Good Health. A Curriculum for Grades 5-8. Contemporary Health Series.
ERIC Educational Resources Information Center
Laing, Susan J.
This module, oriented toward middle school students in grades 5-8, includes nine lessons designed to help students synthesize nutritional information and use it to improve their health. In lesson 1, students look at factors that influence food choices. Lesson 2 uses creative expression activities to help students learn about the role of nutrients.…
Student performance in a flipped classroom dental anatomy course.
Chutinan, S; Riedy, C A; Park, S E
2017-11-09
The purpose of this study was to assess dental student learning in a dental anatomy module between traditional lecture and flipped classroom cohorts. Two cohorts of predoctoral dental students (N = 70 within each cohort) participated in a dental anatomy module within an Introduction to the Dental Patient (IDP) course ([traditional/lecture cohort: academic year (AY) 2012, 2013] and [flipped classroom cohort: AY 2014, 2015]). For the dental anatomy module, both cohorts were evaluated on pre-clinical tooth waxing exercises immediately after each of five lectures and tooth identification after all lectures were given. Additionally, the cohorts' performance on the overall IDP course examination was compared. The flipped classroom cohort had statistically significant higher waxing scores (dental anatomy module) than students in the traditional classroom. There was no statistically significant difference for tooth identification scores and the overall IDP course examination between the traditional vs flipped approach cohorts. This is due to the latter two assessments conducted at the end of the course gave all students enough time to review the lecture content prior to the assessment resulting in similar scores for both cohorts. The flipped classroom cohort promoted students' individual learning and resulted in improved students' performance on immediate evaluation but not on the end of the course evaluation. Redesign of courses to include a new pedagogical approach should be carefully implemented and evaluated for student's educational success. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
ERIC Educational Resources Information Center
Hall-Wallace, Michelle K.; McAuliffe, Carla M.
2002-01-01
Investigates student learning that occurred with a Geographic Information Systems (GIS) based module on plate tectonics and geologic hazards. Examines factors in the design and implementation of the materials that impacted student learning. Reports positive correlations between student' spatial ability and performance. Includes 17 references.…
Aronoff, Nell; Stellrecht, Elizabeth; Lyons, Amy G.; Zafron, Michelle L.; Glogowski, Maryruth; Grabowski, Jeremiah; Ohtake, Patricia J.
2017-01-01
Objective: The research assessed online learning modules designed to teach health professions students evidence-based practice (EBP) principles in an interprofessional context across two institutions. Methods: Students from nine health professions at two institutions were recruited to participate in this pilot project consisting of two online learning modules designed to prepare students for an in-person case-based interprofessional activity. Librarians and an instructional designer created two EBP modules. Students’ competence in EBP was assessed before and after the modules as well as after the in-person activity. Students evaluated the online learning modules and their impact on the students’ learning after the in-person session. Results: A total of 39 students from 8 health professions programs participated in the project. Average quiz scores for online EBP module 1 and module 2 were 83% and 76%, respectively. Following completion of the learning modules, adapted Fresno test of competence in EBP scores increased (p=0.001), indicating that the modules improved EBP skill competence. Student evaluations of the learning modules were positive. Students indicated that they acquired new information skills that contributed to their ability to develop a patient care plan and that they would use these information skills in their future clinical practice. Conclusions: Online EBP learning modules were effective in developing EBP knowledge and skills for health professions students. Using the same modules ensured that students from different health professions at different stages of their professional programs had consistent knowledge and enabled each student to fully engage in an interprofessional evidence-based activity. Student feedback indicated the modules were valued and beneficial. PMID:28983201
Climate Science across the Liberal Arts Curriculum at Gustavus Adolphus College
NASA Astrophysics Data System (ADS)
Bartley, J. K.; Triplett, L.; Dontje, J.; Huber, T.; Koomen, M.; Jeremiason, J.; La Frenierre, J.; Niederriter, C.; Versluis, A.
2014-12-01
The human and social dimensions of climate change are addressed in courses in humanities, social sciences, and arts disciplines. However, faculty members in these disciplines are not climate science experts and thus may feel uncomfortable discussing the science that underpins our understanding of climate change. In addition, many students are interested in the connections between climate change and their program of study, but not all students take courses that address climate science as a principal goal. At Gustavus Adolphus College, the Climate Science Project aims to help non-geoscience faculty introduce climate science content in their courses in order to increase climate science literacy among students and inform discussions of the implications of climate change. We assembled an interdisciplinary team of faculty with climate science expertise to develop climate science modules for use in non-geoscience courses. Faculty from the social sciences, humanities, arts, education, and natural sciences attended workshops in which they developed plans to include climate science in their courses. Based on these workshops, members of the development team created short modules for use by participating faculty that introduce climate science concepts to a non-specialist audience. Each module was tested and modified prior to classroom implementation by a team of faculty and geoscience students. Faculty and student learning are assessed throughout the process, and participating faculty members are interviewed to improve the module development process. The Climate Science Project at Gustavus Adolphus College aims to increase climate science literacy in both faculty members and students by creating accessible climate science content and supporting non-specialist faculty in learning key climate science concepts. In this way, climate science becomes embedded in current course offerings, including non-science courses, reaching many more students than new courses or enhanced content in the geosciences can reach. In addition, this model can be adopted by institutions with limited geoscience course offerings to increase geoscience literacy among a broad cross-section of students.
Place-based Learning About Climate with Elementary GLOBE
NASA Astrophysics Data System (ADS)
Hatheway, B.; Gardiner, L. S.; Harte, T.; Stanitski, D.; Taylor, J.
2017-12-01
Place-based education - helping students make connections between themselves, their community, and their local environment - is an important tool to help young learners understand their regional climate and start to learn about climate and environmental change. Elementary GLOBE storybooks and learning activities allow opportunities for place-based education instructional strategies about climate. In particular, two modules in the Elementary GLOBE unit - Seasons and Climate - provide opportunities for students to explore their local climate and environment. The storybooks and activities also make connections to other parts of elementary curriculum, such as arts, geography, and math. Over the long term, place-based education can also encourage students to be stewards of their local environment. A strong sense of place may help students to see themselves as stakeholders in their community and its resilience. In places that are particularly vulnerable to the impacts of climate and environmental change and the economic, social, and environmental tradeoffs of community decisions, helping young students developing a sense of place and to see the connection between Earth science, local community, and their lives can have a lasting impact on how a community evolves for decades to come. Elementary GLOBE was designed to help elementary teachers (i.e., grades K-4) integrate Earth system science topics into their curriculum as they teach literacy skills to students. This suite of instructional materials includes seven modules. Each module contains a science-based storybook and learning activities that support the science content addressed in the storybooks. Elementary GLOBE modules feature air quality, climate, clouds, Earth system, seasons, soil, and water. New eBooks allow students to read stories on computers or tablets, with the option of listening to each story with an audio recording. A new Elementary GLOBE Teacher Implementation Guide, published in 2017, provides educators with information and strategies how Elementary GLOBE modules can be effectively applied in classrooms, how Elementary GLOBE modules are aligned with national standards, and how student literacy and science inquiry skills can be strengthened while learning about the Earth system.
NASA Astrophysics Data System (ADS)
Steer, D. N.; McConnell, D. A.; Owens, K.
2001-12-01
Geoscience and education faculty at The University of Akron jointly developed a series of inquiry-based learning modules aimed at both non-major and major student populations enrolled in introductory geology courses. These courses typically serve 2500 students per year in four to six classes of 40-160 students each per section. Twelve modules were developed that contained common topics and assessments appropriate to Earth Science, Environmental Geology and Physical Geology classes. All modules were designed to meet four primary learning objectives agreed upon by Department of Geology faculty. These major objectives include: 1) Improvement of student understanding of the scientific method; 2) Incorporation of problem solving strategies involving analysis, synthesis, and interpretation; 3) Development of the ability to distinguish between inferences, data and observations; and 4) Obtaining an understanding of basic processes that operate on Earth. Additional objectives that may be addressed by selected modules include: 1) The societal relevance of science; 2) Use and interpretation of quantitative data to better understand the Earth; 3) Development of the students' ability to communicate scientific results; 4) Distinguishing differences between science, religion and pseudo-science; 5) Evaluation of scientific information found in the mass media; and 6) Building interpersonal relationships through in-class group work. Student pre- and post-instruction progress was evaluated by administering a test of logical thinking, an attitude toward science survey, and formative evaluations. Scores from the logical thinking instrument were used to form balanced four-person working groups based on the students' incoming cognitive level. Groups were required to complete a series of activities and/or exercises that targeted different cognitive domains based upon Bloom's taxonomy (knowledge, comprehension, application, analysis, synthesis and evaluation of information). Daily assessments of knowledge-level learning included evaluations of student responses to pre- and post-instruction conceptual test questions, short group exercises and content-oriented exam questions. Higher level thinking skills were assessed when students completed exercises that required the completion of Venn diagrams, concept maps and/or evaluation rubrics both during class periods and on exams. Initial results indicate that these techniques improved student attendance significantly and improved overall retention in the course by 8-14% over traditional lecture formats. Student scores on multiple choice exam questions were slightly higher (1-3%) for students taught in the active learning environment and short answer questions showed larger gains (7%) over students' scores in a more traditional class structure.
The impact of international experience on student nurses' personal and professional development.
Lee, N-J
2004-06-01
Many student nurses undertake international clinical experience during their education programmes, which raises the question 'How do these experiences impact on students nurses' personal and professional development?' A case study was conducted in one School of Nursing in the United Kingdom. Student nurses participating in a new module, International Nursing and Health Care, which included clinical experience overseas, gave qualitative accounts of their international experiences and subsequent learning. Their accounts were also compared with the perceptions and expectations of the module facilitators. While there were some similarities in student experience and facilitator expectations, there were also notable differences. The students believed that their international experiences had a deep impact on their personal development, helping them make the transition from student to qualified nurse. The case study raised further questions about the acquisition of cultural knowledge and the facilitation and provision of learning from experience.
[Development of a French-language online health policy course: an international collaboration].
Hébert, Réjean; Coppieters, Yves; Pradier, Christian; Williams-Jones, Bryn; Brahimi, Cora; Farley, Céline
2017-01-01
To present the process and challenges of developing an online competency-based course on public health policy using a collaborative international approach. Five public health experts, supported by an expert in educational technology, adopted a rigorous approach to the development of the course: a needs analysis, identification of objectives and competencies, development of a pedagogical scenario for each module and target, choice of teaching methods and learning activities, material to be identified or developed, and the responsibilities and tasks involved. The 2-credit (90-hour) graduate course consists of six modules including an integration module. The modules start with a variety of case studies: tobacco law (neutral packaging), supervised injection sites, housing, integrated services for the frail elderly, a prevention programme for mothers from disadvantaged backgrounds, and the obligatory use of bicycle helmets. In modules 1, 3, 4 and 5, students learn about different stages of the public policy development process: emergence, formulation and adoption, implementation and evaluation. Module 2 focuses on the importance of values and ideologies in public policy. The integration module allows the students to apply the knowledge learned and addresses the role of experts in public policy and ethical considerations. The course has been integrated into the graduate programmes of the participating universities and allows students to follow, at a distance, an innovative training programme.
NASA Astrophysics Data System (ADS)
Wenner, J. M.; Baer, E. M.
2007-12-01
Introductory geoscience courses are rife with quantitative concepts from graphing to rates to unit conversions. Recent research suggests that supplementary mathematical instruction increases post-secondary students' retention and performance in science courses. Nonetheless, many geoscience faculty feel that they do not have enough time to cover all the geoscience content, let alone covering the math they often feel students should have learned before reaching their classes. We present our NSF-funded effort to create web modules for students that address these concerns. Our web resources focus on both student performance and faculty time issues by building students' quantitative skills through web-based, self-paced modular tutorials. Each module can be assigned to individual students who have demonstrated on a pre-test that they are in need of supplemental instruction. The pre-test involves problems that place mathematical concepts in a geoscience context and determines the students who need the most support with these skills. Students needing support are asked to complete a three-pronged web-based module just before the concept is needed in class. The three parts of each tutorial include: an explanation of the mathematics, a page of practice problems and an on-line quiz that is graded and sent to the instructor. Each of the modules is steeped in best practices in mathematics and geoscience education, drawing on multiple contexts and utilizing technology. The tutorials also provide students with further resources so that they can explore the mathematics in more depth. To assess the rigor of this program, students are given the pre-test again at the end of the course. The uniqueness of this program lies in a rich combination of mathematical concepts placed in multiple geoscience contexts, giving students the opportunity to explore the way that math relates to the physical world. We present several preliminary modules dealing with topics common in introductory geoscience courses. We seek feedback from faculty teaching all levels of geoscience addressing several questions: In what math/geoscience topics do you feel students need supplemental instruction? Where do students come up against quantitative topics that make them drop the class or perform poorly? Would you be willing to review or help us to test these modules in your class?
Fortugno, Mariella; Chandra, Smriti; Espin, Sherry; Gucciardi, Enza
2013-07-01
This exploratory case study examined an interprofessional placement of undergraduate students from nutrition, nursing, early childhood education, and child and youth care who collaborated to develop and deliver four healthy-living modules to secondary school students in Canada. An inductive thematic analysis was used to describe the teamwork that occurred between students. Data collected included focus groups with undergraduate students and preceptors, undergraduate students' reflections and secondary school students' evaluations of the modules delivered. Two major themes that emerged from all data sources were "team functioning" and "shift in perspectives". The undergraduate students identified several ways that facilitated their successful and positive teamwork with one another and also expressed how the placement experience improved their interprofessional skills. Findings from this study are discussed in relation to contact theory (Allport, 1954) and self-presentation theory (Goffman, 1963). This study suggests that providing undergraduate students with interprofessional placements in an educational setting can enhance interprofessional teamwork opportunities for students of various disciplines.
NASA Astrophysics Data System (ADS)
Holmes, Mark H.
2006-10-01
To help students grasp the intimate connections that exist between mathematics and its applications in other disciplines a library of interactive learning modules was developed. This library covers the mathematical areas normally studied by undergraduate students and is used in science courses at all levels. Moreover, the library is designed not just to provide critical connections across disciplines but to also provide longitudinal subject reinforcement as students progress in their studies. In the process of developing the modules a complete editing and publishing system was constructed that is optimized for automated maintenance and upgradeability of materials. The result is a single integrated production system for web-based educational materials. Included in this is a rigorous assessment program, involving both internal and external evaluations of each module. As will be seen, the formative evaluation obtained during the development of the library resulted in the modules successfully bridging multiple disciplines and breaking down the disciplinary barriers commonly found in their math and non-math courses.
Energy Awareness Curriculum, 1980.
ERIC Educational Resources Information Center
Seward County Community Coll., Liberal, KS.
This curriculum guide contains course content for a series of "mini-courses" that can be presented in an adult continuing education program in area technical-vocational schools and community colleges. The program consists of nine modules, each divided into units and including learning objectives and student handouts. The modules cover the…
Support Services: University of Missouri-Columbia. Creating Employment Opportunities.
ERIC Educational Resources Information Center
Gregory, Martha Wille, Ed.
This training module was developed to introduce postsecondary personnel to the support services available for students with disabilities at the University of Missouri-Columbia. The module covers the definition and philosophy of support services, including the development of rehabilitation services, independent living, and the disability rights…
Resendes, Karen K
2015-01-01
Incorporating scientific literacy into inquiry driven research is one of the most effective mechanisms for developing an undergraduate student's strength in writing. Additionally, discovery-based laboratories help develop students who approach science as critical thinkers. Thus, a three-week laboratory module for an introductory cell and molecular biology course that couples inquiry-based experimental design with extensive scientific writing was designed at Westminster College to expose first year students to these concepts early in their undergraduate career. In the module students used scientific literature to design and then implement an experiment on the effect of cellular stress on protein expression in HeLa cells. In parallel the students developed a research paper in the style of the undergraduate journal BIOS to report their results. HeLa cells were used to integrate the research experience with the Westminster College "Next Chapter" first year program, in which the students explored the historical relevance of HeLa cells from a sociological perspective through reading The Immortal Life of Henrietta Lacks by Rebecca Skloot. In this report I detail the design, delivery, student learning outcomes, and assessment of this module, and while this exercise was designed for an introductory course at a small primarily undergraduate institution, suggestions for modifications at larger universities or for upper division courses are included. Finally, based on student outcomes suggestions are provided for improving the module to enhance the link between teaching students skills in experimental design and execution with developing student skills in information literacy and writing. © 2015 The International Union of Biochemistry and Molecular Biology.
The introduction of an interprofessional education module: students' perceptions.
Cusack, Tara; O'Donoghue, Grainne
2012-01-01
The purpose of this study was to examine health science students' perceptions of an interprofessional education (IPE) module delivered by means of problem-based learning (PBL). Ninety-two students from four health science disciplines (medicine, physiotherapy, nursing and diagnostic imaging) elected to participate in this IPE PBL module. An evaluation was undertaken using a questionnaire with quantitative and qualitative components completed at the end of the module. Students were asked to evaluate aspects of the module relating to learning objectives, intellectual stimulation, resources, library information skills, work load and overall satisfaction. Open-ended questions asked students to comment on the best aspects of the module and areas for improvement. Quantitative data were analysed using SPSS version 18 and qualitative data using framework analysis methodology. Of the 92 students that participated in the module, 70 (78%) completed the questionnaire. Over 70% (n = 49) of students positively endorsed the module in terms of the statements posed. Overall satisfaction with the module was high, with 63 (91%) students reporting that they agreed or strongly agreed that they were satisfied with the module. Analysis of qualitative data revealed the following emerging themes in relation to the module: (1) collaboration (learning together with others from different professions); (2) structure (small group work, discussion, teamwork assessment procedures); and (3) content (problem diversity). The introduction of this IPE module for health science students was well received. Students valued the opportunity to work in small groups with individuals from other health science disciplines. Students highlighted module structure and content as being important elements for consideration when developing IPE. Further research is required in order to define whether improving communication and collaboration skills will ultimately lead to improved quality in patient care.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. - Students work on their experiments that will fly in SPACEHAB on Space Shuttle Columbia on mission STS-107. SPACEHAB's complement of commercial experiments includes six educational experiments designed and developed by students in six different countries under the auspices of Space Technology and Research Students (STARS), a global education program managed by SPACEHAB subsidiary Space Media. The countries represented are Australia, China, Israel, Japan, Liechtenstein and the United States. The student investigators who conceived these experiments will monitor their operations in space. The experiments will be housed in BioServe Space Technologies' Isothermal Containment Module (ICM --a small temperature-controlled facility that provides experiment support such as physical containment, lighting, and video imaging) and stowed in a middeck-size locker aboard the SPACEHAB Research Double Module.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. -- Students display an experiment that will fly in SPACEHAB on Space Shuttle Columbia on mission STS- 107. SPACEHAB's complement of commercial experiments includes six educational experiments designed and developed by students in six different countries under the auspices of Space Technology and Research Students (STARS), a global education program managed by SPACEHAB subsidiary Space Media. The countries represented are Australia, China, Israel, Japan, Liechtenstein and the United States. The student investigators who conceived these experiments will monitor their operations in space. The experiments will be housed in BioServe Space Technologies' Isothermal Containment Module (ICM --a small temperature-controlled facility that provides experiment support such as physical containment, lighting, and video imaging) and stowed in a middeck-size locker aboard the SPACEHAB Research Double Module.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. - Students work on their experiments that will fly in SPACEHAB on Space Shuttle Columbia on mission STS-107. SPACEHAB's complement of commercial experiments includes six educational experiments designed and developed by students in six different countries under the auspices of Space Technology and Research Students (STARS), a global education program managed by SPACEHAB subsidiary Space Media. The countries represented are Australia, China, Israel, Japan, Liechtenstein and the United States. The student investigators who conceived these experiments will monitor their operations in space. The experiments will be housed in BioServe Space Technologies' Isothermal Containment Module (ICM --a small temperature-controlled facility that provides experiment support such as physical containment, lighting, and video imaging) and stowed in a middeck-size locker aboard the SPACEHAB Research Double Module.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. - Students work on their experiments that will fly in SPACEHAB on Space Shuttle Columbia on mission STS-107. SPACEHAB's complement of commercial experiments includes six educational experiments designed and developed by students in six different countries under the auspices of Space Technology and Research Students (STARS), a global education program managed by SPACEHAB subsidiary Space Media. The countries represented are Australia, China, Israel, Japan, Liechtenstein and the United States. The student investigators who conceived these experiments will monitor their operations in space. The experiments will be housed in BioServe Space Technologies' Isothermal Containment Module (ICM --a small temperature-controlled facility that provides experiment support such as physical containment, lighting, and video imaging) and stowed in a middeck-size locker aboard the SPACEHAB Research Double Module.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. - Students look over their experiments that will fly in SPACEHAB on Space Shuttle Columbia on mission STS-107. SPACEHAB's complement of commercial experiments includes six educational experiments designed and developed by students in six different countries under the auspices of Space Technology and Research Students (STARS), a global education program managed by SPACEHAB subsidiary Space Media. The countries represented are Australia, China, Israel, Japan, Liechtenstein and the United States. The student investigators who conceived these experiments will monitor their operations in space. The experiments will be housed in BioServe Space Technologies' Isothermal Containment Module (ICM --a small temperature-controlled facility that provides experiment support such as physical containment, lighting, and video imaging) and stowed in a middeck-size locker aboard the SPACEHAB Research Double Module.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. - Students check out their experiments that will fly in SPACEHAB on Space Shuttle Columbia on mission STS-107. SPACEHAB's complement of commercial experiments includes six educational experiments designed and developed by students in six different countries under the auspices of Space Technology and Research Students (STARS), a global education program managed by SPACEHAB subsidiary Space Media. The countries represented are Australia, China, Israel, Japan, Liechtenstein and the United States. The student investigators who conceived these experiments will monitor their operations in space. The experiments will be housed in BioServe Space Technologies' Isothermal Containment Module (ICM --a small temperature-controlled facility that provides experiment support such as physical containment, lighting, and video imaging) and stowed in a middeck-size locker aboard the SPACEHAB Research Double Module.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. - Students check on their experiments that will fly in SPACEHAB on Space Shuttle Columbia on mission STS-107. SPACEHAB's complement of commercial experiments includes six educational experiments designed and developed by students in six different countries under the auspices of Space Technology and Research Students (STARS), a global education program managed by SPACEHAB subsidiary Space Media. The countries represented are Australia, China, Israel, Japan, Liechtenstein and the United States. The student investigators who conceived these experiments will monitor their operations in space. The experiments will be housed in BioServe Space Technologies' Isothermal Containment Module (ICM --a small temperature-controlled facility that provides experiment support such as physical containment, lighting, and video imaging) and stowed in a middeck-size locker aboard the SPACEHAB Research Double Module.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. - Students work on their experiments that will fly in SPACEHAB on Space Shuttle Columbia on mission STS-107. SPACEHAB's complement of commercial experiments includes six educational experiments designed and developed by students in six different countries under the auspices of Space Technology and Research Students (STARS), a global education program managed by SPACEHAB subsidiary Space Media. The countries represented are Australia, China, Israel, Japan, Liechtenstein and the United States. The student investigators who conceived these experiments will monitor their operations in space. The experiments will be housed in BioServe Space Technologies' Isothermal Containment Module (ICM --a small temperature-controlled facility that provides experiment support such as physical containment, lighting, and video imaging) and stowed in a middeck-size locker aboard the SPACEHAB Research Double Module.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. -- Students work on their experiments that will fly in SPACEHAB on Space Shuttle Columbia on mission STS-107. SPACEHAB's complement of commercial experiments includes six educational experiments designed and developed by students in six different countries under the auspices of Space Technology and Research Students (STARS), a global education program managed by SPACEHAB subsidiary Space Media. The countries represented are Australia, China, Israel, Japan, Liechtenstein and the United States. The student investigators who conceived these experiments will monitor their operations in space. The experiments will be housed in BioServe Space Technologies' Isothermal Containment Module (ICM --a small temperature-controlled facility that provides experiment support such as physical containment, lighting, and video imaging) and stowed in a middeck-size locker aboard the SPACEHAB Research Double Module.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. -- Students work on their experiments that will fly in SPACEHAB on Space Shuttle Columbia on mission STS-107. SPACEHAB's complement of commercial experiments includes six educational experiments designed and developed by students in six different countries under the auspices of Space Technology and Research Students (STARS), a global education program managed by SPACEHAB subsidiary Space Media. The countries represented are Australia, China, Israel, Japan, Liechtenstein and the United States. The student investigators who conceived these experiments will monitor their operations in space. The experiments will be housed in BioServe Space Technologies' Isothermal Containment Module (ICM --a small temperature-controlled facility that provides experiment support such as physical containment, lighting, and video imaging) and stowed in a middeck-size locker aboard the SPACEHAB Research Double Module.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. -- Students check out their experiments that will fly in SPACEHAB on Space Shuttle Columbia on mission STS-107. SPACEHAB's complement of commercial experiments includes six educational experiments designed and developed by students in six different countries under the auspices of Space Technology and Research Students (STARS), a global education program managed by SPACEHAB subsidiary Space Media. The countries represented are Australia, China, Israel, Japan, Liechtenstein and the United States. The student investigators who conceived these experiments will monitor their operations in space. The experiments will be housed in BioServe Space Technologies' Isothermal Containment Module (ICM --a small temperature-controlled facility that provides experiment support such as physical containment, lighting, and video imaging) and stowed in a middeck-size locker aboard the SPACEHAB Research Double Module.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. -- A student displays an experiment that will fly in SPACEHAB on Space Shuttle Columbia on mission STS-107. SPACEHAB's complement of commercial experiments includes six educational experiments designed and developed by students in six different countries under the auspices of Space Technology and Research Students (STARS), a global education program managed by SPACEHAB subsidiary Space Media. The countries represented are Australia, China, Israel, Japan, Liechtenstein and the United States. The student investigators who conceived these experiments will monitor their operations in space. The experiments will be housed in BioServe Space Technologies' Isothermal Containment Module (ICM --a small temperature-controlled facility that provides experiment support such as physical containment, lighting, and video imaging) and stowed in a middeck-size locker aboard the SPACEHAB Research Double Module.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. -- Students display an experiment that will fly in SPACEHAB on Space Shuttle Columbia on mission STS- 107. SPACEHAB's complement of commercial experiments includes six educational experiments designed and developed by students in six different countries under the auspices of Space Technology and Research Students (STARS), a global education program managed by SPACEHAB subsidiary Space Media. The countries represented are Australia, China, Israel, Japan, Liechtenstein and the United States. The student investigators who conceived these experiments will monitor their operations in space. The experiments will be housed in BioServe Space Technologies' Isothermal Containment Module (ICM --a small temperature-controlled facility that provides experiment support such as physical containment, lighting, and video imaging) and stowed in a middeck-size locker aboard the SPACEHAB Research Double Module.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. - A student works on an experiment that will fly in SPACEHAB on Space Shuttle Columbia on mission STS-107. SPACEHAB's complement of commercial experiments includes six educational experiments designed and developed by students in six different countries under the auspices of Space Technology and Research Students (STARS), a global education program managed by SPACEHAB subsidiary Space Media. The countries represented are Australia, China, Israel, Japan, Liechtenstein and the United States. The student investigators who conceived these experiments will monitor their operations in space. The experiments will be housed in BioServe Space Technologies' Isothermal Containment Module (ICM --a small temperature-controlled facility that provides experiment support such as physical containment, lighting, and video imaging) and stowed in a middeck-size locker aboard the SPACEHAB Research Double Module.
2003-01-15
KENNEDY SPACE CENTER, FLA. - A student works on an experiment that will fly in SPACEHAB on Space Shuttle Columbia on mission STS-107. SPACEHAB's complement of commercial experiments includes six educational experiments designed and developed by students in six different countries under the auspices of Space Technology and Research Students (STARS), a global education program managed by SPACEHAB subsidiary Space Media. The countries represented are Australia, China, Israel, Japan, Liechtenstein and the United States. The student investigators who conceived these experiments will monitor their operations in space. The experiments will be housed in BioServe Space Technologies' Isothermal Containment Module (ICM --a small temperature-controlled facility that provides experiment support such as physical containment, lighting, and video imaging) and stowed in a middeck-size locker aboard the SPACEHAB Research Double Module.
2003-01-15
KENNEDY SPACE CENTER, FLA. -- Students check out their experiments that will fly in SPACEHAB on Space Shuttle Columbia on mission STS-107. SPACEHAB's complement of commercial experiments includes six educational experiments designed and developed by students in six different countries under the auspices of Space Technology and Research Students (STARS), a global education program managed by SPACEHAB subsidiary Space Media. The countries represented are Australia, China, Israel, Japan, Liechtenstein and the United States. The student investigators who conceived these experiments will monitor their operations in space. The experiments will be housed in BioServe Space Technologies' Isothermal Containment Module (ICM --a small temperature-controlled facility that provides experiment support such as physical containment, lighting, and video imaging) and stowed in a middeck-size locker aboard the SPACEHAB Research Double Module.
2003-01-15
KENNEDY SPACE CENTER, FLA. - Students check on their experiments that will fly in SPACEHAB on Space Shuttle Columbia on mission STS-107. SPACEHAB's complement of commercial experiments includes six educational experiments designed and developed by students in six different countries under the auspices of Space Technology and Research Students (STARS), a global education program managed by SPACEHAB subsidiary Space Media. The countries represented are Australia, China, Israel, Japan, Liechtenstein and the United States. The student investigators who conceived these experiments will monitor their operations in space. The experiments will be housed in BioServe Space Technologies' Isothermal Containment Module (ICM --a small temperature-controlled facility that provides experiment support such as physical containment, lighting, and video imaging) and stowed in a middeck-size locker aboard the SPACEHAB Research Double Module.
2003-01-15
KENNEDY SPACE CENTER, FLA. - Students work on their experiments that will fly in SPACEHAB on Space Shuttle Columbia on mission STS-107. SPACEHAB's complement of commercial experiments includes six educational experiments designed and developed by students in six different countries under the auspices of Space Technology and Research Students (STARS), a global education program managed by SPACEHAB subsidiary Space Media. The countries represented are Australia, China, Israel, Japan, Liechtenstein and the United States. The student investigators who conceived these experiments will monitor their operations in space. The experiments will be housed in BioServe Space Technologies' Isothermal Containment Module (ICM --a small temperature-controlled facility that provides experiment support such as physical containment, lighting, and video imaging) and stowed in a middeck-size locker aboard the SPACEHAB Research Double Module.
2003-01-15
KENNEDY SPACE CENTER, FLA. - Students check out their experiments that will fly in SPACEHAB on Space Shuttle Columbia on mission STS-107. SPACEHAB's complement of commercial experiments includes six educational experiments designed and developed by students in six different countries under the auspices of Space Technology and Research Students (STARS), a global education program managed by SPACEHAB subsidiary Space Media. The countries represented are Australia, China, Israel, Japan, Liechtenstein and the United States. The student investigators who conceived these experiments will monitor their operations in space. The experiments will be housed in BioServe Space Technologies' Isothermal Containment Module (ICM --a small temperature-controlled facility that provides experiment support such as physical containment, lighting, and video imaging) and stowed in a middeck-size locker aboard the SPACEHAB Research Double Module.
2003-01-15
KENNEDY SPACE CENTER, FLA. -- Students work on their experiments that will fly in SPACEHAB on Space Shuttle Columbia on mission STS-107. SPACEHAB's complement of commercial experiments includes six educational experiments designed and developed by students in six different countries under the auspices of Space Technology and Research Students (STARS), a global education program managed by SPACEHAB subsidiary Space Media. The countries represented are Australia, China, Israel, Japan, Liechtenstein and the United States. The student investigators who conceived these experiments will monitor their operations in space. The experiments will be housed in BioServe Space Technologies' Isothermal Containment Module (ICM --a small temperature-controlled facility that provides experiment support such as physical containment, lighting, and video imaging) and stowed in a middeck-size locker aboard the SPACEHAB Research Double Module.
2003-01-15
KENNEDY SPACE CENTER, FLA. - Students work on their experiments that will fly in SPACEHAB on Space Shuttle Columbia on mission STS-107. SPACEHAB's complement of commercial experiments includes six educational experiments designed and developed by students in six different countries under the auspices of Space Technology and Research Students (STARS), a global education program managed by SPACEHAB subsidiary Space Media. The countries represented are Australia, China, Israel, Japan, Liechtenstein and the United States. The student investigators who conceived these experiments will monitor their operations in space. The experiments will be housed in BioServe Space Technologies' Isothermal Containment Module (ICM --a small temperature-controlled facility that provides experiment support such as physical containment, lighting, and video imaging) and stowed in a middeck-size locker aboard the SPACEHAB Research Double Module.
2003-01-15
KENNEDY SPACE CENTER, FLA. -- Students work on their experiments that will fly in SPACEHAB on Space Shuttle Columbia on mission STS-107. SPACEHAB's complement of commercial experiments includes six educational experiments designed and developed by students in six different countries under the auspices of Space Technology and Research Students (STARS), a global education program managed by SPACEHAB subsidiary Space Media. The countries represented are Australia, China, Israel, Japan, Liechtenstein and the United States. The student investigators who conceived these experiments will monitor their operations in space. The experiments will be housed in BioServe Space Technologies' Isothermal Containment Module (ICM --a small temperature-controlled facility that provides experiment support such as physical containment, lighting, and video imaging) and stowed in a middeck-size locker aboard the SPACEHAB Research Double Module.
2003-01-15
KENNEDY SPACE CENTER, FLA. -- Students display an experiment that will fly in SPACEHAB on Space Shuttle Columbia on mission STS-107. SPACEHAB's complement of commercial experiments includes six educational experiments designed and developed by students in six different countries under the auspices of Space Technology and Research Students (STARS), a global education program managed by SPACEHAB subsidiary Space Media. The countries represented are Australia, China, Israel, Japan, Liechtenstein and the United States. The student investigators who conceived these experiments will monitor their operations in space. The experiments will be housed in BioServe Space Technologies' Isothermal Containment Module (ICM --a small temperature-controlled facility that provides experiment support such as physical containment, lighting, and video imaging) and stowed in a middeck-size locker aboard the SPACEHAB Research Double Module.
2003-01-15
KENNEDY SPACE CENTER, FLA. - Students work on their experiments that will fly in SPACEHAB on Space Shuttle Columbia on mission STS-107. SPACEHAB's complement of commercial experiments includes six educational experiments designed and developed by students in six different countries under the auspices of Space Technology and Research Students (STARS), a global education program managed by SPACEHAB subsidiary Space Media. The countries represented are Australia, China, Israel, Japan, Liechtenstein and the United States. The student investigators who conceived these experiments will monitor their operations in space. The experiments will be housed in BioServe Space Technologies' Isothermal Containment Module (ICM --a small temperature-controlled facility that provides experiment support such as physical containment, lighting, and video imaging) and stowed in a middeck-size locker aboard the SPACEHAB Research Double Module.
2003-01-15
KENNEDY SPACE CENTER, FLA. - Students work on their experiments that will fly in SPACEHAB on Space Shuttle Columbia on mission STS-107. SPACEHAB's complement of commercial experiments includes six educational experiments designed and developed by students in six different countries under the auspices of Space Technology and Research Students (STARS), a global education program managed by SPACEHAB subsidiary Space Media. The countries represented are Australia, China, Israel, Japan, Liechtenstein and the United States. The student investigators who conceived these experiments will monitor their operations in space. The experiments will be housed in BioServe Space Technologies' Isothermal Containment Module (ICM --a small temperature-controlled facility that provides experiment support such as physical containment, lighting, and video imaging) and stowed in a middeck-size locker aboard the SPACEHAB Research Double Module.
2003-01-15
KENNEDY SPACE CENTER, FLA. -- A student displays an experiment that will fly in SPACEHAB on Space Shuttle Columbia on mission STS-107. SPACEHAB's complement of commercial experiments includes six educational experiments designed and developed by students in six different countries under the auspices of Space Technology and Research Students (STARS), a global education program managed by SPACEHAB subsidiary Space Media. The countries represented are Australia, China, Israel, Japan, Liechtenstein and the United States. The student investigators who conceived these experiments will monitor their operations in space. The experiments will be housed in BioServe Space Technologies' Isothermal Containment Module (ICM --a small temperature-controlled facility that provides experiment support such as physical containment, lighting, and video imaging) and stowed in a middeck-size locker aboard the SPACEHAB Research Double Module.
SPACEHAB - Space Shuttle Columbia mission STS-107
2003-01-14
Students display an experiment that will fly in SPACEHAB on Space Shuttle Columbia on mission STS-107. SPACEHAB's complement of commercial experiments includes six educational experiments designed and developed by students in six different countries under the auspices of Space Technology and Research Students (STARS), a global education program managed by SPACEHAB subsidiary Space Media. The countries represented are Australia, China, Israel, Japan, Liechtenstein and the United States. The student investigators who conceived these experiments will monitor their operations in space. The experiments will be housed in BioServe Space Technologies' Isothermal Containment Module (ICM --a small temperature-controlled facility that provides experiment support such as physical containment, lighting, and video imaging) and stowed in a middeck-size locker aboard the SPACEHAB Research Double Module.
2003-01-15
KENNEDY SPACE CENTER, FLA. - Students look over their experiments that will fly in SPACEHAB on Space Shuttle Columbia on mission STS-107. SPACEHAB's complement of commercial experiments includes six educational experiments designed and developed by students in six different countries under the auspices of Space Technology and Research Students (STARS), a global education program managed by SPACEHAB subsidiary Space Media. The countries represented are Australia, China, Israel, Japan, Liechtenstein and the United States. The student investigators who conceived these experiments will monitor their operations in space. The experiments will be housed in BioServe Space Technologies' Isothermal Containment Module (ICM --a small temperature-controlled facility that provides experiment support such as physical containment, lighting, and video imaging) and stowed in a middeck-size locker aboard the SPACEHAB Research Double Module.
Bruck, Hugh A; Gershon, Alan L; Golden, Ira; Gupta, Satyandra K; Gyger, Lawrence S; Magrab, Edward B; Spranklin, Brent W
2007-12-01
The use of bio-inspiration for the development of new products and devices requires new educational tools for students consisting of appropriate design and manufacturing technologies, as well as curriculum. At the University of Maryland, new educational tools have been developed that introduce bio-inspired product realization to undergraduate mechanical engineering students. These tools include the development of a bio-inspired design repository, a concurrent fabrication and assembly manufacturing technology, a series of undergraduate curriculum modules and a new senior elective in the bio-inspired robotics area. This paper first presents an overview of the two new design and manufacturing technologies that enable students to realize bio-inspired products, and describes how these technologies are integrated into the undergraduate educational experience. Then, the undergraduate curriculum modules are presented, which provide students with the fundamental design and manufacturing principles needed to support bio-inspired product and device development. Finally, an elective bio-inspired robotics project course is present, which provides undergraduates with the opportunity to demonstrate the application of the knowledge acquired through the curriculum modules in their senior year using the new design and manufacturing technologies.
Marsan, Lynnsay A; D'Arcy, Christina E; Olimpo, Jeffrey T
2016-12-01
Evidence suggests that incorporating quantitative reasoning exercises into existent curricular frameworks within the science, technology, engineering, and mathematics (STEM) disciplines is essential for novices' development of conceptual understanding and process skills in these domains. Despite this being the case, such studies acknowledge that students often experience difficulty in applying mathematics in the context of scientific problems. To address this concern, the present study sought to explore the impact of active demonstrations and critical reading exercises on novices' comprehension of basic statistical concepts, including hypothesis testing, experimental design, and interpretation of research findings. Students first engaged in a highly interactive height activity that served to intuitively illustrate normal distribution, mean, standard deviation, and sample selection criteria. To enforce practical applications of standard deviation and p -value, student teams were subsequently assigned a figure from a peer-reviewed primary research article and instructed to evaluate the trustworthiness of the data. At the conclusion of this exercise, students presented their evaluations to the class for open discussion and commentary. Quantitative assessment of pre- and post-module survey data indicated a statistically significant increase both in students' scientific reasoning and process skills and in their self-reported confidence in understanding the statistical concepts presented in the module. Furthermore, data indicated that the majority of students (>85%) found the module both interesting and helpful in nature. Future studies will seek to develop additional, novel exercises within this area and to evaluate the impact of such modules across a variety of STEM and non-STEM contexts.
Solar Curriculum Guides, 1980.
ERIC Educational Resources Information Center
Seward County Community Coll., Liberal, KS.
This document contains an outline for a curriculum to train solar energy technicians in community colleges. The guide contains eight courses, each of which is divided into one to five modules. Modules, in turn, are divided into units, and units contain student handouts appropriate to the material. The following eight courses are included in this…
Jar Test. Training Module 5.230.2.77.
ERIC Educational Resources Information Center
Bonte, John L.; Davidson, Arnold C.
This document is an instructional module package prepared in objective form for use by an instructor familiar with the jar test and its application to the coagulation, floculation and sedimentation processes, and the chemical precipitation process. Included are objectives, an instructor guide, student handouts, and transparency masters. A video…
Coursework in Cognition by Mathematics Undergraduates: A Seven Year Review.
ERIC Educational Resources Information Center
Nelson, David
2000-01-01
It has become increasingly possible for mathematics students to include a limited number of approved optional, non-traditional modules in their programs. Surveys coursework in four non-specialist modules over a seven-year period, and examines work in the area of mathematical cognition. (Contains 16 references.) (Author/ASK)
Applied Physics Modules: Notes, Instructions, Data Sheets, Tests, and Test Answer Keys.
ERIC Educational Resources Information Center
Southeast Community Coll., Lincoln, NE.
These user instructions and related materials are designed to accompany a series of twenty-three applied physics modules which have been developed for postsecondary students in electrical, electronics, machine tool, metals, manufacturing, automotive, diesel, architecture, and civil drafting occupational programs. The instructions include an…
Herman Method[TM]. What Works Clearinghouse Intervention Report
ERIC Educational Resources Information Center
What Works Clearinghouse, 2010
2010-01-01
The "Herman Method"[TM] teaches reading in small groups of up to three students. The curriculum provides instruction in phonemic awareness, phonics, fluency, vocabulary, and reading comprehension, while also teaching spelling and writing. It contains 20 modules of instruction through a fifth grade level. Each module includes a reading,…
Alkalinity Analysis. Training Module 5.220.2.77.
ERIC Educational Resources Information Center
Bonte, John L.; Davidson, Arnold C.
This document is an instructional module package prepared in objective form for use by an instructor familiar with the acid-base titrimetric procedure for determining the hydroxide, carbonate and bicarbonate alkalinity of a water sample. Included are objectives, an instructor guide, student handouts and transparency masters. A video tape is also…
Multiple Learning Strategies Project. Medical Assistant. [Regular Vocational. Vol. 1.
ERIC Educational Resources Information Center
Varney, Beverly; And Others
This instructional package, one of four designed for regular vocational students, focuses on the vocational area of medical assistant. Contained in this document are twenty-six learning modules organized into three units: language; receptioning; and asepsis. Each module includes these elements: a performance objective page telling what will be…
Multiple Learning Strategies Project. Medical Assistant. [Regular Vocational. Vol. 3.
ERIC Educational Resources Information Center
Varney, Beverly; And Others
This instructional package, one of four designed for regular vocational students, focuses on the vocational area of medical assistant. Contained in this document are forty learning modules organized into four units: office surgery; telephoning; bandaging; and medications and treatments. Each module includes these elements: a performance objective…
Polymer Chemistry. An Activity-Oriented Instructional Module. Volume 1. Bulletin 1840.
ERIC Educational Resources Information Center
Jones, Aline; And Others
This teaching module was developed by the project "Recent Developments in Science and Technology with Applications for Secondary Science Teaching." Premises about students and their learning and generalizations about content are described. Chapters included are: (1) "Introduction"; (2) "Monomers into Polymers"; (3) "Natural Polymers"; (4)…
Radiology Aide. Instructor's Guide.
ERIC Educational Resources Information Center
Hronek, Dennis
This module was designed to assist educators in facilitating learning in health careers outside nursing. It may be used for classroom, on-the-job, or independent study. The module is oranized in 13 units. Each unit includes one or more lessons that contain the following components: scope of unit, unit objectives; student's information assignment,…
Basic Laboratory Skills. Training Module 5.300.2.77.
ERIC Educational Resources Information Center
Kirkwood Community Coll., Cedar Rapids, IA.
This document is an instructional module package prepared in objective form for use by an instructor familiar with the basic chemical and microbiological laboratory equipment and procedures used in water and wastewater treatment plant laboratories. Included are objectives, instructor guides, student handouts and transparency masters. This module…
A Modern and Interactive Approach to Learning Laser and Optical Communications.
ERIC Educational Resources Information Center
Minasian, Robert; Alameh, Kamal
2002-01-01
Discusses challenges in teaching lasers and optical communications to engineers, including the prohibitive cost of laboratory experiments, and describes the development of a computer-based photonics simulation experiment module which provides students with an understanding and visualization of how lasers can be modulated in telecommunications.…
ERIC Educational Resources Information Center
Kanekar, Amar; Sharma, Manoj
2011-01-01
The HIV/AIDS epidemic has taken a tremendous toll on the population of the United States. College students, including African-Americans aged 13-24 years, across the nation are susceptible to contracting sexually transmitted diseases including HIV/AIDS as they participate in unsafe sex practices. The purpose of this article is to provide teaching…
Teaching cross-cultural communication skills online: a multi-method evaluation.
Lee, Amy L; Mader, Emily M; Morley, Christopher P
2015-04-01
Cultural competency education is an important and required part of undergraduate medical education. The objective of this study was to evaluate whether an online cross-cultural communication module could increase student use of cross-cultural communication questions that assess the patient's definition of the problem, the way the problem affects their life, their concerns about the problem, and what the treatment should be (PACT). We used multi-method assessment of students assigned to family medicine clerkship blocks that were randomized to receive online cultural competency and PACT training added to their standard curriculum or to a control group receiving the standard curriculum only. Outcomes included comparison, via analysis of variance, of number of PACT questions used during an observed Standardized Patient Exercise, end-of-year OSCE scores, and qualitative analysis of student narratives. Students (n=119) who participated in the online module (n=60) demonstrated increased use of cross-cultural communication PACT questions compared to the control group (n=59) and generally had positive themes emerge from their reflective writing. The module had the biggest impact on students who later went on to match in high communication specialties. Online teaching of cross-cultural communication skills can be effective at changing medical student behavior.
Bringing Seismology's Grand Challenges to the Undergraduate Classroom
NASA Astrophysics Data System (ADS)
Benoit, M. H.; Hubenthal, M.; Taber, J.
2012-12-01
The "Seismological Grand Challenges in Understanding Earth's Dynamic Systems," a community-written long-range science plan for the next decade, poses 10 questions to guide fundamental seismological research. Written in an approachable fashion suitable for policymakers, the broad questions and supporting discussion contained in this document offer an ideal framework for the development of undergraduate curricular materials. Leveraging this document, we have created a collection of inquiry-based classroom modules that utilize authentic data to modernize seismological instruction in 100 and 200 level undergraduate courses. The modules not only introduce undergraduates to the broad questions that the seismological community seeks to answer in the future but also showcase the numerous areas where modern seismological research is actively contributing to our understanding of fundamental Earth processes. To date 6 in-depth explorations that correspond to the Grand Challenges document have been developed. The specific topics for each exploration were selected to showcase modern seismological research while also covering topics commonly included in the curriculum of these introductory classes. The activities that have been created and their corresponding Grand Challenge are: -A guided inquiry that introduces students to episodic tremor and slip and compares the GPS and seismic signatures of ETS with those produced from standard tectonic earthquakes (Grand Challenge "How do faults slip?"). - A laboratory exercise where students engage in b-value mapping of volcanic earthquakes to assess potential eruption hazards (How do magmas ascend and erupt?). - A module that introduces students to glacial earthquakes in Greenland and compares their frequency and spatial distribution to tectonic earthquakes (How do processes in the ocean and atmosphere interact with the solid Earth?). -A suite of activities that introduce students to oil and gas exploration, including an activity that introduces the concept of shale gas exploration (Where are water and hydrocarbons hidden beneath the surface?) -A guided inquiry module that leads students to understand the differences between lithosphere and asthenosphere (What is the lithosphere-asthenosphere boundary?) - A module where students explore earthquake hazards and probability of ground shaking in southern California, New Madrid, and their own location. (How does the near-surface environment affect natural hazards and resources?). To enhance the usefulness of these resources, all have been developed in a modular fashion that allows instructors to pick and choose some (or all) of these resources for integration in to the scope and sequence of their course. Each module will include an instructor's guide containing instructions for implementing the activity, assessment strategies, and other resources. Formative pilot testing at 2- and 4- year colleges will take place fall 2012. Ultimately, the modules will be disseminated online through IRIS's InClass web portal and through small training workshops. Current drafts of some of the activities can be obtained by emailing M. Benoit (benoit@tcnj.edu).
Improved Learning Outcomes After Flipping a Therapeutics Module: Results of a Controlled Trial.
Lockman, Kashelle; Haines, Stuart T; McPherson, Mary Lynn
2017-12-01
To evaluate the impact on learning outcomes of flipping a pain management module in a doctor of pharmacy curriculum. In a required first-professional-year pharmacology and therapeutics course at the University of Maryland School of Pharmacy, the pain therapeutics content of the pain management module was flipped. This redesign transformed the module from a largely lecture-based, instructor-centered model to a learner-centered model that included a variety of preclass activities and in-class active learning exercises. In spring 2015, the module was taught using the traditional model; in spring 2016, it was taught using the flipped model. The same end-of-module objective structured clinical exam (OSCE) and multiple-choice exam were administered in 2015 to the traditional cohort (TC; n = 156) and in 2016 to the flipped cohort (FC; n = 162). Cohort performance was compared. Learning outcomes improved significantly in the FC: The mean OSCE score improved by 12.33/100 points (P < .0001; 95% CI 10.28-14.38; effect size 1.33), and performance on the multiple-choice exam's therapeutics content improved by 5.07 percentage points (P < .0001; 95% CI 2.56-7.59; effect size 0.45). Student performance on exam items assessing higher cognitive levels significantly improved under the flipped model. Grade distribution on both exams shifted, with significantly more FC students earning an A or B and significantly fewer earning a D or F compared with TC students. Student performance on knowledge- and skill-based assessments improved significantly after flipping the therapeutics content of a pain management module.
Implementing online quantitative support modules in an intermediate-level course
NASA Astrophysics Data System (ADS)
Daly, J.
2011-12-01
While instructors typically anticipate that students in introductory geology courses enter a class with a wide range of quantitative ability, we often overlook the fact that this may also be true in upper-level courses. Some students are drawn to the subject and experience success in early courses with an emphasis on descriptive geology, then experience frustration and disappointment in mid- and upper-level courses that are more quantitative. To bolster student confidence in quantitative skills and enhance their performance in an upper-level course, I implemented several modules from The Math You Need (TMYN) online resource with a 200-level geomorphology class. Student facility with basic quantitative skills (rearranging equations, manipulating units, and graphing) was assessed with an online pre- and post-test. During the semester, modules were assigned to complement existing course activities (for example, the module on manipulating units was assigned prior to a lab on measurement of channel area and water velocity, then calculation of discharge). The implementation was designed to be a concise review of relevant skills for students with higher confidence in their quantitative abilities, and to provide a self-paced opportunity for students with less quantitative facility to build skills. This course already includes a strong emphasis on quantitative data collection, analysis, and presentation; in the past, student performance in the course has been strongly influenced by their individual quantitative ability. I anticipate that giving students the opportunity to improve mastery of fundamental quantitative skills will improve their performance on higher-stakes assignments and exams, and will enhance their sense of accomplishment in the course.
Best Practices in Working with Students with Emotion Dysregulation
ERIC Educational Resources Information Center
Cunningham, Jennifer; Mendez, Linda M. Raffaele; Sundman-Wheat, Ashley N.
2011-01-01
Students with emotion dysregulation have significant difficulty modulating emotional reactions, particularly in response to frustration or challenge. These children can present with a variety of DSM diagnoses in schools, including attention deficit hyperactivity disorder (ADHD), oppositional defiant disorder (ODD), major depressive disorder (MDD),…
ERIC Educational Resources Information Center
Edwards, Lesley
Designed for community students interested in learning about psychology as a field of study, this module offers group and individual activities to involve the beginning student in research, experimentation and discussion. Unit 1, "What Is Psychology?," includes the use of animals in psychology, ethics, the history of psychology, an…
Assessment of a Pharmaceutical Advertisement Analysis Module in a Drug Literature Evaluation Course.
Amin, Mohamed Ezzat Khamis; Fattouh, Youssef
2017-08-01
Objective. To evaluate the impact of an educational module on students' self-efficacy when analyzing the content of promotional drug brochures (PDBs) and to assess the students' value of PDBs' as an educational tool. Methods. Third-year bachelor of pharmacy students participated in a one-hour lecture and a two-hour laboratory. Students completed a survey before and after participating in the module. Results. The module elicited a statistically significant change in students' self-efficacy beliefs regarding evaluating promotional drug brochures, while the average perceived value of promotional drug brochures did not change significantly after the module. Conclusion. A brief educational module can increase students' self-efficacy in evaluating the content of PDBs.
NASA Astrophysics Data System (ADS)
Gardiner, L. S.; Hatheway, B.; Taylor, J.; Chambers, L. H.; Stanitski, D.
2016-12-01
To address the dearth of climate education resources at the elementary level, we have developed a new module of Elementary GLOBE to showcase the science of climate change for young learners. Elementary GLOBE builds K-4 student understanding of the science concepts and the practices of science research. At the heart of each Elementary GLOBE module is a fiction storybook, describing how three kids investigate a science question. Accompanying classroom activities allow students to explore the science concepts in the book in more depth and in a context appropriate for young learners. The book for the Elementary GLOBE climate module, "What in the World Is Happening to Our Climate?," is the account of an adventure to explore climate change, how it is affecting melting glacial ice and sea level rise, and how climate change is a problem that can be solved. Three hands-on activities, which will be presented at this session, allow students to explore the topics in greater depth including differences between weather and climate, how sea level rise affects coastal areas, and how they can shrink their carbon footprint to help address recent climate change. Each activity includes instructions for teachers, background information, and activity sheets for students, and is aligned to the Next Generation Science Standards and Common Core Math and Language Arts Standards. The storybook and activities were field tested in classrooms and reviewed by climate and Earth system scientists as well as elementary education and climate education specialists and educators to ensure scientific accuracy and clear explanations, and that the resources are age appropriate and reflect the needs of the climate education community. Other Elementary GLOBE modules include the science of seasonal change, water, soil, clouds, aerosols, and Earth as a system. All Elementary GLOBE educational resources are freely available online (www.globe.gov/elementaryglobe).
Astronomy Village Reaches for New Heights
NASA Astrophysics Data System (ADS)
Croft, S. K.; Pompea, S. M.
2007-12-01
We are developing a set of complex, multimedia-based instructional modules emphasizing technical and scientific issues related to Giant Segmented Mirror Telescope project. The modules" pedagogy will be open-ended and problem-based to promote development of problem-solving skills. Problem- based-learning modules that emphasize work on open-ended complex real world problems are particularly valuable in illustrating and promoting a perspective on the process of science and engineering. Research in this area shows that these kinds of learning experiences are superior to more conventional student training in terms of gains in student learning. The format for the modules will be based on the award-winning multi-media educational Astronomy Village products that present students with a simulated environment: a mountaintop community surrounded by a cluster of telescopes, satellite receivers, and telecommunication towers. A number of "buildings" are found in the Village, such as a library, a laboratory, and an auditorium. Each building contains an array of information sources and computer simulations. Students navigate through their research with a mentor via imbedded video. The first module will be "Observatory Site Selection." Students will use astronomical data, basic weather information, and sky brightness data to select the best site for an observatory. Students will investigate the six GSMT sites considered by the professional site selection teams. Students will explore weather and basic site issues (e.g., roads and topography) using remote sensing images, computational fluid dynamics results, turbulence profiles, and scintillation of the different sites. Comparison of student problem solving with expert problem solving will also be done as part of the module. As part of a site selection team they will have to construct a case and present it on why they chose a particular site. The second module will address aspects of system engineering and optimization for a GSMT-like telescope. Basic system issues will be addressed and studied. These might include various controls issues and optimization issues such as mirror figure, mirror support stability, and wind loading trade-offs. Using system modeling and system optimization results from existing and early GSMT trade studies, we will create a simulation where students are part of an engineering design and optimization team. They will explore the cost/performance/schedule issues associate with the GSMT design.
Climate Curriculum Modules on Volcanic Eruptions, Geoengineering, and Nuclear Winter
NASA Astrophysics Data System (ADS)
Robock, A.
2016-12-01
To support a climate dynamics multidisciplinary curriculum for graduate and senior university students, I will describe proposed on-line modules on volcanic eruptions and climate, geoengineering, and nuclear winter. Each of these topics involves aerosols in the stratosphere and the response of the climate system, but each is distinct, and each is evolving as more research becomes available. While nature can load the stratosphere with sulfate aerosols for several years from large volcanic eruptions, humans could also put sulfate aerosols into the stratosphere on purpose through geoengineering or soot as a result of the fires from a nuclear war. As reported for the first time in the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, volcanic eruptions are a natural analog for the climate impacts of potential anthropogenic aerosol injections into the stratosphere, either sulfates from potential attempts to cool the climate to counteract global warming, or smoke that would be produced from fires in cities and industrial targets in a nuclear war. Stratospheric aerosols would change the temperature, precipitation, total insolation, and fraction of diffuse radiation due to their radiative impacts, and could produce more ultraviolet radiation by ozone destruction. Surface ozone concentration could also change by changed transport from the stratosphere as well as changed tropospheric chemistry. There would be two options: 1) Each module would stand alone and could be taught independently, or 2) The volcanic eruptions module would stand alone, and would also serve as a prerequisite for each of the other two modules, which could be taught independently of each other. Each module includes consideration of the physical climate system as well as impacts of the resulting climate change. Geoengineering includes both solar radiation management and carbon dioxide reduction. The geoengineering and nuclear winter modules also include consideration of policy and governance issues. Each module includes a slide set for use in lecturing, links to related resources, and student exercises. The modules will be regularly updated.
Foster, Jamie S; Lemus, Judith D
2015-01-01
Scientific inquiry represents a multifaceted approach to explore and understand the natural world. Training students in the principles of scientific inquiry can help promote the scientific learning process as well as help students enhance their understanding of scientific research. Here, we report on the development and implementation of a learning module that introduces astrobiology students to the concepts of creative and scientific inquiry, as well as provide practical exercises to build critical thinking skills. The module contained three distinct components: (1) a creative inquiry activity designed to introduce concepts regarding the role of creativity in scientific inquiry; (2) guidelines to help astrobiology students formulate and self-assess questions regarding various scientific content and imagery; and (3) a practical exercise where students were allowed to watch a scientific presentation and practice their analytical skills. Pre- and post-course surveys were used to assess the students' perceptions regarding creative and scientific inquiry and whether this activity impacted their understanding of the scientific process. Survey results indicate that the exercise helped improve students' science skills by promoting awareness regarding the role of creativity in scientific inquiry and building their confidence in formulating and assessing scientific questions. Together, the module and survey results confirm the need to include such inquiry-based activities into the higher education classroom, thereby helping students hone their critical thinking and question asking skill set and facilitating their professional development in astrobiology.
Yousuf, S; Beh, P S L; Wong, P W C
2013-10-01
To explore qualitative and quantitative changes in attitudes and experiences of medical students following a special study suicide prevention module. Pilot study. The University of Hong Kong, Hong Kong. A 2-week intensive special studies module was delivered to third- and fourth-year medical students in June 2011. The module was elective and involved several modes of teaching. All students filled the Chinese Attitude toward Suicide Questionnaire before and after the course. They also provided written feedback about the module experience. Three students participated in in-depth interviews. In all, 22 students aged 20 to 23 years enrolled in the special studies module; 15 (68%) of whom were male and only one was married. Positive trends were noted in attitudes towards suicide following the participation in the special studies module, namely, reduced negative appraisal of suicide, reduced stigmatisation of the phenomena, and increased sensitivity to suicide-related facts. Feedback of the students suggested inclusion of this module into the main medical curriculum, increased confidence in dealing with issues related to suicide, and appreciation of skills focusing on interviewing in patients. Overall the module was well received by medical students. A suicide prevention training module seems to have been valued by students and lead to positive attitudes towards understanding suicide. Adopting this initiative as a suicide prevention strategy warrants further exploration.
NASA Astrophysics Data System (ADS)
Alseddiqi, M.; Mishra, R.; Pislaru, C.
2012-05-01
This paper diagnoses the implementation of a new engineering course entitled 'school-based learning (SBL) to work-based learning (WBL) transition module' in the Bahrain Technical and Vocational Education (TVE) learning environment. The module was designed to incorporate an innovative education and training approach with a variety of learning activities that are included in various learning case studies. Each case study was based on with learning objectives coupled with desired learning outcomes. The TVE students should meet the desired outcomes after the completion of the learning activities and assessments. To help with the implementation phase of the new module, the authors developed guidelines for each case study. The guidelines incorporated learning activities to be delivered in an integrated learning environment. The skills to be transferred were related to cognitive, affective, and technical proficiencies. The guidelines included structured instructions to help students during the learning process. In addition, technology was introduced to improve learning effectiveness and flexibility. The guidelines include learning indicators for each learning activity and were based on their interrelation with competencies to be achieved with respect to modern industrial requirements. Each learning indicator was then correlated against the type of learning environment, teaching and learning styles, examples of mode of delivery, and assessment strategy. Also, the learning activities were supported by technological features such as discussion forums for social perception and engagement and immediate feedback exercises for self-motivation. Through the developed module, TVE teachers can effectively manage the teaching and learning process as well as the assessment strategy to satisfy students' individual requirements and enable them to meet workplace requirements.
Fog Studies for University Students and High School Teachers
NASA Astrophysics Data System (ADS)
Witiw, M.; Ladochy, S.
2010-07-01
Over the past few years, fog studies have been introduced as part of courses in Earth system science for both university students and high school teachers at Seattle Pacific University. In the undergraduate course, about three hours are devoted to the study of fog starting with a discussion on sustainable water systems. This is followed by presentations on types of fog, the role of fog in the biosphere, biogeochemical cycles and fog, human influences on fog and fog intensity, and remote sensing of fog. We end with a description of fog collection. Fog education efforts increased for students when our campus was able to obtain fog collecting equipment from Richard Jagels at the University of Maine. The equipment included active and passive fog collectors as well as infrared-beam fog detectors. Two graduating students took on fog collection as their senior project. After setting up the newly acquired equipment, the students designed a fog collection project for the University’s Whidby Island location on Puget Sound, an area that experiences frequent advection fog. They built a passive fog detector and determined where to place it on the Island. Future projects planned include implementing a water system based upon fog collection on Whidby Island. We have also implemented a new module on fog for the Earth System Science Education Alliance (ESSEA) - The Camanchaca: Fog in the Earth System (available at: http://essea.strategies.org/module.php?module_id=54). Aspects of fog in the Earth system are discussed and participants are led to see the important role fog has throughout the Earth system. This module was successfully piloted as part of an Earth system science course for teachers offered in June-July, 2009.
The utility of adaptive eLearning in cervical cytopathology education.
Samulski, T Danielle; Taylor, Laura A; La, Teresa; Mehr, Chelsea R; McGrath, Cindy M; Wu, Roseann I
2018-02-01
Adaptive eLearning allows students to experience a self-paced, individualized curriculum based on prior knowledge and learning ability. The authors investigated the effectiveness of adaptive online modules in teaching cervical cytopathology. eLearning modules were created that covered basic concepts in cervical cytopathology, including artifacts and infections, squamous lesions (SL), and glandular lesions (GL). The modules used student responses to individualize the educational curriculum and provide real-time feedback. Pathology trainees and faculty from the authors' institution were randomized into 2 groups (SL or GL), and identical pre-tests and post-tests were used to compare the efficacy of eLearning modules versus traditional study methods (textbooks and slide sets). User experience was assessed with a Likert scale and free-text responses. Sixteen of 17 participants completed the SL module, and 19 of 19 completed the GL module. Participants in both groups had improved post-test scores for content in the adaptive eLearning module. Users indicated that the module was effective in presenting content and concepts (Likert scale [from 1 to 5], 4.3 of 5.0), was an efficient and convenient way to review the material (Likert scale, 4.4 of 5.0), and was more engaging than lectures and texts (Likert scale, 4.6 of 5.0). Users favored the immediate feedback and interactivity of the module. Limitations included the inability to review prior content and slow upload time for images. Learners demonstrated improvement in their knowledge after the use of adaptive eLearning modules compared with traditional methods. Overall, the modules were viewed positively by participants. Adaptive eLearning modules can provide an engaging and effective adjunct to traditional teaching methods in cervical cytopathology. Cancer Cytopathol 2018;126:129-35. © 2017 American Cancer Society. © 2017 American Cancer Society.
Assessing Quantitative Learning With The Math You Need When You Need It
NASA Astrophysics Data System (ADS)
Wenner, J. M.; Baer, E. M.; Burn, H.
2008-12-01
We present new data from a pilot project using the The Math You Need, When You Need It (TMYN) web resources in conjunction with several introductory geoscience courses. TMYN is a series of NSF-supported, NAGT-sponsored, web-based modular resources designed to help students learn (or relearn) mathematical skills essential for success in introductory geoscience courses. TMYN presents mathematical topics that are relevant to introductory geoscience based on a survey of more than 75 geoscience faculty members. To date, modules include unit conversions, many aspects of graphing, density calculations, rearranging equations and other simple mathematical concepts commonly used in the geosciences. The modular nature of the resources make it simple to select the units that are appropriate for a given course. In the fall of 2008, nine TMYN modules were tested in three courses taught at Highline Community College (Geology 101) and University of Wisconsin Oshkosh (Physical and Environmental Geology). Over 300 students participated in the study by taking pre- and post-tests and completing modules relevant to their course. Feedback about the use of these modules has been mixed. Initial results confirm anecdotal evidence that students initially have difficulty applying mathematical concepts to geologic problems. Furthermore, pre- test results indicate that, although instructors assume that students can perform simple mathematical manipulations, many students arrive in courses without the skills to apply mathematical concepts in problem solving situations. TMYN resources effectively provide support for learning quantitative problem solving and a mechanism for students to engage in self-teaching. Although we have seen mixed results due to a range of instructor engagement with the material, TMYN can have significant effect on students who are math phobic or "can't do math" because they can work at their own pace to overcome affective obstacles such as fear and dislike of mathematics. TMYN is most effective when instructors make explicit connections between material in the modules and course content. Instructors who participated in the study in Fall 2008 reacted positively to the use of TMYN in introductory geoscience courses because the resources require minimal class and prep time. Furthermore, when instructors can hold students responsible for the quantitative concepts covered with TMYN, they feel more comfortable including quantitative information without significant loss of geologic content.
Brown, James A L
2016-05-06
A pedagogic intervention, in the form of an inquiry-based peer-assisted learning project (as a practical student-led bioinformatics module), was assessed for its ability to increase students' engagement, practical bioinformatic skills and process-specific knowledge. Elements assessed were process-specific knowledge following module completion, qualitative student-based module evaluation and the novelty, scientific validity and quality of written student reports. Bioinformatics is often the starting point for laboratory-based research projects, therefore high importance was placed on allowing students to individually develop and apply processes and methods of scientific research. Students led a bioinformatic inquiry-based project (within a framework of inquiry), discovering, justifying and exploring individually discovered research targets. Detailed assessable reports were produced, displaying data generated and the resources used. Mimicking research settings, undergraduates were divided into small collaborative groups, with distinctive central themes. The module was evaluated by assessing the quality and originality of the students' targets through reports, reflecting students' use and understanding of concepts and tools required to generate their data. Furthermore, evaluation of the bioinformatic module was assessed semi-quantitatively using pre- and post-module quizzes (a non-assessable activity, not contributing to their grade), which incorporated process- and content-specific questions (indicative of their use of the online tools). Qualitative assessment of the teaching intervention was performed using post-module surveys, exploring student satisfaction and other module specific elements. Overall, a positive experience was found, as was a post module increase in correct process-specific answers. In conclusion, an inquiry-based peer-assisted learning module increased students' engagement, practical bioinformatic skills and process-specific knowledge. © 2016 by The International Union of Biochemistry and Molecular Biology, 44:304-313 2016. © 2016 The International Union of Biochemistry and Molecular Biology.
Arctic Connections, an Interactive CD-ROM Program for Middle School Science
NASA Astrophysics Data System (ADS)
Elias, S. A.
2003-12-01
In this project we developed an interactive CD-ROM program for middle school students, accompanied by an interactive web site. The project was sponsored by a grant from the NSF ESIE Instructional Materials Development program. One of the major goals of this project was to involve middle school students in inquiry-based science education, using topics that are of interest to students in Arctic communities. Native Alaskan students have traditionally done poorly in science at the secondary level, and few have gone on to major in the sciences in college or to pursue scientific careers. Part of the problem is a perceived dichotomy between science and traditional Native ways of knowing about the natural world. Hence some students reject the scientific method as being foreign to their native culture. Our goal was to help bridge this cultural barrier, and to demonstrate to native students that the scientific method is not antithetical to their traditional way of life. The program uses story modules that discuss both scientific and Native ways of understanding, through the use of action-adventure stories and brief learning modules. The aim was to show students the relevance of science to their daily lives, and to convince them that scientific methods are a vital tool in solving major problems in arctic communities. Each action-adventure story contains a series of problems that the program user must solve through interactive participation, in order for the story to progress. The interactive elements include answering quiz questions correctly, measuring pH by comparing litmus paper colors, measuring archaeological artifact dimensions, finding the location of fossil bones in a photograph, and correctly identifying photographs of whale species, arctic plants, and fish. The stories contain a mixture of live-action film sequences and voice-over sketch art story boards. The ten modules include such topics as arctic flora and fauna (including terrestrial and sea mammals), arctic solar phenomena, the archaeology and ice-age history of Alaska, water quality, sea ice, permafrost, and climatology. The topics are designed to show connections between the past, present, and future of the Arctic, highlighting problems that can be addressed by scientific inquiry. The accompanying teacher's guide contains a series of hands-on experiments and additional learning materials for each module. The scientific information contained in the modules was refereed by a team of experts who have also volunteered to respond to student questions via e-mail. During the last three years, the program has been field tested in middle schools in Barrow, Kotzebue, Fairbanks, and Anchorage, Alaska. These tests have brought many suggestions for improvements from both teachers and students. The program is in its final evaluation phase, and will be available to schools early in 2004.
History, Applications, and Philosophy in Mathematics Education: HAPh—A Use of Primary Sources
NASA Astrophysics Data System (ADS)
Jankvist, Uffe Thomas
2013-03-01
The article first investigates the basis for designing teaching activities dealing with aspects of history, applications, and philosophy of mathematics in unison by discussing and analyzing the different `whys' and `hows' of including these three dimensions in mathematics education. Based on the observation that a use of history, applications, and philosophy as a `goal' is best realized through a modules approach, the article goes on to discuss how to actually design such teaching modules. It is argued that a use of primary original sources through a so-called guided reading along with a use of student essay assignments, which are suitable for bringing out relevant meta-issues of mathematics, is a sensible way of realizing a design encompassing the three dimensions. Two concrete teaching modules on aspects of the history, applications, and philosophy of mathematics—HAPh-modules—are outlined and the mathematical cases of these, graph theory and Boolean algebra, are described. Excerpts of student groups' essays from actual implementations of these modules are displayed as illustrative examples of the possible effect such HAPh-modules may have on students' development of an awareness regarding history, applications, and philosophy in relation to mathematics as a (scientific) discipline.
Learning to Communicate Science: Stony Brook University's Approach
NASA Astrophysics Data System (ADS)
Bass, E.
2012-12-01
Stony Brook University offers an unusual series of short courses to help science graduate students learn to communicate more effectively about science with people outside their disciplines, including the public, public officials, potential funders and employers, students, the press, and colleagues in other fields. The courses include six 1-credit (14-hour) modules in oral and written communication that rely on practice and interactive feedback. More than 120 master's and PhD students, from more than 16 departments, have taken at least one of the courses since spring 2011. Most students who try one module end up taking two or three. An additional course for medical and nursing students was added in fall 2012. The courses are offered in the School of Journalism and were developed by the Center for Communicating Science (CCS). CCS was founded in 2009, with the participation of Alan Alda, the actor, writer, and longtime advocate for science, who is a Visiting Professor at Stony Brook. The Communicating Science courses have received strong institutional support and enthusiastic reviews. They are required by two programs, an MA in Marine Conservation and Policy and an Advanced Certificate in Health Communications. Two successive Provosts have subsidized course costs for PhD students, and Graduate School leaders are working to establish a steady funding stream to allow expansion of the program. Our aspiration at CCS is for every science graduate student to receive some training in communicating about science to the public. Several factors have helped in establishing the program: --CCS' multidisciplinary nature helped build support, with participation by faculty from across the campus, including not only the natural sciences, engineering, and medicine, but journalism, theatre arts, and the Writing Program, as well as nearby Brookhaven National Laboratory and Cold Spring Harbor Laboratory. --Before offering courses, CCS conducted all-day workshops and high-profile activities that generated interest and allowed students, postdocs, faculty and administrators to sample course material. --CCS structured the courses as "bite-size" modules to make them easier to take. Courses are given in the evening, in successive four- or five-week blocks, so a student can take one to six modules in a single semester. At the heart of the effort are two courses: Distilling Your Message, in which students practice speaking clearly, vividly and conversationally at different levels of complexity to different audiences, and Improvisation for Scientists, in which students use improvisational theater exercises to help connect more responsively with their audiences. This is not about acting. It is about paying dynamic attention to the audience, shifting the focus from what the student is saying to what the other person is receiving. Other modules deal with writing for the public; using social media, and connecting with the community. In addition to the 1-credit courses, science graduate students can take a 3-credit course examining how the media cover science and health issues. This course also is taken by students in the journalism MS program, which focuses on science, health and environmental reporting, part of Stony Brook University's multi-pronged effort to improve communication of science to the public.
NASA Astrophysics Data System (ADS)
Eldardiry, H. A.; Unruh, H. G., Sr.; Habib, E. H.; Tidwell, V. C.
2016-12-01
Recent community initiatives have identified key foundational knowledge gaps that need to be addressed before transformative solutions can be made in the area of Food, Energy and Water (FEW) nexus. In addition, knowledge gaps also exist in the area of FEW education and needs to be addressed before we can make an impact on building the next generation FEW workforces. This study reports on the development of a pilot learning-module that focuses on two elements of the FEW nexus, Energy and Water. The module follows an active-learning approach to develop a set of student-centered learning activities using FEW datasets situated in real-world settings in the contiguous US. The module is based on data-driven learning exercises that incorporate different geospatial layers and manipulate datasets at a watershed scale representing the eight-digit Hydrologic Unit Code (HUC8). Examples of such datasets include water usage by different demand sectors (available from the US Geological Survey, USGS), and power plants stratified by energy source, cooling technology, and plant capacity (available from the US Energy Information Administration, EIA). The module is structured in three sections: (1) introduction to the water and energy systems, (2) quantifying stresses on water system at a catchment scale, and (3) scenario-based analysis on the interdependencies in the water-energy systems. Following a data-analytic framework, the module guides students to make different assumptions about water use growth rates and see how these new water demands will impinge on freshwater supplies. The module engages students in analysis that examines how thermoelectric water use would depend on assumptions about future demand for electricity, power plant fuel source, cooling type, and carbon sequestration. Students vary the input parameters, observe and assess the effect on water use, and address gaps via non-potable water resources (e.g., municipal wastewater). The module is implemented using a web-based platform where datasets, lesson contents, and student learning activities are presented within a geo-spatial context. The presentation will share insight on how the dynamics of FEW systems can be taught using meaningful educational experiences that promote students' understanding of FEW systems and their complex inter-connections.
Bringing Global Climate Change Education to Alabama Middle School and High School Classrooms
NASA Astrophysics Data System (ADS)
Lee, M.; Mitra, C.; Percival, E.; Thomas, A.; Lucy, T.; Hickman, E.; Cox, J.; Chaudhury, S. R.; Rodger, C.
2013-12-01
A NASA-funded Innovations in Climate Education (NICE) Program has been launched in Alabama to improve high school and middle school education in climate change science. The overarching goal is to generate a better informed public that understands the consequences of climate change and can contribute to sound decision making on related issues. Inquiry based NICE modules have been incorporated into the existing course of study for 9-12 grade biology, chemistry, and physics classes. In addition, new modules in three major content areas (earth and space science, physical science, and biological science) have been introduced to selected 6-8 grade science teachers in the summer of 2013. The NICE modules employ five E's of the learning cycle: Engage, Explore, Explain, Extend and Evaluate. Modules learning activities include field data collection, laboratory measurements, and data visualization and interpretation. Teachers are trained in the use of these modules for their classroom through unique partnership with Alabama Science in Motion (ASIM) and the Alabama Math Science Technology Initiative (AMSTI). Certified AMSTI teachers attend summer professional development workshops taught by ASIM and AMSTI specialists to learn to use NICE modules. During the school year, the specialists in turn deliver the needed equipment to conduct NICE classroom exercises and serve as an in-classroom resource for teachers and their students. Scientists are partnered with learning and teaching specialists and lead teachers to implement and test efficacy of instructional materials, models, and NASA data used in classroom. The assessment by professional evaluators after the development of the modules and the training of teachers indicates that the modules are complete, clear, and user-friendly. The overall teacher satisfaction from the teacher training was 4.88/5.00. After completing the module teacher training, the teachers reported a strong agreement that the content developed in the NICE modules should be included in the Alabama secondary curriculum. Eventually, the NICE program has the potential to reach over 200,000 students when the modules are fully implemented in every school in the state of Alabama. The project can give these students access to expertise and equipment, thereby strengthening the connections between the universities, state education administrators, and the community.
Manufacturing Processes: New Methods for the "Materials Age." Resources in Technology.
ERIC Educational Resources Information Center
Technology Teacher, 1990
1990-01-01
To make the best use of new materials developed for everything from computers to artificial hearts to more fuel-efficient cars, improved materials syntheses and manufacturing processes are needed. This instructional module includes teacher materials, a student quiz, and possible student outcomes. (JOW)
Teaching the Scientific Method: It's All in the Perspective
ERIC Educational Resources Information Center
Ayers, James M.; Ayers, Kathleen M.
2007-01-01
A three unit module of inquiry, including morphological comparison, cladogram construction, and data mining has been developed to teach students the nature of experimental science. Students generate angiosperm morphological data, form cladistic hypotheses, then mine taxonomic, bioinformatic and historical data from many sources to replicate and…
ERIC Educational Resources Information Center
Bax, Christopher; Baggott, Glenn; Howey, Ellen; Pellet-Many, Carolyn; Rayne, Richard; Neonaki, Maria; Bax, Bridget E.; White, Christopher Branford
2006-01-01
This study was carried out to examine students' responses to the use of on-line assessments that included feedback. First year BSc students taking a Cell Biology module undertook such an assessment and were then asked to evaluate the test by completing an anonymous questionnaire. Answers were analysed in light of the respondents' ethnicity and…
Into Adolescence: Actions for Wellpower. A Curriculum for Grades 5-8. Contemporary Health Series.
ERIC Educational Resources Information Center
Waters, Mae; Hocker, Anita
This module on wellness includes eight lessons, and is oriented toward middle school students in grades 5-8. Students choose partners to support them in achieving their goals for improving health in several areas. In lesson 1, health and wellness are defined. Students are introduced to a wellness continuum and the physical, mental/emotional, and…
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. - A student shows off one of the experiments that will fly in SPACEHAB on Space Shuttle Columbia on mission STS-107. SPACEHAB's complement of commercial experiments includes six educational experiments designed and developed by students in six different countries under the auspices of Space Technology and Research Students (STARS), a global education program managed by SPACEHAB subsidiary Space Media. The countries represented are Australia, China, Israel, Japan, Liechtenstein and the United States. The student investigators who conceived these experiments will monitor their operations in space. The experiments will be housed in BioServe Space Technologies' Isothermal Containment Module (ICM --a small temperature-controlled facility that provides experiment support such as physical containment, lighting, and video imaging) and stowed in a middeck-size locker aboard the SPACEHAB Research Double Module.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. - Students pause during their work on their experiments that will fly in SPACEHAB on Space Shuttle Columbia on mission STS-107. SPACEHAB's complement of commercial experiments includes six educational experiments designed and developed by students in six different countries under the auspices of Space Technology and Research Students (STARS), a global education program managed by SPACEHAB subsidiary Space Media. The countries represented are Australia, China, Israel, Japan, Liechtenstein and the United States. The student investigators who conceived these experiments will monitor their operations in space. The experiments will be housed in BioServe Space Technologies' Isothermal Containment Module (ICM --a small temperature-controlled facility that provides experiment support such as physical containment, lighting, and video imaging) and stowed in a middeck-size locker aboard the SPACEHAB Research Double Module.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. -- Students show off one of the experiments that will fly in SPACEHAB on Space Shuttle Columbia on mission STS-107. SPACEHAB's complement of commercial experiments includes six educational experiments designed and developed by students in six different countries under the auspices of Space Technology and Research Students (STARS), a global education program managed by SPACEHAB subsidiary Space Media. The countries represented are Australia, China, Israel, Japan, Liechtenstein and the United States. The student investigators who conceived these experiments will monitor their operations in space. The experiments will be housed in BioServe Space Technologies' Isothermal Containment Module (ICM --a small temperature-controlled facility that provides experiment support such as physical containment, lighting, and video imaging) and stowed in a middeck-size locker aboard the SPACEHAB Research Double Module.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. -- Students show off one of the experiments that will fly in SPACEHAB on Space Shuttle Columbia on mission STS-107. SPACEHAB's complement of commercial experiments includes six educational experiments designed and developed by students in six different countries under the auspices of Space Technology and Research Students (STARS), a global education program managed by SPACEHAB subsidiary Space Media. The countries represented are Australia, China, Israel, Japan, Liechtenstein and the United States. The student investigators who conceived these experiments will monitor their operations in space. The experiments will be housed in BioServe Space Technologies' Isothermal Containment Module (ICM --a small temperature-controlled facility that provides experiment support such as physical containment, lighting, and video imaging) and stowed in a middeck-size locker aboard the SPACEHAB Research Double Module.
2003-01-15
KENNEDY SPACE CENTER, FLA. -- Students show off one of the experiments that will fly in SPACEHAB on Space Shuttle Columbia on mission STS-107. SPACEHAB's complement of commercial experiments includes six educational experiments designed and developed by students in six different countries under the auspices of Space Technology and Research Students (STARS), a global education program managed by SPACEHAB subsidiary Space Media. The countries represented are Australia, China, Israel, Japan, Liechtenstein and the United States. The student investigators who conceived these experiments will monitor their operations in space. The experiments will be housed in BioServe Space Technologies' Isothermal Containment Module (ICM --a small temperature-controlled facility that provides experiment support such as physical containment, lighting, and video imaging) and stowed in a middeck-size locker aboard the SPACEHAB Research Double Module.
2003-01-15
KENNEDY SPACE CENTER, FLA. - A student shows off one of the experiments that will fly in SPACEHAB on Space Shuttle Columbia on mission STS-107. SPACEHAB's complement of commercial experiments includes six educational experiments designed and developed by students in six different countries under the auspices of Space Technology and Research Students (STARS), a global education program managed by SPACEHAB subsidiary Space Media. The countries represented are Australia, China, Israel, Japan, Liechtenstein and the United States. The student investigators who conceived these experiments will monitor their operations in space. The experiments will be housed in BioServe Space Technologies' Isothermal Containment Module (ICM --a small temperature-controlled facility that provides experiment support such as physical containment, lighting, and video imaging) and stowed in a middeck-size locker aboard the SPACEHAB Research Double Module.
2003-01-15
KENNEDY SPACE CENTER, FLA. -- Students show off one of the experiments that will fly in SPACEHAB on Space Shuttle Columbia on mission STS-107. SPACEHAB's complement of commercial experiments includes six educational experiments designed and developed by students in six different countries under the auspices of Space Technology and Research Students (STARS), a global education program managed by SPACEHAB subsidiary Space Media. The countries represented are Australia, China, Israel, Japan, Liechtenstein and the United States. The student investigators who conceived these experiments will monitor their operations in space. The experiments will be housed in BioServe Space Technologies' Isothermal Containment Module (ICM --a small temperature-controlled facility that provides experiment support such as physical containment, lighting, and video imaging) and stowed in a middeck-size locker aboard the SPACEHAB Research Double Module.
2003-01-15
KENNEDY SPACE CENTER, FLA. - Students pause during their work on their experiments that will fly in SPACEHAB on Space Shuttle Columbia on mission STS-107. SPACEHAB's complement of commercial experiments includes six educational experiments designed and developed by students in six different countries under the auspices of Space Technology and Research Students (STARS), a global education program managed by SPACEHAB subsidiary Space Media. The countries represented are Australia, China, Israel, Japan, Liechtenstein and the United States. The student investigators who conceived these experiments will monitor their operations in space. The experiments will be housed in BioServe Space Technologies' Isothermal Containment Module (ICM --a small temperature-controlled facility that provides experiment support such as physical containment, lighting, and video imaging) and stowed in a middeck-size locker aboard the SPACEHAB Research Double Module.
Diversity and Periodicity: An Inorganic Chemistry Module. Teacher's Guide.
ERIC Educational Resources Information Center
Huheey, James; Sandoval, Amado
This teacher's guide is designed to provide science teachers with the necessary guidance and suggestions for teaching inorganic chemistry. The material in this book can be integrated with the other modules in a sequence that helps students to see that chemistry is a unified science. Contents include: (1) "Periodicity: A Chemical Calendar"; (2)…
Communities of Molecules: A Physical Chemistry Module. Teacher's Guide.
ERIC Educational Resources Information Center
DeVoe, Howard; Hearle, Robert
This teacher's guide is designed to provide science teachers with the necessary guidance and suggestions for teaching physical chemistry. The material in this book can be integrated with the other modules in a sequence that helps students see that chemistry is a unified science. Contents include: (1) "Introduction of Physical Chemistry"; (2) "The…
Respiration and Photosynthesis: A Teaching Module. Occasional Paper No. 90.
ERIC Educational Resources Information Center
Bishop, Beth A.; And Others
Designed to address the major conceptual problems associated with respiration and photosynthesis, this module can be used with high school students or college nonscience majors including those in elementary education. It is one in a series developed by the project Overcoming Critical Barriers to Learning in Nonmajors' Science Courses. The…
Travel and Tourism Module. An Advanced-Level Option For Distribution and Marketing.
ERIC Educational Resources Information Center
New York State Education Dept., Albany. Bureau of Occupational Education Curriculum Development.
Intended as an advanced option for distributive education students in the twelfth grade, this travel and tourism module is designed to cover a minimum of ten weeks or a maximum of twenty weeks. Introductory material includes information on employment demands, administrative considerations, course format, teaching suggestions, expected outcomes,…
CAD/CAM. High-Technology Training Module.
ERIC Educational Resources Information Center
Zuleger, Robert
This high technology training module is an advanced course on computer-assisted design/computer-assisted manufacturing (CAD/CAM) for grades 11 and 12. This unit, to be used with students in advanced drafting courses, introduces the concept of CAD/CAM. The content outline includes the following seven sections: (1) CAD/CAM software; (2) computer…
Teaching Adult Learner Characteristics and Facilitation Strategies through Simulation-Based Practice
ERIC Educational Resources Information Center
Speed, Sally A.; Bradley, Elizabeth; Garland, Krista Vince
2015-01-01
This article relates a project in which a curriculum module was developed to help graduate students more effectively manage behaviors of adults in facilitation sessions. The module was piloted in the project and later included in a graduate level course in the Creative Studies Department of SUNY Buffalo State. The curriculum identified…
Determination of Iron in Water. Training Module 5.210.2.77.
ERIC Educational Resources Information Center
Bonte, John L.; Davidson, Arnold C.
This document is an instructional module package prepared in objective form for use by an instructor familiar with the spectrophotometric analysis of total iron, filtrable iron and ferrous iron in a water supply. Included are objectives, an instructor guide, student handouts, and transparency masters. A video tape is also available from the…
Determination of Color in Water. Training Module 5.250.2.77.
ERIC Educational Resources Information Center
Bonte, John L.; Davidson, Arnold C.
This document is an instructional module package prepared in objective form for use by an instructor familiar with the determination of color in water using the visual comparison method and the spectrophotometric method. Included are objectives, instructor guide, student handouts, and transparency masters. A videotape is also available from the…
Manganese Analysis in Water Samples. Training Module 5.211.2.77.
ERIC Educational Resources Information Center
Bonte, John L.; Davidson, Arnold C.
This document is an instructional module package prepared in objective form for use by an instructor familiar with the spectrophotometric analysis of manganese in water using the persulfate method. Included are objectives, an instructor guide, student handouts, and transparency masters. A video tape is also available from the author. This module…
Physical Therapy Aide. Instructor's Guide.
ERIC Educational Resources Information Center
Martin, James A.
This module was designed to assist educators in facilitating learning in health careers outside nursing. It may be used for classroom, on-the-job, or independent study. The module is organized in 10 units. Each unit includes one or more lessons that contain the following components: scope of unit, unit objectives, student's information assignment,…
ERIC Educational Resources Information Center
Hanna, Philip; Allen, Angela; Kane, Russell; Anderson, Neil; McGowan, Aidan; Collins, Matthew; Hutchison, Malcolm
2015-01-01
This paper outlines a means of improving the employability skills of first-year university students through a closely integrated model of employer engagement within computer science modules. The outlined approach illustrates how employability skills, including communication, teamwork and time management skills, can be contextualised in a manner…
DellaVecchia, Matthew J; Claudio, Alyssa M; Fairclough, Jamie L
2017-11-01
To describe 1) a pharmacy student's teaching assistant (TA) role in an undergraduate medicinal chemistry course, 2) an active learning module co-developed by the TA and instructor, and 3) the unexpected opportunities for pharmacy educational outreach that resulted from this collaboration. Medicinal Chemistry (CHM3413) is an undergraduate course offered each fall at Palm Beach Atlantic University (PBA). As a TA for CHM3413, a pharmacy student from the Gregory School of Pharmacy (GSOP) at PBA co-developed and implemented an active learning module emphasizing foundational medicinal chemistry concepts as they pertain to performance enhancing drugs (PEDs). Surveys assessed undergraduate students' perceived knowledge of medicinal chemistry concepts, PEDs, and TA involvement. Students' (total n = 60, three fall semesters) perceived confidence in knowledge of medicinal chemistry concepts and PEDs increased significantly (p < 0.001) after the TA's module. Nearly 93% of students acknowledged this was their first interaction with a TA at PBA, ~ 82% "agreed/strongly agreed" that the TA provided effective instruction, and ~ 62% "agreed/strongly agreed" that TA availability raised overall confidence in CHM3413. Unexpected "side-effects" of this collaboration included opportunities for the TA and instructor to discuss health risks associated with PED usage with student-athletes and coaches at PBA. This collaboration developed the pharmacy student's teaching skills and reinforced knowledge of foundational pharmaceutical science concepts for both the TA and undergraduate students. Unexpected "side-effects" that resulted from this collaboration included opportunities for the TA and instructor to discuss health risks associated with PED usage with student-athletes in PBA's athletic department. Educational/interprofessional outreach opportunities resulted from a pharmacy student TA's involvement in an undergraduate medicinal chemistry course. An advanced pharmacy practice experience elective in sports pharmacy (based on Ambrose's model) begins Fall 2017. Copyright © 2017 Elsevier Inc. All rights reserved.
The Keys to Success in Doctoral Studies: A Preimmersion Course.
Salani, Deborah; Albuja, Laura Dean; Azaiza, Khitam
2016-01-01
This article will review an innovative on-line preimmersion course for a hybrid doctor of nursing practice (DNP) program and a traditional face-to-face doctor of philosophy nursing program. The doctoral candidates include both postbaccalaureate and postmaster's students. The authors of the preimmersion course developed and initiated the course in order to address various issues that have surfaced in discussions between students and faculty. Examples of common themes identified include writing skills, statistics, life-work-school balance, and navigating instructional technology. Doctoral studies may pose challenges to students studying nursing, in regard to academic rigor and experiencing on-line education for the first time, especially for students who have been out of school for an extended amount of time or are not accustomed to a nontraditional classroom; thus, having a preimmersion course established may facilitate a smooth transition to rigorous academic studies in a hybrid program. The course, which was developed and delivered through Blackboard, a learning management system, includes the following 9 preimmersion modules: academic strategies (learning styles, creating an effective PowerPoint presentation), library support (introduction to the university library, literature review tutorial, and citation styles), mindfulness, wellness, statistics essentials, writing express, DNP capstone, netiquette, and DNP/doctor of philosophy mentorship. Each module consists of various tools that may promote student success in specific courses and the programs in general. The purpose of designing the preimmersion course is to decrease attrition rates and increase success of the students. While the majority of students have succeeded in their coursework and been graduated from the program, the authors of this article found that many students struggled with the work, life, and school balance. Future work will include the evaluation of results from graduate students enrolled in the program. Copyright © 2016 Elsevier Inc. All rights reserved.
Out of sight, out of mind: Do repeating students overlook online course components?
Holland, Jane; Clarke, Eric; Glynn, Mark
2016-11-01
E-Learning is becoming an integral part of undergraduate medicine, with many curricula incorporating a number of online activities and resources, in addition to more traditional teaching methods. This study examines physical attendance, online activity, and examination outcomes in a first-year undergraduate medical program. All 358 students who completed the Alimentary System module within the first semester of the program were included, 30 of whom were repeating the year, and thus the module. This systems-based, multidisciplinary module incorporated didactic lectures, cadaveric small group tutorials and additional e-Learning resources such as online histology tutorials. Significant differences were demonstrated in physical attendance and utilization of online resources between repeating students and those participating in the module for the first time. Subsequent analyses confirmed that physical attendance, access of online lecture resources, and utilization of online histology tutorials were all significantly correlated. In addition, both physical attendance and utilization of online resources significantly correlated with summative examination performance. While nonattendance may be due to a variety of factors, our data confirm that significant differences exist in both physical attendance and online activity between new entrants and repeating students, such that all students repeating a module or academic year should be routinely interviewed and offered appropriate supports to ensure that they continue to engage with the program. While the development of complex algorithmic models may be resource intensive, using readily available indices from virtual learning environments is a straightforward, albeit less powerful, means to identify struggling students prior to summative examinations. Anat Sci Educ 9: 555-564. © 2016 American Association of Anatomists. © 2016 American Association of Anatomists.
NASA Astrophysics Data System (ADS)
Davis, J. B.; Rigsby, C. A.; Muston, C.; Robinson, Z.; Morehead, A.; Stellwag, E. J.; Shinpaugh, J.; Thompson, A.; Teller, J.
2010-12-01
Graduate students and faculty at East Carolina University are working with area high schools to address the common science and mathematics deficiencies of many high school students. Project RaN (Reasoning about Nature), an interdisciplinary science/math/education research project, addresses these deficiencies by focusing on the history of science and the relationship between that history and modern scientific thought and practice. The geological sciences portion of project RaN has three specific goals: (1) to elucidate the relationships among the history of scientific discovery, the geological sciences, and modern scientific thought; (2) to develop, and utilize in the classroom, instructional modules that are relevant to the modern geological sciences curriculum and that relate fundamental scientific discoveries and principles to multiple disciplines and to modern societal issues; and (3) to use these activity-based modules to heighten students’ interest in science disciplines and to generate enthusiasm for doing science in both students and instructors. The educational modules that result from this linkage of modern and historical scientific thought are activity-based, directly related to the National Science Standards for the high school sciences curriculum, and adaptable to fit each state’s standard course of study for the sciences and math. They integrate historic sciences and mathematics with modern science, contain relevant background information on both the concept(s) and scientist(s) involved, present questions that compel students to think more deeply (both qualitatively and quantitatively) about the subject matter, and include threads that branch off to related topics. Modules on topics ranging from the density to cladistics to Kepler’s laws of planetary motion have been developed and tested. Pre- and post-module data suggest that both students and teachers benefit from these interdisciplinary historically based classroom experiences.
Attitudes of health care students about computer-aided neuroanatomy instruction.
McKeough, D Michael; Bagatell, Nancy
2009-01-01
This study examined students' attitudes toward computer-aided instruction (CAI), specifically neuroanatomy learning modules, to assess which components were primary in establishing these attitudes and to discuss the implications of these attitudes for successfully incorporating CAI in the preparation of health care providers. Seventy-seven masters degree, entry-level, health care professional students matriculated in an introductory neuroanatomy course volunteered as subjects for this study. Students independently reviewed the modules as supplements to lecture and completed a survey to evaluate teaching effectiveness. Responses to survey statements were compared across the learning modules to determine if students viewed the modules differently. Responses to individual survey statements were averaged to measure the strength of agreement or disagreement with the statement. Responses to open-ended questions were theme coded, and frequencies and percentages were calculated for each. Students saw no differences between the learning modules. Students perceived the learning modules as valuable; they enjoyed using the modules but did not prefer CAI over traditional lecture format. The modules were useful in learning or reinforcing neuroanatomical concepts and improving clinical problem-solving skills. Students reported that the visual representation of the neuroanatomical systems, computer animation, ability to control the use of the modules, and navigational fidelity were key factors in determining attitudes. The computer-based learning modules examined in this study were effective as adjuncts to lecture in helping entry-level health care students learn and make clinical applications of neuroanatomy information.
2012-01-01
Background Beyond the adoption of the principles of horizontal and vertical integration, significant planning and implementation of curriculum reform is needed. This study aimed to assess the effect of the interdisciplinary integrated Cardiovascular System (CVS) module on both student satisfaction and performance and comparing them to those of the temporally coordinated CVS module that was implemented in the previous year at the faculty of Medicine of the King Abdulaziz University, Saudi Arabia. Methods This interventional study used mixed method research design to assess student and faculty satisfaction with the level of integration within the CVS module. A team from the medical education department was assembled in 2010/2011 to design a plan to improve the CVS module integration level. After delivering the developed module, both student and faculty satisfaction as well as students performance were assessed and compared to those of the previous year to provide an idea about module effectiveness. Results Many challenges faced the medical education team during design and implementation of the developed CVS module e.g. resistance of faculty members to change, increasing the percentage of students directed learning hours from the total contact hour allotted to the module and shifting to integrated item writing in students assessment, spite of that the module achieved a significant increase in both teaching faculty and student satisfaction as well as in the module scores. Conclusion The fully integrated CVS has yielded encouraging results that individual teachers or other medical schools who attempt to reformulate their curriculum may find valuable. PMID:22747781
Dental students' evaluation of 2 community-oriented PBL modules.
Pau, A K; Collinson, S; Croucher, R
1999-11-01
To evaluate dental students' perception of 2 problem-based learning (PBL) modules in Dental Public Health implemented within the context of a traditional formal curriculum. 2 dental community modules were implemented with an 8-month interval between them on the same group of dental undergraduates; the first in Term 2 and the second in Term 4 of a 5-year 15-term dental course. At the end of each module, a semi-structured questionnaire was administered to evaluate the introductory lecture, the fieldwork activity and the organisation of the modules. In both modules, students reported gaining insight into the subject matter, skills in teamwork, making presentations and collecting data. Some students in the 1st module needed more time to fulfil their learning objectives and had difficulty in collecting data. In the 2nd module, students reported that they lacked motivation because of the place of the module within their timetable. Opinions differed about groupwork. The content of and interest generated by fieldwork activity was rated more positively in the 2nd module than the 1st. Less positively rated in the 2nd module was the introductory lecture and module organisation. Implementing PBL within a traditional curriculum does not offer uniform outcomes for students. Optimum group size and adequate time are necessary if students are to benefit from PBL. A consistent and continuous PBL approach should be adopted rather than a sporadic one. Further research should establish the optimum balance between PBL and traditional approaches that would allow students to maximise the benefits of both and to identify those students best equipped to benefit from a 'mixed economy' of learning.
Scott, Jonathan L; Moxham, Bernard J; Rutherford, Stephen M
2014-03-01
Teaching and learning in anatomy is undertaken by a variety of methodologies, yet all of these pedagogies benefit from students discussing and reflecting upon their learning activities. An approach of particular potency is peer-mediated learning, through either peer-teaching or collaborative peer-learning. Collaborative, peer-mediated, learning activities help promote deep learning approaches and foster communities of practice in learning. Students generally flourish in collaborative learning settings but there are limitations to the benefits of collaborative learning undertaken solely within the confines of modular curricula. We describe the development of peer-mediated learning through student-focused and student-led study groups we have termed 'Shadow Modules'. The 'Shadow Module' takes place parallel to the formal academically taught module and facilitates collaboration between students to support their learning for that module. In 'Shadow Module' activities, students collaborate towards curating existing online open resources as well as developing learning resources of their own to support their study. Through the use of communication technologies and Web 2.0 tools these resources are able to be shared with their peers, thus enhancing the learning experience of all students following the module. The Shadow Module activities have the potential to lead to participants feeling a greater sense of engagement with the subject material, as well as improving their study and group-working skills and developing digital literacy. The outputs from Shadow Module collaborative work are open-source and may be utilised by subsequent student cohorts, thus building up a repository of learning resources designed by and for students. Shadow Module activities would benefit all pedagogies in the study of anatomy, and support students moving from being passive consumers to active participants in learning. © 2013 Anatomical Society.
Student Performance Evaluation. Physical Educators for Equity. Module 7.
ERIC Educational Resources Information Center
Uhlir, Ann
Guidelines are presented to aid secondary school physical education teachers in evaluating student performance in a way that avoids sex-role stereotyping and sex discrimination. Suggestions made for conducting testing in a bias-free setting include: (1) avoid sex-differentiated role tasks; (2) organize motor-performance testing procedures so that…
Reform in Mathematics Education: "What Do We Teach for and Against?"
ERIC Educational Resources Information Center
Petric, Marius
2011-01-01
This study examines the implementation of a problem-based math curriculum that uses problem situations related to global warming and pollution to involve students in modeling polynomial, exponential, and logarithmic functions. Each instructional module includes activities that engage students in investigating current social justice and…
ERIC Educational Resources Information Center
Vorderstrasse, Ron; Siebert, Leo
This module is the third in a series of electronics publications and serves as a supplement to "General Electronics Technician." It is designed to provide students with an overview of the broad field of communications. Included are those tasks above the basic skills level that allow students to progress to a higher level of competency in the…
"What's A Geoscientist Do?": A Student Recruitment And Education Tool
NASA Astrophysics Data System (ADS)
Hughes, C. G.
2015-12-01
Student perception of science, particularly the earth sciences, is not based on actual science jobs. Students have difficulty envisioning themselves as scientists, or in understanding the role of science in their lives as a result. Not all students can envision themselves as scientists when first enrolling in college. While student recruitment into geoscience programs starts before college enrollment at many universities, general education science requirements can act as a gateway into these majors as well. By providing students in general education science classes with more accurate insights into the scientific process and what it means to be a scientist, these classes can help students envision themselves as scientists. A short module, to be embedded within lectures, has been developed to improve recruitment from Clarion University's Introductory Earth Science classes entitled "What's A Geoscientist Do?". As this module aims to help students visualize themselves as geoscientists through examples, diversity of the examples is critical to recruiting students from underrepresented groups. Images and subjects within these modules are carefully selected to emphasize the fact that the geosciences are not, and should not be, the exclusive province of the stereotypical older, white, male scientist. Noteworthy individuals (e.g. John Wesley Powell, Roger Arliner Young) may be highlighted, or the discussion may focus on a particular career path (e.g. hydrologist) relevant to that day's material. While some students are initially attracted to the geosciences due to a love of the outdoors, many students have never spent a night outdoors, and do not find this aspect of the geosciences particularly appealing. "What's A Geoscientist Do?" has been designed to expose these students to the breadth of the field, including a number of geoscience jobs focused on laboratory (e.g. geochemistry) or computer (e.g. GIS, remote sensing, scientific illustration) work instead of focusing exclusively on fieldwork. As Clarion University students tend to be very job-oriented, information on careers includes average starting salaries with the hope of improving student's opinions of the position as possible future employment - helping students (and their families) realize they can support themselves in a geoscience career.
Introduction to the Welding Trade. Pre-Apprenticeship Phase 1 Training.
ERIC Educational Resources Information Center
Lane Community Coll., Eugene, OR.
This student training module provides an introduction to the welding trade. (A companion instructor's guide is available separately as CE 032 888; other student modules are available as CE 032 890-891.) The modules are designed to introduce trade knowledge and skills to the student. This module contains a cover sheet listing module title, goal,…
Plumbing. Pre-Apprenticeship Phase 2 Training. Student Training Modules.
ERIC Educational Resources Information Center
Brath, Ed
These 26 Student Training Modules on plumbing comprise one of nine sets of self-paced learning modules developed for Pre-Apprenticeship Phase 2 Training. (A companion instructor's guide is available separately as CE 031 577.) The modules are designed to impart trade knowledge and skills to the student. Each module contains some or all of the…
Introduction to the Drywall Trade. Pre-Apprenticeship Phase 1 Training.
ERIC Educational Resources Information Center
Lane Community Coll., Eugene, OR.
This student training module is an introduction to the drywall trade. (A companion instructor's guide is available separately as CE 032 886; also, other student modules are available--see note.) The modules are designed to introduce trade knowledge and skills to the student. This module contains a cover sheet listing module title, goal, and…
Plastering. Pre-Apprenticeship Phase 2 Training. Student Training Modules.
ERIC Educational Resources Information Center
Hamblen, Ron
These 20 Student Training Modules on plastering comprise one of nine sets of self-paced learning modules developed for Pre-Apprenticeship Phase 2 Training. (A companion instructor's guide is available separately as CE 031 569.) The modules are designed to impart trade knowledge and skills to the student. Each module contains some or all of the…
Drywall. Pre-Apprenticeship Phase 2 Training. Student Training Modules.
ERIC Educational Resources Information Center
Moore, Doug
These 18 Student Training Modules on drywall comprise one of nine sets of self-paced learning modules developed for Pre-Apprenticeship Phase 2 Training. (A companion instructor's guide is available separately as CE 031 573.) The modules are designed to impart trade knowledge and skills to the student. Each module contains some or all of the…
Floor Covering. Pre-Apprenticeship Phase 2 Training. Student Training Modules.
ERIC Educational Resources Information Center
Hamblen, Ron
These 21 Student Training Modules on floor covering comprise one of nine sets of self-paced learning modules developed for Pre-Apprenticeship Phase 2 Training. (A companion instructor's guide is available separately as CE 031 565.) The modules are designed to impart trade knowledge and skills to the student. Each module contains some or all of the…
Tilesetting. Pre-Apprenticeship Phase 2 Training. Student Training Modules.
ERIC Educational Resources Information Center
Ausland, Greg
These 24 Student Training Modules on tilesetting comprise one of nine sets of self-paced learning modules developed for Pre-Apprenticeship Phase 2 Training. (A companion instructor's guide is available separately as CE 031 563.) The modules are designed to impart trade knowledge and skills to the student. Each module contains some or all of the…
Bricklaying. Pre-Apprenticeship Phase 2 Training. Student Training Modules.
ERIC Educational Resources Information Center
Cholewinski, Scott
These 23 Student Training Modules on bricklaying comprise one of nine sets of self-paced learning modules developed for Pre-Apprenticeship Phase 2 Training. (A companion instructor's guide is available separately as CE 031 567.) The modules are designed to impart trade knowledge and skills to the student. Each module contains some or all of the…
Parts Counter. Pre-Apprenticeship Phase 2 Training. Student Training Modules.
ERIC Educational Resources Information Center
Snyder, James A.
These 23 Student Training Modules on parts counter comprise one of nine sets of self-paced learning modules developed for Pre-Apprenticeship Phase 2 Training. (A companion instructor's guide is available separately as CE 031 571.) The modules are designed to impart trade knowledge and skills to the student. Each module contains some or all of the…
Cement Finishing. Pre-Apprenticeship Phase 2 Training. Student Training Modules.
ERIC Educational Resources Information Center
Nama, Joe
These 20 Student Training Modules on cement finishing comprise one of nine sets of self-paced learning modules developed for Pre-Apprenticeship Phase 2 Training. (A companion instructor's guide is available separately as CE 031 575.) The modules are designed to impart trade knowledge and skills to the student. Each module contains some or all of…
Painting. Pre-Apprenticeship Phase 2 Training. Student Training Modules.
ERIC Educational Resources Information Center
Kracht, Shannon
These 21 Student Training Modules on painting comprise one of nine sets of self-paced learning modules developed for Pre-Apprenticeship Phase 2 Training. (A companion instructor's guide is available separately as CE 031 561.) The modules are designed to impart trade knowledge and skills to the student. Each module contains some or all of the…
Academic Attainment in Students with Dyslexia in Distance Education.
Richardson, John T E
2015-11-01
This investigation studied attainment in students with dyslexia or other specific learning difficulties who were taking modules by distance learning with the Open University in 2012. Students with dyslexia or other specific learning difficulties who had no additional disabilities were just as likely as nondisabled students to complete their modules, but they were less likely to pass the modules that they had completed and less likely to obtain good grades on the modules that they had passed. Students with dyslexia or other specific learning difficulties who had additional disabilities were less likely to complete their modules, less likely to pass the modules that they had completed and less likely to obtain good grades on the modules that they had passed than were nondisabled students. Nevertheless, around 40% of students with dyslexia or other specific learning difficulties obtained good grades (i.e. those that would lead to a bachelor's degree with first-class or upper second-class honours). Copyright © 2015 John Wiley & Sons, Ltd.
Hypertension module: an interactive learning tool in physiology.
Işman, C A; Gülpinar, M A; Kurtel, H; Alican, I; Yeğen, B C
2003-12-01
The aim of the present study was to evaluate the strong or weak aspects of an interactive study module introduced during the "Cardiovascular and Respiratory Systems Subject Committee" in the second year of the medical program. Five study groups consisting of 25 students attended two-hour module sessions for six weeks with the same tutor. According to the module assessment questionnaire, the majority of the students assessed the module as excellent or good. The students reported that they had gained not only in knowledge but also in skills development. The general opinion of the students was that both the organization and the implementation of the module met their expectations. Nearly one-half of the students reported that their expectations with regard to the educational environment and the participation of students were fully met. The major weakness in this new educational trial appears to be assessment of the module.
Assessment of a new undergraduate module in musculoskeletal medicine.
Queally, Joseph M; Cummins, Fionnan; Brennan, Stephen A; Shelly, Martin J; O'Byrne, John M
2011-02-02
Despite the high prevalence of musculoskeletal disorders seen by primary care physicians, numerous studies have demonstrated deficiencies in the adequacy of musculoskeletal education at multiple stages of medical education. The aim of this study was to assess a newly developed module in musculoskeletal medicine for use at European undergraduate level (i.e., the medical-school level). A two-week module in musculoskeletal medicine was designed to cover common musculoskeletal disorders that are typically seen in primary care. The module incorporated an integrated approach, including core lectures, bedside clinical examination, and demonstration of basic practical procedures. A previously validated examination in musculoskeletal medicine was used to assess the cognitive knowledge of ninety-two students on completion of the module. A historical control group (seventy-two students) from a prior course was used for comparison. The new module group (2009) performed significantly better than the historical (2006) control group in terms of score (62.3% versus 54.3%, respectively; p < 0.001) and pass rate (38.4% versus 12.5%, respectively; p = 0.0002). In a subgroup analysis of the new module group, students who enrolled in the graduate entry program (an accelerated four-year curriculum consisting of students who have already completed an undergraduate university degree) were more likely to perform better in terms of average score (72.2% versus 57%, respectively; p < 0.001) and pass rates (70.9% versus 21.4%, respectively; p < 0.001) compared with students who had enrolled via the traditional undergraduate route. In terms of satisfaction rates, the new module group reported a significantly higher satisfaction rate than that reported by the historical control group (63% versus 15%, respectively; p < 0.001). In conclusion, the musculoskeletal module described in this paper represents an educational advance at undergraduate (i.e., medical-school) level as demonstrated by the improvement in scores in a validated examination. As pressure on medical curricula grows to accommodate advancing medical knowledge, it is important to continue to improve, assess, and consolidate the position of musculoskeletal medicine in contemporary medical education.
Hands-on optics: an informal science education initiative
NASA Astrophysics Data System (ADS)
Johnson, Anthony M.; Pompea, Stephen M.; Arthurs, Eugene G.; Walker, Constance E.; Sparks, Robert T.
2007-09-01
The project is collaboration between two scientific societies, the Optical Society of America (OSA) and SPIE - The International Society for Optical Engineering and the National Optical Astronomy Observatory (NOAO). The program is designed to bring science education enrichment to thousands of underrepresented middle school students in more than ten states, including female and minority students, who typically have not been the beneficiaries of science and engineering resources and investments. HOO provides each teacher with up to six activity modules, each containing enough materials for up to 30 students to participate in 6-8 hours of hands-on optics-related activities. Sample activities, developed by education specialists at NOAO, include building kaleidoscopes and telescopes, communicating with a beam of light, and a hit-the-target laser beam challenge. Teachers engage in two days of training and, where possible, are partnered with a local optics professional (drawn from the local rosters of SPIE and OSA members) who volunteers to spend time with the teacher and students as they explore the module activities. Through these activities, students gain experience and understanding of optics principles, as well as learning the basics of inquiry, critical thinking, and problem solving skills involving optics, and how optics interfaces with other disciplines. While the modules were designed for use in informal after- school or weekend sessions, the number of venues has expanded to large and small science centers, Boys and Girls Clubs, Girl Scouts, summer camps, family workshops, and use in the classroom.
NASA Space Imaging is a Great Resource to Teach Science Topics in Professional Development Courses
NASA Astrophysics Data System (ADS)
Verner, E.; Bruhweiler, F. C.; Long, T.; Edwards, S.; Ofman, L.; Brosius, J. W.; Gordon, D.; St Cyr, O. C.; Krotkov, N. A.; Fatoyinbo, T. E.
2013-12-01
Our multi- component project aims to develop and test NASA educational resource materials, provide training for pre- and in-service elementary school teachers in STEM disciplines needed in Washington DC area. We use physics and math in a hands-on enquiry based setting and make extensive use of imagery from NASA space missions (SDO, SOHO, STEREO) to develop instructional modules focusing on grades, PK-8. Our two years of effort culminated in developing three modules: The Sun - the nearest star Students learn about the Sun as the nearest star. Students make outdoor observations during the day and all year round. At night, they observe and record the motion of the moon and stars. Students learn these bodies move in regular and predictable ways. Electricity & Magnetism - From your classroom to the Sun Students investigate electricity and magnetism in the classroom and see large scale examples of these concepts on the Sun's surface, interplanetary space, and the Earth's magnetosphere as revealed from NASA space missions. Solar Energy The Sun is the primary source of energy for Earth's climate system. Students learn about wavelength and frequency and develop skills to do scientific inquiry, including how to use math as a tool. They use optical, UV, EUV, and X-ray images to trace out the energetic processes of the Sun. Each module includes at least one lesson plan, vocabulary, activities and children book for each grade range PK-3; 4-5; 6-8
ERIC Educational Resources Information Center
Navarro Coll., Corsicana, TX.
This module is the sixth in a series of eleven modules in an energy conservation curriculum for secondary and postsecondary vocational students. It is designed for use by itself or as part of a sequence of four modules on understanding utilities (see also modules 3, 5, and 7). The objective of this module is to train students in the recognition,…
Widyahening, Indah S.; van der Heijden, Geert J.M.G.; Moy, Foong Ming; van der Graaf, Yolanda; Sastroasmoro, Sudigdo; Bulgiba, Awang
2012-01-01
Introduction We report about the direct short-term effects of a Clinical Epidemiology and Evidence-based Medicine (CE-EBM) module on the knowledge, attitude, and behavior of students in the University Medical Center Utrecht (UMCU), Universitas Indonesia (UI), and University of Malaya (UM). Methods We used an adapted version of a 26-item validated questionnaire, including four subscales: knowledge, attitude, behavior, and future use of evidence-based practice (EBP). The four components were compared among the students in the three medical schools before the module using one-way ANOVA. At the end of the module, we measured only knowledge and attitudes. We computed Cronbach's α to assess the reliability of the responses in our population. To assess the change in knowledge and attitudes, we used the paired t-test in the comparison of scores before and after the module. Results In total, 526 students (224 UI, 202 UM, and 100 UMCU) completed the questionnaires. In the three medical schools, Cronbach's α for the pre-module total score and the four subscale scores always exceeded 0.62. UMCU students achieved the highest pre-module scores in all subscales compared to UI and UM with the comparison of average (SD) score as the following: knowledge 5.04 (0.4) vs. 4.73 (0.69) and 4.24 (0.74), p<0.001; attitude 4.52 (0.64) vs. 3.85 (0.68) and 3.55 (0.63), p<0.001; behavior 2.62 (0.55) vs. 2.35 (0.71) and 2.39 (0.92), p=0.016; and future use of EBP 4.32 (0.59) vs. 4.08 (0.62) and 3.7 (0.71), p<0.01. The CE-EBM module increased the knowledge of the UMCU (from average 5.04±0.4 to 5.35±0.51; p<0.001) and UM students (from average 4.24±0.74 to 4.53±0.72; p<0.001) but not UI. The post-module scores for attitude did not change in the three medical schools. Conclusion EBP teaching had direct short-term effects on knowledge, not on attitude. Differences in pre-module scores are most likely related to differences in the system and infrastructure of both medical schools and their curriculum. PMID:23121993
Widyahening, Indah S; van der Heijden, Geert J M G; Moy, Foong Ming; van der Graaf, Yolanda; Sastroasmoro, Sudigdo; Bulgiba, Awang
2012-10-31
We report about the direct short-term effects of a Clinical Epidemiology and Evidence-based Medicine (CE-EBM) module on the knowledge, attitude, and behavior of students in the University Medical Center Utrecht (UMCU), Universitas Indonesia (UI), and University of Malaya (UM). We used an adapted version of a 26-item validated questionnaire, including four subscales: knowledge, attitude, behavior, and future use of evidence-based practice (EBP). The four components were compared among the students in the three medical schools before the module using one-way ANOVA. At the end of the module, we measured only knowledge and attitudes. We computed Cronbach's α to assess the reliability of the responses in our population. To assess the change in knowledge and attitudes, we used the paired t-test in the comparison of scores before and after the module. In total, 526 students (224 UI, 202 UM, and 100 UMCU) completed the questionnaires. In the three medical schools, Cronbach's α for the pre-module total score and the four subscale scores always exceeded 0.62. UMCU students achieved the highest pre-module scores in all subscales compared to UI and UM with the comparison of average (SD) score as the following: knowledge 5.04 (0.4) vs. 4.73 (0.69) and 4.24 (0.74), p<0.001; attitude 4.52 (0.64) vs. 3.85 (0.68) and 3.55 (0.63), p<0.001; behavior 2.62 (0.55) vs. 2.35 (0.71) and 2.39 (0.92), p=0.016; and future use of EBP 4.32 (0.59) vs. 4.08 (0.62) and 3.7 (0.71), p<0.01. The CE-EBM module increased the knowledge of the UMCU (from average 5.04±0.4 to 5.35±0.51; p<0.001) and UM students (from average 4.24±0.74 to 4.53±0.72; p<0.001) but not UI. The post-module scores for attitude did not change in the three medical schools. EBP teaching had direct short-term effects on knowledge, not on attitude. Differences in pre-module scores are most likely related to differences in the system and infrastructure of both medical schools and their curriculum.
Marsan, Lynnsay A.; D’Arcy, Christina E.; Olimpo, Jeffrey T.
2016-01-01
Evidence suggests that incorporating quantitative reasoning exercises into existent curricular frameworks within the science, technology, engineering, and mathematics (STEM) disciplines is essential for novices’ development of conceptual understanding and process skills in these domains. Despite this being the case, such studies acknowledge that students often experience difficulty in applying mathematics in the context of scientific problems. To address this concern, the present study sought to explore the impact of active demonstrations and critical reading exercises on novices’ comprehension of basic statistical concepts, including hypothesis testing, experimental design, and interpretation of research findings. Students first engaged in a highly interactive height activity that served to intuitively illustrate normal distribution, mean, standard deviation, and sample selection criteria. To enforce practical applications of standard deviation and p-value, student teams were subsequently assigned a figure from a peer-reviewed primary research article and instructed to evaluate the trustworthiness of the data. At the conclusion of this exercise, students presented their evaluations to the class for open discussion and commentary. Quantitative assessment of pre- and post-module survey data indicated a statistically significant increase both in students’ scientific reasoning and process skills and in their self-reported confidence in understanding the statistical concepts presented in the module. Furthermore, data indicated that the majority of students (>85%) found the module both interesting and helpful in nature. Future studies will seek to develop additional, novel exercises within this area and to evaluate the impact of such modules across a variety of STEM and non-STEM contexts. PMID:28101271
Jagzape, Arunita Tushar; Vagha, Jayant Dattatray; Chalak, Anita; Meshram, Revatdhamma Jagdish
2015-01-01
Introduction “The art of medicine is intricately tied to the art of communication.” In traditional medical curriculum, communication is not taught formally and this leads to a gap in reliability and consistency of the teaching. Few studies have shown that much litigation against doctors is due to lack of communication and not because of lack of clinical expertise. Considering the importance of training in communication skills, it was included in the curriculum of students of DMIMS (DU), which has got probably the first communication skills lab in a medical college in India. Aim To study the perception of medical students about usefulness of communication skills lab. Materials and Methods This observational study was carried out at Communication Skills Lab (CSL) of Jawaharlal Nehru Medical College, Sawangi (M), Wardha, Maharasthra. Feedback was obtained with the help of a prevalidated questionnaire from 65 final MBBS students about their perception about utility of the module taught in the CSL including factors which helped and which hindered in learning. Descriptive statistics was used for the quantitative data and categorization for qualitative data. Results A total of 78.46% students were of the idea that CSL posting is must for all medical undergraduates. A 93.83% perceive that the module taught was very relevant and useful and were satisfied with the duration of posting (81.47%). A 78.46% students experienced improvement in their communication skills. They opined that more emphasis should be given on communication between doctor and patient (61.53%). Conclusion The students found communication skills lab very useful. They desired more emphasis on communication between doctor and patient and sought more interactivity, video demonstrations to be part of the module. PMID:26816918
Jagzape, Tushar Bharat; Jagzape, Arunita Tushar; Vagha, Jayant Dattatray; Chalak, Anita; Meshram, Revatdhamma Jagdish
2015-12-01
"The art of medicine is intricately tied to the art of communication." In traditional medical curriculum, communication is not taught formally and this leads to a gap in reliability and consistency of the teaching. Few studies have shown that much litigation against doctors is due to lack of communication and not because of lack of clinical expertise. Considering the importance of training in communication skills, it was included in the curriculum of students of DMIMS (DU), which has got probably the first communication skills lab in a medical college in India. To study the perception of medical students about usefulness of communication skills lab. This observational study was carried out at Communication Skills Lab (CSL) of Jawaharlal Nehru Medical College, Sawangi (M), Wardha, Maharasthra. Feedback was obtained with the help of a prevalidated questionnaire from 65 final MBBS students about their perception about utility of the module taught in the CSL including factors which helped and which hindered in learning. Descriptive statistics was used for the quantitative data and categorization for qualitative data. A total of 78.46% students were of the idea that CSL posting is must for all medical undergraduates. A 93.83% perceive that the module taught was very relevant and useful and were satisfied with the duration of posting (81.47%). A 78.46% students experienced improvement in their communication skills. They opined that more emphasis should be given on communication between doctor and patient (61.53%). The students found communication skills lab very useful. They desired more emphasis on communication between doctor and patient and sought more interactivity, video demonstrations to be part of the module.
NASA Astrophysics Data System (ADS)
Shipman, J. S.; Webley, P. W.; Burke, S.; Chebul, E.; Dempsey, A.; Hastings, H.; Terry, R.; Drake, J.
2012-12-01
The Alaska Summer Research Academy (ASRA) annually provides the opportunity for ~150 exceptional high school students to engage in scientific exploration at the university level. In July 2012, University of Alaska Fairbanks instructors led a two-week long ASRA module, called 'Denali Geographic', where eight student participants from across the USA and Canada learned how to observe changes in the natural world and design their own experiments for a field expedition to Denali National Park and Preserve, with assistance from the National Park Service. Each student designed an experiment/observational project prior to the expedition to investigate changes across the expanse of the park. Projects included wildlife documentation; scat and track observations; soil ph and moisture with elevation and vegetation changes; wildflowers species distribution; waterborne insect populations; atmospheric pressure and temperature variations; construction of sustainable buildings to minimize human impact on the park; and park geology comparisons between outcrop and distal stream deposits. The students learned how to design experiments, purchase supplies needed to conduct the work, and select good locations in which to sample in the park. Students used equipment such as GPS to mark field locations; a range finder to determine distance from wildlife; a hygrometer for temperature and pressure; nets and sorting equipments to analyze insects; and the preparation of Plaster of Paris for creating casts of animal tracks. All observations were documented in their field notebooks and blog entries made to share their experiences. Day excursions as part of the module included Poker Flats Research Range, where students learned about the use of unmanned aerial vehicles in scientific exploration; Alaska Volcano Observatory, where students learned about volcanic hazards in Alaska and the North Pacific; Chena Hot Springs and the Ice Museum, where students learned about thermal imaging using a Forward Looking Infrared Radiometer; and Pioneer Park to learn how to pan for gold. After the completion of the expedition, students had to then synthesize each of their research projects and create a collaborative presentation of their findings. On the final day of the camp, students delivered a presentation to 150 of their peers and instructors in the other ASRA modules. Presented here are details of the field camp and experiences gained by the students. The camp and two-week long module showed students how to pursue their own curiosities about the natural world. By encouraging students to take an idea and develop it into a research topic, we engaged them in the scientific method and illustrated possibilities for future avenues of academic study.
Battle of the Bacteria: Characterizing the Evolutionary Advantage of Stationary Phase Growth †
Kram, Karin E.; Yim, Kristina M.; Coleman, Aaron B.; Sato, Brian K.
2016-01-01
Providing students with authentic research opportunities has been shown to enhance learning and increase retention in STEM majors. Accordingly, we have developed a novel microbiology lab module, which focuses on the molecular mechanisms of evolution in E. coli, by examining the growth advantage in stationary phase (GASP) phenotype. The GASP phenotype is demonstrated by growing cells into long-term stationary phase (LTSP) and then competing them against un-aged cells in a fresh culture. This module includes learning goals related to strengthening practical laboratory skills and improving student understanding of evolution. In addition, the students generate novel data regarding the effects of different environmental stresses on GASP and the relationship between evolution, genotypic change, mutation frequency, and cell stress. Pairs of students are provided with the experimental background, select a specific aspect of the growth medium to modify, and generate a hypothesis regarding how this alteration will impact the GASP phenotype. From this module, we have demonstrated that students are able to achieve the established learning goals and have produced data that has furthered our understanding of the GASP phenotype. Journal of Microbiology & Biology Education PMID:27158307
NASA Astrophysics Data System (ADS)
Lehto, H.; Vacher, H. L.
2013-12-01
Educators have used spreadsheets to teach math concepts for years. However, when spreadsheet-based modules began to be used to teach math and geology concepts at USF students found them difficult to use. Most often students expressed frustration that learning how to use Excel took precedence over learning the concepts presented in the modules. Was the Excel was getting in the way? To investigate this question, we placed students in Physical Geology courses into two groups: one group was given a set of modules that instructed them to use Excel for their calculations, while the modules given to the other group simple instructed them to do the calculations but they were not told what method to use. Our expectation was that students in the Non-Excel group would be less frustrated and thus attain a higher level of learning of the concepts presented in the modules. However, our results show that students had high gains for both the math and geology concepts presented in the modules whether Excel was used or not. We also tested the students' attitudes about the modules and the knowledge they gained and found that overall students were comfortable with the math and geology concepts presented in the modules, and most felt that the modules were worth their time; however they did not wish to complete any more modules. The only observed difference in gains was that students in the course led by the author of the modules had larger gains in knowledge versus those in the course led by another instructor. This difference may have been the result of differences in teaching style, such as the module author's mention and linking of the modules with lecture materials throughout the course. We believe that spreadsheet-based modules are a good tool for teaching math and geology concepts, as overall the students were confident in their new knowledge. We also found that the use of Excel within the module did not affect the learning outcomes. The one downside of this study was that after completing the modules the students did not wish to do any more, which may have to do with a strong tendency towards math avoidance.
Beadle, Mary; Santy, Julie
2008-05-01
This article describes the delivery of a core pre-registration nursing and midwifery module centred on social inclusion. The module was previously delivered using a classroom-based problem-based learning approach. Difficulties with this approach led to changes to the module and its delivery. Logistic issues encouraged the module team to implement a blended learning approach using a virtual town to facilitate online learning and discussion activities. The paper describes and discusses the use of online learning technology to support student nurses and midwives. It highlights the benefits of this approach and outlines some of the experiences of the students including their evaluation of the virtual town. There is also an examination of some of the practical and theoretical issues related to both problem-based learning, online working and using a virtual town to support learning. This article outlines the approach taken and its implications.
Engelhard, Chalee; Seo, Kay Kyeong-Ju
2015-01-01
Due to current scrutiny of physical therapy (PT) clinical education, clinical education models require revisions with close examination of current practice, including best practices in clinical instructor (CI) education. Unfortunately, depth of research currently available to support these revisions is minimal, particularly in areas of research that investigate maintaining recently taught skills in CI training and students' perceived CI effectiveness following training. This study's purpose was to explore these areas. CIs (n=21) were assigned to either a control or treatment group. Treatment group-CIs completed an online module prior to supervising a Doctor of Physical Therapy (DPT) student during a 9-week clinical rotation and then participated in data collection activities following the rotation. Data from control group-CIs established a baseline. Data from students' assessments of their CIs' performances yielded qualitative themes demonstrating differentiated learning environments and module-taught best practices for treatment group-students. Quantitative findings did not make a distinction between the two student groups. Lastly, treatment group-CIs maintained best practices after an inactive period. This study suggests CIs were able to maintain best practices using just-in-time education, distributed clinical practice, and reflection. By continuing examination of online CI education, PT clinical education can move toward new models through evidence-based CI best practices.
An Integrated, Problem-Based Learning Material: The "Satellite" Module
ERIC Educational Resources Information Center
Selcuk, Gamze Sezgin; Emiroglu, Handan Byacioglu; Tarakci, Mehmet; Ozel, Mustafa
2011-01-01
The purpose of this study is to introduce a problem-based learning material, the Satellite Module, that has integrated some of the subjects included in the disciplines of physics and mathematics at an introductory level in undergraduate education. The reason why this modular and problem-based material has been developed is to enable students to…
ERIC Educational Resources Information Center
Oklahoma State Board of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.
This teacher's guide is designed to aid teachers in leading students through a module on airframe building and repair, including fabric covering, painting, and finishing. The module contains two units that cover the following topics: (1) inspecting, testing, and installing aircraft fabric coverings and (2) applying dope, paint, and trim. Each unit…
Your Official U.S. Constitution Sign-On Information and Documents.
ERIC Educational Resources Information Center
National Conference of Christians and Jews, New York, NY.
These learning materials are centered around the idea that each individual should "sign" the U.S. Constitution. A facsimile of the U.S. Constitution is included in each learning packet for students to sign. Section 1 contains five teaching modules on the constitutional process that can be used with any subject. The first two modules,…
ERIC Educational Resources Information Center
Kadiam, Subhash Chandra Bose S. V.; Mohammed, Ahmed Ali; Nguyen, Duc T.
2010-01-01
In this paper, we describe an approach to analyze 2D truss/Frame/Beam structures under Flash-based environment. Stiffness Matrix Method (SMM) module was developed as part of ongoing projects on a broad topic "Students' Learning Improvements in Science, Technology, Engineering and Mathematics (STEM) Related Areas" at Old Dominion…
ERIC Educational Resources Information Center
Rubin, Stanford E.; Farley, Roy C.
This guide is the case study manual for the first in a series of instructor-assisted training modules for rehabilitation counselors, supervisors, and graduate students. This typescript manual for the first module focuses on basic intake interviewing skills consisting of: (1) systematic interview programming including attracting, planning and…
UMAP Modules-Units 203-211, 215-216, 231-232.
ERIC Educational Resources Information Center
Schoenfeld, Alan H.; And Others
One module is presented in units 203, 204, and 205, as a guide for students, and presents a general strategy for solving integrals effectively. With this material is a solutions manual to exercises. This document set also includes a unit featuring applications of calculus to geography: 206-Mercator's World Map and the Calculus. Unit 207-Management…
Total Quality Management (TQM): Training Module on "Empowerment/Teamwork."
ERIC Educational Resources Information Center
Leigh, David
This module for a 1-semester Total Quality Management (TQM) course for high school or community college students covers the topics of empowerment and teamwork. It includes the following components: (1) a narrative summary of the topics; (2) a discussion of employee empowerment; (3) a discussion of teamwork and self-directed teams; (4) a discussion…
Evaluating an Innovative eLearning Pain Education Interprofessional Resource: A Pre-Post Study.
Watt-Watson, Judy; McGillion, Michael; Lax, Leila; Oskarsson, Jon; Hunter, Judith; MacLennan, Cameron; Knickle, Kerry; Victor, J Charles
2018-06-20
The challenges of moving the pain education agenda forward are significant worldwide, and resources, including online, are needed to help educators in curriculum development. Online resources are available but with insufficient evaluation in the context of prelicensure pain education. Therefore, this pre-post study examined the impact of an innovative eLearning model: the Pain Education Interprofessional Resource (PEIR) on usability, pain knowledge, beliefs, and understanding of pain assessment skills including empathy. Participants were students (N = 96) recruited from seven prelicensure health sciences programs at the University of Toronto. They worked through three multifaceted modules, developed by an interprofessional team, that followed a patient with acute to persistent postsurgical pain up to one year. Module objectives, content, and assessment were based on International Association for the Study of Pain Pain Curricula domains and related pain core competencies. Multimedia interactive components focused on pain mechanisms and key pain care issues. Outcome measures included previously validated tools; data were analyzed in SPSS. Online exercises provided concurrent individual feedback throughout all modules. The completion rate for modules and online assessments was 100%. Overall usability scores (SD) were strong 4.27/5 (0.56). On average, pain knowledge scores increased 20% (P < 0.001). The Pain Assessment Skills Tool was sensitive to differences in student and expert pain assessment evaluation ratings and was useful as a tool to deliver formative feedback while engaged in interactive eLearning about pain assessment. PEIR is an effective eLearning program with high student ratings for educational design and usability that significantly improved pain knowledge and understanding of collaborative care.
Understanding Student Cognition about Complex Earth System Processes Related to Climate Change
NASA Astrophysics Data System (ADS)
McNeal, K. S.; Libarkin, J.; Ledley, T. S.; Dutta, S.; Templeton, M. C.; Geroux, J.; Blakeney, G. A.
2011-12-01
The Earth's climate system includes complex behavior and interconnections with other Earth spheres that present challenges to student learning. To better understand these unique challenges, we have conducted experiments with high-school and introductory level college students to determine how information pertaining to the connections between the Earth's atmospheric system and the other Earth spheres (e.g., hydrosphere and cryosphere) are processed. Specifically, we include psychomotor tests (e.g., eye-tracking) and open-ended questionnaires in this research study, where participants were provided scientific images of the Earth (e.g., global precipitation and ocean and atmospheric currents), eye-tracked, and asked to provide causal or relational explanations about the viewed images. In addition, the students engaged in on-line modules (http://serc.carleton.edu/eslabs/climate/index.html) focused on Earth system science as training activities to address potential cognitive barriers. The developed modules included interactive media, hands-on lessons, links to outside resources, and formative assessment questions to promote a supportive and data-rich learning environment. Student eye movements were tracked during engagement with the materials to determine the role of perception and attention on understanding. Students also completed a conceptual questionnaire pre-post to determine if these on-line curriculum materials assisted in their development of connections between Earth's atmospheric system and the other Earth systems. The pre-post results of students' thinking about climate change concepts, as well as eye-tracking results, will be presented.
Undergraduate projects - do they have to be within the conventional medical environment?
Murdoch-Eaton, D; Jolly, B
2000-02-01
Undergraduate medical curricula now include increasing amounts of project work aimed at developing skills related to lifelong learning. One course allows students to choose from a wide range of projects, including 'conventional' hospital specialties and also from topics outside the mainstream of medicine. 'Conventional' and 'external' projects were compared in terms of the prior academic abilities of the students undertaking them, the assessment results and student and supervisor feedback, in order to consider whether the unconventional projects were equally valid within the undergraduate medical curriculum. School of Medicine, University of Leeds, UK. Medical students. No difference between the assessment results of the student groups was present, with over 85% of all students reaching a standard of 'excellent' or 'good' in their overall final grade. There was no difference in prior academic abilities between the student groups. Enjoyment of modules was comparable between student groups ('conventional' 89%, 'external' 93%) with good levels of satisfaction with the quality of supervision. There were no differences in students' self-appraisal of generic skill acquisition. Students who had undertaken 'external' projects felt they had gained less experience in data-handling and problem-solving skills. However, 'external' projects were rated higher by students in terms of having realistic and achievable objectives, and the supervisors of these projects were also more realistic about time commitments involved in project supervision. 'External' modules were very popular, with over 45% of students requesting places which were available for fewer than 20% of students per year. Concerns regarding the appropriateness of self-directed undergraduate medical student projects outside the mainstream of medical practice were unfounded.
Lemus, Judith D.
2015-01-01
Abstract Scientific inquiry represents a multifaceted approach to explore and understand the natural world. Training students in the principles of scientific inquiry can help promote the scientific learning process as well as help students enhance their understanding of scientific research. Here, we report on the development and implementation of a learning module that introduces astrobiology students to the concepts of creative and scientific inquiry, as well as provide practical exercises to build critical thinking skills. The module contained three distinct components: (1) a creative inquiry activity designed to introduce concepts regarding the role of creativity in scientific inquiry; (2) guidelines to help astrobiology students formulate and self-assess questions regarding various scientific content and imagery; and (3) a practical exercise where students were allowed to watch a scientific presentation and practice their analytical skills. Pre- and post-course surveys were used to assess the students' perceptions regarding creative and scientific inquiry and whether this activity impacted their understanding of the scientific process. Survey results indicate that the exercise helped improve students' science skills by promoting awareness regarding the role of creativity in scientific inquiry and building their confidence in formulating and assessing scientific questions. Together, the module and survey results confirm the need to include such inquiry-based activities into the higher education classroom, thereby helping students hone their critical thinking and question asking skill set and facilitating their professional development in astrobiology. Key Words: Scientific inquiry—Critical thinking—Curriculum development—Astrobiology—Microbialites. Astrobiology 15, 89–99. PMID:25474292
Lupi, Carla; Ward-Peterson, Melissa; Chang, Winnie
2016-10-01
Limitations on didactic time pose barriers to teaching non-directive pregnancy options counseling. This study set out to explore the use of an online module to support trainee performance in a pregnancy options counseling standardized-patient exercise implemented among third-year medical students, and to examine the effect of clinical experience on student performance. An online module was developed. A convenience sample of forty-six student performances in a family medicine clerkship participated in a standardized patient exercise. Trained faculty rated performances. Students completed a self-assessment and provided feedback on the online module. Chi-square and Mann-Whitney-U tests were used to analyze data. Three coders qualitatively examined narrative student comments. Thirty-four students passed, 11 achieved a minimal pass, and one failed. The mean global rating from faculty was 2.8 (pass). Students with prior clinical experience significantly outperformed those without on the global rating scale with mean scores of 3.1 compared to 2.7, respectively (p=.044). All students agreed that the online module helped prepare them for the exercise. Qualitative analysis of students' feedback on the module revealed strengths in content and pedagogy. In their self-assessments, all but two students referred to content explicitly conveyed in the module. All students agreed that an online module supported their performance of non-directive pregnancy options counseling skills. Prior clinical experience was associated with improved performance. This module, along with the simulated exercise, can be implemented as a blended learning exercise without additional faculty teaching effort in standardized patient resource centers. Students agreed that an online module facilitates simulated performance of non-directive pregnancy options counseling skills. Future work should compare the impact of this approach to others, and explore the additional training needed to maintain and build on initial learning. Copyright © 2016 Elsevier Inc. All rights reserved.
Housing and Home Furnishings Modules.
ERIC Educational Resources Information Center
Clemson Univ., SC. Vocational Education Media Center.
These sixty-seven modules provide student materials for a home economics course in housing and home furnishings. (A companion instructor's guide is available separately--see note.) Each module contains an objective, student information, learning activities (and activity sheets as needed), student self-checks, student self-check answers, check-out…
Engaging students in the sciences--the community college experience
NASA Astrophysics Data System (ADS)
Bushaw-Newton, K. L.
2015-12-01
In today's pedagogy, "STEM" is the four letter word and "STEAM" is the next big thing. How do we as professors translate our passion for our discipline and our research into practical, yet rigorous and applied, learning experiences for students? Foundation courses (e.g., 100 level) often have a mixture of majors and non-majors for any given discipline, thus confounding student engagement. Experiential learning provides students with opportunities to apply theory with application. In any given course, a suite of methods may need to be employed to attain the highest level of engagement. Northern Virginia Community College is a two-year institution with a strong commitment to the sciences. In this presentation, a variety of methods for student engagement will be discussed including: in-class assignments, modules in the laboratory as well as modules involving the campus, independent research experiences, and activities linking students with professionals in the area. Within the context of these methods, there will also be discussions on expectations, limitations, and successes as well as failures.
NASA Astrophysics Data System (ADS)
Pratt-Sitaula, B. A.; Walker, B.; Douglas, B. J.; Cronin, V. S.; Funning, G.; Stearns, L. A.; Charlevoix, D.; Miller, M. M.
2017-12-01
The NSF-funded GEodesy Tools for Societal Issues (GETSI) project is developing teaching resources for use in introductory and majors-level courses, emphasizing a broad range of geodetic methods and data applied to societally important issues. The modules include a variety of hands-on activities, demonstrations, animations, and interactive online tools in order to facilitate student learning and engagement. A selection of these activities will be showcased at the AGU session. These activities and data analysis exercises are embedded in 4-6 units per module. Modules can take 2-3 weeks of course time total or individual units and activities can be selected and used over just 1-2 class periods. Existing modules are available online via serc.carleton.edu/getsi/ and include "Ice mass and sea level changes", "Imaging active tectonics with LiDAR and InSAR", "Measuring water resources with GPS, gravity, and traditional methods", "Surface process hazards", and "GPS, strain, and earthquakes". Modules, and their activities and demonstrations were designed by teams of faculty and content experts and underwent rigorous classroom testing and review using the process developed by the Science Education Resource Center's InTeGrate Project (serc.carleton.edu/integrate). All modules are aligned to Earth Science and Climate literacy principles. GETSI collaborating institutions are UNAVCO (which runs NSF's Geodetic Facility), Indiana University, and Mt San Antonio College. Initial funding came from NSF's TUES (Transforming Undergraduate Education in STEM). A second phase of funding from NSF IUSE (Improving Undergraduate STEM Education) is just starting and will fund another six modules (including their demonstrations, activities, and hands-on activities) as well as considerably more instructor professional development to facilitate implementation and use.
Space Operations Learning Center
NASA Technical Reports Server (NTRS)
Lui, Ben; Milner, Barbara; Binebrink, Dan; Kuok, Heng
2012-01-01
The Space Operations Learning Center (SOLC) is a tool that provides an online learning environment where students can learn science, technology, engineering, and mathematics (STEM) through a series of training modules. SOLC is also an effective media for NASA to showcase its contributions to the general public. SOLC is a Web-based environment with a learning platform for students to understand STEM through interactive modules in various engineering topics. SOLC is unique in its approach to develop learning materials to teach schoolaged students the basic concepts of space operations. SOLC utilizes the latest Web and software technologies to present this educational content in a fun and engaging way for all grade levels. SOLC uses animations, streaming video, cartoon characters, audio narration, interactive games and more to deliver educational concepts. The Web portal organizes all of these training modules in an easily accessible way for visitors worldwide. SOLC provides multiple training modules on various topics. At the time of this reporting, seven modules have been developed: Space Communication, Flight Dynamics, Information Processing, Mission Operations, Kids Zone 1, Kids Zone 2, and Save The Forest. For the first four modules, each contains three components: Flight Training, Flight License, and Fly It! Kids Zone 1 and 2 include a number of educational videos and games designed specifically for grades K-6. Save The Forest is a space operations mission with four simulations and activities to complete, optimized for new touch screen technology. The Kids Zone 1 module has recently been ported to Facebook to attract wider audience.
NASA Astrophysics Data System (ADS)
Tate, Erika Dawn
School science instruction that connects to students' diverse home, cultural, or linguistic experiences can encourage lifelong participation in the scientific dilemmas that impact students' lives. This dissertation seeks effective ways to support high school students as they learn complex science topics and use their knowledge to transform their personal and community environments. Applying the knowledge integration perspective, I collaborated with education, science, and community partners to design a technology enhanced science module, Improving Your Community's Asthma Problem. This exemplar community science curriculum afforded students the opportunity to (a) investigate a local community health issue, (b) interact with relevant evidence related to physiology, clinical management, and environmental risks, and (c) construct an integrated understanding of the asthma problem in their community. To identify effective instructional scaffolds that engage students in the knowledge integration process and prepare them to participate in community science, I conducted 2 years of research that included 5 schools, 10 teachers, and over 500 students. This dissertation reports on four studies that analyzed student responses on pre-, post-, and embedded assessments. Researching across four design stages, the iterative design study investigated how to best embed the visualizations of the physiological processes breathing, asthma attack, and the allergic immune response in an inquiry activity and informed evidence-based revisions to the module. The evaluation study investigated the impact of this revised Asthma module across multiple classrooms and differences in students' prior knowledge. Combining evidence of student learning from the iterative and evaluation studies with classroom observations and teacher interviews, the longitudinal study explored the impact of teacher practices on student learning in years 1 and 2. In the final chapter, I studied how the Asthma module and students' local community influenced students as they integrated their ideas related to perspectives, evidence use, the consideration of tradeoffs, and localization to construct explanations and decision justifications regarding their community's asthma problem. In the end, this dissertation offers evidence that informs the future design of community science instruction that successfully engages students in the knowledge integration process and has implications for creating multiple opportunities for students to meaningfully participate in community science.
Economical graphics display system for flight simulation avionics
NASA Technical Reports Server (NTRS)
1990-01-01
During the past academic year the focal point of this project has been to enhance the economical flight simulator system by incorporating it into the aero engineering educational environment. To accomplish this goal it was necessary to develop appropriate software modules that provide a foundation for student interaction with the system. In addition experiments had to be developed and tested to determine if they were appropriate for incorporation into the beginning flight simulation course, AERO-41B. For the most part these goals were accomplished. Experiments were developed and evaluated by graduate students. More work needs to be done in this area. The complexity and length of the experiments must be refined to match the programming experience of the target students. It was determined that few undergraduate students are ready to absorb the full extent and complexity of a real-time flight simulation. For this reason the experiments developed are designed to introduce basic computer architectures suitable for simulation, the programming environment and languages, the concept of math modules, evaluation of acquired data, and an introduction to the meaning of real-time. An overview is included of the system environment as it pertains to the students, an example of a flight simulation experiment performed by the students, and a summary of the executive programming modules created by the students to achieve a user-friendly multi-processor system suitable to an aero engineering educational program.
A ubiquitous reflective e-portfolio architecture.
Forte, Marcos; de Souza, Wanderley L; da Silva, Roseli F; do Prado, Antonio F; Rodrigues, Jose F
2013-11-01
In nurse and in medicine courses, the use of reflective portfolios as a pedagogical tool is becoming a common practice; in the last years, this practice has gradually migrated from paper-based to electronic-based portfolios. Current approaches for reflective e-portfolios, however, do not widely operate at outdoor sites, where data networks are limited or nonexistent. Considering that many of the activities related to nurse and medicine courses relate to professional practices conducted in such conditions, these network shortcomings restrict the adoption of e-portfolios. The present study describes the requirements specification, design, implementation, and evaluation of the Ubiquitous Reflective E-Portfolio Architecture, a solution proposed to support the development of systems based on mobile and wired access for both online and offline operation. We have implemented a prototype named Professional Practice Module to evaluate the Ubiquitous Reflective E-Portfolio Architecture; the module was based on requirements observed during the professional practice, the paper-based portfolio in use, and related learning meetings in the Medicine Course of a Brazilian University. The evaluation of the system was carried out with a learning group of 2nd year students of the medicine course, who answered to extensive evaluation questionnaires. The prototype proved to be operational in the activities of the professional practice of the Medicine Course object of the study, including homework tasks, patient care, data sharing, and learning meetings. It also demonstrated to be versatile with respect to the availability of the computer network that, many times, was not accessible. Moreover, the students considered the module useful and easy to use, but pointed out difficulties about the keyboard and the display sizes of the netbook devices, and about their operational system. Lastly, most of the students declared preference for the electronic Professional Practice Module in internal and in group activities, and for the paper-based version while in patient attendance. There is evidence that the environment where the professional practice takes place influences the usage of the e-portfolio. Mobile devices were able to support students in their professional practice; however, these devices present characteristics that must be judiciously selected, otherwise, they may limit the execution of important tasks. The main shortcoming identified during the evaluation tests was about the use of the module, and of the access device, during patient attendance. For this reason, we have envisioned a new version of the Professional Practice Module that shall follow a twofold requisite: by one side, it will include all the features of the module, to be used at the university or in the students' homes; from the other side, it will include only the features that are essential for the practice of patient attendance. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Tractor Mechanic Check Sheets for Modules.
ERIC Educational Resources Information Center
Clemson Univ., SC. Vocational Education Media Center.
Forms for student self-checks and the instructor's final checklist (student evaluation) are provided for use with thirty-three learning modules on maintaining and servicing fuel and electrical systems in tractor mechanics. The student self-check asks the students questions about their understanding of the modules' content. The instructor's…
Nutrition Education Module Appeals to Students at Georgia State
ERIC Educational Resources Information Center
Kicklighter, Jana; Jonnalagadda, Satya S.; McClendon, Jamie; Hopkins, Barbara L.
2005-01-01
This article describes the development and evaluation of a nutrition education module, "Nutrition Survival Skills," for freshmen students at a large urban university. Students' perceptions of the module, presented by five nutrition graduate students as part of Freshmen Learning Communities (FLCs) and Georgia State University (GSU) 1010,…
van Gessel, Elisabeth; Picchiottino, Patricia; Doureradjam, Robert; Nendaz, Mathieu; Mèche, Petra
2018-03-08
Demography of patients and complexity in the management of multimorbid conditions has made collaborative practice a necessity for the future, also in Switzerland. Since 2012, the University of Applied Sciences (UAS) and its Healthcare School as well as the University of Geneva (UG) with its Medical Faculty have joined forces to implement a training program in collaborative practice, using simulation as one of the main learning/teaching process. The actual program consists of three sequential modules and totalizes 300 h of teaching and learning for approximately 1400-1500 students from six tracks (nutritionists, physiotherapists, midwives, nurses, technologists in medical radiology, physicians); in 2019 another hundred pharmacists will also be included. The main issues addressed by the modules are Module 1: the Swiss healthcare system and collaborative tools. Module 2: roles and responsibilities of the different health professionals, basic tools acquisition in team working (situation monitoring, mutual support, communication). Module 3: the axis of quality and safety of care through different contexts and cases. A very first evaluation of the teaching and learning and particularly on the aspects of acquisition of collaborative tools shows positive attitudes of students towards the implementation of this new training program. Furthermore, a pre-post questionnaire on teamwork aspects reveals significant modifications.
WISE-MD usage among millennial medical students.
Phitayakorn, Roy; Nick, Michael W; Alseidi, Adnan; Lind, David Scott; Sudan, Ranjan; Isenberg, Gerald; Capella, Jeannette; Hopkins, Mary A; Petrusa, Emil R
2015-01-01
E-learning is increasingly common in undergraduate medical education. Internet-based multimedia materials should be designed with millennial learner utilization preferences in mind for maximal impact. Medical students used all 20 Web Initiative for Surgical Education of Medical Doctors modules from July 1, 2013 to October 1, 2013. Data were analyzed for topic frequency, time and week day, and access to questions. Three thousand five hundred eighty-seven students completed 35,848 modules. Students accessed modules for average of 51 minutes. Most frequent use occurred on Sunday (23.1%), Saturday (15.4%), and Monday (14.3%). Friday had the least use (8.2%). A predominance of students accessed the modules between 7 and 10 PM (34.4%). About 80.4% of students accessed questions for at least one module. They completed an average of 40 ± 30 of the questions. Only 827 students (2.3%) repeated the questions. Web Initiative for Surgical Education of Medical Doctors has peak usage during the weekend and evenings. Most frequently used modules reflect core surgical problems. Multiple factors influence the manner module questions are accessed. Copyright © 2015 Elsevier Inc. All rights reserved.
Sanders, Carla; Kleinert, Harold L; Boyd, Sara E; Herren, Chris; Theiss, Lynn; Mink, John
2008-01-01
An interactive, virtual-patient module was produced on compact disc (CD-ROM) in response to the critical need to increase dental students' clinical exposure to patients with developmental disabilities. A content development team consisting of dental faculty members, parents of children with developmental disabilities, an individual with a developmental disability, and educational specialists developed the interactive, virtual-patient module. The module focused on a young man with congenital deafblindness presenting as a new patient with a painful molar. Students were required to make decisions regarding clinical interactions throughout the module. Differences in both comfort and knowledge level were measured pre- and post-module completion, as well as the dental students' overall satisfaction with the learning experience. Significant results were obtained in students' perceived comfort and knowledge base. Participants reported overall satisfaction using the modules. This study demonstrated that an interactive, multi-media (CD-ROM), virtual patient learning module for dental students could be an effective tool in providing students needed clinical exposure to patients with developmental disabilities.
Adaptation and Psychometric Evaluation of a Resilience Measure in Greek Elementary School Students
ERIC Educational Resources Information Center
Nearchou, Finiki A.; Stogiannidou, Ariadni; Kiosseoglou, Grigoris
2014-01-01
This study aimed to adapt the Resilience Youth Development Module (RYDM) and assess its psychometric properties in terms of internal consistency and convergent validity in Greek elementary students. Participants (N = 346) completed a battery of self-report questionnaires, including the RYDM, School Connectedness Scale, and Strengths and…
Hands-On Classroom Photolithography Laboratory Module to Explore Nanotechnology
ERIC Educational Resources Information Center
Stelick, Scott J.; Alger, William H.; Laufer, Jesse S.; Waldron, Anna M.; Batt, Carl A.
2005-01-01
Nanotechnology is an area of significant interest and can be used as a motivator for students in subject areas including physics, chemistry, and life sciences. A 5X reducer system and associated lesson plan was used to provide students a hands-on exposure to the basic principles of photolithography and microscale circuit fabrication.
Drafting. Technology Learning Activity. Teacher Edition. Technology Education Series.
ERIC Educational Resources Information Center
Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.
This packet of technology learning activity (TLA) materials for drafting for students in grades 6-10 consists of an instructor's section and student materials. The instructor's section contains background information, suggested activities, and a list of suggested resources. A lesson plan for the 8-day module includes assignments; equipment, tools,…
ERIC Educational Resources Information Center
Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.
This packet of technology learning activity (TLA) materials for residential construction for students in grades 6-10 consists of an instructor's section and student materials. The instructor's section contains background information, suggested activities, and a list of suggested resources. A lesson plan for the 10-day module includes assignments;…
Helping Students Cope with Fears and Crises.
ERIC Educational Resources Information Center
Walz, Garry R., Ed.; Bleuer, Jeanne C., Ed.
This document consists of two modules extracted from a six-module larger work. Module 1 presents six articles on the topic of "helping students to cope with fears and crises." Module 2 contains 17 articles on "programs and practices for helping students cope with fears and crises." Article titles and authors are as follows: (1)…
Atta, Ihab Shafek; AlQahtani, Fahd Nasser
2018-01-01
Low student achievement in a basic imaging module was the impetus for an assessment of the module. A valid, reliable, and structured Likert scale was designed to measure the degree of student satisfaction with the domains of the module, including learning objectives (LO), teaching strategy and tools (TT), assessment tools (AT), and allotted credit hours (CH). Further analysis was conducted of student dissatisfaction to determine the subdomain in which module improvement was to be implemented. Statistical analysis of data among Likert scale domains was conducted. Likert scale data showed the TT domain to be the major reason for low student achievement. Statistical studies revealed 57/117 students (48.6%) were dissatisfied with TT, compared with LO 16/117 (13.6%), AT 54/117 (46.1%), and CH 12/117 (10.2%). Significant P -values were obtained for LO vs TT ( P <0.0001), LO vs AT ( P <0.0001), LO vs CH ( P <0.03), TT vs CH ( P <0.0001), and AT vs CH ( P <0.0001). No significant difference was observed between TT and AT ( P <0.29). Regarding TT, 41/117 (34.9%) students were dissatisfied with lectures (L) compared to hospital-based teaching (HPT) 24/117 (20%), problem-based learning (PBL) 8/117 (6.8%), self-directed learning (SDL) 3/117 (2.5%), and seminars (S) 4/117 (3.4%). Significant P -values were obtained for L vs HPT ( P <0.0001), L vs PBL ( P <0.0001), L vs SDL ( P <0.0001), L vs S ( P <0.0001), HPT vs PBL ( P <0.002), HPT vs SDL ( P <0.0001), and HPT vs S ( P <0.0001). Regarding lecture modifications, student satisfaction was 78.3% compared to 52% before modification. A significant P -value ( P <0.0001) was obtained between Likert scale domains before and after modification. Lecture modification resulted in a good student response and satisfaction. The major reason for low student achievement was the teaching tools, particularly the lectures. Major modifications to lectures improved student achievement. The students and most of the teaching staff were highly satisfied with the modifications, which provided for reciprocal discussion and interaction. These results should encourage and guide other medical schools to investigate the points of weakness in their curriculum.
Weaving a Formal Methods Education with Problem-Based Learning
NASA Astrophysics Data System (ADS)
Gibson, J. Paul
The idea of weaving formal methods through computing (or software engineering) degrees is not a new one. However, there has been little success in developing and implementing such a curriculum. Formal methods continue to be taught as stand-alone modules and students, in general, fail to see how fundamental these methods are to the engineering of software. A major problem is one of motivation — how can the students be expected to enthusiastically embrace a challenging subject when the learning benefits, beyond passing an exam and achieving curriculum credits, are not clear? Problem-based learning has gradually moved from being an innovative pedagogique technique, commonly used to better-motivate students, to being widely adopted in the teaching of many different disciplines, including computer science and software engineering. Our experience shows that a good problem can be re-used throughout a student's academic life. In fact, the best computing problems can be used with children (young and old), undergraduates and postgraduates. In this paper we present a process for weaving formal methods through a University curriculum that is founded on the application of problem-based learning and a library of good software engineering problems, where students learn about formal methods without sitting a traditional formal methods module. The process of constructing good problems and integrating them into the curriculum is shown to be analagous to the process of engineering software. This approach is not intended to replace more traditional formal methods modules: it will better prepare students for such specialised modules and ensure that all students have an understanding and appreciation for formal methods even if they do not go on to specialise in them.
Evaluation of a Gait Assessment Module Using 3D Motion Capture Technology
Baskwill, Amanda J.; Belli, Patricia; Kelleher, Leila
2017-01-01
Background Gait analysis is the study of human locomotion. In massage therapy, this observation is part of an assessment process that informs treatment planning. Massage therapy students must apply the theory of gait assessment to simulated patients. At Humber College, the gait assessment module traditionally consists of a textbook reading and a three-hour, in-class session in which students perform gait assessment on each other. In 2015, Humber College acquired a three-dimensional motion capture system. Purpose The purpose was to evaluate the use of 3D motion capture in a gait assessment module compared to the traditional gait assessment module. Participants Semester 2 massage therapy students who were enrolled in Massage Theory 2 (n = 38). Research Design Quasi-experimental, wait-list comparison study. Intervention The intervention group participated in an in-class session with a Qualisys motion capture system. Main Outcome Measure(s) The outcomes included knowledge and application of gait assessment theory as measured by quizzes, and students’ satisfaction as measured through a questionnaire. Results There were no statistically significant differences in baseline and post-module knowledge between both groups (pre-module: p = .46; post-module: p = .63). There was also no difference between groups on the final application question (p = .13). The intervention group enjoyed the in-class session because they could visualize the content, whereas the comparison group enjoyed the interactivity of the session. The intervention group recommended adding the assessment of gait on their classmates to their experience. Both groups noted more time was needed for the gait assessment module. Conclusions Based on the results of this study, it is recommended that the gait assessment module combine both the traditional in-class session and the 3D motion capture system. PMID:28293329
Research-Based Astronomy Workshops for Secondary School Students in Thailand
NASA Astrophysics Data System (ADS)
Rujopakarn, Wiphu; Kirdkao, Thagoon
We present the results of the Learning Center for Earth Sciences and Astronomy (LESA). Thai-land organizes a series of research-based astronomical workshops for secondary school students in the country during 2006 present. The goal of LESA is to apply the research-based learn-ing approach to complement astronomy education, which has been included in the national curriculum since 2002, and to let students gain first-hand experience in astronomical research. Realization of research-based astronomical education in Thailand has long been held back by the limited availability of astronomical facilities in the country. We therefore developed work-shop modules for students using professional astronomical data generously made available to us through various collaborations and on-line archives. Two major difficulties we have overcame in developing these modules are, first, to seek research topics that are meaningful, inspiring, and can demonstrate the process of astronomical research with minimal background in astrophysics, and second, to find the software capable of processing large amounts of astronomical data, yet easily accessible for students. Our workshop modules centered on the basic research methods in observational astronomy, including astrometry, photometry, and spectroscopy. Data for these analysis modules were obtained through collaboration with various research groups, such as re-mote robotic telescopes access from the Robotic Optical Transient Search Experiment and the Las Cumbres Observatory Global Telescope Network, archival images from the Catalina Sky Survey, archival spectra from the Observatoire de Haute-Provence, and imaging and spectral data from the Sloan Digital Sky Survey. We adapt the raw data such that they can be accessed and analyzed with freely-available astronomical software such as the Iris or SAOImage ds9 and VSpec for imaging and spectral data, respectively. In each of the past five years, we have organized year-round workshops for students to carry out research projects using these modules and present their work in poster and oral presentations at our annual meetings. Examples of student projects are the search for variable stars and minor planets, light curve analyzes of variable stars and type Ia supernovae, spectral analyzes of stars and galaxies, and exoplanet searches using the radial velocity technique. To date, more than 80 students from 25 schools in Thailand have participated in our workshops. Our results demonstrate the feasibility of adapt-ing astronomical data or remotely available telescopes to carry out research-based education, despite the lack of locally available astronomical infrastructures.
McCarthy, Nora; O'Flynn, Siun; Murphy, John; Barry, David; Canals, Maria Luisa
2013-01-01
The hazardous occupation of seafaring brings many unique medical challenges. Despite its international nature, maritime medicine does not typically form a part of undergraduate medical studies. A unique and innovative, optional student-selected module (SSM) 'maritime medicine' was offered to medical students. A key objective was to develop students' attitudes to maritime medicine and increase their awareness of the discipline and its specialised nature. The aim of this study was to assess qualitatively and quantitatively the educational impact of the maritime medicine SSM and to improve the module content and design for future academic years. Students' perceived relevance and knowledge before and after the module was assessed using a Likert-based questionnaire. Comparison was made with controls in the post module100 multiple choice question (MCQ) paper. Qualitative feedback was obtained from semi-structured focus student discussion groups and the questionnaire's free comments section. A significant increase in perceived knowledge was seen between pre and post module p < 3.45 × 10-10, matched with the module students performing significantly better than controls in the end-of-module MCQ paper (p < 8.99 × 10-20). Qualitative analysis revealed 5 main themes: teaching methods, appreciation of non-academic instructors, appreciation of maritime medicine unique requirements, timetabling and enjoyment. This unique and innovative maritime medicine module harnessed local expertise and raised the awareness and profile of maritime medicine among undergraduate medical students. It was very well received and had a significant educational impact. Practical teaching methods were highly valued by students, with these areas also performing best in quantitative analysis.
General Education Engagement in Earth and Planetary Science through an Earth-Mars Analog Curriculum
NASA Astrophysics Data System (ADS)
Chan, M. A.; Kahmann-Robinson, J. A.
2012-12-01
The successes of NASA rovers on Mars and new remote sensing imagery at unprecedented resolution can awaken students to the valuable application of Earth analogs to understand Mars processes and the possibilities of extraterrestrial life. Mars For Earthlings (MFE) modules and curriculum are designed as general science content introducing a pedagogical approach of integrating Earth science principles and Mars imagery. The content can be easily imported into existing or new general education courses. MFE learning modules introduce students to Google Mars and JMARS software packages and encourage Mars imagery analysis to predict habitable environments on Mars drawing on our knowledge of extreme environments on Earth. "Mars Mission" projects help students develop teamwork and presentation skills. Topic-oriented module examples include: Remote Sensing Mars, Olympus Mons and Igneous Rocks, Surface Sculpting Forces, and Extremophiles. The learning modules package imagery, video, lab, and in-class activities for each topic and are available online for faculty to adapt or adopt in courses either individually or collectively. A piloted MFE course attracted a wide range of non-majors to non-degree seeking senior citizens. Measurable outcomes of the piloted MFE curriculum were: heightened enthusiasm for science, awareness of NASA programs, application of Earth science principles, and increased science literacy to help students develop opinions of current issues (e.g., astrobiology or related government-funded research). Earth and Mars analog examples can attract and engage future STEM students as the next generation of earth, planetary, and astrobiology scientists.
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. Center on Education and Training for Employment.
This instructor guide for a unit on business operations in the PACE (Program for Acquiring Competence in Entrepreneurship) curriculum includes the full text of the student module and lesson plans, instructional suggestions, and other teacher resources. The competencies that are incorporated into this module are at Level 1 of…
ERIC Educational Resources Information Center
Tapanes, Marie A.
2011-01-01
In the present study, the Cultural Adaptation Process Model was applied to an online module to include adaptations responsive to the online students' culturally-influenced learning styles and preferences. The purpose was to provide the online learners with a variety of course material presentations, where the e-learners had the opportunity to…
ERIC Educational Resources Information Center
Tennessee State Dept. of Education, Nashville. Div. of Vocational-Technical Education.
This instructor's guide is designed to accompany a set of 52 competency-based modules dealing with food management, production, and service. It is part of an instructional package that is intended to be taught in secondary and postsecondary vocational programs in Tennessee. Following a brief outline of the development of the curriculum, the…
ERIC Educational Resources Information Center
Aldridge, Bill G.; And Others
Presented is a technical physics module designed to meet objectives in electricity and magnetism for students in an introductory physics course and emphasizing laboratory work. Included are basic text materials, prerequisites, objectives, a posttest, experiments, and a teacher's guide. The module is designed to be used on an individual instruction…
Introduction to MacDraft. High-Technology Training Module.
ERIC Educational Resources Information Center
Traxler, Gene
This training module on MacDraft is part of a computer drafting skills unit on communications technology for grades 9-12. The objective is for each student to complete a drawing on the MacIntosh computer using the MacDraft software program. This drawing is to be dimensioned with a dual system and is to include a border and title block. This module…
ERIC Educational Resources Information Center
Parrish, Linda H.; And Others
This report describes the research, development, field testing, and evaluation of a training program designed to help vocational education personnel serve handicapped students. The report details accomplishments including (1) results of interviews with vocational teachers and administrators; (2) overviews of the six slide/tape modules, examination…
Project TIMS (Teaching Integrated Math/Science)
NASA Technical Reports Server (NTRS)
Edwards, Leo, Jr.
1993-01-01
The goal of this project is to increase the scientific knowledge and appreciation bases and skills of pre-service and in-service middle school teachers, so as to impact positively on teaching, learning, and student retention. This report lists the objectives and summarizes the progress thus far. Included is the working draft of the TIMS (Teaching Integrated Math/Science) curriculum outline. Seven of the eight instructional subject-oriented modules are also included. The modules include informative materials and corresponding questions and educational activities in a textbook format. The subjects included here are the universe and stars; the sun and its place in the universe; our solar system; astronomical instruments and scientific measurements; the moon and eclipses; the earth's atmosphere: its nature and composition; and the earth: directions, time, and seasons. The module not included regards winds and circulation.
ERIC Educational Resources Information Center
Gee, Maureen
1975-01-01
Discusses three kits developed by museums in British Columbia for use in rural classrooms. The science kit on marine biology consists of modules which included specimens, books, audiovisual materials and student activities. (BR)
ERIC Educational Resources Information Center
Colaiacomo, Silvia; Puntil, Donata
2018-01-01
This report illustrates the context and development of the Intercultural Learning module, provided by the Modern Language Centre (MLC), King's College London. The Intercultural Learning Module is a one semester undergraduate course mostly attended by visiting study abroad students. The module aims to enhance students' intercultural awareness and…
India: A Myriad of Cultures. Three Learning Modules for Middle School Students.
ERIC Educational Resources Information Center
Jassim, Charlene
Three learning modules designed for middle school students by a middle school teacher are presented in this document. The three modules are designed to supplement the regular textbook program for teaching about India. They are specifically created to fulfill the needs and interests of 11- to 14-year-old students. The modules contain elements of…
ERIC Educational Resources Information Center
Klop, Tanja; Severiens, Sabine E.; Knippels, Marie-Christine P. J.; van Mil, Marc H. W.; Ten Dam, Geert T. M.
2010-01-01
This article evaluated the impact of a four-lesson science module on the attitudes of secondary school students. This science module (on cancer and modern biotechnology) utilises several design principles, related to a social constructivist perspective on learning. The expectation was that the module would help students become more articulate in…
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. National Center for Research in Vocational Education.
This fourth in a series of six learning modules on student vocational organizations is designed to assist secondary and postsecondary vocational teachers in developing the competency to assist students in planning a student organization's (or club's) yearly program of activities, in properly managing organization finances, in selecting…
Effectively teaching self-assessment: preparing the dental hygiene student to provide quality care.
Jackson, Sarah C; Murff, Elizabeth J Tipton
2011-02-01
Literature on self-assessment presents substantial evidence regarding the impact of self-assessment on dental practitioners and quality of care. Related dental hygiene research documents a need to enhance self-assessment curricula; however, no published curriculum module exists to effectively teach self-assessment. The purpose of this study was to explore the impact of a self-assessment educational module for dental hygiene curricula designed using adult learning principles. This module was implemented with thirty-three dental hygiene students in their junior year using a one-group, pretest-posttest design. Results analyzed using matched pairs Wilcoxon signed-rank test indicated the self-assessment module was effective (p<0.01 corresponding to a Bonferroni FWER of 0.20) in improving some aspects of the students' perceptions and voluntary clinical application of self-assessment. No statistically significant relationship was found between the students' perceptions and their application of self-assessment using Pearson's correlation. The quality of self-assessment comments on the students' daily clinical evaluation forms was also enhanced after module implementation (p<0.05). This change in quality after module implementation was demonstrated by a quantitative analysis using a self-designed rubric and a qualitative thematic analysis of student comments to identify predominant themes. Students also were surveyed to determine which module components were most effective. Findings indicate a self-assessment educational module enhanced these dental hygiene students' self-assessment perceptions and skills.
2014-01-01
A multi-session research-like module has been developed for use in the undergraduate organic teaching laboratory curriculum. Students are tasked with planning and executing the synthesis of a novel fluorous dye molecule and using it to explore a fluorous affinity chromatography separation technique, which is the first implementation of this technique in a teaching laboratory. Key elements of the project include gradually introducing students to the use of the chemical literature to facilitate their searching, as well as deliberate constraints designed to force them to think critically about reaction design and optimization in organic chemistry. The project also introduces students to some advanced laboratory practices such as Schlenk techniques, degassing of reaction mixtures, affinity chromatography, and microwave-assisted chemistry. This provides students a teaching laboratory experience that closely mirrors authentic synthetic organic chemistry practice in laboratories throughout the world. PMID:24501431
Slade, Michael C; Raker, Jeffrey R; Kobilka, Brandon; Pohl, Nicola L B
2014-01-14
A multi-session research-like module has been developed for use in the undergraduate organic teaching laboratory curriculum. Students are tasked with planning and executing the synthesis of a novel fluorous dye molecule and using it to explore a fluorous affinity chromatography separation technique, which is the first implementation of this technique in a teaching laboratory. Key elements of the project include gradually introducing students to the use of the chemical literature to facilitate their searching, as well as deliberate constraints designed to force them to think critically about reaction design and optimization in organic chemistry. The project also introduces students to some advanced laboratory practices such as Schlenk techniques, degassing of reaction mixtures, affinity chromatography, and microwave-assisted chemistry. This provides students a teaching laboratory experience that closely mirrors authentic synthetic organic chemistry practice in laboratories throughout the world.
A Subject Matter Expert View of Curriculum Development.
NASA Astrophysics Data System (ADS)
Milazzo, M. P.; Anderson, R. B.; Edgar, L. A.; Gaither, T. A.; Vaughan, R. G.
2017-12-01
In 2015, NASA selected for funding the PLANETS project: Planetary Learning that Advances the Nexus of Engineering, Technology, and Science. The PLANETS partnership develops planetary science and engineering curricula for out of classroom time (OST) education settings. This partnership is between planetary science Subject Matter Experts (SMEs) at the US Geological Survey (USGS), curriculum developers at the Boston Museum of Science (MOS) Engineering is Everywhere (EiE), science and engineering teacher professional development experts at Northern Arizona University (NAU) Center for Science Teaching and Learning (CSTL), and OST teacher networks across the world. For the 2016 and 2017 Fiscal Years, our focus was on creating science material for two OST modules designed for middle school students. We have begun development of a third module for elementary school students. The first model teaches about the science and engineering of the availability of water in the Solar System, finding accessible water, evaluating it for quality, treating it for impurities, initial use, a cycle of greywater treatment and re-use, and final treatment of blackwater. This module is described in more detail in the abstract by L. Edgar et al., Water in the Solar System: The Development of Science Education Curriculum Focused on Planetary Exploration (233008) The second module involves the science and engineering of remote sensing in planetary exploration. This includes discussion and activities related to the electromagnetic spectrum, spectroscopy and various remote sensing systems and techniques. In these activities and discussions, we include observation and measurement techniques and tools as well as collection and use of specific data of interest to scientists. This module is described in more detail in the abstract by R. Anderson et al., Remote Sensing Mars Landing Sites: An Out-of-School Time Planetary Science Education Activity for Middle School Students (232683) The third module, described by R.G. Vaughan, Hazards in the Solar System: Out-of-School Time Student Activities Focused on Engineering Protective Space Gloves (262143), focuses on hazards in the Solar System and the engineering approach to designing space gloves to protect against those hazards.
Integrated modular teaching in dermatology for undergraduate students: A novel approach
Karthikeyan, Kaliaperumal; Kumar, Annapurna
2014-01-01
Context: Undergraduate teaching in dermatology comprises didactic lectures and clinical classes. Integrated modular teaching is a novel approach, which integrates basic sciences with dermatology in the form of a module. Further the module also incorporates various teaching modalities, which facilitate active participation from students and promotes learning. The pre- and post-test values showed the effectiveness of the integrated module. The students feedback was encouraging. Aims: The aim of this study was to determine the acceptance and opinion of undergraduate students regarding integrated modular teaching as a new teaching aid in dermatology. Settings and Design: This was a descriptive study. Varied teaching methodologies involving multiple disciplines were undertaken in six major undergraduate topics in dermatology for seventh and eighth semester students. Materials and Methods: A total of six modules were conducted over a period of 12 months for students of seventh and eighth semesters. The topics for the various modules were sexually transmitted diseases, acquired immunodeficiency syndrome, oral ulcers, leprosy, connective tissue disorders and psoriasis. Faculty members from different disciplines participated. Pre- and post-test were conducted before and after the modules respectively to gauge the effectiveness of the modules. Results: It was found that almost every student had a better score on the posttest as compared to the pretest. General feedback obtained from the students showed that all of them felt that modular teaching was a more interesting and useful teaching learning experience than conventional teaching. Conclusions: Integrated modular teaching can be an effective adjunct in imparting theoretical and practical knowledge to the students. Further, various teaching methodologies can be used in integrated modules effectively with active student participation. Thus integrated modular teaching addresses two important issues in medical education, namely integration and active student participation. PMID:25165641
Integrated modular teaching in dermatology for undergraduate students: A novel approach.
Karthikeyan, Kaliaperumal; Kumar, Annapurna
2014-07-01
Undergraduate teaching in dermatology comprises didactic lectures and clinical classes. Integrated modular teaching is a novel approach, which integrates basic sciences with dermatology in the form of a module. Further the module also incorporates various teaching modalities, which facilitate active participation from students and promotes learning. The pre- and post-test values showed the effectiveness of the integrated module. The students feedback was encouraging. The aim of this study was to determine the acceptance and opinion of undergraduate students regarding integrated modular teaching as a new teaching aid in dermatology. This was a descriptive study. Varied teaching methodologies involving multiple disciplines were undertaken in six major undergraduate topics in dermatology for seventh and eighth semester students. A total of six modules were conducted over a period of 12 months for students of seventh and eighth semesters. The topics for the various modules were sexually transmitted diseases, acquired immunodeficiency syndrome, oral ulcers, leprosy, connective tissue disorders and psoriasis. Faculty members from different disciplines participated. Pre- and post-test were conducted before and after the modules respectively to gauge the effectiveness of the modules. It was found that almost every student had a better score on the posttest as compared to the pretest. General feedback obtained from the students showed that all of them felt that modular teaching was a more interesting and useful teaching learning experience than conventional teaching. Integrated modular teaching can be an effective adjunct in imparting theoretical and practical knowledge to the students. Further, various teaching methodologies can be used in integrated modules effectively with active student participation. Thus integrated modular teaching addresses two important issues in medical education, namely integration and active student participation.
ERIC Educational Resources Information Center
Washington Consulting Group, Inc., Washington, DC.
Module 6 of a 17-module self-instructional course on student financial aid administration (for novice aid administrators and other personnel) presents a systematic introduction to the management of federal financial aid programs authorized by Title IV of the Higher Education Act with an emphasis on general student eligibility. Identifying the…
Academic Attainment in Students with Autism Spectrum Disorders in Distance Education
ERIC Educational Resources Information Center
Richardson, John T. E.
2017-01-01
This investigation studied attainment in students with autism spectrum disorders (ASDs) who were taking modules by distance learning with the UK Open University in 2012. Students with ASDs who had no additional disabilities were as likely as non-disabled students to complete the modules that they had taken, to pass the modules that they had…
Power Line Technician. Second Edition. Module B. Instructor's Manual [and] Student Workbook.
ERIC Educational Resources Information Center
Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.
This module is the second in a series that is designed to help students achieve greater professional and personal success as power line technicians. Each module represents one or more complete units of instruction with components organized into one instructor and one student "package": the instructor's manual and the student workbook.…
Power Line Technician. Second Edition. Module A. Instructor's Manual [and] Student Workbook.
ERIC Educational Resources Information Center
Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.
This module is the first in a series that is designed to help students achieve greater professional and personal success as power line technicians. Each module represents one or more complete units of instruction with components organized into one instructor and one student "package": the instructor's manual and the student workbook. The…
Development of a Flipped Medical School Dermatology Module.
Fox, Joshua; Faber, David; Pikarsky, Solomon; Zhang, Chi; Riley, Richard; Mechaber, Alex; O'Connell, Mark; Kirsner, Robert S
2017-05-01
The flipped classroom module incorporates independent study in advance of in-class instructional sessions. It is unproven whether this methodology is effective within a medical school second-year organ system module. We report the development, implementation, and effectiveness of the flipped classroom methodology in a second-year medical student dermatology module at the University of Miami Leonard M. Miller School of Medicine. In a retrospective cohort analysis, we compared attitudinal survey data and mean scores for a 50-item multiple-choice final examination of the second-year medical students who participated in this 1-week flipped course with those of the previous year's traditional, lecture-based course. Each group comprised nearly 200 students. Students' age, sex, Medical College Admission Test scores, and undergraduate grade point averages were comparable between the flipped and traditional classroom students. The flipped module students' mean final examination score of 92.71% ± 5.03% was greater than that of the traditional module students' 90.92% ± 5.51% ( P < 0.001) score. Three of the five most commonly missed questions were identical between the two cohorts. The majority of students preferred the flipped methodology to attending live lectures or watching previously recorded lectures. The flipped classroom can be an effective instructional methodology for a medical school second-year organ system module.
ERIC Educational Resources Information Center
Mitchell, P. C.; McKeown, A. E.
2004-01-01
An increasing number of Bioscience courses embed entrepreneurship learning outcomes within the curriculum, across a number of modules and/or within a dedicated module. The level 2, Developing People and Products module is one such example, involving students in 100 study effort hours over 7 weeks. This module was delivered to students (n = 37)…
Development of a Water-Quality Lab That Enhances Learning & Connects Students to the Land
ERIC Educational Resources Information Center
Enos-Berlage, Jodi
2012-01-01
A 3-week laboratory module was developed for an undergraduate microbiology course that would connect student learning to a real-life challenge, specifically a local water-quality project. The laboratory series included multiple field trips, sampling of soil and water, and subsequent analysis for bacteria and nitrate. Laboratory results confirmed…
Teaching bioinformatics and neuroinformatics by using free web-based tools.
Grisham, William; Schottler, Natalie A; Valli-Marill, Joanne; Beck, Lisa; Beatty, Jackson
2010-01-01
This completely computer-based module's purpose is to introduce students to bioinformatics resources. We present an easy-to-adopt module that weaves together several important bioinformatic tools so students can grasp how these tools are used in answering research questions. Students integrate information gathered from websites dealing with anatomy (Mouse Brain Library), quantitative trait locus analysis (WebQTL from GeneNetwork), bioinformatics and gene expression analyses (University of California, Santa Cruz Genome Browser, National Center for Biotechnology Information's Entrez Gene, and the Allen Brain Atlas), and information resources (PubMed). Instructors can use these various websites in concert to teach genetics from the phenotypic level to the molecular level, aspects of neuroanatomy and histology, statistics, quantitative trait locus analysis, and molecular biology (including in situ hybridization and microarray analysis), and to introduce bioinformatic resources. Students use these resources to discover 1) the region(s) of chromosome(s) influencing the phenotypic trait, 2) a list of candidate genes-narrowed by expression data, 3) the in situ pattern of a given gene in the region of interest, 4) the nucleotide sequence of the candidate gene, and 5) articles describing the gene. Teaching materials such as a detailed student/instructor's manual, PowerPoints, sample exams, and links to free Web resources can be found at http://mdcune.psych.ucla.edu/modules/bioinformatics.
A Progressive Reading, Writing, and Artistic Module to Support Scientific Literacy.
Stockwell, Stephanie B
2016-03-01
Scientific literacy, marked by the ability and willingness to engage with scientific information, is supported through a new genre of citizen science-course-based research in association with undergraduate laboratories. A three-phased progressive learning module was developed to enhance student engagement in such contexts while supporting three learning outcomes: I) present an argument based on evidence, II) analyze science and scientists within a social context, and III) experience, reflect upon, and communicate the nature of scientific discovery. Phase I entails guided reading and reflection of citizen science-themed texts. In Phase II, students write, peer-review, and edit position and counterpoint papers inspired by the following prompt, "Nonscientists should do scientific research." Phase III involves two creative assignments intended to communicate the true nature of science. Students work collaboratively to develop public service announcement-like poster campaigns to debunk a common misconception about the nature of science or scientists. Individually, they create a work of art to communicate a specific message about the raw experience of performing scientific research. Suggestions for implementation and modifications are provided. Strengths of the module include the development of transferable skills, temporal distribution of grading demands, minimal in-class time needed for implementation, and the inclusion of artistic projects to support affective learning domains. This citizen science-themed learning module is an excellent complement to laboratory coursework, as it serves to surprise, challenge, and inspire students while promoting disciplinary values.
Schutt, Michelle A; Hightower, Barbara
2009-02-01
The American Association of Colleges of Nursing advocates that professional nurses have the information literacy skills essential for evidence-based practice. As nursing schools embrace evidence-based models to prepare students for nursing careers, faculty can collaborate with librarians to create engaging learning activities focused on the development of information literacy skills. Instructional technology tools such as course management systems, virtual classrooms, and online tutorials provide opportunities to reach students outside the traditional campus classroom. This article discusses the collaborative process between faculty and a library instruction coordinator and strategies used to create literacy learning activities focused on the development of basic database search skills for a Computers in Nursing course. The activities and an online tutorial were included in a library database module incorporated into WebCT. In addition, synchronous classroom meeting software was used by the librarian to reach students in the distance learning environment. Recommendations for module modifications and faculty, librarian, and student evaluations are offered.
Development of active learning modules in pharmacology for small group teaching.
Tripathi, Raakhi K; Sarkate, Pankaj V; Jalgaonkar, Sharmila V; Rege, Nirmala N
2015-01-01
Current teaching in pharmacology in undergraduate medical curriculum in India is primarily drug centered and stresses imparting factual knowledge rather than on pharmacotherapeutic skills. These skills would be better developed through active learning by the students. Hence modules that will encourage active learning were developed and compared with traditional methods within the Seth GS Medical College, Mumbai. After Institutional Review Board approval, 90 second year undergraduate medical students who consented were randomized into six sub-groups, each with 15 students. Pre-test was administered. The three sub-groups were taught a topic using active learning modules (active learning groups), which included problems on case scenarios, critical appraisal of prescriptions and drug identification. The remaining three sub-groups were taught the same topic in a conventional tutorial mode (tutorial learning groups). There was crossover for the second topic. Performance was assessed using post-test. Questionnaires with Likert-scaled items were used to assess feedback on teaching technique, student interaction and group dynamics. The active and tutorial learning groups differed significantly in their post-test scores (11.3 ± 1.9 and 15.9 ± 2.7, respectively, P < 0.05). In students' feedback, 69/90 students had perceived the active learning session as interactive (vs. 37/90 students in tutorial group) and enhanced their understanding vs. 56/90 in tutorial group), aroused intellectual curiosity (47/90 students of active learning group vs. 30/90 in tutorial group) and provoked self-learning (41/90 active learning group vs. 14/90 in tutorial group). Sixty-four students in the active learning group felt that questioning each other helped in understanding the topic, which was the experience of 25/90 students in tutorial group. Nevertheless, students (55/90) preferred tutorial mode of learning to help them score better in their examinations. In this study, students preferred an active learning environment, though to pass examinations, they preferred the tutorial mode of teaching. Further efforts are required to explore the effects on learning of introducing similar modules for other topics.
Castillo-Parra, Silvana; Oyarzo Torres, Sandra; Espinoza Barrios, Mónica; Rojas-Serey, Ana María; Maya, Juan Diego; Sabaj Diez, Valeria; Aliaga Castillo, Verónica; Castillo Niño, Manuel; Romero Romero, Luis; Foster, Jennifer; Hawes Barrios, Gustavo
2017-11-01
Multiple interprofessional integrated modules (MIIM) 1 and 2 are two required, cross-curricular courses developed by a team of health professions faculty, as well as experts in education, within the Faculty of Medicine of the University of Chile. MIIM 1 focused on virtual cases requiring team decision-making in real time. MIIM 2 focused on a team-based community project. The evaluation of MIIM included student, teacher, and coordinator perspectives. To explore the perceptions of this interprofessional experience quantitative data in the form of standardised course evaluations regarding teaching methodology, interpersonal relations and the course organisation and logistics were gathered. In addition, qualitative perceptions were collected from student focus groups and meetings with tutors and coordinators. Between 2010 and 2014, 881 students enrolled in MIIM. Their evaluation scores rated interpersonal relations most highly, followed by organisation and logistics, and then teaching methodology. A key result was the learning related to interprofessional team work by the teaching coordinators, as well as the participating faculty. The strengths of this experience included student integration and construction of new knowledge, skill development in making decisions, and collective self-learning. Challenges included additional time management and tutors' role. This work requires valuation of an alternative way of learning, which is critical for the performance of future health professionals.
Piloting an outcome-based programme evaluation tool in undergraduate medical education.
Raupach, Tobias; Schiekirka, Sarah; Münscher, Christian; Beißbarth, Tim; Himmel, Wolfgang; Burckhardt, Gerhard; Pukrop, Tobias
2012-01-01
Different approaches to performance-oriented allocation of resources according to teaching quality are currently being discussed within German medical schools. The implementation of these programmes is impeded by a lack of valid criteria to measure teaching quality. An assessment of teaching quality should include structural and procedural aspects but focus on learning outcome itself. The aim of this study was to implement a novel, outcome-based evaluation tool within the clinical phase of a medical curriculum and address differences between the novel tool and traditional evaluation methods. Student self-assessments before and after completion of a teaching module were used to compute performance gains for specific learning objectives. Mean performance gains in each module were compared to student expectations before the module and data derived from a traditional evaluation tool using overall course ratings at the end of the module. A ranking of the 21 modules according to computed performance gains yielded entirely different results than module rankings based on overall course ratings. There was no significant correlation between performance gain and overall ratings. However, the latter were significantly correlated to student expectations before entering the module as well as structural and procedural parameters (Pearson's r 0.7-0.9). Performance gain computed from comparative self-assessments adds an important new dimension to course evaluation in medical education. In contrast to overall course ratings, the novel tool is less heavily confounded by construct-irrelevant factors. Thus, it appears to be more appropriate than overall course ratings in determining teaching quality and developing algorithms to guide performance-oriented resource allocation in medical education.
From the Fur Trade to Acid Rain: A Study of Canadian Natural Resources.
ERIC Educational Resources Information Center
Winans, Linda
1988-01-01
Presents a teaching module for upper elementary students that devotes eight class periods of study to Canadian resources. Includes study of the Canadian fur trade, fishing industry, forestry, and the problems caused by acid rain. Includes the unit evaluation. (DB)
Human Development Student Modules.
ERIC Educational Resources Information Center
South Carolina State Dept. of Education, Columbia. Office of Vocational Education.
This set of 61 student learning modules deals with various topics pertaining to human development. The modules, which are designed for use in performance-based vocational education programs, each contain the following components: an introduction for the student, a performance objective, a variety of learning activities, content information, a…
McCarthy, Bridie; O'Donovan, Moira; Twomey, Angela
2008-02-01
Despite wide agreement about the importance of effective communication in nursing there is continuing evidence of the need for nurses to improve their communication skills. Consequently, there is a growing demand for more therapeutic and person-centred communication courses. Studies on communication education reveal considerable variability on the design and operationalisation of these programmes. Additionally, the literature highlights that nurse educators are continually challenged with developing and implementing these programmes. Communication skills are generally taught in years one and two of undergraduate nursing degree programmes. This is a stage when students have minimal contact with patients and clients. We suggest that a communication skills module should be included in all final years of undergraduate nursing programmes. With an array of clinical experiences to draw from, final year nursing students are better placed to apply the skills of effective communication in practice. In this paper, we present the design, implementation and evaluation of an advanced communication skills module undertaken by fourth year undergraduate nursing students completing a Bachelor of Science (BSc) degree - nursing programme at one university in the Republic of Ireland.
Mthimunye, Katlego D T; Daniels, Felicity M
2017-10-26
The demand for highly qualified and skilled nurses is increasing in South Africa as well as around the world. Having a background in science can create a significant advantage for students wishing to enrol for an undergraduate nursing qualification because nursing as profession is grounded in scientific evidence. The aim of this study was to investigate the predictive validity of grade 12 mathematics and science on the academic performance of first year student nurses in science modules. A quantitative research method using a cross-sectional predictive design was employed in this study. The participants included first year Bachelor of Nursing students enrolled at a university in the Western Cape, South Africa. Descriptive and inferential statistics were performed to analyse the data by using the IBM Statistical Package for Social Sciences versions 24. Descriptive analysis of all variables was performed as well as the Spearman's rank correlation test to describe the relationship among the study variables. Standard multiple linear regressions analysis was performed to determine the predictive validity of grade 12 mathematics and science on the academic performance of first year student nurses in science modules. The results of this study showed that grade 12 physical science is not a significant predictor (p > 0.062) of performance in first year science modules. The multiple linear regression revealed that grade 12 mathematics and life science grades explained 37.1% to 38.1% (R2 = 0.381 and adj R2 = 0.371) of the variation in the first year science grade distributions. Based on the results of the study it is evident that performance in grade 12 mathematics (β = 2.997) and life science (β = 3.175) subjects is a significant predictor (p < 0.001) of the performance in first year science modules for student nurses at the university identified for this study.
Learning collaborative teamwork: an argument for incorporating the humanities.
Hall, Pippa; Brajtman, Susan; Weaver, Lynda; Grassau, Pamela Anne; Varpio, Lara
2014-11-01
A holistic, collaborative interprofessional team approach, which includes patients and families as significant decision-making members, has been proposed to address the increasing burden being placed on the health-care system. This project hypothesized that learning activities related to the humanities during clinical placements could enhance interprofessional teamwork. Through an interprofessional team of faculty, clinical staff, students, and patient representatives, we developed and piloted the self-learning module, "interprofessional education for collaborative person-centred practice through the humanities". The module was designed to provide learners from different professions and educational levels with a clinical placement/residency experience that would enable them, through a lens of the humanities, to better understand interprofessional collaborative person-centred care without structured interprofessional placement activities. Learners reported the self-paced and self-directed module to be a satisfactory learning experience in all four areas of care at our institution, and certain attitudes and knowledge were significantly and positively affected. The module's evaluation resulted in a revised edition providing improved structure and instruction for students with no experience in self-directed learning. The module was recently adapted into an interactive bilingual (French and English) online e-learning module to facilitate its integration into the pre-licensure curriculum at colleges and universities.
ERIC Educational Resources Information Center
IRIS Center, 2017
2017-01-01
During the 2005-2006 academic year, the impact of IRIS Modules on student learning was conducted to examine how factors related to instructor application of the principles of the How People Learn theory (HPL) affect student learning. The module's content pertained to teaching self-regulation strategies to students. In an introductory class at a…
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. National Center for Research in Vocational Education.
This second in a series of six learning modules on instructional planning is designed to give secondary and postsecondary vocational teachers skill in writing student performance objectives which spell out for teachers, students, and prospective employers exactly what is expected of students in the program. It is also intended to give experience…
ERIC Educational Resources Information Center
Coughlan, Jane; Swift, Stephen
2011-01-01
The level of student preparedness for university-level study has been widely debated. Effective study skills modules have been linked to supporting students' academic development during the transition phase. However, few studies have evaluated the learning experience on study skills modules from both a student and staff perspective. We surveyed…
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. Center on Education and Training for Employment.
This instructor guide for a unit on operations in the PACE (Program for Acquiring Competence in Entrepreneurship) curriculum includes the full text of the student module and lesson plans, instructional suggestions, and other teacher resources. The competencies that are incorporated into this module are at Level 2 of learning--planning for a…
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. Center on Education and Training for Employment.
This instructor guide for a unit on operations in the PACE (Program for Acquiring Competence in Entrepreneurship) curriculum includes the full text of the student module and lesson plans, instructional suggestions, and other teacher resources. The competencies that are incorporated into this module are at Level 3 of learning--starting and managing…
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. Center on Education and Training for Employment.
This instructor guide for a unit on recordkeeping in the PACE (Program for Acquiring Competence in Entrepreneurship) curriculum includes the full text of the student module and lesson plans, instructional suggestions, and other teacher resources. The competencies that are incorporated into this module are at Level 1 of learning--understanding the…
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. Center on Education and Training for Employment.
This instructor guide for a unit on entrepreneurship potential in the PACE (Program for Acquiring Competence in Entrepreneurship) curriculum includes the full text of the student module and lesson plans, instructional suggestions, and other teacher resources. The competencies that are incorporated into this module are at Level 1 of…
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. Center on Education and Training for Employment.
This instructor guide for a unit on legal issues in the PACE (Program for Acquiring Competence in Entrepreneurship) curriculum includes the full text of the student module and lesson plans, instructional suggestions, and other teacher resources. The competencies that are incorporated into this module are at Level 1 of learning--understanding the…
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. Center on Education and Training for Employment.
This instructor guide for a unit on global markets in the PACE (Program for Acquiring Competence in Entrepreneurship) curriculum includes the full text of the student module and lesson plans, instructional suggestions, and other teacher resources. The competencies that are incorporated into this module are at Level 1 of learning--understanding the…
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. Center on Education and Training for Employment.
This instructor guide for a unit on selling in the PACE (Program for Acquiring Competence in Entrepreneurship) curriculum includes the full text of the student module and lesson plans, instructional suggestions, and other teacher resources. The competencies that are incorporated into this module are at Level 1 of learning--understanding the…
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. Center on Education and Training for Employment.
This instructor guide for a unit on business opportunities in the PACE (Program for Acquiring Competence in Entrepreneurship) curriculum includes the full text of the student module and lesson plans, instructional suggestions, and other teacher resources. The competencies that are incorporated into this module are at Level 1 of…
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. Center on Education and Training for Employment.
This instructor guide for a unit on business management in the PACE (Program for Acquiring Competence in Entrepreneurship) curriculum includes the full text of the student module and lesson plans, instructional suggestions, and other teacher resources. The competencies that are incorporated into this module are at Level 1 of…
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. Center on Education and Training for Employment.
This instructor guide for a unit on financial analysis in the PACE (Program for Acquiring Competence in Entrepreneurship) curriculum includes the full text of the student module and lesson plans, instructional suggestions, and other teacher resources. The competencies that are incorporated into this module are at Level 1 of learning--understanding…
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. Center on Education and Training for Employment.
This instructor guide for a unit on help for entrepreneurs in the PACE (Program for Acquiring Competence in Entrepreneurship) curriculum includes the full text of the student module and lesson plans, instructional suggestions, and other teacher resources. The competencies that are incorporated into this module are at Level 1 of…
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. Center on Education and Training for Employment.
This instructor guide for a unit on risk management in the PACE (Program for Acquiring Competence in Entrepreneurship) curriculum includes the full text of the student module and lesson plans, instructional suggestions, and other teacher resources. The competencies that are incorporated into this module are at Level 1 of learning--understanding…
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. Center on Education and Training for Employment.
This instructor guide for a unit on business promotion in the PACE (Program for Acquiring Competence in Entrepreneurship) curriculum includes the full text of the student module and lesson plans, instructional suggestions, and other teacher resources. The competencies that are incorporated into this module are at Level 1 of learning--understanding…
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. Center on Education and Training for Employment.
This instructor guide for a unit on customer credit in the PACE (Program for Acquiring Competence in Entrepreneurship) curriculum includes the full text of the student module and lesson plans, instructional suggestions, and other teacher resources. The competencies that are incorporated into this module are at Level 1 of learning--understanding…
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. Center on Education and Training for Employment.
This instructor guide for a unit on business financing in the PACE (Program for Acquiring Competence in Entrepreneurship) curriculum includes the full text of the student module and lesson plans, instructional suggestions, and other teacher resources. The competencies that are incorporated into this module are at Level 1 of learning--understanding…
ERIC Educational Resources Information Center
Redcay, Shirley
This module on an integrative seminar in human service is one of a set of six developed to prepare human services workers for the changing mental health service delivery system. A total of eight objectives are included to help students integrate previously learned knowledge and skills into a process of assessing service need, developing treatment…
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. Center on Education and Training for Employment.
This instructor guide for a unit on promotion in the PACE (Program for Acquiring Competence in Entrepreneurship) curriculum includes the full text of the student module and lesson plans, instructional suggestions, and other teacher resources. The competencies that are incorporated into this module are at Level 3 of learning--starting and managing…
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. Center on Education and Training for Employment.
This instructor guide for a unit on recordkeeping in the PACE (Program for Acquiring Competence in Entrepreneurship) curriculum includes the full text of the student module and lesson plans, instructional suggestions, and other teacher resources. The competencies that are incorporated into this module are at Level 2 of learning--planning for a…
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. Center on Education and Training for Employment.
This instructor guide for a unit on financial analysis in the PACE (Program for Acquiring Competence in Entrepreneurship) curriculum includes the full text of the student module and lesson plans, instructional suggestions, and other teacher resources. The competencies that are incorporated into this module are at Level 3 of learning--starting and…
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. Center on Education and Training for Employment.
This instructor guide for a unit on financial analysis in the PACE (Program for Acquiring Competence in Entrepreneurship) curriculum includes the full text of the student module and lesson plans, instructional suggestions, and other teacher resources. The competencies that are incorporated into this module are at Level 2 of learning--planning for…
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. Center on Education and Training for Employment.
This instructor guide for a unit on pricing strategy in the PACE (Program for Acquiring Competence in Entrepreneurship) curriculum includes the full text of the student module and lesson plans, instructional suggestions, and other teacher resources. The competencies that are incorporated into this module are at Level 3 of learning--starting and…
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. Center on Education and Training for Employment.
This instructor guide for a unit on pricing strategy in the PACE (Program for Acquiring Competence in Entrepreneurship) curriculum includes the full text of the student module and lesson plans, instructional suggestions, and other teacher resources. The competencies that are incorporated into this module are at Level 1 of learning--understanding…
ERIC Educational Resources Information Center
Corrigan, Mary
This document is a learning module designed to provide adult literacy practitioners in New York and elsewhere with the materials needed to take an empowering approach to helping adult literacy learners deal with the realities of alcohol and other drug issues affecting them and their families. The module includes background material, information on…
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. Center on Education and Training for Employment.
This instructor guide for a unit on business opportunities in the PACE (Program for Acquiring Competence in Entrepreneurship) curriculum includes the full text of the student module and lesson plans, instructional suggestions, and other teacher resources. The competencies that are incorporated into this module are at Level 2 of learning--planning…
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. Center on Education and Training for Employment.
This instructor guide for a unit on selling in the PACE (Program for Acquiring Competence in Entrepreneurship) curriculum includes the full text of the student module and lesson plans, instructional suggestions, and other teacher resources. The competencies that are incorporated into this module are at Level 3 of learning--starting and managing…
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. Center on Education and Training for Employment.
This instructor guide for a unit on marketing analysis in the PACE (Program for Acquiring Competence in Entrepreneurship) curriculum includes the full text of the student module and lesson plans, instructional suggestions, and other teacher resources. The competencies that are incorporated into this module are at Level 2 of learning--planning for…
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. Center on Education and Training for Employment.
This instructor guide for a unit on marketing analysis in the PACE (Program for Acquiring Competence in Entrepreneurship) curriculum includes the full text of the student module and lesson plans, instructional suggestions, and other teacher resources. The competencies that are incorporated into this module are at Level 1 of learning--understanding…
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. Center on Education and Training for Employment.
This instructor guide for a unit on legal issues in the PACE (Program for Acquiring Competence in Entrepreneurship) curriculum includes the full text of the student module and lesson plans, instructional suggestions, and other teacher resources. The competencies that are incorporated into this module are at Level 3 of learning--starting and…
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. Center on Education and Training for Employment.
This instructor guide for a unit on human resources in the PACE (Program for Acquiring Competence in Entrepreneurship) curriculum includes the full text of the student module and lesson plans, instructional suggestions, and other teacher resources. The competencies that are incorporated into this module are at Level 1 of learning--understanding…
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. Center on Education and Training for Employment.
This instructor guide for a unit on selling in the PACE (Program for Acquiring Competence in Entrepreneurship) curriculum includes the full text of the student module and lesson plans, instructional suggestions, and other teacher resources. The competencies that are incorporated into this module are at Level 2 of learning--planning for a business…
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. Center on Education and Training for Employment.
This instructor guide for a unit on marketing analysis in the PACE (Program for Acquiring Competence in Entrepreneurship) curriculum includes the full text of the student module and lesson plans, instructional suggestions, and other teacher resources. The competencies that are incorporated into this module are at Level 3 of learning--starting and…
ERIC Educational Resources Information Center
Allery, Alan J.
In this unit, ten modules provide an open approach to science, offering a wide variety of activities and experiences that include aspects of Indian studies incorporated into the regular science curricula. The materials are intended for use in middle grades as part of a social studies program. The objectives of the unit are to develop students'…
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. Center on Education and Training for Employment.
This instructor guide for a unit on locating a business in the PACE (Program for Acquiring Competence in Entrepreneurship) curriculum includes the full text of the student module and lesson plans, instructional suggestions, and other teacher resources. The competencies that are incorporated into this module are at Level 1 of…
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. Center on Education and Training for Employment.
This instructor guide for a unit on locating a business in the PACE (Program for Acquiring Competence in Entrepreneurship) curriculum includes the full text of the student module and lesson plans, instructional suggestions, and other teacher resources. The competencies that are incorporated into this module are at Level 2 of learning--planning for…
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. Center on Education and Training for Employment.
This instructor guide for a unit on promotion in the PACE (Program for Acquiring Competence in Entrepreneurship) curriculum includes the full text of the student module and lesson plans, instructional suggestions, and other teacher resources. The competencies that are incorporated into this module are at Level 2 of learning--planning for a…
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. Center on Education and Training for Employment.
This instructor guide for a unit on location in the PACE (Program for Acquiring Competence in Entrepreneurship) curriculum includes the full text of the student module and lesson plans, instructional suggestions, and other teacher resources. The competencies that are incorporated into this module are at Level 3 of learning--starting and managing…
Planetary Exploration Education: As Seen From the Point of View of Subject Matter Experts
NASA Astrophysics Data System (ADS)
Milazzo, M. P.; Anderson, R. B.; Gaither, T. A.; Vaughan, R. G.
2016-12-01
Planetary Learning that Advances the Nexus of Engineering, Technology, and Science (PLANETS) was selected as one of 27 new projects to support the NASA Science Mission Directorate's Science Education Cooperative Agreement Notice. Our goal is to develop and disseminate out-of-school time (OST) curricular and related educator professional development modules that integrate planetary science, technology, and engineering. We are a partnership between planetary science Subject Matter Experts (SMEs), curriculum developers, science and engineering teacher professional development experts and OST teacher networks. The PLANETS team includes the Center for Science Teaching and Learning (CSTL) at Northern Arizona University (NAU); the U.S. Geological Survey (USGS) Astrogeology Science Center (Astrogeology), and the Boston Museum of Science (MOS). Here, we present the work and approach by the SMEs at Astrogeology. As part of this overarching project, we will create a model for improved integration of SMEs, curriculum developers, professional development experts, and educators. For the 2016 and 2017 Fiscal Years, our focus is on creating science material for two OST modules designed for middle school students. We will begin development of a third module for elementary school students in the latter part of FY2017. The first module focuses on water conservation and treatment as applied on Earth, the International Space Station, and at a fictional Mars base. This unit involves the science and engineering of finding accessible water, evaluating it for quality, treating it for impurities (i.e., dissolved and suspended), initial use, a cycle of greywater treatment and re-use, and final treatment of blackwater. The second module involves the science and engineering of remote sensing as it is related to Earth and planetary exploration. This includes discussion and activities related to the electromagnetic spectrum, spectroscopy and various remote sensing systems and techniques. In these activities and discussions we include observation and measurement techniques and tools, as well as collection and use of specific data of interest to scientists. These two modules will be tested and refined based on educator and student feedback, with expected final release in late summer of 2017.
ERIC Educational Resources Information Center
Friedenberg, Joan E.; And Others
This module is one in a series of four performance-based modules developed to prepare vocational educators to serve limited English proficient (LEP) students. It is designed to help new and experienced vocational recruiters target their recruiting efforts for LEP persons. The module is made up of a series of five learning experiences, some…
ERIC Educational Resources Information Center
Browning, Ruth A.
This module is designed to aid preservice teachers in their first student teaching experience. The module is composed of five learning experiences which enable participants to assess their feelings toward teaching by focusing on three module components: (1) getting to know the students; (2) analyzing the role and activities of a teacher; and (3)…
ERIC Educational Resources Information Center
Tufts, Mark; Higgins-Opitz, Susan B.
2014-01-01
Health Science students at the University of KwaZulu-Natal perform better in their professional modules compared with their physiology modules. The pass rates of physiology service modules have steadily declined over the years. While a system is in place to identify "at-risk" students, it is only activated after the first semester. As a…
Motivating medical students to learn teamwork skills.
Aarnio, Matti; Nieminen, Juha; Pyörälä, Eeva; Lindblom-Ylänne, Sari
2010-01-01
This study examined teaching teamwork skills to first-year medical students. Teamwork skills focused on verbal communication in PBL-tutorial sessions and in healthcare teams. The aim was to find out how to teach teamwork skills to first-year medical students and how to motivate them to learn these skills. Three consecutive classes of first-year medical students (N = 342) participated in teamwork skills module in the years 2006, 2007 and 2008. After the first year, the introduction to the topic was revised in order to be more motivating to medical students. After each module data were collected with a feedback questionnaire containing numerical and open questions. By analyzing the students' numerical answers and the content of students' open answers regarding the module, we examined how the revised introduction affected students' perceptions of the usefulness of the module. Medical students' feedback in the years 1 (n = 81), 2 (n = 99) and 3 (n = 95) showed that the students found the module in the second and third years significantly more useful than in the first year. These results support earlier findings that clearly stated clinical relevance motivates medical students. When introducing multidisciplinary subjects to medical students, it is important to think through the clinical relevance of the topic and how it is introduced to medical students.
Exploring protein structure and dynamics through a project-oriented biochemistry laboratory module.
Lipchock, James M; Ginther, Patrick S; Douglas, Bonnie B; Bird, Kelly E; Patrick Loria, J
2017-09-01
Here, we present a 10-week project-oriented laboratory module designed to provide a course-based undergraduate research experience in biochemistry that emphasizes the importance of biomolecular structure and dynamics in enzyme function. This module explores the impact of mutagenesis on an important active site loop for a biomedically-relevant human enzyme, protein tyrosine phosphatase 1B (PTP1B). Over the course of the semester students guide their own mutant of PTP1B from conception to characterization in a cost-effective manner and gain exposure to fundamental techniques in biochemistry, including site-directed DNA mutagenesis, bacterial recombinant protein expression, affinity column purification, protein quantitation, SDS-PAGE, and enzyme kinetics. This project-based approach allows an instructor to simulate a research setting and prepare students for productive research beyond the classroom. Potential modifications to expand or contract this module are also provided. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(5):403-410, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.
Tornado! An Event-Based Science Module. Student Edition. Meteorology Module.
ERIC Educational Resources Information Center
Wright, Russell G.
This book is designed for middle school students to learn scientific literacy through event-based science. Unlike traditional curricula, the event-based earth science module is a student-centered, interdisciplinary, inquiry-oriented program that emphasizes cooperative learning, teamwork, independent research, hands-on investigations, and…
Earthquake!: An Event-Based Science Module. Student Edition. Earth Science Module.
ERIC Educational Resources Information Center
Wright, Russell G.
This book is designed for middle school students to learn scientific literacy through event-based science. Unlike traditional curricula, the event-based earth science module is a student-centered, interdisciplinary, inquiry-oriented program that emphasizes cooperative learning, teamwork, independent research, hands-on investigations, and…
Volcano!: An Event-Based Science Module. Student Edition. Geology Module.
ERIC Educational Resources Information Center
Wright, Russell G.
This book is designed for middle school students to learn scientific literacy through event-based science. Unlike traditional curricula, the event-based earth science module is a student-centered, interdisciplinary, inquiry-oriented program that emphasizes cooperative learning, teamwork, independent research, hands-on investigations, and…
Oil Spill! An Event-Based Science Module. Student Edition. Oceanography Module.
ERIC Educational Resources Information Center
Wright, Russell G.
This book is designed for middle school students to learn scientific literacy through event-based science. Unlike traditional curricula, the event-based earth science module is a student-centered, interdisciplinary, inquiry-oriented program that emphasizes cooperative learning, teamwork, independent research, hands-on investigations, and…
Elfakey, Walyeldin Em; Al-Ghamdi, Ahmed H
2016-01-01
The Faculty of Medicine, Al-Baha University (FMBU), is a newly established medical school that implements a community-oriented and integrated system-based curriculum which is suitable for both medical students and serving the needs of the local community. The aim of this study is to describe the steps that were followed to plan, design, and implement an endocrinology and endocrine surgery module (EESM) for the fourth-year medical students, as an example of how system-based modules are designed at FMBU. Ten questions based on Harden's methodolgy were asked in order to design, plan, and implement an endocrinology and endocrine surgery module. The module committee determined the needs of the module and accordingly stated the aims and objectives of the module. The module planners selected the relevant contents, teaching methods, and assessment strategies and organized them. After addressing each of the ten questions, the results indicated the need, aim, objectives, and contents for the endocrinology and endocrine surgery module at FMBU. The implementation strategies were chosen according to the SPICES model. The teaching methods and the assessment strategies were selected and arranged. The module is well communicated at all levels, and the module committee used every effort to create a productive teaching environment. The module is well managed and follows the hierarchy of FMBU. Implementing Harden's ten steps methodology resulted in an integrated module of endocrinology and endocrine surgery where related disciplines and systems were merged and medical and surgical endocrine topics were included.
Research-oriented medical education for graduate medical students.
Deo, Madhav G
2013-01-01
In most parts of the world, medical education is predominantly geared to create service personnel for medical and health services. Training in research is ignored, which is a major handicap for students who are motivated to do research. The main objective of this study was to develop, for such students, a cost-effective 'in-study' research training module that could be adopted even by medical colleges, which have a modest research infrastructure, in different regions of India. Short-duration workshops on the clinical and laboratory medicine research methods including clinical protocol development were held in different parts of India to facilitate participation of students from various regions. Nine workshops covering the entire country were conducted between July 2010 and December 2011. Participation was voluntary and by invitation only to the recipients of the Indian Council of Medical Research-Short-term Studentship programme (ICMR- STS), which was taken as an index of students' research motivation. Faculty was drawn from the medical institutions in the region. All expenses on students, including their travel, and that of the faculty were borne by the academy. Impact of the workshop was judged by the performance of the participants in pre- and post-workshop tests with multiple-choice questions (MCQs) containing the same set of questions. There was no negative marking. Anonymous student feedback was obtained using a questionnaire. Forty-one per cent of the 1009 invited students attended the workshops. These workshops had a positive impact on the participants. Only 20% students could pass and just 2.3% scored >80% marks in the pre-workshop test. There was a three-fold increase in the pass percentage and over 20% of the participants scored >80% marks (A grade) in the post-workshop test. The difference between the pre- and post- workshop performance was statistically significant at all the centres. In the feedback from participants, the workshop received an average rating of 8.1 on a scale of 1 to 10. This cost-effective, 'in-study' module of short-duration 'mobile' workshops can be used to educate graduate medical students in basic research procedures employed in clinical and laboratory medicine research. The module is suitable for resource-strapped developing nations. Copyright 2013, NMJI.
Anatomy meets dentistry! Linking anatomy and clinical practice in the preclinical dental curriculum.
Rafai, Nicole; Lemos, Martin; Kennes, Lieven Nils; Hawari, Ayichah; Gerhardt-Szép, Susanne; Classen-Linke, Irmgard
2016-11-25
Establishing a strong link early on between preclinical coursework and the clinical context is necessary for students to be able to recognize the practical relevance of the curriculum during their preclinical anatomical courses and to transfer knowledge more easily. Our objective was to enhance the clinical relevance of a preclinical anatomy course for second-year medical students of dentistry by implementing an interdisciplinary skills training course on "Palpation of the Head and Neck Muscles" and to measure the learning outcomes. For the curricular development of the expanded course module, Kern's 6-step approach was applied including subjective evaluation. We used a peer-teaching format supported by an e-learning application. A randomized control study measured effects of the two components (skills training, e-module) on learning outcomes. Four learning methods were compared: (1) lecture, (2) lecture + e-module, (3) lecture + skills training, (4) lecture + skills training + e-module. An objective structured clinical examination (OSCE) was used to measure and compare learning outcomes. The two-way variance analysis demonstrated that participation in the skills training had a statistically significant effect on the OSCE results (p = 0.0007). Students who participated in the skills training did better (φ 107.4 ± 14.4 points) than students who only attended the lecture (φ 88.8 ± 26.2 points). Students who used the e-module but did not attend the skills training earned a slightly but not significantly higher average number of points (φ 91.8 ± 31.3 points) than those who only attended the lecture. The learning outcomes of the skills training were again significantly increased when the training was combined with the e-module (φ 121.8 ± 21.8 points), thus making it the ideal method for achieving the learning objectives defined in this study. The "Palpation of the Head and Neck Muscles" interdisciplinary skills training course linking basic anatomical knowledge and clinical skills led to clearly improved learning outcomes for both, anatomical knowledge and clinical skills. The additional use of an e-learning tool (e-module) improved the learning effect.
Murphy, Kevin P; Crush, Lee; O'Malley, Eoin; Daly, Fergus E; O'Tuathaigh, Colm M P; O'Connor, Owen J; Cryan, John F; Maher, Michael M
2014-10-01
To examine the impact that anatomy-focused radiology teaching has on non-examined knowledge regarding radiation safety and radiology as a specialty. First-year undergraduate medical students completed surveys prior to and after undertaking the first-year anatomy programme that incorporates radiological anatomy. Students were asked opinions on preferred learning methodology and tested on understanding of radiology as a specialty and radiation safety. Pre-module and post-module response rates were 93 % (157/168) and 85 % (136/160), respectively. Pre-module and post-module, self-directed learning (SDL) ranked eighth (of 11) for preferred gross-anatomy teaching formats. Correct responses regarding radiologist/radiographer roles varied from 28-94 % on 16 questions with 4/16 significantly improving post-module. Identification of modalities that utilise radiation significantly improved for five of eight modalities post-module but knowledge regarding relative amount of modality-specific radiation use was variable pre-module and post-module. SDL is not favoured as an anatomy teaching method. Exposure of students to a radiological anatomy module delivered by senior clinical radiologists improved basic knowledge regarding ionising radiation use, but there was no improvement in knowledge regarding radiation exposure relative per modality. A possible explanation is that students recall knowledge imparted in didactic lectures but do little reading around the subject when the content is not examined. • Self-directed learning is not favoured as a gross anatomy teaching format amongst medical students. • An imaging anatomy-focused module improved basic knowledge regarding ionising radiation use. • Detailed knowledge of modality-specific radiation exposure remained suboptimal post-module. • Knowledge of roles within a clinical radiology department showed little change post-module.
Core skills assessment to improve mathematical competency
NASA Astrophysics Data System (ADS)
Carr, Michael; Bowe, Brian; Fhloinn, Eabhnat Ní
2013-12-01
Many engineering undergraduates begin third-level education with significant deficiencies in their core mathematical skills. Every year, in the Dublin Institute of Technology, a diagnostic test is given to incoming first-year students, consistently revealing problems in basic mathematics. It is difficult to motivate students to address these problems; instead, they struggle through their degree, carrying a serious handicap of poor core mathematical skills, as confirmed by exploratory testing of final year students. In order to improve these skills, a pilot project was set up in which a 'module' in core mathematics was developed. The course material was basic, but 90% or higher was required to pass. Students were allowed to repeat this module throughout the year by completing an automated examination on WebCT populated by a question bank. Subsequent to the success of this pilot with third-year mechanical engineering students, the project was extended to five different engineering programmes, across three different year-groups. Full results and analysis of this project are presented, including responses to interviews carried out with a selection of the students involved.
AIAA Educator Academy: Enriching STEM Education for K-12 Students
NASA Astrophysics Data System (ADS)
Slagle, E.; Bering, E. A.; Longmier, B. W.; Henriquez, E.; Milnes, T.; Wiedorn, P.; Bacon, L.
2012-12-01
Educator Academy is a K-12 STEM curriculum developed by the STEM K-12 Outreach Committee of the American Institute of Aeronautics and Astronautics (AIAA). Consisting of three independent curriculum modules, K-12 students participate in inquiry-based engineering challenges to improve critical thinking skills and enhance problem solving skills. The Mars Rover Celebration Curriculum Module is designed for students in grades 3-8. Throughout this module, students learn about Mars and the solar system. Working with given design criteria, students work in teams to do basic research about Mars that will determine the operational objectives and structural features of their rover. Then, students participate in the design and construction of a model of a mock-up Mars Rover to carry out a specific science mission on the surface of Mars. At the end of this project, students have the opportunity to participate in a regional capstone event where students share their rover designs and what they have learned. The Electric Cargo Plan Curriculum Module is designed for students in grades 6-12. Throughout this module, students learn about aerodynamics and the four forces of flight. Working individually or in teams, students design and construct an electrically-powered model aircraft to fly a tethered flight of at least one lap without cargo, followed by a second tethered flight of one lap carrying as much cargo as possible. At the end of this project, students have the opportunity to participate in a regional capstone event where students share what they have learned and compete with their different cargo plane designs. The Space Weather Balloon Curriculum Module is designed for students in grades 9-12. Throughout this module, students learn and refine physics concepts as well as experimental research skills. Students participate in project-based learning that is experimental in nature. Students are engaged with the world around them as they collaborate to launch a high altitude balloon equipped with HD cameras. To better assist teachers in implementing one or more of these Curriculum Modules, teacher workshops are held to give teachers a hands-on look at how this curriculum is used in the classroom. And, to provide further support, teachers are each provided with an AIAA professional member as a mentor for themselves and/or their students. These curriculum modules, provided by AIAA are available to any K-12 teachers as well as EPO officers for use in formal or informal education settings.
Toxic Leak!: An Event-Based Science Module. Student Edition. Groundwater Module.
ERIC Educational Resources Information Center
Wright, Russell G.
This book is designed for the middle school students to learn scientific literacy through event-based science. Unlike traditional curricula, the event-based earth science module is a student-centered, interdisciplinary, inquiry-oriented program that emphasizes cooperative learning, teamwork, independent research, hands-on investigations, and…
Management and Family Economics Student Modules. Instructor's Guide.
ERIC Educational Resources Information Center
South Carolina State Dept. of Education, Columbia. Home Economics Education Section.
This instructor's guide was designed to help teachers present a performance-based course in family management and economics to high school students. The guide contains a listing of the modules contained in the student modules with suggested levels and courses for teaching; additional learning experiences; lists of supplemental resources and…
Fire!: An Event-Based Science Module. Student Edition. Chemistry and Fire Ecology Module.
ERIC Educational Resources Information Center
Wright, Russell G.
This book is designed for middle school students to learn scientific literacy through event-based science. Unlike traditional curricula, the event-based earth science module is a student-centered, interdisciplinary, inquiry-oriented program that emphasizes cooperative learning, teamwork, independent research, hands-on investigations, and…
Foods and Nutrition. Student Modules and Instructor's Guide.
ERIC Educational Resources Information Center
South Carolina State Dept. of Education, Columbia. Office of Vocational Education.
These 64 performance-based instructional modules are for the home economics content area of food and nutrition. Each module is composed of an introduction for the student, a performance objective, a variety of learning activities (reading assignments, tasks, written assignments), content information, a student self-check, recommended references,…
Dynamic e-Learning Modules for Student Lecture Preparation
ERIC Educational Resources Information Center
McIntyre, Timothy; Wegener, Margaret; McGrath, Dominic
2018-01-01
We have developed and demonstrated the effectiveness of a set of online interactive learning modules to accompany physics courses at first- and second-year university levels. Students access the modules prior to attending lectures to familiarize themselves with content which is then discussed and reaffirmed in class. Student surveys and access…
NASA Astrophysics Data System (ADS)
Stelzer, Timothy; Gladding, Gary; Mestre, José P.; Brookes, David T.
2009-02-01
We compared the efficacy of multimedia learning modules with traditional textbooks for the first few topics of a calculus-based introductory electricity and magnetism course. Students were randomly assigned to three groups. One group received the multimedia learning module presentations, and the other two received the presentations via written text. All students were then tested on their learning immediately following the presentations as well as 2weeks later. The students receiving the multimedia learning modules performed significantly better on both tests than the students experiencing the text-based presentations.
The effectiveness of e-learning in pediatric medical student education.
Khasawneh, Rima; Simonsen, Kari; Snowden, Jessica; Higgins, Joy; Beck, Gary
2016-01-01
Electronic learning allows individualized education and may improve student performance. This study assessed the impact of e-modules about infection control and congenital infections on medical knowledge. A descriptive study was conducted involving third-year medical students on pediatric clerkship. e-Module content in three different formats was developed: a text monograph, a PowerPoint presentation, and a narrated PowerPoint lecture. Students' use of the e-modules was tracked, as was participation in the infectious disease rotation and the order of pediatric rotation. Pre- and posttests specific to the e-module content and National Board of Medical Examiners (NBME) pediatric exam scores were recorded. Among 67 participants, 63% of them visited at least one e-module. Neither accessing any e-modules, timing of pediatric clerkship, nor assignment to ID rotation resulted in improved posttest nor NBME scores. Seventy percent of students rated the e-modules as satisfactory and reported usage improved their confidence with the congenital infections topic. e-Modules did not improve student performance on NBME or posttest; however, they were perceived as satisfactory and to have improved confidence among those who used them. This study underscores the importance of formally evaluating electronic and other innovative curricula when implemented within existing medical education frameworks.
Tse, Chung Sang; Ellman, Matthew S
2017-03-01
To explore the application of an online learning tool to teach preclinical medical students terminal and hospice care in a blended curricula. We created and evaluated a 30 min interactive online module at the Yale School of Medicine. Second-year medical students were randomly assigned to complete the online module or not (control group) prior to attending a required half-day hospice clinical experience. We assessed the students' knowledge and attitudes with a 23-item survey. 152 students (response rate 51%) participated in this study from 2012 to 2014. 56% (n=85) completed the online module, 37% (n=56) did not and 7% (n=11) did not indicate whether they had completed the module or not. Students who completed the online module prior to the hospice experience scored higher (p<0.05, two-way analysis of variance) on 5 out of 8 of the multiple choice questions pertaining to hospice and palliative care, but their attitudes were similar to those who did not complete the online module. Overall, the students felt somewhat uncomfortable caring for dying patients although they regarded it as a physician's duty and felt that palliative/hospice care education is important in medical school. When combined with a mentored clinical hospice experience, an online module appears to enhance the teaching of the dying process and terminal care for preclinical medical students. This online module may prove useful for other institutions. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
ERIC Educational Resources Information Center
Ashworth, Mary; Bloxham, Sue; Pearce, Leonie
2010-01-01
This article draws on developing theory regarding assessment and marking to explore the impact of staff values regarding widening participation on grading decisions. It reports on an innovative creative arts module delivered for students with complex disabilities. Data collection included observation of teaching, interviews with staff, students…
ERIC Educational Resources Information Center
Lucas, K. C.; Dippenaar, S. M.; Du Toit, P. H.
2014-01-01
Summative assessment qualifies the achievement of a student in a particular field of specialization at a given time. Questions should include a range of cognitive levels from Bloom's taxonomy and be consistent with the learning outcomes of the module in question. Furthermore, a holistic approach to assessment, such as the application of the…