Comprehensive Opportunities for Research and Teaching Experience (CORTEX): A mentorship program.
Zuzuárregui, José Rafael P; Hohler, Anna D
2015-06-09
We developed a program to promote medical student interest in pursuing a career in neurology. This program focuses on medical student mentorship. It also offers opportunities in teaching and clinical research in order to provide students with marketable skills for an academic career in neurology. Through this program, students are provided with guidance in developing a fourth-year clerkship schedule and an application package for residency programs. Students are involved and mentored in clinical research. Opportunities are also provided for students to teach their peers, with sessions focusing on examination preparation. Since the implementation of this program in 2010, the number of students entering into the field of neurology from our institution significantly increased from 14 students between 2006 and 2010, to 30 students between 2011 and 2014 (p < 0.05). Medical student research productivity increased from 7 publications during 2006-2010, to 22 publications, 14 poster presentations, and a book chapter after implementation of this program in 2010 (p < 0.05). In this mentoring program, students are prepared for residency application and provided with research and teaching opportunities. Students develop a highly desirable academic skill set for residency and have matched at top-ranked institutions. This program has been successful in improving student productivity in clinical research and garnering student interest in neurology. © 2015 American Academy of Neurology.
Establishing a Student Research and Publishing Program in High School Physics
ERIC Educational Resources Information Center
Eales, Jonathan; Laksana, Sangob
2016-01-01
Student learning in science is improved by authentic personal experience of research projects and the publication of findings. Graduate students do this, but it is uncommon to find student research and publishing in high school science programs. We describe here the Student Research and Publishing Program (SRPP) established at International School…
NASA Astrophysics Data System (ADS)
Barron, Darcy; Peticolas, Laura; Multiverse Team at UC Berkeley's Space Sciences Lab
2018-01-01
The Advancing Space Science through Undergraduate Research Experience (ASSURE) summer REU program is an NSF-funded REU site at the Space Sciences Lab at UC Berkeley that first started in summer 2014. The program recruits students from all STEM majors, targeting underserved students including community college students and first-generation college students. The students have little or no research experience and a wide variety of academic backgrounds, but have a shared passion for space sciences and astronomy. We will describe our program's structure and the components we have found successful in preparing and supporting both the students and their research advisors for their summer research projects. This includes an intensive first week of introductory lectures and tutorials at the start of the program, preparing students for working in an academic research environment. The program also employs a multi-tiered mentoring system, with layers of support for the undergraduate student cohort, as well as graduate student and postdoctoral research advisors.
Development of a pharmacy student research program at a large academic medical center.
McLaughlin, Milena M; Skoglund, Erik; Bergman, Scott; Scheetz, Marc H
2015-11-01
A program to promote research by pharmacy students created through the collaboration of an academic medical center and a college of pharmacy is described. In 2009, Midwestern University Chicago College of Pharmacy and Northwestern Memorial Hospital (NMH) expanded their existing partnership by establishing a program to increase opportunities for pharmacy students to conduct clinical-translational research. All professional year 1, 2, or 3 students at the college, as well as professional year 4 students on rotation at NMH, can participate in the program. Central to the program's infrastructure is the mentorship of student leads by faculty- and hospital-based pharmacists. The mentors oversee the student research projects and guide development of poster presentations; student leads mentor junior students and assist with orientation and training activities. Publication of research findings in the peer-reviewed literature is a key program goal. In the first four years after program implementation, participation in a summer research program grew nearly 10-fold (mainly among incoming professional year 2 or 3 students, and student poster presentations at national pharmacy meetings increased nearly 20-fold; the number of published research articles involving student authors increased from zero in 2009 to three in 2012 and two in 2013. A collaborative program between an academic medical center and a college of pharmacy has enabled pharmacy students to conduct research at the medical center and has been associated with increases in the numbers of poster presentations and publications involving students. Copyright © 2015 by the American Society of Health-System Pharmacists, Inc. All rights reserved.
Martin, Jennifer; Worede, Leah; Islam, Sameer
2016-01-01
Objective. To conduct a systematic review of reports of pharmacy student research programs that describes the programs and resulting publications or presentations. Methods. To be eligible for the review, reports had to be in English and indicate that students were required to collect, analyze data, and report or present findings. The outcome variables were extramural posters/presentations and publications. Results. Database searches resulted in identification of 13 reports for 12 programs. Two-thirds were reports of projects required for a course or for graduation, and the remaining third were elective (participation was optional). Extramural posters resulted from 75% of the programs and publications from 67%. Conclusion. Although reporting on the outcomes of student research programs is limited, three-quarters of the programs indicated that extramural presentations, publications, or both resulted from student research. Additional research is needed to identify relevant outcomes of student research programs in pharmacy. PMID:27667837
Slack, Marion K; Martin, Jennifer; Worede, Leah; Islam, Sameer
2016-08-25
Objective. To conduct a systematic review of reports of pharmacy student research programs that describes the programs and resulting publications or presentations. Methods. To be eligible for the review, reports had to be in English and indicate that students were required to collect, analyze data, and report or present findings. The outcome variables were extramural posters/presentations and publications. Results. Database searches resulted in identification of 13 reports for 12 programs. Two-thirds were reports of projects required for a course or for graduation, and the remaining third were elective (participation was optional). Extramural posters resulted from 75% of the programs and publications from 67%. Conclusion. Although reporting on the outcomes of student research programs is limited, three-quarters of the programs indicated that extramural presentations, publications, or both resulted from student research. Additional research is needed to identify relevant outcomes of student research programs in pharmacy.
Dagher, Michael M; Atieh, Jessica A; Soubra, Marwa K; Khoury, Samia J; Tamim, Hani; Kaafarani, Bilal R
2016-06-06
Most educational institutions lack a structured system that provides undergraduate students with research exposure in the medical field. The objective of this paper is to describe the structure of the Medical Research Volunteer Program (MRVP) which was established at the American University of Beirut, Lebanon, as well as to assess the success of the program. The MRVP is a program that targets undergraduate students interested in becoming involved in the medical research field early on in their academic career. It provides students with an active experience and the opportunity to learn from and support physicians, clinical researchers, basic science researchers and other health professionals. Through this program, students are assigned to researchers and become part of a research team where they observe and aid on a volunteer basis. This paper presents the MRVP's four major pillars: the students, the faculty members, the MRVP committee, and the online portal. Moreover, details of the MRVP process are provided. The success of the program was assessed by carrying out analyses using information gathered from the MRVP participants (both students and faculty). Satisfaction with the program was assessed using a set of questions rated on a Likert scale, ranging from 1 (lowest satisfaction) to 5 (highest satisfaction). A total of 211 students applied to the program with a total of 164 matches being completed. Since the beginning of the program, three students have each co-authored a publication in peer-reviewed journals with their respective faculty members. The majority of the students rated the program positively. Of the total number of students who completed the program period, 35.1 % rated the effectiveness of the program with a 5, 54.8 % rated 4, and 8.6 % rated 3. A small number of students gave lower ratings of 2 and 1 (1.1 % and 0.4 %, respectively). The MRVP is a program that provides undergraduate students with the opportunity to learn about research firsthand as they volunteer and aid in different research projects. This program also provides faculty members with the help to conduct their research projects and opportunity to influence future generations. It was shown that so far the MRVP has been successful in reaching its goals, for both students and faculty.
NASA Astrophysics Data System (ADS)
Danch, J. M.; Darytichen, F.
2004-12-01
The purpose of the Science Research Program is to allow students to perform authentic scientific research in disciplines of their choosing over a period of 3 years. The success of the program has allowed for expansion including community involvement, student mentorship, and a series of professional development programs. Through state and national competition and community symposia, student research is evaluated, showcased, and subsequently supported both idealistically and financially by local government and industrial partnerships. Student internships and university/industrial mentorship programs allow students to pursue research topics and utilize equipment exceeding the scope of the secondary science classroom. Involved teachers have developed and delivered professional development workshops to foster the successful implementation of scientific research programs at additional high schools throughout the state.
Clinician scientist training program: a proposal for training medical students in clinical research.
Mark, A L; Kelch, R P
2001-11-01
There is national alarm about a decline in the number of clinician scientists. Most of the proposed solutions have focused on housestaff and junior faculty. We propose a new national program for training medical students in clinical research. This program, coined "Clinician Scientist Training Program" (CSTP), would consist of a combined degree program in medicine (MD) and clinical research (eg, masters in translational research or masters in clinical epidemiology). Students could enroll in the program at any stage during medical school. After 3 years of medical school, students would spend at least 2 years in a combined didactic and mentored clinical research training program and then complete medical school. Students could elect to pursue more prolonged clinical research training toward a combined PhD and MD. The CSTP is designed to meet six critical challenges: 1) engage students early in clinical research training; 2) provide a didactic clinical research curriculum; 3) expose students to several years of mentored clinical research training; 4) promote debt prevention by providing tuition payments during medical education and a stipend during clinical research training; 5) facilitate prolonged exposure to a community of peers and mentors in a program with national and institutional identity and respect; and 6) permit enrollment in the program as students enter medical school or at any stage during medical school. If the success of the Medical Scientist Training Program in training medical students in basic research is a guide, the CSTP could become a linchpin for training future generations of clinician scientists.
NASA Astrophysics Data System (ADS)
Haacker-Santos, R.; Allen, L.; Batchelor, R. L.
2013-12-01
As undergraduate research experiences have become an unofficial pre-requisite to enter graduate school programs in the sciences, we have to make sure that these experiences are inclusive and accessible to all students. Program managers who make a conscious effort to recruit students from traditionally under-represented groups, including veterans, non-traditional students or students with disabilities, are often unaware of the financial and program implications these students require, and discover that their current program design might inadvertently exclude or not fully support these students. The SOARS Program, an undergraduate-to-graduate bridge program in the atmospheric sciences, has supported this group of students for over 15 years. We have found that we needed to adjust some program elements and secure extra funding sources to holistically support our students in their research experience, however, the program and the students have reaped tremendous benefits. Involving non-traditional students or veterans in our program has raised the maturity level and problem solving skills of the group, and having students with disabilities participate has been a vehicle for broadening perspective and diverse knowledge into the field of study, e.g. researching weather and climate beyond what you can 'see'. This presentation will highlight some of the findings from the SOARS program experience, and will share practices for recruitment and holistic support to ensure student success. We will share resources and tips on inclusive program design, including working with students with family commitments or physical disabilities, and will report on the enormous program benefits and peer learning these students have brought to the student cohorts and research labs they are working in.
1997 Graduate Student Researchers Program
NASA Technical Reports Server (NTRS)
1996-01-01
In 1980, NASA initiated the Graduate Student Research Program (GSRP) to cultivate additional research ties to the academic community and to support a culturally diverse group of students pursuing advanced degrees in science and engineering. Eligibility requirements for this program are described, and program administrators are listed. Research areas are detailed for NASA Headquarters and all Research and Flight Centers.
Students and Faculty Perceptions of an Undergraduate Nursing Research Internship Program.
O'Brien, Tara; Hathaway, Donna
Nursing students in baccalaureate programs report that research is not visible in practice, and faculty conducting research report rarely interacting with students in undergraduate nursing programs. We examined student and faculty perceptions of a research internship embedded in an existing evidence-based practice course. Students (n = 15) and faculty (n = 5) viewed the internship as a positive experience that provided meaningful hands-on skills while generating interest in a potential research career. The internship also provided faculty the opportunity to identify potential doctoral students.
Cepanec, Diane; Humphries, Amanda; Rieger, Kendra L; Marshall, Shelley; Londono, Yenly; Clarke, Diana
2016-05-01
With the global shortage of doctor of philosophy-prepared nursing faculty and an aging nursing professorate, the nursing profession is at risk of having fewer nurses doing research and fewer faculty to supervise the next generation of nurse researchers. A research training award for graduate nursing students was piloted with the intent of providing a research-intensive experiential learning opportunity that would contribute to graduate students' future roles as nurse researchers. This article describes the program design, implementation, and evaluation. The Graduate Student Research Training Awards afforded students an opportunity to develop research and methodologic skills and achieve student-centered outcomes. These awards build their capacity as future researchers by both empowering them and increasing their confidence in research. The input and evaluation from graduate students was integral to the success of the program. Graduate student research training awards can be a valuable experiential learning opportunity in research intensive graduate programs. [J Nurs Educ. 2016;55(5):284-287.]. Copyright 2016, SLACK Incorporated.
ERIC Educational Resources Information Center
Young, Shawna; Uy, Ana; Bell, Joyce
2017-01-01
The Student Engagement in Research, Scholarship, and Creative Activity (SERSCA) Program at California State University, Stanislaus provides support for student engagement in these areas from idea conception through dissemination. Through assistantships, mini-grants, the Student Research Competition, and travel grants, the Program is designed to…
Report of an innovative research program for baccalaureate nursing students.
Sheil, E P; Crain, H
1992-10-01
In summary, an innovative low-cost way to teach undergraduate students about research and to socialize students into attending research conferences has been developed. It is not perfect yet, but with time, critical students, and responsive research-productive faculty, each program should improve. It is not surprising that sophomore students do not achieve the objectives at the same level as older students. As students move closer to the "real" world of nursing practice and develop increasing sophistication about nursing in general and research in particular, they are, hopefully, more knowledgeable consumers of nursing research. What is particularly satisfying to the planners of those Research Days is that through the experience of attending Undergraduate Research Day at various points in their educational progress, students are socialized into discussing research. Additionally, they seemed to develop some degree of comfort with this aspect of their future nursing role. The RN and former student panel participants normalized research involvement for the student attendees. Panel member stories about their mistakes and successes made students realize that nursing investigations need not be the sole property of those with doctoral degrees. A serendipitous outcome of these programs was an increased awareness by students of the specific research project in which their teachers were engaged. Students informally reported a feeling of pride and reflected accomplishment. The importance of timing in offering such programs should not have been a surprise at this urban commuter university. Unwittingly, in scheduling the Friday afternoon program the planners ignored the initial consideration that the program not impose financial hardship on students.(ABSTRACT TRUNCATED AT 250 WORDS)
Pathways to Improve Student Pharmacists’ Experience in Research
McClendon, Katie S.; Bell, Allison M.; Ellis, Ashley; Adcock, Kim G.; Hogan, Shirley; Ross, Leigh Ann
2015-01-01
Objective. To describe the implementation of a student research program and to provide outcomes from the initial 4 years’ experience. Design. Students conducted individual research projects in a 4-year longitudinal program (known as Pathway), with faculty member advising and peer mentoring. A prospective assessment compared perceptions of those who completed the Pathway program with those of students who did not. Descriptive statistics, t tests, and analysis of variance (ANOVA) were used. Assessment. The class of 2013 was the first to complete the Pathway program. In the Pathway assessment project, 59% (n=47) of students who responded reached self-set goals. Pathway students agreed that this research experience improved their ability to work/think independently, evaluate literature, and distinguish themselves from other students. Conclusion. The Pathway program helped students understand the research process and reach other self-set goals. PMID:26089567
Multilevel approach to mentoring in the Research Experiences for Undergraduates programs
NASA Astrophysics Data System (ADS)
Bonine, K. E.; Dontsova, K.; Pavao-Zuckerman, M.; Paavo, B.; Hogan, D.; Oberg, E.; Gay, J.
2015-12-01
This presentation focuses on different types of mentoring for students participating in Research Experiences for Undergraduates programs with examples, including some new approaches, from The Environmental and Earth Systems Research Experiences for Undergraduates Program at Biosphere 2. While traditional faculty mentors play essential role in students' development as researchers and professionals, other formal and informal mentoring can be important component of the REU program and student experiences. Students receive mentoring from program directors, coordinators, and on site undergraduate advisors. While working on their research projects, REU students receive essential support and mentoring from undergraduate and graduate students and postdoctoral scientists in the research groups of their primary mentors. Cohort living and group activities give multiple opportunities for peer mentoring where each student brings their own strengths and experiences to the group. Biosphere 2 REU program puts strong emphasis on teaching students to effectively communicate their research to public. In order to help REUs learn needed skills the outreach personnel at Biosphere 2 mentor and advise students both in groups and individually, in lecture format and by personal example, on best outreach approaches in general and on individual outreach projects students develop. To further enhance and strengthen outreach mentoring we used a novel approach of blending cohort of REU students with the Cal Poly STAR (STEM Teacher And Researcher) Program fellows, future K-12 STEM teachers who are gaining research experience at Biosphere 2. STAR fellows live together with the REU students and participate with them in professional development activities, as well as perform research side by side. Educational background and experiences gives these students a different view and better preparation and tools to effectively communicate and adapt science to lay audiences, a challenge commonly facing researchers but rarely taught to future scientists. In addition, REU students act as mentors themselves to the middle and high school students in Biosphere 2 Science Academy sharing with them exciting research they are doing and their experiences about doing science and life in college.
The Effective and Evolving Role of Graduate Students in the SURFO REU Program
NASA Astrophysics Data System (ADS)
Pockalny, R. A.
2005-12-01
The Summer Undergraduate Research Fellowships in Oceanography (SURFO) program is a 10-week research/educational program designed to expose 9 undergraduates per year to cutting-edge, authentic oceanographic research at the Graduate School of Oceanography/University of Rhode Island. The SURFO program primarily focuses on the more quantitative aspects of oceanography (e.g., physical oceanography, geophysical fluid dynamics and marine geophysics), which closely parallel the strengths of GSO/URI. Thus, the primary undergraduate population targeted by the program includes students from various disciplines, but with strong backgrounds in math, physics, computer science, and engineering. Over its 20-year existence, the SURFO program has continuously evolved; however, three basics goals of the program have been maintained: 1) expose students to the breadth and depth of oceanography, 2) provide students with an authentic research experience, and 3) integrate/assimilate students into the lifestyle and community of a graduate research institution. An integral component for achieving these goals has been the inclusion of graduate students as workshop leaders/instructors, research mentors, and social directors. In these roles the graduate students act as a 'big brother/sister' to transition the undergraduates into the academic and research community. The graduate students also initially behave as liaisons between the senior researcher and the SURFO participant by fielding questions and concerns the undergraduate may be too intimidated to voice. As the summer progresses, the graduate students typically evolve into a lead research advisor and begin to learn effective techniques for advising students. Responses from SURFO participants on exit questionnaires frequently comment on how their experience and research project were directly affected by the extent of graduate student participation during the summer. Anecdotal evidence also indicates the participating graduate students gain maturity in their approach to research and become more willing advisees.
Designing Undergraduate Research Experiences: A Multiplicity of Options
NASA Astrophysics Data System (ADS)
Manduca, C. A.
2001-12-01
Research experiences for undergraduate students can serve many goals including: developing student understanding of the process of science; providing opportunities for students to develop professional skills or test career plans; completing publishable research; enabling faculty professional development; or enhancing the visibility of a science program. The large range of choices made in the design of an undergraduate research program or opportunity must reflect the goals of the program, the needs and abilities of the students and faculty, and the available resources including both time and money. Effective program design, execution, and evaluation can all be enhanced if the goals of the program are clearly articulated. Student research experiences can be divided into four components: 1) defining the research problem; 2) developing the research plan or experiment design; 3) collecting and interpreting data, and 4) communicating results. In each of these components, the program can be structured in a wide variety of ways and students can be given more or less guidance or freedom. While a feeling of ownership of the research project appears to be very important, examples of successful projects displaying a wide range of design decisions are available. Work with the Keck Geology Consortium suggests that four strategies can enhance the likelihood of successful student experiences: 1) students are well-prepared for research experience (project design must match student preparation); 2) timelines and events are structured to move students through intermediate goals to project completion; 3) support for the emotional, financial, academic and technical challenges of a research project is in place; 4) strong communications between students and faculty set clear expectations and enable mid-course corrections in the program or project design. Creating a research culture for the participants or embedding a project in an existing research culture can also assist students in completing a successful research experience. Outstanding undergraduate research experiences can take place in a wide variety of settings and serve a wide variety of student and faculty needs if projects are designed with these goals in mind.
Gillman, Jennifer; Pillinger, Michael; Plottel, Claudia S; Galeano, Claudia; Maddalo, Scott; Hochman, Judith S; Cronstein, Bruce N; Gold-von Simson, Gabrielle
2015-12-01
To develop the next generation of translational investigators, New York University School of Medicine (NYUSOM) and the NYU-NYC Health and Hospitals Corporation Clinical and Translational Science Institute (NYU-HHC CTSI) developed the Master's of Science in Clinical Investigation dual-degree (MD/MSCI) program. This 5-year program dedicates 1 year to coursework and biomedical research, followed by a medical school/research overlap year, to prepare students for academic research careers. This paper details the MD/MSCI program's curriculum and approach to mentorship, describes the research/professional interests of students, and reports student productivity. In the first 4 years of the program (2010-2014) 20 students were matriculated; 7 (35%) were women, and 12 (60%) research projects were in surgical specialties. To date, 14 students have applied to residency, and half pursued surgical residency programs. Our students have produced 68 accepted abstracts, 15 abstracts in submission, 38 accepted papers, and 24 papers in submission. Despite the time-limited nature of this program, additional training in research design and implementation has promoted a high level of productivity. We conclude that dual-degree training in medicine and translational research is feasible for medical students and allows for meaningful participation in valuable projects. Follow-up is warranted to evaluate the academic trajectory of these students. © 2015 Wiley Periodicals, Inc.
Pillinger, Michael; Plottel, Claudia S.; Galeano, Claudia; Maddalo, Scott; Hochman, Judith S.; Cronstein, Bruce N.; Gold‐von Simson, Gabrielle
2015-01-01
Abstract To develop the next generation of translational investigators, New York University School of Medicine (NYUSOM) and the NYU‐NYC Health and Hospitals Corporation Clinical and Translational Science Institute (NYU‐HHC CTSI) developed the Master's of Science in Clinical Investigation dual‐degree (MD/MSCI) program. This 5‐year program dedicates 1 year to coursework and biomedical research, followed by a medical school/research overlap year, to prepare students for academic research careers. This paper details the MD/MSCI program's curriculum and approach to mentorship, describes the research/professional interests of students, and reports student productivity. In the first 4 years of the program (2010–2014) 20 students were matriculated; 7 (35%) were women, and 12 (60%) research projects were in surgical specialties. To date, 14 students have applied to residency, and half pursued surgical residency programs. Our students have produced 68 accepted abstracts, 15 abstracts in submission, 38 accepted papers, and 24 papers in submission. Despite the time‐limited nature of this program, additional training in research design and implementation has promoted a high level of productivity. We conclude that dual‐degree training in medicine and translational research is feasible for medical students and allows for meaningful participation in valuable projects. Follow‐up is warranted to evaluate the academic trajectory of these students. PMID:26365704
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-03-01
The purpose of this study was to identify those particular aspects of US Department of Energy (DOE) research participation programs for undergraduate and graduate students that are most associated with attracting and benefiting underrepresented minority students and encouraging them to pursue careers in science, engineering, and technology. A survey of selected former underrepresented minority participants, focus group analysis, and critical incident analysis serve as the data sources for this report. Data collected from underrepresented minority participants indicate that concerns expressed and suggestions made for conducting student research programs at DOE contractor facilities are not remarkably different from those made bymore » all participants involved in such student research participation programs. With the exception of specific suggestions regarding recruitment, the findings summarized in this report can be interpreted to apply to all student research participants in DOE national laboratories. Clearly defined assignments, a close mentor-student association, good communication, and an opportunity to interact with other participants and staff are those characteristics that enhance any educational program and have positive impacts on career development.« less
Kennel, Susan; Burns, Suzanne; Horn, Heather
2009-04-01
Teaching nursing research to baccalaureate nursing (BSN) students can be challenging for nurse educators. The content of research courses often is dry and seemingly irrelevant to BSN students who are focused on more concrete tasks, such as passing clinical and academic courses. Through our search for creative ways to bring energy, excitement, passion, purpose, and reality to students' views of nursing research, we designed a program in which hospital nurses involved in clinical research projects mentored students in the clinical environment. Students were asked to perform literature reviews, collect and analyze data, and help with poster presentations. Student evaluations at the end of the program were positive, and analysis of pretest and posttest scores indicated student interest in nursing research increased significantly (p = 0.00).
Fang, Di; Meyer, Roger E
2003-12-01
To assess the effect of Howard Hughes Medical Institute's (HHMI) two one-year research training programs for medical students on the awardees' research careers. Awardees of the HHMI Cloister Program who graduated between 1987 and 1995 and awardees of the HHMI Medical Fellows Program who graduated between 1991 and 1995 were compared with unsuccessful applicants to the programs and MD-PhD students who graduated during the same periods. Logistic regression analyses were conducted to assess research career outcomes while controlling for academic and demographic variables that could affect selection to the programs. Participation in both HHMI programs increased the likelihood of receiving National Institutes of Health postdoctoral support. Participation in the Cloister Program also increased the likelihood of receiving a faculty appointment with research responsibility at a medical school. In addition, awardees of the Medical Fellows Program were not significantly less likely than Medical Scientist Training Program (MSTP) and non-MSTP MD-PhD program participants to receive a National Institutes of Health postdoctoral award, and awardees of the Cloister Program were not significantly less likely than non-MSTP MD-PhD students to receive a faculty appointment with research responsibility. Women and underrepresented minority students were proportionally represented among awardees of the two HHMI programs whereas they were relatively underrepresented in MD-PhD programs. The one-year intensive research training supported by the HHMI training programs appears to provide an effective imprinting experience on medical students' research careers and to be an attractive strategy for training physician-scientists.
A Summer Research Training Program to Foster PharmD Students' Interest in Research
Moore, Mariellen J.; Shin, Jaekyu; Frye, Reginald F.
2008-01-01
Objectives To establish and assess the effectiveness of a 10-week summer research program on increasing doctor of pharmacy (PharmD) students' interest in research, particularly as it related to future career choices. Design Survey instruments were sent to 25 participants who had completed the research program in the summer of 2004, 2005, or 2006 to assess their satisfaction with the program and its influence on their career choices after graduation. Assessment Respondents reported a high degree of satisfaction with the program, indicating that the program allowed them to determine their suitability for a career in research, and 55% reported their intention to pursue additional research training. Conclusion A brief introduction to the clinical research environment helped pharmacy students understand the clinical sciences and careers in research. The introduction increased the likelihood of students pursuing a research career path after obtaining their PharmD degree. PMID:18483591
NASA Astrophysics Data System (ADS)
May, Gary S.
1996-07-01
The Georgia Tech SUmmer Undergraduate Packaging Research and Engineering Experience for Minorities (GT-SUPREEM) is an eight-week summer program designed to attract qualified minority students to pursue graduate degrees in packaging- related disciplines. The program is conducted under the auspices of the Georgia Tech Engineering Research Center in Low-Cost Electronic Packaging, which is sponsored by the National Science Foundation. In this program, nine junior and senior level undergraduate students are selected on a nationwide basis and paired with a faculty advisor to undertake research projects in the Packaging Research CEnter. The students are housed on campus and provided with a $DLR3,000 stipend and a travel allowance. At the conclusion of the program, the students present both oral and written project summaries. It is anticipated that this experience will motivate these students to become applicants for graduate study in ensuring years. This paper will provide an overview of the GT-SUPREEM program, including student research activities, success stories, lessons learned, and overall program outlook.
Ghee, Medeva; Keels, Micere; Collins, Deborah; Neal-Spence, Cynthia; Baker, Earnestine
Although the importance of undergraduate research experiences in preparing students for graduate study and research careers is well documented, specific examination of program components is needed to assess the impact of these programs on underrepresented (UR) students. The Leadership Alliance, a consortium of leading PhD-granting and minority-serving institutions (MSIs), has leveraged its diverse partnership to place UR students from MSI and non-MSI institutions in competitive research environments through its national Summer Research Early Identification Program. Using longitudinal pre/post data collected from student surveys, we applied social cognitive career theory as a conceptual framework to examine how research engagement, skill development, and mentorship aspects of a summer research program affect students' commitment to pursue research careers. Self-reported knowledge of research skills, time engaged in research activity, and students' understanding of and attitudes toward pursuing graduate study were measured in relation to the classification of students' home undergraduate institution, level of students' pre-existing research experience, and demographic factors. Our results provide evidence of specific programmatic components that are beneficial for UR students from varying academic and cultural backgrounds. This study describes important aspects of summer research programs that will contribute to students' ability to persist in science careers. © 2016 M. Ghee et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
A Mentoring Program in Environmental Science for Underrepresented Groups
NASA Astrophysics Data System (ADS)
Stevens, L.; Rizzo, D. M.
2009-12-01
We developed a four-year program, combining educational and career support and research activities, to recruit and retain students from underrepresented groups in environmental sciences. Specifically, the program: ○ Assigns each student a faculty or graduate student mentor with whom the student conducts research activities. ○ Includes a weekly group meeting for team building and to review professional development and academic topics, such as time management and research ethics. ○ Requires students to make multiple formal presentations of their research proposals and results. ○ Provides scholarships and stipends for both the academic year and to engage students in summer research. The program seeks to achieve several goals including: ● Enhance academic performance. ● Encourage continued study in environmental science. ● Facilitate students completing their studies at UVM. ● Increase students’ interest in pursuing science careers. ● Create a more welcoming academic environment. To assess progress toward achievement of these goals, we conducted individual structured interviews with participating undergraduate students, graduate students, and faculty members at two points in time. First, interviews were conducted in the fall of 2007 after two years, and again in spring 2009, after four years. An independent research consultant, Dr. Livingston, conducted the interviews. In 2009, over the course of three days, the interviews included three graduate student and two faculty mentors, and six of the seven undergraduate students. Of the six students, three were juniors and three were graduating seniors. Results of the 2009 interviews echoed those of 2007. Both students and their mentors are quite satisfied with the program. The student presentations, weekly meetings, mentoring relationships, and summer research experiences all get high ratings from program participants. Students give high praise to their mentors and the program directors for providing excellent support. Looking at goals more specifically, we find: Improved student academic performance: Most students credit the program with a positive impact on their academic performance. Students’ continued study of environmental science: Students report increased or continued interest in environmental science as a result of participating in the program. Continued study at UVM: In both 2007 and 2009 there was a nearly unanimous report that students remain at UVM because of their involvement in the program. The program provides valuable opportunities, advisory support, community of peers, and financial stipend. It is has attracted and kept these students at this university. Increased interest in science careers: Students have been exposed to a range of science careers and credit the program with providing this exposure. Most of these students expect to pursue a career in science. Created a welcoming environment: One student specifically credits the program with increasing the number of students of color in the department. Other students credit the program with creating an environment in which students have established relationships with many faculty, certainly contributing to a welcoming atmosphere. Taken together, results indicate that the program is indeed achieving its goals.
Teachers' participation in research programs improves their students' achievement in science.
Silverstein, Samuel C; Dubner, Jay; Miller, Jon; Glied, Sherry; Loike, John D
2009-10-16
Research experience programs engage teachers in the hands-on practice of science. Program advocates assert that program participation enhances teachers' skills in communicating science to students. We measured the impact of New York City public high-school science teachers' participation in Columbia University's Summer Research Program on their students' academic performance in science. In the year before program entry, students of participating and nonparticipating teachers passed a New York State Regents science examination at the same rate. In years three and four after program entry, participating teachers' students passed Regents science exams at a rate that was 10.1% higher (P = 0.049) than that of nonparticipating teachers' students. Other program benefits include decreased teacher attrition from classroom teaching and school cost savings of U.S. $1.14 per $1 invested in the program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMillan, J.
1993-12-01
The purpose of the summer undergraduate internship program for research in environmental studies is to provide an opportunity for well-qualified students to undertake an original research project as an apprentice to an active research scientist in basic environmental research. Ten students from throughout the midwestern and eastern areas of the country were accepted into the program. These students selected projects in the areas of marine sciences, biostatistics and epidemiology, and toxicology. The research experience for all these students and their mentors was very positive. The seminars were well attended and the students showed their interest in the presentations and environmentalmore » sciences as a whole by presenting the speakers with thoughtful and intuitive questions. This report contains the research project written presentations prepared by the student interns.« less
Wolfson, Rachel K; Alberson, Kurt; McGinty, Michael; Schwanz, Korry; Dickins, Kirsten; Arora, Vineet M
2017-08-01
Concerns remain regarding the future of the physician-scientist workforce. One goal of scholarly concentration (SC) programs is to give students skills and motivation to pursue research careers. The authors describe SC and student variables that affect students' career plans. Medical students graduating from the University of Chicago SC program in 2014 and 2015 were studied. The authors measured change in interest in career-long research from matriculation to graduation, and used ordinal logistic regression to determine whether program satisfaction, dissemination of scholarship, publication, and gender were associated with increased interest in a research career. Among students with low baseline interest in career-long research, a one-point-higher program satisfaction was associated with 2.49 (95% CI 1.36-4.57, P = .003) odds of a one-point-increased interest in a research career from matriculation to graduation. Among students with high baseline interest in career-long research, both publication (OR 5.46, 95% CI 1.40-21.32, P = .02) and female gender (OR 4.83, 95% CI 1.11-21.04, P = .04) were associated with increased odds of a one-point-increased interest in career-long research. The impact of an SC program on change in career plans during medical school was analyzed. Program satisfaction, publication, and female gender were associated with increased intent to participate in career-long research depending on baseline interest in career-long research. Two ways to bolster the physician-scientist workforce are to improve satisfaction with existing SC programs and to formally support student publication. Future work to track outcomes of SC program graduates is warranted.
Creating a Research-Rich Curriculum at Miami University
NASA Astrophysics Data System (ADS)
Rauckhorst, William H.
2007-10-01
Miami University has attempted in recent years to build upon a collection of individual student research participation opportunities at the University, and develop a comprehensive ``research-rich'' undergraduate curriculum. A major step in this direction was the creation of the Undergraduate Summer Scholars (USS) program. This program provides 10-week summer research experiences with faculty mentors for 100 juniors or seniors each year. The USS Program is not limited to science and engineering areas, as approximately 30 academic departments participate annually. Development of the USS program at Miami was motivated by the University's prior experience with student research appointments funded by the National Science Foundation, the Howard Hughes Medical Institute, and other sponsoring agencies. The University's evaluation of these earlier student research experiences provided evidence that such experiences were at least as significant in a student's education as formal course work. A second important step in Miami's effort was obtaining a grant from the National Science Foundation's Comprehensive Reform of Undergraduate Education program. This funding enabled the University to enhance the Undergraduate Summer Scholars (USS) Program and evaluate student intellectual growth within the program. Two outcomes of this NSF-funded project are noteworthy: first, the USS program now is firmly established within the University's offerings; second, the evaluation ndicated profound student intellectual growth as a result of mentored research experiences. We will describe the development of the Undergraduate Summer Scholars Program, our evaluation of the Program, and ongoing efforts to extend the benefits of research experience to more students by incorporating research components within traditional coursework.
Effect of a Dedicated Pharmacy Student Summer Research Program on Publication Rate
Adler, David; Kelly, Carolyn; Taylor, Palmer; Best, Brookie M.
2017-01-01
Objectives. This study investigated the impact of an optional 12-week summer research program on the publication outcomes and satisfaction with the required research projects of doctor of pharmacy (PharmD) students at the Skaggs School of Pharmacy and Pharmaceutical Sciences (SSPPS) at the University of California San Diego. Methods. PubMed and Google searches provided student publications, and satisfaction surveys submitted by students provided their perceptions of the research project value. Results. Of the studied cohort, the 130 students who fulfilled the requirement through the optional summer research program provided 61 full-text manuscripts and 113 abstracts. The 305 students who chose the standard pathway provided 35 full-text manuscripts and 34 abstracts. Students in both pathways agreed or strongly agreed that the research project was a valuable experience. Conclusions. The 12-week intensive summer research program improved the publication rate of pharmacy students and provided a high overall satisfaction with this independent learning experience. PMID:28496268
Effect of a Dedicated Pharmacy Student Summer Research Program on Publication Rate.
Brandl, Katharina; Adler, David; Kelly, Carolyn; Taylor, Palmer; Best, Brookie M
2017-04-01
Objectives. This study investigated the impact of an optional 12-week summer research program on the publication outcomes and satisfaction with the required research projects of doctor of pharmacy (PharmD) students at the Skaggs School of Pharmacy and Pharmaceutical Sciences (SSPPS) at the University of California San Diego. Methods. PubMed and Google searches provided student publications, and satisfaction surveys submitted by students provided their perceptions of the research project value. Results. Of the studied cohort, the 130 students who fulfilled the requirement through the optional summer research program provided 61 full-text manuscripts and 113 abstracts. The 305 students who chose the standard pathway provided 35 full-text manuscripts and 34 abstracts. Students in both pathways agreed or strongly agreed that the research project was a valuable experience. Conclusions. The 12-week intensive summer research program improved the publication rate of pharmacy students and provided a high overall satisfaction with this independent learning experience.
NASA Astrophysics Data System (ADS)
Danch, J. M.
2015-12-01
In 2010 a group of 8th grade geoscience students participated in an extracurricular activity allowing them to conduct original scientific research while being mentored by students enrolled in a 3 - year high school Science Research program. Upon entering high school the mentored students themselves enrolled in the Science Research program and continued for 4 years, culminating with their participation in Science Research 4. This allowed them to continue conducting original scientific research, act as mentors to 8th grade geoscience students and to provide teacher training for both middle and high school teachers conducting inquiry-based science lessons. Of the 7 Science Research 4 students participating since 2010, 100% plan on majoring or minoring in a STEM - related field in college and their individual research projects have been been granted over 70 different awards and honors in science fair and symposia including a 3rd and 4th place category awards at two different international science fairs - the International Sustainable Energy Engineering and Environment Project (iSWEEP) and the International Science and Engineering Fair (ISEF). Science Research 4 students developed and conducted a Society for Science and the Public affiliated science fair for middle school students enrolled in an 8th grade honors geoscience program allowing over 100 students from 5 middle schools to present their research and be judged by STEM professionals. Students with research judged in the top 10% were nominated for participation in the National Broadcom MASTERS program which they successfully entered upon further mentoring from the Science Research 4 students. 8th grade enrollment in the Science Research program for 2015 increased by almost 50% with feedback from students, parents and teachers indicating that the mentorship and participation in the 8th grade science fair were factors in increasing interest in continuing authentic scientific research in high school.
Outcomes of Global Public Health Training Program for US Minority Students: A Case Report.
Krawczyk, Noa; Claudio, Luz
The numbers and success of minority students in science and the health fields remain relatively low. This study presents the outcomes of a research training program as an illustrative case study. The Short-Term Training Program for Minority Students (STPMS) recruits underrepresented minority undergraduate and graduate students for immersion in research training. A total of 69 students participated in the STPMS between 1995 and 2012, and 59 of these completed our survey to determine the perceived impact of the program on the students' motivations and professional development. Results indicated that motivations to participate in the STPMS were commonly related to long-term professional development, such as obtaining mentoring and guidance in career decision making, rather than gaining specific research skills or for economic reasons. Students reported that participation in short-term research training had the most significant effect on improving their attitudes toward biomedical research and promoted positive attitudes toward future careers in health research. A total of 85% of the program's alumni have since completed or are currently working toward a degree in higher education, and 79% are currently working in science research and health care fields. Overall, the short-term training program improved students' attitudes toward research and health science careers. Mentoring and career guidance were important in promoting academic development in students. Copyright © 2017. Published by Elsevier Inc.
Teacher Research Programs Participation Improves Student Achievement in Science
NASA Astrophysics Data System (ADS)
Dubner, J.
2009-12-01
Research experience programs engage teachers in the hands-on practice of science. Program advocates assert that program participation enhances teachers’ skills in communicating science to students. We have measured the impact of New York City public high school science teacher participation in Columbia University’s Summer Research Program for Science Teachers on their students’ academic performance in science. In the year prior to program entry, students of participating and non-participating teachers passed a New York State Regents science examination at the same rate. In years three and four following program entry, participating teachers’ students passed Regents science exams at a higher rate (p = 0.049) than non-participating teachers’ students. Other program benefits include decreased teacher attrition from classroom teaching and school cost savings.
Minority High School Student Research Apprentice Program.
ERIC Educational Resources Information Center
Smith, Elske
The Minority High School Student Research Apprentice Program in Richmond, Virginia, aspires to stimulate among minority high school students an interest in pursuing careers in biomedical research and the health professions. Students are paid hourly wages commensurate with what they could earn at summer jobs. Students work with faculty mentors in…
Pharmacoeconomics and outcomes research degree-granting PhD programs in the United States.
Slejko, Julia F; Libby, Anne M; Nair, Kavita V; Valuck, Robert J; Campbell, Jonathan D
2013-01-01
Evidence is missing on showcasing current practices of degree programs specific to the field of pharmaceutical outcomes research. To measure current practices of pharmacoeconomics and outcomes research PhD programs in the United States and synthesize recommendations for improving the success of programs and prospective students. A 23-question online survey instrument was created and distributed to 32 program directors identified in the International Society for Pharmacoeconomics and Outcomes Research educational directory. Descriptive statistics summarized both the program characteristics (including observed and desired number of faculty and students) and training recommendations (traits of program and student success). Of 30 eligible programs that conferred a PhD in pharmacoeconomics, pharmaceutical outcomes research, or a related field, 16 respondents (53%) completed the survey. Seventy-five percent of respondents were located in a school of pharmacy. The average observed number of faculty (7.5) and students (11.5) was lower than the average desired numbers (8.1) and (14.7), respectively. Reputation of faculty research and a collaborative environment with other disciplines were rated highest for a program's success. Faculty's mentoring experience and reputation and student funding opportunities were rated highest for prospective students' success. Existing and emerging programs as well as prospective students can use these findings to further their chances of success. Copyright © 2013 Elsevier Inc. All rights reserved.
Coronado, Gloria D; O'Connell, Mary A; Anderson, Jennifer; Löest, Helena; Ogaz, Dana; Thompson, Beti
2010-03-01
Students from racially/ethnically diverse backgrounds are underrepresented in graduate programs in biomedical disciplines. One goal of the Minority Institution/Cancer Center partnership between New Mexico State University (NMSU) and the Fred Hutchinson Cancer Research Center (FHCRC) is to expand the number of underrepresented students who are trained in cancer research. As part of the collaboration, a summer internship program has been organized at the FHCRC. The program runs for 9 weeks and involves mentored research, research seminars, coffee breaks, social activities, and a final poster session. This study examined the graduate school attendance rates of past interns, explored interns' perceptions of the training program, and identified ways to improve the program. Thirty undergraduate students enrolled at NMSU participated in the internship program from 2002 to 2007 and telephone interviews were conducted on 22 (73%) of them. One-third of the students were currently in graduate school (32%); the remaining were either working (36%), still in undergraduate school (27%), or unemployed and not in school (5%). Students rated highly the following aspects of the program: mentored research, informal time spent with mentors, and research seminars. Students also reported the following activities would further enhance the program: instruction on writing a personal statement for graduate school and tips in choosing an advisor. Students also desired instruction on taking the GRE/MCAT, receiving advice on selecting a graduate or professional school, and receiving advice on where to apply. These findings can inform the design of internship programs aimed at increasing rates of graduate school attendance among underrepresented students.
Partnership of Environmental Education and Research-A compilation of student research, 1999-2008
Bradley, Michael W.; Armstrong, Patrice; Byl, Thomas D.
2011-01-01
The U.S. Geological Survey (USGS) Tennessee Water Science Center and the College of Engineering and Technology at Tennessee State University developed a Partnership in Environmental Education and Research (PEER) to support environmental research at TSU and to expand the environmental research capabilities of the USGS in Tennessee. The PEER program is driven by the research needs to better define the occurrence, fate, and transport of contaminants in groundwater and surface water. Research in the PEER program has primarily focused on the transport and remediation of organic contamination in karst settings. Research conducted through the program has also expanded to a variety of media and settings. Research areas include contaminant occurrence and transport, natural and enhanced bioremediation, geochemical conditions in karst aquifers, mathematical modeling for contaminant transport and degradation, new methods to evaluate groundwater contamination, the resuspension of bacteria from sediment in streams, the use of bioluminescence and chemiluminescence to identify the presence of contaminants, and contaminant remediation in wetlands. The PEER program has increased research and education opportunities for students in the College of Engineering, Technology, and Computer Science and has provided students with experience in presenting the results of their research. Students in the program have participated in state, regional, national and international conferences with more than 140 presentations since 1998 and more than 40 student awards. The PEER program also supports TSU outreach activities and efforts to increase minority participation in environmental and earth science programs at the undergraduate and graduate levels. TSU students and USGS staff participate in the TSU summer programs for elementary and high school students to promote earth sciences. The 2007 summer camps included more than 130 students from 20 different States and Washington DC.
NASA Astrophysics Data System (ADS)
Palacios, S. L.; Kudela, R. M.; Clinton, N. E.; Atkins, N.; Austerberry, D.; Johnson, M.; McGonigle, J.; McIntosh, K.; O'Shea, J. J.; Shirshikova, Z.; Singer, N.; Snow, A.; Woods, R.; Schaller, E.; Shetter, R. E.
2011-12-01
With over half of the current earth and space science workforce expected to retire within the next 15 years, NASA has responded by cultivating young minds through programs such as the Student Airborne Research Program (SARP). SARP is a competitive internship that introduces upper-level undergraduates and early graduate students to Earth System Science research and NASA's Airborne Science Program. The program serves as a model for recruitment of very high caliber students into the scientific workforce. Its uniqueness derives from total vertical integration of hands-on experience at every stage of airborne science: aircraft instrumentation, flight planning, mission participation, field-work, analysis, and reporting of results in a competitive environment. At the conclusion of the program, students presented their work to NASA administrators, faculty, mentors, and the other participants with the incentive of being selected as best talk and earning a trip to the fall AGU meeting to present their work at the NASA booth. We hope lessons learned can inform the decisions of scientists at the highest levels seeking to broaden the appeal of research. In 2011, SARP was divided into three disciplinary themes: Oceanography, Land Use, and Atmospheric Chemistry. Each research group was mentored by an upper-level graduate student who was supervised by an expert faculty member. A coordinator managed the program and was supervised by a senior research scientist/administrator. The program is a model of knowledge transfer among the several levels of research: agency administration to the program coordinator, established scientific experts to the research mentors, and the research mentors to the pre-career student participants. The outcomes from this program include mission planning and institutional knowledge transfer from administrators and expert scientists to the coordinator and research mentors; personnel and project management from the coordinator and expert scientists to the research mentors; and scholarship and training in specific analytical techniques for Earth Science research from the mentors to the student participants. Across every level, the program allowed for networking and career advice to help students gain entry to future job or graduate school opportunities. This poster details "engaging the next generation" by highlighting specific research questions proposed and developed by the students in the Oceanography group.
Dumbauld, Jill; Black, Michelle; Depp, Colin A; Daly, Rebecca; Curran, Maureen A; Winegarden, Babbi; Jeste, Dilip V
2014-12-01
With a growing need for developing future physician scientists, identifying characteristics of medical students who are likely to benefit from research training programs is important. This study assessed if specific learning styles of medical students, participating in federally funded short-term research training programs, were associated with research self-efficacy, a potential predictor of research career success. Seventy-five first-year medical students from 28 medical schools, selected to participate in two competitive NIH-supported summer programs for research training in aging, completed rating scales to evaluate learning styles at baseline, and research self-efficacy before and after training. We examined associations of individual learning styles (visual-verbal, sequential-global, sensing-intuitive, and active-reflective) with students' gender, ranking of medical school, and research self-efficacy. Research self-efficacy improved significantly following the training programs. Students with a verbal learning style reported significantly greater research self-efficacy at baseline, while visual, sequential, and intuitive learners demonstrated significantly greater increases in research self-efficacy from baseline to posttraining. No significant relationships were found between learning styles and students' gender or ranking of their medical school. Assessments of learning styles may provide useful information to guide future training endeavors aimed at developing the next generation of physician-scientists. © 2014 Wiley Periodicals, Inc.
Geiger, Tray J; Amrein-Beardsley, Audrey
2017-10-01
Researchers conducted an evaluation of participants' perceptions of a dropout prevention program - the NBA High School program - involving a National Basketball Association (NBA) team, a high school located in downtown [City], and the College of Education (COE) at the local State University (SU). The program targeted "at-risk" high school students while utilizing student-teachers as tutors and mentors. Researchers utilized mixed methods to assess student, student-teacher, and high school teacher participants' experiences with and opinions of the program. Researchers found (1) students enjoyed the program, especially given the involvement of the student-teachers; (2) students believed the program helped improve their grades; (3) student-teachers enjoyed working with their students, although student-teachers found some of the expectations surrounding their positions and roles as tutors/mentors within the high school to be unclear and frustrating; (4) high school teachers felt significantly better about the program than the student-teachers; and (5) overall, all sets of respondents categorically supported the program and its benefits. Findings indicated that the involvement of mentors or role models matters to students, and clear and organized logistics, planning, and communication are integral for program success. Copyright © 2017 Elsevier Ltd. All rights reserved.
Woods, Kendra V; Peek, Kathryn E; Richards-Kortum, Rebecca
2014-12-01
Many students in bioengineering and medical physics doctoral programs plan careers in translational research. However, while such students generally have strong quantitative abilities, they often lack experience with the culture, communication norms, and practice of bedside medicine. This may limit students' ability to function as members of multidisciplinary translational research teams. To improve students' preparation for careers in cancer translational research, we developed and implemented a mentoring program that is integrated with students' doctoral studies and aims to promote competencies in communication, biomedical ethics, teamwork, altruism, multiculturalism, and accountability. Throughout the program, patient-centered approaches and professional competencies are presented as foundational to optimal clinical care and integral to translational research. Mentoring is conducted by senior biomedical faculty and administrators and includes didactic teaching, online learning, laboratory mini-courses, clinical practicums, and multidisciplinary patient planning conferences (year 1); student development and facilitation of problem-based patient cases (year 2); and individualized mentoring based on research problems and progress toward degree completion (years 3-5). Each phase includes formative and summative evaluations. Nineteen students entered the program from 2009 through 2011. On periodic anonymous surveys, the most recent in September 2013, students indicated that the program substantially improved their knowledge of cancer biology, cancer medicine, and academic medicine; that the mentors were knowledgeable, good teachers, and dedicated to students; and that the program motivated them to become well-rounded scientists and scholars. We believe this program can be modified and disseminated to other graduate research and professional health care programs.
NASA Astrophysics Data System (ADS)
Hallau, K.; Turney, D.; Beisser, K.; Edmonds, J.; Grigsby, B.
2015-12-01
The Student Planetary Investigator (PI) Program engages students in authentic scientific research using NASA mission data. This student-focused STEM (Science, Technology, Engineering and Math) program combines problem-based learning modules, Next Generation Science Standards (NGSS) aligned curriculum, and live interactive webinars with mission scientists to create authentic research opportunities and career-ready experiences that prepare and inspire students to pursue STEM occupations. Primarily for high school students, the program employs distance-learning technologies to stream live presentations from mission scientists, archive those presentations to accommodate varied schedules, and collaborate with other student teams and scientists. Like its predecessor, the Mars Exploration Student Data Team (MESDT) program, the Student PI is free and open to teams across the country. To date, students have drafted research-based reports using data from the Lunar Reconnaissance Orbiter Mini-RF instrument and the MESSENGER Mercury orbiter, with plans to offer similar programs aligned with additional NASA missions in the future pending available funding. Overall, the program has reached about 600 students and their educators. Assessments based on qualitative and quantitative data gathered for each Student PI program have shown that students gain new understanding about the scientific process used by real-world scientists as well as gaining enthusiasm for STEM. Additionally, it is highly adaptable to other disciplines and fields. The Student PI program was created by the Johns Hopkins University Applied Physics Laboratory (APL) Space Department Education and Public Outreach office with support from NASA mission and instrument science and engineering teams.
NASA Astrophysics Data System (ADS)
Castelaz, Michael W.; Cline, J. D.; Whitworth, C.; Clavier, D.; Barker, T.
2014-01-01
Pisgah Astronomical Research Institute (PARI) offers summer undergraduate research internships. PARI has received support for the internships from the EMC Corporation, private donations, private foundations, and through a collaboration with the Pisgah Astronomical Research and Education Center of the University of North Carolina - Asheville. The internship program began in 2001 with 4 students. This year 10 funded students participated. Mentors for the interns include PARI’s Directors of Science, Education, and Information Technology and visiting faculty who are members of the PARI Research Faculty Affiliate program. Students work with mentors on radio and optical astronomy research, electrical engineering for robotic control of instruments, software development for instrument control and and science education by developing curricula and multimedia and teaching high school students in summer programs at PARI. At the end of the summer interns write a paper about their research which is published in the PARI Summer Student Proceedings. Students are encouraged to present their research at AAS Meetings. We will present a summary of specific research conducted by the students with their mentors.
NASA Technical Reports Server (NTRS)
Estes, Jr., Maurice G.; Perkey, Donald J.; Coleman, T. L.
1997-01-01
The primary objective of the HSCaRS Summer Enrichment Program (SEP) is to make significant contributions to the NASA Mission to Planet Earth (MTPE) and the Alabama A&M University (AAMU) Center for Hydrology, Soil Climatology and Remote Sensing (HSCaRS) research missions by providing undergraduate student research internships with an emphasis on minority and women students. Additional objectives are to encourage more minority and women students to pursue advanced degrees in Earth system and global change science and to increase the participation of minority institutions in the U.S. Global Change Research Program. Also, the SEP strives to make students in the traditional science disciplines more aware of the opportunities in Earth System Science. In designing the SEP, it was acknowledged that HSCaRS was a new research effort and Center. Consequently, students were not expected to immediately recognize the Center as one would older, more established research laboratories with national reputations, such as Los Alamos, Battelle, National Consortium for Atmospheric Research (NCAR), etc. Yet we still wanted to compete nationally for the best students. Therefore, we designed the program with a competitive financial package that includes a stipend of $400 per week, round-trip transportation from home to the summer research site, and free campus housing and meal plans provided by Alabama A&M University. Students also received a modest living allowance of approximately $25 per week. The internship program was 10 weeks in residence at Alabama A&M University or IGCRE, and gave students the opportunity to select from six general research areas: micro-meteorology, soil data analysis, soil moisture modeling, instrumentation, geographic information systems, and computer science. Student participants also enrolled in an introductory global change science course as part of the summer program (a copy of the course outline is in the appendix). The program included participation in a field program for approximately two weeks. All students were required to participate in the field program as a learning experience, regardless of the relationship of the field program to their majors or particular research project.
Successes and Challenges in the SAGE (Summer of Applied Geophysical Experience) REU Program
NASA Astrophysics Data System (ADS)
Braile, L. W.; Baldridge, W. S.; Pellerin, L.; Ferguson, J. F.; Bedrosian, P.; Biehler, S.; Jiracek, G. R.; Snelson, C. M.; Kelley, S.; McPhee, D.
2014-12-01
The SAGE program was initiated in 1983 to provide an applied geophysics research and education experience for students. Since 1983, 820 students have completed the SAGE summer program. Beginning in 1992, with funding from the NSF, SAGE has included an REU (Research Experience for Undergraduates) experience for selected undergraduate students from U.S. colleges and universities. Since 1992, 380 undergraduate REU students have completed the SAGE program. The four week, intensive, summer program is based in Santa Fe, New Mexico, and involves students in learning geophysical theory and applications; collection of geophysical field data in the northern Rio Grande Rift area; data processing, modeling and interpretation; and presentation (oral and written) of results of each student's research results. Students (undergraduates, graduates and professionals) and faculty are together on a school campus for the summer program. Successful strategies (developed over the years) of the program include teamwork experience, mentoring of REUs (by faculty and more senior students), cultural interchange due to students from many campuses across the U.S. and international graduate students, including industry visitors who work with the students and provide networking, a capstone experience of the summer program that includes all students making a "professional-meeting" style presentation of their research and submitting a written report, a follow-up workshop for the REU students to enhance and broaden their experience, and providing professional development for the REUs through oral or poster presentations and attendance at a professional meeting. Program challenges include obtaining funding from multiple sources; significant time investment in program management, reporting, and maintaining contact with our many funding sources and industry affiliates; and, despite significant efforts, limited success in recruiting racial and ethnic minority students to the program.
ERIC Educational Resources Information Center
Baiduc, Rachael R.; Drane, Denise; Beitel, Greg J.; Flores, Luke C.
2017-01-01
Undergraduate research experiences may increase persistence in STEM majors. We describe a research program that targets first-year students selected for their curiosity and attitudes towards science. We explain the implementation of the program over 3 years and present evaluation data using a group of matched controls. Participants and controls…
Steadman, Patrick E; Crudden, Johanna; Boutis, Kathy
2015-09-01
Prospective research studies often advance clinical practice in the emergency department (ED), but they can be costly and difficult to perform. In this report, we describe the implementation of a volunteer university student research assistant program that provides students exposure to medicine and clinical research while simultaneously increasing the capacity of an ED's research program. This type of program provides 15 hours per day of research assistant coverage for patient screening and enrolment for minimal risk research studies, and screening for higher risk studies. The latter is true without the added burden or costs of co-administering university course credit or pay for service, which are common features of most of these types of programs currently in operation. We have shown that our volunteer-based program is effective for an ED's research success as well as for its student participants. For other EDs interested in adopting similar programs, we provide the details on how to get such a program started and highlight the structure and non-monetary incentives that facilitate a program's ongoing success.
A new approach to assess student perceptions of gains from an REU program
NASA Astrophysics Data System (ADS)
Houser, C.; Cahill, A. T.; Lemmons, K.
2013-12-01
Research Experience for Undergraduate (REU) programs are designed to recruit students to science and engineering research careers by allowing the students to conduct research with faculty mentors. The success of REU programs is commonly assessed based on student perceptions of gains using a simple Likert scale. Because students tend to be positive about all aspects of their research experience, the results of the Likert scale tend to be meaningless. An alternative assessment technique, similar to Q-analysis, is used to assess the perceived outcomes of an international REU program hosted by Texas A&M University. Students were required to sort commonly identified REU outcomes into a normal distribution, from most agree to least agree, based on what they perceive as their personal gains from the program. Factor analysis reveals 3 groups of students who believe that they gained field and analytical skills (Group 1), greater competence in research and self-confidence (Group 2), and an improved understanding of the scientific method (Group 3). Student perceptions appear to depend on whether the student had previous research experience through classes and/or as a research assistant at their home institution. A comparison to a similar sort of REU outcomes by the faculty mentors suggests that there is a slight disconnect in the perceived gains by the students between the student participants and the faculty mentors.
NASA Astrophysics Data System (ADS)
Hood, Carol E.; Hood, Michael; Woodney, Laura
2016-06-01
We present a model for an undergraduate summer research program in astronomy targeted at 2-year and 4-year students and the short-term success of student participants. California State University San Bernardino (CSUSB) is Hispanic Serving Institution (HSI) serving 16,000 students, with no dominant ethnic or racial majority. Most (80%) CSUSB students are first-generation college students, and many of the students - both minority and “majority” - are economically disadvantaged and cannot afford to take on research projects without compensation. Approximately 60 percent of our students transfer from two year colleges, and all of the local community colleges are also officially designated as minority serving institutions. Mt. San Antonio College (Mt. SAC) is the largest single-campus community college in the state of California. It serves a student population of approximately 60,000 students (~35,000 full-time equivalent), also with no dominant ethnic or racial majority. Mt. SAC is currently 5th in the state in transfer ranking into the CSU system.In an effort to involve students in research as early as possible, we selected 2 students from each campus to participate in a summer research program. This program taught students observational techniques, data reduction and analysis skills, and then allowed them to work on more complex faculty astronomical research projects. These students were not selected based on their grades, or specific courses completed, simply based on their essays expressing their interests in astronomy. Students were only required to have already completed at least 1 physics or astronomy class and typically would be classified as freshman or sophomores. This program ran for 2 summers, before funding ran out. By the end of each summer, students were able to run the state-of-the-art campus observatory, and many chose to continue working on their research projects into the school year. To date, 3 students were selected for further summer research programs at SETI, CIERA, UC-Irvine, and NASA centers JPL and Armstrong. An additional 3 students have obtained employment directly or indirectly related to the skills they developed in the program and 2 of the Mt. SAC students have transferred to 4-year institutions.
BRIE: The Penn State Biogeochemical Research Initiative for Education
NASA Astrophysics Data System (ADS)
Freeman, K. H.; Brantley, S. L.; Brenchley, J.
2003-12-01
Few scientists are prepared to address the interdisciplinary challenges of biogeochemical research due to disciplinary differences in vocabulary, technique, and scientific paradigm. Thus scientists and engineers trained in traditional disciplines bring a restricted view to the study of environmental systems, which can limit their ability to exploit new techniques and opportunities for scientific advancement. Although the literature is effusive with enthusiasm for interdisciplinary approaches to biogeochemistry, there remains the basic difficulty of cross-training geological and biological scientists. The NSF-IGERT funded Biogeochemical Research Initiative for Education (BRIE) program at Penn State is specifically designed to break down both disciplinary and institutional barriers and it has fostered cross-disciplinary collaboration and training since 1999. Students and faculty are drawn from environmental engineering, geochemistry, soil science, chemistry and microbiology, and the program is regarded on the Penn State campus as a successful example of how interdisciplinary science can best be promoted. There are currently 23 Ph.D. students funded by the program, with an additional 7 affiliated students. At present, a total of 6 students have completed doctoral degrees, and they have done so within normal timeframes. The program is "discipline-plus," whereby students enroll in traditional disciplinary degree programs, and undertake broad training via 12 credits of graduate coursework in other departments. Students are co-advised by faculty from different disciplines, and engage in interdisciplinary research facilitated by research "credit cards." Funding is available for international research experiences, travel to meetings, and other opportunities for professional development. Students help institutionalize interdisciplinary training by designing and conducting a teaching module that shares their expertise with a class in another department or discipline. Community building through social activities and scientific forums is a priority in both the undergraduate and graduate programs. In addition, entering Ph.D. students build cohort identity by taking a course that introduces them to BRIE faculty and research facilities through hands-on laboratory and field-based research activities. The BRIE undergraduate summer internship program has provided interdisciplinary research opportunities for a total of 35 students over the past five summers. This program aims to recruit students to the Ph.D. program, and at present, two Ph.D. students have entered this way. Our efforts have focused on attracting students from under-represented groups. Diversity in this program has been above national norms: and summer students have include 10 (29 %) African-American or Hispanic-American students, and 25 (over 70 %) females. The Ph.D. students and graduates are 50% female, with three students from minority populations.
ERIC Educational Resources Information Center
Morales, Danielle X.; Grineski, Sara E.; Collins, Timothy W.
2017-01-01
Undergraduate research experiences are a "high impact" educational practice that confer benefits to students. However, little attention has been paid to understanding faculty motivation to mentor undergraduate students through research training programs, even as the number of programs has grown, requiring increasing numbers of faculty…
Health Science Students' Perception about Research Training Programs Offered in Saudi Universities
ERIC Educational Resources Information Center
Al Kuwaiti, Ahmed; Subbarayalu, Arun Vijay
2015-01-01
Purpose: The purpose of this paper was to examine the perceptions of students of health sciences on research training programs offered at Saudi universities. Design/methodology/approach: A cross-sectional survey design was adopted to capture the perceptions of health science students about research training programs offered at selected Saudi…
Fifth Grade Students' Understanding of Ratio and Proportion in an Engineering Robotics Program
ERIC Educational Resources Information Center
Ortiz, Araceli Martinez
2010-01-01
The research described in this dissertation explores the impact of utilizing a LEGO-robotics integrated engineering and mathematics program to support fifth grade students' learning of ratios and proportion in an extracurricular program. The research questions guiding this research study were (1) how do students' test results compare for students…
ERIC Educational Resources Information Center
Ghee, Medeva; Keels, Micere; Collins, Deborah; Neal-Spence, Cynthia; Baker, Earnestine
2016-01-01
Although the importance of undergraduate research experiences in preparing students for graduate study and research careers is well documented, specific examination of program components is needed to assess the impact of these programs on underrepresented (UR) students. The Leadership Alliance, a consortium of leading PhD-granting and…
Hall, Gordon C Nagayama; Allard, Carolyn B
2009-07-01
The top 86 students were selected from a pool of approximately 400 applicants to a summer clinical psychology research training program for undergraduate students of color. Forty-three of the students were randomly assigned to 1 of 2 clinical psychology research training programs, and 43 were randomly assigned to a control condition without training. The multicultural version of the training program emphasized the cultural context of psychology in all areas of training, whereas cultural context was de-emphasized in the monocultural version of the program. Although the cultural content of the 2 training programs was effectively manipulated as indicated by a fidelity check by an outside expert, there were no significant differences between the effects of the 2 programs on the outcomes measured in this study. The primary differences in this study were between students who did versus those who did not participate in a training program. Sixty-five percent of the students who completed the multicultural training program applied to graduate schools in psychology, compared with 47% of those who completed the monocultural training program, and 31% of those in the control group. Participation in summer research training programs also increased self-perceptions of multicultural competence.
The short-term and long-term impact of a brief aging research training program for medical students.
Barron, Jeremy S; Bragg, Elizabeth; Cayea, Danelle; Durso, Samuel C; Fedarko, Neal S
2015-01-01
Summer training in aging research for medical students is a strategy for improving the pipeline of medical students into research careers in aging and clinical care of older adults. Johns Hopkins University has been offering medical students a summer experience of mentored research, research training, and clinical shadowing since 1994. Long-term outcomes of this program have not been described. The authors surveyed all 191 participants who had been in the program from 1994-2010 (60% female and 27% underrepresented minorities) and received a 65.8% (N = 125) response rate. The authors also conducted Google and other online searches to supplement study findings. Thirty-seven percent of those who have completed training are now in academic medicine, and program participants have authored or coauthored 582 manuscripts. Among survey respondents, 95.1% reported that participation in the Medical Student Training in Aging Research program increased their sensitivity to the needs of older adults. This program may help to build commitment among medical students to choose careers in aging.
Scott, J E; de Vries, J; Iacopino, A M
2008-12-01
Research in the context of the dental school has traditionally been focused on institutional/faculty accomplishments and generating new knowledge to benefit the profession. Only recently have significant efforts been made to expand the overall research programming into the formal dental curriculum, to provide students with a baseline exposure to the research and critical thinking processes, encourage evidence-based decision-making, and stimulate interest in academic/research careers. Various approaches to curriculum reform and the establishment of multiple levels of student research opportunities are now part of the educational fabric of many dental schools worldwide. Many of the preliminary reports regarding the success and vitality of these programs have used outcomes measures and metrics that emphasize cultural changes within institutions, student research productivity, and student career preferences after graduation. However, there have not been any reports from long-standing programs (a minimum of 25 years of cumulative data) that describe dental school graduates who have had the benefit of research/training experiences during their dental education. The University of Manitoba Faculty of Dentistry initiated a BSc Dent program in 1980 that awarded a formal degree for significant research experiences taking place within the laboratories of the Faculty-based researchers and has continued to develop and expand this program. The success of the program has been demonstrated by the continued and increasing demands for entry, the academic achievements of the graduates, and the numbers of graduates who have completed advanced education/training programs or returned to the Faculty as instructors. Analysis of our long-term data validates many recent hypotheses and short-term observations regarding the benefits of dental student research programs. This information may be useful in the design and implementation of dental student research programs at other dental schools.
ERIC Educational Resources Information Center
Alfakih, Ahmed Hassan
2017-01-01
The study examined the impact of a training program on enhancing postgraduate students' research skills in preparing a research proposal. The nature of the skills required to prepare a research proposal were first determined using a questionnaire. A training program for improving such skills was then constructed and seven postgraduate students in…
NASA Astrophysics Data System (ADS)
Moser, F. C.; Allen, M. R.; Montoya-Ospina, R. A.; Maldonado, P.; Barberena-Arias, M.; Olivo-Delgado, C.; Harris, L.; Pierson, J. J.; Alvarez, J. P.
2015-12-01
Here we consider how mentoring, both traditional and peer based, contributes to successful student outcomes in undergraduate research programs and we present several approaches to encourage positive mentor-mentee relationships. From several different research mentoring programs with undergraduates in Maryland and in Puerto Rico, we find that some mentoring techniques are universally useful, while others need to be tailored to a specific program and mentee population. Our programs differ in length, student composition, and student expectations, we find that success occurs across-the-board when mentors quickly establish rapport with their students and reach an early joint understanding of the program's requirements and the students' capabilities and needs through immersive orientations early in the program. Alternatively, mentors have to customize their approaches (e.g. simplify presentations of concepts, increase time for questions) when they encounter differences in student knowledge levels and cultural disconnects (e.g. language barriers, unfamiliarity with research labs and academia). Our current approach to improving and evaluating mentoring includes using a system of multiple mentor tiers (peer, near-peer, faculty, and program leaders), multiple qualitative and quantitative evaluations during the program, and post-research experience student outreach, all of which we believe improve student outcomes. Although we have measures of mentee success (e.g., presenting at national meetings, pursuing additional research experiences, applying to graduate school in marine science-related fields, etc.), we continue to look for additional short and long-term evaluation techniques that may help us to distinguish between the influence of mentoring and that of other program attributes (e.g. lab and field experiences, professional development seminars, ethics training, etc.) on student achievement.
The Woods Hole Partnership Education Program (PEP): Broadening Participation in the Geosciences
NASA Astrophysics Data System (ADS)
Scott, O.; Jearld, A., Jr.; Liles, G.; Gutierrez, B.
2015-12-01
In March 2009, the Woods Hole Diversity Initiative launched the Partnership Education Program (PEP), a multi-institutional effort to increase diversity in the student population (and ultimately the work force) in the Woods Hole science community. PEP, a summer research internship program, is open to students of all backgrounds but is designed especially to provide opportunities for URM in science, technology, engineering, and mathematics (STEM). PEP is a 10-week program which provides intensive mentored research, a credit-bearing course and supplemental career and professional development activities. Students have opportunities to work in various research areas of geosciences. PEP is emerging as an effective and sustainable approach to bringing students into the STEM research community. PEP is carefully structured to provide critical support for students as they complete their undergraduate experience and prepare for geosciences careers and/or graduate school. The PEP experience is intended to provide students with an entry into the Woods Hole science community, one of the most vibrant marine and environmental research communities in the world. The program aims to provide a first-hand introduction to emerging issues and real-world training in the research skills that students need to advance in science, either as graduate students or bachelors-level working scientists. This is a long-recognized need and efforts are being made to ensure that the students begin to acquire skills and aptitudes that position them to take advantage of a wide range of opportunities. Of note is that the PEP is transitioning into a two year program where students are participating in a second year as a research intern or employee. Since 2013, at least four partner institutions have invited PEP alumni to participate in their respective programs as research assistants and/or full-time technicians.
The Summer Undergraduate Research Internship Program at the Pisgah Astronomical Research Institute
NASA Astrophysics Data System (ADS)
Cline, J. Donald; Castelaz, M.; Whitworth, C.; Clavier, D.; Owen, L.; Barker, T.
2012-01-01
Pisgah Astronomical Research Institute (PARI) offers summer undergraduate research internships. PARI has received support for the internships from the NC Space Grant Consortium, NSF awards for public science education, private donations, private foundations, and through a collaboration with the Pisgah Astronomical Research and Education Center of the University of North Carolina - Asheville. The internship program began in 2001 with 4 students. This year 7 funded students participated in 2011. Mentors for the interns include PARI's Science, Education, and Information Technology Directors and visiting faculty who are members of the PARI Research Affiliate Faculty program. Students work with mentors on radio and optical astronomy research, electrical engineering for robotic control of instruments, software development for instrument control and software for citizen science projects, and science education by developing curricula and multimedia and teaching high school students in summer programs at PARI. At the end of the summer interns write a paper about their research which is published in the PARI Summer Student Proceedings. Several of the students have presented their results at AAS Meetings. We will present a summary of specific research conducted by the students with their mentors, the logistics for hosting the PARI undergraduate internship program, and plans for growth based on the impact of an NSF supported renovation to the Research Building on the PARI campus.
The Summer Undergraduate Research Internship Program at the Pisgah Astronomical Research Institute
NASA Astrophysics Data System (ADS)
Castelaz, Michael W.; Cline, J.; Whitworth, C.; Clavier, D.
2011-01-01
Pisgah Astronomical Research Institute (PARI) offers summer undergraduate research internships. PARI has received support for the internships from the NC Space Grant Consortium, NSF awards for public science education, private donations, private foundations, and through a collaboration with the Pisgah Astronomical Research and Education Center of the University of North Carolina - Asheville. The internship program began in 2001 with 4 students. This year 9 funded students participated in 2010. Mentors for the interns include PARI's Directors of Science, Education, and Information Technology and visiting faculty who are members of the PARI Research Affiliate Faculty program. Students work with mentors on radio and optical astronomy research, electrical engineering for robotic control of instruments, software development for instrument control and applets for citizen science projects, and science education by developing curricula and multimedia and teaching high school students in summer programs at PARI. At the end of the summer interns write a paper about their research which is published in the PARI Summer Student Proceedings. Several of the students have presented their results at AAS Meetings. We will present a summary of specific research conducted by the students with their mentors, the logistics for hosting the PARI undergraduate internship program, and plans for growth based on the impact of an NSF supported renovation to the Research Building on the PARI campus.
Using a Summer REU to Help Develop the Next Generation of Mathematical Ecologists.
Bennie, Barbara; Eager, Eric Alan; Peirce, James P; Sandland, Gregory J
2018-04-01
Understanding the complexities of environmental issues requires individuals to bring together ideas and data from different disciplines, including ecology and mathematics. With funding from the national science foundation (NSF), scientists from the University of Wisconsin-La Crosse and the US geological survey held a research experience for undergraduates (REU) program in the summer of 2016. The goals of the program were to expose students to open problems in the area of mathematical ecology, motivate students to pursue STEM-related positions, and to prepare students for research within interdisciplinary, collaborative settings. Based on backgrounds and interests, eight students were selected to participate in one of two research projects: wind energy and wildlife conservation or the establishment and spread of waterfowl diseases. Each research program was overseen by a mathematician and a biologist. Regardless of the research focus, the program first began with formal lectures to provide students with foundational knowledge followed by student-driven research projects. Throughout this period, student teams worked in close association with their mentors to create, parameterize and evaluate ecological models to better understand their systems of interest. Students then disseminated their results at local, regional, and international meetings and through publications (one in press and one in progress). Direct and indirect measures of student development revealed that our REU program fostered a deep appreciation for and understanding of mathematical ecology. Finally, the program allowed students to gain experiences working with individuals with different backgrounds and perspectives. Taken together, this REU program allowed us to successfully excite, motivate and prepare students for future positions in the area of mathematical biology, and because of this it can be used as a model for interdisciplinary programs at other institutions.
1994-12-01
Research Group at the Phillips Laboratory at Kirtland Air Force Base...for Summer Graduate Student Research Program Phillips Laboratory Sponsored by: Air Force Office of Scientific Research Boiling Air Force Base, DC...2390 S. York Street Denver, CO 80208-0177 Final Report for: Summer Faculty Research Program Phillips Laboratory Sponsored by: Air Force
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2002-10-09
oak-B202--During the summer of 1999, 12 students from Rochester-area high schools participated in the Laboratory for Laser Energetics' Summer High School Research Program. The goal of this program is to excite a group of high school students about careers in the areas of science and technology by exposing them to research in a state-of-the-art environment. Too often, students are exposed to ''research'' only through classroom laboratories that have prescribed procedures and predictable results. In LLE's summer program, the students experience all of the trials, tribulations, and rewards of scientific research. By participating in research in a real environment, the studentsmore » often become more enthusiastic about careers in science and technology. In addition, LLE gains from the contributions of the many highly talented students who are attracted to the program. The students spent most of their time working on their individual research projects with members of LLE's technical staff. The projects were related to current research activities at LLE and covered a broad range of areas of interest including laser modeling, diagnostic development, chemistry, liquid crystal devices, and opacity data visualization. The students, their high schools, their LLE supervisors and their project titles are listed in the table. Their written reports are collected in this volume. The students attended weekly seminars on technical topics associated with LLE's research. Topics this year included lasers, fusion, holography, optical materials, global warming, measurement errors, and scientific ethics. The students also received safety training, learned how to give scientific presentations, and were introduced to LLE's resources, especially the computational facilities. The program culminated with the High School Student Summer Research Symposium on 25 August at which the students presented the results of their research to an audience that included parents, teachers, and members of LIX. Each student spoke for approximately ten minutes and answered questions.« less
NASA Astrophysics Data System (ADS)
Anderson, S. P.; Smith, L. K.; Gold, A. U.; Batchelor, R. L.; Monday, B.
2014-12-01
Research Experience for Undergraduates (REU) programs commonly serve students already committed to careers in science. To spark student interest in the sciences early in their college career, the CIRES diversity initiative teamed with the Boulder Creek Critical Zone Observatory to build an REU for Colorado community college students. A group of 7 students was selected from consideration of diversity, prior training, and personal statements. Each student was paired with a research science mentor. Field excursions and team-building exercises filled the first week of the 8-week program. Students received weekly training in science communication, responsible conduct of research, use of spreadsheet and graphing software, and statistical analysis. Each student presented their research in a poster session, an oral presentation, and a written report. Several aspects of this pilot program worked well. The students formed a very supportive cohort, despite the fact that they were not in residence. Cohesion grew out of the immersion in field trips, and was reinforced with weekly check-ins. The trainings were essential for seeing projects through to written and oral presentations. Teaming students for fieldwork was an effective strategy to build support, and reduce mentor fatigue. Each student produced useful data. In the future, we would include a workshop on personal finances to address a clear need. Transportation support will be provided. A residential program might attract some but could preclude participation of students with families or other life-issues. Personal tutoring tailored to research projects would address low math skills. All 7 students completed the program; several elected to submit to the undergraduate virtual poster session at Fall AGU. Students all reported enormous personal and academic growth. Some are discussing transfer and graduate school opportunities with their mentors. The enthusiasm and appreciation of the students was unparalleled.
ERIC Educational Resources Information Center
Eeds, Angela; Vanags, Chris; Creamer, Jonathan; Loveless, Mary; Dixon, Amanda; Sperling, Harvey; McCombs, Glenn; Robinson, Doug; Shepherd, Virginia L.
2014-01-01
The School for Science and Math at Vanderbilt (SSMV) is an innovative partnership program between a Research I private university and a large urban public school system. The SSMV was started in 2007 and currently has 101 students enrolled in the program, with a total of 60 students who have completed the 4-yr sequential program. Students attend…
Unique educational opportunities at the Missouri University research reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ketring, A.R.; Ross, F.K.; Spate, V.
1997-12-01
Since the Missouri University Research Reactor (MURR) went critical in 1966, it has been a center where students from many departments conduct their graduate research. In the past three decades, hundreds of graduate students from the MU departments of chemistry, physics, anthropology, nuclear engineering, etc., have received masters and doctoral degrees based on research using neutrons produced at MURR. More recently, the educational opportunities at MURR have been expanded to include undergraduate students and local high school students. Since 1989 MURR has participated in the National Science Foundation-funded Research Experience for Undergraduates (REU) program. As part of this program, undergraduatemore » students from universities and colleges throughout the United States come to MURR and get hands-on research experience during the summer. Another program, started in 1994 by the Nuclear Analysis Program at MURR, allows students from a local high school to conduct a neutron activation analysis (NAA) experiment. We also conduct tours of the center, where we describe the research and educational programs at MURR to groups of elementary school children, high school science teachers, state legislators, professional organizations, and many other groups.« less
The SUPER Program: A Research-based Undergraduate Experience
NASA Astrophysics Data System (ADS)
Ernakovich, J. G.; Boone, R. B.; Boot, C. M.; Denef, K.; Lavallee, J. M.; Moore, J. C.; Wallenstein, M. D.
2014-12-01
Producing undergraduates capable of broad, independent thinking is one of the grand challenges in science education. Experience-based learning, specifically hands-on research, is one mechanism for increasing students' ability to think critically. With this in mind, we created a two-semester long research program called SUPER (Skills for Undergraduate Participation in Ecological Research) aimed at teaching students to think like scientists and enhancing the student research experience through instruction and active-learning about the scientific method. Our aim was for students to gain knowledge, skills, and experience, and to conduct their own research. In the first semester, we hosted active-learning workshops on "Forming Hypotheses", "Experimental Design", "Collecting and Managing Data", "Analysis of Data", "Communicating to a Scientific Audience", "Reading Literature Effectively", and "Ethical Approaches". Each lesson was taught by different scientists from one of many ecological disciplines so that students were exposed to the variation in approach that scientists have. In the second semester, students paired with a scientific mentor and began doing research. To ensure the continued growth of the undergraduate researcher, we continued the active-learning workshops and the students attended meetings with their mentors. Thus, the students gained technical and cognitive skills in parallel, enabling them to understand both "the how" and "the why" of what they were doing in their research. The program culminated with a research poster session presented by the students. The interest in the program has grown beyond our expectations, and we have now run the program successfully for two years. Many of the students have gone on to campus research jobs, internships and graduate school, and have attributed part of their success in obtaining their positions to their experience with the SUPER program. Although common in other sciences, undergraduate research experiences are rare in ecology. We feel that development and implementation of these types of active-learning, research based programs can help universities to produce undergraduate researchers capable of contributing meaningfully to research, and to greater societal issues by enhancing their problem solving and critical thinking skills.
Summer Student Research Presentations
NASA Technical Reports Server (NTRS)
Casey, Carol (Editor)
2005-01-01
In 2005, over 150 undergraduate students and first-year graduate students participated in a variety of research programs coordinated by the Jet Propulsion Laboratory Education Office in conjunction with the Caltech Student- Faculty Programs Office. The programs give students the opportunity to conduct research under the guidance of an experienced mentor for a 10-week period. Students gain valuable experience while contributing to the ongoing goals of JPL. Students are required to submit progress reports and an abstract, and to give an oral presentation of their projects to an audience of JPL staff and other students. This set of abstracts provides brief descriptions of the projects that were conducted by these students and their mentors. A schedule of student talks is also included.
Exploration of the Moon and Asteroids by Secondary Students
NASA Astrophysics Data System (ADS)
Shaner, A. J.; Bakerman, M. N.; Buxner, S.
2016-12-01
Since 2014, the Exploration of the Moon and Asteroids by Secondary Students, or ExMASS, program provides an opportunity for students to participate in authentic scientific research. The ExMASS program is an effort managed by the Center for Lunar Science and Exploration (CLSE). Led by the Lunar and Planetary Institute and Johnson Space Center, CLSE is one of nine teams comprising NASA's Solar System Exploration Research Virtual Institute (SSERVI). Over the course of one academic year, 10 teams of U.S. high school students conduct their own scientific investigations of Earth's Moon, or asteroids, with guidance from a scientist advisor. The program includes two elements: 1) two guided-inquiry introductory research activities that builds student knowledge of current lunar/asteroid science and lunar/asteroid data, and 2) an open-inquiry research project in which the students apply their knowledge to a self-defined project. Because the research is student-driven, it is not necessarily original research; original research is therefore not required. However, one team's research has been published in a professional journal. At the end of the school year, teams submit an abstract and research poster which are scored by a panel a judges. The top four scoring teams gather virtually to give short presentations to the judges. After presentations and time for Q&A, the judges choose one team to present in person at the Exploration Science Forum (ESF). The posters of all finalist schools are displayed at the ESF. The ExMASS program is evaluated by collecting data on changes in students' lunar/asteroid content knowledge, student attitudes toward science and science careers, and student perceptions of the processes of science in which their team participated. Exit surveys for teachers, students, and advisors are also distributed at the end of each program year to gather general feedback about the program and its impact. Results of this data from the first two years of the ExMASS program (2014 and 2015) will be discussed.
NASA Astrophysics Data System (ADS)
Kefauver, S. C.; Ustin, S.; Davey, S. W.; Furey, B. J.; Gartner, A.; Kurzweil, D.; Siebach, K. L.; Slawsky, L.; Snyder, E.; Trammell, J.; Young, J.; Schaller, E.; Shetter, R. E.
2011-12-01
The Student Airborne Research Program (SARP) of the National Aeronautics and Space Administration (NASA) and the National Suborbital Education and Research Center (NSERC) is a unique six week multidisciplinary paid training program which directly integrates students into the forefront of airborne remote sensing science. Students were briefly trained with one week of lectures and laboratory exercises and then immediately incorporated into ongoing research projects which benefit from access to the DC-8 airborne platform and the MODIS-ASTER Airborne Simulator (MASTER) sensor. Students were split into three major topical categories of Land, Ocean, and Air for the data collection and project portions of the program. This poster details the techniques and structure used for the student integration into ongoing research, professional development, hypothesis building and results as developed by the professor and mentor of the Land focus group. Upon assignment to the Land group, students were issued official research field protocols and split into four field specialty groups with additional specialty reading assignments. In the field each group spent more time in their respective specialty, but also participated in all field techniques through pairings with UC Davis research team members using midday rotations. After the field campaign, each specialty group then gave summary presentations on the techniques, preliminary results, and significance to overall group objectives of their specialty. Then students were required to submit project proposals within the bounds of Land airborne remote sensing science and encouraging, but not requiring the use of the field campaign data. These proposals are then reviewed by the professor and mentor and students are met with one by one to discuss the skills of each student and objectives of the proposed research project. The students then work under the supervision of the mentor and benefit again from professor feedback in a formal practice presentation session. At the end of the six week program, students present to all SARP program focus groups, mentors, professors, and, in addition, NSERC and NASA airborne science and education program directors and personnel.
NASA's Student Airborne Research Program (SARP) 2009-2017
NASA Astrophysics Data System (ADS)
Schaller, E. L.
2017-12-01
The NASA Student Airborne Research Program (SARP) is a unique summer internship program for rising senior undergraduates majoring in any of the STEM disciplines. SARP participants acquire hands-on research experience in all aspects of a NASA airborne campaign, including flying onboard NASA research aircraft while studying Earth system processes. Approximately thirty-two students are competitively selected each summer from colleges and universities across the United States. Students work in four interdisciplinary teams to study surface, atmospheric, and oceanographic processes. Participants assist in the operation of instruments onboard NASA aircraft where they sample and measure atmospheric gases and image land and water surfaces in multiple spectral bands. Along with airborne data collection, students participate in taking measurements at field sites. Mission faculty and research mentors help to guide participants through instrument operation, sample analysis, and data reduction. Over the eight-week program, each student develops an individual research project from the data collected and delivers a conference-style final presentation on their results. Each year, several students present the results of their SARP research projects in scientific sessions at this meeting. We discuss the results and effectiveness of the program over the past nine summers and plans for the future.
Bringing Seismological Research into the School Setting
NASA Astrophysics Data System (ADS)
Pavlis, G. L.; Hamburger, M. W.
2004-12-01
One of the primary goals of educational seismology programs is to bring inquiry-based research to the middle- and high-school classroom setting. Although it is often stated as a long-term goal of science outreach programs, in practice there are many barriers to research in the school setting, among them increasing emphasis on test-oriented training, decreasing interest and participation in science fairs, limited teacher confidence and experience for mentoring research, insufficient student preparedness for research projects, and the short term of university involvement (typically limited to brief one-day encounters). For the past three+ years we have tried to address these issues through a focused outreach program we have called the PEPP Research Fellows Program. This is treated as an honors program in which high school teachers in our group nominate students with interests in science careers. These students are invited to participate in the program, and those who elect to take part participate in a one-day education and training session in the fall. Rather than leave research projects completely open, we direct the students at toward one of two specific, group-oriented projects (in our case, one focusing on local recordings of mining explosions, and a second on teleseismic body-wave analysis), but we encourage them to act as independent researchers and follow topics of interest. The students then work on seismic data from the local educational network or from the IRIS facilities. Following several months of informal interaction with teachers and students (email, web conferencing, etc.), we bring the students and teachers to our university for a weekend research symposium in the spring. Students present their work in oral or poster form and prizes are given for the best papers. Projects range from highly local projects (records of seismic noise at school X) to larger-scale regional projects (analysis of teleseismic P-wave delays at PEPP network stations) From 20 to 40 students and teachers have participated in the program in the past three years and independent work by students has been outstanding including several students' work that have won awards at regional and national science fairs. The program is feasible because we had a pool of dedicated teachers with experience in using seismographs in schools as a legacy of the Princeton Earth Physics Program (PEPP). It provides a model for focused outreach to top science students to give them an early research experience.
Student Perceptions of an Online Medical Dosimetry Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lenards, Nishele, E-mail: lenards.nish@uwlax.ed
2011-07-01
The University of Wisconsin-La Crosse offers the first online medical dosimetry program in the nation. There is no data to research a program of this type. This research consisted of the evaluation of other distance education programs including health profession programs in addition to face-to-face medical dosimetry programs. There was a need to collect and analyze student perceptions of online learning in medical dosimetry. This research provided a guide for future implementation by other programs as well as validated the University of Wisconsin-La Crosse program. Methodology used consisted of an electronic survey sent to all previous and currently enrolled studentsmore » in the University of Wisconsin-La Crosse medical dosimetry program. The survey was both quantitative and qualitative in demonstrating attitudinal perceptions of students in the program. Quantitative data was collected and analyzed using a 5-point Likert scale. Qualitative data was gathered based on the open-ended responses and the identifying themes from the responses. The results demonstrated an overall satisfaction with this program, the instructor, and the online courses. Students felt a sense of belonging to the courses and the program. Considering that a majority of the students had never taken an online course previously, the students felt there were no technology issues. Future research should include an evaluation of board exam statistics for students enrolled in the online and face-to-face medical dosimetry programs.« less
Cornell Astronomy REU: Casting a Wide Net to Increase Access to Research Opportunities
NASA Astrophysics Data System (ADS)
Fernandez de Castro, Patricia; Haynes, Martha P.
2018-01-01
We describe a Research Experience for Undergraduates program in astrophysics and planetary science hosted in a major university setting that is geared especially but not exclusively to students who matriculate at smaller colleges and universities without major astronomy research programs, have not previously had off-campus research experiences and/or have non-traditional academic backgrounds.Individual research projects which students undertake with faculty mentors and their research groups are the keystone of the program. Built around this central activity are a set of other components that aim to expose students to the broad areas of astrophysical and planetary science research and to foster their appreciation of the research enterprise and their possible place within it. We describe the professional development activities that are offered to students, including lectures and workshops on a broad range of topics in astrophysics and planetary science, research group meetings, tutorials on research and scientific presentation skills, participation in outreach, education on the graduate school experience and application process, and discussions of the scientific enterprise, career paths and options in astronomy and related fields as well as the role REU group meetings with the program director (which complement meetings students attend within the context of their research group) play in developing students’ scientific competencies and pre-professional development. Also described are program elements that aim to make the program accessible to all students, including older students, those in relationships or with children as well as cohort building. Finally, we discuss lessons learned on how recruiting on merit and suitability to the research projects on offer, with a strong emphasis on smaller colleges and universities without major astronomy research programs can work towards a broader and more inclusive recruitment.This work was supported by NSF award AST-1156780.
NASA Propulsion Engineering Research Center, volume 1
NASA Technical Reports Server (NTRS)
1993-01-01
Over the past year, the Propulsion Engineering Research Center at The Pennsylvania State University continued its progress toward meeting the goals of NASA's University Space Engineering Research Centers (USERC) program. The USERC program was initiated in 1988 by the Office of Aeronautics and Space Technology to provide an invigorating force to drive technology advancements in the U.S. space industry. The Propulsion Center's role in this effort is to provide a fundamental basis from which the technology advances in propulsion can be derived. To fulfill this role, an integrated program was developed that focuses research efforts on key technical areas, provides students with a broad education in traditional propulsion-related science and engineering disciplines, and provides minority and other under-represented students with opportunities to take their first step toward professional careers in propulsion engineering. The program is made efficient by incorporating government propulsion laboratories and the U.S. propulsion industry into the program through extensive interactions and research involvement. The Center is comprised of faculty, professional staff, and graduate and undergraduate students working on a broad spectrum of research issues related to propulsion. The Center's research focus encompasses both current and advanced propulsion concepts for space transportation, with a research emphasis on liquid propellant rocket engines. The liquid rocket engine research includes programs in combustion and turbomachinery. Other space transportation modes that are being addressed include anti-matter, electric, nuclear, and solid propellant propulsion. Outside funding supports a significant fraction of Center research, with the major portion of the basic USERC grant being used for graduate student support and recruitment. The remainder of the USERC funds are used to support programs to increase minority student enrollment in engineering, to maintain Center infrastructure, and to develop research capability in key new areas. Significant research programs in propulsion systems for air and land transportation complement the space propulsion focus. The primary mission of the Center is student education. The student program emphasizes formal class work and research in classical engineering and science disciplines with applications to propulsion.
An Undergraduate Research Fellowship Program to Prepare Nursing Students for Future Workforce Roles
Slattery, Mary Jo; Logan, Bridget; Mudge, Bridget; Secore, Karen; Von Reyn, LInda J.; Maue, Robert A.
2016-01-01
It is important for nurses today and for those joining the workforce in the future to have familiarity and training with respect to interprofessional research, evidence-based practice, and quality improvement. In an effort to address this need, we describe a 10-week summer research program that immerses undergraduate nursing students in a broad spectrum of clinical and translational research projects as part of their exposure to advanced nursing roles. In doing so, the program increases the ability of the students to participate in research, effectively interact with academic medical center researchers, and incorporate elements of evidence-based practice into future nursing interventions. Their mentors are nurses practicing in roles as nurse researcher, advanced practice nurses involved in evidence-based practice or quality improvement, and clinical trials research nurses. Each student is matched with 3 of these mentors and involved in 3 different projects. Through this exposure, the students benefit from observing multiple nursing roles, taking an active role in research-related activities participating in interdisciplinary learning experiences. Overall, the program provides benefits to the students, who demonstrate measured improvement with respect to the program objectives, and to their mentors and each of the participating organizations. PMID:27964811
Minority International Research Training Program: Global Collaboration in Nursing Research.
ERIC Educational Resources Information Center
McElmurry, Beverly J.; Misner, Susan J.; Buseh, Aaron G.
2003-01-01
The Minority International Research Training Program pairs minority nursing students with faculty mentors at international sites for short-term research. A total of 26 undergraduate, 22 graduate, and 6 postdoctoral students have participated. Challenges include recruitment, orientation, and preparation of students; identification and preparation…
An Online High School "Shepherding" Program: Teacher Roles and Experiences Mentoring Online Students
ERIC Educational Resources Information Center
Drysdale, Jeffery S.; Graham, Charles R.; Borup, Jered
2014-01-01
Several online programs use on-site facilitators to create a stronger sense of community and reduce student dropout. However, very little research addresses how programs that are fully online can provide their students with comparable support. Using K-12 online research, this case study analyzed a "shepherding program" at Mountain…
Lessons Learned: The Evolution of an Undergraduate Research Program
ERIC Educational Resources Information Center
Smith, Gregory; Laker, Lauren; Tesch, Debbie
2013-01-01
Undergraduate research programs are commonplace at many universities. However, little research has been conducted to evaluate their ongoing and long-term effectiveness from the standpoint of the undergraduate student researcher. In an effort to gain perspective from the student researcher, including their thoughts on such a program, a survey was…
Students Are As Mayflies: Strategies For Building Institutional Relationships To Enhance Recruitment
NASA Astrophysics Data System (ADS)
Halpern, J. B.
2013-12-01
Students are like mayflies, they graduate. While undergraduate research programs, especially summer programs, may motivate individuals to take up science as a career, their impact is fleeting on the institutions that they come from. I will describe programs I created to meet this challenge. The NASA/Goddard Faculty and Student Team (FaST) grew out of the NASA Summer Faculty Fellowship Program. The Center selected a faculty based on a short research proposal, CV, and letters of recommendation. Those applying tended to come from primarily undergraduate or smaller universities where research opportunities were limited. The faculty member selected a student, who was also supported by FaST. Among the pleasant surprises was how this motivated the faculty to find funding for additional students. Another surprise was that the faculty member acted as a mentor to summer research students from other programs working in the same laboratory. This occurred because the visiting faculty were in the lab full time without administrative duties and they were used to working with and advising undergraduates. To build the relationship the program funded travel for the NASA colleague to the team's university in the Fall. The NSF sponsored Partnership for Research and Education in Materials is run by the Division of Materials Research. It links together research universities and minority serving institutions. Our PREM at Howard incorporated both Johns Hopkins and Prince Georges Community College. In the last two years, Gallaudet University, a university for the deaf, has become a partner. As part of the five years award renewal, our research university partner has changed and is now Cornell. The PREM runs a summer research program that supports undergraduates from Howard, PGCC and Gallaudet. Howard and PGCC students have spent summers at Hopkins or Cornell. PGCC students first spend a summer at Howard. The PGCC and Gallaudet faculty select their students who will participate in the research program as well as talking part in the work themselves. In addition to the summer program, PGCC has offered nanotechnology seminars in which Howard and Hopkins faculty talked as well as the PGCC students who were part of the summer research. Many of these students have gone on to be selected for REUs at other research universities, as well as to graduate with Bachelor's degrees. One of the community college students mentored in an earlier REU designed with the same principles, earned his PhD at UMBC, did a post doc at Harvard, and showed up this year as an Assistant Professor in Chemical Engineering at Howard. Along the way we have found a number of simple things that broaden the reach of the program, for example, mounting posters created by the research students at their institutions, running a nanotechnology seminar at PGCC during which Howard and JHU faculty spoke as well as the PGCC summer research students, joining in to group meetings at Cornell via webcasting, etc. As time permits some will be detailed. The emphasis has been to identify trustworthy long term faculty partners in institutions serving student populations that the programs are designed to serve and providing them support, professional development opportunities, input into the design of the overall program and control of the program at their institutions.
Summer Research Apprentice Program report. [Summer Research Apprentice Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curington, B.
1982-01-01
The Summer Research Apprentice Program is designed to provide students with their first look at college life while preparing them for possible careers in mathematics, science and engineering. The 23 students, enrolled as college freshmen for 8 hours of college credit, took courses in Trigonometry, College Algebra and introduction to Research (4 students were enrolled in Calculus 1 instead of Trigonometry and College Albebra). During this third year of operation, refinements were made in both the administration of the program and in the method of implementation.
Evaluating an interdisciplinary undergraduate training program in health promotion research.
Misra, Shalini; Harvey, Richard H; Stokols, Daniel; Pine, Kathleen H; Fuqua, Juliana; Shokair, Said M; Whiteley, John M
2009-04-01
The University of California at Irvine Interdisciplinary Summer Undergraduate Research Experience (ID-SURE) program had three objectives: (1) designing an interdisciplinary health promotion training curriculum for undergraduate research fellows; (2) developing measures for evaluating and assessing program-related educational processes and products; and (3) comparing these educational process and product measures between groups of students who did or did not receive the training. A total of 101 students participated in the ID-SURE program during 2005, 2006, and 2007. A longitudinal research design was employed whereby students' interdisciplinary attitudes and behaviors were assessed at the beginning and end of the training program. The interdisciplinary and intellectual qualities of students' academic and research products were assessed at the conclusion of the training activities. In addition, ID-SURE participants' interdisciplinary attitudes, behaviors, and research products were compared to those of 70 participants in another fellowship program that did not have an interdisciplinary training component. Exposing undergraduate research fellows to the interdisciplinary curriculum led to increased participation in, and positive attitudes about, interdisciplinary classroom and laboratory activities. Products, such as the integrative and interdisciplinary quality of student research projects, showed no differences when compared to those of undergraduates who were not exposed to the interdisciplinary curriculum. However, undergraduates exposed to the training engaged in more interdisciplinary behaviors at the end of the program than students who were not trained in interdisciplinary research techniques. The findings from this study offer evidence for the efficacy of the ID-SURE program for training undergraduate students in transdisciplinary concepts, methods, and skills that are needed for effective scientific collaboration. Additionally, this study makes two important contributions to the development and evaluation of interdisciplinary health research training programs: (1) It presents and evaluates a novel curriculum for training undergraduate students in interdisciplinary theories, concepts, and methods of health promotion that can be replicated in other settings and contexts; (2) It provides and tests the reliability of new measures for evaluating interdisciplinary collaborative processes and develops objective criteria for rating the integrative and intellectual quality of students' research products.
2012 Summer Research Experiences for Undergraduates at Pisgah Astronomical Research Institute
NASA Astrophysics Data System (ADS)
Castelaz, Michael W.; Cline, J. D.; Whitworth, C.; Clavier, D.; Owen, L.
2013-01-01
Pisgah Astronomical Research Institute (PARI) offers research experiences for undergraduates (REU). PARI receives support for the internships from the NC Space Grant Consortium, NSF awards, private donations, and industry partner funding. The PARI REU program began in 2001 with 4 students and has averaged 6 students per year over the past 11 years. This year PARI hosted 8 funded REU students. Mentors for the interns include PARI’s Science, Education, and Information Technology staff and visiting faculty who are members of the PARI Research Faculty Affiliate program. Students work with mentors on radio and optical astronomy research, electrical engineering for robotic control of instruments, software development for instrument control and software for citizen science projects, and science education by developing curricula and multimedia and teaching high school students in summer programs at PARI. At the end of the summer interns write a paper about their research which is published in the annually published PARI Summer Student Proceedings. Several of the students have presented their results at AAS Meetings. We will present a summary of specific research conducted by the students with their mentors and the logistics for hosting the PARI undergraduate internship program.
NASA Astrophysics Data System (ADS)
Laursen, S. L.; Weston, T. J.; Thiry, H.
2012-12-01
URSSA is the Undergraduate Research Student Self-Assessment, an online survey instrument for programs and departments to use in assessing the student outcomes of undergraduate research (UR). URSSA focuses on what students learn from their UR experience, rather than whether they liked it. The online questionnaire includes both multiple-choice and open-ended items that focus on students' gains from undergraduate research. These gains include skills, knowledge, deeper understanding of the intellectual and practical work of science, growth in confidence, changes in identity, and career preparation. Other items probe students' participation in important research-related activities that lead to these gains (e.g. giving presentations, having responsibility for a project). These activities, and the gains themselves, are based in research and thus constitute a core set of items. Using these items as a group helps to align a particular program assessment with research-demonstrated outcomes. Optional items may be used to probe particular features that are augment the research experience (e.g. field trips, career seminars, housing arrangements). The URSSA items are based on extensive, interview-based research and evaluation work on undergraduate research by our group and others. This grounding in research means that URSSA measures what we know to be important about the UR experience The items were tested with students, revised and re-tested. Data from a large pilot sample of over 500 students enabled statistical testing of the items' validity and reliability. Optional items about UR program elements were developed in consultation with UR program developers and leaders. The resulting instrument is flexible. Users begin with a set of core items, then customize their survey with optional items to probe students' experiences of specific program elements. The online instrument is free and easy to use, with numeric results available as raw data, summary statistics, cross-tabs, and graphs, and as raw, downloadable data. Finally, URSSA has high content validity based on its research grounding and rigorous development. We will present examples of how URSSA has been used in evaluations of UR programs. A multi-year evaluation of a university-based UR program shows that URSSA items are sensitive to differences in students' prior level of experience with research. For example, experienced student researchers reported greater gains than did their peers new to UR in understanding the process of research and in coming to see themselves as scientists. These differences are consistent with interview data that suggest a developmental progression of gains as students pursue research and gain confidence in their ability to contribute meaningfully. A second example comes from a multi-site evaluation of sites funded by the National Science Foundation's Research Experience for Undergraduates (REU) program in Biology. This study acquired data from nearly 800 students at some 60 Bio REU sites in 2010 and 2011. Results reveal differences in gains among demographic groups, and the general strength of these well-planned programs relative to a comparison sample of UR programs that are not part of REU. Our presentation will demonstrate the evaluative use of URSSA and its potential applications to undergraduate research in the geosciences.
USAF/SCEEE Graduate Student Summer Research Program (1984). Program Management Report.
1984-10-01
adjunct effort to the SFRP. Its purpose is to provide funds for selected graduate students to do research at an appropriate Air Force laboratory or...under the Summer Faculty Research Program or an Air Force laboratory designated *- colleague. The students were U.S. citizens, working toward . an...faculty member; excellent laboratory experience. Good opportunity to become acquainted with Air Force research . Good concept. Good stipend
Ghee, Medeva; Keels, Micere; Collins, Deborah; Neal-Spence, Cynthia; Baker, Earnestine
2016-01-01
Although the importance of undergraduate research experiences in preparing students for graduate study and research careers is well documented, specific examination of program components is needed to assess the impact of these programs on underrepresented (UR) students. The Leadership Alliance, a consortium of leading PhD-granting and minority-serving institutions (MSIs), has leveraged its diverse partnership to place UR students from MSI and non-MSI institutions in competitive research environments through its national Summer Research Early Identification Program. Using longitudinal pre/post data collected from student surveys, we applied social cognitive career theory as a conceptual framework to examine how research engagement, skill development, and mentorship aspects of a summer research program affect students’ commitment to pursue research careers. Self-reported knowledge of research skills, time engaged in research activity, and students’ understanding of and attitudes toward pursuing graduate study were measured in relation to the classification of students’ home undergraduate institution, level of students’ pre-existing research experience, and demographic factors. Our results provide evidence of specific programmatic components that are beneficial for UR students from varying academic and cultural backgrounds. This study describes important aspects of summer research programs that will contribute to students’ ability to persist in science careers. PMID:27496359
Crockett, Elahé T
2014-09-24
The National Institutes of Health has recognized a compelling need to train highly qualified individuals and promote diversity in the biomedical/clinical sciences research workforce. In response, we have developed a research-training program known as REPID (Research Education Program to Increase Diversity among Health Researchers) to prepare students/learners to pursue research careers in these fields and address the lack of diversity and health disparities. By inclusion of students/learners from minority and diverse backgrounds, the REPID program aims to provide a research training and enrichment experience through team mentoring to inspire students/learners to pursue research careers in biomedical and health-related fields. Students/learners are recruited from the University campus from a diverse population of undergraduates, graduates, health professionals, and lifelong learners. Our recruits first enroll into an innovative on-line introductory course in Basics and Methods in Biomedical Research that uses a laboratory Tool-Kit (a lab in a box called the My Dr. ET Lab Tool-Kit) to receive the standard basics of research education, e.g., research skills, and lab techniques. The students/learners will also learn about the responsible conduct of research, research concept/design, data recording/analysis, and scientific writing/presentation. The course is followed by a 12-week hands-on research experience during the summer. The students/learners also attend workshops and seminars/conferences. The students/learners receive scholarship to cover stipends, research related expenses, and to attend a scientific conference. The scholarship allows the students/learners to gain knowledge and seize opportunities in biomedical and health-related careers. This is an ongoing program, and during the first three years of the program, fifty-one (51) students/learners have been recruited. Thirty-six (36) have completed their research training, and eighty percent (80%) of them have continued their research experiences beyond the program. The combination of carefully providing standard basics of research education and mentorship has been successful and instrumental for training these students/learners and their success in finding biomedical/health-related jobs and/or pursuing graduate/medical studies. All experiences have been positive and highly promoted. This approach has the potential to train a highly qualified workforce, change lives, enhance biomedical research, and by extension, improve national health-care.
NASA Astrophysics Data System (ADS)
Wilkerson, Teresa
The researcher developed this study based on the Hardgrave, et al. (1993) statement that for a doctoral student, it was "more than just standardized scores, previous academic performance, and past work experience [that] ultimately affects whether the candidate will be successful in the program" (p. 261). This study examined both the subjective and quantifiable aspects of application materials to a physics doctoral program to explore potential relationships between the credentials presented in the application and the ultimate success of the admitted students. The researcher developed questions with the goals of addressing the problem of attrition in doctoral programs and gaining a better of understanding the information provided in students' application packets. The researcher defined success as either enrolled four years after admission or attainment of the degree. This study examined the records of a population of students admitted to a physics doctoral program from the fall of 1997 to the fall of 2003 to determine their level of success as of August 2006. An exploratory analysis of the data provided answers to each of the research questions as well as an extensive understanding of the students admitted into the program during this time. This study examined both admission credentials and constructs identified by past researchers. An evaluation of the data gathered in this research revealed no relationships between these and student success as previously defined. In 1974, Willingham stated simply, "the best way to improve selection of graduate students will be to develop improved criteria for success" (p. 278). To this end, recommendations emerged regarding the decision-making process and suggestions for future research. This study was not developed to prove or disprove past research findings that predicted success from admissions information; rather, the researcher developed this study to explore each of the credentials that a student presents with his or her application packet, and to tell the story about the nuances of these credentials as they related to student success in a physics doctoral program.
Rainwater, Julie A.; Chiamvimonvat, Nipavan; Bonham, Ann C.; Robbins, John A.; Henderson, Stuart; Meyers, Frederick J.
2013-01-01
Abstract There is a need for successful models of how to recruit, train, and retain bench scientists at the earliest stages of their careers into translational research. One recent, promising model is the University of California Davis Howard Hughes Medical Institute Integrating Medicine into Basic Science (HHMI‐IMBS) program, part of the HHMI Med into Grad initiative. This paper outlines the HHMI‐IMBS program's logic, design, and curriculum that guide the goal of research that moves from bedside to bench. That is, a curriculum that provides graduate students with guided translational training, clinical exposure, team science competencies, and mentors from diverse disciplines that will advance the students careers in clinical translational research and re‐focusing of research to answer clinical dilemmas. The authors have collected data on 55 HHMI‐IMBS students to date. Many of these students are still completing their graduate work. In the current study the authors compare the initial two cohorts (15 students) with a group of 29 control students to examine the program success and outcomes. The data indicate that this training program provides an effective, adaptable model for training future translational researchers. HHMI‐IMBS students showed improved confidence in conducting translational research, greater interest in a future translational career, and higher levels of research productivity and collaborations than a comparable group of predoctoral students. PMID:24127920
Retaining Aspiring Scholars (retention, Students of Color)
NASA Astrophysics Data System (ADS)
Walters, Nancy Bannister
Tinto's retention model provided the theoretical framework for this research study of the academic and social integration of academically talented students of color into the graduate and professional science degree pipeline. The site for this study was the Life Sciences Summer Undergraduate Research Program of the University of Minnesota. This program recruits academically talented undergraduates from throughout the nation for participation in two months of research, academic study and orientation to science graduate and professional programs. The quantitative data source consisted of survey responses by 108 alumni of the Summer Undergraduate Research Program to the Institutional Integration Scale developed by Ernest Pascarella and Patrick Terenzini. The scale measures academic integration, social integration and institutional and goal commitment of students. The qualitative data source consisted of one-on-one interviews of 14 summer program alumni of Caucasian, Latino and African American background. The quantitative results were not significant, while the qualitative results demonstrated the importance to alumni interviewed of the challenging academic research work, personally confirming peer group socialization, and supportive student faculty interactions. The study showed the importance of programs like these for helping students of color plan upper level college study and graduate/professional school enrollment. Program characteristics that influenced decision making regarding school and career choices by study participants and specifically by students of color were involvement of faculty in recruiting and mentoring students; socialization to the graduate student role through peer group relations and student maturation and empowerment through participation in a high level academic program. Study findings indicated that supportive and empowering faculty contact was considered most important by students of color who continued on to graduate and professional programs.
Rutgers Young Horse Teaching and Research Program: undergraduate student outcomes.
Ralston, Sarah L
2012-12-01
Equine teaching and research programs are popular but expensive components of most land grant universities. External funding for equine research, however, is limited and restricts undergraduate research opportunities that enhance student learning. In 1999, a novel undergraduate teaching and research program was initiated at Rutgers University, New Brunswick, NJ. A unique aspect of this program was the use of young horses generally considered "at risk" and in need of rescue but of relatively low value. The media interest in such horses was utilized to advantage to obtain funding for the program. The use of horses from pregnant mare urine (PMU) ranches and Bureau of Land Management (BLM) mustangs held the risks of attracting negative publicity, potential of injury while training previously unhandled young horses, and uncertainty regarding re-sale value; however, none of these concerns were realized. For 12 years the Young Horse Teaching and Research Program received extensive positive press and provided invaluable learning opportunities for students. Over 500 students, at least 80 of which were minorities, participated in not only horse management and training but also research, event planning, public outreach, fund-raising, and website development. Public and industry support provided program sustainability with only basic University infrastructural support despite severe economic downturns. Student research projects generated 25 research abstracts presented at national and international meetings and 14 honors theses. Over 100 students went on to veterinary school or other higher education programs, and more than 100 others pursued equine- or science-related careers. Laudatory popular press articles were published in a wide variety of breed/discipline journals and in local and regional newspapers each year. Taking the risk of using "at risk" horses yielded positive outcomes for all, especially the undergraduate students.
ERIC Educational Resources Information Center
Stoilescu, Dorian; Egodawatte, Gunawardena
2010-01-01
Research shows that female and male students in undergraduate computer science programs view computer culture differently. Female students are interested more in the use of computers than in doing programming, whereas male students see computer science mainly as a programming activity. The overall purpose of our research was not to find new…
Processes and Procedures of the Higher Education Programs at Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Heard, Pamala D.
2002-01-01
The purpose of my research was to investigate the policies, processes, procedures and timelines for the higher education programs at Marshall Space Flight Center. The three higher education programs that comprised this research included: the Graduate Student Researchers Program (GSRP), the National Research Council/Resident Research Associateships Program (NRC/RRA) and the Summer Faculty Fellowship Program (SFFP). The GSRP award fellowships each year to promising U.S. graduate students whose research interest coincides with NASA's mission. Fellowships are awarded for one year and are renewable for up to three years to competitively selected students. Each year, the award provides students the opportunity to spend a period in residence at a NASA center using that installation's unique facilities. This program is renewable for three years, students must reapply. The National Research Council conducts the Resident Research Associateships Program (NRC/RRA), a national competition to identify outstanding recent postdoctoral scientists and engineers and experience senior scientists and engineers, for tenure as guest researchers at NASA centers. The Resident Research Associateship Program provides an opportunity for recipients of doctoral degrees to concentrate their research in association with NASA personnel, often as a culmination to formal career preparation. The program also affords established scientists and engineers an opportunity for research without any interruptions and distracting assignments generated from permanent career positions. All opportunities for research at NASA Centers are open to citizens of the U.S. and to legal permanent residents. The Summer Faculty Fellowship Program (SFFP) is conducted each summer. NASA awards research fellowships to university faculty through the NASA/American Society for Engineering Education. The program is designed to promote an exchange of ideas between university faculties, NASA scientists and engineers. Selected participants in fields of science, engineering, math, and other disciplines spend approximately 10 weeks working with their professional peers on research projects at NASA facilities. Workshops and seminars further enrich the experience. This program is only for U.S. citizens.
STEM enrichment programs and graduate school matriculation: the role of science identity salience
Serpe, Richard T.
2013-01-01
Improving the state of science education in the United States has become a national priority. One response to this problem has been the implementation of STEM enrichment programs designed to increase the number of students that enter graduate programs in science. Current research indicates enrichment programs have positive effects for student performance, degree completion, interest in science and graduate enrollment. Moreover, research suggests that beyond improving performance in STEM, and providing access to research experience and faculty mentoring, enrichment programs may also increase the degree to which students identify as scientists. However, researchers investigating the role of science identity on student outcomes have focused primarily on subjective outcomes, leaving a critical question of whether science identity also influences objective outcomes such as whether students attend graduate school. Using identity theory, this study addresses this issue by investigating science identity as a mechanism linking enrichment program participation to matriculation into graduate science programs. Quantitative results from a panel study of 694 students indicate that science identity salience, along with research experience and college GPA, mediate the effect of enrichment program participation on graduate school matriculation. Further, results indicate that although the social psychological process by which science identity salience develops operates independently from student GPA, science identity amplifies the effect of achievement on graduate school matriculation. These results indicate that policies seeking to increase the efficacy of enrichment programs and increase representation in STEM graduate programs should be sensitive to the social and academic aspects of STEM education. PMID:24578606
STEM enrichment programs and graduate school matriculation: the role of science identity salience.
Merolla, David M; Serpe, Richard T
2013-12-01
Improving the state of science education in the United States has become a national priority. One response to this problem has been the implementation of STEM enrichment programs designed to increase the number of students that enter graduate programs in science. Current research indicates enrichment programs have positive effects for student performance, degree completion, interest in science and graduate enrollment. Moreover, research suggests that beyond improving performance in STEM, and providing access to research experience and faculty mentoring, enrichment programs may also increase the degree to which students identify as scientists. However, researchers investigating the role of science identity on student outcomes have focused primarily on subjective outcomes, leaving a critical question of whether science identity also influences objective outcomes such as whether students attend graduate school. Using identity theory, this study addresses this issue by investigating science identity as a mechanism linking enrichment program participation to matriculation into graduate science programs. Quantitative results from a panel study of 694 students indicate that science identity salience, along with research experience and college GPA, mediate the effect of enrichment program participation on graduate school matriculation. Further, results indicate that although the social psychological process by which science identity salience develops operates independently from student GPA, science identity amplifies the effect of achievement on graduate school matriculation. These results indicate that policies seeking to increase the efficacy of enrichment programs and increase representation in STEM graduate programs should be sensitive to the social and academic aspects of STEM education.
Morgan, Perri; Humeniuk, Katherine M; Everett, Christine M
2015-09-01
As physician assistant (PA) roles expand and diversify in the United States and around the world, there is a pressing need for research that illuminates how PAs may best be selected, educated, and used in health systems to maximize their potential contributions to health. Physician assistant education programs are well positioned to advance this research by collecting and organizing data on applicants, students, and graduates. Our PA program is creating a permanent longitudinal education database for research that contains extensive student-level data. This database will allow us to conduct research on all phases of PA education, from admission processes through the professional practice of our graduates. In this article, we describe our approach to constructing a longitudinal student-level research database and discuss the strengths and limitations of longitudinal databases for research on education and the practice of PAs. We hope to encourage other PA programs to initiate similar projects so that, in the future, data can be combined for use in multi-institutional research that can contribute to improved education for PA students across programs.
At-Risk Students: Portraits, Policies, Programs, and Practices.
ERIC Educational Resources Information Center
Donmoyer, Robert, Ed.; Kos, Raylene, Ed.
This book presents papers that address research methods, policies, and programs that can accommodate the considerable student diversity commonly found among at-risk students as well as portraits of particular at-risk students. The following papers and their authors are included: "At-Risk Students: Insights from/about Research" (Robert…
Summer Research Training for Medical Students: Impact on Research Self‐Efficacy
Black, Michelle L.; Curran, Maureen C.; Golshan, Shahrokh; Daly, Rebecca; Depp, Colin; Kelly, Carolyn
2013-01-01
Abstract There is a well‐documented shortage of physician researchers, and numerous training programs have been launched to facilitate development of new physician scientists. Short‐term research training programs are the most practical form of research exposure for most medical students, and the summer between their first and second years of medical school is generally the longest period they can devote solely to research. The goal of short‐term training programs is to whet the students’ appetite for research and spark their interest in the field. Relatively little research has been done to test the effectiveness of short‐term research training programs. In an effort to examine short‐term effects of three different NIH‐funded summer research training programs for medical students, we assessed the trainees’ (N = 75) research self‐efficacy prior to and after the programs using an 11‐item scale. These hands‐on training programs combined experiential, didactic, and mentoring elements. The students demonstrated a significant increase in their self‐efficacy for research. Trainees’ gender, ranking of their school, type of research, and specific content of research project did not predict improvement. Effect sizes for different types of items on the scale varied, with the largest gain seen in research methodology and communication of study findings. PMID:24330695
Summer Undergraduate Research Program: Environmental studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMillan, J.
1994-12-31
The purpose of the summer undergraduate internship program for research in environmental studies is to provide an opportunity for well-qualified students to undertake an original research project as an apprentice to an active research scientist in basic environmental research. The students are offered research topics at the Medical University in the scientific areas of pharmacology and toxicology, epidemiology and risk assessment, environmental microbiology, and marine sciences. Students are also afforded the opportunity to work with faculty at the University of Charleston, SC, on projects with an environmental theme. Ten well-qualified students from colleges and universities throughout the eastern United Statesmore » were accepted into the program.« less
NASA Astrophysics Data System (ADS)
Raftery, C. L.; Davis, H. B.; Peticolas, L. M.; Paglierani, R.
2015-12-01
The Space Sciences Laboratory at UC Berkeley launched an NSF-funded Research Experience for Undergraduates (REU) program in the summer of 2015. The "Advancing Space Sciences through Undergraduate Research Experiences" (ASSURE) program recruited heavily from local community colleges and universities, and provided a multi-tiered mentorship program for students in the fields of space science and engineering. The program was focussed on providing a supportive environment for 2nd and 3rd year undergraduates, many of whom were first generation and underrepresented students. This model provides three levels of mentorship support for the participating interns: 1) the primary research advisor provides academic and professional support. 2) The program coordinator, who meets with the interns multiple times per week, provides personal support and helps the interns to assimilate into the highly competitive environment of the research laboratory. 3) Returning undergraduate interns provided peer support and guidance to the new cohort of students. The impacts of this program on the first generation students and the research mentors, as well as the lessons learned will be discussed.
The University of Texas Science and Engineering Apprentice Program as a Model for an REU Site
NASA Astrophysics Data System (ADS)
Davis, M. B.; Blankenship, D. D.; Ellins, K. E.
2004-12-01
The University of Texas Institute for Geophysics at (UTIG) is one of five research labs in the Austin area that hosts recent high school graduates for summer research projects through the Applied Research Lab Science and Engineering Apprenticeship Program (SEAP). The SEAP is a program designed to provide summer research opportunities to recent high school undergraduates who excel in science and math. UTIG has been a large proponent of the SEAP and has typically mentored two to four students each year and a total alumni of about twenty. The program has successfully targeted groups that are typically underrepresented in sciences and engineering. Current statistics show that 25% of past SEAP students are members of an ethnic minority and 80% of SEAP students are female. Many of these students have stayed on after the summer program and continued to work part-time or return during summers to UTIG while completing their undergraduate careers. A significant portion of these students present results at professional meetings and ultimately commit to careers in science and engineering, both in industry and academia. SEAP students at UTIG work alongside scientists and graduate students as part of a team, and, through this interaction, improve their scientific knowledge and problem solving skills. Both graduate and undergraduate students involved in NSF-funded research grants mentor the SEAP students, giving them the opportunity to work on their own research problem while contributing data and interpretation to a more fundamental research problem. By uniting student research under the umbrella of Antarctic ice sheet research, students learn how their individual research projects relate to the more unifying science problem centered on ice sheet variability, and Antarctic continental evolution. They also gain an understanding of how research is carried out. At the same time, scientists and graduate students learn how to communicate their knowledge so that it is interesting and relevant to student learning. We are interested in expanding the SEAP model for student research to a scale that can support multidisciplinary REU site activities by extending research possibilities into polar research, marine studies, seismology, planetary science, and science education at UTIG in future years.
Impact of the INBRE summer student mentored research program on undergraduate students in Arkansas.
McSweeney, Jean C; Hudson, Teresa J; Prince, Latrina; Beneš, Helen; Tackett, Alan J; Miller Robinson, Caroline; Koeppe, Roger; Cornett, Lawrence E
2018-03-01
The Institutional Development Award (IDeA) program, housed within the National Institute for General Medical Sciences, administers the Networks of Biomedical Research Excellence (INBRE) as a strategic mission to broaden the geographic distribution of National Institutes of Health (NIH) funding within the United States. Undergraduate summer student mentored research programs (SSMRP) are a common feature of INBRE programs and are designed to increase undergraduate student interest in research careers in the biomedical sciences. Little information is available about student perspectives on how these programs impact their choices relative to education and careers. Therefore, we conducted qualitative interviews with 20 participants from the Arkansas INBRE SSMRP in the years 2002-2012. Each telephone interview lasted 30-45 min. An interview guide with a broad "grand tour" question was used to elicit student perspectives on SSMRP participation. Interviews were digitally recorded, then transcribed verbatim, and the transcript checked for accuracy. Content analysis and constant comparison were used to identify nine themes that were grouped into three temporal categories: before, during, and after the SSMRP experience. Students viewed the experience as positive and felt it impacted their career choices. They emphasized the value of mentoring in the program, and some reported maintaining a relationship with the mentor after the summer experience ended. Students also valued learning new laboratory and presentation skills and felt their research experience was enhanced by meeting students and scientists with a wide range of career interests. These data suggest that the Arkansas INBRE and the NIH IDeA program are successfully meeting the goal of increasing interest in research among undergraduates.
The "Research Apprenticeship Program for High School Students" began in 1990 as a collaborative effort between EPA's Office of Research and Development in Research Triangle Park, NC and Shaw University, an Historically Black College/University (HBCU) in Raleigh, NC. The program a...
Undergraduate Research Experience in Ocean/Marine Science (URE-OMS) with African Student Component
2011-01-01
The Undergraduate Research Experience in Ocean/Marine Science program supports active participation by underrepresented undergraduate students in remote sensing and Ocean/Marine Science research training activities. The program is based on a model for undergraduate research programs supported by the National Science Foundation . The
How To Create an Independent Research Program.
ERIC Educational Resources Information Center
Krieger, Melanie Jacobs
This guide explains how to establish a research program within a school and how to get students involved in independent research projects and national research competitions. Chapter 1, "Selling the Program," examines benefits to the community, school, teachers, and students. Chapter 2, "Assessing Your Situation," discusses how independent research…
Devi, V; Ramnarayan, K; Abraham, R R; Pallath, V; Kamath, A; Kodidela, S
2015-01-01
Participation in research during undergraduate studies may increase students' interest in research and inculcate research essentials in them. The purpose of this study was to evaluate the effectiveness of the mentored student project (MSP) program. In the MSP program, students in groups (n = 3 to 5) undertook a research project, wrote a scholarly report, and presented the work as a poster presentation with the help of a faculty mentor. To begin with, the logic model of the program was developed to identify short-term outcomes of the program on students, mentors, and the institution. A quasi-experimental design was used to measure the outcomes. A mixed method evaluation was done using a newly-developed questionnaire to assess the impact of the MSP on students' attitude, a multiple-choice question (MCQs) test to find out the impact on students' knowledge and grading of students' project reports and posters along with a survey to check the impact on skills. Students' satisfaction regarding the program and mentors' perceptions were collected using questionnaires. Evidence for validity was collected for all the instruments used for the evaluation. Non-parametric tests were used to analyze data. Based on the scores, project reports and posters were graded into A (>70% marks), B (60-69% marks), and C (<59% marks) categories. The number of MSPs that resulted in publications, conference presentation and departmental collaborations were taken as impact on the institution. Students' response rate was 91.5%. The students' attitudes regarding research changed positively (P = 0.036) and score in the MCQ test improved (P < 0.001) after undertaking MSP. Majority of project reports and posters were of grade A category. The majority of the items related to skills gained and satisfaction had a median score of 4. The MSPs resulted in inter-departmental and inter-institutional collaborations, 14 publications and 15 conference presentations. An area for improvement noted was to have the MSP implemented in the curriculum without increasing students' overall workload and stress. The study identified strengths and weaknesses of the MSP program. Our model of undergraduate research project may be incorporated in undergraduate medical programs to foster positive attitude and knowledge base about scientific research and to instil research skills among students.
Undergraduate Research as Engaged Student Learning
ERIC Educational Resources Information Center
Wolf, Lorraine W.
2018-01-01
This chapter discusses the impact of undergraduate research as a form of engaged student learning. It summarizes the gains reported in post-fellowship assessment essays acquired from students participating in the Auburn University Undergraduate Research Fellowship Program. The chapter also discusses the program's efforts to increase opportunities…
NASA Astrophysics Data System (ADS)
Phillips, Sarah R.; Matherly, Cheryl A.; Kono, Junichiro
2014-09-01
The international nature of science and engineering research demands that students have the skillsets necessary to collaborate internationally. However, limited options exist for science and engineering undergraduates who want to pursue research abroad. The NanoJapan International Research Experience for Undergraduates Program is an innovative response to this need. Developed to foster research and international engagement among young undergraduate students, it is funded by a National Science Foundation Partnerships for International Research and Education (PIRE) grant. Each summer, NanoJapan sends 12 U.S. students to Japan to conduct research internships with world leaders in terahertz (THz) spectroscopy, nanophotonics, and ultrafast optics. The students participate in cutting-edge research projects managed within the framework of the U.S-Japan NSF-PIRE collaboration. One of our focus topics is THz science and technology of nanosystems (or `TeraNano'), which investigates the physics and applications of THz dynamics of carriers and phonons in nanostructures and nanomaterials. In this article, we will introduce the program model, with specific emphasis on designing high-quality international student research experiences. We will specifically address the program curriculum that introduces students to THz research, Japanese language, and intercultural communications, in preparation for work in their labs. Ultimately, the program aims to increase the number of U.S. students who choose to pursue graduate study in this field, while cultivating a generation of globally aware engineers and scientists who are prepared for international research collaboration.
Libraries, the MAP, and Student Achievement.
ERIC Educational Resources Information Center
Jones, Cherri; Singer, Marietta; Miller, David W.; Makemson, Carroll; Elliott, Kara; Litsch, Diana; Irwin, Barbara; Hoemann, Cheryl; Elmore, Jennifer; Roe, Patty; Gregg, Diane; Needham, Joyce; Stanley, Jerri; Reinert, John; Holtz, Judy; Jenkins, Sandra; Giles, Paula
2002-01-01
Includes 17 articles that discuss the Missouri Assessment Program (MAP) and the role of school library media centers. Highlights include improving student achievement; improving student scores on the MAP; graphic organizers; programs for volunteer student library workers; research process; research skills; reading initiatives; collaborative…
Action Research of Computer-Assisted-Remediation of Basic Research Concepts.
ERIC Educational Resources Information Center
Packard, Abbot L.; And Others
This study investigated the possibility of creating a computer-assisted remediation program to assist students having difficulties in basic college research and statistics courses. A team approach involving instructors and students drove the research into and creation of the computer program. The effect of student use was reviewed by looking at…
NASA Astrophysics Data System (ADS)
Phillips, C. B.; Devore, E. K.
2009-12-01
The SETI Institute hosts a summer Astrobiology Research Experience for Undergraduates program for highly motivated students interested in astrobiology research. Students work with scientists at the SETI Institute and at the nearby NASA Ames Research Center on projects spanning the field of astrobiology from microbiology to planetary geology to astronomy and astrophysics. Each student is mentored by a scientist for his/her summer research project. As astrobiology is interdisciplinary, the first week includes a seminar series to provide a broad foundation in the field as the students begin their research projects. The 10-week program includes a week-long field trip to the SETI Institute’s Allen Telescope Array, located at the Hat Creek Radio Astronomy Observatory in Northern California, as well as a field experience at hydrothermal systems at nearby Lassen Volcanic National Park. Students also participate in local field trips to places like the California Academy of Sciences and other nearby locations of scientific interest, and attend seminars, lectures, and discussions on astrobiology. Students are also invited to attend events at nearby NASA Ames Research Center, which offers the opportunity to interact with other undergraduate and graduate students participating in NASA summer programs. At the end of the program, students write up and present their research projects, and mentors recommend some projects for submission to a national scientific conference, which the selected students will be funded to attend. The Astrobiology REU program emphasizes three main areas, which are listed in the table along with typical project themes. Each year, specific student research projects are described on the website, and students are asked to select the three that most interest them as a part of their applications. Applications are due in early February. Typically, 10 students apply for each available position. Students have been selected from colleges and universities national-wide, including community colleges. The Astrobiology REU program has served 4 classes of students, and is funded through summer of 2011. A total of 61 students have participated (12 in 2006, 17 in 2007, 17 in 2008, and 15 in 2009); all have successfully completed their internships. Of these students, 59% were women, and 21% were minorities. To date 18 students have gone on to graduate studies, in Master’s or PhD programs at schools including Harvard, UC Berkeley, UC Santa Cruz, Stanford, Univ. of Nebraska, and many others, in fields including astronomy, optical science, space life sciences, geology, physics, mechanical engineering, and molecular and cellular biology. The SETI Institute is a non-profit private scientific research institution located in California’s Silicon Valley. The Astrobiology REU program is supported by National Science Foundation Grant AST-0852095 with additional funding from NASA’s Astrobiology Institute, the SETI Institute and private donors.Main research areas and typical project themes
Undergraduate Research in Geoscience with Students from Two-year Colleges: SAGE 2YC Resources
NASA Astrophysics Data System (ADS)
McDaris, J. R.; Hodder, J.; Macdonald, H.; Baer, E. M.; Blodgett, R. H.
2014-12-01
Undergraduate research experiences are important for the development of expertise in geoscience disciplines. These experiences have been shown to help students learn content and skills, promote students' cognitive and affective development, and develop students' sense of self. Early exposure to research experiences has shown to be effective in the recruitment of students, improved retention and persistence in degree programs, motivation for students to learn and increase self-efficacy, improved attitudes and values about science, and overall increased student success. Just as departments at four-year institutions (4YCs) are increasingly integrating research into their introductory courses, two-year college (2YC) geoscience faculty have a great opportunity to ground their students in authentic research. The Undergraduate Research with Two-year College Students website developed by SAGE 2YC: Supporting and Advancing Geoscience Education at Two-year Colleges provides ideas and advice for 2YC and 4YC faculty who want to get more 2YC students involved in research. The continuum of possibilities for faculty to explore includes things that can be done at 2YCs (eg. doing research as part of a regular course, developing a course specifically around research on a particular topic, or independent study), done in collaboration with other local institutions (eg. using their facilities, conducting joint class research, or using research to support transfer programs), and by involving students in the kind of organized Undergraduate Research programs run by a number of institutions and organizations. The website includes profiles illustrating how 2YC geoscience faculty have tackled these various models of research and addressed potential challenges such as lack of time, space, and funding as part of supporting the wide diversity of students that attend 2YCs, most of whom have less experience than that of rising seniors who are the traditional REU participant. The website also provides resources on effective strategies for developing REU programs for community college students, examples of successful multi-year programs, links to other projects working on undergraduate research in the first two years, and references for further reading. serc.carleton.edu/sage2yc/studentsuccess/ug-research/
The 1993/1994 NASA Graduate Student Researchers Program
NASA Technical Reports Server (NTRS)
1992-01-01
The NASA Graduate Student Researchers Program (GSRP) attempts to reach a culturally diverse group of promising U.S. graduate students whose research interests are compatible with NASA's programs in space science and aerospace technology. Each year we select approximately 100 new awardees based on competitive evaluation of their academic qualifications, their proposed research plan and/or plan of study, and their planned utilization of NASA research facilities. Fellowships of up to $22,000 are awarded for one year and are renewable, based on satisfactory progress, for a total of three years. Approximately 300 graduate students are, thus, supported by this program at any one time. Students may apply any time during their graduate career or prior to receiving their baccalaureate degree. An applicant must be sponsored by his/her graduate department chair or faculty advisor; this book discusses the GSRP in great detail.
Ford, Marvella E; Abraham, Latecia M; Harrison, Anita L; Jefferson, Melanie S; Hazelton, Tonya R; Varner, Heidi; Cannady, Kimberly; Frichtel, Carla S; Bagasra, Omar; Davis, Leroy; Rivers, David E; Slaughter, Sabra C; Salley, Judith D
2016-06-01
The US is experiencing a severe shortage of underrepresented biomedical researchers. The purpose of this paper is to present two case examples of cancer research mentoring programs for underrepresented biomedical sciences students. The first case example is a National Institutes of Health/National Cancer Institute (NIH/NCI) P20 grant titled "South Carolina Cancer Disparities Research Center (SC CaDRe)" Training Program, contributing to an increase in the number of underrepresented students applying to graduate school by employing a triple-level mentoring strategy. Since 2011, three undergraduate and four graduate students have participated in the P20 SC CaDRe program. One graduate student published a peer-reviewed scientific paper. Two graduate students (50 %) have completed their master's degrees, and the other two graduate students will receive their degrees in spring 2015. Two undergraduate students (67 %) are enrolled in graduate or professional school (grad./prof. school), and the other graduate student is completing her final year of college. The second case example is a prostate cancer-focused Department of Defense grant titled "The SC Collaborative Undergraduate HBCU Student Summer Training Program," providing 24 students training since 2009. Additionally, 47 students made scientific presentations, and two students have published peer-reviewed scientific papers. All 24 students took a GRE test preparation course; 15 (63 %) have applied to graduate school, and 11 of them (73 %) are enrolled in grad./prof. school. Thirteen remaining students (54 %) are applying to grad./prof. school. Leveraged funding provided research-training opportunities to an additional 201 National Conference on Health Disparities Student Forum participants and to 937 Ernest E. Just Research Symposium participants at the Medical University of South Carolina.
Steiner, Joseph; Leinwander, Penny
2017-04-01
The Health Physics Society (HPS) Medical Health Physics Section (MHPS) received a request to research data on radiation safety guidance related to the death of patients who have recently received therapeutic doses of sealed or unsealed therapy sources. The MHPS elected to use student volunteers to perform this research. The purpose of this manuscript is to describe and provide a template for the process used by the MHPS to develop a student volunteer program. To implement the student volunteer program, the MHPS collaborated with the HPS Student Support Committee to develop a research proposal and a student volunteer selection process. The research proposal was sent to HPS student members in a call for volunteers. Two student volunteers were chosen based on predetermined qualifications to complete the work effort outlined in the research proposal. This project progressed with the use of milestones and culminated with the students presenting their findings at the annual HPS meeting. The students received HPS student travel awards to present at the conference. This work effort proved to be extremely beneficial to all parties involved.
Effect of short-term research training programs on medical students' attitudes toward aging.
Jeste, Dilip V; Avanzino, Julie; Depp, Colin A; Gawronska, Maja; Tu, Xin; Sewell, Daniel D; Huege, Steven F
2018-01-01
Strategies to build a larger workforce of physicians dedicated to research on aging are needed. One method to address this shortage of physician scientists in geriatrics is short-term training in aging research for early-stage medical students. The authors examined the effects of two summer research training programs, funded by the National Institutes of Health, on medical students' attitudes toward aging, using the Carolina Opinions on Care of Older Adults (COCOA). The programs combined mentored research, didactics, and some clinical exposure. In a sample of 134 participants, COCOA scores improved significantly after completion of the research training program. There was a significant interaction of gender, such that female students had higher baseline scores than males, but this gender difference in COCOA scores was attenuated following the program. Four of the six COCOA subscales showed significant improvement from baseline: early interest in geriatrics, empathy/compassion, attitudes toward geriatrics careers, and ageism.
NASA Astrophysics Data System (ADS)
Hunter-thomson, K. I.; Kohut, J. T.; Florio, K.; McDonnell, J. D.; Ferraro, C.; Clark, H.; Gardner, K.; Oliver, M. J.
2016-02-01
How do you get middle and high school students excited about scientific inquiry? Have them join a collaborative research team in Antarctica! A comprehensive education program brought ocean science, marine ecology, and climate change impact research to more than 950 students in 2014-15 to increase their exposure to and excitement of current research. The program was integrated into a collaborative research project, involving five universities, that worked to characterize the connection between ocean circulation, plankton distribution, penguin foraging behavior, and climate change around Palmer Station, Antarctica. The scientists and education team co-led a weeklong workshop to expose 22 teachers to the research science, build relationships among the teachers and scientists, and refine the program to most effectively communicate the research to their students. In the fall, teachers taught NGSS-aligned, hands-on, data-focused classroom lessons to provide their students the necessary content to understand the project hypotheses using multiple science practices. Through a professional science blog and live video calls from Antarctica, students followed and discussed the science teams work while they were in the field. To apply the science practices the students had learned about, they designed, conducted, and analyzed their own ocean-related, inquiry-based research investigation as the culminating component of the program (results were presented at a Student Research Symposium attended by the science team). Of their own choosing, roughly half of the students used raw data from the CONVERGE research (including krill, CODAR, penguin, and glider data) for their investigations. This presentation will focus on the evaluation results of the education program to identify the aspects that successfully engaged teachers and students with scientific inquiry, science practices, and authentic data as well as the replicability of this integrated scientist-teacher partnership and education program.
Tuchman, Ellen; Hanley, Kathleen; Naegle, Madeline; More, Frederick; Bereket, Sewit; Gourevitch, Marc N
2017-01-01
The Substance Abuse Research and Education Training (SARET) program is funded by the National Institutes of Drug Abuse in 2006 as a novel approach to spark interest in substance abuse research among medical, dental, nursing, and social work graduate students through a Web-based curriculum and research mentorships. This report presents the initial integration of the intervention in a Master of Social Work (MSW) program, the components of the program, and the mixed-methods evaluation of its effect on students' attitudes towards substance abuse research and treatment. SARET comprises 2 main components: stipend-supported research mentorships and a Web-based module series, consisting of 6 interactive, multimedia modules addressing core SA research topics, delivered via course curricula and in the research mentorships. An initial evaluation was designed to assess SARET's acceptability and short-term impact on participants' interest in SA research. The components of this Web-based curriculum evaluation include focus group feedback on the relevance of the modules to SW students, number of courses into which the modules were integrated with number of module completions, changes in interest in SA research associated with module completion. The full series of Web-based modules has been integrated across several courses in the social work curriculum, and social work students have become integral participants in the summer mentored research experience. One hundred eighteen students completed at least 1 module and 42 students completed all 6 modules. Neurobiology, Screening, and Epidemiology were the most widely viewed modules. Students reported positive impact on their vision of SA-related clinical care, more positive attitudes about conducting research, and in some cases, change in career. The SARET program's modules and summer mentored research increased clinical and research interest related to SUDs, as well as interprofessional attitudes among social work students. Participants have shown some early research success. Longer-term follow-up will enable us to continue to assess the effectiveness of the program.
NASA's Student Airborne Research Program (2009-2013)
NASA Astrophysics Data System (ADS)
Schaller, E. L.; Shetter, R. E.
2013-12-01
The NASA Student Airborne Research Program (SARP) is a unique summer internship program for rising senior undergraduates majoring in any of the STEM disciplines. SARP participants acquire hands-on research experience in all aspects of an airborne research campaign, including flying onboard an major NASA resource used for studying Earth system processes. In summer 2013, thirty-two participants worked in four interdisciplinary teams to study surface, atmospheric, and oceanographic processes. Participants assisted in the operation of instruments onboard the NASA DC-8 aircraft where they sampled and measured atmospheric gases and imaged land and water surfaces in multiple spectral bands. Along with airborne data collection, students participated in taking measurements at field sites. Mission faculty and research mentors helped to guide participants through instrument operation, sample analysis, and data reduction. Over the eight-week program, each student developed an individual research project from the data collected and delivered a conference-style final presentation on his/her results. Several students will present the results of their research in science sessions at this meeting. We will discuss the results and effectiveness of the program over the past five summers and plans for the future.
Intentional Excellence in the Baldwin Wallace University Neuroscience Program
Morris, Jacqueline K.; Peppers, Kieth; Mickley, G. Andrew
2015-01-01
The Society for Neuroscience recognized Baldwin Wallace University’s (BWU) undergraduate Neuroscience program as their Program of the Year for 2012. This award acknowledged the “accomplishments of a neuroscience department or program for excellence in educating neuroscientists and providing innovative models to which other programs can aspire.” The Neuroscience program grew out of students interested in studying the biological basis of behavior. BWU’s neuroscience major is research-intensive, and all students are required to produce an empirically-based senior thesis. This requirement challenges program resources, and the demand for faculty attention is high. Thus, we developed an intentional 3-step peer mentoring system that encourages our students to collaborate with and learn from, not only faculty, but each other. Peer mentoring occurs in the curriculum, faculty research labs, and as students complete their senior theses. As the program has grown with over 80 current majors, we have developed a new Neuroscience Methods course to train students on the safety, ethics, and practice of research in the neuroscience laboratory space. Students in this course leave with the skills and knowledge to assist senior level students with their theses and to begin the process of developing their own projects in the laboratory. Further, our students indicate that their “peer mentorship was excellent,” “helped them gain confidence,” and “allowed them to be more successful in their research.” PMID:26240522
NASA Astrophysics Data System (ADS)
Koumoullos, Michael
This research study aimed to identify any correlation between participation in afterschool robotics at the high school level and academic performance. Through a sample of N=121 students, the researcher examined the grades and attendance of students who participated in a robotics program in the 2011-2012 school year. The academic record of these students was compared to a group of students who were members of school based sports teams and to a group of students who were not part of either of the first two groups. Academic record was defined as overall GPA, English grade, mathematics grade, mathematics-based standardized state exam scores, and attendance rates. All of the participants of this study were students in a large, urban career and technical education high school. As STEM (Science, Technology, Engineering, and Mathematics) has come to the forefront of educational focus, robotics programs have grown in quantity. Starting robotics programs requires a serious commitment of time, money, and other resources. The benefits of such programs have not been well analyzed. This research study had three major goals: to identify the academic characteristics of students who are drawn to robotics programs, to identify the academic impact of the robotics program during the robotics season, and to identify the academic impact of the robotics program at the end of the school year. The study was a non-experiment. The researchers ran MANOVS, repeated measures analyses, an ANOVA, and descriptive statistics to analyze the data. The data showed that students drawn to robotics were academically stronger than students who did not participate in robotics. The data also showed that grades and attendance did not significantly improve or degrade either during the robotics season or at year-end. These findings are significant because they show that robotics programs attract students who are academically strong. This information can be very useful in high school articulation programs. These findings also show that robotics programs can be an educational activity for academically strong students. Further, they show that participation in such programs does not distract students from their academic focus.
Rashied-Henry, Kweli; Fraser-White, Marilyn; Roberts, Calpurnyia B; Wilson, Tracey E; Morgan, Rochelle; Brown, Humberto; Shaw, Raphael; Jean-Louis, Girardin; Graham, Yvonne J; Brown, Clinton; Browne, Ruth
2012-01-01
The purpose of this paper was to describe the development and implementation of a health disparities summer internship program for minority high school students that was created to increase their knowledge of health disparities, provide hands-on training in community-engaged research, support their efforts to advocate for policy change, and further encourage youth to pursue careers in the health professions. Fifty-one high school students who were enrolled in a well-established, science-enrichment after-school program in Brooklyn, New York, participated in a 4-week summer internship program. Students conducted a literature review, focus groups/interviews, geographic mapping or survey development that focused on reducing health disparities at 1 of 15 partnering CBOs. Overall, student interns gained an increase in knowledge of racial/ethnic health disparities. There was a 36.2% increase in students expressing an interest in pursuing careers in minority health post program. The majority of the participating CBOs were able to utilize the results of the student-led research projects for their programs. In addition, research conclusions and policy recommendations based on the students' projects were given to local elected officials. As demonstrated by our program, community-academic partnerships can provide educational opportunities to strengthen the academic pipeline for students of color interested in health careers and health disparities research.
NASA Astrophysics Data System (ADS)
Sambrotto, R.
2015-12-01
The Secondary School Field Research Program is a field and laboratory internship for high school students at the Lamont-Doherty Earth Observatory. Over the past 11 years it has grown into a significant program, engaging approximately 50 high school and college students each summer, most of them from ethnic and economic groups that are under-represented in the STEM fields. The internships are based on research-driven science questions on estuarine physics, chemistry, ecology and the paleo-environment. Field studies are linked to associated laboratory analyses whose results are reported by the students as a final project. For the past two years, we have focused on the transition to an institutional program, with sustainable funding and organizational structures. At a grant-driven institution whose mission is largely restricted to basic research, institutionalization has not been an easy task. To leverage scarce resources we have implemented a layered structure that relies on near-peer mentoring. So a typical research team might include a mix of new and more experienced high school students, a college student, a high school science teacher and a Lamont researcher as a mentor. Graduates of the program are employed to assist with administration. Knowledge and best practices diffuse through the organization in an organic, if not entirely structured, fashion. We have found that a key to long-term funding has been survival: as we have sustained a successful program and developed a model adapted to Lamont's unique environment, we have attracted longer term core financing on which grant-driven extensions can be built. The result is a highly flexible program that is student-centered in the context of a broader research culture connecting our participants with the advantages of working at a premier soft-money research institution.
ERIC Educational Resources Information Center
Koumoullos, Michael
2013-01-01
This research study aimed to identify any correlation between participation in afterschool robotics at the high school level and academic performance. Through a sample of N = 121 students, the researcher examined the grades and attendance of students who participated in a robotics program in the 2011-2012 school year. The academic record of these…
NITARP: Changing Perceptions of Science Among Secondary Students and Teachers
NASA Astrophysics Data System (ADS)
Kohrs, Russell; Kilts, Kelly; Urbanowski, Vincent; Rutherford, Thomas; Gorjian, Varoujan
2017-01-01
The NASA/IPAC Teacher Archival Research Program (NITARP) provides secondary teachers and their students with an authentic, high-level research experience. NITARP participants work alongside one another as colleagues, allowing both teachers and students to experience the challenges of actual research. Teachers and students learn that science doesn’t always follow the prescriptive methodology taught in most high schools. Current NITARP students and teachers were interviewed on how their perceptions of the methods by which science is really conducted changed over the course of the program. Following participation in the NITARP program, both teacher and student perceptions of how science operates were found to have changed in many ways.
Lewis' Educational and Research Collaborative Internship Program
NASA Technical Reports Server (NTRS)
Heyward, Ann; Gott, Susan (Technical Monitor)
2004-01-01
The Lewis Educational and Research Collaborative Internship Program (LERCIP) is a collaborative undertaking by the Office of Educational Programs at NASA Glenn Research Center at Lewis Field (formerly NASA Lewis Research Center) and the Ohio Aerospace Institute. This program provides 10-week internships in addition to summer and winter extensions if funding is available and/or is requested by mentor (no less than 1 week no more than 4 weeks) for undergraduate/graduate students and secondary school teachers. Students who meet the travel reimbursement criteria receive up to $500 for travel expenses. Approximately 178 interns are selected to participate in this program each year and begin arriving the fourth week in May. The internships provide students with introductory professional experiences to complement their academic programs. The interns are given assignments on research and development projects under the personal guidance of NASA professional staff members. Each intern is assigned a NASA mentor who facilitates a research assignment. In addition to the research assignment, the summer program includes a strong educational component that enhances the professional stature of the participants. The educational activities include a research symposium and a variety of workshops, and lectures. An important aspect of the program is that it includes students with diverse social, cultural and economic backgrounds. The purpose of this report is to document the program accomplishments for 2004.
Use of the Computer for Research on Instruction and Student Understanding in Physics.
NASA Astrophysics Data System (ADS)
Grayson, Diane Jeanette
This dissertation describes an investigation of how the computer may be utilized to perform research on instruction and on student understanding in physics. The research was conducted within three content areas: kinematics, waves and dynamics. The main focus of the research on instruction was the determination of factors needed for a computer program to be instructionally effective. The emphasis in the research on student understanding was the identification of specific conceptual and reasoning difficulties students encounter with the subject matter. Most of the research was conducted using the computer -based interview, a technique developed during the early part of the work, conducted within the domain of kinematics. In a computer-based interview, a student makes a prediction about how a particular system will behave under given circumstances, observes a simulation of the event on a computer screen, and then is asked by an interviewer to explain any discrepancy between prediction and observation. In the course of the research, a model was developed for producing educational software. The model has three important components: (i) research on student difficulties in the content area to be addressed, (ii) observations of students using the computer program, and (iii) consequent program modification. This model was used to guide the development of an instructional computer program dealing with graphical representations of transverse pulses. Another facet of the research involved the design of a computer program explicitly for the purposes of research. A computer program was written that simulates a modified Atwood's machine. The program was than used in computer -based interviews and proved to be an effective means of probing student understanding of dynamics concepts. In order to ascertain whether or not the student difficulties identified were peculiar to the computer, laboratory-based interviews with real equipment were also conducted. The laboratory-based interviews were designed to parallel the computer-based interviews as closely as possible. The results of both types of interviews are discussed in detail. The dissertation concludes with a discussion of some of the benefits of using the computer in physics instruction and physics education research. Attention is also drawn to some of the limitations of the computer as a research instrument or instructional device.
Addiction Studies: Exploring Students' Attitudes toward Research in a Graduate Program
ERIC Educational Resources Information Center
James, Raven; Simons, Lori
2011-01-01
An exploratory study was conducted to compare addiction studies and community counseling students' attitudes toward research. A survey of 66 addiction studies and 17 community counseling students in graduate programs was used to explore interest and self-efficacy in research and the research training environment. A pre/post test design was used to…
Designing Effective Undergraduate Research Experiences
NASA Astrophysics Data System (ADS)
Severson, S.
2010-12-01
I present a model for designing student research internships that is informed by the best practices of the Center for Adaptive Optics (CfAO) Professional Development Program. The dual strands of the CfAO education program include: the preparation of early-career scientists and engineers in effective teaching; and changing the learning experiences of students (e.g., undergraduate interns) through inquiry-based "teaching laboratories." This paper will focus on the carry-over of these ideas into the design of laboratory research internships such as the CfAO Mainland internship program as well as NSF REU (Research Experiences for Undergraduates) and senior-thesis or "capstone" research programs. Key ideas in maximizing student learning outcomes and generating productive research during internships include: defining explicit content, scientific process, and attitudinal goals for the project; assessment of student prior knowledge and experience, then following up with formative assessment throughout the project; setting reasonable goals with timetables and addressing motivation; and giving students ownership of the research by implementing aspects of the inquiry process within the internship.
NASA Technical Reports Server (NTRS)
Monroe, Joseph; Kelkar, Ajit
2003-01-01
The NASA PAIR program incorporated the NASA-Sponsored research into the undergraduate environment at North Carolina Agricultural and Technical State University. This program is designed to significantly improve undergraduate education in the areas of mathematics, science, engineering, and technology (MSET) by directly benefiting from the experiences of NASA field centers, affiliated industrial partners and academic institutions. The three basic goals of the program were enhancing core courses in MSET curriculum, upgrading core-engineering laboratories to compliment upgraded MSET curriculum, and conduct research training for undergraduates in MSET disciplines through a sophomore shadow program and through Research Experience for Undergraduates (REU) programs. Since the inception of the program nine courses have been modified to include NASA related topics and research. These courses have impacted over 900 students in the first three years of the program. The Electrical Engineering circuit's lab is completely re-equipped to include Computer controlled and data acquisition equipment. The Physics lab is upgraded to implement better sensory data acquisition to enhance students understanding of course concepts. In addition a new instrumentation laboratory in the department of Mechanical Engineering is developed. Research training for A&T students was conducted through four different programs: Apprentice program, Developers program, Sophomore Shadow program and Independent Research program. These programs provided opportunities for an average of forty students per semester.
A Program to Prepare Graduate Students for Careers in Climate Adaptation Science
NASA Astrophysics Data System (ADS)
Huntly, N.; Belmont, P.; Flint, C.; Gordillo, L.; Howe, P. D.; Lutz, J. A.; Null, S. E.; Reed, S.; Rosenberg, D. E.; Wang, S. Y.
2017-12-01
We describe our experiences creating a graduate program that addresses the need for a next generation of scientists who can produce, communicate, and help implement actionable science. The Climate Adaptation Science (CAS) graduate program, funded by the National Science Foundation Research Traineeship (NRT) program, prepares graduate students for careers at the interfaces of science with policy and management in the field of climate adaptation, which is a major 21st-century challenge for science and society. The program is interdisciplinary, with students and faculty from natural, social, and physical sciences, engineering, and mathematics, and is based around interdisciplinary team research in collaboration with partners from outside of academia who have climate adaptation science needs. The program embeds students in a cycle of creating and implementing actionable science through a two-part internship, with partners from government, non-governmental organizations, and industry, that brackets and informs a year of interdisciplinary team research. The program is communication-rich, with events that foster information exchange and understanding across disciplines and workplaces. We describe the CAS program, our experiences in developing it, the research and internship experiences of students in the program, and initial metrics and feedback on the effectiveness of the program.
NASA Technical Reports Server (NTRS)
Fertis, D. G.
1983-01-01
On June 1, 1980, the University of Akron and the NASA Lewis Research Center (LERC) established a Graduate Cooperative Fellowship Program in the specialized areas of Engine Structural Analysis and Dynamics, Computational Mechanics, Mechanics of Composite Materials, and Structural Optimization, in order to promote and develop requisite technologies in these areas of engine technology. The objectives of this program are consistent with those of the NASA Engine Structure Program in which graduate students of the University of Akron participate by conducting research at Lewis. This report is the second on this grant and summarizes the second and third year research effort, which includes the participation of five graduate students where each student selects one of the above areas as his special field of interest. Each student is required to spend 30 percent of his educational training time at the NASA Lewis Research Center and the balance at the University of Akron. His course work is judiciously selected and tailored to prepare him for research work in his field of interest. A research topic is selected for each student while in residence at the NASA Lewis Research Center, which is also approved by the faculty of the University of Akron as his thesis topic for a Master's and/or a Ph.D. degree.
A Meta-Analysis of the Effects of Enrichment Programs on Gifted Students
ERIC Educational Resources Information Center
Kim, Mihyeon
2016-01-01
Although descriptions of enrichment programs are valuable for practitioners, practices, and services for gifted students, they must be backed by evidence, derived through a synthesis of research. This study examined research on enrichment programs serving gifted students and synthesized the current studies between 1985 and 2014 on the effects of…
Advisors' Perceptions of a Rural High School Student Advisory Program
ERIC Educational Resources Information Center
Welsh, Jody Lynn
2012-01-01
The problem addressed in this study was the transition from middle school to high school, a source of difficulty for many students. Student advisory programs have been implemented in many secondary schools as one solution to this problem. While research supports the use of advisory programs, little research exists regarding the effectiveness of…
ERIC Educational Resources Information Center
Higbee, Jeanne L., Ed.; Lundell, Dana B., Ed.; Arendale, David R., Ed.
2005-01-01
This book explores the vision and contributions of the former General College, a program existing 74 years in the University of Minnesota, highlighting its history, mission, programs, research, and student services. This includes an evolving and dynamic program for teaching, learning, and research for student success in higher education. Following…
Education programs of the Institute for Optical Sciences at the University of Toronto
NASA Astrophysics Data System (ADS)
Istrate, Emanuel; Miller, R. J. Dwayne
2009-06-01
The Institute for Optical Sciences at the University of Toronto is an association of faculty members from various departments with research interests in optics. The institute has an extensive program of academic activities, for graduate and undergraduate students, as well as public outreach. For undergraduate students, we have a course on holography. We provide opportunities for students to gain optics experience through research by providing access to summer research positions and by enrolling them in the Research Skills Program, a summer course teaching the basic skills needed in research. For graduate students, we offer the Distinguished Visiting Scientists program, where world-renowned researchers come for a week, giving a series of 3 lectures and interacting closely with students and professors. The extended stay allows the program to run like a mini-course. We launched a Collaborative Master's Program in Optics, where students earn a degree from their home department, along with a certification of participation in the collaborative program. Physics, Chemistry and Engineering students attending together are exposed to the various points of view on optics, ranging from the pure to the applied sciences. For the general public, we offer the Stoicheff Lecture, a yearly public lecture on optics, organized with the Royal Canadian Institute. Our institute also initiated Science Rendezvous, a yearly public celebration of science across the Greater Toronto Area, with lab tours, demonstrations, and other opportunities to learn about science and those who are actively advancing it. This year, this event attracted over 20,000 attendees.
An international basic science and clinical research summer program for medical students.
Ramjiawan, Bram; Pierce, Grant N; Anindo, Mohammad Iffat Kabir; Alkukhun, Abedalrazaq; Alshammari, Abdullah; Chamsi, Ahmad Talal; Abousaleh, Mohannad; Alkhani, Anas; Ganguly, Pallab K
2012-03-01
An important part of training the next generation of physicians is ensuring that they are exposed to the integral role that research plays in improving medical treatment. However, medical students often do not have sufficient time to be trained to carry out any projects in biomedical and clinical research. Many medical students also fail to understand and grasp translational research as an important concept today. In addition, since medical training is often an international affair whereby a medical student/resident/fellow will likely train in many different countries during his/her early training years, it is important to provide a learning environment whereby a young medical student experiences the unique challenges and value of an international educational experience. This article describes a program that bridges the gap between the basic and clinical research concepts in a unique international educational experience. After completing two semester curricula at Alfaisal University in Riyadh, Kingdom of Saudi Arabia, six medical students undertook a summer program at St. Boniface Hospital Research Centre, in Winnipeg, MB, Canada. The program lasted for 2 mo and addressed advanced training in basic science research topics in medicine such as cell isolation, functional assessment, and molecular techniques of analysis and manipulation as well as sessions on the conduct of clinical research trials, ethics, and intellectual property management. Programs such as these are essential to provide a base from which medical students can decide if research is an attractive career choice for them during their clinical practice in subsequent years. An innovative international summer research course for medical students is necessary to cater to the needs of the medical students in the 21st century.
Kurosaki, Yuji; Tomioka, Yoshihisa; Santa, Tomofumi; Kitamura, Yoshihisa
2012-01-01
This article summarizes detailed facts obtained from the questionnaire conducted in 2010 at about 14 National Universities on the topic of "Research programs and advanced educational programs for undergraduate students". The contents of the questionnaire included: (1) Research programs based on the coalition of university and hospital and/or community pharmacy, other Graduate Schools, such as School of Medicine etc., and the University Hospital, (2) Educational systems for the achievement of research programs and their research outcomes, (3) Research programs based on pharmacist practices, (4) Ongoing advanced educational programs for undergraduate students, taking advantage of the coalition with Graduate School, School of Medicine (and Dentistry), and University Hospital. Some of the advanced educational programs outlined in this questionnaire will be carried out by our group in the coming years and the educational benefits together with associated problems shall as well be clarified. This approach will be informative for the development of the leader-oriented pharmacist programs for the college of Pharmacy.
Boreal Forest Watch: A BOREAS Outreach Program
NASA Technical Reports Server (NTRS)
Rock, Barrett N.
1999-01-01
The Boreal Forest Watch program was initiated in the fall of 1994 to act as an educational outreach program for the BOREAS project in both the BOREAS Southern Study Area (SSA) and Northern Study Area (NSA). Boreal Forest Watch (13FW) was designed to introduce area high school teachers and their students to the types of research activities occurring as part of the BOREAS study of Canadian boreal forests. Several teacher training workshops were offered to teachers from central and northern Saskatchewan and northern Manitoba between May, 1995 and February, 1999; teachers were introduced to techniques for involving their students in on-going environmental monitoring studies within local forested stands. Boreal Forest Watch is an educational outreach program which brings high school students and research scientists together to study the forest and foster a sustainable relationship between people and the planetary life-support system we depend upon. Personnel from the University of New Hampshire (UNH), Complex Systems Research Center (CSRC), with the cooperation from the Prince Albert National Park (PANP), instituted this program to help teachers within the BOREAS Study Areas offer real science research experience to their students. The program has the potential to complement large research projects, such as BOREAS, by providing useful student- collected data to scientists. Yet, the primary goal of BFW is to allow teachers and students to experience a hands-on, inquiry-based approach to leaming science - emulating the process followed by research scientists. In addition to introducing these teachers to on-going BOREAS research, the other goals of the BFW program were to: 1) to introduce authentic science topics and methods to students and teachers through hands-on, field-based activities; and, 2) to build a database of student-collected environmental monitoring data for future global change studies in the boreal region.
The 1995 NASA guide to graduate support
NASA Technical Reports Server (NTRS)
1994-01-01
The future of the United States is in the classrooms of America and tomorrow's scientific and technological capabilities are derived from today's investments in research. In 1980, NASA initiated the Graduate Student Researchers Program (GSRP) to cultivate additional research ties to the academic community and to support promising students pursuing advanced degrees in science and engineering. Since then, approximately 1300 students have completed the program's requirements. In 1987, the program was expanded to include the Underrepresented Minority and Disabled Focus (UMDF) Component. This program was designed to increase participation of underrepresented groups in graduate study and research and, ultimately, in space science and aerospace technology careers. Approximately 270 minority students have completed the program's requirements while making significant contributions to the nation's aerospace efforts. Continuing to expand fellowship opportunities, NASA announced the Graduate Student Fellowships in Global Change Research in 1990. Designed to support the rapid growth in the study of earth as a system, more than 250 fellowships have been awarded. And, in 1992, NASA announced opportunities in the multiagency High Performance Computing and Communications (HPCC) Program designed to accelerate the development and application of massively parallel processing. Approximately five new fellowships will be awarded yearly. This booklet will guide you in your efforts to participate in programs for graduate student support.
Atchison, Michael L
2009-01-01
There is a nationwide shortage of veterinarian-scientists in the United States. Barriers to recruiting veterinary students into research careers need to be identified, and mechanisms devised to reduce these barriers. Barriers to attracting veterinary students into research careers include ignorance of available research careers and of the training opportunities. Once admitted, students in research training programs often feel isolated, fitting into neither the veterinary environment nor the research environment. To address the above issues, it is necessary to advertise and educate the public about opportunities for veterinarian-scientists. Schools need to develop high-quality training programs that are well structured but retain appropriate flexibility. Sufficient resources are needed to operate these programs so that students do not graduate with significant debt. A community of veterinarian-scientists needs to be developed so that students do not feel isolated but, rather, are part of a large community of like-minded individuals. Because of the complexities of programs that train veterinarian-scientists, it is necessary to provide extensive advising and for faculty to develop a proactive, servant-leadership attitude. Finally, students must be made aware of career options after graduation.
NASA Astrophysics Data System (ADS)
Visintainer, Tammie Ann
This research explores trajectories of developing the practices of and identification with science for high school students of color as they participate in summer science research programs. This study examines students' incoming ideas of what science is (i.e. science practices) and who does/can do science and how these ideas shift following program participation. In addition, this study explores the aspects of students' identities that are most salient in the science programs and how these aspects are supported or reimagined based on the program resources made available. This research utilizes four main data sources: 1) pre and post program student surveys, 2) pre and post program focal student interviews, 3) scientist instructor interviews, and 4) program observations. Findings show that students' ideas about what science is (i.e. science practices) and who can do science shifted together through participation in the practices of science. Findings illustrate the emergence of an identity generative process: that engaging in science practices (e.g. collecting data) and the accompanying program resources generated new possibilities for students (e.g. capable science learner). Findings show that the program resources made available for science practices determined how the practices "functioned" for students. Furthermore, findings document links between an instructor's vision, the design of program resources that engage students in science practices, and students' learning and identity construction. For example, a mentor that employed a politically relevant and racially conscious lens made unique resources available that allowed students to identify as capable science learners and agents of change in their community. This research shows that youth of color can imagine and take up new possibilities for who they can be in science when their science and racial identities are supported in science programs. Findings highlight the need to re-center race in research involving science identity construction for youth of color. Findings from this research inform the design of learning environments that create multiple pathways for learning and identity construction in science. Findings can be applied to the creation of opportunities in science programs, classrooms and teacher education that foster successful and meaningful engagement with science practices and empower youth of color as capable learners, doers, and changes agents in science.
Contributions to Educational Structures that Promote Undergraduate Research
NASA Technical Reports Server (NTRS)
Sepikas, John; Mijic, Milan; Young, Don; Gillam, Steve
1997-01-01
The opportunities for community college and traditionally underrepresented minority students to participate in research experiences are typically rare. Further, what research experiences that are available often underutilizes the students' potential and do not have follow-up programs. The Physics Outreach Program (POP) working in conjunction with the Jet Propulsion Laboratory is designed to reach out to this segment of the student population and encourage them to consider careers in physics and astronomy. The program is special in that it creates a "vertical" consortium or pipeline of schools whereby students graduating from one participating institution will then transfer to another. This helps to insure that participating students will experience continuity and, with the assistance of JPL equipment and staff, a quality of instruction that they would otherwise not be able to afford. Key words. educational outreach, undergraduate research, community college research, underrepresented minority student research
Maton, Kenneth I.; Pollard, Shauna A.; McDougall Weise, Tatiana V.; Hrabowski, Freeman A.
2012-01-01
The Meyerhoff Scholars Program at the University of Maryland, Baltimore County is widely viewed as a national model of a program that enhances the number of underrepresented minority students who pursue science, technology, engineering and mathematics (STEM) PhDs. The current article provides an overview of the program and the institution-wide change process that led to its development, as well as a summary of key outcome and process evaluation research findings. African American Meyerhoff students are five times more likely than comparison students to pursue a STEM PhD. Program components viewed by the students as most beneficial include financial scholarship, being a part of the Meyerhoff Program community, the Summer Bridge program, study groups, and summer research. Qualitative findings from interviews and focus groups demonstrate the importance of the Meyerhoff Program in creating a sense of belonging and a shared identity, encouraging professional development and emphasizing the importance of academic skills. Among Meyerhoff students, several pre-college and college factors have emerged as predictors of successful entrance into a PhD program in the STEM fields, including pre-college research excitement, pre-college intrinsic math/science motivation, number of summer research experiences during college, and college GPA. Limitations of the research to date are noted, and directions for future research are proposed. PMID:22976367
Maton, Kenneth I; Pollard, Shauna A; McDougall Weise, Tatiana V; Hrabowski, Freeman A
2012-01-01
The Meyerhoff Scholars Program at the University of Maryland, Baltimore County is widely viewed as a national model of a program that enhances the number of underrepresented minority students who pursue science, technology, engineering, and mathematics PhDs. The current article provides an overview of the program and the institution-wide change process that led to its development, as well as a summary of key outcome and process evaluation research findings. African American Meyerhoff students are 5× more likely than comparison students to pursue a science, technology, engineering, and mathematics PhD. Program components viewed by the students as most beneficial include financial scholarship, being a part of the Meyerhoff Program community, the Summer Bridge program, study groups, and summer research. Qualitative findings from interviews and focus groups demonstrate the importance of the Meyerhoff Program in creating a sense of belonging and a shared identity, encouraging professional development, and emphasizing the importance of academic skills. Among Meyerhoff students, several precollege and college factors have emerged as predictors of successful entrance into a PhD program in the science, technology, engineering, and mathematics fields, including precollege research excitement, precollege intrinsic math/science motivation, number of summer research experiences during college, and college grade point average. Limitations of the research to date are noted, and directions for future research are proposed. © 2012 Mount Sinai School of Medicine.
Willenbring, Benjamin D; McKee, Katherine C; Wilson, Betsy V; Henry, Timothy D
2008-08-01
There is a distinct shortage of preprofessional opportunities for undergraduate premedical students. During the last 7 summers, the Minneapolis Heart Institute Foundation Summer Research Internship Program has exposed interested students to cardiology and clinical research. The goals of the internship program are threefold: to bring students in contact with the medical profession, to offer experiences in the various disciplines of cardiology, and to introduce students to clinical research. The success of the program can be measured by its influence on participants' academic pursuits and scholarly contributions. Of the 65 internship alumni, 52 are studying to become physicians and most of the others are in health-related fields. Interns have also contributed abstracts and manuscripts to peer-reviewed journals and presented their research at major conferences.
NASA Astrophysics Data System (ADS)
Marsaglia, K. M.; Pedone, V. A.; Simila, G. W.; Yule, J. D.
2004-12-01
One means of achieving diversity in the geoscience workforce is through the careful cultivation of individuals towards successful careers. Our critical components for student achievement, as reflected in student evaluations, included the development of positive mentoring relationships, honing of critical thinking, writing and oral presentation skills, academic success, and financial support. In the initial three-year phase of in the California State University Northridge (CSUN) Catalyst program, thirty-one students participated, with subequal proportions of high school, undergraduate (freshman to senior) and graduate students. This initial cohort was dominated by Latina(o) students (22) with fewer African American (5), American Indian (2), Pacific Islander (1) and hearing-impaired (1) students. Students were incrementally recruited into the program at a rate of ~10 per year. New students were united through a semester-long Catalyst Course where they worked in groups on various team-building exercises followed by activities in which students were introduced to four different research projects by faculty advisors. Students then continued working on a research project in the following semesters, either as undergraduate or graduate research assistants. The research groups constituted self-mentoring subsets of peers and near-peers, tiered by experience (graduate to high school students) and directed by one of the four Catalyst faculty members. Catalyst student office space promoted intragroup interaction and camaraderie. Most students attended at least one regional, national or international Geoscience meeting. The CSUN Catalyst program has fostered the individual success of its participants, with most progressing towards or achieving BS and MS degrees in the geosciences. Those that have entered the workforce, have done so with more opportunities for career advancement as a result of their Catalyst experiences. Catalyst students have also advanced academically into MS and PhD programs. The research-focussed Catalyst program has therefore succeeded in building quality and diversity in the Geoscience community.
Eeds, Angela; Vanags, Chris; Creamer, Jonathan; Loveless, Mary; Dixon, Amanda; Sperling, Harvey; McCombs, Glenn; Robinson, Doug
2014-01-01
The School for Science and Math at Vanderbilt (SSMV) is an innovative partnership program between a Research I private university and a large urban public school system. The SSMV was started in 2007 and currently has 101 students enrolled in the program, with a total of 60 students who have completed the 4-yr sequential program. Students attend the SSMV for one full day per week during the school year and 3–6 wk in the summers following their ninth- to 11th-grade years, with each grade of 26 students coming to the Vanderbilt campus on a separate day. The research-based curriculum focuses on guiding students through the process of learning to develop questions and hypotheses, designing projects and performing analyses, and communicating results of these projects. The SSMV program has elevated the learning outcomes of students as evidenced by increased achievement scores relative to a comparison group of students; has provided a rigorous research-based science, technology, engineering, and mathematics elective curriculum that culminates in a Summer research internship; has produced 27 Intel and Siemens semifinalists and regional finalists over the past 4 yr; and has supported the development of writing and communication skills resulting in regional and national oral presentations and publications in scientific journals. PMID:26086660
NSF Programs That Support Research in the Two-Year College Classroom
NASA Astrophysics Data System (ADS)
Carter, V.; Ryan, J. G.; Singer, J.
2011-12-01
The National Science Foundation recognizes the significant role provided by two-year institutions in providing high quality STEM courses to large numbers of students. For some students the STEM courses completed while attending a two-year institution represent the only STEM courses a student may take; for others the courses serve as the foundation to continue on into a STEM major at a four-year institution; and some students complete STEM courses that lead directly into the workforce. Several programs in the Division of Undergraduate Research, including the Advanced Technological Education (ATE) program, STEM Talent Expansion Program (STEP), and the Transforming Undergraduate Education in STEM (TUES) program, support the inclusion of student research experiences at two-year institutions. Information about these programs and examples of successful funded projects will be provided. Resources for faculty considering applying for support will be shared with special attention to a faculty development program designed to help faculty learn about funding opportunities and prepare proposals for submission to the TUES and ATE programs.
Entering the Community of Practitioners: A Science Research Workshop Model
ERIC Educational Resources Information Center
Streitwieser, Bernhard; Light, Gregory; Pazos, Pilar
2010-01-01
This article describes the Science Research Workshop Program (SRW) and discusses how it provides students a legitimate science experience. SRW, which is funded by the National Science Foundation, is an apprenticeship-style program in which students write proposals requesting resources to research an original question. The program creates a…
Research and Education Program for Underrepresented Minority Engineering Students in the JIAFS
NASA Technical Reports Server (NTRS)
Whitesides, John L.
2000-01-01
This paper is a final report on Research and Education Program for Underrepresented Minority Engineering Students in the JIAFS (Joint Institute for Advancement of Flight Sciences). The objectives of the program were to conduct research at the NASA Langley Research Center and to increase the number of underrepresented minorities in aerospace engineering.
Kozeracki, Carol A; Carey, Michael F; Colicelli, John; Levis-Fitzgerald, Marc; Grossel, Martha
2006-01-01
UCLA's Howard Hughes Undergraduate Research Program (HHURP), a collaboration between the College of Letters and Science and the School of Medicine, trains a group of highly motivated undergraduates through mentored research enhanced by a rigorous seminar course. The course is centered on the presentation and critical analysis of scientific journal articles as well as the students' own research. This article describes the components and objectives of the HHURP and discusses the results of three program assessments: annual student evaluations, interviews with UCLA professors who served as research advisors for HHURP scholars, and a survey of program alumni. Students indicate that the program increased their ability to read and present primary scientific research and to present their own research and enhanced their research experience at UCLA. After graduating, they find their involvement in the HHURP helped them in securing admission to the graduate program of their choice and provided them with an advantage over their peers in the interactive seminars that are the foundation of graduate education. On the basis of the assessment of the program from 1998-1999 to 2004-2005, we conclude that an intensive literature-based training program increases student confidence and scientific literacy during their undergraduate years and facilitates their transition to postgraduate study.
The Effectiveness of the AAS REU Program
NASA Astrophysics Data System (ADS)
Hemenway, M. K.; Boyce, P. B.; Milkey, R. W.
1996-05-01
In an attempt to address the particular needs of astronomy faculty and undergraduate students, in 1991 the Education Office of the American Astronomical Society approached the National Science Foundation with a unique proposal for funding through the Research Experiences for Undergraduates program. The goals of the AAS program were to "slow the hemorrhage of students out of science...", extend the REU program to non-NSF-funded scientists, to reach under-represented women and minority students particularly in small educational institutions, and to encourage research scientists there to mentor students. As this grant has now expired, the AAS has surveyed the 44 mentors and their students to assess the program's effect on the mentor and the mentor's career; the educational institution; and the student's education and career choices. More than half the mentors responded by the abstract deadline. The program clearly had an effect upon the individuals involved. The greatest effect (in 85% of the cases) was to develop more interest in the mentor's research project both among the students and among the mentor's faculty colleagues. The mentors rated the grant to be a medium or strong factor in their student's decision to pursue graduate study, which 90% of them did. All but one of the AAS-REU students attended an AAS meeting and 3/4 of those gave a paper on their project research. Over 90% of the mentors felt that the research experience strongly promoted a greater interest in science, a greater understanding of science and a desire to continue in science. According to the mentors, this was a very positive and beneficial program for the students as well as for themselves.
Integrating Students and Teachers into Research on Adaptation to Climate Change
NASA Astrophysics Data System (ADS)
Lane, T.; Lescaze, M.; Lenorovitz, K.
2013-12-01
High school students and teachers have the opportunity to participate in current research through a Research Mentor/Teacher/Student team approach offered by the VT EPSCoR Center's for Workforce Development and Diversity (CWDD). High school teams (two students and one teacher) participate in a summer residential training week to learn about the research program and learn field and lab research skills. During the academic year they collect data for the university research project from sites near their schools, and formulate an independent research question of their own, guided by a research mentor. Through the year-long program participants develop skills in scientific methods, earth systems thinking and data analysis. Participants experience what research and being a scientist is all about. The research program benefits from a distributed data gathering network, and the high school teams become part of a research community. High school projects have researched the relationship between anticipated increase in storm intensity and frequency in the northeast as a result of climate change, to phosphorus and sediment loading in streams, land use change, and biotic communities, to name a few. This poster, authored by a teacher participants in the program, will share the experience and benefits to their students.
NASA Astrophysics Data System (ADS)
Schwieterman, Edward; Binder, Breanna; Tremmel, Michael; Garofali, Kristen; Agol, Eric; Meadows, Victoria
2015-11-01
The Pre-Major in Astronomy Program (Pre-MAP) is a research and mentoring program for underclassmen and transfer students offered by the University of Washington Astronomy Department since 2005. The primary goal of Pre-MAP is to recruit and retain students from groups traditionally underrepresented in science, technology, engineering, and mathematics (STEM) through early exposure to research. The Pre-MAP seminar is the core component of the program and offers instruction in computing skills, data manipulation, science writing, statistical analysis, and scientific speaking and presentation skills. Students choose research projects proposed by faculty, post-docs and graduate students in areas related to astrophysics, planetary science, and astrobiology. Pre-MAP has been successful in retaining underrepresented students in STEM fields relative to the broader UW population, and we've found these students are more likely to graduate and excel academically than their peers. As of spring 2015, more than one hundred students have taken the Pre-MAP seminar, and both internal and external evaluations have shown that all groups of participating students report an increased interest in astronomy and science careers at the end of the seminar. Several former Pre-MAP students have obtained or are pursuing doctoral and master’s degrees in STEM fields; many more work at NASA centers, teaching colleges, or as engineers or data analysts. Pre- MAP student research has produced dozens of publications in peer-reviewed research journals. This talk will provide an overview of the program: the structure of the seminar, examples of projects completed by students, cohort-building activities outside the seminar, funding sources, recruitment strategies, and the aggregate demographic and achievement data of our students. It is our hope that similar programs may be adopted successfully at other institutions.
Senior Thesis Research at Princeton.
ERIC Educational Resources Information Center
Prud'homme, Robert K.
1981-01-01
Reviews a senior undergraduate research program in chemical engineering at Princeton University. Includes strengths and requirements for a successful program. Senior thesis research provides creative problem solving experiences for students and is congruent with departmental research objectives. Selected student comments are included. (SK)
Valuing Professional Development Components for Emerging Undergraduate Researchers
NASA Astrophysics Data System (ADS)
Cheung, I.
2015-12-01
In 2004 the Hatfield Marine Science Center (HMSC) at Oregon State University (OSU) established a Research Experience for Undergraduates (REU) program to engage undergraduate students in hands-on research training in the marine sciences. The program offers students the opportunity to conduct research focused on biological and ecological topics, chemical and physical oceanography, marine geology, and atmospheric science. In partnership with state and federal government agencies, this ten-week summer program has grown to include 20+ students annually. Participants obtain a background in the academic discipline, professional development training, and research experience to make informed decisions about careers and advanced degrees in marine and earth system sciences. Professional development components of the program are designed to support students in their research experience, explore career goals and develop skills necessary to becoming a successful young marine scientist. These components generally include seminars, discussions, workshops, lab tours, and standards of conduct. These componentscontribute to achieving the following professional development objectives for the overall success of new emerging undergraduate researchers: Forming a fellowship of undergraduate students pursuing marine research Stimulating student interest and understanding of marine research science Learning about research opportunities at Oregon State University "Cross-Training" - broadening the hands-on research experience Exploring and learning about marine science careers and pathways Developing science communication and presentation skills Cultivating a sense of belonging in the sciences Exposure to federal and state agencies in marine and estuarine science Academic and career planning Retention of talented students in the marine science Standards of conduct in science Details of this program's components, objectives and best practices will be discussed.
Student Attendance: Research and Strategies. Research Brief
ERIC Educational Resources Information Center
Johnston, Howard
2005-01-01
What are the characteristics of successful student attendance programs for the high school? It is commonly believed and well supported by research that students who attend school regularly are more successful than those who do not. The challenge for high schools is to design and implement attendance policies and programs that monitor, encourage,…
ERIC Educational Resources Information Center
Hanson, Mark J.
2015-01-01
A three-day ethics seminar introduced ethics to undergraduate environmental chemistry students in the Research Experiences for Undergraduates (REU) program. The seminar helped students become sensitive to and understand the ethical and values dimensions of their work as researchers. It utilized a variety of resources to supplement lectures and…
ERIC Educational Resources Information Center
Macklin, Ella M.
2016-01-01
This research paper reported the results from research conducted regarding technologically-based reading comprehension programs for students who have intellectual disabilities. It provided evidence-based research and theoretical bases for learning (i.e. Zone of Generativity, Constructivism, Self-Efficacy) on the issue of these students not being…
Integrative Curriculum Development in Nuclear Education and Research Vertical Enhancement Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Egarievwe, Stephen U.; Jow, Julius O.; Edwards, Matthew E.
Using a vertical education enhancement model, a Nuclear Education and Research Vertical Enhancement (NERVE) program was developed. The NERVE program is aimed at developing nuclear engineering education and research to 1) enhance skilled workforce development in disciplines relevant to nuclear power, national security and medical physics, and 2) increase the number of students and faculty from underrepresented groups (women and minorities) in fields related to the nuclear industry. The program uses multi-track training activities that vertically cut across the several education domains: undergraduate degree programs, graduate schools, and post-doctoral training. In this paper, we present the results of an integrativemore » curriculum development in the NERVE program. The curriculum development began with nuclear content infusion into existing science, engineering and technology courses. The second step involved the development of nuclear engineering courses: 1) Introduction to Nuclear Engineering, 2) Nuclear Engineering I, and 2) Nuclear Engineering II. The third step is the establishment of nuclear engineering concentrations in two engineering degree programs: 1) electrical engineering, and 2) mechanical engineering. A major outcome of the NERVE program is a collaborative infrastructure that uses laboratory work, internships at nuclear facilities, on-campus research, and mentoring in collaboration with industry and government partners to provide hands-on training for students. The major activities of the research and education collaborations include: - One-week spring training workshop at Brookhaven National Laboratory: The one-week training and workshop is used to enhance research collaborations and train faculty and students on user facilities/equipment at Brookhaven National Laboratory, and for summer research internships. Participants included students, faculty members at Alabama A and M University and research collaborators at BNL. The activities include 1) tour and introduction to user facilities/equipment at BNL that are used for research in room-temperature semiconductor nuclear detectors, 2) presentations on advances on this project and on wide band-gap semiconductor nuclear detectors in general, and 3) graduate students' research presentations. - Invited speakers and lectures: This brings collaborating research scientist from BNL to give talks and lectures on topics directly related to the project. Attendance includes faculty members, researchers and students throughout the university. - Faculty-students team summer research at BNL: This DOE and National Science Foundation (NSF) program help train students and faculty members in research. Faculty members go on to establish research collaborations with scientists at BNL, develop and submit research proposals to funding agencies, transform research experience at BNL to establish and enhance reach capabilities at home institution, and integrate their research into teaching through class projects and hands-on training for students. The students go on to participate in research work at BNL and at home institution, co-author research papers for conferences and technical journals, and transform their experiences into developing senior and capstone projects. - Grant proposal development: Faculty members in the NERVE program collaborate with BNL scientists to develop proposals, which often help to get external funding needed to expand and sustain the continuity of research activities and supports for student's wages and scholarships (stipends, tuition and fees). - Faculty development and mentoring: The above collaboration activities help faculty professional development. The experiences, grants, joint publications in technical journals, and supervision of student's research, including thesis and dissertation research projects, contribute greatly to faculty development. Senior scientists at BNL and senior faculty members on campus jointly mentor junior faculty members to enhance their professional growth. - Graduate thesis and dissertation research: Brookhaven National Laboratory provides unique opportunities and outstanding research resources for the NERVE program graduate research. Scientists from BNL serve in master's degree thesis and PhD dissertation committees, where they play active roles in the supervision of the research. (authors)« less
2012-01-01
promotes original research and experimentation in the sciences, engineering, and mathematics at the high school level and publicly recognizes students ...in programs that offered enrichment classes in engineering at universities through the UNITE program. 1,614 middle and high school students ...Research and Engineering Apprenticeship Program (REAP) REAP is designed to offer high school students the opportunity to expand their background and
ERIC Educational Resources Information Center
Foust, Regan Clark; Hertberg-Davis, Holly; Callahan, Carolyn M.
2009-01-01
Using qualitative methods, the researchers explored student perceptions of the social and emotional advantages and disadvantages of Advanced Placement (AP) and International Baccalaureate (IB) program participation, differences between the AP and IB programs in those perceptions, and whether or not students report experiencing a "forced-choice…
Partnerships for building strong internship and research experiences for undergraduates
NASA Astrophysics Data System (ADS)
Goehring, L.; Haacker-Santos, R.; Dutilly, E.
2013-12-01
REU and internship site directors often operate in geographic and institutional isolation from each other, unable to share best practices or resources. When collaboration is possible, benefits for both the students and leaders of these programs can be achieved. In 2013, the SOARS REU program, hosted at the National Center for Atmospheric Research (NCAR), supported the National Ecological Observatory Network (NEON) in creating a new internship program aimed at engaging undergraduate science and engineering students in NEON's work. Both student programs share the objective of reaching underrepresented groups in STEM. The year long collaboration allowed NEON to learn best practices in recruitment and support of students, mentor training, and program development, and to customize its internship according to its organization i.e., a science/engineering observatory under construction. Both programs shared several elements: students were housed together so that interns could tap into a larger cohort of supportive peers; students participated in a joint leadership training to strengthen cross program mentoring; and students met weekly for a scientific communications workshop. Having multiple science disciplines represented enhanced the workshop as students learned about writing styles and cultures of each other's fields, fostering an appreciation of different scientific disciplines and interdisciplinary thinking. Finally, at the end of the summer, students presented their findings in a joint poster session. We found that collaboration between programs led to increased recruitment of students from diverse backgrounds and support of students through stronger cohorts, shared trainings, and enhanced program content. In this presentation we share findings of our programs' evaluations and make recommendations on building collaborative partnerships for internships and research experiences for undergraduates.
ERIC Educational Resources Information Center
Mostafa, Akram Fathy; Bin Mta'en, Isa Bin Yahya
2017-01-01
Research aims to know the effect of two different designs of screen readers' programs on using the internet skills of blind middle school students, and the research sample consisted of (8) students from El-thoghr middle school students (Fousol El-Noor)-Jeddah where the student has been divided into two experimental groups each of (4) students. To…
NASA Astrophysics Data System (ADS)
Rock, B. N.; Hale, S.; Graham, K.; Hayden, L. B.
2009-12-01
Watershed Watch (NSF 0525433) engages early undergraduate students from two-year and four-year colleges in student-driven full inquiry-based instruction in the biogeosciences. Program goals for Watershed Watch are to test if inquiry-rich student-driven projects sufficiently engage undeclared students (or noncommittal STEM majors) to declare a STEM major (or remain with their STEM major). The program is a partnership between two four-year campuses - the University of New Hampshire (UNH), and Elizabeth City State University (ECSU, in North Carolina); and two two-year campuses - Great Bay Community College (GBCC, in New Hampshire) and the College of the Albemarle (COA, in North Carolina). The program focuses on two watersheds: the Merrimack Ricer Watershed in New Hampshire and Massachusetts, and the Pasquotank River Watershed in Virginia and North Carolina. Both the terrestrial and aquatic components of both watersheds are evaluated using the student-driven projects. A significant component of this program is an intensive two-week Summer Research Institute (SRI), in which undeclared freshmen and sophomores investigate various aspects of their local watershed. Two Summer Research Institutes have been held on the UNH campus (2006 and 2008) and two on the ECSU campus (2007 and 2009). Students develop their own research questions and study design, collect and analyze data, and produce a scientific oral or poster presentation on the last day of the SRI. The course objectives, curriculum and schedule are presented as a model for dissemination for other institutions and programs seeking to develop inquiry-rich programs or courses designed to attract students into biogeoscience disciplines. Data from self-reported student feedback indicate the most important factors explaining high-levels of student motivation and research excellence in the program are: 1) working with committed, energetic, and enthusiastic faculty mentors, and 2) faculty mentors demonstrating high degrees of teamwork and coordination. The past four Summer Research Institutes have engaged over 100 entry-level undergraduate students in the process of learning science by doing it, and approximately 50% of those participating have declared majors in a wide range of science fields. A total of eight Watershed Watch students have presented findings from their SRI research projects at AGU meetings in 2007, 2008, and 2009. This presentation will highlight the lessons learned over the past four years in the Watershed Watch program.
ERIC Educational Resources Information Center
Roundtree, Emma Sophia
2017-01-01
Research has shown there is a gap in access to postsecondary education (PSE) programs for students with intellectual disabilities (ID) in Georgia. There is also a gap in the research literature concerning the perceptions of parents and teachers of students with ID towards these PSE programs. This study sought to examine these problems by using a…
NASA Astrophysics Data System (ADS)
Marsaglia, K. M.; Pedone, V.; Simila, G. W.; Yule, J. D.
2002-12-01
The Catalyst Program of the Department of Geological Sciences at California State University Northridge has been developed by four faculty members who were the recipients of a three-year award (2002-2005) from the National Science Foundation. The goal of the program is to increase minority participation and success in the geosciences. The program seeks to enrich the educational experience by introducing students at all levels to research in the geosciences and to decrease obstacles that affect academic success. Both these goals are largely achieved by the formation of integrated high school, undergraduate, and graduate research groups, which also provide fulfilling and successful peer mentorship. The Catalyst Program provides significant financial support to participants to allow them to focus their time on their education. New participants first complete a specially designed course that introduces them to peer-mentoring, collaborative learning, and geological research. Students of all experience levels then become members of research teams, which deepens academic and research skills as well as peer-mentor relationships. The program was highly successful in its inaugural year. To date, undergraduates and graduate students in the program coauthored six abstracts at professional meetings and one conference paper. High-school students gained first hand experience of a college course and geologic research. Perhaps the most important impacts of the program are the close camaraderie that has developed and the increased ability of the Catalyst students to plan and execute research with greater confidence and self-esteem.
Alive and aware: Undergraduate research as a mechanism for program vitalization
NASA Astrophysics Data System (ADS)
Rohs, C.
2013-12-01
Undergraduate research is a vital component of many geoscience programs across the United States. It is especially critical at those institutions that do not have graduate students or graduate programs in the geosciences. This paper presents findings associated with undergraduate research in four specific areas: The success of students that pursue undergraduate research both in the workforce and in graduate studies; the connections that are generated through undergraduate research and publication; the application of undergraduate research data and materials in the classroom; and the development of lasting connections between faculty and students to construct a strong alumni base to support the corresponding programs. Students that complete undergraduate research have the opportunity to develop research proposals, construct budgets, become familiar with equipment or software, write and defend their results. This skill set translates directly to graduate studies; however, it is also extremely valuable for self-marketing when seeking employment as a geoscientist. When transitioning from higher education into the workforce, a network of professional connections facilitates and expedites the process. When completing undergraduate research, students have a direct link to the faculty member that they are working with, and potentially, the network of that faculty member. Even more important, the student begins to build their own professional network as they present their findings and receive feedback on their research. Another area that benefits from undergraduate research is the classroom. A cyclical model is developed where new data and information are brought into the classroom by the faculty member, current students see the impact of undergraduate research and have the desire to participate, and a few of those students elect to participate in a project of their own. It turns into a positive feedback loop that is beneficial for both the students and the faculty members. Finally, it is important to look at the long-range benefit of undergraduate research as an investment that pays off through alumni in the years to come. These alumni have the potential to become the pillars in support of the geoscience program. With their support, the program and associated department becomes strengthened and continues to develop in order to provide for the geoscience workforce needs of the future.
ERIC Educational Resources Information Center
Wells, Eddie Lee, Jr.
2017-01-01
This study sought to understand the perceptions of African American male students who are enrolled in developmental education programs. The researcher gathered information by interviewing students at 2 Mississippi community colleges and by reviewing information collected from the student's demographic profile. This qualitative research allowed the…
NASA Astrophysics Data System (ADS)
Kesidou, Sofia; Roseman, Jo Ellen
2002-08-01
The purposes of this study were to examine how well middle school programs support the attainment of key scientific ideas specified in national science standards, and to identify typical strengths and weaknesses of these programs using research-based criteria. Nine widely used programs were examined by teams of teachers and specialists in research on teaching and learning. Reviewers found that whereas key ideas were generally present in the programs, they were typically buried between detailed or even unrelated ideas. Programs only rarely provided students with a sense of purpose for the units of study, took account of student beliefs that interfere with learning, engaged students with relevant phenomena to make abstract scientific ideas plausible, modeled the use of scientific knowledge so that students could apply what they learned in everyday situations, or scaffolded student efforts to make meaning of key phenomena and ideas presented in the programs. New middle school science programs that reflect findings from learning research are needed to support teachers better in helping students learn key ideas in science. The criteria and findings from this study on the inadequacies in existing programs could serve as guidelines in new curriculum development.
Role of non-government organizations in engaging medical students in research.
Manoranjan, Branavan; Dey, Ayan K; Wang, Xin; Kuzyk, Alexandra; Petticrew, Karen; Carruthers, Chris; Arnold, Ian
2017-03-01
The continued decline in medical trainees entering the workforce as clinician-scientists has elevated the need to engage medical students in research. While past studies have shown early exposure to generate interest among medical students for research and academic careers, financial constraints have limited the number of such formal research training programs. In light of recent government budget cuts to support research training for medical students, non-government organizations (NGOs) may play a progressively larger role in supporting the development of clinician-scientists. Since 2005, the Mach-Gaensslen Foundation has sponsored 621 Canadian medical student research projects, which represents the largest longitudinal data set of Canadian medical students engaged in research. We present the results of the pre- and post-research studentship questionnaires, program evaluation survey and the 5-year and 10-year follow-up questionnaires of past recipients. This paper provides insight into the role of NGOs as stakeholders in the training of clinician-scientists and evaluates the impact of such programs on the attitudes and career trajectory of medical students. While the problem of too few physicians entering academic and research-oriented careers continues to grow, alternative-funding strategies from NGOs may prove to be an effective approach in developing and maintaining medical student interest in research. Copyright © 2017 American Federation for Medical Research.
Evaluation of a College Freshman Diversity Research Program in Astronomy
NASA Astrophysics Data System (ADS)
Tremmel, Michael J.; Garner, S. M.; Schmidt, S. J.; Wisniewski, J. P.; Agol, E.
2014-01-01
Graduate students in the astronomy department at the University of Washington began the Pre-Major in Astronomy Program (Pre-MAP) after recognizing that underrepresented students in STEM fields are not well retained after their transition from high school. Pre-MAP is a research and mentoring program that begins with a keystone seminar where they learn astronomical research techniques that they apply to research projects conducted in small groups. Students also receive one-on-one mentoring and peer support for the duration of the academic year and beyond. Successful Pre-MAP students have declared astronomy and physics majors, expanded their research projects beyond the fall quarter, presented posters at the UW Undergraduate Research Symposium, and received research fellowships and summer internships. Here we examine the success of the program in attracting underrepresented minorities and in facilitating better STEM retention and academic performance among incoming UW students. We use the University of Washington Student Database to study both the performance of Pre-MAP students and the overall UW student body over the past 8 years. We show that Pre-MAP students are generally more diverse than the overall UW population and also come in with a variety of different math backgrounds, which we show to be an important factor on STEM performance for the overall UW population. We find that that Pre-MAP students are both more academically successful and more likely to graduate in STEM fields than their UW peers, regardless of initial math placement.
Anderson, Belinda J; Kligler, Benjamin; Cohen, Hillel W; Marantz, Paul R
2016-01-01
Research literacy and the practice of evidence-based medicine (EBM) are important initiatives in complementary and alternative medicine (CAM), which requires cultural change within educational institutions for successful implementation. To determine the self-assessed research and EBM perspectives of Chinese medicine Masters degree students at Pacific College of Oriental Medicine, New York campus (PCOM-NY). A survey with 17 close-ended questions and one open-ended question was administered through Survey Monkey to students at PCOM-NY. The survey was sent to 420 Masters students and 176 (41.9%) responded. Students in all four years of the Masters degree indicated a generally high degree of interest in, and support for the value of research. However, increasing years (one to four years) in the program was associated with lower interest in post-graduation research participation and entering the doctoral program, and the fourth year students reported low levels of interest in having greater research content and training in their Masters degree programs. Students who responded to the open-ended question (23% of respondents) expressed enthusiasm for research and concerns about the relevance of research in Chinese medicine. Consistent with findings in similar studies at CAM colleges, interest in research, and EBM of the PCOM-NY Masters students appeared to decline with increasing years in the program. Concerns around paradigm and epistemological issues associated with research and EBM among Chinese medicine students and practitioners warrants further investigation, and may be an important challenge for integrative medicine. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA initiatives with historically black colleges and universities
NASA Technical Reports Server (NTRS)
1985-01-01
NASA programs involving students and teachers at historically Black colleges and universities are discussed. The programs at each of the NASA research centers are described. Guidance is given on proposal submission for NASA grants. The Cooperative Education program, the Graduate Student Researchers program, and summer faculty fellowships are discussed.
NASA Ames Summer High School Apprenticeship Research Program
NASA Technical Reports Server (NTRS)
Powell, P.
1985-01-01
The Summer High School Apprenticeship Research Program (SHARP) is described. This program is designed to provide engineering experience for gifted female and minority high school students. The students from this work study program which features trips, lectures, written reports, and job experience describe their individual work with their mentors.
Prevention-Related Research Targeting African American Alternative Education Program Students
ERIC Educational Resources Information Center
Carswell, Steven B.; Hanlon, Thomas E.; Watts, Amy M.; O'Grady, Kevin E.
2014-01-01
This article reports on a program of research that examined the background, planning, implementation, and evaluation of an after-school preventive intervention program within an ongoing urban alternative education program targeting African American students referred to the school because of their problematic behavior in regular schools. The…
Attitude, Gender and Achievement in Computer Programming
ERIC Educational Resources Information Center
Baser, Mustafa
2013-01-01
The aim of this research was to explore the relationship among students' attitudes toward programming, gender and academic achievement in programming. The scale used for measuring students' attitudes toward programming was developed by the researcher and consisted of 35 five-point Likert type items in four subscales. The scale was administered to…
Immersion research education: students as catalysts in international collaboration research.
Anderson, K H; Friedemann, M L; Bűscher, A; Sansoni, J; Hodnicki, D
2012-12-01
This paper describes an international nursing and health research immersion program. Minority students from the USA work with an international faculty mentor in teams conducting collaborative research. The Minority Health International Research Training (MHIRT) program students become catalysts in the conduct of cross-cultural research. To narrow the healthcare gap for disadvantaged families in the USA and partner countries. Faculty from the USA, Germany, Italy, Colombia, England, Austria and Thailand formed an international research and education team to explore and compare family health issues, disparities in chronic illness care, social inequities and healthcare solutions. USA students in the MHIRT program complete two introductory courses followed by a 3-month research practicum in a partner country guided by faculty mentors abroad. The overall program development, student study abroad preparation, research project activities, cultural learning, and student and faculty team outcomes are explored. Cross-fertilization of research, cultural awareness and ideas about improving family health occur through education, international exchange and research immersion. Faculty research and international team collaboration provide opportunities for learning about research, health disparities, cultural influences and healthcare systems. The students are catalysts in the research effort, the dissemination of research findings and other educational endeavours. Five steps of the collaborative activities lead to programmatic success. MHIRT scholars bring creativity, enthusiasm, and gain a genuine desire to conduct health research about families with chronic illness. Their cultural learning stimulates career plans that include international research and attention to vulnerable populations. © 2012 The Authors. International Nursing Review © 2012 International Council of Nurses.
Immersion Research Education: Students as Catalysts in International Collaboration Research
Anderson, Kathryn Hoehn; Friedemann, Marie-Luise; Bűscher, Andreas; Sansoni, Julita; Hodnicki, Donna
2012-01-01
Background This paper describes an international nursing and health research immersion program. Minority students from the United States of America (USA) work with an international faculty mentor in teams conducting collaborative research. The Minority Health International Research Training (MHIRT) program students become catalysts in the conduct of cross-cultural research. Aim To narrow the health care gap for disadvantaged families in the U.S.A. and partner countries. Methods Faculty from the U.S.A, Germany, Italy, Colombia, England, Austria, and Thailand formed an international research and education team to explore and compare family health issues, disparities in chronic illness care, social inequities, and health care solutions. U.S.A. students in the MHIRT program complete two introductory courses followed by a three-month research practicum in a partner country guided by faculty mentors abroad. The overall program development, student study abroad preparation, research project activities, cultural learning, and student and faculty team outcomes are explored. Results Cross-fertilization of research, cultural awareness, and ideas about improving family health occur through education, international exchange, and research immersion. Faculty research and international team collaboration provide opportunities for learning about research, health disparities, cultural influences, and health care systems. The students are catalysts in the research effort, the dissemination of research findings, and other educational endeavours. Five steps of the collaborative activities lead to programmatic success. Conclusions MHIRT scholars bring creativity, enthusiasm, and gain a genuine desire to conduct health research about families with chronic illness. Their cultural learning stimulates career plans that include international research and attention to vulnerable populations. PMID:23134134
The Scientific and Engineering Student Internship (SESI) Program at NASA's GSFC
NASA Astrophysics Data System (ADS)
Bruhweiler, F.; Verner, E.; Rabin, D. M.
2011-12-01
Through our Scientific and Engineering Student Internship (SESI) program we have provided exceptional research opportunities for undergraduate and graduate students in one of the world's premier research centers dedicated to the Sun and its heliosphere, the Heliophysics Science Division at NASA/Goddard Space Flight Center. NASA/GSFC and the NSF/REU program have funded this activity jointly. These opportunities combine the advantages of the stimulating, multi-disciplinary, environment of a NASA laboratory with the guidance provided by researchers who are, in addition, committed to education and the encouragement of women, under-represented minorities, and students with disabilities. Opportunities also exist for non-U.S. citizens as well. Moreover, the surrounding Washington, DC area provides a variety of social and educational activities for our participating students. Our 19 years of experience has served as an effective catalyst, enabling us to establish a formal program for students interested in Solar and Space Physics at NASA and to develop more NASA-funded opportunities for students, in addition to those funded by NSF/REU awards. This has allowed us to present a combined NSF/REU and NASA-funded program for undergraduates at NASA/GSFC. This synergistic program exposes our student interns to a very wide range of projects and ideas, normally unavailable in other programs. We have had roughly 300 students (about 1/2 being supported by NSF) actively participate in over 200 different research opportunities. These research projects have spanned the spectrum, ranging from theoretical modeling associated with space weather, developing instrumentation for space missions, analysis of spacecraft data, including 'hands-on' experience with sounding rockets and working in the clean environs of GSFC's Detector Development Laboratory. Although SESI is largely a summer program, a number of students, often through other funding sources, continue their research projects during subsequent summers or in the academic year. Further information can be obtained at http://iacs.cua.edu and http://sesi.gsfc.nasa.gov/ This program is funded through NSF grant AGS-1062729 and NASA/GSFC grant NNX11AJ04G.
The Cerro Tololo Inter-American Observatory Summer Student Programs in La Serena, Chile
NASA Astrophysics Data System (ADS)
Kaleida, Catherine C.; Smith, C.; Van Der Bliek, N. S.; James, D.
2014-01-01
The Cerro Tololo Inter-American Observatory (CTIO) offers positions for U.S. and Chilean student interns during the Chilean summer months of January-March (northern winter semester) at the CTIO offices in La Serena, Chile. CTIO is part of the National Optical Astronomy Observatory (NOAO) of the United States, focused on the development of astronomy in the southern hemisphere. Six undergraduate research assistantships are offered for U.S. physics and astronomy undergraduate students through the NSF-funded Research Experiences for Undergraduates (REU) program. The CTIO-funded Prácticas de Investigación en Astronomía (PIA) program is run concurrently with the REU program, and offers two research assistantships for Chilean undergraduate or 1st or 2nd year masters students, also at the CTIO offices in La Serena, Chile. The CTIO REU and PIA programs provide exceptional opportunities for students considering a career in astronomy to engage in substantive research activities with scientists working at the forefront of contemporary astrophysics. Student participants work on specific research projects in close collaboration with members of the CTIO scientific and technical staff, such as galaxy clusters, gravitational lensing, supernovae, planetary nebulae, stellar populations, star clusters, star formation, variable stars and interstellar medium. The CTIO REU and PIA programs emphasize observational techniques and provide opportunities for direct observational experience using CTIO's state-of-the-art telescopes and instrumentation. The programs run for 10 weeks, from mid-January to the end of March. A two-night observing run on Cerro Tololo and a field trip to another observatory in Chile are included for students of both programs. These positions are full time, and those selected will receive a modest stipend and subsidized housing on the grounds of the offices of CTIO in La Serena, as well as travel costs to and from La Serena. In addition, the students have the opportunity attend the American Astronomical Society (AAS) winter meeting to present their research the year following the program.
Lewis' Educational and Research Collaborative Intership Program Grant Closeout Report
NASA Technical Reports Server (NTRS)
2003-01-01
The Lewis' Educational and Research Collaborative Internship Program (LERCIP) is a collaborative undertaking by the Office of Educational Programs at NASA Glenn Research Center at Lewis Field (formerly NASA Lewis Research Center) and the Ohio Aerospace Institute. This program provides 10-week internships and 10 or 12-week fellowships for undergraduate/graduate students and secondary school teachers. Approximately 130 interns are selected to participate in this program each year and begin arriving the second week in May. The internships provide students with introductory professional experiences to complement their academic programs. The interns are given assignments on research and development projects under the personal guidance of NASA professional staff members. Each intern is assigned a NASA mentor who facilitates a research assignment. In addition to the research assignment, the summer program includes a strong educational component that enhances the professional stature of the participants. The educational activities include a research symposium and a variety of workshops, lectures and short courses. An important aspect of the program is that it includes students with diverse social, cultural and economic backgrounds.
NASA Astrophysics Data System (ADS)
White, L. D.; Snow, M. K.; Davis, J.; Serpa, L. F.
2005-05-01
Since 2001, faculty and graduate students in the Department of Geosciences at San Francisco State University (SFSU) have coordinated a program to encourage high school students from traditionally underrepresented groups to pursue the geosciences. The SF-ROCKS (Reaching Out to Communities and Kids with Science in San Francisco) program is a multifaceted NSF-funded program that includes curriculum enhancement, teacher in-service training, summer and academic year research experiences for high school students, and field excursions to national parks. Six faculty, five graduate students, and several undergraduate students work together to develop program activities. Working with 9th grade integrated science courses, the students are introduced to SF-ROCKS through lesson plans and activities that focus on the unique geologic environments that surround the schools. Each year a group of twelve to fifteen students is selected to participate in a summer and academic year research institute at the SFSU campus. In the four years of our program, twenty-seven ninth and tenth-grade students have participated in the summer and academic year research experiences. We have observed increased interest and skill development as the high school students work closely with university faculty and students. As SF-ROCKS continues to expand, we are exploring ways to partner with other diversity programs such as the long-standing University of New Orleans (UNO) Minority Geoscience summer field program. The UNO program is successful because it combines field exposure and mentoring with scholarship opportunities for students making it more likely they will study geosciences in college. SF-ROCKS is creating additional ways to further enhance the students' perspective of the geosciences through meaningful field and scientific research experiences by focusing on local and regional geologic environments and also on the geology of national parks.
Student perception of initial transition into a nursing program: A mixed methods research study.
McDonald, Meghan; Brown, Janine; Knihnitski, Crystal
2018-05-01
Transition into undergraduate education programs is stressful and impacts students' well-being and academic achievement. Previous research indicates nursing students experience stress, depression, anxiety, and poor lifestyle habits which interfere with learning. However, nursing students' experience of transition into nursing programs has not been well studied. Incongruence exists between this lack of research and the desire to foster student success. This study analyzed students' experiences of initial transition into a nursing program. An embedded mixed method design. A single site of a direct-entry, four year baccalaureate Canadian nursing program. All first year nursing students enrolled in the fall term of 2016. This study combined the Student Adaptation to College Questionnaire (SACQ) with a subset of participants participating in qualitative focus groups. Quantitative data was analyzed using descriptive statistics to identify statistically significant differences in full-scale and subscale scores. Qualitative data was analyzed utilizing thematic analysis. Significant differences were seen between those who moved to attend university and those who did not, with those who moved scoring lower on the Academic Adjustment subscale. Focus group thematic analysis highlighted how students experienced initial transition into a baccalaureate nursing program. Identified themes included reframing supports, splitting focus/finding focus, negotiating own expectations, negotiating others' expectations, and forming identity. These findings form the Undergraduate Nursing Initial Transition (UNIT) Framework. Significance of this research includes applications in faculty development and program supports to increase student success in the first year of nursing and to provide foundational success for ongoing nursing practice. Copyright © 2018 Elsevier Ltd. All rights reserved.
Research Ethics with Undergraduates in Summer Research Training Programs
NASA Astrophysics Data System (ADS)
Cheung, I.; Yalcin, K.
2016-02-01
Many undergraduate research training programs incorporate research ethics into their programs and some are required. Engaging students in conversations around challenging topics such as conflict of interest, cultural and gender biases, what is science and what is normative science can difficult in newly formed student cohorts. In addition, discussing topics with more distant impacts such as science and policy, intellectual property and authorship, can be difficult for students in their first research experience that have more immediate concerns about plagiarism, data manipulation, and the student/faculty relationship. Oregon State University's Research Experience for Undergraduates (REU) in Ocean Sciences: From Estuaries to the Deep Sea as one model for incorporating a research ethics component into summer undergraduate research training programs. Weaved into the 10-week REU program, undergraduate interns participate in a series of conversations and a faculty mentor panel focused on research ethics. Topics discussed are in a framework for sharing myths, knowledge and personal experiences on issues in research with ethical implications. The series follows guidelines and case studies outlined from the text, On Being A Scientist: Responsible Conduct In Research Committee on Science, Engineering, and Public Policy, National Academy of Sciences.
Overview of Space Science and Information Research Opportunities at NASA
NASA Technical Reports Server (NTRS)
Green, James L.
2000-01-01
It is not possible to review all the opportunities that NASA provides to support the Space Science Enterprise, in the short amount of time allotted for this presentation. Therefore, only a few key programs will be discussed. The programs that I will discuss will concentrate on research opportunities for faculty, graduate and postdoctoral candidates in Space Science research and information technologies at NASA. One of the most important programs for research opportunities is the NASA Research Announcement or NRA. NASA Headquarters issues NRA's on a regular basis and these cover space science and computer science activities relating to NASA missions and programs. In the Space Sciences, the most important NRA is called the "Research Opportunities in Space Science or the ROSS NRA. The ROSS NRA is composed of multiple announcements in the areas of structure and evolution of the Universe, Solar System exploration, Sun-Earth connections, and applied information systems. Another important opportunity is the Graduate Student Research Program (GSRP). The GSRP is designed to cultivate research ties between a NASA Center and the academic community through the award of fellowships to promising students in science and engineering. This program is unique since it matches the student's area of research interest with existing work being carried out at NASA. This program is for U.S. citizens who are full-time graduate students. Students who are successful have made the match between their research and the NASA employee who will act as their NASA Advisor/ Mentor. In this program, the student's research is primarily accomplished under the supervision of his faculty advisor with periodic or frequent interactions with the NASA Mentor. These interactions typically involve travel to the sponsoring NASA Center on a regular basis. The one-year fellowships are renewable for up to three years and over $20,000 per year. These and other important opportunities will be discussed.
EvoBuild: A Quickstart Toolkit for Programming Agent-Based Models of Evolutionary Processes
NASA Astrophysics Data System (ADS)
Wagh, Aditi; Wilensky, Uri
2018-04-01
Extensive research has shown that one of the benefits of programming to learn about scientific phenomena is that it facilitates learning about mechanisms underlying the phenomenon. However, using programming activities in classrooms is associated with costs such as requiring additional time to learn to program or students needing prior experience with programming. This paper presents a class of programming environments that we call quickstart: Environments with a negligible threshold for entry into programming and a modest ceiling. We posit that such environments can provide benefits of programming for learning without incurring associated costs for novice programmers. To make this claim, we present a design-based research study conducted to compare programming models of evolutionary processes with a quickstart toolkit with exploring pre-built models of the same processes. The study was conducted in six seventh grade science classes in two schools. Students in the programming condition used EvoBuild, a quickstart toolkit for programming agent-based models of evolutionary processes, to build their NetLogo models. Students in the exploration condition used pre-built NetLogo models. We demonstrate that although students came from a range of academic backgrounds without prior programming experience, and all students spent the same number of class periods on the activities including the time students took to learn programming in this environment, EvoBuild students showed greater learning about evolutionary mechanisms. We discuss the implications of this work for design research on programming environments in K-12 science education.
NASA Astrophysics Data System (ADS)
Goehring, L.
2004-12-01
SEAS is a pilot program for middle and high school students who want to learn science by doing science. SEAS students study the deep sea hydrothermal vent environment and learn to ask questions about this exciting, relatively unexplored world, just as researchers do. SEAS students also learn how to answer their own questions through the process of scientific investigation. With the SEAS program, students have the opportunity to participate in the actual discovery process, along side deep-sea researchers. SEAS builds upon the successes of programs like Dive&Discover and Extreme2000, which demonstrated the capability deep-sea scientists have in engaging students with live research. SEAS extends this concept by inviting students to participate in deep-sea research through formal proposal and report competitions. SEAS challenges students to higher levels of achievement. A curriculum, developed by teachers expert in the translation of scientific inquiry in the classroom, prepares students to participate. SEAS was concept-tested during the 2003-2004 school year, with 14 pilot teachers and approximately 800 students. Twenty Ridge2000 scientists contributed their time and expertise to the SEAS program in its first year. Five student proposals were selected and conducted at sea in April during a Ridge2000 research cruise to the East Pacific Rise. All results were posted to the SEAS website (http://www.ridge2000.org/SEAS/) during the cruise, and students were invited to analyze data for their final reports. Final student reports, along with scientists comments were also posted. During the 2004-2005 school year, SEAS will be evaluated for its impact on student learning and attitudes toward science. The benefits of SEAS to the Ridge2000 scientific community are many. Scientists are invited to contribute in a variety of ways, all of which help satisfy the requirement of NSFs Broader Impacts Criterion. They may contribute time and expertise by answering student questions and reviewing student proposals and reports. They may choose to host the student research on their cruise. By sharing the load, no one scientist is burdened, nor expected to contribute additional funding. The Ridge2000 Program oversees the development, execution and dissemination of SEAS, helping make outreach efficient and easy for scientists.
Student Teachers' Collaborative Research: Small-Scale Research Projects during Teacher Education
ERIC Educational Resources Information Center
Dobber, Marjolein; Akkerman, Sanne F.; Verloop, Nico; Vermunt, Jan D.
2012-01-01
Teacher research is increasingly described as an important aspect of professional development. In response, teacher education programs incorporate teacher research in their curricula. We report on the collaborative research processes of two groups of student teachers in a university teacher education program, focussing on elaboration and decision…
Quantitative Research Attitudes and Research Training Perceptions among Master's-Level Students
ERIC Educational Resources Information Center
Steele, Janeé M.; Rawls, Glinda J.
2015-01-01
This study explored master's-level counseling students' (N = 804) perceptions of training in the Council for Accreditation of Counseling and Related Educational Programs (2009) Research and Program Evaluation standard, and their attitudes toward quantitative research. Training perceptions and quantitative research attitudes were low to moderate,…
Authentic scientific research in an international setting as a path toward higher education
NASA Astrophysics Data System (ADS)
Mladenov, N.; Palomo, M.; Casad, B.; Pietruschka, B.; Buckley, C.
2016-12-01
Studies have shown that undergraduate research opportunities foster student interest in research, encourage minority students to seek advanced degrees, and put students on a path toward higher education. It has been further suggested that engineering projects in international settings address issues of sustainability and promote a connection between engineering and social welfare that may compel students to seek future research opportunities. In this study, we explored the role that authentic research experiences in an international setting play in promoting higher education for students from groups typically under-represented in engineering and sciences. We hypothesized that the international context of the research experiences will provide undergraduate and graduate students with a global perspective of water reuse challenges and promote increased interest in pursuing a higher degree in engineering. Through the Sustainable Sanitation International Research Experiences for Students (IRES) Program, US students conducting research in Durban, South Africa in 2015 and 2016, were tasked with leading 6-week long research projects, collaborating with partners at the University of KwaZulu Natal, and producing papers and presentations for regional and international scientific conferences. All undergraduate participants were from groups under-represented in the sciences. Pre- and post-program survey results revealed that, after completing the program, participants of Cohort 1 had 1) greater research skills, 2) greater identification as an engineer, and 3) stronger intentions to pursue a PhD in engineering. Survey data were also used to evaluate comfort with cultural diversity before and after the international program and the effect of pairing US with South African student researchers. Our results indicate that students' awareness of societal needs and engineering challenges faced in Durban resulted in a positive impact on each student. The benefits gained from the international research experience have important implications for environmental engineering and other scientific fields in terms of inducing greater self-efficacy and fostering an interest in higher education for students from groups traditionally under-represented in the sciences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1987-04-27
The Historically Black Colleges and Universities Nuclear Energy Training (HBCU NET) Program, funded by DOE, Office of Nuclear Energy and administered by ORAU, began in February 1984. The program provides support for training, study, research participation, and academic enrichment of students and faculty at designated HBCUs in nuclear science, nuclear engineering, and other nuclear-related technologes and disciplines. The program is composed of undergraduate scholarships, graduate fellowships, student and faculty research participation, and an annual student training institute.
The National Astronomy Consortium Summer Student Research Program at NRAO-Socorro: Year 2 structure
NASA Astrophysics Data System (ADS)
Mills, Elisabeth A.; Sheth, Kartik; Giles, Faye; Perez, Laura M.; Arancibia, Demian; Burke-Spolaor, Sarah
2016-01-01
I will present a summary of the program structure used for the second year of hosting a summer student research cohort of the National Astronomy Consortium (NAC) at the National Radio Astronomy Observatory in Socorro, NM. The NAC is a program partnering physics and astronomy departments in majority and minority-serving institutions across the country. The primary aim of this program is to support traditionally underrepresented students interested in pursuing a career in STEM through a 9-10 week summer astronomy research project and a year of additional mentoring after they return to their home institution. I will describe the research, professional development, and inclusivity goals of the program, and show how these were used to create a weekly syllabus for the summer. I will also highlight several unique aspects of this program, including the recruitment of remote mentors for students to better balance the gender and racial diversity of available role models for the students, as well as the hosting of a contemporaneous series of visiting diversity speakers. Finally, I will discuss structures for continuing to engage, interact with, and mentor students in the academic year following the summer program. A goal of this work going forward is to be able to make instructional and organizational materials from this program available to other sites interested in joining the NAC or hosting similar programs at their own institution.
NASA Astrophysics Data System (ADS)
Eriksson, S. C.; Hubenthal, M.
2009-12-01
RESESS is a multi-year, paid, summer research internship program designed for students from underrepresented groups. The students receive extensive mentoring in science research and communication and become part of a community that provides ongoing support. This has been possible in the initial 5 years of the program through collaboration with Significant Opportunities in Atmospheric Research and Science (SOARS), where solid earth students have been an integral part of the SOARS cohort, benefiting from social as well as educational interactions. 11 students have taken part in RESESS for at least one year and of these, four students have graduated in geoscience and entered graduate programs in geophysics and one was recently awarded an NSF graduate fellowship. Students have presented over 20 posters at national science meetings, and one has co-authored a peer-reviewed article. 23 scientists have mentored students over the past 5 years and 17 percent of these mentors are from underrepresented groups in science; 19 other scientists and university/science consortia staff have mentored students in written and verbal presentations and supported their integration into the local communities. Mentorship over a period of years is one important hallmark of this program as students have benefited from the support of UNAVCO, IRIS, USGS, and university scientists and staff during the summer, academic year, and at professional meetings such as AGU, GSA, NABGG, and SACNAS as well as consortia and project science workshops (UNAVCO, IRIS, and EarthScope). One goal of the project has been to educate the scientific community on the benefits of mentoring undergraduate students from underrepresented groups in STEM fields. Increasingly, scientists are approaching RESESS to include this program in their implementation of broader impacts. RESESS has been funded by NSF for the next five years with plans to expand the number of students, geographic and scientific diversity, and sources of funding for a sustainable program. Collaboration with the IRIS REU program and major research programs such as POLENET began over the past three years. Synergistic activities will be increased with the inauguration of the IRIS Minority Speakers Series, partnership with the Colorado Diversity Initiative, and expanded recruitment and research opportunities from universities and colleges nation-wide.
ERIC Educational Resources Information Center
McMiller, Tracee; Lee, Tameshia; Saroop, Ria; Green, Tyra; Johnson, Casonya M.
2006-01-01
We describe an eight-week summer Young Scientist in Training (YSIT) internship program involving middle and high school students. This program exposed students to current basic research in molecular genetics, while introducing or reinforcing principles of the scientific method and demonstrating the uses of mathematics and chemistry in biology. For…
NASA Astrophysics Data System (ADS)
Eyles, C.; Symons, S. L.; Harvey, C. T.
2016-12-01
Students in the Honours Integrated Science (iSci) program at McMaster University (Hamilton, Ontario, Canada) learn about the Earth through interdisciplinary research projects that focus on important societal issues. The iSci program is a new and innovative undergraduate program that emphasizes the links between scientific disciplines and focuses on learning through research and the development of scientific communication skills. The program accepts up to 60 students each year and is taught by a team of 18 instructors comprising senior and junior faculty, post-doctoral fellows, a lab coordinator, instructional assistant, a librarian and library staff, and an administrator. The program is designed around a pedagogical model that emphasizes hands-on learning through interdisciplinary research (Research-based Integrated Education: RIE) and is mostly project-based and experiential. In their freshman year students learn fundamental Earth science concepts (in conjunction with chemistry, physics, mathematics and biology) through research projects focused on environmental contamination, interplanetary exploration, the effect of drugs on the human body and environment, sustainable energy, and cancer. In subsequent years they conduct research on topics such as the History of the Earth, Thermodynamics, Plant-Animal Interactions, Wine Science, Forensics, and Climate Change. The iSci program attracts students with a broad interest in science and has been particularly effective in directing high quality students into the Earth sciences as they are introduced to the discipline in their first year of study through research projects that are interesting and stimulating. The structure of the iSci program encourages consideration of geoscientific applications in a broad range of societally relevant research projects; these projects are reviewed and modified each year to ensure their currency and ability to meet program learning objectives.
Biosphere 2, a nexus of partner networks that improve student experiences and outcomes
NASA Astrophysics Data System (ADS)
Dontsova, K.; Bonine, K. E.; Batchelor, R. L.; Brinkworth, C.; Keller, J. M.; Hogan, D.; Treloar, D.
2017-12-01
University of Arizona (UA) Biosphere 2 co-convenes several internship opportunities for undergraduate students, including 1) NSF-funded Research Experiences for Undergraduates (REU) Site: "Biosphere 2 Earth Systems Research for Environmental Solutions", 2) NSF-funded INCLUDES program "Collaborative Research: Integrating Indigenous and Western Knowledge to Transform Learning and Discovery in the Geosciences" executed in collaboration with the University Corporation for Atmospheric Research (UCAR), and 3) STEM Teacher and Researcher (STAR) Fellows Program in partnership with California Polytechnic State University - San Luis Obispo. In addition, the B2 REU Site partners with several UA organizations linking research to stakeholders, such as UA Cooperative Extension, Institute of the Environment, and the Water Resources Research Center, and with the UA Graduate College's Undergraduate Research Opportunities Consortium (UROC), which connects a diverse portfolio of summer research programs across the UA campus. Connections among these programs and organizations allow us to improve student experiences and outcomes by leveraging organizational, mentor, and peer diversity and expertise. Each partnership brings unique benefits for the students - from access to teaching experience and perspectives that STAR Fellows provide, to a multitude of professional development programs made possible by pooled resources of UROC participants, to access to networks and knowledge from our outreach partners, to opportunities for continued multi-year learning and support with INCLUDES and UCAR. Coming together allows all partners to better apply outside resources, expertise, and knowledge to bring more value to the students and to help students enrich themselves as well as partner organizations and program participants.
Evaluating the High School Lunar Research Projects Program
NASA Astrophysics Data System (ADS)
Shaner, A. J.; Shipp, S. S.; Allen, J.; Kring, D. A.
2012-12-01
The Center for Lunar Science and Exploration (CLSE), a collaboration between the Lunar and Planetary Institute and NASA's Johnson Space Center, is one of seven member teams of the NASA Lunar Science Institute (NLSI). In addition to research and exploration activities, the CLSE team is deeply invested in education and outreach. In support of NASA's and NLSI's objective to train the next generation of scientists, CLSE's High School Lunar Research Projects program is a conduit through which high school students can actively participate in lunar science and learn about pathways into scientific careers. The objectives of the program are to enhance 1) student views of the nature of science; 2) student attitudes toward science and science careers; and 3) student knowledge of lunar science. In its first three years, approximately 140 students and 28 teachers from across the United States have participated in the program. Before beginning their research, students undertake Moon 101, a guided-inquiry activity designed to familiarize them with lunar science and exploration. Following Moon 101, and guided by a lunar scientist mentor, teams choose a research topic, ask their own research question, and design their own research approach to direct their investigation. At the conclusion of their research, teams present their results to a panel of lunar scientists. This panel selects four posters to be presented at the annual Lunar Science Forum held at NASA Ames. The top scoring team travels to the forum to present their research. Three instruments have been developed or modified to evaluate the extent to which the High School Lunar Research Projects meets its objectives. These three instruments measure changes in student views of the nature of science, attitudes towards science and science careers, and knowledge of lunar science. Exit surveys for teachers, students, and mentors were also developed to elicit general feedback about the program and its impact. The nature of science instrument is an open-ended, modified version of the Views of Nature of Science questionnaire. The science attitudes Likert-scale instrument is a modified version of the Attitudes Toward Science Inventory. The lunar science content instrument was developed by CLSE education staff. All three of these instruments are administered to students before and after their research experience to measure the program's impact on student views of the nature of science, attitudes toward science, and knowledge of lunar science. All instruments are administered online via Survey Monkey®. When asked if the program changed the way they view the Moon, 77.4% of students (n=53) replied "yes" and described their increase in knowledge of the formation of the Moon, lunar surface processes, etc. Just under half (41.5%) of the students reported that their experience in the program has contributed to their consideration of a career in science. When asked about obstacles teams had to overcome, teachers described issues with time, student motivation and technology. However, every teacher enthusiastically agreed that the authentic research experience was worthwhile to their students. Detailed evaluation results for the 2011-2012 program will be presented.
The Svalbard REU Program: Undergraduates Pursuing Arctic Climate Change Research on Svalbard, Norway
NASA Astrophysics Data System (ADS)
Roof, S.; Werner, A.
2007-12-01
The Svalbard Research Experiences for Undergraduates (REU) program sponsored by the Arctic Natural Sciences Program of the National Science Foundation has been successfully providing international field research experiences since 2004. Each year, 7-9 undergraduate students have participated in 4-5 weeks of glacial geology and climate change fieldwork on Spitsbergen in the Svalbard archipelago in the North Atlantic (76- 80° N lat.). While we continue to learn new and better ways to run our program, we have learned specific management and pedagogical strategies that allow us to streamline our logistics and to provide genuine, meaningful research opportunities to undergraduate students. We select student participants after extensive nationwide advertising and recruiting. Even before applying to the program, students understand that they will be doing meaningful climate change science, will take charge of their own project, and will be expected to continue their research at their home institution. We look for a strong commitment of support from a student's advisor at their home institution before accepting students into our program. We present clear information, including participant responsibilities, potential risks and hazards, application procedures, equipment needed, etc on our program website. The website also provides relevant research papers and data and results from previous years, so potential participants can see how their efforts will contribute to growing body of knowledge. New participants meet with the previous years' participants at a professional meeting (our "REUnion") before they start their field experience. During fieldwork, students are expected to develop research questions and test their own hypotheses while providing and responding to peer feedback. Professional assessment by an independent expert provides us with feedback that helps us improve logistical procedures and shape our educational strategies. The assessment also shows us how participant attitudes toward science and research evolved during their participation. Finally, close collaboration with a local institution, the Norwegian University System on Svalbard (UNIS), has not only been essential to the success of our program, but also highly rewarding.
NASA Astrophysics Data System (ADS)
Maulana, I.; Sumarto; Nurafiati, P.; Puspita, R. H.
2018-02-01
This research aims to find out the evaluation program of the Industrial apprenticeship (Prakerin) in electrical engineering. This research includes on four variables of CIPP. (1). Context (a). programme planning (b). design. (2). Input (a). readiness of students (b). performance of vocational education teachers (c). Facilities and infrastructure, (3). process (a). performance students (b). performance mentors, (4). Product (a). readiness of student work. This research is a type of program evaluation research with Stake model approach. Data collection methods used are questionnaires with closed questions and frequently asked questions.
Configuring The REU Experience To Maximize Student Collaboration
NASA Astrophysics Data System (ADS)
Majkowski, L.; Pullin, M. J.
2012-12-01
The New Mexico Tech NSF-funded REU Program, Interdisciplinary Science for the Environment (ISE), hosted six cohorts of students between 2005 and 2010. The program ran for eight weeks during the first cycle and nine weeks during the second cycle, bringing in an average of twelve student participants per year. Students were provided with a stipend, food allowance, travel from home to New Mexico Tech, and free campus housing. The program sponsored weekend group field trips to scientific, environmental, and cultural sites of significance in New Mexico. For the second cycle, the ISE shared some programmatic elements with the New Mexico EPSCoR Undergraduate Research Opportunities Program (UROP). The majority of the research projects focused on the geosciences, with interdepartmental participation from researchers in earth science, hydrology, chemistry, environmental science, and biology. The ISE adopted a non-traditional approach to matching student participants with research projects and faculty mentors. Students were selected from different disciplines to work together in pairs on each project. This model provided the students with a peer collaborator in addition to the guidance of their faculty mentors and support from graduate students associated with the different projects. The focus on cohort, both within the individual research projects and each year's group, enabled and enhanced the students' critical thinking, problem-solving and teamwork skills. Students would routinely seek out the advice of their peers when they hit a roadblock in their research. This collaboration also occurred across the boundaries of the ISE and UROP cohorts. Long-term follow up has shown that a significant number of the student participants have continued on to graduate school. Students credit the program with developing their capacity to work on complex problems in an interdisciplinary group environment. Additionally, many students have continued contact with their research partners, faculty mentors and other members of their REU cohort.
STEERing an IDeA in Undergraduate Research at a Rural Research Intensive University
Sens, Donald A.; Cisek, Karen L.; Garrett, Scott H.; Somji, Seema; Dunlevy, Jane R.; Sens, Mary Ann; Conway, Pat; Doze, Van A.
2017-01-01
This study documents outcomes, including student career choices, of the North Dakota Institutional Development Award Networks of Biomedical Research Excellence program that provides 10-week, summer undergraduate research experiences at the University of North Dakota School of Medicine and Health Sciences. Program evaluation initiated in 2008 and, to date, 335 students have completed the program. Of the 335, 214 students have successfully completed their bachelor’s degree, 102 are still undergraduates, and 19 either did not complete a bachelor’s degree or were lost to follow-up. The program was able to track 200 of the 214 students for education and career choices following graduation. Of these 200, 76% continued in postgraduate health-related education; 34.0% and 20.5% are enrolled in or have completed MD or PhD programs, respectively. Other postbaccalaureate pursuits included careers in pharmacy, optometry, dentistry, public health, physical therapy, nurse practitioner, and physician’s assistant, accounting for an additional 21.5%. Most students electing to stop formal education at the bachelor’s degree also entered fields related to health care or science, technology, engineering, and mathematics (19.5%), with only a small number of the 200 students tracked going into service or industries which lacked an association with the health-care workforce (4.5%). These student outcomes support the concept that participation in summer undergraduate research boosts efforts to populate the pipeline of future researchers and health professionals. It is also an indication that future researchers and health professionals will be able to communicate the value of research in their professional and social associations. The report also discusses best practices and issues in summer undergraduate research for students originating from rural environments. PMID:29057317
STEERing an IDeA in Undergraduate Research at a Rural Research Intensive University.
Sens, Donald A; Cisek, Karen L; Garrett, Scott H; Somji, Seema; Dunlevy, Jane R; Sens, Mary Ann; Conway, Pat; Doze, Van A
2017-01-01
This study documents outcomes, including student career choices, of the North Dakota Institutional Development Award Networks of Biomedical Research Excellence program that provides 10-week, summer undergraduate research experiences at the University of North Dakota School of Medicine and Health Sciences. Program evaluation initiated in 2008 and, to date, 335 students have completed the program. Of the 335, 214 students have successfully completed their bachelor's degree, 102 are still undergraduates, and 19 either did not complete a bachelor's degree or were lost to follow-up. The program was able to track 200 of the 214 students for education and career choices following graduation. Of these 200, 76% continued in postgraduate health-related education; 34.0% and 20.5% are enrolled in or have completed MD or PhD programs, respectively. Other postbaccalaureate pursuits included careers in pharmacy, optometry, dentistry, public health, physical therapy, nurse practitioner, and physician's assistant, accounting for an additional 21.5%. Most students electing to stop formal education at the bachelor's degree also entered fields related to health care or science, technology, engineering, and mathematics (19.5%), with only a small number of the 200 students tracked going into service or industries which lacked an association with the health-care workforce (4.5%). These student outcomes support the concept that participation in summer undergraduate research boosts efforts to populate the pipeline of future researchers and health professionals. It is also an indication that future researchers and health professionals will be able to communicate the value of research in their professional and social associations. The report also discusses best practices and issues in summer undergraduate research for students originating from rural environments.
Career Outcomes of Graduates of R25E Short-Term Cancer Research Training Programs.
Desmond, Renee A; Padilla, Luz A; Daniel, Casey L; Prickett, Charles T; Venkatesh, Raam; Brooks, C Michael; Waterbor, John W
2016-03-01
The efficacy of short-term cancer research educational programs in meeting its immediate goals and long-term cancer research career objectives has not been well studied. The purpose of this report is to describe the immediate impact on, and the long-term career outcomes of, 499 medical students and graduate students who completed the Cancer Research Experiences for Students (CaRES) program at the University of Alabama at Birmingham (UAB) from 1999 to 2013. In summer 2014, all 499 program alumni were located and 96.4 % (481 of 499) agreed to complete a longitudinal tracking survey. About 23 % of CaRES alumni (110 of 499) have published at least one cancer-related paper. Overall 238 cancer-related papers have been published by CaRES alumni, one third of this number being first-authored publications. Nearly 15 % (71 of 481 respondents) reported that their current professional activities include cancer research, primarily clinical research and outcomes research. Of these 71 individuals, 27 (38 %) have completed their training and 44 (62 %) remain in training. Of all respondents, 58 % reported that they administered care to cancer patients and 30 % reported other cancer-related professional responsibilities such as working with a health department or community group on cancer control activities. Of the 410 respondents not currently engaged in cancer research, 118 (29 %) stated intentions to conduct cancer research in the next few years. Nearly all respondents (99.6 %) recommended CaRES to today's students. Challenging short-term educational cancer research programs for medical students and graduate health professional students can help them refine and solidify their career plans, with many program alumni choosing cancer research careers.
Materials R&D-student internships
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, R.B.; Jiles, D.C.; Chumbley, L.S.
1995-05-01
This program has as an objective the conduct of programmatic research for the Advanced Industrial Concepts Materials Program while training minority graduate students in the process. Well-known demographics indicate that minorities will constitute an increasing fraction of our future work force. Consequently, efforts have been initiated to increase the fraction of minorities and women who choose technical career paths. Included are a wide ranging set of programs beginning with pre-school education, progressing through efforts to retain students in technical paths in grades K-12 and undergraduate education, and ending with encouraging graduate education. The Materials R & D - Student Internshipsmore » is a unique approach in the latter category. Here, we have focused on a particular area of applied materials research, the Advanced Industrial Concepts Materials Program. Our goal, then, is to educate minority graduate students in the context of this program. The Ames Laboratory was selected as a site for this pilot project since it is a DOE national laboratory, located on the campus of a major research university, which includes in its research interests programs with a strong technological flavor.« less
NASA Astrophysics Data System (ADS)
Harris, M. S.; Sautter, L.
2017-12-01
The College of Charleston's BEnthic Acoustic Mapping and Survey (BEAMS) Program has just completed its 10th year of operation, and has proven to be remarkably effective at activating and maintaining undergraduate student interest in conducting research using sophisticated software, state-of-the-art instrumentation, enormous datasets, and significant experiential time. BEAMS students conduct research as part of a minimum 3-course sequence of marine geology-based content, marine geospatial software, and seafloor research courses. Over 140 students have completed the program, 56% of the graduated students remain active in the marine geospatial workforce or academic arenas. Forty-eight percent (48%) of those students are female. As undergraduates, students not only conduct independent research projects, but present their work at national conferences each year. Additionally, over 90 % of all "BEAMers" have been provided a 2-3 day at-sea experience on a dedicated BEAMS Program multibeam survey research cruise, and many students also volunteer as survey technicians aboard NOAA research vessels. Critical partnerships have developed with private industry to provide numerous collaborative opportunities and an employment/employer pipeline, as well as provision of software and hardware at many fiscal levels. Ongoing collaboration with the Marine Institute of Ireland and the National and Kapodistrian University of Athens has also provided valuable field opportunities and collaborative experiences. This talk will summarize the program while highlighting some of the key areas and topics investigated by students, including detailed geomorphologic studies of continental margins, submarine canyons, tectonic features and seamounts. Students also work with NOAA investigators to aid in the characterization of fish and deep coral habitats, and with BOEM researchers to study offshore windfield suitability and submerged cultural landscapes. Our sister program at the University of Washington will also be discussed, as will developing relationships with our international and private industry partners.
Strategies for Diversifying the Pool of Graduate Students in Biomedical Sciences
Coronado, Gloria D.; Shuster, Michele; Ulrich, Angie; Anderson, Jennifer; Loest, Helena
2012-01-01
As part of our National Cancer Institute–sponsored partnership between New Mexico State University and the Fred Hutchinson Cancer Research Center, we implemented the Cancer Research Internship for Undergraduate Students to expand the pipeline of underrepresented students who can conduct cancer-related research. A total of 21 students participated in the program from 2008 to 2011. Students were generally of senior standing (47%), female (90%), and Hispanic (85%). We present a logic model to describe the short-term, medium-term, and long-term outputs of the program. Comparisons of pre- and post-internship surveys showed significant improvements in short-term outputs including interest (p<0.001) and motivation (p<0.001) to attend graduate school, as well as preparedness to conduct research (p=0.01) and write a personal statement (p=0.04). Thirteen students were successfully tracked, and of the 9 who had earned a bachelor’s degree, 6 were admitted into a graduate program (67%), and 4 of these programs were in the biomedical sciences. PMID:22576869
Doctoral programs to train future leaders in clinical and translational science.
Switzer, Galen E; Robinson, Georgeanna F W B; Rubio, Doris M; Fowler, Nicole R; Kapoor, Wishwa N
2013-09-01
Although the National Institutes of Health (NIH) has made extensive investments in educational programs related to clinical and translational science (CTS), there has been no systematic investigation of the number and characteristics of PhD programs providing training to future leaders in CTS. The authors undertook to determine the number of institutions that, having had received NIH-funded Clinical and Translational Science Awards (CTSAs), currently had or were developing PhD programs in CTS; to examine differences between programs developed before and after CTSA funding; and to provide detailed characteristics of new programs. In 2012, CTS program leaders at the 60 CTSA-funded institutions completed a cross-sectional survey focusing on four key domains related to PhD programs in CTS: program development and oversight; students; curriculum and research; and milestones. Twenty-two institutions had fully developed PhD programs in CTS, and 268 students were earning PhDs in this new field; 13 institutions were planning PhD programs. New programs were more likely to have fully developed PhD competencies and more likely to include students in medical school, students working only on their PhD, students working on a first doctoral degree, and students working in T1 translational research. They were less likely to include physicians and students working in clinical or T2 research. Although CTS PhD programs have similarities, they also vary in their characteristics and management of students. This may be due to diversity in translational science itself or to the relative infancy of CTS as a discipline.
Doctoral Programs to Train Future Leaders in Clinical and Translational Science
Switzer, Galen E.; Robinson, Georgeanna F.W.B.; Rubio, Doris M.; Fowler, Nicole R.; Kapoor, Wishwa N.
2013-01-01
Purpose Although the National Institutes of Health (NIH) has made extensive investments in educational programs related to clinical and translational science (CTS), there has been no systematic investigation of the number and characteristics of PhD programs providing training to future leaders in CTS. The authors undertook to determine the number of institutions that, having had received NIH-funded Clinical and Translational Science Awards (CTSAs), currently had or were developing PhD programs in CTS; to examine differences between programs developed before and after CTSA funding; and to provide detailed characteristics of new programs. Method In 2012, CTS program leaders at the 60 CTSA-funded institutions completed a cross-sectional survey focusing on four key domains related to PhD programs in CTS: program development and oversight; students; curriculum and research; and milestones. Results Twenty-two institutions had fully developed PhD programs in CTS, and 268 students were earning a PhD in this new field; 13 institutions were planning a PhD program. New programs were more likely to have fully developed PhD competencies and more likely to include students in medical school, students working only on their PhD, students working on a first doctoral degree, and students working in T1 translational research. They were less likely to include physicians and students working in clinical or T2 research. Conclusions Although CTS PhD programs have similarities, they also vary in their characteristics and management of students. This may be due to diversity in translational science itself or to the relative infancy of CTS as a discipline. PMID:23899901
A multifaceted program to encourage medical students' research.
Zier, K; Stagnaro-Green, A
2001-07-01
Clinician-scientists are important members of a research community that has more opportunities than ever before to solve problems important to patients. Nevertheless, the number of physicians applying for and receiving grants from the National Institutes of Health (NIH) has dropped. Introducing medical students to research and relevant support mechanisms early in their education may help to reverse this trend. In 1995, the Mount Sinai School of Medicine created its Office of Student Research Opportunities (OSRO) to stimulate students to engage in research. It also appointed a new dean to direct the OSRO; the person who filled this new position was a senior faculty member involved in patient-oriented research. The OSRO advises students, identifies faculty who want to mentor students, sponsors the Distinction in Research program, organizes an annual research day, helps fund summer and full-time research, and has created an endowment to support student travel to national meetings. Between 1997 and 2000 the number of students who participated in the research day increased from 18 to 74, and the number of publications by the graduating classes increased from 34 to 58 between 1997 and 1999. Participants have presented both basic and clinical projects. The authors' experience has shown that medical students can be motivated to carry out research with appropriate encouragement from the administration and the faculty, something that may help to reverse a troubling national trend. Based upon these early successes, Mount Sinai is developing a novel five-year program to provide medical students with research training.
High school student physics research experience yields positive results
NASA Astrophysics Data System (ADS)
Podolak, K. R.; Walters, M. J.
2016-03-01
All high school students that wish to continue onto college are seeking opportunities to be competitive in the college market. They participate in extra-curricular activities which are seen to foster creativity and the skills necessary to do well in the college environment. In the case of students with an interest in physics, participating in a small scale research project while in high school gives them the hands on experience and ultimately prepares them more for the college experience. SUNY Plattsburgh’s Physics department started a five-week summer program for high school students in 2012. This program has proved not only beneficial for students while in the program, but also as they continue on in their development as scientists/engineers. Independent research, such as that offered by SUNY Plattsburgh’s five-week summer program, offers students a feel and taste of the culture of doing research, and life as a scientist. It is a short-term, risk free way to investigate whether a career in research or a particular scientific field is a good fit.
The South Carolina Collaborative Undergraduate HBCU Student Summer Training Program
2013-03-01
Appendix B: Ernest E Just Symposium Student Attendees………... 24 Appendix C: Summaries of Students’ Abstracts……………………. 25 Appendix D: Academic ...College/University Connections, etc.) to identify students’ current locations, contact information, and academic achievements (Year 1, months 10-12...Undergraduate HBCU Student Summer Training Program Students, Mentors, and Research Topics Student Name Academic Institution MUSC Research Mentor
ERIC Educational Resources Information Center
Burgin, Stephen R.; Sadler, Troy D.
2013-01-01
This article describes summer programs that allow high school students to participate in an "authentic scientific research experience" (ASRE). These summer programs are specifically designed to embed students in working laboratories and research groups. Summer ASRE programs for secondary learners range in length from a couple of weeks to…
Team-Based Multidisciplinary Research Scholarship in the Geosciences
NASA Astrophysics Data System (ADS)
Wernette, P. A.; Houser, C.; Quick, C.
2016-12-01
The traditional approach to undergraduate research can be time-intensive for both the mentee and mentor, and can deter potential undergraduates and faculty from participating in research. The Aggie Research Leadership (ARL) and Aggie Research Scholars (ARS) programs represent a team-based, vertically-tiered, and multidisciplinary approach to research that can successfully address complex and relevant research questions. The program is structured such that faculty mentor one or more graduate students or postdocs, who, in turn, mentor teams of 2 to 8 undergraduate students. While it is the responsibility of the graduate student or postdoc to put together a team that works for their research question, undergraduate teams are encouraged to be multidisciplinary in order to leverage the experience and perspective that comes from students in different areas of study. Team leaders are encouraged to discuss their research teams with the faculty mentor regularly to address any potential issues that they might be having, but team leaders are required to meet regularly with other team leaders to discuss any issues that they might be having. Meeting with new and experienced team leaders is a valuable approach to a graduate student or postdoc developing their own set of best practices for mentoring. This experience is invaluable in their future careers, regardless of the field of study. By collaborating with students from other fields of study, no one student is required to become an expert in all topics relating to the research. Another significant advantage of the ARL/ARS programs is that complex research questions are able to be examined because teams typically continue longer than a single semester or academic year. Research teams are vertically-tiered and typically include freshman through seniors. In this way, younger students on the projects are mentored by senior students when they first arrive. Eventually, the younger students will advance through to senior students and will have the opportunity to serve as mentors for incoming students. The vertically-tiered ARl/ARS programs represents a significant advantage in undergraduate research that is beneficial to undergraduate students, graduate students, post-docs, and faculty.
NASA Astrophysics Data System (ADS)
Schroeder, S.
2016-02-01
The Center For Dark Energy Biosphere Investigations (C-DEBI), an NSF Science and Technology Center, is located in the heart of Los Angeles, surrounded by nineteen community colleges. C-DEBI recognizes the community college student as an untapped STEM resource and piloted the Community College Research Internship for Scientific Engagement (CC-RISE) in 2013. A non-residential, research-focused summer internship, the successful program expanded to UC-Santa Cruz and the Marine Biological Laboratory in 2014 and 2015, respectively. A non-residential research program gives students who are often first generation or non-traditional a stepping stone to experience the research environment while reducing transfer shock. Formal evaluation of CC-RISE indicates that in addition to providing an immersive research experience for community college students, the key components to running a successful non-residential program include weekly informal meetings to allow the students to create a cohort, as well as program aspects dedicated to professional development topics such as the transfer process and using resources at 4-year institutions to maximize success.
Nursing Students' Attitudes toward Science in the Nursing Curricula
ERIC Educational Resources Information Center
Maroo, Jill Deanne
2013-01-01
The nursing profession combines the art of caregiving with scientific concepts. Nursing students need to learn science in order to start in a nursing program. However, previous research showed that students left the nursing program, stating it included too much science (Andrew et al., 2008). Research has shown a correlation between students'…
Student Success Skills: An Evidence-Based Cognitive and Social Change Theory for Student Achievement
ERIC Educational Resources Information Center
Lemberger, Matthew E.; Brigman, Greg; Webb, Linda; Moore, Molly M.
2012-01-01
An overview of the Student Success Skills program is offered, including descriptions of the curricular structure, extant research support related to SSS effectiveness for academic achievement and improved school behaviors, and a theory of change for student development. Recent research has demonstrated the value of the SSS program as it connects…
ERIC Educational Resources Information Center
Cole, James S.; Cole, Shu T.
2008-01-01
There has been a great deal of debate regarding the value of program accreditation. Two research questions guided this study: 1) are students enrolled in accredited parks, recreation, and leisure programs more academically engaged than students enrolled in non-accredited programs, and 2) do students enrolled in accredited parks, recreation, and…
University-Level Research Projects for High School Students
NASA Technical Reports Server (NTRS)
McConnell, Mark L.
2000-01-01
The goal of this project was to provide an opportunity for high school students to participate in university-level research projects. In this case, students from Pinkerton Academy (Derry, New Hampshire) were invited to participate in efforts to catalog data from the COMPTEL experiment on NASA's Compton Gamma-Ray Observatory (CGRO). These activities were part of a senior level honors course at Pinkerton. Although the success of this particular program was rather limited, we feel that the general concept is a sound one. In principle, the concept of partnerships between local schools and university researchers is one that could be especially attractive to soft money researchers. Programs can be carefully designed to benefit both the students and the research program.
Hughes, Christine A; Bauer, Mark C; Horazdovsky, Bruce F; Garrison, Edward R; Patten, Christi A; Petersen, Wesley O; Bowman, Clarissa N; Vierkant, Robert A
2013-03-01
The Mayo Clinic Cancer Center and Diné College received funding for a 4-year collaborative P20 planning grant from the National Cancer Institute in 2006. The goal of the partnership was to increase Navajo undergraduates' interest in and commitment to biomedical coursework and careers, especially in cancer research. This paper describes the development, pilot testing, and evaluation of Native CREST (Cancer Research Experience and Student Training), a 10-week cancer research training program providing mentorship in a Mayo Clinic basic science or behavioral cancer research lab for Navajo undergraduate students. Seven Native American undergraduate students (five females, two males) were enrolled during the summers of 2008-2011. Students reported the program influenced their career goals and was valuable to their education and development. These efforts may increase the number of Native American career scientists developing and implementing cancer research, which will ultimately benefit the health of Native American people.
Hughes, Christine A.; Bauer, Mark C.; Horazdovsky, Bruce F.; Garrison, Edward R.; Patten, Christi A.; Petersen, Wesley O.; Bowman, Clarissa N.; Vierkant, Robert A.
2012-01-01
The Mayo Clinic Cancer Center and Diné College received funding for a 4-year collaborative P20 planning grant from the National Cancer Institute in 2006. The goal of the partnership was to increase Navajo undergraduates’ interest in and commitment to biomedical coursework and careers, especially in cancer research. This paper describes the development, pilot testing and evaluation of Native CREST (Cancer Research Experience & Student Training), a 10-week cancer research training program providing mentorship in a Mayo Clinic basic science or behavioral cancer research lab for Navajo undergraduate students. Seven Native American undergraduate students (5 females, 2 males) were enrolled during the summers of 2008 - 2011. Students reported the program influenced their career goals and was valuable to their education and development. These efforts may increase the number of Native American career scientists developing and implementing cancer research, which will ultimately benefit the health of Native American people. PMID:23001889
Teacher Research Experience Programs = Increase in Student Achievement
NASA Astrophysics Data System (ADS)
Dubner, J.
2010-12-01
Columbia University's Summer Research Program for Science Teachers (SRP), founded in 1990, is one of the largest, best known university-based professional development programs for science teachers in the U.S. The program’s basic premise is simple: teachers cannot effectively teach science if they have not experienced it firsthand. For eight weeks in each of two consecutive summers, teachers participate as a member of a research team, led by a member of Columbia University’s research faculty. In addition to the laboratory experience, all teachers meet as a group one day each week during the summer for a series of pedagogical activities. A unique quality of the Summer Research Program is its focus on objective assessment of its impact on attitudes and instructional practices of participating teachers, on the performance of these teachers in their mentors’ laboratories, and most importantly, on the impact of their participation in the program on student interest and performance in science. SRP uses pass rate on the New York State Regents standardized science examinations as an objective measure of student achievement. SRP's data is the first scientific evidence of a connection between a research experience for teachers program and gains in student achievement. As a result of the research, findings were published in Science Magazine. The author will present an overview of Columbia's teacher research program and the results of the published program evaluation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martha R. Finck Ph.D.
2011-10-01
This program provides practical training to DHS graduate fellows in the DOE laboratory complex. It involves coordinating students, their thesis advisors, and their laboratory project mentors in establishing a meaningful program of research which contributes to the graduate student's formation as a member of the nuclear forensics community. The summary report details the student/mentor experience and future plans after the first summer practicum. This program provides practical training to DHS graduate fellows in the DOE laboratory complex. It involves coordinating students, their thesis advisors, and their laboratory project mentors in establishing a meaningful program of research which contributes to themore » graduate student's formation as a member of the nuclear forensics community. This final written report includes information concerning the overall mentoring experience, including benefits (to the lab, the mentors, and the students), challenges, student research contributions, and lab mentor interactions with students home universities. Idaho National Laboratory hosted two DHS Nuclear Forensics graduate Fellows (nuclear engineering) in summer 2011. Two more Fellows (radiochemistry) are expected to conduct research at the INL under this program starting in 2012. An undergraduate Fellow (nuclear engineering) who worked in summer 2011 at the laboratory is keenly interested in applying for the NF Graduate Fellowship this winter with the aim of returning to INL. In summary, this program appears to have great potential for success in supporting graduate level students who pursue careers in nuclear forensics. This relatively specialized field may not have been an obvious choice for some who have already shown talent in the traditional areas of chemistry or nuclear engineering. The active recruiting for this scholarship program for candidates at universities across the U.S. brings needed visibility to this field. Not only does this program offer critical practical training to these students, it brings attention to a very attractive field of work where young professionals are urgently required in order for the future. The effectiveness of retaining such talent remains to be seen and may be primarily controlled by the availability of DOE laboratory research funding in this field in the years to come.« less
Increasing Diversity in the Earth Sciences - Impact of the IDES Program in Oregon
NASA Astrophysics Data System (ADS)
de Silva, S. L.; Guerrero, E. F.; Duncan, R. A.; de Silva, L. L.; Eriksson, S. C.
2014-12-01
The NSF-OEDG funded Increasing Diversity in the Earth Sciences (IDES) program hosted at Oregon State University targets undergraduate students from diverse backgrounds and diverse ethnicity to engage in research. Partnering with local community colleges, non-traditional students are the hallmark of this program. The IDES program has several components to support the students in the transition from community college to the four-year universities of Oregon State University and Portland State University. Over the four years, the program has adapted while adhering to its primary goals: (1) to increase the number of students from underrepresented groups who prepare for and pursue careers in Earth Science research and education, and (2) to strengthen the understanding of Earth Sciences and their relevance to society among broad and diverse segments of the population. Now in its final year under an extension, 53 participants have participated in the program. An ongoing external evaluation of the program reveals that the various stakeholders consider IDES very successful. Participant surveys and interviews document several impacts: expanded opportunities, making professional contacts, building self-confidence, enhanced ability to be employable, and personal acknowledgement. Research mentors and administrators from partner institutions see positive impacts on the students and on their organizations. Challenges include better communication between the IDES program, mentors, and students. IDES is poised to move forward with its current experiences and successes as a foundation for further funding. IDES-like activities can be funded from private sources and it is a good fit for funding from Research Experiences for Undergraduates at NSF. The new emphasis on education and research at community colleges is an exciting opportunity and Oregon State University has already used aspects of the IDES program in current grant proposals to obtain funds for more undergraduate research.
Short- and Long-Term Outcomes of Student Field Research Experiences in Special Populations.
Soliman, Amr S; Chamberlain, Robert M
2016-06-01
Global health education and training of biomedical students in international and minority health research is expending through U.S. academic institutions. This study addresses the short- and long-term outcomes of an NCI-funded R25 short-term summer field research training program. This program is designed for MPH and Ph.D. students in cancer epidemiology and related disciplines, in international and minority settings (special populations) in a recent 7-year period. Positive short-term outcome of 73 students was measured as publishing a manuscript from the field research data and having a job in special populations. Positive long-term outcome was measured as having a post-doc position, being in a doctoral program, and/or employment in special populations at least 3 years from finishing the program. Significant factors associated with both short- and long-term success included resourcefulness of the student and compatibility of personalities and interests between the student and the on-campus and off-campus mentors. Short-term-success of students who conducted international filed research was associated with visits of the on-campus mentor to the field site. Short-term success was also associated with extent of mentorship in the field site and with long-term success. Future studies should investigate how field research sites could enhance careers of students, appropriateness of the sites for specific training competencies, and how to maximize the learning experience of students in international and minority research sites.
NASA Astrophysics Data System (ADS)
Roof, S.; Warburton, J.; Oddo, B.; Kane, M.
2007-12-01
Since 2004, the Arctic Research Consortium of the U.S. (ARCUS) "TREC" program (Teachers and Researchers Exploring and Collaborating, now "PolarTREC") has sent four K-12 teachers to Svalbard, Norway to work alongside researchers and undergraduate students conducting climate change research as part of the Svalbard Research Experiences for Undergraduates (REU) Program. The benefits of this scientist/educator/student partnership are many. Researchers benefit from teacher participation as it increases their understanding of student learning and the roles and responsibilities of K-12 teachers. The TREC teacher contributes to the research by making observations, analyzing data, and carrying heavy loads of equipment. In collaborating with K- 12 teachers, undergraduate student participants discover the importance of teamwork in science and the need for effective communication of scientific results to a broad audience. The questions that K-12 teachers ask require the scientists and students in our program to explain their work in terms that non-specialists can understand and appreciate. The K-12 teacher provides a positive career role model and several Svalbard REU undergraduate students have pursued K-12 teaching careers after graduating. TREC teachers benefit from working alongside the researchers and by experiencing the adventures of real scientific research in a remote arctic environment. They return to their schools with a heightened status that allows them to share the excitement and importance of scientific research with their students. Together, all parties contribute to greatly enhance public outreach. With ARCUS logistical support, TREC teachers and researchers do live web conferences from the field, reaching hundreds of students and dozens of school administrators and even local politicians. Teachers maintain web journals, describing the daily activities and progress of the researcher team. Online readers from around the world write in to ask questions, which the TREC teacher answers after consulting the research team. TREC teachers have developed and distributed teaching modules using real questions and data from the research program. Our collaboration is successful in part because the teachers are well prepared by ARCUS in advance of the field experience and the Svalbard REU leaders treat the TREC teacher as a senior member of the research team. Reliable telephone and internet communication from the field site is also important because it greatly facilitates the daily outreach. Our success is measured by the hundreds of K-12 students exposed to arctic climate change research (some of which are now going to college to pursue geoscience studies!) and the mutual desire for continued collaboration between the Svalbard REU Program and the ARCUS PolarTREC Program.
Persistence of elementary programming skills
NASA Astrophysics Data System (ADS)
Bennedsen, Jens; Caspersen, Michael E.
2012-06-01
Programming is recognised as one of seven grand challenges in computing education and attracts much attention in computing education research. Most research in the area concerns teaching methods, educational technology and student understanding/misconceptions. Typically, evaluation of learning outcome takes place during or immediately following the educational activity. In this research, we conduct a qualitative investigation of sustainability of programming competence by studying the effect of recalling programming competence long time after the educational activity has taken place. Our population consists of 10 students who have taken an introductory object-oriented programming course 3, 15 or 27 months prior to our study. None of the students have been exposed to programming in the intervening period. As expected, our research shows that syntactical issues in general hinder immediate programming productivity, but more interestingly it also indicate that a tiny retraining activity and simple guidelines is enough to recall programming competence and overcome syntactical issues.
Undergraduate Research in Earth Science Classes: Engaging Students in the First Two Years
NASA Astrophysics Data System (ADS)
Mogk, D. W.; Wysession, M. E.; Beauregard, A.; Reinen, L. A.; Surpless, K.; O'Connell, K.; McDaris, J. R.
2014-12-01
The recent PCAST report (2012), Engage to Excel, calls for a major shift in instructional modes in introductory (geo)science courses by "replacing standard laboratory courses with discovery-based research courses". An increased emphasis is recommended to engage students in experiments with the possibility of true discovery and expanded use of scientific research courses in the first two years. To address this challenge, the On the Cutting Edge program convened a workshop of geoscience faculty to explore the many ways that true research experiences can be built into introductory geoscience courses. The workshop goals included: consideration of the opportunities, strategies and methods used to provide research experiences for students in lower division geoscience courses; examination of ways to develop students' "geoscience habits of mind" through participation in authentic research activities; exploration of ways that student research projects can be designed to contribute to public science literacy with applications to a range of issues facing humanity; and development of strategies to obtain funding for these research projects, to make these programs sustainable in departments and institutions, and to scale-up these programs so that all students may participate. Access to Earth data, information technology, lab and field-based instrumentation, and field experiences provide unprecedented opportunities for students to engage in authentic research at early stages in their careers. Early exposure to research experiences has proven to be effective in the recruitment of students to the geoscience disciplines, improved retention and persistence in degree programs, motivation for students to learn and increase self-efficacy, improved attitudes and values about science, and overall increased student success. Workshop outcomes include an online collection of tested research projects currently being used in geoscience classes, resources related to effective design, implementation and assessment of student research projects, and all workshop activities are posted on the website: http://serc.carleton.edu/74960
Integrating Program Assessment and a Career Focus into a Research Methods Course
ERIC Educational Resources Information Center
Senter, Mary Scheuer
2017-01-01
Sociology research methods students in 2013 and 2016 implemented a series of "real world" data gathering activities that enhanced their learning while assisting the department with ongoing program assessment and program review. In addition to the explicit collection of program assessment data on both students' development of sociological…
NASA Astrophysics Data System (ADS)
Halpern, J. B.
2016-12-01
There is good evidence that STEM career recruiting would be bettered by a shift in REU programs from an individual student focus to building institutional links with faculty participation. This would improve recruiting, duration and the scientific productivity of the REU system. Student commitment would benefit from a more sophisticated and productive project that this would enable as would research groups and mentors at all institutions. Such programs build long lasting links between the institutions and individual faculty. For teaching institutions, scientifically centered collaborations bring faculty and students into the research culture. Faculty who teach at such institutions will maintain their research skills as well as their links to the field and gain respect both internally and externally. Visibility of the collaboration at the non-research centered institution will attract other students into the area. An on-going collaboration offers benefits to the research institution as well. First, recruitment becomes less hit and miss because the partners have observed and taught their students. Second partners will provide appropriate training and context before the summer starts for new students. Third, the availability of partners to help mentoring the students during the summer and into the academic year makes it easier for graduate students, post-docs and the research university faculty as well. Fourth, a good collaboration builds respect and understanding on all sides, which, since many in the research group will go on to teach at teaching centered institutions is important. Building respect for transfer students from Community Colleges and smaller teaching institutions among the research faculty is another benefit. I will describe programs that I have designed an led that successfully implement these ideas.
SCIENS: Opening Eyes to the Future.
ERIC Educational Resources Information Center
Landgren, C. R.
1988-01-01
SCIENS is a Middlebury College (Vermont) program designed to excite minority student interest in the natural sciences and to provide students with training and research experiences. The program, encompassing three summers, involves core instruction for high-potential 11th-grade students, summer research in college laboratories, and internships in…
Perspectives of Online Graduate Preparation Programs for Student Affairs Professionals
ERIC Educational Resources Information Center
Connolly, Sara; Diepenbrock, Amy
2011-01-01
This exploratory research study utilized qualitative and quantitative research methods to determine how midlevel student affairs professionals perceive online education for preparation in the field. The participants noted that they do not perceive online education as equivalent to master's degree preparation programs for student affairs…
Kirsch, Daniel J; Pinder-Amaker, Stephanie L; Morse, Charles; Ellison, Marsha L; Doerfler, Leonard A; Riba, Michelle B
2014-12-01
College students' need for mental health care has increased dramatically, leaving campus counseling and mental health centers struggling to meet the demand. This has led to the investigation and development of extra-center, population-based interventions. Student-to-student support programs are but one example. Students themselves are a plentiful, often-untapped resource that extends the reach of mental health services on campus. Student-to-student programs capitalize on students' natural inclination to assist their peers. A brief review of the prevalence and effects of mental disorders in the college population is provided, followed by a broad overview of the range of peer-to-peer programs that can be available on college campuses. Two innovative programs are highlighted: (1) a hospital- and community-based program, the College Mental Health Program (CMHP) at McLean Hospital, and 2) the Student Support Network (SSN) at Worcester Polytechnic Institute. The subsequent section reviews the literature on peer-to-peer programs for students with serious and persistent mental illness for which there is a small but generally positive body of research. This lack of an empirical basis in college mental health leads the authors to argue for development of broad practice-research networks.
McMiller, Tracee; Lee, Tameshia; Saroop, Ria; Green, Tyra; Johnson, Casonya M
2006-03-01
We describe an eight-week summer Young Scientist in Training (YSIT) internship program involving middle and high school students. This program exposed students to current basic research in molecular genetics, while introducing or reinforcing principles of the scientific method and demonstrating the uses of mathematics and chemistry in biology. For the laboratory-based program, selected students from Baltimore City Schools working in groups of three were teamed with undergraduate research assistants at Morgan State University. Teams were assigned a project that was indirectly related to our laboratory research on the characterization of gene expression in Caenorhabditis elegans. At the end of the program, teams prepared posters detailing their accomplishments, and presented their findings to parents and faculty members during a mini-symposium. The posters were also submitted to the respective schools and the interns were offered a presentation of their research at local high school science fairs. Copyright © 2006 International Union of Biochemistry and Molecular Biology, Inc.
NASA Astrophysics Data System (ADS)
Marsaglia, K.; Simila, G.; Pedone, V.; Yule, D.
2003-12-01
The Catalyst Program of the Department of Geological Sciences at California State University Northridge has been developed by four faculty members who were the recipients of a three-year award (2002-2005) from the National Science Foundation. The goal of the program is to increase minority participation and success in the geosciences. The program seeks to enrich the educational experience by introducing students at all levels (individual and team) to research in the geosciences (such as data analysis for earthquake hazards for 1994 Northridge event, paleoseismology of San Andreas fault, Waipaoa, New Zealand sedimentary system and provenance studies, and the Barstow formation geochronology and geochemistry), and to decrease obstacles that affect academic success. Both these goals are largely achieved by the formation of integrated high school, undergraduate, and graduate research groups, which also provide fulfilling and successful peer mentorship. New participants first complete a specially designed course that introduces them to peer-mentoring, collaborative learning (think-pair share), and research on geological data sets. Students of all experience levels then become members of research teams and conduct four mini-projects and associated poster presentations, which deepens academic and research skills as well as peer-mentor relationships. This initial research experience has been very beneficial for the student's degree requirements of a senior research project and oral presentation. Evaluation strategies include the student research course presentations, summer field projects, and external review of student experiences. The Catalyst Program provides significant financial support to participants to allow them to focus their time on their education. A component of peer-tutoring has been implemented for promoting additional student success. The program has been highly successful in its two year development. To date, undergraduates and graduate students have coauthored six abstracts at professional meetings. Also, high-school students have gained first hand experience of a college course and geologic research.
NASA Astrophysics Data System (ADS)
Liou-Mark, J.; Blake, R.
2014-12-01
With community college and two-year program students playing pivotal roles in advancing the nation's STEM agenda now and throughout the remainder of this young millennia, it is incumbent on educators to devise innovative and sustainable STEM initiatives to attract, retain, graduate, and elevate these students to four-year programs and beyond. Involving these students in comprehensive, holistic research experiences is one approach that has paid tremendous dividends. The New York City College of Technology (City Tech) was recently awarded a National Science Foundation Research Experiences for Undergraduates (REU) supplemental grant to integrate a community college/two-year program component into its existing REU program. The program created an inviting and supportive community of scholars for these students, nurtured them through strong, dynamic mentoring, provided them with the support structures needed for successful scholarship, and challenged them to attain the same research prominence as their Bachelor degree program companions. Along with their colleagues, the community college/two-year program students were given an opportunity to conduct intensive satellite and ground-based remote sensing research at the National Oceanic and Atmospheric Administration Cooperative Remote Sensing Science and Technology Center (NOAA-CREST) at City College and its CREST Institute Center for Remote Sensing and Earth System Science (ReSESS) at City Tech. This presentation highlights the challenges, the rewards, and the lessons learned from this necessary and timely experiment. Preliminary results indicate that this paradigm for geoscience inclusion and high expectation has been remarkably successful. (The program is supported by NSF REU grant #1062934.)
Funding and socialization in the doctoral program at the University of Wisconsin-Madison.
Keller, M L; Ward, S E
1993-01-01
This article describes the model of funding and socializing doctoral students that has been used by the School of Nursing at the University of Wisconsin-Madison. The goal of the Madison program is to educate persons who are capable of conducting research that will contribute to the scientific knowledge base of nursing. This goal is accomplished through immersing students in all aspects of the research process. Critical components of socialization are described. These include the mentor-student relationship, participation in a research group, and participation in informal discussions of faculty and students' research programs. The importance of establishing funding mechanisms and faculty work loads that support socialization is also emphasized.
From Inquiry-Based Learning to Student Research in an Undergraduate Mathematics Program
ERIC Educational Resources Information Center
Das, Kumer
2013-01-01
As an extension to various sponsored summer undergraduate research programs, academic year research for undergraduate students is becoming popular. Mathematics faculty around the country are getting involved with this type of research and administrators are encouraging this effort. Since 2007, we have been conducting academic year research at…
ERIC Educational Resources Information Center
Johnson-Campbell, Tanisha
2018-01-01
This study is an investigation into a 15-month accelerated undergraduate nursing program and the minority student experience. Using a mixed methods approach, this research addressed the following questions: 1. What was the retention rate for students enrolled in the accelerated nursing bachelor's program and how did that differ by race? 2. What…
Scholar outcomes for dental internship research program in Saudi Arabia: A qualitative evaluation.
Bahammam, Laila A; Linjawi, Amal I
2017-04-01
To explore the potential, challenges and needs for internship research activities in achieving scholar outcomes among graduates. A qualitative general needs assessment and evaluation of an internship research program was conducted at King Abdulaziz University, Faculty of Dentistry (KAUFD), KSA, from December 2014 to February 2015 using focus groups and interviews. The participants included: administrates, faculty, and internship students. Data were transcribed and analyzed following the grounded theory. The participants were two administrative personnel, 21 faculty members, and 16 internship students. Results were clustered around five main domains; curriculum design, faculty, students, administrative, and institutional domain. Reported potentials included: a multi-faceted educational intervention approach, and building evidence-based skills and inquiry minds among graduates. Time, load, and incentives were major challenges reported by faculty. Interesting and achievable research topics were major challenges reported by students. Areas that needed development included: equipped research personnel, aligned administrative and institutional support, faculty skills, students' knowledge and skills, aligned curriculum, and clear program goals, objectives, and outcomes. Curriculum design, faculty and students' skills; as well as administrative and institutional support were found to play major roles in the success of the current internship research program at KAUFD.
Evaluating Student Success and Progress in the Maryland Sea Grant REU Program
NASA Astrophysics Data System (ADS)
Moser, F. C.; Allen, M. R.; Clark, J.
2012-12-01
The Maryland Sea Grant's Research Experiences for Undergraduate (REU) 12-week summer program is in its 24th year. This estuarine science-focused program has evolved, based in part on our use of assessment tools to measure the program's effectiveness. Our goal is to understand the REU program's effectiveness in such areas as improving student understanding of scientific research, scientific ethics and marine science careers. Initially, our assessment approach was limited to short surveys that used qualitative answers from students about their experience. However, in the last decade we have developed a more comprehensive approach to measure program effectiveness. Currently, we use paired pre- and post-survey questions to estimate student growth during the program. These matching questions evaluate the student's change in knowledge and perception of science research over the course of the summer program. Additionally, we administer several surveys during the 12 weeks of the program to measure immediate responses of students to program activities and to gauge the students' evolving attitudes to customize each year's program. Our 2011 cohort showed consistent improvement in numerous areas, including understanding the nature of science (pre: 4.35, post: 4.64 on a 5 point scale), what graduate school is like (3.71, 4.42), the job of a researcher (4.07, 4.50), and career options in science (3.86, 4.42). Student confidence also increased in numerous skills required for good scientists. To analyze the long-term impact of our program, we survey our alumni to assess graduate degrees earned and career choices. A large percentage (72%) of our tracked alumni have continued on to graduate school, with subsequent careers spanning the academic (51%), public (24%) and private (25%) sectors. These assessments demonstrate that our program is successful in meeting our key objectives of strengthening the training of undergraduates in the sciences and retaining them in marine science careers.
NASA Astrophysics Data System (ADS)
Peteet, D. M.; Newton, R.; Vincent, S.; Sambrotto, R.; Bostick, B. C.; Schlosser, P.; Corbett, J. E.
2015-12-01
A primary advantage of place-based research is the multidisciplinary and interdisciplinary research that can be applied to a single locale, with a depth of continued study through time. Through the last decade, Lamont-Doherty's Secondary School Field Research Program (SSFRP) has promoted scientific inquiry, mostly among groups under-represented in STEM fields, in Piermont Marsh, a federally protected marsh in the Hudson estuary. At the same time, Lamont Doherty Earth Observatory (LDEO) scientists have become more involved, through mentoring by researchers, postdocs and graduate students, often paired with high school teachers. The sustained engagement of high school students in a natural environment, experiencing the Hudson River and its tidal cycles, protection of coastline, water quality improvement, native and invasive plant communities, is fundamental to their understanding of the importance of wetlands with their many ecosystem services. In addition, the Program has come to see "place" as inclusive of the Observatory itself. The students' work at Lamont expands their understanding of educational opportunities and career possibilities. Immersing students in a research atmosphere brings a level of serious inquiry and study to their lives and provides them with concrete contributions that they make to team efforts. Students select existing projects ranging from water quality to Phragmites removal, read papers weekly, take field measurements, produce lab results, and present their research at the end of six weeks. Ongoing results build from year to year in studies of fish populations, nutrients, and carbon sequestration, and the students have presented at professional scientific meetings. Through the Program students gain a sense of ownership over both their natural and the academic environments. Challenges include sustained funding of the program; segmenting the research for reproducible, robust results; fitting the projects to PIs' research goals, time management, and institutionalization.
Kim, Mi Ja; Holm, Karyn; Gerard, Peggy; McElmurry, Beverly; Foreman, Mark; Poslusny, Susan; Dallas, Constance
2009-01-01
Nursing has a shortage of doctorally-prepared underrepresented minority (URM) scientists/faculty. We describe a five-year University of Illinois at Chicago (UIC) Bridges program for URM master's students' transition to doctoral study and factors in retention/graduation from the PhD program. Four master' students from two partner schools were recruited/appointed per year and assigned UIC faculty advisors. They completed 10 UIC credits during master's study and were mentored by Bridges faculty. Administrative and financial support was provided during transition and doctoral study. Partner schools' faculty formed research dyads with UIC faculty. Seventeen Bridges students were appointed to the Bridges program: 12 were admitted to the UIC PhD program since 2004 and one graduated in 2007. Eight Bridges faculty research dyads published 5 articles and submitted 1 NIH R03 application. Mentored transition from master's through doctoral program completion and administrative/financial support for students were key factors in program success. Faculty research dyads enhanced the research climate in partner schools.
ERIC Educational Resources Information Center
Bruce, Christine; Buckingham, Lawrence; Hynd, John; McMahon, Camille; Roggenkamp, Mike; Stoodley, Ian
2004-01-01
The research reported here investigates variation in first year university students' early experiences of learning to program, with a particular focus on revealing differences in how they go about learning to program. A phenomenographic research approach was used to reveal variation in how the act of learning to program may be constituted amongst…
Expanding the Horizon: A Journey to Explore and Share Effective Geoscience Research Experiences
NASA Astrophysics Data System (ADS)
Bolman, J.
2013-12-01
The Indian Natural Resource Science and Engineering Program (INRSEP) has worked diligently over the past 40 + years to ensure the success of Tribal, Indigenous and Underrepresented undergraduate and graduate students in geoscience and natural resources fields of study. Central to this success has been the development of cultural relevant research opportunities directed by Tribal people. The research experiences have been initiated to address culturally relevant challenges on Tribal and non-Tribal lands. It has become critically important to ensure students have multiple research experiences across North America as well as throughout the continent. The INRSEP community has found creating and maintaining relationships with organizations like the Geoscience Alliance, Minorities Striving and Pursuing Higher Degrees of Success (MSPHD's) and the Louis Stokes Alliance for Minority Participation (LSAMP) program has greatly improved the success of students matriculating to graduate STEM programs. These relationships also serve an immense capacity in tracking students, promoting best practices in research development and assessing outcomes. The presentation will highlight lessons learned on how to 1) Develop a diverse cohort or 'community' of student researchers; 2) Evolve intergenerational mentoring processes and outcomes; 3) Tether to related research and programs; and Foster the broader impact of geoscience research and outcomes.
Informal Physics Education: Outreach from a National Laboratory
NASA Astrophysics Data System (ADS)
Sanchez, Jose; Dixon, Patricia; Hughes, Roxanne
2012-02-01
This presentation highlights strategies for K-20 teaching and learning about materials research in informal settings. The National High Magnetic Field Laboratory's Center for Integrating Research & Learning is in a unique position to conduct programs that reach K-20 students and teachers. As part of a national laboratory the Center provides the infrastructure around which informal education programs are implemented, including the nationally-recognized programming as well as facilitating scientists' educational outreach in the community. Research Experiences for Undergraduates, focuses on encouraging women and other underrepresented groups to pursue STEM careers reaching approximately 200 students many of whom have pursued careers in research as well as academia. The Research Experiences for Teachers program has provided internships for over 150 teachers; the Center also reaches over 10,000 students each year through school and community outreach. Success of informal education programs relies heavily on establishing strong mentoring relationships between scientists and K-20 students and teachers. The Center's success at maintaining diverse programming that transforms how materials education is presented beyond the traditional classroom is the focus for this presentation.
Alford, Rebecca F.; Dolan, Erin L.
2017-01-01
Computational biology is an interdisciplinary field, and many computational biology research projects involve distributed teams of scientists. To accomplish their work, these teams must overcome both disciplinary and geographic barriers. Introducing new training paradigms is one way to facilitate research progress in computational biology. Here, we describe a new undergraduate program in biomolecular structure prediction and design in which students conduct research at labs located at geographically-distributed institutions while remaining connected through an online community. This 10-week summer program begins with one week of training on computational biology methods development, transitions to eight weeks of research, and culminates in one week at the Rosetta annual conference. To date, two cohorts of students have participated, tackling research topics including vaccine design, enzyme design, protein-based materials, glycoprotein modeling, crowd-sourced science, RNA processing, hydrogen bond networks, and amyloid formation. Students in the program report outcomes comparable to students who participate in similar in-person programs. These outcomes include the development of a sense of community and increases in their scientific self-efficacy, scientific identity, and science values, all predictors of continuing in a science research career. Furthermore, the program attracted students from diverse backgrounds, which demonstrates the potential of this approach to broaden the participation of young scientists from backgrounds traditionally underrepresented in computational biology. PMID:29216185
Alford, Rebecca F; Leaver-Fay, Andrew; Gonzales, Lynda; Dolan, Erin L; Gray, Jeffrey J
2017-12-01
Computational biology is an interdisciplinary field, and many computational biology research projects involve distributed teams of scientists. To accomplish their work, these teams must overcome both disciplinary and geographic barriers. Introducing new training paradigms is one way to facilitate research progress in computational biology. Here, we describe a new undergraduate program in biomolecular structure prediction and design in which students conduct research at labs located at geographically-distributed institutions while remaining connected through an online community. This 10-week summer program begins with one week of training on computational biology methods development, transitions to eight weeks of research, and culminates in one week at the Rosetta annual conference. To date, two cohorts of students have participated, tackling research topics including vaccine design, enzyme design, protein-based materials, glycoprotein modeling, crowd-sourced science, RNA processing, hydrogen bond networks, and amyloid formation. Students in the program report outcomes comparable to students who participate in similar in-person programs. These outcomes include the development of a sense of community and increases in their scientific self-efficacy, scientific identity, and science values, all predictors of continuing in a science research career. Furthermore, the program attracted students from diverse backgrounds, which demonstrates the potential of this approach to broaden the participation of young scientists from backgrounds traditionally underrepresented in computational biology.
Students' Perspectives of Urban Middle School Physical Education Programs
ERIC Educational Resources Information Center
Dyson, Ben; Coviello, Nicole; DiCesare, Emma; Dyson, Lisa
2009-01-01
The purpose of this study was to explore and interpret students' perspectives of their experiences in four urban middle school physical education programs. Focus group interviews with 76 students were supported by field notes and researchers' reflective journals. Researchers used constant comparison methods (Lincoln & Guba, 1985) to identify seven…
How Great Is Your Student Intern? | Poster
Editor’s note: We asked Werner H. Kirsten Student Internship Program (WHK SIP) mentors to tell us about the unique and diverse backgrounds of some of this year’s student interns. Alex Beall Microarray Group, Genomics Laboratory, Cancer Research Technology Program Mentors: Nicole Shrader and Stephanie Mellott, research associates
A Program to Improve Student Engagement at Research-Focused Universities
ERIC Educational Resources Information Center
Whillans, Ashley V.; Hope, Sally E.; Wylie, Lauren J.; Zhao, Bob; Souza, Michael J.
2018-01-01
Promoting undergraduate engagement is an important and challenging obstacle at large research-focused universities. Thus, the current study evaluated whether a peer-led program of student-geared events could improve engagement among a diverse group of psychology students early on in their degrees. We randomly assigned interested second-year…
Facts at a Glance... Student Achievement and the School Library Media Program.
ERIC Educational Resources Information Center
Dzikowski, Judith, Comp.
This report summarizes the research studies, literature reviews and related documents on the relationship between public school students' achievement and the library media program. Research indicates students in schools with well-equipped library media centers and professional library media specialists perform better on achievement tests for…
Compendium of student papers : 2008 Undergraduate Transportation Scholars Program.
DOT National Transportation Integrated Search
2008-08-01
This report is a compilation of research papers written by students participating in the 2008 Undergraduate : Transportation Scholars Program. The ten-week summer program, now in its eighteenth year, provides : undergraduate students in Civil Enginee...
Compendium of student papers : 2009 undergraduate transportation engineering fellows program.
DOT National Transportation Integrated Search
2009-10-01
This report is a compilation of research papers written by students participating in the 2009 Undergraduate : Transportation Scholars Program. The ten-week summer program, now in its nineteenth year, provides : undergraduate students in Civil Enginee...
Ecologic study of children's use of a computer nutrition education program.
Matheson, D; Achterberg, C
2001-01-01
The purpose of this research was to describe the context created by students as they worked in groups on a nutrition computer-assisted instruction (CAI) program. Students worked on the program in groups of three. Observational methods were used to collect data from students in two sixth-grade classrooms that were part of an experimental program designed to restructure the educational process. Thirty-two students, from 12 groups, were observed as they completed the program. The groups were assigned by the teachers according to standard principles of cooperative learning. Students completed "Ship to Shore," a program designed specifically for this research. The program required three to five 50-minute classroom periods to complete. The objectives of the program were to change children's knowledge structure of basic nutrition concepts and to increase children's critical thinking skills related to nutrition concepts. We collected observational data focused on three domains: (1) student-computer interaction, (2) student-student interaction, and (3) students' thinking and learning skills. Grounded theory methods were used to analyze the data. Specifically, the constant-comparative method was used to develop open coding categories, defined by properties and described by dimensions. The open coding categories were in turn used in axial coding to differentiate students' learning styles. Five styles of student interaction were defined. These included (1) dominant directors (n = 6; 19%), (2) passive actors (n = 5; 16%), (3) action-oriented students (n = 7; 22%), (4) content-oriented students (n = 8; 25%), and (5) problem solvers (n = 5; 16%). The "student style" groups were somewhat gender specific. The dominant directors and passive actors were girls and the action-oriented and content-oriented students were boys. The problem solvers group was mixed gender. Children's responses to computer-based nutrition education are highly variable. Based on the results of this research, nutrition educators may recommend that nutrition CAI programs be implemented in mixed gender groups.
ERIC Educational Resources Information Center
Martin, Elizabeth M.
2013-01-01
A report on a successfully implemented program to increase student participation in extra-curricular activities in an undergraduate business program with a high percentage of first-generation college students. A market-research study offered insight as to why students were not participating before the program was launched. Greater participation in…
2017 LLNL Nuclear Forensics Summer Internship Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zavarin, Mavrik
The Lawrence Livermore National Laboratory (LLNL) Nuclear Forensics Summer Internship Program (NFSIP) is designed to give graduate students an opportunity to come to LLNL for 8-10 weeks of hands-on research. Students conduct research under the supervision of a staff scientist, attend a weekly lecture series, interact with other students, and present their work in poster format at the end of the program. Students can also meet staff scientists one-on-one, participate in LLNL facility tours (e.g., the National Ignition Facility and Center for Accelerator Mass Spectrometry), and gain a better understanding of the various science programs at LLNL.
NASA Technical Reports Server (NTRS)
1991-01-01
The Graduate Student Research Program (GSRP) was expanded in 1987 to include the Underrepresented Minority Focus Component (UMFC). This program was designed to increase minority participation in graduate study and research, and ultimately, in space science and aerospace technology careers. This booklet presents the areas of research activities at NASA facilities for the GSRP and summarizes and presents the objectives of the UMFC.
NASA Astrophysics Data System (ADS)
Kavic, Michael; Wiita, P. J.; Benoit, M.; Magee, N.
2013-01-01
IMPRESS-Ed is a program designed to provide authentic summer research experiences in the space, earth, and atmospheric sciences for pre-service K-12 educators at Long Island University (LIU) and The College of New Jersey (TCNJ). In 2011 and 2012, the program involved five students and took place over eight weeks with recruitment occurring during the preceding academic year. The program was divided into two modules: A common core module and an individual mentored research experience. The common module consisted of three units focusing on data-driven pedagogical approaches in astrophysics, tectonophysics, and atmospheric science, respectively. The common module also featured training sessions in observational astronomy, and use of a 3D geowall and state of the art planetarium. Participants in the program are also offered the opportunity to utilize the available TCNJ facilities with their future students. The individual mentored research module matched student interests with potential projects. All five students demonstrated strong gains in earth and space science literacy compared to a baseline measurement. Each student also reported gaining confidence to incorporate data and research-driven instruction in the space and earth sciences into the K-12 STEM classroom setting. All five research projects were also quite successful: several of the students plan to continue research during the academic year and two students are presenting research findings as first authors here at AAS. Other research results are likely to be presented at this year's American Geophysical Union meeting.
Research Based Science Education: An Exemplary Program for Broader Impacts
NASA Astrophysics Data System (ADS)
Walker, C. E.; Pompea, S. M.
2016-12-01
Broader impacts are most effective when standing on the shoulders of successful programs. The Research Based Science Education (RBSE) program was such a successful program and played a major role in activating effective opportunities beyond the scope of its program. NSF funded the National Optical Astronomy Observatory (NOAO) to oversee the project from 1996-2008. RBSE provided primarily high school teachers with on-site astronomy research experiences and their students with astronomy research projects that their teachers could explain with confidence. The goal of most student research projects is to inspire and motivate students to go into STEM fields. The authors of the original NSF proposal felt that for students to do research in the classroom, a foundational research experience for teachers must first be provided. The key components of the program consisted of 16 teachers/year on average; a 15-week distance learning course covering astronomy content, research, mentoring and leadership skills; a subsequent 10-day summer workshop with half the time on Kitt Peak on research-class telescopes; results presented on the 9th day; research brought back to the classroom; more on-site observing opportunities for students and teachers; data placed on-line to reach a wider audience; opportunities to submit research articles to the project's refereed journal; and travel for teachers (and the 3 teachers they each mentored) to a professional meeting. In 2004, leveraging on the well-established RBSE program, the NOAO/NASA Spitzer Space Telescope Research began. Between 2005 and 2008, metrics included 32 teachers (mostly from RBSE), 10 scientists, 15 Spitzer Director Discretionary proposals, 31 AAS presentations and many Intel ISEF winners. Under new funding in 2009, the NASA/IPAC Teacher Archive Research Program was born with similar goals and thankfully still runs today. Broader impacts, lessons learned and ideas for future projects will be discussed in this presentation.
Partners in Research: Developing a Model for Undergraduate Faculty-Student Collaboration.
Reitmaier Koehler, Amy; Reveling Smith, Linda; Davies, Susan; Mangan-Danckwart, Deborah
2015-10-09
Maintaining scholarship while delivering an undergraduate nursing program is a challenge for nursing faculty. In this paper, we describe an approach that involves undergraduate nursing students in a program of faculty research, which evaluates new approaches to teaching and learning. Students work with faculty to develop a research proposal, identifying specific questions and exploring relevant literature. Projects may include original data collection with faculty supervision, or secondary analysis of existing datasets. Foci have included partnership learning between nursing students and older adults, models of sustainability for a traveling health clinic, and experiences of aging. Findings and recommendations feed into the broader faculty research agenda, provide a foundation for subsequent projects, and inform further development of educational programs. Students have presented at local and national conferences and developed papers for publication based on this joint work. We describe the benefits and challenges of these partnerships, drawing upon student and faculty reflections.
Improving student retention in computer engineering technology
NASA Astrophysics Data System (ADS)
Pierozinski, Russell Ivan
The purpose of this research project was to improve student retention in the Computer Engineering Technology program at the Northern Alberta Institute of Technology by reducing the number of dropouts and increasing the graduation rate. This action research project utilized a mixed methods approach of a survey and face-to-face interviews. The participants were male and female, with a large majority ranging from 18 to 21 years of age. The research found that participants recognized their skills and capability, but their capacity to remain in the program was dependent on understanding and meeting the demanding pace and rigour of the program. The participants recognized that curriculum delivery along with instructor-student interaction had an impact on student retention. To be successful in the program, students required support in four domains: academic, learning management, career, and social.
NASA Astrophysics Data System (ADS)
Clarkston, B. E.; Garza, C.
2016-02-01
The problem of improving diversity within the Ocean Sciences workforce—still underperforming relative to other scientific disciplines—can only be addressed by first recruiting and engaging a more diverse student population into the discipline, then retaining them in the workforce. California State University, Monterey Bay (CSUMB) is home to the Monterey Bay Regional Ocean Science Research Experiences for Undergraduates (REU) program. As an HSI with strong ties to multiple regional community colleges and other Predominantly Undergraduate Institutions (PUIs) in the CSU system, the Monterey Bay REU is uniquely positioned to address the crucial recruitment and engagement of a diverse student body. Eleven sophomore and junior-level undergraduate students are recruited per year from academic institutions where research opportunities in STEM are limited and from groups historically underrepresented in the Ocean Sciences, including women, underrepresented minorities, persons with disabilities, and veterans. During the program, students engage in a 10-week original research project guided by a faculty research mentor in one of four themes: Oceanography, Marine Biology and Ecology, Ocean Engineering, and Marine Geology. In addition to research, students develop scientific self-efficacy and literacy skills through rigorous weekly professional development workshops in which they practice critical thinking, ethical decision-making, peer review, writing and oral communication skills. These workshops include tangible products such as an NSF-style proposal paper, Statement of Purpose and CV modelled for the SACNAS Travel Award Application, research abstract, scientific report and oral presentation. To help retain students in Ocean Sciences, students build community during the REU by living together in the CSUMB dormitories; post-REU, students stay connected through an online facebook group, LinkedIn page and group webinars. To date, the REU has supported 22 students in two cohorts (2014, 2015) and here we present successes, challenges and lessons learned for an innovative program designed to recruit, engage and prepare students for Ocean Science careers.
NASA Astrophysics Data System (ADS)
Roberts, Lesley F.; Wassersug, Richard J.
2009-03-01
The American Association for the Advancement of Science (AAAS) has declared in an advertising campaign that “you can’t start young enough” in science. However, there is no long-term data evaluating the effect of early exposure to original scientific research on producing career scientists. To address this issue, we examined a hands-on summer science research program for high school students that ran from 1958 to 1972. We compared participants in that program with science students that only began their hands-on research experience once in university. Our data indicate that students who are interested in science and have an opportunity to participate in original scientific research while in high school are significantly more likely ( p < .005) to both enter and maintain a career in science compared to students whose first research experience didn’t occur until university. Our data suggest that more hands-on high school science research programs could help increase the number of students entering and maintaining scientific careers, relieving the growing concern that North America is losing its leadership status in the international scientific community.
NASA Astrophysics Data System (ADS)
Kaluzienski, L. M.; Kranich, G.; Wilson, L.; Hamley, C.
2016-12-01
For the past three years the University of Maine Cooperative Extension 4-H has connected K-12 students in Maine and around the country to UMaine researchers in the field as part of its Follow a Researcher (FAR) Program™. This program aims to provide middle and high school students with a look into future science career paths. FAR™ selects one student engaged in university level research per year to showcase their work. Previous years have selected graduate students with field-work intensive research. During the graduate student's field expedition, a weekly education science video is released based on the Next Generation Science Standards. Similarly, classroom students are encouraged to ask questions during weekly Twitter session hosted live from the field. Past expeditions have taken students to the Quelccaya Ice Cap in Peru as well as the Falkland Islands. This year's expedition shared graduate student Lynn Kaluzienski's expedition to the Ross Ice Shelf in Antarctica. Highlights include obtaining GPS observations in a remote setting using helicopter support, as well acquiring scientific measurements from a heavily crevassed area through the use of robotically towed ground penetrating radar (GPR). Future program plans include connecting K-12 students with graduate students with a focus in lab-intensive research as well as engineering. We also are developing a training program for university outreach staff and a Follow a Researcher™ network that would allow other universities to host their own program while tapping into a larger national K-12 audience.
Hanson, Mark J
2015-01-01
A three-day ethics seminar introduced ethics to undergraduate environmental chemistry students in the Research Experiences for Undergraduates (REU) program. The seminar helped students become sensitive to and understand the ethical and values dimensions of their work as researchers. It utilized a variety of resources to supplement lectures and class discussion on a variety of issues. Students learned about the relevance of ethics to research, skills in moral reasoning, and the array of ethical issues facing various aspects of scientific research. © 2015 The International Union of Biochemistry and Molecular Biology.
NASA Astrophysics Data System (ADS)
Hallar, A. G.; McCubbin, I. B.; Hallar, B. L.; Stockwell, W.; Kittelson, J.; Lopez, J.
2008-12-01
Geoscience Research at Storm Peak (GRASP) was designed to engage students from underrepresented groups through a partnership between Minority Serving Institutions and the University of Nevada, Reno (UNR). The program exposed the GRASP participants to potential careers in the geosciences, provided them with an authentic research experience at Storm Peak Laboratory (SPL), and gave them an opportunity to explore dynamic scenery. Undergraduate students from Howard University, Colorado State at Pueblo, Leman College, and SUNY Oneonta, gathered at SPL in June of 2008 via funding from the National Science Foundation Opportunity for Enhancing Diversity. The students reunited at Howard University in November to present the results of their research project. Throughout the year-long GRASP program students encountered the scientific process-creating a hypothesis, collecting and analyzing data, and presenting their results. Results from surveys, focus groups, and individual interviews will be discussed in this presentation.
Exercise Science Academic Programs and Research in the Philippines
MADRIGAL, NORBERTO; REYES, JOSEPHINE JOY; PAGADUAN, JEFFREY; ESPINO, REIL VINARD
2010-01-01
In this invited editorial, professors from leading institutions in the Philippines, share information regarding their programs relating to Exercise Science. They have provided information on academic components such as entrance requirements, progression through programs, and professional opportunities available to students following completion; as well as details regarding funding available to students to participate in research, collaboration, and specific research interests. PMID:27182343
ERIC Educational Resources Information Center
Jonides, John; And Others
An evaluation was done of the first year of the Undergraduate Research Opportunities Program (UROP) at the University of Michigan (Ann Arbor), which is designed not only to teach students about research and/or certain academic topics, but also to facilitate the identification of minority students with the university. This second aim is based on…
ERIC Educational Resources Information Center
Davis, Denise D.
This study examined the career decisions of 54 high school students who participated in the Research Apprenticeship Program (RAP) at Ohio State University during 1990-92. RAP is a precollege program which aims to provide meaningful experiences in various aspects of health-related research for minority high school students and teachers. RAP…
Strength Through Options: Providing Choices for Undergraduate Education in the Geosciences
NASA Astrophysics Data System (ADS)
Furman, T.; Freeman, K. H.; Faculty, D.
2003-12-01
Undergraduate major enrollments in the Department of Geosciences at Penn State have held steady over the past 5 years despite generally declining national trends. We have successfully recruited and retained new students through intensive advising coupled with innovative curricular revision aimed to meet an array of students' educational and career goals. Our focus is on degree programs that reflect emerging interdisciplinary trends in both employment and student interest, and are designed to attract individuals from underrepresented groups. In addition to a traditional Geosciences BS program we offer a rigorous integrated Earth Sciences BS and a Geosciences BA tailored to students with interests in education and environmental law. The Earth Sciences BS incorporates course work from Geosciences, Geography and Meterology, and requires completion of an interdisciplinary minor (e.g., Climatology, Marine Sciences, Global Business Strategies). A new Geobiology BS program will attract majors with interests at the intersection of the earth and life sciences. The curriculum includes both paleontological and biogeochemical coursework, and is also tailored to accommodate pre-medicine students. We are working actively to recruit African-American students. A new minor in Science and Technology in Africa crosses disciplinary boundaries to educate students from the humanities as well as sciences. Longitudinal recruitment programs include summer research group experiences for high school students, summer research mentorships for college students, and dual undergraduate degree programs with HBCUs. Research is a fundamental component of every student's degree program. We require a capstone independent thesis as well as a field program for Geosciences and Geobiology BS students, and we encourage all students to pursue research as early as the freshman year. A new 5-year combined BS-MS program will enable outstanding students to carry their undergraduate research further before pursuing employment or doctoral programs. Enrollments in courses for non-majors have also increased substantially over the past 5 years, while those of other PSU science departments have decreased. We attribute this success to changes in pedagogic approaches, focusing on active learning exercises in large (200+) and small (<75) courses. Innovative use of an electronic personal response system has also improved attendance, enrollment and student learning in our general education courses. This approach was developed by a fixed-term faculty hire in Geoscience Education. As per our departmental strategic plan, we plan to hire again in this area to further these successes and implement new approaches to learning and teaching in our undergraduate educational programs.
Evaluating Student Success and Outcomes in the Scripps Institution of Oceanography REU Program
NASA Astrophysics Data System (ADS)
Teranes, J. L.; Kohne, L.
2013-12-01
The NSF foundation-wide REU program exists to help attract and retain a diverse pool of talented undergraduate students in STEM fields. These goals are particularly relevant in earth and marine sciences because relatively few minority students traditionally seek careers in these fields and only account for an extremely small percentage of Ph.D. degrees earned. The Scripps Undergraduate Research Fellowship (SURF) REU program is a 10-week summer program currently in its third year of funding. The SURF program invites 10-15 undergraduate students from across the country to Scripps to participate in high quality collaborative research with Scripps faculty and researchers. Program components also include research seminars, career and graduate school preparation, GRE-prep courses, field trips and social activities. The project's goal, broadly, is to increase the participation of underrepresented minorities in marine science and related disciplines at a national level. Our program includes a comprehensive evaluation and assessment plan to help us understand the impact of this REU experience on the student participant. Our assessment consists of paired pre- and post-survey questions to estimate student growth in the following areas as related to earth and marine sciences: (1) increased knowledge and skills (2) increased confidence in ability to conduct research (3) improved attitudes and interest in the field and (4) more ambitious career goals. Assessment results from the last two cohorts have helped refine our recruitment and selection strategies. In the first year of our program, we focused almost exclusively on recruiting underrepresented minority students; over of the participants represented ethic groups considered to be underrepresented in STEM fields. However, participants did not demonstrate overall significant pre/post gains in any of the goal areas, mostly because pre-survey scores indicated that the students were already very strong in all goal areas. In years 2 and 3 our recruitment has continued to target underrepresented minorities, but our selection criteria now includes the following factors in order to better identify students who would most greatly benefit from the program: (1) students who have not had significant research experience (2) students who have not yet had significant exposure to the field (3) first-generation college students and (4) students who may not be as high achieving as other applicants, but who might have more opportunity for growth in the program. This modified selection and recruitment strategy has been successful, our 2012 cohort recorded higher demonstrated and perceived impacts in all goal areas. Our experience has demonstrated that, in order to have the most significant impact, REU Sites must be active in recruiting and involving students who are not already well positioned for success in STEM careers.
Peer Mentoring to Facilitate Original Scientific Research by Students With Special Needs
NASA Astrophysics Data System (ADS)
Danch, J. M.
2007-12-01
Developed to allow high school students with special needs to participate in original scientific research, the Peer Mentoring Program was a supplement to existing science instruction for students in a self-contained classroom. Peer mentors were high school seniors at the end of a three-year advanced science research course who used their experience to create and develop inquiry-based research activities appropriate for students in the self- contained classroom. Peer mentors then assisted cooperative learning groups of special education students to facilitate the implementation of the research activities. Students with special needs successfully carried out an original research project and developed critical thinking and laboratory skills. Prior to embarking on their undergraduate course of study in the sciences, peer mentors developed an appreciation for the need to bring original scientific research to students of all levels. The program will be expanded and continued during the 2007-2008 school year.
NITARP: Effects on Student Participants
NASA Astrophysics Data System (ADS)
Sanchez, Richard; Odden, Caroline; Hall, Garrison; Rebull, Luisa M.
2016-01-01
NITARP (NASA/IPAC Teacher Archive Research Program) is a teacher mentorship program designed to give educators experiences in authentic research in the area of astronomy. While the main focus of the program is aimed at giving educators experience working with and publishing scientific research, teachers are encouraged to involve students with the experience. NITARP funds up to two students to travel along with the educator while allowing an additional two students to attend but with no additional financial assistance. Teachers are welcome to have more student participants but no more than 4 may travel with the teacher to Caltech and the AAS meeting. Given that the focus of the NITARP program is on the educators, little is known about the effects of the program on the student participants other than anecdotal evidence. In order to better understand the impact on the students, we have designed a survey to be administered to past student participants. The survey was constructed with a goal to determine if the NITARP experience had an impact on students' views of science and influenced their educational paths. While the NITARP project has assembled some evidence of the impact on students, this is the first formal attempt to capture that impact. This poster will present the results of that survey.
NASA Astrophysics Data System (ADS)
Ortiz, Deedee; Dominguez, Arturo; Zwicker, Andrew; Greco, Shannon
2016-10-01
Between 1993-2014, the National Undergraduate Fellowship (NUF) program, sponsored by the DOE Office of Fusion Energy Sciences, provided summer research internships for outstanding undergraduate students from around the country. Since then, the NUF program was merged into the Science Undergraduate Laboratory Internship (SULI) program, sponsored by the DOE Office of Workforce Development for Teachers and Students. While there were many similarities between the two programs, the SULI program did not include the one-week introductory course in plasma physics or the opportunity for participants to present their summer research results at this meeting. In the past two years, working with representatives from both OFES and WDTS, we have again implemented some of the most important components of the NUF program. The week-long, introductory course in plasma physics is included and streamed live- especially important since most undergraduate physics students have not taken a plasma physics course before they begin their research. Students are again able to present their research to our community, a critical component of a full research experience and plans are underway to obtain additional funding to once again include universities as eligible host sites.
ERIC Educational Resources Information Center
McCombs, Jennifer Sloan; Pane, John F.; Augustine, Catherine H.; Schwartz, Heather L.; Martorell, Paco; Zakaras, Laura
2014-01-01
Prior research has determined that low-income students lose more ground over the summer than their higher-income peers. Prior research has also shown that some summer learning programs can stem this loss, but we do not know whether large, district-run, voluntary programs can improve students' outcomes. To fill this gap, The Wallace Foundation…
ERIC Educational Resources Information Center
McCombs, Jennifer Sloan; Pane, John F.; Augustine, Catherine H.; Schwartz, Heather L.; Martorell, Paco; Zakaras, Laura
2014-01-01
Prior research has determined that low-income students lose more ground over the summer than their higher-income peers. Prior research has also shown that some summer learning programs can stem this loss, but we do not know whether large, district-run, voluntary programs can improve students' outcomes. To fill this gap, The Wallace Foundation…
Golden, Sherita Hill; Purnell, Tanjala; Halbert, Jennifer P.; Matens, Richard; Miller, Edgar R. “Pete”; Levine, David M.; Nguyen, Tam H.; Gudzune, Kimberly A.; Crews, Deidra C.; Mahlangu-Ngcobo, Mankekolo; Cooper, Lisa A.
2014-01-01
To overcome cardiovascular disease (CVD) disparities impacting high-risk populations, it is critical to train researchers and leaders in conducting community-engaged CVD disparities research. The authors summarize the key elements, implementation, and preliminary outcomes of the CVD Disparities Fellowship and Summer Internship Programs at the Johns Hopkins University Schools of Medicine, Nursing, and Bloomberg School of Public Health. In 2010, program faculty and coordinators established a trans-disciplinary CVD disparities training and career development fellowship program for scientific investigators who desire to conduct community-engaged clinical and translational disparities research. The program was developed to enhance mentorship support and research training for faculty, post-doctoral fellows, and pre-doctoral students interested in conducting CVD disparities research. A CVD Disparities Summer Internship Program for undergraduate and pre-professional students was also created to provide a broad experience in public health and health disparities in Baltimore, Maryland, with a focus on CVD. Since 2010, 39 pre-doctoral, post-doctoral, and faculty fellows have completed the program. Participating fellows have published disparities-related research and given presentations both nationally and internationally. Five research grant awards have been received by faculty fellows. Eight undergraduates, 1 post-baccalaureate, and 2 medical professional students representing seven universities have participated in the summer undergraduate internship. Over half of the undergraduate students are applying to or have been accepted into medical or graduate school. The tailored CVD health disparities training curriculum has been successful at equipping varying levels of trainees (from undergraduate students to faculty) with clinical research and public health expertise to conducting community-engaged CVD disparities research. PMID:25054421
NASA Astrophysics Data System (ADS)
Johnson, D.
2013-12-01
Abstract: Researchers, policymakers, business, and industry have indicated that the United States will experience a future shortage of professionals in the Science, Technology, Engineering, and Mathematics (STEM) fields. Several strategies have been suggested to address this impending shortage, one of which includes increasing the representation of females and minorities in the STEM fields. In order to increase the representation of underrepresented students in the STEM fields, it is important to understand the motivational factors that impact underrepresented students' interest in STEM academics and extracurricular programs. Research indicates that greater confidence leads to greater interest and vice versa (Denissen et al., 2007). In this paper, the mathematics research team examined the role of practical research experience during the summer for talented minority secondary students studying in STEM fields. An undergraduate research mathematics team focused on the link between summer research and the choice of an undergraduate discipline. A Chi Square Statistical Test was used to examine Likert Scale results on the attitude of students participating in the 2006-2012 Center for Remote Sensing of Ice Sheets (CReSIS) Summer Research Programs for secondary students. This research was performed at Elizabeth City State University located in northeastern North Carolina about the factors that impact underrepresented students' choices of STEM related majors in college. Results can be used to inform and guide educators, administrators, and policy makers in developing programs and policy that support and encourage the STEM development of underrepresented students. Index Terms: Science, Technology, Engineering, and Mathematics (STEM), Underrepresented students
ERIC Educational Resources Information Center
Singer-Freeman, Karen; Bastone, Linda; Skrivanek, Joseph
2016-01-01
We evaluate the extent to which ePortfolios can be used to assess applied and collaborative learning and academic identity among community college students from underrepresented minority groups who participated in a summer research program. Thirty-eight students were evaluated by their research sponsor and two or three naïve faculty evaluators.…
ERIC Educational Resources Information Center
Hurmaini, M.; Abdillah
2015-01-01
The purpose of the research is to know the context, input, process and product evaluation on the Social Internship Program (Kukerta) of IAIN Sulthan Thaha Saifuddin Jambi Students by using Participatory Action Research (PAR) system. The research is conducted in four locations of IAIN Sultan Thaha Saifuddin Jambi students' Kukerta in first period…
ERIC Educational Resources Information Center
National Institutes of Health (DHHS), Bethesda, MD.
This publication contains brief descriptions of National Institutes of Health programs for underrepresented minorities, including fellowships, programs for high school students, graduate research assistantships, postdoctoral training, and programs for college students. The publication provides a description of each program, eligibility…
ERIC Educational Resources Information Center
Brown, Franklin C.; Buboltz, Walter C., Jr.
2002-01-01
Many students are unaware that academic difficulties may be related to their sleep habits. This article introduces key elements of a student sleep education program that can be easily incorporated into many universities first-year orientation classes or as part of residential housing programs. (Author)
NASA Astrophysics Data System (ADS)
Goehring, L.; Kelsey, K.; Carlson, J.
2005-12-01
Teacher professional development designed to promote authentic research in the classroom is ultimately aimed at improving student scientific literacy. In addition to providing teachers with opportunities to improve their understanding of science through research experiences, we need to help facilitate similar learning in students. This is the focus of the SEAS (Student Experiments At Sea) program: to help students learn science by doing science. SEAS offers teachers tools and a framework to help foster authentic student inquiry in the classroom. SEAS uses the excitement of deep-sea research, as well as the research facilities and human resources that comprise the deep-sea scientific community, to engage student learners. Through SEAS, students have the opportunity to practice inquiry skills and participate in research projects along side scientists. SEAS is a pilot program funded by NSF and sponsored by the Ridge 2000 research community. The pilot includes inquiry-based curricular materials, facilitated interaction with scientists, opportunities to engage students in research projects, and teacher training. SEAS offers a framework of resources designed to help translate inquiry skills and approaches to the classroom environment, recognizing the need to move students along the continuum of scientific inquiry skills. This framework includes hands-on classroom lessons, Classroom to Sea labs where students compare their investigations with at-sea investigations, and a student experiment competition. The program also uses the Web to create a virtual ``scientific community'' including students. Lessons learned from this two year pilot emphasize the importance of helping teachers feel knowledgeable and experienced in the process of scientific inquiry as well as in the subject. Teachers with experience in scientific research were better able to utilize the program. Providing teachers with access to scientists as a resource was also important, particularly given the challenges of working in the deep-sea environment. Also, fostering authentic student investigations (i.e., working through preparatory materials, developing proposals, analyzing data and writing summary reports) is challenging to fit within the academic year. Nonetheless, teacher feedback highlights that the excitement generated by participation in real research is highly motivating. Further, students experience a ``paradigm shift'' in understanding evidence-based reasoning and the process of scientific discovery.
Cultivation of an Interdisciplinary, Research-Based Neuroscience Minor at Hope College
Chase, Leah A.; Stewart, Joanne; Barney, Christopher C.
2006-01-01
Hope College is an undergraduate liberal arts college with an enrollment of approximately 3,000 students. In the spring of 2005, we began to offer an interdisciplinary neuroscience minor program that is open to all students. The objective of this program is to introduce students to the field of neuroscience, and to do so in such a way as to broaden students’ disciplinary perspectives, enhance communication and quantitative skills, and increase higher-level reasoning skills by encouraging collaboration among students who have different disciplinary backgrounds. This is a research-based program that culminates in a one-year capstone research course. Here we present the story of the program development at Hope College, including a description of our newly developed curriculum, our initial assessment data, and the lessons we have learned in developing this program. PMID:23493857
Compendium of student papers : 2010 undergraduate transportation scholars program.
DOT National Transportation Integrated Search
2011-06-01
This report is a compilation of research papers written by students participating in the 2010 Undergraduate : Transportation Scholars Program. The 10-week summer program, now in its 20th year, provides : undergraduate students in Civil Engineering th...
Compendium of student papers : 2012 undergraduate transportation scholars program.
DOT National Transportation Integrated Search
2013-05-01
This report is a compilation of research papers written by students participating in the 2012 Undergraduate : Transportation Scholars Program. The 10-week summer program, now in its 22nd year, provides : undergraduate students in Civil Engineering th...
Compendium of student papers : 2011 undergraduate transportation scholars program.
DOT National Transportation Integrated Search
2012-05-01
This report is a compilation of research papers written by students participating in the 2011 Undergraduate : Transportation Scholars Program. The 10-week summer program, now in its 21st year, provides : undergraduate students in Civil Engineering th...
Compendium of student papers : 2013 undergraduate transportation scholars program.
DOT National Transportation Integrated Search
2013-11-01
This report is a compilation of research papers written by students participating in the 2013 Undergraduate Transportation Scholars Program. The 10-week summer program, now in its 23nd year, provides undergraduate students in Civil Engineering the op...
Redman, Romany M; Reinsvold, Magdalena C; Reddy, Anireddy; Bennett, Paige E; Hoerauf, Janine M; Puls, Kristina M; Ovrutsky, Alida R; Ly, Alexandra R; White, Gregory; McNeil, Owetta; Meredith, Janet J
2017-06-01
Community-based participatory research [CBPR] is an emerging approach to collaborative research aimed at creating locally effective and sustainable interventions. The 2040 Partners for Health student program was developed as a unique model of longitudinal CBPR. Analysis of this program and its components illuminates both the challenges and the opportunities inherent in community engagement. The program rests on a foundation of a community-based, non-profit organization and a supportive academic university centre. Inter-professional health students and community members of underserved populations work together on different health projects by employing an adapted CBPR methodology. Three successful examples of sustainable CBPR projects are briefly described. The three projects are presented as primary outcomes resulting from this model. Benefits and challenges of the model as an approach to community-engaged research are discussed as well as secondary benefits of student participation. The 2040 Partners for Health student program represents a successful model of CBPR, illuminating common challenges and reiterating the profound value of community-engaged research. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
ERIC Educational Resources Information Center
Swanbrow Becker, Martin A.; Schelbe, Lisa; Romano, Kelly; Spinelli, Carmella
2017-01-01
Academic enrichment programs seek to address the challenges first-generation students face, but research tends to focus on academic outcomes. In this study we investigated first-generation students' perceptions of how a program addresses their mental well-being. A total of 25 undergraduate students who were enrolled in an academic enrichment…
Reinvesting in Geosciences at Texas A&M University in the 21st Century
NASA Astrophysics Data System (ADS)
Cifuentes, L. A.; Bednarz, S. W.; Miller, K. C.
2009-12-01
The College of Geosciences at Texas A&M University is implementing a three-prong strategy to build a strong college: 1) reinvesting in signature areas, 2) emphasizing environmental programs, and 3) nurturing a strong multi-disciplinary approach to course, program and research development. The college is home to one of the most comprehensive concentrations of geosciences students (837), faculty (107) and research scientists (32) in the country. Its departments include Atmospheric Sciences, Geography, Geology & Geophysics, and Oceanography. The college is also home to three major research centers: the Integrated Ocean Drilling Program, the Geochemical and Environmental Research Group, and the Texas Sea Grant College Program. During the 1990’s the college experienced a 20 percent loss in faculty when allocation of university funds was based primarily on student credit hour production while research expenditures were deemphasized. As part of Texas A&M University President Robert Gates’ Faculty Reinvestment and the college’s Ocean Drilling and Sustainable Earth Sciences hiring programs, 31 faculty members were hired in the college from 2004 through 2009, representing a significant investment-2.2 million in salaries and 4.6 million in start-up. Concurrent improvements to infrastructure and services important to signature programs included $3.0 million for radiogenic isotope and core imaging facilities and the hiring of a new Director of Student Recruitment. In contrast to faculty hiring in previous decades, the expectation of involvement in multi-disciplinary teaching, learning and research was emphasized during this hiring initiative. Returns on investments to date consist of growth in our environmental programs including new multidisciplinary course offerings, generation of a new research center and significant increases in student enrollment, research expenditures, and output of research and scholarly works. Challenges ahead include providing adequate staff support for the increasing numbers of faculty members, research staff and students, developing effective and sustainable faculty mentoring programs, and managing interdisciplinary programs and faculties.
NASA Astrophysics Data System (ADS)
Saldivar, Hector; McCarthy, D.; Rudolph, A. L.
2012-01-01
The California-Arizona Minority Partnership for Astronomy Research and Education (CAMPARE) is an NSF-funded partnership between the Astronomy Program at Cal Poly Pomona and the University of Arizona Steward Observatory designed to promote participation of underrepresented minorities, including women, in astronomy research and education. By means of this program, Cal Poly Pomona undergraduates that are either Physics majors or minors are qualified to participate in the program alongside graduate students from the University of Arizona as a camp counselor at the University of Arizona's Astronomy Camp, one of the elite astronomy programs worldwide. Students that participate in the CAMPARE program are granted an opportunity to work in a hands-on environment by teaching astronomy to students from all over the world in a highly structured environment. The CAMPARE student selected for this program in Summer 2011 worked under the supervision of Dr. Don McCarthy, professor at the University of Arizona and Astronomy Camp director for over 20 years, learning to lead a group of students through daily activities and ensure that the students are learning to their maximum potential. Through this experience, the CAMPARE student learned to capture students’ interest in astronomy and was introduced to real life teaching, which has helped prepare him for future experiences to come. We acknowledge the NSF for funding under Award No. AST-0847170, a PAARE Grant for the Calfornia-Arizona Minority Partnership for Astronomy Research and Education (CAMPARE).
75 FR 42189 - Foreign Institutions-Federal Student Aid Programs
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-20
... the foreign institution in the U.S. except for independent research under very limited circumstances... home country; and For any program designed to prepare the student for employment in a recognized... independent research is conducted as part of a doctoral program as provided for in the definition of foreign...
ERIC Educational Resources Information Center
Strycker, Jesse D.
2011-01-01
Though an educational technology experience is required as part of a traditional teacher education program student's educational preparation, research has been limited into the experiences had by alternative teacher education program students. Similarly, little research has been done comparing technology experiences between both types of teacher…
Orientation Leaders: Followership Styles and Risk-Taking Attitudes
ERIC Educational Resources Information Center
Goodman, Ann Coombes
2015-01-01
Although researchers have investigated the role of new student orientation and transition programs on college campuses, the focus has been primarily on issues such as retention and persistence rates of program participants, academic preparation techniques, and program content or logistics. Little research has been reported on student volunteers or…
ERIC Educational Resources Information Center
Raque-Bogdan, Trisha L.; Torrey, Carrie L.; Lewis, Brian L.; Borges, Nicole J.
2013-01-01
Training directors of American Psychological Association-approved counseling psychology doctoral programs completed a questionnaire assessing (a) student and faculty involvement in health-related research, practice, and teaching; (b) health-related research conducted by students and faculty; and (c) programs' expectations and ability to…
Maton, Kenneth I.; Beason, Tiffany S.; Godsay, Surbhi; Sto. Domingo, Mariano R.; Bailey, TaShara C.; Sun, Shuyan; Hrabowski, Freeman A.
2016-01-01
Previous research has shown that the Meyerhoff Scholars Program at the University of Maryland, Baltimore County, is an effective intervention for high-achieving underrepresented minority (URM) students; African-American Meyerhoff students are significantly more likely to enter science, technology, engineering, and mathematics (STEM) PhD programs than comparison students. The first of two studies in this report extends the prior research by examining levels of PhD completion for Meyerhoff (N = 479) versus comparison sample (N = 249) students among the first 16 cohorts. Entering African-American Meyerhoff students were 4.8 times more likely to complete STEM PhDs than comparison sample students. To enhance understanding of potential mechanisms of influence, the second study used data from the 22nd (Fall 2010) to 25th (Fall 2013) cohorts (N = 109) to test the hypothesis that perceived program benefit at the end of freshman year would mediate the relationship between sense of community at the end of Summer Bridge and science identity and research self-efficacy at the end of sophomore year. Study 2 results indicated that perceived program benefit fully mediated the relationship between sense of community and both criterion measures. The findings underscore the potential of comprehensive STEM intervention programs to enhance PhD completion, and suggest mechanisms of influence. PMID:27587857
An Interdisciplinary Program in Materials Science at James Madison University.
NASA Astrophysics Data System (ADS)
Hughes, Chris
2008-03-01
Over the past decade a core group of faculty at James Madison University has created an interdisciplinary program in materials science that provides our students with unique courses and research experiences that augment the existing, high-quality majors in physics and astronomy, chemistry and biochemistry, geology and environmental science, mathematics and statistics, and integrated science and technology. The university started this program by creating a Center for Materials Science whose budget is directly allocated by the provost. This source of funds acts as seed money for research, support for students, and a motivating factor for each of the academic units to support the participation of their faculty in the program. Courses were created at the introductory and intermediate level that are cross-listed by the departments to encourage students to enroll in them as electives toward their majors. Furthermore, the students are encouraged to participate in undergraduate research in materials since this is the most fundamental unifying theme across the disciplines. This talk will cover some of the curricular innovations that went into the design of the program to make it successful, examples of faculty and student research and how that feeds back into the classroom, and success stories of the interactions that have developed between departments because of this program. Student outcomes and future plans to improve the program will also be discussed.
Soliman, Amr S; Mullan, Patricia B; Chamberlain, Robert M
2010-06-01
This article describes the development and evaluation of an NCI-sponsored short-term summer cancer research education program. The study questions examined: the feasibility of conducting a cancer education program in special populations at multiple US and international field sites for masters students; the merit and worth that students and faculty attribute to the program; and students' scholarly and cancer-related career outcomes. Developing a new curriculum, increasing the pool of mentors, utilizing and increasing the number of field sites, and program dissemination were also evaluated. Evidence of the program's success included students' completion of field experiences at multiple sites and their subsequent 70% project-related publication rate, with 79% of trainees reporting themselves as likely to pursue future cancer-related careers. Evaluation-guided future plans for the program include implementing faculty development to further enhance the program outcomes.
NASA Astrophysics Data System (ADS)
Dalbotten, D. M.; Hill, K. M.; Berthelote, A. R.; Ito, E.; Pellerin, H.; Howes, T.; Myrbo, A.
2012-12-01
There are excellent opportunities for undergraduate students to participate in research programs across the country, but often they suffer from a lack of applicants from underrepresented groups and non-traditional students. Potential applicants are out there, but too often they are lost through the recruitment and application process. We present the results here of a decade of experience in reaching the students where they are at, metaphorically and physically. Each aspect of the REU recruitment and application process will be considered in terms of barriers to participation that occur before the student even applies, in the program design and application process. We examine the application itself, the recruiting process, reaching students through their mentors and student organizations, the non-traditional student, and how programs can be constructed that allow for a wider diversity of participants. The Research Experience for Undergraduates on Sustainable Land and Water Resources strives to meet the student at least halfway through our unique program design. Our team-orientated REU places teams of students at three sites: Salish Kootenai College on the Flathead Reservation in Montana, the Fond du Lac Band of Lake Superior Chippewa Reservation in Northern Minnesota, and at the University of Minnesota, Minneapolis. Students from across the country participate in research related to land and water resources while also learning about the sustainable management practices of these communities. Every effort is made to include the non-traditional student, including parents, through the design of the program, the materials we recruit with, and our application process. Students learn about all aspects of research, from experimental design, to field and laboratory practices, to modeling and quantitative analysis. In addition, all of our mentors are encouraged to work as a team to meet the individual needs of the students in our program—academic, cultural, and social—and work for student success.
NASA Astrophysics Data System (ADS)
Bruno, B. C.
2014-12-01
The C-MORE Scholars Program provides hands-on, closely mentored research experiences to University of Hawaii (UH) undergraduates during the academic year. Students majoring in the geosciences, especially underrepresented students, from all campuses are encouraged to apply. The academic-year research is complemented by outreach, professional development and summer internships. Combined, these experiences help students develop the skills, confidence and passion that are essential to success in a geoscience career. Research. All students enter the program as trainees, where they learn lab and field research methods, computer skills and science principles. After one year, they are encouraged to reapply as interns, where they work on their own research project. Students who have successfully completed their intern year can reapply as fellows, where they conduct an independent research project such as an honors thesis. Students present their research at a Symposium through posters (trainees) or talks (interns and fellows). Interns and fellows help organize program activities and serve as peer mentors to trainees.Multi-tiered programs that build a pathway toward graduation have been shown to increase student retention and graduation success. Outreach. Undergraduate researchers rarely feel like experts when working with graduate students and faculty. For students to develop their identity as scientists, it is essential that they be given the opportunity to assume the role as expert. Engaging students in outreach is a win-win situation. Students gain valuable skills and confidence in sharing their research with their local community, and the public gets to learn about exciting research happening at UH. Professional Development. Each month, the Scholars meet to develop their professional skills on a particular topic, such as outreach, scientific presentations, interviewing, networking, and preparing application materials for jobs, scholarships and summer REUs. Students are strongly encouraged to participate in summer REUs on the mainland US, both to gain independence and as a testing ground for graduate school. In December, qualitative and quantitative evaluation results will be shared to demonstrate the effectiveness of this model in increasing student retention and graduation success.
NASA Astrophysics Data System (ADS)
Nevle, R. J.; Watson Nelson, T.; Harris, J. M.; Klemperer, S. L.
2012-12-01
In 2012, the School of Earth Sciences (SES) at Stanford University sponsored two summer undergraduate research programs. Here we describe these programs and efforts to build a cohesive research cohort among the programs' diverse participants. The two programs, the Stanford School of Earth Sciences Undergraduate Research (SESUR) Program and Stanford School of Earth Sciences Summer Undergraduate Research in Geoscience and Engineering (SURGE) Program, serve different undergraduate populations and have somewhat different objectives, but both provide students with opportunities to work on strongly mentored yet individualized research projects. In addition to research, enrichment activities co-sponsored by both programs support the development of community within the combined SES summer undergraduate research cohort. Over the course of 6 to 9 months, the SESUR Program engages Stanford undergraduates, primarily rising sophomores and juniors, with opportunities to deeply explore Earth sciences research while learning about diverse areas of inquiry within SES. Now in its eleventh year, the SESUR experience incorporates the breadth of the scientific endeavor: finding an advisor, proposal writing, obtaining funding, conducting research, and presenting results. Goals of the SESUR program include (1) providing a challenging and rewarding research experience for undergraduates who wish to explore the Earth sciences; (2) fostering interdisciplinary study in the Earth sciences among the undergraduate population; and (3) encouraging students to major or minor in the Earth sciences and/or to complete advanced undergraduate research in one of the departments or programs within SES. The SURGE Program, now in its second year, draws high performing students, primarily rising juniors and seniors, from 14 colleges and universities nationwide, including Stanford. Seventy percent of SURGE students are from racial/ethnic backgrounds underrepresented in STEM fields, and approximately one-third are the first in their families to attend college. For eight weeks, SURGE scholars conduct independent research with the guidance of faculty, research group mentors, and program assistants. The primary objectives of the SURGE program are to (1) provide undergraduates with a research experience in SES; (2) prepare undergraduates for the process of applying to graduate school; (3) introduce undergraduates to career opportunities in the geosciences and engineering; and (4) increase diversity in SES graduate programs. Independent research, network building, and intense mentoring culminate in a final oral and poster symposium. SESUR and SURGE scholars jointly participate in enrichment activities including faculty research seminars; career, graduate school, and software training workshops; GRE preparation classes; and geoscience-oriented field trips. Interaction among our students takes place through both research and enrichment activities, creating a critical mass of undergraduate scholars and promoting community development. Pre- and post-program surveys indicate that the overall goals of both programs are being achieved.
Iacopino, A M; Pryor, M E; Taft, T B; Lynch, D P
2007-07-01
Our objective was to evaluate changes in curriculum and culture within a research non-intensive dental school after implementation of programs supported by the NIH-NIDCR R25 Oral Health Research Curriculum Grant. We designed new curricular elements to foster an appreciation of research/discovery, an interest in academic/research careers, and application of biomedical/clinical advances to patient care. Funding was utilized to develop, implement, and assess a dedicated curricular track of continuous student research/scholarly activity throughout the four years of dental education. This track represented mandatory hours of didactic time exposing students to topics not traditionally included in dental curricula. Additionally, students were provided with customized flexible schedules to participate in elective "hands-on" mentored research/scholarly experiences at local, national, and international sites, including linkages to certificate, MS, and PhD programs. Funding was also used to support a wide array of faculty development activities that provided skill sets required to deliver integrated biomedical/clinical content, research-oriented evidence-based approaches to dental education, and translational case-based teaching methods emphasizing the application of new science/technologies to patient care. We measured changes in student, faculty, and institutional profiles/attitudes using traditional benchmarks, surveys, and focus groups. Comparisons were made between baseline data prior to R25 program initiation and data collected after years 3-4 of program implementation. Significant increases were demonstrated in: (1) student participation in research/scholarship, attendance at national meetings, research awards, publication of manuscripts, pursuit of advanced training/degrees, and expressions of interest in academic/research careers; (2) faculty participation in development activities, publication of manuscripts, and mentoring of students; and (3) increased institutional credibility within the university, supportive infrastructure for research/scholarship, and cultural expectations for academic excellence. Thus, we believe that the R25 programming changed the culture of our dental school, creating a supportive environment for research/scholarship, increasing academic productivity, and altering the attitudes of faculty/students.
NASA Astrophysics Data System (ADS)
Pearson, J. K.; Noriega, G.; Benthien, M. L.
2017-12-01
The Undergraduate Studies in Earthquake Information Technology (USEIT) is an REU Internship Program focused in multi-disciplinary, collaborative research offered through the Southern California Earthquake Center (SCEC); a research consortium focused on earthquake science. USEIT is an 8-week intensive undergraduate research program. The program is designed for interns to work as a collaborative engine to solve an overarching real-world earthquake problem referred to as the "Grand Challenge". The interns are organized in teams and paired with mentors that have expertise in their specific task in the Grand Challenge. The program is focused around earthquake system science, where students have the opportunity to use super computers, programming platforms, geographic information systems, and internally designed and developed visualization software. The goal of the USEIT program is to motivate undergraduates from diverse backgrounds towards careers in science and engineering through team-based research in the field of earthquake information technology. Efforts are made to recruit students with diverse backgrounds, taking into consideration gender, ethnic background, socioeconomic standing, major, college year, and institution type (2-year and 4-year colleges). USEIT has a partnership with two local community colleges to recruit underserved students. Our emphasis is to attract students that would 1) grow and develop technical skills, soft skills, and confidence from the program, and 2) provide perspective and innovation to the program. USEIT offers on-campus housing to provide a submerged learning environment, recruits diverse majors to foster interdisciplinary collaboration, maintains a full time in lab mentor for day-to-day intern needs, takes students on field trips to provide context to their research, and plans activities and field trips for team building and morale. Each year metrics are collected through exit surveys, personal statements, and intern experience statements. We highlight lessons learned, including a need for pre-program engagement to ensure student success.
ERIC Educational Resources Information Center
Gillespie, Robert; Russell, Joshua A.; Hamann, Donald L.
2014-01-01
The purpose of this study was to examine the impact of newly initiated string programs on teachers, schools, districts, communities, and existing music program administration and students. Research questions pertained to (a) locations, student access, and instructional offerings; (b) educators; and (c) perceived impact on student outcomes. Data…
Identifying College Students Likely to Participate in a Travel Abroad Volunteer Project
ERIC Educational Resources Information Center
Nonis, Sarath A.; Relyea, Clint
2014-01-01
Foreign travel provides excellent opportunities for college students to broaden their global mindset. While empirical research focusing on variables that influence student participation in study abroad programs are available, there is a paucity of research that focuses on travel abroad programs relating to participating in volunteer projects.…
A Hands-on Research Experience in Chemistry for Undergraduates in the Southwest.
ERIC Educational Resources Information Center
Hogg, John L.
1988-01-01
Describes a program in chemistry which was designed to encourage undergraduate minority students to enroll in graduate study. States that students attended meetings with their advisors and met as a group for a research lecture. The program included graduate students, staff, and professors who gave lectures and tours. (RT)
Two-Way Bilingual Education: A Progress Report on the Amigos Program. Research Report: 7.
ERIC Educational Resources Information Center
Cazabon, Mary; And Others
The progress report on the Amigos two-way bilingual education program in the Cambridge (Massachusetts) public schools describes: research on the achievement in mathematics, Spanish, and English of Amigos students and students in control/comparison groups; data gathered on students' and parents' attitudes toward bilingualism and biculturalism;…
ERIC Educational Resources Information Center
Erichsen, Elizabeth Anne; Bolliger, Doris U.; Halupa, Colleen
2014-01-01
There are no universal, precise, or explicit criteria for completing a doctoral degree successfully. Researchers and practitioners have pointed out how difficult and time consuming the supervision of graduate student research can be. When students in doctoral programs complete their degrees via distance delivery, supervision of graduate students…
Graduate Student Library Research Skills: Is Online Instruction Effective?
ERIC Educational Resources Information Center
Shaffer, Barbara A.
2011-01-01
Graduate students are a significant segment in online instruction programs, yet little is known about how well they learn the necessary library research skills in this increasingly popular mode of distance learning. This pre- and posttest study and citation analysis examined learning and confidence among students in graduate education programs,…
Short-Term Study Abroad: Predicting Changes in Oral Skills
ERIC Educational Resources Information Center
Martinsen, Rob A.
2010-01-01
Increasing numbers of students are opting for study abroad programs of 2 months or less while research on study abroad generally focuses on semester- or year-long programs. This study quantitatively examines changes in students' spoken Spanish after 6 weeks in Argentina using native speaker ratings of student speech. The researcher then uses…
An Analysis of NSF Geosciences Research Experience for Undergraduate Site Programs from 2009 to 2012
NASA Astrophysics Data System (ADS)
Rom, E. L.; Patino, L. C.; Gonzales, J.; Weiler, C. S.; Antell, L.; Colon, Y.; Sanchez, S. C.
2012-12-01
The Research Experience for Undergraduate (REU) Program at the U.S. National Science Foundation (NSF) provides undergraduate students from across the nation the opportunity to conduct research at a different institution and in an area that may not be available at their home campus. REU Sites funded by the Directorate of Geosciences provide student research opportunities in earth, ocean, atmospheric and geospace research. This paper provides an overview of the Geosciences REU Site programs run from 2009 to 2012. Information was gathered from over 45 REU sites each year on recruitment methods, student demographics, enrichment activities, and fields of research. The internet is the most widely used mechanism to recruit participants. The admissions rate for REU Sites in Geosciences varies by discipline but averages between 6% to 18% each year, with the majority of participants being rising seniors and juniors. A few Sites include rising sophomores and freshmen. Most students attend PhD granting institutions. Among the participants, gender distribution depends on discipline, with atmospheric and geospace sciences having more male than female participants, but ocean and earth sciences having a majority of female participants. Regarding ethnic diversity, the REU Sites reflect the difficulty of attracting diverse students into Geosciences as a discipline; a large majority of the participants are Caucasian or Asian students. Furthermore, participants from minority-serving institutions or community colleges constitute a small percentage of those taking part in these research experiences. The enrichment activities are very similar across the REU Sites, and mimic well activities common to the scientific community, including intellectual exchange of ideas (lab meetings, seminars, and professional meetings), networking and social activities. Results from this study will be used to examine strengths in the REU Sites in the Geosciences and opportunities for improvement in the program. The data provided here also represent an excellent benchmark by which to measure future changes in student participation and program design that may result from 2012 changes in the REU program solicitation. For example, one important change is that REU programs are now required to include greater participation of students who are attending non-research institutions.
ERIC Educational Resources Information Center
Killeen, Jennifer
2017-01-01
The purpose of this quasi-experimental study is to determine the impact a freshman mentoring program will have on student achievement, student discipline and student attendance within a large suburban high school. There does not seem to be much previous research on this topic in particular, therefore much of the research focused on the transition…
Diversifying Science: Underrepresented Student Experiences in Structured Research Programs
ERIC Educational Resources Information Center
Hurtado, Sylvia; Cabrera, Nolan L.; Lin, Monica H.; Arellano, Lucy; Espinosa, Lorelle L.
2009-01-01
Targeting four institutions with structured science research programs for undergraduates, this study focuses on how underrepresented students experience science. Several key themes emerged from focus group discussions: learning to become research scientists, experiences with the culture of science, and views on racial and social stigma.…
NASA Astrophysics Data System (ADS)
Wirth, K. R.; Garver, J. I.; Greer, L.; Pollock, M.; Varga, R. J.; Davidson, C. M.; Frey, H. M.; Hubbard, D. K.; Peck, W. H.; Wobus, R. A.
2015-12-01
The Keck Geology Consortium, with support from the National Science Foundation (REU Program) and ExxonMobil, is a collaborative effort by 18 colleges to improve geoscience education through high-quality research experiences. Since its inception in 1987 more than 1350 undergraduate students and 145 faculty have been involved in 189 yearlong research projects. This non-traditional REU model offers exceptional opportunities for students to address research questions at a deep level, to learn and utilize sophisticated analytical methods, and to engage in authentic collaborative research that culminates in an undergraduate research symposium and published abstracts volume. The large numbers of student and faculty participants in Keck projects also affords a unique opportunity to study the impacts of program design on undergraduate research experiences in the geosciences. Students who participate in Keck projects generally report significant gains in personal and professional dimensions, as well as in clarification of educational and career goals. Survey data from student participants, project directors, and campus advisors identify mentoring as one of the most critical and challenging elements of successful undergraduate research experiences. Additional challenges arise from the distributed nature of Keck projects (i.e., participants, project directors, advisors, and other collaborators are at different institutions) and across the span of yearlong projects. In an endeavor to improve student learning about the nature and process of science, and to make mentoring practices more intentional, the Consortium has developed workshops and materials to support both project directors and campus research advisors (e.g., best practices for mentoring, teaching ethical professional conduct, benchmarks for progress, activities to support students during research process). The Consortium continues to evolve its practices to better support students from underrepresented groups.
1994-12-01
Research Program Phillips Laboratory Kirtland Air Force Base Albuquerque, New Mexico Sponsored by: Air ...Summer Research Program Phillips Laboratory Sponsored by. Air Force Office of Scientific Research Kirtland Air Force Base, Albuquerque, New Mexico...UNITED STATES AIR FORCE SUMMER RESEARCH PROGRAM -- 1993 SUMMER RESEARCH PROGRAM FINAL REPORTS VOLUME 8
Wisneski, Andrew D; Huang, Lixia; Hong, Bo; Wang, Xiaoqin
2011-01-01
A model for an international undergraduate biomedical engineering research exchange program is outlined. In 2008, the Johns Hopkins University in collaboration with Tsinghua University in Beijing, China established the Tsinghua-Johns Hopkins Joint Center for Biomedical Engineering Research. Undergraduate biomedical engineering students from both universities are offered the opportunity to participate in research at the overseas institution. Programs such as these will not only provide research experiences for undergraduates but valuable cultural exchange and enrichment as well. Currently, strict course scheduling and rigorous curricula in most biomedical engineering programs may present obstacles for students to partake in study abroad opportunities. Universities are encouraged to harbor abroad opportunities for undergraduate engineering students, for which this particular program can serve as a model.
The NASA Space Life Sciences Training Program: Accomplishments Since 2013
NASA Technical Reports Server (NTRS)
Rask, Jon; Gibbs, Kristina; Ray, Hami; Bridges, Desireemoi; Bailey, Brad; Smith, Jeff; Sato, Kevin; Taylor, Elizabeth
2017-01-01
The NASA Space Life Sciences Training Program (SLSTP) provides undergraduate students entering their junior or senior years with professional experience in space life science disciplines. This challenging ten-week summer program is held at NASA Ames Research Center. The primary goal of the program is to train the next generation of scientists and engineers, enabling NASA to meet future research and development challenges in the space life sciences. Students work closely with NASA scientists and engineers on cutting-edge research and technology development. In addition to conducting hands-on research and presenting their findings, SLSTP students attend technical lectures given by experts on a wide range of topics, tour NASA research facilities, participate in leadership and team building exercises, and complete a group project. For this presentation, we will highlight program processes, accomplishments, goals, and feedback from alumni and mentors since 2013. To date, 49 students from 41 different academic institutions, 9 staffers, and 21 mentors have participated in the program. The SLSTP is funded by Space Biology, which is part of the Space Life and Physical Sciences Research and Application division of NASA's Human Exploration and Operations Mission Directorate. The SLSTP is managed by the Space Biology Project within the Science Directorate at Ames Research Center.
Results from a Pilot REU Program: Exploring the Cosmos Using Sloan Digital Sky Survey Data
NASA Astrophysics Data System (ADS)
Chanover, Nancy J.; Holley-Bockelmann, Kelly; Holtzman, Jon A.
2017-01-01
In the Summer of 2016 we conducted a 10-week pilot Research Experience for Undergraduates (REU) program aimed at increasing the participation of underrepresented minority undergraduate students in research using data from the Sloan Digital Sky Survey (SDSS). This program utilized a distributed REU model, whereby students worked with SDSS scientists on exciting research projects while serving as members of a geographically distributed research community. The format of this REU is similar to that of the SDSS collaboration itself, and since this collaboration structure has become a model for the next generation of large scale astronomical surveys, the students participating in the SDSS REU received early exposure and familiarity with this approach to collaborative scientific research. The SDSS REU also provided the participants with a low-risk opportunity to audition for graduate schools and to explore opportunities afforded by a career as a research scientist. The six student participants were placed at SDSS REU host sites at the Center for Astrophysics at Harvard University, University of Wisconsin-Madison, Vanderbilt University, and the University of Portsmouth. Their research projects covered a broad range of topics related to stars, galaxies, and quasars, all making use of SDSS data. At the start of the summer the REU students participated in a week-long Boot Camp at NMSU, which served as a program orientation, an introduction to skills relevant to their research projects, and an opportunity for team-building and cohort-forming. To foster a sense of community among our distributed students throughout the summer, we conducted a weekly online meeting for all students in the program via virtual meeting tools. These virtual group meetings served two purposes: as a weekly check-in to find out how their projects were progressing, and to conduct professional development seminars on topics of interest and relevance to the REU participants. We discuss the outcomes of this pilot REU program and future plans for involving underrepresented minority undergraduate students in SDSS-related research. This work was supported by a grant from Sloan Foundation to the Astrophysical Research Consortium.
Inspiring Students to be Scientists: Oceanographic Research Journeys of a Middle School Teacher
NASA Astrophysics Data System (ADS)
Paulishak, E.
2006-12-01
I will present my research and educational experiences with two professional development programs in which I practiced scientific research. Real world applications of scientific principles cause science to be less abstract and allow the students to be involved in genuine science in the field. Students view teachers differently as a teacher brings her/his experience and enthusiasm for learning into the classroom environment. Furthermore, by developing activities around those experiences, the teacher may permit the students to have some direct involvement with scientific research. One of the common goals of these programs is for teachers to understand the research process and the science involved with it. My goal is to remain a teacher and use these valuable experiences to inspire my students. My job, after completing the research experience and doing investigations in the field, becomes one of "translator" taking the content and process knowledge and making it understandable and authentic for the advancement of my students. It also becomes one of "mentor" when helping to develop the skills of new teachers. Both of my experiences included seagoing expeditions. The REVEL program was my first experience in the summer of 2000. It gave me an immense opportunity to become part of a research team studying the underwater volcanic environment of the Juan de Fuca Ridge in the Northeast Pacific Ocean. With the ARMADA project (2006), I learned about SONAR as we traveled via NOAA ship along the Aleutian Islands of Alaska. Using examples from both of these highly valuable programs, I will be presenting my ideas about how to prepare teachers for their research experience, how to make the transition from research experience to practical classroom application, and how these experiences play a role in retaining the best science teachers and developing new science teachers for the future. Research programs such as these, furnish me with an added sense of confidence as I facilitate student learning. Both programs also enhance my credibility in the eyes of my students who ask: "Are you a scientist, too?"
The inception and evolution of a unique masters program in cancer biology, prevention and control.
Cousin, Carolyn; Blancato, Jan
2010-09-01
The University of the District of Columbia (UDC) and the Lombardi Comprehensive Cancer Center (LCCC), Georgetown University Medical Center established a Masters Degree Program in Cancer Biology, Prevention and Control at UDC that is jointly administered and taught by UDC and LCCC faculty. The goal of the Masters Degree Program is to educate students as master-level cancer professionals capable of conducting research and service in cancer biology, prevention, and control or to further advance the education of students to pursue doctoral studies. The Program's unique nature is reflected in its philosophy "the best cancer prevention and control researchers are those with a sound understanding of cancer biology". This program is a full-time, 2-year, 36-credit degree in which students take half of their coursework at UDC and half of their coursework at LCCC. During the second year, students are required to conduct research either at LCCC or UDC. Unlike most cancer biology programs, this unique Program emphasizes both cancer biology and cancer outreach training.
Is it design or is it inquiry? Exploring technology research in a Filipino school setting
NASA Astrophysics Data System (ADS)
Yazon, Jessamyn Marie Olivares
My case study explored Filipino secondary students' and teachers' experiences with technology research, project-based pedagogy. The study was conducted to examine the nature of a Technology Research (TR) Curriculum, and how it mediates non-Western students' learning, and interest in technology-based careers. The context for my study is Philippine Science High School's (PSHS) TR program wherein students outline a proposal, design an experiment or a device, and implement their design to address a real world problem. My data sources included semi-structured interviews of 27 students and 2 teachers; participant observations of classroom and group activities, teacher-student consultations, and Science-Technology Fair presentations; TR curriculum documents; and researcher journal logs. My examination of curriculum documents revealed that since the 1960s, the Philippine government has implemented specialized educational programs, such as the PSHS Science/Technology Streaming and TR programs, to support Filipino youth interested in science and technology courses and careers. Data analyses showed that the TR program provided a rich, practical learning environment where 'doing technology design' blended with 'doing science inquiry'. The TR activities enhanced student understanding of science and technology; helped them integrate and apply knowledge and skills learned from other school subjects; encouraged them to be creative, problem-solvers; and helped develop their lifelong learning skills. Students recognized that TR teachers adopted alternative instructional strategies that prompted students to adopt more active roles in their learning. Research findings revealed that student interest in pursuing technology-related careers was supported by their participation in the streaming and the TR programs. Data also showed that Filipino cultural practices mediated student learning, and career decision-making. My research findings suggest that present notions of scientific inquiry, and technological design need to be re-examined; that integrated science-technology school programs must be implemented to enhance students' academic and vocational knowledge and skills; and that career direction interventions should address personal and socio-cultural factors other than student interest and aptitude. My study provides strong evidence that technology research pedagogy can change teaching-learning approaches in a Filipino classroom. This study showed that academic-vocational, technology-enriched science curriculum could be effectively designed to help equip students to become critical thinkers and leaders in the 21st century.
NASA Astrophysics Data System (ADS)
Pullin, M. J.
2013-12-01
The statewide NSF New Mexico EPSCoR Program (Climate Change and Water in New Mexico) sponsored a summer undergraduate research program from 2009 to 2013. This program was open to undergraduates attending the state's community colleges and primarily undergraduate institutions (PUIs). Participants who are chosen for the program attend a week of workshops on climate change, hydrology, water quality and professional development. Following that, they spend eight weeks working with an EPSCoR-funded scientist at a research intensive university or related field site. Participants are paired during their research project. This strategy has been shown to be a key factor in the success and comfort level of the participants. The program concludes with a research conference and many of the participants later present their work at national and regional conferences. The program has shown to be effective at introducing students from non-research institutions to authentic research in the Earth and Environmental Sciences and improving their confidence in future success at higher degree levels. The program is also successful at recruiting underrepresented minority students, mainly from Hispanic and Native American populations. We will also present data on participant degree completions, transfers to four year colleges, STEM career attainment, and graduate school admissions.
Evolution of a Teacher Professional Development Program that Promotes Teacher and Student Research
NASA Astrophysics Data System (ADS)
Pompea, S. M.; Croft, S. K.; Garmany, C. D.; Walker, C. E.
2005-12-01
The Research Based Science Education (RBSE) and Teacher Leaders in Research Based Science (TLRBSE) programs at the National Optical Astronomy Observatory have been evolving for nearly ten years. Our current program is actually a team of programs aiding teachers in doing research with small telescopes, large research-grade telescopes, astronomical data archives, and the Spitzer Space Telescope. Along the way, as these programs evolved, a number of basic questions were continuously discussed by the very talented program team. These questions included: 1) What is real research and why should we encourage it? 2) How can it be successfully brought to the classroom? 3) What is the relative importance of teacher content knowledge versus science process knowledge? 4) How frustrating should an authentic research experience be? 5) How do we measure the success of our professional development program? 6) How should be evaluate and publish student work? 7) How can teachers work together on a team to pursue research? 8) What is the model for interaction of teachers and researchers - equal partners versus the graduate student/apprentice model? 9) What is the ideal mix of skills for a professional development team at NOAO? 10) What role can distance learning play in professional preparation? 11) What tools are needed for data analysis? 12) How can we stay funded? Our evolving program has also been used as a test bed to examine new models of teacher's professional development that may aid our outreach efforts in the Large Synoptic Survey Telescope program, the Thirty-Meter Telescope program, and the National Virtual Observatory program. We will describe a variety of lessons learned (and relearned) and try to describe best practices in promoting teacher and student research. The TLRBSE Program is funded by the National Science Foundation under ESI 0101982, funded through the AURA/NSF Cooperative Agreement AST-9613615. NOAO is operated by the Association of Universities for Research in Astronomy (AURA), Inc. under cooperative agreement with the National Science Foundation.
NASA Astrophysics Data System (ADS)
Ozbay, G.; Sriharan, S.; Fan, C.; Prakash, A.; San Juan, F.
2016-12-01
Consortium of minority serving institutions including Delaware State University, Virginia State University, Morgan State University, University of Alaska Fairbanks, and Elizabeth City State University have collaborated on various student experiential learning programs to expand the technology-based education by incorporating Geographic Information System (GIS) technique to promote student learning on climate change and sustainability. Specific objectives of this collaborative programs are to: (i) develop new or enhance existing courses of Introduction to Geographic Information System (GIS) and Introduction to Remote Sensing, (ii) enhance teaching and research capabilities through faculty professional development workshops, (iii) engage minority undergraduates in GIS and remote sensing research via experiential learning activities including summer internship, workshop, and work study experience. Ultimate goal is to prepare pipeline of minority task force with skills in GIS and remote sensing application in climate sciences. Various research projects were conducted on topics such as carbon footprint, atmospheric CO2, wildlife diversity, ocean circulation, wild fires, geothermal exploration, etc. Students taking GIS and remote sensing courses often express interests to be involved in research projects to enhance their knowledge and obtain research skills. Of about 400 students trained, approximately 30% of these students were involved in research experience in our programs since 2004. The summer undergraduate research experiences (REU) have offered hands-on research experience to the students on climate change and sustainability. Previous studies indicate that students who are previously exposed to environmental science only by a single field trip or an introductory course could be still at risk of dropping out of this field in their early years of the college. The research experience, especially at early college years, would significantly increase the participation and retention of students in climate sciences and sustainability by creating and maintaining interest in these areas. These programs promoted active recruitment of faculty, staff, and students, fostered the development of partnerships, and enhanced related skill sets among students in GIS and remote sensing.
Ziviani, Jenny; Feeney, Rachel; Schabrun, Siobhan; Copland, David; Hodges, Paul
2014-08-01
The purpose of this study was to present the application of a logic model in depicting the underlying theory of an undergraduate research scheme for occupational therapy, physiotherapy, and speech pathology university students in Queensland, Australia. Data gathered from key written documents on the goals and intended operation of the research incubator scheme were used to create a draft (unverified) logic model. The major components of the logic model were inputs and resources, activities/outputs, and outcomes (immediate/learning, intermediate/action, and longer term/impacts). Although immediate and intermediate outcomes chiefly pertained to students' participation in honours programs, longer-term outcomes (impacts) concerned their subsequent participation in research higher-degree programs and engagement in research careers. Program logic provided an effective means of clarifying program objectives and the mechanisms by which the research incubator scheme was designed to achieve its intended outcomes. This model was developed as the basis for evaluation of the effectiveness of the scheme in achieving its stated goals.
ERIC Educational Resources Information Center
Burgin, Stephen R.; McConnell, William J.; Flowers, Alonzo M., III
2015-01-01
This study describes an investigation of a research apprenticeship program that we developed for diverse high-school students often underrepresented in similar programs and in science, technology, engineering, and math (STEM) professions. Through the apprenticeship program, students spent 2 weeks in the summer engaged in biofuels-related research…
NASA Astrophysics Data System (ADS)
Wickham, J. S.; Saunders, D.; Smith, G.
2015-12-01
A NSF sponsored partnership between the University of Texas at Arlington and the Tarrant County College District aimed to attract underrepresented lower-division students interested in STEM to the geosciences. The program recruited 32 students over 3 years, developed an innovative field course, provided tutoring and mentoring programs, and offered research assistantships for students to work with the research university faculty on funded projects. Under-represented students were 66% of the group. The data was gathered via a web-based survey from April 2nd to April 17th, 2015, using both open ended and item-level responses. Out of 32 participants, the response rate was a significant 50%. Some of the survey results include: 1) Most students heard about the program from faulty who recruited them in introductory level classes; 2) Almost all agreed that the geosciences were interesting, fun, important and a good career path; 3) 92% of the community college respondents found transferring to a research university somewhat or not too difficult; 4) The most helpful parts of the program included faculty mentors, the field course, research assistant experiences and relationships with faculty. The least helpful parts included the tutoring services, relationships with other students, and the semester kickoff meetings; 5) over 60% of the students felt very confident in research skills, formulating research questions, lab skills, quantitative skills, time management, collaborating and working independently. They were less confident in planning research, graphing results, writing papers and making oral presentations; 6) most found the faculty very helpful in advising and mentoring, and 86% said they were comfortable asking at least one faculty member for a reference letter; 7) 93% said they were likely to pursue a geoscience career and 86% were confident or somewhat confident they would be successful.
Kingsley, Karl; O'Malley, Susan; Stewart, Tanis; Howard, Katherine M
2008-01-01
Background Research programs within medical and dental schools are important vehicles for biomedical and clinical discovery, serving as effective teaching and learning tools by providing situations in which predoctoral students develop problem-solving and critical-thinking skills. Although research programs at many medical and dental schools are well-established, they may not be well integrated into the predoctoral curriculum to effectively support the learning objectives for their students. Methods A series of structured seminars, incorporating faculty research, was designed for first-year dental students at the University of Nevada, Las Vegas, School of Dental Medicine to reinforce and support the concepts and skills taught in concurrent courses. A structured research enrichment period was also created to facilitate student engagement in active research using faculty and student curricular release time. Course evaluations and surveys were administered to gauge student perceptions of the curricular integration of research, the impact of these seminars on recruitment to the research program, and overall levels of student satisfaction with research enrichment. Results The analysis of course surveys revealed that students perceived the research-containing seminars effectively illustrated concepts, were logically sequenced, and were well-integrated into their curriculum. In addition, analysis of surveys revealed that the Integration Seminar courses motivated students to engage in research enrichment. Finally, this analysis provided evidence that students were very satisfied with their overall learning experience during research enrichment. Conclusion Curricular integration is one method of improving the teaching and learning of complicated and inter-related concepts, providing an opportunity to incorporate research training and objectives into traditionally separate didactic courses. Despite the benefits of curricular integration, finding the most appropriate points of integration, obtaining release time for curricular development and for research engagement, and funding predoctoral student research remain issues to be addressed in ways that reflect the character of the faculty and the goals of each institution. PMID:18284692
Kingsley, Karl; O'Malley, Susan; Stewart, Tanis; Howard, Katherine M
2008-02-19
Research programs within medical and dental schools are important vehicles for biomedical and clinical discovery, serving as effective teaching and learning tools by providing situations in which predoctoral students develop problem-solving and critical-thinking skills. Although research programs at many medical and dental schools are well-established, they may not be well integrated into the predoctoral curriculum to effectively support the learning objectives for their students. A series of structured seminars, incorporating faculty research, was designed for first-year dental students at the University of Nevada, Las Vegas, School of Dental Medicine to reinforce and support the concepts and skills taught in concurrent courses. A structured research enrichment period was also created to facilitate student engagement in active research using faculty and student curricular release time. Course evaluations and surveys were administered to gauge student perceptions of the curricular integration of research, the impact of these seminars on recruitment to the research program, and overall levels of student satisfaction with research enrichment. The analysis of course surveys revealed that students perceived the research-containing seminars effectively illustrated concepts, were logically sequenced, and were well-integrated into their curriculum. In addition, analysis of surveys revealed that the Integration Seminar courses motivated students to engage in research enrichment. Finally, this analysis provided evidence that students were very satisfied with their overall learning experience during research enrichment. Curricular integration is one method of improving the teaching and learning of complicated and inter-related concepts, providing an opportunity to incorporate research training and objectives into traditionally separate didactic courses. Despite the benefits of curricular integration, finding the most appropriate points of integration, obtaining release time for curricular development and for research engagement, and funding predoctoral student research remain issues to be addressed in ways that reflect the character of the faculty and the goals of each institution.
A study of female students enrollment in engineering technology stem programs
NASA Astrophysics Data System (ADS)
Habib, Ihab S.
The problem studied in this research project was the enrollment of female STEM Engineering Technology students and the impact of professional mentoring and financial incentives on their enrollment, retention, and completion of engineering curriculum. Several tasks were presented in researchers' professional position; to recruit more students to the program, especially female as a minority in the Engineering Technology Department, make appropriate changes to the curriculum, and make improvements in mentoring students to improve rates of enrollment, retention, and completion of the program. A survey was created to study the effects of Science Engineering Technology and Mathematics for Engineering Technology (STEM ENGT) students' perceptions, mentorship, and scholarships availability, enrollment, retention, and program completion by enrolled student gender. Other studies have discovered that more scholarship and faculty mentorship support provided for female students resulted in improved diversity within engineering curricula student bodies (Sorcinelli, 2007).
How Well Do Undergraduate Research Programs Promote Engagement and Success of Students?
Fechheimer, Marcus; Webber, Karen; Kleiber, Pamela B.
2011-01-01
Assessment of undergraduate research (UR) programs using participant surveys has produced a wealth of information about design, implementation, and perceived benefits of UR programs. However, measurement of student participation university wide, and the potential contribution of research experience to student success, also require the study of extrinsic measures. In this essay, institutional data on student credit-hour generation and grade point average (GPA) from the University of Georgia are used to approach these questions. Institutional data provide a measure of annual enrollment in UR classes in diverse disciplines. This operational definition allows accurate and retrospective analysis, but does not measure all modes of engagement in UR. Cumulative GPA is proposed as a quantitative extrinsic measure of student success. Initial results show that extended participation in research for more than a single semester is correlated with an increase in GPA, even after using SAT to control for the initial ability level of the students. While the authors acknowledge that correlation does not prove causality, continued efforts to measure the impact of UR programs on student outcomes using GPA or an alternate extrinsic measure is needed for development of evidence-based programmatic recommendations. PMID:21633064
NASA Astrophysics Data System (ADS)
Cox, I. V.; Quirk, M.; Culbert, K. N.; Whitesides, A. S.; Sun, H.; Black, C. J.; Cao, W.; Zhang, T.; Paterson, S. R.; Memeti, V.; Anderson, J. L.
2010-12-01
In 2006, USC Earth Sciences professors Paterson and Anderson created the Undergraduate Team Research (UTR) program, a year-long, multidisciplinary, learner-centered, student research experience. This program is open to all USC undergraduate students, but has also involved a few outstanding undergraduate students from other universities. Since its inception the 47 participants have been a diverse group: 53% women, ~17% minorities, and 43% non-Earth Science majors. To date, 15 abstracts written by UTR participants have been presented at national GSA and AGU meetings and several research papers for publication are in preparation. 12 presentations have been produced at University-sponsored research symposia and culminated in a number of senior theses. The central component of this program is a field-based research experience which involves several weeks of geologic mapping in various locations around the world. During the summer expedition, participants organize themselves into 3-4 person mapping teams consisting of a mix of undergraduate geology majors, non-majors, and mentors (professors and graduate students). At the end of each day, student researchers (with limited mentoring) work together to draft a geologic map while discussing their findings, formulating hypotheses about possible geologic histories, and planning research goals and organizing mapping teams for the next day. Throughout the following academic year, the student researchers continue to work in teams to digitize their geologic map, decide which analyses need to be done, and prepare collected rock samples for various structural, geochemical, and geochronologic studies. Most student researchers agree that they learned more in a few weeks than they often did in an entire semester course. What aspects of the UTR program elicit these high-yield results, even for non-majors that can be applied to other learning environments? We speculate that three critical elements are important: (1) The most notable is the collaborative nature, both in regards to the research itself and meeting the daily demands of living in the backcountry or a foreign country while working together as a research group. Students divided tasks amongst themselves while instructing and helping each other. Students with more geology expertise were able to reinforce their own knowledge by assisting in the teaching process that led to more rapid learning for the newcomers. (2) Student researchers developed a greater feeling of ownership in the program, which led to a greater commitment to learning and to sharing a broad range of ideas about both science and non-science activities. (3) Researchers are rewarded not only through grades, but through the excitement of daily new scientific discoveries, the joint publications of their research, and recognition by their peers. It is intriguing to speculate on what would happen if classrooms and particularly labs were designed to function as collaborative, student- run exercises with the ultimate goal to not only learn a subject, but also produce research papers on the class material.
Thiry, Heather; Weston, Timothy J.; Laursen, Sandra L.; Hunter, Anne-Barrie
2012-01-01
This mixed-methods study explores differences in novice and experienced undergraduate students’ perceptions of their cognitive, personal, and professional gains from engaging in scientific research. The study was conducted in four different undergraduate research (UR) programs at two research-extensive universities; three of these programs had a focus on the biosciences. Seventy-three entry-level and experienced student researchers participated in in-depth, semi-structured interviews and completed the quantitative Undergraduate Research Student Self-Assessment (URSSA) instrument. Interviews and surveys assessed students’ developmental outcomes from engaging in UR. Experienced students reported distinct personal, professional, and cognitive outcomes relative to their novice peers, including a more sophisticated understanding of the process of scientific research. Students also described the trajectories by which they developed not only the intellectual skills necessary to advance in science, but also the behaviors and temperament necessary to be a scientist. The findings suggest that students benefit from multi-year UR experiences. Implications for UR program design, advising practices, and funding structures are discussed. PMID:22949423
The Los Alamos Space Weather Summer School: Career and Research Benefits to Students and Mentors
NASA Astrophysics Data System (ADS)
Cowee, M.
2014-12-01
This last summer we held the 4th Los Alamos Space Weather Summer School. This 8-week long program is designed for mid-career graduate students in related fields to come to LANL, receive lectures on space physics and space environment topics, and carry out a research project under the mentorship of LANL staff members. On average we have accepted ~10 students per year to the program, with a strong applicant pool to choose from. This type of summer school program is relatively unique in the space physics community—there are several other summer schools but they are of shorter duration and do not include the mentor-research project aspect which builds a strong one-on-one connection between the summer student and his/her LANL mentor(s). From the LANL perspective, this program was intended to have several benefits including building collaborations between LANL staff and universities and recruitment of potential postdocs. From the student perspective, this program is not only an educational opportunity but a strong networking opportunity and a chance to enhance their professional skills and publication record. Students are permitted to work on projects directly related to their thesis or on projects in areas that are completely new to them. At the end of the summer school, the students also develop their presentation skills by preparing and giving 20 min presentations on their research projects to the research group. Over the past four years the summer school has increased in popularity, and the feedback from the student participants has been very positive. Alumni of the program have continued collaborations with their mentors, resulting in publications and conference presentations, and one postdoc hire to date.
The Los Alamos Space Weather Summer School: Career and Research Benefits to Students and Mentors
NASA Astrophysics Data System (ADS)
Cowee, M.
2015-12-01
This last summer we held the 5th Los Alamos Space Weather Summer School. This 8-week long program is designed for mid-career graduate students in related fields to come to LANL, receive lectures on space physics and space environment topics, and carry out a research project under the mentorship of LANL staff members. We accept typically 6-8 students to the program, with a strong applicant pool to choose from. This type of summer school program is relatively unique in the space physics community—there are several other summer schools but they are of shorter duration and do not include the mentor-research project aspect which builds a strong one-on-one connection between the summer student and his/her LANL mentor(s). From the LANL perspective, this program was intended to have several benefits including building collaborations between LANL staff and universities and recruitment of potential postdocs. From the student perspective, this program is not only an educational opportunity but a strong networking opportunity and a chance to enhance their professional skills and publication record. Students are permitted to work on projects directly related to their thesis or on projects in areas that are completely new to them. At the end of the summer school, the students also develop their presentation skills by preparing and giving AGU-style presentations on their research projects to the research group. Over the past five years the summer school has increased in popularity, and the feedback from the student participants has been very positive. Alumni of the program have continued collaborations with their mentors, resulting in publications and conference presentations, and one postdoc hire to date.
The Los Alamos Space Weather Summer School: Career and Research Benefits to Students and Mentors
NASA Astrophysics Data System (ADS)
Cowee, M.; Woodroffe, J. R.
2017-12-01
In 2016 we held the 6th Los Alamos Space Weather Summer School. This 8-week long program is designed for mid-career graduate students in related fields to come to LANL, receive lectures on space physics and space environment topics, and carry out a research project under the mentorship of LANL staff members. We accept typically 6-8 students via competitive admissions to the program, with a strong applicant pool to choose from. This type of summer school program is relatively unique in the space physics community—there are several other summer schools but they are of shorter duration and do not include the mentor-research project aspect which builds a strong one-on-one connection between the summer student and his/her LANL mentor(s). From the LANL perspective, this program was intended to have several benefits including building collaborations between LANL staff and universities and recruitment of potential postdocs. From the student perspective, this program is not only an educational opportunity but a strong networking opportunity and a chance to enhance their professional skills and publication record. Students are permitted to work on projects directly related to their thesis or on projects in areas that are completely new to them. At the end of the summer school, the students also develop their presentation skills by preparing and giving AGU-style presentations on their research projects to the research group. Over the past five years the summer school has increased in popularity, and the feedback from the student participants has been very positive. Alumni of the program have continued collaborations with their mentors, resulting in publications and conference presentations, and three postdoc hires to date.
Trends and Features of Student Research Integration in Educational Program
ERIC Educational Resources Information Center
Grinenko, Svetlana; Makarova, Elena; Andreassen, John-Erik
2016-01-01
This study examines trends and features of student research integration in educational program during international cooperation between Østfold University College in Norway and Southern Federal University in Russia. According to research and education approach the international project is aimed to use four education models, which linked student…
78 FR 4393 - Applications for New Awards; Minorities and Retirement Security Program
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-22
... conducting research across a variety of relevant disciplines and fields (for example, business, economics... original research-based high school or college curricula for minority and low-income students designed to... Security Administration (SSA). The MRS Program will provide grants to support research by graduate students...
ERIC Educational Resources Information Center
Susianna, Nancy
2011-01-01
The objectives of this research were to identify the characteristics and effectiveness of chemistry teaching programs that increase students' entrepreneurial attitudes, chemistry concepts understanding and creativity. The research design application refers to the R & D (Research and Development) Design. Seventy-three senior high school students…
ERIC Educational Resources Information Center
Goodwin, Rosalyn Harper
2013-01-01
This study investigated the perspectives of four students and 6 parent participants of the Voluntary Student Transfer program, an inter-district desegregation program that involves transporting African American students from urban area schools to surrounding county schools. Due to limited and dated research related to the Voluntary Student…
Evaluating Research Ethics Training in the Maryland Sea Grant REU Program
NASA Astrophysics Data System (ADS)
Allen, M. R.; Kumi, G. A.; Kumi, B. C.; Moser, F. C.
2016-02-01
The NSF's Research Experiences for Undergraduates (REU) program is an opportunity to cultivate responsible research practices in researchers at an early stage in their career. However, teaching responsible research conduct and science ethics in this program has been challenging because of a lack of consensus regarding which instructional methods are most effective for educating students about ethical concepts and establishing the process of ethical decision-making. Over the last 15 years, Maryland Sea Grant's REU ethics program has evolved by exploring different teaching models and looking for ways to effectively engage upper level undergraduates throughout their summer experience in ethical responsibility training. Since 2007, we have adopted a concerted experiential learning approach that includes an ethics seminar, role playing, case studies, and reflection. Currently, our summer long ethics training includes: 1) an interactive seminar; 2) a workshop with role playing and case studies; 3) 1-2 readings; and 4) a roundtable discussion with faculty mentors and their mentees to discuss researchers' real-world experiences with ethical dilemmas. Within the last 3 years, we have expanded our student learning outcomes assessments by administering pre- and post-program surveys to assess ethical skills students acquire through the program. Reevaluations administered three and six years after the REU experience will measure long term effectiveness of the training. Results from the first group of students reveal a greater awareness of ethical issues following our summer program. Students show a high level of competence about "black and white" issues (falsification, fabrication, plagiarism), but are more challenged by ethical "gray areas" such as data ownership and authorship. Results suggest many undergraduates come to research programs with basic ethics training, but benefit from our additional focus on complex ethical dilemmas.
2016 LLNL Nuclear Forensics Summer Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zavarin, Mavrik
The Lawrence Livermore National Laboratory (LLNL) Nuclear Forensics Summer Program is designed to give graduate students an opportunity to come to LLNL for 8–10 weeks for a hands-on research experience. Students conduct research under the supervision of a staff scientist, attend a weekly lecture series, interact with other students, and present their work in poster format at the end of the program. Students also have the opportunity to meet staff scientists one-on-one, participate in LLNL facility tours (e.g., the National Ignition Facility and Center for Accelerator Mass Spectrometry), and gain a better understanding of the various science programs at LLNL.
NASA Astrophysics Data System (ADS)
Pollock, M.; Judge, S.; Wiles, G. C.; Wilson, M. A.
2013-12-01
The foundation of a Wooster education is the Independent Study (I.S.) program. Established in 1947, the I.S. program is widely recognized as an exemplary undergraduate research experience (AAC&U; US News and World Report; College that Change Lives by Loren Pope). I.S. requires every Wooster student to complete an original research project. This presentation describes the details of the Wooster I.S. and, based on our experiences, gives strategies for a successful mentored undergraduate research program. Overall, the I.S. process resembles a graduate research project. Students typically begin their work in the spring of their junior year when they review the literature, learn techniques, and write a proposal for their Senior I.S. research. Many students conduct field and lab work over the following summer, although this is not a requirement of the program. In their senior year, students work one-on-one with faculty members and sometimes in small (~4 person) research groups to drive their projects forward with an increasing sense of independence. I.S. culminates in a written thesis and oral defense. Most of our students present their work at national meetings and many projects are published in peer-reviewed journals. The success of the I.S. program is largely the result of two key components: (1) the integration of undergraduate research into the curriculum, and (2) the focus on student mentoring. We have thoughtfully structured our courses so that, as students move toward I.S., they progress from concrete to abstract concepts, and from simple to complex skills. The College also recognizes the value of I.S by assigning it credit; Students earn a full course credit for each semester of I.S. (3 courses total) and there is some credit in the faculty teaching load for I.S. advising. Advisors are really mentors who are invested in their students' academic and scholarly success. As mentors, we emphasize collaboration, provide guidance and support, and hold students accountable. It is the combination of professional and personal mentoring that makes the I.S. experience a significant event in the students' lives.
Graduate engineering research participation in aeronautics
NASA Technical Reports Server (NTRS)
Roberts, A. S., Jr.
1986-01-01
The Aeronautics Graduate Research Program commenced in 1971, with the primary goal of engaging students who qualified for regular admission to the Graduate School of Engineering at Old Dominion University in a graduate engineering research and study program in collaboration with NASA Langley Research Center, Hampton, Virginia. The format and purposes of this program are discussed. Student selection and program statistics are summarized. Abstracts are presented in the folowing areas: aircraft design, aerodynamics, lift/drag characteristics; avionics; fluid mechanics; solid mechanics; instrumentation and measurement techniques; thermophysical properties experiments; large space structures; earth orbital dynamics; and environmental engineering.
Effective Programs for Latino Students.
ERIC Educational Resources Information Center
Slavin, Robert E., Ed.; Calderon, Margarita, Ed.
This collection of papers presents the current state of research on effective instructional programs for Hispanic American students. The 10 chapters are: (1) "Effective Programs for Latino Students in Elementary and Middle Schools" (Olatokunbo S. Fashola, Robert E. Slavin, Margarita Calderon, and Richard Duran); (2) "Effective…
E-Portfolio Web-based for Students’ Internship Program Activities
NASA Astrophysics Data System (ADS)
Juhana, A.; Abdullah, A. G.; Somantri, M.; Aryadi, S.; Zakaria, D.; Amelia, N.; Arasid, W.
2018-02-01
Internship program is an important part in vocational education process to improve the quality of competent graduates. The complete work documentation process in electronic portfolio (e-Portfolio) platform will facilitate students in reporting the results of their work to both university and industry supervisor. The purpose of this research is to create a more easily accessed e-Portfolio which is appropriate for students and supervisors’ need in documenting their work and monitoring process. The method used in this research is fundamental research. This research is focused on the implementation of internship e-Portfolio features by demonstrating them to students who have conducted internship program. The result of this research is to create a proper web-based e-Portfolio which can be used to facilitate students in documenting the results of their work and aid supervisors in monitoring process during internship.
STAIRSTEP -- a research-oriented program for undergraduate students at Lamar University
NASA Astrophysics Data System (ADS)
Bahrim, Cristian
2011-03-01
The relative low number of undergraduate STEM students in many science disciplines, and in particular in physics, represents a major concern for our faculty and the administration at Lamar University. Therefore, a collaborative effort between several science programs, including computer science, chemistry, geology, mathematics and physics was set up with the goal of increasing the number of science majors and to minimize the retention rate. Lamar's Student Advancing through Involvement in Research Student Talent Expansion Program (STAIRSTEP) is a NSF-DUE sponsored program designed to motivate STEM students to graduate with a science degree from one of these five disciplines by involving them in state-of-the-art research projects and various outreach activities organized on-campus or in road shows at the secondary and high schools. The physics program offers hands-on experience in optics, such as computer-based experiments for studying the diffraction and interference of light incident on nettings or electronic wave packets incident on crystals, with applications in optical imaging, electron microscopy, and crystallography. The impact of the various activities done in STAIRSTEP on our Physics Program will be discussed.
An Exploration of Factors Associated with Student Attrition and Success in Enabling Programs
ERIC Educational Resources Information Center
Morison, Anthony; Cowley, Kym
2017-01-01
University-based enabling programs (EPs) provide a tertiary pathway for up to twenty percent of undergraduate enrolments at Australian universities. Attrition from these programs and the resulting costs to students, universities and society at large is an important issue deserving research attention. This research project aimed to investigate the…
Effects of a Modified Thinking Science Program for Year 8 Students of Various Abilities
ERIC Educational Resources Information Center
Mobbs, Ellen
2016-01-01
The aim of this research was to identify whether students of various academic abilities would achieve positive gains in cognitive ability after completing a modified cognitive acceleration program based on the Cognitive Acceleration through Science Education (CASE) program. This research was quasi-experimental in design, with small samples of…
ERIC Educational Resources Information Center
O, Jenny; Sherwood, Jennifer J.; Yingling, Vanessa R.
2017-01-01
High-impact practices foster student success, but faculty faced with heavy teaching loads and lack of resources and infrastructure are challenged to implement such practices. Kinesiology faculty at California State University, East Bay collaborated to implement two student programs: Kinesiology Research Group and Get Fit! Stay Fit! The Kinesiology…
ERIC Educational Resources Information Center
Arden-Ogle, Ellen A.
2009-01-01
The research's purpose was to examine how exemplary community college study abroad programs assisted student participants in acquiring global competence. Three research questions were explored: (1) What issues need to be anticipated when planning a study abroad program for community college students in order to effectively incorporate…
Implementing a Service Learning Model for Teaching Research Methods and Program Evaluation
ERIC Educational Resources Information Center
Shannon, Patrick; Kim, Wooksoo; Robinson, Adjoa
2012-01-01
In an effort to teach students the basic knowledge of research methods and the realities of conducting research in the context of agencies in the community, faculty developed and implemented a service learning model for teaching research and program evaluation to foundation-year MSW students. A year-long foundation course was designed in which one…
ERIC Educational Resources Information Center
McMaster, Kristen L.; Jung, Pyung-Gang; Brandes, Dana; Pinto, Viveca; Fuchs, Douglas; Kearns, Devin; Lemons, Christopher; Sáenz, Laura; Yen, Loulee
2014-01-01
Teachers are often asked to implement research-based instructional programs with fidelity and to ensure that all students reach high academic standards. These requests sometimes conflict when teachers find that not all their students are benefiting from the research-backed programs. In this article, we suggest that researchers and teachers can…
ERIC Educational Resources Information Center
Duncan, Sarah I.; Bishop, Pamela; Lenhart, Suzanne
2010-01-01
We describe a unique Research Experience for Undergraduates and Research Experience for Veterinary students summer program at the National Institute for Mathematical and Biological Synthesis on the campus of the University of Tennessee, Knoxville. The program focused on interdisciplinary research at the interface of biology and mathematics.…
ERIC Educational Resources Information Center
Burgin, Stephen R.; Sadler, Troy D.
2013-01-01
The purpose of this research was to examine the consistency between students' practical and formal understandings of scientific epistemologies (also known as nature of science (NOS) understandings) in the context of a research apprenticeship program. Six high school student participants of a residential summer research apprenticeship program at a…
NASA Astrophysics Data System (ADS)
Gilchrist, Pamela O.; Carpenter, Eric D.; Gray-Battle, Asia
2014-07-01
A hybrid teacher professional development, student science technology mathematics and engineering pipeline enrichment program was operated by the reporting research group for the past 3 years. Overall, the program has reached 69 students from 13 counties in North Carolina and 57 teachers from 30 counties spread over a total of five states. Quantitative analysis of oral presentations given by participants at a program event is provided. Scores from multiple raters were averaged and used as a criterion in several regression analyses. Overall it was revealed that student grade point averages, most advanced science course taken, extra quality points earned in their most advanced science course taken, and posttest scores on a pilot research design survey were significant predictors of student oral presentation scores. Rationale for findings, opportunities for future research, and implications for the iterative development of the program are discussed.
Wyoming Infrared Observatory's Summer Undergraduate Research Assistantship Program: 10 Years of REU
NASA Astrophysics Data System (ADS)
Canterna, R.; Beck, K.; Hickman, M. A.
1996-05-01
The Wyoming Infrared Observatory's Summer Undergraduate Research Assistantship Program (SURAP) will complete its tenth year as an NSF REU site. Using the theme, a tutorial in research, SURAP has provided research experience for over 90 students from all regions of the United States. We will present typical histories of past students to illustrate the impact an REU experience has on the scientific careers of these students. Demographic data will be presented to show the diverse backgrounds of our SURAP students. A short film describing our science ethics seminar will be available for later presentation.
Operational effectiveness of blended e-learning program for nursing research ethics.
Cho, Kap-Chul; Shin, Gisoo
2014-06-01
Since 2006, the Korean Ministry of Education, Science and Technology, and the National Research Foundation of Korea have taken the lead in developing an institutional guideline for research ethics. The purpose was to identify the effectiveness of the Good Research Practice program, developed on a fund granted by the National Research Foundation of Korea, for nurses and nursing students whose knowledge and perception of research ethics were compared before and after the implementation of the Good Research Practice program. This study was conducted to compare the levels of knowledge and perception of research ethics in the participants before and after the program was implemented. The participants included 45 nurses and 69 nursing students from hospitals, colleges of nursing, and the Korean Nurses Association, located in Seoul, Korea. This study was approved by the Institutional Research Board in Korea. Based on the Analysis, Design, Development, Implementation, and Evaluation model, the Good Research Practice program was made up of a total of 30 h of the blended learning both online and off-line. The results of this study showed that there were statistically significant differences in both knowledge and perception of research ethics in nursing students and nurses before and after the program had been implemented. The concepts of professional nursing ethics, moral issues, and bioethics were often confused with one another and not clearly defined. Therefore, the concept and scope of bioethics, moral judgment, and overall nursing ethics should be well defined and conceptualized in the future. This study suggested integrating research ethics education in the nursing curriculum as a required course of study for nursing students and as part of the in-service training program for nurses in order to improve research ethics in nursing research in Korea. © The Author(s) 2013.
NASA Astrophysics Data System (ADS)
Botella, J.; Warburton, J.; Bartholow, S.; Reed, L. F.
2014-12-01
The Joint Antarctic School Expedition (JASE) is an international collaboration program between high school students and teachers from the United States and Chile aimed at providing the skills required for establishing the scientific international collaborations that our globalized world demands, and to develop a new approach for science education. The National Antarctic Programs of Chile and the United States worked together on a pilot program that brought high school students and teachers from both countries to Punta Arenas, Chile, in February 2014. The goals of this project included strengthening the partnership between the two countries, and building relationships between future generations of scientists, while developing the students' awareness of global scientific issues and expanding their knowledge and interest in Antarctica and polar science. A big component of the project involved the sharing by students of the acquired knowledge and experiences with the general public. JASE is based on the successful Chilean Antarctic Science Fair developed by Chile´s Antarctic Research Institute. For 10 years, small groups of Chilean students, each mentored by a teacher, perform experimental or bibliographical Antarctic research. Winning teams are awarded an expedition to the Chilean research station on King George Island. In 2014, the Chileans invited US participation in this program in order to strengthen science ties for upcoming generations. On King George Island, students have hands-on experiences conducting experiments and learning about field research. While the total number of students directly involved in the program is relatively small, the sharing of the experience by students with the general public is a novel approach to science education. Research experiences for students, like JASE, are important as they influence new direction for students in science learning, science interest, and help increase science knowledge. We will share experiences with the planning of the pilot program as well as the expedition itself. We also share the results of the assessment report prepared by an independent party. Lastly, we will offer recommendations for initiating international science education collaborations. United States participation was funded by the NSF Division of Polar Programs.
ERIC Educational Resources Information Center
Wheeler, Lindsay B.; Chiu, Jennie L.; Grisham, Charles M.
2016-01-01
This article explores how integrating computational tools into a general chemistry laboratory course can influence student perceptions of programming and investigates relationships among student perceptions, prior experience, and student outcomes.
Evaluation Policy on Assistance Program Bidikmisi Higher Education in Private Kopertis Region XII
ERIC Educational Resources Information Center
Wasahua, Tahir; Koesmaryono, Yonny; Sailah, Illah
2018-01-01
One of the governments' policy through Directoral General of Learning and Student Affair, Ministry of Research, Technology and Higher Education in improving the access for new students namely the bidikmisi program. Program bidikmisi is a tuition fee subsidy program allocated to selected new students who possess excellent academic capability yet…
Mitchell, Monica J.; Crosby, Lori E.
2016-01-01
Improving diversity, particularly among trainees and professionals from underrepresented ethnic minority backgrounds, has been a long-stated goal for the field of Psychology. Research has provided strategies and best practices, such as ensuring cultural sensitivity and relevance in coursework, clinical and research training, promoting a supportive and inclusive climate, providing access to cultural and community opportunities, and increasing insight and cultural competence among professionals (Rogers & Molina, 2006). Despite this, the rates of psychologists from ethnically diverse and underrepresented minority (URM) backgrounds remain low and few published studies have described programmatic efforts to increase diversity within the field. This paper describes the INNOVATIONS training model, which provides community and culturally related research experiences, graduate-school related advising, and mentoring to high school and college students. The paper also examines how the model may support enrollment of URM students in doctoral programs in psychology. Findings indicate that INNOVATIONS supported students’ transition from high school and college to graduate programs (with approximately 75% of students enrolling in Master’s and Doctoral programs). INNOVATIONS also supported students, including those from URM backgrounds, enrolling in doctoral programs (41.7%). Students who were trained in the research assistant track were most likely to enroll in psychology doctoral programs, perhaps as a result of the intensive time and training committed to research and clinical experiences. Data support the importance of research training for URM students pursuing psychology graduate study and the need to ensure cultural relevance of the training. Implications for clinical and pediatric psychology are discussed. PMID:28603680
NASA Astrophysics Data System (ADS)
Wang, Shifeng; Wang, Rui; Zhang, Pengfei; Dai, Xiang; Gong, Dawei
2017-08-01
One of the motivations of OptoBot Lab is to train primer students into qualified engineers or researchers. The series training programs have been designed by supervisors and implemented with tutoring for students to test and practice their knowledge from textbooks. An environment perception experiment using a 32 layers laser scanner is described in this paper. The training program design and laboratory operation is introduced. The four parts of the experiments which are preparation, sensor calibration, 3D space reconstruction, and object recognition, are the participating students' main tasks for different teams. This entire program is one of the series training programs that play significant role in establishing solid research skill foundation for opto-electronic students.
Urgency of increasing the quantity and quality of student creativity program
NASA Astrophysics Data System (ADS)
Sarmini; Prasetya, Ketut; Nadiroh, Ulin
2018-01-01
Student creativity is very important to improve the quality and quantity. The purpose of this paper is to identify the quality and quantity of the Student Creativity Program. The method in this research is exploratory study. The subjects taken are the leaders of deans and vice deans at the State University of Surabaya. Data collection techniques used are kusioner. The result of this research is creativity program in student is very important. Not only improve the quality and quantity of creativity, but also affect the image of the institution. It is necessary to have written rules on the regulations on the Student Creativity Program and to take a comprehensive and comprehensive approach, and to organize the budget is the main thing.
The C-MORE Scholars Program: Engaging minority students in STEM through undergraduate research
NASA Astrophysics Data System (ADS)
Gibson, B. A.; Bruno, B. C.
2010-12-01
There have been several studies that show how undergraduate research experiences (REU) have a positive impact on a student’s academic studies and career path, including being a positive influence toward improving the student's lab skills and ability to work independently. Moreover, minority students appear to relate to science, technology, engineering, and mathematics (STEM) concepts better when they are linked with (1) a service learning component, and (2) STEM courses that include a cultural and social aspect that engages the student in a way that does not distract from the student’s technical learning. It is also known that a “place-based” approach that incorporates traditional (indigenous) knowledge can help engage underrepresented minority groups in STEM disciplines and increase science literacy. Based on the methods and best practices used by other minority serving programs and described in the literature, the Center for Microbial Oceanography: Research and Education (C-MORE) has successfully developed an academic-year REU to engage and train the next generation of scientists. The C-MORE Scholars Program provides undergraduate students majoring in an ocean or earth science-related field, especially underrepresented students such as Native Hawaiians and Pacific Islanders, the opportunity to participate in unique and cutting edge hands-on research experiences. The program appoints awardees at one of three levels based on previous research and academic experience, and students can progress through the various tiers as their skills and STEM content knowledge develop. All awardees receive guidance on a research project from a mentor who is a scientist at the university and/or industry. A key component of the program is the inclusion of professional development activities to help the student continue towards post graduation education or prepare for career opportunities after they receive their undergraduate STEM degree.
Community-Wide Education Outreach for the Ridge2000 Research Program
NASA Astrophysics Data System (ADS)
Goehring, E.
2004-12-01
Ridge2000 is a multidisciplinary NSF sponsored research initiative to explore Earth's spreading ridge system as an integrated whole. The Ridge2000 community is comprised of scientists from universities and research institutions across the country. Building on existing exemplary outreach efforts (e.g., REVEL, Dive&Discover, Volcanoes of the Deep Sea IMAX), Ridge2000 education outreach has begun to develop community-wide education offerings - programs to which Ridge2000 scientists and others may contribute. Community-wide efforts offer the advantages of serving larger audiences of scientists as well as educators and students and providing avenues for scientists interested in education outreach but with limited time or experience. Coordination of researchers' educational efforts also better leverages the resources of the funding agency - NSF. Here we discuss an exciting Ridge2000 pilot program called SEAS - Student Experiments At Sea. SEAS is a web-based program for middle and high school students to learn science by doing science. SEAS students study the exciting, relatively unexplored world of hydrothermal vents and learn to ask questions about this environment just as researchers do. SEAS goes beyond "follow-along" outreach by inviting students to participate in research through formal proposal and report competitions. The program was concept-tested during the 2003-2004 academic year, with 14 pilot teachers and approximately 800 students. Five student experiments were conducted at sea, with data posted to the website during the cruise. Student reports as well as scientist comments are posted there as well (http://www.ridge2000.org/SEAS/). It was an exciting year! Over 20 Ridge2000 scientists contributed their time and expertise to the SEAS program in its first year. Scientists are invited to contribute in a variety of ways, all of which help satisfy the requirement's of NSF's Broader Impacts Criterion. They may help develop curriculum topics, consult on experimental design, review student proposals and final reports, and/or host student experiments during a research cruise. Many contributions require less than a day's effort. By sharing the load, no one scientist is burdened, nor expected to contribute additional funding. Even better, the Ridge2000 office assumes responsibility for the program development, funding, evaluation and dissemination. When we work together, the possibilities are endless.
Evaluating the High School Lunar Research Projects Program
NASA Technical Reports Server (NTRS)
Shaner, A. J.; Shupla, C.; Shipp, S.; Allen, J.; Kring, D. A.
2013-01-01
The Center for Lunar Science and Exploration (CLSE), a collaboration between the Lunar and Planetary Institute and NASA s Johnson Space Center, is one of seven member teams of the NASA Lunar Science Institute (NLSI). In addition to research and exploration activities, the CLSE team is deeply invested in education and outreach. In support of NASA s and NLSI s objective to train the next generation of scientists, CLSE s High School Lunar Research Projects program is a conduit through which high school students can actively participate in lunar science and learn about pathways into scientific careers. The objectives of the program are to enhance 1) student views of the nature of science; 2) student attitudes toward science and science careers; and 3) student knowledge of lunar science. In its first three years, approximately 168 students and 28 teachers from across the United States have participated in the program. Before beginning their research, students undertake Moon 101, a guided-inquiry activity designed to familiarize them with lunar science and exploration. Following Moon 101, and guided by a lunar scientist mentor, teams choose a research topic, ask their own research question, and design their own research approach to direct their investigation. At the conclusion of their research, teams present their results to a panel of lunar scientists. This panel selects four posters to be presented at the annual Lunar Science Forum held at NASA Ames. The top scoring team travels to the forum to present their research in person.
Student Perspectives on the Impact of Service Learning on the Educational Experience
ERIC Educational Resources Information Center
Cooke, Colleen A.; Kemeny, M. Elizabeth
2014-01-01
A research study investigated student perspectives on service learning during the TRAIL to Wellness program, a four-week leisure education program for veterans being treated for substance abuse. The research explored the students perspectives on their own learning at the end of 15 weeks. Based upon the content analysis of open-ended questions…
ERIC Educational Resources Information Center
Teranishi, Robert T.; Martin, Margary; Pazich, Loni Bordoloi; Alcantar, Cynthia M.; Nguyen, Bach Mai Dolly; Curammeng, Edward R.; Nguyen, Mike Hoa; Chan, Jason
2015-01-01
Extant research on scholarship programs provides foundational knowledge on student enrollment patterns, different types of programs and their students, and outcomes for scholarship recipients in different sectors of higher education. Despite this growing body of research, however, looming questions remain about the measurable impact of scholarship…
ERIC Educational Resources Information Center
Maria, Maya; Zuhairi, Aminudin; Riana, Kurnia Endah; Ginting, Ginta
2011-01-01
The purpose of the research was to analyse students' behaviour in choosing a distance learning program at Universitas Terbuka (UT), Indonesia, using the theory of planned behaviour model developed by Fishbein and Ajzen (1975). The respondents of the research were 102 students from 3 Regional Offices of Jakarta, Malang and Kupang, representing…
Effect of Students' Behavioral Characteristics on Teachers' Referral Decisions in Gifted Education
ERIC Educational Resources Information Center
Hollyhand, Leigh Smitherman
2013-01-01
Research shows that biases exist in regard to teacher nominations for gifted programs in the areas of student gender, ethnicity, and SES. On the other hand, there is a lack of research regarding behavioral characteristics of the student and the impact of those characteristics on teacher nominations to a gifted program. Additionally, there is a…
ERIC Educational Resources Information Center
Mulberry, Stella L.
2010-01-01
This quantitative study utilized secondary self-reported data from the 2008 administration of the Cooperative Institutional Research Program (CIRP) Freshman Survey from two Texas public universities to investigate the pre-college demographic, academic, attitude, behavioral, and familial factors that may relate to students' self-reported political…
GLOBE at Night: Scientific Research outside of the Classroom
NASA Astrophysics Data System (ADS)
Henderson, S.; Walker, C. E.; Geary, E.; Pompea, S. M.
2005-12-01
Increased and robust understanding of our environment requires learning opportunities that take place outside of the traditional K-12 classroom and beyond the confines of the school day. GLOBE at Night is a new event within The GLOBE Program that provides a mechanism for a nontraditional learning activity involving teachers, students, and their families taking observations of the night sky around the world and reporting their observations via a central data base for analysis. To support activities centered on authentic research experiences such as GLOBE at Night, The GLOBE Program has changed its approach to professional development (PD). The new focus of GLOBE PD efforts is centered on teachers being able to facilitate student research in and out of the classroom reflective of authentic scientific research experiences. It has been recognized that there is a critical need for effective teacher professional development programs that support teacher involvement in meaningful scientific research that encourages partnerships between scientists, teachers, and students. Partnerships promoting scientific research for K-12 audiences provides the foundation for The GLOBE Program, an international inquiry-based program designed to engage teachers with their students in partnership with research scientists to better understand the environment at local, regional, and global scales. GLOBE is an ongoing international science and education program that unites students, teachers, and scientists in the study of the Earth System. Students participating in GLOBE engage in hands-on activities, including the collection, analysis, and sharing of research quality scientific data with their peers around the world. Students interact with members of the science community who use the data collected from locations around the world in their research - data that would often not be available otherwise. As of September 2005, over 30,000 teachers representing over 16,000 schools worldwide have participated in GLOBE workshops resulting in over 13 million environmental measurements reported by students to the GLOBE Web site. GLOBE at Night will utilize the GLOBE infrastructure and network to promote a week of night observations (February 2006) by teachers and students. The quality of the night sky for stellar observations is impacted by several factors, including human influences. GLOBE at Night will help scientists assess how the quality of the night sky varies around the world. The data that is collected will be accessible via the GLOBE Web site by scientists studying light pollution and will be available for use by teachers and students worldwide. GLOBE at Night is a collaborative effort of the NASA-sponsored GLOBE Program and the National Optical Astronomy Observatory (NOAO).
Undergraduate Research From Start to Finish in a SEA Semester
NASA Astrophysics Data System (ADS)
Lavender, K.; Joyce, P.; Graziano, L.; Harris, S.; Jaroslow, G.; Lea, C.; Schell, J.; Witting, J.
2005-12-01
Undergraduates in the 12-week SEA Semester program at the Sea Education Association (SEA) carry out the entire scientific research process, from conception of a testable scientific question to final presentation of results from data they collect on a six-week research cruise. SEA is uniquely positioned to direct undergraduates in oceanography research projects as diverse as the students that propose them, from the curious non-science major to the student wishing to continue their research at their home institution (i.e. for a senior thesis project). Upon arrival at SEA''s campus in Woods Hole, MA, students are challenged to design a research project they will carry out at sea. They are guided by faculty in reading and discussing primary scientific literature, formulating a research question, and describing a specific data collection and analysis plan to be carried out at sea, culminating in a written research proposal that is defended orally. In developing their project students have access not only to the SEA faculty, but also to the many resources of the larger scientific community of Woods Hole. During the six-week sea component students participate in all aspects of data collection, analysis, and interpretation aboard one of SEA's state-of-the-art oceanographic research vessels. Before the end of the program each student presents their final results in both an oral presentation and a written research paper. The SEA Semester model gives students the opportunity to take complete ownership of a research project, and provides access to cutting-edge research capabilities both onshore and at sea. Examples of recent student research projects will be presented. SEA has been simultaneously developing its undergraduate research program and collecting an extensive historical oceanographic database since 1971. Students are encouraged to incorporate these data in long time series analysis projects, and data are also available to outside researchers. Collaborations with research scientists enhance the educational program, and provide opportunities for ship-of-opportunity sampling in remote locations. There are currently more than 7000 alumni of SEA Semester, and SEA alums are associated with all major centers of oceanographic research in the United States.
A 5-year experience with an elective scholarly concentrations program
George, Paul; Green, Emily P.; Park, Yoon S.; Gruppuso, Philip A.
2015-01-01
Problem Programs that encourage scholarly activities beyond the core curriculum and traditional biomedical research are now commonplace among US medical schools. Few studies have generated outcome data for these programs. The goal of the present study was to address this gap. Intervention The Scholarly Concentration (SC) Program, established in 2006 at the Warren Alpert Medical School of Brown University, is a 4-year elective program that not only encourages students to pursue scholarly work that may include traditional biomedical research but also seeks to broaden students’ focus to include less traditional areas. We compared characteristics and academic performance of SC students and non-SC students for the graduating classes of 2010–2014. Context Approximately one-third of our students opt to complete an SC during their 4-year undergraduate medical education. Because this program is additional to the regular MD curriculum, we sought to investigate whether SC students sustained the academic achievement of non-SC students while at the same time producing scholarly work as part of the program. Outcome Over 5 years, 35% of students elected to enter the program and approximately 81% of these students completed the program. The parameters that were similar for both SC and non-SC students were age at matriculation, admission route, proportion of undergraduate science majors, and number of undergraduate science courses. Most academic indicators, including United States Medical Licensing Examinations scores, were similar for the two groups; however, SC students achieved more honors in the six core clerkships and were more likely to be inducted into the medical school's two honor societies. Residency specialties selected by graduates in the two groups were similar. SC students published an average of 1.3 peer-reviewed manuscripts per student, higher than the 0.8 manuscripts per non-SC student (p=0.013). Conclusions An elective, interdisciplinary scholarly program with a focus beyond traditional biomedical research offers students the opportunity to expand the scope of their medical education without an untoward effect on academic performance or residency placement. PMID:26561482
NASA Astrophysics Data System (ADS)
Passow, M. J.; Xu, C.; Newton, R.; Turrin, M.
2016-12-01
The Framework for K-12 Science and Next Generation Science Standards envision that students engage in practices that scientists use to deepen understanding of scientific ideas over time. The Lamont-Doherty Earth Observatory (LDEO) of Columbia University provides a suite of educational programs for high school students which strongly support this goal. Through summer and school year programs, LDEO offers access to vibrant, world-class research laboratories and scientists who have contributed to our understanding about the solid Earth, oceans, atmosphere, climate change, ice sheets, and more. Students become part of a research campus with state-of-the-art facilities. Programs include: A Day in the Life (collecting water variable data to construct a picture of Hudson River estuary dynamics); Rockland PLUS (experiences for students interested in planning sustainable development in their own communities); the Secondary School Field Research program (project-based research focused on biodiversity and environmental problem in New York metro area wetlands); Earth2Class (monthly Saturday workshops on a range of themes); and internships with cooperating researchers . Other examples of the scientific content include analyzing deep-sea sediments, examining rocks formed during an interglacial period 125,000 years ago to gain new insights about sea-level change, and monitoring invasive species in a nearby salt marsh. Students from NYC have their first exposure to collecting water samples, seining, and canoeing in the Hudson River, a contrast to the laboratory-based experiences ASR programs in cooperating hospitals. Students attend talks about cutting-edge investigations from Lamont scientists who are leaders in many fields, as well as advice about careers and college choices. Programs differ in length and location, but have fundamental commonalities: mentoring by early career and senior scientists, minimum scaffolding, treating data as publishable, and ensuring rigorous protocols. These programs serve as important models for developing and scaling programs that support the NGSS vision of helping students better understand how scientific knowledge develops and experience meaningful connections between crosscutting concepts, integrating engineering and technology, and disciplinary core ideas.
Designing and implementing an authentic science research program
NASA Astrophysics Data System (ADS)
Rosvally, Harry Edward, Jr.
Science research programs have become a popular elective course in high schools around the country. As the popularity of these programs grows, school districts need a guide by which to implement science research in their own schools. This study sought to provide this information by answering the following questions: (1) What are the most important features in existing research program models? (2) How do schools that have an existing research program define "success"? (3) How do different factors (i.e., budget, professional development, scheduling, recruitment effort, curriculum, and mentors) affect the scope and implementation of a research program? (4) Which features and factors support inclusiveness as a goal for a research program? (5) What kinds of indicators are appropriate for assessing the progress toward an inclusive science research program? After reviewing the literature, six sites with existing research programs were selected for participation in the study. Interviews with teachers and students were conducted during site visits. Interviews with mentors were conducted by telephone. Although the six models in this study were different from one another, there were common characteristics. Students conducted their own review of the literature. Upon completion of the actual research, students published or otherwise communicated their findings to the larger scientific community through regional and national competitions and non-competitive science symposia. This study was also able to identify significant elements that contribute to successful programs. These included: teacher selection; budget requirements; mentor qualities; recruitment and retention practices; and overall structure. As a result of the findings during the research, this study makes recommendations for the successful implementation of a research program.
Saetermoe, Carrie L; Chavira, Gabriela; Khachikian, Crist S; Boyns, David; Cabello, Beverly
2017-01-01
Unconscious bias and explicit forms of discrimination continue to pervade academic institutions. Multicultural and diversity training activities have not been sufficient in making structural and social changes leading to equity, therefore, a new form of critical consciousness is needed to train diverse scientists with new research questions, methods, and perspectives. The purpose of this paper is to describe Building Infrastructure Leading to Diversity (BUILD); Promoting Opportunities for Diversity in Education and Research (PODER), which is an undergraduate biomedical research training program based on transformative framework rooted in Critical Race Theory (CRT). By employing a CRT-informed curriculum and training in BUILD PODER, students are empowered not only to gain access but also to thrive in graduate programs and beyond. Poder means "power" or "to be able to" in Spanish. Essentially, we are "building power" using students' strengths and empowering them as learners. The new curriculum helps students understand institutional policies and practices that may prevent them from persisting in higher education, learn to become their own advocates, and successfully confront social barriers and instances of inequities and discrimination. To challenge these barriers and sustain campus changes in support of students, BUILD PODER works toward changing campus culture and research mentoring relationships. By joining with ongoing university structures such as the state university Graduation Initiative, we include CRT tenets into the campus dialogue and stimulate campus-wide discussions around institutional change. Strong ties with five community college partners also enrich BUILD PODER's student body and strengthen mentor diversity. Preliminary evaluation data suggest that BUILD PODER's program has enhanced the racial/ethnic consciousness of the campus community, is effective in encouraging more egalitarian and respectful faculty-student relationships, and is a rigorous program of biomedical research training that supports students as they achieve their goals. Biomedical research programs may benefit from a reanalysis of the fit between current training programs and student strengths. By incorporating the voices of talented youth, drawing upon their native strengths, we will generate a new science that links biomedical research to community health and social justice, generating progress toward health equity through a promising new generation of scholars.
Successes and challenges in a novel doctoral program in systems agriculture: a case example.
Lust, D; Topliff, D; Deotte, R
2010-01-01
A doctoral program in Systems Agriculture was initiated at West Texas A&M University, Canyon, TX, in September, 2003. The stated objective of the program was "..to prepare leaders for the agricultural industry that are trained in a multidisciplinary, research-based curriculum that emphasizes a systems approach to problem solving". The program offers a single doctoral degree in Agriculture and accepts qualified students with a master's or professional degree in agricultural or related disciplines. Courses related to systems methodologies, leadership, agricultural economics, plant and soil science, and animal science are required. Additional program requirements include a systems research project and dissertation, leadership training, and written and oral exams. The program has exceeded enrollment and graduation targets, suggesting interest in this approach to a doctoral degree. Students have entered the program with M.S. backgrounds in education, traditional agricultural disciplines, veterinary medicine, business, and physics. Graduates have gained employment in industry, university teaching and research, government research/administration, and extension. Doctoral student projects in systems agriculture contributed to curriculum changes and to the conceptual framework adopted by a multi-state research group. Designing and teaching courses for students with diverse backgrounds has been challenging. Development of a common understanding of systems agriculture was identified by a third-party program review as an issue for faculty. Development and maintenance of program standards and administrative procedures posed additional challenges. Leadership, administrative support, and timely and continuing program assessment are suggested as necessary components for a nontraditional doctoral program.
Schultz, P. Wesley; Hernandez, Paul R.; Woodcock, Anna; Estrada, Mica; Chance, Randie C.; Aguilar, Maria; Serpe, Richard T.
2013-01-01
For more than 40 years, there has been a concerted national effort to promote diversity among the scientific research community. Yet given the persistent national-level disparity in educational achievements of students from various ethnic and racial groups, the efficacy of these programs has come into question. The current study reports results from a longitudinal study of students supported by a national National Institutes of Health–funded minority training program, and a propensity score matched control. Growth curve analyses using Hierarchical Linear Modeling show that students supported by Research Initiative for Science Excellence were more likely to persist in their intentions to pursue a scientific research career. In addition, growth curve analyses indicate that undergraduate research experience, but not having a mentor, predicted student persistence in science. PMID:24285910
Evaluating the Impact of Internships - Longitudinal Participant Tracking in the Soars Program
NASA Astrophysics Data System (ADS)
Haacker, R.; Sloan, V.
2014-12-01
While there is widespread agreement about the benefits of research internship experiences for students, long-term tracking of student progress beyond the summer experience is challenging. Coordinated tracking can effectively document program impact, inform programmatic improvement, and identifying gaps in the internship effort. Tracking can also strengthen diversity efforts and the retention of students from underrepresented groups. Continuous follow-up and guidance can only be provided to students if we know where they are, what they are doing and what they need in order to stay engaged in the field. The SOARS Program at the National Center for Atmospheric Research has supported undergraduate students for over 18 years to enter and succeed in graduate school. Over 85% of SOARS participants have transitioned to geoscience graduate programs or the STEM workforce. The SOARS mission is to broaden participation in the atmospheric and related sciences by engaging students from groups historically under-represented in science, including Black or African-American, American Indian or Alaska Native, Hispanic or Latino, female, first-generation college students, and students with disabilities. SOARS relies on proven intervention strategies such as multi-year research experiences, multifaceted mentoring, and a strong learning community. Fostering relationships developed during this time using a wider range of technologies and program longevity play important roles in tracking participants over time. This presentation will highlight significant program results and share the tracking and evaluation techniques utilized in SOARS.
Unique aspects of Colorado State University`s REU Program in Radar and Remote Sensing
NASA Astrophysics Data System (ADS)
Hefner, E.; Chandrasekar, V.
2005-12-01
The primary mission for CSU`s REU program on radars is to create a real-life research experience for the undergraduates participating during the summer. The students are provided with a basic description of their unique research project and paired with a graduate mentor and/or faculty member. Even though the students are paired with a graduate mentor that has extensive knowledge of the assigned topic, the students are responsible for developing the project through their own efforts. Each student is also required to obtain a fundamental grasp of radar basics through independent study and a series of small lectures put on by researchers at CSU. As part of the real-life research each student is exposed to, every student has to develop and hone his or her presentation and writing skills with weekly presentations and mandatory proposal and report submittals. The program is structured such that each student has access to a vast resource of technical knowledge in the form of published documents and other researchers. This allows students that learn through different mediums to have all the necessary resources available to them. While the students are performing research in areas that have not been explored before, they are also given the opportunity to explore the differences between undergraduate and graduate school. Each student is given the ability to participate in GRE prep courses. Students are given the opportunity to assess their educations, and if they find through their research that they enjoy a specific topic or are lacking necessary background information, then they can choose to register for specific courses in the upcoming fall semester. Along with influencing course selection among the REU students, the students bring their experiences and newly developed research skills back to school with them.
Takahashi, Katsuyuki; Suda, Yasuki; Kawaguchi, Hiroshi; Nakamura, Yasutaka; Kawabata, Shiho; Kawakami, Noriko; Nishikawa, Takeshi; Nagayama, Katsuya
2015-01-01
Long-term clinical training based on a model core curriculum was conducted to nurture highly competent pharmacists in the clinical field. Pharmacists' responsibilities are expanding, and a system has been developed to help pharmacists gain accreditation, identify specialties, and improve their training. However, this system requires research competency. Therefore clinical research should be considered a part of clinical training to encourage high competency among pharmacists. Because the model core curriculum does not include a section on clinical research. Osaka City University Hospital introduced a hands-on clinical research experience program and evaluated its usefulness. A significant improvement in the level of knowledge and awareness of clinical research was seen among students who underwent the clinical research experience program. In addition, the level of student satisfaction was higher. These findings suggest that a clinical research experience program may be useful to nurture a greater awareness of clinical research and knowledge acquisition among pharmacists.
NASA Astrophysics Data System (ADS)
Hughes, M. H.; Gray, K.; Drostin, M.
2016-12-01
For under-represented minority (URM) students, opportunities to meaningfully participate in academic communities and develop supportive relationships with faculty and peers influence persistence in STEM majors (Figueroa, Hurtado, & Wilkins, 2015; PCAST, 2012; Tsui, 2007). Creating such opportunities is even more important in the geosciences, where a lower percentage of post-secondary degrees are awarded to URM students than in other STEM fields (NSF, 2015; O'Connell & Holmes, 2011; NSF, 2011). Since 2011, Increasing Diversity and Enhancing Academia (IDEA), a program of the UNC-Chapel Hill Institute for the Environment (UNC-IE), has provided 39 undergraduates (predominantly URM and female students) with career-relevant research experiences and professional development opportunities, including a culminating experience of presenting their research at a campus-wide research symposium. External evaluation data have helped to characterize the effectiveness of the IDEA program. These data included pre- and post-surveys assessing students' interest in geosciences, knowledge of career pathways, and perceptions of their abilities related to a specific set of scientific research skills. Additionally, progress towards degrees and dissemination outcomes were tracked. In this presentation, we will share quantitative and qualitative data that demonstrate that participation in the IDEA program has influenced students' interest and persistence in geosciences research and careers. These data range from self-reported competencies in a variety of scientific skills (such as organizing and interpreting data and reading and interpreting science literature) to documentation of student participation in geoscience study and professions. About 69% of participants continued research begun during their internships beyond the internship; and about 38% pursued graduate degrees and secured jobs in geoscience and other STEM fields. (Nearly half are still in school.) Overall, these evaluation data have shown that the IDEA research experience, combined with program elements focused on professional development, reinforces students' sense of their science abilities, connects them to a network of supportive students and professionals and contributes to their sense of belonging within the geosciences.
Improving Science Teacher Preparation through the APS PhysTEC and NSF Noyce Programs
NASA Astrophysics Data System (ADS)
Williams, Tasha; Tyler, Micheal; van Duzor, Andrea; Sabella, Mel
2013-03-01
Central to the recruitment of students into science teaching at a school like CSU, is a focus on the professional nature of teaching. The purpose of this focus is twofold: it serves to change student perceptions about teaching and it prepares students to become teachers who value continued professional development and value the science education research literature. The Noyce and PhysTEC programs at CSU place the professional nature of teaching front and center by involving students in education research projects, paid internships, attendance at conferences, and participation in a new Teacher Immersion Institute and a Science Education Journal Reading Class. This poster will focus on specific components of our teacher preparation program that were developed through these two programs. In addition we will describe how these new components provide students with diverse experiences in the teaching of science to students in the urban school district. Supported by the NSF Noyce Program (0833251) and the APS PhysTEC Program.
NASA Astrophysics Data System (ADS)
Nashiroh, Putri Khoirin; Kamdi, Waras; Elmunsyah, Hakkun
2017-09-01
Web programming is a basic subject in Computer and Informatics Engineering, a program study in a vocational high school. It requires logical thinking ability in its learning activities. The purposes of this research were (1) to develop a web programming module that implement scientific approach that can improve logical thinking ability for students in vocational high school; and (2) to test the effectiveness of web programming module based on scientific approach to train students' logical thinking ability. The results of this research was a web-programming module that apply scientific approach for learning activities to improve logical thinking ability of students in the vocational high school. The results of the effectiveness test of web-programming module give conclusion that it was very effective to train logical thinking ability and to improve learning result, this conclusion was supported by: (1) the average of posttest result of students exceeds the minimum criterion value, it was 79.91; (2) the average percentage of students' logical thinking score is 82,98; and (3) the average percentage of students' responses to the web programming module was 81.86%.
Prediction of Research Self-Efficacy and Future Research Involvement.
ERIC Educational Resources Information Center
Bishop, Rosean M.; And Others
Although graduate programs hope that their students will be committed to research in their careers, most students express ambivalence towards research. Identifying the variables that predict involvement in research thus seems crucial. In this study 136 doctoral students from a wide range of disciplines completed the Research Self-Efficacy Scale…
DOING Astronomy Research in High Schools.
NASA Astrophysics Data System (ADS)
Nook, M. A.; Williams, D. L.
2000-12-01
A collaboration between six science teachers at five central Minnesota high schools and astronomers at St. Cloud State University designed and implemented a program to involve high school students in active observational astronomy research. The emphasis of the program is to engage students and teachers in a research project that allows them to better understand the nature of scientific endeavor. Small, computerized telescopes and CCD cameras make it possible for high schools to develop astronomical research programs where the process of science can be experienced first hand. Each school obtained an 8-inch or 10-inch computerized SCT and a CCD camera or SLR. Astronomers from St. Cloud State University (SCSU) trained the teachers in proper astronomical techniques, as well as helping to establish the goals and objectives of the research projects. Each high school instructor trained students in observing and data reduction techniques and served as the research director for their school's project. Student observations continued throughout the school year concluding in the spring, 2000. A Variable Star Symposium was held May 20, 2000 as a culminating event. Each student involved in the process was invited to attend and give a presentation on the results of their research on variable stars. The symposium included an invited talk by a professional astronomer, and student oral and poster presentations. The research is continuing in all five of the original high schools. Eight additional schools have expressed interest in this program and are becoming involved in developing their research programs. This work is supported by Toyota Motor Sales, USA, Inc. and administered by the National Science Teachers Association through a 1999 Toyota TAPESTRY Grant and by St. Cloud State University and Independent School District 742, St. Cloud, MN.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bardeen, Marjorie G.; /Fermilab; Johansson, K.Erik
This review summarizes exemplary secondary education and outreach programs of the particle physics community. We examine programs from the following areas: research experiences, high-energy physics data for students, informal learning for students, instructional resources, and professional development. We report findings about these programs' impact on students and teachers and provide suggestions for practices that create effective programs from those findings. We also include some methods for assessing programs.
ERIC Educational Resources Information Center
Schlak, Timothy M.; Johnston, Bruce
2018-01-01
This article presents an innovative textbook reserve program at a mid-sized academic library. Research conducted subsequent to the program's launch showed a positive correlation between students' use of the program and their perceived academic success. In addition, the program has proved effective at helping students with college affordability.…
The ISCB Student Council Internship Program: Expanding computational biology capacity worldwide.
Anupama, Jigisha; Francescatto, Margherita; Rahman, Farzana; Fatima, Nazeefa; DeBlasio, Dan; Shanmugam, Avinash Kumar; Satagopam, Venkata; Santos, Alberto; Kolekar, Pandurang; Michaut, Magali; Guney, Emre
2018-01-01
Education and training are two essential ingredients for a successful career. On one hand, universities provide students a curriculum for specializing in one's field of study, and on the other, internships complement coursework and provide invaluable training experience for a fruitful career. Consequently, undergraduates and graduates are encouraged to undertake an internship during the course of their degree. The opportunity to explore one's research interests in the early stages of their education is important for students because it improves their skill set and gives their career a boost. In the long term, this helps to close the gap between skills and employability among students across the globe and balance the research capacity in the field of computational biology. However, training opportunities are often scarce for computational biology students, particularly for those who reside in less-privileged regions. Aimed at helping students develop research and academic skills in computational biology and alleviating the divide across countries, the Student Council of the International Society for Computational Biology introduced its Internship Program in 2009. The Internship Program is committed to providing access to computational biology training, especially for students from developing regions, and improving competencies in the field. Here, we present how the Internship Program works and the impact of the internship opportunities so far, along with the challenges associated with this program.
Best Practices at the Lamont-Doherty Earth Observatory (LDEO) REU Site
NASA Astrophysics Data System (ADS)
Abbott, D. H.
2014-12-01
At the LDEO REU site, we take student health and safety very seriously. In 2014, we gave the students training on laboratory safety, fire safety, and a Title IX orientation covering discrimination and sexual harassment. We also compile emergency contact information for all the students and distribute it to students, mentors and the administration. Students choose a research project and mentors then pick the best student for their project. Because the mentors choose the student, they are more invested in the student. Students and mentors are encouraged to interact before the program starts, both through discussions and assigned background reading. During these discussions, research projects are often modified to better-fit students interests and skill levels. During the program, we facilitate student-mentor interaction by conducting three research-focusing sessions with small groups of students. Students give 20-minute long oral presentations on the progress of their research and answer questions about their project. Mentors prepare the students for these sessions, thereby increasing student knowledge about their research project. Mid-way through the summer, students write a 3-page proposal about their research as part of a special seminar on scientific writing. The students also participate in a final poster session that is attended by the LDEO community. We maximize student engagement by giving students a choice of research projects that are specifically selected for their suitability for and interest among undergraduates. The track record of mentors is also considered. Mentors must be in residence at LDEO during most of the intern program and arrange a suitable co-mentor during any absences. Mentors must be individuals who are able to encourage the students while giving them constructive input on the progress of their research project. We also encourage students to present their research results at a national scientific meeting. Students and mentors are given a schedule at the start of the summer that includes the abstract deadlines for major national meetings. When it is possible, we fund each student's attendance of a national meeting. Enthusiastic students who wish to attend a second meeting are given information on how to apply for funding to support attendance.
Students' Perceptions of Bilingualism in Spanish and Mandarin Dual Language Programs
ERIC Educational Resources Information Center
Lindholm-Leary, Kathryn
2016-01-01
Considerable research documents students' outcomes in dual language (DL) programs, but there is little examination of students' perceptions of bilingualism and its impact on students' cognitive functioning and social relationships, especially with comparative studies across different target languages and student backgrounds. This study, which…
ERIC Educational Resources Information Center
Blahusiak, Katarzyna
2012-01-01
This qualitative study explored community college student development during a study abroad program. The main research question was: How do community college students perceive the impact of participation in a study abroad program on their personal development? In addition, there were seven follow-up questions generated to understand students'…
NASA Astrophysics Data System (ADS)
Ward, Tony J.; Delaloye, Naomi; Adams, Earle Raymond; Ware, Desirae; Vanek, Diana; Knuth, Randy; Hester, Carolyn Laurie; Marra, Nancy Noel; Holian, Andrij
2016-04-01
Air Toxics Under the Big Sky is an environmental science outreach/education program that incorporates the Next Generation Science Standards (NGSS) 8 Practices with the goal of promoting knowledge and understanding of authentic scientific research in high school classrooms through air quality research. This research explored: (1) how the program affects student understanding of scientific inquiry and research and (2) how the open-inquiry learning opportunities provided by the program increase student interest in science as a career path. Treatment students received instruction related to air pollution (airborne particulate matter), associated health concerns, and training on how to operate air quality testing equipment. They then participated in a yearlong scientific research project in which they developed and tested hypotheses through research of their own design regarding the sources and concentrations of air pollution in their homes and communities. Results from an external evaluation revealed that treatment students developed a deeper understanding of scientific research than did comparison students, as measured by their ability to generate good hypotheses and research designs, and equally expressed an increased interest in pursuing a career in science. These results emphasize the value of and need for authentic science learning opportunities in the modern science classroom.
Development of a College Transition and Support Program for Students with Autism Spectrum Disorder
ERIC Educational Resources Information Center
White, Susan W.; Elias, Rebecca; Capriola-Hall, Nicole N.; Smith, Isaac C.; Conner, Caitlin M.; Asselin, Susan B.; Howlin, Patricia; Getzel, Elizabeth E.; Mazefsky, Carla A.
2017-01-01
Empirically based, consumer-informed programming to support students with Autism Spectrum Disorder (ASD) transitioning to college is needed. Informed by theory and research, the Stepped Transition in Education Program for Students with ASD (STEPS) was developed to address this need. The first level (Step 1) supports high school students and the…
The Arecibo Observatory Space Academy
NASA Astrophysics Data System (ADS)
Rodriguez-Ford, Linda A.; Fernanda Zambrano Marin, Luisa; Aponte Hernandez, Betzaida; Soto, Sujeily; Rivera-Valentin, Edgard G.
2016-10-01
The Arecibo Observatory Space Academy (AOSA) is an intense fifteen-week pre-college research program for qualified high school students residing in Puerto Rico, which includes ten days for hands-on, on site research activities. Our mission is to prepare students for their professional careers by allowing them to receive an independent and collaborative research experience on topics related to the multidisciplinary field of space science. Our objectives are to (1) supplement the student's STEM education via inquiry-based learning and indirect teaching methods, (2) immerse students in an ESL environment, further developing their verbal and written presentation skills, and (3) foster in every student an interest in the STEM fields by harnessing their natural curiosity and knowledge in order to further develop their critical thinking and investigation skills. Students interested in participating in the program go through an application, interview and trial period before being offered admission. They are welcomed as candidates the first weeks, and later become cadets while experiencing designing, proposing, and conducting research projects focusing in fields like Physics, Astronomy, Geology, Chemistry, and Engineering. Each individual is evaluated with program compatibility based on peer interaction, preparation, participation, and contribution to class, group dynamics, attitude, challenges, and inquiry. This helps to ensure that specialized attention can be given to students who demonstrate a dedication and desire to learn. Deciding how to proceed in the face of setbacks and unexpected problems is central to the learning experience. At the end of the semester, students present their research to the program mentors, peers, and scientific staff. This year, AOSA students also focused on science communication and were trained by NASA's FameLab. Students additionally presented their research at this year's International Space Development Conference (ISDC), which was held in San Juan, Puerto Rico. Funding for this program is provided by NASA SSERVI-LPI: Center for Lunar Science and Exploration through USRA. Supplemental funding for attendance to ISDC was received from the Puerto Rico Science and Technology Trust.
ERIC Educational Resources Information Center
Knight, Brent; Johnson, Dennis
1981-01-01
In a successful college marketing program, students and high-quality instruction are top priorities. Marketing research should investigate student needs and frustrations, the products offered, value received for time and money invested, physical convenience and appeal, and promotional strategies. Program research and development suggestions are…
Past Year Substance Use by Student Nurses.
Boulton, Martha A; O'Connell, Kathleen A
Nurses who abuse substances are a threat to patients, colleagues, society, and themselves. Research indicates that substance use often begins during undergraduate years. The purpose of this research was to identify rates of past year substance use by student nurses. A quantitative, cross-sectional, correlational design was used to examine past year substance use by student nurses and to determine whether substance use is related to age, gender, race, relationship status, ethnicity, country of birth, type of school program, and year in program. The convenience sample of National Student Nurses' Association members yielded 4,033 completed surveys. Students were asked about their past year substance use via Survey Monkey. Responses were analyzed through exploratory data analysis and logistic regression. Binge drinking was reported by 61% of the student nurses; 18% reported using marijuana; 5% reported using illegal drugs, excluding marijuana; 8% reported using nonprescribed stimulants to enhance academic performance; and 10% reported using nonprescribed prescription pills. Students who were younger than 28 years old, White, male, born in this country, or single tended to report more substance misuse than other students. The results suggest that student nurses tend to use fewer drugs than their college counterparts but are slightly more likely to binge drink. Further research is needed on the effect of substance education in the beginning of the nursing program and that continued throughout the program on student nurse substance use. Research on faculty's ability to identify the at-risk student is necessary for early intervention.
Elharram, Malik; Dinh, Trish; Lalande, Annie; Ge, Susan; Gao, Sophie; Noël, Geoffroy
As health care delivery increasingly requires providers to cross international borders, medical students at McGill University, Canada, developed a multidirectional exchange program with Haiti and Rwanda. The program integrates surgery, pathology, anatomy, research methodology, and medical education. The aim of the present study was to explore the global health value of this international training program to improve medical education within the environment of developing countries, such as Haiti and Rwanda, while improving sociocultural learning of Canadian students. Students from the University of Kigali, Rwanda and Université Quisqueya, Haiti, participated in a 3-week program at McGill University. The students spanned from the first to sixth year of their respective medical training. The program consisted of anatomy dissections, surgical simulations, clinical pathology shadowing, and interactive sessions in research methodology and medical education. To evaluate the program, a survey was administered to students using a mixed methodology approach. Common benefits pointed out by the participants included personal and professional growth. The exchange improved career development, sense of responsibility toward one's own community, teaching skills, and sociocultural awareness. The participants all agreed that the anatomy dissections improved their knowledge of anatomy and would make them more comfortable teaching the material when the returned to their university. The clinical simulation activities and shadowing experiences allowed them to integrate the different disciplines. However, the students all felt the research component had too little time devoted to it and that the knowledge presented was beyond their educational level. The development of an integrated international program in surgery, pathology, anatomy, research methodology, and medical education provided medical students with an opportunity to learn about differences in health care and medical education between the 3 countries. This exchange demonstrated that a crosscultural near-peer teaching environment can be an effective and sustainable method of medical student-centered development in global health. Copyright © 2017 Icahn School of Medicine at Mount Sinai. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Stoilescu, Dorian; Egodawatte, Gunawardena
2010-12-01
Research shows that female and male students in undergraduate computer science programs view computer culture differently. Female students are interested more in the use of computers than in doing programming, whereas male students see computer science mainly as a programming activity. The overall purpose of our research was not to find new definitions for computer science culture but to see how male and female students see themselves involved in computer science practices, how they see computer science as a successful career, and what they like and dislike about current computer science practices. The study took place in a mid-sized university in Ontario. Sixteen students and two instructors were interviewed to get their views. We found that male and female views are different on computer use, programming, and the pattern of student interactions. Female and male students did not have any major issues in using computers. In computing programming, female students were not so involved in computing activities whereas male students were heavily involved. As for the opinions about successful computer science professionals, both female and male students emphasized hard working, detailed oriented approaches, and enjoying playing with computers. The myth of the geek as a typical profile of successful computer science students was not found to be true.
Creating a Teacher-Student Research Program Using the Spitzer Space Telescope
NASA Astrophysics Data System (ADS)
Daou, D.; Pompea, S.; Thaller, M.
2004-12-01
The Spitzer Science Center (SSC) and the National Optical Astronomy Observatory (NOAO) have created a program for teacher and student research using observing time on the Spitzer Space Telescope. The participating teachers attended a fall, 2004 workshop to become familiar with the Spitzer Space Telescope (SST) archives, and to receive training in infrared astronomy and observational techniques. The teachers will also attend a workshop offered by the SSC to learn about the observation planning process, and telescope and instrument capabilities. This program has as its goals the fundamental NASA goals of inspiring and motivating students to pursue careers in science, technology, engineering, and mathematics as well as to engage the public in shaping and sharing the experience of exploration and discovery. Our educational plan addresses the NASA objectives of improving student proficiency in science and improving science instruction by providing a unique opportunity to a group of teachers and students to observe with the SST and work with the SST archival data. This program allows a team of 12 teachers and their students to utilize up to 3 hours of Director's discretionary observing time on the Spitzer Space Telescope for educational observations. Leveraging on a well-established teacher professional development, the SSC is offering this program to teachers in the Teacher Leaders in Research Based Science Education (TLRRBSE), an ongoing program at the NOAO. This NSF-sponsored program touches the formal education community through a national audience of well-trained and supported middle and high school teachers. The Spitzer educational research program also reaches an additional national audience of students through an informal education program based at the University of Arizona's Astronomy Camp, directed by Dr. Don McCarthy. During this camp, the teachers and their students will learn about the SST through the vast amount of data available in the Spitzer archives.
NASA Technical Reports Server (NTRS)
Tiwari, S. N. (Principal Investigator); Massenberg, Samuel E. (Technical Monitor)
2002-01-01
The 'Institute for Scientific and Educational Technology' has been established to provide a mechanism through which universities and other research organizations may cooperate with one another and with different government agencies and industrial organizations to further and promote research, education, and training programs in science, engineering, and related fields. This effort has been undertaken consistent with the national vision to 'promote excellence in America s educational system through enhancing and expanding scientific and technological competence.' The specific programs are directed in promoting and achieving excellence for individuals at all levels (elementary and secondary schools, undergraduate and graduate education, and postdoctoral and faculty research). The program is consistent with the existing activities of the Institute for Computational and Applied Mechanics (ICAM) and the American Society for Engineering Education (ASEE) at NASA Langley Research Center (LaRC). The efforts will be directed to embark on other research, education, and training activities in various fields of engineering, scientific, and educational technologies. The specific objectives of the present program may be outlined briefly as follows: 1) Cooperate in the various research, education, and technology programs of the Office of Education at LaRC. 2) Develop procedures for interactions between precollege, college, and graduate students, and between faculty and students at all levels. 3) Direct efforts to increase the participation by women and minorities in educational programs at all levels. 4) Enhance existing activities of ICAM and ASEE in education, research, and training of graduate students and faculty. 5) Invite distinguished scholars as appropriate and consistent with ISET goals to spend their summers and/or sabbaticals at NASA Langley andor ODU and interact with different researchers and graduate students. Perform research and administrative activities as needed to carry out the above mentioned activities. 6) The implementation of various activities of the ISET programs is carried out through cooperative efforts between Old Dominion University (ODU) and the Office of Education at LaRC. At present, major efforts are directed on the following ISET Programs: ICAM Programs, Academic Programs, Educational Research, Outreach Programs, Educational Technology and Cooperative Programs. These programs are described in the following sections.
Early Exposure to Research: Outcomes of the ASTER Certification Program
ERIC Educational Resources Information Center
Griffard, Phyllis Baudoin; Golkowska, Krystyna
2013-01-01
This paper discusses a novel structure for providing a high-impact, first year experience for science students. ASTER (Access to Science Through Experience in Research) is an extracurricular certification program designed to introduce our students to the research culture via seminar attendance, journal clubs, book clubs, and lab visits.…
Beyond the Classroom--Students Taste Excitement and Frustrations of True Research.
ERIC Educational Resources Information Center
Cowenhoven, Nick
1980-01-01
Reported is a program of undergraduate research in limnology and oceanography at the University of New Hampshire. The program, The Ocean Projects Course, involves students in all aspects of the research project, from drafting and defending a budget to summarizing and reporting their findings in a final report. (CO)
ERIC Educational Resources Information Center
Wingard, Crystal Burroughs
2017-01-01
The present action research study describes an Interactive Mathematics Review Program (IMRP) developed by the participant-researcher to enable remedial algebra students to learn in a cooperative classroom with pedagogy that promoted collaboration and hands-on, active learning. Data are comprised of surveys, field notes, semi-structured interviews,…
Institute for Water and Watersheds | | Oregon State University
Program OSU Hydrophiles Club Featured Projects Student Research Sponsored Events Willamette Water 2100 ; Facilities Water Resources Graduate Program OSU Hydrophiles Club Featured Projects Student Research Sponsored Kemper kayaking in the Opal Creek Wilderness. Combining Water Adventure & Research A love of kayaking
Utilizing Qualitative Feedback to Investigate Student Perceptions of a Basic Instruction Program
ERIC Educational Resources Information Center
Russell, Jared A.
2008-01-01
This research represents the perceptions of two hundred (N = 200) students enrolled in a doctoral-research university's basic instruction program (BIP) regarding their instructional experiences. The purpose of this interpretive case-study conducted in a doctoral-research university's BIP was two-fold: (a) to examine the characteristics of…
NASA Astrophysics Data System (ADS)
Buskey, E. J.; Erdner, D.
2011-12-01
Our REU site is a ten-week summer program that is currently in its fourth year and has served 37 undergraduate students in that time. The range of environments present in south Texas, including barrier islands, estuaries and hypersaline lagoons, and the inherent climatic variability of the region make it an excellent natural laboratory for studying the effects of both natural and human-driven change. REU projects to date have focused on many of the pressing environmental concerns in the region, including the impacts of land use and freshwater demand on the transport of water and waterborne constituents to coastal waters, harmful algal blooms, effects of nutrient loads on coastal ecosystems, and hypoxia. The program begins with a 2 day research cruise that serves as an immediate introduction to local biota and methods in marine science, and it brings the students and mentors together as a group in a more informal setting. The students then carry out independent research projects under the mentorship of a faculty member, and attend workshops on responsible research, graduate school, and science careers. Our program also benefits from a close interaction with the Mission-Aransas National Estuarine Research Reserve, exposing the students to applied research of relevance to coastal management issues. One of the primary goals of our program is to foster the retention of underrepresented groups, particularly Hispanics, in Science, Technology, Engineering, and Mathematics (STEM) fields by increasing their participation in undergraduate research experiences. We have targeted Hispanic students because our institute is located in a state where 37% of the population is Hispanic, and in a region where the proportion of Hispanic students is even higher. Our recruiting efforts have included advertising the program via in-person presentations at minority serving institutions (UT El Paso, UT San Antonio), and on list-serves for professional societies and sites at minority serving institutions. We have also directly contacted academic advisors at undergraduate institutions, especially those with marine sciences degrees and/or a significant proportion of Hispanic enrollment. Despite these directed efforts, however, program surveys show that the most common ways that students find out about our program are by 1) searching the NSF REU website, 2) general online searches (e.g. Google), and 3) from a professor or advisor. In terms of student participation, we feel that we are making progress in entraining Hispanic students into undergraduate research. The participation rate for Hispanic students in our program (21%) was twice that of their 10% nationwide undergraduate STEM enrollment rate. Hispanic students also make up a greater proportion of the offers relative to the applicant pool and accept offers more frequently. Nonetheless, we continue to seek new recruiting strategies, in order to increase the participation rate of Hispanic students, in a state where Hispanic STEM enrollment rates above 50% are common.
Educational Experiences of Embry-Riddle Students through NASA Research Collaboration
NASA Technical Reports Server (NTRS)
Schlee, Keith; Gangadharan, Sathya; Chatman, Yadira; Sudermann, James; Walker, Charles; Ristow, James
2006-01-01
NASA's educational. programs benefit students and faculty while increasing the overall productivity of the organization. The NASA Graduate Student Research Program (GSRP) awards fellowships for graduate study leading to both masters and doctoral degrees in several technical fields. GSRP participants have the option to utilize NASA Centers andlor university research facilities. In addition, GSRP students can serve as mentors for undergrad students to provide a truly unique learning experience. NASA's Cooperative Education Program allows undergraduate students the chance to gain "real-world" work experience in the field. It also gives NASA a no risk capability to evaluate the true performance of a prospective new hire without relying solely on a "paper resume" while providing the students with a greater hiring potential upon graduation, at NASA or elsewhere. University faculty can also benefit by participating in the NASA Faculty Fellowship Program (NFFP). This program gives the faculty an opportunity to work with NASA peers. The Mission Analysis Branch of the Expendable Launch Vehicles Division at NASA Kennedy Space Center has utilized these two programs with students from Embry-Riddle Aeronautical University (ERAU) to conduct research in modeling and developing a parameter estimation method for spacecraft fuel slosh using simple pendulum analogs. Simple pendulum models are used to understand complicated spacecraft fuel slosh behavior. A robust parameter estimation process will help to identif' the parameters that will predict the response fairly accurately during the initial stages of design. These programs provide students with a unique opportunity to work on "real-world" aerospace problems, like spacecraft fuel slosh,. This in turn reinforces their problem solving abilities and their communication skills such as interviewing, resume writing, technical writing, and presentation. Faculty benefits by applying what they have learned to the classroom. Through university collaborations with NASA and industry help students to acquire skills that are vital for their success upon entering the workforce.
High school students as science researchers: Opportunities and challenges
NASA Astrophysics Data System (ADS)
Smith, W. R.; Grannas, A. M.
2007-12-01
Today's K-12 students will be the scientists and engineers who bring currently emerging technologies to fruition. Existing research endeavors will be continued and expanded upon in the future only if these students are adequately prepared. High school-university collaborations provide an effective means of recruiting and training the next generation of scientists and engineers. Here, we describe our successful high school-university collaboration in the context of other models. We have developed an authentic inquiry-oriented environmental chemistry research program involving high school students as researchers. The impetus behind the development of this project was twofold. First, participation in authentic research may give some of our students the experience and drive to enter technical studies after high school. One specific goal was to develop a program to recruit underrepresented minorities into university STEM (science, technology, engineering, and mathematics) programs. Second, inquiry-oriented lessons have been shown to be highly effective in developing scientific literacy among the general population of students. This collaboration involves the use of local resources and equipment available to most high schools and could serve as a model for developing high school- university partnerships.
Master's Student Life: The Balance between Student and Professional
ERIC Educational Resources Information Center
Grube, Sean A.; Cedarholm, Katie; Jones, Camilla; Dunn, Merrily
2005-01-01
This manuscript explores the concept of balance for master's students enrolled in student affairs preparation programs in the Southeast and Midwest. It provides research on the ways balance is restricted for master's students who are employed in a student affairs setting while also enrolled in preparation programs, and it investigates themes which…
Summer Internships for Students through the Air Force Research Laboratory’s Scholars Program
NASA Astrophysics Data System (ADS)
Barnaby, David A.; Hwang, Eunsook; McCullough, Julie A.
2017-01-01
Did you know that the Air Force Research Laboratory (AFRL) has sponsored a summer research program for students for the last 15 years? The AFRL Scholars Program hires high school, undergraduate, and graduate students as payed interns for 12-18 weeks each summer to work on space science and astronomy projects at one of four AFRL locations. By now, more than 1200 students from 34 states have participated. Like advisors in other summertime astrophysics research programs, the AFRL mentors benefit from extra staff for their research efforts at no cost (the Scholars are funded centrally within AFRL). Likewise, the students benefit from summer pay, job experience in a science lab, university housing, and comradery with students from other states. Pay is based on the intern’s academic level with the range being $395/week for high school up to $1115/week for recent Ph.Ds. Benefits not available from other programs include a secret clearance, socializing with a cohort exceeding 100 peers, and exposure to a pathway to a professional science career outside academia. Benefits to AFRL include persuading young people to choose science-technical-engineering-math (STEM) degrees, and roughly 89% of participants show increased interest in STEM courses following their internship.In this poster, we present the advantages to college students (and their mentors) to participating. We outline the topic areas, 60% of which are related to space science and astronomy. We quantify the range of participants’ scholastic level and majors, as well as the impact the program has on stimulating STEM careers and sight stories of students going onto rewarding careers in AFRL. To be eligible, an applicant must be a U.S. citizen, at least 16 years old, available to work a 40-hour business week, agree to a background check, and be enrolled at the time of application. To apply for the summer 2017 program, start at http://afrlscholars.usra.edu.
Summer Research Internships at Biosphere 2 Center
NASA Technical Reports Server (NTRS)
1998-01-01
Through the support of NASA's Mission to Planet Earth, Biosphere 2 Center hosted 10 research interns for a 10 week period during the summer of 1998. In addition, we were able to offer scholarships to 10 students for Columbia University summer field courses. Students participating in these programs were involved in numerous earth systems activities, collecting data in the field and conducting analyses in the laboratory. Students enrolled in the field program were expected to design independent research projects as part of their coursework. In addition to laboratory and field research, students participated in weekly research seminars by resident and visiting scientists. Field school students were involved in field trips exposing them to the geology and ecology of the region including Arizona Sonora Desert Museum, Mount Lemmon, Aravaipa Canyon and the Gulf of California. Interns participated in laboratory-based research. All students were expected to complete oral and written presentations of their work during the summer.
NASA Astrophysics Data System (ADS)
Pelz, M.; Hoeberechts, M.; McLean, M. A.; Riddell, D. J.; Ewing, N.; Brown, J. C.
2016-12-01
This presentation outlines the authentic research experiences created by Ocean Networks Canada's Ocean Sense program, a transformative education program that connects students and teachers with place-based, real-time data via the Internet. This program, developed in collaboration with community educators, features student-centric activities, clearly outlined learning outcomes, assessment tools and curriculum aligned content. Ocean Networks Canada (ONC), an initiative of the University of Victoria, develops, operates, and maintains cabled ocean observatory systems. Technologies developed on the world-leading NEPTUNE and VENUS observatories have been adapted for small coastal installations called "community observatories," which enable community members to directly monitor conditions in the local ocean environment. Data from these observatories are fundamental to lessons and activities in the Ocean Sense program. Marketed as Ocean Sense: Local observations, global connections, the program introduces middle and high school students to research methods in biology, oceanography and ocean engineering. It includes a variety of resources and opportunities to excite students and spark curiosity about the ocean environment. The program encourages students to connect their local observations to global ocean processes and the observations of students in other geographic regions. Connection to place and local relevance of the program is enhanced through an emphasis on Indigenous and place-based knowledge. The program promotes of cross-cultural learning with the inclusion of Indigenous knowledge of the ocean. Ocean Sense provides students with an authentic research experience by connecting them to real-time data, often within their own communities. Using the freely accessible data portal, students can curate the data they need from a range of instruments and time periods. Further, students are not restricted to their local community; if their question requires a greater range of data, they also have access to the other observatories in the network. Our presentation will explore the design, implementation and lessons learned from the ongoing development of the Ocean Sense program, from its inception to its current form today. Sample activities will be made available.
Teaching Note--Creating an Integrative Research Learning Environment for BSW and MSW Students
ERIC Educational Resources Information Center
Inoue, Megumi; Tsai, Laura Cordisco; Lee, JoAnn S.; Ihara, Emily S.; Tompkins, Catherine J.; Aguimatang, Jose; Fountain, Kathleen; Hudson, Sonya
2017-01-01
Research courses are often the least popular among BSW and MSW students because the connection between social work practice and research is not always evident. This teaching note introduces the structure of the Social Work integrative Research Lab (SWiRL), which was implemented in a social work program without a doctoral program at a large public…
Inschool Suspension Programs for At-Risk Students.
ERIC Educational Resources Information Center
Leatt, Desmond J.
1987-01-01
Research findings and examples of inschool suspension programs in Oregon are combined in this bulletin. An introduction defines "at-risk" students as those having behavioral or attendance problems. Unlike traditional out-of-school suspension, alternative programs attempt to keep at-risk students at school. Chapter 1 surveys three…
Preparing the nurse scientist for academia and industry.
Lewallen, Lynne P; Kohlenberg, Eileen
2011-01-01
The number of doctoral programs in nursing has been increasing. However, these programs tend to focus on preparing nurse scientists to conduct research, and many spend little time preparing doctoral students for the educator, clinical researcher, or administrator role. Leaders of doctoral programs have identified the need to prepare doctoral students in the functional roles they will assume upon graduation, in addition to the researcher role. This article describes a two-course (six-credit) sequence of courses within a research-focused PhD in Nursing program that provides didactic and experiential knowledge about the role of the nurse scientist in academia and industry settings. Students are highly satisfied with the courses, and report that the experiences have provided them with important knowledge and skills as they assume the scientist role.
Developing the Concept of Perimeter and Area in Students with Learning Disabilities (LD)
ERIC Educational Resources Information Center
Kozulin, Alex; Kazaz, Sigalit
2017-01-01
The present research is aimed at developing an educational program effective for the development of the concepts of perimeter and area in students with LD and testing this program. The study combined action research with quasi-experimental design involving experimental (LD) and comparison (non-LD) groups. The intervention program consisted of 12…
An In-Depth Analysis of Learning Goals in Higher Education: Evidence from the Programming Education
ERIC Educational Resources Information Center
Xia, Belle Selene
2017-01-01
Previous research has shown that, despite the importance of programming education, there is limited research done on programming education experiences from the students' point of view and the need to do so is strong. By understanding the student behaviour, their learning styles, their expectation and motivation to learn, the quality of teaching…
ERIC Educational Resources Information Center
Tomasko, David L.; Ridgway, Judith S.; Waller, Rocquel J.; Olesik, Susan V.
2016-01-01
Retention of students to science, technology, engineering, and mathematics (STEM) major has been studied for four cohorts participating in a summer bridge program supported by the National Science Foundation. Students participated in a 6-week program prior to their first term of enrollment at a research-intensive land grant university. Comparisons…
ERIC Educational Resources Information Center
Blazer, Christie
2011-01-01
This Research Brief summarizes the performance of M-DCPS students participating in the International Baccalaureate (IB) and Cambridge Advanced International Certificate of Education (AICE) programs. Outcome data are provided for the eight M-DCPS schools offering the two programs and corresponding examinations. Participation in international…
Ingoglia, Nicholas A
2009-04-01
Most graduate schools associated with medical schools offer programs leading to the PhD degree but pay little attention to master's programs. This is unfortunate because many university graduates who are interested specifically in biomedical rather than pure science fields need further education before making decisions on whether to enter clinical, research, education, or business careers. Training for these students is done best in a medical school, rather than a graduate university, environment and by faculty who are engaged in research in the biomedical sciences. Students benefit from these programs by exploring career options they might not have previously considered while learning about disease-related subjects at the graduate level. Graduate faculty can also benefit by being compensated for their teaching with a portion of the tuition revenue, funds that can help run their laboratories and support other academic expenses. Faculty also may attract talented students to their labs and to their PhD programs by exposing them to a passion for research. The graduate school also benefits by collecting masters tuition revenue that can be used toward supporting PhD stipends. Six-year outcome data from the program at Newark show that, on completion of the program, most students enter educational, clinical, or research careers and that the graduate school has established a new and significant stream of revenue. Thus, the establishment of a master's program in biomedical sciences that helps students match their academic abilities with their career goals significantly benefits students as well as the graduate school and its faculty.
Philippine Astronomy Convention 2009 Abstract: Program Offerings in Astronomy in the Philippines
NASA Astrophysics Data System (ADS)
Torres, J. R. F.
2009-03-01
The formal academic programs in Astronomy of the Rizal Technological University are the first such programs in the Philippines. The Master of Science in Astronomy program is envisioned to provide the student with a wide range of knowledge in many areas of Astronomy, leaning towards the descriptive aspects of knowledge. The student will choose the field or research most suitable to his or her interests. Three of these researches done while enrolled in the program, and even researches completed before the student actually enrolled in the program, may be considered as his or her thesis. The program suits professionals in all persuasions who wish to study Astronomy either for professional advancement or plainly for the love of the science or for intellectual satisfaction. Non-science majors can enroll. In 2008, the RTU Graduate School decided to ladderize the MS program and the Graduate Diploma in Astronomy was designed. This program is suited for science educators, astronomy lecturers and entrepreneurs, members of astronomical societies, and plain astronomy enthusiasts who like to gain in-depth knowledge in the most important aspects of astronomy. A bachelor's degree in any field is required. The program can be finished in two semesters and one summer. If the student opts to continue in the MS in Astronomy program, all the courses he or she has earned in the Diploma will be credited. The Bachelor of Science in Astronomy Technology is an intensive baccalaureate degree program designed to prepare students to become future research scientists and technologists in the field of Astronomy. The BS in Astronomy Technology is a cross-fertilized program, integrating interrelated sciences, such as engineering, geology, remote sensing, physics, atmospheric and environmental science, biology and biochemistry, and even philosophy and entrepreneurship into the study. Thus, the B.S. in Astronomy Technology program gives the student excellent job opportunities in many fields.
NASA Astrophysics Data System (ADS)
Rock, B. N.; Hale, S. R.; Graham, K. J.; Hayden, L.; Barber, L.; Perry, C.; Schloss, J.; Sullivan, E.; Yuan, J.; Abebe, E.; Mitchell, L.; Abrams, E.; Gagnon, M.
2008-12-01
Watershed Watch (NSF 0525433) engages early undergraduate students from two-year and four-year colleges in student-driven full inquiry-based instruction in the biogeosciences. Program goals for Watershed Watch are to test if inquiry-rich student-driven projects sufficiently engage undeclared students (or noncommittal STEM majors) to declare a STEM major (or remain with their STEM major). A significant component of this program is an intensive two-week Summer course, in which undeclared freshmen research various aspects of a local watershed. Students develop their own research questions and study design, collect and analyze data, and produce a scientific or an oral poster presentation. The course objectives, curriculum and schedule are presented as a model for dissemination for other institutions and programs seeking to develop inquiry-rich courses designed to attract students into biogeoscience disciplines. Data from self-reported student feedback indicated the most important factors explaining high-levels of student motivation and research excellence in the course are 1) working with committed, energetic, and enthusiastic faculty mentors; and 2) faculty mentors demonstrating high degrees of teamwork and coordination.
Student supports: developmental education and other academic programs.
Bettinger, Eric P; Boatman, Angela; Long, Bridget Terry
2013-01-01
Low rates of college completion are a major problem in the United States. Less than 60 percent of students at four-year colleges graduate within six years, and at some colleges, the graduation rate is less than 10 percent. Additionally, many students enter higher education ill-prepared to comprehend college-level course material. Some estimates suggest that only one-third of high school graduates finish ready for college work; the proportion is even lower among older students. Colleges have responded to the poor preparation of incoming students by placing approximately 35 to 40 percent of entering freshmen into remedial or developmental courses, along with providing academic supports such as summer bridge programs, learning communities, academic counseling, and tutoring, as well as student supports such as financial aid and child care. Eric Bettinger, Angela Boatman, and Bridget Terry Long describe the role, costs, and impact of these college remediation and academic support programs. According to a growing body of research, the effects of remedial courses are considerably nuanced. The courses appear to help or hinder students differently by state, institution, background, and academic preparedness. The mixed findings from earlier research have raised questions ranging from whether remedial programs, on average, improve student academic outcomes to which types of programs are most effective. Administrators, practitioners, and policy makers are responding by redesigning developmental courses and searching for ways to implement effective remediation programs more broadly. In addition, recent research suggests that colleges may be placing too many students into remedial courses unnecessarily, suggesting the need for further examining the placement processes used to assign students to remedial courses. The authors expand the scope of remediation research by discussing other promising areas of academic support commonly offered by colleges, including advising, tutoring, and mentoring programs, as well as supports that target the competing responsibilities of students, namely caring for dependents and balancing employment with schoolwork. They conclude that the limited resources of institutions and equally limited funds of students make it imperative for postsecondary institutions to improve student academic supports and other services.
The professional benefits for volunteer research assistants in a pediatric emergency department.
Steadman, Patrick E; Crudden, Johanna; Naranian, Taline; Oliveria, John Paul; Boutis, Kathy
2015-03-01
Emergency departments (EDs) have utilized university student volunteers to facilitate enrollment of patients into prospective studies; however, the impact of this experience on participant careers is relatively unknown. We determined the proportion of successful postgraduate school/research job applications supported by our program reference letter. We also examined participant satisfaction. This was a prospective cohort study of volunteer research assistants in a tertiary care pediatric ED from September 2011 to July 2013. Students volunteered one 5-h shift per week for at least 6 months. They completed three surveys: 1) Entrance - demographics and goals for entering the ED research assistant program; 2) Exit - program satisfaction, reasons for leaving the program, and future career goals; 3) Follow-up - survey and e-mails were sent to record positions secured since leaving the program. There were a total of 920 applicants over the study period, and 127 volunteers were selected to participate in the program. Response rates for entrance, exit, and follow-up surveys were 100%, 84.9%, and 96.2%, respectively. Of the participants who left and responded, 89/101 (88.9%) obtained school/research positions supported by our program reference letter. Further, 72.6% ranked their satisfaction with the program at least a 7 on a 10-point categorical scale, and 82.9% reported that they "agreed/strongly agreed" that the program helped with their career goals. A volunteer student program is in high demand for university students interested in health sciences/research and potentially has a beneficial career impact for its participants. Copyright © 2015 Elsevier Inc. All rights reserved.
McLean, Nicole A; Fraser, Marilyn; Primus, Nicole A; Joseph, Michael A
2018-04-05
The goal of this analysis is to assess the effectiveness of a summer program designed to introduce high school students of color to health disparities research. A total of 73 students (69.9% Black, 68.5% female and 80.6% either junior/senior) participated in the 4-week Health Disparities Summer Internship Program (HDSIP) during the years 2012-2015. Students attended lectures covering topics such as health disparities, community-based participatory research (CBPR), immigrant health, and policy and advocacy. While working with community-based organizations, students gained hands-on experience related to issues discussed in class. Students completed research projects and provided suggestions for health policy change. Pre/post surveys were completed to evaluate the program. After participating in the HDSIP, students demonstrated heightened awareness of the social determinants of health, especially in regards to racial discrimination (p = .023); borderline statistically significant increases were shown for income (p = .082), community safety (p = .058), and healthcare access (p = .076). Most students (82.1%) planned to advocate for changes in their community; an increase from the initial 65.2% (p = .052). About nine out of ten students (89.6%) reported being satisfied with the summer program; the majority reported improvement in analytical skills, CBPR methods, and oral/communication skills. Increasing diversity in the health workforce has widely been proposed as a means of addressing health disparities. Introducing minority students to health professions can serve as a catalyst for lasting changes in health outcomes. The HDSIP has increased students' awareness of social determinants of health and has fostered their interest in improving the health of minority populations.
NASA Astrophysics Data System (ADS)
Moser, F. C.; Allen, M. R.; Clark, J.
2016-12-01
Since 1989 the Maryland Sea Grant REU program's mentoring approach evolved considerably from a near `hands-off' approach to one that explores ways to maximize mentoring effectiveness. Our current model creates a multi-tiered system: the REU - research mentor relationship remains central to setting the student's science project, but greater student growth is supported by REU program leaders, visiting researchers, graduate students, and peer and near-peer mentors. Evaluation of our evolving mentoring program suggests our approach is successful and serves a diversity of students well, but we recognize the challenge of devising an evaluation system, given our limited annual cohort number (15 - 17 students), that fully captures the nuances of student - mentor relationships. We present multiple years of data on student skills, networks of relationships, student goals, and mentor goals using qualitative, quantitative and interview assessments. Further, we explore opportunities to strengthen our efforts and evolve our evaluation approach as we aspire to more accurately identify the components of our multilevel mentoring model that contribute most significantly to student success.
Enhancing programming logic thinking using analogy mapping
NASA Astrophysics Data System (ADS)
Sukamto, R. A.; Megasari, R.
2018-05-01
Programming logic thinking is the most important competence for computer science students. However, programming is one of the difficult subject in computer science program. This paper reports our work about enhancing students' programming logic thinking using Analogy Mapping for basic programming subject. Analogy Mapping is a computer application which converts source code into analogies images. This research used time series evaluation and the result showed that Analogy Mapping can enhance students' programming logic thinking.
Providing Middle School Students With Science Research Experiences Through Community Partnerships
NASA Astrophysics Data System (ADS)
Rodriguez, D.
2007-12-01
Science research courses have been around for years at the university and high school level. As inquiry based learning has become more and more a part of the science teacher's vocabulary, many of these courses have adopted an inquiry model for studying science. Learners of all ages benefit from learning through the natural process of inquiry. I participated in the CIRES Earthworks program for science teachers (Colorado University) in the summer of 2007 and experienced, first hand, the value of inquiry learning. With the support and vision of my school administration, and with the support and commitment of community partners, I have developed a Middle School Science Research Program that is transforming how science is taught to students in my community. Swift Creek Middle School is located in Tallahassee, Florida. There are approximately 1000 students in this suburban public school. Students at Swift Creek are required to take one science class each year through 8th grade. As more emphasis is placed on learning a large number of scientific facts and information, in order to prepare students for yearly, standardized tests, there is a concern that less emphasis may be placed on the process and nature of science. The program I developed draws from the inquiry model followed at the CIRES Earthworks program, utilizes valuable community partnerships, and plays an important role in meeting that need. There are three major components to this Middle School Research Program, and the Center for Integrated Research and Learning (CIRL) at the National High Magnetic Field Lab (NHMFL) at Florida State University is playing an important role in all three. First, each student will develop their own research question and design experiments to answer the question. Scientists from the NHMFL are serving as mentors, or "buddy scientists," to my students as they work through the process of inquiry. Scientists from the CIRES - Earthworks program, Florida State University, and other institutions are also volunteering to be mentors. Second, each student will participate in the GLOBE-FLEXE pilot program that involves comparing environmental conditions of local environments to those of extreme environments, like hydrothermal vents in the deep sea. This real-world science program is being coordinated through the FLEXE Project Office at Penn State University, and the GLOBE Program Office in Boulder, Co. We will spend 18 class periods collecting local weather data and analyzing meteorological data from around the world, writing scientific reports, and peer reviewing other students reports. The NHMFL is a sponsor of the Communtiy Classroom Consortium in Tallahassee that is has funded a grant for equipment needed to conduct the data collection portion of this process. Finally, the students will share their research with other students, parents, teachers, and scientists at a school science fair in the fall, and a scientific poster session in the spring. The NHMFL will be supplying judges for the two sessions. They will also be offering the use of their facilities at the laboratory in the spring. Scientists from the lab will mingle with the students, discuss their research, and critique and encourage the young scientists at the first annual Middle School Research Symposium in May, 2008.
Middle and high school students shine
NASA Astrophysics Data System (ADS)
Asher, Pranoti; Saltzman, Jennifer
2012-02-01
Middle and high school students participating in after-school and summer research experiences in the Earth and space sciences are invited to participate in AGU's Bright Students Training as Research Scientists (Bright STaRS) program. The Bright STaRS program provides a dedicated forum for these students to present their research results to the scientific community at AGU's Fall Meeting, where they can also learn about exciting research, education, and career opportunities in the Earth and space sciences. Last year's program included 33 abstracts from middle and high school students involved with the Stanford University School of Earth Sciences; Raising Interest in Science and Engineering summer internship program sponsored by the Office of Science Outreach at Stanford; Lawrence Hall of Science at the University of California, Berkeley; the University of California, Santa Cruz; California Academy of Science; San Francisco State University; the University of Arizona; and the National Oceanic and Atmospheric Administration's Gulf of the Farallones National Marine Sanctuary. Their work spanned a variety of topics ranging from structural geology and paleontology to environmental geology and polar science. Nearly 100 Bright STaRS students presented their research posters on Thursday morning (8 December) of the Fall Meeting and had a chance to interact with scientists, AGU staff, and other meeting attendees.
ERIC Educational Resources Information Center
Ellis, Julia; Small-McGinley, Jan; De Fabrizio, Lucy
This book invites schools to consider the use of mentorship, peer support, and student leadership programs to positively support the growth and learning of all students. It presents research on successful K-12 programs and case studies of individual programs and people. Eighteen chapters are: (1) "Introduction and Overview"; (2)…
ERIC Educational Resources Information Center
Liu, Wei
2012-01-01
This is an evaluative research study of a NSF-funded, DRK-12 cyber-enabled teacher professional development program in elementary engineering education. The finding shows the significant impact of the program on students' science and engineering knowledge in the second year of the program's implementation. However, student learning gain…
NASA Astrophysics Data System (ADS)
Zhou, Andrew F.
2014-07-01
Bringing research into an undergraduate curriculum is a proven and powerful practice with many educational benefits to students and the professional rewards to faculty mentors. In recent years, undergraduate research has gained national prominence as an effective problem-based learning strategy. Developing and sustaining a vibrant undergraduate research program of high quality and productivity is an outstanding example of the problem-based learning. To foster student understanding of the content learned in the classroom and nurture enduring problem-solving and critical-thinking abilities, we have created a collaborative learning environment by building research into the Electro-Optics curriculum for the first- and second-year students. The teaching methodology is described and examples of the research projects are given. Such a research-integrated curriculum effectively enhances student learning and critical thinking skills, and strengthens the research culture for the first- and second-year students.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williamson, J.M.
1994-12-31
WhaleNet has established a network where students, educators, and scientists can interact and share data for use in interdisciplinary curricular and student research activities in classrooms around the world by utilizing telecommunication. This program enables students to participate in marine/whale research programs in real-time with WhaleNet data and supplementary curriculum materials regardless of their geographic location. Systems have been established with research organizations and whale watch companies whereby research data is posted by scientists and students participating in whale watches on the WhaleNet bulletin board and shared with participating classrooms. WhaleNet presently has contacts with classrooms across the nation, andmore » with research groups, whale watch organizations, science museums, and universities from Alaska to North Carolina, Hawaii to Maine, and Belize to Norway. WhaleNet has plans to make existing whale and fisheries research databases available for classroom use and to have research data from satellite tagging programs on various species of whales available for classroom access in real-time.« less
The Development and Assessment of Particle Physics Summer Program for High School Students
NASA Astrophysics Data System (ADS)
Prefontaine, Brean; Kurahashi Neilson, Naoko, , Dr.; Love, Christina, , Dr.
2017-01-01
A four week immersive summer program for high school students was developed and implemented to promote awareness of university level research. The program was completely directed by an undergraduate physics major and included a hands-on and student-led capstone project for the high school students. The goal was to create an adaptive and shareable curriculum in order to influence high school students' views of university level research and what it means to be a scientist. The program was assessed through various methods including a survey developed for this program, a scientific attitudes survey, weekly blog posts, and an oral exit interview. The curriculum included visits to local laboratories, an introduction to particle physics and the IceCube collaboration, an introduction to electronics and computer programming, and their capstone project: planning and building a scale model of the IceCube detector. At the conclusion of the program, the students participated an informal outreach event for the general public and gave an oral presentation to the Department of Physics at Drexel University. Assessment results and details concerning the curriculum and its development will be discussed.
ERIC Educational Resources Information Center
Keating, Xiaofen Deng; Harrison, Louis; Chen, Li; Xiang, Ping; Lambdin, Dolly D.; Dauenhauer, Brian; Rotich, Willy; Pinero, Jose Castro
2009-01-01
Although substantial inquiry has been made into fitness levels of students, there has been scant examination of knowledge in this domain. This article seeks to review and analyze research on student health-related fitness (HRF) knowledge mastery in K-16 programs by examining studies published in the literature. Two major results emerging from the…
The Persistence and Retention of Students Participating in a Student Success Program
ERIC Educational Resources Information Center
Kitchens, Karen Westerman
2016-01-01
The purpose of this mixed methods study was to examine and explore the institutional policy levers that facilitate successful educational outcomes in a TRiO funded Student Success Program at a large, urban research university in the Mid-South. Three research questions guided the study: (1) how do the educational outcomes of the university's TRiO…
ERIC Educational Resources Information Center
Houser, Chris; Cahill, Anthony; Lemmons, Kelly
2014-01-01
In this study, we assess whether students and their faculty mentors in a Research Experience for Undergraduates program have similar perceptions about the relative importance of different outcomes of their study abroad experience. Results of a Q-analysis reveal a significant difference of opinion between the students and the faculty mentors. It is…
ERIC Educational Resources Information Center
Masal, Ercan; Koc, Mustafa; Colak, Tugba Seda; Takunyaci, Mithat
2013-01-01
The main purpose of this research is to analyse whether there is a difference or not in levels of having psychological symptoms of the students of undergraduate program in elementary mathematics teaching. Another aim of the research is to determine whether the levels of having psychological symptoms of the students differ or not regarding various…
The Virtual Poster Showcase: Opportunities for students to present their research from anywhere
NASA Astrophysics Data System (ADS)
Asher, P. M.; Furukawa, H.; Williams, B. M.; Holm Adamec, B.
2015-12-01
Although many students conduct research with faculty in organized summer programs or as part of their course work or their degree work, they often face barriers to traveling to present that research, especially at national or international conferences. This is especially true for students who are members of underrepresented minority populations and students studying outside of the United States. A new and exciting opportunity for undergraduate as well as graduate students to showcase their work is now available. AGU piloted three opportunities for an undergraduate and graduate virtual poster showcase in the fall of 2015. Student participants were recruited from a diverse array of groups including minority-serving organizations, two-year colleges, and internship programs at federal agencies and national laboratories. Students uploaded an abstract, poster, and short video explain their research, and then participated in Q&A sessions with peers as well as expert judges. This presentation will share characteristics of participating groups, lessons learned from this new program, and preliminary evaluation findings as well as plans for the future.
ERIC Educational Resources Information Center
Follmer, D. Jake; Gomez, Esther; Zappe, Sarah; Kumar, Manish
2017-01-01
This study examined how a collaborative research environment in a structured research experience impacts undergraduate student outcomes. Students demonstrated significant gains in research skills and provided positive appraisals of their collaborative experiences. Emphasis on collaboration among students in an undergraduate research program…
CaTs Lab (CHAOS and Thermal Sciences Laboratory)
NASA Technical Reports Server (NTRS)
Teate, Anthony A.
2002-01-01
The CHAOS and Thermal Sciences Laboratory (CaTs) at James Madison University evolved into a noteworthy effort to increase minority representation in the sciences and mathematics. Serving ten students and faculty directly, and nearly 50 students indirectly, CaTs, through recruitment efforts, workshops, mentoring programs, tutorial services and research and computational laboratories, fulfilled its intent to initiate an academically enriched research program aimed at strengthening the academic and self-actualization skills of undergraduate students with potential to pursue doctoral study in the sciences. The stated goal of the program was to increase by 5% the number of enrolled mathematics and science students into the program. Success far exceeded the program goals by producing 100% graduation rate of all supported recipients during its tenure, with 30% of the students subsequently in pursuit of graduate degrees. Student retention in the program exceeded 90% and faculty participation exceeded the three members involved in mentoring and tutoring, gaining multi-disciplinary support. Aggressive marketing of the program resulted in several paid summer internships and commitments from NASA and an ongoing relationship with CHROME, a nationally recognized organization which focuses on developing minority students in the sciences and mathematics. Success of the program was only limited by the limited fiscal resources at NASA which resulted in phasing out of the program.
Nebraska Prostate Cancer Research Program
2014-10-01
orientation on Tuesday of May 28 and continued on Wednesday of May 29. The INBRE Program had a Welcome Barbeque reception in the evening of May 29 and...period. All CAU students attended Tuesday noon seminar offered by the UNMC Summer Undergraduate Research Program through the entire period...programs. All CAU students prepared their results in posters. Our current CAU trainee Ms. Marisha Morris gave a poster presentation in the The
Ward, Tony J; Delaloye, Naomi; Adams, Earle Raymond; Ware, Desirae; Vanek, Diana; Knuth, Randy; Hester, Carolyn Laurie; Marra, Nancy Noel; Holian, Andrij
2016-01-01
Air Toxics Under the Big Sky is an environmental science outreach/education program that incorporates the Next Generation Science Standards (NGSS) 8 Practices with the goal of promoting knowledge and understanding of authentic scientific research in high school classrooms through air quality research. A quasi-experimental design was used in order to understand: 1) how the program affects student understanding of scientific inquiry and research and 2) how the open inquiry learning opportunities provided by the program increase student interest in science as a career path . Treatment students received instruction related to air pollution (airborne particulate matter), associated health concerns, and training on how to operate air quality testing equipment. They then participated in a yearlong scientific research project in which they developed and tested hypotheses through research of their own design regarding the sources and concentrations of air pollution in their homes and communities. Results from an external evaluation revealed that treatment students developed a deeper understanding of scientific research than did comparison students, as measured by their ability to generate good hypotheses and research designs, and equally expressed an increased interest in pursuing a career in science. These results emphasize the value of and need for authentic science learning opportunities in the modern science classroom.
NASA Astrophysics Data System (ADS)
Ambos, E. L.; Lee, C.; Behl, R.; Francis, R. D.; Holk, G.; Larson, D.; Rodrigue, C.; Wechsler, S.; Whitney, D.
2004-12-01
For the past three years (2002-2004) faculty in the departments of geological sciences, geography, and anthropology at California State University, Long Beach have joined to offer an NSF-funded (GEO-0119891) eight-week summer research experience to faculty and students at Long Beach area high schools and community colleges. GDEP's goal is to increase the numbers of students from underrepresented groups (African-American, Hispanic, American Indian, Pacific Islander, and disabled) enrolling in baccalaureate degree programs in the geosciences. The major strategies to achieve this goal all tie to the concept of research-centered experiences, which might also be termed inquiry-based instruction. More than fifteen (15) separate and diverse geoscience research studies have been conducted. These include such disparate topics as geochemical studies of fault veins, GPS/GIS surveys of vegetation patterns for fire hazard assessment, and seismic studies of offshore fault systems. As the program has matured, research projects have become more interdisciplinary, and faculty research teams have expanded. Whereas the first year, each CSULB faculty member tended to lead her/his project as a separate endeavor, by the third summer, faculty were collaborating in research teams. Several projects have involved community-based research, at sites within an hour's drive from the urban Long Beach campus. For example, last summer, four faculty linked together to conduct a comprehensive geography and geology study of an Orange County wilderness area, resulting in creation of maps, brochures, and websites for use by the general public. Another faculty group conducted geophysical surveys at an historic archaeological site in downtown Los Angeles, producing maps of underground features that will be incorporated into a cultural center and museum. Over the past three summers, the program has grown to involve more than 25 high school and community college students, and more than 30 CSULB, high school, and community college faculty. Although GDEP's real legacy will ultimately be understood by longitudinal study of program participants, initial evaluation efforts provide some generalizable lessons. Students cite the benefits of "hands-on" research, fieldwork, and the opportunity to work one-on-one with faculty. Many students state in post-program interviews that GDEP caused them to aspire to graduate study: the rigorous GDEP research environment appears to build student confidence. The high school and community college faculty describe program benefits in terms of widening their knowledge both of how to use geoscience research as a centerpiece in instruction, and how to incorporate discussions of geoscience careers in student advising. Through GDEP, CSULB faculty have developed their abilities to work in interdisciplinary teams, to meld research with instruction, and to mentor students from diverse backgrounds and abilities.
NASA Technical Reports Server (NTRS)
Graff, Paige Valderrama; Stefanov, William L.; Willis, Kim; Runco, Susan; McCollum, Tim; Lindgren, Charles F.; Baker, Marshalyn; Mailhot, Michele
2011-01-01
Authentic research opportunities in the classroom are most impactful when they are student-driven and inquiry-based. These experiences are even more powerful when they involve technology and meaningful connections with scientists. In today's classrooms, activities are driven by state required skills, education standards, and state mandated testing. Therefore, programs that incorporate authentic research must address the needs of teachers. NASA's Expedition Earth and Beyond (EEAB) Program has developed a framework that addresses teacher needs and incorporates the use of technology and access to mentors to promote and enhance authentic research in the classroom. EEAB is a student involvement program that facilitates student investigations of Earth or planetary comparisons using NASA data. To promote student-led research, EEAB provides standards-aligned, inquiry-based curricular resources, an implementation structure to facilitate research, educator professional development, and ongoing support. This framework also provides teachers with the option to incorporate the use of technology and connect students with a mentor, both of which can enrich student research experiences. The framework is structured by a modeled 9-step process of science which helps students organize their research. With more schools gaining increased access to technology, EEAB has created an option to help schools take advantage of students' interest and comfort with technology by leveraging the use of available technologies to enhance student research. The use of technology not only allows students to collaborate and share their research, it also provides a mechanism for them to work with a mentor. This framework was tested during the 2010/2011 school year. Team workspaces hosted on Wikispaces for Educators allow students to initiate their research and refine their research question initially without external input. This allows teams to work independently and rely on the skills and interests of team members. Once teams finalize their research question, they are assigned a mentor. The mentor introduces himself/herself, acknowledges the initial work the team has conducted, and asks a focused question to help open the lines of communication. Students continue to communicate with their mentor throughout their research. As research is completed, teams can share their investigation during a virtual presentation. These live presentations allow students to share their research with their mentor, other scientists, other students, parents, and school administrators. After the initial year of testing this authentic research process, EEAB is working to address the many lessons learned. This will allow the program to refine and improve the overall process in an effort to maximize the benefits. Combined, these powerful strategies provide a successful framework to help teachers enhance the skills and motivation of their students, preparing them to become the next generation of scientists, explorers, and STEM-literate citizens of our nation.
NASA Astrophysics Data System (ADS)
Graff, P. V.; Stefanov, W. L.; Willis, K.; Runco, S.; McCollum, T.; Lindgren, C. F.; Baker, M.; Mailhot, M.
2011-12-01
Authentic research opportunities in the classroom are most impactful when they are student-driven and inquiry-based. These experiences are even more powerful when they involve technology and meaningful connections with scientists. In today's classrooms, activities are driven by state required skills, education standards, and state mandated testing. Therefore, programs that incorporate authentic research must address the needs of teachers. NASA's Expedition Earth and Beyond (EEAB) Program has developed a framework that addresses teacher needs and incorporates the use of technology and access to mentors to promote and enhance authentic research in the classroom. EEAB is a student involvement program that facilitates student investigations of Earth or planetary comparisons using NASA data. To promote student-led research, EEAB provides standards-aligned, inquiry-based curricular resources, an implementation structure to facilitate research, educator professional development, and ongoing support. This framework also provides teachers with the option to incorporate the use of technology and connect students with a mentor, both of which can enrich student research experiences. The framework is structured by a modeled 9-step process of science which helps students organize their research. With more schools gaining increased access to technology, EEAB has created an option to help schools take advantage of students' interest and comfort with technology by leveraging the use of available technologies to enhance student research. The use of technology not only allows students to collaborate and share their research, it also provides a mechanism for them to work with a mentor. This framework was tested during the 2010/2011 school year. Team workspaces hosted on Wikispaces for Educators allow students to initiate their research and refine their research question initially without external input. This allows teams to work independently and rely on the skills and interests of team members. Once teams finalize their research question, they are assigned a mentor. The mentor introduces himself/herself, acknowledges the initial work the team has conducted, and asks a focused question to help open the lines of communication. Students continue to communicate with their mentor throughout their research. As research is completed, teams can share their investigation during a virtual presentation. These live presentations allow students to share their research with their mentor, other scientists, other students, parents, and school administrators. After the initial year of testing this authentic research process, EEAB is working to address the many lessons learned. This will allow the program to refine and improve the overall process in an effort to maximize the benefits. Combined, these powerful strategies provide a successful framework to help teachers enhance the skills and motivation of their students, preparing them to become the next generation of scientists, explorers, and STEM-literate citizens of our nation.
The Accountable Curriculum: A Merit-Based High School Diploma Program.
ERIC Educational Resources Information Center
Stumpo, Vincent M.
1997-01-01
Recent research on student achievement conducted by the National Assessment for Educational Progress (NAEP) indicates that American students are deficient in reading, mathematics, writing, and other skills. To reverse this trend, the Accountable Curriculum, a program that raises expectations for students was created. The program is a departure…
45 CFR 2522.700 - How does evaluation differ from performance measurement?
Code of Federal Regulations, 2010 CFR
2010-10-01
... progress, evaluation uses scientifically-based research methods to assess the effectiveness of programs by... the reading ability of students in a program over time to a similar group of students not... example, a performance measure for a literacy program may include the percentage of students receiving...
NASA Technical Reports Server (NTRS)
Graff, P. V.; Stefanov, W. L.; Willis, K. J.; Runco, S.; McCollum, T.; Baker, M.; Lindgren, C.; Mailhot, M.
2011-01-01
Classroom teachers are challenged with engaging and preparing today s students for the future. Activities are driven by state required skills, education standards, and high-stakes testing. Providing educators with standards-aligned, inquiry-based activities that will help them engage their students in student-led research in the classroom will help them teach required standards, essential skills, and help inspire their students to become motivated learners. The Astromaterials Research and Exploration Science (ARES) Education Program, classroom educators, and ARES scientists at the NASA Johnson Space Center created the Expedition Earth and Beyond education program to help teachers promote student-led research in their classrooms (grades 5-14) by using NASA data, providing access to scientists, and using integrated educational strategies.
Robinson, Georgeanna F W B; Moore, Charity G; McTigue, Kathleen M; Rubio, Doris M; Kapoor, Wishwa N
2015-12-01
Competencies in Master of Science Clinical Research programs are becoming increasingly common. However, students and programs can only benefit fully from competency-based education if students' competence is formally assessed. Prior to a summative assessment, students must have at least one formative, formal assessment to be sure they are developing competence appropriate for their stage of training. This paper describes the comprehensive competency review (CCR), a milestone for MS students in Clinical Research at the University of Pittsburgh's Institute for Clinical Research Education. The CCR involves metacognitive reflection of the student's learning as a whole, written evidence of each competency, a narrative explaining the choice of evidence for demonstrating competencies, and a meeting in which two faculty members review the evidence and solicit further oral evidence of competence. CCRs allow for individualized feedback at the midpoint in degree programs, providing students with confidence that they will have the means and strategies to develop competence in all areas by the summative assessment of competence at their thesis defense. CCRs have also provided programmatic insight on the need for curricular revisions and additions. These benefits outweigh the time cost on the part of students and faculty in the CCR process. © 2015 Wiley Periodicals, Inc.
Graham, James M; Kim, Yang-Hyang
2011-04-01
In the face of the rising number of doctoral recipients in professional psychology, many have voiced concerns about the quality of nontraditional training programs. Past research suggests that, on a variety of outcomes, graduates from clinical PhD programs outperform graduates from clinical PsyD and, to a lesser extent, counseling PhD programs. We examine an aggregate archival dataset to determine whether student or university characteristics account for the differences in outcomes among programs. The data show meaningful differences in the outcomes of clinical PhD, PsyD, and counseling PhD programs. Furthermore, graduates from research-intensive universities perform better on the psychology licensure exam and are more likely to become American Board of Professional Psychology diplomates. The available data support the notion that the ability to conduct research is an essential component of graduate education. In this light, PsyD programs represent a unique opportunity to train students in the types of evaluation and outcomes assessments used by practicing psychologists. We discuss implications for graduate-level training in professional psychology. © 2011 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Großmann, Jürgen; Schmauss, Bernhard
2017-08-01
The Master's Program in Advanced Optical Technologies (MAOT) was established at the Friedrich-Alexander Universität Erlangen-Nürnberg in 2007 as part of the Elite Network of Bavaria (ENB), an initiative by the Bavarian State Government comprising about 40 elite Master's programs and doctoral programs. MAOT can be studied after a Bachelor in physics or an engineering subject. The Master's program realizes an innovative concept combining three core elements: (1) Interdisciplinarity: The program integrates courses and researchers from five engineering subjects and from physics. The degree of interdisciplinarity goes far beyond traditional programs. (2) Internationality: The program is taught entirely in English and special support is given to international students. (3). Individuality: The course curriculum was adapted at several points based on the experience in the initial years. The same is true for the way in which international students are supported and the type of support they need. The students are given an unusually high degree of freedom to develop an individual curriculum and to pursue research projects. Crucial experience and lessons learned are: (1) Lecturers and researchers have to be coordinated and the perspectives of the different disciplines have to be integrated within one program. Students must be guided in order to deal with the demands and challenges of the different disciplines. (2) International students need support with settling in Germany and with learning and working in a German cultural environment. They need support with administrative issues. Furthermore, they need to analyze and understand cultural differences and how they impact on the cooperation between lecturers and students and on the work in research groups. (3) Students must be helped to develop their own curriculum. They must learn how to combine their first-degree qualification with the specialized qualification which they gain after completing their Master's program. They need to develop the skills to match their preferences with what is realistic and feasible.
NASA Astrophysics Data System (ADS)
Yatchmeneff, Michele
The dramatic underrepresentation of Alaska Natives in science, technology, engineering and mathematics (STEM) degrees and professions calls for rigorous research in how students access these fields. Research has shown that students who complete advanced mathematics and science courses while in high school are more academically prepared to pursue and succeed in STEM degree programs and professions. There is limited research on what motivates precollege students to become more academically prepared before they graduate from high school. In Alaska, Alaska Native precollege students regularly underperform on required State of Alaska mathematics and science exams when compared to non-Alaska Native students. Research also suggests that different things may motivate Alaska Native students than racial majority students. Therefore there is a need to better understand what motivates Alaska Native students to take and successfully complete advanced mathematics and science courses while in high school so that they are academically prepared to pursue and succeed in STEM degrees and professions. The Alaska Native Science & Engineering Program (ANSEP) is a longitudinal STEM educational enrichment program that works with Alaska Native students starting in middle school through doctoral degrees and further professional endeavors. Research suggests that Alaska Native students participating in ANSEP are completing STEM degrees at higher rates than before the program was available. ANSEP appears to be unique due to its longitudinal approach and the large numbers of Alaska Native precollege, university, and graduate students it supports. ANSEP provides precollege students with opportunities to take advanced high school and college-level mathematics and science courses and complete STEM related projects. Students work and live together on campus during the program components. Student outcome data suggests that ANSEP has been successful at motivating precollege participants to successfully complete advanced high school and college-level mathematics and science courses prior to high school graduation. This study was designed to examine the motivations of Alaska Native high school students who participated in the ANSEP Precollege components to take advanced mathematics and science courses in high school or before college. Participants were 30 high school or college students, 25 of whom were Alaska Native, who were currently attending or had attended Alaska Native Science & Engineering Program (ANSEP) Precollege components in high school. Self-determination theory was used as this study's theoretical framework to develop the semi-structured interview questions and also analyze the interviews. A thematic approach was used to analyze the interviews. The results of this study indicated that ANSEP helped the Alaska Native high school students gain a sense of autonomy, competence, and relatedness in order to be motivated to take advanced mathematics and science courses in high school or before college. In particular, Alaska Native high school students described that relatedness was an important element to them being motivated to take advanced mathematics and science courses. More specifically, participants reported that the Alaska Native community developed at the ANSEP Building and the relationships they developed with their Alaska Native high school peers and staff played an influential role in the motivation of these students. These findings are important because research suggests that autonomy and competence are more important elements than relatedness because they generate or maintain intrinsic motivation. Alaska Native high school students reported that ANSEP was more successful in helping them gain a sense of competence and relatedness than at helping them gain a sense of autonomy. More specifically, the reason the participants did not feel ANSEP developed their sense of autonomy was because ANSEP restricted their actions during the ANSEP Precollege study sessions. My study implies that Alaska Native students need to feel like they belong in order to be motivated to take and succeed at taking advanced mathematics and science courses. Educators and STEM program leaders should incorporate elements of belonging into the educational environments they develop for their Alaska Native students. Future research should be conducted to determine if other racial minority students need to feel like they belong in order to be motivated to take and succeed at taking advanced mathematics and science courses. My study also indicated that Alaska Native students were motivated to take advanced mathematics and science courses by knowing ANSEP would support them in future programming because of its longitudinal approach. Funding agencies of STEM programs should consider funding programs that provide a longitudinal approach to help Alaska Native students' sense of competence grow. Future research should include studying other STEM programs to determine if they are motivating their students to take and succeed in advanced mathematics and science courses.
A Community of Scientists and Educators: The Compass Project at UC Berkeley
NASA Astrophysics Data System (ADS)
Roth, Nathaniel; Schwab, Josiah
2016-01-01
The Berkeley Compass Project is a self-formed group of graduate and undergraduate students in the physical sciences at the University of California, Berkeley. Its goals are to improve undergraduate physics education, provide opportunities for professional development, and increase retention of students from populations underrepresented in the physical sciences. For undergraduate students, the core Compass experience consists of a summer program and several seminar courses. These programs are designed to foster a diverse, collaborative student community in which students engage in authentic research practices and regular self-reflection. Graduate students, together with upper-level undergraduates, design and run all Compass programs. Compass strives to incorporate best practices from the science education literature. Experiences in Compass leave participants poised to be successful students researchers, teachers, and mentors.
Development of a College Transition and Support Program for Students with Autism Spectrum Disorder.
White, Susan W; Elias, Rebecca; Capriola-Hall, Nicole N; Smith, Isaac C; Conner, Caitlin M; Asselin, Susan B; Howlin, Patricia; Getzel, Elizabeth E; Mazefsky, Carla A
2017-10-01
Empirically based, consumer-informed programming to support students with Autism Spectrum Disorder (ASD) transitioning to college is needed. Informed by theory and research, the Stepped Transition in Education Program for Students with ASD (STEPS) was developed to address this need. The first level (Step 1) supports high school students and the second level (Step 2) is for postsecondary students with ASD. Herein, we review the extant research on transition supports for emerging adults with ASD and describe the development of STEPS, including its theoretical basis and how it was informed by consumer input. The impact of STEPS on promotion of successful transition into college and positive outcomes for students during higher education is currently being evaluated in a randomized controlled trial.
ERIC Educational Resources Information Center
Wozniak, Helen; Pizzica, Jenny; Mahony, Mary Jane
2012-01-01
Few institutions have reported research on students' "use" of orientation programs designed for mature students returning to study in contemporary learning environments now regularly amalgamating distance and online strategies. We report within a design-based research framework the student experience of "GetLearning," the third…
The Non-traditional Student, a new Geoscience Resource
NASA Astrophysics Data System (ADS)
Ferrell, R.; Anderson, L.; Bart, P.; Lorenzo, J. M.; Tomkin, J.
2004-12-01
The LSU GAEMP (Geoscience Alliance to Enhance Minority Participation) program targets non-traditional students, those without an undergraduate degree in geoscience, in its efforts to attract African American and Hispanic students from minority serving institutions (MSIs) to pursue careers in geology and geophysics. Faculty collaborators at nine MSIs (seven HBCUs and two HSIs) work closely with LSU faculty to advertise the program and to select student participants. The enthusiastic cooperation of the MSI Professors is crucial to success. The ideal student is a junior-level, high academic achiever with a major in one of the basic sciences, mathematics, engineering or computer science. A special summer course uses a focus on research to introduce basic geoscience concepts. Students are encouraged to design a cooperative research project to complete during their last year at their home institution and to apply for GAEMP graduate fellowships leading directly to an M.S. or Ph.D. in Geoscience. There are several reasons for the emphasis on these students 1. They have special knowledge and skills to use in graduate programs in geophysics, geochemistry, geobiology, etc. 2. Third-year students have demonstrated their ability to succeed in the academic world and are ready to select a graduate program that will enhance their employment prospects. 3. The MSIs, especially some of the physics programs at the collaborating HBCUs, provide well-trained, highly motivated graduates who have compiled excellent records in highly ranked graduate programs. This pool of talent is not available in the geosciences because most MSIs do not have geoscience degree programs. 4. This group provides a unique niche for focus as there are many programs concentrating on K-12 students and the recruitment of traditional majors. In the first year of GAEMP, 12 students participated in the summer program, six elected to pursue research projects and expressed interest in applying for the fellowships, and one student entered the graduate program early. The paucity of information regarding career opportunities and rewards in geoscience is one of the major obstacles encountered. GAEMP is sponsored by a 5-year NSF award through the OEDG program
ERIC Educational Resources Information Center
Wang, Wen-Ling; Wu, Jiun-Wei; Lin, Yu-Chin
2006-01-01
Enrichment is one of the important educational models for gifted students. However, the research on gifted enrichment programs rarely leads to instructional interventions for culturally diverse students. The purposes of this study were: (a) to propose an ecology enrichment summer program for gifted students from mainstream and diverse cultural…
ERIC Educational Resources Information Center
Merrill, Lisa; Siman, Nina; Kang, David; Soltani, Jasmine; Wulach, Suzanne
2015-01-01
A growing body of research shows that school-based mentoring programs can be a flexible and cost-effective way to improve student outcomes. Effective mentoring programs create close bonds between students and caring adults, providing students with an important source of emotional support. This study tests the effects of a new model--whole…
ERIC Educational Resources Information Center
Drysdale, Jeffery; Graham, Charles; Borup, Jered
2016-01-01
Student disconnectedness remains a serious concern in K-12 online learning--especially in programs where students take most or all of their coursework online. In this research we examined a "shepherding program" designed to encourage a sense of community among teachers and students at an online charter school. Every online teacher served…
NASA Astrophysics Data System (ADS)
Kim, C. S.; Osborn, J.; Smith, M.
2014-12-01
Effectively recruiting and engaging community college students in STEM research experiences is an increasingly important goal of the NSF but has not historically been the primary focus of most NSF-REU Site programs. The Summer Undergraduate Research Fellowship in Earth and Environmental Sciences (SURFEES) program at Chapman University, a primarily undergraduate institution in Southern California, is the site of the first NSF-REU program in the NSF's Division of Earth Sciences that selects participants exclusively from local partnering community colleges. Building on and now running parallel with a successful internally-funded summer research program already in place and available only to Chapman undergraduates, the SURFEES program incorporates specific mentor and participant pre-experience training, pre-, mid-, and post-assessment instruments, and programming targeted to the earth and environmental sciences as well as to community college students. Perhaps most importantly, the application, selection and pairing of student participants with faculty mentors was conducted with specific goals of identifying those applicants with the greatest potential for a transformative experience while also meeting self-defined targets of under-represented minority, female, and low-income participants. Initial assessment results of the first participant cohort from summer 2014 and lessons learned for creating/adapting an NSF-REU site to involve community college students will be discussed.
The University of Stuttgart IKE/University of Arizona student research program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seale, R.L.
1988-01-01
The University of Stuttgart's Institut fuer Kernenergetik und Energiesysteme (IKE) and the University of Arizona have had a joint program in which graduate students from the IKE spend 1 yr on the University of Arizona campus. This program started in 1982 largely as the result of an initiative begun by K.H. Hoecker, then director of IKE. Since 1985, Alfred Voss has been director and the program has continued without interruption. Under the program, the Deutscher Akademisher Austauschdienst, a government agency of the Federal Republic of Germany has funded scholarships for students from IKE, which provide support for 1 yr duringmore » which they attend the University of Arizona as visiting student scholars and engage in a research project under the direction of one of our faculty, which satisfies a part of the requirements for the Ingenieur-Diplom Fachrichtung Maschinenbau. The students get credit for their research from the University of Stuttgart. The topics have a broad range and include software development, artificial intelligence, radiation transport, and energy management studies.« less
NASA Astrophysics Data System (ADS)
Sloan, V.; Barge, L. M.; Smith, M.
2017-12-01
Student attrition from STEM majors most often occurs in the first or second year of college. To retain underrepresented minority students who are largely enrolled in community colleges in STEM pathways, it is critical to provide hands-on experiences and exposure to STEM occupations in a supportive community, before the students transfer to four-year colleges. The goal of the Bridge to the Geosciences is to provide community college students with year-round career mentoring, exposure to different fields and organizations in the geosciences through small field or research experiences, and community-building within the cohort and in connection with a broader community of scientists. Each year, 20 students from Citrus College in Glendora, California participate in research "geomodules" organized around the planetary, atmospheric, ocean, and environmental science subfields of the geosciences at: (1) the Oak Crest Institute of Science, a chemistry research and diversity-oriented education organization in Monrovia, CA; (2) the NASA Jet Propulsion Laboratory (JPL), a NASA center in Pasadena, CA; (3) the University of Southern California's (USC) Wrigley Institute for Environmental Studies, a research center on Catalina Island; and (4) the University Corporation for Atmospheric Research (UCAR) in Boulder, CO. A peak experience of the program is a ten-day mini-internship at UCAR in Colorado where the students are immersed in atmospheric research, training, fieldwork, and presenting at a premier facility. Professional development, mentoring, science communication and cohort-development are woven across all four geomodules and throughout the year. This program is funded by the National Science Foundation's Improving Undergraduate STEM Education or IUSE program. Preliminary results indicate that the students' interest in the geosciences, confidence in their skills and identify as a scientist, and their sense of belonging to a cohort are increased by participation in this program.
Taylor, Barbara E; Reynolds, Arleigh J; Etz, Kathy E; MacCalla, Nicole M G; Cotter, Paul A; DeRuyter, Tiffany L; Hueffer, Karsten
2017-01-01
Most postsecondary institutions in the state of Alaska (USA) have a broad mission to serve diverse students, many of whom come from schools in rural villages that are accessible only by plane, boat, or snowmobile. The major research university, the University of Alaska in Fairbanks (UAF), serves a population whereby 40% are from groups recognized as underrepresented in the biomedical workforce. The purpose of this article is to describe the Building Infrastructure Leading to Diversity (BUILD)-supported program in the state of Alaska that seeks to engage students from rural areas with a culturally relevant approach that is centered on the One Health paradigm, integrating human, animal, and environmental health. The Biomedical Learning and Student Training (BLaST) program distinguished by broad themes that address recruitment, retention, and success of students in biomedical programs, especially for students from rural backgrounds. Targeted rural outreach emphasizes that biomedical research includes research on the integration of human, animal, and environmental health. This One Health perspective gives personal relevance and connection to biomedical research. This outreach is expected to benefit student recruitment, as well as foster family and community support for pursuit of college degrees. BLaST promotes integration of research into undergraduate curricula through curriculum development, and by creating a new class of instructors, laboratory research and teaching technicians, who provide research mentorship, course instruction, and comprehensive advising. Finally, BLaST facilitates early and sustained undergraduate research experiences in collaborations with graduate students and faculty. BLaST's approach is highly adapted to the Alaskan educational and physical environment, but components and concepts could be adapted to other rural areas as a means to engage students from rural backgrounds, who often have a closer relationship with the natural environment than urban students.
Research Experience for Undergraduates Program in Multidisciplinary Environmental Science
NASA Astrophysics Data System (ADS)
Wu, M. S.
2012-12-01
During summers 2011 and 12 Montclair State University hosted a Research Experience for Undergraduates Program (REU) in transdisciplinary, hands-on, field-oriented research in environmental sciences. Participants were housed at the Montclair State University's field station situated in the middle of 30,000 acres of mature forest, mountain ridges and freshwater streams and lakes within the Kittatinny Mountains of Northwest New Jersey, Program emphases were placed on development of project planning skills, analytical skills, creativity, critical thinking and scientific report preparation. Ten students were recruited in spring with special focus on recruiting students from underrepresented groups and community colleges. Students were matched with their individual research interests including hydrology, erosion and sedimentation, environmental chemistry, and ecology. In addition to research activities, lectures, educational and recreational field trips, and discussion on environmental ethics and social justice played an important part of the program. The ultimate goal of the program is to facilitate participants' professional growth and to stimulate the participants' interests in pursuing Earth Science as the future career of the participants.
United States Air Force Summer Research Program -- 1993. Volume 8. Phillips Laboratory
1993-12-01
Research Program Phillips Laboratory Kirtland Air Force Base Albuquerque. New Mexico Sponsored by...Best Available Copy UNITED STATES AIR FORCE SUMMER RESEARCH PROGRAM -- 1993 SUMMER RESEARCH PROGRAM FINAL REPORTS VOLUME 8 PHILLIPS LABORATORY ...Alabama Box 870344 Tuscaloosa, AL 35487-0344 Final Report for: Graduate Student Research Program Phillips Laboratory , Hanscom AFB Sponsored by: Air
The Benefits of Peer-Mentoring in Undergraduate Group Research Projects at The University of Arizona
NASA Astrophysics Data System (ADS)
Hardegree-Ullman, Kevin; McGraw, A. M.; Towner, A. P.; Walker-LaFollette, A.; Robertson, A.; Smith, C.; Turner, J.; Biddle, L. I.; Thompson, R.
2013-06-01
According to the American Institute of Physics, the number of graduate students enrolled in astronomy programs in the US has been steadily increasing in the past 15 years. Research experience is one of the key factors graduate admissions committees look for when choosing students. The University of Arizona Astronomy Club is setting a new precedent in research by having students introduce other students to research. This eases the transition to research projects, and allows students to work in a comfortable setting without the sometimes-overwhelming cognitive disconnect between a professor and their students. The University of Arizona's research projects have many benefits to all students involved. It is well established that people learn a subject best when they have to teach it to others. Students leading the projects learn alongside their peers in a peer-mentoring setting. When project leaders move on in their academic career, other project members can easily take the lead. Students learn how to work in teams, practice effective communication skills, and begin the processes of conducting a full research project, which are essential skills for all budding scientists. These research projects also give students hands-on research experience that supplement and greatly expand on concepts taught in the classroom, and make them more attractive to graduate schools and REU programs.
ERIC Educational Resources Information Center
Champagne, Delight E.
Undergraduates on college campuses are one of the best resources for learning about college student development. Nonetheless, graduate programs which prepare student personnel professionals have typically neglected to involve undergraduates in courses which attempt to teach student development theory and research. Without input and feedback from…
Research Trends of EFL Students in English Education Program: A 2005-2015 Survey
ERIC Educational Resources Information Center
Iftanti, Erna; Shofiya, Arina
2017-01-01
One of the purposes of English Education Program of State Islamic Institute of Tulungagung, Indonesia, is to lead the graduates to do research on linguistics and language teaching and to write a thesis accordingly. However, the preliminary study shows that there is some repeatedly research on the same topics, because the students commonly spend…
ERIC Educational Resources Information Center
Carpi, Anthony; Ronan, Darcy M.; Falconer, Heather M.; Lents, Nathan H.
2017-01-01
In this study, Social Cognitive Career Theory (SCCT) is used to explore changes in the career intentions of students in an undergraduate research experience (URE) program at a large public minority-serving college. Our URE model addresses the challenges of establishing an undergraduate research program within an urban, commuter, underfunded,…
Eeds, Angela; Vanags, Chris; Creamer, Jonathan; Loveless, Mary; Dixon, Amanda; Sperling, Harvey; McCombs, Glenn; Robinson, Doug; Shepherd, Virginia L
2014-01-01
The School for Science and Math at Vanderbilt (SSMV) is an innovative partnership program between a Research I private university and a large urban public school system. The SSMV was started in 2007 and currently has 101 students enrolled in the program, with a total of 60 students who have completed the 4-yr sequential program. Students attend the SSMV for one full day per week during the school year and 3-6 wk in the summers following their ninth- to 11th-grade years, with each grade of 26 students coming to the Vanderbilt campus on a separate day. The research-based curriculum focuses on guiding students through the process of learning to develop questions and hypotheses, designing projects and performing analyses, and communicating results of these projects. The SSMV program has elevated the learning outcomes of students as evidenced by increased achievement scores relative to a comparison group of students; has provided a rigorous research-based science, technology, engineering, and mathematics elective curriculum that culminates in a Summer research internship; has produced 27 Intel and Siemens semifinalists and regional finalists over the past 4 yr; and has supported the development of writing and communication skills resulting in regional and national oral presentations and publications in scientific journals. © 2014 A. Eeds et al. CBE—Life Sciences Education © 2014 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
NASA Astrophysics Data System (ADS)
Mathews, Geoffrey; Armstrong, James; Nassir, Michael A.; Kaichi, Carolyn
2017-01-01
For the past decade, the Hawaii Student / Teacher Astronomy Research program (HI STAR) at UH Manoa’s Institute for Astronomy has trained astronomy-enthusiastic high school students in research, data analysis and science presentation skills. Every summer, a selected group of 8th-to-12th-grade students attend a week-long residential astronomy "camp" in Honolulu, Hawaii. The students experience the profession of astronomy by learning scientific skills such as imaging and spectroscopy, data-reduction, and data analysis. The week culminates with presention of a research project guided by professional astronomer mentors. During the following six months, each student continues to work with a mentor to complete a research project for submission to their local science fair. From 2012 - 2015, ~80% of students completed their long-term projects. Many have performed well; in each of 2015 and 2016, 5 alumni progressed to the International Science and Engineering Fair. Here we present the current structure of HI STAR and plans for the future.
NASA Astrophysics Data System (ADS)
Stark, L. A.; Malone, M.
2015-12-01
Multiple types of programs are needed to support the STEM workforce pipeline from pre-college through graduate school and beyond. Short-term, intensive programs provide opportunities to participate in authentic scientific research for students who may not be sure of their interest in science and for teachers who may be unable to devote an entire summer to a research experience. The iUTAH (innovative Urban Transitions and Aridregion Hydro-Systainability) Summer Research Institute utilizes an innovative approach for a 5-day program that engages high school and undergraduate students as well as middle and high school teachers in conducting research projects led by graduate students and faculty members. Each Institute involves 3-4 half to full-day research projects. Participants collect (usually in the field) and analyze data for use in on-going research or that is related to a current research project. The participants work in groups with the graduate students to create a poster about each research project. They present their posters on the last day of the Institute at the state-wide meeting of all researchers and involved in this EPSCoR-funded program. In addition to introducing participants to research, one of the Institute's goals is to provide opportunities for meaningful near-peer interactions with students along the STEM pipeline from high school to undergraduate to graduate school. On the end-of-Institute evaluations, almost all students have reported that their discussions with other participants and with graduate students and faculty were a "Highly effective" or "Effective" part of the Institute. In response to a question about how the Institute will impact their course choices or their plans to pursue a career in science, many high school and undergraduate students have noted that they plan to take more science courses. Each year several undergraduates who were previously unsure about a career in science have indicated that they now intend to pursue a science career. When asked how the Institute will impact their classroom practice, teachers most frequently report that they intend to purchase equipment that will enable them to carry out some of the Institute research projects with their students, and that they plan to provide more opportunities for students to collect and analyze data. Funding: NSF 1208055.
The Assessment of the Impact of REU Programs on Student Classroom Performance
NASA Astrophysics Data System (ADS)
Hughes, Chris
2009-03-01
Supporters of undergraduate research claim that the research experience enhances the success of students in their classes and promotes their progress toward completing a science major. Since there are many other variables that can influence a student's progress through a curriculum, it is frequently difficult to compare students from undergraduate research programs with a suitable control group. At James Madison University, a significant number of chemistry and physics majors participate in summer REU programs on campus. However, since JMU is among the top 10% of undergraduate institutions in the US in undergraduate physics enrollment, there are also a significant number who choose not to stay on campus for summer research. Using several years worth of data, we have determined the change in the GPAs of REU students (N=75) from the semester before the REU to the semester after the REU and compared these with the students who did not participate in summer research (N=663). We have found that the REU students' average GPA increased by a statistically significant amount while the non-REU students' average GPA was unchanged to within a standard deviation. We will also discuss other assessment methods used at JMU and some of the limitations in the interpretation of this study.
Nebraska Prostate Cancer Research Program
2011-05-01
is a multifunctional transmembrane receptor. The major function is to transport lysosome enzymes from where they are processed in the Golgi apparatus ...potential improvement for new students in the summer of 2011. Task 5: Announcement of the Year 2 Research Program (months 13-15) Done. Per...various research facilities and biotech companies. Currently, we are waiting for the arrival of the new students. Task 7: Summer Research (month 19
Deaf Students, Teachers, and Interpreters in the Chemistry Lab
NASA Astrophysics Data System (ADS)
Seal, Brenda C.; Wynne, Dorothy H.; MacDonald, Gina
2002-02-01
This report describes an undergraduate research program at James Madison University that includes deaf and hard-of-hearing students from Gallaudet University, deaf teachers from schools for the Deaf, and both professional interpreters and students engaged in sign language interpreter training. Methods used over a three-year period to maximize participation and expand research opportunities for the students, teachers, and interpreters are shared with the hope that similar projects might be encouraged and replicated in other programs.
NASA Astrophysics Data System (ADS)
Squires, A. L.; Boylan, R. D.; Rittenburg, R.; Boll, J.; Allan, P.
2013-12-01
A recent statewide survey assessing STEM perceptions in Idaho showed that high school student interest in science and preparation for college are declining. To address this decline we are piloting an interdisciplinary, community and field-based water science education approach for 10th - 12th grade science courses during the 2013-14 school year called WoW STEMcore. The program is led by graduate students in the University of Idaho (UI) Waters of the West (WoW) program. Our methods are based on proven best practices from eight years of NSF GK-12 experience at UI and over a decade of GK-12 experience at more than 300 programs in the U.S. WoW STEMcore works to strengthen partnerships between WoW graduate students, high school teachers, and regional organizations that work on natural resource management or place-based science education with the intent of sustaining and merging efforts to increase scientific literacy among high school students and to better prepare them for higher education. In addition, graduate students gain outreach, education and communication experience and teachers are exposed to new and relevant research content and methods. WoW STEMcore is fostering these partnerships through water themed projects at three northern Idaho high schools. The pilot program will culminate in Spring 2014 with a regional Water Summit in which all participating students and partners will converge at a two-day youth scientific conference and competition where they can showcase their research and the skills they gained over the course of the year. We hypothesize that through a graduate student-led, field-based program that gets students out of the classroom and thinking about water resource issues in their communities, we will 1) fuel high school students' interest in science through hands on and inquiry-based pedagogy and 2) improve preparation for higher education by providing graduate student mentors to discuss the pathway from high school to college to a career. In this presentation, we will share lessons learned from the first semester of the program, including the planning and design of the program, building partnerships, and leading high school students through the research process. We will also present preliminary results from a pre- and mid-year evaluation of student attitudes towards science and higher education.
NASA Astrophysics Data System (ADS)
Frazier, Wendy Michelle
Science Work Experience Programs for Teachers (SWEPTs) provide an opportunity for science and math teachers to work in research laboratories during the summer to experience science as it is practiced in the laboratory-setting. Through the use of interviews with teachers and students, classroom observations, and an analysis of printed student sheets and student work, the lived experience of a cohort of program participants in Columbia University's Summer Research Program for Secondary School Science Teachers was recorded in an effort to describe the effect of experience in a SWEPT on the classroom environment of teacher participants and student outcomes. Relying on Social Learning Theory and science education reform documentation as a theoretical framework the following dimensions of the classroom were examined: (1) emergent themes that include the participants' perceptions of the importance of technology in the classroom, (2) interpersonal relationships with the teachers at the participants' schools, fellow program participants, research scientists, and students, and (3) changes in epistemological structure, curriculum, instructional strategies, and classroom practices. Methodological and theoretical implications are addressed with respect to future studies, and suggestions for refinement of SWEPTs are provided.
Science Programs Applied Energy Programs Civilian Nuclear Energy Programs Laboratory Directed Research Service Academies Research Associates (SARA) Postdocs, Students Employee, Retiree Resources Benefits New
ERIC Educational Resources Information Center
Maton, Kenneth I.; Beason, Tiffany S.; Godsay, Surbhi; Domingo, Mariano R. Sto.; Bailey, TaShara C.; Sun, Shuyan; Hrabowski, Freeman A., III
2016-01-01
Previous research has shown that the Meyerhoff Scholars Program at the University of Maryland, Baltimore County, is an effective intervention for high-achieving underrepresented minority (URM) students; African-American Meyerhoff students are significantly more likely to enter science, technology, engineering, and mathematics (STEM) PhD programs…
ERIC Educational Resources Information Center
Hendrix, Rebecca; Eick, Charles; Shannon, David
2012-01-01
Creative drama activities designed to help children learn difficult science concepts were integrated into an inquiry-based elementary science program. Children (n = 38) in an upper elementary enrichment program at one primary school were the participants in this action research. The teacher-researcher taught students the Full Option Science…
ERIC Educational Resources Information Center
Schlenker, Richard M.
This document reviews the Pacific Region Junior Science and Humanities Symposium (PJSHS) program for 2003-2004 which is a 10-month, precollege student research program held in Japan. The theme is AtmosphereThe Other Ocean. The program includes a one-week symposium of student delegates who have completed research projects in the sciences or have…
ERIC Educational Resources Information Center
GALLAGHER, JAMES J.; AND OTHERS
SEVEN ARTICLES FROM THE INSTITUTE FOR RESEARCH ON EXCEPTIONAL CHILDREN CONSIDER THE GIFTED CHILD. THE FIRST ARTICLE, "LEADERSHIP TRAINING FOR THE GIFTED--A GRADUATE PROGRAM," IS BY J.J. GALLAGHER, DIRECTOR OF THE PROGRAM. SIX RESEARCH AND DEVELOPMENT PAPERS BY GRADUATE STUDENTS FOLLOW--"THE VARIABLE OF RACE, SEX AND INTELLIGENCE RELATED TO SOCIAL…
ERIC Educational Resources Information Center
Markowitz, Dina G.
2004-01-01
Many biomedical research universities have established outreach programs for precollege students and teachers and partnerships with local school districts to help meet the challenges of science education reform. Science outreach programs held in university research facilities can make science more exciting and innovative for high school students…
Brokaw, James J; O'Loughlin, Valerie D
2015-01-01
In 2008, the Indiana University School of Medicine, in collaboration with the School of Education, admitted its first student to a newly approved PhD program in Anatomy and Cell Biology focusing on educational research rather than biomedical research. The goal of the program is twofold: (1) to provide students with extensive training in all of the anatomical disciplines coupled with sufficient teaching experience to assume major educational responsibilities upon graduation and (2) to train students to conduct rigorous medical education research and other scholarly work necessary for promotion and tenure. The 90 credit hour curriculum consists of biomedical courses taught within the School of Medicine and education courses taught within the School of Education, including courses in health sciences pedagogy, curriculum development, learning theory, quantitative, and qualitative research methods, statistics, and electives. To date, 16 students have entered the program, seven have passed their qualifying examinations, and five have earned their PhD degrees. Four students have received national recognition for their educational research and four graduates have obtained faculty appointments. Going forward, we must adapt the program's biomedical course requirements to incorporate the new integrated curriculum of the medical school, and we must secure additional funding to support more students. Overcoming these challenges will enable us to continue producing a small but stable supply of doctoral-level anatomy educators for a growing academic market. © 2014 American Association of Anatomists.
Educational outreach at the NSF Engineering Research Center for Data Storage Systems
NASA Astrophysics Data System (ADS)
Williams, James E., Jr.
1996-07-01
An aspect of the National Science Foundation Engineering Research Center in Data Storage Systems (DSSC) program that is valued by our sponsors is the way we use our different educational programs to impact the data storage industry in a positive fashion. The most common way to teach data storage materials is in classes that are offered as part of the Carnegie Mellon curriculum. Another way the DSSC attempts to educate students is through outreach programs such as the NSF Research Experiences for Undergraduates and Young Scholars programs, both of which have been very successful and place emphasis and including women, under represented minorities and disable d students. The Center has also established cooperative outreach partnerships which serve to both educate students and benefit the industry. One example is the cooperative program we have had with the Magnetics Technology Centre at the National University of Singapore to help strengthen their research and educational efforts to benefit U.S. data storage companies with plants in Singapore. In addition, the Center has started a program that will help train outstanding students from technical institutes to increase their value as technicians to the data storage industry when they graduate.
A Multiyear Approach to Student-Driven Investigations in Exercise Physiology
ERIC Educational Resources Information Center
FitzPatrick, Kathleen A.; Campisi, Jay
2009-01-01
Many undergraduate institutions offer individual research opportunities for upper-level students in independent study courses and summer undergraduate research programs. These are necessarily limited to a small number of students. Greater numbers of students can benefit from incorporating student-directed investigative experiences into…
NASA Astrophysics Data System (ADS)
Shaner, A. J.; Allen, J. S.; Shipp, S. S.; Kramer, G. Y.; Nahm, A.; Balazs, L.; Fuller, J.; Newland, J.; Snyder, R. D.; Kring, D. A.
2014-12-01
The National Research Council (2012) has expressed a need for participatory science experiences for students. Opportunities are needed for students which 1) allow them to understand how scientific knowledge develops and 2) can heighten their curiosity, capture their interest, and motivate their continued study of science. Studies (e.g., Aydeniz et al., 2011) have also recommend educators provide students with opportunities to do science through extracurricular work with scientists. In addition to being given the opportunity to fully participate in the scientific enterprise, students must also be explicitly guided in their attempts to develop a more appropriate understanding of the nature of the scientific enterprise (McDonald, 2010; Rudge & Howe, 2010; Yacoubian & BouJaoude, 2010). Exploration of the Moon and Asteroids by Secondary Students, or ExMASS, provides such an opportunity for students. The ExMASS program is an education effort managed by the LPI/NASA JSC-led Center for Lunar Science and Exploration (CLSE), one of nine teams comprising NASA's Solar System Exploration Research Virtual Institute (SSERVI). Over the course of one academic year, teams of high school students conduct their own scientific investigations of either Earth's Moon or asteroids, with guidance from a scientist mentor. The program includes two elements: 1) a guided inquiry introductory research activity that builds student knowledge of current lunar/asteroid science and lunar/asteroid data, and 2) an open inquiry research project in which the students apply their knowledge to a self-defined project. Evaluation data collected during the predecessor program to ExMASS revealed many successes, but also room for improvement. In response, an Advisory Group consisting of past teachers and mentors was formed to address the gaps revealed in the evaluation data. The ExMASS program will continue to collect similar evaluation data including assessment of changes in students' lunar/asteroid content knowledge, student attitudes toward science and science careers, and views of the nature of science and scientific inquiry. Exit surveys for teachers, students, and mentors will also be used to gather general feedback about the program and its impact.