Conceptions of Function Composition in College Precalculus Students
ERIC Educational Resources Information Center
Bowling, Stacey
2014-01-01
Past research has shown that students have difficulty developing a robust conception of function. However, little prior research has been performed dealing with student knowledge of function composition, a potentially powerful mathematical concept. This dissertation reports the results of an investigation into student understanding and use of…
Problem Solving, Scaffolding and Learning
ERIC Educational Resources Information Center
Lin, Shih-Yin
2012-01-01
Helping students to construct robust understanding of physics concepts and develop good solving skills is a central goal in many physics classrooms. This thesis examine students' problem solving abilities from different perspectives and explores strategies to scaffold students' learning. In studies involving analogical problem solving…
ERIC Educational Resources Information Center
Costino, Kimberly A.
2018-01-01
Equity-minded institutional transformation requires robust faculty learning. Research has shown that the single most important factor in student success is faculty interaction. Positive, supportive, and empowering faculty interaction is particularly important to the success of female students, poor and working class students, and students of…
Leading-for-Inclusion: Transforming Action through Teacher Talk
ERIC Educational Resources Information Center
Bristol, Laurette
2015-01-01
In Australia, recent policies for educational development have emphasised the importance of stakeholder involvement and advocacy in the promotion of student outcomes. There is robust support for the promotion and development of inclusive educational communities able to respond to the various educational needs of students, communities and staff.…
Developing and Implementing an Assessment Technique to Measure Linked Concepts
ERIC Educational Resources Information Center
Ye, Li; Oueini, Razanne; Lewis, Scott E.
2015-01-01
The links students make among chemistry content is considered essential for a robust, enduring understanding in multiple learning theories. This article describes the development and implementation of an assessment technique, termed a Measure of Linked Concepts, designed to inform instructors on students' understanding of linking content…
An innovative approach to developing the reflective skills of medical students
Henderson, Penny; Johnson, Martin H
2002-01-01
Background Development of the reflective skills of medical students is an acknowledged objective of medical education. Description Description of an educational exercise which uses an email-based process for developing the reflective skills of undergraduate medical students. Student quotations illustrate learning outcomes qualitatively. Discussion The process described is immediate, direct, linked to learning objectives, enables rapid responses to be given to the students individually, and is followed by group sharing of learning. It provides a rigorous and robust feedback loop for students. It is relatively economic for teachers and incidentally benefits curriculum design and evolution. The approach supports development of a reflective approach to learning. PMID:12003640
Teachers Taking Action with Student Perception Survey Data
ERIC Educational Resources Information Center
Villa, Lessita Ann Lorin
2017-01-01
As scrutiny of teacher effectiveness increases, there is a greater call for multiple instruments to measure teacher effectiveness and provide robust feedback to support teacher growth and development. Student perception surveys, questionnaires completed by K-12 students about their teachers, have increasingly been used to evaluate teachers and…
Establishing an Explanatory Model for Mathematics Identity
ERIC Educational Resources Information Center
Cribbs, Jennifer D.; Hazari, Zahra; Sonnert, Gerhard; Sadler, Philip M.
2015-01-01
This article empirically tests a previously developed theoretical framework for mathematics identity based on students' beliefs. The study employs data from more than 9,000 college calculus students across the United States to build a robust structural equation model. While it is generally thought that students' beliefs about their own competence…
Leveraging Interactive Geometry Software to Prompt Discussion
ERIC Educational Resources Information Center
Prasad, Priya V.
2016-01-01
How can we, as teachers, encourage students to move from drawing geometric objects to constructing them and thereby build their mathematical reasoning skills? One way to encourage students to construct instead of draw shapes and to help students develop more robust understandings of geometric relationships and constructions is to use interactive…
On Synchronous Distance Teaching in a Mathematics MS (Master of Science) Program
ERIC Educational Resources Information Center
Li, Kuiyuan; Amin, Raid; Uvah, Josaphat
2011-01-01
A fully online graduate program that was developed at the UWF (University of West Florida) has been successfully implemented using synchronous instruction since fall 2009. The hybrid nature of the developed model has proven to be of benefit to both face-to-face and distance students. Aside from the robustness of students' discussions and…
Robust Methods for Moderation Analysis with a Two-Level Regression Model.
Yang, Miao; Yuan, Ke-Hai
2016-01-01
Moderation analysis has many applications in social sciences. Most widely used estimation methods for moderation analysis assume that errors are normally distributed and homoscedastic. When these assumptions are not met, the results from a classical moderation analysis can be misleading. For more reliable moderation analysis, this article proposes two robust methods with a two-level regression model when the predictors do not contain measurement error. One method is based on maximum likelihood with Student's t distribution and the other is based on M-estimators with Huber-type weights. An algorithm for obtaining the robust estimators is developed. Consistent estimates of standard errors of the robust estimators are provided. The robust approaches are compared against normal-distribution-based maximum likelihood (NML) with respect to power and accuracy of parameter estimates through a simulation study. Results show that the robust approaches outperform NML under various distributional conditions. Application of the robust methods is illustrated through a real data example. An R program is developed and documented to facilitate the application of the robust methods.
Robust Regression for Slope Estimation in Curriculum-Based Measurement Progress Monitoring
ERIC Educational Resources Information Center
Mercer, Sterett H.; Lyons, Alina F.; Johnston, Lauren E.; Millhoff, Courtney L.
2015-01-01
Although ordinary least-squares (OLS) regression has been identified as a preferred method to calculate rates of improvement for individual students during curriculum-based measurement (CBM) progress monitoring, OLS slope estimates are sensitive to the presence of extreme values. Robust estimators have been developed that are less biased by…
Assessing Students' Spiritual and Religious Qualities
ERIC Educational Resources Information Center
Astin, Alexander W.; Astin, Helen S.; Lindholm, Jennifer A.
2011-01-01
This paper describes a comprehensive set of 12 new measures for studying undergraduate students' spiritual and religious development. The three measures of spirituality, four measures of "spiritually related" qualities, and five measures of religiousness demonstrate satisfactory reliability, robustness, and both concurrent and predictive validity.…
ERIC Educational Resources Information Center
Zangori, Laura; Vo, Tina; Forbes, Cory T.; Schwarz, Christina V.
2017-01-01
Scientific modelling is a key practice in which K-12 students should engage to begin developing robust conceptual understanding of natural systems, including water. However, little past research has explored primary students' learning about groundwater, engagement in scientific modelling, and/or the ways in which teachers conceptualise and…
ERIC Educational Resources Information Center
Education Council, 2016
2016-01-01
All Australian governments and the non-government schooling sectors are committed to working together to ensure all students have access to a quality school education with appropriate personalised support and educational interventions. Nationally, these efforts are focussed on the development of a robust national curriculum that provides…
Establishing an Explanatory Model for Mathematics Identity.
Cribbs, Jennifer D; Hazari, Zahra; Sonnert, Gerhard; Sadler, Philip M
2015-04-01
This article empirically tests a previously developed theoretical framework for mathematics identity based on students' beliefs. The study employs data from more than 9,000 college calculus students across the United States to build a robust structural equation model. While it is generally thought that students' beliefs about their own competence in mathematics directly impact their identity as a "math person," findings indicate that students' self-perceptions related to competence and performance have an indirect effect on their mathematics identity, primarily by association with students' interest and external recognition in mathematics. Thus, the model indicates that students' competence and performance beliefs are not sufficient for their mathematics identity development, and it highlights the roles of interest and recognition. © 2015 The Authors. Child Development © 2015 Society for Research in Child Development, Inc.
ERIC Educational Resources Information Center
Zangori, Laura; Peel, Amanda; Kinslow, Andrew; Friedrichsen, Patricia; Sadler, Troy D.
2017-01-01
Carbon cycling is a key natural system that requires robust science literacy to understand how and why climate change is occurring. Studies show that students tend to compartmentalize carbon movement within plants and animals and are challenged to make sense of how carbon cycles on a global scale. Studies also show that students hold faulty models…
ERIC Educational Resources Information Center
Watson, Jeffery; Witham, Peter; St. Louis, Timothy
2010-01-01
The U.S. Department of Education Teacher Incentive Fund (TIF) seeks to transform education compensation systems so that principal and teacher performance (measured through classroom productivity measures) connects to compensation. Classroom-level productivity measures require robust student-teacher linkage data. Organizations such as the…
Towards Automatically Detecting Whether Student Learning Is Shallow
ERIC Educational Resources Information Center
Gowda, Sujith M.; Baker, Ryan S.; Corbett, Albert T.; Rossi, Lisa M.
2013-01-01
Recent research has extended student modeling to infer not just whether a student knows a skill or set of skills, but also whether the student has achieved robust learning--learning that enables the student to transfer their knowledge and prepares them for future learning (PFL). However, a student may fail to have robust learning in two fashions:…
Robust functional regression model for marginal mean and subject-specific inferences.
Cao, Chunzheng; Shi, Jian Qing; Lee, Youngjo
2017-01-01
We introduce flexible robust functional regression models, using various heavy-tailed processes, including a Student t-process. We propose efficient algorithms in estimating parameters for the marginal mean inferences and in predicting conditional means as well as interpolation and extrapolation for the subject-specific inferences. We develop bootstrap prediction intervals (PIs) for conditional mean curves. Numerical studies show that the proposed model provides a robust approach against data contamination or distribution misspecification, and the proposed PIs maintain the nominal confidence levels. A real data application is presented as an illustrative example.
ERIC Educational Resources Information Center
Forbes, Cory T.; Davis, Elizabeth A.
2010-01-01
Curriculum materials are crucial tools with which teachers engage students in science as inquiry. In order to use curriculum materials effectively, however, teachers must develop a robust capacity for pedagogical design, or the ability to mobilize a variety of personal and curricular resources to promote student learning. The purpose of this study…
Language and Learning under the Microscope
ERIC Educational Resources Information Center
Davis, Sarah
2012-01-01
In any content area, teachers have opportunities to help their students develop more robust vocabularies; however, many content area teachers "know relatively little about effective instructional practices for vocabulary development" (Fisher & Frey, 2008). This article offers content area teachers three examples of rich opportunities for word…
Colucci, Philip G; Kostandy, Petro; Shrauner, William R; Arleo, Elizabeth; Fuortes, Michele; Griffin, Andrew S; Huang, Yun-Han; Juluru, Krishna; Tsiouris, Apostolos John
2015-02-01
Rationale and Objectives: The primary role of radiology in the preclinical setting is the use of imaging to improve students' understanding of anatomy. Many currently available Web-based anatomy programs include either suboptimal or overwhelming levels of detail for medical students.Our objective was to develop a user-friendly software program that anatomy instructors can completely tailor to match the desired level of detail for their curriculum, meets the unique needs of the first- and the second-year medical students, and is compatible with most Internet browsers and tablets.Materials and Methods: RadStax is a Web-based application developed using free, open-source, ubiquitous software. RadStax was first introduced as an interactive resource for independent study and later incorporated into lectures. First- and second-year medical students were surveyed for quantitative feedback regarding their experience.Results: RadStax was successfully introduced into our medical school curriculum. It allows the creation of learning modules with labeled multiplanar (MPR) image sets, basic anatomic information, and a self-assessment feature. The program received overwhelmingly positive feedback from students. Of 115 students surveyed, 87.0% found it highly effective as a study tool and 85.2% reported high user satisfaction with the program.Conclusions: RadStax is a novel application for instructors wishing to create an atlas of labeled MPR radiologic studies tailored to meet the specific needs their curriculum. Simple and focused, it provides an interactive experience for students similar to the practice of radiologists.This program is a robust anatomy teaching tool that effectively aids in educating the preclinical medical student.
ERIC Educational Resources Information Center
Loes, Chad N.; Salisbury, Mark H.; Pascarella, Ernest T.
2015-01-01
This study utilized data from the Wabash National Study of Liberal Arts Education to test the robustness of research conducted by Pascarella et al. ("J Coll Stud Dev" 37:7-19, 1996) that explored the relationship between student perceptions of exposure to organized and clear instruction and growth in critical thinking skills among…
Colucci, Philip G.; Kostandy, Petro; Shrauner, William R.; Arleo, Elizabeth; Fuortes, Michele; Griffin, Andrew S.; Huang, Yun-Han; Juluru, Krishna; Tsiouris, Apostolos John
2016-01-01
Rationale and Objectives The primary role of radiology in the preclinical setting is the use of imaging to improve students’ understanding of anatomy. Many currently available Web-based anatomy programs include either suboptimal or overwhelming levels of detail for medical students. Our objective was to develop a user-friendly software program that anatomy instructors can completely tailor to match the desired level of detail for their curriculum, meets the unique needs of the first- and the second-year medical students, and is compatible with most Internet browsers and tablets. Materials and Methods RadStax is a Web-based application developed using free, open-source, ubiquitous software. RadStax was first introduced as an interactive resource for independent study and later incorporated into lectures. First- and second-year medical students were surveyed for quantitative feedback regarding their experience. Results RadStax was successfully introduced into our medical school curriculum. It allows the creation of learning modules with labeled multiplanar (MPR) image sets, basic anatomic information, and a self-assessment feature. The program received overwhelmingly positive feedback from students. Of 115 students surveyed, 87.0% found it highly effective as a study tool and 85.2% reported high user satisfaction with the program. Conclusions RadStax is a novel application for instructors wishing to create an atlas of labeled MPR radiologic studies tailored to meet the specific needs their curriculum. Simple and focused, it provides an interactive experience for students similar to the practice of radiologists. This program is a robust anatomy teaching tool that effectively aids in educating the preclinical medical student. PMID:25964956
Robust nonlinear system identification: Bayesian mixture of experts using the t-distribution
NASA Astrophysics Data System (ADS)
Baldacchino, Tara; Worden, Keith; Rowson, Jennifer
2017-02-01
A novel variational Bayesian mixture of experts model for robust regression of bifurcating and piece-wise continuous processes is introduced. The mixture of experts model is a powerful model which probabilistically splits the input space allowing different models to operate in the separate regions. However, current methods have no fail-safe against outliers. In this paper, a robust mixture of experts model is proposed which consists of Student-t mixture models at the gates and Student-t distributed experts, trained via Bayesian inference. The Student-t distribution has heavier tails than the Gaussian distribution, and so it is more robust to outliers, noise and non-normality in the data. Using both simulated data and real data obtained from the Z24 bridge this robust mixture of experts performs better than its Gaussian counterpart when outliers are present. In particular, it provides robustness to outliers in two forms: unbiased parameter regression models, and robustness to overfitting/complex models.
Cognitive Issues in Learning Advanced Physics: An Example from Quantum Mechanics
NASA Astrophysics Data System (ADS)
Singh, Chandralekha; Zhu, Guangtian
2009-11-01
We are investigating cognitive issues in learning quantum mechanics in order to develop effective teaching and learning tools. The analysis of cognitive issues is particularly important for bridging the gap between the quantitative and conceptual aspects of quantum mechanics and for ensuring that the learning tools help students build a robust knowledge structure. We discuss the cognitive aspects of quantum mechanics that are similar or different from those of introductory physics and their implications for developing strategies to help students develop a good grasp of quantum mechanics.
ERIC Educational Resources Information Center
Pruneau, Genevieve Mary Catherine
2010-01-01
Although many people are exposed to trauma, substantially fewer develop posttraumatic stress disorder (PTSD). Given this, studies have examined risk and protective factors for developing PTSD. This literature has established that there is a robust negative correlation between social support and PTSD. Attachment insecurity may be an informative…
ERIC Educational Resources Information Center
McGee, Ebony O.
2015-01-01
I introduce the construct of fragile and robust identities for the purpose of exploring the experiences that influenced the mathematical and racial identities of high-achieving Black college students in mathematics and engineering. These students maintained high levels of academic achievement in these fields while enduring marginalization,…
Archambeau, Cédric; Verleysen, Michel
2007-01-01
A new variational Bayesian learning algorithm for Student-t mixture models is introduced. This algorithm leads to (i) robust density estimation, (ii) robust clustering and (iii) robust automatic model selection. Gaussian mixture models are learning machines which are based on a divide-and-conquer approach. They are commonly used for density estimation and clustering tasks, but are sensitive to outliers. The Student-t distribution has heavier tails than the Gaussian distribution and is therefore less sensitive to any departure of the empirical distribution from Gaussianity. As a consequence, the Student-t distribution is suitable for constructing robust mixture models. In this work, we formalize the Bayesian Student-t mixture model as a latent variable model in a different way from Svensén and Bishop [Svensén, M., & Bishop, C. M. (2005). Robust Bayesian mixture modelling. Neurocomputing, 64, 235-252]. The main difference resides in the fact that it is not necessary to assume a factorized approximation of the posterior distribution on the latent indicator variables and the latent scale variables in order to obtain a tractable solution. Not neglecting the correlations between these unobserved random variables leads to a Bayesian model having an increased robustness. Furthermore, it is expected that the lower bound on the log-evidence is tighter. Based on this bound, the model complexity, i.e. the number of components in the mixture, can be inferred with a higher confidence.
A new method for teaching physical examination to junior medical students.
Sayma, Meelad; Williams, Hywel Rhys
2016-01-01
Teaching effective physical examination is a key component in the education of medical students. Preclinical medical students often have insufficient clinical knowledge to apply to physical examination recall, which may hinder their learning when taught through certain understanding-based models. This pilot project aimed to develop a method to teach physical examination to preclinical medical students using "core clinical cases", overcoming the need for "rote" learning. This project was developed utilizing three cycles of planning, action, and reflection. Thematic analysis of feedback was used to improve this model, and ensure it met student expectations. A model core clinical case developed in this project is described, with gout as the basis for a "foot and ankle" examination. Key limitations and difficulties encountered on implementation of this pilot are discussed for future users, including the difficulty encountered in "content overload". This approach aims to teach junior medical students physical examination through understanding, using a simulated patient environment. Robust research is now required to demonstrate efficacy and repeatability in the physical examination of other systems.
Challenges in teaching modern manufacturing technologies
NASA Astrophysics Data System (ADS)
Ngaile, Gracious; Wang, Jyhwen; Gau, Jenn-Terng
2015-07-01
Teaching of manufacturing courses for undergraduate engineering students has become a challenge due to industrial globalisation coupled with influx of new innovations, technologies, customer-driven products. This paper discusses development of a modern manufacturing course taught concurrently in three institutions where students collaborate in executing various projects. Lectures are developed to contain materials featuring advanced manufacturing technologies, R&D trends in manufacturing. Pre- and post-surveys were conducted by an external evaluator to assess the impact of the course on increase in student's knowledge of manufacturing; increase students' preparedness and confidence in effective communication and; increase students' interest in pursuing additional academic studies and/or a career path in manufacturing and high technology. The surveyed data indicate that the students perceived significant gains in manufacturing knowledge and preparedness in effective communication. The study also shows that implementation of a collaborative course within multiple institutions requires a robust and collective communication platform.
NASA Astrophysics Data System (ADS)
Choppin, Jeffrey
2011-03-01
This study explores the extent to which a teacher elicited students' mathematical reasoning through the use of challenging tasks and the role her knowledge played in doing so. I characterised the teacher's knowledge in terms of a local theory of instruction, a form of pedagogical content knowledge that involves an empirically tested set of conjectures situated within a mathematical domain. Video data were collected and analysed and used to stimulate the teacher's reflection on her enactments of an instructional sequence. The teacher, chosen for how she consistently elicited student reasoning, showed evidence of possessing a local theory in that she articulated the ways student thinking developed over time, the processes by which that thinking developed, and the resources that facilitated the development of student thinking. Her knowledge informed how she revised and enacted challenging tasks in ways that elicited and refined student thinking around integer addition and subtraction. Furthermore, her knowledge and practices emphasised the progressive formalisation of students' ideas as a key learning process. A key implication of this study is that teachers are able to develop robust knowledge from enacting challenging tasks, knowledge that organises how they elicit and refine student reasoning from those tasks.
Fostering Student Introspection through Guided Reflection Forms
NASA Astrophysics Data System (ADS)
Wood, Laura; Matheson, Amanda; Franklin, Scott
2017-01-01
Student self-reflection is an important metacognitive skill to developing expert-like habits of mind. This study focuses on student responses to Guided Reflection Forms (GRFs) and individualized instructor feedback to the submissions. Student and instructor entries were hand-coded by an emergent rubric and, separately, analyzed with LIWC (Linguistic Inquiry and Word Count), a computerized text analysis program that extracts affective sentiment. Sentiment analysis supports the development of a stable basis set (rubric) to describe responses that is robust across both introductory and advanced classes. The analysis also reveals the instructor's use of the ``praise sandwich,'' instinctively embedding critiques and suggestions between specific and general encouragements. The study demonstrates the utility of validated, automated, sentiment analysis as a method by which to analyze large corpuses of written text.
Problems Identifying Independent and Dependent Variables
ERIC Educational Resources Information Center
Leatham, Keith R.
2012-01-01
This paper discusses one step from the scientific method--that of identifying independent and dependent variables--from both scientific and mathematical perspectives. It begins by analyzing an episode from a middle school mathematics classroom that illustrates the need for students and teachers alike to develop a robust understanding of…
Understanding Multicultural Education: Equity for All Students
ERIC Educational Resources Information Center
Rios, Francisco; Stanton, Christine Rogers
2011-01-01
Multicultural education has evolved over the last 25 years to become a promising, productive, and positive approach to education within an increasingly diverse schooling context. The academic discipline has developed models, robust definitions and goals, and specific pedagogical principles related to an education that is multicultural. Almost all…
Developing Essential Understanding of Functions for Teaching Mathematics in Grades 9-12
ERIC Educational Resources Information Center
Lloyd, Gwendolyn; Beckmann, Sybilla; Zbiek, Rose Mary; Cooney, Thomas
2010-01-01
Are sequences functions? What can't the popular "vertical line test" be applied in some cases to determine if a relation is a function? How does the idea of rate of change connect with simpler ideas about proportionality as well as more advanced topics in calculus? Helping high school students develop a robust understanding of functions requires…
How Robustly Does Cannabis Use Associate to College Grades? Findings From Two Cohorts.
Martinez, Julia A; Roth, Madeline G; Johnson, Douglas N; Jones, Jane A
2015-01-01
Along with recent changes in cannabis legalization and decriminalization, there has been an increasing amount of attention aimed at cannabis use and outcomes in college. Although some amount of cannabis use might be expected under theories of collegiate identity development, public health research indicates that cannabis use ultimately associates with negative vocational outcomes. To examine how cannabis use associates with college grade point average specifically, we surveyed n = 1,080 full-time college students and a replication sample of n = 590. Results showed that even after accounting for other measures of student identity formation and drug use, increased cannabis use was robustly associated with lower grade point average. Future research should examine the mechanisms underlying this association. Nevertheless, while laws and attitudes toward cannabis evolve, initiatives to decrease college use should continue. © The Author(s) 2015.
2003-10-02
provide a world-class, advanced research center for bioengineering development and graduate education in high-intensity, focused ultrasound ( HIFU ). This...convenient, and robust. These technological enhancements have enabled the development of HIFU arrays and image-guided ultrasound systems for greater... Ultrasound (CIMU). The many disparate facilities and technical capabilities available to CIMU staff and students were integrated and enhanced to
A robust bayesian estimate of the concordance correlation coefficient.
Feng, Dai; Baumgartner, Richard; Svetnik, Vladimir
2015-01-01
A need for assessment of agreement arises in many situations including statistical biomarker qualification or assay or method validation. Concordance correlation coefficient (CCC) is one of the most popular scaled indices reported in evaluation of agreement. Robust methods for CCC estimation currently present an important statistical challenge. Here, we propose a novel Bayesian method of robust estimation of CCC based on multivariate Student's t-distribution and compare it with its alternatives. Furthermore, we extend the method to practically relevant settings, enabling incorporation of confounding covariates and replications. The superiority of the new approach is demonstrated using simulation as well as real datasets from biomarker application in electroencephalography (EEG). This biomarker is relevant in neuroscience for development of treatments for insomnia.
A Quantitative Analysis of Children's Splitting Operations and Fraction Schemes
ERIC Educational Resources Information Center
Norton, Anderson; Wilkins, Jesse L. M.
2009-01-01
Teaching experiments with pairs of children have generated several hypotheses about students' construction of fractions. For example, Steffe (2004) hypothesized that robust conceptions of improper fractions depends on the development of a splitting operation. Results from teaching experiments that rely on scheme theory and Steffe's hierarchy of…
FAA Airport Design Competition for Universities
NASA Technical Reports Server (NTRS)
Sandy, Mary
2008-01-01
Raise awareness of the importance of airports to the National Airspace System infrastructure. Increase the involvement of the academic community in addressing airport operations and infrastructure issues and needs. Engage U.S. students in the conceptualization of applications, systems and equipment capable of addressing related challenges in a robust, reliable and comprehensive manner. Encourage U.S. undergraduate and graduate students to contribute innovative ideas and solutions to airport and runway safety issues. Provide the framework and incentives for quality educational experiences for university students. d Develop an awareness of and an interest in airports as a vital and interesting area for engineering and technology careers.
Teacher Pupil Control Ideology and Behavior as Predictors of Classroom Robustness.
ERIC Educational Resources Information Center
Estep, Linda E.; And Others
1980-01-01
It was hypothesized that confrontations between a strict teacher and misbehaving students would add drama and robustness to the classroom. In 88 secondary classrooms, robustness and teacher's control ideology and behavior were measured. The hypothesis was rejected; humanistic control behavior related to high robustness. A companion elementary…
A new method for teaching physical examination to junior medical students
Sayma, Meelad; Williams, Hywel Rhys
2016-01-01
Introduction Teaching effective physical examination is a key component in the education of medical students. Preclinical medical students often have insufficient clinical knowledge to apply to physical examination recall, which may hinder their learning when taught through certain understanding-based models. This pilot project aimed to develop a method to teach physical examination to preclinical medical students using “core clinical cases”, overcoming the need for “rote” learning. Methods This project was developed utilizing three cycles of planning, action, and reflection. Thematic analysis of feedback was used to improve this model, and ensure it met student expectations. Results and discussion A model core clinical case developed in this project is described, with gout as the basis for a “foot and ankle” examination. Key limitations and difficulties encountered on implementation of this pilot are discussed for future users, including the difficulty encountered in “content overload”. Conclusion This approach aims to teach junior medical students physical examination through understanding, using a simulated patient environment. Robust research is now required to demonstrate efficacy and repeatability in the physical examination of other systems. PMID:26937208
Using Biweight M-Estimates in the Two-Sample Problem. 1. Symmetric Populations
1982-01-01
to a Student’s t distribution, across a broad range of a - levels . To be conservative, we might wish to approximate "t" by a Student’s t on nine-tenths...n-i0). While the robustness of classical procedures for extreme a - levels has not been investigated, a comparison with the values in Lee and...D’Agostino (1976) indicates that this procedure is highly robust of validity at a - .05, presumably this robustness extends to the extreme a - levels as well
Student Understanding of Intermolecular Forces: A Multimodal Study
ERIC Educational Resources Information Center
Cooper, Melanie M.; Williams, Leah C.; Underwood, Sonia M.
2015-01-01
The ability to use representations of molecular structure to predict the macroscopic properties of a substance is central to the development of a robust understanding of chemistry. Intermolecular forces (IMFs) play an important role in this process because they provide a mechanism for how and why molecules interact. In this study, we investigate…
Teaching Glycosis Regulation to Undergraduates Using An Electrical Power Generation Analogy
ERIC Educational Resources Information Center
Stavrianeas, Stasinos
2005-01-01
Biology, physiology, and allied health biochemistry textbooks cover metabolic pathways such as glycolysis; however, most do not include much discussion of how these pathways are regulated within the cell. Because the details of these complex regulatory processes can be difficult for students to learn, we have developed a robust teaching…
The Future of Natural Selection Knowledge Measurement: A Reply to Anderson et al. (2010)
ERIC Educational Resources Information Center
Nehm, Ross H.; Schonfeld, Irvin Sam
2010-01-01
The development of rich, reliable, and robust measures of the composition, structure, and stability of student thinking about core scientific ideas (such as natural selection) remains a complex challenge facing science educators. In their recent article (Nehm & Schonfeld 2008), the authors explored the strengths, weaknesses, and insights provided…
The Validation of a Case-Based, Cumulative Assessment and Progressions Examination
Coker, Adeola O.; Copeland, Jeffrey T.; Gottlieb, Helmut B.; Horlen, Cheryl; Smith, Helen E.; Urteaga, Elizabeth M.; Ramsinghani, Sushma; Zertuche, Alejandra; Maize, David
2016-01-01
Objective. To assess content and criterion validity, as well as reliability of an internally developed, case-based, cumulative, high-stakes third-year Annual Student Assessment and Progression Examination (P3 ASAP Exam). Methods. Content validity was assessed through the writing-reviewing process. Criterion validity was assessed by comparing student scores on the P3 ASAP Exam with the nationally validated Pharmacy Curriculum Outcomes Assessment (PCOA). Reliability was assessed with psychometric analysis comparing student performance over four years. Results. The P3 ASAP Exam showed content validity through representation of didactic courses and professional outcomes. Similar scores on the P3 ASAP Exam and PCOA with Pearson correlation coefficient established criterion validity. Consistent student performance using Kuder-Richardson coefficient (KR-20) since 2012 reflected reliability of the examination. Conclusion. Pharmacy schools can implement internally developed, high-stakes, cumulative progression examinations that are valid and reliable using a robust writing-reviewing process and psychometric analyses. PMID:26941435
ERIC Educational Resources Information Center
O'Bryan, Charles R.
2017-01-01
The positive impact of school libraries on student achievement is documented in a robust body of literature. Despite this evidence, the number of certified school librarians is declining nationally, and concerted advocacy efforts on the part of the American Library Association, the American Association of School Libraries and individual teacher…
(Dis)Orientation and Spatial Sense: Topological Thinking in the Middle Grades
ERIC Educational Resources Information Center
de Freitas, Elizabeth; McCarthy, MaryJean
2014-01-01
In this paper, we focus on topological approaches to space and we argue that experiences with topology allow middle school students to develop a more robust understanding of orientation and dimension. We frame our argument in terms of the phenomenological literature on perception and corporeal space. We discuss findings from a quasi-experimental…
Assembly of a Robust and Economical MnO[subscript2]-Based Reference Electrode
ERIC Educational Resources Information Center
Masse´, Robert C.; Gerken, James B.
2015-01-01
There is a dearth of base-stable reference electrodes that are suitable for use by students in a teaching laboratory or undergraduate research context. To remedy this, we have developed a technique to produce reference electrodes suitable for alkaline environments. By utilizing components of a commercially available alkaline-type battery, an…
Interim Assessment Data: A Case Study on Modifying Instruction Based on Benchmark Feedback
ERIC Educational Resources Information Center
Lange, Tracey M.
2014-01-01
The role of data analysis in the jobs of instructional leaders has become as commonplace as teachers creating lesson plans and taking roll in the classroom. Teachers and building leaders routinely use interim assessment data to develop thoughtful and robust instructional plans that address identified areas of student need. The link between the…
ERIC Educational Resources Information Center
Lord, Richard L.; Davis, Lisa; Millam, Evan L.; Brown, Eric; Offerman, Chad; Wray, Paul; Green, Susan M. E.
2008-01-01
We present a first-principles determination of the photoelectron spectra of water and hypochlorous acid as a laboratory exercise accessible to students in an undergraduate physical chemistry course. This paper demonstrates the robustness and user-friendliness of software developed for the Franck-Condon factor calculation. While the calculator is…
ERIC Educational Resources Information Center
Owusu-Agyeman, Yaw; Larbi-Siaw, Otu
2017-01-01
This study argues that in developing a robust framework for students in a blended learning environment, Structural Alignment (SA) becomes the third principle of specialisation in addition to Epistemic Relation (ER) and Social Relation (SR). We provide an extended code: (ER+/-, SR+/-, SA+/-) that present strong classification and framing to the…
NASA Astrophysics Data System (ADS)
Charlevoix, D. J.; Morris, A. R.
2015-12-01
Engaging lower-division undergraduates in research experiences is a key but challenging aspect of guiding talented students into the geoscience research pipeline. UNAVCO conducted a summer internship program to prepare first and second year college students for participation in authentic, scientific research. Many students in their first two years of academic studies do not have the science content knowledge or sufficient math skills to conduct independent research. Students from groups historically underrepresented in the geosciences may face additional challenges in that they often have a less robust support structure to help them navigate the university environment and may be less aware of professional opportunities in the geosciences.UNAVCO, manager of NSF's geodetic facility, hosted four students during summer 2015 internship experience aimed to help them develop skills that will prepare them for research internships and skills that will help them advance professionally. Students spent eight weeks working with UNAVCO technical staff learning how to use equipment, prepare instrumentation for field campaigns, among other technical skills. Interns also participated in a suite of professional development activities including communications workshops, skills seminars, career circles, geology-focused field trips, and informal interactions with research interns and graduate student interns at UNAVCO. This presentation will outline the successes and challenges of engaging students early in their academic careers and outline the unique role such experiences can have in students' academic careers.
ERIC Educational Resources Information Center
Koponen, Ismo T.; Kokkonen, Tommi; Nousiainen, Maiji
2017-01-01
We discuss here conceptual change and the formation of robust learning outcomes from the viewpoint of complex dynamic systems (CDS). The CDS view considers students' conceptions as context dependent and multifaceted structures which depend on the context of their application. In the CDS view the conceptual patterns (i.e. intuitive conceptions…
Achievement Emotions and Academic Performance: Longitudinal Models of Reciprocal Effects.
Pekrun, Reinhard; Lichtenfeld, Stephanie; Marsh, Herbert W; Murayama, Kou; Goetz, Thomas
2017-09-01
A reciprocal effects model linking emotion and achievement over time is proposed. The model was tested using five annual waves of the Project for the Analysis of Learning and Achievement in Mathematics (PALMA) longitudinal study, which investigated adolescents' development in mathematics (Grades 5-9; N = 3,425 German students; mean starting age = 11.7 years; representative sample). Structural equation modeling showed that positive emotions (enjoyment, pride) positively predicted subsequent achievement (math end-of-the-year grades and test scores), and that achievement positively predicted these emotions, controlling for students' gender, intelligence, and family socioeconomic status. Negative emotions (anger, anxiety, shame, boredom, hopelessness) negatively predicted achievement, and achievement negatively predicted these emotions. The findings were robust across waves, achievement indicators, and school tracks, highlighting the importance of emotions for students' achievement and of achievement for the development of emotions. © 2017 The Authors. Child Development © 2017 Society for Research in Child Development, Inc.
Teaching With and About Nature of Science, and Science Teacher Knowledge Domains
NASA Astrophysics Data System (ADS)
Abd-El-Khalick, Fouad
2013-09-01
The ubiquitous goals of helping precollege students develop informed conceptions of nature of science (NOS) and experience inquiry learning environments that progressively approximate authentic scientific practice have been long-standing and central aims of science education reforms around the globe. However, the realization of these goals continues to elude the science education community partly because of a persistent, albeit not empirically supported, coupling of the two goals in the form of `teaching about NOS with inquiry'. In this context, the present paper aims, first, to introduce the notions of, and articulate the distinction between, teaching with and about NOS, which will allow for the meaningful coupling of the two desired goals. Second, the paper aims to explicate science teachers' knowledge domains requisite for effective teaching with and about NOS. The paper argues that research and development efforts dedicated to helping science teachers develop deep, robust, and integrated NOS understandings would have the dual benefits of not only enabling teachers to convey to students images of science and scientific practice that are commensurate with historical, philosophical, sociological, and psychological scholarship (teaching about NOS), but also to structure robust inquiry learning environments that approximate authentic scientific practice, and implement effective pedagogical approaches that share a lot of the characteristics of best science teaching practices (teaching with NOS).
Cultivating Sustainable and Authentic Service-Learning Partnerships in the Environmental Sciences
NASA Astrophysics Data System (ADS)
Ivanochko, Tara; Grain, Kari
2017-04-01
The two-term, community service-learning capstone course for Environmental Sciences at the University of British Columbia, Canada, aims to support both community and students using authentic science practice in service of the community. During the course development, we implemented a routine process for student and community feedback, instructor reflection and course revision. Drawing on data from 23 interviews and 9 focus groups collected over three years, findings from this study highlight ways that community partnerships can be sustained while students have an authentic science experience. Based on data collected from community partners, we highlight the key processes, challenges, successes, and practical considerations in the creation and sustainability of a scientifically robust service-learning course.
ERIC Educational Resources Information Center
Baker, Ryan S. J. d.; Corbett, Albert T.; Gowda, Sujith M.
2013-01-01
Recently, there has been growing emphasis on supporting robust learning within intelligent tutoring systems, assessed by measures such as transfer to related skills, preparation for future learning, and longer term retention. It has been shown that different pedagogical strategies promote robust learning to different degrees. However, the student…
Bayesian Inference and Application of Robust Growth Curve Models Using Student's "t" Distribution
ERIC Educational Resources Information Center
Zhang, Zhiyong; Lai, Keke; Lu, Zhenqiu; Tong, Xin
2013-01-01
Despite the widespread popularity of growth curve analysis, few studies have investigated robust growth curve models. In this article, the "t" distribution is applied to model heavy-tailed data and contaminated normal data with outliers for growth curve analysis. The derived robust growth curve models are estimated through Bayesian…
ERIC Educational Resources Information Center
Hanushek, Eric A.; Woessmann, Ludger
2009-01-01
We provide evidence that the robust association between cognitive skills and economic growth reflects a causal effect of cognitive skills and supports the economic benefits of effective school policy. We develop a new common metric that allows tracking student achievement across countries, over time, and along the within-country distribution.…
Beccaria, Lisa; Beccaria, Gavin; McCosker, Catherine
2018-03-01
It is crucial that nursing students develop skills and confidence in using Evidence-Based Practice principles early in their education. This should be assessed with valid tools however, to date, few measures have been developed and applied to the student population. To examine the structural validity of the Student Evidence-Based Practice Questionnaire (S-EBPQ), with an Australian online nursing student cohort. A cross-sectional study for constructing validity. Three hundred and forty-five undergraduate nursing students from an Australian regional university were recruited across two semesters. Confirmatory Factor Analysis was used to examine the structural validity. Confirmatory Factor Analysis was applied which resulted in a good fitting model, based on a revised 20-item tool. The S-EBPQ tool remains a psychometrically robust measure of evidence-based practice use, attitudes, and knowledge and skills and can be applied in an online Australian student context. The findings of this study provided further evidence of the reliability and four factor structure of the S-EBPQ. Opportunities for further refinement of the tool may result in improvements in structural validity. Copyright © 2018 Elsevier Ltd. All rights reserved.
Abou Samra, Haifa; McGrath, Jacqueline M; Estes, Tracy
2013-06-01
No instrument exists that measures student perceptions of the faculty role. Such a measure is necessary to evaluate the efficacy of interventions aimed at attracting students to the faculty career path. We developed the Nurse Educator Scale (NES). The initial scale items were generated using the social cognitive career theory (SCCT) constructs and were reviewed by an expert panel to ensure content validity. Exploratory factor analysis was used. The optimized 25-item, 7-point Likert scale has a Cronbach's alpha reliability coefficient of 0.85, with a total variance of 42%. The underlying factor structure supported three defining characteristics congruent with SCCT: outcome expectations (alpha = 0.79), relevant knowledge (alpha = 0.67), and social influence (alpha = 0.80). A stand-alone, item-measuring goal setting was also supported. The NES provides a valid and reliable measure of students' intentions and motivations to pursue a future career as a nurse educator or scientist. Copyright 2013, SLACK Incorporated.
NASA Astrophysics Data System (ADS)
Walsh, Elizabeth Mary; McGowan, Veronica Cassone
2017-01-01
Science education trends promote student engagement in authentic knowledge in practice to tackle personally consequential problems. This study explored how partnering scientists and students on a social media platform supported students' development of disciplinary practice knowledge through practice-based learning with experts during two pilot enactments of a project-based curriculum focusing on the ecological impacts of climate change. Through the online platform, scientists provided feedback on students' infographics, visual argumentation artifacts that use data to communicate about climate change science. We conceptualize the infographics and professional data sets as boundary objects that supported authentic argumentation practices across classroom and professional contexts, but found that student generated data was not robust enough to cross these boundaries. Analysis of the structure and content of the scientists' feedback revealed that when critiquing argumentation, scientists initiated engagement in multiple scientific practices, supporting a holistic rather than discrete model of practice-based learning. While traditional classroom inquiry has emphasized student experimentation, we found that engagement with existing professional data sets provided students with a platform for developing expertise in systemic scientific practices during argument construction. We further found that many students increased the complexity and improved the visual presentation of their arguments after feedback.
Quantitative critical thinking: Student activities using Bayesian updating
NASA Astrophysics Data System (ADS)
Warren, Aaron R.
2018-05-01
One of the central roles of physics education is the development of students' ability to evaluate proposed hypotheses and models. This ability is important not just for students' understanding of physics but also to prepare students for future learning beyond physics. In particular, it is often hoped that students will better understand the manner in which physicists leverage the availability of prior knowledge to guide and constrain the construction of new knowledge. Here, we discuss how the use of Bayes' Theorem to update the estimated likelihood of hypotheses and models can help achieve these educational goals through its integration with evaluative activities that use hypothetico-deductive reasoning. Several types of classroom and laboratory activities are presented that engage students in the practice of Bayesian likelihood updating on the basis of either consistency with experimental data or consistency with pre-established principles and models. This approach is sufficiently simple for introductory physics students while offering a robust mechanism to guide relatively sophisticated student reflection concerning models, hypotheses, and problem-solutions. A quasi-experimental study utilizing algebra-based introductory courses is presented to assess the impact of these activities on student epistemological development. The results indicate gains on the Epistemological Beliefs Assessment for Physical Science (EBAPS) at a minimal cost of class-time.
NASA Astrophysics Data System (ADS)
Sayer, Ryan; Maries, Alexandru; Singh, Chandralekha
2017-06-01
Learning quantum mechanics is challenging, even for upper-level undergraduate and graduate students. Research-validated interactive tutorials that build on students' prior knowledge can be useful tools to enhance student learning. We have been investigating student difficulties with quantum mechanics pertaining to the double-slit experiment in various situations that appear to be counterintuitive and contradict classical notions of particles and waves. For example, if we send single electrons through the slits, they may behave as a "wave" in part of the experiment and as a "particle" in another part of the same experiment. Here we discuss the development and evaluation of a research-validated Quantum Interactive Learning Tutorial (QuILT) which makes use of an interactive simulation to improve student understanding of the double-slit experiment and strives to help students develop a good grasp of foundational issues in quantum mechanics. We discuss common student difficulties identified during the development and evaluation of the QuILT and analyze the data from the pretest and post test administered to the upper-level undergraduate and first-year physics graduate students before and after they worked on the QuILT to assess its effectiveness. These data suggest that on average, the QuILT was effective in helping students develop a more robust understanding of foundational concepts in quantum mechanics that defy classical intuition using the context of the double-slit experiment. Moreover, upper-level undergraduates outperformed physics graduate students on the post test. One possible reason for this difference in performance may be the level of student engagement with the QuILT due to the grade incentive. In the undergraduate course, the post test was graded for correctness while in the graduate course, it was only graded for completeness.
NASA Astrophysics Data System (ADS)
Pujayanto, Pujayanto; Budiharti, Rini; Adhitama, Egy; Nuraini, Niken Rizky Amalia; Vernanda Putri, Hanung
2018-07-01
This research proposes the development of a web-based assessment system to identify students’ misconception. The system, named WAS (web-based assessment system), can identify students’ misconception profile on linear kinematics automatically after the student has finished the test. The test instrument was developed and validated. Items were constructed and arranged from the result of a focus group discussion (FGD), related to previous research. Fifty eight students (female = 37, male = 21) were used as samples. They were from different classes with 18 students from the gifted class and another 40 students from the normal class. WAS was designed specifically to support the teacher as an efficient replacement for a paper-based test system. In addition, WAS offers flexible timing functionally, stand-alone subject module, robustness and scalability. The entire WAS program and interface was developed with open source-based technologies such as the XAMP server, MySQL database, Javascript and PHP. It provides results immediately and provides diagrammatic questions as well as scientific symbols. It is feasible to apply this system to many students at once. Thus, it could be integrated in many schools as part of physics courses.
Inquiry style interactive virtual experiments: a case on circular motion
NASA Astrophysics Data System (ADS)
Zhou, Shaona; Han, Jing; Pelz, Nathaniel; Wang, Xiaojun; Peng, Liangyu; Xiao, Hua; Bao, Lei
2011-11-01
Interest in computer-based learning, especially in the use of virtual reality simulations is increasing rapidly. While there are good reasons to believe that technologies have the potential to improve teaching and learning, how to utilize the technology effectively in teaching specific content difficulties is challenging. To help students develop robust understandings of correct physics concepts, we have developed interactive virtual experiment simulations that have the unique feature of enabling students to experience force and motion via an analogue joystick, allowing them to feel the applied force and simultaneously see its effects. The simulations provide students learning experiences that integrate both scientific representations and low-level sensory cues such as haptic cues under a single setting. In this paper, we introduce a virtual experiment module on circular motion. A controlled study has been conducted to evaluate the impact of using this virtual experiment on students' learning of force and motion in the context of circular motion. The results show that the interactive virtual experiment method is preferred by students and is more effective in helping students grasp the physics concepts than the traditional education method such as problem-solving practices. Our research suggests that well-developed interactive virtual experiments can be useful tools in teaching difficult concepts in science.
Linder, Regina
2012-01-01
Health care occupies a distinct niche in an economy struggling to recover from recession. Professions related to the care of patients are thought to be relatively resistant to downturns, and thus become attractive to students typically drawn to more lucrative pursuits. Currently, a higher profile for clinical laboratory technology among college students and those considering career change results in larger and better prepared applicant pools. However, after decades of contraction marked by closing of programs, prospective students encounter an educational system without the capacity or vigor to meet their needs. Here discussed are some principles and proposals to allow universities, partnering with health-care providers, government agencies, and other stake-holders to develop new programs, or reenergize existing ones to serve our students and patients. Principles include academic rigor in biomedical and clinical science, multiple points of entry for students, flexibility in format, cost effectiveness, career ladders and robust partnerships. PMID:23653802
ERIC Educational Resources Information Center
Egan, Maeve; Connors, E´ilis Margaret; Anwar, Zeeshan; Walsh, John J.
2015-01-01
A simple, robust, and reproducible method was developed for the isolation of (-)-menthol from peppermint oil and to study the effect of different types of leaving groups, catalysts, solvents, and tertiary base on the extent of esterification of (-)-menthol to (-)-menthyl acetate. In this experiment, students compare leaving group properties of…
Sabel, Jaime L.; Dauer, Joseph T.; Forbes, Cory T.
2017-01-01
Providing feedback to students as they learn to integrate individual concepts into complex systems is an important way to help them to develop robust understanding, but it is challenging in large, undergraduate classes for instructors to provide feedback that is frequent and directed enough to help individual students. Various scaffolds can be used to help students engage in self-regulated learning and generate internal feedback to improve their learning. This study examined the use of enhanced answer keys with added reflection questions and instruction as scaffolds for engaging undergraduate students in self-regulated learning within an introductory biology course. Study findings show that both the enhanced answer keys and reflection questions helped students to engage in metacognition and develop greater understanding of biological concepts. Further, students who received additional instruction on the use of the scaffolds changed how they used them and, by the end of the semester, were using the scaffolds in significantly different ways and showed significantly higher learning gains than students who did not receive the instruction. These findings provide evidence for the benefit of designing scaffolds within biology courses that will support students in engaging in metacognition and enhancing their understanding of biological concepts. PMID:28645893
NASA Astrophysics Data System (ADS)
Zeilik, Michael; Schau, Candace; Mattern, Nancy
1999-10-01
We report on a long-term, large-scale study of a one-semester, conceptually based, introductory astronomy course with data from more than 400 students over three semesters at the University of New Mexico. Using traditional and alternative assessment tools developed for the project, we examined the pre- and postcourse results for Fall 1994, Spring 1995, and Fall 1995. We find our results are robust: novice students show large, positive gains on assessments of conceptual understanding and connected understanding of the knowledge structure of astronomy. We find no relationship between course achievement and completion of prior courses in science or math; we do find a small to moderate relationship between students' science self-image and course achievement. Also, we detect little change over each semester in students' mildly positive incoming attitudes about astronomy and science.
NASA Astrophysics Data System (ADS)
Adams, W. K.; Perkins, K. K.; Podolefsky, N. S.; Dubson, M.; Finkelstein, N. D.; Wieman, C. E.
2006-06-01
The Colorado Learning Attitudes about Science Survey (CLASS) is a new instrument designed to measure student beliefs about physics and about learning physics. This instrument extends previous work by probing additional aspects of student beliefs and by using wording suitable for students in a wide variety of physics courses. The CLASS has been validated using interviews, reliability studies, and extensive statistical analyses of responses from over 5000 students. In addition, a new methodology for determining useful and statistically robust categories of student beliefs has been developed. This paper serves as the foundation for an extensive study of how student beliefs impact and are impacted by their educational experiences. For example, this survey measures the following: that most teaching practices cause substantial drops in student scores; that a student’s likelihood of becoming a physics major correlates with their “Personal Interest” score; and that, for a majority of student populations, women’s scores in some categories, including “Personal Interest” and “Real World Connections,” are significantly different from men’s scores.
Setting Standards for Student Assessment
ERIC Educational Resources Information Center
Pell, Godfrey; Roberts, T. E.
2006-01-01
The increase in litigation by students who are dissatisfied with their assessment, and to a lesser extent the time and monetary costs of student appeals makes it imperative that institutions adopt a robust assessment strategy. The concern of consumers with respect to professional services offered by students after graduation is also an issue. This…
Mendoza De La Garza, Maria; Tieu, Christina; Schroeder, Darrell; Lowe, Kathleen; Tung, Ericka
2018-06-18
Medical schools throughout the country struggle with how best to train students to provide quality, patient-centered care to the burgeoning population of older adults. The Senior Sages Program (SSP) is a longitudinal Senior Mentor Program (SMP) that offers students the opportunity to learn about the aging process and core geriatric medicine concepts through the eyes of an aging expert: their Senior Sage. The SSP marries a robust electronic curriculum with an SMP and online discussion board. The aim of this program evaluation was to measure the impact on students' geriatric knowledge and attitudes toward older adults. This asynchronously facilitated course improved students' geriatric knowledge and facilitated stability of positive attitudes toward older adults. The majority of students felt that their SSP interactions were meaningful and valuable to their clinical development. The combination of SMP and electronic curricula offer a feasible, practical way to bridge the geriatric training chasm.
NASA Astrophysics Data System (ADS)
Abd-El-Khalick, Fouad; Summers, Ryan; Said, Ziad; Wang, Shuai; Culbertson, Michael
2015-11-01
This study is part of a large-scale project focused on 'Qatari students' Interest in, and Attitudes toward, Science' (QIAS). QIAS aimed to gauge Qatari student attitudes toward science in grades 3-12, examine factors that impact these attitudes, and assess the relationship between student attitudes and prevailing modes of science teaching in Qatari schools. This report details the development and validation of the 'Arabic-Speaking Students' Attitudes toward Science Survey' (ASSASS), which was specifically developed for the purposes of the QIAS project. The theories of reasoned action and planned behavior (TRAPB) [Ajzen, I., & Fishbein, M. (2005). The influence of attitudes on behavior. In D. Albarracín, B. T. Johnson, & M. P. Zanna (Eds.), The handbook of attitudes (pp. 173-221). Mahwah, NJ: Erlbaum] guided the instrument development. Development and validation of the ASSASS proceeded in 3 phases. First, a 10-member expert panel examined an initial pool of 74 items, which were revised and consolidated into a 60-item version of the instrument. This version was piloted with 369 Qatari students from the target schools and grade levels. Analyses of pilot data resulted in a refined version of the ASSASS, which was administered to a national probability sample of 3027 participants representing all students enrolled in grades 3-12 in the various types of schools in Qatar. Of the latter, 1978 students completed the Arabic version of the instrument. Analyses supported a robust, 5-factor model for the instrument, which is consistent with the TRAPB framework. The factors were: Attitudes toward science and school science, unfavorable outlook on science, control beliefs about ability in science, behavioral beliefs about the consequences of engaging with science, and intentions to pursue science.
A Guide for Scientists Interested in Researching Student Outcomes
NASA Astrophysics Data System (ADS)
Buxner, Sanlyn R.; Anbar, Ariel; Semken, Steve; Mead, Chris; Horodyskyj, Lev; Perera, Viranga; Bruce, Geoffrey; Schönstein, David
2015-11-01
Scientists spend years training in their scientific discipline and are well versed the literature, methods, and innovations in their own field. Many scientists also take on teaching responsibilities with little formal training in how to implement their courses or assess their students. There is a growing body of literature of what students know in space science courses and the types of innovations that can work to increase student learning but scientists rarely have exposure to this body of literature. For scientists who are interested in more effectively understanding what their students know or investigating the impact their courses have on students, there is little guidance. Undertaking a more formal study of students poses more complexities including finding robust instruments and employing appropriate data analysis. Additionally, formal research with students involves issues of privacy and human subjects concerns, both regulated by federal laws.This poster details the important decisions and issues to consider for both course evaluation and more formal research using a course developed, facilitated, evaluated and researched by a hybrid team of scientists and science education researchers. HabWorlds, designed and implemented by a team of scientists and faculty at Arizona State University, has been using student data to continually improve the course as well as conduct formal research on students’ knowledge and attitudes in science. This ongoing project has had external funding sources to allow robust assessment not available to most instructors. This is a case study for discussing issues that are applicable to designing and assessing all science courses. Over the course of several years, instructors have refined course outcomes and learning objectives that are shared with students as a roadmap of instruction. The team has searched for appropriate tools for assessing student learning and attitudes, tested them and decided which have worked, or not, for assessment in the course. Data from this assessment has led to many changes in the course to better meet the course goals. We will share challenges and lessons learned in our project to assist other instructors interested in doing research on student outcomes.
The Impact of NSF-funded Physics Education Research at the University of Washington
NASA Astrophysics Data System (ADS)
Heron, Paula
2015-03-01
It is now well known that many students who complete introductory physics courses are unable to apply fundamental concepts in situations that involve qualitative reasoning. Systematic investigations have helped researchers understand why so many students fail to develop robust and coherent conceptual frameworks, and have led to the development of new teaching practices and materials that are far more effective than conventional ones. The Physics Education Group at the University of Washington has played a leading role in raising awareness of the need to improve instruction, and in supporting physics faculty in their efforts to do so. With support from the National Science Foundation, the group has helped build a research base that instructors can draw on, and has produced practical, flexible instructional materials that promote deeper learning in physics classrooms. Both ``Tutorials in Introductory Physics'' (Pearson, 2002) and ``Physics by Inquiry'' (Wiley, 1996) have been developed in an iterative process in which ongoing assessment of student learning plays an integral role. These materials have had a widespread and significant impact on physics teaching and on student learning from kindergarten through graduate school. In this talk I will describe the role of research in curriculum development, and speculate on the next generation of tools and resources to support physics teaching and learning.
Promoting the Geosciences for Minority Students in the Urban Coastal Environment of New York City
NASA Astrophysics Data System (ADS)
Liou-Mark, J.; Blake, R.
2013-12-01
The 'Creating and Sustaining Diversity in the Geo-Sciences among Students and Teachers in the Urban Coastal Environment of New York City' project was awarded to New York City College of Technology (City Tech) by the National Science Foundation to promote the geosciences for students in middle and high schools and for undergraduates, especially for those who are underrepresented minorities in STEM. For the undergraduate students at City Tech, this project: 1) created and introduced geoscience knowledge and opportunities to its diverse undergraduate student population where geoscience is not currently taught at City Tech; and 2) created geoscience articulation agreements. For the middle and high schools, this project: 1) provided inquiry-oriented geoscience experiences (pedagogical and research) for students; 2) provided standards-based professional development (pedagogical and research) in Earth Science for teachers; 3) developed teachers' inquiry-oriented instructional techniques through the GLOBE program; 4) increased teacher content knowledge and confidence in the geosciences; 5) engaged and intrigued students in the application of geoscience activities in a virtual environment; 6) provided students and teachers exposure in the geosciences through trip visitations and seminars; and 7) created community-based geoscience outreach activities. Results from this program have shown significant increases in the students (grades 6-16) understanding, participation, appreciation, and awareness of the geosciences. Geoscience modules have been created and new geosciences courses have been offered. Additionally, students and teachers were engaged in state-of-the-art geoscience research projects, and they were involved in many geoscience events and initiatives. In summary, the activities combined geoscience research experiences with a robust learning community that have produced holistic and engaging stimuli for the scientific and academic growth and development of grades 6 - 12 student and teacher participants and undergraduates. (This program is supported by NSF OEDG grant #1108281.)
Student research with 400keV beams: {sup 13}N radioisotope production target development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fru, L. Che; Clymer, J.; Compton, N.
2013-04-19
The AN400 Van de Graaff accelerator at the Minnesota State University, Mankato, Applied Nuclear Science Lab has demonstrated utility as an accessible and versatile platform for student research. Despite the limits of low energy, the research team successfully developed projects with applications to the wider radioisotope production community. A target system has been developed for producing and extracting {sup 13}N by the {sup 12}C(d,n){sup 13}N reaction below 400keV. The system is both reusable and robust, with future applications to higher energy machines producing this important radioisotope for physiological imaging studies with Positron Emission Tomography. Up to 36({+-}1)% of the {supmore » 13}N was extracted from the graphite matrix when 35 A current was externally applied to the graphite target while simultaneously flushing the target chamber with CO{sub 2} gas.« less
NASA Astrophysics Data System (ADS)
Prather, Edward
2018-01-01
Astronomy education researchers in the Department of Astronomy at the University of Arizona have been investigating a new framework for getting students to engage in discussions about fundamental astronomy topics. This framework is intended to also provide students with explicit feedback on the correctness and coherency of their mental models on these topics. This framework builds upon our prior efforts to create productive Pedagogical Discipline Representations (PDR). Students are asked to work collaboratively to generate their own representations (drawings, graphs, data tables, etc.) that reflect important characteristics of astrophysical scenarios presented in class. We have found these representation tasks offer tremendous insight into the broad range of ideas and knowledge students possess after instruction that includes both traditional lecture and actively learning strategies. In particular, we find that some of our students are able to correctly answer challenging multiple-choice questions on topics, however, they struggle to accurately create representations of these same topics themselves. Our work illustrates that some of our students are not developing a robust level of discipline fluency with many core ideas in astronomy, even after engaging with active learning strategies.
The Case for Individualizing Behavior Management Approaches in Inclusive Classrooms
ERIC Educational Resources Information Center
Grossman, Herbert
2005-01-01
In today's heterogeneous classrooms, one-method-fits-all-students behavior management approaches are ineffective and often harmful. To succeed with all of their students, teachers should determine whether students have emotional disorders, conduct/behavior disorders, robust male-typical behavior patterns, culturally influenced behavior, learning…
Blended Learning: A Dangerous Idea?
ERIC Educational Resources Information Center
Moskal, Patsy; Dziuban, Charles; Hartman, Joel
2013-01-01
The authors make the case that implementation of a successful blended learning program requires alignment of institutional, faculty, and student goals. Reliable and robust infrastructure must be in place to support students and faculty. Continuous evaluation can effectively track the impact of blended learning on students, faculty, and the…
NASA Astrophysics Data System (ADS)
McNeal, K.; Libarkin, J. C.; Ledley, T. S.; Gold, A. U.; Lynds, S. E.; Haddad, N.; Ellins, K.; Dunlap, C.; Bardar, E. W.; Youngman, E.
2015-12-01
Instructors must have on hand appropriate assessments that align with their teaching and learning goals in order to provide evidence of student learning. We have worked with curriculum developers and scientists to develop the Climate Concept Inventory (CCI), which meets goals of the EarthLabs Climate on-line curriculum. The developed concept inventory includes 19 content-driven multiple choice questions, six affective-based multiple choice questions, one confidence question, three open-ended questions, and eight demographic questions. Our analysis of the instrument applies item response theory and uses item characteristic curves. We have assessed over 500 students in nearly twenty high school classrooms in Mississippi and Texas that have engaged in the implementation of the EarthLabs curriculum and completed the CCI. Results indicate that students had pre-post gains on 9 out of 10 of the content-based multiple choice questions with positive gains in answer choice selection ranging from 1.72% to 42%. Students significantly reported increased confidence with 15% more students reporting that they were either very or fairly confident with their answers. Of the six affective questions posed, 5 out of 6 showed significant shifts towards gains in knowledge, awareness, and information about Earth's climate system. The research has resulted in a robust and validated climate concept inventory for use with advanced high school students, where we have been able to apply its use within the EarthLabs project.
2. Can Money or Other Rewards Motivate Students?
ERIC Educational Resources Information Center
Usher, Alexandra; Kober, Nancy
2012-01-01
This is the second in a series of six papers from the Center on Education Policy exploring issues related to students' motivation to learn. As noted in the first paper of this series, motivation to learn is one of the most important factors in a student's educational journey, but a robust discussion about students' motivation may be the "missing…
ERIC Educational Resources Information Center
Storey, Katie Lauren
2010-01-01
This study investigated the extent to which participation in co-curricular events enhances the achievement of student-learning outcomes in community college students. One community college in Illinois--Chicago Metropolitan Area Community College (CMACC), a pseudonym--was selected to research based on its robust co-curricular activity programming.…
ERIC Educational Resources Information Center
Lewis, Todd F.; Milroy, Jeffrey; Wyrick, David; Hebard, Stephen P.; Lamberson, Katie A.
2017-01-01
Researchers have identified college student-athletes as a subgroup at risk for heavy drinking and associated consequences. Yet, few studies have examined multiple variables simultaneously to determine which stand out as most robust to explain drinking behavior among student-athletes. Student-athletes from 54 National Collegiate Athletic…
Click-On-Diagram Questions: a New Tool to Study Conceptions Using Classroom Response Systems
NASA Astrophysics Data System (ADS)
LaDue, Nicole D.; Shipley, Thomas F.
2018-06-01
Geoscience instructors depend upon photos, diagrams, and other visualizations to depict geologic structures and processes that occur over a wide range of temporal and spatial scales. This proof-of-concept study tests click-on-diagram (COD) questions, administered using a classroom response system (CRS), as a research tool for identifying spatial misconceptions. First, we propose a categorization of spatial conceptions associated with geoscience concepts. Second, we implemented the COD questions in an undergraduate introductory geology course. Each question was implemented three times: pre-instruction, post-instruction, and at the end of the course to evaluate the stability of students' conceptual understanding. We classified each instance as (1) a false belief that was easily remediated, (2) a flawed mental model that was not fully transformed, or (3) a robust misconception that persisted despite targeted instruction. Geographic Information System (GIS) software facilitated spatial analysis of students' answers. The COD data confirmed known misconceptions about Earth's structure, geologic time, and base level and revealed a novel robust misconception about hot spot formation. Questions with complex spatial attributes were less likely to change following instruction and more likely to be classified as a robust misconception. COD questions provided efficient access to students' conceptual understanding. CRS-administered COD questions present an opportunity to gather spatial conceptions with large groups of students, immediately, building the knowledge base about students' misconceptions and providing feedback to guide instruction.
Making Sense by Measuring Arcs: A Teaching Experiment in Angle Measure
ERIC Educational Resources Information Center
Moore, Kevin C.
2013-01-01
I discuss a teaching experiment that sought to characterize precalculus students' angle measure understandings. The study's findings indicate that the students initially conceived angle measures in terms of geometric objects. As the study progressed, the students formed more robust understandings of degree and radian measures by constructing an…
Top Four Trends in Student Information Systems
ERIC Educational Resources Information Center
Weathers, Robert
2013-01-01
The modern student information systems (SIS) is a powerful administrative tool with robust functionality. As such, it is essential that school and district administrators consider the top trends in modern student information systems before going forward with system upgrades or new purchases. These trends, described herein, are: (1) Support for…
Diagnostics of Robust Growth Curve Modeling Using Student's "t" Distribution
ERIC Educational Resources Information Center
Tong, Xin; Zhang, Zhiyong
2012-01-01
Growth curve models with different types of distributions of random effects and of intraindividual measurement errors for robust analysis are compared. After demonstrating the influence of distribution specification on parameter estimation, 3 methods for diagnosing the distributions for both random effects and intraindividual measurement errors…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, W; Ding, X; Hu, Y
Purpose: To investigate how spot size and spacing affect plan quality, especially, plan robustness and the impact of interplay effect, of robustly-optimized intensity-modulated proton therapy (IMPT) plans for lung cancer. Methods: Two robustly-optimized IMPT plans were created for 10 lung cancer patients: (1) one for a proton beam with in-air energy dependent large spot size at isocenter (σ: 5–15 mm) and spacing (1.53σ); (2) the other for a proton beam with small spot size (σ: 2–6 mm) and spacing (5 mm). Both plans were generated on the average CTs with internal-gross-tumor-volume density overridden to irradiate internal target volume (ITV). Themore » root-mean-square-dose volume histograms (RVH) measured the sensitivity of the dose to uncertainties, and the areas under RVH curves were used to evaluate plan robustness. Dose evaluation software was developed to model time-dependent spot delivery to incorporate interplay effect with randomized starting phases of each field per fraction. Patient anatomy voxels were mapped from phase to phase via deformable image registration to score doses. Dose-volume-histogram indices including ITV coverage, homogeneity, and organs-at-risk (OAR) sparing were compared using Student-t test. Results: Compared to large spots, small spots resulted in significantly better OAR sparing with comparable ITV coverage and homogeneity in the nominal plan. Plan robustness was comparable for ITV and most OARs. With interplay effect considered, significantly better OAR sparing with comparable ITV coverage and homogeneity is observed using smaller spots. Conclusion: Robust optimization with smaller spots significantly improves OAR sparing with comparable plan robustness and similar impact of interplay effect compare to larger spots. Small spot size requires the use of larger number of spots, which gives optimizer more freedom to render a plan more robust. The ratio between spot size and spacing was found to be more relevant to determine plan robustness and the impact of interplay effect than spot size alone. This research was supported by the National Cancer Institute Career Developmental Award K25CA168984, by the Fraternal Order of Eagles Cancer Research Fund Career Development Award, by The Lawrence W. and Marilyn W. Matteson Fund for Cancer Research, by Mayo Arizona State University Seed Grant, and by The Kemper Marley Foundation.« less
Better Categorizing Misconceptions Using a Contemporary Cognitive Science Lens
NASA Astrophysics Data System (ADS)
Slater, S. J.; Slater, T. F.
2013-12-01
Much of the last three decades of discipline-based education research in the geosciences has focused on the important work of identifying the range and domain of misconceptions students bring into undergraduate science survey courses. Pinpointing students' prior knowledge is a cornerstone for developing constructivist approaches and learning environments for effective teaching. At the same time, the development of a robust a priori formula for professors to use in mitigating students' misconceptions remains elusive. An analysis of the literature and our own research has persuaded researchers at the CAPER Center for Astronomy & Physics Education Research to put forth a model that will allow professors to operate on students' various learning difficulties in a more productive manner. Previously, much of the field's work binned erroneous student thinking into a single construct, and from that basis, curriculum developers and instructors addressed student misconceptions with a single instructional strategy. In contrast, we propose a model based on the notion that 'misconceptions' are a mixture of at least four learning barriers: incorrect factual information, inappropriately applied mental algorithms (phenomenological primitives), insufficient cognitive structures (e.g. spatial reasoning), and affective/emotional difficulties (e.g. students' spiritual commitments). In this sense, each of these different types of learning barriers would be more effectively addressed with an instructional strategy purposefully targeting these different attributes. Initial applications of this model to learning problems in geosciences have been fruitful, suggesting that an effort towards categorizing persistent learning difficulties in the geosciences beyond the single generalized category of 'misconceptions' might allow our community to more effectively design learning experiences for our students and the general public
NASA Astrophysics Data System (ADS)
Campbell, Chad Edward
Over the past decade, hundreds of studies have introduced genomics and bioinformatics (GB) curricula and laboratory activities at the undergraduate level. While these publications have facilitated the teaching and learning of cutting-edge content, there has yet to be an evaluation of these assessment tools to determine if they are meeting the quality control benchmarks set forth by the educational research community. An analysis of these assessment tools indicated that <10% referenced any quality control criteria and that none of the assessments met more than one of the quality control benchmarks. In the absence of evidence that these benchmarks had been met, it is unclear whether these assessment tools are capable of generating valid and reliable inferences about student learning. To remedy this situation the development of a robust GB assessment aligned with the quality control benchmarks was undertaken in order to ensure evidence-based evaluation of student learning outcomes. Content validity is a central piece of construct validity, and it must be used to guide instrument and item development. This study reports on: (1) the correspondence of content validity evidence gathered from independent sources; (2) the process of item development using this evidence; (3) the results from a pilot administration of the assessment; (4) the subsequent modification of the assessment based on the pilot administration results and; (5) the results from the second administration of the assessment. Twenty-nine different subtopics within GB (Appendix B: Genomics and Bioinformatics Expert Survey) were developed based on preliminary GB textbook analyses. These subtopics were analyzed using two methods designed to gather content validity evidence: (1) a survey of GB experts (n=61) and (2) a detailed content analyses of GB textbooks (n=6). By including only the subtopics that were shown to have robust support across these sources, 22 GB subtopics were established for inclusion in the assessment. An expert panel subsequently developed, evaluated, and revised two multiple-choice items to align with each of the 22 subtopics, producing a final item pool of 44 items. These items were piloted with student samples of varying content exposure levels. Both Classical Test Theory (CTT) and Item Response Theory (IRT) methodologies were used to evaluate the assessment's validity, reliability and ability inferences, and its ability to differentiate students with different magnitudes of content exposure. A total of 18 items were subsequently modified and reevaluated by an expert panel. The 26 original and 18 modified items were once again piloted with student samples of varying content exposure levels. Both CTT and IRT methodologies were once again used to evaluate student responses in order to evaluate the assessment's validity and reliability inferences as well as its ability to differentiate students with different magnitudes of content exposure. Interviews with students from different content exposure levels were also performed in order to gather convergent validity evidence (external validity evidence) as well as substantive validity evidence. Also included are the limitations of the assessment and a set of guidelines on how the assessment can best be used.
ERIC Educational Resources Information Center
Bonilla, Daniel; Buch, Kimberly K.; Johnson, Cindy Wolf
2013-01-01
Learning communities are small pre-selected student groups based on a common interest with a variety of goals related to student outcomes. Previous research has shown robust effects of learning community participation on student success outcomes, but little is known about the mechanisms which may mediate these effects. The current study analyzed…
Livingston, Laura L; West, Courtney A; Livingston, Jerry L; Landry, Karen A; Watzak, Bree C; Graham, Lori L
2016-08-01
Disaster Day is a simulation event that began in the College of Nursing and has increased exponentially in size and popularity for the last 8 years. The evolution has been the direct result of reflective practice and dedicated leadership in the form of students, faculty, and administration. Its development and expansion into a robust interprofessional education activity are noteworthy because it gives health care professions students an opportunity to work in teams to provide care in a disaster setting. The "authentic" learning situation has enhanced student knowledge of roles and responsibilities and seems to increase collaborative efforts with other disciplines. The lessons learned and modifications made in our Disaster Day planning, implementation, and evaluation processes are shared in an effort to facilitate best practices for other institutions interested in a similar activity.
Muratov, Eugene; Lewis, Margaret; Fourches, Denis; Tropsha, Alexander; Cox, Wendy C
2017-04-01
Objective. To develop predictive computational models forecasting the academic performance of students in the didactic-rich portion of a doctor of pharmacy (PharmD) curriculum as admission-assisting tools. Methods. All PharmD candidates over three admission cycles were divided into two groups: those who completed the PharmD program with a GPA ≥ 3; and the remaining candidates. Random Forest machine learning technique was used to develop a binary classification model based on 11 pre-admission parameters. Results. Robust and externally predictive models were developed that had particularly high overall accuracy of 77% for candidates with high or low academic performance. These multivariate models were highly accurate in predicting these groups to those obtained using undergraduate GPA and composite PCAT scores only. Conclusion. The models developed in this study can be used to improve the admission process as preliminary filters and thus quickly identify candidates who are likely to be successful in the PharmD curriculum.
NASA Technical Reports Server (NTRS)
Williams, William B., Jr.
1999-01-01
The technologies associated with distance learning are evolving rapidly, giving to educators a potential tool for enhancing the educational experiences of large numbers of students simultaneously. This enhancement, in order to be effective, must take into account the various agendas of teachers, administrators, state systems, and of course students. It must also make use of the latest research on effective pedagogy. This combination, effective pedagogy and robust information technology, is a powerful vehicle for communicating, to a large audience of school children the excitement of mathematics and science--an excitement that for the most part is now well-hidden. This project,"Technology Development, Implementation and Assessment," proposed to bring to bear on the education of learners in grades 3 - 8 in science and mathematics both advances in information technology and in effective pedagogy. Specifically, the project developed components NASA CONNECT video series--problem-based learning modules that focus on the scientific method and that incorporate problem-based learning scenarios tied to national mathematics and science standards. These videos serve two purposes; they engage students in the excitement of hands-on learning and they model for the teachers of these students the problem-based learning practices that are proving to be excellent ways to teach science and mathematics to school students. Another component of NASA CONNECT is the accompanying web-site.
ERIC Educational Resources Information Center
Cresswell, Sarah L.; Loughlin, Wendy A.
2015-01-01
An effective guided inquiry forensic case study (a pharmacy break-in) is described for first-year students. Four robust introductory forensic chemistry and biology experiments are used to analyze potential drug samples and determine the identity of a possible suspect. Students perform presumptive tests for blood on a "point of entry…
Collaborative Note-Taking: The Impact of Cloud Computing on Classroom Performance
ERIC Educational Resources Information Center
Orndorff, Harold N., III.
2015-01-01
This article presents the early findings of an experimental design to see if students perform better when taking collaborative notes in small groups as compared to students who use traditional notes. Students are increasingly bringing electronic devices into social science classrooms. Few instructors have attempted robustly and systematically to…
Trust-Based Collaborative Control for Teams on Communication Networks
2012-02-11
Das, F.L. Lewis, and K . Subbarao , “Sliding Mode Approach to Control Quadrotor Using Dynamic Inversion," in Challenges and Paradigms in Applied Robust... b . ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (include area code) Standard Form 298 (Re . 8-98) v Prescribed by ANSI Std. Z39.18 11...Game Solutions In our work with students Draguna Vrabie and K . Vamvoudakis cited below we have developed new algorithms and theory for solving
Collins, Alyson A; Lindström, Esther R; Compton, Donald L
Researchers have increasingly investigated sources of variance in reading comprehension test scores, particularly with students with reading difficulties (RD). The purpose of this meta-analysis was to determine if the achievement gap between students with RD and typically developing (TD) students varies as a function of different reading comprehension response formats (e.g., multiple choice, cloze). A systematic literature review identified 82 eligible studies. All studies administered reading comprehension assessments to students with RD and TD students in Grades K-12. Hedge's g standardized mean difference effect sizes were calculated, and random effects robust variance estimation techniques were used to aggregate average weighted effect sizes for each response format. Results indicated that the achievement gap between students with RD and TD students was larger for some response formats (e.g., picture selection ES g = -1.80) than others (e.g., retell ES g = -0.60). Moreover, for multiple-choice, cloze, and open-ended question response formats, single-predictor metaregression models explored potential moderators of heterogeneity in effect sizes. No clear patterns, however, emerged in regard to moderators of heterogeneity in effect sizes across response formats. Findings suggest that the use of different response formats may lead to variability in the achievement gap between students with RD and TD students.
Development of Educational Materials to Enhance Students‧ Motivation using the ODE Physics Engine
NASA Astrophysics Data System (ADS)
Demura, Kosei
This paper presents educational materials, a simulator and a textbook, using the Open Dynamics Engine (ODE) . ODE is an open source, fast, robust and industrial quality library for a real-time and interactive simulation of rigid body dynamics. ODE is suitable for developing educational materials. However, there had been no book which introduced how to use ODE to make simulators written in Japanese. Thus I wrote a textbook which gave basic robotics and how to make simulators based on ODE. Students are able to tackle the subject with interest using the textbook and the simulators.
Development of the Statistical Reasoning in Biology Concept Inventory (SRBCI)
Deane, Thomas; Nomme, Kathy; Jeffery, Erica; Pollock, Carol; Birol, Gülnur
2016-01-01
We followed established best practices in concept inventory design and developed a 12-item inventory to assess student ability in statistical reasoning in biology (Statistical Reasoning in Biology Concept Inventory [SRBCI]). It is important to assess student thinking in this conceptual area, because it is a fundamental requirement of being statistically literate and associated skills are needed in almost all walks of life. Despite this, previous work shows that non–expert-like thinking in statistical reasoning is common, even after instruction. As science educators, our goal should be to move students along a novice-to-expert spectrum, which could be achieved with growing experience in statistical reasoning. We used item response theory analyses (the one-parameter Rasch model and associated analyses) to assess responses gathered from biology students in two populations at a large research university in Canada in order to test SRBCI’s robustness and sensitivity in capturing useful data relating to the students’ conceptual ability in statistical reasoning. Our analyses indicated that SRBCI is a unidimensional construct, with items that vary widely in difficulty and provide useful information about such student ability. SRBCI should be useful as a diagnostic tool in a variety of biology settings and as a means of measuring the success of teaching interventions designed to improve statistical reasoning skills. PMID:26903497
Speers, Janey
2008-03-01
Competence in building therapeutic relationships is essential for student mental health nurses and therefore requires robust assessment. However, the assessment of such complex skills is problematic. Following policy directives exhorting increased service user involvement in general, there have been recent suggestions that service users could contribute to the assessment of practice. This paper outlines a research project which investigated the views of 24 stakeholders (service users, lecturers, mentors, ex-students and student nurses) about the potential involvement of service users in the assessment of student mental health nurses' competence in forming therapeutic relationships. The findings revealed that service users interviewed had a largely positive attitude towards this potential development. Nurse participants were more ambivalent. Despite citing several key advantages, nurses also expressed some important reservations about how such a proposal could be implemented in practice. Nevertheless, on balance, they were in favour in principle. Key recommendations for the implementation of this potential development included strategies to enable anonymity and freedom of choice for service users. A range of options for obtaining service user feedback were put forward, along with some ideas about how the fairness of the assessment might be protected.
Cramer, Jason M; Hamilton, Paul T
2017-04-01
In contrast to the narrowing of options in academic careers, the bioscience industry offers robust employment opportunities for STEM-trained workers, especially those who display both scientific and business talent. Unfortunately, traditional science programs typically lack curricular features that develop this type of worker. The North Carolina State University Master of Microbial Biotechnology (MMB) program facilitates industry-specific experiential learning to fill this training gap. Similar programs often rely on a single industry internship to provide students relevant work experience, but completion of one internship might not suffice to position students for employment in a highly competitive job market. The MMB program requires students to complete an internship and three practicum projects in an industry setting, to promote development of key skills in a variety of areas, to build confidence in the ability to perform initial job duties, and to establish a more extensive work history in industry. In this Perspective we discuss an unmet need in undergraduate and graduate STEM education that can be filled by incorporating a similar set of industry-specific work experiences for students who desire to transition from academe into the life science industry.
Students Selling Sex: Marketisation, Higher Education and Consumption
ERIC Educational Resources Information Center
Sanders, Teela; Hardy, Kate
2015-01-01
Robust academic research on the topic of students involved in the sex industry is in its infancy, yet the relationship appears consistent and permanent. This paper draws on findings from the largest study into the stripping industry in the United Kingdom to explore the relationships between students, sex work and consumption. To make sense of the…
Do They "Really" Get It? Evaluating Evidence of Student Understanding of Power Series
ERIC Educational Resources Information Center
Kung, David; Speer, Natasha
2013-01-01
Most teachers agree that if a student understands a particular mathematical topic well, he/she will probably be able to do problems correctly. The converse, however, frequently fails: students who do problems correctly sometimes do not actually have robust understandings of the topic in question. In this paper we explore this phenomenon in the…
ERIC Educational Resources Information Center
Melchiorre, Marilyn Martin; Johnson, Scott A.
2017-01-01
Although traditional student enrollment is declining, the nontraditional segment of students is growing. This enrollment pattern will require recruitment strategies that speak directly to the adult learners. There is robust adoption of social media use by individuals and by organizations for marketing purposes. Social media marketing includes…
Through Their Eyes: Tracking the Gaze of Students in a Geology Field Course
ERIC Educational Resources Information Center
Maltese, Adam V.; Balliet, Russell N.; Riggs, Eric M.
2013-01-01
The focus of this research was to investigate how students learn to do fieldwork through observation. This study addressed the following questions: (1) Can mobile eye-tracking devices provide a robust source of data to investigate the observations and workflow of novice students while participating in a field exercise? If so, what are the…
Parent Beliefs and Student Absences: Large Absence-Reduction Field Experiment
ERIC Educational Resources Information Center
Rogers, Todd; Feller, Avi
2016-01-01
School attendance is a robust predictor of course performance, and it is consistently the strongest predictor of high school dropout, even more so than suspensions and test scores. Focusing on getting students to school is an essential part of decreasing high school dropout rates. What is concerning is that up to 20% of students miss essentially a…
Abdulhay, Enas; Khnouf, Ruba; Haddad, Shireen; Al-Bashir, Areen
2017-08-04
Improvement of medical content in Biomedical Engineering curricula based on a qualitative assessment process or on a comparison with another high-standard program has been approached by a number of studies. However, the quantitative assessment tools have not been emphasized. The quantitative assessment tools can be more accurate and robust in cases of challenging multidisciplinary fields like that of Biomedical Engineering which includes biomedicine elements mixed with technology aspects. The major limitations of the previous research are the high dependence on surveys or pure qualitative approaches as well as the absence of strong focus on medical outcomes without implicit confusion with the technical ones. The proposed work presents the development and evaluation of an accurate/robust quantitative approach to the improvement of the medical content in the challenging multidisciplinary BME curriculum. The work presents quantitative assessment tools and subsequent improvement of curriculum medical content applied, as example for explanation, to the ABET (Accreditation Board for Engineering and Technology, USA) accredited biomedical engineering BME department at Jordan University of Science and Technology. The quantitative results of assessment of curriculum/course, capstone, exit exam, course assessment by student (CAS) as well as of surveys filled by alumni, seniors, employers and training supervisors were, first, mapped to the expected students' outcomes related to the medical field (SOsM). The collected data were then analyzed and discussed to find curriculum weakness points by tracking shortcomings in every outcome degree of achievement. Finally, actions were taken to fill in the gaps of the curriculum. Actions were also mapped to the students' medical outcomes (SOsM). Weighted averages of obtained quantitative values, mapped to SOsM, indicated accurately the achievement levels of all outcomes as well as the necessary improvements to be performed in curriculum. Mapping the improvements to SOsM also helps in the assessment of the following cycle. The suggested assessment tools can be generalized and extended to any other BME department. Robust improvement of medical content in BME curriculum can subsequently be achieved.
NASA Astrophysics Data System (ADS)
Thornton, Ronald
2010-02-01
For the Activity Based Physics Group (APB), research in student learning has been a cornerstone, for the past 22 years, of the development of activity-based curricula supported by real-time data collection, analysis, and modeling. This presentation, the first of three related talks, will focus on student learning, Priscilla Laws will describe the curriculum and tools developed, and David Sokoloff will describe dissemination efforts. One of the earliest examples of seminal research, done as part of the early MBL development for middle school at TERC, showed that delaying the display of a position-time graph by 10 seconds instead of displaying it in real-time resulted in a substantial learning decrease. This result assured the use of real-time data collection in our curricula. As we developed our early kinematics and dynamics curricula for college and high school, we interviewed many students before and after instruction, to understand where they started and what they had learned. We used the results of these interviews and written student explanations of their thinking to develop robust multiple-choice evaluations that were easy to give and allowed us to understand student thinking using both ``right and wrong'' responses. Work such as this resulted in Questions on Linear Motion, Force and Motion Conceptual Evaluation (FMCE), Heat and Temperature Conceptual Evaluation (HTCE), Electrical Circuit Conceptual Evaluation (ECCE), Light and Optics Conceptual Evaluation (LOCE) and others which guided our curriculum development and convinced many that standard instruction in physics did not result in substantial conceptual learning. Other evaluations measured mathematical understandings.evaluations also allowed us to look at a progression of student ideas as they learned (``Conceptual Dynamics''), study the behavior of students who did and did not learn conceptually (``Uncommon Knowledge''), study the efficacy of peer groups, and finally identify some of factors that led to conceptual learning for both women and men. (e.g. increases in spatial ability). )
What Experiences in Medical School Trigger Professional Identity Development?
Kay, Denise; Berry, Andrea; Coles, Nicholas A
2018-04-02
Phenomenon: This qualitative inquiry used conceptual change theory as a theoretical lens to illuminate experiences in medical school that trigger professional identity formation. According to conceptual change theory, changes in personal conceptualizations are initiated when cognitive disequilibrium is introduced. We sought to identify the experiences that trigger cognitive disequilibrium and to subsequently describe students' perceptions of self-in-profession prior to the experience; the nature of the experience; and, when applicable, the outcomes of the experience. This article summarizes findings from portions of data collected in a larger qualitative study conducted at a new medical school in the United States that utilizes diverse pedagogies and experiences to develop student knowledge, clinical skills, attitudes, and dispositions. Primary data sources included focus groups and individual interviews with students across the 4 years of the curriculum (audio data). Secondary data included students' comments from course and end-of-year evaluations for the 2013-2017 classes (text data). Data treatment tools available in robust qualitative software, NVivo 10, were utilized to expedite coding of both audio and text data. Content analysis was adopted as the analysis method for both audio and text data. We identified four experiences that triggered cognitive disequilibrium in relationship to students' perceptions of self-in-profession: (a) transition from undergraduate student to medical student, (b) clinical experiences in the preclinical years, (c) exposure to the business of medicine, and (d) exposure to physicians in clinical practice. Insights: We believe these experiences represent vulnerable periods of professional identity formation during medical school. Educators interested in purposefully shaping curriculum to encourage adaptive professional identity development during medical school may find it useful to integrate educational interventions that assist students with navigating the disequilibrium that is introduced during these periods.
Online Classrooms: Powerful Tools for Rapid-Iteration Pedagogical Improvements
NASA Astrophysics Data System (ADS)
Horodyskyj, L.; Semken, S.; Anbar, A.; Buxner, S.
2015-11-01
Online education offers the opportunity to reach a variety of students including non-traditional and geographically diverse students. Research has shown that online courses modeled after traditional lecture-exam courses are ineffective. Over the past three years, Arizona State University developed and offered Habitable Worlds, an online-only astrobiology lab course featuring active learning tools. The course is offered in an intelligent tutoring system (ITS) that records a wealth of student data. In analyzing data from the Fall 2013 offering of the course, we were able to identify pre-post quiz results that were suboptimal and where in the lesson and how precisely students were missing concepts. The problem areas were redesigned, and the improved lessons were deployed a few months later. We saw significant improvements in our pre-post quiz results due to the implemented changes. This demonstrates the effectiveness of using robust ITS not only to present content online, but to provide instantaneous data for rapid iteration and improvement of existing content.
Haase, Anne; Steptoe, Andrew; Sallis, James F; Wardle, Jane
2004-07-01
Physical inactivity has been linked with chronic disease and obesity in most western populations. However, prevalence of inactivity, health beliefs, and knowledge of the risks of inactivity have rarely been assessed across a wide range of developed and developing countries. A cross-sectional survey was carried out with 19,298 university students from 23 countries varying in culture and level of economic development. Data concerning leisure-time physical activity, health beliefs, and health knowledge were collected. The prevalence of inactivity in leisure time varied with cultural and economic developmental factors, averaging 23% (North-Western Europe and the United States), 30% (Central and Eastern Europe), 39% (Mediterranean), 42% (Pacific Asian), and 44% (developing countries). The likelihood of leisure-time physical activity was positively associated with the strength of beliefs in the health benefits of activity and with national economic development (per capita gross domestic product). Knowledge about activity and health was disappointing, with only 40-60% being aware that physical activity was relevant to risk of heart disease. Leisure-time physical activity is below recommended levels in a substantial proportion of students, and is related to cultural factors and stage of national economic development. The relationship between health beliefs and behavior is robust across cultures, but health knowledge remains deficient. Copyright 2004 The Institute for Cancer Prevention and Elsevier Inc.
The Determinants of Medical Tourism Intentions: Applying the Theory of Planned Behavior.
Ramamonjiarivelo, Zo; Martin, David S; Martin, Warren S
2015-01-01
This study introduces the theory of planned behavior to health care marketers by extending and replicating a prior study that predicted student's intention to engage in medical tourism. Based on a sample of 164 usable survey responses, our findings suggested that the MEDTOUR scale (developed and introduced a prior study) is robust and works reasonably well with a national sample. Based on these findings, MEDTOUR appears to be worthy of further consideration by health marketing scholars.
Internet-Based Laboratory Immersion: When The Real Deal is Not Available
NASA Astrophysics Data System (ADS)
Meisner, Gerald; Hoffman, Harol
2004-11-01
Do you want all of your students to investigate equilibrium conditions in the physics lab, but don't have time for lab investigations? Do your under-prepared students need basic, careful and detailed remedial work to help them succeed? LAAPhysics provides an answer to these questions by means of robust online physics courseware based on: (1) a sound, research-based pedagogy (2) a rich laboratory environment with skills and operational knowledge transferable to the wet lab' and (3) a paradigm which is economically scalable. LAAPhysics provides both synchronous and asynchronous learning experiences for an introductory, algebra-based course for students (undergraduate, AP High School, seekers of a second degree), those seeking career changes, and pre-service and in-service teachers. We have developed a simulated physics laboratory comprised of virtual lab equipment and instruments, associated curriculum modules and virtual guidance for real time feedback, formative assessment and collaborative learning.
Amerson, Roxanne; Livingston, Wade G
2014-04-01
This qualitative descriptive study used reflexive photography to evaluate the learning process of cultural competence during an international service-learning project in Guatemala. Reflexive photography is an innovative qualitative research technique that examines participants' interactions with their environment through their personal reflections on images that they captured during their experience. A purposive sample of 10 baccalaureate nursing students traveled to Guatemala, where they conducted family and community assessments, engaged in home visits, and provided health education. Data collection involved over 100 photographs and a personal interview with each student. The themes developed from the photographs and interviews provided insight into the activities of an international experience that influence the cognitive, practical, and affective learning of cultural competence. Making home visits and teaching others from a different culture increased students' transcultural self-efficacy. Reflexive photography is a more robust method of self-reflection, especially for visual learners.
Sabel, Jaime L; Dauer, Joseph T; Forbes, Cory T
2017-01-01
Providing feedback to students as they learn to integrate individual concepts into complex systems is an important way to help them to develop robust understanding, but it is challenging in large, undergraduate classes for instructors to provide feedback that is frequent and directed enough to help individual students. Various scaffolds can be used to help students engage in self-regulated learning and generate internal feedback to improve their learning. This study examined the use of enhanced answer keys with added reflection questions and instruction as scaffolds for engaging undergraduate students in self-regulated learning within an introductory biology course. Study findings show that both the enhanced answer keys and reflection questions helped students to engage in metacognition and develop greater understanding of biological concepts. Further, students who received additional instruction on the use of the scaffolds changed how they used them and, by the end of the semester, were using the scaffolds in significantly different ways and showed significantly higher learning gains than students who did not receive the instruction. These findings provide evidence for the benefit of designing scaffolds within biology courses that will support students in engaging in metacognition and enhancing their understanding of biological concepts. © 2017 J. L. Sabel et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
NASA Astrophysics Data System (ADS)
Zangori, Laura; Vo, Tina; Forbes, Cory T.; Schwarz, Christina V.
2017-07-01
Scientific modelling is a key practice in which K-12 students should engage to begin developing robust conceptual understanding of natural systems, including water. However, little past research has explored primary students' learning about groundwater, engagement in scientific modelling, and/or the ways in which teachers conceptualise and cultivate model-based science learning environments. We are engaged in a multi-year project designed to support 3rd-grade students' formulation of model-based explanations (MBE) for hydrologic phenomenon, including groundwater, through curricular and instructional support. In this quasi-experimental comparative study of five 3rd-grade classrooms, we present findings from analysis of students' MBE generated as part of experiencing a baseline curricular intervention (Year 1) and a modelling-enhanced curricular intervention (Year 2). Findings show that students experiencing the latter version of the unit made significant gains in both conceptual understanding and reasoning about groundwater, but that these gains varied by classroom. Overall, student gains from Year 1 to Year 2 were attributed to changes in two of the five classrooms in which students were provided additional instructional supports and scaffolds to enhance their MBE for groundwater. Within these two classrooms, the teachers enacted the Year 2 curriculum in unique ways that reflected their deeper understanding about the practices of modelling. Their enactments played a critical role in supporting students' MBE about groundwater. Study findings contribute to research on scientific modelling in elementary science learning environments and have important implications for teachers and curriculum developers.
Developing and assessing research-based tools for teaching quantum mechanics and thermodynamics
NASA Astrophysics Data System (ADS)
Brown, Benjamin R.
Research-based tools to educate college students in physics courses from introductory level to graduate level are essential for helping students with a diverse set of goals and backgrounds learn physics. This thesis explores issues related to student common difficulties with some topics in undergraduate quantum mechanics and thermodynamics courses. Student difficulties in learning quantum mechanics and thermodynamics are investigated by administering written tests and surveys to many classes and conducting individual interviews with a subset of students outside the class to unpack the cognitive mechanisms of the difficulties. The quantum mechanics research also focuses on using the research on student difficulties for the development and evaluation of a Quantum Interactive Learning Tutorial (QuILT) to help students learn about the time-dependence of expectation values using the context of Larmor precession of spin and evaluating the role of asking students to self-diagnose their mistakes on midterm examination on their performance on subsequent problem solving. The QuILT on Larmor precession of spin has both paper-pencil activities and a simulation component to help students learn these foundational issues in quantum mechanics. Preliminary evaluations suggest that the QuILT, which strives to help students build a robust knowledge structure of time-dependence of expectation values in quantum mechanics using a guided approach, is successful in helping students learn these topics in the junior-senior level quantum mechanics courses. The technique to help upper-level students in quantum mechanics courses effectively engage in the process of learning from their mistakes is also found to be effective. In particular, research shows that the self-diagnosis activity in upper-level quantum mechanics significantly helps students who are struggling and this activity can reduce the gap between the high and low achieving students on subsequent problem solving. Finally, a survey of Thermodynamic Processes and the First and Second Laws (STPFaSL) is developed and validated with the purpose of evaluating the effectiveness of these topics in a thermodynamics curriculum. The validity and reliability of this survey are discussed and the student difficulties with these topics among various groups from introductory students to physics graduate students are cataloged.
Robust radio interferometric calibration using the t-distribution
NASA Astrophysics Data System (ADS)
Kazemi, S.; Yatawatta, S.
2013-10-01
A major stage of radio interferometric data processing is calibration or the estimation of systematic errors in the data and the correction for such errors. A stochastic error (noise) model is assumed, and in most cases, this underlying model is assumed to be Gaussian. However, outliers in the data due to interference or due to errors in the sky model would have adverse effects on processing based on a Gaussian noise model. Most of the shortcomings of calibration such as the loss in flux or coherence, and the appearance of spurious sources, could be attributed to the deviations of the underlying noise model. In this paper, we propose to improve the robustness of calibration by using a noise model based on Student's t-distribution. Student's t-noise is a special case of Gaussian noise when the variance is unknown. Unlike Gaussian-noise-model-based calibration, traditional least-squares minimization would not directly extend to a case when we have a Student's t-noise model. Therefore, we use a variant of the expectation-maximization algorithm, called the expectation-conditional maximization either algorithm, when we have a Student's t-noise model and use the Levenberg-Marquardt algorithm in the maximization step. We give simulation results to show the robustness of the proposed calibration method as opposed to traditional Gaussian-noise-model-based calibration, especially in preserving the flux of weaker sources that are not included in the calibration model.
Luft, Pamela
2018-04-01
This manuscript reviews 28 studies of reading research on deaf and hard-of-hearing (DHH) students published since 2000 that used correlational analyses. The examination focused on assessment issues affecting measurement and analysis of relationships between early phonological or orthographic skills and reading comprehension. Mixed outcomes complicate efforts to determine evidence-based practices, and to develop an accurate model of reading. Across the 28 studies, DHH participants represented a wide age range with potential floor and ceiling effects that reduce score variability for valid correlations. Many studies assessed readers beyond the optimal ages during which early skills develop and are most useful for reading. Reading skills also were assessed using a diverse array of measures and skill definitions. Particularly for reading comprehension, word-level and text-level abilities appear to be different constructs. Suggestions include more consistent skill definitions and differential timing for early- versus later-developing skill assessments to ensure more robust correlational relationships.
Construction and Validation of a Measurement Instrument for Attitudes towards Teamwork.
Mendo-Lázaro, Santiago; Polo-Del-Río, María I; Iglesias-Gallego, Damián; Felipe-Castaño, Elena; León-Del-Barco, Benito
2017-01-01
Cooperative, collaborative learning and other forms of group learning methods are increasingly used in classrooms. Knowing students' attitudes toward teamwork has great value since they influence the students' learning results as well as their social development. So it is necessary to have robust instruments to provide a better understanding of these attitudes and preferences concerning teamwork. Such instruments also help to identify the factors that promote positive or negative attitudes within the context of group activities. Using a sample of 750 first and second year university students studying a degree in Kindergarten, Primary and Social Education, an instrument measuring attitudes toward team learning has been developed. Two distinct factors were obtained through various factorial analyses and structural equations: Academic attitudes and Social and emotional attitudes . Our study reveals that the instrument is both valid and reliable. Its application is both simple and fast and it has important implications for planning teaching and learning activities that contribute to an improvement in attitudes as well as the practice of teaching in the context of learning through teamwork.
ERIC Educational Resources Information Center
Clary, Renee M.; Wandersee, James H.
2012-01-01
Graduate students entered our online classrooms with robust, but nonscientific, opinions on climate change. To expose students to critical analysis of media and emphasize the nature of science, we required them to access scientific reports and participate in mandatory peer discussions. An introductory survey probed incoming knowledge and opinions,…
Hastie, Carolyn; Fahy, Kathleen; Parratt, Jenny
2014-09-01
Poor teamwork is cited as one of the major root causes of adverse events in healthcare. Bullying, resulting in illness for staff, is an expression of poor teamwork skills. Despite this knowledge, poor teamwork persists in healthcare and teamwork skills are rarely the focus of teaching and assessment in undergraduate health courses. To develop and implement an assessment tool for use in facilitating midwifery students' learning of teamwork skills. This paper describes how the TeamUP rubric tool was developed. A review of the literature found no research reports on how to teach and assess health students' teamwork skills in standing teams. The literature, however, gives guidance about how university educators should evaluate individual students using peer assessment. The developmental processes of the rubric were grounded in the theoretical literature and feminist collaborative conversations. The rubric incorporates five domains of teamwork skills: Fostering a Team Climate; Project Planning; Facilitating Teams; Managing Conflict and Quality Individual Contribution. The process and outcomes of student and academic content validation are described. The TeamUP rubric is useful for articulating, teaching and assessing teamwork skills for health professional students. The TeamUP rubric is a robust, theoretically grounded model that defines and details effective teamwork skills and related behaviours. If these skills are mastered, we predict that graduates will be more effective in teams. Our assumption is that graduates, empowered by having these skills, are more likely to manage conflict effectively and less likely to engage in bullying behaviours. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.
A systematic review of clinical assessment for undergraduate nursing students.
Wu, Xi Vivien; Enskär, Karin; Lee, Cindy Ching Siang; Wang, Wenru
2015-02-01
Consolidated clinical practicum prepares pre-registration nursing students to function as beginning practitioners. The clinical competencies of final-year nursing students provide a key indication of professional standards of practice and patient safety. Thus, clinical assessment of nursing students is a crucial issue for educators and administrators. The aim of this systematic review was to explore the clinical competency assessment for undergraduate nursing students. PubMed, CINAHL, ScienceDirect, Web of Science, and EBSCO were systematically searched from January 2000 to December 2013. The systematic review was in line with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Published quantitative and qualitative studies that examined clinical assessment practices and tools used in clinical nursing education were retrieved. Quality assessment, data extraction, and analysis were completed on all included studies. This review screened 2073 titles, abstracts and full-text records, resulting in 33 included studies. Two reviewers assessed the quality of the included studies. Fourteen quantitative and qualitative studies were identified for this evaluation. The evidence was ordered into emergent themes; the overarching themes were current practices in clinical assessment, issues of learning and assessment, development of assessment tools, and reliability and validity of assessment tools. There is a need to develop a holistic clinical assessment tool with reasonable level of validity and reliability. Clinical assessment is a robust activity and requires collaboration between clinical partners and academia to enhance the clinical experiences of students, the professional development of preceptors, and the clinical credibility of academics. Copyright © 2014 Elsevier Ltd. All rights reserved.
Developing iCare v.1.0: an academic electronic health record.
Wyatt, Tami H; Li, Xueping; Indranoi, Chayawat; Bell, Matthew
2012-06-01
An electronic health record application, iCare v.1.0, was developed and tested that allows data input and retrieval while tracking student performance over time. The development and usability testing of iCare v.1.0 followed a rapid prototyping software development and testing model. Once the functionality was tested by engineers, the usability and feasibility testing began with a convenience sample of focus group members including undergraduate and graduate students and faculty. Three focus groups were created, and four subjects participated in each focus group (n = 12). Nielsen's usability heuristics and methods of evaluation were used to evaluate data captured from each focus group. Overall, users wanted a full-featured electronic health record with features that coached or guided users. The earliest versions of iCare v.1.0 did not provide help features and prompts to guide students but were later added. Future versions will incorporate a full-featured help section. The interface and design of iCare v.1.0 are similar to professional electronic health record applications. As a result of this usability study, future versions of iCare will include more robust help features along with advanced reporting and elements specific to specialty populations such as pediatrics and mental health services.
Screening for mental health risk in high schools: The development of the Youth RADAR.
Burns, John R; Rapee, Ronald M
2016-10-01
Epidemiological studies indicate that as many as 1 in 5 young people will develop a mental health problem in any given year. Early detection and intervention are needed to reduce the impact that these conditions have-both for the young person and for the communities in which they live. This study reports the development of a new instrument aimed at helping identify students at risk of developing mental health difficulties. Rather than asking about the presence of symptoms of mental health conditions, the RADAR screening tool assesses a student's balance of risk and protective factors associated with the development of mental health problems. The RADAR was evaluated with a sample of 838 participants in high school Years 7-12. A robust internal factor structure was revealed using exploratory and confirmatory factor analysis. Internal consistency was satisfactory for each subscale, ranging from .73 to .90 while the reliability for the total scale was .91. Retest stability, measured over a 12 month period, was found to be strong (r = .72). Convergent validity was demonstrated with reference to standard measures of depression and behavioral problems. It is concluded that the RADAR is a promising measure for helping mental health professionals and educators decide which students may be at risk of developing mental health problems. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Waits, Seth A; Reames, Bradley N; Krell, Robert W; Bryner, Benjamin; Shih, Terry; Obi, Andrea T; Henke, Peter K; Minter, Rebecca M; Englesbe, Michael J; Wong, Sandra L
2014-01-01
To meet the Accreditation Council for Graduate Medical Education core competency in Practice-Based Learning and Improvement, educational curricula need to address training in quality improvement (QI). We sought to establish a program to train residents in the principles of QI and to provide practical experiences in developing and implementing improvement projects. We present a novel approach for engaging students, residents, and faculty in QI efforts-Team Action Projects in Surgery (TAPS). Large academic medical center and health system. Multiple teams consisting of undergraduate students, medical students, surgery residents, and surgery faculty were assembled and QI projects developed. Using "managing to learn" Lean principles, these multilevel groups approached each project with robust data collection, development of an A3, and implementation of QI activities. A total of 5 resident led QI projects were developed during the TAPS pilot phase. These included a living kidney donor enhanced recovery protocol, consult improvement process, venous thromboembolism prophylaxis optimization, Clostridium difficile treatment standardization, and understanding variation in operative duration of laparoscopic cholecystectomy. Qualitative and quantitative assessment showed significant value for both the learner and stakeholders of QI related projects. Through the development of TAPS, we demonstrate a novel approach to addressing the increasing focus on QI within graduate medical education. Efforts to expand this multilevel team based approach would have value for teachers and learners alike. Copyright © 2014. Published by Elsevier Inc.
Authentic teaching and learning through synthetic biology
Kuldell, Natalie
2007-01-01
Synthetic biology is an emerging engineering discipline that, if successful, will allow well-characterized biological components to be predictably and reliably built into robust organisms that achieve specific functions. Fledgling efforts to design and implement a synthetic biology curriculum for undergraduate students have shown that the co-development of this emerging discipline and its future practitioners does not undermine learning. Rather it can serve as the lynchpin of a synthetic biology curriculum. Here I describe educational goals uniquely served by synthetic biology teaching, detail ongoing curricula development efforts at MIT, and specify particular aspects of the emerging field that must develop rapidly in order to best train the next generation of synthetic biologists. PMID:18271945
Adams, Solomon M.; Anderson, Kacey B.; Coons, James C.; Smith, Randall B.; Meyer, Susan M.; Parker, Lisa S.
2016-01-01
Objective. To develop, implement, and evaluate “Test2Learn” a program to enhance pharmacogenomics education through the use of personal genomic testing (PGT) and real genetic data. Design. One hundred twenty-two second-year doctor of pharmacy (PharmD) students in a required course were offered PGT as part of a larger program approach to teach pharmacogenomics within a robust ethical framework. The program added novel learning objectives, lecture materials, analysis tools, and exercises using individual-level and population-level genetic data. Outcomes were assessed with objective measures and pre/post survey instruments. Assessment. One hundred students (82%) underwent PGT. Knowledge significantly improved on multiple assessments. Genotyped students reported a greater increase in confidence in understanding test results by the end of the course. Similarly, undergoing PGT improved student’s self-perceived ability to empathize with patients compared to those not genotyped. Most students (71%) reported feeling PGT was an important part of the course, and 60% reported they had a better understanding of pharmacogenomics specifically because of the opportunity. Conclusion. Implementation of PGT in the core pharmacy curriculum was feasible, well-received, and enhanced student learning of pharmacogenomics. PMID:26941429
Robust Vocabulary Instruction in a Readers' Workshop
ERIC Educational Resources Information Center
Feezell, Greg
2012-01-01
This article presents strategies for integrating explicit vocabulary instruction within a reading workshop. The author begins by describing a process for involving students in word selection. The author then provides a weeklong instructional sequence using student-selected words. Finally, the author briefly examines the role of vocabulary…
The Galileoscope project: community-based technology education in Arizona
NASA Astrophysics Data System (ADS)
Pompea, Stephen M.; Fine, Leonard W.; Sparks, Robert T.; Walker, Constance E.; Dugan, Charles L.; Dokter, Erin F. C.
2014-07-01
A program model has been developed and implemented over the last three years to provide a robust optical technologybased science education program to students aged 9-11 years (5th grade), a formative time in the development of a student's interest in science and engineering. We have created well-tested and evaluated teaching kits for the classroom to teach about the basics of image formation and telescopes. In addition we provide professional development to the teachers of these students on principles of optics and on using the teaching kits. The program model is to reach every teacher and every student in a number of mid-sized rural communities across the state of Arizona. The Galileoscope telescope kit is a key part of this program to explore optics and the nature of science. The program grew out of Module 3 of the NSF-Supported Hands-On Optics project (SPIE, OSA, and NOAO) and from the Science Foundation Arizona-supported Hands-On Optics Arizona program. NOAO has conducted this program in Flagstaff, Yuma, Globe, and Safford, Arizona and is being expanded to sites across the entire state of Arizona (295,254 square kilometers). We describe the educational goals, evaluations, and logistical issues connected to the program. In particular, we proposed that this model can be adapted for any rural or urban locations in order to encourage interest in science, astronomy and optics.-
Warne, T; Holland, K; McAndrew, S
2011-03-01
Changes to the pedagogy of pre-registration nurse education and training have become a global phenomenon. However, the evidence base to inform responses to these changes and the impact on nursing practice is limited. This paper explores the outcomes of an innovative approach aimed at ensuring responses to these drivers for change, particularly in curriculum development, the organisation, management and delivery of programmes and the enhancement of the student experience, are evidence based. This paper reports on an organisational change project undertaken in a School of Nursing in the North West of England, UK. The project involved 12 interrelated work streams used to explore aspects of the student journey from recruitment through progression to eventual employment. An evidence base was developed through a methodological bricolage that drew upon a robust and authentic mixture of systematic literature reviews, contemporaneous analysis of educational practice and evaluation of the student experience. This was used to underpin the decision making processes required to promote innovation in programme design, to increase the involvement of students in the facilitation and evaluation of their learning experiences, and helped shape the organisational changes required for embedding an evidenced-based culture in the School. Consistent and transformational leadership has been key to the project's success in communicating and managing the changes. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jones, Barbara
2001-03-01
At UCSD biology majors are required to take 3 quarters of a calculus based physics course. This is taught in a standard format large lecture class partly by faculty and partly by freeway flyers. We are working with physics graduate students who are also participating in our PFPF (Preparing Future Physics Faculty) program to write, review, and teach new weekly labs for these biology students. This provides an experience for the grad student that is both rewarding to them and useful to the department. The grad students participate in curriculum development, they observe the students behaviour in the labs, and assess the effectiveness of different lab formats. The labs are intended to provide an interactive, hands on experience with a wide variety of equipment which is mostly both simple and inexpensive. Both students and grads find the labs to be engaging and fun. Based on group discussions the labs are modified to try to try to create the best teaching environment. The biology students benefit from the improvements both in the quality of the labs they do, and from the enthusiasm of the TAs who take an active interest in their learning. The ability to make significant changes to the material taught maintains the interest of the grad students and helps to make the labs a stable and robust environment.
ERIC Educational Resources Information Center
Underwood, Sonia M.; Reyes-Gastelum, David; Cooper, Melanie M.
2016-01-01
The ability to use a chemical structure to predict and explain phenomenon is essential to a robust understanding of chemistry; however, previous research has shown that students find it difficult to make the connection between structure and properties. In this study we examine how student recognition of the connections between structure and…
Predicting Robust Learning with the Visual Form of the Moment-by-Moment Learning Curve
ERIC Educational Resources Information Center
Baker, Ryan S.; Hershkovitz, Arnon; Rossi, Lisa M.; Goldstein, Adam B.; Gowda, Sujith M.
2013-01-01
We present a new method for analyzing a student's learning over time for a specific skill: analysis of the graph of the student's moment-by-moment learning over time. Moment-by-moment learning is calculated using a data-mined model that assesses the probability that a student learned a skill or concept at a specific time during learning (Baker,…
NASA Astrophysics Data System (ADS)
Hess, Alexander Jay
Science and agriculture professional organizations have argued for agricultural literacy as a goal for K-12 public education. Due to the complexity of our modern agri-food system, with social, economic, and environmental concerns embedded, an agriculturally literate society is needed for informed decision making, democratic participation, and system reform. While grade-span specific benchmarks for gauging agri-food system literacy have been developed, little attention has been paid to existing ideas individuals hold about the agri-food system, how these existing ideas relate to benchmarks, how experience shapes such ideas, or how ideas change overtime. Developing a body of knowledge on students' agri-food system understandings as they develop across K-12 grades can ground efforts seeking to promote a learning progression toward agricultural literacy. This study compares existing perceptions held by 18 upper elementary students from a large urban center in California to agri-food system literacy benchmarks and examines the perceptions against student background and experiences. Data were collected via semi-structured interviews and analyzed using the constant comparative method. Constructivist theoretical perspectives framed the study. No student had ever grown their own food, raised a plant, or cared for an animal. Participation in school fieldtrips to farms or visits to a relative's garden were agricultural experiences most frequently mentioned. Students were able to identify common food items, but could not elaborate on their origins, especially those that were highly processed. Students' understanding of post-production activities (i.e. food processing, manufacturing, or food marketing) was not apparent. Students' understanding of farms reflected a 1900's subsistence farming operation commonly found in a literature written for the primary grades. Students were unaware that plants and animals were selected for production based on desired genetic traits. Obtaining food from areas with favorable growing conditions and supporting technology (such as transportation and refrigeration) was an understanding lacking in the group. Furthermore, most spoilage prevention technologies employed today were not an expressed part of student's schema. Students' backgrounds and experiences did not appear to support the development of a robust agri-food system schema. An agricultural science and technology schema appears poorly developed in each of the students.
Constructing engineers through practice: Gendered features of learning and identity development
NASA Astrophysics Data System (ADS)
Tonso, Karen L.
How do women and men student engineers develop an engineering identity (a sense of belonging, or not), while practicing "actual" engineering? What are the influences of gender, learning and knowledge, relations of power, and conceptions of equality on cultural identity development? I studied these issues in reform-minded engineering design classes, courses organized around teaching students communications, teamwork, and practical engineering. Engineering-student cultural identity categories revealed a status hierarchy, predicated on meeting "academic" criteria for excellence, and the almost total exclusion of women. While working as an engineering colleague on five student teams (three first-year and two senior) and attending their design classes, I documented how cultural identities were made evident and constructed in students' practical engineering. Design projects promoted linking academic knowledge with real-world situations, sharing responsibilities and trusting colleagues, communicating engineering knowledge to technical and non-technical members of business communities, and addressing gaps in students' knowledge. With a curriculum analysis and survey of students' perceptions of the differences between design and conventional courses, I embedded the design classes in the wider campus and found that: (1) Engineering education conferred prestige, power, and well-paying jobs on students who performed "academic" engineering, while failing to adequately encourage "actual" engineering practices. High-status student engineers were the least likely to perform "actual" engineering in design teams. (2) Engineering education advanced an ideology that encouraged its practitioners to consider men's privilege and women's invisibility normal. By making "acting like men act" the standards to which engineering students must conform, women learned to put up with oppressive treatment. Women's accepting their own mistreatment and hiding their womanhood became a condition of women's belonging. (3) Despite all of the pressures to do otherwise, (some) teams of students (at all levels) carved out small oases where "actual" engineering prevailed and women's participation was robust. Students--not faculty, not progressive pedagogy, not "reformed" courses--disrupted prevailing norms. However, two women engineering students, one on each senior team, performed fabulous "actual" engineering, yet neither of them had a job when they graduated--the only two senior students on my teams without jobs.
Flooding Vocabulary Gaps to Accelerate Word Learning
ERIC Educational Resources Information Center
Brabham, Edna; Buskist, Connie; Henderson, Shannon Coman; Paleologos, Timon; Baugh, Nikki
2012-01-01
Students entering school with limited vocabularies are at a disadvantage compared to classmates with robust knowledge of words and meanings. Teaching a few unrelated words at a time is insufficient for catching these students up with peers and preparing them to comprehend texts they will encounter across the grades. This article presents…
Gender Gaps in High School Students' Homework Time
ERIC Educational Resources Information Center
Gershenson, Seth; Holt, Stephen B.
2015-01-01
Gender differences in human capital investments made outside of the traditional school day suggest that males and females consume, respond to, and form habits relating to education differently. We document robust, statistically significant one-hour weekly gender gaps in secondary students' non-school study time using time diary data from the…
On Teacher Quality in Independent Schools
ERIC Educational Resources Information Center
Balossi, Matt; Hernandez, Natalia R.
2016-01-01
Independent schools pride themselves on providing a unique educational experience for students, one that is robust and mission-driven and capitalizes on lower student-to-teacher ratios that allow for more personalized learning and high-quality teachers. Numerous studies measure teacher effectiveness in public schools, yet there is little research…
Representations of the Human Circulatory System
ERIC Educational Resources Information Center
Lopez-Manjon, Asuncion; Angon, Yolanda Postigo
2009-01-01
There is no agreement about the robustness of intuitive representations of the circulatory system and their susceptibility to change by instruction. In this paper, we analyse to what extent students with varying degrees of biology instruction and different ages (High School Health Science and Social Science students and first and final year…
Graphically Enhanced Science Notebooks
ERIC Educational Resources Information Center
Minogue, James; Wiebe, Eric; Madden, Lauren; Bedward, John; Carter, Mike
2010-01-01
A common mode of communication in the elementary classroom is the science notebook. In this article, the authors outline the ways in which "graphically enhanced science notebooks" can help engage students in complete and robust inquiry. Central to this approach is deliberate attention to the efficient and effective use of student-generated…
Yuen, Hon K; Azuero, Andres; Lackey, Kaitlin W; Brown, Nicole S; Shrestha, Sangita
2016-01-01
This study aimed to test the construct validity of an instrument to measure student professional behaviors in entry-level occupational therapy (OT) students in the academic setting. A total of 718 students from 37 OT programs across the United States answered a self-assessment survey of professional behavior that we developed. The survey consisted of ranking 28 attributes, each on a 5-point Likert scale. A split-sample approach was used for exploratory and then confirmatory factor analysis. A three-factor solution with nine items was extracted using exploratory factor analysis [EFA] (n=430, 60%). The factors were 'Commitment to Learning' (2 items), 'Skills for Learning' (4 items), and 'Cultural Competence' (3 items). Confirmatory factor analysis (CFA) on the validation split (n=288, 40%) indicated fair fit for this three-factor model (fit indices: CFI=0.96, RMSEA=0.06, and SRMR=0.05). Internal consistency reliability estimates of each factor and the instrument ranged from 0.63 to 0.79. Results of the CFA in a separate validation dataset provided robust measures of goodness-of-fit for the three-factor solution developed in the EFA, and indicated that the three-factor model fitted the data well enough. Therefore, we can conclude that this student professional behavior evaluation instrument is a structurally validated tool to measure professional behaviors reported by entry-level OT students. The internal consistency reliability of each individual factor and the whole instrument was considered to be adequate to good.
Self-efficacy beliefs of medical students: a critical review.
Klassen, Robert M; Klassen, Joel R L
2018-04-01
Self-efficacy is a theoretically and empirically robust motivation belief that has been shown to play an important role in the learning and development of new skills and knowledge. In this article, we critically review research on the self-efficacy beliefs of medical students, with a goal to evaluate the existing research and to strengthen future work. In particular, we sought to describe the state of research on medical student self-efficacy and to critically examine the conceptualization and measurement of the construct. Finally, we aimed to provide directions for future self-efficacy research. We critically reviewed 74 published articles that included measures of self-efficacy beliefs of medical students. Our review showed that (a) research on the self-efficacy beliefs of medical students is growing and is becoming increasingly international, and (b) that nearly half (46%) of self-efficacy measures showed conceptual and operational flaws. Our critical review of 74 research studies on self-efficacy of medical students found that although research in the field is increasing, nearly half of measures labelled as self-efficacy were incongruent with the conceptual guidelines set by self-efficacy experts. We provide five suggestions for future research on the self-efficacy of medical students.
Schopper, Heather K; Mohamed, Nasteha A; Seegel, Max; Gorina, Kseniya; Silverman, Jonathan; Rosenbaum, Marcy
2017-11-01
To provide a platform for learners' voices at an international conference on communication in healthcare. A group of medical students were invited to explore their experiences with communication skills learning at a symposium at the 2016 International Conference on Communication in Healthcare in Heidelberg, DE. Students from the US, Denmark, Germany, and Russia discussed their experiences with communication skills curriculum at their institutions. We identified divides that have challenged our ability to develop and maintain strong communication skills: 1) valuation of communication skills vs. other topics, 2) curricular theory vs. practice, 3) evaluation vs. feedback, 4) preclinical vs. clinical learning, and 5) the medical student vs. practicing clinician role. The points of transition we identified on the road of communication skills teaching highlight opportunities to strengthen the educational experience for students. Without an effort to address these divides, however, our communication skills may be lost in translation. Students value communication skills teaching during their medical education and there are opportunities to translate this to countries that currently lack robust curricula and to the real-life post-graduate setting. Support is necessary from students, teachers, and administrators, and focus on translation of skills during role transitions is needed. Copyright © 2017 Elsevier B.V. All rights reserved.
Mehta, Ambar; Xu, Tim; Murray, Matthew; Casey, Kathleen M
2017-12-01
Robust global health demands access to safe, affordable, timely surgical care for all. The long-term success of global surgery requires medical students to understand and engage with this emerging field. The authors characterized medical students' perceptions of surgical care relative to other fields within global health. An optional, anonymous survey was given to all Johns Hopkins medical students from February to March 2016 to assess perceptions of surgical care and its role in global health. Of 480 students, 365 (76%) completed the survey, with 150 (41%) reporting global health interests. One-third (34%) of responding students felt that surgical care is one of two fields with the greatest potential global health impact in the future, second to infectious disease (49%). A minority (28%) correctly identified that trauma results in more deaths worldwide than obstetric complications or HIV/AIDS, tuberculosis, and malaria combined. Relative to other examined fields, students perceived surgical care as the least preventive and cost-effective, and few students (3%) considered adequate surgical care the best indicator of a robust health care system. Students believed that practicing in a surgical field was least amenable to pursuing a global health career, citing several barriers. Medical students have several perceptions of global surgery that contradict current evidence and literature, which may have implications for their career choices. Opportunities to improve students' global health knowledge and awareness of global surgery career paths include updating curricula, fostering meaningful international academic opportunities, and creating centers of global surgery and global health consortia.
ERIC Educational Resources Information Center
Gulchak, Daniel J.
2008-01-01
Teaching students to self-monitor their attention or on-task behavior has a robust history of success in school and has been an effective strategy for students of all ages, including those with and without disabilities. However, this strategy has not made use of advances in technology in order to collect and record performance data. In this study,…
Ten years of Developing International Volcanology Graduate Study Programs
NASA Astrophysics Data System (ADS)
Rose, W. I.
2010-12-01
In 2000 I reported at this symposium about multi-institutional graduate field trips to IAVCEI events, such as the Bali meeting and its importance in building international collegiality and awareness among the volcanology doctoral students. NSF was an enthusiastic supporter of these field sessions and this support has continued through the highly successful Pucon and Reykjavik sessions. International volcanology graduate program development began with several exchange programs. EHaz was a highly successful program (McGill, Simon Fraser, Michigan Tech, Buffalo, UNAM and Universidad de Colima) funded by the Department of Education (FIPSE) that moved students across North America where dozens of graduate students spent semesters of their study abroad and shared annual field trips and online student led graduate seminar classes. Michigan Tech’s volcanology graduate program started a Masters International program that combined Peace Corps service with hazards mitigation graduate study and students were placed by Peace Corps in countries with prominent natural hazards. The new program funded 2 year residences in foreign environments, principally in Pacific Latin America. NSF strongly supported this program from its inception, and eventually it gained NSF PIRE support. Dozens of students have initiated the 3 year program (15 completed) to date. A similar PIRE developed at UAF with a link to volcanology in the Russian Far East. One gain is the development of many socially-conscious research selections. Beginning this year transatlantic dual degree masters programs in volcanology are being offered by a consortium of US and European volcanology programs (Michigan Tech, Buffalo, Clermont Ferrand and University of Milan Bicocca), again aided by FIPSE funding. Students have dual advisors on both sides of the Atlantic and spend about half of their two year programs in Europe and half in US. Faculty also travel in the program and the four campuses are increasingly linked by coursework and research networks. Because the international developments of volcanology programs address the need for more robust coursework and research choices for students than are possible on one campus, and because they lead to a diverse network of professional contacts , we think the next decade will bring many more multi-university volcanology programs linked to field sites all over the world.
Morgan, S; Smedts, A; Campbell, N; Sager, R; Lowe, M; Strasser, S
2009-01-01
The Northern Territory (NT) of Australia is a unique setting for training medical students. This learning environment is characterised by Aboriginal health and an emphasis on rural and remote primary care practice. For over a decade the NT Clinical School (NTCS) of Flinders University has been teaching undergraduate medical students in the NT. Community based medical education (CBME) has been demonstrated to be an effective method of learning medicine, particularly in rural settings. As a result, it is rapidly gaining popularity in Australia and other countries. The NTCS adopted this model some years ago with the implementation of its Rural Clinical School; however, urban models of CBME are much less well developed than those in rural areas. There is considerable pressure to better incorporate CBME into medical student teaching environment, particularly because of the projected massive increase in student numbers over the next few years. To date, the community setting of urban Darwin, the NT capital city, has not been well utilised for medical student training. In 2008, the NTCS enrolled its first cohort of students in a new hybrid CBME program based in urban Darwin. This report describes the process and challenges involved in development of the program, including justification for a hybrid model and the adaptation of a rural model to an urban setting. Relationships were established and formalised with key partners and stakeholders, including GPs and general practices, Aboriginal medical services, community based healthcare providers and other general practice and community organisations. Other significant issues included curriculum development and review, development of learning materials and the establishment of robust evaluation methods. Development of the CBME model in Darwin posed a number of key challenges. Although the experience of past rural programs was useful, a number of distinct differences were evident in the urban setting. Change leadership and inter-professional collaboration were key strengths in the implementation and ongoing evaluation of the program. The program will provide important information about medical student training in urban community settings, and help inform other clinical schools considering the adoption of similar models.
Reporting of NSC Additional (A2) Data Elements. Updated July 29, 2014
ERIC Educational Resources Information Center
National Student Clearinghouse, 2014
2014-01-01
Since the 2008-09 academic year, the National Student Clearinghouse has provided its participating institutions with the option to include 13 additional data elements in their enrollment submissions. These additional data elements help make Clearinghouse data more comprehensive and enable StudentTracker? participants to utilize a more robust data…
ERIC Educational Resources Information Center
Schulze, Margaret A.
2016-01-01
Despite the fact that self-management procedures have a robust literature base attesting to their efficacy with students with disabilities, the use of these strategies in general education settings remains limited. This mixed methods study examined the implementation of self-management procedures using both quantitative and qualitative methods.…
Managing Student Loan Default Risk: Evidence from a Privately Guaranteed Portfolio.
ERIC Educational Resources Information Center
Monteverde, Kirk
2000-01-01
Application of the statistical techniques of survival analysis and credit scoring to private education loans extended to law students found a pronounced seasoning effect for such loans and the robust predictive power of credit bureau scoring of borrowers. Other predictors of default included school-of-attendance, school's geographic location, and…
ERIC Educational Resources Information Center
Rapchak, Marcia; Behary, Robert
2013-01-01
As information literacy programs become more robust, finding methods of reaching students beyond the traditional undergraduate has become a priority for many institutions. At Duquesne University, efforts have been made to reach adult learners in an accelerated program targeted to nontraditional students, much of which is provided online. This…
Integrated Testlets: A New Form of Expert-Student Collaborative Testing
ERIC Educational Resources Information Center
Shiell, Ralph C.; Slepkov, Aaron D.
2015-01-01
Integrated testlets are a new assessment tool that encompass the procedural benefits of multiple-choice testing, the pedagogical advantages of free-response-based tests, and the collaborative aspects of a viva voce or defence examination format. The result is a robust assessment tool that provides a significant formative aspect for students.…
Rowland, Kevin C; Joy, Anita
2015-03-01
Reports on the status of dental education have concluded that there is a need for various types of curricular reform, making recommendations that include better integration of basic, behavioral, and clinical sciences, increased case-based teaching, emphasis on student-driven learning, and creation of lifelong learners. Dental schools faced with decreasing contact hours, increasing teaching material, and technological advancements have experimented with alternate curricular strategies. At Southern Illinois University School of Dental Medicine, curricular changes have begun with a series of integrated biomedical sciences courses. During the process of planning and implementing the integrated courses, a novel venue-the gross anatomy laboratory-was used to introduce all Year 1 students to critical thinking, self-directed learning, and the scientific method. The venture included student-driven documentation of anatomical variations encountered in the laboratory using robust scientific methods, thorough literature review, and subsequent presentation of findings in peer review settings. Students responded positively, with over 75% agreeing the experience intellectually challenged them. This article describes the process of re-envisioning the gross anatomy laboratory as an effective venue for small group-based, student-driven projects that focus on key pedagogical concepts to encourage the development of lifelong learners.
Foreign-born Peers and Academic Performance.
Conger, Dylan
2015-04-01
The academic performance of foreign-born youth in the United States is well studied, yet little is known about whether and how foreign-born students influence their classmates. In this article, I develop a set of expectations regarding the potential consequences of immigrant integration across schools, with a distinction between the effects of sharing schools with immigrants who are designated as English language learners (ELL) and those who are not. I then use administrative data on multiple cohorts of Florida public high school students to estimate the effect of immigrant shares on immigrant and native-born students' academic performance. The identification strategy pays careful attention to the selection problem by estimating the effect of foreign-born peers from deviations in the share foreign-born across cohorts of students attending the same school in different years. The assumption underlying this approach is that students choose schools based on the composition of the entire school, not on the composition of each entering cohort. The results of the analysis, which hold under several robustness checks, indicate that foreign-born peers (both those who are ELL and those who are non-ELL) have no effect on their high school classmates' academic performance.
Wu, Shaowei; Deng, Furong; Huang, Jing; Wang, Hongyi; Shima, Masayuki; Wang, Xin; Qin, Yu; Zheng, Chanjuan; Wei, Hongying; Hao, Yu; Lv, Haibo; Lu, Xiuling
2012-01-01
Background: Elevated blood pressure (BP) has been associated with particulate matter (PM) air pollution, but associations with PM chemical constituents are still uncertain. Objectives: We investigated associations of BP with various chemical constituents of fine PM (PM2.5) during 460 repeated visits among a panel of 39 university students. Methods: Resting BP was measured using standardized methods before and after the university students relocated from a suburban campus to an urban campus with different air pollution contents in Beijing, China. Air pollution data were obtained from central monitors close to student residences. We used mixed-effects models to estimate associations of various PM2.5 constituents with systolic BP (SBP), diastolic BP (DBP), and pulse pressure. Results: An interquartile range increase of 51.2 μg/m3 in PM2.5 was associated with a 1.08-mmHg (95% CI: 0.17, 1.99) increase in SBP and a 0.96-mmHg (95% CI: 0.31, 1.61) increase in DBP on the following day. A subset of PM2.5 constituents, including carbonaceous fractions (organic carbon and elemental carbon), ions (chloride and fluoride), and metals/metalloid elements (nickel, zinc, magnesium, lead, and arsenic), were found to have robust positive associations with different BP variables, though robust negative associations of manganese, chromium, and molybdenum with SBP or DBP also were observed. Conclusions: Our results support relationships between specific PM2.5 constituents and BP. These findings have potential implications for the development of pollution abatement strategies that maximize public health benefits. PMID:23086577
Simulation in Nursing Education-International Perspectives and Contemporary Scope of Practice.
Kelly, Michelle A; Berragan, Elizabeth; Husebø, Sissel Eikeland; Orr, Fiona
2016-05-01
This article provides insights and perspectives from four experienced educators about their approaches to developing, delivering, and evaluating impactful simulation learning experiences for undergraduate nurses. A case study format has been used to illustrate the commonalities and differences of where simulation has been positioned within curricula, with examples of specialized clinical domains and others with a more generic focus. The importance of pedagogy in developing and delivering simulations is highlighted in each case study. A range of learning theories appropriate for healthcare simulations are a reminder of the commonalities across theories and that no one theory can account for the engaging and impactful learning that simulation elicits. Creating meaningful and robust learning experiences through simulation can benefit students' performance in subsequent clinical practice. The ability to rehearse particular clinical scenarios, which may be difficult to otherwise achieve, assists students in anticipating likely patient trajectories and understanding how to respond to patients, relatives, and others in the healthcare team. © 2016 Sigma Theta Tau International.
Priest, Naomi; Perry, Ryan; Ferdinand, Angeline; Paradies, Yin; Kelaher, Margaret
2014-10-01
While studies investigating the health effects of racial discrimination for children and youth have examined a range of effect modifiers, to date, relationships between experiences of racial discrimination, student attitudes, and health outcomes remain unexplored. This study uniquely demonstrates the moderating effects of vicarious racism and motivated fairness on the association between direct experiences of racism and mental health outcomes, specifically depressive symptoms and loneliness, among primary and secondary school students. Across seven schools, 263 students (54.4% female), ranging from 8 to 17 years old (M = 11.2, SD = 2.2) reported attitudes about other racial/ethnic groups and experiences of racism. Students from minority ethnic groups (determined by country of birth) reported higher levels of loneliness and more racist experiences relative to the majority group students. Students from the majority racial/ethnic group reported higher levels of loneliness and depressive symptoms if they had more friends from different racial/ethnic groups, whereas the number of friends from different groups had no effect on minority students' loneliness or depressive symptoms. Direct experiences of racism were robustly related to higher loneliness and depressive symptoms in multivariate regression models. However, the association with depressive symptoms was reduced to marginal significance when students reported low motivated fairness. Elaborating on the negative health effects of racism in primary and secondary school students provides an impetus for future research and the development of appropriate interventions.
Student engagement and its relationship with early high school dropout.
Archambault, Isabelle; Janosz, Michel; Fallu, Jean-Sébastien; Pagani, Linda S
2009-06-01
Although the concept of school engagement figures prominently in most school dropout theories, there has been little empirical research conducted on its nature and course and, more importantly, the association with dropout. Information on the natural development of school engagement would greatly benefit those interested in preventing student alienation during adolescence. Using a longitudinal sample of 11,827 French-Canadian high school students, we tested behavioral, affective, cognitive indices of engagement both separately and as a global construct. We then assessed their contribution as prospective predictors of school dropout using factor analysis and structural equation modeling. Global engagement reliably predicted school dropout. Among its three specific dimensions, only behavioral engagement made a significant contribution in the prediction equation. Our findings confirm the robustness of the overall multidimensional construct of school engagement, which reflects both cognitive and psychosocial characteristics, and underscore the importance attributed to basic participation and compliance issues in reliably estimating risk of not completing basic schooling during adolescence.
Design and performance frameworks for constructing problem-solving simulations.
Stevens, Ron; Palacio-Cayetano, Joycelin
2003-01-01
Rapid advancements in hardware, software, and connectivity are helping to shorten the times needed to develop computer simulations for science education. These advancements, however, have not been accompanied by corresponding theories of how best to design and use these technologies for teaching, learning, and testing. Such design frameworks ideally would be guided less by the strengths/limitations of the presentation media and more by cognitive analyses detailing the goals of the tasks, the needs and abilities of students, and the resulting decision outcomes needed by different audiences. This article describes a problem-solving environment and associated theoretical framework for investigating how students select and use strategies as they solve complex science problems. A framework is first described for designing on-line problem spaces that highlights issues of content, scale, cognitive complexity, and constraints. While this framework was originally designed for medical education, it has proven robust and has been successfully applied to learning environments from elementary school through medical school. Next, a similar framework is detailed for collecting student performance and progress data that can provide evidence of students' strategic thinking and that could potentially be used to accelerate student progress. Finally, experimental validation data are presented that link strategy selection and use with other metrics of scientific reasoning and student achievement.
Itatani, Tomoya; Nagata, Kyoko; Yanagihara, Kiyoko; Tabuchi, Noriko
2017-08-22
The importance of active learning has continued to increase in Japan. The authors conducted classes for first-year students who entered the nursing program using the problem-based learning method which is a kind of active learning. Students discussed social topics in classes. The purposes of this study were to analyze the post-class essay, describe logical and critical thinking after attended a Problem-Based Learning (PBL) course. The authors used Mayring's methodology for qualitative content analysis and text mining. In the description about the skills required to resolve social issues, seven categories were extracted: (recognition of diverse social issues), (attitudes about resolving social issues), (discerning the root cause), (multi-lateral information processing skills), (making a path to resolve issues), (processivity in dealing with issues), and (reflecting). In the description about communication, five categories were extracted: (simple statement), (robust theories), (respecting the opponent), (communication skills), and (attractive presentations). As the result of text mining, the words extracted more than 100 times included "issue," "society," "resolve," "myself," "ability," "opinion," and "information." Education using PBL could be an effective means of improving skills that students described, and communication in general. Some students felt difficulty of communication resulting from characteristics of Japanese.
Design and Performance Frameworks for Constructing Problem-Solving Simulations
Stevens, Ron; Palacio-Cayetano, Joycelin
2003-01-01
Rapid advancements in hardware, software, and connectivity are helping to shorten the times needed to develop computer simulations for science education. These advancements, however, have not been accompanied by corresponding theories of how best to design and use these technologies for teaching, learning, and testing. Such design frameworks ideally would be guided less by the strengths/limitations of the presentation media and more by cognitive analyses detailing the goals of the tasks, the needs and abilities of students, and the resulting decision outcomes needed by different audiences. This article describes a problem-solving environment and associated theoretical framework for investigating how students select and use strategies as they solve complex science problems. A framework is first described for designing on-line problem spaces that highlights issues of content, scale, cognitive complexity, and constraints. While this framework was originally designed for medical education, it has proven robust and has been successfully applied to learning environments from elementary school through medical school. Next, a similar framework is detailed for collecting student performance and progress data that can provide evidence of students' strategic thinking and that could potentially be used to accelerate student progress. Finally, experimental validation data are presented that link strategy selection and use with other metrics of scientific reasoning and student achievement. PMID:14506505
Repurposing Waste Streams: Lessons on Integrating Hospital Food Waste into a Community Garden.
Galvan, Adri M; Hanson, Ryan; George, Daniel R
2018-04-06
There have been increasing efforts in recent decades to divert institutional food waste into composting programs. As major producers of food waste who must increasingly demonstrate community benefit, hospitals have an incentive to develop such programs. In this article, we explain the emerging opportunity to link hospitals' food services to local community gardens in order to implement robust composting programs. We describe a partnership model at our hospital in central Pennsylvania, share preliminary outcomes establishing feasibility, and offer guidance for future efforts. We also demonstrate that the integration of medical students in such efforts can foster systems thinking in the development of programs to manage hospital waste streams in more ecologically-friendly ways.
Design and implementation of a software package to control a network of robotic observatories
NASA Astrophysics Data System (ADS)
Tuparev, G.; Nicolova, I.; Zlatanov, B.; Mihova, D.; Popova, I.; Hessman, F. V.
2006-09-01
We present a description of a reusable software package able to control a large, heterogeneous network of fully and semi-robotic observatories initially developed to run the MONET network of two 1.2 m telescopes. Special attention is given to the design of a robust, long-term observation scheduler which also allows the trading of observation time and facilities within various networks. The handling of the ``Phase I&II" project-development process, the time-accounting between complex organizational structures, and usability issues for making the package accessible not only to professional astronomers, but also to amateurs and high-school students is discussed. A simple RTML-based solution to link multiple networks is demonstrated.
Mental health interventions in schools 1
Fazel, Mina; Hoagwood, Kimberly; Stephan, Sharon; Ford, Tamsin
2015-01-01
Mental health services embedded within school systems can create a continuum of integrative care that improves both mental health and educational attainment for children. To strengthen this continuum, and for optimum child development, a reconfiguration of education and mental health systems to aid implementation of evidence-based practice might be needed. Integrative strategies that combine classroom-level and student-level interventions have much potential. A robust research agenda is needed that focuses on system-level implementation and maintenance of interventions over time. Both ethical and scientific justifications exist for integration of mental health and education: integration democratises access to services and, if coupled with use of evidence-based practices, can promote the healthy development of children. PMID:26114092
NASA Astrophysics Data System (ADS)
Williamson, Kathryn Elizabeth
The topic of Newtonian gravity offers a unique vantage point from which to investigate and encourage conceptual change because it is something with which everyone has daily experience, and because it is taught in two courses that reach a wide variety of students - introductory-level college astronomy ("Astro 101") and physics ("Phys 101"). Informed by the constructivist theory of learning, this study characterizes and measures Astro 101 and Phys 101 students' understanding of Newtonian gravity within four conceptual domains - Directionality, Force Law, Independence of Other Forces, and Threshold. A phenomenographic analysis of Astro 101 student-supplied responses to open-ended questions about gravity results in the characterization of students' alternative mental models and misapplications of the scientific model. These student difficulties inform the development of a multiple-choice assessment instrument, the Newtonian Gravity Concept Inventory (NGCI). Classical Test Theory (CTT) statistics, student interviews, and expert review show that the NGCI is a reliable and valid tool for assessing both Astro 101 and Phys 101 students' understanding of gravity. Furthermore, the NGCI can provide extensive and robust information about differences between Astro 101 and Phys 101 students and curricula. Comparing and contrasting the Astro 101 and Phys 101 CTT values and student response patterns shows qualitative differences in each of the four conceptual domains. Additionally, performing an Item Response Theory (IRT) analysis of NGCI student response data calibrates item parameters for all Astro 101 and Phys 101 courses and provides Newtonian gravity ability estimates for each student. Physics students show significantly higher pre-instruction and post-instruction IRT abilities than astronomy students, but they show approximately equal gains. To investigate the differential effect of Astro 101 compared to Phys 101 curricula on students' overall post-instruction Newtonian gravity ability, linear regression models control for student characteristics and classroom dynamics. Results show that differences in post-instruction abilities are most influenced by students' pre-instruction abilities and the level of interactivity in the classroom, rather than the astronomy curriculum compared to the physics curriculum. These analyses show that the NGCI has broad capabilities.
NASA Astrophysics Data System (ADS)
Rock, N. M. S.
ROBUST calculates 53 statistics, plus significance levels for 6 hypothesis tests, on each of up to 52 variables. These together allow the following properties of the data distribution for each variable to be examined in detail: (1) Location. Three means (arithmetic, geometric, harmonic) are calculated, together with the midrange and 19 high-performance robust L-, M-, and W-estimates of location (combined, adaptive, trimmed estimates, etc.) (2) Scale. The standard deviation is calculated along with the H-spread/2 (≈ semi-interquartile range), the mean and median absolute deviations from both mean and median, and a biweight scale estimator. The 23 location and 6 scale estimators programmed cover all possible degrees of robustness. (3) Normality: Distributions are tested against the null hypothesis that they are normal, using the 3rd (√ h1) and 4th ( b 2) moments, Geary's ratio (mean deviation/standard deviation), Filliben's probability plot correlation coefficient, and a more robust test based on the biweight scale estimator. These statistics collectively are sensitive to most usual departures from normality. (4) Presence of outliers. The maximum and minimum values are assessed individually or jointly using Grubbs' maximum Studentized residuals, Harvey's and Dixon's criteria, and the Studentized range. For a single input variable, outliers can be either winsorized or eliminated and all estimates recalculated iteratively as desired. The following data-transformations also can be applied: linear, log 10, generalized Box Cox power (including log, reciprocal, and square root), exponentiation, and standardization. For more than one variable, all results are tabulated in a single run of ROBUST. Further options are incorporated to assess ratios (of two variables) as well as discrete variables, and be concerned with missing data. Cumulative S-plots (for assessing normality graphically) also can be generated. The mutual consistency or inconsistency of all these measures helps to detect errors in data as well as to assess data-distributions themselves.
ERIC Educational Resources Information Center
Asensio, Daniela A.; Barassi, Francisca J.; Zambon, Mariana T.; Mazza, Germán D.
2010-01-01
This paper describes the results of a pedagogical experience carried out at the University of Comahue, Argentina, with an interactive text (IT) concerning Homogeneous Chemical Reactors Analysis. The IT was built on the frame of the "Mathematica" software with the aim of providing students with a robust computational tool. Students'…
Maximizing the Impact: The Pivotal Role of Technology in a 21st Century Education System
ERIC Educational Resources Information Center
Vockley, Martha
2007-01-01
All students need a more robust education--and a refreshingly different kind of education--than most are getting today. The vision of learning individuals embrace focuses on teaching students to become critical thinkers, problem solvers and innovators; effective communicators and collaborators; and self-directed learners. This vision responds to…
Topographic Maps: Rediscovering an Accessible Data Source for Land Cover Change Research
ERIC Educational Resources Information Center
McChesney, Ron; McSweeney, Kendra
2005-01-01
Given some limitations of satellite imagery for the study of land cover change, we draw attention here to a robust and often overlooked data source for use in student research: USGS topographic maps. Topographic maps offer an inexpensive, rapid, and accessible means for students to analyze land cover change over large areas. We demonstrate our…
"Hello, I'm Carbon.": Writing about Elements and Compounds
ERIC Educational Resources Information Center
Stout, Roland P.
2010-01-01
General chemistry students are asked to assume the identity of an element and to write their own story. In the spirit of pedagogical approaches such as writing-to-learn and writing across the curriculum, this assignment has several objectives, most significantly to connect students to the discipline of chemistry in a robust way. Facilitating this…
ERIC Educational Resources Information Center
Buglear, John
2009-01-01
Student retention in higher education might be prioritised by funding authorities and universities but robust measurement of non-completion is elusive. This investigation explores untapped data sources to enrich understanding of non-completion. The analysis features the main undergraduate course in a part of a large UK university with retention…
ERIC Educational Resources Information Center
Kennedy, Kate; Peters, Mary; Thomas, Mike
2012-01-01
Value-added analysis is the most robust, statistically significant method available for helping educators quantify student progress over time. This powerful tool also reveals tangible strategies for improving instruction. Built around the work of Battelle for Kids, this book provides a field-tested continuous improvement model for using…
ERIC Educational Resources Information Center
Shah, Rebecca
2011-01-01
As a result of state, national and federal leadership and political will, states have dramatically increased their capacity to collect robust longitudinal education data. However, without an equally ambitious effort to ensure access and build stakeholders' capacity to use data to increase student achievement, these infrastructure investments…
ERIC Educational Resources Information Center
Data Quality Campaign, 2011
2011-01-01
As a result of state, national and federal leadership and political will, states have dramatically increased their capacity to collect robust longitudinal education data. However, without an equally ambitious effort to ensure access and build stakeholders' capacity to use data to increase student achievement, these infrastructure investments…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-06
..., and ensuring student preparation for success in college and careers; and implementing ambitious plans... assessments that prepare students for success in college and in the workplace; (b) building data systems that... collect and report on school and district-level data elements. In order to robustly fulfill our...
Class Size and Student Evaluations in Sweden
ERIC Educational Resources Information Center
Westerlund, Joakim
2008-01-01
This paper examines the effect of class size on student evaluations of the quality of an introductory mathematics course at Lund University in Sweden. In contrast to much other studies, we find a large negative, and statistically significant, effect of class size on the quality of the course. This result appears to be quite robust, as almost all…
Experimental Estimates of the Impacts of Class Size on Test Scores: Robustness and Heterogeneity
ERIC Educational Resources Information Center
Ding, Weili; Lehrer, Steven F.
2011-01-01
Proponents of class size reductions (CSRs) draw heavily on the results from Project Student/Teacher Achievement Ratio to support their initiatives. Adding to the political appeal of these initiative are reports that minority and economically disadvantaged students received the largest benefits from smaller classes. We extend this research in two…
Re-Thinking Re-Entry: New Approaches to Supporting Students after Study Abroad
ERIC Educational Resources Information Center
Brubaker, Cate
2017-01-01
While participation in study abroad continues to increase, and both pre-departure and in-country support and interventions have become more robust, the re-entry experience after a program ends still typically takes a back seat to other priorities. Consequently, most students are left to navigate the re-entry transition on their own. This article…
Strategies And Initiatives That Revitalize Wesley College STEM Programs.
D'Souza, Malcolm J; Kroen, William K; Stephens, Charlene B; Kashmar, Richard J
Church-related small private liberal arts baccalaureate minority-serving institutions like Wesley College have modest endowments, are heavily tuition-dependent, and have large numbers of financially-challenged students. In order to sustain the level of academic excellence and to continue to build student demographic diversity in its accessible robust Science and Mathematics (STEM) programs, the faculty sought federal and state funds to implement a coordinated program of curriculum enhancements and student support programs that will increase the number of students choosing STEM majors, increase their academic success, and improve retention.
Heiman, Heather L; O'Brien, Celia L; Curry, Raymond H; Green, Marianne M; Baker, James F; Kushner, Robert F; Thomas, John X; Corbridge, Thomas C; Corcoran, Julia F; Hauser, Joshua M; Garcia, Patricia M
2017-09-26
In 2012, the Northwestern University Feinberg School of Medicine launched a redesigned curriculum addressing the four primary recommendations in the 2010 Carnegie Foundation for the Advancement of Teaching report on reforming medical education. This new curriculum provides a more standardized evaluation of students' competency achievement through a robust portfolio review process coupled with standard evaluations of medical knowledge and clinical skills. It individualizes learning processes through curriculum flexibility, enabling students to take electives earlier and complete clerkships in their preferred order. The new curriculum is integrated both horizontally and vertically, combining disciplines within organ-based modules and deliberately linking elements (science in medicine, clinical medicine, health and society, professional development) and threads (medical decision making, quality and safety, teamwork and leadership, lifestyle medicine, advocacy and equity) across the three phases that replaced the traditional four-year timeline. It encourages students to conduct research in an area of interest and commit to lifelong learning and self-improvement. The curriculum formalizes the process of professional identity formation and requires students to reflect on their experiences with the informal and hidden curricula, which strongly shape their identities.The authors describe the new curriculum structure, explain their approach to each Carnegie report recommendation, describe early outcomes and challenges, and propose areas for further work. Early data from the first cohort to progress through the curriculum show unchanged United States Medical Licensing Examination Step 1 and 2 scores, enhanced student research engagement and career exploration, and improved student confidence in the patient care and professional development domains.
Undergraduate Students As Effective Climate Change Communicators
NASA Astrophysics Data System (ADS)
Sharif, H. O.; Joseph, J.; Mullendore, G. L.
2014-12-01
The University of Texas at San Antonio (UTSA), San Antonio College (SAC), and the University of North Dakota (UND) have partnered with NASA to provide underrepresented undergraduates from UTSA, SAC, and other community colleges climate-related research and education experiences through the Climate Change Communication: Engineer, Environmental science, and Education (C3E3) project. The program aims to develop a robust response to climate change by providing K-16 climate change education; enhance the effectiveness of K-16 education particularly in engineering and other STEM disciplines by use of new instructional technologies; increase the enrollment in engineering programs and the number of engineering degrees awarded by showing engineering's usefulness in relation to the much-discussed contemporary issue of climate change; increase persistence in STEM degrees by providing student research opportunities; and increase the ethnic diversity of those receiving engineering degrees and help ensure an ethnically diverse response to climate change. Students participated in the second summer internship funded by the project. The program is in its third year. More than 75 students participated in a guided research experiences aligned with NASA Science Plan objectives for climate and Earth system science and the educational objectives of the three institutions. The students went through training in modern media technology (webcasts), and in using this technology to communicate the information on climate change to others, especially high school students, culminating in production of webcasts on investigating the aspects of climate change using NASA data. Content developed is leveraged by NASA Earth observation data and NASA Earth system models and tools. Three Colleges were involved in the program: Engineering, Education, and Science.
Comics and medicine: peering into the process of professional identity formation.
Green, Michael J
2015-06-01
Medical students experience transformative personal and professional changes during medical school. The medical education community has much to learn about how students perceive these changes, which can be dramatic and profound. Over the past six years (2009-2014), the author has taught a course on medical graphic narratives (or comics) to fourth-year medical students. Comics synergistically combine words and images to tell stories and provide an effective vehicle for helping students reflect on and give voice to varied experiences. In this course, students critically read and discuss medically themed comics and create their own original comic depicting a formative experience from medical school. To date, 58 students have taken the course, and each has produced an original comic. The author conducted a thematic analysis of their comics and identified the following themes: (1) how I found my niche, (2) the medical student as patient, (3) reflections on a transformative experience, (4) connecting with a patient, and (5) the triumphs and challenges of becoming a doctor. Pre/post course assessments indicate that students believe creating a comic can significantly improve a variety of doctoring skills and attitudes, including empathy, communication, clinical reasoning, writing, attention to nonverbal cues, and awareness of physician bias. Students' comics reveal the impact of formative events on their professional identity formation. Medical educators should explore additional ways to effectively integrate comics into medical school curricula and develop robust tools for evaluating their short- and long-term impact.
Linguistic pattern analysis of misspellings of typically developing writers in grades 1-9.
Bahr, Ruth Huntley; Sillian, Elaine R; Berninger, Virginia W; Dow, Michael
2012-12-01
A mixed-methods approach, evaluating triple word-form theory, was used to describe linguistic patterns of misspellings. Spelling errors were taken from narrative and expository writing samples provided by 888 typically developing students in Grades 1-9. Errors were coded by category (phonological, orthographic, and morphological) and specific linguistic feature affected. Grade-level effects were analyzed with trend analysis. Qualitative analyses determined frequent error types and how use of specific linguistic features varied across grades. Phonological, orthographic, and morphological errors were noted across all grades, but orthographic errors predominated. Linear trends revealed developmental shifts in error proportions for the orthographic and morphological categories between Grades 4 and 5. Similar error types were noted across age groups, but the nature of linguistic feature error changed with age. Triple word-form theory was supported. By Grade 1, orthographic errors predominated, and phonological and morphological error patterns were evident. Morphological errors increased in relative frequency in older students, probably due to a combination of word-formation issues and vocabulary growth. These patterns suggest that normal spelling development reflects nonlinear growth and that it takes a long time to develop a robust orthographic lexicon that coordinates phonology, orthography, and morphology and supports word-specific, conventional spelling.
Undergraduate Students as Climate Communicators
NASA Astrophysics Data System (ADS)
Sharif, H. O.; Joseph, J.; Mullendore, G. L.
2012-12-01
The University of Texas at San Antonio (UTSA), San Antonio College (SAC), and the University of North Dakota (UND) are partnering with NASA to provide underrepresented undergraduates from UTSA, SAC, and other community colleges climate-related research and education experiences. The program aims to develop a robust response to climate change by providing K-16 climate change education; enhance the effectiveness of K-16 education particularly in engineering and other STEM disciplines by use of new instructional technologies; increase the enrollment in engineering programs and the number of engineering degrees awarded by showing engineering's usefulness in relation to the much-discussed contemporary issue of climate change; increase persistence in STEM degrees by providing student research opportunities; and increase the ethnic diversity of those receiving engineering degrees and help ensure an ethnically diverse response to climate change. Students will have the opportunity to participate in guided research experiences aligned with NASA Science Plan objectives for climate and Earth system science and the educational objectives of the three institutions. An integral part of the learning process will include training in modern media technology (webcasts), and in using this technology to communicate the information on climate change to others, especially high school students, culminating in production of a webcast about investigating aspects of climate change using NASA data. Content developed is leveraged by NASA Earth observation data and NASA Earth system models and tools. Several departments are involved in the educational program.
Teaching smartphone and microcontroller systems using "Android Java"
NASA Astrophysics Data System (ADS)
Tigrek, Seyitriza
Mobile devices are becoming indispensable tools for many students and educators. Mobile technology is starting a new era in the computing methodologies in many engineering disciplines and laboratories. Microcontroller extension that communicates with mobile devices will take the data acquisition and control process into a new level in the sensing technology and communication. The purpose of this thesis is to develop a framework to incorporate the new mobile platform with robust embedded systems into the engineering curriculum. For this purpose a course material is developed "Introduction to Programming Java on a Mobile Platform" to teach novice programmers how to create applications, specifically on Android. Combining an introductory level programming class with the Android platform can appeal to non-programming individuals in multiple disciplines. The proposed course curriculum reduces the learning time, and allows senior engineering students to use the new framework for their specific needs in the labs such as mobile data acquisition and control projects. This work provides techniques for instructors with modest programming background to teach cutting edge technology, which is smartphone programming. Techniques developed in this work minimize unnecessary information carried into current teaching approaches with hands-on practice. It also helps the students with minimal background requirements overcome the barriers that have evolved around computer programming. The motivation of this thesis is to create a tailored programming introductory course to teach Java programming on Android by incorporating selected efficient methods from extant literature. The mechanism proposed in this thesis is to keep students motivated by an active approach based on student-centered learning with collaborative work. Teamwork through pair programming is adapted in this teaching process. Bloom's taxonomy, along with a knowledge survey, is used as a guide to classify the information and exercise problems. A prototype curriculum is a deliverable of this research that is suitable for novice programmers-such as engineering freshmen students. It also contains advanced material that allows senior students to use mobile phone and a microcontroller system to enhance engineering laboratories.
Effective Tools and Resources from the MAVEN Education and Public Outreach Program
NASA Astrophysics Data System (ADS)
Mason, T.
2015-12-01
Since 2010, NASA's Mars Atmosphere and Volatile Evolution (MAVEN) Education and Public Outreach (E/PO) team has developed and implemented a robust and varied suite of projects, serving audiences of all ages and diverse backgrounds from across the country. With a program designed to reach formal K-12 educators and students, afterschool and summertime communities, museum docents, journalists, and online audiences, we have incorporated an equally varied approach to developing tools, resources, and evaluation methods to specifically reach each target population and to determine the effectiveness of our efforts. This poster will highlight some of the tools and resources we have developed to share the complex science and engineering of the MAVEN mission, as well as initial evaluation results and lessons-learned from each of our E/PO projects.
Abanto-Valle, C. A.; Bandyopadhyay, D.; Lachos, V. H.; Enriquez, I.
2009-01-01
A Bayesian analysis of stochastic volatility (SV) models using the class of symmetric scale mixtures of normal (SMN) distributions is considered. In the face of non-normality, this provides an appealing robust alternative to the routine use of the normal distribution. Specific distributions examined include the normal, student-t, slash and the variance gamma distributions. Using a Bayesian paradigm, an efficient Markov chain Monte Carlo (MCMC) algorithm is introduced for parameter estimation. Moreover, the mixing parameters obtained as a by-product of the scale mixture representation can be used to identify outliers. The methods developed are applied to analyze daily stock returns data on S&P500 index. Bayesian model selection criteria as well as out-of- sample forecasting results reveal that the SV models based on heavy-tailed SMN distributions provide significant improvement in model fit as well as prediction to the S&P500 index data over the usual normal model. PMID:20730043
NASA Technical Reports Server (NTRS)
Bush, Drew; Sieber, Renee; Seiler, Gale; Chandler, Mark
2016-01-01
A gap has existed between the tools and processes of scientists working on anthropogenic global climate change (AGCC) and the technologies and curricula available to educators teaching the subject through student inquiry. Designing realistic scientific inquiry into AGCC poses a challenge because research on it relies on complex computer models, globally distributed data sets, and complex laboratory and data collection procedures. Here we examine efforts by the scientific community and educational researchers to design new curricula and technology that close this gap and impart robust AGCC and Earth Science understanding. We find technology-based teaching shows promise in promoting robust AGCC understandings if associated curricula address mitigating factors such as time constraints in incorporating technology and the need to support teachers implementing AGCC and Earth Science inquiry. We recommend the scientific community continue to collaborate with educational researchers to focus on developing those inquiry technologies and curricula that use realistic scientific processes from AGCC research and/or the methods for determining how human society should respond to global change.
Strandell-Laine, Camilla; Saarikoski, Mikko; Löyttyniemi, Eliisa; Salminen, Leena; Suomi, Reima; Leino-Kilpi, Helena
2017-06-01
The aim of this study was to describe a study protocol for a study evaluating the effectiveness of a mobile cooperation intervention to improve students' competence level, self-efficacy in clinical performance and satisfaction with the clinical learning environment. Nursing student-nurse teacher cooperation during the clinical practicum has a vital role in promoting the learning of students. Despite an increasing interest in using mobile technologies to improve the clinical practicum of students, there is limited robust evidence regarding their effectiveness. A multicentre, parallel group, randomized, controlled, pragmatic, superiority trial. Second-year pre-registration nursing students who are beginning a clinical practicum will be recruited from one university of applied sciences. Eligible students will be randomly allocated to either a control group (engaging in standard cooperation) or an intervention group (engaging in mobile cooperation) for the 5-week the clinical practicum. The complex mobile cooperation intervention comprises of a mobile application-assisted, nursing student-nurse teacher cooperation and a training in the functions of the mobile application. The primary outcome is competence. The secondary outcomes include self-efficacy in clinical performance and satisfaction with the clinical learning environment. Moreover, a process evaluation will be undertaken. The ethical approval for this study was obtained in December 2014 and the study received funding in 2015. The results of this study will provide robust evidence on mobile cooperation during the clinical practicum, a research topic that has not been consistently studied to date. © 2016 John Wiley & Sons Ltd.
A Geoscience Workforce Model for Non-Geoscience and Non-Traditional STEM Students
NASA Astrophysics Data System (ADS)
Liou-Mark, J.; Blake, R.; Norouzi, H.; Vladutescu, D. V.; Yuen-Lau, L.
2016-12-01
The Summit on the Future of Geoscience Undergraduate Education has recently identified key professional skills, competencies, and conceptual understanding necessary in the development of undergraduate geoscience students (American Geosciences Institute, 2015). Through a comprehensive study involving a diverse range of the geoscience academic and employer community, the following professional scientist skills were rated highly important: 1) critical thinking/problem solving skills; 2) effective communication; 3) ability to access and integrate information; 4) strong quantitative skills; and 5) ability to work in interdisciplinary/cross cultural teams. Based on the findings of the study above, the New York City College of Technology (City Tech) has created a one-year intensive training program that focusses on the development of technical and non-technical geoscience skills for non-geoscience, non-traditional STEM students. Although City Tech does not offer geoscience degrees, the primary goal of the program is to create an unconventional pathway for under-represented minority STEM students to enter, participate, and compete in the geoscience workforce. The selected cohort of STEM students engage in year-round activities that include a geoscience course, enrichment training workshops, networking sessions, leadership development, research experiences, and summer internships at federal, local, and private geoscience facilities. These carefully designed programmatic elements provide both the geoscience knowledge and the non-technical professional skills that are essential for the geoscience workforce. Moreover, by executing this alternate, robust geoscience workforce model that attracts and prepares underrepresented minorities for geoscience careers, this unique pathway opens another corridor that helps to ameliorate the dire plight of the geoscience workforce shortage. This project is supported by NSF IUSE GEOPATH Grant # 1540721.
ERIC Educational Resources Information Center
Blank, Jason M.; McGaughey, Karen J.; Keeling, Elena L.; Thorp, Kristen L.; Shannon, Conor C.; Scaramozzino, Jeanine M.
2016-01-01
Expertise in searching and evaluating scientific literature is a requisite skill of trained scientists and science students, yet information literacy instruction varies greatly among institutions and programs. To ensure that science students acquire information literacy skills, robust methods of assessment are needed. Here, we describe a novel…
Studies of the Effect of Formative Assessment on Student Achievement: So Much More Is Needed
ERIC Educational Resources Information Center
McMillan, James H.; Venable, Jessica C.; Varier, Divya
2013-01-01
Kingston and Nash (2011) recently presented a meta-analysis of studies showing that the effect of formative assessment on K-12 student achievement may not be as robust as widely believed. This investigation analyzes the methodology used in the Kingston and Nash meta-analysis and provides further analyses of the studies included in the study. These…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-01
... AMA is the largest association of physicians and medical students in the United States. The AMA's...-29656] Dear Mr. Soven: On behalf of the physician and medical student members of the American Medical... robust competition within the market than existed before the Agreement. Given the weak state of health...
ERIC Educational Resources Information Center
Kruse, Jerrid W.; Wilcox, Jesse L.
2013-01-01
Just as science education is too often limited to the acquisition of facts, technology education is too often limited to proficient use of technology. Neither of these goals fully realize a robust definition of science and technology literacy. To achieve greater science and technology literacy, students must understand the natures of both science…
Great Times Now and In the Future For Telescopes Afar in Education
NASA Astrophysics Data System (ADS)
Pennypacker, Carlton
2011-03-01
These are very exciting times in education and astronomy, and our communities have growing capabilities to positively change teachers and students lives through the use of remote telescopes. This has been a long haul, but traction is evident. Over the last 17 years, beginning with researchers and students acquiring and discovering our first automatically requested images of supernovae from UC Berkeley's automated Leuschner Observatory (arguably one of the first successful civilian automated telescopes). we, as other groups, have found extremely high engagement with students of various ages in using remote telescopes, both in real-time and cue-based observing modes. E.G., we currently have a small GHOU network of small telescopes that can intermittently serve our teachers, and eagerly try to use every telescope that might share a few photons with our kids, some living in tough circumstances. (some GHOU students are from very low-economic conditions, but still love the stars, and love to communicate and collaboate with children around the world). Other groups are actively pursuing making such networks succeed, too. The project I work with is called "Global Hands-On Universe" (GHOU). The need for regular and robust remote telescopes could grow to very high levels, if the astronomy community can produce reliable and robust telescope networks. For example, as part of the International Year of Astronomy, I helped in efforts that eventually led to the training (coordinated by Rosa Doran, of Portugal) of 5000 teachers in greater than 90 nations in the use of .fts images, Salsa J image processing, and Stellarium software (both French softwares). We have a particular focus and have found huge resonances for this work in developing nations, including nations in Africa, Asia, and South America. In addition, we have developed good after school programs that teach astronomy and use of real images, again which can benefit by astronomy community cooperation and collaboration. A substantial GHOU program is now being mounted in Chile, for instance, with a 30-teacher workshop held the first week of this January, good participation by Chilean and International Universities, research, and education organizations. Our GHOU educators are selfless and share everything, including curricula, software, training, other materials, and themselves. For example this spring, teachers from France will fly to Paranal with their students, and train Chilean teachers on Black Holes in galaxies and measuring exo-planets, all with real .fts image, on their way to the VLT! Finally, I describe a collaborating group with GHOU, the International Asteroid Search "IASC" (led by GHOU'er Patrick Miller of Hardin Simmons University) -- IASC has found phenomenal success with enabling students to discover asteroids, with approximately 50 to 100 asteroids a year being discovered by this group of international teachers and students.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, H; Liang, X; Kalbasi, A
2014-06-01
Purpose: Advanced radiotherapy (RT) techniques such as proton pencil beam scanning (PBS) and photon-based volumetric modulated arc therapy (VMAT) have dosimetric advantages in the treatment of head and neck malignancies. However, anatomic or alignment changes during treatment may limit robustness of PBS and VMAT plans. We assess the feasibility of automated deformable registration tools for robustness evaluation in adaptive PBS and VMAT RT of oropharyngeal cancer (OPC). Methods: We treated 10 patients with bilateral OPC with advanced RT techniques and obtained verification CT scans with physician-reviewed target and OAR contours. We generated 3 advanced RT plans for each patient: protonmore » PBS plan using 2 posterior oblique fields (2F), proton PBS plan using an additional third low-anterior field (3F), and a photon VMAT plan using 2 arcs (Arc). For each of the planning techniques, we forward calculated initial (Ini) plans on the verification scans to create verification (V) plans. We extracted DVH indicators based on physician-generated contours for 2 target and 14 OAR structures to investigate the feasibility of two automated tools (contour propagation (CP) and dose deformation (DD)) as surrogates for routine clinical plan robustness evaluation. For each verification scan, we compared DVH indicators of V, CP and DD plans in a head-to-head fashion using Student's t-test. Results: We performed 39 verification scans; each patient underwent 3 to 6 verification scan. We found no differences in doses to target or OAR structures between V and CP, V and DD, and CP and DD plans across all patients (p > 0.05). Conclusions: Automated robustness evaluation tools, CP and DD, accurately predicted dose distributions of verification (V) plans using physician-generated contours. These tools may be further developed as a potential robustness screening tool in the workflow for adaptive treatment of OPC using advanced RT techniques, reducing the need for physician-generated contours.« less
Educational Experiences of Embry-Riddle Students through NASA Research Collaboration
NASA Technical Reports Server (NTRS)
Schlee, Keith; Chatman, Yadira; Ristow, James; Gangadharan, Sathya; Sudermann, James; Walker, Charles
2007-01-01
NASA's educational programs benefit students while increasing the overall productivity of the organization. The NASA Graduate Student Research Program (GSRP) awards fellowships for graduate study leading to both masters and doctoral degrees in several technical fields, while the Cooperative Education program allows undergraduate and graduate students the chance to gain work experience in the field. The Mission Analysis Branch of the Expendable Launch Vehicles Division at NASA Kennedy Space Center has utilized these two programs with students from Embry-Riddle Aeronautical University to conduct research in modeling and developing a parameter estimation method for spacecraft fuel slosh using simple pendulum analogs. Simple pendulum models are used to understand complicated spacecraft fuel slosh behavior. A robust parameter estimation process will help to identiFy the parameters that will predict the response fairly accurately during the initial stages of design. NASA's Cooperative Education Program trains the next wave of new hires while allowing graduate and undergraduate college students to gain valuable "real-world" work experience. It gives NASA a no risk capability to evaluate the true performance of a prospective new hire without relying solely on a paper resume, while providing the students with a greater hiring potential upon graduation, at NASA or elsewhere. In addition, graduate students serve as mentors for undergrad students and provide a unique learning environment. Providing students with a unique opportunity to work on "real-world" aerospace problems ultimately reinforces their problem solving abilities and their communication skills (in terms of interviewing, resume writing, technical writing, presentation, and peer review) that are vital for the workforce to succeed.
NASA Astrophysics Data System (ADS)
Schultz, Madeleine; Lawrie, Gwendolyn A.; Bailey, Chantal H.; Bedford, Simon B.; Dargaville, Tim R.; O'Brien, Glennys; Tasker, Roy; Thompson, Christopher D.; Williams, Mark; Wright, Anthony H.
2017-03-01
A multi-institution collaborative team of Australian chemistry education researchers, teaching a total of over 3000 first year chemistry students annually, has explored a tool for diagnosing students' prior conceptions as they enter tertiary chemistry courses. Five core topics were selected and clusters of diagnostic items were assembled linking related concepts in each topic together. An ordered multiple choice assessment strategy was adopted to enable provision of formative feedback to students through combination of the specific distractors that they chose. Concept items were either sourced from existing research instruments or developed by the project team. The outcome is a diagnostic tool consisting of five topic clusters of five concept items that has been delivered in large introductory chemistry classes at five Australian institutions. Statistical analysis of data has enabled exploration of the composition and validity of the instrument including a comparison between delivery of the complete 25 item instrument with subsets of five items, clustered by topic. This analysis revealed that most items retained their validity when delivered in small clusters. Tensions between the assembly, validation and delivery of diagnostic instruments for the purposes of acquiring robust psychometric research data versus their pragmatic use are considered in this study.
Analysis of 2011 physician assistant education debt load.
Moore, Miranda A; Coffman, Megan; Cawley, James F; Crowley, Diana; Miller, Anthony; Klink, Kathleen
2017-03-01
This study seeks to investigate how physician assistants (PAs) finance their education and to characterize the educational debt of PA students. Data from the 2011 American Academy of PAs (AAPA)-Physician Assistant Education Association Graduating Student Survey were used to explore the educational debt of PA students. The median total educational debt of a PA student graduating in 2011 was $80,000. Little financial assistance, other than student loans, is available to PA students. Eighty-five percent of PA students report owing some PA education debt amount, with 23% owing at least $100,000. This study provides a baseline look at PA student debt loads as a starting point for more detailed and robust research into new graduate specialty choices and PA career migration into other specialties. Further research is needed to explore the effect of student debt on students' specialty choices.
Booth, Richard; Sinclair, Barbara; McMurray, Josephine; Strudwick, Gillian; Watson, Gavan; Ladak, Hanif; Zwarenstein, Merrick; McBride, Susan; Chan, Ryan; Brennan, Laura
2018-05-28
Although electronic medication administration record systems have been implemented in settings where nurses work, nursing students commonly lack robust learning opportunities to practice the skills and workflow of digitalized medication administration during their formative education. As a result, nursing students' performance in administering medication facilitated by technology is often poor. Serious gaming has been recommended as a possible intervention to improve nursing students' performance with electronic medication administration in nursing education. The objectives of this study are to examine whether the use of a gamified electronic medication administration simulator (1) improves nursing students' attention to medication administration safety within simulated practice, (2) increases student self-efficacy and knowledge of the medication administration process, and (3) improves motivational and cognitive processing attributes related to student learning in a technology-enabled environment. This study comprised the development of a gamified electronic medication administration record simulator and its evaluation in 2 phases. Phase 1 consists of a prospective, pragmatic randomized controlled trial with second-year baccalaureate nursing students at a Canadian university. Phase 2 consists of qualitative focus group interviews with a cross-section of nursing student participants. The gamified medication administration simulator has been developed, and data collection is currently under way. If the gamified electronic medication administration simulator is found to be effective, it could be used to support other health professional simulated education and scaled more widely in nursing education programs. ClinicalTrials.gov NCT03219151; https://clinicaltrials.gov/show/NCT03219151 (Archived by WebCite at http://www.webcitation.org/6yjBROoDt). RR1-10.2196/9601. ©Richard Booth, Barbara Sinclair, Josephine McMurray, Gillian Strudwick, Gavan Watson, Hanif Ladak, Merrick Zwarenstein, Susan McBride, Ryan Chan, Laura Brennan. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 28.05.2018.
NASA Astrophysics Data System (ADS)
McKenna, Ann Frances
2001-07-01
Creating a classroom environment that fosters a productive learning experience and engages students in the learning process is a complex endeavor. A classroom environment is dynamic and requires a unique synergy among students, teacher, classroom artifacts and events to achieve robust understanding and knowledge integration. This dissertation addresses this complex issue by developing, implementing, and investigating the simple machines learning environment (SIMALE) to support students' mechanical reasoning and understanding. SIMALE was designed to support reflection, collaborative learning, and to engage students in generative learning through multiple representations of concepts and successive experimentation and design activities. Two key components of SIMALE are an original web-based software tool and hands-on Lego activities. A research study consisting of three treatment groups was created to investigate the benefits of hands-on and web-based computer activities on students' analytic problem solving ability, drawing/modeling ability, and conceptual understanding. The study was conducted with two populations of students that represent a diverse group with respect to gender, ethnicity, academic achievement and social/economic status. One population of students in this dissertation study participated from the Mathematics, Engineering, and Science Achievement (MESA) program that serves minorities and under-represented groups in science and mathematics. The second group was recruited from the Academic Talent Development Program (ATDP) that is an academically competitive outreach program offered through the University of California at Berkeley. Results from this dissertation show success of the SIMALE along several dimensions. First, students in both populations achieved significant gains in analytic problem solving ability, drawing/modeling ability, and conceptual understanding. Second, significant differences that were found on pre-test measures were eliminated on post-test measures. Specifically, female students scored significantly lower than males on the overall pre-tests but scored as well as males on the same post-test measures. MESA students also scored significantly lower than ATDP students on pre-test measures but both populations scored equally well on the post-tests. This dissertation has therefore shown the SIMALE to support a collaborative, reflective, and generative learning environment. Furthermore, the SIMALE clearly contributes to students' mechanical reasoning and understanding of simple machines concepts for a diverse population of students.
Jacobsen, Wade C; Forste, Renata
2011-05-01
Little is known about the influence of electronic media use on the academic and social lives of university students. Using time-diary and survey data, we explore the use of various types of electronic media among first-year students. Time-diary results suggest that the majority of students use electronic media to multitask. Robust regression results indicate a negative relationship between the use of various types of electronic media and first-semester grades. In addition, we find a positive association between social-networking-site use, cellular-phone communication, and face-to-face social interaction.
Student Support for EIPBN 2015 Conference - Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrow, Reginald C.
2016-01-19
The 59th International Conference on Electron, Ion and Photon Beam Technology and Nanofabrication, 2015, held at the Manchester Grand Hyatt in San Diego, CA from May 26 to May 29, 2015 was a great success in large part because financial support allowed robust participation from students. The students gave oral and poster presentations of their research and many will publish peer-reviewed articles in a special conference issue of the Journal of Vacuum Science and Technology B. The Department of Energy Office of Basic Energy Sciences supported 10 students from US universities with a $5,000 grant (DE-SC0013773).
Content validation of an interprofessional learning video peer assessment tool.
Nisbet, Gillian; Jorm, Christine; Roberts, Chris; Gordon, Christopher J; Chen, Timothy F
2017-12-16
Large scale models of interprofessional learning (IPL) where outcomes are assessed are rare within health professional curricula. To date, there is sparse research describing robust assessment strategies to support such activities. We describe the development of an IPL assessment task based on peer rating of a student generated video evidencing collaborative interprofessional practice. We provide content validation evidence of an assessment rubric in the context of large scale IPL. Two established approaches to scale development in an educational setting were combined. A literature review was undertaken to develop a conceptual model of the relevant domains and issues pertaining to assessment of student generated videos within IPL. Starting with a prototype rubric developed from the literature, a series of staff and student workshops were undertaken to integrate expert opinion and user perspectives. Participants assessed five-minute videos produced in a prior pilot IPL activity. Outcomes from each workshop informed the next version of the rubric until agreement was reached on anchoring statements and criteria. At this point the rubric was declared fit to be used in the upcoming mandatory large scale IPL activity. The assessment rubric consisted of four domains: patient issues, interprofessional negotiation; interprofessional management plan in action; and effective use of video medium to engage audience. The first three domains reflected topic content relevant to the underlying construct of interprofessional collaborative practice. The fourth domain was consistent with the broader video assessment literature calling for greater emphasis on creativity in education. We have provided evidence for the content validity of a video-based peer assessment task portraying interprofessional collaborative practice in the context of large-scale IPL activities for healthcare professional students. Further research is needed to establish the reliability of such a scale.
Itatani, Tomoya; Nagata, Kyoko; Yanagihara, Kiyoko; Tabuchi, Noriko
2017-01-01
The importance of active learning has continued to increase in Japan. The authors conducted classes for first-year students who entered the nursing program using the problem-based learning method which is a kind of active learning. Students discussed social topics in classes. The purposes of this study were to analyze the post-class essay, describe logical and critical thinking after attended a Problem-Based Learning (PBL) course. The authors used Mayring’s methodology for qualitative content analysis and text mining. In the description about the skills required to resolve social issues, seven categories were extracted: (recognition of diverse social issues), (attitudes about resolving social issues), (discerning the root cause), (multi-lateral information processing skills), (making a path to resolve issues), (processivity in dealing with issues), and (reflecting). In the description about communication, five categories were extracted: (simple statement), (robust theories), (respecting the opponent), (communication skills), and (attractive presentations). As the result of text mining, the words extracted more than 100 times included “issue,” “society,” “resolve,” “myself,” “ability,” “opinion,” and “information.” Education using PBL could be an effective means of improving skills that students described, and communication in general. Some students felt difficulty of communication resulting from characteristics of Japanese. PMID:28829362
Leão, William L; Abanto-Valle, Carlos A; Chen, Ming-Hui
2017-01-01
A stochastic volatility-in-mean model with correlated errors using the generalized hyperbolic skew Student-t (GHST) distribution provides a robust alternative to the parameter estimation for daily stock returns in the absence of normality. An efficient Markov chain Monte Carlo (MCMC) sampling algorithm is developed for parameter estimation. The deviance information, the Bayesian predictive information and the log-predictive score criterion are used to assess the fit of the proposed model. The proposed method is applied to an analysis of the daily stock return data from the Standard & Poor's 500 index (S&P 500). The empirical results reveal that the stochastic volatility-in-mean model with correlated errors and GH-ST distribution leads to a significant improvement in the goodness-of-fit for the S&P 500 index returns dataset over the usual normal model.
NASA Astrophysics Data System (ADS)
Sanchez, Christopher A.; Ruddell, Benjamin L.; Schiesser, Roy; Merwade, Venkatesh
2016-03-01
Previous research has suggested that the use of more authentic learning activities can produce more robust and durable knowledge gains. This is consistent with calls within civil engineering education, specifically hydrology, that suggest that curricula should more often include professional perspective and data analysis skills to better develop the "T-shaped" knowledge profile of a professional hydrologist (i.e., professional breadth combined with technical depth). It was expected that the inclusion of a data-driven simulation lab exercise that was contextualized within a real-world situation and more consistent with the job duties of a professional in the field, would provide enhanced learning and appreciation of job duties beyond more conventional paper-and-pencil exercises in a lower-division undergraduate course. Results indicate that while students learned in both conditions, learning was enhanced for the data-driven simulation group in nearly every content area. This pattern of results suggests that the use of data-driven modeling and visualization activities can have a significant positive impact on instruction. This increase in learning likely facilitates the development of student perspective and conceptual mastery, enabling students to make better choices about their studies, while also better preparing them for work as a professional in the field.
NASA Astrophysics Data System (ADS)
Sanchez, C. A.; Ruddell, B. L.; Schiesser, R.; Merwade, V.
2015-07-01
Previous research has suggested that the use of more authentic learning activities can produce more robust and durable knowledge gains. This is consistent with calls within civil engineering education, specifically hydrology, that suggest that curricula should more often include professional perspective and data analysis skills to better develop the "T-shaped" knowledge profile of a professional hydrologist (i.e., professional breadth combined with technical depth). It was expected that the inclusion of a data driven simulation lab exercise that was contextualized within a real-world situation and more consistent with the job duties of a professional in the field, would provide enhanced learning and appreciation of job duties beyond more conventional paper-and-pencil exercises in a lower division undergraduate course. Results indicate that while students learned in both conditions, learning was enhanced for the data-driven simulation group in nearly every content area. This pattern of results suggests that the use of data-driven modeling and visualization activities can have a significant positive impact on instruction. This increase in learning likely facilitates the development of student perspective and conceptual mastery, enabling students to make better choices about their studies, while also better preparing them for work as a professional in the field.
ERIC Educational Resources Information Center
Raven, Neil
2016-01-01
The need for a robust evidence base able to demonstrate the impact of widening participation activity across the student lifecycle has been emphasised in recent guidance to the higher education sector. However, with competing demands on their time this is likely to represent a challenge for practitioners. Yet, there is wide recognition of the need…
ERIC Educational Resources Information Center
Nakhleh, Mary B.; Krajcik, Joseph S.
Within high school chemistry the topic of acids, bases, and pH is particularly challenging because robust understanding of the topic depends heavily on the student possessing deep concepts of atoms, molecules, ions, and chemical reactions. Since knowledge is acquired and stored in a dynamic structure, it was investigated in this study how…
ERIC Educational Resources Information Center
Kabugo, David; Muyinda, Paul B.; Masagazi, Fred. M.; Mugagga, Anthony M.; Mulumba, Mathias B.
2016-01-01
Although eye-tracking technologies such as Tobii-T120/TX and Eye-Tribe are steadily becoming ubiquitous, and while their appropriation in education can aid teachers to collect robust information on how students move their eyes when reading and engaging with different learning objects, many teachers of Luganda language are yet to gain experiences…
Development of the Statistical Reasoning in Biology Concept Inventory (SRBCI).
Deane, Thomas; Nomme, Kathy; Jeffery, Erica; Pollock, Carol; Birol, Gülnur
2016-01-01
We followed established best practices in concept inventory design and developed a 12-item inventory to assess student ability in statistical reasoning in biology (Statistical Reasoning in Biology Concept Inventory [SRBCI]). It is important to assess student thinking in this conceptual area, because it is a fundamental requirement of being statistically literate and associated skills are needed in almost all walks of life. Despite this, previous work shows that non-expert-like thinking in statistical reasoning is common, even after instruction. As science educators, our goal should be to move students along a novice-to-expert spectrum, which could be achieved with growing experience in statistical reasoning. We used item response theory analyses (the one-parameter Rasch model and associated analyses) to assess responses gathered from biology students in two populations at a large research university in Canada in order to test SRBCI's robustness and sensitivity in capturing useful data relating to the students' conceptual ability in statistical reasoning. Our analyses indicated that SRBCI is a unidimensional construct, with items that vary widely in difficulty and provide useful information about such student ability. SRBCI should be useful as a diagnostic tool in a variety of biology settings and as a means of measuring the success of teaching interventions designed to improve statistical reasoning skills. © 2016 T. Deane et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Pradhan, Balaram; Mohanty, Soubhagyalaxmi; Hankey, Alex
2018-01-01
Attentional processes tend to be less well developed in the visually impaired, who require special training to develop them fully. Yogic breathing which alters the patterns of respiration has been shown to enhance attention skills. Letter cancellation tests are well-established tools to measure attention and attention span. Here, a modified Braille version of the six-letter cancellation test (SLCT) was used for students with visual impairment (VI). This study aimed to assess the immediate effects of Bhramari Pranayama (BhPr) and breath awareness (BA) on students with VI. This study was a self-as-control study held on 2 consecutive days, on 19 participants (8 males, 11 females), with a mean age of 15.89 ± 1.59 years, randomized into two groups. On the 1 st day, Group 1 performed 10 min breath awareness and Group 2 performed Bhramari ; on the 2 nd day, practices were reversed. Assessments used a SLCT specially adapted for the visually impaired before and after each session. The Braille letter cancellation test was successfully taken by 19 students. Scores significantly improved after both techniques for each student following practices on both days ( P < 0.001). BhPr may have more effect on attention performance than BA as wrong scores significantly increased following BA ( P < 0.05), but the increase in the score after Bhramari was not significant. Despite the small sample size improvement in attentional processes by both yoga breathing techniques was robust. Attentional skills were definitely enhanced. Long-term practice should be studied.
Pradhan, Balaram; Mohanty, Soubhagyalaxmi; Hankey, Alex
2018-01-01
Context: Attentional processes tend to be less well developed in the visually impaired, who require special training to develop them fully. Yogic breathing which alters the patterns of respiration has been shown to enhance attention skills. Letter cancellation tests are well-established tools to measure attention and attention span. Here, a modified Braille version of the six-letter cancellation test (SLCT) was used for students with visual impairment (VI). Aim: This study aimed to assess the immediate effects of Bhramari Pranayama (BhPr) and breath awareness (BA) on students with VI. Methods: This study was a self-as-control study held on 2 consecutive days, on 19 participants (8 males, 11 females), with a mean age of 15.89 ± 1.59 years, randomized into two groups. On the 1st day, Group 1 performed 10 min breath awareness and Group 2 performed Bhramari; on the 2nd day, practices were reversed. Assessments used a SLCT specially adapted for the visually impaired before and after each session. Results: The Braille letter cancellation test was successfully taken by 19 students. Scores significantly improved after both techniques for each student following practices on both days (P < 0.001). BhPr may have more effect on attention performance than BA as wrong scores significantly increased following BA (P < 0.05), but the increase in the score after Bhramari was not significant. Conclusions: Despite the small sample size improvement in attentional processes by both yoga breathing techniques was robust. Attentional skills were definitely enhanced. Long-term practice should be studied. PMID:29755219
Climate Change Communicators: The C3E3 Project
NASA Astrophysics Data System (ADS)
Sharif, H. O.; Joseph, J.
2013-12-01
The University of Texas at San Antonio (UTSA), San Antonio College (SAC), and the University of North Dakota (UND) have partnered with NASA to provide underrepresented undergraduates from UTSA, SAC, and other community colleges climate-related research and education experiences through the Climate Change Communication: Engineer, Environmental science, and Education (C3E3) project. The program aims to develop a robust response to climate change by providing K-16 climate change education; enhance the effectiveness of K-16 education particularly in engineering and other STEM disciplines by use of new instructional technologies; increase the enrollment in engineering programs and the number of engineering degrees awarded by showing engineering's usefulness in relation to the much-discussed contemporary issue of climate change; increase persistence in STEM degrees by providing student research opportunities; and increase the ethnic diversity of those receiving engineering degrees and help ensure an ethnically diverse response to climate change. Students participated in the second summer internship funded by the project. More than 60 students participated in guided research experiences aligned with NASA Science Plan objectives for climate and Earth system science and the educational objectives of the three institutions. The students went through training in modern media technology (webcasts), and in using this technology to communicate the information on climate change to others, especially high school students, culminating in production of webcasts on investigating the aspects of climate change using NASA data. Content developed is leveraged by NASA Earth observation data and NASA Earth system models and tools. Several departments are involved in the educational program.
Student Practices, Learning, and Attitudes When Using Computerized Ranking Tasks
NASA Astrophysics Data System (ADS)
Lee, Kevin M.; Prather, E. E.; Collaboration of Astronomy Teaching Scholars CATS
2011-01-01
Ranking Tasks are a novel type of conceptual exercise based on a technique called rule assessment. Ranking Tasks present students with a series of four to eight icons that describe slightly different variations of a basic physical situation. Students are then asked to identify the order, or ranking, of the various situations based on some physical outcome or result. The structure of Ranking Tasks makes it difficult for students to rely strictly on memorized answers and mechanical substitution of formulae. In addition, by changing the presentation of the different scenarios (e.g., photographs, line diagrams, graphs, tables, etc.) we find that Ranking Tasks require students to develop mental schema that are more flexible and robust. Ranking tasks may be implemented on the computer which requires students to order the icons through drag-and-drop. Computer implementation allows the incorporation of background material, grading with feedback, and providing additional similar versions of the task through randomization so that students can build expertise through practice. This poster will summarize the results of a study of student usage of computerized ranking tasks. We will investigate 1) student practices (How do they make use of these tools?), 2) knowledge and skill building (Do student scores improve with iteration and are there diminishing returns?), and 3) student attitudes toward using computerized Ranking Tasks (Do they like using them?). This material is based upon work supported by the National Science Foundation under Grant No. 0715517, a CCLI Phase III Grant for the Collaboration of Astronomy Teaching Scholars (CATS). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.
Ramluggun, Pras; Lacy, Mary; Cadle, Martha; Anjoyeb, Mahmood
2018-05-30
An increasing number of students with a pre-existing mental health condition are enrolling on preregistration mental health nursing programmes. The challenges faced by these students in managing the demands of the programme have not been fully explored. Mental health and well-being is an integral part of providing a healthy university in which students can flourish. The purpose of the study was to explore how students with an underlying mental health issue manage the demands of the mental health nursing programme. The outcomes of the study are aimed at informing inclusive teaching and learning and current student support provision. Ethics approval was given. Students from two universities in South East England who met the criterion of having a pre-existing mental health condition when enrolling on the mental health preregistration nursing programme were invited to take part. Nine students took part in the study. Using an interpretative descriptive design, 1:1 face-to-face, audio-taped, semistructured interviews were undertaken. The data were analysed using a framework approach, and this revealed four main themes: timing of disclosure; managing lived experience in learning environments; students' coping mechanisms, and experience of support. Recommendations for practice was that approved education institutes (AEIs) should ensure they have a robust, inclusive practice by implementing strategies to develop these students' resilience, and enhance their learning and the current support provisions. This will ensure the barriers to disclosing their mental health conditions are recognized and minimized to enable these students to fully contribute to their own learning and teaching experience. © 2018 Australian College of Mental Health Nurses Inc.
Developing Climate Change Literacy With the Humanities: A Narrative Approach
NASA Astrophysics Data System (ADS)
Siperstein, S.
2015-12-01
Teaching the science and policy of climate change is necessary but insufficient for helping students to develop a robust climate literacy. Climate change educators must also teach students how to evaluate historical trends, to unpack the assumptions in shared cultural narratives, to grapple with ethical dilemmas, and more generally to traverse the turbulence of feeling that is a hallmark of living in a time of global climate chaos. In short, climate literacy must include the skills and strategies of the humanities, and specifically literary and cultural studies. After providing an overview of how literary and cultural studies scholars from around the world are developing innovative pedagogical methods for addressing climate change (drawing on the presenter's experience editing the forthcoming volume Teaching Climate Change in the Humanities), the presentation will then report on a specific Literary Genres course taught at the University of Oregon. The course, offered to undergraduate non-majors who entered the class with little or no knowledge of climate change, constituted a case study of action research into the transdisciplinary teaching of climate change. The presentation will thus draw on quantitative course assessments, student coursework, and the instructor's own experiences in arguing that three key narratives underpin the work we do as multidisciplinary climate change educators: narratives of observation, narratives of speculation, and narratives of conversion. That is, we guide students through the processes of witnessing climate change, imagining more just and sustainable futures, and by so doing, transforming themselves and their communities. In the particular Literary Genres course under consideration, students used the tools of literary and cultural studies first to analyze existing versions of these narratives and then to compose their own versions of these narratives based on their local communities and ecologies. In the context of multidisciplinary climate change education, one of the most important roles of the humanities is to empower students by giving them the critical and creative tools to tell their own climate stories.
Argument as Professional Development: Impacting Teacher Knowledge and Beliefs About Science
NASA Astrophysics Data System (ADS)
Crippen, Kent J.
2012-12-01
Using a case study method, the experiences of a group of high school science teachers participating in a unique professional development method involving an argue-to-learn intervention were examined. The participants ( N = 42) represented 25 different high schools from a large urban school district in the southwestern United States. Data sources included a multiple-choice science content test and artifacts from a capstone argument project. Findings indicate although it was intended for the curriculum to be a robust and sufficient collection of evidence, participant groups were more likely to use the Web to find unique evidence than to they were to use the provided materials. Content knowledge increased, but an issue with teacher conceptions of primary data was identified, as none of the participants chose to use any of their experimental results in their final arguments. The results of this study reinforce multiple calls for science curricula that engage students (including teachers as students) in the manipulation and questioning of authentic data as a means to better understanding complex socioscientific issues and the nature of science.
An Intercompany Perspective on Biopharmaceutical Drug Product Robustness Studies.
Morar-Mitrica, Sorina; Adams, Monica L; Crotts, George; Wurth, Christine; Ihnat, Peter M; Tabish, Tanvir; Antochshuk, Valentyn; DiLuzio, Willow; Dix, Daniel B; Fernandez, Jason E; Gupta, Kapil; Fleming, Michael S; He, Bing; Kranz, James K; Liu, Dingjiang; Narasimhan, Chakravarthy; Routhier, Eric; Taylor, Katherine D; Truong, Nobel; Stokes, Elaine S E
2018-02-01
The Biophorum Development Group (BPDG) is an industry-wide consortium enabling networking and sharing of best practices for the development of biopharmaceuticals. To gain a better understanding of current industry approaches for establishing biopharmaceutical drug product (DP) robustness, the BPDG-Formulation Point Share group conducted an intercompany collaboration exercise, which included a bench-marking survey and extensive group discussions around the scope, design, and execution of robustness studies. The results of this industry collaboration revealed several key common themes: (1) overall DP robustness is defined by both the formulation and the manufacturing process robustness; (2) robustness integrates the principles of quality by design (QbD); (3) DP robustness is an important factor in setting critical quality attribute control strategies and commercial specifications; (4) most companies employ robustness studies, along with prior knowledge, risk assessments, and statistics, to develop the DP design space; (5) studies are tailored to commercial development needs and the practices of each company. Three case studies further illustrate how a robustness study design for a biopharmaceutical DP balances experimental complexity, statistical power, scientific understanding, and risk assessment to provide the desired product and process knowledge. The BPDG-Formulation Point Share discusses identified industry challenges with regard to biopharmaceutical DP robustness and presents some recommendations for best practices. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Barbot, Baptiste; Heinz, Sasha L.; Luthar, Suniya S.
2013-01-01
Although adolescence is a time of individuation with increased reliance on peers, research indicates that, despite a deliberate distancing from parents, adolescents continue to seek the support and console of parental attachment figures in times of distress. The Perceived Parental Reactions to Adolescent Distress (PRAD) is a brief self-report measure developed to examine adolescents’ perception of parental response under conditions of distress as measured by four conceptually and empirically distinct parental reactions to distress: Comfort, Self-focus, Avoidance and Harshness. Across two studies involving a total of 738 high school students, we developed the PRAD and substantiated its robust psychometric properties, including evidence for reliability as well as internal and criterion validity. Sources of individual differences in the test-scores were also explored. Empirical as well as practical importance of assessing parental reactions to adolescent distress is discussed with regard to both the attachment and adolescent development literature. PMID:23777451
Linguistic Pattern Analysis of Misspellings of Typically Developing Writers in Grades 1 to 9
Bahr, Ruth Huntley; Silliman, Elaine R.; Berninger, Virginia W.; Dow, Michael
2012-01-01
Purpose A mixed methods approach, evaluating triple word form theory, was used to describe linguistic patterns of misspellings. Method Spelling errors were taken from narrative and expository writing samples provided by 888 typically developing students in grades 1–9. Errors were coded by category (phonological, orthographic, and morphological) and specific linguistic feature affected. Grade level effects were analyzed with trend analysis. Qualitative analyses determined frequent error types and how use of specific linguistic features varied across grades. Results Phonological, orthographic, and morphological errors were noted across all grades, but orthographic errors predominated. Linear trends revealed developmental shifts in error proportions for the orthographic and morphological categories between grades 4–5. Similar error types were noted across age groups but the nature of linguistic feature error changed with age. Conclusions Triple word-form theory was supported. By grade 1, orthographic errors predominated and phonological and morphological error patterns were evident. Morphological errors increased in relative frequency in older students, probably due to a combination of word-formation issues and vocabulary growth. These patterns suggest that normal spelling development reflects non-linear growth and that it takes a long time to develop a robust orthographic lexicon that coordinates phonology, orthography, and morphology and supports word-specific, conventional spelling. PMID:22473834
NASA Astrophysics Data System (ADS)
Halversen, C.; Weiss, E. L.; Pedemonte, S.
2016-02-01
Today's youth have been tasked with the overwhelming job of addressing the world's climate future. The students who will become the scientists, policy makers, and citizens of tomorrow must gain a robust understanding of the causes and effects of climate change, as well as possible adaptation strategies. Currently, few high quality curriculum materials exist that address climate change in a developmentally appropriate manner. The NOAA-funded Ocean Sciences Sequence for Grades 6-8: The Ocean-Atmosphere Connection and Climate Change (OSS) addresses this gap by providing teachers with scientifically accurate climate change curriculum that hits on some of the most salient points in climate science, while simultaneously developing students' science process skills. OSS was developed through a collaboration between some of the nation's leading ocean and climate scientists and the Lawrence Hall of Science's highly qualified curriculum development team. Scientists were active partners throughout the entire development process, from initial brainstorming of key concepts and creating the conceptual storyline for the curriculum to final review of the content and activities. The goal was to focus strategically and effectively on core concepts within ocean and climate sciences that students should understand. OSS was designed in accordance with the latest research from the learning sciences and provides numerous opportunities for students to develop facility with science practices by "doing" science.Through hands-on activities, technology, informational readings, and embedded assessments, OSS deeply addresses a significant number of standards from the Next Generation Science Standards and is being used by many teachers as they explore the shifts required by NGSS. It also aligns with the Ocean Literacy and Climate Literacy Frameworks. OSS comprises 33 45-minute sessions organized into three thematic units, each driven by an exploratory question: (1) How do the ocean and atmosphere interact?; (2) How does carbon flow through the ocean, land, and atmosphere?; and (3) What are the causes and effects of climate change? The curriculum deliberately explores the ocean and climate as global systems and challenges students to use scientific evidence to make explanations about climate change.
ERIC Educational Resources Information Center
Angus, Simon D.; Watson, Judith
2009-01-01
While a number of studies have been conducted on the impact of online assessment and teaching methods on student learning, the field does not seem settled around the promised benefits of such approaches. It is argued that the reason for this state of affairs is that few studies have been able to control for a number of confounding factors in…
ERIC Educational Resources Information Center
Padilla Mercado, Jeralyne B.; Coombs, Eri M.; De Jesus, Jenny P.; Bretz, Stacey Lowery; Danielson, Neil D.
2018-01-01
Multifunctional chemical analysis (MCA) systems provide a viable alternative for large scale instruction while supporting a hands-on approach to more advanced instrumentation. These systems are robust and typically use student stations connected to a remote central computer for data collection, minimizing the need for computers at every student…
Dynamic robustness of knowledge collaboration network of open source product development community
NASA Astrophysics Data System (ADS)
Zhou, Hong-Li; Zhang, Xiao-Dong
2018-01-01
As an emergent innovative design style, open source product development communities are characterized by a self-organizing, mass collaborative, networked structure. The robustness of the community is critical to its performance. Using the complex network modeling method, the knowledge collaboration network of the community is formulated, and the robustness of the network is systematically and dynamically studied. The characteristics of the network along the development period determine that its robustness should be studied from three time stages: the start-up, development and mature stages of the network. Five kinds of user-loss pattern are designed, to assess the network's robustness under different situations in each of these three time stages. Two indexes - the largest connected component and the network efficiency - are used to evaluate the robustness of the community. The proposed approach is applied in an existing open source car design community. The results indicate that the knowledge collaboration networks show different levels of robustness in different stages and different user loss patterns. Such analysis can be applied to provide protection strategies for the key users involved in knowledge dissemination and knowledge contribution at different stages of the network, thereby promoting the sustainable and stable development of the open source community.
Games for learning: vast wasteland or a digital promise?
Levine, Michael H; Vaala, Sarah E
2013-01-01
Research about emerging best practices in the learning sciences points to the potential of deploying digital games as one possible solution to the twin challenges of weak student engagement and the need for more robust achievement in literacy, science, technology, and math. This chapter reviews key cross-cutting themes in this special volume, drawing perspective from the context of the current United States program and policy reform. The authors conclude that digital games have some unique potential to address pressing educational challenges, but that new mechanisms for advancing purposeful research and development must be adopted by both policymakers and industry leaders. Copyright © 2013 Wiley Periodicals, Inc., A Wiley Company.
An analytic model for footprint dispersions and its application to mission design
NASA Technical Reports Server (NTRS)
Rao, J. R. Jagannatha; Chen, Yi-Chao
1992-01-01
This is the final report on our recent research activities that are complementary to those conducted by our colleagues, Professor Farrokh Mistree and students, in the context of the Taguchi method. We have studied the mathematical model that forms the basis of the Simulation and Optimization of Rocket Trajectories (SORT) program and developed an analytic method for determining mission reliability with a reduced number of flight simulations. This method can be incorporated in a design algorithm to mathematically optimize different performance measures of a mission, thus leading to a robust and easy-to-use methodology for mission planning and design.
NASA Astrophysics Data System (ADS)
Grose, C. J.
2008-05-01
Numerical geodynamics models of heat transfer are typically thought of as specialized topics of research requiring knowledge of specialized modelling software, linux platforms, and state-of-the-art finite-element codes. I have implemented analytical and numerical finite-difference techniques with Microsoft Excel 2007 spreadsheets to solve for complex solid-earth heat transfer problems for use by students, teachers, and practicing scientists without specialty in geodynamics modelling techniques and applications. While implementation of equations for use in Excel spreadsheets is occasionally cumbersome, once case boundary structure and node equations are developed, spreadsheet manipulation becomes routine. Model experimentation by modifying parameter values, geometry, and grid resolution makes Excel a useful tool whether in the classroom at the undergraduate or graduate level or for more engaging student projects. Furthermore, the ability to incorporate complex geometries and heat-transfer characteristics makes it ideal for first and occasionally higher order geodynamics simulations to better understand and constrain the results of professional field research in a setting that does not require the constraints of state-of-the-art modelling codes. The straightforward expression and manipulation of model equations in excel can also serve as a medium to better understand the confusing notations of advanced mathematical problems. To illustrate the power and robustness of computation and visualization in spreadsheet models I focus primarily on one-dimensional analytical and two-dimensional numerical solutions to two case problems: (i) the cooling of oceanic lithosphere and (ii) temperatures within subducting slabs. Excel source documents will be made available.
Autonomous robot software development using simple software components
NASA Astrophysics Data System (ADS)
Burke, Thomas M.; Chung, Chan-Jin
2004-10-01
Developing software to control a sophisticated lane-following, obstacle-avoiding, autonomous robot can be demanding and beyond the capabilities of novice programmers - but it doesn"t have to be. A creative software design utilizing only basic image processing and a little algebra, has been employed to control the LTU-AISSIG autonomous robot - a contestant in the 2004 Intelligent Ground Vehicle Competition (IGVC). This paper presents a software design equivalent to that used during the IGVC, but with much of the complexity removed. The result is an autonomous robot software design, that is robust, reliable, and can be implemented by programmers with a limited understanding of image processing. This design provides a solid basis for further work in autonomous robot software, as well as an interesting and achievable robotics project for students.
Cell communities and robustness in development.
Monk, N A
1997-11-01
The robustness of patterning events in development is a key feature that must be accounted for in proposed models of these events. When considering explicitly cellular systems, robustness can be exhibited at different levels of organization. Consideration of two widespread patterning mechanisms suggests that robustness at the level of cell communities can result from variable development at the level of individual cells; models of these mechanisms show how interactions between participating cells guarantee community-level robustness. Cooperative interactions enhance homogeneity within communities of like cells and the sharpness of boundaries between communities of distinct cells, while competitive interactions amplify small inhomogeneities within communities of initially equivalent cells, resulting in fine-grained patterns of cell specialization.
Susceptibility to cigarette smoking among middle and high school e-cigarette users in Canada.
Azagba, Sunday; Baskerville, Neill Bruce; Foley, Kristie
2017-10-01
There is a growing concern that the historic reductions in tobacco consumption witnessed in the past decades may be undermined by the rapid increase in e-cigarette use. This study examined the association between e-cigarette use and future intention to smoke cigarettes among middle and high school students who had never smoked cigarettes. Data were drawn from the 2014-2015 Canadian Student Tobacco, Alcohol and Drugs Survey (n=25,637). A multivariable logistic regression model was used to examine the association between e-cigarette use and susceptibility to cigarette smoking. In addition, an inverse probability of treatment weighted regression adjustment method (doubly robust estimator), which models both the susceptibility to smoking and the probability of e-cigarette use, was conducted. About 10% of the students had ever tried an e-cigarette. There were higher rates of ever e-cigarette use among students in grades 10-12 (12.5%) than those in grades 7-9 (7.3%). Students who had ever tried an e-cigarette had higher odds of susceptibility to cigarette smoking (adjusted odds ratio=2.16, 95% confidence interval=1.80-2.58) compared to those that had never tried an e-cigarette. Current use of an e-cigarette was associated with higher odds of smoking susceptibility (adjusted odds ratio=2.02, 95% confidence interval=1.43-2.84). Similar results were obtained from the doubly robust estimation. Among students who had never smoked cigarettes, e-cigarette use was associated with a higher susceptibility to cigarette smoking. Copyright © 2017 Elsevier Inc. All rights reserved.
Henkel, Marius; Zwick, Michaela; Beuker, Janina; Willenbacher, Judit; Baumann, Sandra; Oswald, Florian; Neumann, Anke; Siemann-Herzberg, Martin; Syldatk, Christoph; Hausmann, Rudolf
2015-01-01
Bioprocess engineering is a highly interdisciplinary field of study which is strongly benefited by practical courses where students can actively experience the interconnection between biology, engineering, and physical sciences. This work describes a lab course developed for 2nd year undergraduate students of bioprocess engineering and related disciplines, where students are challenged with a real-life bioprocess-engineering application, the production of recombinant protein in a fed-batch process. The lab course was designed to introduce students to the subject of operating and supervising an experiment in a bioreactor, along with the analysis of collected data and a final critical evaluation of the experiment. To provide visual feedback of the experimental outcome, the organism used during class was Escherichia coli which carried a plasmid to recombinantly produce enhanced green fluorescent protein (eGFP) upon induction. This can easily be visualized in both the bioreactor and samples by using ultraviolet light. The lab course is performed with bioreactors of the simplest design, and is therefore highly flexible, robust and easy to reproduce. As part of this work the implementation and framework, the results, the evaluation and assessment of student learning combined with opinion surveys are presented, which provides a basis for instructors intending to implement a similar lab course at their respective institution. © 2015 by the International Union of Biochemistry and Molecular Biology.
Sharma, Manoj; Catalano, Hannah Priest; Nahar, Vinayak K; Lingam, Vimala C; Johnson, Paul; Ford, M Allison
2017-02-25
A substantial proportion of college students to not drink enough water and consume sugar-sweetened beverages (SSBs). Consumption of SSBs is associated with weight gain, obesity, type 2 diabetes mellitus, dental carries, and increased risk for cardiovascular disease. Hence, the purpose of this study was to use the multi-theory model (MTM) in predicting initiation and sustenance of plain water consumption instead of sugar-sweetened beverages among college students. A cross-sectional study. In this cross-sectional study, a 37-item valid and reliable MTM-based survey was administered to college students in 2016 via Qualtrics at a large public university in the Southeastern United States. Overall, 410 students responded to the survey; of those, 174 were eligible for the study and completed it. Stepwise multiple regression analysis revealed that 61.8% of the variance in the initiation of drinking plain water instead of SSBs was explained by behavioral confidence (P<0.001) and changes in the physical environment (P<0.001). Further, 58.3% of the variance in the sustenance of drinking plain water instead of SSBs was explained by emotional transformation (P<0.001) and practice for change (P=0.001). Multi-theory model of health behavior change is a robust theory for predicting plain water consumption instead of SSBs in college students. Interventions should be developed based on this theory for this target population.
The Design and Validation of the Colorado Learning Attitudes about Science Survey
NASA Astrophysics Data System (ADS)
Adams, W. K.; Perkins, K. K.; Dubson, M.; Finkelstein, N. D.; Wieman, C. E.
2005-09-01
The Colorado Learning Attitudes about Science Survey (CLASS) is a new instrument designed to measure various facets of student attitudes and beliefs about learning physics. This instrument extends previous work by probing additional facets of student attitudes and beliefs. It has been written to be suitably worded for students in a variety of different courses. This paper introduces the CLASS and its design and validation studies, which include analyzing results from over 2400 students, interviews and factor analyses. Methodology used to determine categories and how to analyze the robustness of categories for probing various facets of student learning are also described. This paper serves as the foundation for the results and conclusions from the analysis of our survey data.
NASA Astrophysics Data System (ADS)
Manley, J.; Chegwidden, D.; Mote, A. S.; Ledley, T. S.; Lynds, S. E.; Haddad, N.; Ellins, K.
2016-02-01
EarthLabs, envisioned as a national model for high school Earth or Environmental Science lab courses, is adaptable for both undergraduate middle school students. The collection includes ten online modules that combine to feature a global view of our planet as a dynamic, interconnected system, by engaging learners in extended investigations. EarthLabs support state and national guidelines, including the NGSS, for science content. Four modules directly guide students to discover vital aspects of the oceans while five other modules incorporate ocean sciences in order to complete an understanding of Earth's climate system. Students gain a broad perspective on the key role oceans play in fishing industry, droughts, coral reefs, hurricanes, the carbon cycle, as well as life on land and in the seas to drive our changing climate by interacting with scientific research data, manipulating satellite imagery, numerical data, computer visualizations, experiments, and video tutorials. Students explore Earth system processes and build quantitative skills that enable them to objectively evaluate scientific findings for themselves as they move through ordered sequences that guide the learning. As a robust collection, EarthLabs modules engage students in extended, rigorous investigations allowing a deeper understanding of the ocean, climate and weather. This presentation provides an overview of the ten curriculum modules that comprise the EarthLabs collection developed by TERC and found at http://serc.carleton.edu/earthlabs/index.html. Evaluation data on the effectiveness and use in secondary education classrooms will be summarized.
Everson, Naleya; Levett-Jones, Tracy; Pitt, Victoria
2018-05-24
This review aimed to identify programs that promote health professional students' empathic concern. Empathic concern is a key mediator of important outcomes for both patients and health professionals. However the empathic concern of health professional students tends to decline over the course of their studies. To date studies that have evaluated the impact of educational programs on empathic concern have not been reviewed. The databases ProQuest, CINAHL and Ovid were searched for studies that had evaluated educational programs for health professional students using a validated psychometric measure of empathic concern. Studies were graded using The Quality Assessment Tool for Quantitative Studies. Of 2977 identified studies, fifteen met inclusion criteria. Seven studies separately reported empathic concern scores. Four of the fifteen studies reported increased empathy scale scores after students took part in a program. Two studies received a strong quality rating, six a moderate rating and seven a weak rating. This review did not identify any studies that clearly demonstrated an increase in students' empathic concern after taking part in an educational program. Mindfulness based stress reduction, providing empathy content at each stage of a degree, programs that incorporate the film Wit, and Balint groups, may promote empathic concern. In light of the significant impact of health professionals' levels of empathic concern on outcomes for patients and health professionals, further robustly designed research using appropriate psychometric scales is needed to inform the development of education programs in this area. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Stein, S. A.; Kley, J.; Hindle, D.; Friedrich, A. M.
2014-12-01
Defending society against natural hazards is a high-stakes game of chance against nature, involving tough decisions. How should a developing nation allocate its budget between building schools for towns without ones or making existing schools earthquake-resistant? Does it make more sense to build levees to protect against floods, or to prevent development in the areas at risk? Would more lives be saved by making hospitals earthquake-resistant, or using the funds for patient care? These topics are challenging because they are far from normal experience, in that they involve rare events and large sums. To help students in natural hazard classes conceptualize them, we pose tough and thought-provoking questions about complex issues involved and explore them together via lectures, videos, field trips, and in-class and homework questions. We discuss analogous examples from the students' experiences, drawing on a new book "Playing Against Nature, Integrating Science and Economics to Mitigate Natural Hazards in an Uncertain World". Asking whether they wear bicycle helmets and why or why not shows the cultural perception of risk. Individual students' responses vary, and the overall results vary dramatically between the US, UK, and Germany. Challenges in hazard assessment in an uncertain world are illustrated by asking German students whether they buy a ticket on public transportation - accepting a known cost - or "ride black" - not paying but risking a heavy fine if caught. We explore the challenge of balancing mitigation costs and benefits via the question "If you were a student in Los Angeles, how much more would you pay in rent each month to live in an earthquake-safe building?" Students learn that interdisciplinary thinking is needed, and that due to both uncertainties and sociocultural factors, no unique or right strategies exist for a particular community, much the less all communities. However, we can seek robust policies that give sensible results given uncertainties.
Instrumental variables estimates of peer effects in social networks.
An, Weihua
2015-03-01
Estimating peer effects with observational data is very difficult because of contextual confounding, peer selection, simultaneity bias, and measurement error, etc. In this paper, I show that instrumental variables (IVs) can help to address these problems in order to provide causal estimates of peer effects. Based on data collected from over 4000 students in six middle schools in China, I use the IV methods to estimate peer effects on smoking. My design-based IV approach differs from previous ones in that it helps to construct potentially strong IVs and to directly test possible violation of exogeneity of the IVs. I show that measurement error in smoking can lead to both under- and imprecise estimations of peer effects. Based on a refined measure of smoking, I find consistent evidence for peer effects on smoking. If a student's best friend smoked within the past 30 days, the student was about one fifth (as indicated by the OLS estimate) or 40 percentage points (as indicated by the IV estimate) more likely to smoke in the same time period. The findings are robust to a variety of robustness checks. I also show that sharing cigarettes may be a mechanism for peer effects on smoking. A 10% increase in the number of cigarettes smoked by a student's best friend is associated with about 4% increase in the number of cigarettes smoked by the student in the same time period. Copyright © 2014 Elsevier Inc. All rights reserved.
Weeks, Keith W; Clochesy, John M; Hutton, B Meriel; Moseley, Laurie
2013-03-01
Advancing the art and science of education practice requires a robust evaluation of the relationship between students' exposure to learning and assessment environments and the development of their cognitive competence (knowing that and why) and functional competence (know-how and skills). Healthcare education translation research requires specific education technology assessments and evaluations that consist of quantitative analyses of empirical data and qualitative evaluations of the lived student experience of the education journey and schemata construction (Weeks et al., 2013a). This paper focuses on the outcomes of UK PhD and USA post-doctorate experimental research. We evaluated the relationship between exposure to traditional didactic methods of education, prototypes of an authentic medication dosage calculation problem-solving (MDC-PS) environment and nursing students' construction of conceptual and calculation competence in medication dosage calculation problem-solving skills. Empirical outcomes from both UK and USA programmes of research identified highly significant differences in the construction of conceptual and calculation competence in MDC-PS following exposure to the authentic learning environment to that following exposure to traditional didactic transmission methods of education (p < 0.001). This research highlighted that for many students exposure to authentic learning environments is an essential first step in the development of conceptual and calculation competence and relevant schemata construction (internal representations of the relationship between the features of authentic dosage problems and calculation functions); and how authentic environments more ably support all cognitive (learning) styles in mathematics than traditional didactic methods of education. Functional competence evaluations are addressed in Macdonald et al. (2013) and Weeks et al. (2013e). Copyright © 2012. Published by Elsevier Ltd.
Robust detection-isolation-accommodation for sensor failures
NASA Technical Reports Server (NTRS)
Weiss, J. L.; Pattipati, K. R.; Willsky, A. S.; Eterno, J. S.; Crawford, J. T.
1985-01-01
The results of a one year study to: (1) develop a theory for Robust Failure Detection and Identification (FDI) in the presence of model uncertainty, (2) develop a design methodology which utilizes the robust FDI ththeory, (3) apply the methodology to a sensor FDI problem for the F-100 jet engine, and (4) demonstrate the application of the theory to the evaluation of alternative FDI schemes are presented. Theoretical results in statistical discrimination are used to evaluate the robustness of residual signals (or parity relations) in terms of their usefulness for FDI. Furthermore, optimally robust parity relations are derived through the optimization of robustness metrics. The result is viewed as decentralization of the FDI process. A general structure for decentralized FDI is proposed and robustness metrics are used for determining various parameters of the algorithm.
NASA Astrophysics Data System (ADS)
Bull, Barbara Jeanne
Chemists have to rely on models to aid in the explanation of phenomena they experience. Instruction of atomic theory has been used as the introduction and primary model for many concepts in chemistry. Therefore, it is important for students to have a robust understanding of the different atomic models, their relationships and their limitations. Previous research has shown that students have alternative conceptions concerning their interpretation of atomic models, but there is less exploration into how students apply their understanding of atomic structure to other chemical concepts. Therefore, this research concentrated on the development of three Model Eliciting Activities to investigate the most fundamental topic of the atom and how students applied their atomic model to covalent bonding and atomic size. Along with the investigation into students' use of their atomic models, a comparison was included between a traditional chemistry curriculum using an Atoms First approach and Chemistry, Life, the Universe and Everything (CLUE), a NSF-funded general chemistry curriculum. Treatment and Control groups were employed to determine the effectiveness of the curricula in conveying the relationship between atoms, covalent bonds and atomic size. The CLUE students developed a Cloud representation on the Atomic Model Eliciting Activity and maintained this depiction through the Covalent Bonding Model Eliciting Activity. The traditional students more often illustrated the atom using a Bohr representation and continued to apply the same model to their portrayal of covalent bonding. During the analysis of the Atomic Size Model Eliciting Activity, students had difficulty fully supporting their explanation of the atomic size trend. Utilizing the beSocratic platform, an activity was designed to aid students' construction of explanations using Toulmin's Argumentation Pattern. In order to study the effectiveness of the activity, the students were asked questions relating to a four-week long investigation into the identity of an inorganic salt during their laboratory class. Students who completed the activity exhibited an improvement in their explanation of the identity of their salt's cation. After completing the activity, another question was posed about the identity of their anion. Both groups saw a decrease in the percentage of students who included reasoning in their answer; however, the activity group maintained a significantly higher percentage of responses with a reasoning than the control group.
Tang, Xuyang; Ohri-Vachaspati, Punam; Abbott, Joshua K; Aggarwal, Rimjhim; Tulloch, David L; Lloyd, Kristen; Yedidia, Michael J
2014-12-01
Obesity rates among school-age children remain high. Access to energy-dense foods at home, in schools, in stores, and restaurants around homes and schools is of concern. Research on the relationship between food environment around schools and students' weight status is inconclusive. This study examines the association between weight status of middle and high school students and proximity to a comprehensive set of food outlets around schools. Deidentified nurse-measured heights and weights data were obtained for 12,954 middle and high school students attending 33 public schools in four low-income communities in New Jersey. Geocoded locations of supermarkets, convenience stores, small grocery stores, and limited-service restaurants were obtained from commercial sources. Random-effect regression models with robust standard errors were developed to adjust for unequal variances across schools and clustering of students within schools. Proximity to small grocery stores that offered some healthy options (e.g., five fruits, five vegetables, and low-fat/skim milk) and supermarkets was associated with healthier student weight status. Having a small grocery store within 0.25 mile of school and an additional such store within that radius was associated with a lower BMI z-score (p<0.05). An additional supermarket within 0.25 mile of schools was associated with a lower probability of being overweight/obese (p<0.05). Improving access to healthy food outlets, such as small stores, that offer healthy food options and supermarkets around middle and high schools is a potential strategy for improving weight outcomes among students.
Tang, Xuyang; Abbott, Joshua K.; Aggarwal, Rimjhim; Tulloch, David L.; Lloyd, Kristen; Yedidia, Michael J.
2014-01-01
Abstract Background: Obesity rates among school-age children remain high. Access to energy-dense foods at home, in schools, in stores, and restaurants around homes and schools is of concern. Research on the relationship between food environment around schools and students' weight status is inconclusive. This study examines the association between weight status of middle and high school students and proximity to a comprehensive set of food outlets around schools. Methods: Deidentified nurse-measured heights and weights data were obtained for 12,954 middle and high school students attending 33 public schools in four low-income communities in New Jersey. Geocoded locations of supermarkets, convenience stores, small grocery stores, and limited-service restaurants were obtained from commercial sources. Random-effect regression models with robust standard errors were developed to adjust for unequal variances across schools and clustering of students within schools. Results: Proximity to small grocery stores that offered some healthy options (e.g., five fruits, five vegetables, and low-fat/skim milk) and supermarkets was associated with healthier student weight status. Having a small grocery store within 0.25 mile of school and an additional such store within that radius was associated with a lower BMI z-score (p<0.05). An additional supermarket within 0.25 mile of schools was associated with a lower probability of being overweight/obese (p<0.05). Conclusions: Improving access to healthy food outlets, such as small stores, that offer healthy food options and supermarkets around middle and high schools is a potential strategy for improving weight outcomes among students. PMID:25343730
Radl, Jonas; Salazar, Leire; Cebolla-Boado, Héctor
2017-01-01
This study addresses the relationship between various family forms and the level of cognitive and non-cognitive skills among 15- to 16-year-old students. We measure cognitive skills using standardized scores in mathematics; non-cognitive abilities are captured by a composite measure of internal locus of control related to mathematics. A particular focus lies on father absence although we also examine the role played by co-residence with siblings and grandparents. We use cross-nationally comparable data on students participating in the Programme for International Student Assessment's release for 2012. By mapping inequalities by family forms across 33 developed countries, this study provides robust cross-country comparable evidence on the relationship of household structure with both cognitive and non-cognitive skills. The study produces three key results: first, the absence of fathers from the household as well as co-residence with grandparents is associated with adverse outcomes for children in virtually all developed countries. Second, this is generally true in terms of both cognitive and non-cognitive skills, although the disadvantage connected to both family forms is notably stronger in the former than in the latter domain. Finally, there is marked cross-national diversity in the effects associated with the presence in the household of siblings and especially grandparents which furthermore differs across the two outcomes considered.
Lachowiec, Jennifer; Queitsch, Christine; Kliebenstein, Daniel J.
2016-01-01
Background Robustness to genetic and environmental perturbation is a salient feature of multicellular organisms. Loss of developmental robustness can lead to severe phenotypic defects and fitness loss. However, perfect robustness, i.e. no variation at all, is evolutionarily unfit as organisms must be able to change phenotype to properly respond to changing environments and biotic challenges. Plasticity is the ability to adjust phenotypes predictably in response to specific environmental stimuli, which can be considered a transient shift allowing an organism to move from one robust phenotypic state to another. Plants, as sessile organisms that undergo continuous development, are particularly dependent on an exquisite fine-tuning of the processes that balance robustness and plasticity to maximize fitness. Scope and Conclusions This paper reviews recently identified mechanisms, both systems-level and molecular, that modulate robustness, and discusses their implications for the optimization of plant fitness. Robustness in living systems arises from the structure of genetic networks, the specific molecular functions of the underlying genes, and their interactions. This very same network responsible for the robustness of specific developmental states also has to be built such that it enables plastic yet robust shifts in response to environmental changes. In plants, the interactions and functions of signal transduction pathways activated by phytohormones and the tendency for plants to tolerate whole-genome duplications, tandem gene duplication and hybridization are emerging as major regulators of robustness in development. Despite their obvious implications for plant evolution and plant breeding, the mechanistic underpinnings by which plants modulate precise levels of robustness, plasticity and evolvability in networks controlling different phenotypes are under-studied. PMID:26473020
ERIC Educational Resources Information Center
Larsen, Erik; Eriksen, J.
1975-01-01
Describes an experiment wherein the student can demonstrate the existence of all the thiocyanato chromium complexes, estimate the stepwise formation constants, demonstrate the robustness of chromium III complexes, and show the principles of paper electrophoresis. (GS)
How we developed a bioethics theme in an undergraduate medical curriculum.
Ghias, Kulsoom; Ali, Syeda Kauser; Khan, Kausar S; Khan, Robyna; Khan, Murad M; Farooqui, Arshi; Nayani, Parvez
2011-01-01
The 5-year undergraduate medical curriculum at Aga Khan University integrates basic sciences with clinical and community health sciences. Multimodal strategies of teaching and learning, with an emphasis on problem-based learning, are utilized to equip students with knowledge, skills, behaviours, attitudes and values necessary for a high-calibre medical graduate. Bioethics teaching was introduced in the medical curriculum in 1988 and has since undergone several changes. In 2009, a multidisciplinary voluntary group began review of undergraduate bioethics teaching and invested over 350 man-hours in curricular revision. This involved formulating terminal objectives, delineating specific objectives and identifying instructional methodologies and assessment strategies appropriate for the contents of each objective. Innovative strategies were specially devised to work within the time constraints of the existing medical curriculum and importantly, to increase student interest and engagement. The new bioethics curriculum is designed to be comprehensive and robust, and strives to develop graduates who, in addition to being technically skilled and competent, are well-versed in the history and philosophy of ethics and bioethics and are ethical in their thinking and practice, especially in the context of a developing country like Pakistan where health indicators are among the worst in the region, and clinical practices are not effectively regulated to ensure quality of care.
Middle School Students' Understandings About Anthropogenic Climate Change
NASA Astrophysics Data System (ADS)
Golden, B. W.
2013-12-01
Given the complexity of the science involving climate change (IPCC, 2007), its lack of curricular focus within US K-12 schooling (Golden, 2009; Golden & Francis, 2013), and the difficulty in effecting conceptual change in science (Vosniadou, 2007), we sought to research middle school students' conceptions about climate change, in addition to how those conceptions changed during and as a result of a deliberately designed global climate change (GCC) unit. In a sixth grade classroom, a unit was designed which incorporated Argumentation-Driven Inquiry (Sampson & Grooms, 2010). That is, students were assigned to groups and asked to make sense of standard GCC data such as paleoclimate data from ice cores, direct temperature measurement, and Keeling curves, in addition to learning about the greenhouse effect in a modeling lesson (Hocking, et al, 1993). The students were then challenged, in groups, to create, on whiteboards, explanations and defend these explanations to and with their peers. They did two iterations of this argumentation. The first iteration focused on the simple identification of climate change patterns. The second focused on developing causal explanations for those patterns. After two rounds of such argumentation, the students were then asked to write (individually) a "final" argument which accounted for the given data. Interview and written data were analyzed prior to the given unit, during it, and after it, in order to capture complicated nuance that might escape detection by simpler research means such as surveys. Several findings emerged which promised to be of interest to climate change educators. The first is that many students tended to "know" many "facts" about climate change, but were unable to connect these disparate facts in any meaningful ways. A second finding is that while no students changed their entire belief systems, even after a robust unit which would seemingly challenge such, each student engaged did indeed modify the manner in which they discussed the validation of their beliefs. That is, we argue that the unit, and the emphases contained within the unit, resulted in the "epistemic scaffolding" of their ideas, to the extent that they shifted from arguing from anecdotes to arguing based on other types of data, especially from line graphs. Additionally, we found that students' understandings of climate change were tied to their ontological constructions of the subject matter, i.e., many perceived climate change as just another environmentally sensitive issue such as littering and pollution, and were therefore limited in their ability to understand anthropogenic climate change in the vast and robust sense meant by current scientific consensus. Given these known difficulties, it is critical to explore further research of this sort in order to better understand what students are actually thinking, and how that thinking is prone to change, modification, or not. Subsequently, K-12 strategies might be better designed, if that is indeed a priority of US/Western society.
Supanantaroek, Suthinee; Lensink, Robert; Hansen, Nina
2016-09-07
Saving plays a crucial role in the process of economic growth. However, one main reason why poor people often do not save is that they lack financial knowledge. Improving the savings culture of children through financial education is a promising way to develop savings attitudes and behavior early in life. This study is one of the first that examines the effects of social and financial education training and a children's club developed by Aflatoun on savings attitudes and behavior among primary school children in Uganda, besides Berry, Karlan, and Pradhan. A randomized phase in approach was used by randomizing the order in which schools implemented the program (school-level randomization). The treatment group consisted of students in schools where the program was implemented, while in the control group the program was not yet implemented. The program lasted 3 months including 16 hours. We compared posttreatment variables for the treatment and control group. Study participants included 1,746 students, of which 936 students were from 22 schools that were randomly assigned to receive the program between May and July 2011; the remaining 810 students attended 22 schools that did not implement the program during the study period. Indicators for children's savings attitudes and behavior were key outcomes. The intervention increased awareness of money, money recording, and savings attitudes. It also provides some evidence-although less robust-that the intervention increased actual savings. A short financial literacy and social training can improve savings attitudes and behavior of children considerably. © The Author(s) 2016.
NASA Astrophysics Data System (ADS)
Lyu, Bo-Han; Wang, Chen; Tsai, Chun-Wei
2017-08-01
Jasper Display Corp. (JDC) offer high reflectivity, high resolution Liquid Crystal on Silicon - Spatial Light Modulator (LCoS-SLM) which include an associated controller ASIC and LabVIEW based modulation software. Based on this LCoS-SLM, also called Education Kit (EDK), we provide a training platform which includes a series of optical theory and experiments to university students. This EDK not only provides a LabVIEW based operation software to produce Computer Generated Holograms (CGH) to generate some basic diffraction image or holographic image, but also provides simulation software to verity the experiment results simultaneously. However, we believe that a robust LCoSSLM, operation software, simulation software, training system, and training course can help students to study the fundamental optics, wave optics, and Fourier optics more easily. Based on these fundamental knowledges, they could develop their unique skills and create their new innovations on the optoelectronic application in the future.
Ang, Rebecca P; Huan, Vivien S; Chan, Wei Teng; Cheong, Siew Ann; Leaw, Jia Ning
2015-06-01
Given the robust positive association between gangs and crime, a better understanding of factors related to reported youth gang membership is critical and especially since youth in gangs are a universal concern. The present study investigated the role of delinquency, proactive aggression, psychopathy and behavioral school engagement in reported youth gang membership using a large sample of 1027 Singapore adolescents. Results from logistic regression showed that delinquency, proactive aggression, and behavioral school engagement were statistically significant risk factors for reported youth gang membership, and that psychopathy was not related to reported gang membership. Implications for prevention and intervention work with respect to youth gang membership were discussed. In particular, strengthening students' engagement with school and meaningful school-related activities and developing supportive teacher-student relationships are particularly important in working with young people with respect to prevention work. Additionally, the present study's theoretical and empirical contributions were also discussed. Copyright © 2015 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.
Gilles de la Tourette's syndrome in special education schools: a United Kingdom study.
Eapen, V; Robertson, M M; Zeitlin, H; Kurlan, R
1997-06-01
In order to determine the prevalence of tic disorders in children with severe school problems requiring a residential facility and comparison groups of children in regular day schools, we performed direct clinical examinations for the presence of tics and Gilles de la Tourette's syndrome (GTS) in 20 children from a residential school for emotional and behavioral difficulties (EBD); 25 children from a residential school for learning disabilities; 17 "problem" children (PC) (identified by teachers as having academic or behaviour problems) and 19 normal children (NC) selected at random (using random numbers) from a regular school. Of the EBD students, 65% were judged to have definite tics as compared with 24% of students with learning difficulties (P < 0.05), 6% of PC (P < 0.003) and none of the NC (P < 0.0006) group. Most of the affected students met diagnostic criteria for GTS. Our findings suggest that GTS is commonly associated with the need for special education and that this association is particularly robust for children with severe school problems. In these children, the presence of tics may be an indicator of an underlying dysfunction of neurological development.
‘Gamma Anna’: a classroom demonstration for teaching the concepts of gamma imaging
NASA Astrophysics Data System (ADS)
Wolff, Nicola; Griffiths, Jennifer; Yerworth, Rebecca
2017-01-01
Gamma imaging is at the interface of medicine and physics and thus its teaching is important in both fields. Pedagogic literature highlights the benefits of interactive demonstrations in teaching: an increase in enjoyment and interest, as well as improvement in academic achievement. However gamma imaging uses radioactive sources, which are potentially dangerous and thus their use is tightly controlled. We have developed a demonstration which uses a localised exothermic reaction within a rag doll as an analogue of radioactivity. This can be safely used in classrooms to demonstrate the principles of gamma imaging. The tool is easy to make, cheap, robust and portable. The supplementary material in this paper gives teacher notes and a description of how to make the rag doll demonstrator. We have tested the tool using six participants, acting as ‘teachers’, who carried out the demonstration and described the doll as easy to use, and the ‘tumour’ clearly identifiable. The teaching tool was separately demonstrated to a group of 12 GCSE physics students and a group of 12 medical students. Feedback showed increased student engagement, enjoyment and understanding of gamma imaging. Previous research has shown that these benefits have an impact on learning and academic outcomes.
NASA Astrophysics Data System (ADS)
Wegner, K.; Herrin, S.; Schmidt, C.
2015-12-01
Scientists play an integral role in the development of climate literacy skills - for both teachers and students alike. By partnering with local scientists, teachers can gain valuable insights into the science practices highlighted by the Next Generation Science Standards (NGSS), as well as a deeper understanding of cutting-edge scientific discoveries and local impacts of climate change. For students, connecting to local scientists can provide a relevant connection to climate science and STEM skills. Over the past two years, the Climate Voices Science Speakers Network (climatevoices.org) has grown to a robust network of nearly 400 climate science speakers across the United States. Formal and informal educators, K-12 students, and community groups connect with our speakers through our interactive map-based website and invite them to meet through face-to-face and virtual presentations, such as webinars and podcasts. But creating a common language between scientists and educators requires coaching on both sides. In this presentation, we will present the "nitty-gritty" of setting up scientist-educator collaborations, as well as the challenges and opportunities that arise from these partnerships. We will share the impact of these collaborations through case studies, including anecdotal feedback and metrics.
The ASA Regional Chapters program
NASA Astrophysics Data System (ADS)
McLaughlin, Elizabeth; Arvelo, Juan
2005-04-01
Are you involved in a Regional Chapter? The Regional Chapters Program certainly embraces the intent of our Society. ``The ASA was founded... to increase and diffuse the knowledge of acoustics and promote its practical applications. Any person... interested in acoustics is eligible for membership.'' The history and the activities of each Chapter are unique. There are currently twenty active chapters uniquely positioned to promote acoustics through outreach and involvement with the public. There have been several new developments in the Regional Chapters Program, the most exciting being the incorporation of Student Chapters! Our first, the Nebraska Student Chapter, was approved at the 75th Meeting of the ASA in NYC. Several more are on their way! Existing Chapters are revitalizing! The Washington DC Chapter has recently found new enthusiasm, re-establishing a robust program. A new student scholarship has been organized thanks to the generosity of Larry and Julia Royster. Another recent enhancement is the expansion of the Regional Chapters Website. There one can find useful materials including an updated Chapter Start-up Kit. Involvement in a chapter is a great way to give back to the ASA, to learn, promote acoustics, to socialize, and to involve new persons in our exciting field!
NASA Technical Reports Server (NTRS)
Wegner, Kristin; Herrin, Sara; Schmidt, Cynthia
2015-01-01
Scientists play an integral role in the development of climate literacy skills - for both teachers and students alike. By partnering with local scientists, teachers can gain valuable insights into the science practices highlighted by the Next Generation Science Standards (NGSS), as well as a deeper understanding of cutting-edge scientific discoveries and local impacts of climate change. For students, connecting to local scientists can provide a relevant connection to climate science and STEM skills. Over the past two years, the Climate Voices Science Speakers Network (climatevoices.org) has grown to a robust network of nearly 400 climate science speakers across the United States. Formal and informal educators, K-12 students, and community groups connect with our speakers through our interactive map-based website and invite them to meet through face-to-face and virtual presentations, such as webinars and podcasts. But creating a common language between scientists and educators requires coaching on both sides. In this presentation, we will present the "nitty-gritty" of setting up scientist-educator collaborations, as well as the challenges and opportunities that arise from these partnerships. We will share the impact of these collaborations through case studies, including anecdotal feedback and metrics.
Arsenic-based Life: An active learning assignment for teaching scientific discourse.
Jeremy Johnson, R
2017-01-02
Among recent high profile scientific debates was the proposal that life could exist with arsenic in place of phosphorous in its nucleic acids and other biomolecules. Soon after its initial publication, scientists across diverse disciplines began to question this extraordinary claim. Using the original article, its claims, its scientific support, and the ensuing counterarguments, a two-day, active learning classroom exercise was developed focusing on the presentation, evaluation, and discussion of scientific argumentation and discourse. In this culminating assignment of a first semester biochemistry course, undergraduate students analyze the scientific support from the original research articles and then present and discuss multiple scientific rebuttals in a lively, civil classroom debate. Through this assignment, students develop a sense of skepticism, especially for the original arsenic-based life claims, and learn to clearly articulate their counterarguments with scientific support and critical reasoning. With its direct integration into first-semester biochemistry curriculum and the excitement surrounding arsenic based life, this assignment provides a robust, simple, and stimulating framework for introducing scientific discourse and active learning into the undergraduate molecular science curriculum. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(1):40-45, 2017. © 2016 The International Union of Biochemistry and Molecular Biology.
Design, Development and Testing of Airplanes for Mars Exploration
NASA Technical Reports Server (NTRS)
Hall, David W.
2004-01-01
The opportunity for a piggyback mission to Mars aboard an Ariane 5 rocket in the early spring of 1999 set off feverish design activity at several NASA centers. This report describes the contract work done by faculty, students, and consultants at the California Polytechnic State University in San Luis Obispo California (Cal poly/SLO) to support the NASA/Ames design, construction and test efforts to develop a simple and robust Mars Flyer configuration capable of performing a practical science mission on Mars. The first sections will address the conceptual design of a workable Mars Flyer configuration which started in the spring and summer of 1999. The following sections will focus on construction and flight test of two full-scale vehicles. The final section will reflect on the overall effort and make recommendations for future work.
Methodology and results of a space station education pilot programme in the primary school
NASA Astrophysics Data System (ADS)
Mirra, G.; Mirra, C.
Potential users of the Space Station Freedom are now still in the Primary School. Subject studies 1 have shown that a robust familiarization programme has to be developed in order to increase public awareness on the microgravity environment and its capabilities to perform unique science. At the same time, several surveys 2 have demonstrated that elementary school students are showing the greatest interest and enthusiasm in space related activities among all school students. With these boundary conditions, a pilot programme, aimed at verifying the capabilities of young primary school pupils (aged between 10 and 12) in understanding why one performs research in space, has been conceived. In order to overcome the lack of space training of school teachers, an expert in space operations joined a group of elementary teachers to activate this program: merging the necessary didactic and technical capabilities. Consequently, the aim of the program becomes two folded: •generate critical thinking and problem solving capacities as well as inventiveness in children making them aware on the use of space to improve life on Earth. •identify the key issues for the definition of a robust space utilization educational programme. The programme has been managed by MARS Center. the Italian User Support Center for the Space Station utilization, and the institute "Speranzas" in the nearby of Naples, Italy. MARS Center, in particular, is responsible towards the national agency ASI, Agenzia Spaziale Italiana, of the execution of the promotional activity towards all the possible target groups: young students are among these groups. This programme started in late 1992 and is currently ongoing. The objective of this paper is to provide a description of the methodology and the reasons of such a programme with a snapshot on the preliminary results and future trends. Means used as supporting tools, such as films, posters and role plays are herein depicted as well as statistics on the pupils apprehension level.
Predicting medical students' intentions to take up rural practice after graduation.
Jones, Michael; Humphreys, John; Prideaux, David
2009-10-01
Using a novel longitudinal tracking project, this study develops and evaluates the performance of a predictive model and index of rural medical practice intention based on the characteristics of incoming medical students. Medical school entry survey data were obtained from the Medical Schools Outcome Database (MSOD) project implemented in all Australian and New Zealand medical schools and coordinated through Medical Deans Australia and New Zealand, the representative body for the Deans of 18 Australian and two New Zealand medical schools and faculties. The medical school commencement survey collects data on students' education and family background, including rural upbringing, personal circumstances and scholarships, and on their practice intentions in terms of location and specialty. The MSOD will also allow tracking of medical graduates after graduation. Logistic regression modelling was used to develop a predictive model of rural practice intention. Split-sample validation was used to gain some insight into the stability of performance of the model. Response rates to the MSOD survey exceeded 90% on average. The model findings confirm and extend previous research examining the association of medical student characteristics with intention to take up rural medical practice. The statistically significant independent factors in the model included students' rural backgrounds, financial arrangements and intentions regarding specialist versus generalist practice upon graduation. Model performance was good, with an area under the receiver-operator characteristics curve of 0.86, and reproducible, with an area in a validation sample of 0.83. The model and related index provide important insights into individual factors associated with rural practice intention among students commencing medical studies. The model can also provide a means for optimising the use of scarce medical programme resources, thereby helping to improve the supply of rural medical practitioners. This study illustrates the power and potential of a robust, consistent, systematic longitudinal tracking project.
NASA Astrophysics Data System (ADS)
Peters-Burton, Erin; Baynard, Liz R.
2013-11-01
An understanding of the scientific enterprise is useful because citizens need to make systematic, rational decisions about projects involving scientific endeavors and technology, and a clearer understanding of scientific epistemology is beneficial because it could encourage more public engagement with science. The purpose of this study was to capture beliefs for three groups, scientists, secondary science teachers, and eighth-grade science students, about the ways scientific knowledge is generated and validated. Open-ended questions were framed by formal scientific epistemology and dimensions of epistemology recognized in the field of educational psychology. The resulting statements were placed in a card sort and mapped in a network analysis to communicate interconnections among ideas. Maps analyzed with multidimensional scaling revealed robust connections among students and scientists but not among teachers. Student and teacher maps illustrated the strongest connections among ideas about experiments while scientist maps present more descriptive and well-rounded ideas about the scientific enterprise. The students' map was robust in terms of numbers of ideas, but were lacking in a hierarchical organization of ideas. The teachers' map displayed an alignment with the learning standards of the state, but not a broader view of science. The scientists map displayed a hierarchy of ideas with elaboration of equally valued statements connected to several foundational statements. Network analysis can be helpful in forwarding the study of views of the nature of science because of the technique's ability to capture verbatim statements from participants and to display the strength of connections among the statements.
NASA Astrophysics Data System (ADS)
Jeong, Woodon; Kang, Minji; Kim, Shinwoong; Min, Dong-Joo; Kim, Won-Ki
2015-06-01
Seismic full waveform inversion (FWI) has primarily been based on a least-squares optimization problem for data residuals. However, the least-squares objective function can suffer from its weakness and sensitivity to noise. There have been numerous studies to enhance the robustness of FWI by using robust objective functions, such as l 1-norm-based objective functions. However, the l 1-norm can suffer from a singularity problem when the residual wavefield is very close to zero. Recently, Student's t distribution has been applied to acoustic FWI to give reasonable results for noisy data. Student's t distribution has an overdispersed density function compared with the normal distribution, and is thus useful for data with outliers. In this study, we investigate the feasibility of Student's t distribution for elastic FWI by comparing its basic properties with those of the l 2-norm and l 1-norm objective functions and by applying the three methods to noisy data. Our experiments show that the l 2-norm is sensitive to noise, whereas the l 1-norm and Student's t distribution objective functions give relatively stable and reasonable results for noisy data. When noise patterns are complicated, i.e., due to a combination of missing traces, unexpected outliers, and random noise, FWI based on Student's t distribution gives better results than l 1- and l 2-norm FWI. We also examine the application of simultaneous-source methods to acoustic FWI based on Student's t distribution. Computing the expectation of the coefficients of gradient and crosstalk noise terms and plotting the signal-to-noise ratio with iteration, we were able to confirm that crosstalk noise is suppressed as the iteration progresses, even when simultaneous-source FWI is combined with Student's t distribution. From our experiments, we conclude that FWI based on Student's t distribution can retrieve subsurface material properties with less distortion from noise than l 1- and l 2-norm FWI, and the simultaneous-source method can be adopted to improve the computational efficiency of FWI based on Student's t distribution.
Malti, Tina; Zuffianò, Antonio; Noam, Gil G
2018-04-01
Knowing every child's social-emotional development is important as it can support prevention and intervention approaches to meet the developmental needs and strengths of children. Here, we discuss the role of social-emotional assessment tools in planning, implementing, and evaluating preventative strategies to promote mental health in all children and adolescents. We, first, selectively review existing tools and identify current gaps in the measurement literature. Next, we introduce the Holistic Student Assessment (HSA), a tool that is based in our social-emotional developmental theory, The Clover Model, and designed to measure social-emotional development in children and adolescents. Using a sample of 5946 students (51% boys, M age = 13.16 years), we provide evidence for the psychometric validity of the self-report version of the HSA. First, we document the theoretically expected 7-dimension factor structure in a calibration sub-sample (n = 984) and cross-validate its structure in a validation sub-sample (n = 4962). Next, we show measurement invariance across development, i.e., late childhood (9- to 11-year-olds), early adolescence (12- to 14-year-olds), and middle adolescence (15- to 18-year-olds), and evidence for the HSA's construct validity in each age group. The findings support the robustness of the factor structure and confirm its developmental sensitivity. Structural equation modeling validity analysis in a multiple-group framework indicates that the HSA is associated with mental health in expected directions across ages. Overall, these findings show the psychometric properties of the tool, and we discuss how social-emotional tools such as the HSA can guide future research and inform large-scale dissemination of preventive strategies.
Shah, Darshana T.; Cambor, Carolyn L.; Conran, Richard M.; Lin, Amy Y.; Peerschke, Ellinor I.B.; Pessin, Melissa S.; Harris, Ilene B.
2015-01-01
The practice of pathology is not generally addressed in the undergraduate medical school curriculum. It is desirable to develop practical pathology competencies in the fields of anatomic pathology and laboratory medicine for every graduating medical student to facilitate (1) instruction in effective utilization of these services for optimal patient care, (2) recognition of the role of pathologists and laboratory scientists as consultants, and (3) exposure to the field of pathology as a possible career choice. A national committee was formed, including experts in anatomic pathology and/or laboratory medicine and in medical education. Suggested practical pathology competencies were developed in 9 subspecialty domains based on literature review and committee deliberations. The competencies were distributed in the form of a survey in late 2012 through the first half of 2013 to the medical education community for feedback, which was subjected to quantitative and qualitative analysis. An approval rate of ≥80% constituted consensus for adoption of a competency, with additional inclusions/modifications considered following committee review of comments. The survey included 79 proposed competencies. There were 265 respondents, the majority being pathologists. Seventy-two percent (57 of 79) of the competencies were approved by ≥80% of respondents. Numerous comments (N = 503) provided a robust resource for qualitative analysis. Following committee review, 71 competencies (including 27 modified and 3 new competencies) were considered to be essential for undifferentiated graduating medical students. Guidelines for practical pathology competencies have been developed, with the hope that they will be implemented in undergraduate medical school curricula. PMID:28725750
Magid, Margret S; Shah, Darshana T; Cambor, Carolyn L; Conran, Richard M; Lin, Amy Y; Peerschke, Ellinor I B; Pessin, Melissa S; Harris, Ilene B
2015-01-01
The practice of pathology is not generally addressed in the undergraduate medical school curriculum. It is desirable to develop practical pathology competencies in the fields of anatomic pathology and laboratory medicine for every graduating medical student to facilitate (1) instruction in effective utilization of these services for optimal patient care, (2) recognition of the role of pathologists and laboratory scientists as consultants, and (3) exposure to the field of pathology as a possible career choice. A national committee was formed, including experts in anatomic pathology and/or laboratory medicine and in medical education. Suggested practical pathology competencies were developed in 9 subspecialty domains based on literature review and committee deliberations. The competencies were distributed in the form of a survey in late 2012 through the first half of 2013 to the medical education community for feedback, which was subjected to quantitative and qualitative analysis. An approval rate of ≥80% constituted consensus for adoption of a competency, with additional inclusions/modifications considered following committee review of comments. The survey included 79 proposed competencies. There were 265 respondents, the majority being pathologists. Seventy-two percent (57 of 79) of the competencies were approved by ≥80% of respondents. Numerous comments (N = 503) provided a robust resource for qualitative analysis. Following committee review, 71 competencies (including 27 modified and 3 new competencies) were considered to be essential for undifferentiated graduating medical students. Guidelines for practical pathology competencies have been developed, with the hope that they will be implemented in undergraduate medical school curricula.
Chen, Bor-Sen; Lin, Ying-Po
2013-01-01
In ecological networks, network robustness should be large enough to confer intrinsic robustness for tolerating intrinsic parameter fluctuations, as well as environmental robustness for resisting environmental disturbances, so that the phenotype stability of ecological networks can be maintained, thus guaranteeing phenotype robustness. However, it is difficult to analyze the network robustness of ecological systems because they are complex nonlinear partial differential stochastic systems. This paper develops a unifying mathematical framework for investigating the principles of both robust stabilization and environmental disturbance sensitivity in ecological networks. We found that the phenotype robustness criterion for ecological networks is that if intrinsic robustness + environmental robustness ≦ network robustness, then the phenotype robustness can be maintained in spite of intrinsic parameter fluctuations and environmental disturbances. These results in robust ecological networks are similar to that in robust gene regulatory networks and evolutionary networks even they have different spatial-time scales. PMID:23515112
A new paradigm for teaching histology laboratories in Canada's first distributed medical school.
Pinder, Karen E; Ford, Jason C; Ovalle, William K
2008-01-01
To address the critical problem of inadequate physician supply in rural British Columbia, The University of British Columbia (UBC) launched an innovative, expanded and distributed medical program in 2004-2005. Medical students engage in a common curriculum at three geographically distinct sites across B.C.: in Vancouver, Prince George and Victoria. The distribution of the core Histology course required a thorough revision of our instructional methodology. We here report our progress and address the question "How does one successfully distribute Histology teaching to remote sites while maintaining the highest of educational standards?" The experience at UBC points to three specific challenges in developing a distributed Histology curriculum: (i) ensuring equitable student access to high quality histological images, (ii) designing and implementing a reliable, state-of-the-art technological infrastructure that allows for real-time teaching and interactivity across geographically separate sites and (iii) ensuring continued student access to faculty content expertise. High quality images--available through any internet connection--are provided within a new virtual slide box library of 300 light microscopic and 190 electron microscopic images. Our technological needs are met through a robust and reliable videoconference system that allows for live, simultaneous communication of audio/visual materials across the three sites. This system also ensures student access to faculty content expertise during all didactic teaching sessions. Student examination results and surveys demonstrate that the distribution of our Histology curriculum has been successful. (c) 2008 American Association of Anatomists.
The Relationship Between Chinese Students' Subject Matter Knowledge and Argumentation Pedagogy
NASA Astrophysics Data System (ADS)
Wang, Jianlan; Buck, Gayle
2015-01-01
Science education in China is Subject Matter Knowledge (SMK) oriented in that SMK understanding is the major benchmark to assess students' achievement in science learning. Such an orientation causes students to overemphasize the memorization of SMK and neglect other indispensable components of science, such as scientific attitudes and research skills. The central government in China launched an educational innovation known as New Curriculum Reform in 2003. Considerable progress has been made in the past 11 years in regard to theoretical understandings and administrative priorities, but little progress has been made in terms of classroom instruction and scientific literacy cultivation at the secondary level. Under the pressure of nationwide standardized exams, any educational innovations are unlikely to be accepted unless there is robust evidence suggesting their efficacy in promoting students' achievements on exams, or even attempted unless teachers are assured such attempts will not negatively impact such achievement. Argumentation-integrated curriculum is one such innovation. Scientific argumentation is an essential scientific activity that leads to the development of an explanation based on empirical evidence. An initial foundation of SMK, in terms of the necessary background knowledge, is considered by many to be a vital component of argumentation and an enhanced SMK is one of the intended products of argumentation. The purpose of this sequential explanatory mixed methods study was to investigate the relationship between Chinese students' SMK levels and argumentation pedagogy and to provide insights into a possible research agenda focused on implementing argumentation in a heavily SMK-oriented context.
"Queering" and Querying Academic Identities in Postgraduate Education
ERIC Educational Resources Information Center
Maritz, Jeanette; Prinsloo, Paul
2015-01-01
In the social imaginary of higher education, there are many mutually constitutive forces shaping academic identities, such as academics' habitus, dispositions, race, gender and student expectations. Our queer academic identities are furthermore robustly intertwined with, and emerging within, cultural, political and economic histories and…
Item Feature Effects in Evolution Assessment
ERIC Educational Resources Information Center
Nehm, Ross H.; Ha, Minsu
2011-01-01
Despite concerted efforts by science educators to understand patterns of evolutionary reasoning in science students and teachers, the vast majority of evolution education studies have failed to carefully consider or control for item feature effects in knowledge measurement. Our study explores whether robust contextualization patterns emerge within…
area, which includes work on whole building energy modeling, cost-based optimization, model accuracy optimization tool used to provide support for the Building America program's teams and energy efficiency goals Colorado graduate student exploring enhancements to building optimization in terms of robustness and speed
Instructor-Created Activities to Engage Undergraduate Nursing Research Students.
Pierce, Linda L; Reuille, Kristina M
2018-03-01
In flipped or blended classrooms, instruction intentionally shifts to a student-centered model for a problem-based learning approach, where class time explores topics in greater depth, creating meaningful learning opportunities. This article describes instructor-created activities focused on research processes linked to evidence-based practice that engage undergraduate nursing research students. In the classroom, these activities include individual and team work to foster critical thinking and stimulate student discussion of topic material. Six activities for small and large student groups are related to quantitative, qualitative, and both research processes, as well as applying research evidence to practice. Positive student outcomes included quantitative success on assignments and robust student topic discussions, along with instructor-noted overall group engagement and interest. Using these activities can result in class time for the construction of meaning, rather than primarily information transmission. Instructors may adopt these activities to involve and stimulate students' critical thinking about research and evidence-based practice. [J Nurs Educ. 2018;57(3):174-177.]. Copyright 2018, SLACK Incorporated.
The effects of merit-based financial aid on drinking in college.
Cowan, Benjamin W; White, Dustin R
2015-12-01
We study the effect of state-level merit aid programs (such as Georgia's HOPE scholarship) on alcohol consumption among college students. Such programs have the potential to affect drinking through a combination of channels--such as raising students' disposable income and increasing the incentive to maintain a high GPA--that could theoretically raise or lower alcohol use. We find that the presence of a merit-aid program in one's state generally leads to an overall increase in (heavy) drinking. This effect is concentrated among men, students with lower parental education, older students, and students with high college GPA's. Our findings are robust to several alternative empirical specifications including event-study analyses by year of program adoption. Furthermore, no difference in high-school drinking is observed for students attending college in states with merit-aid programs. Copyright © 2015 Elsevier B.V. All rights reserved.
Elements of Scenario-Based Learning on Suicidal Patient Care Using Real-Time Video.
Lu, Chuehfen; Lee, Hueying; Hsu, Shuhui; Shu, Inmei
2016-01-01
This study aims understanding of students' learning experiences when receiving scenario-based learning combined with real-time video. Videos that recorded student nurses intervention with a suicidal standardized patient (SP) were replayed immediately as teaching materials. Videos clips and field notes from ten classes were analysed. Investigators and method triangulation were used to boost the robustness of the study. Three key elements, emotional involvement, concretizing of the teaching material and substitute learning were identified. Emotions were evoked among the SP, the student performer and the students who were observing, thus facilitating a learning effect. Concretizing of the teaching material refers to students were able to focus on the discussions using visual and verbal information. Substitute learning occurred when the students watching the videos, both the strengths and weaknesses represented were similar to those that would be likely to occur. These key elements explicate their learning experience and suggested a strategic teaching method.
Engineering Design Education Program for Graduate School
NASA Astrophysics Data System (ADS)
Ohbuchi, Yoshifumi; Iida, Haruhiko
The new educational methods of engineering design have attempted to improve mechanical engineering education for graduate students in a way of the collaboration in education of engineer and designer. The education program is based on the lecture and practical exercises concerning the product design, and has engineering themes and design process themes, i.e. project management, QFD, TRIZ, robust design (Taguchi method) , ergonomics, usability, marketing, conception etc. At final exercise, all students were able to design new product related to their own research theme by applying learned knowledge and techniques. By the method of engineering design education, we have confirmed that graduate students are able to experience technological and creative interest.
Evolution of robustness to damage in artificial 3-dimensional development.
Joachimczak, Michał; Wróbel, Borys
2012-09-01
GReaNs is an Artificial Life platform we have built to investigate the general principles that guide evolution of multicellular development and evolution of artificial gene regulatory networks. The embryos develop in GReaNs in a continuous 3-dimensional (3D) space with simple physics. The developmental trajectories are indirectly encoded in linear genomes. The genomes are not limited in size and determine the topology of gene regulatory networks that are not limited in the number of nodes. The expression of the genes is continuous and can be modified by adding environmental noise. In this paper we evolved development of structures with a specific shape (an ellipsoid) and asymmetrical pattering (a 3D pattern inspired by the French flag problem), and investigated emergence of the robustness to damage in development and the emergence of the robustness to noise. Our results indicate that both types of robustness are related, and that including noise during evolution promotes higher robustness to damage. Interestingly, we have observed that some evolved gene regulatory networks rely on noise for proper behaviour. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Persano Adorno, Dominique; Pizzolato, Nicola; Fazio, Claudio
2018-02-01
This paper investigates the efficacy of an open-inquiry approach to achieve a long term stability of physics instruction. This study represents the natural continuation of a research project started four years ago when a sample of thirty engineering undergraduates, having already attended traditional university physics instruction, were involved in a six-week long learning experience of open-inquiry research activities within the highly motivating context of developing a thermodynamically efficient space base on Mars. Four years later, we explore the effectiveness of that learning experience by analyzing the outcomes that the students achieved by answering again the same questionnaire that was administered them both prior to and immediately after those activities. As we did in the first work, students' answers were classified within three epistemological profiles. Now, a comparison among students' outcomes during the three phases, namely, preinstruction, postinstruction, and after four years has been carried out. Immediately after the open-inquiry experience, the students obtained significant benefits in terms of the strengthening of their practical and reasoning abilities, by proficiently applying the learned concepts to face and solve real-world problem situations. In this study, the students' answers do not highlight any significant regress towards their preinstruction profiles. The global robustness of the teaching strategy adopted four years ago is confirmed by a statistically significant comparison with a control group of students who experienced the same curricular instruction except for the open inquiry-based workshop. Nevertheless, some changes have been observed and discussed in the light of the answers the students provided to a short interview regarding their studying or working experiences across the four-year temporal window.
Disability inclusion in higher education in Uganda: Status and strategies.
Emong, Paul; Eron, Lawrence
2016-01-01
Uganda has embraced inclusive education and evidently committed itself to bringing about disability inclusion at every level of education. Both legal and non-legal frameworks have been adopted and arguably are in line with the intent of the Convention on the Rights of Persons with Disabilities (CRPD) on education. The CRPD, in Article 24, requires states to attain a right to education for persons with disabilities without discrimination and on the basis of equal opportunities at all levels of education. Despite Uganda's robust disability legal and policy framework on education, there is evidence of exclusion and discrimination of students with disabilities in the higher education institutions. The main objective of this article is to explore the status of disability inclusion in higher education and strategies for its realisation, using evidence from Emong's study, workshop proceedings where the authors facilitated and additional individual interviews with four students with disabilities by the authors. The results show that there are discrimination and exclusion tendencies in matters related to admissions, access to lectures, assessment and examinations, access to library services, halls of residence and other disability support services. The article recommends that institutional policies and guidelines on support services for students with disabilities and special needs in higher education be developed, data on students with disabilities collected to help planning, collaboration between Disabled Peoples Organisations (DPO's) strengthened to ensure disability inclusion and the establishment of disability support centres.
Becoming a nurse: "it's just who I am".
Flaming, D
2005-12-01
In any research study, researchers situate themselves, either explicitly or implicitly, within a variety of frameworks when studying phenomena. From a research perspective, the study will be more robust if these frameworks and the accompanying assumptions are compatible with each other; otherwise, the project may lack coherence. Ricoeur offers a methodological perspective-that is, an interpretive theory as reflected in mimesis, which is congruent with his ontological theory of self identity (ipse- and idem-identity). To illustrate Ricoeur's frameworks when researching the self identities, I use examples from a research study in which I asked senior nursing students to explore their experience of becoming a nurse. I do not intend for this article to be a comprehensive research report, but I present it as an exemplar of how Ricoeur's ideas can guide other researchers studying self identity. I labelled my study a narrative research project and assumed that becoming a nurse means developing a self identity as a nurse. While self identity is often framed in psychological terms, Ricoeur uses a philosophical perspective when exploring this concept. I conclude the paper by suggesting (a) that Ricoeur can guide any project in which researchers ask participants to describe "becoming" a person with illness, sickness or disease, and (b) that educators of healthcare professional students can improve the educative experience by purposefully considering how a student's ontological self affects that student's practice.
NASA Astrophysics Data System (ADS)
Williamson, Kathryn
2014-01-01
The topic of Newtonian gravity offers a unique perspective from which to investigate and encourage conceptual change because it is something with which everyone has daily experience, and because it is taught in two courses that reach a variety of students - introductory college astronomy (‘Astro 101’) and physics (‘Phys 101’). Informed by the constructivist theory of learning, this study characterizes and measures Astro 101 and Phys 101 students’ understanding of Newtonian gravity within four conceptual domains - Directionality, Force Law, Independence of Other Forces, and Threshold. A phenomenographic analysis of student-supplied responses to open-ended questions about gravity resulted in characterization of students’ alternative models and misapplications of the scientific model. These student difficulties informed the development of a multiple-choice assessment instrument, the Newtonian Gravity Concept Inventory (NGCI). Classical Test Theory (CTT), student interviews, and expert review show that the NGCI is a reliable and valid tool for assessing both Astro 101 and Phys 101 students’ understanding of gravity. Furthermore, the NGCI can provide extensive and robust information about differences between Astro 101 and Phys 101 students and curricula. Comparing and contrasting CTT values and response patterns shows qualitative differences in each of the four conceptual domains. Additionally, performing an Item Response Theory (IRT) analysis calibrates item parameters for all Astro 101 and Phys 101 courses and provides Newtonian gravity ability estimates for each student. Physics students show significantly higher pre- and post-instruction IRT abilities than astronomy students, but they show approximately equal gains. Linear regression models that control for student characteristics and classroom dynamics show that: (1) differences in post-instruction abilities are most influenced by students’ pre-instruction abilities and the level of interactivity in the classroom, and (2) there is no differential effect of the astronomy curriculum compared to the physics curriculum on student’s overall post-instruction Newtonian gravity abilities.
Thomas, Juliet; Jinks, Annette; Jack, Barbara
2015-12-01
Clinical practice is where student nurses are socialised into a professional role and acquire the distinct behaviour, attitudes and values of the nursing profession. Getting it right at the outset can maximise the development of a professional identity and the transmission of robust value systems. To explore the impact of the first clinical placement on the professional socialisation of adult undergraduate student nurses in the United Kingdom. Data of a longitudinal qualitative nature were collected and analysed using grounded theory. First year student nurses in hospital ward placements comprising a rural District General Hospital and a large inner city Hospital kept daily unstructured diaries for six weeks. A total of 26 undergraduate adult student nurses were purposefully sampled between 2008 and 2010 before undertaking their initial clinical placement. Data collection and analysis used grounded theory and the key question asked of the diarists 'tell me what it is like to be a first year nurse on a first placement' was theoretically adjusted during constant comparison and as the theory emerged. Ethical approval and consent was obtained. The theory of finessing incivility comprises a conceptual framework depicting how student nurses deal with professional incivility during their initial clinical placement and sustain a student identity. Being disillusioned with their role as worker rather than learner yields a sense of 'status dislocation'. Despite needing professional benevolence, they remain altruistic and seek recompense from significant others to negotiate for learning opportunities and relocate their student status. Despite the stressful transition into clinical practice rather than 'fit in', the student nurses want to belong as learners. His or her own resilience to learn nursing and be a professional student maintains their resolve, their altruism and strengthens their existing values to be benevolent towards an indifferent profession. This behaviour ultimately mirrors the social nature of the practice community. Copyright © 2015 Elsevier Ltd. All rights reserved.
Educational Experiences of Embry-Riddle Students through NASA Research Collaboration
NASA Technical Reports Server (NTRS)
Schlee, Keith; Gangadharan, Sathya; Chatman, Yadira; Sudermann, James; Walker, Charles; Ristow, James
2006-01-01
NASA's educational. programs benefit students and faculty while increasing the overall productivity of the organization. The NASA Graduate Student Research Program (GSRP) awards fellowships for graduate study leading to both masters and doctoral degrees in several technical fields. GSRP participants have the option to utilize NASA Centers andlor university research facilities. In addition, GSRP students can serve as mentors for undergrad students to provide a truly unique learning experience. NASA's Cooperative Education Program allows undergraduate students the chance to gain "real-world" work experience in the field. It also gives NASA a no risk capability to evaluate the true performance of a prospective new hire without relying solely on a "paper resume" while providing the students with a greater hiring potential upon graduation, at NASA or elsewhere. University faculty can also benefit by participating in the NASA Faculty Fellowship Program (NFFP). This program gives the faculty an opportunity to work with NASA peers. The Mission Analysis Branch of the Expendable Launch Vehicles Division at NASA Kennedy Space Center has utilized these two programs with students from Embry-Riddle Aeronautical University (ERAU) to conduct research in modeling and developing a parameter estimation method for spacecraft fuel slosh using simple pendulum analogs. Simple pendulum models are used to understand complicated spacecraft fuel slosh behavior. A robust parameter estimation process will help to identif' the parameters that will predict the response fairly accurately during the initial stages of design. These programs provide students with a unique opportunity to work on "real-world" aerospace problems, like spacecraft fuel slosh,. This in turn reinforces their problem solving abilities and their communication skills such as interviewing, resume writing, technical writing, and presentation. Faculty benefits by applying what they have learned to the classroom. Through university collaborations with NASA and industry help students to acquire skills that are vital for their success upon entering the workforce.
ERIC Educational Resources Information Center
Eggen, Per-Odd
2009-01-01
This article describes the construction of an inexpensive, robust, and simple hydrogen electrode, as well as the use of this electrode to measure "standard" potentials. In the experiment described here the students can measure the reduction potentials of metal-metal ion pairs directly, without using a secondary reference electrode. Measurements…
Maramba, Inocencio; Boulos, Maged N Kamel; Alexander, Tara
2009-01-01
Background Producing “traditional” e-learning can be time consuming, and in a topic such as eHealth, it may have a short shelf-life. Students sometimes report feeling isolated and lacking in motivation. Synchronous methods can play an important part in any blended approach to learning. Objective The aim was to develop, deliver, and evaluate an international postgraduate module in eHealth using live interactive webcasting. Methods We developed a hybrid solution for live interactive webcasting using a scan converter, mixer, and digitizer, and video server to embed a presenter-controlled talking head or copy of the presenter’s computer screen (normally a PowerPoint slide) in a student chat room. We recruited 16 students from six countries and ran weekly 2.5-hour live sessions for 10 weeks. The content included the use of computers by patients, patient access to records, different forms of e-learning for patients and professionals, research methods in eHealth, geographic information systems, and telehealth. All sessions were recorded—presentations as video files and the student interaction as text files. Students were sent an email questionnaire of mostly open questions seeking their views of this form of learning. Responses were collated and anonymized by a colleague who was not part of the teaching team. Results Sessions were generally very interactive, with most students participating actively in breakout or full-class discussions. In a typical 2.5-hour session, students posted about 50 messages each. Two students did not complete all sessions; one withdrew from the pressure of work after session 6, and one from illness after session 7. Fourteen of the 16 responded to the feedback questionnaire. Most students (12/14) found the module useful or very useful, and all would recommend the module to others. All liked the method of delivery, in particular the interactivity, the variety of students, and the “closeness” of the group. Most (11/14) felt “connected” with the other students on the course. Many students (11/14) had previous experience with asynchronous e-learning, two as teachers; 12/14 students suggested advantages of synchronous methods, mostly associated with the interaction and feedback from teachers and peers. Conclusions This model of synchronous e-learning based on interactive live webcasting was a successful method of delivering an international postgraduate module. Students found it engaging over a 10-week course. Although this is a small study, given that synchronous methods such as interactive webcasting are a much easier transition for lecturers used to face-to-face teaching than are asynchronous methods, they should be considered as part of the blend of e-learning methods. Further research and development is needed on interfaces and methods that are robust and accessible, on the most appropriate blend of synchronous and asynchronous work for different student groups, and on learning outcomes and effectiveness. PMID:19914901
Jones, Ray B; Maramba, Inocencio; Boulos, Maged N Kamel; Alexander, Tara
2009-11-13
Producing "traditional" e-learning can be time consuming, and in a topic such as eHealth, it may have a short shelf-life. Students sometimes report feeling isolated and lacking in motivation. Synchronous methods can play an important part in any blended approach to learning. The aim was to develop, deliver, and evaluate an international postgraduate module in eHealth using live interactive webcasting. We developed a hybrid solution for live interactive webcasting using a scan converter, mixer, and digitizer, and video server to embed a presenter-controlled talking head or copy of the presenter's computer screen (normally a PowerPoint slide) in a student chat room. We recruited 16 students from six countries and ran weekly 2.5-hour live sessions for 10 weeks. The content included the use of computers by patients, patient access to records, different forms of e-learning for patients and professionals, research methods in eHealth, geographic information systems, and telehealth. All sessions were recorded-presentations as video files and the student interaction as text files. Students were sent an email questionnaire of mostly open questions seeking their views of this form of learning. Responses were collated and anonymized by a colleague who was not part of the teaching team. Sessions were generally very interactive, with most students participating actively in breakout or full-class discussions. In a typical 2.5-hour session, students posted about 50 messages each. Two students did not complete all sessions; one withdrew from the pressure of work after session 6, and one from illness after session 7. Fourteen of the 16 responded to the feedback questionnaire. Most students (12/14) found the module useful or very useful, and all would recommend the module to others. All liked the method of delivery, in particular the interactivity, the variety of students, and the "closeness" of the group. Most (11/14) felt "connected" with the other students on the course. Many students (11/14) had previous experience with asynchronous e-learning, two as teachers; 12/14 students suggested advantages of synchronous methods, mostly associated with the interaction and feedback from teachers and peers. This model of synchronous e-learning based on interactive live webcasting was a successful method of delivering an international postgraduate module. Students found it engaging over a 10-week course. Although this is a small study, given that synchronous methods such as interactive webcasting are a much easier transition for lecturers used to face-to-face teaching than are asynchronous methods, they should be considered as part of the blend of e-learning methods. Further research and development is needed on interfaces and methods that are robust and accessible, on the most appropriate blend of synchronous and asynchronous work for different student groups, and on learning outcomes and effectiveness.
NASA Astrophysics Data System (ADS)
Chou, Shuo-Ju
2011-12-01
In recent years the United States has shifted from a threat-based acquisition policy that developed systems for countering specific threats to a capabilities-based strategy that emphasizes the acquisition of systems that provide critical national defense capabilities. This shift in policy, in theory, allows for the creation of an "optimal force" that is robust against current and future threats regardless of the tactics and scenario involved. In broad terms, robustness can be defined as the insensitivity of an outcome to "noise" or non-controlled variables. Within this context, the outcome is the successful achievement of defense strategies and the noise variables are tactics and scenarios that will be associated with current and future enemies. Unfortunately, a lack of system capability, budget, and schedule robustness against technology performance and development uncertainties has led to major setbacks in recent acquisition programs. This lack of robustness stems from the fact that immature technologies have uncertainties in their expected performance, development cost, and schedule that cause to variations in system effectiveness and program development budget and schedule requirements. Unfortunately, the Technology Readiness Assessment process currently used by acquisition program managers and decision-makers to measure technology uncertainty during critical program decision junctions does not adequately capture the impact of technology performance and development uncertainty on program capability and development metrics. The Technology Readiness Level metric employed by the TRA to describe program technology elements uncertainties can only provide a qualitative and non-descript estimation of the technology uncertainties. In order to assess program robustness, specifically requirements robustness, against technology performance and development uncertainties, a new process is needed. This process should provide acquisition program managers and decision-makers with the ability to assess or measure the robustness of program requirements against such uncertainties. A literature review of techniques for forecasting technology performance and development uncertainties and subsequent impacts on capability, budget, and schedule requirements resulted in the conclusion that an analysis process that coupled a probabilistic analysis technique such as Monte Carlo Simulations with quantitative and parametric models of technology performance impact and technology development time and cost requirements would allow the probabilities of meeting specific constraints of these requirements to be established. These probabilities of requirements success metrics can then be used as a quantitative and probabilistic measure of program requirements robustness against technology uncertainties. Combined with a Multi-Objective Genetic Algorithm optimization process and computer-based Decision Support System, critical information regarding requirements robustness against technology uncertainties can be captured and quantified for acquisition decision-makers. This results in a more informed and justifiable selection of program technologies during initial program definition as well as formulation of program development and risk management strategies. To meet the stated research objective, the ENhanced TEchnology Robustness Prediction and RISk Evaluation (ENTERPRISE) methodology was formulated to provide a structured and transparent process for integrating these enabling techniques to provide a probabilistic and quantitative assessment of acquisition program requirements robustness against technology performance and development uncertainties. In order to demonstrate the capabilities of the ENTERPRISE method and test the research Hypotheses, an demonstration application of this method was performed on a notional program for acquiring the Carrier-based Suppression of Enemy Air Defenses (SEAD) using Unmanned Combat Aircraft Systems (UCAS) and their enabling technologies. The results of this implementation provided valuable insights regarding the benefits and inner workings of this methodology as well as its limitations that should be addressed in the future to narrow the gap between current state and the desired state.
Nahar, Vinayak K; Sharma, Manoj; Catalano, Hannah Priest; Ickes, Melinda J; Johnson, Paul; Ford, M Allison
2016-01-01
Most college students do not adequately participate in enough physical activity (PA) to attain health benefits. A theory-based approach is critical in developing effective interventions to promote PA. The purpose of this study was to examine the utility of the newly proposed multi-theory model (MTM) of health behavior change in predicting initiation and sustenance of PA among college students. Using a cross-sectional design, a valid and reliable survey was administered in October 2015 electronically to students enrolled at a large Southern US University. The internal consistency Cronbach alphas of the subscales were acceptable (0.65-0.92). Only those who did not engage in more than 150 minutes of moderate to vigorous intensity aerobic PA during the past week were included in this study. Of the 495 respondents, 190 met the inclusion criteria of which 141 completed the survey. The majority of participants were females (72.3%) and Caucasians (70.9%). Findings of the confirmatory factor analysis (CFA) confirmed construct validity of subscales (initiation model: χ2 = 253.92 [df = 143], P < 0.001, CFI = 0.91, RMSEA = 0.07, SRMR = 0.07; sustenance model: χ2= 19.40 [df = 22], P < 0.001, CFI = 1.00, RMSEA = 0.00, SRMR = 0.03). Multivariate regression analysis showed that 26% of the variance in the PA initiation was explained by advantages outweighing disadvantages, behavioral confidence, work status, and changes in physical environment. Additionally, 29.7% of the variance in PA sustenance was explained by emotional transformation, practice for change, and changes in social environment. Based on this study's findings, MTM appears to be a robust theoretical framework for predicting PA behavior change. Future research directions and development of suitable intervention strategies are discussed.
Nahar, Vinayak K.; Sharma, Manoj; Catalano, Hannah Priest; Ickes, Melinda J.; Johnson, Paul; Ford, M. Allison
2016-01-01
Background: Most college students do not adequately participate in enough physical activity (PA) to attain health benefits. A theory-based approach is critical in developing effective interventions to promote PA. The purpose of this study was to examine the utility of the newly proposed multi-theory model (MTM) of health behavior change in predicting initiation and sustenance of PA among college students. Methods: Using a cross-sectional design, a valid and reliable survey was administered in October 2015 electronically to students enrolled at a large Southern US University. The internal consistency Cronbach alphas of the subscales were acceptable (0.65-0.92). Only those who did not engage in more than 150 minutes of moderate to vigorous intensity aerobic PA during the past week were included in this study. Results: Of the 495 respondents, 190 met the inclusion criteria of which 141 completed the survey. The majority of participants were females (72.3%) and Caucasians (70.9%). Findings of the confirmatory factor analysis (CFA) confirmed construct validity of subscales (initiation model: χ2 = 253.92 [df = 143], P < 0.001, CFI = 0.91, RMSEA = 0.07, SRMR = 0.07; sustenance model: χ2= 19.40 [df = 22], P < 0.001, CFI = 1.00, RMSEA = 0.00, SRMR = 0.03). Multivariate regression analysis showed that 26% of the variance in the PA initiation was explained by advantages outweighing disadvantages, behavioral confidence, work status, and changes in physical environment. Additionally, 29.7% of the variance in PA sustenance was explained by emotional transformation, practice for change, and changes in social environment. Conclusion: Based on this study’s findings, MTM appears to be a robust theoretical framework for predicting PA behavior change. Future research directions and development of suitable intervention strategies are discussed. PMID:27386419
Effort Determines Success at Roxbury Prep
ERIC Educational Resources Information Center
Seider, Scott
2013-01-01
A middle school in Boston designs its curriculum and culture--from its nightly homework assignments to its Powerful Speaking Extravaganza--upon a foundation of strengthening students' motivation and ability to do the hard work necessary to accomplish their goals. Roxbury Prep's emphasis on perseverance finds support in a robust body of education…
Comparison of the Effectiveness of Subliminal Stimulation and Social Support on Anxiety Reduction.
ERIC Educational Resources Information Center
Clark, Matthew M.; Procidano, Mary E.
1987-01-01
Evaluated effectiveness of psychodynamic subliminal stimulation in reducing anxiety and facilitating performance on cognitive task, as compared to effectiveness of social support strategy. Results from 20 "high test anxious" college students suggest lack of robustness of effects obtained with either approach. (Author/NB)
Effects of Text Structure, Reading Goals and Epistemic Beliefs on Conceptual Change
ERIC Educational Resources Information Center
Trevors, Gregory; Muis, Krista R.
2015-01-01
We investigated the online and offline effects of learner and instructional characteristics on conceptual change of a robust misconception in science. Fifty-nine undergraduate university students with misconceptions about evolution were identified as espousing evaluativist or non-evaluativist epistemic beliefs in science. Participants were…
In the Spirit of William Georgetti: Scrutiny of a Prestigious National Scholarship Selection Process
ERIC Educational Resources Information Center
Schluter, Philip J.; Johnston, Lucy
2017-01-01
Postgraduate scholarship programmes are increasingly important for supporting gifted students from diverse backgrounds. Systems and processes in the application, determination and delivery of scholarships must be robust, transparent, accountable and equitable. However, they are rarely evaluated. One of the most prestigious scholarships in New…
ERIC Educational Resources Information Center
Wisker, Gina; Robinson, Gillian; Bengtsen, Søren S. E.
2017-01-01
Much international doctoral learning research focuses on personal, institutional and learning support provided by supervisors, managed relationships,"nudging" robust, conceptual, critical, creative work. Other work focuses on stresses experienced in supervisor-student relationships and doctoral journeys. Some considers formal and…
Teaching Academic Vocabulary to Adolescents with Learning Disabilities
ERIC Educational Resources Information Center
Beach, Kristen D.; Sanchez, Victoria; Flynn, Lindsay J.; O'Connor, Rollanda E.
2015-01-01
This article describes the efforts of a U.S. History teacher to directly teach word meanings using the "robust vocabulary instruction" (RVI) approach, because research supports this method as a way to improve vocabulary knowledge for a range of students, including adolescents reading below grade level (i.e., struggling readers) and…
Exploratory Study of the Relationship between State Fiscal Effort and Academic Achievement
ERIC Educational Resources Information Center
Goodale, Timothy A.
2009-01-01
Prior empirical research has taken many varying approaches to determine if differences in funding significantly impacts student academic achievement. However, much of these studies exhibit weak generalizability due to their limited scope, timeframe and dissimilar achievement measures. To expand upon the already robust literature in education…
How Augmented Reality Enables Conceptual Understanding of Challenging Science Content
ERIC Educational Resources Information Center
Yoon, Susan; Anderson, Emma; Lin, Joyce; Elinich, Karen
2017-01-01
Research on learning about science has revealed that students often hold robust misconceptions about a number of scientific ideas. Digital simulation and dynamic visualization tools have helped to ameliorate these learning challenges by providing scaffolding to understand various aspects of the phenomenon. In this study we hypothesize that…
Religiousness and Alcohol Use in College Students: Examining Descriptive Drinking Norms as Mediators
ERIC Educational Resources Information Center
Brechting, Emily H.; Carlson, Charles R.
2015-01-01
Religiousness has consistently emerged in the literature as a protective factor for alcohol use. Relatively few studies have empirically explored possible mechanisms for this robust effect. The present study examines descriptive drinking norms as a potential mediator of the religiousness--alcohol consumption association. Consistent with the…
What Students Really Want in Science Class
ERIC Educational Resources Information Center
Goldenberg, Lauren B.
2011-01-01
Nowadays, there are lots of digital resources available to teachers. Tools such as Teachers' Domain, an online digital library (see "On the web"); interactive whiteboards; computer projection devices; laptop carts; and robust wireless internet services make it easy for teachers to use technology in the classroom. In fact, in one…
School Quality and Learning Gains in Rural Guatemala
ERIC Educational Resources Information Center
Marshall, Jeffery H.
2009-01-01
I use unusually detailed data on schools, teachers and classrooms to explain student achievement growth in rural Guatemala. Several variables that have received little attention in previous studies--including the number of school days, teacher content knowledge and pedagogical methods--are robust predictors of achievement. A series of…
Contextual Cueing: Implicit Learning and Memory of Visual Context Guides Spatial Attention.
ERIC Educational Resources Information Center
Chun, Marvin M.; Jiang, Yuhong
1998-01-01
Six experiments involving a total of 112 college students demonstrate that a robust memory for visual context exists to guide spatial attention. Results show how implicit learning and memory of visual context can guide spatial attention toward task-relevant aspects of a scene. (SLD)
Building Robust Community Partnerships
ERIC Educational Resources Information Center
Walker, Diane L.
2012-01-01
The Antelope Valley Union High School District (AVUHSD), located in the Los Angeles, Bakersfield, and San Bernardino metro areas, receives students from eight area K-8 districts. AVUHSD is home to seven career academies with themes ranging from digital design and engineering to law and government, each of which integrates core content with…
Expression and Purification of Sperm Whale Myoglobin
ERIC Educational Resources Information Center
Miller, Stephen; Indivero, Virginia; Burkhard, Caroline
2010-01-01
We present a multiweek laboratory exercise that exposes students to the fundamental techniques of bacterial expression and protein purification through the preparation of sperm whale myoglobin. Myoglobin, a robust oxygen-binding protein, contains a single heme that gives the protein a reddish color, making it an ideal subject for the teaching…
The Reviewing of Object Files: Object-Specific Integration of Information.
ERIC Educational Resources Information Center
Kahneman, Daniel; And Others
1992-01-01
Seven experiments involving a total of 203 college students explored a form of object-specific priming and established a robust object-specific benefit that indicates that a new stimulus will be named faster if it physically matches a previous stimulus seen as part of the same perceptual object. (SLD)
Brewing Beer in the Laboratory: Grain Amylases and Yeast's Sweet Tooth
ERIC Educational Resources Information Center
Gillespie, Blake; Deutschman, William A.
2010-01-01
Brewing beer provides a straightforward and robust laboratory counterpart to classroom discussions of fermentation, a staple of the biochemistry curriculum. An exercise is described that provides several connections between lecture and laboratory content. Students first extract fermentable carbohydrates from whole grains, then ferment these with…
ERIC Educational Resources Information Center
Skiba, Russell; Casey, Ann
1985-01-01
Results of three forms of meta-analysis on 41 studies involving behavior disorders revealed powerful effects of treatment: both interventions targeting classroom behavior and those attributable to a behavioral orientation were somewhat more powerful and robust. Methodological flaws, however, are cited. Recommendations for solidifying the research…
Transportation Infrastructure Robustness : Joint Engineering and Economic Analysis
DOT National Transportation Integrated Search
2017-11-01
The objectives of this study are to develop a methodology for assessing the robustness of transportation infrastructure facilities and assess the effect of damage to such facilities on travel demand and the facilities users welfare. The robustness...
Green, Rebekah
2014-01-01
Universities and colleges provide students with an opportunity to grow personally and professionally through a structured series of learning experiences. Yet disasters can interrupt traditional place-based education and prove to be intractable policy problems. The challenges of developing robust plans and drilling them extensively are most pronounced among smaller public colleges and universities. This article describes how three small- to moderate-sized higher education institutions formed a consortium to better prepare for emergencies, despite limited resources. Together the institutions built common templates, hired joint staff, and created a suit of joint exercises appropriate for their small size and campus-specific needs. In the process, they shared unique perspectives that improved resilience across the institutions.
Chang, Yeong-Chan
2005-12-01
This paper addresses the problem of designing adaptive fuzzy-based (or neural network-based) robust controls for a large class of uncertain nonlinear time-varying systems. This class of systems can be perturbed by plant uncertainties, unmodeled perturbations, and external disturbances. Nonlinear H(infinity) control technique incorporated with adaptive control technique and VSC technique is employed to construct the intelligent robust stabilization controller such that an H(infinity) control is achieved. The problem of the robust tracking control design for uncertain robotic systems is employed to demonstrate the effectiveness of the developed robust stabilization control scheme. Therefore, an intelligent robust tracking controller for uncertain robotic systems in the presence of high-degree uncertainties can easily be implemented. Its solution requires only to solve a linear algebraic matrix inequality and a satisfactorily transient and asymptotical tracking performance is guaranteed. A simulation example is made to confirm the performance of the developed control algorithms.
Marschark, Marc; Pelz, Jeff B.; Convertino, Carol; Sapere, Patricia; Arndt, Mary Ellen; Seewagen, Rosemarie
2006-01-01
This study examined visual information processing and learning in classrooms including both deaf and hearing students. Of particular interest were the effects on deaf students’ learning of live (three-dimensional) versus video-recorded (two-dimensional) sign language interpreting and the visual attention strategies of more and less experienced deaf signers exposed to simultaneous, multiple sources of visual information. Results from three experiments consistently indicated no differences in learning between three-dimensional and two-dimensional presentations among hearing or deaf students. Analyses of students’ allocation of visual attention and the influence of various demographic and experimental variables suggested considerable flexibility in deaf students’ receptive communication skills. Nevertheless, the findings also revealed a robust advantage in learning in favor of hearing students. PMID:16628250
Student Support for EIPBN 2016 Conference - Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrow, Reginald C.
The 60th International Conference on Electron, Ion, and Photon Beam Technology and Nanofabrication (EIPBN) was held in Pittsburgh, PA, from May 31st to June 3rd, 2016. The conference received technical co-sponsorship from the American Vacuum Society (AVS) in cooperation with the Optical Society of America (OSA), and the American Physical Society (APS). The conference was a great success in large part because financial support allowed robust participation from students. The students gave oral and poster presentations of their research and many published peer-reviewed articles in a special conference issue of the Journal of Vacuum Science and Technology B. The Departmentmore » of Energy Office of Basic Energy Sciences supported 10 students from US universities with a $5,000 grant (DE-SC0015555).« less
NASA Astrophysics Data System (ADS)
Nyman, M. W.; Ellwein, A. L.; Geissman, J. W.; McFadden, L. D.; Crossey, L. J.
2007-12-01
An important component for future directions of geoscience departments is public education. The role of geoscience departments in the preparation and professional development of K-12 teachers is particularly critical, and merges with other teaching missions within the University. The importance of geoscience content for teachers (and the general public) is evident in the numerous earth science related public policy issues that are the subject of ever-increasing attention (climate change, energy resources, water utilization, etc.). The earth and space sciences are not only included in both state and federal science content education standards but are also inherently interesting to students and therefore provide an important gateway to foster interest in science as well as other scientific disciplines. For over 10 years, the Department of Earth and Planetary Sciences (EPS) at the University of New Mexico (UNM) has housed and supported the Natural Science Program (NSP), which provides science content courses and numerous programs for K-12 pre- and in-service teachers. Classes and laboratories are integrated, and are capped at 21 students in the 200-level courses, assuring an active and supportive learning environment for students who are typically science-phobic with negative or no experiences with science. Enrollments are maintained at ~150 preservice teachers per semester. The program is staffed by two lecturers, who have advanced degrees in the geosciences as well as K-12 teaching experience, and several part time instructors, including graduate students who gain valuable teaching experience through teaching in the NSP. With continued support from the department, the NSP has expanded to develop robust and functional relationships related to science teacher professional development with Sandia National Laboratories and local school districts, initiated development of a graduate certificate in science teaching and, advanced a proposal for the development of an Energy Education Program at UNM. Finally, the NSP provides a ready avenue for the incorporation of grant funded faculty research into teacher education programs, thus providing a viable and functional method for addressing broader impacts related to NSF funded programs.
Exploring the Climate Literacy Development Utilizing a Learning Progressions Approach
NASA Astrophysics Data System (ADS)
Drewes, A.; Breslyn, W.; McGinnis, J. R.; Hestness, E.; Mouza, C.
2017-12-01
Climate change encompasses a broad and complex set of concepts that is often challenging for students and educators. Using a learning progressions framework, in this exploratory study we report our efforts to identify, describe, and organize the development of learners' understanding of climate change in an empirically supported learning progression (LP). The learning progression framework is a well suited analytical tool for investigating how student thinking develops over time (Duschl et al., 2007). Our primary research question is "How do learners progress over time from an initial to a more sophisticated understanding of climate change?"We followed a development process that involved drafting a hypothetical learning progression based on the science education research literature, consensus documents such as the Next Generation Science Standards and the Atlas of Science Literacy. Additionally, we conducted expert reviews with both climate scientists and educational researchers on the content and pedagogical expectations. Data are then collected from learners, which are used to modify the hypothetical learning progression based on how well it describes actual student learning. In this current analysis, we present findings from written assessments (N=294) and in-depth interviews (n=27) with middle school students in which we examine their understanding of the role of human activity, the greenhouse effect as the mechanism of climate change, local and global impacts, and strategies for the adaptation and mitigation of climate change. The culmination of our research is a proposed, empirically supported LP for climate change. Our LP is framed by consideration of four primary constructs: Human Activity, Mechanism, Impacts, and Mitigation and Adaptation. The conditional LP provides a solid foundation for continued research as well as providing urgently needed guidance to the education community on climate change education (for curriculum, instruction, and assessment). Based on consensus documents like NGSS, the research literature, and data collected in our investigation, as well as review by practicing climate scientists and educational researchers, the climate change LP represents a robust and empirically supported description of how climate change understanding develops over time.
Student Engagement in a Computer Rich Science Classroom
NASA Astrophysics Data System (ADS)
Hunter, Jeffrey C.
The purpose of this study was to examine the student lived experience when using computers in a rural science classroom. The overarching question the project sought to examine was: How do rural students relate to computers as a learning tool in comparison to a traditional science classroom? Participant data were collected using a pre-study survey, Experience Sampling during class and post-study interviews. Students want to use computers in their classrooms. Students shared that they overwhelmingly (75%) preferred a computer rich classroom to a traditional classroom (25%). Students reported a higher level of engagement in classes that use technology/computers (83%) versus those that do not use computers (17%). A computer rich classroom increased student control and motivation as reflected by a participant who shared; "by using computers I was more motivated to get the work done" (Maggie, April 25, 2014, survey). The researcher explored a rural school environment. Rural populations represent a large number of students and appear to be underrepresented in current research. The participants, tenth grade Biology students, were sampled in a traditional teacher led class without computers for one week followed by a week using computers daily. Data supported that there is a new gap that separates students, a device divide. This divide separates those who have access to devices that are robust enough to do high level class work from those who do not. Although cellular phones have reduced the number of students who cannot access the Internet, they may have created a false feeling that access to a computer is no longer necessary at home. As this study shows, although most students have Internet access, fewer have access to a device that enables them to complete rigorous class work at home. Participants received little or no training at school in proper, safe use of a computer and the Internet. It is clear that the majorities of students are self-taught or receive guidance from peers resulting in lower self-confidence or the development of misconceptions of their skill or ability.
Using Argumentation to Foster Learning about Global Climate Change
NASA Astrophysics Data System (ADS)
Golden, B. W.
2012-12-01
Given the complexity of the science involving climate change (IPCC, 2007), its lack of curricular focus within US K-12 schooling (Golden, 2009), and the difficulty in effecting conceptual change in science (Vosniadou, 2007), we sought to research middle school students' conceptions about climate change, in addition to how those conceptions changed during and as a result of a deliberately designed global climate change (GCC) unit. In a sixth grade classroom, a unit was designed which incorporated Argumentation-Driven Inquiry (Sampson & Grooms, 2010). That is, students were assigned to groups and asked to make sense of standard GCC data such as paleoclimate data from ice cores, direct temperature measurement, and Keeling curves, in addition to learning about the greenhouse effect in a modeling lesson (Hocking, et al, 1993). The students were then challenged, in groups, to create, on whiteboards, explanations and defend these explanations to and with their peers. They did two iterations of this argumentation. The first iteration focused on the simple identification of climate change patterns. The second focused on developing causal explanations for those patterns. After two rounds of such argumentation, the students were then asked to write (individually) a "final" argument which accounted for the given data. Interview and written data were analyzed prior to the given unit, during it, and after it, in order to capture complicated nuance that might escape detection by simpler research means such as surveys. Several findings emerged which promised to be of interest to climate change educators. The first is that many students tended to "know" many "facts" about climate change, but were unable to connect these disparate facts in any meaningful ways. A second finding is that while no students changed their entire belief systems, even after a robust unit which would seemingly challenge such, each student engaged did indeed modify the manner in which they discussed the validation of their beliefs. That is, we argue that the unit, and the emphases contained within the unit, resulted in the "epistemic scaffolding" of their ideas, to the extent that they shifted from arguing from anecdotes to arguing based on other types of data, especially from line graphs. A third finding underscores prior research in conceptual change, indicating that learning, especially conceptual change, is not a strictly rational process. Students, and others, are highly influenced by extra rational factors, such as the given political, scientific, and/or religious leanings of their families, their own willingness to explore anomalies, and other factors. Additionally, we found that students' understandings of climate change were tied to their ontological constructions of the subject matter, i.e., many perceived climate change as one more environmentally sensitive issue such as littering and pollution, and were therefore limited in their ability to understand anthropogenic climate change in the vast and robust sense meant by current scientific consensus. Given these known difficulties, it is critical to explore further research of this sort in order to better understand what students are actually thinking, and how that thinking is prone to change, modification, or not. Subsequently, K-12 strategies might be better designed, if that is indeed a priority of US/Western society.
NASA Astrophysics Data System (ADS)
Zeilik, M.; Mathieu, R. D.; National InstituteScience Education; College Level-One Team
2000-12-01
Even the most dedicated college faculty often discover that their students fail to learn what was taught in their courses and that much of what students do learn is quickly forgotten after the final exam. To help college faculty improve student learning in college Science, Mathematics, Engineering and Technology (SMET), the College Level - One Team of the National Institute for Science Education has created the "FLAG" a Field-tested Learning Assessment Guide for SMET faculty. Developed with funding from the National Science Foundation, the FLAG presents in guidebook format a diverse and robust collection of field-tested classroom assessment techniques (CATs), with supporting information on how to apply them in the classroom. Faculty can download the tools and techniques from the website, which also provides a goals clarifier, an assessment primer, a searchable database, and links to additional resources. The CATs and tools have been reviewed by an expert editorial board and the NISE team. These assessment strategies can help faculty improve the learning environments in their SMET courses especially the crucial introductory courses that most strongly shape students' college learning experiences. In addition, the FLAG includes the web-based Student Assessment of Learning Gains. The SALG offers a convenient way to evaluate the impact of your courses on students. It is based on findings that students' estimates of what they gained are more reliable and informative than their observations of what they liked about the course or teacher. It offers accurate feedback on how well the different aspects of teaching helped the students to learn. Students complete the SALG online after a generic template has been modified to fit the learning objectives and activities of your course. The results are presented to the teacher as summary statistics automatically. The FLAG can be found at the NISE "Innovations in SMET Education" website at www.wcer.wisc.edu/nise/cl1
Development and initial validation of a measure of work, family, and school conflict.
Olson, Kristine J
2014-01-01
This study reports the development and initial validation of a theoretically based measure of conflict between work, family, and college student roles. The measure was developed through the assessment of construct definitions and an assessment of measurement items by subject matter experts. Then, the measurement items were assessed with data from 500 college students who were engaged in work and family responsibilities. The results indicate that conflict between work, family, and school are effectively measured by 12 factors assessing the direction of conflict (e.g., work-to-school conflict, and school-to-work conflict) as well as the form of conflict (i.e., time, strain, and behavior based conflict). Sets of exploratory and confirmatory factor analyses demonstrated that the 12 factors of the new measure are distinct from the 6 factors of the Carlson, Kacmar, and Williams (2000) work-family conflict measure. Criterion validity of the measure was established through a series of regression analyses testing hypothesized relationships between antecedent and outcome variables with role conflict. Results indicate that role demand was a robust predictor of role conflict. To extend the literature, core self-evaluations and emotional stability were established as predictors of role conflict. Further, work, family, and school role satisfaction were significantly impacted with the presence of role conflict between work, family, and school. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Chen, Bor-Sen; Lin, Ying-Po
2013-01-01
Robust stabilization and environmental disturbance attenuation are ubiquitous systematic properties observed in biological systems at different levels. The underlying principles for robust stabilization and environmental disturbance attenuation are universal to both complex biological systems and sophisticated engineering systems. In many biological networks, network robustness should be enough to confer intrinsic robustness in order to tolerate intrinsic parameter fluctuations, genetic robustness for buffering genetic variations, and environmental robustness for resisting environmental disturbances. With this, the phenotypic stability of biological network can be maintained, thus guaranteeing phenotype robustness. This paper presents a survey on biological systems and then develops a unifying mathematical framework for investigating the principles of both robust stabilization and environmental disturbance attenuation in systems and evolutionary biology. Further, from the unifying mathematical framework, it was discovered that the phenotype robustness criterion for biological networks at different levels relies upon intrinsic robustness + genetic robustness + environmental robustness ≦ network robustness. When this is true, the phenotype robustness can be maintained in spite of intrinsic parameter fluctuations, genetic variations, and environmental disturbances. Therefore, the trade-offs between intrinsic robustness, genetic robustness, environmental robustness, and network robustness in systems and evolutionary biology can also be investigated through their corresponding phenotype robustness criterion from the systematic point of view. PMID:23515240
Chen, Bor-Sen; Lin, Ying-Po
2013-01-01
Robust stabilization and environmental disturbance attenuation are ubiquitous systematic properties observed in biological systems at different levels. The underlying principles for robust stabilization and environmental disturbance attenuation are universal to both complex biological systems and sophisticated engineering systems. In many biological networks, network robustness should be enough to confer intrinsic robustness in order to tolerate intrinsic parameter fluctuations, genetic robustness for buffering genetic variations, and environmental robustness for resisting environmental disturbances. With this, the phenotypic stability of biological network can be maintained, thus guaranteeing phenotype robustness. This paper presents a survey on biological systems and then develops a unifying mathematical framework for investigating the principles of both robust stabilization and environmental disturbance attenuation in systems and evolutionary biology. Further, from the unifying mathematical framework, it was discovered that the phenotype robustness criterion for biological networks at different levels relies upon intrinsic robustness + genetic robustness + environmental robustness ≦ network robustness. When this is true, the phenotype robustness can be maintained in spite of intrinsic parameter fluctuations, genetic variations, and environmental disturbances. Therefore, the trade-offs between intrinsic robustness, genetic robustness, environmental robustness, and network robustness in systems and evolutionary biology can also be investigated through their corresponding phenotype robustness criterion from the systematic point of view.
Development of a personal-computer-based intelligent tutoring system
NASA Technical Reports Server (NTRS)
Mueller, Stephen J.
1988-01-01
A large number of Intelligent Tutoring Systems (ITSs) have been built since they were first proposed in the early 1970's. Research conducted on the use of the best of these systems has demonstrated their effectiveness in tutoring in selected domains. A prototype ITS for tutoring students in the use of CLIPS language: CLIPSIT (CLIPS Intelligent Tutor) was developed. For an ITS to be widely accepted, not only must it be effective, flexible, and very responsive, it must also be capable of functioning on readily available computers. While most ITSs have been developed on powerful workstations, CLIPSIT is designed for use on the IBM PC/XT/AT personal computer family (and their clones). There are many issues to consider when developing an ITS on a personal computer such as the teaching strategy, user interface, knowledge representation, and program design methodology. Based on experiences in developing CLIPSIT, results on how to address some of these issues are reported and approaches are suggested for maintaining a powerful learning environment while delivering robust performance within the speed and memory constraints of the personal computer.
A Program in Air Transportation Technology (Joint University Program)
NASA Technical Reports Server (NTRS)
Stengel, Robert F.
1996-01-01
The Joint University Program on Air Transportation Technology was conducted at Princeton University from 1971 to 1995. Our vision was to further understanding of the design and operation of transport aircraft, of the effects of atmospheric environment on aircraft flight, and of the development and utilization of the National Airspace System. As an adjunct, the program emphasized the independent research of both graduate and undergraduate students. Recent principal goals were to develop and verify new methods for design and analysis of intelligent flight control systems, aircraft guidance logic for recovery from wake vortex encounter, and robust flight control systems. Our research scope subsumed problems associated with multidisciplinary aircraft design synthesis and analysis based on flight physics, providing a theoretical basis for developing innovative control concepts that enhance aircraft performance and safety. Our research focus was of direct interest not only to NASA but to manufacturers of aircraft and their associated systems. Our approach, metrics, and future directions described in the remainder of the report.
Community-based medical education: is success a result of meaningful personal learning experiences?
Kelly, Len; Walters, Lucie; Rosenthal, David
2014-01-01
Community-based medical education (CBME) is the delivery of medical education in a specific social context. Learners become a part of social and medical communities where their learning occurs. Longitudinal integrated clerkships (LICs) are year-long community-based placements where the curriculum and clinical experience is typically delivered by primary care physicians. These programs have proven to be robust learning environments, where learners develop strong communication skills and excellent clinical reasoning. To date, no learning model has been offered to describe CBME. The characteristics of CBME are explored by the authors who suggest that the social and professional context provided in small communities enhances medical education. The authors postulate that meaningfulness is engendered by the authentic context, which develops over time. These relationships with preceptors, patients and the community provide meaningfulness, which in turn enhances learning. The authors develop a novel learning model. They propose that the context-rich environment of CBME allows for meaningful relationships and experiences for students and that such meaningfulness enhances learning.
Palamar, Joseph J; Calzada, Esther J; Theise, Rachelle; Huang, Keng-Yen; Petkova, Eva; Brotman, Laurie Miller
2015-01-01
Minority children attending schools in urban socioeconomically disadvantaged neighborhoods are at high risk for conduct problems. Although a number of family and neighborhood characteristics have been implicated in the onset and progression of conduct problems, there remains incomplete understanding of the unique contributions of poverty-related factors early in development. This prospective study of 298 black public school children considered family- and neighborhood-level predictors of teacher-reported conduct problems from pre-kindergarten through first grade. Results from multi-level analyses indicate that percentage of poor residents in a student's neighborhood made a robust independent contribution to the prediction of development of conduct problems, over and above family- and other neighborhood-level demographic factors. For children of single parents, the percentage of black residents in the neighborhood also predicted the development of conduct problems. School-based interventions to prevent conduct problems should consider impact for children at highest risk based on neighborhood poverty.
Recruiting middle school students into nursing: An integrative review.
Williams, Cheryl
2017-10-27
Middle school students interested in nursing need clarification of the nursing role. Students choose nursing as a career because they want to help others, yet they are often unaware of the need to for arduous secondary education preparation to become a nurse. Middle school students, if not properly exposed to the career during their formative years, may choose another career or not have enough time for adequate nursing school preparation. This integrative review examined seven studies from years 2007 to 2016, which utilized various recruitment strategies to increase the awareness of nursing as a career in middle school and address the need for academic rigor. Implications of the review: there is a need for collaboration between nurses and school counselors to design more robust longitudinal studies of middle school interventions for students interested in nursing as a career. © 2017 Wiley Periodicals, Inc.
The Influence of Social Media on Addictive Behaviors in College Students.
Steers, Mai-Ly N; Moreno, Megan A; Neighbors, Clayton
2016-12-01
Social media has become a primary way for college students to communicate aspects of their daily lives to those within their social network. Such communications often include substance use displays (e.g., selfies of college students drinking). Furthermore, students' substance use displays have been found to robustly predict not only the posters' substance use-related outcomes (e.g., consumption, problems) but also that of their social networking peers. The current review summarizes findings of recent literature exploring the intersection between social media and substance use. Specifically, we examine how and why such substance use displays might shape college students' internalized norms surrounding substance use and how it impacts their substance use-related behaviors. Additional social media-related interventions are needed in order to target reduction of consumption among this at-risk group. We discuss the technological and methodological challenges inherent to conducting research and devising interventions in this domain.
Is it turquoise + fuchsia = purple or is it turquoise + fuchsia = blue?
NASA Astrophysics Data System (ADS)
Beretta, Giordano B.; Moroney, Nathan M.
2011-01-01
The first step in communicating color is to name it. The second step is color semiotics. The third step is introducing structure in the set of colors. In color education at all levels, this structure often takes the form of formulæ, like red + green = yellow, or turquoise + red = black. In recent times, Johannes Itten's color theory and its associated color wheel have been very influential, mostly through its impact on Bauhaus, although a number of color order systems and circles have been introduced over the centuries. Students get confused when they are trying to formulate the color name arithmetic using the structure of color order systems and concepts like complementary colors and opponent colors. Suddenly turquoise + fuchsia = purple instead of blue; purple and violet become blurred, and finally the student's head explodes under the epistemological pressures of Itten, Albers, Goethe, Runge, Newton, da Vinci, and all the other monsters of color structure. In this contribution we propose a systematic presentation of structure in color, from color theories to color naming. We start from the concept of color perception introduced by da Vinci and work ourselves through color measurement, color formation, and color naming, to develop the basis for a robust system based on table lookup and interpolation. One source of confusion is that color naming has been quite loose in color theory, where for example red can be used interchangeably with fuchsia, and blue with turquoise. Furthermore, common color terms are intermingled with technical colorant terms, for example cyan and aqua or fuchsia and magenta. We present the evolution of a few color terms, some of which have experienced a radical transition over the centuries, and describe an experiment showing the robustness of crowd-sourcing for color naming.
Robust Magnetotelluric Impedance Estimation
NASA Astrophysics Data System (ADS)
Sutarno, D.
2010-12-01
Robust magnetotelluric (MT) response function estimators are now in standard use by the induction community. Properly devised and applied, these have ability to reduce the influence of unusual data (outliers). The estimators always yield impedance estimates which are better than the conventional least square (LS) estimation because the `real' MT data almost never satisfy the statistical assumptions of Gaussian distribution and stationary upon which normal spectral analysis is based. This paper discuses the development and application of robust estimation procedures which can be classified as M-estimators to MT data. Starting with the description of the estimators, special attention is addressed to the recent development of a bounded-influence robust estimation, including utilization of the Hilbert Transform (HT) operation on causal MT impedance functions. The resulting robust performances are illustrated using synthetic as well as real MT data.
NASA Astrophysics Data System (ADS)
Gold, A. U.; Sullivan, S. B.; Smith, L. K.; Lynds, S. E.
2014-12-01
The need for robust scientific and especially climate literacy is increasing. Funding agencies mandate that scientists make their findings and data publically available. Ideally, this mandate is achieved by scientists and educators working together to translate research findings into common knowledge. The Cooperative Institute for Research in Environmental Sciences (CIRES) is the largest research institute at the University of Colorado and home institute to over 500 scientists. CIRES provides an effective organizational infrastructure to support its scientists in broadening their research impact. Education specialists provide the necessary experience, connections, logistical support, and evaluation expertise to develop and conduct impactful education and outreach efforts. Outreach efforts are tailored to the project needs and the scientists' interests. They span from deep engagement efforts with a high time commitment by the scientist thus a high dosage to short presentations by the scientists that reach many people without stimulating a deep engagement and have therefore a low dosage. We use three examples of current successful programs to showcase these different engagement levels and report on their impact: i) deep transformative and time-intensive engagement through a Research Experience for Community College students program, ii) direct engagement during a teacher professional development workshop centered around a newly developed curriculum bringing authentic climate data into secondary classrooms, iii) short-time engagement through a virtual panel discussion about the state of recent climate science topics, the recordings of which were repurposed in a Massive Open Online Course (MOOC). In this presentation, we discuss the challenges and opportunities of broader impacts work. We discuss successful strategies that we developed, stress the importance of robust impact evaluation, and summarize different avenues of funding outreach efforts.
Designing Courses that Encourage Post-College Scientific Literacy in General Education Students
NASA Astrophysics Data System (ADS)
Horodyskyj, L.
2010-12-01
In a time when domestic and foreign policy is becoming increasingly dependent on a robust understanding of scientific concepts (especially in regards to climate science), it is of vital importance that non-specialist students taking geoscience courses gain an understanding not only of Earth system processes, but also of how to discern scientific information from "spin". An experimental introductory level environmental geology course was developed at the Glendale Community College in Glendale, Arizona, in the fall of 2010 that sought to integrate collaborative learning, online resources, and science in the media. The goal of this course was for students to end the semester with not just an understanding of basic Earth systems concepts, but also with a set of tools for evaluating information presented by the media. This was accomplished by integrating several online sites that interface scientific data with popular web tools (ie, Google Maps) and collaborative exercises that required students to generate ideas based on their observations followed by evaluation and refinement of these ideas through interactions with peers and the instructor. The capstone activity included a series of homework assignments that required students to make note of science-related news stories in the media early in the semester, and then gradually begin critically evaluating these news sources, which will become their primary source of post-college geoscience information. This combination of activities will benefit students long after the semester has ended by giving them access to primary sources of scientific information, encouraging them to discuss and evaluate their ideas with their peers, and, most importantly, to critically evaluate the information they receive from the media and their peers so that they can become more scientifically literate citizens.
Geoscience Academic Provenance: A Comparison of Undergraduate Students' Pathways to Faculty Pathways
NASA Astrophysics Data System (ADS)
Houlton, H. R.; Keane, C. M.; Wilson, C. E.
2012-12-01
Most Science, Technology, Engineering and Mathematics (STEM) disciplines have a direct recruiting method of high school science courses to supply their undergraduate majors. However, recruitment and retention of students into geoscience academic programs, who will be the future workforce, remains an important issue. The geoscience community is reaching a critical point in its ability to supply enough geoscientists to meet the current and near-future demand. Previous work done by Houlton (2010) determined that undergraduate geoscience majors follow distinct pathways when pursuing their degree and career. These pathways are comprised of students' interests, experiences, goals and career aspirations, which are depicted in six pathway steps. Three population groups were determined from the original 17 participants, which exhibited differences in pathway trajectories. Continued data collection efforts developed and refined the pathway framework. As part of an informal workshop activity, data were collected from 27 participants who are underrepresented minority early-career and future faculty in the geosciences. In addition, 20 geoscience departments' Heads and Chairs participated in an online survey about their pathway trajectories. Pathways were determined from each of these new sample populations and compared against the original geoscience undergraduate student participants. Several pathway components consistently spanned across sample populations. Identification of these themes have illuminated broad geoscience-related interests, experiences and aspirations that can be used to broadly impact recruitment and retention initiatives for our discipline. Furthermore, fundamental differences between participants' ages, stages in career and racial/ethnic backgrounds have exhibited subtle nuances in their geoscience pathway trajectories. In particular, those who've had research experiences, who think "creativity" is an important aspect of a geoscience career and those who want to share their knowledge with students may be more inclined to pursue academic positions. Indicators, like these, expand the pathway model and foster the development of a more robust framework for recruitment and retention in academia, as well as industry.
NASA Astrophysics Data System (ADS)
Lee, Un Jung; Sbeglia, Gena C.; Ha, Minsu; Finch, Stephen J.; Nehm, Ross H.
2015-12-01
Increasing the retention of STEM (science, technology, engineering, and mathematics) majors has recently emerged as a national priority in undergraduate education. Since poor performance in large introductory science and math courses is one significant factor in STEM dropout, early detection of struggling students is needed. Technology-supported "early warning systems" (EWSs) are being developed to meet these needs. Our study explores the utility of two commonly collected data sources—pre-course concept inventory scores and longitudinal clicker scores—for use in EWS, specifically, in determining the time points at which robust predictions of student success can first be established. The pre-course diagnostic assessments, administered to 287 students, included two concept inventories and one attitude assessment. Clicker question scores were also obtained for each of the 37 class sessions. Additionally, student characteristics (sex, ethnicity, and English facility) were gathered in a survey. Our analyses revealed that all variables were predictive of final grades. The correlation of the first 3 weeks of clicker scores with final grades was 0.53, suggesting that this set of variables could be used in an EWS starting at the third week. We also used group-based trajectory models to assess whether trajectory patterns were homogeneous in the class. The trajectory analysis identified three distinct clicker performance patterns that were also significant predictors of final grade. Trajectory analyses of clicker scores, student characteristics, and pre-course diagnostic assessment appear to be valuable data sources for EWS, although further studies in a diversity of instructional contexts are warranted.
Five-year review of an international clinical research-training program
Suemoto, Claudia Kimie; Ismail, Sherine; Corrêa, Paulo César Rodrigues Pinto; Khawaja, Faiza; Jerves, Teodoro; Pesantez, Laura; Germani, Ana Claudia Camargo Gonçalves; Zaina, Fabio; dos Santos, Augusto Cesar Soares; de Oliveira Ferreira, Ricardo Jorge; Singh, Priyamvada; Paulo, Judy Vicente; Matsubayashi, Suely Reiko; Vidor, Liliane Pinto; Andretta, Guilherme; Tomás, Rita; Illigens, Ben MW; Fregni, Felipe
2015-01-01
The exponential increase in clinical research has profoundly changed medical sciences. Evidence that has accumulated in the past three decades from clinical trials has led to the proposal that clinical care should not be based solely on clinical expertise and patient values, and should integrate robust data from systematic research. As a consequence, clinical research has become more complex and methods have become more rigorous, and evidence is usually not easily translated into clinical practice. Therefore, the instruction of clinical research methods for scientists and clinicians must adapt to this new reality. To address this challenge, a global distance-learning clinical research-training program was developed, based on collaborative learning, the pedagogical goal of which was to develop critical thinking skills in clinical research. We describe and analyze the challenges and possible solutions of this course after 5 years of experience (2008–2012) with this program. Through evaluation by students and faculty, we identified and reviewed the following challenges of our program: 1) student engagement and motivation, 2) impact of heterogeneous audience on learning, 3) learning in large groups, 4) enhancing group learning, 5) enhancing social presence, 6) dropouts, 7) quality control, and 8) course management. We discuss these issues and potential alternatives with regard to our research and background. PMID:25878518
Five-year review of an international clinical research-training program.
Suemoto, Claudia Kimie; Ismail, Sherine; Corrêa, Paulo César Rodrigues Pinto; Khawaja, Faiza; Jerves, Teodoro; Pesantez, Laura; Germani, Ana Claudia Camargo Gonçalves; Zaina, Fabio; Dos Santos, Augusto Cesar Soares; de Oliveira Ferreira, Ricardo Jorge; Singh, Priyamvada; Paulo, Judy Vicente; Matsubayashi, Suely Reiko; Vidor, Liliane Pinto; Andretta, Guilherme; Tomás, Rita; Illigens, Ben Mw; Fregni, Felipe
2015-01-01
The exponential increase in clinical research has profoundly changed medical sciences. Evidence that has accumulated in the past three decades from clinical trials has led to the proposal that clinical care should not be based solely on clinical expertise and patient values, and should integrate robust data from systematic research. As a consequence, clinical research has become more complex and methods have become more rigorous, and evidence is usually not easily translated into clinical practice. Therefore, the instruction of clinical research methods for scientists and clinicians must adapt to this new reality. To address this challenge, a global distance-learning clinical research-training program was developed, based on collaborative learning, the pedagogical goal of which was to develop critical thinking skills in clinical research. We describe and analyze the challenges and possible solutions of this course after 5 years of experience (2008-2012) with this program. Through evaluation by students and faculty, we identified and reviewed the following challenges of our program: 1) student engagement and motivation, 2) impact of heterogeneous audience on learning, 3) learning in large groups, 4) enhancing group learning, 5) enhancing social presence, 6) dropouts, 7) quality control, and 8) course management. We discuss these issues and potential alternatives with regard to our research and background.
NASA Astrophysics Data System (ADS)
Spier-Dance, Lesley
This study explored college science students' and instructors' experiences with student-generated and performed analogies. The objectives of the study were to determine whether the use of student-generated analogies could provide students with opportunities to develop robust understanding of difficult science concepts, and to examine students' and instructors' perspectives on the utilization of these analogies. To address my objectives, I carried out a case study at a university-college in British Columbia. I examined the use of analogies in undergraduate biology and chemistry courses. Working with three instructors, I explored the use of student-generated analogies in five courses. I carried out in-depth analyses for one biology case and one chemistry case. Data were collected using semi-structured interviews, classroom observations, researcher journal logs and students' responses to assessment questions. My findings suggest that involvement in the analogy exercise was associated with gains in students' conceptual understanding. Lower-achieving students who participated in the analogy activity exhibited significant gains in understanding of the science concept, but were unable to transfer their knowledge to novel situations. Higher-achieving students who participated in the activity were better able to transfer their knowledge of the analogy-related science topic to novel situations. This research revealed that students exhibited improved understanding when their analogies clearly represented important features of the target science concept. Students actively involved in the analogy activity exhibited gains in conceptual understanding. They perceived that embodied performative aspects of the activity promoted engagement, which motivated their learning. Participation in the analogy activity led to enhanced social interaction and a heightened sense of community within the classroom. The combination of social and performative elements provided motivational learning experiences valued by students and instructors. Instructors also valued the activity because of insights into students' understanding that were revealed. This research provides an example of how a student-centered, embodied learning approach can be brought into the undergraduate science classroom. This is valuable because, if instructors are to change from a transmission mode of instruction to more student-centered approaches, they must re-examine and re-construct their practices. An important step in this process is provision of evidence that change is warranted and fruitful.
Monks, K; Molnár, I; Rieger, H-J; Bogáti, B; Szabó, E
2012-04-06
Robust HPLC separations lead to fewer analysis failures and better method transfer as well as providing an assurance of quality. This work presents the systematic development of an optimal, robust, fast UHPLC method for the simultaneous assay of two APIs of an eye drop sample and their impurities, in accordance with Quality by Design principles. Chromatography software is employed to effectively generate design spaces (Method Operable Design Regions), which are subsequently employed to determine the final method conditions and to evaluate robustness prior to validation. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Egger, A. E.; Baldassari, C.; Bruckner, M. Z.; Iverson, E. A.; Manduca, C. A.; Mcconnell, D. A.; Steer, D. N.
2013-12-01
InTeGrate is NSF's STEP Center in the geosciences. A major goal of the project is to develop curricula that will increase the geoscience literacy of all students such that they are better positioned to make sustainable decisions in their lives and as part of the broader society. This population includes the large majority of students that do not major in the geosciences, those historically under-represented in the geosciences, and future K-12 teachers. To achieve this goal, we established a model for the development of curricular materials that draws on the distributed expertise of the undergraduate teaching community. Our model seeks proposals from across the higher education community for courses and modules that meet InTeGrate's overarching goals. From these proposals, we select teams of 3-5 instructors from three or more different institutions (and institution types) and pair them with assessment and web experts. Their communication and development process is supported by a robust, web-based content management system (CMS). Over two years, this team develops materials that explicitly address a geoscience-related societal challenge, build interdisciplinary problem-solving skills, make use of real geoscience data, and incorporate geoscientific and systems thinking. Materials are reviewed with the InTeGrate design rubric and then tested by the authors in their own courses, where student learning is assessed. Results are reviewed by the authors and our assessment team to guide revisions. Several student audiences are targeted: students in general education and introductory geoscience courses, pre-service K-12 teachers, students in other science and engineering majors, as well as those in the humanities and social sciences. Curriculum development team members from beyond the geosciences are critical to producing materials that can be adopted for all of these audiences, and we have been successful in engaging faculty from biology, economics, engineering, sociology, Spanish, and other disciplines. In its first year, InTeGrate engaged 20 individuals from 17 different institutions on materials development teams. During interviews and responses to open-ended survey questions, first-year team members provided feedback about the challenges and successes of the model. Several described that the materials design rubric was a useful tool in guiding their work and pushed them in directions they may not have otherwise gone. Most responded that working as part of a team with members from different institutions created numerous challenges, but was ultimately beneficial in sharing ideas and resulted in a better product. Other key components to model success are the development of resources by the web experts to support use of the CMS and frequent feedback from the assessment team. All feedback was used to refine the model for the second year, during which 56 additional authors have begun to develop materials. By engaging this broad and diverse community in innovative curriculum development, we anticipate widespread adoption of InTeGrate materials.
Bringing together best practices and best acceptance with real resources: AP Physics 1 and 2
NASA Astrophysics Data System (ADS)
Stewart, Gay
2015-04-01
The road to the new AP Physics 1 and 2 courses has been long, but the journey has been worthwhile. The courses are constructed to be a careful balance of best practices in physics education and what can be sustained with the resources available to provide the best experience in learning physics to the most students. Experts in content and learning science worked together through several layers of committees to develop a model that was then refined through focus group processes with state-level curriculum experts who had to see how to fit the courses into their students' schedules, high school faculty who had to deliver the courses within their resources, and higher education faculty who had to make decisions on acceptance. The best practices course was amazingly robust to the considerations of each of these audiences. In this interactive talk, I will outline the process and answer questions. I would like to express my gratitude to the National Science Foundation for helping support the College Board's work on their science courses.
Maxwell, Simon R J
2012-01-01
Clinical pharmacology and therapeutics is the academic discipline that informs rational prescribing of medicines. There is accumulating evidence that a significant minority of prescriptions in the UK National Health Service contain errors. This comes at a time when the approach to and success of undergraduate education in this area has been called into question. Various stakeholders are now in agreement that this challenging area of undergraduate education needs to be strengthened. The principles that should form the basis of future educational strategy include greater visibility of clinical pharmacology and therapeutics in the curriculum, clear learning outcomes that are consistent with national guidance, strong and enthusiastic leadership, a student formulary, opportunities to practice prescribing, a robust assessment of prescribing competencies and external quality control. Important new developments in the UK are Prescribe, a repository of e-learning materials to support education in clinical pharmacology and prescribing, and the Prescribing Skills Assessment, a national online assessment designed to allow medical students to demonstrate that they have achieved the core competencies required to begin postgraduate training. PMID:22360965
Modelling sociocognitive aspects of students' learning
NASA Astrophysics Data System (ADS)
Koponen, I. T.; Kokkonen, T.; Nousiainen, M.
2017-03-01
We present a computational model of sociocognitive aspects of learning. The model takes into account a student's individual cognition and sociodynamics of learning. We describe cognitive aspects of learning as foraging for explanations in the epistemic landscape, the structure (set by instructional design) of which guides the cognitive development through success or failure in foraging. We describe sociodynamic aspects as an agent-based model, where agents (learners) compare and adjust their conceptions of their own proficiency (self-proficiency) and that of their peers (peer-proficiency) in using explanatory schemes of different levels. We apply the model here in a case involving a three-tiered system of explanatory schemes, which can serve as a generic description of some well-known cases studied in empirical research on learning. The cognitive dynamics lead to the formation of dynamically robust outcomes of learning, seen as a strong preference for a certain explanatory schemes. The effects of social learning, however, can account for half of one's success in adopting higher-level schemes and greater proficiency. The model also predicts a correlation of dynamically emergent interaction patterns between agents and the learning outcomes.
Grubbs, Joshua B; Volk, Fred; Exline, Julie J; Pargament, Kenneth I
2015-01-01
The authors aimed to validate a brief measure of perceived addiction to Internet pornography refined from the 32-item Cyber Pornography Use Inventory, report its psychometric properties, and examine how the notion of perceived addiction to Internet pornography might be related to other domains of psychological functioning. To accomplish this, 3 studies were conducted using a sample of undergraduate psychology students, a web-based adult sample, and a sample of college students seeking counseling at a university's counseling center. The authors developed and refined a short 9-item measure of perceived addiction to Internet pornography, confirmed its structure in multiple samples, examined its relatedness to hypersexuality more broadly, and demonstrated that the notion of perceived addiction to Internet pornography is very robustly related to various measures of psychological distress. Furthermore, the relation between psychological distress and the new measure persisted, even when other potential contributors (e.g., neuroticism, self-control, amount of time spent viewing pornography) were controlled for statistically, indicating the clinical relevance of assessing perceived addiction to Internet pornography.
Showing and telling: using tablet technology to engage students in mathematics
NASA Astrophysics Data System (ADS)
Ingram, Naomi; Williamson-Leadley, Sandra; Pratt, Keryn
2016-03-01
This paper reports on a qualitative investigation into the use of Show and Tell tablet technology in mathematics classrooms. A Show and Tell application (app) allows the user to capture voice and writing or text in real time. Described here are the perceptions of 11 teachers during and after their exploration into the use of Show and Tell in their primary and secondary classrooms. These perceptions were used to evaluate Show and Tell tablet technology against a framework of student engagement and effective pedagogy. The results of the study indicated that the teachers perceived both the level and the quality of the students' engagement were high. Using Show and Tell apps enabled the teachers to enact effective pedagogy within their classroom practices. Importantly, through the use of Show and Tell recordings, students' thinking became visible to themselves, their teachers and other students in the class. This thinking then formed the basis of robust discussions and negotiation about the mathematical concepts and the strategies the students used to solve problems.
The pivotal role of adolescent autonomy in secondary school classrooms.
Hafen, Christopher A; Allen, Joseph P; Mikami, Amori Yee; Gregory, Anne; Hamre, Bridget; Pianta, Robert C
2012-03-01
Student engagement is an important contributor to school success, yet high school students routinely describe themselves as disengaged. Identifying factors that alter (increase) engagement is a key aspect of improving support for student achievement. This study investigated students' perceptions of autonomy, teacher connection, and academic competence as predictors of changes in student engagement within the classroom from the start to the end of a course. Participants were 578 (58% female) diverse (67.8% White, 25.2% African American, 5.1% Hispanic, 1.2% Asian American) high school students from 34 classrooms who provided questionnaire data both at the start and the end of a single course. Novel results from a cross-lagged model demonstrated that students who perceived their classrooms as allowing and encouraging their own autonomy in the first few weeks increased their engagement throughout the course, rather than the typical decline in engagement that was demonstrated by students in other classrooms. This finding is unique in that it extended to both students' perceptions of engagement and observations of student engagement, suggesting a fairly robust pattern. The pertinence of this finding to adolescent developmental needs and its relationship to educational practice is discussed.
Misconceived causal explanations for emergent processes.
Chi, Michelene T H; Roscoe, Rod D; Slotta, James D; Roy, Marguerite; Chase, Catherine C
2012-01-01
Studies exploring how students learn and understand science processes such as diffusion and natural selection typically find that students provide misconceived explanations of how the patterns of such processes arise (such as why giraffes' necks get longer over generations, or how ink dropped into water appears to "flow"). Instead of explaining the patterns of these processes as emerging from the collective interactions of all the agents (e.g., both the water and the ink molecules), students often explain the pattern as being caused by controlling agents with intentional goals, as well as express a variety of many other misconceived notions. In this article, we provide a hypothesis for what constitutes a misconceived explanation; why misconceived explanations are so prevalent, robust, and resistant to instruction; and offer one approach of how they may be overcome. In particular, we hypothesize that students misunderstand many science processes because they rely on a generalized version of narrative schemas and scripts (referred to here as a Direct-causal Schema) to interpret them. For science processes that are sequential and stage-like, such as cycles of moon, circulation of blood, stages of mitosis, and photosynthesis, a Direct-causal Schema is adequate for correct understanding. However, for science processes that are non-sequential (or emergent), such as diffusion, natural selection, osmosis, and heat flow, using a Direct Schema to understand these processes will lead to robust misconceptions. Instead, a different type of general schema may be required to interpret non-sequential processes, which we refer to as an Emergent-causal Schema. We propose that students lack this Emergent Schema and teaching it to them may help them learn and understand emergent kinds of science processes such as diffusion. Our study found that directly teaching students this Emergent Schema led to increased learning of the process of diffusion. This article presents a fine-grained characterization of each type of Schema, our instructional intervention, the successes we have achieved, and the lessons we have learned. Copyright © 2011 Cognitive Science Society, Inc.
ERIC Educational Resources Information Center
Petro, Susannah J. P.
2017-01-01
This article addresses students' need for robust relationships to counteract the epidemic of loneliness, anxiety, and depression pervading contemporary undergraduate life, and proposes that Catholic colleges and universities can find in Catholic theological anthropology a warrant for recognizing relationship-building as central to their mission.…
Fairness and Using Reflective Journals in Assessment
ERIC Educational Resources Information Center
Clarkeburn, Henriikka; Kettula, Kirsi
2012-01-01
This study looks at the fairness of assessing learning journals both as the fairness in creating a valid and robust marking process as well as how different student groups may have unfair disadvantages in performing well in reflective assessment tasks. The fairness of a marking process is discussed through reflecting on the practical process and…
ERIC Educational Resources Information Center
Knoerzer, Timm A.; Balaich, Gary J.; Miller, Hannah A.; Iacono, Scott T.
2014-01-01
Poly(phenylene vinylene) (PPV) represents an important class of conjugated, conducting polymers that have been readily exploited in the preparation of organic electronic materials. In this experiment, students prepare a PPV polymer via a facile multistep synthetic sequence with robust spectroscopic evaluation of synthetic intermediates and the…
Project Exploration's Personalized Curriculum: Fostering Access and Equity in Science Out-of-School
ERIC Educational Resources Information Center
Lyon, Gabrielle Helena
2010-01-01
Participation and achievement in science by students of color and girls remains inequitable despite decades of initiatives aimed at leveling the playing field. Science in out-of-school-time is a strategy that emphasizes the role of informal education, however, robust descriptions of learning environments which effectively recruit and retain…
Nature-Culture Constructs in Science Learning: Human/Non-Human Agency and Intentionality
ERIC Educational Resources Information Center
Bang, Megan; Marin, Ananda
2015-01-01
The field of science education has struggled to create robust, meaningful forms of education that effectively engage students from historically non-dominant communities and women. This paper argues that a primary issue underlying this on-going struggle pivots on constructions of nature-culture relations. We take up structuration theory (Giddens,…
Big-Fish-Little-Pond Effect: Generalizability and Moderation--Two Sides of the Same Coin
ERIC Educational Resources Information Center
Seaton, Marjorie; Marsh, Herbert W.; Craven, Rhonda G.
2010-01-01
Research evidence for the big-fish-little-pond effect (BFLPE) has demonstrated that attending high-ability schools has a negative effect on academic self-concept. Utilizing multilevel modeling with the 2003 Program for International Student Assessment database, the present investigation evaluated the generalizability and robustness of the BFLPE…
Mental Health in Education. Policy Update. Vol. 24, No. 8
ERIC Educational Resources Information Center
Hofer, Lindsey
2017-01-01
Positive school climate has been linked to higher test scores, graduation rates, and fewer disciplinary referrals. Yet state policy discussions on student supports often fail to address a key lever for improving school climate: robust school-based mental health services. This National Association of State Boards of Education (NASBE) policy update…
Modeling Students' Memory for Application in Adaptive Educational Systems
ERIC Educational Resources Information Center
Pelánek, Radek
2015-01-01
Human memory has been thoroughly studied and modeled in psychology, but mainly in laboratory setting under simplified conditions. For application in practical adaptive educational systems we need simple and robust models which can cope with aspects like varied prior knowledge or multiple-choice questions. We discuss and evaluate several models of…
Animal Galloping and Human Hopping: An Energetics and Biomechanics Laboratory Exercise
ERIC Educational Resources Information Center
Lindstedt, Stan L.; Mineo, Patrick M.; Schaeffer, Paul J.
2013-01-01
This laboratory exercise demonstrates fundamental principles of mammalian locomotion. It provides opportunities to interrogate aspects of locomotion from biomechanics to energetics to body size scaling. It has the added benefit of having results with robust signal to noise so that students will have success even if not "meticulous" in…
Using Quotitive Division Problems to Promote Place-Value Understanding
ERIC Educational Resources Information Center
Bicknell, Brenda; Young-Loveridge, Jenny; Simpson, Jackie
2017-01-01
A robust understanding of place value is essential. Using a problem-based approach set within meaningful contexts, students' attention may be drawn to the multiplicative structure of place value. By using quotitive division problems through a concrete-representational-abstract lesson structure, this study showed a powerful strengthening of Year 3…
Leadership: Theory and Practice. Sixth Edition
ERIC Educational Resources Information Center
Northouse, Peter G.
2012-01-01
Adopted at more than 1,000 colleges and universities worldwide, the market-leading text owes its success to the unique way in which it combines an academically robust account of the major theories and models of leadership with an accessible style and practical exercises that help students apply what they learn. Each chapter of Peter…
Inexpensive Miniature Programmable Magnetic Stirrer from Reconfigured Computer Parts
ERIC Educational Resources Information Center
Mercer, Conan; Leech, Donal
2017-01-01
This technology report outlines a robust and easy to assemble magnetic stirrer that is programmable. All of the parts are recycled from obsolete computer hardware except the Arduino microcontroller and motor driver, at a total cost of around $40. This multidisciplinary approach introduces microcontrollers to students and grants the opportunity to…
History, Context, and Policies of a Learning Object Repository
ERIC Educational Resources Information Center
Simpson, Steven Marshall
2016-01-01
Learning object repositories, a form of digital libraries, are robust systems that provide educators new ways to search for educational resources, collaborate with peers, and provide instruction to students in unique and varied ways. This study examines a learning object repository created by a large suburban school district to increase teaching…
States Will Lead the Way toward Reform
ERIC Educational Resources Information Center
Duncan, Arne
2009-01-01
This document contains remarks delivered by the Secretary of Education who spoke at the 2009 Governors Education Symposium. Secretary Duncan spoke about uses of Recovery Act funding to drive reform in four core areas of education: (1) Robust data systems that track student achievement and teacher effectiveness; (2) Teacher and principal quality;…
ERIC Educational Resources Information Center
Ramseyer, Gary C.; Tcheng, Tse-Kia
The present study was directed at determining the extent to which the Type I Error rate is affected by violations in the basic assumptions of the q statistic. Monte Carlo methods were employed, and a variety of departures from the assumptions were examined. (Author)
ERIC Educational Resources Information Center
Edwards, Oliver W.; Taub, Gordon E.
2016-01-01
Research indicates the primary difference between strong and weak readers is their phonemic awareness skills. However, there is no consensus regarding which specific components of phonemic awareness contribute most robustly to reading comprehension. In this study, the relationship among sound blending, sound segmentation, and reading comprehension…
3 CFR 8782 - Proclamation 8782 of March 5, 2012. National Consumer Protection Week, 2012
Code of Federal Regulations, 2013 CFR
2013-01-01
..., mortgages, and student loans, to build the foundation for a better tomorrow. These tools help bring our aspirations within reach and empower countless individuals to earn an education, afford a home, or raise a... highlighting the ways individuals and families can protect themselves from scams, fraud, and abuse. Robust...
Games for Learning: Vast Wasteland or a Digital Promise?
ERIC Educational Resources Information Center
Levine, Michael H.; Vaala, Sarah E.
2013-01-01
Research about emerging best practices in the learning sciences points to the potential of deploying digital games as one possible solution to the twin challenges of weak student engagement and the need for more robust achievement in literacy, science, technology, and math. This chapter reviews key cross-cutting themes in this special volume,…
Using Reflective Practice to Support Management Student Learning: Three Brief Assignments
ERIC Educational Resources Information Center
Reilly, Anne H.
2018-01-01
Reflective practice supports critical thinking and assessment skills through analyzing one's own life experiences, and the role of reflection in learning has been long recognized. However, drawbacks of many reflective practice assignments are their broad scope and lengthy written requirements. I propose that the reflection process is robust enough…
ERIC Educational Resources Information Center
Koedinger, Kenneth R.; Corbett, Albert T.; Perfetti, Charles
2012-01-01
Despite the accumulation of substantial cognitive science research relevant to education, there remains confusion and controversy in the application of research to educational practice. In support of a more systematic approach, we describe the Knowledge-Learning-Instruction (KLI) framework. KLI promotes the emergence of instructional principles of…
Combining Research, Outreach and Student Learning: A New Model in Rhode Island
ERIC Educational Resources Information Center
Grossman-Garber, Deborah; Gold, Arthur; Husband, Thomas
2001-01-01
American research universities are renowned for applying cutting-edge science to the improvement of the world's health and environmental systems. Indeed, as a society, people have come to expect this type of intellectual leadership from their great universities. Less appreciated is the robust opportunity for state and local governments to harness…
Development of a Comprehensive Digital Avionics Curriculum for the Aeronautical Engineer
2006-03-01
able to analyze and design aircraft and missile guidance and control systems, including feedback stabilization schemes and stochastic processes, using ...Uncertainty modeling for robust control; Robust closed-loop stability and performance; Robust H- infinity control; Robustness check using mu-analysis...Controlled feedback (reduces noise) 3. Statistical group response (reduce pressure toward conformity) When used as a tool to study a complex problem
Ambrose, Mark; Murray, Linda; Handoyo, Nicholas E; Tunggal, Deif; Cooling, Nick
2017-01-13
There is limited research to inform effective pedagogies for teaching global health to undergraduate medical students. Theoretically, using a combination of teaching pedagogies typically used in 'international classrooms' may prove to be an effective way of learning global health. This pilot study aimed to explore the experiences of medical students in Australia and Indonesia who participated in a reciprocal intercultural participatory peer e-learning activity (RIPPLE) in global health. Seventy-one third year medical students (49 from Australia and 22 from Indonesia) from the University of Tasmania (Australia) and the University of Nusa Cendana (Indonesia) participated in the RIPPLE activity. Participants were randomly distributed into 11 intercultural 'virtual' groups. The groups collaborated online over two weeks to study a global health topic of their choice, and each group produced a structured research abstract. Pre- and post-RIPPLE questionnaires were used to capture students' experiences of the activity. Descriptive quantitative data were analysed with Microsoft Excel and qualitative data were thematically analysed. Students' motivation to volunteer for this activity included: curiosity about the innovative approach to learning; wanting to expand knowledge of global health; hoping to build personal and professional relationships; and a desire to be part of an intercultural experience. Afer completing the RIPPLE program, participants reported on global health knowledge acquisition, the development of peer relationships, and insight into another culture. Barriers to achieving the learning outcomes associated with RIPPLE included problems with establishing consistent online communication, and effectively managing time to simultaneously complete RIPPLE and other curricula activities. Medical students from both countries found benefits in working together in small virtual groups to complement existing teaching in global health. However, our pilot study demonstrated that while intercultural collaborative peer learning activities like RIPPLE are feasible, they require robust logistical support and an awareness of the need to manage curriculum alignment in ways that facilitate more effective student engagement.
Robust time and frequency domain estimation methods in adaptive control
NASA Technical Reports Server (NTRS)
Lamaire, Richard Orville
1987-01-01
A robust identification method was developed for use in an adaptive control system. The type of estimator is called the robust estimator, since it is robust to the effects of both unmodeled dynamics and an unmeasurable disturbance. The development of the robust estimator was motivated by a need to provide guarantees in the identification part of an adaptive controller. To enable the design of a robust control system, a nominal model as well as a frequency-domain bounding function on the modeling uncertainty associated with this nominal model must be provided. Two estimation methods are presented for finding parameter estimates, and, hence, a nominal model. One of these methods is based on the well developed field of time-domain parameter estimation. In a second method of finding parameter estimates, a type of weighted least-squares fitting to a frequency-domain estimated model is used. The frequency-domain estimator is shown to perform better, in general, than the time-domain parameter estimator. In addition, a methodology for finding a frequency-domain bounding function on the disturbance is used to compute a frequency-domain bounding function on the additive modeling error due to the effects of the disturbance and the use of finite-length data. The performance of the robust estimator in both open-loop and closed-loop situations is examined through the use of simulations.
Development of 3D Oxide Fuel Mechanics Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spencer, B. W.; Casagranda, A.; Pitts, S. A.
This report documents recent work to improve the accuracy and robustness of the mechanical constitutive models used in the BISON fuel performance code. These developments include migration of the fuel mechanics models to be based on the MOOSE Tensor Mechanics module, improving the robustness of the smeared cracking model, implementing a capability to limit the time step size based on material model response, and improving the robustness of the return mapping iterations used in creep and plasticity models.
Supporting students' knowledge integration with technology-enhanced inquiry curricula
NASA Astrophysics Data System (ADS)
Chiu, Jennifer Lopseen
Dynamic visualizations of scientific phenomena have the potential to transform how students learn and understand science. Dynamic visualizations enable interaction and experimentation with unobservable atomic-level phenomena. A series of studies clarify the conditions under which embedding dynamic visualizations in technology-enhanced inquiry instruction can help students develop robust and durable chemistry knowledge. Using the knowledge integration perspective, I designed Chemical Reactions, a technology-enhanced curriculum unit, with a partnership of teachers, educational researchers, and chemists. This unit guides students in an exploration of how energy and chemical reactions relate to climate change. It uses powerful dynamic visualizations to connect atomic level interactions to the accumulation of greenhouse gases. The series of studies were conducted in typical classrooms in eleven high schools across the country. This dissertation describes four studies that contribute to understanding of how visualizations can be used to transform chemistry learning. The efficacy study investigated the impact of the Chemical Reactions unit compared to traditional instruction using pre-, post- and delayed posttest assessments. The self-monitoring study used self-ratings in combination with embedded assessments to explore how explanation prompts help students learn from dynamic visualizations. The self-regulation study used log files of students' interactions with the learning environment to investigate how external feedback and explanation prompts influence students' exploration of dynamic visualizations. The explanation study compared specific and general explanation prompts to explore the processes by which explanations benefit learning with dynamic visualizations. These studies delineate the conditions under which dynamic visualizations embedded in inquiry instruction can enhance student outcomes. The studies reveal that visualizations can be deceptively clear, deterring learners from exploring details. Asking students to generate explanations helps them realize what they don't understand and can spur students to revisit visualizations to remedy gaps in their knowledge. The studies demonstrate that science instruction focused on complex topics can succeed by combining visualizations with generative activities to encourage knowledge integration. Students are more successful at monitoring their progress and remedying gaps in knowledge when required to distinguish among alternative explanations. The results inform the design of technology-enhanced science instruction for typical classrooms.
NASA Astrophysics Data System (ADS)
Priest, Michelle
College students must complete a life science course prior to graduation for a bachelor's degree. Generally, the course has lecture and laboratory components. It is in the laboratory where there are exceptional opportunities for exploration, challenge and application of the material learned. Optimally, this would utilize the best of inquiry based approaches. Most community colleges are using a home-grown or self written laboratory manual for the direction of work in the laboratory period. Little was known about the motivation, development and adaptation of use. It was also not known about the future of the laboratory manuals in light of the recent learning reform in California Community Colleges, Student Learning Outcomes. Extensive interviews were conducted with laboratory manual authors to determine the motivation, process of development, who was involved and learning framework used in the creation of the manuals. It was further asked of manual authors their ideas about the future of the manual, the development of staff and faculty and finally, the role Student Learning Outcomes would play in the manual. Science faculty currently teaching the non-majors biology laboratories for at least two semesters were surveyed on-line about actual practice of the manual, assessment, manual flexibility, faculty training and incorporation of Student Learning Outcomes. Finally, an evaluation of the laboratory manual was done using an established Laboratory Task Analysis Instrument. Laboratory manuals were evaluated on a variety of categories to determine the level of inquiry instruction done by students in the laboratory section. The results were that the development of homegrown laboratory manuals was done by community colleges in the Los Angeles and Orange Counties in an effort to minimize the cost of the manual to the students, to utilize all the exercises in a particular lab and to effectively utilize the materials already owned by the department. Further, schools wanted to utilize the current faculty research expertise and knowledge. Unfortunately, laboratory manual authors had no real learning framework in the development of the manual. Based on the LAI, most manuals focused on the lowest levels of inquiry based instruction. Most manuals focused exercises on cell and molecular topics. The manuals had little student exploration, creation or design in the laboratory exercise and no option for repeating the exercise. There was a clear desire of faculty and authors to improve the laboratory experience and manual. Authors and faculty wished to include more inquiry and utilize the best of Student Learning Outcome (SLO) methodologies. Authors and the laboratory manuals have a major disconnect in that authors have clear desires inquiry based learning for the manual but do not effectively implement the inquiry based learning for various reasons. The manuals themselves, laboratory manuals themselves are not robust inquiry based learning models to maximize student learning. Authors and faculty are disconnected in that authors know what they want their manuals to do...but do not effectively communicate that to faculty. Finally, schools are in a "wait and see" approach as to when to integrate the latest learning theory mandated by the Chancellors Office -- Student Learning Outcomes.
Disability inclusion in higher education in Uganda: Status and strategies
Emong, Paul
2016-01-01
Background Uganda has embraced inclusive education and evidently committed itself to bringing about disability inclusion at every level of education. Both legal and non-legal frameworks have been adopted and arguably are in line with the intent of the Convention on the Rights of Persons with Disabilities (CRPD) on education. The CRPD, in Article 24, requires states to attain a right to education for persons with disabilities without discrimination and on the basis of equal opportunities at all levels of education. Objectives Despite Uganda’s robust disability legal and policy framework on education, there is evidence of exclusion and discrimination of students with disabilities in the higher education institutions. The main objective of this article is to explore the status of disability inclusion in higher education and strategies for its realisation, using evidence from Emong’s study, workshop proceedings where the authors facilitated and additional individual interviews with four students with disabilities by the authors. Results The results show that there are discrimination and exclusion tendencies in matters related to admissions, access to lectures, assessment and examinations, access to library services, halls of residence and other disability support services. Conclusion The article recommends that institutional policies and guidelines on support services for students with disabilities and special needs in higher education be developed, data on students with disabilities collected to help planning, collaboration between Disabled Peoples Organisations (DPO’s) strengthened to ensure disability inclusion and the establishment of disability support centres. PMID:28730044
NASA Astrophysics Data System (ADS)
Said, Ziad; Summers, Ryan; Abd-El-Khalick, Fouad; Wang, Shuai
2016-03-01
This study assessed students' attitudes toward science in Qatar. A cross-sectional, nationwide probability sample representing all students enrolled in grades 3 through 12 in the various types of schools in Qatar completed the 'Arabic Speaking Students' Attitudes toward Science Survey' (ASSASS). The validity and reliability of the 32-item instrument, encompassing five sub-scales, have already been shown to be robust. The present analysis focused on responses from 1978 participants representing the students who completed the ASSASS in Arabic. Descriptive statistics were computed and a competing pair of multiple indicators multiple causes models is presented that attempt to link patterns in students' responses to the ASSASS with a set of indicators. The final model retained student age, gender, nationality (i.e. Qatari vs. Non-Qatari Arab), and school type as indicators. Findings from this study suggest that participants' attitudes toward science decrease with age, and that these attitudes and related preferences are influenced by students' nationality and the type of school they attend. Equally important, the often-reported advantages for male over female precollege students in terms of attitudes toward science were much less prominent in the present study.
NASA Technical Reports Server (NTRS)
Ortiz, G. G.; Lee, S.; Monacos, S.; Wright, M.; Biswas, A.
2003-01-01
A robust acquisition, tracking and pointing (ATP) subsystem is being developed for the 2.5 Gigabit per second (Gbps) Unmanned-Aerial-Vehicle (UAV) to ground free-space optical communications link project.
The SPIRIT Telescope Initiative: Six Years On (Abstract)
NASA Astrophysics Data System (ADS)
Luckas, P.
2017-12-01
(Abstract only) Now in its sixth year of operation, the SPIRIT initiative remains unique in Australia, as a robust web-enabled robotic telescope initiative funded for education and outreach. With multiple modes of operation catering for a variety of usage scenarios and a fully supported education program, SPIRIT provides free access to contemporary astronomical tools for students and educators in Western Australia and beyond. The technical solution itself provides an excellent model for low cost robotic telescope installations, and the education program has evolved over time to include a broad range of student experiences - from engagement activities to authentic science. This paper details the robotic telescope solution, student interface, and educational philosophy, summarizes achievements and lessons learned, and examines the possibilities for future enhancement including spectroscopy.
The SPIRIT Telescope Initiative: six years on
NASA Astrophysics Data System (ADS)
Luckas, Paul
2017-06-01
Now in its sixth year of operation, the SPIRIT initiative remains unique in Australia, as a robust web-enabled robotic telescope initiative funded for education and outreach. With multiple modes of operation catering for a variety of usage scenarios and a fully supported education program, SPIRIT provides free access to contemporary astronomical tools for students and educators in Western Australia and beyond. The technical solution itself provides an excellent model for low cost robotic telescope installations, and the education program has evolved over time to include a broad range of student experiences-from engagement activities to authentic science. This paper details the robotic telescope solution, student interface and educational philosophy, summarises achievements and lessons learned and examines the possibilities for future enhancement including spectroscopy.
Case-Study Investigation of Equine Maternity via PCR-RFLP: A Biochemistry Laboratory Experiment
Millard, Julie T.; Chuang, Edward; Lucas, James S.; Nagy, Erzsebet E.; Davis, Griffin T.
2013-01-01
A simple and robust biochemistry laboratory experiment is described that uses restriction fragment length polymorphism (RFLP) of polymerase chain reaction (PCR) products to verify the identity of a potentially valuable horse. During the first laboratory period, students purify DNA from equine samples and amplify two loci of mitochondrial DNA. During the second laboratory period, students digest PCR products with restriction enzymes and analyze the fragment sizes through agarose gel electrophoresis. An optional step of validating DNA extracts through realtime PCR can expand the experiment to three weeks. This experiment, which has an engaging and versatile scenario, provides students with exposure to key principles and techniques of molecular biology, bioinformatics, and evolution in a forensic context. PMID:24363455
2016 KIVA-hpFE Development: A Robust and Accurate Engine Modeling Software
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carrington, David Bradley; Waters, Jiajia
Los Alamos National Laboratory and its collaborators are facilitating engine modeling by improving accuracy and robustness of the modeling, and improving the robustness of software. We also continue to improve the physical modeling methods. We are developing and implementing new mathematical algorithms, those that represent the physics within an engine. We provide software that others may use directly or that they may alter with various models e.g., sophisticated chemical kinetics, different turbulent closure methods or other fuel injection and spray systems.
Robustness of assembly supply chain networks by considering risk propagation and cascading failure
NASA Astrophysics Data System (ADS)
Tang, Liang; Jing, Ke; He, Jie; Stanley, H. Eugene
2016-10-01
An assembly supply chain network (ASCN) is composed of manufacturers located in different geographical regions. To analyze the robustness of this ASCN when it suffers from catastrophe disruption events, we construct a cascading failure model of risk propagation. In our model, different disruption scenarios s are considered and the probability equation of all disruption scenarios is developed. Using production capability loss as the robustness index (RI) of an ASCN, we conduct a numerical simulation to assess its robustness. Through simulation, we compare the network robustness at different values of linking intensity and node threshold and find that weak linking intensity or high node threshold increases the robustness of the ASCN. We also compare network robustness levels under different disruption scenarios.
Stones, Catherine; Knapp, Peter; Closs, S Jose
2016-01-01
This article discusses the challenges of visually representing pain qualities in pictogram design. An existing set of 12 pictograms designed for people with literacy problems was evaluated to understand more about misunderstandings of pictogram interpretation. Two sets of university students from different disciplines were asked to interpret the pictograms, and a novel classification system was developed to categorise answer types, as ‘location’, ‘affective’, temporal’ or ‘literal’. Several design recommendations are made as a result that will help improve the design of pain pictograms as a whole as well as guide designers of related pictogram work. We demonstrate how, through the robust classification of incorrect responses, it is possible to extract useful comprehension error patterns to inform future design. PMID:27867507
Adolescent place attachment, social capital, and perceived safety: a comparison of 13 countries.
Dallago, Lorenza; Perkins, Douglas D; Santinello, Massimo; Boyce, Will; Molcho, Michal; Morgan, Antony
2009-09-01
In adolescence, children become increasingly independent and autonomous, and spend more time in neighborhood settings away from home. During mid-to-late adolescence, youth often become more critical about the place they live. Their attachment to home and even community may decrease as they explore and develop new attachments to other specific places. The aim of this study is to understand how 15-year-old students from 13 countries perceive their local neighborhood area (place attachment, social capital and safety), and how these different community cognitions are interrelated. We hypothesize that their place attachment predicts safety, and that the relationship is mediated in part by social capital. Result show that, despite cross-cultural differences in neighborhood perceptions, the proposed theoretical model fits robustly across all 13 countries.
GLOBE at Night: Scientific Research outside of the Classroom
NASA Astrophysics Data System (ADS)
Henderson, S.; Walker, C. E.; Geary, E.; Pompea, S. M.
2005-12-01
Increased and robust understanding of our environment requires learning opportunities that take place outside of the traditional K-12 classroom and beyond the confines of the school day. GLOBE at Night is a new event within The GLOBE Program that provides a mechanism for a nontraditional learning activity involving teachers, students, and their families taking observations of the night sky around the world and reporting their observations via a central data base for analysis. To support activities centered on authentic research experiences such as GLOBE at Night, The GLOBE Program has changed its approach to professional development (PD). The new focus of GLOBE PD efforts is centered on teachers being able to facilitate student research in and out of the classroom reflective of authentic scientific research experiences. It has been recognized that there is a critical need for effective teacher professional development programs that support teacher involvement in meaningful scientific research that encourages partnerships between scientists, teachers, and students. Partnerships promoting scientific research for K-12 audiences provides the foundation for The GLOBE Program, an international inquiry-based program designed to engage teachers with their students in partnership with research scientists to better understand the environment at local, regional, and global scales. GLOBE is an ongoing international science and education program that unites students, teachers, and scientists in the study of the Earth System. Students participating in GLOBE engage in hands-on activities, including the collection, analysis, and sharing of research quality scientific data with their peers around the world. Students interact with members of the science community who use the data collected from locations around the world in their research - data that would often not be available otherwise. As of September 2005, over 30,000 teachers representing over 16,000 schools worldwide have participated in GLOBE workshops resulting in over 13 million environmental measurements reported by students to the GLOBE Web site. GLOBE at Night will utilize the GLOBE infrastructure and network to promote a week of night observations (February 2006) by teachers and students. The quality of the night sky for stellar observations is impacted by several factors, including human influences. GLOBE at Night will help scientists assess how the quality of the night sky varies around the world. The data that is collected will be accessible via the GLOBE Web site by scientists studying light pollution and will be available for use by teachers and students worldwide. GLOBE at Night is a collaborative effort of the NASA-sponsored GLOBE Program and the National Optical Astronomy Observatory (NOAO).
Robust inference under the beta regression model with application to health care studies.
Ghosh, Abhik
2017-01-01
Data on rates, percentages, or proportions arise frequently in many different applied disciplines like medical biology, health care, psychology, and several others. In this paper, we develop a robust inference procedure for the beta regression model, which is used to describe such response variables taking values in (0, 1) through some related explanatory variables. In relation to the beta regression model, the issue of robustness has been largely ignored in the literature so far. The existing maximum likelihood-based inference has serious lack of robustness against outliers in data and generate drastically different (erroneous) inference in the presence of data contamination. Here, we develop the robust minimum density power divergence estimator and a class of robust Wald-type tests for the beta regression model along with several applications. We derive their asymptotic properties and describe their robustness theoretically through the influence function analyses. Finite sample performances of the proposed estimators and tests are examined through suitable simulation studies and real data applications in the context of health care and psychology. Although we primarily focus on the beta regression models with a fixed dispersion parameter, some indications are also provided for extension to the variable dispersion beta regression models with an application.
Multi-point objective-oriented sequential sampling strategy for constrained robust design
NASA Astrophysics Data System (ADS)
Zhu, Ping; Zhang, Siliang; Chen, Wei
2015-03-01
Metamodelling techniques are widely used to approximate system responses of expensive simulation models. In association with the use of metamodels, objective-oriented sequential sampling methods have been demonstrated to be effective in balancing the need for searching an optimal solution versus reducing the metamodelling uncertainty. However, existing infilling criteria are developed for deterministic problems and restricted to one sampling point in one iteration. To exploit the use of multiple samples and identify the true robust solution in fewer iterations, a multi-point objective-oriented sequential sampling strategy is proposed for constrained robust design problems. In this article, earlier development of objective-oriented sequential sampling strategy for unconstrained robust design is first extended to constrained problems. Next, a double-loop multi-point sequential sampling strategy is developed. The proposed methods are validated using two mathematical examples followed by a highly nonlinear automotive crashworthiness design example. The results show that the proposed method can mitigate the effect of both metamodelling uncertainty and design uncertainty, and identify the robust design solution more efficiently than the single-point sequential sampling approach.
Teacher Research as a Robust and Reflective Path to Professional Development
ERIC Educational Resources Information Center
Roberts, Sherron Killingsworth; Crawford, Patricia A.; Hickmann, Rosemary
2010-01-01
This article explores the role of teacher research as part of a robust program of professional development. Teacher research offers teachers at every stage of development a recursive and reflective means of bridging the gap between current practice and potential professional growth. The purpose of this dual level inquiry was to probe the concept…
Utilising a construct of teacher capacity to examine national curriculum reform in mathematics
NASA Astrophysics Data System (ADS)
Zhang, Qinqiong; Stephens, Max
2013-12-01
This study involving 120 Australian and Chinese teachers introduces a construct of teacher capacity to analyse how teachers help students connect arithmetic learning and emerging algebraic thinking. Four criteria formed the basis of our construct of teacher capacity: knowledge of mathematics, interpretation of the intentions of official curriculum documents, understanding of students' thinking, and design of teaching. While these key elements connect to what other researchers refer to as mathematical knowledge for teaching, several differences are made clear. Qualitative and quantitative analyses show that our construct was robust and effective in distinguishing between different levels of teacher capacity.
Transforming the Online Course
NASA Astrophysics Data System (ADS)
Horodyskyj, L.; Ben-Naim, D.; Semken, S. C.; Anbar, A. D.
2013-12-01
Traditional large lecture classes are fundamentally passive and teacher-centered. Most existing online courses are as well, including massive open online courses (MOOCs). Research tells us that this mode of instruction is not ideal for student learning. However, the unique attributes of the online environment have thus far been mostly underutilized. We hypothesize that new tools and the innovative curricula they enable can foster greater student engagement and enhance learning at large scale. To test this hypothesis, over the past three years, Arizona State University developed and offered "Habitable Worlds", an online-only astrobiology lab course. The course curriculum is based on the Drake Equation, which integrates across disciplines. The course pedagogy is organized around a term-long, individualized, game-inspired project in which each student must find and characterize rare habitable planets in a randomized field of hundreds of stars using concepts learned in the course. The curriculum allows us to meaningfully integrate concepts from Earth, physical, life, and social sciences in order to address questions related to the possibility of extraterrestrial life. The pedagogy motivates students to master concepts, which are taught through interactive and adaptive inquiry-driven tutorials, featuring focused feedback and alternative pathways that adjust to student abilities, built using an intelligent tutoring system (Smart Sparrow's Adaptive eLearning Platform - AeLP). Through the combination of the project and tutorials, students construct knowledge from experience, modeling the authentic practice of science. Because the tutorials are self-grading, the teaching staff is free to dedicate time to more intense learner-teacher interactions (such as tutoring weaker students or guiding advanced students towards broader applications of the concepts), using platforms like Piazza and Adobe Connect. The AeLP and Piazza provide robust data and analysis tools that allow us to investigate how students interact with the exercises, both in aggregate and at the individual level. These data have allowed us to identify and fix hidden problems in the exercises that students do not vocalize. More importantly, the AeLP provides the opportunity to construct and evaluate hypotheses in content presentation and evaluation methods that are simply not possible in traditional classroom settings, a task we are currently undertaking to determine the effectiveness of our approach.
Identifying and addressing specific student difficulties in advanced thermal physics
NASA Astrophysics Data System (ADS)
Smith, Trevor I.
As part of an ongoing multi-university research study on student understanding of concepts in thermal physics at the upper division, I identified several student difficulties with topics related to heat engines (especially the Carnot cycle), as well as difficulties related to the Boltzmann factor. In an effort to address these difficulties, I developed two guided-inquiry worksheet activities (a.k.a. tutorials) for use in advanced undergraduate thermal physics courses. Both tutorials seek to improve student understanding of the utility and physical background of a particular mathematical expression. One tutorial focuses on a derivation of Carnot's theorem regarding the limit on thermodynamic efficiency, starting from the Second Law of Thermodynamics. The other tutorial helps students gain an appreciation for the origin of the Boltzmann factor and when it is applicable; focusing on the physical justification of its mathematical derivation, with emphasis on the connections between probability, multiplicity, entropy, and energy. Student understanding of the use and physical implications of Carnot's theorem and the Boltzmann factor was assessed using written surveys both before and after tutorial instruction within the advanced thermal physics courses at the University of Maine and at other institutions. Classroom tutorial sessions at the University of Maine were videotaped to allow in-depth scrutiny of student successes and failures following tutorial prompts. I also interviewed students on various topics related to the Boltzmann factor to gain a more complete picture of their understanding and inform tutorial revisions. Results from several implementations of my tutorials at the University of Maine indicate that students did not have a robust understanding of these physical principles after lectures alone, and that they gain a better understanding of relevant topics after tutorial instruction; Fisher's exact tests yield statistically significant improvement at the alpha = 0.05 level. Results from other schools indicate that difficulties observed before tutorial instruction in our classes (for both tutorials) are not unique, and that the Boltzmann factor tutorial can be an effective replacement for lecture instruction. Additional research is suggested that would further examine these difficulties and inform instructional strategies to help students overcome them.
Nathani, Suneeti; Oller, D Kimbrough; Neal, A Rebecca
2007-12-01
Onset of canonical babbling by 10 months of age is surprisingly robust in infancy, suggesting that there must be deep biological forces that keep the development of this key vocal capability on course. This study further evaluated the robustness of canonical babbling and other aspects of prelinguistic vocal development. Longitudinal observation was conducted on 4 infants who were at risk for abnormal vocal development because of bilateral moderate-to-severe sensorineural hearing loss and additional risk factors for developmental delay. Two of the infants were delayed in the onset of canonical babbling and showed greater fluctuation in canonical babbling ratios following its onset than did typically developing infants. On the same measures, the remaining 2 infants were within normal limits, although their age of onset for canonical babbling was later than the mean for typically developing infants. Volubility was not notably different from typically developing infants. Differences from typically developing infants were, however, observed in proportions of various prelinguistic syllable types produced across time. Results provided further evidence of robustness of canonical babbling and indicated the need for a large parametric study evaluating effects of varying degrees of hearing loss and other risk factors on vocal development.
A Third Moment Adjusted Test Statistic for Small Sample Factor Analysis.
Lin, Johnny; Bentler, Peter M
2012-01-01
Goodness of fit testing in factor analysis is based on the assumption that the test statistic is asymptotically chi-square; but this property may not hold in small samples even when the factors and errors are normally distributed in the population. Robust methods such as Browne's asymptotically distribution-free method and Satorra Bentler's mean scaling statistic were developed under the presumption of non-normality in the factors and errors. This paper finds new application to the case where factors and errors are normally distributed in the population but the skewness of the obtained test statistic is still high due to sampling error in the observed indicators. An extension of Satorra Bentler's statistic is proposed that not only scales the mean but also adjusts the degrees of freedom based on the skewness of the obtained test statistic in order to improve its robustness under small samples. A simple simulation study shows that this third moment adjusted statistic asymptotically performs on par with previously proposed methods, and at a very small sample size offers superior Type I error rates under a properly specified model. Data from Mardia, Kent and Bibby's study of students tested for their ability in five content areas that were either open or closed book were used to illustrate the real-world performance of this statistic.
Syntactic Complexity as an Aspect of Text Complexity
ERIC Educational Resources Information Center
Frantz, Roger S.; Starr, Laura E.; Bailey, Alison L.
2015-01-01
Students' ability to read complex texts is emphasized in the Common Core State Standards (CCSS) for English Language Arts and Literacy. The standards propose a three-part model for measuring text complexity. Although the model presents a robust means for determining text complexity based on a variety of features inherent to a text as well as…
Use of Chiral Oxazolidinones for a Multi-Step Synthetic Laboratory Module
ERIC Educational Resources Information Center
Betush, Matthew P.; Murphree, S. Shaun
2009-01-01
Chiral oxazolidinone chemistry is used as a framework for an advanced multi-step synthesis lab. The cost-effective and robust preparation of chiral starting materials is presented, as well as the use of chiral auxiliaries in a synthesis scheme that is appropriate for students currently in the second semester of the organic sequence. (Contains 1…
ERIC Educational Resources Information Center
Plaisance, Michelle; Salas, Spencer; D'Amico, Mark M.
2018-01-01
Contemporary K-12 standards-based educational reform has emerged as a central focus of scholarship in TESOL, with robust discussions (practical and theoretical) addressing the shift from ESL as a subject matter unto itself to teaching standards-based content in English (and the standardized assessment of students' achievement across those content…
"What's Math Got to Do with It?": Numeracy and Social Studies Education
ERIC Educational Resources Information Center
Crowe, Alicia R.
2010-01-01
Numeracy is as essential to becoming an active and thoughtful citizen as literacy. Although the concept of numeracy is complex and robust, there are four areas in which teachers can fairly easily begin to incorporate it into social studies curriculum and instruction. The areas include the students' ability to understand raw numeric data in…
Pathways to Align Career and Educational Choices for Adult Learners
ERIC Educational Resources Information Center
Ippolito, Andrew
2018-01-01
Now, more than ever, more adults must earn college credentials in order to earn family sustaining wages and to help fuel and sustain a robust national economy. That means that institutions of higher education must do all they can to help adult students enroll in college and complete a postsecondary credential. Achieving the Dream emphasizes a…
ERIC Educational Resources Information Center
Kennelly, Robert; McCormack, Coralie
2015-01-01
We live in "a world of clashing interests" [Zinn, H. (1991). "Declarations of independence: Cross-examining American ideology." Toronto: Harper Collins, p. xx]. In a grapple for survival, universities choose to spend less money and time on teaching and learning, less time on robust evaluation of student learning and…
Peer Assessment within Hybrid and Online Courses: Students' View of Its Potential and Performance
ERIC Educational Resources Information Center
Sullivan, Daniel; Watson, Sharon
2015-01-01
The scale and scope of online education increasingly expand. In tandem, interest grows among educators and scholars in understanding the personal and contextual factors that moderate the efficient design and effective delivery of an online course. This paper looks at a theoretically robust method, peer assessment administered by the Canvas…
Can Dual Processing Theory Explain Physics Students' Performance on the Force Concept Inventory?
ERIC Educational Resources Information Center
Wood, Anna K.; Galloway, Ross K.; Hardy, Judy
2016-01-01
According to dual processing theory there are two types, or modes, of thinking: system 1, which involves intuitive and nonreflective thinking, and system 2, which is more deliberate and requires conscious effort and thought. The Cognitive Reflection Test (CRT) is a widely used and robust three item instrument that measures the tendency to override…
ERIC Educational Resources Information Center
Canu, Will H.; Schatz, Nicole K.
2011-01-01
Attention-Deficit/Hyperactivity Disorder (ADHD) has been characterized as a comorbidity to pathological gambling (PG). However, contradictory evidence has emerged, and it has not been established whether nonimpulsive features of ADHD (e.g., inattention, hyperactivity) contribute to PG risk, or how robust this relationship is in college samples.…
Reporting and Analysis Tools: Helping Mine Education Data for Information Riches
ERIC Educational Resources Information Center
Steiny, Julia; Smith, Nancy J.
2007-01-01
With the passage of the No Child Left Behind Act (NCLB), state education agencies (SEAs) and local educational agencies (LEAs) have stepped up activities to broadly expand their data collection and reporting systems. The Data Quality Campaign (DQC) has advocated strongly for states to build robust student-level longitudinal data systems based on…
From Assumptions to Practice: Creating and Supporting Robust Online Collaborative Learning
ERIC Educational Resources Information Center
Lock, Jennifer; Johnson, Carol
2017-01-01
Collaboration is more than an activity. In the contemporary online learning environment, collaboration needs to be conceived as an overarching way of learning that fosters continued knowledge building. For this to occur, design of a learning task goes beyond students working together. There are integral nuances that give rise to: how the task is…
ERIC Educational Resources Information Center
Meyer, Heinz-Dieter
2017-01-01
Quantitative measures of student performance are increasingly used as proxies of educational quality and teacher ability. Such assessments assume that the quality of educational practices can be unambiguously quantitatively measured and that such measures are sufficiently precise and robust to be aggregated into policy-relevant rankings like…
Personality Traits Moderate the Big-Fish-Little--Pond Effect of Academic Self-Concept
ERIC Educational Resources Information Center
Jonkmann, Kathrin; Becker, Michael; Marsh, Herbert W.; Ludtke, Oliver; Trautwein, Ulrich
2012-01-01
Equally able students have lower academic self-concepts in high-achieving classrooms than in low-achieving classrooms. This highly general and robust frame of reference effect is widely known as the Big-Fish-Little-Pond Effect (BFLPE; Marsh, 1987). This study contributes to research aiming to identify moderators of the BFLPE by investigating the…
The Lead-Lead Oxide Secondary Cell as a Teaching Resource
ERIC Educational Resources Information Center
Smith, Michael J.; Fonseca, Antonio M.; Silva, M. Manuela
2009-01-01
The assembly and use of a laboratory version of a secondary cell based on the lead-lead oxide system is described. The cell is easy to construct, sufficiently robust for student use, and has a conveniently low practical capacity of about 5 mA h. This modest cell capacity allows cell assembly, electrode formation and discharge characterization…
Human Conditions for Teaching: The Place of Pedagogy in Arendt's "Vita Activa"
ERIC Educational Resources Information Center
Higgins, Chris
2010-01-01
Background/Context: If education centrally involves self-cultivation, and the teacher's own robust selfhood is necessary for inspiring self-cultivation in students, then teacherly self-cultivation is a necessary condition of education. But teaching is seen as a helping profession, where helping others always seems, in practice if not in principle,…
Theatre Curriculum in the US: A Great Tasting Sandwich on Stale Bread
ERIC Educational Resources Information Center
Duffy, Peter
2016-01-01
This essay considers the role that local control, poverty, access and policy play in providing drama/theatre education opportunities to students in the US. It examines how state and federal initiatives shape and determine the curriculum. While there are studies that suggest robust theatre education in the US, these findings are complicated when…
Robust Fault Detection Using Robust Z1 Estimation and Fuzzy Logic
NASA Technical Reports Server (NTRS)
Curry, Tramone; Collins, Emmanuel G., Jr.; Selekwa, Majura; Guo, Ten-Huei (Technical Monitor)
2001-01-01
This research considers the application of robust Z(sub 1), estimation in conjunction with fuzzy logic to robust fault detection for an aircraft fight control system. It begins with the development of robust Z(sub 1) estimators based on multiplier theory and then develops a fixed threshold approach to fault detection (FD). It then considers the use of fuzzy logic for robust residual evaluation and FD. Due to modeling errors and unmeasurable disturbances, it is difficult to distinguish between the effects of an actual fault and those caused by uncertainty and disturbance. Hence, it is the aim of a robust FD system to be sensitive to faults while remaining insensitive to uncertainty and disturbances. While fixed thresholds only allow a decision on whether a fault has or has not occurred, it is more valuable to have the residual evaluation lead to a conclusion related to the degree of, or probability of, a fault. Fuzzy logic is a viable means of determining the degree of a fault and allows the introduction of human observations that may not be incorporated in the rigorous threshold theory. Hence, fuzzy logic can provide a more reliable and informative fault detection process. Using an aircraft flight control system, the results of FD using robust Z(sub 1) estimation with a fixed threshold are demonstrated. FD that combines robust Z(sub 1) estimation and fuzzy logic is also demonstrated. It is seen that combining the robust estimator with fuzzy logic proves to be advantageous in increasing the sensitivity to smaller faults while remaining insensitive to uncertainty and disturbances.
Advanced Design Methodology for Robust Aircraft Sizing and Synthesis
NASA Technical Reports Server (NTRS)
Mavris, Dimitri N.
1997-01-01
Contract efforts are focused on refining the Robust Design Methodology for Conceptual Aircraft Design. Robust Design Simulation (RDS) was developed earlier as a potential solution to the need to do rapid trade-offs while accounting for risk, conflict, and uncertainty. The core of the simulation revolved around Response Surface Equations as approximations of bounded design spaces. An ongoing investigation is concerned with the advantages of using Neural Networks in conceptual design. Thought was also given to the development of systematic way to choose or create a baseline configuration based on specific mission requirements. Expert system was developed, which selects aerodynamics, performance and weights model from several configurations based on the user's mission requirements for subsonic civil transport. The research has also resulted in a step-by-step illustration on how to use the AMV method for distribution generation and the search for robust design solutions to multivariate constrained problems.
Filipova, Anna A; Stoffel, Cheri L
2016-07-01
The study aimed to determine the prevalence of binge eating disorder on university campus, its associations with health risk factors, and its associations with work and classroom productivity and activity impairment, adjusted for health risk factors. The study was conducted at a public midwestern university in the United States and involved 1,165 students. Data were collected online, using preestablished instruments. Descriptive, chi-square, correlation, and robust multiple regression tests were used. About 7.8% of the participants were assessed as having binge eating disorder. Binge eating disorder was more common among obese students than nonobese students. Associations were found between moderate binge eating disorder and classroom productivity and daily activity impairment; however, sleep duration and physical activity were the strongest predictors. University students are at risk of binge eating disorder. Interventions with this population should include education, screening, and clinical consultation when warranted.
The Pivotal Role of Adolescent Autonomy in Secondary School Classrooms
Allen, Joseph P.; Mikami, Amori Yee; Gregory, Anne; Hamre, Bridget; Pianta, Robert C.
2012-01-01
Student engagement is an important contributor to school success, yet high school students routinely describe themselves as disengaged. Identifying factors that alter (increase) engagement is a key aspect of improving support for student achievement. This study investigated students’ perceptions of autonomy, teacher connection, and academic competence as predictors of changes in student engagement within the classroom from the start to the end of a course. Participants were 578 (58% female) diverse (67.8% White, 25.2% African American, 5.1% Hispanic, 1.2% Asian American) high school students from 34 classrooms who provided questionnaire data both at the start and the end of a single course. Novel results from a cross-lagged model demonstrated that students who perceived their classrooms as allowing and encouraging their own autonomy in the first few weeks increased their engagement throughout the course, rather than the typical decline in engagement that was demonstrated by students in other classrooms. This finding is unique in that it extended to both students’ perceptions of engagement and observations of student engagement, suggesting a fairly robust pattern. The pertinence of this finding to adolescent developmental needs and its relationship to educational practice is discussed. PMID:22198156
Diagrams benefit symbolic problem-solving.
Chu, Junyi; Rittle-Johnson, Bethany; Fyfe, Emily R
2017-06-01
The format of a mathematics problem often influences students' problem-solving performance. For example, providing diagrams in conjunction with story problems can benefit students' understanding, choice of strategy, and accuracy on story problems. However, it remains unclear whether providing diagrams in conjunction with symbolic equations can benefit problem-solving performance as well. We tested the impact of diagram presence on students' performance on algebra equation problems to determine whether diagrams increase problem-solving success. We also examined the influence of item- and student-level factors to test the robustness of the diagram effect. We worked with 61 seventh-grade students who had received 2 months of pre-algebra instruction. Students participated in an experimenter-led classroom session. Using a within-subjects design, students solved algebra problems in two matched formats (equation and equation-with-diagram). The presence of diagrams increased equation-solving accuracy and the use of informal strategies. This diagram benefit was independent of student ability and item complexity. The benefits of diagrams found previously for story problems generalized to symbolic problems. The findings are consistent with cognitive models of problem-solving and suggest that diagrams may be a useful additional representation of symbolic problems. © 2017 The British Psychological Society.
Student Support for EIPBN 2010 Conference
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reginald C. Farrow
2011-03-11
The 54th International Conference on Electron, Ion and Photon Beam Technology and Nanofabrication, 2010, held at the Egan Convention Center and Hilton in Anchorage, Alaska, June 1 to 4, 2010 was a great success in large part because financial support allowed robust participation from students. The conference brought together 444 engineers and scientists from industries and universities from all over the world to discuss recent progress and future trends. Among the emerging technologies that are within the scope of EIPBN is Nanofabrication for Energy Sources along with nanofabrication for the realization of low power integrated circuits. Every year, EIPBN providesmore » financial support for students to attend the conference.The students gave oral and poster presentations of their research and many published peer reviewed articles in a special conference issue of the Journal of Vacuum Science and Technology B. The Department of Energy Office of Basic Energy Sciences supported 20 students from US universities with a $15,000.« less
Sevenhuysen, Samantha; Thorpe, Joanne; Molloy, Elizabeth; Keating, Jenny; Haines, Terry
2017-01-01
Pressure on clinical educators to provide best practice education to growing student numbers is driving innovations in clinical education. Placing multiple students with a single clinical educator may increase capacity; however, little is known about the role and impact of peer-assisted learning (PAL) in these models. A systematic review of the literature from 1985 to 2014 was done to investigate the effectiveness of PAL amongst allied health professional students in clinical settings. Secondary aims were to investigate how PAL is defined and measured in this practice setting. Twenty-eight articles representing five allied health professions met the inclusion criteria. The risk of bias in the articles was generally high, limiting confidence in findings. Nine studies measured the effects of PAL on students, with inconsistent results across domains of satisfaction, perceived learning, and performance outcomes. Only four studies described how PAL was facilitated. Evidence supporting PAL is non-specific and lacks comparative rigour. More robust research is needed to quantify the potential benefits of PAL.
Worthen, Meredith G F
2014-01-01
Although gay-straight alliances (GSAs) are becoming more popular in high schools across the U.S., empirical studies investigating GSAs and their impact are sparse. Utilizing a sample of college students drawn from a large Southern university (N = 805; 78% White; 61% female; average age 22), the current study investigates the ways that the presence of high school GSAs affect college student attitudes toward LGBT individuals and how these relationships may vary by high school GSA location (South vs. non-South), town type (rural/small town, suburban, large city), and high school student population size. Overall, results from the current study show that the presence of a GSA in high school is a robust positive predictor of supportive attitudes toward LGBT individuals, even when considering many control variables. Such results suggest that the presence of GSAs in high schools may have significant positive and potentially long-lasting effects on college students' attitudes toward LGBT individuals.
Quantum Communications Systems
2012-09-21
metrology practical. The strategy was to develop robust photonic quantum states and sensors serving as an archetype for loss-tolerant information...communications and metrology. Our strategy consisted of developing robust photonic quantum states and sensors serving as an archetype for loss-tolerant...developed atomic memories in caesium vapour, based on a stimulated Raman transition, that have demonstrated a TBP greater than 1000 and are uniquely suited
NASA Astrophysics Data System (ADS)
Aydın, Sevgi; Demirdöğen, Betül; Muslu, Nilay; Hanuscin, Deborah L.
2013-10-01
A number of science education policy documents recommend that students develop an understanding of the enterprise of science and the nature of science (NOS). Despite this emphasis, there is still a gap between policy and practice. Teacher professional literature provides one potential venue for bridging this gap, by providing “activities that work” (Appleton in elementary science teacher education: International perspectives on contemporary issues and practice. Lawrence Erlbaum Associates, Mahwah, NJ, 2006) that can scaffold teachers’ developing pedagogical content knowledge (PCK) for teaching NOS. We analyzed articles published in the NSTA journal The Science Teacher (1995-2010) in terms of the degree to which they provide appropriate model activities and specific information that can support the development of teachers’ PCK for teaching NOS. Our analysis revealed a diversity of NOS aspects addressed by the authors and a wide range of variation in the percent of articles focused on each aspect. Additionally, we found that few articles provided robust information related to all the component knowledge bases of PCK for NOS. In particular, within the extant practitioner literature, there are few models for teaching the aspects of NOS, such as the function and nature of scientific theory. Furthermore, though articles provided information relevant to informing teachers’ knowledge of instructional strategies for NOS, relevant information to inform teachers’ knowledge of assessment in this regard was lacking. We provide recommendations for ways in which the practitioner literature may support teachers’ teaching of NOS through more robust attention to the types of knowledge research indicates are needed in order to teaching NOS effectively.
The DLESE Community Services Center
NASA Astrophysics Data System (ADS)
Geary, E.; Aivazian, B.; Manduca, C.; Mogk, D.
2003-12-01
The DLESE Community Services Center (DCSC) is one of several centers recently funded by the National Science Foundation to promote greater and more effective use of Digital Library resources. The primary goals of the DCSC are to: (1) increase the current resource user and contributor base to include greater numbers of K-12, informal, and college educators and students, (2) diversify the DLESE user and contributor base to include rich and robust representation of ethnic, cultural, and differently-abled groups, (3) improve the ability of users and contributors to easily find, adapt, and use high quality digital resources in their classrooms, laboratories, and communities and (4) demonstrate how DLESE can support community activity addressing issues in geoscience education. During the course of the next three years we will: (a) solicit, create, and disseminate "exemplars" that highlight effective digital resource use in a variety of diverse educational settings, (b) continue to support and promote on-line DLESE community services, and (c) work to develop a DLESE ambassadors outreach program involving educators, scientists, and students working across the Earth, space, and environmental sciences. Collaborations with the DLESE Evaluation and Data Centers, collection builders, the DLESE Program Center staff, as well as diverse audience groups will be a key focus of our efforts. We invite you to join us as we work to build and support the next generation of digital services and resources for educators and students at all levels.
Drinking Patterns Across Spring, Summer, and Fall in 462 University Students.
Schuckit, Marc A; Smith, Tom L; Clausen, Peyton; Skidmore, Jessica; Shafir, Alexandra; Kalmijn, Jelger
2016-04-01
Student heavy drinking and associated problems are common at most universities and fluctuate throughout the calendar year, with marked increases during celebrations. Most studies of student drinking are limited to the academic year itself, and relatively few focus specifically on special heavy drinking events. Even fewer studies include drinking during summer break and subsequent school return. In the context of an experimental protocol, beginning in January 2014, alcohol-related characteristics were evaluated 8 times over 55 weeks for 462 college freshmen, including periods that incorporated a campus festival, summer, and school return. Baseline predictors of drinking quantities over time included demography, substance use patterns, as well as environmental and attitudinal characteristics. Product-moment correlations evaluated relationships between baseline characteristics and subsequent quantities, and simultaneous entry regression analyses evaluated which characteristics most robustly predicted usual and maximum drinks over time. Maximum drinks per occasion increased 18% from the early spring (4/8/14 to 5/6/14) to the campus festival period (5/7/14 to 6/3/14), decreased 29% in the summer (7/8/14 to 8/5/14), and increased 31% on school return (10/7/14 to 11/4/14). The most robust predictors of higher quantities in regression analyses included items from each of the 3 major domains with the most consistent results seen for most baseline alcohol-related items and descriptive drinking norms (R(2) = 0.20 to 0.31). These data demonstrate important changes in students' drinking during the calendar year, including expected large increases during the month of a 1-day festival, large decreases over the summer, and resumption of relatively high quantities upon return to school. Copyright © 2016 by the Research Society on Alcoholism.
Floyd, Kory; Generous, Mark Alan; Clark, Lou; McLeod, Ian; Simon, Albert
2017-10-01
In the relationship between patients and health care providers, few communicative features are as significant as the providers' ability to express empathy. A robust empirical literature describes the importance of physician communication skills-particularly those that convey empathy-yet few studies have examined empathic communication by physician assistants, who provide primary care for an increasing number of Americans. The present study examines the empathic communication of physician assistant students in interactions with standardized patients. Over a 6-month period, each student conducted three clinical interviews, each of which was evaluated for empathic communication by the patients, the students' clinical instructors, and third-party observers. Students also provided saliva samples for genotyping six single-nucleotide polymorphisms on the oxytocin receptor gene (OXTR) that are linked empirically to empathic behavior. Consistent with recent research, this study adopted a cumulative risk approach wherein students were scored for their number of risky alleles on the single-nucleotide polymorphisms. Results indicated that cumulative risk on OXTR receptor gene predicted lower patient empathy scores as rated by instructors and observers, but not by standardized patients.
NTR-Enhanced Lunar-Base Supply using Existing Launch Fleet Capabilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
John D. Bess; Emily Colvin; Paul G. Cummings
During the summer of 2006, students at the Center for Space Nuclear Research sought to augment the current NASA lunar exploration architecture with a nuclear thermal rocket (NTR). An additional study investigated the possible use of an NTR with existing launch vehicles to provide 21 metric tons of supplies to the lunar surface in support of a lunar outpost. Current cost estimates show that the complete mission cost for an NTR-enhanced assembly of Delta-IV and Atlas V vehicles may cost 47-86% more than the estimated Ares V launch cost of $1.5B; however, development costs for the current NASA architecture havemore » not been assessed. The additional cost of coordinating the rendezvous of four to six launch vehicles with an in-orbit assembly facility also needs more thorough analysis and review. Future trends in launch vehicle use will also significantly impact the results from this comparison. The utility of multiple launch vehicles allows for the development of a more robust and lower risk exploration architecture.« less
Scandol, James P; Moore, Helen A
2012-01-01
Health Statistics NSW is a new web-based application developed by the Centre for Epidemiology and Research at the NSW Ministry of Health. The application is designed to be an efficient vehicle for the timely delivery of health statistics to a diverse audience including the general public, health planners, researchers, students and policy analysts. The development and implementation of this web application required the consideration of a series of competing demands such as: the public interest in providing health data while maintaining the privacy interests of the individuals whose health is being reported; reporting data at spatial scales of relevance to health planners while maintaining the statistical integrity of any inferences drawn; the use of hardware and software systems which are publicly accessible, scalable and robust, while ensuring high levels of security. These three competing demands and the relationships between them are discussed in the context of Health Statistics NSW.
Low bandwidth robust controllers for flight
NASA Technical Reports Server (NTRS)
Biezad, Daniel J.; Chou, Hwei-Lan
1992-01-01
During the final reporting period (Jun. - Dec. 1992), analyses of the longitudinal and lateral flying qualities were made for propulsive-only flight control (POFC) of a Boeing 720 aircraft model. Performance resulting from compensators developed using Quantitative Feedback Theory (QFT) is documented and analyzed. This report is a first draft of a thesis to be presented by graduate student Hwei-Lan Chou. The final thesis will be presented to NASA when it is completed later this year. The latest landing metrics related to bandwidth criteria and based on the Neal-Smith approach to flying qualities prediction were used in developing performance criteria for the controllers. The compensator designs were tested on the NASA simulator and exhibited adequate performance for piloted flight. There was no significant impact of QFT on performance of the propulsive-only flight controllers in either the longitudinal or lateral modes of flight. This was attributed to the physical limits of thrust available and the engine rate of response, both of whiih severely limited the available bandwidth of the closed-loop system.
McCoy, Dana Charles; Connors, Maia C; Morris, Pamela A; Yoshikawa, Hirokazu; Friedman-Krauss, Allison H
Past research has shown robust relationships between neighborhood socioeconomic disadvantage and children's school achievement and social-emotional outcomes, yet the mechanisms for explaining these relationships are poorly understood. The present study uses data from 1,904 Head Start participants enrolled in the Head Start Impact Study to examine the role that classroom structural and relational quality play in explaining the association between neighborhood poverty and children's developmental gains over the preschool year. Results suggest that neighborhood poverty is directly related to lower levels of classroom quality, and lower gains in early literacy and math scores. Indirect relationships were also found between neighborhood poverty and children's social-emotional outcomes (i.e., approaches to learning and behavior problems) via differences in the physical resources and negative student-teacher relationships within classrooms. These findings highlight the need for policy initiatives to consider community characteristics as potential predictors of disparities in classroom quality and children's cognitive and social-emotional development in Head Start.
Tail mean and related robust solution concepts
NASA Astrophysics Data System (ADS)
Ogryczak, Włodzimierz
2014-01-01
Robust optimisation might be viewed as a multicriteria optimisation problem where objectives correspond to the scenarios although their probabilities are unknown or imprecise. The simplest robust solution concept represents a conservative approach focused on the worst-case scenario results optimisation. A softer concept allows one to optimise the tail mean thus combining performances under multiple worst scenarios. We show that while considering robust models allowing the probabilities to vary only within given intervals, the tail mean represents the robust solution for only upper bounded probabilities. For any arbitrary intervals of probabilities the corresponding robust solution may be expressed by the optimisation of appropriately combined mean and tail mean criteria thus remaining easily implementable with auxiliary linear inequalities. Moreover, we use the tail mean concept to develope linear programming implementable robust solution concepts related to risk averse optimisation criteria.
The Relationship between Organizational Health and Robust School Vision in Elementary Schools
ERIC Educational Resources Information Center
Korkmaz, Mehmet
2006-01-01
Teachers play an important role in developing a robust school vision. This study is aimed to find out the likely relationship between the teachers' perception of school health and a robust school vision. It has been found that there is a significant positive relationship between teachers' perceptions of organizational health and the relative…
Robust, Optimal Subsonic Airfoil Shapes
NASA Technical Reports Server (NTRS)
Rai, Man Mohan
2014-01-01
A method has been developed to create an airfoil robust enough to operate satisfactorily in different environments. This method determines a robust, optimal, subsonic airfoil shape, beginning with an arbitrary initial airfoil shape, and imposes the necessary constraints on the design. Also, this method is flexible and extendible to a larger class of requirements and changes in constraints imposed.
Synthesis Methods for Robust Passification and Control
NASA Technical Reports Server (NTRS)
Kelkar, Atul G.; Joshi, Suresh M. (Technical Monitor)
2000-01-01
The research effort under this cooperative agreement has been essentially the continuation of the work from previous grants. The ongoing work has primarily focused on developing passivity-based control techniques for Linear Time-Invariant (LTI) systems. During this period, there has been a significant progress made in the area of passivity-based control of LTI systems and some preliminary results have also been obtained for nonlinear systems, as well. The prior work has addressed optimal control design for inherently passive as well as non- passive linear systems. For exploiting the robustness characteristics of passivity-based controllers the passification methodology was developed for LTI systems that are not inherently passive. Various methods of passification were first proposed in and further developed. The robustness of passification was addressed for multi-input multi-output (MIMO) systems for certain classes of uncertainties using frequency-domain methods. For MIMO systems, a state-space approach using Linear Matrix Inequality (LMI)-based formulation was presented, for passification of non-passive LTI systems. An LMI-based robust passification technique was presented for systems with redundant actuators and sensors. The redundancy in actuators and sensors was used effectively for robust passification using the LMI formulation. The passification was designed to be robust to an interval-type uncertainties in system parameters. The passification techniques were used to design a robust controller for Benchmark Active Control Technology wing under parametric uncertainties. The results on passive nonlinear systems, however, are very limited to date. Our recent work in this area was presented, wherein some stability results were obtained for passive nonlinear systems that are affine in control.
Mumm, Rebekka; Godina, Elena; Koziel, Slawomir; Musalek, Martin; Sedlak, Petr; Wittwer-Backofen, Ursula; Hesse, Volker; Dasgupta, Parasmani; Henneberg, Maciej; Scheffler, Christiane
2018-06-11
Background: In our modern world, the way of life in nutritional and activity behaviour has changed. As a consequence, parallel trends of an epidemic of overweight and a decline in external skeletal robusticity are observed in children and adolescents. Aim: We aim to develop reference centiles for external skeletal robusticity of European girls and boys aged 0 to 18 years using the Frame Index as an indicator and identify population specific age-related patterns. Methods: We analysed cross-sectional & longitudinal data on body height and elbow breadth of boys and girls from Europe (0-18 years, n = 41.679), India (7-18 years, n = 3.297) and South Africa (3-18 years, n = 4.346). As an indicator of external skeletal robusticity Frame Index after Frisancho (1990) was used. We developed centiles for boys and girls using the LMS-method and its extension. Results: Boys have greater external skeletal robusticity than girls. Whereas in girls Frame Index decreases continuously during growth, an increase of Frame Index from 12 to 16 years in European boys can be observed. Indian and South African boys are almost similar in Frame Index to European boys. In girls, the pattern is slightly different. Whereas South African girls are similar to European girls, Indian girls show a lesser external skeletal robusticity. Conclusion: Accurate references for external skeletal robusticity are needed to evaluate if skeletal development is adequate per age. They should be used to monitor effects of changes in way of life and physical activity levels in children and adolescents to avoid negative health outcomes like osteoporosis and arthrosis.
Robust estimation approach for blind denoising.
Rabie, Tamer
2005-11-01
This work develops a new robust statistical framework for blind image denoising. Robust statistics addresses the problem of estimation when the idealized assumptions about a system are occasionally violated. The contaminating noise in an image is considered as a violation of the assumption of spatial coherence of the image intensities and is treated as an outlier random variable. A denoised image is estimated by fitting a spatially coherent stationary image model to the available noisy data using a robust estimator-based regression method within an optimal-size adaptive window. The robust formulation aims at eliminating the noise outliers while preserving the edge structures in the restored image. Several examples demonstrating the effectiveness of this robust denoising technique are reported and a comparison with other standard denoising filters is presented.
Investigation of air transportation technology at Princeton University, 1988-1989
NASA Technical Reports Server (NTRS)
Stengel, Robert F.
1990-01-01
The Air Transportation Technology Program at Princeton University, a program emphasizing graduate and undergraduate student research, proceeded along several avenues during the past year. A study of optimal trajectories for penetration of microbursts when encounter is unavoidable was conducted. The emphasis of current wind shear research is on developing an expert system for wind shear avoidance. A knowledge-based reconfigurable flight control system that is implemented with the Pascal programming language using parallel microprocessors was developed. This expert system could be considered a prototype for a failure-tolerant control system that can be constructed using existing hardware. Development of a real-time cockpit simulator continued during the year. The simulator provides a single-person crew station with both conventional and advanced control devices; it currently is programmed to simulate the Navion single-engine general aviation airplane. Alternatives for the air traffic control system giving particular attention to the institutional structure of the FAA are analyzed. A simple numerical procedure for estimating the stochastic robustness of control systems is being investigated. The revitalization of the general aviation industry is also discussed.
Cognitive simulators for medical education and training.
Kahol, Kanav; Vankipuram, Mithra; Smith, Marshall L
2009-08-01
Simulators for honing procedural skills (such as surgical skills and central venous catheter placement) have proven to be valuable tools for medical educators and students. While such simulations represent an effective paradigm in surgical education, there is an opportunity to add a layer of cognitive exercises to these basic simulations that can facilitate robust skill learning in residents. This paper describes a controlled methodology, inspired by neuropsychological assessment tasks and embodied cognition, to develop cognitive simulators for laparoscopic surgery. These simulators provide psychomotor skill training and offer the additional challenge of accomplishing cognitive tasks in realistic environments. A generic framework for design, development and evaluation of such simulators is described. The presented framework is generalizable and can be applied to different task domains. It is independent of the types of sensors, simulation environment and feedback mechanisms that the simulators use. A proof of concept of the framework is provided through developing a simulator that includes cognitive variations to a basic psychomotor task. The results of two pilot studies are presented that show the validity of the methodology in providing an effective evaluation and learning environments for surgeons.
ERIC Educational Resources Information Center
Calzada, Esther J.; Huang, Keng-Yen; Hernandez, Miguel; Soriano, Erika; Acra, C. Francoise; Dawson-McClure, Spring; Kamboukos, Dimitra; Brotman, Laurie
2015-01-01
Parent involvement is a robust predictor of academic achievement, but little is known about school- and home-based involvement in immigrant families. Drawing on ecological theories, the present study examined contextual characteristics as predictors of parent involvement among Afro-Caribbean and Latino parents of young students in urban public…
Primed for Reform: A District's Use of Existing Assets to Drive Improvement
ERIC Educational Resources Information Center
Region IX Equity Assistance Center at WestEd, 2014
2014-01-01
This brief reports on the early stages and initial successes of turnaround efforts in a California school district. With administrators and educators in the midst of implementing a robust reform agenda, there are clear signs that the district is on the rise. The reform initiatives have stopped a downward slide in student attendance, behavior, and…
Investigation of air transportation technology at Princeton University, 1990-1991
NASA Technical Reports Server (NTRS)
Stengel, Robert F.
1991-01-01
The Air Transportation Technology Program at Princeton University is a program that emphasizes graduate and undergraduate student research. The program proceeded along six avenues during the past year: microburst hazards to aircraft, intelligent failure tolerant control, computer-aided heuristics for piloted flight, stochastic robustness of flight control systems, neural networks for flight control, and computer-aided control system design.
ERIC Educational Resources Information Center
Bilias-Lolis, Evelyn; Bray, Melissa; Howell, Meiko
2017-01-01
Self-modeling is a robust behavioral intervention whose therapeutic outcomes have a positive impact on a host of clinical behaviors as well as diverse student populations. To date, only two theoretical positions have emerged in the literature that attempt to account for the mechanism of this efficacious behavioral intervention. The first…
ERIC Educational Resources Information Center
Kane, Thomas J.; Baxter, Andrew D.; Schooley, Korynn
2012-01-01
Launched in 2008, the Strategic Data Project, housed at the Center for Education Policy Research at Harvard University, seeks to bridge the divide between educational research and practice in order to transform the use of data in education to improve student achievement. Through the project, the authors build robust research partnerships with…
ERIC Educational Resources Information Center
Whited, Matthew T.; Hofmeister, Gretchen E.
2014-01-01
Experiments are described for the reliable small-scale glovebox preparation of CpMo(CO)[subscript 3](CH[subscript 3]) and acetyl derivatives thereof through phosphine-induced migratory insertion. The robust syntheses introduce students to a variety of organometallic reaction mechanisms and glovebox techniques, and they are easily carried out…
ERIC Educational Resources Information Center
Liu, Qian; Chao, Chin-Chi
2018-01-01
The possibility of exploiting technology for more robust and meaningful learning and teaching has invoked messianic responses from the language education community. Yet to be explored are teachers' pedagogical choices based on the perceived technological affordances as well as interactions between teacher and student agency mediated by these…
ERIC Educational Resources Information Center
Apugliese, Andrew; Lewis, Scott E.
2017-01-01
Meta-analysis can provide a robust description of the impact of educational reforms and also offer an opportunity to explore the conditions where such reforms are more or less effective. This article describes a meta-analysis on the impact of cooperative learning on students' chemistry understanding. Modifiers in the meta-analysis are purposefully…
ERIC Educational Resources Information Center
Johnson, Matthew; Partlo, Margaret; Hullender, Tammy; Akanwa, Emmanuel; Burke, Heather; Todd, Jerry; Alwood, Christine
2014-01-01
Public deliberation provides an inclusive and robust mechanism for making shared decisions in community and political settings; however, its application to teaching and learning remains underutilized (McMillan & Harriger, 2007). This manuscript reports on a case study of the use of public deliberation as a teaching andragogy in a graduate…
A Cost-Effective Atomic Force Microscope for Undergraduate Control Laboratories
ERIC Educational Resources Information Center
Jones, C. N.; Goncalves, J.
2010-01-01
This paper presents a simple, cost-effective and robust atomic force microscope (AFM), which has been purposely designed and built for use as a teaching aid in undergraduate controls labs. The guiding design principle is to have all components be open and visible to the students, so the inner functioning of the microscope has been made clear to…
ERIC Educational Resources Information Center
Data Quality Campaign, 2016
2016-01-01
Every state can create secure, robust linkages between early childhood and K-12 data systems, and effectively use the information from these linkages to implement initiatives to support programs and children, answer key policy questions, and be transparent about how the state's early childhood investments prepare students for success in school and…
ERIC Educational Resources Information Center
Keselman, Alla; Kaufman, David R.; Patel, Vimla L.
2004-01-01
A primary objective for science education is to impart robust knowledge that has applicability to real-world problems. This article presents research investigating the relationship between adolescents' conceptual understanding of the biological basis of HIV and critical reasoning. Middle and high school students were interviewed about their…
Good Practices for Student Learning: Mixed-Method Evidence from the Wabash National Study
ERIC Educational Resources Information Center
Goodman, Kathleen M.; Magolda, Marcia Baxter; Seifert, Tricia A.; King, Patricia M.
2011-01-01
Since 2006, 19 institutions across the United States have been trying to figure out how to work smarter through their participation in the Wabash National Study of Liberal Arts Education. Drawing on data from the first year of the study, the robust, mixed-methods study the authors report in this article evaluated growth in the first year of…
How to Plan Rigorous Instruction. Mastering the Principles of Great Teaching Series
ERIC Educational Resources Information Center
Jackson, Robyn R.
2010-01-01
What if you could go beyond planning and delivering tightly scripted lessons mapped to a standardized test to facilitating rich, robust learning experiences that prepare students to be critical thinkers and lifelong learners? The good news is that you can do it all when you have the steps and strategies from this guide. Drawing from the principles…
ERIC Educational Resources Information Center
Carr, Paul R., Ed.; Porfilio, Bradley, Ed.
2011-01-01
Who should read this book? Anyone who is touched by public education--teachers, administrators, teacher-educators, students, parents, politicians, pundits, and citizens--ought to read this book. It will speak to educators, policymakers and citizens who are concerned about the future of education and its relation to a robust, participatory…
ERIC Educational Resources Information Center
Abrams, Neal M.
2012-01-01
A cloud network system is combined with standard computing applications and a course management system to provide a robust method for sharing data among students. This system provides a unique method to improve data analysis by easily increasing the amount of sampled data available for analysis. The data can be shared within one course as well as…
ERIC Educational Resources Information Center
Doroudi, Shayan; Holstein, Kenneth; Aleven, Vincent; Brunskill, Emma
2015-01-01
The field of EDM has focused more on modeling student knowledge than on investigating what sequences of different activity types achieve good learning outcomes. In this paper we consider three activity types, targeting sense-making, induction and refinement, and fluency building. We investigate what mix of the three types might be most effective…
ERIC Educational Resources Information Center
Barboza, Gustavo A.; Pesek, James
2012-01-01
Assessment of the business curriculum and its learning goals and objectives has become a major field of interest for business schools. The exploratory results of the authors' model using a sample of 173 students show robust support for the hypothesis that high marks in course-embedded assessment on business-specific analytical skills positively…
Connected Classroom Technology Facilitates Multiple Components of Formative Assessment Practice
NASA Astrophysics Data System (ADS)
Shirley, Melissa L.; Irving, Karen E.
2015-02-01
Formative assessment has been demonstrated to result in increased student achievement across a variety of educational contexts. When using formative assessment strategies, teachers engage students in instructional tasks that allow the teacher to uncover levels of student understanding so that the teacher may change instruction accordingly. Tools that support the implementation of formative assessment strategies are therefore likely to enhance student achievement. Connected classroom technologies (CCTs) include a family of devices that show promise in facilitating formative assessment. By promoting the use of interactive student tasks and providing both teachers and students with rapid and accurate data on student learning, CCT can provide teachers with necessary evidence for making instructional decisions about subsequent lessons. In this study, the experiences of four middle and high school science teachers in their first year of implementing the TI-Navigator™ system, a specific type of CCT, are used to characterize the ways in which CCT supports the goals of effective formative assessment. We present excerpts of participant interviews to demonstrate the alignment of CCT with several main phases of the formative assessment process. CCT was found to support implementation of a variety of instructional tasks that generate evidence of student learning for the teacher. The rapid aggregation and display of student learning evidence provided teachers with robust data on which to base subsequent instructional decisions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allgor, R.J.; Feehery, W.F.; Tolsma, J.E.
The batch process development problem serves as good candidate to guide the development of process modeling environments. It demonstrates that very robust numerical techniques are required within an environment that can collect, organize, and maintain the data and models required to address the batch process development problem. This paper focuses on improving the robustness and efficiency of the numerical algorithms required in such a modeling environment through the development of hybrid numerical and symbolic strategies.
Robust control algorithms for Mars aerobraking
NASA Technical Reports Server (NTRS)
Shipley, Buford W., Jr.; Ward, Donald T.
1992-01-01
Four atmospheric guidance concepts have been adapted to control an interplanetary vehicle aerobraking in the Martian atmosphere. The first two offer improvements to the Analytic Predictor Corrector (APC) to increase its robustness to density variations. The second two are variations of a new Liapunov tracking exit phase algorithm, developed to guide the vehicle along a reference trajectory. These four new controllers are tested using a six degree of freedom computer simulation to evaluate their robustness. MARSGRAM is used to develop realistic atmospheres for the study. When square wave density pulses perturb the atmosphere all four controllers are successful. The algorithms are tested against atmospheres where the inbound and outbound density functions are different. Square wave density pulses are again used, but only for the outbound leg of the trajectory. Additionally, sine waves are used to perturb the density function. The new algorithms are found to be more robust than any previously tested and a Liapunov controller is selected as the most robust control algorithm overall examined.
Robust Fixed-Structure Controller Synthesis
NASA Technical Reports Server (NTRS)
Corrado, Joseph R.; Haddad, Wassim M.; Gupta, Kajal (Technical Monitor)
2000-01-01
The ability to develop an integrated control system design methodology for robust high performance controllers satisfying multiple design criteria and real world hardware constraints constitutes a challenging task. The increasingly stringent performance specifications required for controlling such systems necessitates a trade-off between controller complexity and robustness. The principle challenge of the minimal complexity robust control design is to arrive at a tractable control design formulation in spite of the extreme complexity of such systems. Hence, design of minimal complexitY robust controllers for systems in the face of modeling errors has been a major preoccupation of system and control theorists and practitioners for the past several decades.
Selective robust optimization: A new intensity-modulated proton therapy optimization strategy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yupeng; Niemela, Perttu; Siljamaki, Sami
2015-08-15
Purpose: To develop a new robust optimization strategy for intensity-modulated proton therapy as an important step in translating robust proton treatment planning from research to clinical applications. Methods: In selective robust optimization, a worst-case-based robust optimization algorithm is extended, and terms of the objective function are selectively computed from either the worst-case dose or the nominal dose. Two lung cancer cases and one head and neck cancer case were used to demonstrate the practical significance of the proposed robust planning strategy. The lung cancer cases had minimal tumor motion less than 5 mm, and, for the demonstration of the methodology,more » are assumed to be static. Results: Selective robust optimization achieved robust clinical target volume (CTV) coverage and at the same time increased nominal planning target volume coverage to 95.8%, compared to the 84.6% coverage achieved with CTV-based robust optimization in one of the lung cases. In the other lung case, the maximum dose in selective robust optimization was lowered from a dose of 131.3% in the CTV-based robust optimization to 113.6%. Selective robust optimization provided robust CTV coverage in the head and neck case, and at the same time improved controls over isodose distribution so that clinical requirements may be readily met. Conclusions: Selective robust optimization may provide the flexibility and capability necessary for meeting various clinical requirements in addition to achieving the required plan robustness in practical proton treatment planning settings.« less
Towards effective outcomes in teaching, learning and assessment of law in medical education.
Preston-Shoot, Michael; McKimm, Judy
2011-04-01
Law is slowly emerging as a core subject area in medical education, alongside content on the ethical responsibilities of doctors to protect and promote patient health and well-being. Curriculum statements have begun to advise on core content and methods for organising teaching and assessment. However, no comprehensive overview of approaches to the delivery of this law curriculum has been undertaken. This paper reports an assessment of the nature and strength of the published evidence base for the teaching, learning and assessment of law in medical education. It also provides a thematic content overview from the best available literature on the teaching of law to medical students and on the assessment of their legal knowledge and skills. A systematic review of the evidence base was completed. Detailed scrutiny resulted in the inclusion of 31 empirical sources and 11 conceptual papers. The quality of the included material was assessed. Significant gaps exist in the evidence base. Empirical studies of the teaching of law are characterised by insufficient sample sizes and a focus on individual study programmes. They rely on measures of student satisfaction and on evaluating short-term outcomes rather than assessing whether knowledge is retained and whether learning impacts on patient outcomes. Studies reveal a lack of coordination between pre- or non-clinical and clinical medico-legal education. Although evidence on the development of students' knowledge is available, much learning is distant from the practice in which its application would be tested. Law learning in clinical placements appears to be opportunistic rather than structured. The place of law in the curriculum remains uncertain and should be more clearly identified. A more robust knowledge base is needed to realise the aspirations behind curriculum statements on law and to enable medical students to develop sufficient legal literacy to manage challenging practice encounters. Further research is needed into effective methods of teaching, learning and assessing legal knowledge and skills during and following initial medical education. © Blackwell Publishing Ltd 2011.
Hunt, Louise A; McGee, Paula; Gutteridge, Robin; Hughes, Malcolm
2016-09-01
There is growing evidence of a culture of expectation among nursing students in Universities which leads to narcissistic behaviour. Evidence is growing that some student nurses are disrespectful and rude towards their university lecturers. There has been little investigation into whether they exhibit similar behaviour towards their mentors during practical placements, particularly when they, the students, are not meeting the required standards for practice. This paper focuses on adding to the evidence around a unique finding - that student nurses can use coercive and manipulative behaviour to elicit a successful outcome to their practice learning assessment (as noted in Hunt et al. (2016, p 82)). Four types of coercive student behaviour were identified and classified as: ingratiators, diverters, disparagers and aggressors, each of which engendered varying degrees of fear and guilt in mentors. The effects of each type of behaviour are discussed and considered in the light of psychological contracts. Mechanisms to maintain effective working relationships between student nurses and mentors and bolster the robustness of the practical assessment process under such circumstances are discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Improving Evaluation of Dental Hygiene Students' Cultural Competence with a Mixed-Methods Approach.
Flynn, Priscilla; Sarkarati, Nassim
2018-02-01
Most dental hygiene educational programs include cultural competence education, but may not evaluate student outcomes. The aim of this study was to design and implement a mixed-methods evaluation to measure dental hygiene students' progression toward cultural competence. Two cohorts consisting of consecutive classes in one U.S. dental hygiene program participated in the study. A total of 47 dental hygiene students (100% response rate) completed self-assessments to measure their attitudes and knowledge at three time points between 2014 and 2016. Mean scores were calculated for three domains: Physical Environment, Communication, and Values. Qualitative analysis of the students' cultural diversity papers was also conducted to further evaluate students' knowledge and skills. Bennett's five-level conceptual framework was used to code phrases or sentences to place students in the general categories of ethnocentric or ethno-relative. The quantitative and qualitative results yielded different outcomes for Cohort 1, but not for Cohort 2. The Cohort 1 students assessed themselves statistically significantly lower over time in one of the three measured domains. However, the Cohort 2 students assessed themselves as statistically significantly more culturally competent in all three domains. Qualitative results placed 72% of Cohort 1 students and 83% of Cohort 2 students in the more desirable ethno-relative category. Since quantitative methods consisting of student self-assessments may not adequately measure students' cultural competence, adding qualitative methods to measure skills specific to patient care in this study added a robust dimension to evaluating this complex dental hygiene student competence.
Lichtenstein, Mia Beck; Griffiths, Mark D; Hemmingsen, Simone Daugaard; Støving, René Klinkby
2018-03-01
Background Behavioral addictions often onset in adolescence and increase the risk of psychological and social problems later in life. The core symptoms of addiction are tolerance, withdrawal symptoms, lack of control, and compulsive occupation with the behavior. Psychometrically validated tools are required for detection and early intervention. Adolescent screening instruments exist for several behavioral addictions including gambling and video gaming addiction but not for exercise addiction. Given recent empirical and clinical evidence that a minority of teenagers appear to be experiencing exercise addiction, a psychometrically robust screening instrument is required. Aims The aim of this study was to develop and test the psychometric properties of a youth version of the Exercise Addiction Inventory (EAI) - a robust screening instrument that has been used across different countries and cultures - and to assess the prevalence of exercise addiction and associated disturbed eating. Methods A cross-sectional survey was administered to three high-risk samples (n = 471) aged 11-20 years (mean age: 16.3 years): sport school students, fitness center attendees, and patients with eating disorder diagnoses. A youth version of the EAI (EAI-Y) was developed and distributed. Participants were also screened for disordered eating with the SCOFF Questionnaire. Results Overall, the EAI-Y demonstrated good reliability and construct validity. The prevalence rate of exercise addiction was 4.0% in school athletes, 8.7% in fitness attendees, and 21% in patients with eating disorders. Exercise addiction was associated with feelings of guilt when not exercising, ignoring pain and injury, and higher levels of body dissatisfaction.
Aungst, Timothy Dy; Belliveau, Paul
2015-01-01
As mobile smart device use has increased in society, the healthcare community has begun using these devices for communication among professionals in practice settings. The purpose of this review is to describe primary literature which reports on the experiences with interprofessional healthcare communication via mobile smart devices. Based on these findings, this review also addresses how these devices may be utilized to facilitate interprofessional education (IPE) in health professions education programs. The literature search revealed limited assessments of mobile smart device use in clinical practice settings. In available reports, communication with mobile smart devices was perceived as more effective and faster among interdisciplinary members. Notable drawbacks included discrepancies in the urgency labeling of messages, increased interruptions associated with constant accessibility to team members, and professionalism breakdowns. Recently developed interprofessional competencies include an emphasis on ensuring that health profession students can effectively communicate on interprofessional teams. With the increasing reliance on mobile smart devices in the absence of robust benefit and risk assessments on their use in clinical practice settings, use of these devices may be leveraged to facilitate IPE activities in health education professions programs while simultaneously educating students on their proper use in patient care settings.
The portal of geriatrics online education: a 21st-century resource for teaching geriatrics.
Ramaswamy, Ravishankar; Leipzig, Rosanne M; Howe, Carol L; Sauvigne, Karen; Usiak, Craig; Soriano, Rainier P
2015-02-01
The way students are taught and evaluated is changing, with greater emphasis on flexible, individualized, learner-centered education, including the use of technology. The goal of assessment is also shifting from what students know to how they perform in practice settings. Developing educational materials for teaching in these ways is time-consuming and can be expensive. The Portal of Geriatrics Online Education (POGOe) was developed to aid educators in meeting these needs and become quicker, better-prepared teachers of geriatrics. POGOe contains more than 950 geriatrics educational materials that faculty at 45% of allopathic and 7% of osteopathic U.S. medical schools and the Centers for Geriatric Nursing Excellence have created. These materials include various instructional and assessment methodologies, including virtual and standardized patients, games, tutorials, case-based teaching, self-directed learning, and traditional lectures. Materials with common goals and resource types are available as selected educational series. Learner assessments comprise approximately 10% of the educational materials. POGOe also includes libraries of videos, images, and questions extracted from its educational materials to encourage educators to repurpose content components to create new resources and to align their teaching better with their learners' needs. Web-Geriatric Education Modules, a peer-reviewed online modular curriculum for medical students, is a prime example of this repurposing. The existence of a robust compendium of instructional and assessment materials allows educators to concentrate more on improving learner performance in practice and not simply on knowledge acquisition. It also makes it easier for nongeriatricians to teach the care of older adults in their respective disciplines. © 2015, Copyright the Authors Journal compilation © 2015, The American Geriatrics Society.
NASA Astrophysics Data System (ADS)
Overoye, D.; Lewis, C.
2016-12-01
The Global Learning and Observations to Benefit the Environment (GLOBE) Program is a worldwide hands-on, primary and secondary school-based science and education program founded on Earth Day 1995. Implemented in 117 countries, GLOBE promotes the teaching and learning of science, supporting students, teachers and scientists worldwide to collaborate with each other on inquiry-based investigations of the Earth system. As an international platform supporting a large number and variety of stakeholders, the GLOBE Data Information System (DIS) was re-built with the goal of providing users the support needed to foster and develop collaboration between teachers, students and scientists while supporting the collection and visualization of over 50 different earth science investigations (protocols). There have been many challenges to consider as we have worked to prototype and build various tools to support collaboration across the GLOBE community - language, security, time zones, user roles and the Child Online Protection Act (COPA) to name a few. During the last 3 years the re-built DIS has been in operation we have supported user to user collaboration, school to school collaboration, project/campaign to user collaboration and scientist to scientist collaboration. We have built search tools to facilitate finding collaboration partners. The tools and direction continue to evolve based on feedback, evolving needs and changes in technology. With this paper we discuss our approach for dealing with some of the collaboration challenges, review tools built to encourage and support collaboration, and analyze which tools have been successful and which have not. We will review new ideas for collaboration in the GLOBE community that are guiding upcoming development.
Improving entrepreneurial opportunity recognition through web content analytics
NASA Astrophysics Data System (ADS)
Bakar, Muhamad Shahbani Abu; Azmi, Azwiyati
2017-10-01
The ability to recognize and develop an opportunity into a venture defines an entrepreneur. Research in opportunity recognition has been robust and focuses more on explaining the processes involved in opportunity recognition. Factors such as prior knowledge, cognitive and creative capabilities are shown to affect opportunity recognition in entrepreneurs. Prior knowledge in areas such as customer problems, ways to serve the market, and technology has been shows in various studies to be a factor that facilitates entrepreneurs to identify and recognize opportunities. Findings from research also shows that experienced entrepreneurs search and scan for information to discover opportunities. Searching and scanning for information has also been shown to help novice entrepreneurs who lack prior knowledge to narrow this gap and enable them to better identify and recognize opportunities. There is less focus in research on finding empirically proven techniques and methods to develop and enhance opportunity recognition in student entrepreneurs. This is important as the country pushes for more graduate entrepreneurs that can drive the economy. This paper aims to discuss Opportunity Recognition Support System (ORSS), an information support system to help especially student entrepreneurs in identifying and recognizing business opportunities. The ORSS aims to provide the necessary knowledge to student entrepreneurs to be able to better identify and recognize opportunities. Applying design research, theories in opportunity recognition are applied to identify the requirements for the support system and the requirements in turn dictate the design of the support system. The paper proposes the use of web content mining and analytics as two core components and techniques for the support system. Web content mining can mine the vast knowledge repositories available on the internet and analytics can provide entrepreneurs with further insights into the information needed to recognize opportunities in a given market or industry.
Smeltzer, Suzanne C; Cantrell, Mary Ann; Sharts-Hopko, Nancy C; Heverly, Mary Ann; Jenkinson, Amanda; Nthenge, Serah
2016-01-01
This article reports the findings of a study that examined the research and scholarship productivity of doctorally prepared nursing faculty teaching and mentoring doctoral students and the conflicting demands on them to maintain programs of research and scholarship. The specific aims were to (a) examine the research productivity and scholarship of faculty members teaching in doctoral programs and mentoring doctoral students to examine the perceived effectiveness of existing institutional mechanisms to support scholarship, (b) explore institutional features and personal practices used by doctoral program faculty to develop and maintain research and scholarship productivity, and (c) analyze predictors of scholarship productivity. Data were collected via an on-line researcher-developed survey that examined doctoral faculty roles/responsibilities and their relationship to their scholarly productivity, overall research productivity, and institutional features and personal practices to support research/scholarship activities. Survey respondents reported spending a large amount of time engaged in research-related activities with 58.9% (n = 326) spending anywhere from 6 to 20 hours per week conducting research, writing research-based papers, giving presentations, grant writing, or conducting evidence-based improvement projects. Scholar productivity among the respondents was robust. Personal practices that most strongly supported faculty members' scholarship productivity were the belief that engaging in scholarship made them better teachers and the personal gratification in experiencing doctoral students' successes. A multiple regression analysis conducted to determine predictors of productivity indicated that the strongest predictor was the average number of hours spent on research/scholarship-related activities, followed by time bought out from teaching and other responsibilities of the faculty role for research. Copyright © 2016 Elsevier Inc. All rights reserved.
Optimization-Based Robust Nonlinear Control
2006-08-01
ABSTRACT New control algorithms were developed for robust stabilization of nonlinear dynamical systems . Novel, linear matrix inequality-based synthesis...was to further advance optimization-based robust nonlinear control design, for general nonlinear systems (especially in discrete time ), for linear...Teel, IEEE Transactions on Control Systems Technology, vol. 14, no. 3, p. 398-407, May 2006. 3. "A unified framework for input-to-state stability in
Panaceas, uncertainty, and the robust control framework in sustainability science
Anderies, John M.; Rodriguez, Armando A.; Janssen, Marco A.; Cifdaloz, Oguzhan
2007-01-01
A critical challenge faced by sustainability science is to develop strategies to cope with highly uncertain social and ecological dynamics. This article explores the use of the robust control framework toward this end. After briefly outlining the robust control framework, we apply it to the traditional Gordon–Schaefer fishery model to explore fundamental performance–robustness and robustness–vulnerability trade-offs in natural resource management. We find that the classic optimal control policy can be very sensitive to parametric uncertainty. By exploring a large class of alternative strategies, we show that there are no panaceas: even mild robustness properties are difficult to achieve, and increasing robustness to some parameters (e.g., biological parameters) results in decreased robustness with respect to others (e.g., economic parameters). On the basis of this example, we extract some broader themes for better management of resources under uncertainty and for sustainability science in general. Specifically, we focus attention on the importance of a continual learning process and the use of robust control to inform this process. PMID:17881574
NASA Astrophysics Data System (ADS)
Jiang, Yulian; Liu, Jianchang; Tan, Shubin; Ming, Pingsong
2014-09-01
In this paper, a robust consensus algorithm is developed and sufficient conditions for convergence to consensus are proposed for a multi-agent system (MAS) with exogenous disturbances subject to partial information. By utilizing H∞ robust control, differential game theory and a design-based approach, the consensus problem of the MAS with exogenous bounded interference is resolved and the disturbances are restrained, simultaneously. Attention is focused on designing an H∞ robust controller (the robust consensus algorithm) based on minimisation of our proposed rational and individual cost functions according to goals of the MAS. Furthermore, sufficient conditions for convergence of the robust consensus algorithm are given. An example is employed to demonstrate that our results are effective and more capable to restrain exogenous disturbances than the existing literature.
Effect of interaction strength on robustness of controlling edge dynamics in complex networks
NASA Astrophysics Data System (ADS)
Pang, Shao-Peng; Hao, Fei
2018-05-01
Robustness plays a critical role in the controllability of complex networks to withstand failures and perturbations. Recent advances in the edge controllability show that the interaction strength among edges plays a more important role than network structure. Therefore, we focus on the effect of interaction strength on the robustness of edge controllability. Using three categories of all edges to quantify the robustness, we develop a universal framework to evaluate and analyze the robustness in complex networks with arbitrary structures and interaction strengths. Applying our framework to a large number of model and real-world networks, we find that the interaction strength is a dominant factor for the robustness in undirected networks. Meanwhile, the strongest robustness and the optimal edge controllability in undirected networks can be achieved simultaneously. Different from the case of undirected networks, the robustness in directed networks is determined jointly by the interaction strength and the network's degree distribution. Moreover, a stronger robustness is usually associated with a larger number of driver nodes required to maintain full control in directed networks. This prompts us to provide an optimization method by adjusting the interaction strength to optimize the robustness of edge controllability.
NASA Astrophysics Data System (ADS)
Olds, S. E.; Mooney, M. E.; Dahlman, L. E.
2016-12-01
Recreational drones, also known as unmanned aerial vehicles (UAVs), provide an ideal platform for engaging students in science, technology, engineering, and math (STEM) investigations for science fair projects, after-school clubs, and in-class activities. UAVs are very popular (estimate of >1 million received as gifts this past year), relatively inexpensive (<$100), weigh less than 250g (don't require FAA registration), are modifiable, and can carry small instrument packages. Seeing the world from above can stimulate curiosity and give students a reason to engage in the Next Generation Science Standards (NGSS) process of science and engineering practices by designing and carrying out their own investigations. Using drones to facilitate experiments, students also participate in engineering design: they may choose off-the-shelf sensors or build DIY sensors to carry on their UAVs. Leveraging the learning potential of UAVs, the Federation of Earth Science Information Partners (ESIP) Education Committee has been developing an e-book of learning activities and investigation suggestions for secondary education students. The freely available download incorporates UAV civility and safety through a pre-flight checklist and flying guidelines, suggests science and flight team roles, and advocates robust data and metadata-collection practices. The ESIP team also worked with an engineer to build a 33-gram prototype environmental logger called SABEL (Shelley (Olds) and Bob's Environmental Logger). SABEL collects temperature, humidity, and GPS position assembled on an Arduino board. This presentation will elaborate upon the year-long process of working with educators via webinars and a 1-day workshop at the 2016 ESIP summer meeting and beyond. It will also provide examples of student-led investigations, instructions for building the SABEL sensor package, insights gleaned from workshop feedback - and - the status of the new e-book compilation of student-focused activities using recreational drones to pursue STEM investigations!
The Pulsar Search Collaboratory: A Comprehensive Project for Students and Teachers
NASA Astrophysics Data System (ADS)
Rosen, Rachel; Heatherly, S.; McLauglin, M.; Lorimer, D.
2009-01-01
The National Radio Astronomy Observatory (NRAO) and West Virginia University (WVU) have partnered to improve the quality of science education in West Virginia high schools through the Pulsar Search Collaboratory (PSC). One of the primary goals of the PSC is to engage students in STEM (science, technology, engineering, and mathematics) and related fields by using information technology to conduct current scientific research, specifically searching for new pulsars. To this end, we also are improving rural teachers' knowledge of the nature of science, the importance of information technology to scientific discovery, and methodologies for incorporating inquiry-based education into the classroom. The PSC hopes to make school science more like the practice of science and to make science fun and interesting for high school students. In 2007, an international team of astronomers received 900 hours of time on the Green Bank Telescope (GBT) during the summer shutdown to search for new pulsars. In conjunction with this group, we applied for and received 300 hours of observing time on the GBT for the PSC students. Around the same time, we were awarded an NSF iTEST grant to fund the Pulsar Search Collaboratory (PSC) project. Over the past year, we have been working with colleagues in the WVU Department of Computer Science to develop a graphical interface through which the students will analyze pulsar search plots (see psrsearch.wvu.edu). We also initiated a robust processing pipeline on a cluster in the WVU Computer Science Department. The PSC started in earnest this summer with a three week workshop in Green Bank where the teachers attended an intensive astronomy mini-course and techniques on introducing astronomy into the classroom. The students joined their teachers for the third week and participated in various activities to teach them about radio astronomy, radio frequency interference, and pulsars.
NASA Astrophysics Data System (ADS)
Weiss, E.; Skene, J.; Tran, L.
2011-12-01
Today's youth have been tasked with the overwhelming job of addressing the world's climate future. The students who will become the scientists, policy makers, and citizens of tomorrow must gain a robust understanding of the causes and effects of climate change, as well as possible adaptation strategies. Currently, there are few high quality curricula available to teachers that address these topics in a developmentally appropriate manner. The NOAA-funded Ocean Sciences Sequence for Grades 6-8 aims to address this gap by providing teachers with scientifically accurate climate change curriculum that hits on some of the most salient points in climate science, while simultaneously developing students' science process skills. The Ocean Sciences Sequence for Grades 6-8 is developed through a collaboration between some of the nation's leading ocean and climate scientists and the Lawrence Hall of Science's highly qualified GEMS (Great Explorations in Math & Science) curriculum development team. Scientists are active partners throughout the whole development process, from initial brainstorming of key concepts and creating the conceptual storyline for the curriculum to final review of the content and activities. As with all GEMS Sequences, the Ocean Sciences Sequence for Grades 6-8 is designed to provide significant scientific and educational depth, systematic assessments and informational readings, and incorporate new learning technologies. The goal is to focus strategically and effectively on the core concepts within ocean and climate sciences that students need to understand. This curriculum is designed in accordance with the latest research from the learning sciences, and provides numerous opportunities for students to develop inquiry skills and abilities as they learn about the practice of science through hands-on activities. The Ocean Sciences Sequence for Grades 6-8 addresses in depth a significant number of national, state, and district standards and benchmarks. It aligns with the Ocean Literacy and Climate Literacy Frameworks, as well as multiple core ideas in the new National Academy of Sciences Framework for K-12 Science Education. In brief, the curriculum comprises 33 45-minute sessions organized into three thematic units that are each driven by an exploratory question: Unit 1 (11 sessions)-How do the ocean and atmosphere interact?; Unit 2 (8 sessions)-How does carbon flow through the ocean, land, and atmosphere?; and Unit 3 (12 sessions)-What are the causes and effects of climate change? The curriculum deliberately explores the ocean and climate as global systems, and challenges students to use scientific evidence to make explanations about climate change. The Ocean Sciences Sequence for Grades 6-8 is currently being classroom tested by teachers across the United States in a wide variety of classroom settings. Evaluation is also being undertaken to determine the efficacy of the sequence in addressing the curriculum's learning goals.
Robust and efficient estimation with weighted composite quantile regression
NASA Astrophysics Data System (ADS)
Jiang, Xuejun; Li, Jingzhi; Xia, Tian; Yan, Wanfeng
2016-09-01
In this paper we introduce a weighted composite quantile regression (CQR) estimation approach and study its application in nonlinear models such as exponential models and ARCH-type models. The weighted CQR is augmented by using a data-driven weighting scheme. With the error distribution unspecified, the proposed estimators share robustness from quantile regression and achieve nearly the same efficiency as the oracle maximum likelihood estimator (MLE) for a variety of error distributions including the normal, mixed-normal, Student's t, Cauchy distributions, etc. We also suggest an algorithm for the fast implementation of the proposed methodology. Simulations are carried out to compare the performance of different estimators, and the proposed approach is used to analyze the daily S&P 500 Composite index, which verifies the effectiveness and efficiency of our theoretical results.
Burnout among Finnish and Chinese university students.
Hernesniemi, Elina; Räty, Hannu; Kasanen, Kati; Cheng, Xuejiao; Hong, Jianzhong; Kuittinen, Matti
2017-10-01
In this study the levels of experienced burnout of Finnish and Chinese university students are compared using School Burnout Inventory (SBI). This study is motivated by earlier studies, which suggest that the level of student burnout is different in the culturally distinct Finnish and Chinese university systems, but which are based on different research instruments for the two groups. The sample studied consisted of 3,035 Finnish students and 2,309 Chinese students. Because of the cross-cultural nature of this study the level of structural equivalence of SBI between the cultural groups was examined and the effect of different response styles on the results was taken into account. Both standard and robust statistical methods were used for the analyses. The results showed that SBI with two extracted components is suitable for cross-cultural analysis between Finnish and Chinese university students. Virtually no difference was found in experienced overall burnout between the Finnish and Chinese students, which means that both university systems contain factors causing similar levels of student burnout. This study also verified that controlling for the response styles is important in cross-cultural studies as it was found to have a distinct effect on the results obtained from mean-level comparisons. © 2017 Scandinavian Psychological Associations and John Wiley & Sons Ltd.
An adaptive discontinuous Galerkin solver for aerodynamic flows
NASA Astrophysics Data System (ADS)
Burgess, Nicholas K.
This work considers the accuracy, efficiency, and robustness of an unstructured high-order accurate discontinuous Galerkin (DG) solver for computational fluid dynamics (CFD). Recently, there has been a drive to reduce the discretization error of CFD simulations using high-order methods on unstructured grids. However, high-order methods are often criticized for lacking robustness and having high computational cost. The goal of this work is to investigate methods that enhance the robustness of high-order discontinuous Galerkin (DG) methods on unstructured meshes, while maintaining low computational cost and high accuracy of the numerical solutions. This work investigates robustness enhancement of high-order methods by examining effective non-linear solvers, shock capturing methods, turbulence model discretizations and adaptive refinement techniques. The goal is to develop an all encompassing solver that can simulate a large range of physical phenomena, where all aspects of the solver work together to achieve a robust, efficient and accurate solution strategy. The components and framework for a robust high-order accurate solver that is capable of solving viscous, Reynolds Averaged Navier-Stokes (RANS) and shocked flows is presented. In particular, this work discusses robust discretizations of the turbulence model equation used to close the RANS equations, as well as stable shock capturing strategies that are applicable across a wide range of discretization orders and applicable to very strong shock waves. Furthermore, refinement techniques are considered as both efficiency and robustness enhancement strategies. Additionally, efficient non-linear solvers based on multigrid and Krylov subspace methods are presented. The accuracy, efficiency, and robustness of the solver is demonstrated using a variety of challenging aerodynamic test problems, which include turbulent high-lift and viscous hypersonic flows. Adaptive mesh refinement was found to play a critical role in obtaining a robust and efficient high-order accurate flow solver. A goal-oriented error estimation technique has been developed to estimate the discretization error of simulation outputs. For high-order discretizations, it is shown that functional output error super-convergence can be obtained, provided the discretization satisfies a property known as dual consistency. The dual consistency of the DG methods developed in this work is shown via mathematical analysis and numerical experimentation. Goal-oriented error estimation is also used to drive an hp-adaptive mesh refinement strategy, where a combination of mesh or h-refinement, and order or p-enrichment, is employed based on the smoothness of the solution. The results demonstrate that the combination of goal-oriented error estimation and hp-adaptation yield superior accuracy, as well as enhanced robustness and efficiency for a variety of aerodynamic flows including flows with strong shock waves. This work demonstrates that DG discretizations can be the basis of an accurate, efficient, and robust CFD solver. Furthermore, enhancing the robustness of DG methods does not adversely impact the accuracy or efficiency of the solver for challenging and complex flow problems. In particular, when considering the computation of shocked flows, this work demonstrates that the available shock capturing techniques are sufficiently accurate and robust, particularly when used in conjunction with adaptive mesh refinement . This work also demonstrates that robust solutions of the Reynolds Averaged Navier-Stokes (RANS) and turbulence model equations can be obtained for complex and challenging aerodynamic flows. In this context, the most robust strategy was determined to be a low-order turbulence model discretization coupled to a high-order discretization of the RANS equations. Although RANS solutions using high-order accurate discretizations of the turbulence model were obtained, the behavior of current-day RANS turbulence models discretized to high-order was found to be problematic, leading to solver robustness issues. This suggests that future work is warranted in the area of turbulence model formulation for use with high-order discretizations. Alternately, the use of Large-Eddy Simulation (LES) subgrid scale models with high-order DG methods offers the potential to leverage the high accuracy of these methods for very high fidelity turbulent simulations. This thesis has developed the algorithmic improvements that will lay the foundation for the development of a three-dimensional high-order flow solution strategy that can be used as the basis for future LES simulations.
NASA Astrophysics Data System (ADS)
Nejlaoui, Mohamed; Houidi, Ajmi; Affi, Zouhaier; Romdhane, Lotfi
2017-10-01
This paper deals with the robust safety design optimization of a rail vehicle system moving in short radius curved tracks. A combined multi-objective imperialist competitive algorithm and Monte Carlo method is developed and used for the robust multi-objective optimization of the rail vehicle system. This robust optimization of rail vehicle safety considers simultaneously the derailment angle and its standard deviation where the design parameters uncertainties are considered. The obtained results showed that the robust design reduces significantly the sensitivity of the rail vehicle safety to the design parameters uncertainties compared to the determinist one and to the literature results.
Web-Based vs. Face-to-Face MBA Classes: A Comparative Assessment Study
ERIC Educational Resources Information Center
Brownstein, Barry; Brownstein, Deborah; Gerlowski, Daniel A.
2008-01-01
The challenges of online learning include ensuring that the learning outcomes are at least as robust as in the face-to-face sections of the same course. At the University of Baltimore, both online sections and face-to-face sections of core MBA courses are offered. Once admitted to the MBA, students are free to enroll in any combination of…
ERIC Educational Resources Information Center
Frank, Andrew J.; Cathcart, Nicole; Maly, Kenneth E.; Kitaev, Vladimir
2010-01-01
A robust and reasonably simple experiment is described that introduces students to the visualization of nanoscale properties and is intended for a first-year laboratory. Silver nanoprisms (NPs) that display different colors due to variation of their plasmonic absorption with respect to size are prepared. Control over the size of the silver…
ERIC Educational Resources Information Center
Greenhow, Christine; Walker, J. D.; Donnelly, Dan; Cohen, Brad
2008-01-01
Christine Greenhow, J. D. Walker, Dan Donnelly, and Brad Cohen describe the implementation and evaluation of the University of Minnesota's Fair Use Analysis (FUA) tool, an interactive online application intended to educate users and foster defensible fair use practice in accordance with copyright law by guiding users through a robust,…
ERIC Educational Resources Information Center
Abrahamson, Dor
2009-01-01
This article reports on a case study from a design-based research project that investigated how students make sense of the disciplinary tools they are taught to use, and specifically, what personal, interpersonal, and material resources support this process. The probability topic of binomial distribution was selected due to robust documentation of…
ERIC Educational Resources Information Center
Lejbak, Lisa; Vrbancic, Mirna; Crossley, Margaret
2009-01-01
This study extends Duff and Hampson's [Duff, S., & Hampson, E. (2001). A sex difference on a novel spatial working memory task in humans. "Brain and Cognition, 47," 470-493] finding of a sex-related difference in favor of females for an object location memory task. Twenty female and 20 male undergraduate students performed both manual and…
Lippe, Megan Pfitzinger; Becker, Heather
2015-01-01
The aim of this study was to assess learning outcomes from a simulation on providing care to a critically ill patient from whom care is ultimately withdrawn. Nursing students have anxiety and low perceived competence for caring for dying patients. Effective strategies for teaching communication, assessment, and basic nursing skills are needed. A pretest-posttest design compared perceived competence and attitudes in caring for dying patients with three separate cohorts of undergraduate nursing students performing the simulation. The cohorts had significantly improved scores on the perceived competence (p < .001) and attitude (p < .01) measures following the simulation. Reliability for a new instrument to assess perceived competence in caring for dying patients was also established. This study's simulation offers a robust teaching strategy for improving nursing students' attitudes and perceived competence in caring for dying patients.
Teaching and Learning in the Mixed-Reality Science Classroom
NASA Astrophysics Data System (ADS)
Tolentino, Lisa; Birchfield, David; Megowan-Romanowicz, Colleen; Johnson-Glenberg, Mina C.; Kelliher, Aisling; Martinez, Christopher
2009-12-01
As emerging technologies become increasingly inexpensive and robust, there is an exciting opportunity to move beyond general purpose computing platforms to realize a new generation of K-12 technology-based learning environments. Mixed-reality technologies integrate real world components with interactive digital media to offer new potential to combine best practices in traditional science learning with the powerful affordances of audio/visual simulations. This paper introduces the realization of a learning environment called SMALLab, the Situated Multimedia Arts Learning Laboratory. We present a recent teaching experiment for high school chemistry students. A mix of qualitative and quantitative research documents the efficacy of this approach for students and teachers. We conclude that mixed-reality learning is viable in mainstream high school classrooms and that students can achieve significant learning gains when this technology is co-designed with educators.
1981-12-01
time control system algorithms that will perform adequately (i.e., at least maintain closed-loop system stability) when ucertain parameters in the...system design models vary significantly. Such a control algorithm is said to have stability robustness-or more simply is said to be "robust". This...cas6s above, the performance is analyzed using a covariance analysis. The development of all the controllers and the performance analysis algorithms is
Liu, Chenbin; Schild, Steven E; Chang, Joe Y; Liao, Zhongxing; Korte, Shawn; Shen, Jiajian; Ding, Xiaoning; Hu, Yanle; Kang, Yixiu; Keole, Sameer R; Sio, Terence T; Wong, William W; Sahoo, Narayan; Bues, Martin; Liu, Wei
2018-06-01
To investigate how spot size and spacing affect plan quality, robustness, and interplay effects of robustly optimized intensity modulated proton therapy (IMPT) for lung cancer. Two robustly optimized IMPT plans were created for 10 lung cancer patients: first by a large-spot machine with in-air energy-dependent large spot size at isocenter (σ: 6-15 mm) and spacing (1.3 σ), and second by a small-spot machine with in-air energy-dependent small spot size (σ: 2-6 mm) and spacing (5 mm). Both plans were generated by optimizing radiation dose to internal target volume on averaged 4-dimensional computed tomography scans using an in-house-developed IMPT planning system. The dose-volume histograms band method was used to evaluate plan robustness. Dose evaluation software was developed to model time-dependent spot delivery to incorporate interplay effects with randomized starting phases for each field per fraction. Patient anatomy voxels were mapped phase-to-phase via deformable image registration, and doses were scored using in-house-developed software. Dose-volume histogram indices, including internal target volume dose coverage, homogeneity, and organs at risk (OARs) sparing, were compared using the Wilcoxon signed-rank test. Compared with the large-spot machine, the small-spot machine resulted in significantly lower heart and esophagus mean doses, with comparable target dose coverage, homogeneity, and protection of other OARs. Plan robustness was comparable for targets and most OARs. With interplay effects considered, significantly lower heart and esophagus mean doses with comparable target dose coverage and homogeneity were observed using smaller spots. Robust optimization with a small spot-machine significantly improves heart and esophagus sparing, with comparable plan robustness and interplay effects compared with robust optimization with a large-spot machine. A small-spot machine uses a larger number of spots to cover the same tumors compared with a large-spot machine, which gives the planning system more freedom to compensate for the higher sensitivity to uncertainties and interplay effects for lung cancer treatments. Copyright © 2018 Elsevier Inc. All rights reserved.
Unpacking students' atomistic uderstanding of stoichiometry
NASA Astrophysics Data System (ADS)
Baluyut, John Ysrael
Despite the use by instructors of particulate nature of matter (PNOM) diagrams in the general chemistry classroom, misconceptions on stoichiometry continue to prevail among students tasked with conceptual problems on concepts of limiting and excess reagents, and reaction yields. This dissertation set out to explore students' understanding of stoichiometry at the microscopic level as they solved problems that using PNOM diagrams. In particular, the study investigated how students coordinated symbolic and microscopic representations to demonstrate their knowledge of stoichiometric concepts, quantified the prevalence and explained the nature of stoichiometric misconceptions in terms of dual processing and dual coding theories, and used eye tracking to identify visual behaviors that accompanied cognitive processes students used to solve conceptual stoichiometry problems with PNOM diagrams. Interviews with students asked to draw diagrams for specific stoichiometric situations showed dual processing systems were in play. Many students were found to have used these processing systems in a heuristic-analytic sequence. Heuristics, such as the factor-label method and the least amount misconception, were often used by students to select information for further processing in an attempt to reduce the cognitive load of the subsequent analytic stage of the solution process. Diagrams drawn by students were used then to develop an instrument administered over a much larger sample of the general chemistry student population. The robustness of the dual processing theory was manifested by response patterns observed with large proportions of the student samples. These response patterns suggest that many students seemed to rely on heuristics to respond to a specific item for one of two diagrams given for the same chemical context, and then used a more analytic approach in dealing with the same item for the other diagram. It was also found that many students incorrectly treated items dealing with the same chemical context independently of each other instead of using a more integrative approach. A comparison of the visual behaviors of high-performing subjects with those of low-performers revealed that high performers relied heavily on the given diagrams to obtain information. They were found to have spent more time fixating on diagrams, looked between the chemical equation and the diagram for each problem more often, and used their episodic memory more heavily to collect information early on than low performers did. Retrospective think-alouds used with eye tracking also revealed specific strategies, such as counting and balancing of atoms and molecules across both sides of a diagram, as well as comparing ratios between atoms and molecules in a diagram with those given in a balanced equation, used by students to analyze PNOM diagrams.
A holistic model for evaluating the impact of individual technology-enhanced learning resources.
Pickering, James D; Joynes, Viktoria C T
2016-12-01
The use of technology within education has now crossed the Rubicon; student expectations, the increasing availability of both hardware and software and the push to fully blended learning environments mean that educational institutions cannot afford to turn their backs on technology-enhanced learning (TEL). The ability to meaningfully evaluate the impact of TEL resources nevertheless remains problematic. This paper aims to establish a robust means of evaluating individual resources and meaningfully measure their impact upon learning within the context of the program in which they are used. Based upon the experience of developing and evaluating a range of mobile and desktop based TEL resources, this paper outlines a new four-stage evaluation process, taking into account learner satisfaction, learner gain, and the impact of a resource on both the individual and the institution in which it has been adapted. A new multi-level model of TEL resource evaluation is proposed, which includes a preliminary evaluation of need, learner satisfaction and gain, learner impact and institutional impact. Each of these levels are discussed in detail, and in relation to existing TEL evaluation frameworks. This paper details a holistic, meaningful evaluation model for individual TEL resources within the specific context in which they are used. It is proposed that this model is adopted to ensure that TEL resources are evaluated in a more meaningful and robust manner than is currently undertaken.
A Third Moment Adjusted Test Statistic for Small Sample Factor Analysis
Lin, Johnny; Bentler, Peter M.
2012-01-01
Goodness of fit testing in factor analysis is based on the assumption that the test statistic is asymptotically chi-square; but this property may not hold in small samples even when the factors and errors are normally distributed in the population. Robust methods such as Browne’s asymptotically distribution-free method and Satorra Bentler’s mean scaling statistic were developed under the presumption of non-normality in the factors and errors. This paper finds new application to the case where factors and errors are normally distributed in the population but the skewness of the obtained test statistic is still high due to sampling error in the observed indicators. An extension of Satorra Bentler’s statistic is proposed that not only scales the mean but also adjusts the degrees of freedom based on the skewness of the obtained test statistic in order to improve its robustness under small samples. A simple simulation study shows that this third moment adjusted statistic asymptotically performs on par with previously proposed methods, and at a very small sample size offers superior Type I error rates under a properly specified model. Data from Mardia, Kent and Bibby’s study of students tested for their ability in five content areas that were either open or closed book were used to illustrate the real-world performance of this statistic. PMID:23144511
Grigg, Kaine; Manderson, Lenore
2016-03-17
Racism and associated discrimination are pervasive and persistent challenges with multiple cumulative deleterious effects contributing to inequities in various health outcomes. Globally, research over the past decade has shown consistent associations between racism and negative health concerns. Such research confirms that race endures as one of the strongest predictors of poor health. Due to the lack of validated Australian measures of racist attitudes, RACES (Racism, Acceptance, and Cultural-Ethnocentrism Scale) was developed. Here, we examine RACES' psychometric properties, including the latent structure, utilising Item Response Theory (IRT). Unidimensional and Multidimensional Rating Scale Model (RSM) Rasch analyses were utilised with 296 Victorian primary school students and 182 adolescents and 220 adults from the Australian community. RACES was demonstrated to be a robust 24-item three-dimensional scale of Accepting Attitudes (12 items), Racist Attitudes (8 items), and Ethnocentric Attitudes (4 items). RSM Rasch analyses provide strong support for the instrument as a robust measure of racist attitudes in the Australian context, and for the overall factorial and construct validity of RACES across primary school children, adolescents, and adults. RACES provides a reliable and valid measure that can be utilised across the lifespan to evaluate attitudes towards all racial, ethnic, cultural, and religious groups. A core function of RACES is to assess the effectiveness of interventions to reduce community levels of racism and in turn inequities in health outcomes within Australia.
Trumbo, Michael C; Leiting, Kari A; McDaniel, Mark A; Hodge, Gordon K
2016-06-01
A robust finding within laboratory research is that structuring information as a test confers benefit on long-term retention-referred to as the testing effect. Although well characterized in laboratory environments, the testing effect has been explored infrequently within ecologically valid contexts. We conducted a series of 3 experiments within a very large introductory college-level course. Experiment 1 examined the impact of required versus optional frequent low-stakes testing (quizzes) on student grades, revealing students were much more likely to take advantage of quizzing if it was a required course component. Experiment 2 implemented a method of evaluating pedagogical intervention within a single course (thereby controlling for instructor bias and student self-selection), which revealed a testing effect. Experiment 3 ruled out additional exposure to information as an explanation for the findings of Experiment 2 and suggested that students at the college level, enrolled in very large sections, accept frequent quizzing well. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Flexible design in water and wastewater engineering--definitions, literature and decision guide.
Spiller, Marc; Vreeburg, Jan H G; Leusbrock, Ingo; Zeeman, Grietje
2015-02-01
Urban water and wastewater systems face uncertain developments including technological progress, climate change and urban development. To ensure the sustainability of these systems under dynamic conditions it has been proposed that technologies and infrastructure should be flexible, adaptive and robust. However, in literature it is often unclear what these technologies and infrastructure are. Furthermore, the terms flexible, adaptive and robust are often used interchangeably, despite important differences. In this paper we will i) define the terminology, ii) provide an overview of the status of flexible infrastructure design alternatives for water and wastewater networks and treatment, and iii) develop guidelines for the selection of flexible design alternatives. Results indicate that, with the exception of Net Present Valuation methods, there is little research available on the design and evaluation of technologies that can enable flexibility. Flexible design alternatives reviewed include robust design, phased design, modular design, modular/component platform design and design for remanufacturing. As developments in the water sector are driven by slow variables (climate change, urban development), rather than market forces, it is suggested that phased design or component platform designs are suitable for responding to change, while robust design is an option when operations face highly dynamic variability. Copyright © 2014 Elsevier Ltd. All rights reserved.
Keck, Patricia C; Ynalvez, Marcus Antonius; Gonzalez, Hector F; Castillo, Keila D
2013-08-01
Seasonal influenza is recognized as a significant health burden to children and is a cause of excess school absenteeism in children. In 2008, the Advisory Committee on Immunization Practices recommended annual influenza vaccination for all children 6 months to 18 years of age. School nurses influence participation in this recommendation by conducting school-located influenza vaccination (SLIV) programs at their campuses. Knowing the effect of SLIV programs on student absenteeism may motivate school nurses and district administrators to conduct such vaccination programs. This study examines the impact of an SLIV program on elementary school absenteeism in an inner city school district with a predominantly Hispanic population. Using Poisson regression models with robust standard errors, we analyzed data from 3,775 records obtained by stratified random sampling. Results of the study indicate that students vaccinated through an SLIV program have fewer absences than unvaccinated students. A surprising result of the study shows that students vaccinated through an SLIV program had fewer absences than students vaccinated elsewhere. These results are of particular importance to school nurses who work with large Hispanic populations. Our study illustrates one way that a school nurse can assess the effect of an SLIV program on absenteeism.
Anticipated debt and financial stress in medical students.
Morra, Dante J; Regehr, Glenn; Ginsburg, Shiphra
2008-01-01
While medical student debt is increasing, the effect of debt on student well-being and performance remains unclear. As a part of a larger study examining medical student views of their future profession, data were collected to examine the role that current and anticipated debt has in predicting stress among medical students. A survey was administered to medical students in all four years at the University of Toronto. Of the 804 potential respondents across the four years of training, 549 surveys had sufficient data for inclusion in this analysis, for a response rate of 68%. Through multiple regression analysis, we evaluated the correlation between current and anticipated debt and financial stress. Although perceived financial stress correlates with both current and anticipated debt levels, anticipated debt was able to account for an additional 11.5% of variance in reported stress when compared to current debt levels alone. This study demonstrates a relationship between perceived financial stress and debt levels, and suggests that anticipated debt levels might be a more robust metric to capture financial burden, as it standardizes for year of training and captures future financial liabilities (future tuition and other future expenses).
NASA Technical Reports Server (NTRS)
Murray, William R.
1990-01-01
An approach is described to student modeling for intelligent tutoring systems based on an explicit representation of the tutor's beliefs about the student and the arguments for and against those beliefs (called endorsements). A lexicographic comparison of arguments, sorted according to evidence reliability, provides a principled means of determining those beliefs that are considered true, false, or uncertain. Each of these beliefs is ultimately justified by underlying assessment data. The endorsement-based approach to student modeling is particularly appropriate for tutors controlled by instructional planners. These tutors place greater demands on a student model than opportunistic tutors. Numerical calculi approaches are less well-suited because it is difficult to correctly assign numbers for evidence reliability and rule plausibility. It may also be difficult to interpret final results and provide suitable combining functions. When numeric measures of uncertainty are used, arbitrary numeric thresholds are often required for planning decisions. Such an approach is inappropriate when robust context-sensitive planning decisions must be made. A TMS-based implementation of the endorsement-based approach to student modeling is presented, this approach is compared to alternatives, and a project history is provided describing the evolution of this approach.
Assessment of undergraduate nursing students from an Irish perspective: Decisions and dilemmas?
Kennedy, Sara; Chesser-Smyth, Patricia
2017-11-01
Assessment of clinical competence plays a pivotal role in the education of undergraduate nursing students in preparation for registration. The challenges that face preceptors are represented in the international literature yet few studies have focused on the factors that influence the decision-making process by preceptors when students under-perform or appear to be borderline status in relation to clinical practice. This study explored the lived experiences of the preceptors during the assessment process using a phenomenological approach. This was a qualitative study that utilised a phenomenological approach to explore the lived experiences of the preceptors in relation to student assessment of those students who were incompetent and underperformed in clinical practice. Three categories emerged from the findings: First impressions, Emotional turmoil of failing a clinical assessment and competing demands in the workplace. It is proposed that employing a tripartite approach would enhance the assessment process to ensure a more robust and decision-sharing mechanism. This would support decisions that are made in the cases of incompetent or borderline nursing students and increase the objectivity of the competency assessment to ameliorate the emotional turmoil that is experienced by preceptors. Copyright © 2017 Elsevier Ltd. All rights reserved.