NASA Astrophysics Data System (ADS)
Irawan, Adi; Mardiyana; Retno Sari Saputro, Dewi
2017-06-01
This research is aimed to find out the effect of learning model towards learning achievement in terms of students’ logical mathematics intelligences. The learning models that were compared were NHT by Concept Maps, TGT by Concept Maps, and Direct Learning model. This research was pseudo experimental by factorial design 3×3. The population of this research was all of the students of class XI Natural Sciences of Senior High School in all regency of Karanganyar in academic year 2016/2017. The conclusions of this research were: 1) the students’ achievements with NHT learning model by Concept Maps were better than students’ achievements with TGT model by Concept Maps and Direct Learning model. The students’ achievements with TGT model by Concept Maps were better than the students’ achievements with Direct Learning model. 2) The students’ achievements that exposed high logical mathematics intelligences were better than students’ medium and low logical mathematics intelligences. The students’ achievements that exposed medium logical mathematics intelligences were better than the students’ low logical mathematics intelligences. 3) Each of student logical mathematics intelligences with NHT learning model by Concept Maps has better achievement than students with TGT learning model by Concept Maps, students with NHT learning model by Concept Maps have better achievement than students with the direct learning model, and the students with TGT by Concept Maps learning model have better achievement than students with Direct Learning model. 4) Each of learning model, students who have logical mathematics intelligences have better achievement then students who have medium logical mathematics intelligences, and students who have medium logical mathematics intelligences have better achievement than students who have low logical mathematics intelligences.
Learning style preference and student aptitude for concept maps.
Kostovich, Carol T; Poradzisz, Michele; Wood, Karen; O'Brien, Karen L
2007-05-01
Acknowledging that individuals' preferences for learning vary, faculty in an undergraduate nursing program questioned whether a student's learning style is an indicator of aptitude in developing concept maps. The purpose of this research was to describe the relationship between nursing students' learning style preference and aptitude for concept maps. The sample included 120 undergraduate students enrolled in the adult health nursing course. Students created one concept map and completed two instruments: the Learning Style Survey and the Concept Map Survey. Data included Learning Style Survey scores, grade for the concept map, and grade for the adult health course. No significant difference was found between learning style preference and concept map grades. Thematic analysis of the qualitative survey data yielded further insight into students' preferences for creating concept maps.
Brazilian and Nigerian International Students' Conceptions of Learning in Higher Education
ERIC Educational Resources Information Center
Ashong, Carol; Commander, Nannette
2017-01-01
The growth of international students compels examination of introspective aspects of learning experiences such as conceptions of learning. Additionally, learning conceptions profoundly impact learning outcomes (Tsai, 2009). To address the lack of research on learning conceptions of students from Africa and South America, this study examines…
NASA Astrophysics Data System (ADS)
Lin, Tzu-Chiang; Liang, Jyh-Chong; Tsai, Chin-Chung
2015-02-01
This study aims to explore Taiwanese university students' conceptions of learning biology as memorizing or as understanding, and their self-efficacy. To this end, two questionnaires were utilized to survey 293 Taiwanese university students with biology-related majors. A questionnaire for measuring students' conceptions of memorizing and understanding was validated through an exploratory factor analysis of participants' responses. As for the questionnaire regarding the students' biology learning self-efficacy (BLSE), an exploratory factor analysis revealed a total of four factors including higher-order cognitive skills (BLSE-HC), everyday application (BLSE-EA), science communication (BLSE-SC), and practical works (BLSE-PW). The results of the cluster analysis according to the participants' conceptions of learning biology indicated that students in the two major clusters either viewed learning biology as understanding or possessed mixed-conceptions of memorizing and understanding. The students in the third cluster mainly focused on memorizing in their learning while the students in the fourth cluster showed less agreement with both conceptions of memorizing and understanding. This study further revealed that the conception of learning as understanding was positively associated with the BLSE of university students with biology-related majors. However, the conception of learning as memorizing may foster students' BLSE only when such a notion co-exists with the conception of learning with understanding.
Campos, Fernando; Sola, Miguel; Santisteban-Espejo, Antonio; Ruyffelaert, Ariane; Campos-Sánchez, Antonio; Garzón, Ingrid; Carriel, Víctor; de Dios Luna-Del-Castillo, Juan; Martin-Piedra, Miguel Ángel; Alaminos, Miguel
2018-06-07
The students' conceptions of learning in postgraduate health science master studies are poorly understood. The aim of this study was to compare the factors influencing conceptions of learning in health sciences and non-health sciences students enrolled in postgraduate master programs in order to obtain information that may be useful for students and for future postgraduate programs. A modified version of the Learning Inventory Conception Questionnaire (COLI) was used to compare students' conception learning factors in 131 students at the beginning of their postgraduate studies in health sciences, experimental sciences, arts and humanities and social sciences. The present study demonstrates that a set of factors may influence conception of learning of health sciences postgraduate students, with learning as gaining information, remembering, using, and understanding information, awareness of duty and social commitment being the most relevant. For these students, learning as a personal change, a process not bound by time or place or even as acquisition of professional competences, are less relevant. According to our results, this profile is not affected by gender differences. Our results show that the overall conceptions of learning differ among students of health sciences and non-health sciences (experimental sciences, arts and humanities and social sciences) master postgraduate programs. These finding are potentially useful to foster the learning process of HS students, because if they are metacognitively aware of their own conception or learning, they will be much better equipped to self-regulate their learning behavior in a postgraduate master program in health sciences.
NASA Astrophysics Data System (ADS)
Kwon, So Young
Using a quasi-experimental design, the researcher investigated the comparative effects of individually-generated and collaboratively-generated computer-based concept mapping on middle school science concept learning. Qualitative data were analyzed to explain quantitative findings. One hundred sixty-one students (74 boys and 87 girls) in eight, seventh grade science classes at a middle school in Southeast Texas completed the entire study. Using prior science performance scores to assure equivalence of student achievement across groups, the researcher assigned the teacher's classes to one of the three experimental groups. The independent variable, group, consisted of three levels: 40 students in a control group, 59 students trained to individually generate concept maps on computers, and 62 students trained to collaboratively generate concept maps on computers. The dependent variables were science concept learning as demonstrated by comprehension test scores, and quality of concept maps created by students in experimental groups as demonstrated by rubric scores. Students in the experimental groups received concept mapping training and used their newly acquired concept mapping skills to individually or collaboratively construct computer-based concept maps during study time. The control group, the individually-generated concept mapping group, and the collaboratively-generated concept mapping group had equivalent learning experiences for 50 minutes during five days, excepting that students in a control group worked independently without concept mapping activities, students in the individual group worked individually to construct concept maps, and students in the collaborative group worked collaboratively to construct concept maps during their study time. Both collaboratively and individually generated computer-based concept mapping had a positive effect on seventh grade middle school science concept learning but neither strategy was more effective than the other. However, the students who collaboratively generated concept maps created significantly higher quality concept maps than those who individually generated concept maps. The researcher concluded that the concept mapping software, Inspiration(TM), fostered construction of students' concept maps individually or collaboratively for science learning and helped students capture their evolving creative ideas and organize them for meaningful learning. Students in both the individual and the collaborative concept mapping groups had positive attitudes toward concept mapping using Inspiration(TM) software.
ERIC Educational Resources Information Center
Sadi, Özlem
2017-01-01
The purpose of this study was to analyze the relation between students' cognitive learning strategies and conceptions of learning biology. The two scales, "Cognitive Learning Strategies" and "Conceptions of Learning Biology", were revised and adapted to biology in order to measure the students' learning strategies and…
Width, Length, and Height Conceptions of Students with Learning Disabilities
ERIC Educational Resources Information Center
Güven, N. Dilsad; Argün, Ziya
2018-01-01
Teaching responsive to the needs of students with learning disabilities (LD) can be provided through understanding students' conceptions and their ways of learning. The current research, as a case study based on qualitative design, aimed to investigate the conceptions of students with learning disabilities with regard to the different…
Concept mapping learning strategy to enhance students' mathematical connection ability
NASA Astrophysics Data System (ADS)
Hafiz, M.; Kadir, Fatra, Maifalinda
2017-05-01
The concept mapping learning strategy in teaching and learning mathematics has been investigated by numerous researchers. However, there are still less researchers who have scrutinized about the roles of map concept which is connected to the mathematical connection ability. Being well understood on map concept, it may help students to have ability to correlate one concept to other concept in order that the student can solve mathematical problems faced. The objective of this research was to describe the student's mathematical connection ability and to analyze the effect of using concept mapping learning strategy to the students' mathematical connection ability. This research was conducted at senior high school in Jakarta. The method used a quasi-experimental with randomized control group design with the total number was 72 students as the sample. Data obtained through using test in the post-test after giving the treatment. The results of the research are: 1) Students' mathematical connection ability has reached the good enough level category; 2) Students' mathematical connection ability who had taught with concept mapping learning strategy is higher than who had taught with conventional learning strategy. Based on the results above, it can be concluded that concept mapping learning strategycould enhance the students' mathematical connection ability, especially in trigonometry.
ERIC Educational Resources Information Center
She, Hsiao-Ching
2005-01-01
The author explored the potential to promote students' understanding of difficult science concepts through an examination of the inter-relationships among the teachers' instructional approach, students' learning preference styles, and their levels of learning process. The concept "air pressure," which requires an understanding of…
Passmore, Gregory G; Owen, Mary Anne; Prabakaran, Krishnan
2011-12-01
Metacognitive learning strategies are based on instructional learning theory, which promotes deep, meaningful learning. Educators in a baccalaureate-level nuclear medicine technology program demonstrated that students enrolled in an online, distance learning section of an introductory radiation protection and radiobiology course performed better when traditional instruction was supplemented with nontraditional metacognitive learning strategies. The metacognitive learning strategy that was used is best known as concept mapping. The concept map, in addition to the standard homework problem assignment and opportunity for question-answer sessions, became the template for misconception identification and remediation interactions between the instructor and the student. The control group relied on traditional homework problems and question-answer sessions alone. Because students in both the "treatment" groups (i.e., students who used concept mapping) and the control group were distance learning students, all personal communications were conducted via e-mail or telephone. The final examination of the course was used to facilitate a quantitative comparison of the performance of students who used concept mapping and the performance of students who did not use concept mapping. The results demonstrated a significantly higher median final examination score for the concept mapping group than for the non-concept mapping group (z = -2.0381, P = 0.0415), with an appropriately large effect size (2.65). Concept mapping is a cognitive learning intervention that effectively enables meaningful learning and is suitable for use in the independent learner-oriented distance learning environments used by some nuclear medicine technology programs.
NASA Astrophysics Data System (ADS)
Dosanjh, Navdeep Kaur
2011-12-01
There is great concern over students' poor science achievement in the United States. Due to the lack of science achievement, students are not pursing science related careers resulting in an increase in outsourcing to other countries. Learning strategies such as concept mapping may ameliorate this situation by providing students with tools that encourage meaningful learning. The purpose of this quasi-experimental study was to measure the effects of three concept mapping learning strategies (concept identifying, proposition identifying, student generated) on urban middle school students' understanding of the circulatory system. Three intact classes of seventh-grade students were assigned to one of the three concept mapping strategies. The students were given a pretest on the circulatory system then learned and used their respective concept mapping strategies while learning about the circulatory system. At the conclusion of the study, students' science achievement was measured by performance on an achievement test and rubric scores of their respective concept identifying, proposition identifying, and student generated concept maps. The results of the study suggest that all three of the concept mapping strategies are effective in increasing students' science achievement. Additionally, the moderate significant correlations between the posttest and concept map scores of the current study established that concept maps are a useful measure of student knowledge. Lastly, the results of the current study also suggest that the concept identifying mapping strategy may be a useful scaffold in instructing students how to develop student generated concept maps.
Khosa, Deep K; Volet, Simone E; Bolton, John R
2014-01-01
The value of collaborative concept mapping in assisting students to develop an understanding of complex concepts across a broad range of basic and applied science subjects is well documented. Less is known about students' learning processes that occur during the construction of a concept map, especially in the context of clinical cases in veterinary medicine. This study investigated the unfolding collaborative learning processes that took place in real-time concept mapping of a clinical case by veterinary medical students and explored students' and their teacher's reflections on the value of this activity. This study had two parts. The first part investigated the cognitive and metacognitive learning processes of two groups of students who displayed divergent learning outcomes in a concept mapping task. Meaningful group differences were found in their level of learning engagement in terms of the extent to which they spent time understanding and co-constructing knowledge along with completing the task at hand. The second part explored students' and their teacher's views on the value of concept mapping as a learning and teaching tool. The students' and their teacher's perceptions revealed congruent and contrasting notions about the usefulness of concept mapping. The relevance of concept mapping to clinical case-based learning in veterinary medicine is discussed, along with directions for future research.
Ideal versus School Learning: Analyzing Israeli Secondary School Students' Conceptions of Learning
ERIC Educational Resources Information Center
Hadar, Linor
2009-01-01
This study explored 130 secondary school students' conceptions of learning using an open-ended task, analyzed both qualitatively and quantitatively. Students' reality of learning comprised two separate spheres, ideal learning and school learning, which rarely interacted. Generally, students commented more about school than ideal learning. Factor…
The Analysis of High School Students' Conceptions of Learning in Different Domains
ERIC Educational Resources Information Center
Sadi, Özlem
2015-01-01
The purpose of this study is to investigate whether or not conceptions of learning diverge in different science domains by identifying high school students' conceptions of learning in physics, chemistry and biology. The Conceptions of Learning Science (COLS) questionnaire was adapted for physics (Conceptions of Learning Physics, COLP), chemistry…
Academic self-handicapping: the role of self-concept clarity and students' learning strategies.
Thomas, Cathy R; Gadbois, Shannon A
2007-03-01
Self-handicapping is linked to students' personal motivations, classroom goal structure, academic outcomes, global self-esteem and certainty of self-esteem. Academic self-handicapping has yet to be studied with respect to students' consistency in self-description and their description of themselves as learners. This study examined students' self-esteem and self-concept clarity as well as their tendencies to employ deep- or surface-learning approaches and self-regulate while learning in relation to their self-handicapping tendencies and exam performance. Participants were 161 male and female Canadian, first-year university students. Participants completed a series of questionnaires that measured their self-esteem, self-concept clarity, approaches to learning, self-regulation and reflections on performance prior to and following their exam. Self-handicapping was negatively correlated with self-concept clarity, deep learning, self-regulated learning and exam grades, and positively correlated with surface learning and test anxiety. Regression analyses showed that self-concept clarity, self-regulation, surface-learning and test anxiety scores predicted self-handicapping scores. Self-concept clarity, test anxiety scores, academic self-efficacy and self-regulation were predictors of mid-term exam grades. This study showed that students' self-concept clarity and learning strategies are related to their tendencies to self-handicap and their exam performance. The role of students' ways of learning and their self-concept clarity in self-handicapping and academic performance was explored.
Concept Maps for Evaluating Learning of Sustainable Development
ERIC Educational Resources Information Center
Shallcross, David C.
2016-01-01
Concept maps are used to assess student and cohort learning of sustainable development. The concept maps of 732 first-year engineering students were individually analyzed to detect patterns of learning and areas that were not well understood. Students were given 20 minutes each to prepare a concept map of at least 20 concepts using paper and pen.…
ERIC Educational Resources Information Center
Loyens, Sofie M. M.; Rikers, Remy M. J. P.; Schmidt, Henk G.
2008-01-01
The present study investigated relationships between students' conceptions of constructivist learning on the one hand, and their regulation and processing strategies on the other hand. Students in a constructivist, problem-based learning curriculum were questioned about their conceptions of knowledge construction and self-regulated learning, as…
ERIC Educational Resources Information Center
Lin, Hung-Ming; Tsai, Chin-Chung
2011-01-01
This study investigates the differences between students' conceptions of learning management via traditional instruction and Web-based learning environments. The Conceptions of Learning Management Inventory (COLM) was administered to 259 Taiwanese college students majoring in Business Administration. The COLM has six factors (categories), namely,…
Conceptual development and retention within the learning cycle
NASA Astrophysics Data System (ADS)
McWhirter, Lisa Jo
1998-12-01
This research was designed to achieve two goals: (1) examine concept development and retention within the learning cycle and (2) examine how students' concept development is mediated by classroom discussions and the students' small cooperative learning group. Forty-eight sixth-grade students and one teacher at an urban middle school participated in the study. The research utilized both quantitative and qualitative analyses. Quantitative assessments included a concept mapping technique as well as teacher generated multiple choice tests. Preliminary quantitative analysis found that students' reading levels had an effect on students' pretest scores in both the concept mapping and the multiple-choice assessment. Therefore, a covariant design was implemented for the quantitative analyses. Quantitative analysis techniques were used to examine concept development and retention, it was discovered that the students' concept knowledge increased significantly from the time of the conclusion of the term introduction phase to the conclusion of the expansion phase. These findings would indicate that all three phases of the learning cycle are necessary for conceptual development. However, quantitative analyses of concept maps indicated that this is not true for all students. Individual students showed evidence of concept development and integration at each phase. Therefore, concept development is individualized and all phases of the learning cycle are not necessary for all students. As a result, individual's assimilation, disequilibration, accommodation and organization may not correlate with the phases of the learning cycle. Quantitative analysis also indicated a significant decrease in the retention of concepts over time. Qualitative analyses were used to examine how students' concept development is mediated by classroom discussions and the students' small cooperative learning group. It was discovered that there was a correlation between teacher-student interaction and small-group interaction and concept mediation. Therefore, students who had a high level of teacher-student dialogue which utilized teacher led discussions with integrated scaffolding techniques where the same students who mediated the ideas within the small group discussions. Those students whose teacher-student interactions consisted of dialogue with little positive teacher feedback made no contributions within the small group regardless of their level of concept development.
NASA Astrophysics Data System (ADS)
Alao, Solomon
The need to identify factors that contribute to students' understanding of ecological concepts has been widely expressed in recent literature. The purpose of this study was to investigate the relationship between fifth grade students' prior knowledge, learning strategies, interest, and learning goals and their conceptual understanding of ecological science concepts. Subject were 72 students from three fifth grade classrooms located in a metropolitan area of the eastern United States. Students completed the goal commitment, interest, and strategy use questionnaire (GISQ), and a knowledge test designed to assess their prior knowledge and conceptual understanding of ecological science concepts. The learning goals scale assessed intentions to try to learn and understand ecological concepts. The interest scale assessed the feeling and value-related valences that students ascribed to science and ecological science concepts. The strategy use scale assessed the use of two cognitive strategies (monitoring and elaboration). The knowledge test assessed students' understanding of ecological concepts (the relationship between living organisms and their environment). Scores on all measures were examined for gender differences; no significant gender differences were observed. The motivational and cognitive variables contributed to students' understanding of ecological concepts. After accounting for interest, learning goals, and strategy use, prior knowledge accounted for 28% of the total variance in conceptual understanding. After accounting for prior knowledge, interest, learning goals, and strategy use explained 7%, 6%, and 4% of the total variance in conceptual understanding, respectively. More importantly, these variables were interrelated to each other and to conceptual understanding. After controlling for prior knowledge, learning goals, and strategy use, interest did not predict the variance in conceptual understanding. After controlling for prior knowledge, interest, and strategy use, learning goals did not predict the variance in conceptual understanding. And, after controlling for prior knowledge, interest, and learning goals, strategy use did not predict the variance in conceptual understanding. Results of this study indicated that prior knowledge, interest, learning goals, and strategy use should be included in theoretical models design to explain and to predict fifth grade students' understanding of ecological concepts. Results of this study further suggested that curriculum developers and science teachers need to take fifth grade students' prior knowledge of ecological concepts, interest in science and ecological concepts; intentions to learn and understand ecological concepts, and use of cognitive strategies into account when designing instructional contexts to support these students' understanding of ecological concepts.
ERIC Educational Resources Information Center
Huang, Wen-Lung; Liang, Jyh-Chong; Tsai, Chin-Chung
2018-01-01
Previous studies have revealed the close relationship between students' conceptions of and approaches to learning. However, few studies have explored this relationship in the field of learning mass communication. Therefore, this study aims to explore the relationships between students' conceptions of learning mass communication (COLMC) and…
Learning difficulties of senior high school students based on probability understanding levels
NASA Astrophysics Data System (ADS)
Anggara, B.; Priatna, N.; Juandi, D.
2018-05-01
Identifying students' difficulties in learning concept of probability is important for teachers to prepare the appropriate learning processes and can overcome obstacles that may arise in the next learning processes. This study revealed the level of students' understanding of the concept of probability and identified their difficulties as a part of the epistemological obstacles identification of the concept of probability. This study employed a qualitative approach that tends to be the character of descriptive research involving 55 students of class XII. In this case, the writer used the diagnostic test of probability concept learning difficulty, observation, and interview as the techniques to collect the data needed. The data was used to determine levels of understanding and the learning difficulties experienced by the students. From the result of students' test result and learning observation, it was found that the mean cognitive level was at level 2. The findings indicated that students had appropriate quantitative information of probability concept but it might be incomplete or incorrectly used. The difficulties found are the ones in arranging sample space, events, and mathematical models related to probability problems. Besides, students had difficulties in understanding the principles of events and prerequisite concept.
ERIC Educational Resources Information Center
López-Íñiguez, Guadalupe; Pozo, Juan Ignacio
2014-01-01
Background: Despite increasing interest in teachers' and students' conceptions of learning and teaching, and how they influence their practice, there are few studies testing the influence of teachers' conceptions on their students' learning. Aims: This study tests how teaching conception (TC; with a distinction between…
Concept Map Structure, Gender and Teaching Methods: An Investigation of Students' Science Learning
ERIC Educational Resources Information Center
Gerstner, Sabine; Bogner, Franz X.
2009-01-01
Background: This study deals with the application of concept mapping to the teaching and learning of a science topic with secondary school students in Germany. Purpose: The main research questions were: (1) Do different teaching approaches affect concept map structure or students' learning success? (2) Is the structure of concept maps influenced…
NASA Astrophysics Data System (ADS)
Zheng, Lanqin; Dong, Yan; Huang, Ronghuai; Chang, Chun-Yen; Bhagat, Kaushal Kumar
2018-01-01
The purpose of this study was to examine the relations between primary school students' conceptions of, approaches to, and self-efficacy in learning science in Mainland China. A total of 1049 primary school students from Mainland China participated in this study. Three instruments were adapted to measure students' conceptions of learning science, approaches to learning science, and self-efficacy. The exploratory factor analysis and confirmatory factor analysis were adopted to validate three instruments. The path analysis was employed to understand the relationships between conceptions of learning science, approaches to learning science, and self-efficacy. The findings indicated that students' lower level conceptions of learning science positively influenced their surface approaches in learning science. Higher level conceptions of learning science had a positive influence on deep approaches and a negative influence on surface approaches to learning science. Furthermore, self-efficacy was also a hierarchical construct and can be divided into the lower level and higher level. Only students' deep approaches to learning science had a positive influence on their lower and higher level of self-efficacy in learning science. The results were discussed in the context of the implications for teachers and future studies.
ERIC Educational Resources Information Center
Li, Wei-Ting; Liang, Jyh-Chong; Tsai, Chin-Chung
2013-01-01
The purpose of this research was to examine the relationships between conceptions of learning and approaches to learning in chemistry. Two questionnaires, conceptions of learning chemistry (COLC) and approaches to learning chemistry (ALC), were developed to identify 369 college chemistry-major students' (220 males and 149 females) conceptions of…
The Effect of Concept Mapping on Student Understanding and Correlation with Student Learning Styles
NASA Astrophysics Data System (ADS)
Mosley, William G.
This study investigated the use of concept mapping as a pedagogical strategy to promote change in the learning styles of pre-nursing students. Students' individual learning styles revealed two subsets of students; those who demonstrated a learning style that favors abstract conceptualization and those who demonstrated a learning style that favors concrete experience. Students in the experimental groups performed concept mapping activities designed to facilitate an integrative understanding of interactions between various organ systems of the body while the control group received a traditional didactic instruction without performing concept mapping activities. Both qualitative and quantitative data were collected in order to measure differences in student achievement. Analysis of the quantitative data revealed no significant change in the learning styles of students in either the control or experimental groups. Learning style groups were analyzed qualitatively for recurring or emergent themes that students identified as facilitating their learning. An analysis of qualitative data revealed that most students in the pre-nursing program were able to identify concepts within the class based upon visual cues, and a majority of these students exhibited the learning style of abstract conceptualization. As the laboratory experience for the course involves an examination of the anatomical structures of the human body, a visual identification of these structures seemed to be the most logical method to measure students' ability to identify anatomical structures.
ERIC Educational Resources Information Center
Chiu, Yu-Li; Lin, Tzung-Jin; Tsai, Chin-Chung
2016-01-01
Background: The sophistication of students' conceptions of science learning has been found to be positively related to their approaches to and outcomes for science learning. Little research has been conducted to particularly investigate students' conceptions of science learning by laboratory. Purpose: The purpose of this research, consisting of…
ERIC Educational Resources Information Center
Strand, Pia; Edgren, Gudrun; Borna, Petter; Lindgren, Stefan; Wichmann-Hansen, Gitte; Stalmeijer, Renée E.
2015-01-01
The role of workplace supervisors in the clinical education of medical students is currently under debate. However, few studies have addressed how supervisors conceptualize workplace learning and how conceptions relate to current sociocultural workplace learning theory. We explored physician conceptions of: (a) medical student learning in the…
Teachers as Scholars of Their Students' Conceptions of Learning: A Hong Kong Investigation
ERIC Educational Resources Information Center
Watkins, David
2004-01-01
Background: The need for effective teachers to reflect on their students' thinking is now generally recognized. Moreover, the study of students' conceptions of learning and their impact on learning outcomes has become a popular area of research. But are teachers aware of their students' conceptions and do they reflect on them when planning their…
Identification of Conceptual Understanding in Biotechnology Learning
NASA Astrophysics Data System (ADS)
Suryanti, E.; Fitriani, A.; Redjeki, S.; Riandi, R.
2018-04-01
Research on the identification of conceptual understanding in the learning of Biotechnology, especially on the concept of Genetic Engineering has been done. The lesson is carried out by means of discussion and presentation mediated-powerpoint media that contains learning materials with relevant images and videos. This research is a qualitative research with one-shot case study or one-group posttest-only design. Analysis of 44 students' answers show that only 22% of students understand the concept, 18% of students lack understanding of concepts, 57% of students have misconceptions, and 3% of students are error. It can be concluded that most students has misconceptions in learning the concept of Genetic Engineering.
Profile of students’ learning styles in Sorogan-Bandongan organic chemistry lecture
NASA Astrophysics Data System (ADS)
Rinaningsih; Kadarohman, A.; Firman, H.; Sutoyo
2018-05-01
Individual-based independent curriculum as one of target of national education of Indonesia in XXI century can be achieved with the implementation of Sorogan-Bandongan model. This kind of learning model highly facilitates students in understanding various concepts with their own, respective learning styles. This research aims to perceive the effectiveness of Sorogan-Bandongan in increasing the mastery of concept in various learning styles. The samples of this research are students majoring in chemistry amounted to 31 students. Using pre-test and post-test instrument, data are analyzed in descriptive-qualitative method. Based on the result of the data analysis, it is found that 16% of students have mathematical/logical learning style, 22.6% naturalist, 9.7% visual/spatial, 13% kinesthetic, 6% linguistic, 13% intrapersonal, 9.7% interpersonal, and 10% musical. After the implementation of Sorogan-Bandongan model in the Organic Chemistry lectures, improvement of classical learning outcomes as 11,07 is obtained. Six out of eight learning styles of students experienced increase in mastery of concept, where 7 students have the naturalist learning style, 4 students experienced decrease in mastery of concept while 1 student is stagnant (0); meanwhile, 2 out of 4 students that have the interpersonal learning style experienced decrease in mastery of concept.
A qualitative study on using concept maps in problem-based learning.
Chan, Zenobia C Y
2017-05-01
The visual arts, including concept maps, have been shown to be effective tools for facilitating student learning. However, the use of concept maps in nursing education has been under-explored. The aim of this study was to explore how students develop concept maps and what these concept maps consist of, and their views on the use of concept maps as a learning activity in a PBL class. A qualitative approach consisting of an analysis of the contents of the concept maps and interviews with students. The study was conducted in a school of nursing in a university in Hong Kong. A total of 38 students who attended the morning session (20 students) and afternoon session (18 students) respectively of a nursing problem-based learning class. The students in both the morning and afternoon classes were allocated into four groups (4-5 students per group). Each group was asked to draw two concept maps based on a given scenario, and then to participate in a follow-up interview. Two raters individually assessed the concept maps, and then discussed their views with each other. Among the concept maps that were drawn, four were selected. Their four core features of those maps were: a) the integration of informative and artistic elements; b) the delivery of sensational messages; c) the use of images rather than words; and d) three-dimensional and movable. Both raters were concerned about how informative the presentation was, the composition of the elements, and the ease of comprehension, and appreciated the three-dimensional presentation and effective use of images. From the results of the interview, the pros and cons of using concept maps were discerned. This study demonstrated how concept maps could be implemented in a PBL class to boost the students' creativity and to motivate them to learn. This study suggests the use of concept maps as an initiative to motivate student to learn, participate actively, and nurture their creativity. To conclude, this study explored an alternative way for students to make presentations and pioneered the use of art-based concept maps to facilitate student learning. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Shen, Kuan-Ming; Lee, Min-Hsien; Tsai, Chin-Chung; Chang, Chun-Yen
2016-06-01
In the area of science education research, studies have attempted to investigate conceptions of learning, approaches to learning, and self-efficacy, mainly focusing on science in general or on specific subjects such as biology, physics, and chemistry. However, few empirical studies have probed students' earth science learning. This study aimed to explore the relationships among undergraduates' conceptions of, approaches to, and self-efficacy for learning earth science by adopting the structural equation modeling technique. A total of 268 Taiwanese undergraduates (144 females) participated in this study. Three instruments were modified to assess the students' conceptions of, approaches to, and self-efficacy for learning earth science. The results indicated that students' conceptions of learning made a significant contribution to their approaches to learning, which were consequently correlated with their learning self-efficacy. More specifically, students with stronger agreement that learning earth science involves applying the knowledge and skills learned to unknown problems were prone to possess higher confidence in learning earth science. Moreover, students viewing earth science learning as understanding earth science knowledge were more likely to adopt meaningful strategies to learn earth science, and hence expressed a higher sense of self-efficacy. Based on the results, practical implications and suggestions for future research are discussed.
NASA Astrophysics Data System (ADS)
Minasian-Batmanian, Laura C.; Lingard, Jennifer; Prosser, Michael
2006-12-01
Many factors affect students’ learning approaches, including topic conceptions and prior study. This research, undertaken after a first-semester compulsory subject, explores students’ conceptions of biochemistry and how they approached their studies. Students (n=151) completed an open-ended survey analysed phenomenographically. Those with cohesive conceptions were found to be more likely to adopt deeper approaches to study than those with fragmented conceptions, a result unaffected by various demographic parameters. Compared with earlier research, a semester of study increased the percentage of students with a cohesive view, with no concomitant change in learning approaches, suggesting that cohesive conceptions are a necessary but not sufficient criterion for deep learning outcomes. Compared with results for a science major subject, more of the students with cohesive conceptions used surface approaches. This may reflect a regression to safe surface approaches when faced with an unfamiliar topic or high total workload driving a strategic approach to learning. It could also reflect a perception that this material is only a tool for later application. The present findings indicate the crucial importance, when university studies begin, of enabling students to build an overarching conception of the topic’s place in professional practice. This concept building should be applied across the entire curriculum to emphasize application and integration of material (key graduate attributes). Improved conceptions may provide crucial motivation for students to achieve deeper learning, especially in these foundation service subjects. These essential changes to the learning context may also better prepare students for increasing self-directed/life-long learning.
Bressington, Daniel T; Wong, Wai-Kit; Lam, Kar Kei Claire; Chien, Wai Tong
2018-01-01
Student nurses are provided with a great deal of knowledge within university, but they can find it difficult to relate theory to nursing practice. This study aimed to test the appropriateness and feasibility of assessing Novak's concept mapping as an educational strategy to strengthen the theory-practice link, encourage meaningful learning and enhance learning self-efficacy in nursing students. This pilot study utilised a mixed-methods quasi-experimental design. The study was conducted in a University school of Nursing in Hong Kong. A total of 40 third-year pre-registration Asian mental health nursing students completed the study; 12 in the concept mapping (CM) group and 28 in the usual teaching methods (UTM) group. The impact of concept mapping was evaluated thorough analysis of quantitative changes in students' learning self-efficacy, analysis of the structure and contents of the concept maps (CM group), a quantitative measure of students' opinions about their reflective learning activities and content analysis of qualitative data from reflective written accounts (CM group). There were no significant differences in self-reported learning self-efficacy between the two groups (p=0.38). The concept mapping helped students identify their current level of understanding, but the increased awareness may cause an initial drop in learning self-efficacy. The results highlight that most CM students were able to demonstrate meaningful learning and perceived that concept mapping was a useful reflective learning strategy to help them to link theory and practice. The results provide preliminary evidence that the concept mapping approach can be useful to help mental health nursing students visualise their learning progress and encourage the integration of theoretical knowledge with clinical knowledge. Combining concept mapping data with quantitative measures and qualitative reflective journal data appears to be a useful way of assessing and understanding the effectiveness of concept mapping. Future studies should utilise a larger sample size and consider using the approach as a targeted intervention immediately before and during clinical learning placements. Copyright © 2017 Elsevier Ltd. All rights reserved.
Conceptions, Self-Regulation, and Strategies of Learning Science among Chinese High School Students
ERIC Educational Resources Information Center
Li, Mang; Zheng, Chunping; Liang, Jyh-Chong; Zhang, Yun; Tsai, Chin-Chung
2018-01-01
This study explored the structural relationships among secondary school students' conceptions, self-regulation, and strategies of learning science in mainland China. Three questionnaires, namely conceptions of learning science (COLS), self-regulation of learning science (SROLS), and strategies of learning science (SLS) were developed for…
ERIC Educational Resources Information Center
Horn, Savannah; Hernick, Marcy
2015-01-01
Test-enhanced learning has successfully been used as a means to enhance learning and promote knowledge retention in students. We have examined whether this approach could be used in a biochemistry course to enhance student learning about lipids-related concepts. Students were provided access to two optional learning modules with questions related…
ERIC Educational Resources Information Center
Bukova-Guzel, Esra
2007-01-01
The purpose of this study is to design a constructivist learning environment that helps learning the limit concept. The study is a pretest-posttest quasi-experimental research. The control and the experimental groups were chosen from the students attending a calculus course. Worksheets were used to assess students' learning of the limit concept.…
ERIC Educational Resources Information Center
Liang, Jyh-Chong; Su, Yi-Ching; Tsai, Chin-Chung
2015-01-01
The aim of this study was to explore Taiwanese college students' conceptions of and approaches to learning computer science and then explore the relationships between the two. Two surveys, Conceptions of Learning Computer Science (COLCS) and Approaches to Learning Computer Science (ALCS), were administered to 421 college students majoring in…
ERIC Educational Resources Information Center
Chen, Jian; Zhou, Junhai; Sun, Li; Wu, Qiuhui; Lu, Huiling; Tian, Jing
2015-01-01
Student-centered learning is generally defined as any instructional method that purportedly engages students in active learning and critical thinking. The student-centered method of teaching moves the focus from teaching to learning, from the teachers' conveying course concepts via lecture to the understanding of concepts by students. The…
ERIC Educational Resources Information Center
Riemeier, Tanja; Gropengiesser, Harald
2008-01-01
Empirical investigations on students' conceptions of cell biology indicate major misunderstandings of scientific concepts even after thorough teaching. Therefore, the main aim of our research project was to investigate students' difficulties in learning this topic and to study the impact of learning activities on students' conceptions. Using the…
The Role of Visual Learning in Improving Students' High-Order Thinking Skills
ERIC Educational Resources Information Center
Raiyn, Jamal
2016-01-01
Various concepts have been introduced to improve students' analytical thinking skills based on problem based learning (PBL). This paper introduces a new concept to increase student's analytical thinking skills based on a visual learning strategy. Such a strategy has three fundamental components: a teacher, a student, and a learning process. The…
Comparison of 1:1 and 1:m CSCL Environment for Collaborative Concept Mapping
ERIC Educational Resources Information Center
Lin, C.-P.; Wong, L.-H.; Shao, Y.-J.
2012-01-01
This paper reports an investigation into the effects of collaborative concept mapping in a digital learning environment, in terms of students' overall learning gains, knowledge retention, quality of student artefacts (the collaboratively created concept maps), interactive patterns, and learning perceptions. Sixty-four 12-year-old students from two…
ERIC Educational Resources Information Center
Lee, Min-Hsien; Lin, Tzung-Jin; Tsai, Chin-Chung
2013-01-01
Classroom assessment is a critical aspect of teaching and learning. In this paper, Taiwanese high school students' conceptions of science assessment and the relationship between their conceptions of science assessment and of science learning were investigated. The study used both qualitative and quantitative methods. First, 60 students were…
Students' Misconceptions about Medium-Scale Integrated Circuits
ERIC Educational Resources Information Center
Herman, G. L.; Loui, M. C.; Zilles, C.
2011-01-01
To improve instruction in computer engineering and computer science, instructors must better understand how their students learn. Unfortunately, little is known about how students learn the fundamental concepts in computing. To investigate student conceptions and misconceptions about digital logic concepts, the authors conducted a qualitative…
Investigating alternative conceptions in learning disabled students
NASA Astrophysics Data System (ADS)
Cole, Terry Stokes
Science teachers have long noticed the fact that their students come to school with their own concepts, produced from daily experiences and interactions with the world around them. Sometimes these ideas are in agreement with accepted scientific theories, but often they are not. These "incorrect" ideas, or "misconceptions" have been the focus of many studies, which can be helpful to teachers when planning their lessons. However, there is a dearth of information that is geared specifically to students with learning disabilities. These students generally have deficits in areas of perception and learning that could conceivably influence the way they formulate concepts. The purpose of this study was to examine the concepts held by students with learning disabilities on the causes of the day/night cycle, the phases of the moon, and the seasons. An interview format was judged to be the best method of ensuring that the students' ideas were clearly documented. The subjects were five, sixth-grade students in a city school, who had been determined to have a learning disability. In examining the results, there did not seem to be any direct link between the type of misconception formed and the learning deficit of the child. It seemed more likely that students formed their concepts the way students usually do, but the various disabilities they exhibited interfered with their learning of more appropriate conceptions. The results of this study will be helpful to science teachers, curriculum planners, or anyone who works with students who have learning disabilities. It is hoped that this will begin to fill a void in the area of learning disabilities research.
ERIC Educational Resources Information Center
Lin, Jing
2016-01-01
This study focuses on the internal conditions of students' concept learning and builds a learning cycle' based on the "phases of the Moon" (MP) to, deepen students' understanding. The learning cycle of MP developed in this study includes three basic learning links, which are: cognitive conflict, abstraction and generalization, and…
Strand, Pia; Edgren, Gudrun; Borna, Petter; Lindgren, Stefan; Wichmann-Hansen, Gitte; Stalmeijer, Renée E
2015-05-01
The role of workplace supervisors in the clinical education of medical students is currently under debate. However, few studies have addressed how supervisors conceptualize workplace learning and how conceptions relate to current sociocultural workplace learning theory. We explored physician conceptions of: (a) medical student learning in the clinical workplace and (b) how they contribute to student learning. The methodology included a combination of a qualitative, inductive (conventional) and deductive (directed) content analysis approach. The study triangulated two types of interview data from 4 focus group interviews and 34 individual interviews. A total of 55 physicians participated. Three overarching themes emerged from the data: learning as membership, learning as partnership and learning as ownership. The themes described how physician conceptions of learning and supervision were guided by the notions of learning-as-participation and learning-as-acquisition. The clinical workplace was either conceptualized as a context in which student learning is based on a learning curriculum, continuity of participation and partnerships with supervisors, or as a temporary source of knowledge within a teaching curriculum. The process of learning was shaped through the reciprocity between different factors in the workplace context and the agency of students and supervising physicians. A systems-thinking approach merged with the "co-participation" conceptual framework advocated by Billet proved to be useful for analyzing variations in conceptions. The findings suggest that mapping workplace supervisor conceptions of learning can be a valuable starting point for medical schools and educational developers working with changes in clinical educational and faculty development practices.
ERIC Educational Resources Information Center
Wegner, Elisabeth; Nückles, Matthias
2015-01-01
Conceptions of learning are seen as an important factor in shaping students' patterns of learning. However, conceptions are often implicit and difficult to assess. Metaphors have been proposed as a method to assess conceptions, because metaphors are closely linked to the conceptual system. Therefore, in our study we assessed which conceptions of…
College Students' Conceptions of Context-Aware Ubiquitous Learning: A Phenomenographic Analysis
ERIC Educational Resources Information Center
Tsai, Pei-Shan; Tsai, Chin-Chung; Hwang, Gwo-Haur
2011-01-01
The purpose of this study was to explore students' conceptions of context-aware ubiquitous learning (u-learning). The students participated in a u-learning exercise using PDAs equipped with RFID readers. The data were collected from individual interviews with each of the students by a trained researcher, and the responses of the interviewees were…
ERIC Educational Resources Information Center
Muhammad, Amin Umar; Bala, Dauda; Ladu, Kolomi Mutah
2016-01-01
This study investigated the Effectiveness of Demonstration and Lecture Methods in Learning concepts in Economics among Secondary School Students in Borno state, Nigeria. Five objectives: to determine the effectiveness of demonstration method in learning economics concepts among secondary school students in Borno state, determine the effectiveness…
ERIC Educational Resources Information Center
Zheng, Lanqin; Dong, Yan; Huang, Ronghuai; Chang, Chun-Yen; Bhagat, Kaushal Kumar
2018-01-01
The purpose of this study was to examine the relations between primary school students' conceptions of, approaches to, and self-efficacy in learning science in Mainland China. A total of 1049 primary school students from Mainland China participated in this study. Three instruments were adapted to measure students' conceptions of learning science,…
Richardson, John T E
2010-12-01
The attainment of White students at UK institutions of higher education tends to be higher than that of students from other ethnic groups, but the causes of this are unclear. This study compared White students and students from other ethnic groups in their conceptions of learning, their approaches to studying, and their academic attainment. A stratified sample of 1,146 White students and 1,146 students from other ethnic groups taking courses by distance learning with the UK Open University. The Mental Models section of the Inventory of Learning Styles and the Revised Approaches to Studying Inventory were administered in a postal survey. The students' questionnaire scores were contaminated by response bias, which varied across different ethnic groups. When adjusted to control for response bias, the scores on the two questionnaires shared 37.2% of their variance and made a significant contribution to predicting the students' attainment. White students were more likely to exhibit a meaning-directed learning pattern, whereas Asian and Black students were more likely to exhibit a reproduction-directed learning pattern. However, the variation in attainment across different ethnic groups remained significant when their questionnaire scores and prior qualifications were taken into account. There is a strong relationship between students' conceptions of learning and their approaches to studying, and variations in conceptions of learning in different ethnic groups give rise to variations in approaches to studying. However, factors other than prior qualifications and conceptions of learning are responsible for variation in attainment across different ethnic groups.
NASA Astrophysics Data System (ADS)
Fini, Elham H.; Awadallah, Faisal; Parast, Mahour M.; Abu-Lebdeh, Taher
2018-05-01
This paper describes an intervention to enhance students' learning by involving students in brainstorming activities about sustainability concepts and their implications in transportation engineering. The paper discusses the process of incorporating the intervention into a transportation course, as well as the impact of this intervention on students' learning outcomes. To evaluate and compare students' learning as a result of the intervention, the Laboratory for Innovative Technology and Engineering Education survey instrument was used. The survey instrument includes five constructs: higher-order cognitive skills, self-efficacy, ease of learning subject matter, teamwork, and communication skills. Pre- and post-intervention surveys of student learning outcomes were conducted to determine the effectiveness of the intervention on enhancing students' learning outcomes. The results show that the implementation of the intervention significantly improved higher-order cognitive skills, self-efficacy, teamwork, and communication skills. Involving students in brainstorming activities related to sustainability concepts and their implications in transportation proved to be an effective teaching and learning strategy.
NASA Astrophysics Data System (ADS)
Shoop, Glenda Hostetter
Attention in medical education is turning toward instruction that not only focuses on knowledge acquisition, but on developing the medical students' clinical problem-solving skills, and their ability to critically think through complex diseases. Metacognition is regarded as an important consideration in how we teach medical students these higher-order, critical thinking skills. This study used a mixed-methods research design to investigate if concept mapping as an artifact may engender metacognitive thinking in the medical student population. Specifically the purpose of the study is twofold: (1) to determine if concept mapping, functioning as an artifact during problem-based learning, improves learning as measured by scores on test questions; and (2) to explore if the process of concept mapping alters the problem-based learning intragroup discussion in ways that show medical students are engaged in metacognitive thinking. The results showed that students in the problem-based learning concept-mapping groups used more metacognitive thinking patterns than those in the problem-based learning discussion-only group, particularly in the monitoring component. These groups also engaged in a higher level of cognitive thinking associated with reasoning through mechanisms-of-action and breaking down complex biochemical and physiologic principals. The students disclosed in focus-group interviews that concept mapping was beneficial to help them understand how discrete pieces of information fit together in a bigger structure of knowledge. They also stated that concept mapping gave them some time to think through these concepts in a larger conceptual framework. There was no significant difference in the exam-question scores between the problem-based learning concept-mapping groups and the problem-based learning discussion-only group.
An Intelligent Web-Based System for Diagnosing Student Learning Problems Using Concept Maps
ERIC Educational Resources Information Center
Acharya, Anal; Sinha, Devadatta
2017-01-01
The aim of this article is to propose a method for development of concept map in web-based environment for identifying concepts a student is deficient in after learning using traditional methods. Direct Hashing and Pruning algorithm was used to construct concept map. Redundancies within the concept map were removed to generate a learning sequence.…
Using the Typewriter for Learning: Concepts
ERIC Educational Resources Information Center
Clayton, Dean
1977-01-01
Research studies conducted with typewriting students have consistently shown that concepts can be learned in typewriting classes with no appreciable loss of typewriting skill by students. This article discusses three stages of typewriting instruction and how concept learning can be incorporated into each stage. (HD)
Can Students' Concept of Learning Influence Their Learning Outcomes?
ERIC Educational Resources Information Center
Marouchou, Despina Varnava
2012-01-01
This paper aims to readdress the lack of empirical data concerning university learning and in particular the dynamics students' conceptions of learning may have on students' learning outcomes. This paper is written at a time when the EU commission for Higher Education (HE) through the Bologna Process declaration has put into action, since 1999, a…
Mathematical Knowledge for Teaching the Function Concept and Student Learning Outcomes
ERIC Educational Resources Information Center
Hatisaru, Vesife; Erbas, Ayhan Kursat
2017-01-01
The purpose of this study was to examine the potential interrelationships between teachers' mathematical knowledge for teaching (MKT) the function concept and their students' learning outcomes of this concept. Data were collected from two teachers teaching in a vocational high school and their students through a function concept test for teachers…
ERIC Educational Resources Information Center
López-Íñiguez, Guadalupe; Pozo, Juan Ignacio
2014-01-01
While many studies have considered the association between teachers' and students' conceptions of teaching and learning and classroom practices, few studies have researched the influence of teachers' conceptions on students' conceptions. Our objective was to analyze the influence of music teachers' conceptions on student…
ERIC Educational Resources Information Center
Kapici, Hasan Ozgur; Akcay, Hakan; Yager, Robert E.
2017-01-01
It is important for students to learn concepts and using them for solving problems and further learning. Within this respect, the purpose of this study is to investigate students' abilities to apply science concepts that they have learned from Science-Technology-Society based approach or textbook oriented instruction. Current study is based on…
NASA Astrophysics Data System (ADS)
Nugraha, Muhamad Gina; Kaniawati, Ida; Rusdiana, Dadi; Kirana, Kartika Hajar
2016-02-01
Among the purposes of physics learning at high school is to master the physics concepts and cultivate scientific attitude (including critical attitude), develop inductive and deductive reasoning skills. According to Ennis et al., inductive and deductive reasoning skills are part of critical thinking. Based on preliminary studies, both of the competence are lack achieved, it is seen from student learning outcomes is low and learning processes that are not conducive to cultivate critical thinking (teacher-centered learning). One of learning model that predicted can increase mastery concepts and train CTS is inquiry learning model aided computer simulations. In this model, students were given the opportunity to be actively involved in the experiment and also get a good explanation with the computer simulations. From research with randomized control group pretest-posttest design, we found that the inquiry learning model aided computer simulations can significantly improve students' mastery concepts than the conventional (teacher-centered) method. With inquiry learning model aided computer simulations, 20% of students have high CTS, 63.3% were medium and 16.7% were low. CTS greatly contribute to the students' mastery concept with a correlation coefficient of 0.697 and quite contribute to the enhancement mastery concept with a correlation coefficient of 0.603.
NASA Astrophysics Data System (ADS)
Baumgarten, Kristyne A.
This study investigated the possible relationship between collaborative learning strategies and the learning of core concepts. This study examined the differences between two groups of nursing students enrolled in an introductory microbiology laboratory course. The control group consisted of students enrolled in sections taught in the traditional method. The experimental group consisted of those students enrolled in the sections using collaborative learning strategies. The groups were assessed on their degrees of learning core concepts using a pre-test/post-test method. Scores from the groups' laboratory reports were also analyzed. There was no difference in the two group's pre-test scores. The post-test scores of the experimental group averaged 11 points higher than the scores of the control group. The lab report scores of the experimental group averaged 15 points higher than those scores of the control group. The data generated from this study demonstrated that collaborative learning strategies can be used to increase students learning of core concepts in microbiology labs.
Factors Related to Students' Learning of Biomechanics Concepts
ERIC Educational Resources Information Center
Hsieh, ChengTu; Smith, Jeremy D.; Bohne, Michael; Knudson, Duane
2012-01-01
The purpose of this study was to replicate and expand a previous study to identify the factors that affect students' learning of biomechanical concepts. Students were recruited from three universities (N = 149) located in the central and western regions of the United States. Data from 142 students completing the Biomechanics Concept Inventory…
NASA Astrophysics Data System (ADS)
Wibowo, F. C.; Suhandi, A.; Rusdiana, D.; Darman, D. R.; Ruhiat, Y.; Denny, Y. R.; Suherman; Fatah, A.
2016-08-01
A Study area in physics learning is purposeful on the effects of various types of learning interventions to help students construct the basic of scientific conception about physics. Microscopic Virtual Media (MVM) are applications for physics learning to support powerful modelling microscopic involving physics concepts and processes. In this study groups (experimental) of 18±20 years old, students were studied to determine the role of MVM in the development of functional understanding of the concepts of thermal expansion in heat transfer. The experimental group used MVM in learning process. The results show that students who learned with virtual media exhibited significantly higher scores in the research tasks. Our findings proved that the MVM may be used as an alternative instructional tool, in order to help students to confront and constructed their basic of scientific conception and developed their understanding.
ERIC Educational Resources Information Center
Kiliç, Didem; Saglam, Necdet
2014-01-01
Students tend to learn genetics by rote and may not realise the interrelationships in daily life. Because reasoning abilities are necessary to construct relationships between concepts and rote learning impedes the students' sound understanding, it was predicted that having high level of formal reasoning and adopting meaningful learning orientation…
The clinical learning environment in nursing education: a concept analysis.
Flott, Elizabeth A; Linden, Lois
2016-03-01
The aim of this study was to report an analysis of the clinical learning environment concept. Nursing students are evaluated in clinical learning environments where skills and knowledge are applied to patient care. These environments affect achievement of learning outcomes, and have an impact on preparation for practice and student satisfaction with the nursing profession. Providing clarity of this concept for nursing education will assist in identifying antecedents, attributes and consequences affecting student transition to practice. The clinical learning environment was investigated using Walker and Avant's concept analysis method. A literature search was conducted using WorldCat, MEDLINE and CINAHL databases using the keywords clinical learning environment, clinical environment and clinical education. Articles reviewed were written in English and published in peer-reviewed journals between 1995-2014. All data were analysed for recurring themes and terms to determine possible antecedents, attributes and consequences of this concept. The clinical learning environment contains four attribute characteristics affecting student learning experiences. These include: (1) the physical space; (2) psychosocial and interaction factors; (3) the organizational culture and (4) teaching and learning components. These attributes often determine achievement of learning outcomes and student self-confidence. With better understanding of attributes comprising the clinical learning environment, nursing education programmes and healthcare agencies can collaborate to create meaningful clinical experiences and enhance student preparation for the professional nurse role. © 2015 John Wiley & Sons Ltd.
Applying Organ Clearance Concepts in a Clinical Setting
2008-01-01
Objective To teach doctor of pharmacy (PharmD) students how to apply organ clearance concepts in a clinical setting in order to optimize dose management, select the right drug product, and promote better patient-centered care practices. Design A student-focused 5-hour topic entitled "Organ Clearance Concepts: Modeling and Clinical Applications" was developed and delivered to second-year PharmD students. Active-learning techniques, such as reading assignments and thought-provoking questions, and collaborative learning techniques, such as small groups, were used. Student learning was assessed using application cards and a minute paper. Assessment Overall student responses to topic presentation were overwhelmingly positive. The teaching strategies here discussed allowed students to play an active role in their own learning process and provided the necessary connection to keep them motivated, as mentioned in the application cards and minute paper assessments. Students scored an average of 88% on the examination given at the end of the course. Conclusion By incorporating active-learning and collaborative-learning techniques in presenting material on organ clearance concept, students gained a more thorough knowledge of dose management and drug-drug interactions than if the concepts had been presented using a traditional lecture format. This knowledge will help students in solving critical patient situations in a real-world context. PMID:19214275
ERIC Educational Resources Information Center
Shany, Michal; Wiener, Judith; Assido, Michal
2013-01-01
This study investigated the association among friendship, global self-worth, and domain-specific self-concepts in 102 university students with and without learning disabilities (LD). Students with LD reported lower global self-worth and academic self-concept than students without LD, and this difference was greater for women. Students with LD also…
Students concept understanding of fluid static based on the types of teaching
NASA Astrophysics Data System (ADS)
Rahmawati, I. D.; Suparmi; Sunarno, W.
2018-03-01
This research aims to know the concept understanding of student are taught by guided inquiry based learning and conventional based learning. Subjects in this study are high school students as much as 2 classes and each class consists of 32 students, both classes are homogen. The data was collected by conceptual test in the multiple choice form with the students argumentation of the answer. The data analysis used is qualitative descriptive method. The results of the study showed that the average of class that was using guided inquiry based learning is 78.44 while the class with use conventional based learning is 65.16. Based on these data, the guided inquiry model is an effective learning model used to improve students concept understanding.
The Power of Examples: Illustrative Examples Enhance Conceptual Learning of Declarative Concepts
ERIC Educational Resources Information Center
Rawson, Katherine A.; Thomas, Ruthann C.; Jacoby, Larry L.
2015-01-01
Declarative concepts (i.e., key terms with short definitions of the abstract concepts denoted by those terms) are a common kind of information that students are expected to learn in many domains. A common pedagogical approach for supporting learning of declarative concepts involves presenting students with concrete examples that illustrate how the…
ERIC Educational Resources Information Center
Pakhira, Deblina
2012-01-01
Exposure to organic chemistry concepts in the laboratory can positively affect student performance, learning new chemistry concepts and building motivation towards learning chemistry in the lecture. In this study, quantitative methods were employed to assess differences in student performance, learning, and motivation in an organic chemistry…
Student Difficulties in Learning Density: A Distributed Cognition Perspective
ERIC Educational Resources Information Center
Xu, Lihua; Clarke, David
2012-01-01
Density has been reported as one of the most difficult concepts for secondary school students (e.g. Smith et al. 1997). Discussion about the difficulties of learning this concept has been largely focused on the complexity of the concept itself or student misconceptions. Few, if any, have investigated how the concept of density was constituted in…
Designing Professional Learning Communities through Understanding the Beliefs of Learning
ERIC Educational Resources Information Center
Ke, Jie; Kang, Rui; Liu, Di
2016-01-01
This study was designed to initiate the process of building professional development learning communities for pre-service math teachers through revealing those teachers' conceptions/beliefs of students' learning and their own learning in China. It examines Chinese pre-service math teachers' conceptions of student learning and their related…
NASA Astrophysics Data System (ADS)
Soro, S.; Maarif, S.; Kurniawan, Y.; Raditya, A.
2018-01-01
The aim of this study is to find out the effect of Dienes AEM (Algebra Experience Materials) on the ability of understanding concept of algebra on the senior high school student in Indonesia. This research is an experimental research with subject of all high school students in Indonesia. The samples taken were high school students in three provinces namely DKI Jakarta Province, West Java Province and Banten Province. From each province was taken senior high school namely SMA N 9 Bekasi West Java, SMA N 94 Jakarta and SMA N 5 Tangerang, Banten. The number of samples in this study was 114 high school students of tenth grade as experimental class and 115 high school students of tenth grade as control class. Learning algebra concept is needed in learning mathematics, besides it is needed especially to educate students to be able to think logically, systematically, critically, analytically, creatively, and cooperation. Therefore in this research will be developed an effective algebra learning by using Dienes AEM. The result of this research is that there is a significant influence on the students’ concept comprehension ability taught by using Dienes AEM learning as an alternative to instill the concept of algebra compared to the students taught by conventional learning. Besides, the students’ learning motivation increases because students can construct the concept of algebra with props.
In Physics Education, Perception Matters
ERIC Educational Resources Information Center
Sattizahn, Jason R.; Lyons, Daniel J.; Kontra, Carly; Fischer, Susan M.; Beilock, Sian L.
2015-01-01
Student difficulties in science learning are frequently attributed to misconceptions about scientific concepts. We argue that domain-general perceptual processes may also influence students' ability to learn and demonstrate mastery of difficult science concepts. Using the concept of center of gravity (CoG), we show how student difficulty in…
NASA Astrophysics Data System (ADS)
Nguyen, Dong-Hai
This research project investigates the difficulties students encounter when solving physics problems involving the integral and the area under the curve concepts and the strategies to facilitate students learning to solve those types of problems. The research contexts of this project are calculus-based physics courses covering mechanics and electromagnetism. In phase I of the project, individual teaching/learning interviews were conducted with 20 students in mechanics and 15 students from the same cohort in electromagnetism. The students were asked to solve problems on several topics of mechanics and electromagnetism. These problems involved calculating physical quantities (e.g. velocity, acceleration, work, electric field, electric resistance, electric current) by integrating or finding the area under the curve of functions of related quantities (e.g. position, velocity, force, charge density, resistivity, current density). Verbal hints were provided when students made an error or were unable to proceed. A total number of 140 one-hour interviews were conducted in this phase, which provided insights into students' difficulties when solving the problems involving the integral and the area under the curve concepts and the hints to help students overcome those difficulties. In phase II of the project, tutorials were created to facilitate students' learning to solve physics problems involving the integral and the area under the curve concepts. Each tutorial consisted of a set of exercises and a protocol that incorporated the helpful hints to target the difficulties that students expressed in phase I of the project. Focus group learning interviews were conducted to test the effectiveness of the tutorials in comparison with standard learning materials (i.e. textbook problems and solutions). Overall results indicated that students learning with our tutorials outperformed students learning with standard materials in applying the integral and the area under the curve concepts to physics problems. The results of this project provide broader and deeper insights into students' problem solving with the integral and the area under the curve concepts and suggest strategies to facilitate students' learning to apply these concepts to physics problems. This study also has significant implications for further research, curriculum development and instruction.
Analysis of self-directed mastery learning of honors physics
NASA Astrophysics Data System (ADS)
Athens, Wendy
Self-directed learning (SDL) is an important life skill in a knowledge-based society and prepares students to persist, manage their time and resources, use logic to construct their knowledge, argue their views, and collaborate. The purpose of this study was to facilitate mastery of physics concepts through self-directedness in formative testing with feedback, a choice of learning activities, and multiple forms of support. This study was conducted within two sections of honors physics at a private high school (N=24). Students' learning activity choices, time investments, and perceptions (assessed through a post survey) were tracked and analyzed. SDL readiness was linked to success in mastering physics concepts. The three research questions pursued in this study were: What SDL activities did honors physics students choose in their self-directed mastery learning environment? How many students achieved concept mastery and how did they spend their time? Did successful and unsuccessful students perceive the self-directed mastery learning environment differently? Only seven of 24 students were successful in passing the similar concept-based unit tests within four tries, and these seven students were separated into a "successful" group and the other 17 into an "unsuccessful" group. Differences between the two groups were analyzed. A profile of a self-directed secondary honors physics student emerged. A successful self-directed student invested more time learning from activities rather than simply completing them, focused on learning concepts more than rote operations, intentionally selected activities to fill in gaps of knowledge and practice concepts, actively constructed knowledge into a cognitive framework, engaged in academic discourse with instructor and peers as they made repeated attempts to master content and pass the test given constructive feedback, used a wide variety of learning resources, and managed their workload to meet deadlines. This capstone study found that parallel instruction in content and SDL skills could be important for improving learning outcomes and better equipping secondary honors physics students for college and life in general. Mastery learning principles coupled with modeling in self-direction appear mutually reinforcing and, when more explicitly approached, should yield dual benefits in concept mastery as well as self-efficacy.
Lin, Yi-Hui; Liang, Jyh-Chong; Tsai, Chin-Chung
2012-03-01
The purpose of this study was to investigate students' conceptions of and approaches to learning science in two different forms: internet-assisted instruction and traditional (face-to-face only) instruction. The participants who took part in the study were 79 college students enrolled in a physiology class in north Taiwan. In all, 46 of the participants were from one class and 33 were from another class. Using a quasi-experimental research approach, the class of 46 students was assigned to be the "internet-assisted instruction group," whereas the class of 33 students was assigned to be the "traditional instruction group." The treatment consisted of a series of online inquiry activities. To explore the effects of different forms of instruction on students' conceptions of and approaches to learning science, two questionnaires were administered before and after the instruction: the Conceptions of Learning Science Questionnaire and the Approaches to Learning Science Questionnaire. Analysis of covariance results revealed that the students in the internet-assisted instruction group showed less agreement than the traditional instruction group in the less advanced conceptions of learning science (such as learning as memorizing and testing). In addition, the internet-assisted instruction group displayed significantly more agreement than the traditional instruction group in more sophisticated conceptions (such as learning as seeing in a new way). Moreover, the internet-assisted instruction group expressed more orientation toward the approaches of deep motive and deep strategy than the traditional instruction group. However, the students in the internet-assisted instruction group also showed more surface motive than the traditional instruction group did.
Important learning factors in high- and low-achieving students in undergraduate biomechanics.
Hsieh, ChengTu; Knudson, Duane
2017-07-21
The purpose of the present study was to document crucial factors associated with students' learning of biomechanical concepts, particularly between high- and-low achieving students. Students (N = 113) from three introductory biomechanics classes at two public universities volunteered for the study. Two measures of students' learning were obtained, final course grade and improvement on the Biomechanics Concept Inventory version 3 administered before and after the course. Participants also completed a 15-item questionnaire documenting student learning characteristics, effort, and confidence. Partial correlations controlling for all other variables in the study, confirmed previous studies that students' grade point average (p < 0.01), interest in biomechanics, (p < 0.05), and physics credits passed (p < 0.05) are factors uniquely associated with learning biomechanics concepts. Students' confidence when encountering difficult biomechanics concepts was also significantly (p < 0.05) associated with final grade. There were significant differences between top 15% and bottom 15% achievers on these variables (p < 0.05), as well as on readings completed, work to pay for college per week, and learning epistemology. Consequently, instructors should consider strategies to promote students' interest in biomechanics and confidence in solving relevant professional problems in order to improve learning for both low- and high-ability students.
NASA Astrophysics Data System (ADS)
Marlius; Kaniawati, I.; Feranie, S.
2018-05-01
A preliminary learning design using relay to promote twelfth grade student’s understanding of logic gates concept is implemented to see how well it’s to adopted by six high school students, three male students and three female students of twelfth grade. This learning design is considered for next learning of digital technology concept i.e. data digital transmition and analog. This work is a preliminary study to design the learning for large class. So far just a few researches designing learning design related to digital technology with relay. It may due to this concept inserted in Indonesian twelfth grade curriculum recently. This analysis is focus on student difficulties trough video analysis to learn the concept. Based on our analysis, the recommended thing for redesigning learning is: students understand first about symbols and electrical circuits; the Student Worksheet is made in more detail on the assembly steps to the project board; mark with symbols at points in certain places in the circuit for easy assembly; assembly using relays by students is enough until is the NOT’s logic gates and the others that have been assembled so that effective time. The design of learning using relays can make the relay a liaison between the abstract on the digital with the real thing of it, especially in the circuit of symbols and real circuits. Besides it is expected to also enrich the ability of teachers in classroom learning about digital technology.
Evaluation of the Learning Process of Students Reinventing the General Law of Energy Conservation
ERIC Educational Resources Information Center
Logman, Paul; Kaper, Wolter; Ellermeijer, Ton
2015-01-01
To investigate the relationship between context and concept we have constructed a conceptual learning path in which students reinvent the concept of energy conservation and embedded this path in two authentic practices. A comparison of the expected learning outcome with actual student output for the most important steps in the learning path gives…
ERIC Educational Resources Information Center
Hwang, Gwo-Jen; Panjaburee, Patcharin; Triampo, Wannapong; Shih, Bo-Ying
2013-01-01
Diagnosing student learning barriers has been recognized as the most fundamental and important issue for improving the learning achievements of students. In the past decade, several learning diagnosis approaches have been proposed based on the concept-effect relationship (CER) model. However, past studies have shown that the effectiveness of this…
ERIC Educational Resources Information Center
Lawanto, Oenardi; Santoso, Harry
2013-01-01
The current study evaluated engineering college students' self-regulated learning (SRL) strategies while learning electric circuit concepts using enhanced guided notes (EGN). Our goal was to describe how students exercise SRL strategies and how their grade performance changes after using EGN. Two research questions guided the study: (1) To what…
ERIC Educational Resources Information Center
Prahmana, Rully Charitas Indra; Suwasti, Petra
2014-01-01
Several studies on learning mathematics for rural area's student indicate that students have difficulty in understanding the concept of division operation. Students are more likely to be introduced by the use of the formula without involving the concept itself and learning division separate the concrete situation of learning process. This…
Making a Low Cost Candy Floss Kit Gets Students Excited about Learning Physics
ERIC Educational Resources Information Center
Amir, Nazir; Subramaniam, R.
2009-01-01
An activity to excite kinaesthetically inclined students about learning physics is described in this article. Using only commonly available materials, a low cost candy floss kit is fabricated by students. A number of physics concepts are embedded contextually in the activity so that students get to learn these concepts in a real world setting…
Exploring students' conceptions of science learning via drawing: a cross-sectional analysis
NASA Astrophysics Data System (ADS)
Hsieh, Wen-Min; Tsai, Chin-Chung
2017-02-01
This cross-sectional study explored students' conceptions of science learning via drawing analysis. A total of 906 Taiwanese students in 4th, 6th, 8th, 10th, and 12th grade were asked to use drawing to illustrate how they conceptualise science learning. Students' drawings were analysed using a coding checklist to determine the presence or absence of specified attributes. Data analysis showed that the majority of students pictured science learning as school-based, involving certain types of experiment or teacher lecturing. In addition, notable cross-sectional differences were found in the 'Activity' and 'Emotions and attitudes' categories in students' drawings. Three major findings were made: (1) lower grade level students conceptualised science learning with a didactic approach, while higher graders might possess a quantitative view of science learning (i.e. how much is learned, not how well it is learned), (2) students' positive and negative emotions and attitudes toward science learning reversed around middle school, and (3) female students expressed significantly more positive emotions and attitudes than their male counterparts. In conclusion, higher graders' unfruitful conceptions of science learning warrant educators' attention. Moreover, further investigation of girls' more positive emotions and attitudes found in this study is needed.
Understanding the relationship between student attitudes and student learning
NASA Astrophysics Data System (ADS)
Cahill, Michael J.; McDaniel, Mark A.; Frey, Regina F.; Hynes, K. Mairin; Repice, Michelle; Zhao, Jiuqing; Trousil, Rebecca
2018-02-01
Student attitudes, defined as the extent to which one holds expertlike beliefs about and approaches to physics, are a major research topic in physics education research. An implicit but rarely tested assumption underlying much of this research is that student attitudes play a significant part in student learning and performance. The current study directly tested this attitude-learning link by measuring the association between incoming attitudes (Colorado Learning Attitudes about Science Survey) and student learning during the semester after statistically controlling for the effects of prior knowledge [early-semester Force Concept Inventory (FCI) or Brief Electricity and Magnetism Assessment (BEMA)]. This study spanned four different courses and included two complementary measures of student knowledge: late-semester concept inventory scores (FCI or BEMA) and exam averages. In three of the four courses, after controlling for prior knowledge, attitudes significantly predicted both late-semester concept inventory scores and exam averages, but in all cases these attitudes explained only a small amount of variance in concept-inventory and exam scores. Results indicate that after accounting for students' incoming knowledge, attitudes may uniquely but modestly relate to how much students learn and how well they perform in the course.
Testing a Conception of How School Leadership Influences Student Learning
ERIC Educational Resources Information Center
Leithwood, Kenneth; Patten, Sarah; Jantzi, Doris
2010-01-01
Purpose: This article describes and reports the results of testing a new conception of how leadership influences student learning ("The Four Paths"). Framework: Leadership influence is conceptualized as flowing along four paths (Rational, Emotions, Organizational, and Family) toward student learning. Each path is populated by multiple…
Mapping of Students’ Learning Progression Based on Mental Model in Magnetic Induction Concepts
NASA Astrophysics Data System (ADS)
Hamid, R.; Pabunga, D. B.
2017-09-01
The progress of student learning in a learning process has not been fully optimally observed by the teacher. The concept being taught is judged only at the end of learning as a product of thinking, and does not assess the mental processes that occur in students’ thinking. Facilitating students’ thinking through new phenomena can reveal students’ variation in thinking as a mental model of a concept, so that students who are assimilative and or accommodative can be identified in achieving their equilibrium of thought as well as an indicator of progressiveness in the students’ thinking stages. This research data is obtained from the written documents and interviews of students who were learned about the concept of magnetic induction through Constructivist Teaching Sequences (CTS) models. The results of this study indicate that facilitating the students’ thinking processes on the concept of magnetic induction contributes to increasing the number of students thinking within the "progressive change" category, and it can be said that the progress of student learning is more progressive after their mental models were facilitated through a new phenomena by teacher.
NASA Astrophysics Data System (ADS)
Sullivan, Sarah; Gnesdilow, Dana; Puntambekar, Sadhana; Kim, Jee-Seon
2017-08-01
Physical and virtual experimentation are thought to have different affordances for supporting students' learning. Research investigating the use of physical and virtual experiments to support students' learning has identified a variety of, sometimes conflicting, outcomes. Unanswered questions remain about how physical and virtual experiments may impact students' learning and for which contexts and content areas they may be most effective. Using a quasi-experimental design, we examined eighth grade students' (N = 100) learning of physics concepts related to pulleys depending on the sequence of physical and virtual labs they engaged in. Five classes of students were assigned to either the: physical first condition (PF) (n = 55), where students performed a physical pulley experiment and then performed the same experiment virtually, or virtual first condition (VF) (n = 45), with the opposite sequence. Repeated measures ANOVA's were conducted to examine how physical and virtual labs impacted students' learning of specific physics concepts. While we did not find clear-cut support that one sequence was better, we did find evidence that participating in virtual experiments may be more beneficial for learning certain physics concepts, such as work and mechanical advantage. Our findings support the idea that if time or physical materials are limited, using virtual experiments may help students understand work and mechanical advantage.
Ciullo, Stephen; Falcomata, Terry S; Pfannenstiel, Kathleen; Billingsley, Glenna
2015-01-01
Concept maps have been used to help students with learning disabilities (LD) improve literacy skills and content learning, predominantly in secondary school. However, despite increased access to classroom technology, no previous studies have examined the efficacy of computer-based concept maps to improve learning from informational text for students with LD in elementary school. In this study, we used a concurrent delayed multiple probe design to evaluate the interactive use of computer-based concept maps on content acquisition with science and social studies texts for Hispanic students with LD in Grades 4 and 5. Findings from this study suggest that students improved content knowledge during intervention relative to a traditional instruction baseline condition. Learning outcomes and social validity information are considered to inform recommendations for future research and the feasibility of classroom implementation. © The Author(s) 2014.
NASA Astrophysics Data System (ADS)
Michel, Hanno; Neumann, Irene
2016-12-01
Besides viewing knowledge about the nature of science (NOS) as important for its own value with respect to scientific literacy, an adequate understanding of NOS is expected to improve science content learning by fostering the ability to interrelate scientific concepts and, thus, coherently acquire scientific content knowledge. However, there is a lack of systematic investigations, which clarify the relations between NOS and science content learning. In this paper, we present the results of a study, conducted to investigate how NOS understanding relates to students' acquisition of a proper understanding of the concept of energy. A total of 82 sixth and seventh grade students received an instructional unit on energy, with 41 of them receiving generic NOS instruction beforehand. This NOS instruction, however, did not result in students having higher scores on the NOS instrument. Thus, correlational analyses were performed to investigate how students' NOS understanding prior to the energy unit related to their learning about science content. Results show that a more adequate understanding of NOS might relate to students' perspective on the concept of energy and might support them in understanding the nature of energy as a theoretical concept. Students with higher NOS understanding, for example, seemed to be more capable of learning how to relate the different energy forms to each other and to justify why they can be subsumed under the term of energy. Further, we found that NOS understanding may also be related to students' approach toward energy degradation—a concept that can be difficult for students to master—while it does not seem to have a substantive impact on students' learning gain regarding energy forms, transformation, or conservation.
A phenomenographic case study: Concept maps from the perspectives of middle school students
NASA Astrophysics Data System (ADS)
Saglam, Yilmaz
The objective of this study was to investigate the experiences of middle school students when concept maps were used as a learning tool. Twenty-nine students' written responses, concept maps and videotapes were analyzed. Out of 29 students, thirteen students were interviewed using a semi-structured and open-ended interview protocol. The students' initial written responses provided us with the students' initial reactions to concept maps. The videotapes captured the students' behavior, and interpersonal interactions. The interviews probed students': (1) knowledge about drawing concept maps, (2) perception of the meaning and usefulness of concept maps, and (3) attitudes towards concept maps. The results indicated that the students viewed concept maps as useful tools in learning science. They believed that concept maps organized and summarized the information, which thereby helped them understand the topic easily. They also believed that concept maps had some cognitive benefits. However, the students viewed concept maps as hard to construct because it was difficult for the students to think of related concepts. The students' initial written responses, interviews and videotapes indicated that the students seemed to see both positive and negative aspects of concept maps. Some students' had more positive and some had more negative attitudes.
Elementary Teacher's Conceptions of Inquiry Teaching: Messages for Teacher Development
NASA Astrophysics Data System (ADS)
Ireland, Joseph E.; Watters, James J.; Brownlee, Jo; Lupton, Mandy
2012-02-01
This study explored practicing elementary school teacher's conceptions of teaching in ways that foster inquiry-based learning in the science curriculum (inquiry teaching). The advocacy for inquiry-based learning in contemporary curricula assumes the principle that students learn in their own way by drawing on direct experience fostered by the teacher. That students should be able to discover answers themselves through active engagement with new experiences was central to the thinking of eminent educators such as Pestalozzi, Dewey and Montessori. However, even after many years of research and practice, inquiry learning as a referent for teaching still struggles to find expression in the average teachers' pedagogy. This study drew on interview data from 20 elementary teachers. A phenomenographic analysis revealed three conceptions of teaching for inquiry learning in science in the elementary years of schooling: (a) The Experience-centered conception where teachers focused on providing interesting sensory experiences to students; (b) The Problem-centered conception where teachers focused on engaging students with challenging problems; and (c) The Question-centered conception where teachers focused on helping students to ask and answer their own questions. Understanding teachers' conceptions has implications for both the enactment of inquiry teaching in the classroom as well as the uptake of new teaching behaviors during professional development, with enhanced outcomes for engaging students in Science.
NASA Astrophysics Data System (ADS)
Nurhayati, Dian Mita; Hartono
2017-05-01
This study aims to determine whether there is a difference in the ability of understanding the concept of mathematics between students who use cooperative learning model Student Teams Achievement Division type with Realistic Mathematic Education approach and students who use regular learning in seventh grade SMPN 35 Pekanbaru. This study was quasi experiments with Posttest-only Control Design. The populations in this research were all the seventh grade students in one of state junior high school in Pekanbaru. The samples were a class that is used as the experimental class and one other as the control class. The process of sampling is using purposive sampling technique. Retrieval of data in this study using the documentation, observation sheets, and test. The test use t-test formula to determine whether there is a difference in student's understanding of mathematical concepts. Before the t-test, should be used to test the homogeneity and normality. Based in the analysis of these data with t0 = 2.9 there is a difference in student's understanding of mathematical concepts between experimental and control class. Percentage of students experimental class with score more than 65 was 76.9% and 56.4% of students control class. Thus be concluded, the ability of understanding mathematical concepts students who use the cooperative learning model type STAD with RME approach better than students using the regular learning. So that cooperative learning model type STAD with RME approach is well used in learning process.
Concept Mapping as a Learning Tool for the Employment Relations Degree
ERIC Educational Resources Information Center
Martinez-Canas, Ricardo; Ruiz-Palomino, Pablo
2011-01-01
Concept mapping is a technique to represent relationships between concepts that can help students to improve their meaningful learning. Using the cognitive theories proposed by Ausubel (1968), concept maps can help instructors and students to enhance their logical thinking and study skills by revealing connections among concepts that can simplify…
Hannon, Brenda
2012-10-01
Definitions of related concepts (e.g., genotype - phenotype ) are prevalent in introductory classes. Consequently, it is important that educators and students know which strategy(s) work best for learning them. This study showed that a new comparative elaboration strategy, called differential-associative processing, was better for learning definitions of related concepts than was an integrative elaborative strategy, called example elaboration. This outcome occurred even though example elaboration was administered in a naturalistic way (Experiment 1) and students spent more time in the example elaboration condition learning (Experiments 1, 2, 3), and generating pieces of information about the concepts (Experiments 2 and 3). Further, with unrelated concepts ( morpheme-fluid intelligence ), performance was similar regardless if students used differential-associative processing or example elaboration (Experiment 3). Taken as a whole, these results suggest that differential-associative processing is better than example elaboration for learning definitions of related concepts and is as good as example elaboration for learning definitions of unrelated concepts.
Hannon, Brenda
2013-01-01
Definitions of related concepts (e.g., genotype–phenotype) are prevalent in introductory classes. Consequently, it is important that educators and students know which strategy(s) work best for learning them. This study showed that a new comparative elaboration strategy, called differential-associative processing, was better for learning definitions of related concepts than was an integrative elaborative strategy, called example elaboration. This outcome occurred even though example elaboration was administered in a naturalistic way (Experiment 1) and students spent more time in the example elaboration condition learning (Experiments 1, 2, 3), and generating pieces of information about the concepts (Experiments 2 and 3). Further, with unrelated concepts (morpheme-fluid intelligence), performance was similar regardless if students used differential-associative processing or example elaboration (Experiment 3). Taken as a whole, these results suggest that differential-associative processing is better than example elaboration for learning definitions of related concepts and is as good as example elaboration for learning definitions of unrelated concepts. PMID:24347814
A Concept Transformation Learning Model for Architectural Design Learning Process
ERIC Educational Resources Information Center
Wu, Yun-Wu; Weng, Kuo-Hua; Young, Li-Ming
2016-01-01
Generally, in the foundation course of architectural design, much emphasis is placed on teaching of the basic design skills without focusing on teaching students to apply the basic design concepts in their architectural designs or promoting students' own creativity. Therefore, this study aims to propose a concept transformation learning model to…
ERIC Educational Resources Information Center
Ho, Hsin-Ning Jessie; Liang, Jyh-Chong
2015-01-01
This study explores the relationships among Taiwanese high school students' scientific epistemic beliefs (SEBs), conceptions of learning science (COLS), and motivation of learning science. The questionnaire responses from 470 high school students in Taiwan were gathered for analysis to explain these relationships. The structural equation modeling…
ERIC Educational Resources Information Center
Hsieh, Wen-Min; Tsai, Chin-Chung
2018-01-01
Using the draw-a-picture technique, the authors explored the learning conceptions held by students across grade levels. A total of 1,067 Taiwanese students in Grades 2, 4, 6, 8, 10, and 12 participated in this study. Participants were asked to use drawing to illustrate how they conceptualize learning. A coding checklist was developed to analyze…
Why Do Athletes Drink Sports Drinks? A Learning Cycle to Explore the Concept of Osmosis
ERIC Educational Resources Information Center
Carlsen, Brook; Marek, Edmund A.
2010-01-01
Why does an athlete reach for a sports drink after a tough game or practice? The learning cycle presented in this article helps students answer this question. Learning cycles (Marek 2009) are designed to guide students through direct experiences with a particular concept. In this article, students learn about "osmosis," or the moving of water into…
ERIC Educational Resources Information Center
Chiou, Guo-Li; Lee, Min-Hsien; Tsai, Chin-Chung
2013-01-01
Background and purpose: Knowing how students learn physics is a central goal of physics education. The major purpose of this study is to examine the strength of the predictive power of students' epistemic views and conceptions of learning in terms of their approaches to learning in physics. Sample, design and method: A total of 279 Taiwanese high…
ERIC Educational Resources Information Center
Oloruntegbe, Kunle Oke; Ikpe, Adakole
2011-01-01
Making connections between science concepts taught in school and real-world phenomena is considered important in engaging students in learning. The present study examines students' abilities to relate their in-school science learning to everyday experiences at home. The sample comprised 200 senior secondary chemistry students drawn from Ondo…
Exploring Students' Conceptions of Science Learning via Drawing: A Cross-Sectional Analysis
ERIC Educational Resources Information Center
Hsieh, Wen-Min; Tsai, Chin-Chung
2017-01-01
This cross-sectional study explored students' conceptions of science learning via drawing analysis. A total of 906 Taiwanese students in 4th, 6th, 8th, 10th, and 12th grade were asked to use drawing to illustrate how they conceptualise science learning. Students' drawings were analysed using a coding checklist to determine the presence or absence…
Minasian-Batmanian, Laura C; Lingard, Jennifer; Prosser, Michael
2005-11-01
Student approaches to learning vary from surface approaches to meaningful, deep learning practices. Differences in approach may be related to students' conceptions of the subject, perceptions of the learning environment, prior study experiences and performance on assessment. This study aims to explore entering students' conceptions of the unit they are about to study and how they intend to approach their studies. It involved a survey of 203 (of 250) first year students in a cross disciplinary unit in the Faculty of Health Sciences. They were asked to complete an open-ended response survey, including questions on what they thought they needed to do to learn biochemistry and what they thought the study of biochemistry was about. A phenomenographic methodology was used to identify categories of description for the questions. The paper will describe the categories in detail, the structural relationship between the categories and the distribution of responses within categories. The study reports a relationship between conception of the topic and approaches to learning. Students with more complex and coherent conceptions of the topic report that they were more likely to adopt deeper approaches to study than those with more fragmented conceptions. However, compared to previous studies, a surprisingly high proportion of students with more cohesive conceptions still intended to adopt more surface approaches. This may reflect the particular context of their learning, namely in a compulsory unit involving material for which most students have minimal background and difficulty seeing its relevance. Implications for teaching such foundation material are discussed.
The Use of Geometry Learning Media Based on Augmented Reality for Junior High School Students
NASA Astrophysics Data System (ADS)
Rohendi, D.; Septian, S.; Sutarno, H.
2018-02-01
Understanding the geometry especially of three-dimensional space is still considered difficult by some students. Therefore, a learning innovation is required to overcome students’ difficulties in learning geometry. In this research, we developed geometry learning media based on augmented reality in android flatform’s then it was implemented in teaching three-dimensional objects for some junior high school students to find out: how is the students response in using this new media in geometry and is this media can solve the student’s difficulties in understanding geometry concept. The results showed that the use of geometry learning media based on augmented reality in android flatform is able to get positive responses from the students in learning geometry concepts especially three-dimensional objects and students more easy to understand concept of diagonal in geometry than before using this media.
ERIC Educational Resources Information Center
Lin, Tzu-Chiang; Liang, Jyh-Chong; Tsai, Chin-Chung
2015-01-01
This study aims to explore Taiwanese university students' conceptions of learning biology as memorizing or as understanding, and their self-efficacy. To this end, two questionnaires were utilized to survey 293 Taiwanese university students with biology-related majors. A questionnaire for measuring students' conceptions of memorizing and…
Learning by Teaching: Implementation of a Multimedia Project in Astro 101
NASA Astrophysics Data System (ADS)
Perrodin, D.; Lommen, A.
2011-09-01
Astro 101 students have deep-seated pre-conceptions regarding such topics as the cause of moon phases or the seasons. Beyond exploring the topics in a learner-centered fashion, the "learning by teaching" philosophy enables students to truly master concepts. In order to make students teach the cause of moon phases, we created a multimedia project where groups of students taught other students and filmed the session. They were to produce a 10-minute final movie highlighting their teaching techniques and showing students in the process of learning the concepts. This "experiment" turned out to be a great success for a few reasons. First, students gained experience explaining conceptually-challenging topics, making them learn the material better. Additionally, they learned to apply learner-centered techniques, most likely learning to teach for the first time. Finally, this project provided the students a connection between the classroom and the rest of the college, making them responsible for applying and sharing their knowledge with their peers.
Grade Level Differences in High School Students' Conceptions of and Motives for Learning Science
NASA Astrophysics Data System (ADS)
Wang, Ya-Ling; Tsai, Chin-Chung
2017-08-01
Students' conceptions of learning science and their relations with motive for learning may vary as the education level increases. This study aimed to compare the quantitative patterns in students' conceptions of learning science (COLS) and motives for learning science (MLS) across grade levels by adopting two survey instruments. A total of 768 high school students were surveyed in Taiwan, including 204 eighth graders, 262 tenth graders, and 302 12th graders. In the current research, memorizing, testing, and calculating and practicing were categorized as reproductive conceptions of learning science, while increase of knowledge, applying, understanding and seeing-in-a-new-way were regarded as constructivist conceptions. The results of multivariate analyses of variance (MANOVA) revealed that conceptions of learning science are more constructivist as education level increases. Both tenth graders and 12th graders endorsed understanding, seeing-in-a-new-way, and the constructivist COLS composite more strongly than the eighth graders did. In addition, the results of multigroup structural equation modeling (SEM) analysis indicated that the positive relations between testing and reproductive COLS were stronger as the grade level increased, while the negative relations between reproductive COLS and deep motive were tighter with the increase in grade level.
ERIC Educational Resources Information Center
Park, Jiyeon; Jeon, Dongryul
2015-01-01
The systemizing and empathizing brain type represent two contrasted students' characteristics. The present study investigated differences in the conceptions and approaches to learning science between the systemizing and empathizing brain type students. The instruments are questionnaires on the systematizing and empathizing, questionnaires on the…
Students' Conceptions of Learning in the Context of an Accounting Degree
ERIC Educational Resources Information Center
Abhayawansa, Subhash; Bowden, Mark; Pillay, Soma
2017-01-01
Students' conceptions of learning (CoL) play an important role in the learning process leading to the development of generic skills. This paper investigates whether CoL of accounting students can be developed by incorporating high-level cognitive skills progressively within the accounting curriculum. First, the study explored, using…
Using concept mapping to evaluate knowledge structure in problem-based learning.
Hung, Chia-Hui; Lin, Chen-Yung
2015-11-27
Many educational programs incorporate problem-based learning (PBL) to promote students' learning; however, the knowledge structure developed in PBL remains unclear. The aim of this study was to use concept mapping to generate an understanding of the use of PBL in the development of knowledge structures. Using a quasi-experimental study design, we employed concept mapping to illustrate the effects of PBL by examining the patterns of concepts and differences in the knowledge structures of students taught with and without a PBL approach. Fifty-two occupational therapy undergraduates were involved in the study and were randomly divided into PBL and control groups. The PBL group was given two case scenarios for small group discussion, while the control group continued with ordinary teaching and learning. Students were asked to make concept maps after being taught about knowledge structure. A descriptive analysis of the morphology of concept maps was conducted in order to compare the integration of the students' knowledge structures, and statistical analyses were done to understand the differences between groups. Three categories of concept maps were identified as follows: isolated, departmental, and integrated. The students in the control group constructed more isolated maps, while the students in the PBL group tended toward integrated mapping. Concept Relationships, Hierarchy Levels, and Cross Linkages in the concept maps were significantly greater in the PBL group; however, examples of concept maps did not differ significantly between the two groups. The data indicated that PBL had a strong effect on the acquisition and integration of knowledge. The important properties of PBL, including situational learning, problem spaces, and small group interactions, can help students to acquire more concepts, achieve an integrated knowledge structure, and enhance clinical reasoning.
ERIC Educational Resources Information Center
Yalcinkaya, Eylem; Tastan-Kirik, Ozgecan; Boz, Yezdan; Yildiran, Demet
2012-01-01
Background: Case-based learning (CBL) is simply teaching the concept to the students based on the cases. CBL involves a case, which is a scenario based on daily life, and study questions related to the case, which allows students to discuss their ideas. Chemical kinetics is one of the most difficult concepts for students in chemistry. Students…
Development of Concept-Based Physiology Lessons for Biomedical Engineering Undergraduate Students
ERIC Educational Resources Information Center
Nelson, Regina K.; Chesler, Naomi C.; Strang, Kevin T.
2013-01-01
engineering curriculum. In one or two introductory physiology courses, engineering students must learn physiology sufficiently to support learning in their subsequent engineering courses and careers. As preparation for future learning, physiology instruction centered on concepts may…
Construction and reconstruction concept in mathematics instruction
NASA Astrophysics Data System (ADS)
Mumu, Jeinne; Charitas Indra Prahmana, Rully; Tanujaya, Benidiktus
2017-12-01
The purpose of this paper is to describe two learning activities undertaken by lecturers, so that students can understand a mathematical concept. The mathematical concept studied in this research is the Vector Space in Linear Algebra instruction. Classroom Action Research used as a research method with pre-service mathematics teacher at University of Papua as the research subject. Student participants are divided into two parallel classes, 24 students in regular class, and remedial class consist of 18 students. Both approaches, construct and reconstruction concept, are implemented on both classes. The result shows that concept construction can only be done in regular class while in remedial class, learning with concept construction approach is not able to increase students' understanding on the concept taught. Understanding the concept of a student in a remedial class can only be carried out using the concept reconstruction approach.
Student Perceptions of and Confidence in Self-Care Course Concepts Using Team-based Learning.
Frame, Tracy R; Gryka, Rebecca; Kiersma, Mary E; Todt, Abby L; Cailor, Stephanie M; Chen, Aleda M H
2016-04-25
Objective. To evaluate changes in student perceptions of and confidence in self-care concepts after completing a team-based learning (TBL) self-care course. Methods. Team-based learning was used at two universities in first professional year, semester-long self-care courses. Two instruments were created and administered before and after the semester. The instruments were designed to assess changes in student perceptions of self-care using the theory of planned behavior (TPB) domains and confidence in learning self-care concepts using Bandura's Social Cognitive Theory. Wilcoxon signed rank tests were used to evaluate pre/post changes, and Mann Whitney U tests were used to evaluate university differences. Results. Fifty-three Cedarville University and 58 Manchester University students completed both instruments (100% and 92% response rates, respectively). Student self-care perceptions with TPB decreased significantly on nine of 13 items for Cedarville and decreased for one of 13 items for Manchester. Student confidence in self-care concepts improved significantly on all questions for both universities. Conclusion. Data indicate TBL self-care courses were effective in improving student confidence about self-care concepts. Establishing students' skill sets prior to entering the profession is beneficial because pharmacists will use self-directed learning to expand their knowledge and adapt to problem-solving situations.
Language Negotiations Indigenous Students Navigate when Learning Science
ERIC Educational Resources Information Center
Chigeza, Philemon
2008-01-01
This paper reports on implications of a research study with a group of 44 Indigenous middle school students learning the science concepts of energy and force. We found the concepts of energy and force need to be taught in English as we failed to find common comparable abstract concepts in the students' diverse Indigenous languages. Three…
High school students' views of learning chemistry concepts with analogies
NASA Astrophysics Data System (ADS)
Mathews, Jeffrey A.
Analogies are often used in teaching abstract chemistry concepts, however few studies are concerned with how students actually view learning with analogies. An eight-member focus group, consisting of high school students, described the process of learning with analogies and how aware they were of their own learning. The students attended four analogy presentations and completed written responses, attended focus groups, and participated in repeated individual interview sessions throughout this eight-week, emic, phenomenological study. This study utilized an interpretive, qualitative methodology using a constant comparative, inductive analysis design. Students from a suburban high school in the southeastern United States were selected by purposeful sampling involving a concepts pre-test and an analogy presentation used to determine an eight member focus group. The focus group meetings were videotaped and emergent, semi-structured individual interviews were audio taped, transcribed and coded. Personal student journals, field notes, and a reflective journal were used to triangulate the study. Open, axial, and selective coding were used for data analysis and interpretation. Students described the process of learning with analogies as being able to visually see connections or picture mental images of familiar and unfamiliar concepts. Students pointed out the significance of investigating analogy breakdowns and described accommodation of new information as either automatic, which according to students resulted in memorization and hard learning, or quite laborious, which resulted in understanding and soft learning. Results indicated that students gave themselves more permission to ask questions and be critical of the teaching they are experiencing when their views were given merit. Implications for teachers include insight on students' views of learning and students' self-awareness.
Assessing student understanding of host pathogen interactions using a concept inventory.
Marbach-Ad, Gili; Briken, Volker; El-Sayed, Najib M; Frauwirth, Kenneth; Fredericksen, Brenda; Hutcheson, Steven; Gao, Lian-Yong; Joseph, Sam; Lee, Vincent T; McIver, Kevin S; Mosser, David; Quimby, B Booth; Shields, Patricia; Song, Wenxia; Stein, Daniel C; Yuan, Robert T; Smith, Ann C
2009-01-01
As a group of faculty with expertise and research programs in the area of host-pathogen interactions (HPI), we are concentrating on students' learning of HPI concepts. As such we developed a concept inventory to measure level of understanding relative to HPI after the completion of a set of microbiology courses (presently eight courses). Concept inventories have been useful tools for assessing student learning, and our interest was to develop such a tool to measure student learning progression in our microbiology courses. Our teaching goal was to create bridges between our courses which would eliminate excessive overlap in our offerings and support a model where concepts and ideas introduced in one course would become the foundation for concept development in successive courses. We developed our HPI concept inventory in several phases. The final product was an 18-question, multiple-choice concept inventory. In fall 2006 and spring 2007 we administered the 18-question concept inventory in six of our courses. We collected pre- and postcourse surveys from 477 students. We found that students taking pretests in the advanced courses retained the level of understanding gained in the general microbiology prerequisite course. Also, in two of our courses there was significant improvement on the scores from pretest to posttest. As we move forward, we will concentrate on exploring the range of HPI concepts addressed in each course and determine and/or create effective methods for meaningful student learning of HPI aspects of microbiology.
ERIC Educational Resources Information Center
Odom, Arthur L.; Kelly, Paul V.
2001-01-01
Explores the effectiveness of concept mapping, the learning cycle, expository instruction, and a combination of concept mapping/learning cycle in promoting conceptual understanding of diffusion and osmosis. Concludes that the concept mapping/learning cycle and concept mapping treatment groups significantly outperformed the expository treatment…
Learning Situations in Nursing Education: A Concept Analysis.
Shahsavari, Hooman; Zare, Zahra; Parsa-Yekta, Zohreh; Griffiths, Pauline; Vaismoradi, Mojtaba
2018-02-01
The nursing student requires opportunities to learn within authentic contexts so as to enable safe and competent practice. One strategy to facilitate such learning is the creation of learning situations. A lack of studies on the learning situation in nursing and other health care fields has resulted in insufficient knowledge of the characteristics of the learning situation, its antecedents, and consequences. Nurse educators need to have comprehensive and practical knowledge of the definition and characteristics of the learning situation so as to enable their students to achieve enhanced learning outcomes. The aim of this study was to clarify the concept of the learning situation as it relates to the education of nurses and improve understanding of its characteristics, antecedents, and consequences. The Bonis method of concept analysis, as derived from the Rodgers' evolutionary method, provided the framework for analysis. Data collection and analysis were undertaken in two phases: "interdisciplinary" and "intra-disciplinary." The data source was a search of the literature, encompassing nursing and allied health care professions, published from 1975 to 2016. No agreement on the conceptual phenomenon was discovered in the international literature. The concept of a learning situation was used generally in two ways and thus classified into the themes of: "formal/informal learning situation" and "biologic/nonbiologic learning situation." Antecedents to the creation of a learning situation included personal and environmental factors. The characteristics of a learning situation were described in terms of being complex, dynamic, and offering potential and effective learning opportunities. Consequences of the learning situation included enhancement of the students' learning, professionalization, and socialization into the professional role. The nurse educator, when considering the application of the concept of a learning situation in their educational planning, must acknowledge that the application of this concept will include the student's clinical learning experiences. More studies are required to determine factors influencing the creation of a successful learning situation from the perspectives of nurse educators and nursing students, clinical nurses and patients.
Development of concept-based physiology lessons for biomedical engineering undergraduate students.
Nelson, Regina K; Chesler, Naomi C; Strang, Kevin T
2013-06-01
Physiology is a core requirement in the undergraduate biomedical engineering curriculum. In one or two introductory physiology courses, engineering students must learn physiology sufficiently to support learning in their subsequent engineering courses and careers. As preparation for future learning, physiology instruction centered on concepts may help engineering students to further develop their physiology and biomedical engineering knowledge. Following the Backward Design instructional model, a series of seven concept-based lessons was developed for undergraduate engineering students. These online lessons were created as prerequisite physiology training to prepare students to engage in a collaborative engineering challenge activity. This work is presented as an example of how to convert standard, organ system-based physiology content into concept-based content lessons.
ERIC Educational Resources Information Center
Bledsoe, Karen E.; Flick, Lawrence
2012-01-01
This phenomenographic study documented changes in student-held electrical concepts the development of meaningful learning among students with both low and high prior knowledge within a problem-based learning (PBL) undergraduate electrical engineering course. This paper reports on four subjects: two with high prior knowledge and two with low prior…
ERIC Educational Resources Information Center
Fini, Elham H.; Awadallah, Faisal; Parast, Mahour M.; Abu-Lebdeh, Taher
2018-01-01
This paper describes an intervention to enhance students' learning by involving students in brainstorming activities about sustainability concepts and their implications in transportation engineering. The paper discusses the process of incorporating the intervention into a transportation course, as well as the impact of this intervention on…
Conceptions of Woodwind Students Regarding the Process of Learning a Piece of Music
ERIC Educational Resources Information Center
Marín, Cristina; Pérez-Echeverría, María-Puy; Scheuer, Nora
2014-01-01
The way in which students and teachers conceive the nature of knowledge and its acquisition has been deeply investigated in recent decades since these conceptions underlie teaching and learning processes themselves. In this study, we analysed how woodwind students from different levels of expertise conceive the process of learning a musical piece.…
Measuring student learning using initial and final concept test in an STEM course
NASA Astrophysics Data System (ADS)
Kaw, Autar; Yalcin, Ali
2012-06-01
Effective assessment is a cornerstone in measuring student learning in higher education. For a course in Numerical Methods, a concept test was used as an assessment tool to measure student learning and its improvement during the course. The concept test comprised 16 multiple choice questions and was given in the beginning and end of the class for three semesters. Hake's gain index, a measure of learning gains from pre- to post-tests, of 0.36 to 0.41 were recorded. The validity and reliability of the concept test was checked via standard measures such as Cronbach's alpha, content and criterion-related validity, item characteristic curves and difficulty and discrimination indices. The performance of various subgroups such as pre-requisite grades, transfer students, gender and age were also studied.
Integrating E-Learning 2.0 into Online Courses
ERIC Educational Resources Information Center
Yuen, Steve Chi-Yin
2014-01-01
This paper provides an overview of e-learning 2.0 concepts and presents a case study that involves the design, development, and teaching of two online courses based on e-learning 2.0 concepts. The design and the construction of e-learning 2.0 courses, and their effects on the students' learning experience are examined. In addition, students'…
ERIC Educational Resources Information Center
Shen, Kuan-Ming; Lee, Min-Hsien; Tsai, Chin-Chung; Chang, Chun-Yen
2016-01-01
In the area of science education research, studies have attempted to investigate conceptions of learning, approaches to learning, and self-efficacy, mainly focusing on science in general or on specific subjects such as biology, physics, and chemistry. However, few empirical studies have probed students' earth science learning. This study aimed to…
College students' understanding of stereochemistry: Difficulties in learning and critical junctures
NASA Astrophysics Data System (ADS)
Lyon, Gary Lester
Because stereochemistry is an important part of both high school and college chemistry curricula, a study of difficulties experienced by students in the learning of stereochemistry was undertaken in a one-semester college organic chemistry course. This study, conducted over the course of two semesters with more than two hundred students, utilized clinical interviews, concept maps, and student journals to identify these difficulties, which were then tabulated and categorized. Although student journals were not a productive source of information, the types of difficulties that emerged from the concept maps were compared and contrasted with those that emerged from the clinical interviews. Data from the concept maps were analyzed using Kendall's W, a nonparametric statistic that was deemed appropriate for determining concordance between individual concept maps. The correlation between values of Kendall's W for sets of concept maps and multiple choice questions designed to evaluate the content of these same maps was determined, with values of Pearson's r of .8093 (p = .051) and .7191 (p = .044) for the Fall, 1997 and Spring, 1998 semesters, respectively. These data were used to estimate the occurrence of critical junctures in the learning of stereochemistry, or points at which students must possess a certain framework of understanding of previous concepts in order to master new material (Trowbridge & Wandersee, 1994). One critical juncture was identified that occurred when the topics of enantiorners, absolute configuration, and inversion of configuration were introduced. Among the more important conclusions of this study to the learning of stereochemistry are the following. Both concept maps and interviews provided useful information regarding difficulties in the learning of stereochemistry; this information was complementary in some aspects and similar in others. Concept maps were useful in diagnosing difficulties in application of terms and definitions, whereas interviews were useful when seeking information about difficulties in the manipulation of chemical structures. Both concept maps and interviews were superior to student journals as tools to probe student difficulties in the learning of stereochemistry.
Uniform circular motion concept attainment through circle share learning model using real media
NASA Astrophysics Data System (ADS)
Ponimin; Suparmi; Sarwanto; Sunarno, W.
2017-01-01
Uniform circular motion is an important concept and has many applications in life. Student’s concept understanding of uniform circular motion is not optimal because the teaching learning is not carried out properly in accordance with the characteristics of the concept. To improve student learning outcomes required better teaching learning which is match with the characteristics of uniform circular motion. The purpose of the study is to determine the effect of real media and circle share model to the understanding of the uniform circular motion concept. The real media was used to visualize of uniform circular motion concept. The real media consists of toy car, round table and spring balance. Circle share model is a learning model through discussion sequentially and programmed. Each group must evaluate the worksheets of another group in a circular position. The first group evaluates worksheets the second group, the second group evaluates worksheets third group, and the end group evaluates the worksheets of the first group. Assessment of learning outcomes includes experiment worksheets and post-test of students. Based on data analysis we obtained some findings. First, students can explain the understanding of uniform circular motion whose angular velocity and speed is constant correctly. Second, students can distinguish the angular velocity and linear velocity correctly. Third, students can explain the direction of the linear velocity vector and the direction of the centripetal force vector. Fourth, the student can explain the influence of the mass, radius, and velocity toward the centripetal force. Fifth, students can explain the principle of combined of wheels. Sixth, teaching learning used circle share, can increase student activity, experimental results and efficiency of discussion time.
ERIC Educational Resources Information Center
von der Heidt, Tania
2015-01-01
This paper explains the application of concept mapping to help foster a learning-centred approach. It investigates how concept maps are used to measure the change in learning following a two-week intensive undergraduate Marketing Principles course delivered to 162 Chinese students undertaking a Bachelor of Business Administration programme in…
NASA Astrophysics Data System (ADS)
Maries, Alexandru; Sayer, Ryan; Singh, Chandralekha
2017-12-01
Research suggests that introductory physics students often have difficulty using a concept in contexts different from the ones in which they learned it without explicit guidance to help them make the connection between the different contexts. We have been investigating advanced students' learning of quantum mechanics concepts and have developed interactive tutorials which strive to help students learn these concepts. Two such tutorials, focused on the Mach-Zehnder interferometer (MZI) and the double-slit experiment (DSE), help students learn how to use the concept of "which-path" information to reason about the presence or absence of interference in these two experiments in different situations. After working on a pretest that asked students to predict interference in the MZI with single photons and polarizers of various orientations placed in one or both paths of the MZI, students worked on the MZI tutorial which, among other things, guided them to reason in terms of which-path information in order to predict interference in similar situations. We investigated the extent to which students were able to use reasoning related to which-path information learned in the MZI tutorial to answer analogous questions on the DSE (before working on the DSE tutorial). After students worked on the DSE pretest they worked on a DSE tutorial in which they learned to use the concept of which-path information to answer questions about interference in the DSE with single particles with mass sent through the two slits and a monochromatic lamp placed between the slits and the screen. We investigated if this additional exposure to the concept of which-path information promoted improved learning and performance on the DSE questions with single photons and polarizers placed after one or both slits. We find evidence that both tutorials promoted which-path information reasoning and helped students use this reasoning appropriately in contexts different from the ones in which they had learned it.
The effect of an outdoor setting on the transfer of earth science concepts
NASA Astrophysics Data System (ADS)
Simmons, Jerry Marvin
The ability of students to transfer concepts learned in school to future learning and employment settings is critical to their academic and career success. Concept transfer can best be studied by defining it as a process rather than an isolated event. Preparation for future learning (PFL) is a process definition of transfer which recognizes the student's ability to draw from past experiences, make assumptions, and generate potential questions and strategies for problem resolution. The purpose of this study was to use the PFL definition of concept transfer to examine whether a knowledge-rich outdoor setting better prepares students for future learning of science concepts than the classroom setting alone does. The research hypothesis was that sixth-grade students experiencing a geology-rich outdoor setting would be better prepared to learn advanced earth science concepts than students experiencing classroom learning only. A quasi-experimental research design was used for this study on two non-equivalent, self-contained sixth-grade rural public school classes. After a pretest was given on prior geology knowledge, the outdoor treatment group was taken on a geology-rich field excursion which introduced them to the concepts of mineral formation and mining. The indoor treatment group received exposure to the same concepts in the classroom setting via color slides and identification of mineral specimens. Subsequently, both groups received direct instruction on advanced concepts about mineral formation and mining. They were then given a posttest, which presented the students with a problem-solving scenario and questions related to concepts covered in the direct instruction. A t-test done on pretest data revealed that the indoor treatment group had previously learned classroom geology material significantly better than the outdoor treatment group had. Therefore an analysis of covariance was performed on posttest data which showed that the outdoor treatment group was better prepared for future learning of advanced geology concepts than the indoor treatment group. Because the environment chosen for this study was by nature one that contained variables outside the control of the researcher, it can only be speculated that the outdoor environment was the agent of transfer. Subsequent studies need to be done to substantiate this hypothesis.
Student Perceptions of and Confidence in Self-Care Course Concepts Using Team-based Learning
Gryka, Rebecca; Kiersma, Mary E.; Todt, Abby L.; Cailor, Stephanie M.; Chen, Aleda M. H.
2016-01-01
Objective. To evaluate changes in student perceptions of and confidence in self-care concepts after completing a team-based learning (TBL) self-care course. Methods. Team-based learning was used at two universities in first professional year, semester-long self-care courses. Two instruments were created and administered before and after the semester. The instruments were designed to assess changes in student perceptions of self-care using the theory of planned behavior (TPB) domains and confidence in learning self-care concepts using Bandura’s Social Cognitive Theory. Wilcoxon signed rank tests were used to evaluate pre/post changes, and Mann Whitney U tests were used to evaluate university differences. Results. Fifty-three Cedarville University and 58 Manchester University students completed both instruments (100% and 92% response rates, respectively). Student self-care perceptions with TPB decreased significantly on nine of 13 items for Cedarville and decreased for one of 13 items for Manchester. Student confidence in self-care concepts improved significantly on all questions for both universities. Conclusion. Data indicate TBL self-care courses were effective in improving student confidence about self-care concepts. Establishing students’ skill sets prior to entering the profession is beneficial because pharmacists will use self-directed learning to expand their knowledge and adapt to problem-solving situations. PMID:27170817
Economic Education Laboratory: Initiating a Meaningful Economic Learning through Laboratory
ERIC Educational Resources Information Center
Noviani, Leny; Soetjipto, Budi Eko; Sabandi, Muhammad
2015-01-01
Laboratory is considered as one of the resources in supporting the learning process. The laboratory can be used as facilities to deepen the concepts, learning methods and enriching students' knowledge and skills. Learning process by utilizing the laboratory facilities can help lecturers and students in grasping the concept easily, constructing the…
Student Conceptions of Peer-Assisted Learning
ERIC Educational Resources Information Center
Hodgson, Yvonne; Benson, Robyn; Brack, Charlotte
2015-01-01
This article reports on a programme in which peer-assisted learning (PAL) was combined with case-based learning (CBL) in a second-year radiologic biology unit of study. Our aim is to explore evidence of whether PAL supported the development of qualitative conceptions of learning. The programme involved students in small PAL groups preparing and…
Student Conceptions about Energy Transformations: Progression from General Chemistry to Biochemistry
ERIC Educational Resources Information Center
Wolfson, Adele J.; Rowland, Susan L.; Lawrie, Gwendolyn A.; Wright, Anthony H.
2014-01-01
Students commencing studies in biochemistry must transfer and build on concepts they learned in chemistry and biology classes. It is well established, however, that students have difficulties in transferring critical concepts from general chemistry courses; one key concept is "energy." Most previous work on students' conception of energy…
Martín-Antón, Luis Jorge; Carbonero Martín, Miguel Angel; Román Sánchez, José María
2012-02-01
The purpose of this work is to verify the modulation of motivation, self-concept, and causal attributions in the efficacy of a training program of strategies to elaborate information in the stage of Compulsory Secondary Education (CSE). We selected 328 students from CSE, 179 from second grade and 149 from fourth grade, and three measurement moments: pretest, posttest, and follow-up. The results indicate greater use of learning strategies by students with higher intrinsic motivation, in contrast to students with higher extrinsic motivation, who use learning strategies less frequently. With regard to self-concept, the results differ as a function of the course. In second grade, we found modulation of the variable Academic self-concept, whereas in fourth grade, such modulation is produced by General self-concept and Private self-concept. In general, there is a tendency towards more enduring significant improvements in students with medium and high self-concept, especially in their perception of the use of strategies or in complex tasks that involve relating the contents to be learned with experiences from their daily life. However, students with low self-concept significantly improve strategies associated with learning how to perform specific tasks.
NASA Astrophysics Data System (ADS)
Mewhinney, Christina
A study was conducted to investigate the relationship of students' concept integration and achievement with time spent within a topic and across related topics in a large first semester guided inquiry organic chemistry class. Achievement was based on evidence of algorithmic problem solving; and concept integration was based on demonstrated performance explaining, applying, and relating concepts to each other. Twelve individual assessments were made of both variables over three related topics---acid/base, nucleophilic substitution and electrophilic addition reactions. Measurements included written, free response and ordered multiple answer questions using a classroom response system. Results demonstrated that students can solve problems without conceptual understanding. A second study was conducted to compare the students' learning approach at the beginning and end of the course. Students were scored on their preferences for a deep, strategic, or surface approach to learning based on their responses to a pre and post survey. Results suggest that students significantly decreased their preference for a surface approach during the semester. Analysis of the data collected was performed to determine the relationship between students' learning approach and their concept integration and achievement in this class. Results show a correlation between a deep approach and concept integration and a strong negative correlation between a surface approach and concept integration.
NASA Astrophysics Data System (ADS)
Buaraphan, Khajornsak
2018-01-01
According to the constructivist theory, students' prior conceptions play an important role in their process of knowledge construction and teachers must take those prior conceptions into account when designing learning activities. The interpretive study was conducted to explore grade 8 students' conceptions about force and motion. The research participants were 42 students (21 male, 21 female) from seven Educational Opportunity Expansion Schools in Nakhon Pathom province located at the central region of Thailand. In each school, two low, two medium and two high achievers were selected. The Interview-About-Instance (IAI) technique was used to collect data. All interviews were audio recorded and subsequently transcribed verbatim. The students' conceptions were interpreted into scientific conception (SC), partial scientific conception (PC) and alternative conception (AC). The frequency of each category was counted and calculated for percentage. The results revealed that the students held a variety of prior conceptions about force and motion ranged from SC, PC to AC. Each students, including the high achievers, held mixed conceptions of force and motion. Interesting, the two dominant ACs held by the students were: a) force-implies-motion or motion-implies-force, and b) force coming only from an active agent. The science teachers need to take these ACs into account when designing the learning activities to cope with them. The implications regarding teaching and learning about force and motion are also discussed.
ERIC Educational Resources Information Center
Platow, Michael J.; Mavor, Kenneth I.; Grace, Diana M.
2013-01-01
The current research examined the role that students' discipline-related self-concepts may play in their deep and surface approaches to learning, their overall learning outcomes, and continued engagement in the discipline itself. Using a cross-lagged panel design of first-year university psychology students, a causal path was observed in which…
ERIC Educational Resources Information Center
Mbabazi Bamwesiga, Penelope; Fejes, Andreas; Dahlgren, Lars-Owe
2013-01-01
The aim of this study is to understand the different ways that university students conceptualise quality in learning by drawing on a phenomenographic approach. A total of 20 students in higher education in Rwanda were interviewed and analysis of the interviews generated an outcome space of conceptions of quality in learning as transformation,…
ERIC Educational Resources Information Center
Kumi-Yeboah, Alex; Dogbey, James; Yuan, Guangji
2018-01-01
The rapid growth of online education at the K-12 level in recent years presents the need to explore issues that influence the academic experiences of students choosing this method of learning. In this study, we examined factors that promote/hinder the learning experiences and academic self-concept of minority students attending an online high…
Students' Application of Chemical Concepts When Solving Chemistry Problems in Different Contexts
ERIC Educational Resources Information Center
Broman, Karolina; Parchmann, Ilka
2014-01-01
Context-based learning approaches have been implemented in school science over the last 40 years as a way to enhance students' interest in, as well as learning outcomes from, science. Contexts are used to connect science with the students' lives and to provide a frame in which concepts can be learned and applied on a…
ERIC Educational Resources Information Center
Yang, Fang-Ying; Chang, Cheng-Chieh
2009-01-01
The purpose of the study is to explore three kinds of personal affective traits among high-school students and their effects on web-based concept learning. The affective traits include personal preferences about web-based learning environments, personal epistemological beliefs, and beliefs about web-based learning. One hundred 11th graders…
Hiatt, Anna; Davis, Gregory K.; Trujillo, Caleb; Terry, Mark; French, Donald P.; Price, Rebecca M.; Perez, Kathryn E.
2013-01-01
To examine how well biology majors have achieved the necessary foundation in evolution, numerous studies have examined how students learn natural selection. However, no studies to date have examined how students learn developmental aspects of evolution (evo-devo). Although evo-devo plays an increasing role in undergraduate biology curricula, we find that instruction often addresses development cursorily, with most of the treatment embedded within instruction on evolution. Based on results of surveys and interviews with students, we suggest that teaching core concepts (CCs) within a framework that integrates supporting concepts (SCs) from both evolutionary and developmental biology can improve evo-devo instruction. We articulate CCs, SCs, and foundational concepts (FCs) that provide an integrative framework to help students master evo-devo concepts and to help educators address specific conceptual difficulties their students have with evo-devo. We then identify the difficulties that undergraduates have with these concepts. Most of these difficulties are of two types: those that are ubiquitous among students in all areas of biology and those that stem from an inadequate understanding of FCs from developmental, cell, and molecular biology. PMID:24006397
The Effective Concepts on Students' Understanding of Chemical Reactions and Energy
ERIC Educational Resources Information Center
Ayyildiz, Yildizay; Tarhan, Leman
2012-01-01
The purpose of this study was to determine the relationship between the basic concepts related to the unit of "Chemical Reactions and Energy" and the sub-concepts underlying for meaningful learning of the unit and to investigate the effectiveness of them on students' learning achievements. For this purpose, the basic concepts of the unit…
Scherer, A; Kröpil, P; Heusch, P; Buchbender, C; Sewerin, P; Blondin, D; Lanzman, R S; Miese, F; Ostendorf, B; Bölke, E; Mödder, U; Antoch, G
2011-11-01
Medical curricula are currently being reformed in order to establish superordinated learning objectives, including, e.g., diagnostic, therapeutic and preventive competences. This requires a shifting from traditional teaching methods towards interactive and case-based teaching concepts. Conceptions, initial experiences and student evaluations of a novel radiological course Co-operative Learning In Clinical Radiology (CLICR) are presented in this article. A novel radiological teaching course (CLICR course), which combines different innovative teaching elements, was established and integrated into the medical curriculum. Radiological case vignettes were created for three clinical teaching modules. By using a PC with PACS (Picture Archiving and Communication System) access, web-based databases and the CASUS platform, a problem-oriented, case-based and independent way of learning was supported as an adjunct to the well established radiological courses and lectures. Student evaluations of the novel CLICR course and the radiological block course were compared. Student evaluations of the novel CLICR course were significantly better compared to the conventional radiological block course. Of the participating students 52% gave the highest rating for the novel CLICR course concerning the endpoint overall satisfaction as compared to 3% of students for the conventional block course. The innovative interactive concept of the course and the opportunity to use a web-based database were favorably accepted by the students. Of the students 95% rated the novel course concept as a substantial gain for the medical curriculum and 95% also commented that interactive working with the PACS and a web-based database (82%) promoted learning and understanding. Interactive, case-based teaching concepts such as the presented CLICR course are considered by both students and teachers as useful extensions to the radiological course program. These concepts fit well into competence-oriented curricula.
NASA Astrophysics Data System (ADS)
Sambeka, Yana; Nahadi, Sriyati, Siti
2017-05-01
The study aimed to obtain the scientific information about increase of student's concept mastering in project based learning that used authentic assessment. The research was conducted in May 2016 at one of junior high school in Bandung in the academic year of 2015/2016. The research method was weak experiment with the one-group pretest-posttest design. The sample was taken by random cluster sampling technique and the sample was 24 students. Data collected through instruments, i.e. written test, observation sheet, and questionnaire sheet. Student's concept mastering test obtained N-Gain of 0.236 with the low category. Based on the result of paired sample t-test showed that implementation of authentic assessment in the project based learning increased student's concept mastering significantly, (sig<0.05).
Assessment of the core learning objectives curriculum for the urology clerkship.
Rapp, David E; Gong, Edward M; Reynolds, W Stuart; Lucioni, Alvaro; Zagaja, Gregory P
2007-11-01
The traditional approach to the surgical clerkship has limitations, including variability of clinical exposure. To optimize student education we developed and introduced the core learning objectives curriculum, which is designed to allow students freedom to direct their learning and focus on core concepts. We performed a prospective, randomized, controlled study to compare the efficacy of core learning objectives vs traditional curricula through objective and subjective measures. Medical students were randomly assigned to the core learning objectives or traditional curricula during the 2-week urology clerkship. Faculty was blinded to student assignment. Upon rotation completion all students were given a 20-question multiple choice examination covering basic urology concepts. In addition, students completed a questionnaire addressing subjective clerkship satisfaction, comprising 15 questions. Between June 2005 and January 2007, 10 core learning objectives students and 10 traditional students completed the urology clerkship. The average +/- SEM multiple choice examination score was 12.1 +/- 0.87 and 9.8 +/- 0.59 for students assigned to the core learning objectives and traditional curricula, respectively (p <0.05). Subjective scores were higher in the core learning objectives cohort, although this result did not attain statistical significance (124.9 +/- 3.72 vs 114.3 +/- 4.96, p = 0.1). Core learning objectives students reported higher satisfaction in all 15 assessed subjective end points. Our experience suggests that the core learning objectives model may be an effective educational tool to help students achieve a broad and directed exposure to the core urological concepts.
Smith, Michelle K; Wood, William B; Knight, Jennifer K
2008-01-01
We have designed, developed, and validated a 25-question Genetics Concept Assessment (GCA) to test achievement of nine broad learning goals in majors and nonmajors undergraduate genetics courses. Written in everyday language with minimal jargon, the GCA is intended for use as a pre- and posttest to measure student learning gains. The assessment was reviewed by genetics experts, validated by student interviews, and taken by >600 students at three institutions. Normalized learning gains on the GCA were positively correlated with averaged exam scores, suggesting that the GCA measures understanding of topics relevant to instructors. Statistical analysis of our results shows that differences in the item difficulty and item discrimination index values between different questions on pre- and posttests can be used to distinguish between concepts that are well or poorly learned during a course.
Wood, William B.; Knight, Jennifer K.
2008-01-01
We have designed, developed, and validated a 25-question Genetics Concept Assessment (GCA) to test achievement of nine broad learning goals in majors and nonmajors undergraduate genetics courses. Written in everyday language with minimal jargon, the GCA is intended for use as a pre- and posttest to measure student learning gains. The assessment was reviewed by genetics experts, validated by student interviews, and taken by >600 students at three institutions. Normalized learning gains on the GCA were positively correlated with averaged exam scores, suggesting that the GCA measures understanding of topics relevant to instructors. Statistical analysis of our results shows that differences in the item difficulty and item discrimination index values between different questions on pre- and posttests can be used to distinguish between concepts that are well or poorly learned during a course. PMID:19047428
Mcnaughton, Susan; Barrow, Mark; Bagg, Warwick; Frielick, Stanley
2016-01-01
Practice-based learning integrates the cognitive, psychomotor, and affective domains and is influenced by students' beliefs, values, and attitudes. Concept mapping has been shown to effectively demonstrate students' changing concepts and knowledge structures. This article discusses how concept mapping was modified to capture students' perceptions of the connections between the domains of thinking and knowing, emotions, behavior, attitudes, values, and beliefs and the specific experiences related to these, over a period of eight months of practice-based clinical learning. The findings demonstrate that while some limitations exist, modified concept mapping is a manageable way to gather rich data about students' perceptions of their clinical practice experiences. These findings also highlight the strong integrating influence of beliefs and values on other areas of practice, suggesting that these need to be attended to as part of a student's educational program.
Dong, Ruimin; Yang, Xiaoyan; Xing, Bangrong; Zou, Zihao; Zheng, Zhenda; Xie, Xujing; Zhu, Jieming; Chen, Lin; Zhou, Hanjian
2015-01-01
Concept mapping is an effective method in teaching and learning, however this strategy has not been evaluated among electrocardiogram (ECG) diagnosis learning. This study explored the use of concept maps to assist ECG study, and sought to analyze whether this method could improve undergraduate students’ ECG interpretation skills. There were 126 undergraduate medical students who were randomly selected and assigned to two groups, group A (n = 63) and group B (n = 63). Group A was taught to use concept maps to learn ECG diagnosis, while group B was taught by traditional methods. After the course, all of the students were assessed by having an ECG diagnostic test. Quantitative data which comprised test score and ECG features completion index was compared by using the unpaired Student’s t-test between the two groups. Further, a feedback questionnaire on concept maps used was also completed by group A, comments were evaluated by a five-point Likert scale. The test scores of ECGs interpretation was 7.36 ± 1.23 in Group A and 6.12 ± 1.39 in Group B. A significant advantage (P = 0.018) of concept maps was observed in ECG interpretation accuracy. No difference in the average ECG features completion index was observed between Group A (66.75 ± 15.35%) and Group B (62.93 ± 13.17%). According qualitative analysis, majority of students accepted concept maps as a helpful tool. Difficult to learn at the beginning and time consuming are the two problems in using this method, nevertheless most of the students indicated to continue using it. Concept maps could be a useful pedagogical tool in enhancing undergraduate medical students’ ECG interpretation skills. Furthermore, students indicated a positive attitude to it, and perceived it as a resource for learning. PMID:26221331
OCRA, a Mobile Learning Prototype for Understanding Chemistry Concepts
ERIC Educational Resources Information Center
Shariman, Tenku Putri Norishah; Talib, Othman
2017-01-01
This research studies the effects of an interactive multimedia mobile learning application on students' understanding of chemistry concepts. The Organic Chemistry Reaction Application (OCRA), a mobile learning prototype with touch screen commands, was applied in this research. Through interactive multimedia techniques, students can create and…
Refining a Learning Progression of Energy
ERIC Educational Resources Information Center
Yao, Jian-Xin; Guo, Yu-Ying; Neumann, Knut
2017-01-01
This paper presents a revised learning progression for the energy concept and initial findings on diverse progressions among subgroups of sample students. The revised learning progression describes how students progress towards an understanding of the energy concept along two progress variables identified from previous studies--key ideas about…
Application of Model Project Based Learning on Integrated Science in Water Pollution
NASA Astrophysics Data System (ADS)
Yamin, Y.; Permanasari, A.; Redjeki, S.; Sopandi, W.
2017-09-01
The function of this research was to analyze the influence model Project Based Learning (PjBl) on integrated science about the concept mastery for junior high school students. Method used for this research constitutes the quasi of experiment method. Population and sample for this research are the students junior high school in Bandung as many as two classes to be experiment and control class. The instrument that used for this research is the test concept mastery, assessment questionnaire of product and the questionnaire responses of the student about learning integrated science. Based on the result of this research get some data that with accomplishment the model of PjBl. Learning authority of integrated science can increase the concept mastery for junior high school students. The highest increase in the theme of pollution water is in the concept of mixtures and the separation method. The students give a positive response in learning of integrated science for the theme of pollution of the water used model PjBL with questionnaire of the opinion aspect in amount of 83.5%, the anxiety of the students in amount of 95.5%, the profit learning model of PjBL in amount of 96.25% and profit learning of integrated science in amount of 95.75%.
López-Íñiguez, Guadalupe; Pozo, Juan Ignacio
2014-06-01
Despite increasing interest in teachers' and students' conceptions of learning and teaching, and how they influence their practice, there are few studies testing the influence of teachers' conceptions on their students' learning. This study tests how teaching conception (TC; with a distinction between direct and constructive) influences students' representations regarding sheet music. Sixty students (8-12 years old) from music conservatories: 30 of them took lessons with teachers with a constructive TC and another 30 with teachers shown to have a direct TC. Children were given a musical comprehension task in which they were asked to select and rank the contents they needed to learn. These contents had different levels of processing and complexity: symbolic, analytical, and referential. Three factorial ANOVAs, two-one-way ANOVAs, and four 2 × 3 repeated-measures ANOVAs were used to analyse the effects of and the interaction between the independent variables TC and class, both for/on total cards selected, their ranking, and each sub-category (the three processing levels). ANOVAs on the selection and ranking of these contents showed that teachers' conceptions seem to mediate significantly in the way the students understand the music. Students from constructive teachers have more complex and deep understanding of music. They select more elements for learning scores than those from traditional teachers. Teaching conception also influences the way in which children rank those elements. No difference exists between the way 8- and 12-year-olds learn scores. Children's understanding of the scores is more complex than assumed in other studies. © 2013 The British Psychological Society.
ERIC Educational Resources Information Center
Richardson, John T. E.
2010-01-01
Background: The attainment of White students at UK institutions of higher education tends to be higher than that of students from other ethnic groups, but the causes of this are unclear. Aims: This study compared White students and students from other ethnic groups in their conceptions of learning, their approaches to studying, and their academic…
ERIC Educational Resources Information Center
Celikten, Oksan; Ipekcioglu, Sevgi; Ertepinar, Hamide; Geban, Omer
2012-01-01
The purpose of this study was to compare the effectiveness of the conceptual change oriented instruction through cooperative learning (CCICL) and traditional science instruction (TI) on 4th grade students' understanding of earth and sky concepts and their attitudes toward earth and sky concepts. In this study, 56 fourth grade students from the…
Conceptions of Programming: A Study into Learning To Program.
ERIC Educational Resources Information Center
Booth, Shirley
This paper reports the results of a phenomenographic study which focused on identifying and describing the conceptions of programming and related phenomena of about 120 computer science and computer engineering students learning to program. The report begins by tracing developments in the students' conceptions of programming and its parts, and…
Dealing with Piaget: Analyzing Card Games for Understanding Concepts.
ERIC Educational Resources Information Center
Weisskirch, Robert S.
Students who take developmental psychology courses have difficulty applying theoretical concepts to situations separate from the context of theory. When learning about Piagetian theory, students often confine their understanding to demonstrations of conservation tasks. Analyzing Card Games, an active learning activity, allows students to apply the…
Identifying STEM Concepts Associated with Junior Livestock Projects
ERIC Educational Resources Information Center
Wooten, Kate; Rayfield, John; Moore, Lori L.
2013-01-01
Science, technology, engineering, and mathematics (STEM) education is intended to provide students with a cross-subject, contextual learning experience. To more fully prepare our nation's students to enter the globally competitive workforce, STEM integration allows students to make connections between the abstract concepts learned in core subject…
ERIC Educational Resources Information Center
Popova-Gonci, Viktoria; Lamb, Monica C.
2012-01-01
Prior learning assessment (PLA) students enter academia with different types of concepts--some of them have been formally accepted and labeled by academia and others are informally formulated by students via independent and/or experiential learning. The critical goal of PLA practices is to assess an intricate combination of prior learning…
Peer Tutoring Effects on Omani Students' English Self-Concept
ERIC Educational Resources Information Center
Alrajhi, Marwa N.; Aldhafri, Said S.
2015-01-01
Based on the social cognitive learning theory (1997), peer learning can be viewed as an effective way of enhancing learning. In this study, peer tutoring, a form of peer learning, was examined. The current study investigated the influence of a peer tutoring program implemented at Sultan Qaboos University on students' English self-concept. 125…
Fostering radical conceptual change through dual-situated learning model
NASA Astrophysics Data System (ADS)
She, Hsiao-Ching
2004-02-01
This article examines how the Dual-Situated Learning Model (DSLM) facilitates a radical change of concepts that involve the understanding of matter, process, and hierarchical attributes. The DSLM requires knowledge of students' prior beliefs of science concepts and the nature of these concepts. In addition, DSLM also serves two functions: it creates dissonance with students' prior knowledge by challenging their epistemological and ontological beliefs about science concepts, and it provides essential mental sets for students to reconstruct a more scientific view of the concepts. In this study, the concept heat transfer: heat conduction and convection, which requires an understanding of matter, process, and hierarchical attributes, was chosen to examine how DSLM can facilitate radical conceptual change among students. Results show that DSLM has great potential to foster a radical conceptual change process in learning heat transfer. Radical conceptual change can definitely be achieved and does not necessarily involve a slow or gradual process.
Marambe, Kosala N; Athuraliya, T Nimmi C; Vermunt, Jan D; Boshuizen, Henny Pa
2007-09-01
Students adapt their learning strategies, orientations and conceptions to differences in the learning environment. The new curriculum of the Faculty of Medicine, University of Peradeniya, Sri Lanka, which commenced in 2005, puts greater emphasis on student-centred learning. The aim of this study was to compare the learning strategies, orientations and conceptions measured by means of a validated Sri Lankan version of the Inventory of Learning Styles (ILS) at the end of the first academic year for a traditional curriculum student group and a new curriculum student group. The Adyayana Rata Prakasha Malawa (ARPM) 130-item Sinhala version of the ILS was administered to students of the traditional curriculum and the new curriculum at the end of their first academic year respectively. Mean scale scores of the 2 groups were compared using independent sample t-test. Students of the new curriculum reported the use of critical processing, concrete processing and memorising and rehearsing strategies significantly more than those in the traditional curriculum group. With respect to learning orientations, personal interest scores were significantly higher for the new curriculum students while reporting of ambiguity was significantly lower among them. The results favour the assumption that changes made to the organisation of subject content and instructional and assessment methods have a positive impact on students' use of learning strategies and motivation.
Comparability of Self-Concept among Learning Disabled, Normal, and Gifted Students.
ERIC Educational Resources Information Center
Winne, Phillip H.; And Others
1982-01-01
Using 60 fourth- to seventh-grade learning disabled (LD), normal, and gifted students, the comparability of representations of self-concept across groups was analyzed for the Sears and Coopersmith inventories. (Author/SW)
ERIC Educational Resources Information Center
Jordan, L.; Bovill, C.; Othman, S. M.; Saleh, A. M.; Shabila, N. P.; Watters, N.
2014-01-01
This paper explores the idea that student-centred learning (SCL) is a concept and an approach that is internationally useful and transferable to a range of higher education settings. We present details of a British Council funded collaborative project between Hawler Medical University (HMU), in Erbil in the Kurdistan region of northern Iraq and…
ERIC Educational Resources Information Center
Seker, Burcu Sezginsoy; Erdem, Aliye
2017-01-01
Students learning a defined subject only perform by learning of thinking based on the concepts forming that subjects. Otherwise, students may move away from the scientific meaning of concepts and may fall into conceptual errors. Students' conceptual errors affect their following learning and cause them resist change. It is possible to prevent this…
Threshold concepts in prosthetics.
Hill, Sophie
2017-12-01
Curriculum documents identify key concepts within learning prosthetics. Threshold concepts provide an alternative way of viewing the curriculum, focussing on the ways of thinking and practicing within prosthetics. Threshold concepts can be described as an opening to a different way of viewing a concept. This article forms part of a larger study exploring what students and staff experience as difficult in learning about prosthetics. To explore possible threshold concepts within prosthetics. Qualitative, interpretative phenomenological analysis. Data from 18 students and 8 staff at two universities with undergraduate prosthetics and orthotics programmes were generated through interviews and questionnaires. The data were analysed using an interpretative phenomenological analysis approach. Three possible threshold concepts arose from the data: 'how we walk', 'learning to talk' and 'considering the person'. Three potential threshold concepts in prosthetics are suggested with possible implications for prosthetics education. These possible threshold concepts involve changes in both conceptual and ontological knowledge, integrating into the persona of the individual. This integration occurs through the development of memories associated with procedural concepts that combine with disciplinary concepts. Considering the prosthetics curriculum through the lens of threshold concepts enables a focus on how students learn to become prosthetists. Clinical relevance This study provides new insights into how prosthetists learn. This has implications for curriculum design in prosthetics education.
Concept mapping enhances learning of biochemistry.
Surapaneni, Krishna M; Tekian, Ara
2013-03-05
Teaching basic science courses is challenging in undergraduate medical education because of the ubiquitous use of didactic lectures and reward for recall of factual information during examinations. The purpose of this study is to introduce concept maps with clinical cases (the innovative program) to improve learning of biochemistry course content. Participants were first year medical students (n=150) from Saveetha Medical College and Hospital (India); they were randomly divided into two groups of 75, one group attending the traditional program, the other the innovative program. Student performance was measured using three written knowledge tests (each with a maximum score of 20). The students also evaluated the relevance of the learning process using a 12-item questionnaire. Students in the innovative program using concept mapping outperformed those in the traditional didactic program (means of 7.13-8.28 vs. 12.33-13.93, p<0.001). The students gave high positive ratings for the innovative course (93-100% agreement). The new concept-mapping program resulted in higher academic performance compared to the traditional course and was perceived favorably by the students. They especially valued the use of concept mapping as learning tools to foster the relevance of biochemistry to clinical practice, and to enhance their reasoning and learning skills, as well as their deeper understanding for biochemistry.
Concept mapping enhances learning of biochemistry
Surapaneni, Krishna M.; Tekian, Ara
2013-01-01
Background Teaching basic science courses is challenging in undergraduate medical education because of the ubiquitous use of didactic lectures and reward for recall of factual information during examinations. The purpose of this study is to introduce concept maps with clinical cases (the innovative program) to improve learning of biochemistry course content. Methods Participants were first year medical students (n=150) from Saveetha Medical College and Hospital (India); they were randomly divided into two groups of 75, one group attending the traditional program, the other the innovative program. Student performance was measured using three written knowledge tests (each with a maximum score of 20). The students also evaluated the relevance of the learning process using a 12-item questionnaire. Results Students in the innovative program using concept mapping outperformed those in the traditional didactic program (means of 7.13–8.28 vs. 12.33–13.93, p<0.001). The students gave high positive ratings for the innovative course (93–100% agreement). Conclusion The new concept-mapping program resulted in higher academic performance compared to the traditional course and was perceived favorably by the students. They especially valued the use of concept mapping as learning tools to foster the relevance of biochemistry to clinical practice, and to enhance their reasoning and learning skills, as well as their deeper understanding for biochemistry. PMID:23464600
Concept mapping enhances learning of biochemistry.
Surapaneni, KrishnaM; Tekian, Ara
2013-01-01
Teaching basic science courses is challenging in undergraduate medical education because of the ubiquitous use of didactic lectures and reward for recall of factual information during examinations. The purpose of this study is to introduce concept maps with clinical cases (the innovative program) to improve learning of biochemistry course content. Participants were first year medical students (n=150) from Saveetha Medical College and Hospital (India); they were randomly divided into two groups of 75, one group attending the traditional program, the other the innovative program. Student performance was measured using three written knowledge tests (each with a maximum score of 20). The students also evaluated the relevance of the learning process using a 12-item questionnaire. Students in the innovative program using concept mapping outperformed those in the traditional didactic program (means of 7.13-8.28 vs. 12.33-13.93, p<0.001). The students gave high positive ratings for the innovative course (93-100% agreement). The new concept-mapping program resulted in higher academic performance compared to the traditional course and was perceived favorably by the students. They especially valued the use of concept mapping as learning tools to foster the relevance of biochemistry to clinical practice, and to enhance their reasoning and learning skills, as well as their deeper understanding for biochemistry.
Learning Multiplication Using Indonesian Traditional Game in Third Grade
ERIC Educational Resources Information Center
Prahmana, Rully Charitas Indra; Zulkardi; Hartono, Yusuf
2012-01-01
Several previous researches showed that students had difficulty in understanding the basic concept of multiplication. Students are more likely to be introduced by using formula without involving the concept itself. This underlies the researcher to design a learning trajectory of learning multiplication using Permainan Tradisional Tepuk Bergambar…
ERIC Educational Resources Information Center
Sickel, Aaron J.; Lee, Michele H.; Pareja, Enrique M.
2010-01-01
How can a teacher simultaneously teach science concepts through inquiry while helping students learn about the nature of science? After pondering this question in their own teaching, the authors developed a 5E learning cycle lesson (Bybee et al. 2006) that concurrently embeds opportunities for fourth-grade students to (a) learn a science concept,…
Learning Geometry through Dynamic Geometry Software
ERIC Educational Resources Information Center
Forsythe, Sue
2007-01-01
In this article, the author investigates effective teaching and learning of geometrical concepts using dynamic geometry software (DGS). Based from her students' reactions to her project, the author found that her students' understanding of the concepts was better than if they had learned geometry through paper-based tasks. However, mixing computer…
Learning Abstract Physical Concepts from Experience: Design and Use of an RC Circuit
NASA Astrophysics Data System (ADS)
Parra, Alfredo; Ordenes, Jorge; de la Fuente, Milton
2018-05-01
Science learning for undergraduate students requires grasping a great number of theoretical concepts in a rather short time. In our experience, this is especially difficult when students are required to simultaneously use abstract concepts, mathematical reasoning, and graphical analysis, such as occurs when learning about RC circuits. We present a simple experimental model in this work that allows students to easily design, build, and analyze RC circuits, thus providing an opportunity to test personal ideas, build graphical descriptions, and explore the meaning of the respective mathematical models, ultimately gaining a better grasp of the concepts involved. The result suggests that the simple setup indeed helps untrained students to visualize the essential points of this kind of circuit.
ERIC Educational Resources Information Center
Rau, Martina A.
2017-01-01
STEM instruction often uses visual representations. To benefit from these, students need to understand how representations show domain-relevant concepts. Yet, this is difficult for students. Prior research shows that physical representations (objects that students manipulate by hand) and virtual representations (objects on a computer screen that…
Students' Conceptions of Basic Ideas of the Second Law of Thermodynamics.
ERIC Educational Resources Information Center
Duit, Reinders; Kesidou, Sofia
The focus of this study was to portray the ideas that students with four years experience in learning physics developed in regard to the second law of thermodynamics. Data were obtained through 34 clinical interviews with grade 10 students. An analysis of student arguments revealed deeply rooted difficulties in using concepts that were learned in…
The Concept of Magnitude and What It Tells Us about How Struggling Students Learn Fractions
ERIC Educational Resources Information Center
Woodward, John
2017-01-01
This commentary summarizes emerging research into fractions instruction for students who are at risk for failure. Each of the three articles emphasizes a measure conception of fractions. Teaching fractions as measurement helps students learn the magnitude of rational numbers. However, measurement is only part of the way that students should…
Student Conceptions of Feedback: Impact on Self-Regulation, Self-Efficacy, and Academic Achievement
ERIC Educational Resources Information Center
Brown, Gavin T. L.; Peterson, Elizabeth R.; Yao, Esther S.
2016-01-01
Background: Lecturers give feedback on assessed work in the hope that students will take it on board and use it to help regulate their learning for the next assessment. However, little is known about how students' conceptions of feedback relate to students' self-regulated learning and self-efficacy beliefs and academic performance. Aims: This…
Alternative conceptions of introductory geoscience students and a method to decrease them
NASA Astrophysics Data System (ADS)
Kortz, Karen Melissa
College students often leave introductory geoscience courses with alternative conceptions, and these alternative conceptions are a barrier to their grasp of geological conceptions. This dissertation clarifies the problem and suggests pedagogical strategies for correcting it. It is an integration of research on students' conceptions of geoscience topics with the application of that knowledge to the development of materials to change these conceptions to be more scientifically accurate. This research identifies and documents alternative conceptions students have in several key geoscience topics and the consequences of these alternative conception in terms of preventing understanding. After documenting the alternative conceptions, I investigate their sources. In addition, I develop ways in which the alternative conceptions can be addressed in classrooms in terms of non-traditional teaching techniques, and I assess the success of these methods. Chapter 1 addresses alternative conceptions in general introductory geoscience topics. I use known student alternative conceptions to develop a series of interactive materials to help reduce students' alternative conceptions. After their development, I assess the efficacy of these materials, and my research indicates that they are successful in helping students better learn the geoscience concepts. Chapter 2 deals with a particularly difficult topic for students---that of phylogenetic systematics. Students have an intuitive way of categorizing organisms, and this categorization is different from the system used by experts within the field. My investigation indicates the conceptual change required of students to fully understand the topic leads to great difficulties with learning. Drawing upon results of the research in Chapter 1, I developed and assessed interactive materials to help students better understand phylogenetic systematics. Using the insight gained from Chapters 1 and 2, Chapters 3 and 4 further examine students' conceptions in an area critical to understanding geology: rocks and their formation. My research indicates that students view rocks as objects independent from the processes that form and change them. In addition, I document students' alternative conceptions of rocks. Using these alternative conceptions, I look more deeply into the underlying factors that cause the difficulties students have with learning rocks, their formation, and their importance to the geosciences.
ERIC Educational Resources Information Center
Millard, Joseph E.
The author contends that there is a strong relationship between a students' scholastic success and self-image. Following a brief literature review, the Self-Anchoring Attitude Scale (SAAS), an inventory designed to assess attitude, is discussed. Each subject is asked to write down what they would say about students who like to learn, and what they…
Contextual Teaching and Learning Approach of Mathematics in Primary Schools
NASA Astrophysics Data System (ADS)
Selvianiresa, D.; Prabawanto, S.
2017-09-01
The Contextual Teaching and Learning (CTL) approach is an approach involving active students in the learning process to discover the concepts learned through to knowledge and experience of the students. Similar to Piaget’s opinion that learning gives students an actives trying to do new things by relating their experiences and building their own minds. When students to connecting mathematics with real life, then students can looking between a conceptual to be learned with a concept that has been studied. So that, students can developing of mathematical connection ability. This research is quasi experiment with a primary school in the city of Kuningan. The result showed that CTL learning can be successful, when learning used a collaborative interaction with students, a high level of activity in the lesson, a connection to real-world contexts, and an integration of science content with other content and skill areas. Therefore, CTL learning can be applied by techer to mathematics learning in primary schools.
Cooper, Katelyn M; Krieg, Anna; Brownell, Sara E
2018-06-01
Academic self-concept is one's perception of his or her ability in an academic domain and is formed by comparing oneself to other students. As college biology classrooms transition from lecturing to active learning, students interact more with each other and are likely comparing themselves more to other students in the class. Student characteristics can impact students' academic self-concept; however, this has been unexplored in the context of undergraduate biology. In this study, we explored whether student characteristics can affect academic self-concept in the context of an active learning college physiology course. Using a survey, students self-reported how smart they perceived themselves to be in the context of physiology relative to the whole class and relative to their groupmate, the student with whom they worked most closely in class. Using linear regression, we found that men and native English speakers had significantly higher academic self-concept relative to the whole class compared with women and nonnative English speakers. Using logistic regression, we found that men had significantly higher academic self-concept relative to their groupmate compared with women. Using constant comparison methods, we identified nine factors that students reported influenced how they determined whether they were more or less smart than their groupmate. Finally, we found that students were more likely to report participating more than their groupmate if they had a higher academic self-concept. These findings suggest that student characteristics can influence students' academic self-concept, which in turn may influence their participation in small-group discussion and their academic achievement in active learning classes.
NASA Astrophysics Data System (ADS)
Jannati, E. D.; Setiawan, A.; Siahaan, P.; Rochman, C.
2018-05-01
This study aims to determine the description of virtual laboratory learning media development to improve science literacy skills of Mechanical Engineering students on the concept of basic Physics. Quasi experimental method was employed in this research. The participants of this research were first semester students of mechanical engineering in Majalengka University. The research instrument was readability test of instructional media. The results of virtual laboratory learning media readability test show that the average score is 78.5%. It indicates that virtual laboratory learning media development are feasible to be used in improving science literacy skill of Mechanical Engineering students in Majalengka University, specifically on basic Physics concepts of material measurement.
Medical Student Perspectives of Active Learning: A Focus Group Study.
Walling, Anne; Istas, Kathryn; Bonaminio, Giulia A; Paolo, Anthony M; Fontes, Joseph D; Davis, Nancy; Berardo, Benito A
2017-01-01
Phenomenon: Medical student perspectives were sought about active learning, including concerns, challenges, perceived advantages and disadvantages, and appropriate role in the educational process. Focus groups were conducted with students from all years and campuses of a large U.S. state medical school. Students had considerable experience with active learning prior to medical school and conveyed accurate understanding of the concept and its major strategies. They appreciated the potential of active learning to deepen and broaden learning and its value for long-term professional development but had significant concerns about the efficiency of the process, the clarity of expectations provided, and the importance of receiving preparatory materials. Most significantly, active learning experiences were perceived as disconnected from grading and even as impeding preparation for school and national examinations. Insights: Medical students understand the concepts of active learning and have considerable experience in several formats prior to medical school. They are generally supportive of active learning concepts but frustrated by perceived inefficiencies and lack of contribution to the urgencies of achieving optimal grades and passing United States Medical Licensing Examinations, especially Step 1.
Plan of Work 2010: Towards True Student-Centered Learning
ERIC Educational Resources Information Center
European Students' Union (NJ1), 2010
2010-01-01
The European Students' Union's (ESU's) vision regarding the Student Centered Learning concept stems from the fundamental belief that the learning process should have at its core learning objectives as they are prioritized by each individual students, also that each (potential) student should be empowered to define those objectives and progress…
Argument Based Science Inquiry (ABSI) Learning Model in Voltaic Cell Concept
NASA Astrophysics Data System (ADS)
Subarkah, C. Z.; Fadilah, A.; Aisyah, R.
2017-09-01
Voltaic Cell is a sub-concept of electrochemistry that is considered difficult to be comprehended by learners Voltaic Cell is a sub concept of electrochemistry that is considered difficult to be understood by learners so that impacts on student activity in learning process. Therefore the learning model Argument Based Science Inquiry (ABSI) will be applied to the concept of Voltaic cell. This research aims to describe students’ activities during learning process using ABSI model and to analyze students’ competency to solve ABSI-based worksheets (LK) of Voltaic Cell concept. The method used in this research was the “mix-method-quantitative-embedded” method with subjects of the study: 39 second-semester students of Chemistry Education study program. The student activity is quite good during ABSI learning. The students’ ability to complete worksheet (LK) for every average phase is good. In the phase of exploration of post instruction understanding, it is categorized very good, and in the phase of negotiation shape III: comparing science ideas to textbooks or other printed resources merely reach enough category. Thus, the ABSI learning has improved the student levels of activity and students’ competency to solve the ABSI-based worksheet (LK).
Aligning Goals, Assessments, and Activities: An Approach to Teaching PCR and Gel Electrophoresis
Robertson, Amber L.; Batzli, Janet; Harris, Michelle; Miller, Sarah
2008-01-01
Polymerase chain reaction (PCR) and gel electrophoresis have become common techniques used in undergraduate molecular and cell biology labs. Although students enjoy learning these techniques, they often cannot fully comprehend and analyze the outcomes of their experiments because of a disconnect between concepts taught in lecture and experiments done in lab. Here we report the development and implementation of novel exercises that integrate the biological concepts of DNA structure and replication with the techniques of PCR and gel electrophoresis. Learning goals were defined based on concepts taught throughout the cell biology lab course and learning objectives specific to the PCR and gel electrophoresis lab. Exercises developed to promote critical thinking and target the underlying concepts of PCR, primer design, gel analysis, and troubleshooting were incorporated into an existing lab unit based on the detection of genetically modified organisms. Evaluative assessments for each exercise were aligned with the learning goals and used to measure student learning achievements. Our analysis found that the exercises were effective in enhancing student understanding of these concepts as shown by student performance across all learning goals. The new materials were particularly helpful in acquiring relevant knowledge, fostering critical-thinking skills, and uncovering prevalent misconceptions. PMID:18316813
Effects of tutor-related behaviours on the process of problem-based learning.
Chng, Esther; Yew, Elaine H J; Schmidt, Henk G
2011-10-01
Tutors in a Problem-Based Learning (PBL) curriculum are thought to play active roles in guiding students to develop frameworks for use in the construction of knowledge. This implies that both subject-matter expertise and the ability of tutors to facilitate the learning process must be important in helping students learn. This study examines the behavioural effects of tutors in terms of subject-matter expertise, social congruence and cognitive congruence on students' learning process and on their final achievement. The extent of students' learning at each PBL phase was estimated by tracking the number of relevant concepts recalled at the end of each learning phase, while student achievement was based on students' ability to describe and elaborate upon the relationship between relevant concepts learned. By using Analysis of Covariance, social congruence of the tutor was found to have a significant influence on learning in each PBL phase while all of the tutor-related behaviours had a significant impact on student achievement. The results suggest that the ability of tutors to communicate informally with students and hence create a less threatening learning environment that promotes a free flow exchange of ideas, has a greater impact on learning at each of the PBL phases as compared to tutors' subject-matter expertise and their ability to explain concepts in a way that is easily understood by students. The data presented indicates that these tutor-related behaviours are determinants of learning in a PBL curriculum, with social congruence having a greater influence on learning in the different PBL phases.
The influence of extracurricular activities on middle school students' science learning in China
NASA Astrophysics Data System (ADS)
Zhang, Danhui; Tang, Xing
2017-07-01
Informal science learning has been found to have effects on students' science learning. Through the use of secondary data from a national assessment of 7410 middle school students in China, this study explores the relationship among five types of extracurricular science activities, learning interests, academic self-concept, and science achievement. Structural equation modelling was used to investigate the influence of students' self-chosen and school-organised extracurricular activities on science achievement through mediating interests and the academic self-concept. Chi-square tests were used to determine whether there was an opportunity gap in the student's engagement in extracurricular activities. The students' volunteer and school-organised participation in extracurricular science activities had a positive and indirect influence on their science achievement through the mediating variables of their learning interests and academic self-concept. However, there were opportunity gaps between different groups of students in terms of school location, family background, and especially the mother's education level. Students from urban areas with better-educated mothers or higher socioeconomic status are more likely to access diverse science-related extracurricular activities.
ERIC Educational Resources Information Center
Yuliani, Kiki; Saragih, Sahat
2015-01-01
The purpose of this research was to: 1) development of learning devices based guided discovery model in improving of understanding concept and critical thinking mathematically ability of students at Islamic Junior High School; 2) describe improvement understanding concept and critical thinking mathematically ability of students at MTs by using…
ERIC Educational Resources Information Center
Mannlein, Sally
2001-01-01
Presents an art activity in which first grade students draw dinosaurs in order to learn about the concept of warm and cool colors. Explains how the activity also helped the students learn about the concept of distance when drawing. (CMK)
NASA Astrophysics Data System (ADS)
Yaseen, Zeynep; Aubusson, Peter
2018-02-01
This article describes an investigation into teaching and learning with student-generated animations combined with a representational pedagogy. In particular, it reports on interactive discussions that were stimulated by the students' own animations as well as their critiques of experts' animations. Animations representing views of states of matter provided a vehicle by which to investigate learning in a series of lessons. The study was implemented with Year 11 high school students. After students constructed, presented and discussed their animations, they watched and critiqued experts' animations. They were then interviewed about the teaching-learning process. Most students (91%) spoke positively about follow-up discussion classes, saying that their previous conceptions and understanding of states of matter had improved. They explained that they had identified some alternative conceptions, which they had held regarding states of matter and explained how their conceptions had changed. They reported that the teaching/learning process had helped them to develop a deeper understanding of the changing states of matter.
Emotional Factors that Influence Student Typewriting Behavior.
ERIC Educational Resources Information Center
Robinson, Jerry W.; Ownby, Arnola C.
1979-01-01
The authors discuss the cognitive, affective, and psychomotor domains of learning typewriting, student attitudes toward learning, their self-concept, and teacher attitudes toward student learning ability, with learning conditions and motivation techniques for effective typewriting instruction. (MF)
Orthodontic undergraduate education: developments in a modern curriculum.
Chadwick, Stephen M; Bearn, David R; Jack, Alan C; O'Brien, Kevin D
2002-05-01
This paper explores some modern concepts of teaching and learning, including cognitive theory, the zone of proximal development, constructivism, andragogy and learning styles and describes how they have informed the development of an undergraduate orthodontic curriculum. The changes described include student-centred learning, guided self-learning, and the incorporation of problem-based learning concepts. The details of the problem-based learning programme are described together with results of student feedback on the change in teaching and learning style.
ERIC Educational Resources Information Center
Gonzalez, Hilda Leonor; Palencia, Alberto Pardo; Umana, Luis Alfredo; Galindo, Leonor; Villafrade M., Luz Adriana
2008-01-01
Even though comprehension of human physiology is crucial in the clinical setting, students frequently learn part of this subject using rote memory and then are unable to transfer knowledge to other contexts or to solve clinical problems. This study evaluated the impact of articulating the concept map strategy with the mediated learning experience…
Child Care Students' Practical Conceptions of Learning
ERIC Educational Resources Information Center
Boulton-Lewis, G. M.; Brownlee, J.; Berthelsen, D.; Dunbar, S.
2008-01-01
This paper describes an analysis of interview transcripts for 77 first- and second-year students enrolled in a vocational education course for child-care work. The purpose was to identify their conceptions of learning. All six categories of conceptions, as identified originally by Martin et al. (1993), were found. However, more than 50% of the…
Prospective Pedagogy for Teaching Chemical Bonding for Smart and Sustainable Learning
ERIC Educational Resources Information Center
Dhindsa, Harkirat S.; Treagust, David F.
2014-01-01
As an important subject in the curriculum, many students find chemistry concepts difficult to learn and understand. Chemical bonding especially is important in understanding the compositions of chemical compounds and related concepts and research has shown that students struggle with this concept. In this theoretical paper based on analysis of…
Students' Understanding of the Function-Derivative Relationship When Learning Economic Concepts
ERIC Educational Resources Information Center
Ariza, Angel; Llinares, Salvador; Valls, Julia
2015-01-01
The aim of this study is to characterise students' understanding of the function-derivative relationship when learning economic concepts. To this end, we use a fuzzy metric (Chang 1968) to identify the development of economic concept understanding that is defined by the function-derivative relationship. The results indicate that the understanding…
ERIC Educational Resources Information Center
Chichekian, Tanya; Shore, Bruce M.
2013-01-01
This collaborative concept-mapping exercise was conducted in a second-year mathematics methods course. Teachers' visual representations of their mathematical content and pedagogical knowledge provided insight into their understanding of how students learn mathematics. We collected 28 preservice student teachers' concept maps and analyzed them by…
ERIC Educational Resources Information Center
Abate, Marie A.; Meyer-Stout, Paula J.; Stamatakis, Mary K.; Gannett, Peter M.; Dunsworth, Teresa S.; Nardi, Anne H.
2000-01-01
Describes development and evaluation of eight computerized problem-based learning (PBL) cases in medicinal chemistry and pharmaceutics concepts. Case versions either incorporated concept maps emphasizing key ideas or did not. Student performance on quizzes did not differ between the different case versions and was similar to that of students who…
Effects of digital game-based learning on student engagement and academic achievement
NASA Astrophysics Data System (ADS)
Little, Timothy W.
This experimental study was designed to determine the effect of digital game-based learning on student engagement and academic achievement. The sample was comprised of 34 students enrolled in a secondary Biology class in a rural public school. The study utilized an experimental pretest-posttest design with switching replications. After random assignment, students participated in one of two supplemental learning activities: playing a digital game designed to review science concepts or participating in a lab to review the same concepts. Students subsequently switched activities. Student achievement data were collected on mastery of science concepts, and student engagement data were collected utilizing self- and teacher-reported measures. Data were analyzed using analysis of variance (ANOVA) with repeated measures. Results demonstrated that the digital game was as effective as the lab activity at increasing teacher-reported student engagement and academic achievement. These findings may be of interest to school administrators or directors of teacher preparation programs on the potential effectiveness of digital games as a learning tool.
Castejón, Juan L; Gilar, Raquel; Veas, Alejandro; Miñano, Pablo
2016-01-01
The aims of this work were to identify and establish differential characteristics in learning strategies, goal orientations, and self-concept between overachieving, normal-achieving and underachieving secondary students. A total of 1400 Spanish first and second year high school students from the South-East geographical area participated in this study. Three groups of students were established: a group with underachieving students, a group with a normal level of achievement, and a third group with overachieving students. The students were assigned to each group depending on the residual punctuations obtained from a multiple regression analysis in which the punctuation of an IQ test was the predictor and a measure composed of the school grades of nine subjects was the criteria. The results of one-way ANOVA and the Games-Howell post-hoc test showed that underachieving students had significantly lower punctuations in all of the measures of learning strategies and learning goals, as well as all of the academic self-concept, personal self-concept, parental relationship, honesty, and personal stability factors. In contrast, overachieving students had higher punctuations than underachieving students in the same variables and higher punctuations than normal-achieving students in most of the variables in which significant differences were detected. These results have clear educational implications.
Castejón, Juan L.; Gilar, Raquel; Veas, Alejandro; Miñano, Pablo
2016-01-01
The aims of this work were to identify and establish differential characteristics in learning strategies, goal orientations, and self-concept between overachieving, normal-achieving and underachieving secondary students. A total of 1400 Spanish first and second year high school students from the South-East geographical area participated in this study. Three groups of students were established: a group with underachieving students, a group with a normal level of achievement, and a third group with overachieving students. The students were assigned to each group depending on the residual punctuations obtained from a multiple regression analysis in which the punctuation of an IQ test was the predictor and a measure composed of the school grades of nine subjects was the criteria. The results of one-way ANOVA and the Games-Howell post-hoc test showed that underachieving students had significantly lower punctuations in all of the measures of learning strategies and learning goals, as well as all of the academic self-concept, personal self-concept, parental relationship, honesty, and personal stability factors. In contrast, overachieving students had higher punctuations than underachieving students in the same variables and higher punctuations than normal-achieving students in most of the variables in which significant differences were detected. These results have clear educational implications. PMID:27729879
Comparison of normalized gain and Cohen's d for analyzing gains on concept inventories
NASA Astrophysics Data System (ADS)
Nissen, Jayson M.; Talbot, Robert M.; Nasim Thompson, Amreen; Van Dusen, Ben
2018-06-01
Measuring student learning is a complicated but necessary task for understanding the effectiveness of instruction and issues of equity in college science, technology, engineering, and mathematics (STEM) courses. Our investigation focused on the implications on claims about student learning that result from choosing between one of two commonly used metrics for analyzing shifts in concept inventories. The metrics are normalized gain (g ), which is the most common method used in physics education research and other discipline based education research fields, and Cohen's d , which is broadly used in education research and many other fields. Data for the analyses came from the Learning About STEM Student Outcomes (LASSO) database and included test scores from 4551 students on physics, chemistry, biology, and math concept inventories from 89 courses at 17 institutions from across the United States. We compared the two metrics across all the concept inventories. The results showed that the two metrics lead to different inferences about student learning and equity due to the finding that g is biased in favor of high pretest populations. We discuss recommendations for the analysis and reporting of findings on student learning data.
ERIC Educational Resources Information Center
Fouberg, Erin H.
2013-01-01
Through qualitative analysis of 80 student essays, the author examines geographic concepts students describe as holding traits of threshold concepts. With a group of 11 Honors students, the author employs metacogntion, asking students to analyze their own learning to discover their threshold concepts. Recognizing the role of liminality, this study…
Engineering students' conceptions of entrepreneurial learning as part of their education
NASA Astrophysics Data System (ADS)
Täks, Marge; Tynjälä, Päivi; Kukemelk, Hasso
2016-01-01
The purpose of this study was to examine what kinds of conceptions of entrepreneurial learning engineering students expressed in an entrepreneurship course integrated in their study programme. The data were collected during an entrepreneurship course in Estonia that was organised for fourth-year engineering students, using video-recorded group interviews (N = 48) and individual in-depth interviews (N = 16). As a result of the phenomenographic analysis, four qualitatively distinctive conceptions of entrepreneurial learning were discerned. Entrepreneurial learning was seen to involve (1) applying entrepreneurial ideas to engineering, (2) understanding entrepreneurial issues in a new way, (3) action-oriented personal development, and (4) self-realising through collective effort. These qualitatively distinct categories differed from each other in four dimensions of variation: nature of learning, response to pedagogy, relation to teamwork, and learning outcomes.
Visualization: a tool for enhancing students' concept images of basic object-oriented concepts
NASA Astrophysics Data System (ADS)
Cetin, Ibrahim
2013-03-01
The purpose of this study was twofold: to investigate students' concept images about class, object, and their relationship and to help them enhance their learning of these notions with a visualization tool. Fifty-six second-year university students participated in the study. To investigate his/her concept images, the researcher developed a survey including open-ended questions, which was administered to the participants. Follow-up interviews with 12 randomly selected students were conducted to explore their answers to the survey in depth. The results of the first part of the research were utilized to construct visualization scenarios. The students used these scenarios to develop animations using Flash software. The study found that most of the students experienced difficulties in learning object-oriented notions. Overdependence on code-writing practice and examples and incorrectly learned analogies were determined to be the sources of their difficulties. Moreover, visualization was found to be a promising approach in facilitating students' concept images of basic object-oriented notions. The results of this study have implications for researchers and practitioners when designing programming instruction.
ERIC Educational Resources Information Center
Sunyono; Yuanita, L.; Ibrahim, M.
2015-01-01
The aim of this research is identify the effectiveness of a multiple representation-based learning model, which builds a mental model within the concept of atomic structure. The research sample of 108 students in 3 classes is obtained randomly from among students of Mathematics and Science Education Studies using a stratified random sampling…
Investigating the Impact of Concept Mapping Software on Greek Students with Attention Deficit (AD)
ERIC Educational Resources Information Center
Riga, Asimina; Papayiannis, Nikolaos
2015-01-01
The present study investigates if there is a positive effect of the use of concept mapping software on students with Attention Deficit (AD) when learning descriptive writing in the secondary level of education. It also examines what kind of difficulties AD students may have come across during this learning procedure. Sample students were selected…
ERIC Educational Resources Information Center
Madu, B. C.
2012-01-01
The study explored the efficacy of four-step (4-E) learning cycle approach on students understanding of concepts related to Simple Harmonic Motion (SHM). 124 students (63 for experimental group and 61 for control group) participated in the study. The students' views and ideas in simple Harmonic Achievement test were analyzed qualitatively. The…
Impact of Computer Animations in Cognitive Learning: Differentiation
ERIC Educational Resources Information Center
Altiparmak, Kemal
2014-01-01
In mathematic courses, construction of some concepts by the students in a meaningful way may be complicated. In such circumstances, to embody the concepts application of the required technologies may reinforce learning process. Onset of learning process over daily life events of the student's environment may lure their attention and may…
Bioliteracy and Teaching Efficacy: What Biologists Can Learn from Physicists
ERIC Educational Resources Information Center
Klymkowsky, Michael W.; Garvin-Doxas, Kathy; Zeilik, Michael
2003-01-01
The introduction of the Force Concept Inventory (FCI) by David Hestenes and colleagues in 1992 produced a remarkable impact within the community of physics teachers. An instrument to measure student comprehension of the Newtonian concept of force, the FCI demonstrates that active learning leads to far superior student conceptual learning than…
Threshold Concepts, Student Learning and Curriculum: Making Connections between Theory and Practice
ERIC Educational Resources Information Center
Barradell, Sarah; Kennedy-Jones, Mary
2015-01-01
Threshold concepts, student learning and curriculum are constructs within a learning and teaching discourse foregrounded by Meyer and Land. In this paper, we introduce a conceptual model that integrates these three constructs and identifies desired outcomes at the intersects: namely the processes of (1) ways of thinking and practising, (2)…
Structuring Cooperative Learning for Motivation and Conceptual Change in the Concepts of Mixtures
ERIC Educational Resources Information Center
Belge Can, Hatice; Boz, Yezdan
2016-01-01
This study investigates the effect of structuring cooperative learning based on conceptual change approach on grade 9 students' understanding the concepts of mixtures and their motivation, compared with traditional instruction. Among six classes of a high school, two of them were randomly assigned to cooperative learning group where students were…
Learning Genetics with Paper Pets
ERIC Educational Resources Information Center
Finnerty, Valerie Raunig
2006-01-01
By the end of the eighth grade, students are expected to have a basic understanding of the mechanism of basic genetic inheritance. However, these concepts can be difficult to teach. In this article, the author introduces a new learning tool that will help facilitate student learning and enthusiasm to the basic concepts of genetic inheritance. This…
Gender, Assessment and Students' Literacy Learning: Implications for Formative Assessment
ERIC Educational Resources Information Center
Murphy, Patricia; Ivinson, Gabrielle
2005-01-01
Formative assessment is intended to develop students' capacity to learn and increase the effectiveness of teaching. However, the extent to which formative assessment can meet these aims depends on the relationship between its conception and current conceptions of learning. In recent years concern about sex group differences in achievement has led…
Understanding Students' Experiences of Professionalism Learning: A "Threshold" Approach
ERIC Educational Resources Information Center
Neve, Hilary; Lloyd, Helen; Collett, Tracey
2017-01-01
Professionalism is a core element of curricula in many disciplines but can be difficult to teach and learn. This study used audio-diary methodology to identify professionalism threshold concepts in a small group learning setting in undergraduate medicine and to understand factors that might facilitate students to "get" such concepts.…
Gryka, Rebecca; Kiersma, Mary E; Frame, Tracy R; Cailor, Stephanie M; Chen, Aleda M H
To evaluate differences in student confidence and perceptions of biochemistry concepts using a team-based learning (TBL) format versus a traditional lecture-based format at two universities. Two pedagogies (TBL vs lecture-based) were utilized to deliver biochemistry concepts at two universities in a first-professional year, semester-long biochemistry course. A 21-item instrument was created and administered pre-post semester to assess changes in confidence in learning biochemistry concepts using Bandura's Social Cognitive Theory (eight items, 5-point, Likert-type) and changes in student perceptions of biochemistry utilizing the theory of planned behavior (TPB) domains (13 items, 7- point, Likert-type). Wilcoxon signed-rank tests were used to evaluate pre-post changes, and Mann Whitney U tests for differences between universities. All students (N=111) had more confidence in biochemistry concepts post-semester, but TBL students (N=53) were significantly more confident. TBL students also had greater agreement that they are expected to actively engage in science courses post-semester, according to the perceptions of biochemistry subscale. No other differences between lecture and TBL were observed post-semester. Students in a TBL course had greater gains in confidence. Since students often engage in tasks where they feel confident, TBL can be a useful pedagogy to promote student learning. Copyright © 2017 Elsevier Inc. All rights reserved.
Cooper, Katelyn M; Ashley, Michael; Brownell, Sara E
2017-01-01
There has been a national movement to transition college science courses from passive lectures to active learning environments. Active learning has been shown to be a more effective way for students to learn, yet there is concern that some students are resistant to active learning approaches. Although there is much discussion about student resistance to active learning, few studies have explored this topic. Furthermore, a limited number of studies have applied theoretical frameworks to student engagement in active learning. We propose using a theoretical lens of expectancy value theory to understand student resistance to active learning. In this study, we examined student perceptions of active learning after participating in 40 hours of active learning. We used the principal components of expectancy value theory to probe student experience in active learning: student perceived self-efficacy in active learning, value of active learning, and potential cost of participating in active learning. We found that students showed positive changes in the components of expectancy value theory and reported high levels of engagement in active learning, which provide proof of concept that expectancy value theory can be used to boost student perceptions of active learning and their engagement in active learning classrooms. From these findings, we have built a theoretical framework of expectancy value theory applied to active learning.
Cooper, Katelyn M.; Ashley, Michael; Brownell, Sara E.
2017-01-01
There has been a national movement to transition college science courses from passive lectures to active learning environments. Active learning has been shown to be a more effective way for students to learn, yet there is concern that some students are resistant to active learning approaches. Although there is much discussion about student resistance to active learning, few studies have explored this topic. Furthermore, a limited number of studies have applied theoretical frameworks to student engagement in active learning. We propose using a theoretical lens of expectancy value theory to understand student resistance to active learning. In this study, we examined student perceptions of active learning after participating in 40 hours of active learning. We used the principal components of expectancy value theory to probe student experience in active learning: student perceived self-efficacy in active learning, value of active learning, and potential cost of participating in active learning. We found that students showed positive changes in the components of expectancy value theory and reported high levels of engagement in active learning, which provide proof of concept that expectancy value theory can be used to boost student perceptions of active learning and their engagement in active learning classrooms. From these findings, we have built a theoretical framework of expectancy value theory applied to active learning. PMID:28861130
ERIC Educational Resources Information Center
Mueller, Ashley L.; Knobloch, Neil A.; Orvis, Kathryn S.
2015-01-01
Active learning can engage high school students to learn science, yet there is limited understanding if active learning can help students learn challenging science concepts such as genetics and biotechnology. This quasi-experimental study explored the effects of active learning compared to passive learning regarding high school students'…
NASA Astrophysics Data System (ADS)
Dyer, Brian Jay
This study documented the changes in understanding a class of eighth grade high school-level biology students experienced through a biology unit introducing genetics. Learning profiles for 55 students were created using concept maps and interviews as qualitative and quantitative instruments. The study provides additional support to the theory of learning progressions called for by experts in the field. The students' learning profiles were assessed to determine the alignment with a researcher-developed learning profile. The researcher-developed learning profile incorporated the learning progressions published in the Next Generation Science Standards, as well as current research in learning progressions for 5-10th grade students studying genetics. Students were found to obtain understanding of the content in a manner that was nonlinear, even circuitous. This opposes the prevailing interpretation of learning progressions, that knowledge is ascertained in escalating levels of complexity. Learning progressions have implications in teaching sequence, assessment, education research, and policy. Tracking student understanding of other populations of students would augment the body of research and enhance generalizability.
Engineering Students' Conceptions of Entrepreneurial Learning as Part of Their Education
ERIC Educational Resources Information Center
Täks, Marge; Tynjälä, Päivi; Kukemelk, Hasso
2016-01-01
The purpose of this study was to examine what kinds of conceptions of entrepreneurial learning engineering students expressed in an entrepreneurship course integrated in their study programme. The data were collected during an entrepreneurship course in Estonia that was organised for fourth-year engineering students, using video-recorded group…
ERIC Educational Resources Information Center
Wu, Yun; Sankar, Chetan S.
2013-01-01
Although students in Introductory Information Systems courses are taught new technology concepts, the complexity and constantly changing nature of these technologies makes it challenging to deliver the concepts effectively. Aiming to improve students' learning experiences, this research utilized the five phases of design science methodology to…
Project Clarion: Three Years of Science Instruction in Title I Schools among K-Third Grade Students
NASA Astrophysics Data System (ADS)
Kim, Kyung Hee; VanTassel-Baska, Joyce; Bracken, Bruce A.; Feng, Annie; Stambaugh, Tamra; Bland, Lori
2012-10-01
The purpose of the study was to measure the effects of higher level, inquiry-based science curricula on students at primary level in Title I schools. Approximately 3,300 K-3 students from six schools were assigned to experimental or control classes ( N = 115 total) on a random basis according to class. Experimental students were exposed to concept-based science curriculum that emphasized `deep learning' though concept mastery and investigation, whereas control classes learned science from traditional school-based curricula. Two ability measures, the Bracken Basic Concept Scale-Revised (BBCS-R, Bracken 1998) and the Naglieri Nonverbal Intelligence Test (NNAT, Naglieri 1991), were used for baseline information. Additionally, a standardized measure of student achievement in science (the MAT-8 science subtest), a standardized measure of critical thinking, and a measure for observing teachers' classroom behaviors were used to assess learning outcomes. Results indicated that all ability groups of students benefited from the science inquiry-based approach to learning that emphasized science concepts, and that there was a positive achievement effect for low socio-economic young children who were exposed to such a curriculum.
How Effective Is Example Generation for Learning Declarative Concepts?
ERIC Educational Resources Information Center
Rawson, Katherine A.; Dunlosky, John
2016-01-01
Declarative concepts (i.e., key terms and corresponding definitions for abstract concepts) represent foundational knowledge that students learn in many content domains. Thus, investigating techniques to enhance concept learning is of critical importance. Various theoretical accounts support the expectation that example generation will serve this…
Concept Learning through Image Processing.
ERIC Educational Resources Information Center
Cifuentes, Lauren; Yi-Chuan, Jane Hsieh
This study explored computer-based image processing as a study strategy for middle school students' science concept learning. Specifically, the research examined the effects of computer graphics generation on science concept learning and the impact of using computer graphics to show interrelationships among concepts during study time. The 87…
NASA Astrophysics Data System (ADS)
Tumewu, Widya Anjelia; Wulan, Ana Ratna; Sanjaya, Yayan
2017-05-01
The purpose of this study was to know comparing the effectiveness of learning using Project-based learning (PjBL) and Discovery Learning (DL) toward students metacognitive strategies on global warming concept. A quasi-experimental research design with a The Matching-Only Pretest-Posttest Control Group Design was used in this study. The subjects were students of two classes 7th grade of one of junior high school in Bandung City, West Java of 2015/2016 academic year. The study was conducted on two experimental class, that were project-based learning treatment on the experimental class I and discovery learning treatment was done on the experimental class II. The data was collected through questionnaire to know students metacognitive strategies. The statistical analysis showed that there were statistically significant differences in students metacognitive strategies between project-based learning and discovery learning.
Williams, Charlene; Perlis, Susan; Gaughan, John; Phadtare, Sangita
2018-05-06
Learner-centered pedagogical methods that are based on clinical application of basic science concepts through active learning and problem solving are shown to be effective for improving knowledge retention. As the clinical relevance of biochemistry is not always apparent to health-profession students, effective teaching of medical biochemistry should highlight the implications of biochemical concepts in pathology, minimize memorization, and make the concepts memorable for long-term retention. Here, we report the creation and successful implementation of a flipped jigsaw activity that was developed to stimulate interest in learning biochemistry among medical students. The activity combined the elements of a flipped classroom for learning concepts followed by a jigsaw activity to retrieve these concepts by solving clinical cases, answering case-based questions, and creating concept maps. The students' reception of the activity was very positive. They commented that the activity provided them an opportunity to review and synthesize information, helped to gage their learning by applying this information and work with peers. Students' improved performance especially for answering the comprehension-based questions correctly in the postquiz as well as the depth of information included in the postquiz concept maps suggested that the activity helped them to understand how different clinical scenarios develop owing to deviations in basic biochemical pathways. Although this activity was created for medical students, the format of this activity can also be useful for other health-professional students as well as undergraduate and graduate students. © 2018 by The International Union of Biochemistry and Molecular Biology, 2018. © 2018 The International Union of Biochemistry and Molecular Biology.
NASA Astrophysics Data System (ADS)
Handhika, J.; Cari, C.; Sunarno, W.; Suparmi, A.; Kurniadi, E.
2018-05-01
This research revealed the influence of project-based learning (PjBL) to increasing the level of the conception. The research method used the pre-experimental design with one group pre-test post-test. PjBL applied to students of physics education program of IKIP PGRI Madiun (23 Students). The test used to determine the level of conception is multiple choice tests and index of certainty. Activities on PjBL described. Obtained that the PjBL model can increase the level of conception and Critical thinking skills with the average normalized gain 0.49 and 0.57 (Medium category). It can be concluded that the PjBL could improve the level of conception and critical thinking ability of the students. Implementation of each model phase following learning objectives and needs analysis is the key to improve both.
Improving student learning and views of physics in a large enrollment introductory physics class
NASA Astrophysics Data System (ADS)
Salehzadeh Einabad, Omid
Introductory physics courses often serve as gatekeepers for many scientific and engineering programs and, increasingly, colleges are relying on large, lecture formats for these courses. Many students, however, leave having learned very little physics and with poor views of the subject. In interactive engagement (IE), classroom activities encourage students to engage with each other and with physics concepts and to be actively involved in their own learning. These methods have been shown to be effective in introductory physics classes with small group recitations. This study examined student learning and views of physics in a large enrollment course that included IE methods with no separate, small-group recitations. In this study, a large, lecture-based course included activities that had students explaining their reasoning both verbally and in writing, revise their ideas about physics concepts, and apply their reasoning to various problems. The questions addressed were: (a) What do students learn about physics concepts and how does student learning in this course compare to that reported in the literature for students in a traditional course?, (b) Do students' views of physics change and how do students' views of physics compare to that reported in the literature for students in a traditional course?, and (c) Which of the instructional strategies contribute to student learning in this course? Data included: pre-post administration of the Force Concept Inventory (FCI), classroom exams during the term, pre-post administration of the Colorado Learning Attitudes About Science Survey (CLASS), and student work, interviews, and open-ended surveys. The average normalized gain (=0.32) on the FCI falls within the medium-gain range as reported in the physics education literature, even though the average pre-test score was very low (30%) and this was the instructor's first implementation of IE methods. Students' views of physics remained relatively unchanged by instruction. Findings also indicate that the interaction of the instructional strategies together contributed to student learning. Based on these results, IE methods should be adopted in introductory physics classes, particularly in classes where students have low pre-test scores. It is also important to provide support for instructors new to IE strategies.
NASA Astrophysics Data System (ADS)
Handayani, D. P.; Sutarno, H.; Wihardi, Y.
2018-05-01
This study aimed in design and build e-learning with classroom flipped model to improve the concept of understanding of SMK students on the basic programming subject. Research and development obtained research data from survey questionnaire given to students of SMK class X RPL in SMK Negeri 2 Bandung and interviews to RPL productive teacher. Data also obtained from questionnaire of expert validation and students' assessment from e-learning with flipped classroom models. Data also obtained from multiple-choice test to measure improvements in conceptual understanding. The results of this research are: 1) Developed e- learning with flipped classroom model considered good and worthy of use by the average value of the percentage of 86,3% by media experts, and 85,5% by subjects matter experts, then students gave judgment is very good on e-learning either flipped classroom model with a percentage of 79,15% votes. 2) e-learning with classroom flipped models show an increase in the average value of pre-test before using e-learning 26.67 compared to the average value post-test after using e- learning at 63.37 and strengthened by the calculation of the index gains seen Increased understanding of students 'concepts by 50% with moderate criteria indicating that students' understanding is improving.
The Utility of Concept Maps to Facilitate Higher-Level Learning in a Large Classroom Setting
Carr-Lopez, Sian M.; Vyas, Deepti; Patel, Rajul A.; Gnesa, Eric H.
2014-01-01
Objective. To describe the utility of concept mapping in a cardiovascular therapeutics course within a large classroom setting. Design. Students enrolled in a cardiovascular care therapeutics course completed concept maps for each major chronic cardiovascular condition. A grading rubric was used to facilitate peer-assessment of the concept map. Assessment. Students were administered a survey at the end of the course assessing their perceptions on the usefulness of the concept maps during the course and also during APPEs to assess utility beyond the course. Question item analyses were conducted on cumulative final examinations comparing student performance on concept-mapped topics compared to nonconcept-mapped topics. Conclusion. Concept maps help to facilitate meaningful learning within the course and the majority of students utilized them beyond the course. PMID:26056408
NASA Astrophysics Data System (ADS)
Brereton, Margot Felicity
A series of short engineering exercises and design projects was created to help students learn to apply abstract knowledge to physical experiences with hardware. The exercises involved designing machines from kits of materials and dissecting and analyzing familiar household products. Students worked in teams. During the activities students brought their knowledge of engineering fundamentals to bear. Videotape analysis was used to identify and characterize the ways in which hardware contributed to learning fundamental concepts. Structural and qualitative analyses of videotaped activities were undertaken. Structural analysis involved counting the references to theory and hardware and the extent of interleaving of references in activity. The analysis found that there was much more discussion linking fundamental concepts to hardware in some activities than in others. The analysis showed that the interleaving of references to theory and hardware in activity is observable and quantifiable. Qualitative analysis was used to investigate the dialog linking concepts and hardware. Students were found to advance their designs and their understanding of engineering fundamentals through a negotiation process in which they pitted abstract concepts against hardware behavior. Through this process students sorted out theoretical assumptions and causal relations. In addition they discovered design assumptions, functional connections and physical embodiments of abstract concepts in hardware, developing a repertoire of familiar hardware components and machines. Hardware was found to be integral to learning, affecting the course of inquiry and the dynamics of group interaction. Several case studies are presented to illustrate the processes at work. The research illustrates the importance of working across the boundary between abstractions and experiences with hardware in order to learn engineering and physical sciences. The research findings are: (a) the negotiation process by which students discover fundamental concepts in hardware (and three central causes of negotiation breakdown); (b) a characterization of the ways that material systems contribute to learning activities, (the seven roles of hardware in learning); (c) the characteristics of activities that support discovering fundamental concepts in hardware (plus several engineering exercises); (d) a research methodology to examine how students learn in practice.
ERIC Educational Resources Information Center
Tlhoaele, Malefyane; Suhre, Cor; Hofman, Adriaan
2016-01-01
Cooperative learning may improve students' motivation, understanding of course concepts, and academic performance. This study therefore enhanced a cooperative, group-project learning technique with technology resources to determine whether doing so improved students' deep learning and performance. A sample of 118 engineering students, randomly…
Adapting a Framework for Assessing Students' Approaches to Modeling
ERIC Educational Resources Information Center
Bennett, Steven Carl
2017-01-01
We used an "approach to learning" theoretical framework to explicate the ways students engage in scientific modeling. Approach to learning theory suggests that when students approach learning deeply, they link science concepts with prior knowledge and experiences. Conversely, when students engage in a surface approach to learning, they…
Students' Conceptions on White Light and Implications for Teaching and Learning about Colour
ERIC Educational Resources Information Center
Haagen-Schützenhöfer, Claudia
2017-01-01
The quality of learning processes is mainly determined by the extent to which students' conceptions are addressed and thus conceptual change is triggered. Colour phenomena are a topic within initial instruction of optics which is challenging. A physically adequate concept of white light is crucial for being able to grasp the processes underlying…
ERIC Educational Resources Information Center
Smith, Michelle K.; Wood, William B.; Knight, Jennifer K.
2008-01-01
We have designed, developed, and validated a 25-question Genetics Concept Assessment (GCA) to test achievement of nine broad learning goals in majors and nonmajors undergraduate genetics courses. Written in everyday language with minimal jargon, the GCA is intended for use as a pre- and posttest to measure student learning gains. The assessment…
Identifying Atomic Structure as a Threshold Concept: Student Mental Models and Troublesomeness
ERIC Educational Resources Information Center
Park, Eun Jung; Light, Gregory
2009-01-01
Atomic theory or the nature of matter is a principal concept in science and science education. This has, however, been complicated by the difficulty students have in learning the concept and the subsequent construction of many alternative models. To understand better the conceptual barriers to learning atomic structure, this study explores the…
ERIC Educational Resources Information Center
Villafane, Sachel M.; Bailey, Cheryl P.; Loertscher, Jennifer; Minderhout, Vicky; Lewis, Jennifer E.
2011-01-01
Biochemistry is a challenging subject because student learning depends on the application of previously learned concepts from general chemistry and biology to new, biological contexts. This article describes the development of a multiple-choice instrument intended to measure five concepts from general chemistry and three from biology that are…
ERIC Educational Resources Information Center
Griffiths, Alan Keith; Preston, Kirk R.
An understanding of the concepts of atoms and molecules is fundamental to the learning of chemistry. Any misconceptions and alternative conceptions related to these concepts which students harbor will impede much further learning. This paper identifies misconceptions related to the fundamental characteristics of atoms and molecules which Grade 12…
Mediating Content Area Learning through the Use of Flip-Flop Study Guides.
ERIC Educational Resources Information Center
Chalmers, Lynne
1995-01-01
Students with learning disabilities may gain from use of "flip-flop" study guides to gain key vocabulary and concepts. Rather than providing definitions for terms, the student provides terms for definitions and concepts in the study guide. Such guides allow the teacher to focus on particular concepts and provide repetition of information for…
Mining Concept Maps to Understand University Students' Learning
ERIC Educational Resources Information Center
Yoo, Jin Soung; Cho, Moon-Heum
2012-01-01
Concept maps, visual representations of knowledge, are used in an educational context as a way to represent students' knowledge, and identify mental models of students; however there is a limitation of using concept mapping due to its difficulty to evaluate the concept maps. A concept map has a complex structure which is composed of concepts and…
Future Engineering Professors' Conceptions of Learning and Teaching Engineering
ERIC Educational Resources Information Center
Torres Ayala, Ana T.
2012-01-01
Conceptions of learning and teaching shape teaching practices and are, therefore, important to understanding how engineering professors learn to teach. There is abundant research about professors' conceptions of teaching; however, research on the conceptions of teaching of doctoral students, the future professors, is scarce. Furthermore,…
Developing Health Literacy Knowledge and Skills Through Case-Based Learning
Lopez, Tina
2014-01-01
Objective. To evaluate the efficacy of case-based learning to teach pharmacy students health literacy concepts and skills in managing patients with limited health literacy. Design. A health literacy patient case was developed and incorporated into a case-based learning laboratory. The case involved a patient with limited health literacy and required students to evaluate and formulate a care plan. Assessment. A comparison of pretest and posttest scores demonstrated that students gained health literacy knowledge and skills through completion of the patient case. Students believed that the case-based exercise was successful in meeting specific learning objectives for the course. Conclusions. Addition of a case-based learning was effective in teaching pharmacy students health literacy concepts and skills. PMID:24558285
ERIC Educational Resources Information Center
Jain, G. Panka; Gurupur, Varadraj P.; Schroeder, Jennifer L.; Faulkenberry, Eileen D.
2014-01-01
In this paper, we describe a tool coined as artificial intelligence-based student learning evaluation tool (AISLE). The main purpose of this tool is to improve the use of artificial intelligence techniques in evaluating a student's understanding of a particular topic of study using concept maps. Here, we calculate the probability distribution of…
Incorporating Concept Mapping in Project-Based Learning: Lessons from Watershed Investigations
NASA Astrophysics Data System (ADS)
Rye, James; Landenberger, Rick; Warner, Timothy A.
2013-06-01
The concept map tool set forth by Novak and colleagues is underutilized in education. A meta-analysis has encouraged teachers to make extensive use of concept mapping, and researchers have advocated computer-based concept mapping applications that exploit hyperlink technology. Through an NSF sponsored geosciences education grant, middle and secondary science teachers participated in professional development to apply computer-based concept mapping in project-based learning (PBL) units that investigated local watersheds. Participants attended a summer institute, engaged in a summer through spring online learning academy, and presented PBL units at a subsequent fall science teachers' convention. The majority of 17 teachers who attended the summer institute had previously used the concept mapping strategy with students and rated it highly. Of the 12 teachers who continued beyond summer, applications of concept mapping ranged from collaborative planning of PBL projects to building students' vocabulary to students producing maps related to the PBL driving question. Barriers to the adoption and use of concept mapping included technology access at the schools, lack of time for teachers to advance their technology skills, lack of student motivation to choose to learn, and student difficulty with linking terms. In addition to mitigating the aforementioned barriers, projects targeting teachers' use of technology tools may enhance adoption by recruiting teachers as partners from schools as well as a small number that already are proficient in the targeted technology and emphasizing the utility of the concept map as a planning tool.
ERIC Educational Resources Information Center
Currie-Mueller, Jenna L.; Littlefield, Robert S.
2018-01-01
Educators are aware of the benefits of service learning such as retention or application of course concepts. Students enrolled in courses with a service learning assignment may not be aware of the benefits or may not view the assignment as beneficiary. This study examined student perceptions of service learning to determine if students'…
NASA Astrophysics Data System (ADS)
Angraini, L. M.; Kusumah, Y. S.; Dahlan, J. A.
2018-05-01
This study aims to see the enhancement of mathematical analogical reasoning ability of the university students through concept attainment model learning based on overall and Prior Mathematical Knowledge (PMK) and interaction of both. Quasi experiments with the design of this experimental-controlled equivalent group involved 54 of second semester students at the one of State Islamic University. The instrument used is pretest-postest. Kolmogorov-Smirnov test, Levene test, t test, two-way ANOVA test were used to analyse the data. The result of this study includes: (1) The enhancement of the mathematical analogical reasoning ability of the students who gets the learning of concept attainment model is better than the enhancement of the mathematical analogical reasoning ability of the students who gets the conventional learning as a whole and based on PMK; (2) There is no interaction between the learning that is used and PMK on enhancing mathematical analogical reasoning ability.
The Role of Flipped Learning in Managing the Cognitive Load of a Threshold Concept in Physiology
ERIC Educational Resources Information Center
Akkaraju, Shylaja
2016-01-01
To help students master challenging, threshold concepts in physiology, I used the flipped learning model in a human anatomy and physiology course with very encouraging results in terms of student motivation, preparedness, engagement, and performance. The flipped learning model was enhanced by pre-training and formative assessments that provided…
"DNA Re-EvolutioN": A Game for Learning Molecular Genetics and Evolution
ERIC Educational Resources Information Center
Miralles, Laura; Moran, Paloma; Dopico, Eduardo; Garcia-Vazquez, Eva
2013-01-01
Evolution is a main concept in biology, but not many students understand how it works. In this article we introduce the game "DNA Re-EvolutioN" as an active learning tool that uses genetic concepts (DNA structure, transcription and translation, mutations, natural selection, etc.) as playing rules. Students will learn about molecular…
ERIC Educational Resources Information Center
Chiou, Chei-Chang; Lee, Li-Tze; Tien, Li-Chu; Wang, Yu-Min
2017-01-01
This study explored the effectiveness of different concept mapping techniques on the learning achievement of senior accounting students and whether achievements attained using various techniques are affected by different learning styles. The techniques are computer-assisted construct-by-self-concept mapping (CACSB), computer-assisted…
Predict-share-observe-explain learning activity for the Torricelli's tank experiment
NASA Astrophysics Data System (ADS)
Panich, Charunya; Puttharugsa, Chokchai; Khemmani, Supitch
2018-01-01
The purpose of this research was to study the students' scientific concept and achievement on fluid mechanics before and after the predict-share-observe-explain (PSOE) learning activity for the Torricelli's tank experiment. The 24 participants, who were selected by purposive sampling, were students at grade 12 at Nannakorn School, Nan province. A one group pre-test/post-test design was employed in the study. The research instruments were 1) the lesson plans using the PSOE learning activity and 2) two-tier multiple choice question and subjective tests. The results indicated that students had better scientific concept about Torricelli's tank experiment and the post-test mean score was significantly higher than the pre-test mean score at a 0.05 level of significance. Moreover, the students had retention of knowledge after the PSOE learning activity for 4 weeks at a 0.05 level of significance. The study showed that the PSOE learning activity is suitable for developing students' scientific concept and achievement.
The Effects of a Concept Map-Based Support Tool on Simulation-Based Inquiry Learning
ERIC Educational Resources Information Center
Hagemans, Mieke G.; van der Meij, Hans; de Jong, Ton
2013-01-01
Students often need support to optimize their learning in inquiry learning environments. In 2 studies, we investigated the effects of adding concept-map-based support to a simulation-based inquiry environment on kinematics. The concept map displayed the main domain concepts and their relations, while dynamic color coding of the concepts displayed…
Analysis of the most common concept inventories in physics: What are we assessing?
NASA Astrophysics Data System (ADS)
Laverty, James T.; Caballero, Marcos D.
2018-06-01
Assessing student learning is a cornerstone of educational practice. Standardized assessments have played a significant role in the development of instruction, curricula, and educational spaces in college physics. However, the use of these assessments to evaluate student learning is only productive if they continue to align with our learning goals. Recently, there have been calls to elevate the process of science ("scientific practices") to the same level of importance and emphasis as the concepts of physics ("core ideas" and "crosscutting concepts"). We use the recently developed Three-Dimensional Learning Assessment Protocol to investigate how well the most commonly used standardized assessments in introductory physics (i.e., concept inventories) align with this modern understanding of physics education's learning goals. We find that many of the questions on concept inventories do elicit evidence of student understanding of core ideas, but do not have the potential to elicit evidence of scientific practices or crosscutting concepts. Furthermore, we find that the individual scientific practices and crosscutting concepts that are assessed using these tools are limited to a select few. We discuss the implications that these findings have on designing and testing curricula and instruction both in the past and for the future.
Using rock art as an alternative science pedagogy
NASA Astrophysics Data System (ADS)
Allen, Casey D.
College-level and seventh-grade science students were studied to understand the power of a field index, the Rock Art Stability Index (RASI), for student learning about complex biophysical environmental processes. In order to determine if the studied population was representative, 584 college and seventh-grade students undertook a concept mapping exercise after they had learned basic weathering science via in-class lecture. Of this large group, a subset of 322 college students and 13 seventh-grade students also learned RASI through a field experience involving the analysis of rock weathering associated with petroglyphs. After learning weathering through RASI, students completed another concept map. This was a college population where roughly 46% had never taken a "lab science" course and nearly 22% were from minority (non-white) populations. Analysis of student learning through the lens of actor-network theory revealed that when landscape is viewed as process (i.e. many practices), science education embodies both an alternative science philosophy and an alternative materialistic worldview. When RASI components were analyzed after only lecture, student understanding of weathering displayed little connection between weathering form and weathering process. After using RASI in the field however, nearly all students made illustrative concept maps rich in connections between weathering form and weathering process for all subcomponents of RASI. When taken as an aggregate, and measured by an average concept map score, learning increased by almost 14%, Among college minority students, the average score increase approached 23%. Among female students, the average score increase was 16%. For seventh-grade students, scores increased by nearly 36%. After testing for normalcy with Kolmogorov-Smirnov, t-tests reveal that all of these increases were highly statistically significant at p<0.001. The growth in learning weathering science by minority students, as compared to non-minority students, was also statistically significant at p<0.01. These findings reveal the power of field work through RASI to strengthen cognitive linkages between complex biophysical processes and the corresponding rock weathering forms.
Novel Use of a Remote Laboratory for Active Learning in Class
ERIC Educational Resources Information Center
Ramírez, Darinka; Ramírez, María Soledad; Marrero, Thomas R.
2016-01-01
This study aims to describe a novel teaching mode that allows for direct instructor-student and student-student discussions of material balance concepts by means of active learning. The instructor explains the concepts during class time while using a remotely controlled laboratory system that is projected on a screen with real-time access to the…
Teachers' Conceptions of Student Engagement in Learning: The Case of Three Urban Schools
ERIC Educational Resources Information Center
Barkaoui, Khaled; Barrett, Sarah Elizabeth; Samaroo, Julia; Dahya, Negin; Alidina, Shahnaaz; James, Carl
2015-01-01
Although student engagement plays a central role in the education process, defining it is challenging. This study examines teachers' conceptions of the social and cultural dimensions of student engagement in learning at three low-achieving schools located in a low socioeconomic status (SES) urban area. Sixteen teachers and administrators from the…
ERIC Educational Resources Information Center
Tsai, Pei-Shan; Chai, Ching Sing; Hong, Huang-Yao; Koh, Joyce Hwee Ling
2017-01-01
The purpose of this study is to investigate the relationships among students' conceptions of knowledge building, approaches to knowledge building, knowledge-building behaviors and learning outcomes. A total of 48 primary school students (from grades 3 and 4) who had experienced knowledge-building activities participated in the present study. After…
ERIC Educational Resources Information Center
Schlosser, Sarah Elizabeth
2012-01-01
Students often struggle with learning complex chemistry concepts. In today's society with the advances in multimedia technology, educators have a variety of tools available to help students learn these concepts. These tools include demonstrations, videos in the popular media, and animations; referred to collectively as multimethods. With the…
The Effect of Concept Mapping on Students' Learning Achievements and Interests
ERIC Educational Resources Information Center
Chiou, Chei-Chang
2008-01-01
The study described in this paper has examined whether concept mapping can be used to help students to improve their learning achievement and interests. The participants were 124 students from two classes enrolled in an advanced accounting course at the School of Management of a university in Taiwan. The experimental data revealed two important…
NASA Astrophysics Data System (ADS)
Karim, S.; Saepuzaman, D.; Sriyansyah, S. P.
2016-08-01
This study is initiated by low achievement of prospective teachers in understanding concepts in introductory physics course. In this case, a problem has been identified that students cannot develop their thinking skills required for building physics concepts. Therefore, this study will reconstruct a learning process, emphasizing a physics concept building. The outcome will design physics lesson plans for the concepts of particle system as well as linear momentum conservation. A descriptive analysis method will be used in order to investigate the process of learning reconstruction carried out by students. In this process, the students’ conceptual understanding will be evaluated using essay tests for concepts of particle system and linear momentum conservation. The result shows that the learning reconstruction has successfully supported the students’ understanding of physics concept.
Naïve conceptions about multimedia learning: a study on primary school textbooks
Colombo, Barbara; Antonietti, Alessandro
2013-01-01
HIGHLIGHTS This interview study explores beliefs about the instructional role of illustrationsWe compared illustrators', teachers', students' and common people's ideasParticipants' responses were internally coherent and close to multimedia learning theoryWe propose and discuss an integrated multimedia learning model An interview study, based on specific pictures taken from textbooks used in primary schools, was carried out to investigate illustrators', teachers', students', and common people's beliefs about the role that illustrations play in facilitating learning. Participants' responses were internally coherent, indicating a systematic nature of the underlying naïve conceptions. Findings disprove Mayer's pessimistic claim that laypersons' conceptions of multimedia learning fail to match experimentally supported principles and theories. On the contrary, interviewees spontaneously came very close to the multimedia learning theory, which states that students learn better from pictures, which fit specific cognitive principles. Implications for school instruction are highlighted. PMID:23908636
Naïve conceptions about multimedia learning: a study on primary school textbooks.
Colombo, Barbara; Antonietti, Alessandro
2013-01-01
HIGHLIGHTSThis interview study explores beliefs about the instructional role of illustrationsWe compared illustrators', teachers', students' and common people's ideasParticipants' responses were internally coherent and close to multimedia learning theoryWe propose and discuss an integrated multimedia learning model An interview study, based on specific pictures taken from textbooks used in primary schools, was carried out to investigate illustrators', teachers', students', and common people's beliefs about the role that illustrations play in facilitating learning. Participants' responses were internally coherent, indicating a systematic nature of the underlying naïve conceptions. Findings disprove Mayer's pessimistic claim that laypersons' conceptions of multimedia learning fail to match experimentally supported principles and theories. On the contrary, interviewees spontaneously came very close to the multimedia learning theory, which states that students learn better from pictures, which fit specific cognitive principles. Implications for school instruction are highlighted.
Piaget and Organic Chemistry: Teaching Introductory Organic Chemistry through Learning Cycles
NASA Astrophysics Data System (ADS)
Libby, R. Daniel
1995-07-01
This paper describes the first application of the Piaget-based learning cycle technique (Atkin & Karplus, Sci. Teach. 1962, 29, 45-51) to an introductory organic chemistry course. It also presents the step-by-step process used to convert a lecture course into a discussion-based active learning course. The course is taught in a series of learning cycles. A learning cycle is a three phase process that provides opportunities for students to explore new material and work with an instructor to recognize logical patterns in data, and devise and test hypotheses. In this application, the first phase, exploration, involves out-of-class student evaluation of data in attempts to identify significant trends and develop hypotheses that might explain the trends in terms of fundamental scientific principles. In the second phase, concept invention, the students and instructor work together in-class to evaluate student hypotheses and find concepts that work best in explaining the data. The third phase, application, is an out-of-class application of the concept to new situations. The development of learning cycles from lecture notes is presented as an 8 step procedure. The process involves revaluation and restructuring of the course material to maintain a continuity of concept development according to the instructor's logic, dividing topics into individual concepts or techniques, and refocusing the presentation in terms of large numbers of examples that can serve as data for students in their exploration and application activities. A sample learning cycle and suggestions for ways of limited implementation of learning cycles into existing courses are also provided.
NASA Astrophysics Data System (ADS)
Yang, Wen-Tsung; Lin, Yu-Ren; She, Hsiao-Ching; Huang, Kai-Yi
2015-07-01
This study investigated the effects of students' prior science knowledge and online learning approaches (social and individual) on their learning with regard to three topics: science concepts, inquiry, and argumentation. Two science teachers and 118 students from 4 eighth-grade science classes were invited to participate in this research. Students in each class were divided into three groups according to their level of prior science knowledge; they then took either our social- or individual-based online science learning program. The results show that students in the social online argumentation group performed better in argumentation and online argumentation learning. Qualitative analysis indicated that the students' social interactions benefited the co-construction of sound arguments and the accurate understanding of science concepts. In constructing arguments, students in the individual online argumentation group were limited to knowledge recall and self-reflection. High prior-knowledge students significantly outperformed low prior-knowledge students in all three aspects of science learning. However, the difference in inquiry and argumentation performance between low and high prior-knowledge students decreased with the progression of online learning topics.
Enhancing Collaborative and Meaningful Language Learning Through Concept Mapping
NASA Astrophysics Data System (ADS)
Marriott, Rita De Cássia Veiga; Torres, Patrícia Lupion
This chapter aims to investigate new ways of foreign-language teaching/learning via a study of how concept mapping can help develop a student's reading, writing and oral skills as part of a blended methodology for language teaching known as LAPLI (Laboratorio de Aprendizagem de LInguas: The Language Learning Lab). LAPLI is a student-centred and collaborative methodology which encourages students to challenge their limitations and expand their current knowledge whilst developing their linguistic and interpersonal skills. We explore the theories that underpin LAPLI and detail the 12 activities comprising its programme with specify reference to the use of "concept mapping". An innovative table enabling a formative and summative assessment of the concept maps is formulated. Also presented are some of the qualitative and quantitative results achieved when this methodology was first implemented with a group of pre-service students studying for a degree in English and Portuguese languages at the Catholic University of Parana (PUCPR) in Brazil. The contribution of concept mapping and LAPLI to an under standing of language learning along with a consideration of the difficulties encountered in its implementation with student groups is discussed and suggestions made for future research.
Enhancing Collaborative and Meaningful Language Learning through Concept Mapping
NASA Astrophysics Data System (ADS)
de Cássia Veiga Marriott, Rita; Torres, Patrícia Lupion
This chapter aims to investigate new ways of foreign-language teaching/learning via a study of how concept mapping can help develop a student's reading, writing and oral skills as part of a blended methodology for language teaching known as LAPLI (Laboratorio de Aprendizagem de LInguas: The Language Learning Lab). LAPLI is a student-centred and collaborative methodology which encourages students to challenge their limitations and expand their current knowledge whilst developing their linguistic and interpersonal skills. We explore the theories that underpin LAPLI and detail the 12 activities comprising its programme with specify reference to the use of “concept mapping”. An innovative table enabling a formative and summative assessment of the concept maps is formulated. Also presented are some of the qualitative and quantitative results achieved when this methodology was first implemented with a group of pre-service students studying for a degree in English and Portuguese languages at the Catholic University of Parana (PUCPR) in Brazil. The contribution of concept mapping and LAPLI to an understanding of language learning along with a consideration of the difficulties encountered in its implementation with student groups is discussed and suggestions made for future research.
NASA Astrophysics Data System (ADS)
Rotjanakunnatam, Boonthida; Chayaburakul, Kanokporn
2018-01-01
The aims of this research study was to develop the conceptual instructional design with the Inquiry-Based Instruction Model (IBIM) of secondary students at the 10th grade level on Digestion System and Cellular Degradation issue using both oxygen and oxygen-degrading cellular nutrients were designed instructional model with a sample size of 45 secondary students at the 10th Grade level. Data were collected by asking students to do a questionnaire pre and post learning processes. The questionnaire consists of two main parts that composed of students' perception questionnaire and the questionnaire that asked the question answer concept for the selected questionnaire. The 10-item Conceptual Thinking Test (CTT) was assessed students' conceptual thinking evaluation that it was covered in two main concepts, namely; Oxygen degradation nutrients and degradation nutrients without oxygen. The data by classifying students' answers into 5 groups and measuring them in frequency and a percentage of students' performances of their learning pre and post activities with the Inquiry-Based Instruction Model were analyzed as a tutorial. The results of this research found that: After the learning activities with the IBIM, most students developed concepts of both oxygen and oxygen-degrading cellular nutrients in the correct, complete and correct concept, and there are a number of students who have conceptual ideas in the wrong concept, and no concept was clearly reduced. However, the results are still found that; some students have some misconceptions, such as; the concept of direction of electron motion and formation of the ATP of bioactivities of life. This cause may come from the nature of the content, the complexity, the continuity, the movement, and the time constraints only in the classroom. Based on this research, it is suggested that some students may take some time, and the limited time in the classroom to their learning activity with content creation content binding and dramatic storytelling increases in a relaxed classroom learning environment.
Emotional Intelligence as a Determinant of Readiness for Online Learning
ERIC Educational Resources Information Center
Buzdar, Muhammad Ayub; Ali, Akhtar; Tariq, Riaz Ul Haq
2016-01-01
Students' performance in online learning environments is associated with their readiness to adopt a digital learning approach. Traditional concept of readiness for online learning is connected with students' competencies of using technology for learning purposes. We in this research, however, investigated psychometric aspects of students'…
ERIC Educational Resources Information Center
Koponen, Ismo T.; Kokkonen, Tommi
2014-01-01
In learning conceptual knowledge in physics, a common problem is the incompleteness of a learning process, where students' personal, often undifferentiated concepts take on more scientific and differentiated form. With regard to such concept learning and differentiation, this study proposes a systemic view in which concepts are considered as…
NASA Astrophysics Data System (ADS)
Deratzou, Susan
This research studies the process of high school chemistry students visualizing chemical structures and its role in learning chemical bonding and molecular structure. Minimal research exists with high school chemistry students and more research is necessary (Gabel & Sherwood, 1980; Seddon & Moore, 1986; Seddon, Tariq, & Dos Santos Veiga, 1984). Using visualization tests (Ekstrom, French, Harman, & Dermen, 1990a), a learning style inventory (Brown & Cooper, 1999), and observations through a case study design, this study found visual learners performed better, but needed more practice and training. Statistically, all five pre- and post-test visualization test comparisons were highly significant in the two-tailed t-test (p > .01). The research findings are: (1) Students who tested high in the Visual (Language and/or Numerical) and Tactile Learning Styles (and Social Learning) had an advantage. Students who learned the chemistry concepts more effectively were better at visualizing structures and using molecular models to enhance their knowledge. (2) Students showed improvement in learning after visualization practice. Training in visualization would improve students' visualization abilities and provide them with a way to think about these concepts. (3) Conceptualization of concepts indicated that visualizing ability was critical and that it could be acquired. Support for this finding was provided by pre- and post-Visualization Test data with a highly significant t-test. (4) Various molecular animation programs and websites were found to be effective. (5) Visualization and modeling of structures encompassed both two- and three-dimensional space. The Visualization Test findings suggested that the students performed better with basic rotation of structures as compared to two- and three-dimensional objects. (6) Data from observations suggest that teaching style was an important factor in student learning of molecular structure. (7) Students did learn the chemistry concepts. Based on the Visualization Test results, which showed that most of the students performed better on the post-test, the visualization experience and the abstract nature of the content allowed them to transfer some of their chemical understanding and practice to non-chemical structures. Finally, implications for teaching of chemistry, students learning chemistry, curriculum, and research for the field of chemical education were discussed.
Learning basic programming using CLIS through gamification
NASA Astrophysics Data System (ADS)
Prabawa, H. W.; Sutarno, H.; Kusnendar, J.; Rahmah, F.
2018-05-01
The difficulty of understanding programming concept is a major problem in basic programming lessons. Based on the results of preliminary studies, 60% of students reveal the monotonous of learning process caused by the limited number of media. Children Learning in Science (CLIS) method was chosen as solution because CLIS has facilitated students’ initial knowledge to be optimized into conceptual knowledge. Technological involvement in CLIS (gamification) helped students to understand basic programming concept. This research developed a media using CLIS method with gamification elements to increase the excitement of learning process. This research declared that multimedia is considered good by students, especially regarding the mechanical aspects of multimedia, multimedia elements and aspects of multimedia information structure. Multimedia gamification learning with the CLIS model showed increased number of students’ concept understanding.
Jacobs, Johanna C G; van Luijk, Scheltus J; van der Vleuten, Cees P M; Kusurkar, Rashmi A; Croiset, Gerda; Scheele, Fedde
2016-09-21
Gibbs and Coffey (2004) have reported that teaching practices are influenced by teachers' conceptions of learning and teaching. In our previous research we found significant differences between teachers' conceptions in two medical schools with student-centred education. Medical school was the most important predictor, next to discipline, gender and teaching experience. Our research questions for the current study are (1) which specific elements of medical school explain the effect of medical school on teachers' conceptions of learning and teaching? How? and (2) which contextual and personal characteristics are related to conceptions of learning and teaching? How? Individual interviews were conducted with 13 teachers of the undergraduate curricula in two medical schools. Previously their conceptions of learning and teaching were assessed with the COLT questionnaire. We investigated the meanings they attached to context and personal characteristics, in relation to their conceptions of learning and teaching. We used a template analysis. Large individual differences existed between teachers. Characteristics mentioned at the medical school and curriculum level were 'curriculum tradition', 'support by educational department' and 'management and finances'. Other contextual characteristics were 'leadership style' at all levels but especially of department chairs, 'affordances and support', 'support and relatedness', and 'students' characteristics'. Personal characteristics were 'agency', 'experience with PBL (as a student or a teacher)','personal development', 'motivation and work engagement'and 'high content expertise'. Several context and personal characteristics associated with teachers' conceptions were identified, enabling a broader view on faculty development with attention for these characteristics, next to teaching skills.
Claeys, Maureen; Deplaecie, Monique; Vanderplancke, Tine; Delbaere, Ilse; Myny, Dries; Beeckman, Dimitri; Verhaeghe, Sofie
2015-09-01
An experiment was carried out on the bachelor's degree course in nursing with two new clinical placement concepts: workplace learning and the dedicated education centre. The aim was to establish a learning culture that creates a sufficiently high learning performance for students. The objectives of this study are threefold: (1) to look for a difference in the "learning culture" and "learning performance" in traditional clinical placement departments and the new clinical placement concepts, the "dedicated education centre" and "workplace learning"; (2) to assess factors influencing the learning culture and learning performance; and (3) to investigate whether there is a link between the learning culture and the learning performance. A non-randomised control study was carried out. The experimental group consisted of 33 final-year nursing undergraduates who were following clinical placements at dedicated education centres and 70 nursing undergraduates who undertook workplace learning. The control group consisted of 106 students who followed a traditional clinical placement. The "learning culture" outcome was measured using the Clinical Learning Environment, Supervision and Nurse Teacher scale. The "learning performance" outcome consisting of three competencies was measured using the Nursing Competence Questionnaire. The traditional clinical placement concept achieved the highest score for learning culture (p<0.001). The new concepts scored higher for learning performance of which the dedicated education centres achieved the highest scores. The 3 clinical placement concepts showed marked differences in learning performance for the "assessment" competency (p<0.05) and for the "interventions" competency (p<0.05). Traditional clinical placement, a dedicated education centre and workplace learning can be seen as complementary clinical placement concepts. The organisation of clinical placements under the dedicated education centre concept and workplace learning is recommended for final-year undergraduate nursing students. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hativa, Nira
1993-12-01
This study sought to identify how high achievers learn and understand new concepts in arithmetic from computer-based practice which provides full solutions to examples but without verbal explanations. Four high-achieving second graders were observed in their natural school settings throughout all their computer-based practice sessions which involved the concept of rounding whole numbers, a concept which was totally new to them. Immediate post-session interviews inquired into students' strategies for solutions, errors, and their understanding of the underlying mathematical rules. The article describes the process through which the students construct their knowledge of the rounding concepts and the errors and misconceptions encountered in this process. The article identifies the cognitive abilities that promote student self-learning of the rounding concepts, their number concepts and "number sense." Differences in the ability to generalise, "mathematical memory," mindfulness of work and use of cognitive strategies are shown to account for the differences in patterns of, and gains in, learning and in maintaining knowledge among the students involved. Implications for the teaching of estimation concepts and of promoting students' "number sense," as well as for classroom use of computer-based practice are discussed.
NASA Astrophysics Data System (ADS)
Ward, Robin Eichel
This research explored the effects of Roundhouse diagram construction and use on meaningful learning of science concepts in a 6th-grade science classroom. This investigation examined the transformation of students' science concepts as they became more proficient in constructing Roundhouse diagrams, what problems students encountered while constructing Roundhouse diagrams, and how choices of iconic images affected their progress in meaningfully learning science concepts as they constructed a series of Roundhouse diagrams. The process of constructing a Roundhouse diagram involved recognizing the learner's relevant existing concepts, evaluating the central concepts for a science lesson and breaking them down into their component parts, reconstructing the learner's conceptual framework by reducing the amount of detail efficiently, reviewing the reconstruction process, and linking each key concept to an iconic image. The researcher collected and analyzed qualitative and quantitative data to determine the effectiveness of the Roundhouse diagram. Data included field notes, observations, students' responses to Roundhouse diagram worksheets, students' perceptions from evaluation sheets, students' mastery of technique sheets, tapes and transcripts of students' interviews, student-constructed Roundhouse diagrams, and documentation of science grades both pre- and post-Roundhouse diagramming. This multiple case study focused on six students although the whole class was used for statistical purposes. Stratified purposeful sampling was used to facilitate comparisons as well as week-by-week comparisons of students' science grades and Roundhouse diagram scores to gain additional insight into the effectiveness of the Roundhouse diagramming method. Through participation in constructing a series of Roundhouse diagrams, middle school students gained a greater understanding of science concepts. Roundhouse diagram scores improved over time during the 10-week Roundhouse diagramming session. Students' science scores improved as they became more proficient in constructing the Roundhouse diagrams. The major problems associated with constructing Roundhouse diagrams were extracting the main ideas from the textbook, understanding science concepts in terms of whole/part relationships, paraphrasing sentences effectively, and sequencing events in an accurate order. A positive relationship existed for the case study group based on students' choices and drawings of iconic images and the meaningful learning of science concepts.
NASA Astrophysics Data System (ADS)
Lee, Silvia Wen-Yu; Liang, Jyh-Chong; Tsai, Chin-Chung
2016-10-01
This study investigated the relationships among college students' epistemic beliefs in biology (EBB), conceptions of learning biology (COLB), and strategies of learning biology (SLB). EBB includes four dimensions, namely 'multiple-source,' 'uncertainty,' 'development,' and 'justification.' COLB is further divided into 'constructivist' and 'reproductive' conceptions, while SLB represents deep strategies and surface learning strategies. Questionnaire responses were gathered from 303 college students. The results of the confirmatory factor analysis and structural equation modelling showed acceptable model fits. Mediation testing further revealed two paths with complete mediation. In sum, students' epistemic beliefs of 'uncertainty' and 'justification' in biology were statistically significant in explaining the constructivist and reproductive COLB, respectively; and 'uncertainty' was statistically significant in explaining the deep SLB as well. The results of mediation testing further revealed that 'uncertainty' predicted surface strategies through the mediation of 'reproductive' conceptions; and the relationship between 'justification' and deep strategies was mediated by 'constructivist' COLB. This study provides evidence for the essential roles some epistemic beliefs play in predicting students' learning.
Investigating High School Students' Conceptualizations of the Biological Basis of Learning
ERIC Educational Resources Information Center
Fulop, Rebecca M.; Tanner, Kimberly D.
2012-01-01
Students go to school to learn. How much, however, do students understand about the biological basis of this everyday process? Blackwell et al. (1) demonstrated a correlation between education about learning and academic achievement. Yet there are few studies investigating high school students' conceptions of learning. In this mixed-methods…
NASA Astrophysics Data System (ADS)
Sutarto; Indrawati; Wicaksono, I.
2018-04-01
The objectives of the study are to describe the effect of PP collision concepts to high school students’ learning activities and multirepresentation abilities. This study was a quasi experimental with non- equivalent post-test only control group design. The population of this study were students who will learn the concept of collision in three state Senior High Schools in Indonesia, with a sample of each school 70 students, 35 students as an experimental group and 35 students as a control group. Technique of data collection were observation and test. The data were analized by descriptive and inferensial statistic. Student learning activities were: group discussions, describing vectors of collision events, and formulating problem-related issues of impact. Multirepresentation capabilities were student ability on image representation, verbal, mathematics, and graph. The results showed that the learning activities in the three aspects for the three high school average categorized good. The impact of using PP on students’ ability on image and graph representation were a significant impact, but for verbal and mathematical skills there are differences but not significant.
Active Learning in the Physics Classroom
NASA Astrophysics Data System (ADS)
Naron, Carol
Many students enter physics classes filled with misconceptions about physics concepts. Students tend to retain these misconceptions into their adult lives, even after physics instruction. Constructivist researchers have found that students gain understanding through their experiences. Researchers have also found that active learning practices increase conceptual understanding of introductory physics students. This project study sought to examine whether incorporating active learning practices in an advanced placement physics classroom increased conceptual understanding as measured by the force concept inventory (FCI). Physics students at the study site were given the FCI as both a pre- and posttest. Test data were analyzed using two different methods---a repeated-measures t test and the Hake gain method. The results of this research project showed that test score gains were statistically significant, as measured by the t test. The Hake gain results indicated a low (22.5%) gain for the class. The resulting project was a curriculum plan for teaching the mechanics portion of Advanced Placement (AP) physics B as well as several active learning classroom practices supported by the research. This project will allow AP physics teachers an opportunity to improve their curricular practices. Locally, the results of this project study showed that research participants gained understanding of physics concepts. Social change may occur as teachers implement active learning strategies, thus creating improved student understanding of physics concepts.
Millennial Students' Preferred Methods for Learning Concepts in Psychiatric Nursing.
Garwood, Janet K
2015-09-01
The current longitudinal, descriptive, and correlational study explored which traditional teaching strategies can engage Millennial students and adequately prepare them for the ultimate test of nursing competence: the National Council Licensure Examination. The study comprised a convenience sample of 40 baccalaureate nursing students enrolled in a psychiatric nursing course. The students were exposed to a variety of traditional (e.g., PowerPoint(®)-guided lectures) and nontraditional (e.g., concept maps, group activities) teaching and learning strategies, and rated their effectiveness. The students' scores on the final examination demonstrated that student learning outcomes met or exceeded national benchmarks. Copyright 2015, SLACK Incorporated.
A Novel Teaching Tool Combined With Active-Learning to Teach Antimicrobial Spectrum Activity.
MacDougall, Conan
2017-03-25
Objective. To design instructional methods that would promote long-term retention of knowledge of antimicrobial pharmacology, particularly the spectrum of activity for antimicrobial agents, in pharmacy students. Design. An active-learning approach was used to teach selected sessions in a required antimicrobial pharmacology course. Students were expected to review key concepts from the course reader prior to the in-class sessions. During class, brief concept reviews were followed by active-learning exercises, including a novel schematic method for learning antimicrobial spectrum of activity ("flower diagrams"). Assessment. At the beginning of the next quarter (approximately 10 weeks after the in-class sessions), 360 students (three yearly cohorts) completed a low-stakes multiple-choice examination on the concepts in antimicrobial spectrum of activity. When data for students was pooled across years, the mean number of correct items was 75.3% for the items that tested content delivered with the active-learning method vs 70.4% for items that tested content delivered via traditional lecture (mean difference 4.9%). Instructor ratings on student evaluations of the active-learning approach were high (mean scores 4.5-4.8 on a 5-point scale) and student comments were positive about the active-learning approach and flower diagrams. Conclusion. An active-learning approach led to modestly higher scores in a test of long-term retention of pharmacology knowledge and was well-received by students.
A Novel Teaching Tool Combined With Active-Learning to Teach Antimicrobial Spectrum Activity
2017-01-01
Objective. To design instructional methods that would promote long-term retention of knowledge of antimicrobial pharmacology, particularly the spectrum of activity for antimicrobial agents, in pharmacy students. Design. An active-learning approach was used to teach selected sessions in a required antimicrobial pharmacology course. Students were expected to review key concepts from the course reader prior to the in-class sessions. During class, brief concept reviews were followed by active-learning exercises, including a novel schematic method for learning antimicrobial spectrum of activity (“flower diagrams”). Assessment. At the beginning of the next quarter (approximately 10 weeks after the in-class sessions), 360 students (three yearly cohorts) completed a low-stakes multiple-choice examination on the concepts in antimicrobial spectrum of activity. When data for students was pooled across years, the mean number of correct items was 75.3% for the items that tested content delivered with the active-learning method vs 70.4% for items that tested content delivered via traditional lecture (mean difference 4.9%). Instructor ratings on student evaluations of the active-learning approach were high (mean scores 4.5-4.8 on a 5-point scale) and student comments were positive about the active-learning approach and flower diagrams. Conclusion. An active-learning approach led to modestly higher scores in a test of long-term retention of pharmacology knowledge and was well-received by students. PMID:28381885
Active Learning in an Introductory Meteorology Class
NASA Astrophysics Data System (ADS)
Marchese, P. J.; Bluestone, C.
2007-12-01
Active learning modules were introduced to the primarily minority population in the introductory meteorology class at Queensborough Community College (QCC). These activities were developed at QCC and other 4 year colleges and designed to reinforce basic meteorological concepts. The modules consisted of either Interactive Lecture Demonstrations (ILD) or discovery-based activities. During the ILD the instructor would describe an experiment that would be demonstrated in class. Students would predict what the outcome would be and compare their expected results to the actual outcome of the experiment. In the discovery-based activities students would learn about physical concepts by performing basic experiments. These activities differed from the traditional lab in that it avoided "cookbook" procedures and emphasized having the students learn about the concept using the scientific method. As a result of these activities student scores measuring conceptual understanding, as well as factual knowledge, increased as compared to student scores in a more affluent community college. Students also had higher self- efficacy scores. Lower scoring students demonstrated the greatest benefit, while the better students had little (or no) changes.
ERIC Educational Resources Information Center
Sun, Jerry Chih-Yuan; Lee, Kuan-Hsien
2016-01-01
The purpose of this study is to evaluate the feasibility of the integration of concept maps and tablet PCs in anti-phishing education for enhancing students' learning motivation and achievement. The subjects were 155 students from grades 8 and 9. They were divided into an experimental group (77 students) and a control group (78 students). To begin…
Breckler, Jennifer; Yu, Justin R
2011-03-01
This article describes a new hands-on, or "kinesthetic," activity for use in a physiology lecture hall to help students comprehend an important concept in cardiopulmonary physiology known as oxygen carrying capacity. One impetus for designing this activity was to address the needs of students who have a preference for kinesthetic learning and to help increase their understanding and engagement during lecture. This activity uses simple inexpensive materials, provides an effective model for demonstrating related pathophysiology, and helps promote active learning. The activity protocol and its implementation are described here in detail. We also report data obtained from student surveys and assessment tools to determine the effectiveness of the activity on student conceptual learning and perceptions. A brief multiple-choice pretest showed that although students had already been introduced to the relevant concepts in lecture, they had not yet mastered these concepts before performing the activity. Two postactivity assessments showed that student performance was significantly improved on the posttest compared with the pretest and that information was largely retained at the end of the course. Survey data showed that one-half of the students stated kinesthetic learning as among their learning preferences, yet nearly all students enjoyed and were engaged in this hands-on kinesthetic activity regardless of their preferences. Most students would recommend it to their peers and expressed a desire for more kinesthetic learning opportunities in the lecture curriculum.
Conceptual Understanding of Acids and Bases Concepts and Motivation to Learn Chemistry
ERIC Educational Resources Information Center
Cetin-Dindar, Ayla; Geban, Omer
2017-01-01
The purpose of this study was to investigate the effect of 5E learning cycle model oriented instruction (LCMI) on 11th-grade students' conceptual understanding of acids and bases concepts and student motivation to learn chemistry. The study, which lasted for 7 weeks, involved two groups: An experimental group (LCMI) and a control group (the…
Professional Values Competency Evaluation for Students Enrolled in a Concept-Based Curriculum.
Elliott, Annette M
2017-01-01
Although many nursing programs have transitioned toward the use of concept-based curricula, the evaluation of student learning associated with the curricular approach has been limited. An evaluation of student learning related to professional values for programs offering concept-based curricula was not evident in the literature. The purpose was to determine how a course competency related to professional values was addressed by nursing students studying in a concept-based nursing curriculum. The qualitative methodology of framework analysis was used to evaluate written assignments (N = 75). The core concept appreciation for professional values and the core concept disillusionment with unprofessional behaviors were identified in students' written reflections. The core concept of appreciation for professional values contributes to an evidence base of contemporary professional values identified in nursing. The core concept of disillusionment with unprofessional behaviors can inform curricular planning and research on how to advocate for professional behaviors. [J Nurs Educ. 2017;56(1):12-21.]. Copyright 2017, SLACK Incorporated.
Chiou, Shwu-Fen; Su, Hsiu-Chuan; Liu, Kuei-Fen; Hwang, Hei-Fen
2015-06-01
The traditional "teacher-centered" instruction model is still currently pervasive in nursing education. However, this model does not stimulate the critical thinking or foster the self-learning competence of students. In recent years, the rapid development of information technology and the changes in educational philosophy have encouraged the development of the "flipped classroom" concept. This concept completely subverts the traditional instruction model by allowing students to access and use related learning activities prior to class on their smartphones or tablet computers. Implementation of this concept has been demonstrated to facilitate greater classroom interaction between teachers and students, to stimulate student thinking, to guide problem solving, and to encourage cooperative learning and knowledge utilization in order to achieve the ideal of student-centered education. This student-centered model of instruction coincides with the philosophy of nursing education and may foster the professional competence of nursing students. The flipped classroom is already an international trend, and certain domestic education sectors have adopted and applied this concept as well. However, this concept has only just begun to make its mark on nursing education. This article describes the concept of the flipped classroom, the implementation myth, the current experience with implementing this concept in international healthcare education, and the challenging issues. We hope to provide a reference for future nursing education administrators who are responsible to implement flipped classroom teaching strategies in Taiwan.
The development of a digital logic concept inventory
NASA Astrophysics Data System (ADS)
Herman, Geoffrey Lindsay
Instructors in electrical and computer engineering and in computer science have developed innovative methods to teach digital logic circuits. These methods attempt to increase student learning, satisfaction, and retention. Although there are readily accessible and accepted means for measuring satisfaction and retention, there are no widely accepted means for assessing student learning. Rigorous assessment of learning is elusive because differences in topic coverage, curriculum and course goals, and exam content prevent direct comparison of two teaching methods when using tools such as final exam scores or course grades. Because of these difficulties, computing educators have issued a general call for the adoption of assessment tools to critically evaluate and compare the various teaching methods. Science, Technology, Engineering, and Mathematics (STEM) education researchers commonly measure students' conceptual learning to compare how much different pedagogies improve learning. Conceptual knowledge is often preferred because all engineering courses should teach a fundamental set of concepts even if they emphasize design or analysis to different degrees. Increasing conceptual learning is also important, because students who can organize facts and ideas within a consistent conceptual framework are able to learn new information quickly and can apply what they know in new situations. If instructors can accurately assess their students' conceptual knowledge, they can target instructional interventions to remedy common problems. To properly assess conceptual learning, several researchers have developed concept inventories (CIs) for core subjects in engineering sciences. CIs are multiple-choice assessment tools that evaluate how well a student's conceptual framework matches the accepted conceptual framework of a discipline or common faulty conceptual frameworks. We present how we created and evaluated the digital logic concept inventory (DLCI).We used a Delphi process to identify the important and difficult concepts to include on the DLCI. To discover and describe common student misconceptions, we interviewed students who had completed a digital logic course. Students vocalized their thoughts as they solved digital logic problems. We analyzed the interview data using a qualitative grounded theory approach. We have administered the DLCI at several institutions and have checked the validity, reliability, and bias of the DLCI with classical testing theory procedures. These procedures consisted of follow-up interviews with students, analysis of administration results with statistical procedures, and expert feedback. We discuss these results and present the DLCI's potential for providing a meaningful tool for comparing student learning at different institutions.
ERIC Educational Resources Information Center
Eymur, Gülüzar; Geban, Ömer
2017-01-01
The main purpose of this study was to investigate the effects of cooperative learning based on conceptual change approach instruction on ninth-grade students' understanding in chemical bonding concepts compared to traditional instruction. Seventy-two ninth-grade students from two intact chemistry classes taught by the same teacher in a public high…
ERIC Educational Resources Information Center
Charsky, Dennis; Ressler, William
2011-01-01
Does using a computer game improve students' motivation to learn classroom material? The current study examined students' motivation to learn history concepts while playing a commercial, off-the-shelf computer game, Civilization III. The study examined the effect of using conceptual scaffolds to accompany game play. Students from three ninth-grade…
ERIC Educational Resources Information Center
Nunez, Jose Carlos; Gonzalez-Pienda, Julio A.; Gonzalez-Pumariega, Soledad; Roces, Cristina; Alvarez, Luis; Gonzalez, Paloma; Cabanach, Ramon G.; Valle, Antonio; Rodriguez, Susana
2005-01-01
The aim of this article was fourfold: first, to determine whether there are significant differences between students with (N=173) and without learning disabilities (LD; N=172) in the dimensions of self-concept, causal attributions, and academic goals. Second, to determine whether students with LD present a uniform attributional profile or whether…
ERIC Educational Resources Information Center
Garvin-Doxas, Kathy; Klymkowsky, Michael W.
2008-01-01
While researching student assumptions for the development of the Biology Concept Inventory (BCI; http://bioliteracy.net), we found that a wide class of student difficulties in molecular and evolutionary biology appears to be based on deep-seated, and often unaddressed, misconceptions about random processes. Data were based on more than 500…
ERIC Educational Resources Information Center
Bakx, A. W. E. A.; Van der Sanden, J. M. M.; Sijtsma, K.; Croon, M. A.; Vermetten, Y. J. M.
2006-01-01
An important purpose of higher social work education is to guide students to acquire and develop social-communicative competencies. The purpose of this study was to investigate the role students' personality characteristics, self-perceived communicative competence and learning conceptions play in the acquisition and development of…
Intentional learning: A concept analysis.
Mollman, Sarah; Candela, Lori
2018-01-01
To use a concept analysis to determine a clear definition of the term "intentional learning" for use in nursing. The term intentional learning has been used for years in educational, business, and even nursing literature. It has been used to denote processes leading to higher order thinking and the ability to use knowledge in new situations; both of which are important skills to develop in nursing students. But the lack of a common, accepted definition of the term makes it difficult for nurse educators to base instruction and learning experiences on or to evaluate its overall effectiveness in educating students for diverse, fast-paced clinical practices. A concept analysis following the eight-step method developed by Walker and Avant (2011). Empirical and descriptive literature. Five defining attributes were identified: (1) self-efficacy for learning, (2) active, effortful, and engaged learning, (3) mastery of goals where learning is the goal, (4) self-directed learning, and (5) self-regulation of learning. Through this concept analysis, nursing will have a clear definition of intentional learning. This will enable nurse educators to generate, evaluate, and test learning experiences that promote further development of intentional learning in nursing students. Nurses in practice will also be able to evaluate if the stated benefits are demonstrated and how this impacts patient care and outcomes. © 2017 Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
Voyles, Shannon
2013-01-01
Many students withdraw from online learning because of their low levels of satisfaction and preparedness, and students are often unprepared to adapt their learning habits to meet the demands of online learning. However, the way in which students incorporate knowledge about their own learning styles into their self-concept as learners and their…
When Learning Analytics Meets E-Learning
ERIC Educational Resources Information Center
Czerkawski, Betul C.
2015-01-01
While student data systems are nothing new and most educators have been dealing with student data for many years, learning analytics has emerged as a new concept to capture educational big data. Learning analytics is about better understanding of the learning and teaching process and interpreting student data to improve their success and learning…
NASA Astrophysics Data System (ADS)
Feranie, Selly; Efendi, Ridwan; Karim, Saeful; Sasmita, Dedi
2016-08-01
The PISA results for Indonesian Students are lowest among Asian countries in the past two successive results. Therefore various Innovations in science learning process and its effectiveness enhancing student's science literacy is needed to enrich middle school science teachers. Literacy strategies have been implemented on health technologies theme learning to enhance Indonesian Junior high school Student's Physics literacy in three different health technologies e.g. Lasik surgery that associated with application of Light and Optics concepts, Ultra Sonographer (USG) associated with application of Sound wave concepts and Work out with stationary bike and walking associated with application of motion concepts. Science learning process involves at least teacher instruction, student learning and a science curriculum. We design two main part of literacy strategies in each theme based learning. First part is Integrated Reading Writing Task (IRWT) is given to the students before learning process, the second part is scientific investigation learning process design packed in Problem Based Learning. The first part is to enhance student's science knowledge and reading comprehension and the second part is to enhance student's science competencies. We design a transformation from complexity of physics language to Middle school physics language and from an expensive and complex science investigation to a local material and simply hands on activities. In this paper, we provide briefly how literacy strategies proposed by previous works is redesigned and applied in classroom science learning. Data were analysed using t- test. The increasing value of mean scores in each learning design (with a significance level of p = 0.01) shows that the implementation of this literacy strategy revealed a significant increase in students’ physics literacy achievement. Addition analysis of Avarage normalized gain show that each learning design is in medium-g courses effectiveness category according to Hake's classification.
Environmental Education: Back to Basics.
ERIC Educational Resources Information Center
Warpinski, Robert
1984-01-01
Describes an instructional framework based on concepts of energy, ecosystems, carrying capacity, change, and stewardship. Stresses the importance of determining what is really important (basic) for each student to experience or learn in relation to each concept and grade level. Student-centered learning activities and sample lesson on energy…
Using Guided Reinvention to Develop Teachers' Understanding of Hypothesis Testing Concepts
ERIC Educational Resources Information Center
Dolor, Jason; Noll, Jennifer
2015-01-01
Statistics education reform efforts emphasize the importance of informal inference in the learning of statistics. Research suggests statistics teachers experience similar difficulties understanding statistical inference concepts as students and how teacher knowledge can impact student learning. This study investigates how teachers reinvented an…
ERIC Educational Resources Information Center
Thurmond, Brandi
2011-01-01
This study sought to compare a data-rich learning (DRL) environment that utilized online data as a tool for teaching about renewable energy technologies (RET) to a lecture-based learning environment to determine the impact of the learning environment on students' knowledge of Science, Technology, Engineering, and Math (STEM) concepts related…
NASA Astrophysics Data System (ADS)
Bitting, Kelsey S.; McCartney, Marsha J.; Denning, Kathy R.; Roberts, Jennifer A.
2018-06-01
Virtual globe programs such as Google Earth replicate real-world experiential learning of spatial and geographic concepts by allowing students to navigate across our planet without ever leaving campus. However, empirical evidence for the learning value of these technological tools and the experience students gain by exploration assignments framed within them remains to be quantified and compared by student demographics. This study examines the impact of a Google Earth-based exploration assignment on conceptual understanding in introductory geoscience courses at a research university in the US Midwest using predominantly traditional college-age students from a range of majors. Using repeated-measures ANOVA and paired-samples t tests, we test the significance of the activity using pretest and posttest scores on a subset of items from the Geoscience Concept Inventory, and the interactive effects of student gender and ethnicity on student score improvement. Analyses show that learning from the Google Earth exploration activity is highly significant overall and for all but one of the concept inventory items. Furthermore, we find no significant interactive effects of class format, student gender, or student ethnicity on the magnitude of the score increases. These results provide strong support for the use of experiential learning in virtual globe environments for students in introductory geoscience and perhaps other disciplines for which direct observation of our planet's surface is conceptually relevant.
Refining a learning progression of energy
NASA Astrophysics Data System (ADS)
Yao, Jian-Xin; Guo, Yu-Ying; Neumann, Knut
2017-11-01
This paper presents a revised learning progression for the energy concept and initial findings on diverse progressions among subgroups of sample students. The revised learning progression describes how students progress towards an understanding of the energy concept along two progress variables identified from previous studies - key ideas about energy and levels of conceptual development. To assess students understanding with respect to the revised learning progression, we created a specific instrument, the Energy Concept Progression Assessment (ECPA) based on previous work on assessing students' understanding of energy. After iteratively refining the instrument in two pilot studies, the ECPA was administered to a total of 4550 students (Grades 8-12) from schools in two districts in a major city in Mainland China. Rasch analysis was used to examine the validity of the revised learning progression and explore factors explaining different progressions. Our results confirm the validity of the four conceptual development levels. In addition, we found that although following a similar progression pattern, students' progression rate was significantly influenced by environmental factors such as school type. In the discussion of our findings, we address the non-linear and complex nature of students' progression in understanding energy. We conclude with illuminating our research's implication for curriculum design and energy teaching.
ERIC Educational Resources Information Center
Sadi, Özlem; Dagyar, Miray
2015-01-01
The current work reveals the data of the study which examines the relationships among epistemological beliefs, conceptions of learning, and self-efficacy for biology learning with the help of the Structural Equation Modeling. Three questionnaires, the Epistemological Beliefs, the Conceptions of Learning Biology and the Self-efficacy for Learning…
[Exploratory study of clinical reasoning in nursing students with concept mapping].
Paucard-Dupont, Sylvie; Marchand, Claire
2014-06-01
The training reference leading to the state nursing diploma places the learning of clinical reasoning at the center of the training. We have been wondering about the possibilities of making visible the student nurse's mental processes when they provide nursing care in order to identify their strategies and reasoning difficulties. It turns out that concept mapping is a research tool capable of showing these two aspects. The aim of this study is to verify a concept mapping made during an interview and built from the speech of a nursing student when analyzing a simulated clinical situation, is able to make visible its strategies clinical reasoning and reasoning difficulties. In a second phase of it, is to explore how the concept map once elaborated allows students to identify their own intellectual reasoning. 12 nursing second year students have participated in the study. Concept maps were constructed by the trainer/researcher as the students analyzed aloud a simulated clinical situation written. Concept maps were analyzed from a reference grid. Interviews were conducted following the elaboration of concept maps and student's comments were analyzed. Students reasoning strategies were either mixed inductive dominant (5/12) or hypothetical-deductive dominant (5/12). Reasoning difficulties identified are related to the lack of identification of important information, the lack of analysis of data, lack of connection or the existence of faulty links. Analysis of the comments highlights that concept mapping contributed to the development of metacognitive skills. The concept mapping has shown benefits in contributing to a diagnostic assessment of clinical reasoning learning. It is an additional resource tool to facilitate the development of metacognitive skills for students. This tool can be useful to implement support learning strategies in clinical reasoning.
NASA Astrophysics Data System (ADS)
Wiana, W.
2018-02-01
This research is related to the effort to design a more representative learning system to improve the learning result of digital fashion design, through the development of interactive multimedia based on motion graphic. This research is aimed to know the effect of interactive multimedia application based on motion graphic to increase the mastery of the concept and skill of the students to making fashion designing in digital format. The research method used is quasi experiment with research design of Non-equivalent Control Group Design. The lectures are conducted in two different classes, namely class A as the Experimental Class and class B as the Control Class. From the calculation result after interpreted using Normalize Gain, there is an increase of higher learning result in student with interactive learning based on motion graphic, compared with student achievement on conventional learning. In this research, interactive multimedia learning based on motion graphic is effective toward the improvement of student learning in concept mastering indicator and on the aspect of making fashion design in digital format.
Students' Energy Concepts at the Transition between Primary and Secondary School
ERIC Educational Resources Information Center
Opitz, Sebastian T.; Harms, Ute; Neumann, Knut; Kowalzik, Kristin; Frank, Arne
2015-01-01
Energy is considered both a core idea and a crosscutting concept in science education. A thorough understanding of the energy concept is thought to help students learn about other (related) concepts within and across science subjects, thereby fostering scientific literacy. This study investigates students' progression in understanding the energy…
Impact of Lecturers' Gender on Learning: Assessing University of Ghana Students' Views
ERIC Educational Resources Information Center
Appiah, Samson Obed; Agbelevor, Emelia Afi
2015-01-01
Studies conducted since the late 1970s have sought to describe students' conceptions of learning especially how gender of lecturers affected the learning of students. However, not many studies have been done in Ghana concerning how gender of lecturers affected learning among students. The purpose of this study was to explore the influence of…
Acquisition and Retention of STEM Concepts through Inquiry Based Learning
NASA Astrophysics Data System (ADS)
Lombardi, Candice
This study explores the integration of STEM (science, technology, engineering, and mathematics) concepts through inquiry based learning. Students are exposed to a constructivist style learning environment where they create understanding for themselves. This way of learning lets students plan and justify their ideas and beliefs while discussing and examining the ideas of their classmates. Students are engaged in solving a scientific problem in a meaningful, inquiry-based manner through hypothesis testing, experimentation, and investigation. This mode of learning introduces students to real life, authentic science experiences within the confines of a typical classroom. The focus of the unit is for the students to create connections and understanding about geography and the globe in order to ultimately identify the exact latitude and longitude of 10 mystery sites. The students learn about latitude and longitude and apply their knowledge through a set of clues to determine where their Mystery Class is located. Journey North provides an internationally accessed game of hide-and-seek called Mystery Class Seasons Challenge. Throughout this challenge, over the course of eleven weeks, students will record, graph, interpret and analysis data and research to ultimate identify the location of ten mystery locations. Students will track seasonal changes in sunlight while investigating, examining and researching clues to find these ten secret sites around the world. My research was done to prove the success of students' ability to learn new mathematics, science, technology and engineering concepts through inquiry based design.
Problem-based learning in teaching chemistry: enthalpy changes in systems
NASA Astrophysics Data System (ADS)
Ayyildiz, Yildizay; Tarhan, Leman
2018-01-01
Problem-based learning (PBL) as a teaching strategy has recently become quite widespread in especially chemistry classes. Research has found that students, from elementary through college, have many alternative conceptions regarding enthalpy changes in systems. Although there are several studies focused on identifying student alternative conceptions and misunderstandings of this subject, studies on preventing the formation of these alternative conceptions are limited.
ERIC Educational Resources Information Center
She, Hsiao-Ching
2002-01-01
Examines the process of students' conceptual changes with regard to air pressure and buoyancy as a result of teaching with the dual situated learning model. Uses a model designed according to the students' ontological viewpoint on science concepts as well as the nature of these concepts. (Contains 40 references.) (Author/YDS)
Sajid, Muhammad R; Laheji, Abrar F; Abothenain, Fayha; Salam, Yezan; AlJayar, Dina; Obeidat, Akef
2016-09-04
To evaluate student academic performance and perception towards blended learning and flipped classrooms in comparison to traditional teaching. This study was conducted during the hematology block on year three students. Five lectures were delivered online only. Asynchronous discussion boards were created where students could interact with colleagues and instructors. A flipped classroom was introduced with application exercises. Summative assessment results were compared with previous year results as a historical control for statistical significance. Student feedback regarding their blended learning experience was collected. A total of 127 responses were obtained. Approximately 22.8% students felt all lectures should be delivered through didactic lecturing, while almost 35% felt that 20% of total lectures should be given online. Students expressed satisfaction with blended learning as a new and effective learning approach. The majority of students reported blended learning was helpful for exam preparation and concept clarification. However, a comparison of grades did not show a statistically significant increase in the academic performance of students taught via the blended learning method. Learning experiences can be enriched by adopting a blended method of instruction at various stages of undergraduate and postgraduate education. Our results suggest that blended learning, a relatively new concept in Saudi Arabia, shows promising results with higher student satisfaction. Flipped classrooms replace passive lecturing with active student-centered learning that enhances critical thinking and application, including information retention.
ERIC Educational Resources Information Center
Al-ebous, Tahani
2016-01-01
This study aimed to investigate the effect of the van Hiele model in Geometric Concepts Acquisition, and the attitudes towards Geometry and learning transfer of the first three grades students in Jordan. Participants of the study consisted of 60 students from the third grade primary school students from the First Directorate, Amman, in the…
Students' perceptions of Roundhouse diagramming: a middle-school viewpoint
NASA Astrophysics Data System (ADS)
Ward, Robin E.; Wandersee, James H.
2002-02-01
This multiple case study explored the effects of Roundhouse diagram construction and use on meaningful learning of science concepts in a sixth-grade classroom. The investigation examined three issues: (1) the transformation of students' science conceptions as they become more proficient in constructing Roundhouse diagrams; (2) problems students encountered using this technique; and (3) the effect of choices of iconic images on their progress toward meaningfully learning science concepts. A Roundhouse diagram is a graphic representation of a learner's conceptual understanding regarding a predetermined science topic. This method involves recognizing the main ideas within a science lesson, breaking down the information into interrelated segments, and then linking each portion to an iconic image. These students typically gained a greater understanding of science explanations by constructing the diagrams. Student's science scores improved over the 10-week diagramming period and a positive relationship existed between students' choices and drawings of iconic images and the meaningful learning of science topics.
Student Engagement and Blended Learning: Making the Assessment Connection
ERIC Educational Resources Information Center
Vaughan, Norman
2014-01-01
There is an increased focus on student engagement and blended approaches to learning in higher education. This article demonstrates how collaborative learning applications and a blended approach to learning can be used to design and support assessment activities that increase levels of student engagement with course concepts, their peers, faculty…
Teachers' and Students' Beliefs regarding Aspects of Language Learning
ERIC Educational Resources Information Center
Davis, Adrian
2003-01-01
The similarities and dissimilarities between teachers' and students' conceptions of language learning were addressed through a questionnaire survey concerning the nature and methods of language learning. The results indicate points of congruence between teachers' and students' beliefs about language learning in respect of eight main areas.…
To Learn or Not To Learn: Understanding Student Motivation.
ERIC Educational Resources Information Center
Lumsden, Linda S.
1995-01-01
A multitude of factors affect the attitudes and behaviors that students bring to the learning situation. This document discusses some motivation-related terms and concepts. It then examines several factors that affect students' basic beliefs about and attitudes toward learning. The first section differentiates between the following terms: ability…
Changing Students' Approaches to Study through Classroom Exercises.
ERIC Educational Resources Information Center
Gibbs, Graham
1983-01-01
Differentiates among learning to study, teaching study skills, and helping people learn how to learn. Concentrates on learning to learn--a developmental process in which people's conceptions of learning evolve--and describes strategies for helping students learn how to learn to change their approaches to study tasks. (JOW)
NASA Astrophysics Data System (ADS)
Williams, Karen Ann
One section of college students (N = 25) enrolled in an algebra-based physics course was selected for a Piagetian-based learning cycle (LC) treatment while a second section (N = 25) studied in an Ausubelian-based meaningful verbal reception learning treatment (MVRL). This study examined the students' overall (concept + problem solving + mental model) meaningful understanding of force, density/Archimedes Principle, and heat. Also examined were students' meaningful understanding as measured by conceptual questions, problems, and mental models. In addition, students' learning orientations were examined. There were no significant posttest differences between the LC and MVRL groups for students' meaningful understanding or learning orientation. Piagetian and Ausubelian theories explain meaningful understanding for each treatment. Students from each treatment increased their meaningful understanding. However, neither group altered their learning orientation. The results of meaningful understanding as measured by conceptual questions, problem solving, and mental models were mixed. Differences were attributed to the weaknesses and strengths of each treatment. This research also examined four variables (treatment, reasoning ability, learning orientation, and prior knowledge) to find which best predicted students' overall meaningful understanding of physics concepts. None of these variables were significant predictors at the.05 level. However, when the same variables were used to predict students' specific understanding (i.e. concept, problem solving, or mental model understanding), the results were mixed. For forces and density/Archimedes Principle, prior knowledge and reasoning ability significantly predicted students' conceptual understanding. For heat, however, reasoning ability was the only significant predictor of concept understanding. Reasoning ability and treatment were significant predictors of students' problem solving for heat and forces. For density/Archimedes Principle, treatment was the only significant predictor of students' problem solving. None of the variables were significant predictors of mental model understanding. This research suggested that Piaget and Ausubel used different terminology to describe learning yet these theories are similar. Further research is needed to validate this premise and validate the blending of the two theories.
ERIC Educational Resources Information Center
Duru, Sibel
2015-01-01
Problem Statement: Student teachers' beliefs and conceptions affect not only what and how they learn in teacher education programs, but also their future professional development in their teaching careers. Examining and understanding student teachers' beliefs and conceptions is therefore crucial to improving their professional preparation and…
Method for Analyzing Students' Utilization of Prior Physics Learning in New Contexts
ERIC Educational Resources Information Center
McBride, Dyan L.; Zollman, Dean; Rebello, N. Sanjay
2010-01-01
In prior research, the classification of concepts into three types--descriptive, hypothetical and theoretical--has allowed for the association of students' use of different concept types with their level of understanding. Previous studies have also examined the ways in which students link concepts to determine whether students have a meaningful…
Online Concept Maps: Enhancing Collaborative Learning by Using Technology with Concept Maps.
ERIC Educational Resources Information Center
Canas, Alberto J.; Ford, Kenneth M.; Novak, Joseph D.; Hayes, Patrick; Reichherzer, Thomas R.; Suri, Niranjan
2001-01-01
Describes a collaborative software system that allows students from distant schools to share claims derived from their concept maps. Sharing takes place by accessing The Knowledge Soup, a repository of propositions submitted by students and stored on a computer server. Students can use propositions from other students to enhance their concept…
Iterating between lessons on concepts and procedures can improve mathematics knowledge.
Rittle-Johnson, Bethany; Koedinger, Kenneth
2009-09-01
Knowledge of concepts and procedures seems to develop in an iterative fashion, with increases in one type of knowledge leading to increases in the other type of knowledge. This suggests that iterating between lessons on concepts and procedures may improve learning. The purpose of the current study was to evaluate the instructional benefits of an iterative lesson sequence compared to a concepts-before-procedures sequence for students learning decimal place-value concepts and arithmetic procedures. In two classroom experiments, sixth-grade students from two schools participated (N=77 and 26). Students completed six decimal lessons on an intelligent-tutoring systems. In the iterative condition, lessons cycled between concept and procedure lessons. In the concepts-first condition, all concept lessons were presented before introducing the procedure lessons. In both experiments, students in the iterative condition gained more knowledge of arithmetic procedures, including ability to transfer the procedures to problems with novel features. Knowledge of concepts was fairly comparable across conditions. Finally, pre-test knowledge of one type predicted gains in knowledge of the other type across experiments. An iterative sequencing of lessons seems to facilitate learning and transfer, particularly of mathematical procedures. The findings support an iterative perspective for the development of knowledge of concepts and procedures.
Examining Portfolio-Based Assessment in an Upper-Level Biology Course
ERIC Educational Resources Information Center
Ziegler, Brittany Ann
2012-01-01
Historically, students have been viewed as empty vessels and passive participants in the learning process but students actually are active forming their own conceptions. One way student learning is impacted is through assessment. Alternative assessment, which contrasts traditional assessment methods, takes into account how students learn by…
Postgraduate Conception of Research Methodology: Implications for Learning and Teaching
ERIC Educational Resources Information Center
Daniel, Ben; Kumar, Vijay; Omar, Noritah
2018-01-01
This qualitative inquiry investigates postgraduate students' conceptions of research methodology and how it contributes to their learning. It explores factors likely to motivate student choice of research methodology and challenges in understanding research methods. The research was carried out at research-intensive universities in New Zealand and…
Assessment of Student Outcomes Using a Theoretical Framework.
ERIC Educational Resources Information Center
Levins, Lesley
1997-01-01
Examines the scientific concept of evaporation. Attempts to show how students develop their understanding through the levels of the Structure of the Observed Learning Outcome (SOLO) taxonomy. Shows how designing learning experiences to suit the learners' developmental stages in understanding a concept is paramount to the overall growth of the…
Liquid Motion Lamp: A Learning-Cycle Approach to Solubility
ERIC Educational Resources Information Center
Brown, Sherri L.; Votaw, Nikki L.
2008-01-01
The abstract concepts of density and solubility are often difficult for middle-grade students and should be taught within several contexts to provide multiple experiences with the phenomena. To authenticate the learning of these concepts, this article provides instructional guidelines for constructing a liquid motion lamp to engage students in…
NASA Astrophysics Data System (ADS)
Desy Fatmaryanti, Siska; Suparmi; Sarwanto; Ashadi
2017-11-01
This study focuses on description attainment of students’ conception in the magnetic field. The conception was based by using of direct observation and symbolic language ability. The method used is descriptive quantitative research. The subject of study was about 86 students from 3 senior high school at Purworejo. The learning process was done by guided inquiry model. During the learning, students were required to actively investigate the concept of a magnetic field around a straight wire electrical current Data retrieval was performed using an instrument in the form of a multiple choice test reasoned and observation during the learning process. There was four indicator of direct observation ability and four indicators of symbolic language ability to grouping category of students conception. The results of average score showed that students conception about the magnitude more better than the direction of magnetic fields in view of symbolic language. From the observation, we found that students could draw the magnetic fields line not from a text book but their direct observation results. They used various way to get a good accuracy of observation results. Explicit recommendations are presented in the discussion section at the end of this paper.
Promotion of Nursing Student Civility in Nursing Education: A Concept Analysis.
Woodworth, Julie A
2016-07-01
Substantive research into the development of civility within nursing education is long overdue. Behaviors learned by nursing students while in the school of nursing transfer to the work environment and culture of nursing. This paper reveals a concept analysis of civility within nursing education using Rodgers' evolutionary concept analysis method. Civility is defined to provide clarity for the current terminology of civility within nursing education. Nurse educators must set socially acceptable behavioral expectations in the learning environment, establishing positive interpersonal relationships with students, maintaining moral and academic integrity, and role model civil behaviors. Suggestions are included to help nurse educators outline acceptable behaviors in the learning environment and promote the development of civility. The development of civil behaviors in nursing students will carry into professional practice after graduation. Civility is necessary to establish meaningful interpersonal relationships, supportive communication, and optimum learning environments to ensure quality patient care with optimum outcomes. Woodworth. © 2015 Wiley Periodicals, Inc.
Clinical physiology grand rounds.
Richards, Jeremy; Schwartzstein, Richard; Irish, Julie; Almeida, Jacqueline; Roberts, David
2013-04-01
Clinical Physiology Grand Rounds (CPGR) is an interactive, case-based conference for medical students designed to: (1) integrate preclinical and clinical learning; (2) promote inductive clinical reasoning; and (3) emphasise students as peer teachers. CPGR specifically encourages mixed learning level student interactions and emphasises the use of concept mapping. We describe the theoretical basis and logistical considerations for an interactive, integrative, mixed-learner environment such as CPGR. In addition, we report qualitative data regarding students' attitudes towards and perceptions of CPGR. Medical students from first to fourth year participate in a monthly, interactive conference. The CPGR was designed to bridge gaps and reinforce linkages between basic science and clinical concepts, and to incorporate interactive vertical integration between preclinical and clinical students. Medical education and content experts use Socratic, interactive teaching methods to develop real-time concept maps to emphasise the presence and importance of linkages across curricula. Student focus groups were held to assess attitudes towards and perceptions of the mixed-learner environment and concept maps in CPGR. Qualitative analyses of focus group transcripts were performed to develop themes and codes describing the students' impressions of CPGR. CPGR is a case-based, interactive conference designed to help students gain an increased appreciation of linkages between basic science and clinical medicine concepts, and an increased awareness of clinical reasoning thought processes. Success is dependent upon explicit attention being given to goals for students' integrated learning. © Blackwell Publishing Ltd 2013.
NASA Astrophysics Data System (ADS)
Kelso, P. R.; Brown, L. M.
2015-12-01
Based upon constructivist principles and the recognition that many students are motivated by hands-on activities and field experiences, we designed a new undergraduate curriculum at Lake Superior State University. One of our major goals was to develop stand-alone field projects in most of the academic year courses. Examples of courses impacted include structural geology, geophysics, and geotectonics, Students learn geophysical concepts in the context of near surface field-based geophysical studies while students in structural geology learn about structural processes through outcrop study of fractures, folds and faults. In geotectonics students learn about collisional and rifting processes through on-site field studies of specific geologic provinces. Another goal was to integrate data and samples collected by students in our sophomore level introductory field course along with stand-alone field projects in our clastic systems and sequence stratigraphy courses. Our emphasis on active learning helps students develop a meaningful geoscience knowledge base and complex reasoning skills in authentic contexts. We simulate the activities of practicing geoscientists by engaging students in all aspects of a project, for example: field-oriented project planning and design; acquiring, analyzing, and interpreting data; incorporating supplemental material and background data; and preparing oral and written project reports. We find through anecdotal evidence including student comments and personal observation that the projects stimulate interest, provide motivation for learning new concepts, integrate skill and concept acquisition vertically through the curriculum, apply concepts from multiple geoscience subdisiplines, and develop soft skills such as team work, problem solving, critical thinking and communication skills. Through this projected-centered Lake Superior State University geology curriculum students practice our motto of "learn geology by doing geology."
ERIC Educational Resources Information Center
Belaineh, Matheas Shemelis
2017-01-01
Quality of education in higher institutions can be affected by different factors. It partly rests on the learning environment created by teachers and the learning approach students are employing during their learning. The main purpose of this study is to examine the learning environment at Mizan Tepi University from students' perspective and their…
The use of Virtual Analogy Simulation (VAS) in physics learning
NASA Astrophysics Data System (ADS)
Faizin, M. Noor; Samsudin, A.
2018-05-01
The purpose of this research is to explore the use of VAS software in electrical dynamic learning in junior high student, so as to obtain an overview of this software consistency in help students build a scientific conception. This research was administered via research and Development (R & D) with the design of embedded experimental models. The respondents which were involved in this research were 60 students of ninth grade in one of junior high schools in Kudus central java. The improving process of students’ concept is examined based on normalized gain analysis from pretest and posttest scores. The result of this research shows that there was difference between learning using conventional learning (power point software) with VAS software. VAS is more effective to assist students in understanding the electrical dynamic concept shown with N-gain of 0.36, or 36 % were included in the medium category, whereas the conventional learning with N-gain of 0.28, or 28%.
ERIC Educational Resources Information Center
Molotsky, Gregg Jeremy
2011-01-01
This case study examined the impact of the application of an inquiry-based concept related physics curriculum on student attitudes and learning in a secondary physics classroom in southern New Jersey. Students who had previously used a traditional physics curriculum were presented with a 10 week inquiry-based concept related physics curriculum on…
ERIC Educational Resources Information Center
Abed, Osama H.
2016-01-01
This study investigated the effect of drama-based science teaching on students' understanding of scientific concepts and their attitudes towards science learning. The study also aimed to examine if there is an interaction between students' achievement level in science and drama-based instruction. The sample consisted of (87) of 7th grade students…
Learning Relative Motion Concepts in Immersive and Non-Immersive Virtual Environments
ERIC Educational Resources Information Center
Kozhevnikov, Michael; Gurlitt, Johannes; Kozhevnikov, Maria
2013-01-01
The focus of the current study is to understand which unique features of an immersive virtual reality environment have the potential to improve learning relative motion concepts. Thirty-seven undergraduate students learned relative motion concepts using computer simulation either in immersive virtual environment (IVE) or non-immersive desktop…
ERIC Educational Resources Information Center
Rabanaque, Samuel; Martinez-Fernandez, J. Reinaldo
2009-01-01
Three conceptions of learning (rote, interpretative and constructive), and two aspects of motivation (level and value of motivation) were identified in 258 Spanish psychology undergraduates classified in three different academic levels (initial, intermediate and final course). Results about conceptions of learning showed final-course students are…
NASA Astrophysics Data System (ADS)
Rr Chusnul, C.; Mardiyana, S., Dewi Retno
2017-12-01
Problem solving is the basis of mathematics learning. Problem solving teaches us to clarify an issue coherently in order to avoid misunderstanding information. Sometimes there may be mistakes in problem solving due to misunderstanding the issue, choosing a wrong concept or misapplied concept. The problem-solving test was carried out after students were given treatment on learning by using cooperative learning of TTW type. The purpose of this study was to elucidate student problem regarding to problem solving errors after learning by using cooperative learning of TTW type. Newman stages were used to identify problem solving errors in this study. The new research used a descriptive method to find out problem solving errors in students. The subject in this study were students of Vocational Senior High School (SMK) in 10th grade. Test and interview was conducted for data collection. Thus, the results of this study suggested problem solving errors in students after learning by using cooperative learning of TTW type for Newman stages.
Predicting Robust Learning with the Visual Form of the Moment-by-Moment Learning Curve
ERIC Educational Resources Information Center
Baker, Ryan S.; Hershkovitz, Arnon; Rossi, Lisa M.; Goldstein, Adam B.; Gowda, Sujith M.
2013-01-01
We present a new method for analyzing a student's learning over time for a specific skill: analysis of the graph of the student's moment-by-moment learning over time. Moment-by-moment learning is calculated using a data-mined model that assesses the probability that a student learned a skill or concept at a specific time during learning (Baker,…
ERIC Educational Resources Information Center
Tsuei, Mengping
2011-01-01
This study explores the effects of Electronic Peer-Assisted Learning for Kids (EPK), on the quality and development of reading skills, peer interaction and self-concept in elementary students. The EPK methodology uses a well-developed, synchronous computer-supported, collaborative learning system to facilitate students' learning in Chinese. We…
Sabel, Jaime L.; Dauer, Joseph T.; Forbes, Cory T.
2017-01-01
Providing feedback to students as they learn to integrate individual concepts into complex systems is an important way to help them to develop robust understanding, but it is challenging in large, undergraduate classes for instructors to provide feedback that is frequent and directed enough to help individual students. Various scaffolds can be used to help students engage in self-regulated learning and generate internal feedback to improve their learning. This study examined the use of enhanced answer keys with added reflection questions and instruction as scaffolds for engaging undergraduate students in self-regulated learning within an introductory biology course. Study findings show that both the enhanced answer keys and reflection questions helped students to engage in metacognition and develop greater understanding of biological concepts. Further, students who received additional instruction on the use of the scaffolds changed how they used them and, by the end of the semester, were using the scaffolds in significantly different ways and showed significantly higher learning gains than students who did not receive the instruction. These findings provide evidence for the benefit of designing scaffolds within biology courses that will support students in engaging in metacognition and enhancing their understanding of biological concepts. PMID:28645893
Lujan, Heidi L; DiCarlo, Stephen E
2014-12-01
Students are naturally curious and inquisitive with powerful intrinsic motives to probe, learn, and understand their world. Accordingly, class activities must capitalize on this inherently energetic and curious nature so that learning becomes a lifelong activity where students take initiative for learning, are skilled in learning, and want to learn new things. This report describes a student-centered class activity, the "flipped exam," designed to achieve this goal. The flipped exam was a collaborative, group effort, and learning was interactive. It included a significant proportion (∼30-35%) of material not covered in class. This required students to actively search for content and context, dynamically making connections between what they knew and what they learned, grappling with complexity, uncertainty, and ambiguity, and finally discovering answers to important questions. Accordingly, the need or desire to know was the catalyst for meaningful learning. Student assessment was determined by behavioral noncognitive parameters that were based on the observation of the student and the student's work as well as cognitive parameters (i.e., the student's score on the examination). It is our view that the flipped exam provided a student-centered activity in which students discovered, because of the need to know and opportunities for discussion, the important concepts and principles we wanted them to learn. Copyright © 2014 The American Physiological Society.
NASA Astrophysics Data System (ADS)
Thomas, Gregory P.
2013-05-01
Problems persist with physics learning in relation to students' understanding and use of representations for making sense of physics concepts. Further, students' views of physics learning and their physics learning processes have been predominantly found to reflect a 'surface' approach to learning that focuses on mathematical aspects of physics learning that are often passed on via textbooks and lecture-style teaching. This paper reports on a teacher's effort to stimulate students' metacognitive reflection regarding their views of physics learning and their physics learning processes via a pedagogical change that incorporated the use of a representational framework and metaphors. As a consequence of the teacher's pedagogical change, students metacognitively reflected on their views of physics and their learning processes and some reported changes in their views of what it meant to understand physics and how they might learn and understand physics concepts. The findings provide a basis for further explicit teaching of representational frameworks to students in physics education as a potential means of addressing issues with their physics learning.
Asking a Great Question: A Librarian Teaches Questioning Skills to First-Year Medical Students.
Adams, Nancy E
2015-01-01
In a single one-hour session, first-year medical students were taught a framework for differentiating between lower-order questions that lead to knowledge of facts and higher-order questions that lead to integration of concepts and deeper learning, thereby preparing them for problem-based learning (PBL). Students generated lists of questions in response to an assertion prompt and categorized them according to Bloom's Taxonomy. These data were analyzed in addition to data from the course exam, which asked them to formulate a higher-level question in response to a prompt. Categorizing questions according to Bloom's Taxonomy was a more difficult task for students than was formulating higher-order questions. Students reported that the skills that they learned were used in subsequent PBL sessions to formulate higher-order learning objectives that integrated new and previously-learned concepts.
Currie, Kay; Bannerman, Samantha; Howatson, Val; MacLeod, Fiona; Mayne, Wendy; Organ, Christine; Renton, Sarah; Scott, Janine
2015-01-01
The concept of person-centred care has gained international recognition over the last decade and forms one of the key concepts of our Nursing Quality Improvement Curricular Framework. This study aimed to investigate nursing students' learning about person-centred care during the first-year of their programme. Qualitative thematic analysis of a section of placement learning documents from two consecutive cohorts of students from all fields of nursing (n=405), supplemented by three focus group discussions. Two conceptual categories of student approaches to learning emerged. Firstly, 'stepping back', or learning from a distance about how nurses provide care, often through reading case notes and care plans; second, 'stepping in', learning about the patient as a person by direct interaction with service users. Evidence of reflection on the patient's experience of care was limited. These results have resonance with existing pedagogical theories around preferences for active or passive styles of learning. The potential for clinical mentors to build student confidence and encourage direct engagement with patients was highlighted. Students are aware of the concepts, principles and professional values of person-centred care from early in their programme; however, the majority tend to be preoccupied by learning about what nurses 'do', rather than 'how patients experience care'. Development towards a more person-centred approach may require targeted support from mentors to help students gain confidence and begin reflecting on how patients experience care. Copyright © 2014 Elsevier Ltd. All rights reserved.
Visualization: A Tool for Enhancing Students' Concept Images of Basic Object-Oriented Concepts
ERIC Educational Resources Information Center
Cetin, Ibrahim
2013-01-01
The purpose of this study was twofold: to investigate students' concept images about class, object, and their relationship and to help them enhance their learning of these notions with a visualization tool. Fifty-six second-year university students participated in the study. To investigate his/her concept images, the researcher developed a survey…
Students' Concept-Building Approaches: A Novel Predictor of Success in Chemistry Courses
ERIC Educational Resources Information Center
Frey, Regina F.; Cahill, Michael J.; McDaniel, Mark A.
2017-01-01
One primary goal of many science courses is for students to learn creative problem-solving skills; that is, integrating concepts, explaining concepts in a problem context, and using concepts to solve problems. However, what science instructors see is that many students, even those having excellent SAT/ACT and Advanced Placement scores, struggle in…
NASA Astrophysics Data System (ADS)
Marks Krpan, Catherine Anne
In order to promote science literacy in the classroom, students need opportunities in which they can personalize their understanding of the concepts they are learning. Current literature supports the use of concept maps in enabling students to make personal connections in their learning of science. Because they involve creating explicit connections between concepts, concept maps can assist students in developing metacognitive strategies and assist educators in identifying misconceptions in students' thinking. The literature also notes that concept maps can improve student achievement and recall. Much of the current literature focuses primarily on concept mapping at the secondary and university levels, with limited focus on the elementary panel. The research rarely considers teachers' thoughts and ideas about the concept mapping process. In order to effectively explore concept mapping from the perspective of elementary teachers, I felt that an action research approach would be appropriate. Action research enabled educators to debate issues about concept mapping and test out ideas in their classrooms. It also afforded the participants opportunities to explore their own thinking, reflect on their personal journeys as educators and play an active role in their professional development. In an effort to explore concept mapping from the perspective of elementary educators, an action research group of 5 educators and myself was established and met regularly from September 1999 until June 2000. All of the educators taught in the Toronto area. These teachers were interested in exploring how concept mapping could be used as a learning tool in their science classrooms. In summary, this study explores the journey of five educators and myself as we engaged in collaborative action research. This study sets out to: (1) Explore how educators believe concept mapping can facilitate teaching and student learning in the science classroom. (2) Explore how educators implement concept mapping in their classrooms. (3) Identify challenges educators experience when they implement concept mapping. (4) Explore factors that impact on facilitating collaborative action research. (5) Provide insight into my growth as an action research facilitator.
Learning style and concept acquisition of community college students in introductory biology
NASA Astrophysics Data System (ADS)
Bobick, Sandra Burin
This study investigated the influence of learning style on concept acquisition within a sample of community college students in a general biology course. There are two subproblems within the larger problem: (1) the influence of demographic variables (age, gender, number of college credits, prior exposure to scientific information) on learning style, and (2) the correlations between prior scientific knowledge, learning style and student understanding of the concept of the gene. The sample included all students enrolled in an introductory general biology course during two consecutive semesters at an urban community college. Initial data was gathered during the first week of the semester, at which time students filled in a short questionnaire (age, gender, number of college credits, prior exposure to science information either through reading/visual sources or a prior biology course). Subjects were then given the Inventory of Learning Processes-Revised (ILP-R) which measures general preferences in five learning styles; Deep Learning; Elaborative Learning, Agentic Learning, Methodical Learning and Literal Memorization. Subjects were then given the Gene Conceptual Knowledge pretest: a 15 question objective section and an essay section. Subjects were exposed to specific concepts during lecture and laboratory exercises. At the last lab, students were given the Genetics Conceptual Knowledge Posttest. Pretest/posttest gains were correlated with demographic variables and learning styles were analyzed for significant correlations. Learning styles, as the independent variable in a simultaneous multiple regression, were significant predictors of results on the gene assessment tests, including pretest, posttest and gain. Of the learning styles, Deep Learning accounted for the greatest positive predictive value of pretest essay and pretest objective results. Literal Memorization was a significant negative predictor for posttest essay, essay gain and objective gain. Simultaneous multiple regression indicated that demographic variables were significant positive predictors for Methodical, Deep and Elaborative Learning Styles. Stepwise multiple regression resulted in number of credits, Read Science and gender (female) as significant predictors of learning styles. The findings of this study emphasize the importance of learning styles in conceptual understanding of the gene and the correlation of nonformal exposure to science information with learning style and conceptual understanding.
Threshold Concepts in Biochemistry
ERIC Educational Resources Information Center
Loertscher, Jennifer
2011-01-01
Threshold concepts can be identified for any discipline and provide a framework for linking student learning to curricular design. Threshold concepts represent a transformed understanding of a discipline, without which the learner cannot progress and are therefore pivotal in learning in a discipline. Although threshold concepts have been…
Using concept mapping principles in PowerPoint.
Kinchin, I M; Cabot, L B
2007-11-01
The use of linear PowerPoint templates to support lectures may inadvertently encourage dental students to adopt a passive approach to learning and a narrow appreciation of the field of study. Such presentations may support short-term learning gains and validate assessment regimes that promote surface learning approaches at the expense of developing a wider appreciation of the field that is necessary for development of clinical expertise. Exploitation of concept mapping principles can provide a balance for the negative learning behaviour that is promoted by the unreflective use of PowerPoint. This increases the opportunities for students to access holistic knowledge structures that are indicators of expertise. We illustrate this using the example of partial denture design and show that undergraduates' grasp of learning and teaching issues is sufficiently sophisticated for them to appreciate the implications of varying the mode of presentation. Our findings indicate that students understand the strategic value of bullet-pointed presentations for short-term assessment goals and the benefits of deep learning mediated by concept mapping that may support longer term professional development. Students are aware of the tension between these competing agendas.
ERIC Educational Resources Information Center
Ellis, Robert A.; Goodyear, Peter; Brillant, Martha; Prosser, Michael
2008-01-01
This study investigates fourth-year pharmacy students' experiences of problem-based learning (PBL). It adopts a phenomenographic approach to the evaluation of problem-based learning, to shed light on the ways in which different groups of students conceive of, and approach, PBL. The study focuses on the way students approach solving problem…
Students' Experiences of Clinic-Based Learning during a Final Year Veterinary Internship Programme
ERIC Educational Resources Information Center
Matthew, Susan M.; Taylor, Rosanne M.; Ellis, Robert A.
2010-01-01
This study investigated veterinary students' experiences of clinic-based learning (CBL) during a comprehensive final year internship programme. Open-ended surveys (n = 93) were used to gather qualitative data about students' conceptions of what is learned during CBL and their approaches to learning in clinics. Phenomenography was used for detailed…
Process-Oriented Guided Inquiry Learning: POGIL and the POGIL Project
ERIC Educational Resources Information Center
Moog, Richard S.; Creegan, Frank J.; Hanson, David M.; Spencer, James N.; Straumanis, Andrei R.
2006-01-01
Recent research indicates that students learn best when they are actively engaged and they construct their own understanding. Process-Oriented Guided Inquiry Learning (POGIL) is a student-centered instructional philosophy based on these concepts in which students work in teams on specially prepared activities that follow a learning cycle paradigm.…
ERIC Educational Resources Information Center
Cen, Yuhao
2018-01-01
Teaching and learning in higher education can integrate and accomplish student developmental goals in addition to promoting student learning of subject matter knowledge and transferrable skills. Drawn from the theoretical concept of self-authorship, the Learning Partnerships Model was implemented in teaching a graduate-level course on social…
Using Microcomputers To Help Learning Disabled Student with Arithmetic Difficulties.
ERIC Educational Resources Information Center
Brevil, Margarette
The use of microcomputers to help the learning disabled increase their arithmetic skills is examined. The microcomputer should be used to aid the learning disabled student to practice the concepts taught by the teacher. Computer-aided instruction such as drill and practice may help the learning disabled student because it gives immediate feedback…
The Influence of Extracurricular Activities on Middle School Students' Science Learning in China
ERIC Educational Resources Information Center
Zhang, Danhui; Tang, Xing
2017-01-01
Informal science learning has been found to have effects on students' science learning. Through the use of secondary data from a national assessment of 7410 middle school students in China, this study explores the relationship among five types of extracurricular science activities, learning interests, academic self-concept, and science…
ERIC Educational Resources Information Center
Arthurs, Leilani; Hsia, Jennifer F.; Schweinle, William
2015-01-01
We developed and evaluated an Oceanography Concept Inventory (OCI), which used a mixed-methods approach to test student achievement of 11 learning goals for an introductory-level oceanography course. The OCI was designed with expert input, grounded in research on student (mis)conceptions, written with minimal jargon, tested on 464 students, and…
ERIC Educational Resources Information Center
Merrill, Margaret L.
2012-01-01
To support and improve effective science teaching, educators need methods to reveal student understandings and misconceptions of science concepts and to offer all students an opportunity to reflect on their own knowledge construction and organization. Students can benefit by engaging in scientific activities in which they build personal…
ERIC Educational Resources Information Center
Barnes, Michelle M.
2013-01-01
This doctoral thesis explored mentoring in early learning teacher preparation programs. This study explored the reflective processes embedded in the work between student teachers and their mentors during early learning student teacher experiences at Washington State community and technical colleges. Schon's (1987a) concepts of…
Academic Library Spaces: Advancing Student Success and Helping Students Thrive
ERIC Educational Resources Information Center
Spencer, Mary Ellen; Watstein, Sarah Barbara
2017-01-01
Are today's academic libraries really designed for learning? Do library spaces impact student learning? Intending to spark broader and more informed dialogue about the relationship between the quality of learning and the quality of academic library spaces in higher education, the authors consider the concept of space as service; student learning…
Using Rasch Analysis to Explore What Students Learn about Probability Concepts
ERIC Educational Resources Information Center
Mahmud, Zamalia; Porter, Anne
2015-01-01
Students' understanding of probability concepts have been investigated from various different perspectives. This study was set out to investigate perceived understanding of probability concepts of forty-four students from the STAT131 Understanding Uncertainty and Variation course at the University of Wollongong, NSW. Rasch measurement which is…
ERIC Educational Resources Information Center
Nieminen, Pasi; Savinainen, Antti; Viiri, Jouni
2012-01-01
Previous physics education research has raised the question of "hidden variables" behind students' success in learning certain concepts. In the context of the force concept, it has been suggested that students' reasoning ability is one such variable. Strong positive correlations between students' preinstruction scores for reasoning…
Student Conceptions of Oral Presentations
ERIC Educational Resources Information Center
Joughin, Gordon
2007-01-01
A phonographic study of students' experience of oral presentations in an open learning theology programme constituted three contrasting conceptions of oral presentations--as transmission of ideas; as a test of students' understanding of what they were studying; and as a position to be argued. Each of these conceptions represented a combination of…
ERIC Educational Resources Information Center
Gerjets, Peter H.; Hesse, Friedrich W.
2004-01-01
The goal of this chapter is to outline a theoretical and empirical perspective on how learners' conceptions of educational technology might influence their learning activities and thereby determine the power of computer-based learning environments. Starting with an introduction to the concept of powerful learning environments we outline how recent…
ERIC Educational Resources Information Center
Chiou, Guo-Li; Liang, Jyh-Chong; Tsai, Chin-Chung
2012-01-01
This study reports the findings of a study which examined the relationship between conceptions of learning and approaches to learning in biology. This study, which used structural equation modelling, also sorted to identify gender differences in the relationship. Two questionnaires, the Conceptions of Learning Biology (COLB) and the Approaches to…
ERIC Educational Resources Information Center
Liao, Ya-Wen; She, Hsiao-Ching
2009-01-01
This study reports the impacts of the Scientific Concept Construction and Reconstruction (SCCR) digital learning system on eighth grade students' concept construction, conceptual change, and scientific reasoning involving the topic of "atoms". A two-factorial experimental design was carried out to investigate the effects of the approach…
Evaluating the Use of Learning Objects for Improving Calculus Readiness
ERIC Educational Resources Information Center
Kay, Robin; Kletskin, Ilona
2010-01-01
Pre-calculus concepts such as working with functions and solving equations are essential for students to explore limits, rates of change, and integrals. Yet many students have a weak understanding of these key concepts which impedes performance in their first year university Calculus course. A series of online learning objects was developed to…
ERIC Educational Resources Information Center
Schill, Bethany; Howell, Linda
2011-01-01
A major part of developing concept-based instruction is the use of an overarching idea to provide a conceptual lens through which students view the content of a particular subject. By using a conceptual lens to focus learning, students think at a much deeper level about the content and its facts (Erickson 2007). Therefore, the authors collaborated…
Improving Operations Management Concept Recollection via the Zarco Experiential Learning Activity
ERIC Educational Resources Information Center
Polito, Tony; Kros, John; Watson, Kevin
2004-01-01
In this study, the authors investigated the effect of Zarco, an operations management "mock factory" experiential learning activity, on student recollection of operations management concepts. Using a number of single-factor and multiple-factor analyses of variance, the authors compared the recollection of students treated with the Zarco activity…
ERIC Educational Resources Information Center
Bender, William N.
This book provides classroom-proven strategies designed to empower the teacher to target instructional modifications to the content, process, and products for students with learning disabilities in the general and special education classrooms. Chapter 1 presents the concept of differentiated instruction and how that concept translates into…
A Course Which Used Programming to Aid Learning Various Mathematical Concepts.
ERIC Educational Resources Information Center
Day, Jane M.
A three unit mathematics course entitled Introduction to Computing evaluated the effectiveness of programing as an aid to learning math concepts and to developing student self-reliance. Sixteen students enrolled in the course at the College of Notre Dame in Belmont, California; one terminal was available, connected to the Stanford Computation…
ERIC Educational Resources Information Center
He, Yi; Swenson, Sandra; Lents, Nathan
2012-01-01
Educational technology has enhanced, even revolutionized, pedagogy in many areas of higher education. This study examines the incorporation of video tutorials as a supplement to learning in an undergraduate analytical chemistry course. The concepts and problems in which students faced difficulty were first identified by assessing students'…
ERIC Educational Resources Information Center
Gurcay, Deniz; Gulbas, Etna
2018-01-01
The purpose of this research is to investigate the relationships between high school students' learning approaches and logical thinking abilities and their understandings of heat, temperature and internal energy concepts. Learning Approach Questionnaire, Test of Logical Thinking and Three-Tier Heat, Temperature and Internal Energy Test were used…
Using Cognitive Tutor Software in Learning Linear Algebra Word Concept
ERIC Educational Resources Information Center
Yang, Kai-Ju
2015-01-01
This paper reports on a study of twelve 10th grade students using Cognitive Tutor, a math software program, to learn linear algebra word concept. The study's purpose was to examine whether students' mathematics performance as it is related to using Cognitive Tutor provided evidence to support Koedlinger's (2002) four instructional principles used…
NASA Astrophysics Data System (ADS)
Mahmud, Zamalia; Porter, Anne; Salikin, Masniyati; Ghani, Nor Azura Md
2015-12-01
Students' understanding of probability concepts have been investigated from various different perspectives. Competency on the other hand is often measured separately in the form of test structure. This study was set out to show that perceived understanding and competency can be calibrated and assessed together using Rasch measurement tools. Forty-four students from the STAT131 Understanding Uncertainty and Variation course at the University of Wollongong, NSW have volunteered to participate in the study. Rasch measurement which is based on a probabilistic model is used to calibrate the responses from two survey instruments and investigate the interactions between them. Data were captured from the e-learning platform Moodle where students provided their responses through an online quiz. The study shows that majority of the students perceived little understanding about conditional and independent events prior to learning about it but tend to demonstrate a slightly higher competency level afterward. Based on the Rasch map, there is indication of some increase in learning and knowledge about some probability concepts at the end of the two weeks lessons on probability concepts.
NASA Astrophysics Data System (ADS)
Sultan, A. Z.; Hamzah, N.; Rusdi, M.
2018-01-01
The implementation of concept attainment method based on simulation was used to increase student’s interest in the subjects Engineering of Mechanics in second semester of academic year 2016/2017 in Manufacturing Engineering Program, Department of Mechanical PNUP. The result of the implementation of this learning method shows that there is an increase in the students’ learning interest towards the lecture material which is summarized in the form of interactive simulation CDs and teaching materials in the form of printed books and electronic books. From the implementation of achievement method of this simulation based concept, it is noted that the increase of student participation in the presentation and discussion as well as the deposit of individual assignment of significant student. With the implementation of this method of learning the average student participation reached 89%, which before the application of this learning method only reaches an average of 76%. And also with previous learning method, for exam achievement of A-grade under 5% and D-grade above 8%. After the implementation of the new learning method (simulation based-concept attainment method) the achievement of Agrade has reached more than 30% and D-grade below 1%.
Integrated learning of mathematics, science and technology concepts through LEGO/Logo projects
NASA Astrophysics Data System (ADS)
Wu, Lina
This dissertation examined integrated learning in the domains of mathematics, science and technology based on Piaget's constructivism, Papert's constructionism, and project-based approach to education. Ten fifth grade students were involved in a two-month long after school program where they designed and built their own computer-controlled LEGO/Logo projects that required the use of gears, ratios and motion concepts. The design of this study centered on three notions of integrated learning: (1) integration in terms of what educational materials/settings provide, (2) integration in terms of students' use of those materials, and (3) integration in the psychological sense. In terms of the first notion, the results generally showed that the LEGO/Logo environment supported the integrated learning of math, science and technology concepts. Regarding the second notion, the students all completed impressive projects of their own design. They successfully combined gears, motors, and LEGO parts together to create motion and writing control commands to manipulate the motion. But contrary to my initial expectations, their successful designs did not require numerical reasoning about ratios in designing effective gear systems. When they did reason about gear relationships, they worked with "qualitative" ratios, e.g., "a larger driver gear with a smaller driven gear increases the speed." In terms of the third notion of integrated learning, there was evidence in all four case study students of the psychological processes involved in linking mathematical, scientific, and/or technological concepts together to achieve new conceptual units. The students not only made connections between ideas and experiences, but also recognized decisive patterns and relationships in their project work. The students with stronger overall project performances showed more evidence of synthesis than the students with relatively weaker performances did. The findings support the conclusion that all three notions of the integrated learning are important for understanding what the students learned from their project work. By considering these notions together, and by deliberating about their interrelations, we take a step towards understanding the integrated learning.
NASA Astrophysics Data System (ADS)
Millar, Susan
A fundamental problem which confronts Science teachers is the difficulty many students experience in the construction, understanding and remembering of concepts. This is more likely to occur when teachers adhere to a Transmission model of teaching and learning, and fail to provide students with opportunities to construct their own learning. Social construction, followed by individual reflective writing, enables students to construct their own understanding of concepts and effectively promotes deep learning. This method of constructing knowledge in the classroom is often overlooked by teachers as they either have no knowledge of it, or do not know how to appropriate it for successful teaching in Science. This study identifies the difficulties which students often experience when writing reflectively and offers solutions which are likely to reduce these difficulties. These solutions, and the use of reflective writing itself, challenge the ideology of the Sydney Genre School, which forms the basis of the attempt to deal with literacy in the NSW Science Syllabus. The findings of this investigation support the concept of literacy as the ability to use oral and written language, reading and listening to construct meaning. The investigation demonstrates how structured discussion, role play and reflective writing can be used to this end. While the Sydney Genre School methodology focuses on the structure of genre as a prerequisite for understanding concepts in Science, the findings of this study demonstrate that students can use their own words to discuss and write reflectively as they construct scientific concepts for themselves. Social construction and reflective writing can contribute to the construction of concepts and the development of metacognition in Science. However, students often experience difficulties when writing reflectively about scientific concepts they are learning. In this investigation, students identified these difficulties as an inability to understand, remember and think about a concept and to plan the sequence of their reflective writing. This study was undertaken in four different classes at junior to senior levels. The difficulties identified by students were successfully addressed by role play and the activities that are integral to it. These include physical or kinaesthetic activity, social construction, the use of drawing, diagrams and text, and the provision of a concrete model of the concept. Through the enactment effect, kinaesthetic activity enables students to automatically remember and visualise concepts, whilst visual stimuli and social construction provide opportunities for students to both visualise and verbalise concepts. In addition, the provision of a concrete model enables most students to visualise and understand abstract concepts to some extent. These activities, embedded in role play, enable students to understand, remember, sequence and think about a concept as they engage in reflective writing. This, in turn, enhances understanding and memory. Role play has hitherto been regarded as a useful teaching technique when dealing with very young students. This study demonstrates that role play can be highly effective when teaching Science at the secondary level. This investigation looks at the activities embedded in role play, and demonstrates how they can be effectively translated from theoretical constructs into classroom practice. Grounded theory (Glaser and Strauss, 1967; Glaser, 1978; 1998; 2002) was selected as the most appropriate methodology for this investigation. The problems of identifying and controlling variables in an educational setting were essentially resolved using this qualitative, interpretative approach. Students from four classes in Years 8, 10 and 11 were investigated. Data were gathered using classroom observations, informal interviews, and formal written interviews, focus group conversations and samples of student writing.
Il Concetto di Infinito nell'Intuizione Matematica (Concept of Infinity in Mathematical Intuition).
ERIC Educational Resources Information Center
Ferrari, E.; And Others
1995-01-01
Investigated the acquisition and maturation of the infinity concept in mathematics of students ages 13-15. Found the infinity concept is learned by students only when provided with appropriate guidance. (Author/MKR)
The Effect of Concept Maps on Undergraduate Nursing Students' Critical Thinking.
Garwood, Janet K; Ahmed, Azza H; McComb, Sara A
The aim of the study was to evaluate the effect of using concept maps as a teaching and learning strategy on students' critical thinking abilities and examine students' perceptions toward concept maps utilizing the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Researchers have found that almost two thirds of nurse graduates do not have adequate critical thinking skills for a beginner nurse. Critical thinking skills are required for safe practice and mandated by accrediting organizations. Nursing educators should consider teaching and learning strategies that promote the development of critical thinking skills. A literature review was conducted using "concept maps, nursing education, and critical thinking" as the combined search terms. Inclusion criteria were studies that measured the effects of concept mapping on critical thinking in nursing students. Seventeen articles were identified. Concept maps may be useful tools to promote critical thinking in nursing education and for applying theory to practice.
ERIC Educational Resources Information Center
Wang, Youming
2010-01-01
In order to sharpen English learning capabilities of students in the institutes of physical education, the author makes a tracking investigation of New Concept English teaching model in Grade 08 of the department of sports training and national traditional sports. By analyzing and comparing the students' English levels before and after the…
Rhodes, Ashley E; Rozell, Timothy G
2017-09-01
Cognitive flexibility is defined as the ability to assimilate previously learned information and concepts to generate novel solutions to new problems. This skill is crucial for success within ill-structured domains such as biology, physiology, and medicine, where many concepts are simultaneously required for understanding a complex problem, yet the problem consists of patterns or combinations of concepts that are not consistently used or needed across all examples. To succeed within ill-structured domains, a student must possess a certain level of cognitive flexibility: rigid thought processes and prepackaged informational retrieval schemes relying on rote memorization will not suffice. In this study, we assessed the cognitive flexibility of undergraduate physiology students using a validated instrument entitled Student's Approaches to Learning (SAL). The SAL evaluates how deeply and in what way information is processed, as well as the investment of time and mental energy that a student is willing to expend by measuring constructs such as elaboration and memorization. Our results indicate that students who rely primarily on memorization when learning new information have a smaller knowledge base about physiological concepts, as measured by a prior knowledge assessment and unit exams. However, students who rely primarily on elaboration when learning new information have a more well-developed knowledge base about physiological concepts, which is displayed by higher scores on a prior knowledge assessment and increased performance on unit exams. Thus students with increased elaboration skills possibly possess a higher level of cognitive flexibility and are more likely to succeed within ill-structured domains. Copyright © 2017 the American Physiological Society.
ERIC Educational Resources Information Center
Lujan, Heidi L.; DiCarlo, Stephen E.
2014-01-01
Students are naturally curious and inquisitive with powerful intrinsic motives to probe, learn, and understand their world. Accordingly, class activities must capitalize on this inherently energetic and curious nature so that learning becomes a lifelong activity where students take initiative for learning, are skilled in learning, and want to…
Sajid, Muhammad R.; Abothenain, Fayha; Salam, Yezan; AlJayar, Dina; Obeidat, Akef
2016-01-01
Objectives To evaluate student academic performance and perception towards blended learning and flipped classrooms in comparison to traditional teaching. Methods This study was conducted during the hematology block on year three students. Five lectures were delivered online only. Asynchronous discussion boards were created where students could interact with colleagues and instructors. A flipped classroom was introduced with application exercises. Summative assessment results were compared with previous year results as a historical control for statistical significance. Student feedback regarding their blended learning experience was collected. Results A total of 127 responses were obtained. Approximately 22.8% students felt all lectures should be delivered through didactic lecturing, while almost 35% felt that 20% of total lectures should be given online. Students expressed satisfaction with blended learning as a new and effective learning approach. The majority of students reported blended learning was helpful for exam preparation and concept clarification. However, a comparison of grades did not show a statistically significant increase in the academic performance of students taught via the blended learning method. Conclusions Learning experiences can be enriched by adopting a blended method of instruction at various stages of undergraduate and postgraduate education. Our results suggest that blended learning, a relatively new concept in Saudi Arabia, shows promising results with higher student satisfaction. Flipped classrooms replace passive lecturing with active student-centered learning that enhances critical thinking and application, including information retention. PMID:27591930
Identification and Assessment of Taiwanese Children's Conceptions of Learning Mathematics
ERIC Educational Resources Information Center
Chiu, Mei-Shiu
2012-01-01
The aim of the present study was to identify children's conceptions of learning mathematics and to assess the identified conceptions. Children's conceptions are identified by interviewing 73 grade 5 students in Taiwan. The interviews are analyzed using qualitative data analysis methods, which results in a structure of 5 major conceptions, each…
Constructing Concept Maps to Encourage Meaningful Learning in Science Classroom
ERIC Educational Resources Information Center
Akcay, Hakan
2017-01-01
The purpose of this activity is to demonstrate science teaching and assessing what is learned via using concept maps. Concept mapping is a technique for visually representing the structure of information. Concept mapping allows students to understand the relationships between concepts of science by creating a visual map of the connections. Concept…
Teaching Conceptually Oriented Social Science Education Programs in the Elementary School.
ERIC Educational Resources Information Center
Mahlios, Marc C.
Approaches to elementary social studies education that focus on concept and inquiry learning are outlined. The basic goal of the teacher in concept teaching is to aid the student in developing relationships among factual learning, conceptualization, and personal behavior. Learning activities should focus on the process concept (i.e., one that is…
NASA Astrophysics Data System (ADS)
Pratiwi, W. N.; Rochintaniawati, D.; Agustin, R. R.
2018-05-01
This research was focused on investigating the effect of multiple intelligence -based learning as a learning approach towards students’ concept mastery and interest in learning matter. The one-group pre-test - post-test design was used in this research towards a sample which was according to the suitable situation of the research sample, n = 13 students of the 7th grade in a private school in Bandar Seri Begawan. The students’ concept mastery was measured using achievement test and given at the pre-test and post-test, meanwhile the students’ interest level was measured using a Likert Scale for interest. Based on the analysis of the data, the result shows that the normalized gain was .61, which was considered as a medium improvement. in other words, students’ concept mastery in matter increased after being taught using multiple intelligence-based learning. The Likert scale of interest shows that most students have a high interest in learning matter after being taught by multiple intelligence-based learning. Therefore, it is concluded that multiple intelligence – based learning helped in improving students’ concept mastery and gain students’ interest in learning matter.
Exploring Nursing Students' Experiences of Learning Using Phenomenography: A Literature Review.
Barry, Sinead; Ward, Louise; Walter, Ruby
2017-10-01
The purpose of this extensive international and national literature review was to explore how phenomenography identifies nursing students' experiences of learning within preregistration (or prelicensure) nursing education. Data were collected utilizing a comprehensive search of electronic databases. Full text, peer-reviewed, and scholarly articles published in English using the search terms phenomengraph*, nurs*, student, education, and learning were reviewed. Two discreet themes emerged exploring students' experiences of learning within preregistration nursing education: (a) Phenomenography was a beneficial method to expose variation in students' understandings of a challenging concept or topic and (b) phenomenography was beneficial to evaluate teaching methods in attempt to improve student learning of challenging and complex concepts. On the basis of these findings, future research utilizing phenomenography within nursing education has potential to uncover variation in students' understandings of mental health, with future consideration of implications to nursing curriculum design and development. [J Nurs Educ. 2017;56(10):591-598.]. Copyright 2017, SLACK Incorporated.
Calcium contained tap water phenomena: students misconception patterns of acids-bases concept
NASA Astrophysics Data System (ADS)
Liliasari, S.; Albaiti, A.; Wahyudi, A.
2018-05-01
Acids and bases concept is very important and fundamental concept in learning chemistry. It is one of the chemistry subjects considered as an abstract and difficult concept to understand. The aim of this research was to explore student’s misconception pattern about acids and bases phenomena in daily life, such as calcium contained tap water. This was a qualitative research with descriptive methods. Participants were 546 undergraduate students of chemistry education and chemistry program, and graduate students of chemistry education in West Java, Indonesia. The test to explore students’ misconception about this phenomena was essay test. The results showed that there were five patterns of students’ misconception in explaining the phenomena of calcium carbonate precipitation on heating tap water. Students used irrelevant concepts in explaining this phenomena, i.e. temporary hardness, coagulation, density, and phase concepts. No students had right answer in explaining this phenomena. This research contributes to design meaningful learning and to achieve better understanding.
Students using visual thinking to learn science in a Web-based environment
NASA Astrophysics Data System (ADS)
Plough, Jean Margaret
United States students' science test scores are low, especially in problem solving, and traditional science instruction could be improved. Consequently, visual thinking, constructing science structures, and problem solving in a web-based environment may be valuable strategies for improving science learning. This ethnographic study examined the science learning of fifteen fourth grade students in an after school computer club involving diverse students at an inner city school. The investigation was done from the perspective of the students, and it described the processes of visual thinking, web page construction, and problem solving in a web-based environment. The study utilized informal group interviews, field notes, Visual Learning Logs, and student web pages, and incorporated a Standards-Based Rubric which evaluated students' performance on eight science and technology standards. The Visual Learning Logs were drawings done on the computer to represent science concepts related to the Food Chain. Students used the internet to search for information on a plant or animal of their choice. Next, students used this internet information, with the information from their Visual Learning Logs, to make web pages on their plant or animal. Later, students linked their web pages to form Science Structures. Finally, students linked their Science Structures with the structures of other students, and used these linked structures as models for solving problems. Further, during informal group interviews, students answered questions about visual thinking, problem solving, and science concepts. The results of this study showed clearly that (1) making visual representations helped students understand science knowledge, (2) making links between web pages helped students construct Science Knowledge Structures, and (3) students themselves said that visual thinking helped them learn science. In addition, this study found that when using Visual Learning Logs, the main overall ideas of the science concepts were usually represented accurately. Further, looking for information on the internet may cause new problems in learning. Likewise, being absent, starting late, and/or dropping out all may negatively influence students' proficiency on the standards. Finally, the way Science Structures are constructed and linked may provide insights into the way individual students think and process information.
NASA Astrophysics Data System (ADS)
Autapao, Kanyarat; Minwong, Panthul
2018-01-01
Creative thinking was an important learning skill in the 21st Century via learning and innovation to promote students' creative thinking and working with others and to construct innovation. This is one of the important skills that determine the readiness of the participants to step into the complex society. The purposes of this research were 1) to compare the learning achievement of students after using basic character design and animation concepts using the flipped learning and project-based learning and 2) to make a comparison students' creative thinking between pretest and posttest. The populations were 29 students in Multimedia Technology program at Thepsatri Rajabhat University in the 2nd semester of the academic year 2016. The experimental instruments were lesson plans of basic character design and animation concepts using the flipped learning and project based learning. The data collecting instrument was creative thinking test. The data were analyzed by the arithmetic mean, standard deviation and The Wilcoxon Matched Pairs Signed-Ranks Test. The results of this research were 1) the learning achievement of students were statistically significance of .01 level and 2) the mean score of student's creativity assessment were statistically significance of .05 level. When considering all of 11 KPIs, showed that respondents' post-test mean scores higher than pre-test. And 5 KPIs were statistically significance of .05 level, consist of Originality, Fluency, Elaboration, Resistance to Premature Closure, and Intrinsic Motivation. It's were statistically significance of .042, .004, .049, .024 and .015 respectively. And 6 KPIs were non-statistically significant, include of Flexibility, Tolerance of Ambiguity, Divergent Thinking, Convergent Thinking, Risk Taking, and Extrinsic Motivation. The findings revealed that the flipped learning and project based learning provided students the freedom to simply learn on their own aptitude. When working together with project-based learning, Project based learning focusing on the students' project-based learning construction based on their own interests which allowed the students to increase creative project. This can be applied for other courses in order to plan activities to develop students' work process skills and creative skills. We also recommend that researchers carefully consider the design of lesson plans in accordance with all of 11 KPIs to promote students' creative thinking skills.
Identifying the Concept "Fraction" of Primary School Students: The Investigation in Vietnam
ERIC Educational Resources Information Center
Loc, Nguyen Phu; Tong, Duong Huu; Chau, Phan Thai
2017-01-01
In Vietnam, primary school students explicitly learn the concept of fraction in Grade 4 and 5. Because this concept is introduced to them intuitionally, it is difficult for them to understand and apply it. Base on this point, we believe that the students will commit many errors when solving exercises related to this concept. The survey of 478…
Evaluating learning and teaching using the Force Concept Inventory
NASA Astrophysics Data System (ADS)
Zitzewitz, Paul
1997-04-01
Teaching methods used in the calculus-based mechanics course for engineers and scientists (P150) at the University of Michigan-Dearborn were markedly changed in September, 1996. Lectures emphasize active learning with Mazur's ConcepTests, Sokoloff's Interactive Demonstrations, and Van Heuvelen's ALPS Kit worksheets. Students solve context-rich problems using Van Heuvelen's multiple representation format in cooperative groups in discussion sections. Labs were changed to use MBL emphasizing concepts and Experiment Problems to learn lab-based problem solving. Pre- and post-testing of 400 students with the Force Concept Inventory has demonstrated considerable success. The average increase in score has been 35-45methods as defined by Hake. The methods and results will be discussed. Detailed analyses of the FCI results will look at success in teaching specific concepts and the effect of student preparation in mathematics and high school physics.
Kindling Fires: Examining the Potential for Cumulative Learning in a Journalism Curriculum
ERIC Educational Resources Information Center
Kilpert, Leigh; Shay, Suellen
2013-01-01
This study investigated context-dependency of learning as an indicator for students' potential to continue learning after graduation. We used Maton's theoretical concepts of "cumulative" and "segmented" learning, and "semantic gravity", to look for context-independent learning in students' assessments in a Journalism…
Students' Energy Concepts at the Transition Between Primary and Secondary School
NASA Astrophysics Data System (ADS)
Opitz, Sebastian T.; Harms, Ute; Neumann, Knut; Kowalzik, Kristin; Frank, Arne
2015-10-01
Energy is considered both a core idea and a crosscutting concept in science education. A thorough understanding of the energy concept is thought to help students learn about other (related) concepts within and across science subjects, thereby fostering scientific literacy. This study investigates students' progression in understanding the energy concept in biological contexts at the transition from primary to lower secondary school by employing a quantitative, cross-sectional study in grades 3-6 ( N = 540) using complex multiple-choice items. Based on a model developed in a previous study, energy concepts were assessed along four aspects of energy: (1) forms and sources of energy, (2) transfer and transformation, (3) degradation and dissipation, and (4) energy conservation. Two parallel test forms (A and B) indicated energy concept scores to increase significantly by a factor of 2.3 (A)/1.7 (B) from grade 3 to grade 6. Students were observed to progress in their understanding of all four aspects of the concept and scored highest on items for energy forms. The lowest scores and the smallest gain across grades were found for energy conservation. Based on our results, we argue that despite numerous learning opportunities, students lack a more integrated understanding of energy at this stage, underlining the requirement of a more explicit approach to teaching energy to young learners. Likewise, more interdisciplinary links for energy learning between relevant contexts in each science discipline may enable older students to more efficiently use energy as a tool and crosscutting concept with which to analyze complex content.
Academic self-concept, learning motivation, and test anxiety of the underestimated student.
Urhahne, Detlef; Chao, Sheng-Han; Florineth, Maria Luise; Luttenberger, Silke; Paechter, Manuela
2011-03-01
BACKGROUND. Teachers' judgments of student performance on a standardized achievement test often result in an overestimation of students' abilities. In the majority of cases, a larger group of overestimated students and a smaller group of underestimated students are formed by these judgments. AIMS. In this research study, the consequences of the underestimation of students' mathematical performance potential were examined. SAMPLE. Two hundred and thirty-five fourth grade students and their fourteen mathematics teachers took part in the investigation. METHOD. Students worked on a standardized mathematics achievement test and completed a self-description questionnaire about motivation and affect. Teachers estimated each individual student's potential with regard to mathematics test performance as well as students' expectancy for success, level of aspiration, academic self-concept, learning motivation, and test anxiety. The differences between teachers' judgments on students' test performance and students' actual performance were used to build groups of underestimated and overestimated students. RESULTS. Underestimated students displayed equal levels of test performance, learning motivation, and level of aspiration in comparison with overestimated students, but had lower expectancy for success, lower academic self-concept, and experienced more test anxiety. Teachers expected that underestimated students would receive lower grades on the next mathematics test, believed that students were satisfied with lower grades, and assumed that the students have weaker learning motivation than their overestimated classmates. CONCLUSION. Teachers' judgment error was not confined to test performance but generalized to motivational and affective traits of the students. © 2010 The British Psychological Society.
NASA Astrophysics Data System (ADS)
Croft, Michael; de Berg, Kevin
2014-09-01
This paper selects six key alternative conceptions identified in the literature on student understandings of chemical bonding and illustrates how a historical analysis and a textbook analysis can inform these conceptions and lead to recommendations for improving the teaching and learning of chemical bonding at the secondary school level. The historical analysis and the textbook analysis focus on the concepts of charge, octet, electron pair, ionic, covalent and metallic bonding. Finally, a table of recommendations is made for teacher and student in the light of four fundamental questions and the six alternative conceptions to enhance the quality of the curriculum resources available and the level of student engagement.
Montpetit-Tourangeau, Katherine; Dyer, Joseph-Omer; Hudon, Anne; Windsor, Monica; Charlin, Bernard; Mamede, Sílvia; van Gog, Tamara
2017-12-01
Health profession learners can foster clinical reasoning by studying worked examples presenting fully worked out solutions to a clinical problem. It is possible to improve the learning effect of these worked examples by combining them with other learning activities based on concept maps. This study investigated which combinaison of activities, worked examples study with concept map completion or worked examples study with concept map study, fosters more meaningful learning of intervention knowledge in physiotherapy students. Moreover, this study compared the learning effects of these learning activity combinations between novice and advanced learners. Sixty-one second-year physiotherapy students participated in the study which included a pre-test phase, a 130-min guided-learning phase and a four-week self-study phase. During the guided and self-study learning sessions, participants had to study three written worked examples presenting the clinical reasoning for selecting electrotherapeutic currents to treat patients with motor deficits. After each example, participants engaged in either concept map completion or concept map study depending on which learning condition they were randomly allocated to. Students participated in an immediate post-test at the end of the guided-learning phase and a delayed post-test at the end of the self-study phase. Post-tests assessed the understanding of principles governing the domain of knowledge to be learned (conceptual knowledge) and the ability to solve new problems that have similar (i.e., near transfer) or different (i.e., far transfer) solution rationales as problems previously studied in the examples. Learners engaged in concept map completion outperformed those engaged in concept map study on near transfer (p = .010) and far transfer (p < .001) performance. There was a significant interaction effect of learners' prior ability and learning condition on conceptual knowledge but not on near and far transfer performance. Worked examples study combined with concept map completion led to greater transfer performance than worked examples study combined with concept map study for both novice and advanced learners. Concept map completion might give learners better insight into what they have and have not yet learned, allowing them to focus on those aspects during subsequent example study.
Use of concept mapping in an undergraduate introductory exercise physiology course.
Henige, Kim
2012-09-01
Physiology is often considered a challenging course for students. It is up to teachers to structure courses and create learning opportunities that will increase the chance of student success. In an undergraduate exercise physiology course, concept maps are assigned to help students actively process and organize information into manageable and meaningful chunks and to teach them to recognize the patterns and regularities of physiology. Students are first introduced to concept mapping with a commonly relatable nonphysiology concept and are then assigned a series of maps that become more and more complex. Students map the acute response to a drop in blood pressure, the causes of the acute increase in stroke volume during cardiorespiratory exercise, and the factors contributing to an increase in maximal O(2) consumption with cardiorespiratory endurance training. In the process, students draw the integrative nature of physiology, identify causal relationships, and learn about general models and core principles of physiology.
Creating Dynamic Learning Environment to Enhance Students’ Engagement in Learning Geometry
NASA Astrophysics Data System (ADS)
Sariyasa
2017-04-01
Learning geometry gives many benefits to students. It strengthens the development of deductive thinking and reasoning; it also provides an opportunity to improve visualisation and spatial ability. Some studies, however, have pointed out the difficulties that students encountered when learning geometry. A preliminary study by the author in Bali revealed that one of the main problems was teachers’ difficulties in delivering geometry instruction. It was partly due to the lack of appropriate instructional media. Coupling with dynamic geometry software, dynamic learning environments is a promising solution to this problem. Employing GeoGebra software supported by the well-designed instructional process may result in more meaningful learning, and consequently, students are motivated to engage in the learning process more deeply and actively. In this paper, we provide some examples of GeoGebra-aided learning activities that allow students to interactively explore and investigate geometry concepts and the properties of geometry objects. Thus, it is expected that such learning environment will enhance students’ internalisation process of geometry concepts.
NASA Astrophysics Data System (ADS)
Fredriksson, Alexandra; Pelger, Susanne
2018-03-01
The aim of this study is to explore how tertiary science students' use of metaphors in their popular science article writing may influence their understanding of subject matter. For this purpose, six popular articles written by students in physics or geology were analysed by means of a close textual analysis and a metaphor analysis. In addition, semi-structured interviews were conducted with the students. The articles showed variation regarding the occurrence of active (non-conventional) metaphors, and metaphorical concepts, i.e. metaphors relating to a common theme. In addition, the interviews indicated that students using active metaphors and metaphorical concepts reflected more actively upon their use of metaphors. These students also discussed the possible relationship between subject understanding and creation of metaphors in terms of conceptual blending. The study suggests that students' process of creating metaphorical concepts could be described and visualised through integrated networks of conceptual blending. Altogether, the study argues for using conceptual blending as a tool for monitoring and encouraging the use of adequate metaphorical concepts, thereby facilitating students' opportunities of understanding and influencing the learning of science.
How to Help Your Students Recall New Concepts Better.
ERIC Educational Resources Information Center
Hodges, Daniel L.
Students' difficulties in assimilating new concepts can be a barrier to learning and may be exacerbated if the concepts are introduced in terms of detailed verbal definitions. Cognitive psychology suggests that a better approach to teaching new concepts may be to use prototypical examples of the concept as building-blocks from which verbal…
ERIC Educational Resources Information Center
Streveler, Ruth; Geist, Monica; Ammerman, Ravel; Sulzbach, Candace; Miller, Ronald; Olds, Barbara; Nelson, Mary
2007-01-01
This study extends ongoing work to identify difficult concepts in thermal and transport science and measure students' understanding of those concepts via a concept inventory. Two research questions provided the focal point: "What important concepts in electric circuits and engineering mechanics do students find difficult to learn?" and…
High School Biology: A Group Approach to Concept Mapping.
ERIC Educational Resources Information Center
Brown, David S.
2003-01-01
Explains concept mapping as an instructional method in cooperative learning environments, and describes a study investigating the effectiveness of concept mapping on student learning during a photosynthesis and cellular respiration unit. Reports on the positive effects of concept mapping in the experimental group. (Contains 16 references.) (YDS)
Learning about a Level Physics Students' Understandings of Particle Physics Using Concept Mapping
ERIC Educational Resources Information Center
Gourlay, H.
2017-01-01
This paper describes a small-scale piece of research using concept mapping to elicit A level students' understandings of particle physics. Fifty-nine year 12 (16- and 17 year-old) students from two London schools participated. The exercise took place during school physics lessons. Students were instructed how to make a concept map and were…
ERIC Educational Resources Information Center
Samsudin, Mohd Ali; Haniza, Noor Hasyimah; Ismail, Juliah; Abd-Talib, Corrienna
2015-01-01
This study was undertaken to explore the effects of informal science learning outside the classroom on preschool students' achievement in the Early Science learning topic (plant-related topics that presented concepts about tree leaves, height and roots) using an inquiry method. A sample of 64 preschool students was selected using purposive…
Using Context-Aware Ubiquitous Learning to Support Students' Understanding of Geometry
ERIC Educational Resources Information Center
Crompton, Helen
2015-01-01
In this study, context-aware ubiquitous learning was used to support 4th grade students as they learn angle concepts. Context-aware ubiquitous learning was provided to students primarily through the use of iPads to access real-world connections and a Dynamic Geometry Environment. Gravemeijer and van Eerde's (2009), design-based research (DBR)…
Useful Metaphors for Tackling Problems in Teaching and Learning
ERIC Educational Resources Information Center
Schwartz, Marc S.; Fischer, Kurt W.
2006-01-01
Students learn important concepts and ways of thinking by building on their own actions and experiences. In much of higher education, the primacy of textbooks and the lectures that accompany them are inconsistent with the nature of student learning. Some students manage to learn despite the problems from this emphasis, but educators can do much…
Note-Taking and Secondary Students with Learning Disabilities: Challenges and Solutions
ERIC Educational Resources Information Center
Boyle, Joseph R.
2012-01-01
As more secondary students with learning disabilities (LD) enroll in advanced content-area classes and are expected to pass state exams, they are faced with the challenge of mastering difficult concepts and abstract vocabulary while learning content. Once in these classes, students must learn from lectures that move at a quick pace, record…
ERIC Educational Resources Information Center
Tang, Sylvia Y. F.; Wong, Angel K. Y.; Cheng, May M. H.
2012-01-01
With the constructivist view of learning as a conceptual lens, this paper examines student teachers' professional learning in initial teacher education (ITE). A mixed-method study was conducted with student teachers of a Bachelor of Education Programme in Hong Kong. The quantitative element of the study reveals that student teachers held a…
Team-Based Learning in a Statistical Literacy Class
ERIC Educational Resources Information Center
St. Clair, Katherine; Chihara, Laura
2012-01-01
Team-based learning (TBL) is a pedagogical strategy that uses groups of students working together in teams to learn course material. The main learning objective in TBL is to provide students the opportunity to "practice" course concepts during class-time. A key feature is multiple-choice quizzes that students take individually and then re-take as…
Incorporating Active Learning Techniques into a Genetics Class
ERIC Educational Resources Information Center
Lee, W. Theodore; Jabot, Michael E.
2011-01-01
We revised a sophomore-level genetics class to more actively engage the students in their learning. The students worked in groups on quizzes using the Immediate Feedback Assessment Technique (IF-AT) and active-learning projects. The IF-AT quizzes allowed students to discuss key concepts in small groups and learn the correct answers in class. The…
ERIC Educational Resources Information Center
Konings, Karen D; Brand-Gruwel, Saskia; van Merrienboer, Jeroen J. G.
2005-01-01
In order to reach the main aims of modern education, powerful learning environments are designed. The characteristics of the design of PLEs are expected to have positive effects on student learning. Additionally, teachers' conceptions of learning and teaching do influence the implementation of a PLE. Moreover, students' perceptions of a learning…
Errors Analysis of Students in Mathematics Department to Learn Plane Geometry
NASA Astrophysics Data System (ADS)
Mirna, M.
2018-04-01
This article describes the results of qualitative descriptive research that reveal the locations, types and causes of student error in answering the problem of plane geometry at the problem-solving level. Answers from 59 students on three test items informed that students showed errors ranging from understanding the concepts and principles of geometry itself to the error in applying it to problem solving. Their type of error consists of concept errors, principle errors and operational errors. The results of reflection with four subjects reveal the causes of the error are: 1) student learning motivation is very low, 2) in high school learning experience, geometry has been seen as unimportant, 3) the students' experience using their reasoning in solving the problem is very less, and 4) students' reasoning ability is still very low.
Simultaneous anatomical sketching as learning by doing method of teaching human anatomy.
Noorafshan, Ali; Hoseini, Leila; Amini, Mitra; Dehghani, Mohammad-Reza; Kojuri, Javad; Bazrafkan, Leila
2014-01-01
Learning by lecture is a passive experience. Many innovative techniques have been presented to stimulate students to assume a more active attitude toward learning. In this study, simultaneous sketch drawing, as an interactive learning technique was applied to teach anatomy to the medical students. We reconstructed a fun interactive model of teaching anatomy as simultaneous anatomic sketching. To test the model's instruction effectiveness, we conducted a quasi- experimental study and then the students were asked to write their learning experiences in their portfolio, also their view was evaluated by a questionnaire. The results of portfolio evaluation revealed that students believed that this method leads to deep learning and understanding anatomical subjects better. Evaluation of the students' views on this teaching approach was showed that, more than 80% of the students were agreed or completely agreed with this statement that leaning anatomy concepts are easier and the class is less boring with this method. More than 60% of the students were agreed or completely agreed to sketch anatomical figures with professor simultaneously. They also found the sketching make anatomy more attractive and it reduced the time for learning anatomy. These number of students were agree or completely agree that the method help them learning anatomical concept in anatomy laboratory. More than 80% of the students found the simultaneous sketching is a good method for learning anatomy overall. Sketch drawing, as an interactive learning technique, is an attractive for students to learn anatomy.
ERIC Educational Resources Information Center
Seker, Mustafa
2013-01-01
This research reviews the effects of education and schooling activities that are conducted with respect to different learning styles on the success of teaching abstract and tangible concepts of 6th Grade Social Studies, and researches whether the demographic variables (age, gender) of the students had any effect on this success levels. To do so, 2…
ERIC Educational Resources Information Center
Manthey, George
2005-01-01
The author of this paper discusses the significance of Albert Einstein's concept of learning about "service of our fellow man" into the discussions about student achievement. Albert Einstein wrote in 1954 of what he considered an evil of modern life--that the "individual feels more than ever dependent on society, but it is not felt in the positive…
Changing to Concept-Based Curricula: The Process for Nurse Educators.
Baron, Kristy A
2017-01-01
The complexity of health care today requires nursing graduates to use effective thinking skills. Many nursing programs are revising curricula to include concept-based learning that encourages problem-solving, effective thinking, and the ability to transfer knowledge to a variety of situations-requiring nurse educators to modify their teaching styles and methods to promote student-centered learning. Changing from teacher-centered learning to student-centered learning requires a major shift in thinking and application. The focus of this qualitative study was to understand the process of changing to concept-based curricula for nurse educators who previously taught in traditional curriculum designs. The sample included eight educators from two institutions in one Western state using a grounded theory design. The themes that emerged from participants' experiences consisted of the overarching concept, support for change, and central concept, finding meaning in the change. Finding meaning is supported by three main themes : preparing for the change, teaching in a concept-based curriculum, and understanding the teaching-learning process. Changing to a concept-based curriculum required a major shift in thinking and application. Through support, educators discovered meaning to make the change by constructing authentic learning opportunities that mirrored practice, refining the change process, and reinforcing benefits of teaching.
ERIC Educational Resources Information Center
Gutiérrez-Braojos, Calixto
2015-01-01
During the past decade, research on the constructive learning process has been conducted mainly from two perspectives: student approaches to learning (SAL) and self-regulated learning (SRL). The SAL perspective has highlighted the role of learning conceptions with respect to other topics involved in constructive learning processes, whereas…
Information Literacy of Medical Students Studying in the Problem-Based and Traditional Curriculum
ERIC Educational Resources Information Center
Eskola, Eeva-Liisa
2005-01-01
Introduction: This paper reports on part of a research project on relationships between learning methods and students' information behaviour in Finland. It has been suggested that student-centred learning methods, such as problem-based learning, influence students' information needs, seeking and use. The focus of this paper is on the concept of…
Open for Business: Learning Economics through Social Interaction in a Student-Operated Store
ERIC Educational Resources Information Center
Broome, John P.; Preston-Grimes, Patrice
2011-01-01
This study examines teaching and learning economics and entrepreneurship through a student-run Montessori middle school store. By designing and managing a school store, students created a "community of practice" to learn economics concepts in their daily environment. Questions guiding this study were: (a) How do students' social-interactions in a…
ERIC Educational Resources Information Center
Tanase, Madalina
2011-01-01
Researchers (Ball, 2003; Ma, 1999; Schulman, 1986) have long investigated how a teacher's subject matter and pedagogical content knowledge impact on students' learning of mathematics. In an attempt to account for the relationship between teacher knowledge and student learning, this study examined four Romanian first grade teachers' knowledge about…
ERIC Educational Resources Information Center
Rybarczyk, Brian J.; Baines, Antonio T.; McVey, Mitch; Thompson, Joseph T.; Wilkins, Heather
2007-01-01
This study investigated student learning outcomes using a case-based approach focused on cellular respiration. Students who used the case study, relative to students who did not use the case study, exhibited a significantly greater learning gain, and demonstrated use of higher-order thinking skills. Preliminary data indicate that after engaging…
ERIC Educational Resources Information Center
Sangpom, Wasukree; Suthisung, Nisara; Kongthip, Yanin; Inprasitha, Maitree
2016-01-01
Mathematical teaching in Thai tertiary education still employs traditional methods of explanation and the use of rules, formulae, and theories in order for students to memorize and apply to their mathematical learning. This results in students' inability to concretely learn, fully comprehend and understand mathematical concepts and practice. In…
Vandenberg, Helen; Kalischuk, Ruth Grant
2014-01-01
Culture and cultural care have become important concepts in nursing education. However, little is known about what nursing students learn about these complex concepts. The purpose of this study was to explore and critique what nursing students learn about culture and cultural care. First and fourth year students were invited to participate in a focused ethnography to explore how nursing education might shape student knowledge of culture over time. Findings revealed that both groups of students supported the essentialist view of culture. Although students supported the ideals of cultural care, students remained unaware of critical views of culture.
ERIC Educational Resources Information Center
Knight, Stephanie L.; Waxman, Hersholt C.
1990-01-01
Investigates the relationship between social studies classroom environment and student motivation. Correlates several environmental variables with three motivational constructs (academic motivation, academic self-concept, and social self-concept) among 157 sixth grade, predominantly Hispanic students. Finds student satisfaction significantly…
ERIC Educational Resources Information Center
Hacieminoglu, Esme; Yilmaz-Tuzun, Ozgul; Ertepinar, Hamide
2009-01-01
This study examined the relationships among students' learning approaches, motivational goals, previous science grades, and their science achievement for the concepts related to atomic theory and explored the effects of gender and sociodemographic variables on students' learning approaches, motivational goals, and their science achievement for the…
Blended Learning for College Students with English Reading Difficulties
ERIC Educational Resources Information Center
Yang, Yu-Fen
2012-01-01
Most previous studies in blended learning simply involved on-site and online instruction without considering students' control of their own learning in these two different modalities. The purpose of this study was to investigate how college students with English reading difficulties integrate their conceptions of and approaches to blended learning…
Effective Spelling Instruction for Students with Learning Disabilities
ERIC Educational Resources Information Center
Sayeski, Kristin L.
2011-01-01
Difficulty with spelling is a perennial challenge for students with learning disabilities. Several decades of research, however, have identified both fundamental linguistic concepts and instructional approaches that, when understood by a teacher, can be applied to teach students with learning disabilities to spell. In this article, a brief history…
Virtual Manipulatives: Tools for Teaching Mathematics to Students with Learning Disabilities
ERIC Educational Resources Information Center
Shin, Mikyung; Bryant, Diane P.; Bryant, Brian R.; McKenna, John W.; Hou, Fangjuan; Ok, Min Wook
2017-01-01
Many students with learning disabilities demonstrate difficulty in developing a conceptual understanding of mathematical topics. Researchers recommend using visual models to support student learning of the concepts and skills necessary to complete abstract and symbolic mathematical problems. Virtual manipulatives (i.e., interactive visual models)…
NASA Astrophysics Data System (ADS)
Rincke, Karsten
2011-01-01
Although a broad literature exists concerning the development of conceptual understanding of force and other topics within mechanics, little is known about the role and development of students' talk about the subject. The paper presents an in-depth investigation of students' talk whilst being introduced to the concept of force. The main research goal was to investigate and understand how students develop an understanding of the concept of force and how they use and understand the term 'force'. Therefore, we make relation to the research field of students' preconceptions and the field of second language learning. Two classes of students (N = 47) were videotaped during a time period of nine lessons, each transcribed and analysed using a category system. Additional data were obtained via written tasks, logs kept by the students, and tests. The detailed analysis of the talk and the results of the tests indicate that students face difficulties in using the term 'force' scientifically similar to those in a foreign language instruction. Vygotsky already recognised a relationship between learning in science and learning a language. In this paper, important aspects of this relationship are discussed based upon empirical data. We conclude that in some respects it might be useful to make reference to the research related to language learning when thinking about improving science education. In particular, according to Selinker's concept of interlanguage describing language-learning processes within language instruction, the language used by the students during physics lessons can be viewed as a 'scientific interlanguage'.
ERIC Educational Resources Information Center
Sessa, Valerie I.; Matos, Cristina; Hopkins, Courtney A.
2009-01-01
The purpose of this study was to evaluate final projects in a freshman leadership course (combining grounding in leadership theories with a service-learning component) to determine what students learned about leadership, themselves as developing leaders, and leading in the civic community, and how deeply they learned these concepts. Students found…
Moving Digital Libraries into the Student Learning Space: The GetSmart Experience
ERIC Educational Resources Information Center
Marshall, Byron B.; Chen, Hsinchun; Shen, Rao; Fox, Edward A.
2006-01-01
The GetSmart system was built to support theoretically sound learning processes in a digital library environment by integrating course management, digital library, and concept mapping components to support a constructivist, six-step, information search process. In the fall of 2002 more than 100 students created 1400 concept maps as part of…
Empowering Students through Service-Learning in a Community Psychology Course: A Case in Hong Kong
ERIC Educational Resources Information Center
Chan, Kevin; Ng, Eddie; Chan, Charles C.
2016-01-01
This article chronicles a service-learning (SL) subject on community psychology in Hong Kong (n = 26) and elaborates on how students experience concepts, frameworks, and values in community psychology and put them into practice at servicelearning settings. Upon acquiring basic concepts in community psychology, including sense of community,…
ERIC Educational Resources Information Center
Maries, Alexandru; Sayer, Ryan; Singh, Chandralekha
2017-01-01
Research suggests that introductory physics students often have difficulty using a concept in contexts different from the ones in which they learned it without explicit guidance to help them make the connection between the different contexts. We have been investigating advanced students' learning of quantum mechanics concepts and have developed…
ERIC Educational Resources Information Center
Bonastre, Carolina; Muñoz, Enrique; Timmers, Renee
2017-01-01
This work aimed to analyse factors related to conceptions and beliefs about expressivity in music among students and teachers. A questionnaire with 11 Likert-type items was developed covering the main factors included in the literature of teaching-learning of expressivity and emotion in music. Through exploratory factor analysis three factors were…
Academic Self-Concept and Learning Strategies: Direction of Effect on Student Academic Achievement
ERIC Educational Resources Information Center
McInerney, Dennis M.; Cheng, Rebecca Wing-yi; Mok, Magdalena Mo Ching; Lam, Amy Kwok Hap
2012-01-01
This study examined the prediction of academic self-concept (English and Mathematics) and learning strategies (deep and surface), and their direction of effect, on academic achievement (English and Mathematics) of 8,354 students from 16 secondary schools in Hong Kong. Two competing models were tested to ascertain the direction of effect: Model A…
ERIC Educational Resources Information Center
Fairfield-Sonn, James W.; Kolluri, Bharat; Rogers, Annette; Singamsetti, Rao
2009-01-01
This paper examines several ways in which teaching effectiveness and student learning in an undergraduate Business Statistics course can be enhanced. First, we review some key concepts in Business Statistics that are often challenging to teach and show how using real data sets assist students in developing deeper understanding of the concepts.…
Examining the Discourse on the Limit Concept in a Beginning-Level Calculus Classroom
ERIC Educational Resources Information Center
Gucler, Beste
2013-01-01
Existing research on limits documents many difficulties students encounter when learning about the concept. There is also some research on teaching of limits but it is not yet as extensive as the research on student learning about limits. This study explores the discourse on limits in a beginning-level undergraduate calculus classroom by focusing…
The Effect of Visual Variability on the Learning of Academic Concepts
ERIC Educational Resources Information Center
Bourgoyne, Ashley; Alt, Mary
2017-01-01
Purpose: The purpose of this study was to identify effects of variability of visual input on development of conceptual representations of academic concepts for college-age students with normal language (NL) and those with language-learning disabilities (LLD). Method: Students with NL (n = 11) and LLD (n = 11) participated in a computer-based…
Conceptual Types of Korean High School Students and Their Influences on Learning Style.
ERIC Educational Resources Information Center
Cho, In-Young; Park, Hyun-Ju; Choi, Byung-Soon
This study focused on high school students' conceptions and substantial concept change learning processes when studying the kinetic theory of gases. The study was conducted in 1998 in four classes of a public metropolitan high school in South Korea. Data was collected through semistructured and in-depth interviews and participant observation of…
Lymn, Joanne S; Mostyn, Alison
2010-10-27
Non-medical prescribing (NMP) is a six month course for nurses and certain allied health professionals. It is critical that these students develop a good understanding of pharmacology; however, many students are mature learners with little or no formal biological science knowledge and struggle with the pharmacology component. The implications for patient safety are profound, therefore we encourage students not just to memorise enough pharmacology to pass the exam but to be able to integrate it into clinical practice. Audience response technology (ART), such as the KeePad system (KS) has been shown to promote an active approach to learning and provide instant formative feedback. The aim of this project, therefore, was to incorporate and evaluate the use the KS in promoting pharmacology understanding in NMP students. Questions were incorporated into eight pharmacology lectures, comprising a mix of basic and clinical pharmacology, using TurningPoint software. Student (n = 33) responses to questions were recorded using the KS software and the percentage of students getting the question incorrect and correct was made immediately available in the lecture in graphical form. Survey data collected from these students investigated student perceptions on the use of the system generally and specifically as a learning tool. More in depth discussion of the usefulness of the KS was derived from a focus group comprising 5 students. 100% of students enjoyed using the KS and felt it promoted their understanding of key concepts; 92% stated that it helped identify their learning needs and 87% agreed that the technology was useful in promoting integration of concepts. The most prevalent theme within feedback was that of identifying their own learning needs. Analysis of data from the focus group generated similar themes, with the addition of improving teaching. Repeated questioning produced a significant increase (p < 0.05) in student knowledge of specific pharmacological concepts. The use of ART enhanced non-medical prescribing students' experience of pharmacology teaching. Student perceptions were that this system increased their ability to identify learning needs and promoted understanding and integration of concepts. Students also reported that the technology aided exam revision and reduced associated anxiety.
2010-01-01
Background Non-medical prescribing (NMP) is a six month course for nurses and certain allied health professionals. It is critical that these students develop a good understanding of pharmacology; however, many students are mature learners with little or no formal biological science knowledge and struggle with the pharmacology component. The implications for patient safety are profound, therefore we encourage students not just to memorise enough pharmacology to pass the exam but to be able to integrate it into clinical practice. Audience response technology (ART), such as the KeePad system (KS) has been shown to promote an active approach to learning and provide instant formative feedback. The aim of this project, therefore, was to incorporate and evaluate the use the KS in promoting pharmacology understanding in NMP students. Methods Questions were incorporated into eight pharmacology lectures, comprising a mix of basic and clinical pharmacology, using TurningPoint software. Student (n = 33) responses to questions were recorded using the KS software and the percentage of students getting the question incorrect and correct was made immediately available in the lecture in graphical form. Survey data collected from these students investigated student perceptions on the use of the system generally and specifically as a learning tool. More in depth discussion of the usefulness of the KS was derived from a focus group comprising 5 students. Results 100% of students enjoyed using the KS and felt it promoted their understanding of key concepts; 92% stated that it helped identify their learning needs and 87% agreed that the technology was useful in promoting integration of concepts. The most prevalent theme within feedback was that of identifying their own learning needs. Analysis of data from the focus group generated similar themes, with the addition of improving teaching. Repeated questioning produced a significant increase (p < 0.05) in student knowledge of specific pharmacological concepts. Conclusions The use of ART enhanced non-medical prescribing students' experience of pharmacology teaching. Student perceptions were that this system increased their ability to identify learning needs and promoted understanding and integration of concepts. Students also reported that the technology aided exam revision and reduced associated anxiety. PMID:20979620
Concept Cartoons Supported Problem Based Learning Method in Middle School Science Classrooms
ERIC Educational Resources Information Center
Balim, Ali Günay; Inel-Ekici, Didem; Özcan, Erkan
2016-01-01
Problem based learning, in which events from daily life are presented as interesting scenarios, is one of the active learning approaches that encourages students to self-direct learning. Problem based learning, generally used in higher education, requires students to use high end thinking skills in learning environments. In order to use…
Evaluation of Instruction Using the Conceptual Survey of Electricity and Magnetism in Mexico
NASA Astrophysics Data System (ADS)
Zavala, Genaro; Alarcon, Hugo
2008-10-01
A modified version of the Conceptual Survey of Electricity and Magnetism (CSEM) is regularly administered to students at the beginning of the semester as a pretest and at the end of the semester as a post-test in a large private university in Mexico. About 500 students each semester, from different engineering majors, take electricity and magnetism in the introductory level, divided into sections of 30-40 students so there are several different instructors, both full-time and part-time. We report on the analysis of the CSEM data using concentration analysis for the purpose of evaluation of instruction. The results showed that students' learning varies with respect to instructor and to CSEM concept area. Students have large learning gains in some concept areas but small learning gains in others. Deeper analysis of a concept area showed that some instructors may tend to strengthen some misconceptions that students have. The analysis can be used to give feedback to instructors for the purpose of improving instruction.
Visual Learning in Application of Integration
NASA Astrophysics Data System (ADS)
Bt Shafie, Afza; Barnachea Janier, Josefina; Bt Wan Ahmad, Wan Fatimah
Innovative use of technology can improve the way how Mathematics should be taught. It can enhance student's learning the concepts through visualization. Visualization in Mathematics refers to us of texts, pictures, graphs and animations to hold the attention of the learners in order to learn the concepts. This paper describes the use of a developed multimedia courseware as an effective tool for visual learning mathematics. The focus is on the application of integration which is a topic in Engineering Mathematics 2. The course is offered to the foundation students in the Universiti Teknologi of PETRONAS. Questionnaire has been distributed to get a feedback on the visual representation and students' attitudes towards using visual representation as a learning tool. The questionnaire consists of 3 sections: Courseware Design (Part A), courseware usability (Part B) and attitudes towards using the courseware (Part C). The results showed that students demonstrated the use of visual representation has benefited them in learning the topic.
NASA Astrophysics Data System (ADS)
Ugwu, Okechukwu; Soyibo, Kola
2004-01-01
The first objective of this study was to investigate if the experimental students' post-test knowledge of nutrition and plant reproduction would be improved more significantly than that of their control group counterparts based on their treatment, attitudes to science, self-esteem, gender and socio-economic background. Treatment involved teaching the experimental students under three learning modes--pure cooperative, cooperative-competitive and individualistic whole class interpersonal competitive condition--using concept and vee mappings and the lecture method. The control groups received the same treatment but were not exposed to concept and vee mappings. This study's second objective was to determine which of the three learning modes would produce the highest post-test mean gain in the subjects' knowledge of the two biology concepts. The study's sample comprised 932 eighth graders (12-13-year-olds) in 14 co-educational comprehensive high schools randomly selected from two Jamaican parishes. An integrated science performance test, an attitudes to science questionnaire and a self-esteem questionnaire were used to collect data. The results indicated that the experimental students (a) under the three learning modes, (b) with high, moderate, and low attitudes to science, and (c) with high, moderate, and low self-esteem, performed significantly better than their control group counterparts. The individualist whole class learning mode engendered the highest mean gain on the experimental students' knowledge, while the cooperative-competitive learning mode generated the highest mean gain for the control group students.
ERIC Educational Resources Information Center
Hwang, Gwo-Jen; Sung, Han-Yu; Chang, Hsuan
2017-01-01
Researchers have pointed out that interactive e-books have rich content and interactive features which can promote students' learning interest. However, researchers have also indicated the need to integrate effective learning supports or tools to help students organize what they have learned so as to increase their learning performance, in…
ERIC Educational Resources Information Center
Okita, Sandra Y.
2014-01-01
This study examined whether developing earlier forms of knowledge in specific learning environments prepares students better for future learning when they are placed in an unfamiliar learning environment. Forty-one students in the fifth and sixth grades learned to program robot movements using abstract concepts of speed, distance and direction.…
Micro Processes of Learning: Exploring the Interplay between Conceptions, Meanings and Expressions
ERIC Educational Resources Information Center
Anderberg, Elsie; Alvegard, Christer; Svensson, Lennart; Johansson, Thorsten
2009-01-01
The article describes qualitative variation in micro processes of learning, focusing the dynamic interplay between conceptions, expressions and meanings of expressions in students' learning in higher education. The intentional-expressive approach employed is an alternative approach to the function of language use in learning processes. In the…
Analysis of Learning Conceptions Based on Three Modules.
ERIC Educational Resources Information Center
Haygood, E. Langston; Iran-Nejad, Asghar
Three learning modules are described and investigated as they reflect different students' conceptions of and approaches to learning. The Schoolwork Module (SWM) focuses on task performance and involves a passive, incremental, piecemeal, and rote memory method of learning, parallel to what might be implied by the Information Processing model of…
NASA Astrophysics Data System (ADS)
Zuliana, Eka; Setyawan, Fariz; Veloo, Arsaythamby
2017-12-01
The aim of this study is developing the learning trajectory to construct students’ understanding of the concept of the area of square and rectangle by using Sarong Motive Chess. This research is a design research which is consists of three stages. The stages are preparing for the experiment, designing experiment, and making a retrospective analysis. The activities started by the activity of using sarong motive chess as the manipulative measurement unit. The Sarong motive chess helps students to understand the concept of area of square and rectangle. In the formal stage of cognitive level, students estimate the area of square and rectangle by determining the square unit at the surface area of sarong through many ways. The result of this study concludes that Sarong motive chess can be used for mathematics learning process. It helps the students to construct the concept of a square and rectangle’s area. This study produces learning trajectory to construct the concept of a square and rectangle’s area by using Sarong motive chess, especially for elementary school students.
NASA Astrophysics Data System (ADS)
Finley, Jason Paul
This study examined the impact of dialogue-based group instruction on student learning and engagement in community college meteorology education. A quasi-experimental design was used to compare lecture-based instruction with dialogue-based group instruction during two class sessions at one community college in southern California. Pre- and post-tests were used to measure learning and interest, while surveys were conducted two days after the learning events to assess engagement, perceived learning, and application of content. The results indicated that the dialogue-based group instruction was more successful in helping students learn than the lecture-based instruction. Each question that assessed learning had a higher score for the dialogue group that was statistically significant (alpha < 0.05) compared to the lecture group. The survey questions about perceived learning and application of content also exhibited higher scores that were statistically significant for the dialogue group. The qualitative portion of these survey questions supported the quantitative results and showed that the dialogue students were able to remember more concepts and apply these concepts to their lives. Dialogue students were also more engaged, as three out of the five engagement-related survey questions revealed statistically significantly higher scores for them. The qualitative data also supported increased engagement for the dialogue students. Interest in specific meteorological topics did not change significantly for either group of students; however, interest in learning about severe weather was higher for the dialogue group. Neither group found the learning events markedly meaningful, although more students from the dialogue group found pronounced meaning centered on applying severe weather knowledge to their lives. Active engagement in the dialogue approach kept these students from becoming distracted and allowed them to become absorbed in the learning event. This higher engagement most likely contributed to the resulting higher learning. Together, these results indicate that dialogue education, especially compared to lecture methods, has a great potential for helping students learn meteorology. Dialogue education can also help students engage in weather-related concepts and potentially develop better-informed citizens in a world with a changing climate.
Toward instructional design principles: Inducing Faraday's law with contrasting cases
NASA Astrophysics Data System (ADS)
Kuo, Eric; Wieman, Carl E.
2016-06-01
Although physics education research (PER) has improved instructional practices, there are not agreed upon principles for designing effective instructional materials. Here, we illustrate how close comparison of instructional materials could support the development of such principles. Specifically, in discussion sections of a large, introductory physics course, a pair of studies compare two instructional strategies for teaching a physics concept: having students (i) explain a set of contrasting cases or (ii) apply and build on previously learned concepts. We compare these strategies for the teaching of Faraday's law, showing that explaining a set of related contrasting cases not only improves student performance on Faraday's law questions over building on a previously learned concept (i.e., Lorentz force), but also prepares students to better learn subsequent topics, such as Lenz's law. These differences persist to the final exam. We argue that early exposure to contrasting cases better focuses student attention on a key feature related to both concepts: change in magnetic flux. Importantly, the benefits of contrasting cases for both learning and enjoyment are enhanced for students who did not first attend a Faraday's law lecture, consistent with previous research suggesting that being told a solution can circumvent the benefits of its discovery. These studies illustrate an experimental approach for understanding how the structure of activities affects learning and performance outcomes, a first step toward design principles for effective instructional materials.
ERIC Educational Resources Information Center
Shin, Shin-Shing
2016-01-01
Students attending object-oriented analysis and design (OOAD) courses typically encounter difficulties transitioning from requirements analysis to logical design and then to physical design. Concept maps have been widely used in studies of user learning. The study reported here, based on the relationship of concept maps to learning theory and…
ERIC Educational Resources Information Center
Liu, Pei-Lin; Chen, Chiu-Jung; Chang, Yu-Ju
2010-01-01
The purpose of this research was to investigate the effects of a computer-assisted concept mapping learning strategy on EFL college learners' English reading comprehension. The research questions were: (1) what was the influence of the computer-assisted concept mapping learning strategy on different learners' English reading comprehension? (2) did…
Concept Development in Learning Physics: The Case of Electric Current and Voltage Revisited
ERIC Educational Resources Information Center
Koponen, Ismo T.; Huttunen, Laura
2013-01-01
In learning conceptual knowledge in physics, a common problem is the development and differentiation of concepts in the learning process. An important part of this development process is the re-organisation or re-structuring process in which students' conceptual knowledge and concepts change. This study proposes a new view of concept…
NASA Astrophysics Data System (ADS)
Chaumklang, Kawin
During the past two decades, the student-centered approach has been widely promoted and accepted by the educational community as one of the most effective instructional approaches. It has been continually developed and revised to match our current understanding of how humans learn (American Psychological Association, 1997). It is based upon the belief that students should take responsibility for their own learning. Thus, curriculum, instruction, and assessment should be carefully designed to stimulate, facilitate, and accelerate students' learning as much as possible. In order to do so, the teacher needs to take the following factors into consideration: students' cognitive structures, metacognitive and regulative skills, motivation and affective states, developmental and individual differences, and social supports. However, the term student-centered has been defined and described by researchers and scholars in many different ways. Little is known about how practicing teachers conceptualize this term and how they perceive their classroom practices in relation to these conceptions. The purpose of this study was to utilize a qualitative multiple-case study approach to investigate teachers' conceptions of the student-centered approach and their perceptions of their classroom practices. Four Thai high school physics teachers, who were considered products of the current student-centered educational reform movement in Thailand, participated in this study. Data were collected for one learning unit (three to eight weeks) through classroom observations, semi-structured interviews, and document analysis. The data analysis revealed that teachers' conceptions of student-centered curriculum, instruction, and assessment had three common characteristics: (a) students' active participation; (b) special emphasis on students' background knowledge, understanding, motivation, affective states, and learning capability; and (c) benefits to students. The results also indicated that there were some similarities and differences between teachers' conceptions of the student-centered approach and the underlying principles of the student-centered approach. Moreover, this study showed that teachers' conceptions of the student-centered approach were not always consistent with their classroom practices. In addition, these teachers used various instructional activities perceived by them as being non-student-centered, such as developing curriculum based on the national high school physics textbooks and teacher's experiences, delivering knowledge through lecture, and assessing students' understanding by using teacher-constructed test questions. Furthermore, findings from this study provide implications for researchers, teacher educators, and policy makers with regards to successfully implement the reform-based, student-centered approach in the actual science classroom.
NASA Astrophysics Data System (ADS)
Sabel, Jaime L.; Forbes, Cory T.; Zangori, Laura
2015-06-01
To support elementary students' learning of core, standards-based life science concepts highlighted in the Next Generation Science Standards, prospective elementary teachers should develop an understanding of life science concepts and learn to apply their content knowledge in instructional practice to craft elementary science learning environments grounded in students' thinking. To do so, teachers must learn to use high-leverage instructional practices, such as formative assessment, to engage students in scientific practices and connect instruction to students' ideas. However, teachers may not understand formative assessment or possess sufficient science content knowledge to effectively engage in related instructional practices. To address these needs, we developed and conducted research within an innovative course for preservice elementary teachers built upon two pillars—life science concepts and formative assessment. An embedded mixed methods study was used to evaluate the effect of the intervention on preservice teachers' (n = 49) content knowledge and ability to engage in formative assessment practices for science. Findings showed that increased life content knowledge over the semester helped preservice teachers engage more productively in anticipating and evaluating students' ideas, but not in identifying effective instructional strategies to respond to those ideas.
NASA Astrophysics Data System (ADS)
Heim, Bernhard; Rupp, Florian; Viet, Nils; Stockhausen, Paul v.; Gallenkämper, Jonas; Kreuzer, Judith
2015-04-01
The art of teaching freshmen students is undergoing a rapid paradigm change. Classical forms of teaching are not applicable any more and an unmanageable offer of new multimedia tools and concepts is glutting the market. Moreover, compared to previous courses, the class size triples. In view of these challenges, we implemented a new teaching concept best described as Kaizen learning. By Kaizen learning, we define a teaching philosophy that is based on a concise mix of short learning units (with feedback loops and tests) and of carefully chosen repetitions (also with feedback loops and tests) to calibrate a course for the students. Here, this intensive blended, student-centred learning paradigm is analysed together with its direct impact on the students' performance. This case study leads to easy-to-implement key drivers for successfully teaching science in Oman, such as (1) human-human interaction, (2) clearly communicated expectations, (3) avoidance of a short-term learning attitude, (4) a no-calculator policy, (5) continuous Kaizen learning, and (6) balanced combination of traditional teaching and e-learning.
Thompson, Marilyn E; Ford, Ruth; Webster, Andrew
2011-01-01
Neurological concepts applicable to a doctorate in occupational therapy are often challenging to comprehend, and students are required to demonstrate critical reasoning skills beyond simply recalling the information. To achieve this, various learning and teaching strategies are used, including the use of technology in the classroom. The availability of technology in academic settings has allowed for diverse and active teaching approaches. This includes videos, web-based instruction, and interactive online games. In this quantitative pre-experimental analysis, the learning and retention of neuroscience concepts by 30 occupational therapy doctoral students, who participated in an interactive online learning experience, were assessed. The results suggest that student use of these tools may enhance their learning of neuroscience. Furthermore, the students felt that the sites were appropriate, beneficial to them, and easy to use. Thus, the use of online, interactive neuroscience games may be effective in reinforcing lecture materials. This needs to be further assessed in a larger sample size.
Callaghan, Lynne; Lea, Susan J; Mutton, Lauren; Whittlesea, Emma
2011-11-01
This paper presents the development and evaluation of a set of innovative video resources aimed at enhancing health students' understanding and learning of generic research concepts. It is vital that health students achieve a solid foundation in research methods in order to support and inform evidence-based practice. Research concepts were identified through a stakeholder consultation with research methods teaching staff from a variety of health professions. Research concepts and processes included reliability, validity, statistical significance, descriptive statistics, qualitative and quantitative methods, sampling and population, research ethics and searching for and evaluating literature. Videos were produced, informed by a 3-component model, including: first, animated slides of concept definition, second, acted analogical scenarios of concepts and third, interviews with staff regarding the application of the concepts in their own research. Workshop-style focus groups were conducted with 27 students from midwifery, paramedicine and physiotherapy degree programmes. Overall, students perceived the resources as demystifying the topic of research methods through the clarification of definition and application of concepts and making sense of concepts through the analogical videos. Students evaluated the resources extremely positively in comparison with books and lectures and believed that the combination of audio and visual media benefited their learning. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wilcox, Bethany R.; Lewandowski, H. J.
2017-06-01
Physics laboratory courses have been generally acknowledged as an important component of the undergraduate curriculum, particularly with respect to developing students' interest in, and understanding of, experimental physics. There are a number of possible learning goals for these courses including reinforcing physics concepts, developing laboratory skills, and promoting expertlike beliefs about the nature of experimental physics. However, there is little consensus among instructors and researchers interested in the laboratory learning environment as to the relative importance of these various learning goals. Here, we contribute data to this debate through the analysis of students' responses to the laboratory-focused assessment known as the Colorado Learning Attitudes about Science Survey for Experimental Physics (E-CLASS). Using a large, national data set of students' responses, we compare students' E-CLASS performance in classes in which the instructor self-reported focusing on developing skills, reinforcing concepts, or both. As the classification of courses was based on instructor self-report, we also provide additional description of these courses with respect to how often students engage in particular activities in the lab. We find that courses that focus specifically on developing lab skills have more expertlike postinstruction E-CLASS responses than courses that focus either on reinforcing physics concepts or on both goals. Within first-year courses, this effect is larger for women. Moreover, these findings hold when controlling for the variance in postinstruction scores that is associated with preinstruction E-CLASS scores, student major, and student gender.
Teaching and Learning Distillation in Chemistry Laboratory Courses.
ERIC Educational Resources Information Center
Keulen, Hanno van; And Others
1995-01-01
Investigated the problems chemistry majors have with learning distillation concepts in traditional chemistry laboratory courses. Reports that students take the generalized concepts at face value, construct decontextualized concepts for distillation, and cannot interpret their observations or make reasoned decisions based on the theoretical…
Roles of Technology in Student Learning of University Level Biostatistics
ERIC Educational Resources Information Center
Xu, Weili; Zhang, Yuchen; Su, Cheng; Cui, Zhuang; Qi, Xiuying
2014-01-01
This study explored threshold concepts and areas of troublesome knowledge among students enrolled in a basic biostatistics course at the university level. The main area of troublesome knowledge among students was targeted by using technology to improve student learning. A total of 102 undergraduate students who responded to structured…
Increasing Student Success: An Interview with Edward A. Morante.
ERIC Educational Resources Information Center
Spann, Milton G.; Calderwood, Barbara J.
1998-01-01
Presents an interview with Edward Morante, Dean of Student Services and Learning Resources at College of the Desert (California), regarding the needs of high-risk community college students. Morante focuses on assessment, placement, basic-skills courses, student-support services, the learning-community concept, student involvement, and evaluation,…
NASA Astrophysics Data System (ADS)
Liliawati, W.; Utama, J. A.; Mursydah, L. S.
2017-03-01
The purpose of this study is to identify gender-based concept mastery differences of junior high school students after the implementation of multiple intelligences-based integrated earth and space science learning. Pretest-posttest group design was employed to two different classes at one of junior high school on eclipse theme in Tasikmalaya West Java: one class for boys (14 students) and one class of girls (18 students). The two-class received same treatment. The instrument of concepts mastery used in this study was open-ended eight essay questions. Reliability test result of this instrument was 0.9 (category: high) while for validity test results were high and very high category. We used instruments of multiple intelligences identification and learning activity observation sheet for our analysis. The results showed that normalized N-gain of concept mastery for boys and girls were improved, respectively 0.39 and 0.65. Concept mastery for both classes differs significantly. The dominant multiple intelligences for boys were in kinesthetic while girls dominated in the rest of multiple intelligences. Therefor we concluded that the concept mastery was influenced by gender and student’s multiple intelligences. Based on this finding we suggested to considering the factor of gender and students’ multiple intelligences given in the learning activity.
NASA Astrophysics Data System (ADS)
Yalçınkaya, Eylem; Taştan-Kırık, Özgecan; Boz, Yezdan; Yıldıran, Demet
2012-07-01
Background: Case-based learning (CBL) is simply teaching the concept to the students based on the cases. CBL involves a case, which is a scenario based on daily life, and study questions related to the case, which allows students to discuss their ideas. Chemical kinetics is one of the most difficult concepts for students in chemistry. Students have generally low levels of conceptual understanding and many alternative conceptions regarding it. Purpose: This study aimed to explore the effect of CBL on dealing with students' alternative conceptions about chemical kinetics. Sample: The sample consists of 53 high school students from one public high school in Turkey. Design and methods : Nonequivalent pre-test and post-test control group design was used. Reaction Rate Concept Test and semi-structured interviews were used for data collection. Convenience sampling technique was followed. For data analysis, the independent samples t-test and ANOVA was performed. Results : Both concept test and interview results showed that students instructed with cases had better understanding of core concepts of chemical kinetics and had less alternative conceptions related to the subject matter compared to the control group students, despite the fact that it was impossible to challenge all the alternative conceptions in the experimental group. Conclusions: CBL is an effective teaching method for challenging students' alternative conceptions in the context of chemical kinetics. Since using cases in small groups and whole class discussions has been found to be an effective way to cope with the alternative conceptions, it can be applied to other subjects and grade levels in high schools with a higher sample size. Furthermore, the effect of this method on academic achievement, motivation and critical thinking skills are other variables that can be investigated for future studies in the subject area of chemistry.
NASA Astrophysics Data System (ADS)
Yilmaz, Diba; Tekkaya, Ceren; Sungur, Semra
2011-03-01
The present study examined the comparative effects of a prediction/discussion-based learning cycle, conceptual change text (CCT), and traditional instructions on students' understanding of genetics concepts. A quasi-experimental research design of the pre-test-post-test non-equivalent control group was adopted. The three intact classes, taught by the same science teacher, were randomly assigned as prediction/discussion-based learning cycle class (N = 30), CCT class (N = 25), and traditional class (N = 26). Participants completed the genetics concept test as pre-test, post-test, and delayed post-test to examine the effects of instructional strategies on their genetics understanding and retention. While the dependent variable of this study was students' understanding of genetics, the independent variables were time (Time 1, Time 2, and Time 3) and mode of instruction. The mixed between-within subjects analysis of variance revealed that students in both prediction/discussion-based learning cycle and CCT groups understood the genetics concepts and retained their knowledge significantly better than students in the traditional instruction group.
Student evaluation of problem-based learning in a dental orthodontic curriculum--a pilot study.
Ratzmann, Anja; Wiesmann, U; Proff, P; Kordaß, Bernd; Gedrange, T
2013-01-01
The present questionnaire survey investigated student reception of problem-based learning (PBL) in the orthodontic curriculum with regard to acceptance, sense of purpose and motivation, knowledge and understanding, as well as tutorial support. Over a period of two terms, we compared two different didactic methods (PBL and short presentations) by randomizing the participants of a course on orthodontic diagnostics into two different groups, who inversed methods after the first term. The two student groups did not show any significant differences with regard to assessments or examination performance. Therefore, acceptance of the PBL concept seems to be mainly associated with the motivation of individuals to use this method. The higher the motivation, the more positive is the attitude towards the PBL concept. Students seem to work more constructively and efficiently with PBL if they can judge the concept meaningful for themselves. In consideration of the relevant literature and the present results, PBL can be principally integrated into the dental curriculum as a method of learning. However, student motivation is vital to learning success.
Pan, Hui-Ching; Hsieh, Suh-Ing; Hsu, Li-Ling
2015-12-01
The multiple levels of knowledge related to the neurological system deter many students from pursuing studies on this topic. Thus, in facing complicated and uncertain medical circumstances, nursing students have diffi-culty adjusting and using basic neurological-nursing knowledge and skills. Scenario-based concept-mapping teaching has been shown to promote the integration of complicated data, clarify related concepts, and increase the effectiveness of cognitive learning. To investigate the effect on the neurological-nursing cognition and learning attitude of nursing students of a scenario-based concept-mapping strategy that was integrated into the neurological nursing unit of a medical and surgical nursing course. This quasi-experimental study used experimental and control groups and a pre-test / post-test design. Sopho-more (2nd year) students in a four-year program at a university of science and technology in Taiwan were convenience sampled using cluster randomization that was run under SPSS 17.0. Concept-mapping lessons were used as the intervention for the experimental group. The control group followed traditional lesson plans only. The cognitive learning outcome was measured using the neurological nursing-learning examination. Both concept-mapping and traditional lessons significantly improved post-test neurological nursing learning scores (p < .001), with no significant difference between the two groups (p = .51). The post-test feedback from the control group mentioned that too much content was taught and that difficulties were experienced in understanding mechanisms and in absorbing knowledge. In contrast, the experimental group held a significantly more positive perspective and learning attitude with regard to the teaching material. Furthermore, a significant number in the experimental group expressed the desire to add more lessons on anatomy, physiology, and pathology. These results indicate that this intervention strategy may help change the widespread fear and refusal of nursing students with regard to neurological lessons and may facilitate interest and positively affect learning in this important subject area. Integrating the concept-mapping strategy and traditional clinical-case lessons into neurological nursing lessons holds the potential to increase post-test scores significantly. Concept mapping helped those in the experimental group adopt views and attitudes toward learning the teaching material that were more positive than those held by their control-group peers. In addition, while 59% of the experimental group and 49% of the control group submitted opinions related to learning attitude in the open-ended questions, positive feedback was greater in the experimental group than in the control group.
Simultaneous anatomical sketching as learning by doing method of teaching human anatomy
Noorafshan, Ali; Hoseini, Leila; Amini, Mitra; Dehghani, Mohammad-Reza; Kojuri, Javad; Bazrafkan, Leila
2014-01-01
Objective: Learning by lecture is a passive experience. Many innovative techniques have been presented to stimulate students to assume a more active attitude toward learning. In this study, simultaneous sketch drawing, as an interactive learning technique was applied to teach anatomy to the medical students. Materials and Methods: We reconstructed a fun interactive model of teaching anatomy as simultaneous anatomic sketching. To test the model's instruction effectiveness, we conducted a quasi- experimental study and then the students were asked to write their learning experiences in their portfolio, also their view was evaluated by a questionnaire. Results: The results of portfolio evaluation revealed that students believed that this method leads to deep learning and understanding anatomical subjects better. Evaluation of the students’ views on this teaching approach was showed that, more than 80% of the students were agreed or completely agreed with this statement that leaning anatomy concepts are easier and the class is less boring with this method. More than 60% of the students were agreed or completely agreed to sketch anatomical figures with professor simultaneously. They also found the sketching make anatomy more attractive and it reduced the time for learning anatomy. These number of students were agree or completely agree that the method help them learning anatomical concept in anatomy laboratory. More than 80% of the students found the simultaneous sketching is a good method for learning anatomy overall. Conclusion: Sketch drawing, as an interactive learning technique, is an attractive for students to learn anatomy. PMID:25013843
NASA Astrophysics Data System (ADS)
Debari, S. M.; Bachmann, J.; Dougan, B.; Fackler-Adams, B.; Kratz, R.; Linneman, S.; Plake, T.; Smith, B.
2008-12-01
A new curriculum for an introductory geology course, Geology and Everyday Thinking (GET), incorporates the key research findings of How People Learn (NAS, 1999), and is based on the pedagogical approach of Physics and Everyday Thinking (PET; http://petproject.sdsu.edu/). These key findings have profound implications for developing teaching strategies that promote student learning. They suggest that for learning to occur: 1) students' preconceptions must be engaged, 2) students must be able to build their own conceptual framework, and 3) students must be given an opportunity to reflect on their learning (metacognition). Our curriculum has been carefully constructed into cycles that apply these key findings while exploring a key geologic concept. Each cycle engages students' 'Initial Ideas' about these concepts (and continuously revisits those Initial Ideas), sequentially builds upon concepts in a logical framework, and requires reflective writing. The curriculum employs questioning, small group work, and small and large class discussions. Students construct concepts by doing inquiry lab activities, but embedded group discussions that promote discourse and questioning among students is a crucial tool in the sense-making and solidification of those concepts. The questioning and discourse occur throughout each module so that students' preconceptions about a particular concept are brought out early on, and are revisited and challenged again as students construct their new understanding. Whiteboarding, or the process of sharing small-group ideas to a larger group, is the primary method of generating discussion. The instructor's role as facilitator and questioner is the cornerstone in this process. The primary audience for this course is future elementary teachers, who are required take a year-long science sequence. The year-long sequence includes physics (PET), geology (GET), and a correlative new curriculum in biology (BET). Class size is limited to 24 students, and the sequence is taught at a 4-year university as well as at four regional feeder community colleges. These courses model an inquiry-based teaching methodology that our pre-service teachers will use to teach science to their future students. Both quantitative and qualitative assessment data collected from our students show impressive gains both in attitudes about science and science content, especially compared to larger lecture-based introductory courses.
ERIC Educational Resources Information Center
Wang, Hsiu-Ying; Huang, Iwen; Hwang, Gwo-Jen
2016-01-01
Concept mapping has been widely used in various fields to facilitate students' organization of knowledge. Previous studies have, however, pointed out that it is difficult for students to construct concept maps from the abundant searched data without appropriate scaffolding. Thus, researchers have suggested that students could produce high quality…
The Effect of Visual Variability on the Learning of Academic Concepts.
Bourgoyne, Ashley; Alt, Mary
2017-06-10
The purpose of this study was to identify effects of variability of visual input on development of conceptual representations of academic concepts for college-age students with normal language (NL) and those with language-learning disabilities (LLD). Students with NL (n = 11) and LLD (n = 11) participated in a computer-based training for introductory biology course concepts. Participants were trained on half the concepts under a low-variability condition and half under a high-variability condition. Participants completed a posttest in which they were asked to identify and rate the accuracy of novel and trained visual representations of the concepts. We performed separate repeated measures analyses of variance to examine the accuracy of identification and ratings. Participants were equally accurate on trained and novel items in the high-variability condition, but were less accurate on novel items only in the low-variability condition. The LLD group showed the same pattern as the NL group; they were just less accurate. Results indicated that high-variability visual input may facilitate the acquisition of academic concepts in college students with NL and LLD. High-variability visual input may be especially beneficial for generalization to novel representations of concepts. Implicit learning methods may be harnessed by college courses to provide students with basic conceptual knowledge when they are entering courses or beginning new units.
Improving Learning through Interventions of Student-Generated Questions and Concept Maps
ERIC Educational Resources Information Center
Berry, Jack W.; Chew, Stephen L.
2008-01-01
Using the principles of the scholarship of teaching and learning, we evaluated 2 learning strategies to determine if they could improve student exam performance in general psychology. After the second of 3 exams, we gave students the option of participating in a specific learning activity and assessed its impact using the third exam. In Study 1,…
A new blended learning concept for medical students in otolaryngology.
Grasl, Matthaeus C; Pokieser, Peter; Gleiss, Andreas; Brandstaetter, Juergen; Sigmund, Thorsten; Erovic, Boban M; Fischer, Martin R
2012-04-01
To evaluate students' overall assessment and effectiveness of the web-based blended learning conception "Unified Patient Project" (UPP) for medical students rotating on their otolaryngology internship (ear, nose, and throat [ENT] tertiary). Prospective comparison group design of the quasiexperimental type. Medical education. The experimental group (preintervention test [pretest], intervention, and postintervention test [posttest]) comprised 117 students, and the comparison group (pretest, alternative intervention, and posttest), 119. In the experimental group, lecturing of case studies was replaced by the blended learning concept UPP. A standardized questionnaire evaluated students' overall assessment of teaching otolaryngology. A pretest and posttest using multiple choice questions was administered to clarify whether the UPP has led to a knowledge gain. The comparison group was more satisfied with their teaching; however, this was not statistically significant (P = .26) compared with the UPP. Students with higher preknowledge benefitted from the UPP, while students with lower preknowledge did not (P = .01). On average, posttest results in the experimental group exceeded those of the comparison group by 8.7 percentage points for a 75% preknowledge of the maximum attainable score, while they fell below those of the comparison group by 8.1 percentage points for a 25% preknowledge. Students' satisfaction with the blended learning concept UPP was lower than in the face-to-face teaching, although this was not statistically significant. The new web-based UPP leads to an improved knowledge in clinical otolaryngology for all students. Students with lower preknowledge benefitted more from face-to-face teaching than from the UPP, while students with higher preknowledge benefitted more from the UPP. This implies students with poor preknowledge need special promotion programs.
Clinical Growth: An Evolutionary Concept Analysis.
Barkimer, Jessica
2016-01-01
Clinical growth is an essential component of nursing education, although challenging to evaluate. Considering the paradigm shift toward constructivism and student-centered learning, clinical growth requires an examination within contemporary practices. A concept analysis of clinical growth in nursing education produced defining attributes, antecedents, and consequences. Attributes included higher-level thinking, socialization, skill development, self-reflection, self-investment, interpersonal communication, and linking theory to practice. Identification of critical attributes allows educators to adapt to student-centered learning in the clinical environment. These findings allow educators to determine significant research questions, develop situation-specific theories, and identify strategies to enhance student learning in the clinical environment.
ERIC Educational Resources Information Center
Ige, Olugbenga Adedayo; Hlalele, Dipane Joseph
2017-01-01
The need to enhance students' learning outcomes has become integral in secondary schools in developing countries due to increased students enrollment. Research has shown that the strategies utilized in teaching secondary school students have significant influence on their learning outcomes. At present in Nigeria, public secondary schools have not…
ERIC Educational Resources Information Center
Yenmez, Arzu Aydogan
2017-01-01
It is seen that students face certain difficulties when learning the concepts and the relationships between them in the mathematics education that aims at enabling students to learn on the highest level. Identifying and eliminating these difficulties, helping students in the learning process and guiding them are among teachers' tasks. Overcoming…
Dyer, Joseph-Omer; Hudon, Anne; Montpetit-Tourangeau, Katherine; Charlin, Bernard; Mamede, Sílvia; van Gog, Tamara
2015-03-07
Example-based learning using worked examples can foster clinical reasoning. Worked examples are instructional tools that learners can use to study the steps needed to solve a problem. Studying worked examples paired with completion examples promotes acquisition of problem-solving skills more than studying worked examples alone. Completion examples are worked examples in which some of the solution steps remain unsolved for learners to complete. Providing learners engaged in example-based learning with self-explanation prompts has been shown to foster increased meaningful learning compared to providing no self-explanation prompts. Concept mapping and concept map study are other instructional activities known to promote meaningful learning. This study compares the effects of self-explaining, completing a concept map and studying a concept map on conceptual knowledge and problem-solving skills among novice learners engaged in example-based learning. Ninety-one physiotherapy students were randomized into three conditions. They performed a pre-test and a post-test to evaluate their gains in conceptual knowledge and problem-solving skills (transfer performance) in intervention selection. They studied three pairs of worked/completion examples in a digital learning environment. Worked examples consisted of a written reasoning process for selecting an optimal physiotherapy intervention for a patient. The completion examples were partially worked out, with the last few problem-solving steps left blank for students to complete. The students then had to engage in additional self-explanation, concept map completion or model concept map study in order to synthesize and deepen their knowledge of the key concepts and problem-solving steps. Pre-test performance did not differ among conditions. Post-test conceptual knowledge was higher (P < .001) in the concept map study condition (68.8 ± 21.8%) compared to the concept map completion (52.8 ± 17.0%) and self-explanation (52.2 ± 21.7%) conditions. Post-test problem-solving performance was higher (P < .05) in the self-explanation (63.2 ± 16.0%) condition compared to the concept map study (53.3 ± 16.4%) and concept map completion (51.0 ± 13.6%) conditions. Students in the self-explanation condition also invested less mental effort in the post-test. Studying model concept maps led to greater conceptual knowledge, whereas self-explanation led to higher transfer performance. Self-explanation and concept map study can be combined with worked example and completion example strategies to foster intervention selection.
Using an improved virtual learning environment for engineering students
NASA Astrophysics Data System (ADS)
Lourdes Martínez Cartas, Ma
2012-06-01
In recent years, e-learning has been used in a chemical engineering subject in the final course of a mining engineering degree, a subject concerned with fuel technology. The low results obtained by students in this subject have led the teacher to search for new strategies to increase grades. Such strategies have consisted of incorporating into the existing virtual environment a dynamics of work with conceptual maps and a consideration of the different learning styles in the classroom. In an attempt to adapt teaching to the individual methods of learning for each student, various activities aimed at strengthening different learning styles have been proposed and concept maps have been used to create meaningful learning experiences. In addition, different modalities of assessment have been proposed, which can be selected by each student according to his or her particular method of learning to avoid penalising one style preference in contrast to another. This combination of e-learning, use of concept maps and catering for different learning styles has involved the implementation of the improved virtual learning environment. This has led to an increase in participation in the subject and has improved student assessment results.
Assessing Children's Understanding of Length Measurement: A Focus on Three Key Concepts
ERIC Educational Resources Information Center
Bush, Heidi
2009-01-01
In this article, the author presents three different tasks that can be used to assess students' understanding of the concept of length. Three important measurement concepts for students to understand are transitive reasoning, use of identical units, and iteration. In any teaching and learning process it is important to acknowledge students'…
The Behavioral Selection of Planetarium Concepts Appropriate for Second Grade Students.
ERIC Educational Resources Information Center
Akey, John Miles
Reported is an evaluation of a planetarium curriculum for elementary students at the primary level in terms of student behavior. Five sub-problems were investigated which related to which concepts could be learned by the planetarium-experience and which concepts were retained after a two-week time lapse. The One-Group Pretest-Posttest Design was…
Creating Meaning from Collaboration to Implement RtI for At-Risk Students
ERIC Educational Resources Information Center
Diakakis, Julia Ann
2014-01-01
The purpose of this qualitative exploratory case study based on Danielson's (2002) assertion that when teachers learn, student achievement improves was to examine how teachers created a collaborative learning experience through Professional Learning Community (PLC) concepts to implement Response to Intervention (RtI) with at-risk students. The…
ERIC Educational Resources Information Center
Jimenez, Bree A.; Browder, Diane M.; Courtade, Ginevra R.
2009-01-01
This investigation focused on the effects of a treatment package including multiple exemplar training, time delay, and a self-directed learning prompt (KWHL chart) on students' ability to complete an inquiry lesson independently and generalize to untrained materials. Three middle school students with moderate intellectual disabilities learned to…
ERIC Educational Resources Information Center
Sullivan, Sarah; Gnesdilow, Dana; Puntambekar, Sadhana; Kim, Jee-Seon
2017-01-01
Physical and virtual experimentation are thought to have different affordances for supporting students' learning. Research investigating the use of physical and virtual experiments to support students' learning has identified a variety of, sometimes conflicting, outcomes. Unanswered questions remain about how physical and virtual experiments may…
Perceptions of Challenging Tasks and Achievement by New Zealand Students
ERIC Educational Resources Information Center
Linsell, Chris; Holmes, Marilyn; Sullivan, Peter
2016-01-01
This paper examines the learning by students who were participating in a project designed to promote persistence while working on mathematical tasks. We examined their learning of mathematics concepts and learning about the processes of engaging in mathematical tasks. There were substantial increases in students' knowledge of angles and also…