Sample records for students practice solving

  1. Engineering students' experiences and perceptions of workplace problem solving

    NASA Astrophysics Data System (ADS)

    Pan, Rui

    In this study, I interviewed 22 engineering Co-Op students about their workplace problem solving experiences and reflections and explored: 1) Of Co-Op students who experienced workplace problem solving, what are the different ways in which students experience workplace problem solving? 2) How do students perceive a) the differences between workplace problem solving and classroom problem solving and b) in what areas are they prepared by their college education to solve workplace problems? To answer my first research question, I analyzed data through the lens of phenomenography and I conducted thematic analysis to answer my second research question. The results of this study have implications for engineering education and engineering practice. Specifically, the results reveal the different ways students experience workplace problem solving, which provide engineering educators and practicing engineers a better understanding of the nature of workplace engineering. In addition, the results indicate that there is still a gap between classroom engineering and workplace engineering. For engineering educators who aspire to prepare students to be future engineers, it is imperative to design problem solving experiences that can better prepare students with workplace competency.

  2. Use of Practical Worksheet in Teacher Education at the Undergraduate and Postgraduate Levels

    ERIC Educational Resources Information Center

    Toh, Pee Choon; Toh, Tin Lam; Ho, Foo Him; Quek, Khiok Seng

    2012-01-01

    We have applied the "practical paradigm" in teaching problem solving to secondary school students. The key feature of the practical paradigm is the use of a practical worksheet to guide the students' processes in problem solving. In this paper, we report the diffusion of the practical paradigm to university level courses for prospective…

  3. Problem Solving: How Can We Help Students Overcome Cognitive Difficulties

    ERIC Educational Resources Information Center

    Cardellini, Liberato

    2014-01-01

    The traditional approach to teach problem solving usually consists in showing students the solutions of some example-problems and then in asking students to practice individually on solving a certain number of related problems. This approach does not ensure that students learn to solve problems and above all to think about the solution process in…

  4. Using Technology to Meet the Developmental Needs of Deaf Students To Improve Their Mathematical Word Problem Solving Skills.

    ERIC Educational Resources Information Center

    Kelly, Ronald R.

    2003-01-01

    Presents "Project Solve," a web-based problem-solving instruction and guided practice for mathematical word problems. Discusses implications for college students for whom reading and comprehension of mathematical word problem solving are difficult, especially learning disabled students. (Author/KHR)

  5. Problem solving strategies integrated into nursing process to promote clinical problem solving abilities of RN-BSN students.

    PubMed

    Wang, Jing-Jy; Lo, Chi-Hui Kao; Ku, Ya-Lie

    2004-11-01

    A set of problem solving strategies integrated into nursing process in nursing core courses (PSNP) was developed for students enrolled in a post-RN baccalaureate nursing program (RN-BSN) in a university in Taiwan. The purpose of this study, therefore, was to evaluate the effectiveness of PSNP on students' clinical problem solving abilities. The one-group post-test design with repeated measures was used. In total 114 nursing students with 47 full-time students and 67 part-time students participated in this study. The nursing core courses were undertaken separately in three semesters. After each semester's learning, students would start their clinical practice, and were asked to submit three written nursing process recordings during each clinic. Assignments from the three practices were named post-test I, II, and III sequentially, and provided the data for this study. The overall score of problem solving indicated that score on the post-test III was significantly better than that on post-test I and II, meaning both full-time and part-time students' clinical problem solving abilities improved at the last semester. In conclusion, problem-solving strategies integrated into nursing process designed for future RN-BSN students are recommendable.

  6. Measures of Potential Flexibility and Practical Flexibility in Equation Solving.

    PubMed

    Xu, Le; Liu, Ru-De; Star, Jon R; Wang, Jia; Liu, Ying; Zhen, Rui

    2017-01-01

    Researchers interested in mathematical proficiency have recently begun to explore the development of strategic flexibility, where flexibility is defined as knowledge of multiple strategies for solving a problem and the ability to implement an innovative strategy for a given problem solving circumstance. However, anecdotal findings from this literature indicate that students do not consistently use an innovative strategy for solving a given problem, even when these same students demonstrate knowledge of innovative strategies. This distinction, sometimes framed in the psychological literature as competence vs. performance-has not been previously studied for flexibility. In order to explore the competence/performance distinction in flexibility, this study developed and validated measures for potential flexibility (e.g., competence, or knowledge of multiple strategies) and practical flexibility (e.g., performance, use of innovative strategies) for solving equations. The measures were administrated to a sample of 158 Chinese middle school students through a Tri-Phase Flexibility Assessment, in which the students were asked to solve each equation, generate additional strategies, and evaluate own multiple strategies. Confirmatory factor analysis supported a two-factor model of potential and practical flexibility. Satisfactory internal consistency was found for the measures. Additional validity evidence included the significant association with flexibility measured with the previous method. Potential flexibility and practical flexibility were found to be distinct but related. The theoretical and practical implications of the concepts and their measures of potential flexibility and practical flexibility are discussed.

  7. Measures of Potential Flexibility and Practical Flexibility in Equation Solving

    PubMed Central

    Xu, Le; Liu, Ru-De; Star, Jon R.; Wang, Jia; Liu, Ying; Zhen, Rui

    2017-01-01

    Researchers interested in mathematical proficiency have recently begun to explore the development of strategic flexibility, where flexibility is defined as knowledge of multiple strategies for solving a problem and the ability to implement an innovative strategy for a given problem solving circumstance. However, anecdotal findings from this literature indicate that students do not consistently use an innovative strategy for solving a given problem, even when these same students demonstrate knowledge of innovative strategies. This distinction, sometimes framed in the psychological literature as competence vs. performance—has not been previously studied for flexibility. In order to explore the competence/performance distinction in flexibility, this study developed and validated measures for potential flexibility (e.g., competence, or knowledge of multiple strategies) and practical flexibility (e.g., performance, use of innovative strategies) for solving equations. The measures were administrated to a sample of 158 Chinese middle school students through a Tri-Phase Flexibility Assessment, in which the students were asked to solve each equation, generate additional strategies, and evaluate own multiple strategies. Confirmatory factor analysis supported a two-factor model of potential and practical flexibility. Satisfactory internal consistency was found for the measures. Additional validity evidence included the significant association with flexibility measured with the previous method. Potential flexibility and practical flexibility were found to be distinct but related. The theoretical and practical implications of the concepts and their measures of potential flexibility and practical flexibility are discussed. PMID:28848481

  8. Talk aloud problem solving: Exploration of acquisition and frequency building in science text

    NASA Astrophysics Data System (ADS)

    Dembek, Ginny

    Discovering new ways to help students attain higher levels of scientific knowledge and to think critically is a national goal (Educate to Innovate campaign). Despite the best intentions, many students struggle to achieve a basic level of science knowledge (NAEP, 2011). The present study examined Talk Aloud Pair Problem Solving and frequency building with five students who were diagnosed with a disability and receive specialized reading instruction in a special education setting. Acquisition was obtained through scripted lessons and frequency building or practice strengthened the student's verbal repertoire making the problem solving process a durable behavior. Overall, students all demonstrated improvements in problem solving performance when compared to baseline. Students became more significantly accurate in performance and maintenance in learning was demonstrated. Generalization probes indicated improvement in student performance. Implications for practice and future research are discussed.

  9. Mathematical Problem Solving among Latina/o Kindergartners: An Analysis of Opportunities to Learn

    ERIC Educational Resources Information Center

    Turner, Erin E.; Celedon-Pattichis, Sylvia

    2011-01-01

    This study explores opportunities to learn mathematics problem solving for Latina/o students in 3 kindergarten classrooms in the southwest. Mixed methods were used to examine teaching practices that engaged Latina/o students in problem solving and supported their learning. Findings indicate that although students in all 3 classrooms showed growth…

  10. Whole-Class Scaffolding for Learning to Solve Mathematics Problems Together in a Computer-Supported Environment

    ERIC Educational Resources Information Center

    Abdu, Rotem; Schwarz, Baruch; Mavrikis, Manolis

    2015-01-01

    We investigate teachers' practices in a whole-class context when they scaffold students' learning in situations where students use technologies that facilitate group learning to solve mathematical problems in small groups. We describe teachers' practices in order to evaluate their contribution to "Whole-Class Scaffolding" in the context…

  11. How can we improve problem solving in undergraduate biology? Applying lessons from 30 years of physics education research.

    PubMed

    Hoskinson, A-M; Caballero, M D; Knight, J K

    2013-06-01

    If students are to successfully grapple with authentic, complex biological problems as scientists and citizens, they need practice solving such problems during their undergraduate years. Physics education researchers have investigated student problem solving for the past three decades. Although physics and biology problems differ in structure and content, the instructional purposes align closely: explaining patterns and processes in the natural world and making predictions about physical and biological systems. In this paper, we discuss how research-supported approaches developed by physics education researchers can be adopted by biologists to enhance student problem-solving skills. First, we compare the problems that biology students are typically asked to solve with authentic, complex problems. We then describe the development of research-validated physics curricula emphasizing process skills in problem solving. We show that solving authentic, complex biology problems requires many of the same skills that practicing physicists and biologists use in representing problems, seeking relationships, making predictions, and verifying or checking solutions. We assert that acquiring these skills can help biology students become competent problem solvers. Finally, we propose how biology scholars can apply lessons from physics education in their classrooms and inspire new studies in biology education research.

  12. Problem Solving and Engineering Design, Introducing Bachelor Students to Engineering Practice at K. U. Leuven

    ERIC Educational Resources Information Center

    Heylen, Christel; Smet, Marc; Buelens, Hermans; Sloten, Jos Vander

    2007-01-01

    A present-day engineer has a large scientific knowledge; he is a team-player, eloquent communicator and life-long learner. At the Katholieke Universiteit Leuven, the course "Problem Solving and Engineering Design" introduces engineering students from the first semester onwards into real engineering practice and teamwork. Working in small…

  13. A Rubric for Assessing Students' Experimental Problem-Solving Ability

    ERIC Educational Resources Information Center

    Shadle, Susan E.; Brown, Eric C.; Towns, Marcy H.; Warner, Don L.

    2012-01-01

    The ability to couple problem solving both to the understanding of chemical concepts and to laboratory practices is an essential skill for undergraduate chemistry programs to foster in our students. Therefore, chemistry programs must offer opportunities to answer real problems that require use of problem-solving processes used by practicing…

  14. Threshold Concepts in the Development of Problem-Solving Skills

    ERIC Educational Resources Information Center

    Wismath, Shelly; Orr, Doug; MacKay, Bruce

    2015-01-01

    Problem-solving skills are often identified as a key component of 21st century education. This study collected data from students enrolled in a university-level Liberal Education science course called "Problems and Puzzles," which introduced students to the theory and practice of problem solving via puzzles. Based on classroom…

  15. Strategies to Support Students' Mathematical Modeling

    ERIC Educational Resources Information Center

    Jung, Hyunyi

    2015-01-01

    An important question for mathematics teachers is this: "How can we help students learn mathematics to solve everyday problems, rather than teaching them only to memorize rules and practice mathematical procedures?" Teaching students using modeling activities can help them learn mathematics in real-world problem-solving situations that…

  16. Developing Ill-defined problem-solving for the context of “South Sumatera”

    NASA Astrophysics Data System (ADS)

    Arifin, S.; Zulkardi; Putri, R. I. I.; Hartono, Y.; Susanti, E.

    2017-12-01

    This study aims to produce a valid and practical ill-defined problem-solving for context South Sumatera. The subject of the research is three students of the first semester of undergraduate students in the mathematics department of Raden Fatah State Islamic University. This study use development studies that consist of preliminary and prototyping. In preliminary stage have been analysis content curricula, indicator, and strategies of problem-solving. Meanwhile, in prototyping stage only consist of self-evaluation, expert review, and one-to-one. The data were collected through a walkthrough, interview, and test. The data were validated using expert review, but in practice, the data were obtained from test and interview to subject of the research. This studies produced two valid and practical problem-solving. The first problem is about “Benteng Kuto Besak”, and the second problem is about “Monpera”. From the expert review, the conclusion can be drawn that two problems which are developing are ill-defined problem-solving, and valid from content, construct, and its language. Besides that, the problems are practical because all students know and understand what the problems goal, but not the solutions.

  17. An Intervention Framework Designed to Develop the Collaborative Problem-Solving Skills of Primary School Students

    ERIC Educational Resources Information Center

    Gu, Xiaoqing; Chen, Shan; Zhu, Wenbo; Lin, Lin

    2015-01-01

    Considerable effort has been invested in innovative learning practices such as collaborative inquiry. Collaborative problem solving is becoming popular in school settings, but there is limited knowledge on how to develop skills crucial in collaborative problem solving in students. Based on the intervention design in social interaction of…

  18. How Can We Improve Problem Solving in Undergraduate Biology? Applying Lessons from 30 Years of Physics Education Research

    PubMed Central

    Hoskinson, A.-M.; Caballero, M. D.; Knight, J. K.

    2013-01-01

    If students are to successfully grapple with authentic, complex biological problems as scientists and citizens, they need practice solving such problems during their undergraduate years. Physics education researchers have investigated student problem solving for the past three decades. Although physics and biology problems differ in structure and content, the instructional purposes align closely: explaining patterns and processes in the natural world and making predictions about physical and biological systems. In this paper, we discuss how research-supported approaches developed by physics education researchers can be adopted by biologists to enhance student problem-solving skills. First, we compare the problems that biology students are typically asked to solve with authentic, complex problems. We then describe the development of research-validated physics curricula emphasizing process skills in problem solving. We show that solving authentic, complex biology problems requires many of the same skills that practicing physicists and biologists use in representing problems, seeking relationships, making predictions, and verifying or checking solutions. We assert that acquiring these skills can help biology students become competent problem solvers. Finally, we propose how biology scholars can apply lessons from physics education in their classrooms and inspire new studies in biology education research. PMID:23737623

  19. Theoretical Overview on the Improvement of Interest in Learning Theoretical Course for Engineering Students

    ERIC Educational Resources Information Center

    Xiao, Manlin; Zhang, Jianglin

    2016-01-01

    The phenomenon that engineering students have little interest in theoretical knowledge learning is more and more apparent. Therefore, most students fail to understand and apply theories to solve practical problems. To solve this problem, the importance of improving students' interest in the learning theoretical course is discussed firstly in this…

  20. Student Learning of Complex Earth Systems: A Model to Guide Development of Student Expertise in Problem-Solving

    ERIC Educational Resources Information Center

    Holder, Lauren N.; Scherer, Hannah H.; Herbert, Bruce E.

    2017-01-01

    Engaging students in problem-solving concerning environmental issues in near-surface complex Earth systems involves developing student conceptualization of the Earth as a system and applying that scientific knowledge to the problems using practices that model those used by professionals. In this article, we review geoscience education research…

  1. Do problem-solving skills affect success in nursing process applications? An application among Turkish nursing students.

    PubMed

    Bayindir Çevik, Ayfer; Olgun, Nermin

    2015-04-01

    This study aimed to determine the relationship between problem-solving and nursing process application skills of nursing. This is a longitudinal and correlational study. The sample included 71 students. An information form, Problem-Solving Inventory, and nursing processes the students presented at the end of clinical courses were used for data collection. Although there was no significant relationship between problem-solving skills and nursing process grades, improving problem-solving skills increased successful grades. Problem-solving skills and nursing process skills can be concomitantly increased. Students were suggested to use critical thinking, practical approaches, and care plans, as well as revising nursing processes in order to improve their problem-solving skills and nursing process application skills. © 2014 NANDA International, Inc.

  2. Promoting Access to Common Core Mathematics for Students with Severe Disabilities through Mathematical Problem Solving

    ERIC Educational Resources Information Center

    Spooner, Fred; Saunders, Alicia; Root, Jenny; Brosh, Chelsi

    2017-01-01

    There is a need to teach the pivotal skill of mathematical problem solving to students with severe disabilities, moving beyond basic skills like computation to higher level thinking skills. Problem solving is emphasized as a Standard for Mathematical Practice in the Common Core State Standards across grade levels. This article describes a…

  3. Solving the Unknown with Algebra: Poster/Teaching Guide for Pre-Algebra Students. Expect the Unexpected with Math[R

    ERIC Educational Resources Information Center

    Actuarial Foundation, 2013

    2013-01-01

    "Solving the Unknown with Algebra" is a new math program aligned with the National Council of Teachers of Mathematics (NCTM) standards and designed to help students practice pre-algebra skills including using formulas, solving for unknowns, and manipulating equations. Developed by The Actuarial Foundation with Scholastic, this program provides…

  4. Case study method and problem-based learning: utilizing the pedagogical model of progressive complexity in nursing education.

    PubMed

    McMahon, Michelle A; Christopher, Kimberly A

    2011-08-19

    As the complexity of health care delivery continues to increase, educators are challenged to determine educational best practices to prepare BSN students for the ambiguous clinical practice setting. Integrative, active, and student-centered curricular methods are encouraged to foster student ability to use clinical judgment for problem solving and informed clinical decision making. The proposed pedagogical model of progressive complexity in nursing education suggests gradually introducing students to complex and multi-contextual clinical scenarios through the utilization of case studies and problem-based learning activities, with the intention to transition nursing students into autonomous learners and well-prepared practitioners at the culmination of a nursing program. Exemplar curricular activities are suggested to potentiate student development of a transferable problem solving skill set and a flexible knowledge base to better prepare students for practice in future novel clinical experiences, which is a mutual goal for both educators and students.

  5. Capturing Students' Abstraction While Solving Organic Reaction Mechanism Problems across a Semester

    ERIC Educational Resources Information Center

    Weinrich, M. L.; Sevian, H.

    2017-01-01

    Students often struggle with solving mechanism problems in organic chemistry courses. They frequently focus on surface features, have difficulty attributing meaning to symbols, and do not recognize tasks that are different from the exact tasks practiced. To be more successful, students need to be able to extract salient features, map similarities…

  6. Improving Problem-Solving Performance of Students with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Yakubova, Gulnoza; Taber-Doughty, Teresa

    2017-01-01

    The effectiveness of a multicomponent intervention to improve the problem-solving performance of students with autism spectrum disorders (ASD) during vocational tasks was examined. A multiple-probe across-students design was used to illustrate the effectiveness of point-of-view video modeling paired with practice sessions and a self-operated cue…

  7. Robotics and STEM Learning: Students' Achievements in Assignments According to the P3 Task Taxonomy--Practice, Problem Solving, and Projects

    ERIC Educational Resources Information Center

    Barak, Moshe; Assal, Muhammad

    2018-01-01

    This study presents the case of development and evaluation of a STEM-oriented 30-h robotics course for junior high school students (n = 32). Class activities were designed according to the P3 Task Taxonomy, which included: (1) practice-basic closed-ended tasks and exercises; (2) problem solving--small-scale open-ended assignments in which the…

  8. Incorporating the Common Core's Problem Solving Standard for Mathematical Practice into an Early Elementary Inclusive Classroom

    ERIC Educational Resources Information Center

    Fletcher, Nicole

    2014-01-01

    Mathematics curriculum designers and policy decision makers are beginning to recognize the importance of problem solving, even at the earliest stages of mathematics learning. The Common Core includes sense making and perseverance in solving problems in its standards for mathematical practice for students at all grade levels. Incorporating problem…

  9. Examining the Effects of Principals' Transformational Leadership on Teachers' Creative Practices and Students' Performance in Problem-Solving

    ERIC Educational Resources Information Center

    Owoh, Jeremy Strickland

    2015-01-01

    In today's technology enriched schools and workforces, creative problem-solving is involved in many aspects of a person's life. The educational systems of developed nations are designed to raise students who are creative and skillful in solving complex problems. Technology and the age of information require nations to develop generations of…

  10. The Power of Problem Solving: Practical Ideas and Teaching Strategies for Any K-8 Subject Area.

    ERIC Educational Resources Information Center

    Sorenson, Juanita S.; Buckmaster, Lynn R.; Francis, Mary Kay; Knauf, Karen M.

    Based on the belief that giving students opportunities to think and solve problems independently is the best way to help them enjoy learning, this book provides guidelines and learning activities to help students in grades kindergarten through 8 to solve problems in all subject matter areas of the curriculum. Chapter 1 provides a rationale for…

  11. Extending Students' Practice of Metacognitive Regulation Skills with the Science Writing Heuristic

    NASA Astrophysics Data System (ADS)

    van Opstal, Mary T.; Daubenmire, Patrick L.

    2015-05-01

    Metacognition can be described as an internal conversation that seeks to answer the questions, 'how much do I really know about what I am learning' and, 'how am I monitoring what I am learning?' Metacognitive regulation skills are critical to meaningful learning because they facilitate the abilities to recognize the times when one's current level of understanding is insufficient and to identify the needs for closing the gap in understanding. This research explored how using the Science Writing Heuristic (SWH) as an instructional approach in a laboratory classroom affected students' practice of metacognitive skills while solving open-ended laboratory problems. Within our qualitative research design, results demonstrate that students in the SWH environment, compared to non-SWH students, used metacognitive strategies to a different degree and to a different depth when solving open-ended laboratory problems. As students engaged in higher levels of metacognitive regulation, peer collaboration became a prominent path for supporting the use of metacognitive strategies. Students claimed that the structure of the SWH weekly laboratory experiments improved their ability to solve open-ended lab problems. Results from this study suggest that using instruction that encourages practice of metacognitive strategies can improve students' use of these strategies.

  12. Teaching with Concrete and Abstract Visual Representations: Effects on Students' Problem Solving, Problem Representations, and Learning Perceptions

    ERIC Educational Resources Information Center

    Moreno, Roxana; Ozogul, Gamze; Reisslein, Martin

    2011-01-01

    In 3 experiments, we examined the effects of using concrete and/or abstract visual problem representations during instruction on students' problem-solving practice, near transfer, problem representations, and learning perceptions. In Experiments 1 and 2, novice students learned about electrical circuit analysis with an instructional program that…

  13. Making Sense of Conceptual Tools in Student-Generated Cases: Student Teachers' Problem-Solving Processes

    ERIC Educational Resources Information Center

    Jahreie, Cecilie Flo

    2010-01-01

    This article examines the way student teachers make sense of conceptual tools when writing cases. In order to understand the problem-solving process, an analysis of the interactions is conducted. The findings show that transforming practical experiences into theoretical reflection is not a straightforward matter. To be able to elaborate on the…

  14. Computer problem-solving coaches for introductory physics: Design and usability studies

    NASA Astrophysics Data System (ADS)

    Ryan, Qing X.; Frodermann, Evan; Heller, Kenneth; Hsu, Leonardo; Mason, Andrew

    2016-06-01

    The combination of modern computing power, the interactivity of web applications, and the flexibility of object-oriented programming may finally be sufficient to create computer coaches that can help students develop metacognitive problem-solving skills, an important competence in our rapidly changing technological society. However, no matter how effective such coaches might be, they will only be useful if they are attractive to students. We describe the design and testing of a set of web-based computer programs that act as personal coaches to students while they practice solving problems from introductory physics. The coaches are designed to supplement regular human instruction, giving students access to effective forms of practice outside class. We present results from large-scale usability tests of the computer coaches and discuss their implications for future versions of the coaches.

  15. Curing Student Underachievement: Clinical Practice for School Leaders

    ERIC Educational Resources Information Center

    Esbrandt, Philip; Hayes, Bruce

    2011-01-01

    "Cure Student Underachievement" is the culmination of the authors' research, practice, and experience as principals, superintendents, graduate professors, and consultants in efforts to improve school performance and increase student achievement. Searching for the real causes of underperformance, the authors explored problem-solving strategies in…

  16. The Practices of Students' Generic Skills among Economics Students at National University of Indonesia

    ERIC Educational Resources Information Center

    Hadiyanto; Suratno

    2015-01-01

    This study aimed to examine students' generic skills practices (communication, IT, numeracy, learning how to learn, problem solving, working with others, and subject-specific competencies) at National University of Indonesia (UI). Survey design with quantitative method was applied in this study. Questionnaires were distributed to 355 students at…

  17. Veteran teachers' use of recommended practices in deaf education.

    PubMed

    Easterbrooks, Susan R; Stephenson, Brenda H; Gale, Elaine

    2009-01-01

    Deaf education teacher preparation programs face the likelihood that their graduates may not implement evidenced-based practices they were taught once they have graduated. The literature suggests that new teachers follow the school culture where they work rather than methods and strategies taught in their preparation programs. To investigate whether teachers of students who are deaf or hard of hearing (DHH) implement recommended practices, 23 teachers from three schools for the deaf were interviewed about their implementation and use of two recommended practices: independent reading and problem solving. The guiding questions were: Do teachers of students who are DHH use independent reading and problem solving after the enculturation process? If so, to what level? If not, can a review improve their level of use? Results demonstrated, at least regarding these two practices, that teachers of students who are DHH do implement evidence-based practices in their classrooms.

  18. Using Computer Simulations in Chemistry Problem Solving

    ERIC Educational Resources Information Center

    Avramiotis, Spyridon; Tsaparlis, Georgios

    2013-01-01

    This study is concerned with the effects of computer simulations of two novel chemistry problems on the problem solving ability of students. A control-experimental group, equalized by pair groups (n[subscript Exp] = n[subscript Ctrl] = 78), research design was used. The students had no previous experience of chemical practical work. Student…

  19. Mesh and Time-Step Independent Computational Fluid Dynamics (CFD) Solutions

    ERIC Educational Resources Information Center

    Nijdam, Justin J.

    2013-01-01

    A homework assignment is outlined in which students learn Computational Fluid Dynamics (CFD) concepts of discretization, numerical stability and accuracy, and verification in a hands-on manner by solving physically realistic problems of practical interest to engineers. The students solve a transient-diffusion problem numerically using the common…

  20. Teaching Students with Moderate Intellectual Disability to Solve Word Problems

    ERIC Educational Resources Information Center

    Browder, Diane M.; Spooner, Fred; Lo, Ya-yu; Saunders, Alicia F.; Root, Jenny R.; Ley Davis, Luann; Brosh, Chelsi R.

    2018-01-01

    This study evaluated an intervention developed through an Institute of Education Sciences-funded Goal 2 research project to teach students with moderate intellectual disability (moderate ID) to solve addition and subtraction word problems. The intervention involved modified schema-based instruction that embedded effective practices (e.g.,…

  1. CD-ROM Based Multimedia Homework Solutions and Self Test Generator.

    ERIC Educational Resources Information Center

    Rhodes, Jeffrey M.; Bell, Christopher C.

    1998-01-01

    Discusses a prototype multimedia application that was designed to help college students solve problems and generate practice tests for an economics textbook. Highlights include step-by-step problem solving; a friendly interface; student tracking; inexpensive development costs; examples of screen displays; and generating random, scored tests on…

  2. Fixing Ganache: Another Real-Life Use for Algebra

    ERIC Educational Resources Information Center

    Kalman, Adam M.

    2011-01-01

    This article presents a real-world application of proportional reasoning and equation solving. The author describes how students adjust ingredient amounts in a recipe for chocolate ganache. Using this real-world scenario provided students an opportunity to solve a difficult and nonstandard algebra problem, a lot of practice with fractions, a…

  3. The Missing Curriculum in Physics Problem-Solving Education

    NASA Astrophysics Data System (ADS)

    Williams, Mobolaji

    2018-05-01

    Physics is often seen as an excellent introduction to science because it allows students to learn not only the laws governing the world around them, but also, through the problems students solve, a way of thinking which is conducive to solving problems outside of physics and even outside of science. In this article, we contest this latter idea and argue that in physics classes, students do not learn widely applicable problem-solving skills because physics education almost exclusively requires students to solve well-defined problems rather than the less-defined problems which better model problem solving outside of a formal class. Using personal, constructed, and the historical accounts of Schrödinger's development of the wave equation and Feynman's development of path integrals, we argue that what is missing in problem-solving education is practice in identifying gaps in knowledge and in framing these knowledge gaps as questions of the kind answerable using techniques students have learned. We discuss why these elements are typically not taught as part of the problem-solving curriculum and end with suggestions on how to incorporate these missing elements into physics classes.

  4. Using a general problem-solving strategy to promote transfer.

    PubMed

    Youssef-Shalala, Amina; Ayres, Paul; Schubert, Carina; Sweller, John

    2014-09-01

    Cognitive load theory was used to hypothesize that a general problem-solving strategy based on a make-as-many-moves-as-possible heuristic could facilitate problem solutions for transfer problems. In four experiments, school students were required to learn about a topic through practice with a general problem-solving strategy, through a conventional problem solving strategy or by studying worked examples. In Experiments 1 and 2 using junior high school students learning geometry, low knowledge students in the general problem-solving group scored significantly higher on near or far transfer tests than the conventional problem-solving group. In Experiment 3, an advantage for a general problem-solving group over a group presented worked examples was obtained on far transfer tests using the same curriculum materials, again presented to junior high school students. No differences between conditions were found in Experiments 1, 2, or 3 using test problems similar to the acquisition problems. Experiment 4 used senior high school students studying economics and found the general problem-solving group scored significantly higher than the conventional problem-solving group on both similar and transfer tests. It was concluded that the general problem-solving strategy was helpful for novices, but not for students that had access to domain-specific knowledge. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  5. Guided Practice Software for Teaching DNA Replication to Senior High School Students

    ERIC Educational Resources Information Center

    Woods, Eric C.; McKinnon, Alan E.; Hickford, Jonathan G. H.; Abell, Walt A.

    2008-01-01

    The prototype of a guided practice application was developed to instruct year 13 biology students in the process of DNA replication. The application uses a high degree of interaction to engage the student in a guided exploration and problem solving exercise. An evaluation revealed that the students showed considerable enthusiasm and significant…

  6. Discourse: Simple Moves that Work

    ERIC Educational Resources Information Center

    Rawding, Molly Rothermel; Wills, Theresa

    2012-01-01

    Just as students need plenty of time to practice skills such as solving fraction problems, they also need time to practice the skills of discourse to become better communicators and stronger mathematicians. Embedded within discourse strategies are specific ways to maximize communication. When repeatedly practiced, students learn to listen to one…

  7. Problem-Solving Practices and Complexity in School Psychology

    ERIC Educational Resources Information Center

    Brady, John; Espinosa, William R.

    2017-01-01

    How do experienced school psychologists solve problems in their practice? What can trainers of school psychologists learn about how to structure training and mentoring of graduate students from what actually happens in schools, and how can this inform our teaching at the university? This qualitative multi-interview study explored the processes…

  8. Interleaved Practice Improves Mathematics Learning

    ERIC Educational Resources Information Center

    Rohrer, Doug; Dedrick, Robert F.; Stershic, Sandra

    2015-01-01

    A typical mathematics assignment consists primarily of practice problems requiring the strategy introduced in the immediately preceding lesson (e.g., a dozen problems that are solved by using the Pythagorean theorem). This means that students know which strategy is needed to solve each problem before they read the problem. In an alternative…

  9. Hierarchy curriculum for practical skills training in optics and photonics

    NASA Astrophysics Data System (ADS)

    Zheng, XiaoDong; Wang, XiaoPing; Liu, Xu; Liu, XiangDong; Lin, YuanFang

    2017-08-01

    The employers in optical engineering fields hope to recruit students who are capable of applying optical principles to solve engineering problems and have strong laboratory skills. In Zhejiang University, a hierarchy curriculum for practical skill training has been constructed to satisfy this demand. This curriculum includes "Introductive practicum" for freshmen, "Opto-mechanical systems design", "Engineering training", "Electronic system design", "Student research training program (SRTP)", "National University Students' Optical-Science-Technology Competition game", and "Offcampus externship". Without cutting optical theory credit hours, this hierarchy curriculum provides a step-by-step solution to enhance students' practical skills. By following such a hierarchy curriculum, students can smoothly advance from a novice to a qualified professional expert in optics. They will be able to utilize optical engineering tools to design, build, analyze, improve, and test systems, and will be able to work effectively in teams to solve problems in engineering and design.

  10. How doctors learn: the role of clinical problems across the medical school-to-practice continuum.

    PubMed

    Slotnick, H B

    1996-01-01

    The author proposes a theory of how physicians learn that uses clinical problem solving as its central feature. His theory, which integrates insights from Maslow, Schön, Norman, and others, claims that physicians-in-training and practicing physicians learn largely by deriving insights from clinical experience. These insights allow the learner to solve future problems and thereby address the learner's basic human needs for security, affiliation, and self-esteem. Ensuring that students gain such insights means that the proper roles of the teacher are (1) to select problems for students to solve and offer guidance on how to solve them, and (2) to serve as a role model of how to reflect on the problem, its solution, and the solution's effectiveness. Three principles guide instruction within its framework for learning: (1) learners, whether physicians-in-training or practicing physicians, seek to solve problems they recognize they have; (2) learners want to be involved in their own learning; and (3) instruction must both be time-efficient and also demonstrate the range of ways in which students can apply what they learn. The author concludes by applying the theory to an aspect of undergraduate education and to the general process of continuing medical education.

  11. ABO/Rh Blood-Typing Model: A Problem-Solving Activity

    ERIC Educational Resources Information Center

    Wake, Carol

    2005-01-01

    An ARO/Rh Blood-Typing kit useful for students to visualize blood-typing activities and practice problem-solving skills with transfusion reactions is presented. The model also enables students to identify relationships between A, B, and Rh antigens and antibodies in blood and to understand molecular mechanisms involved in transfusion agglutination…

  12. Preserving Pelicans with Models That Make Sense

    ERIC Educational Resources Information Center

    Moore, Tamara J.; Doerr, Helen M.; Glancy, Aran W.; Ntow, Forster D.

    2015-01-01

    Getting students to think deeply about mathematical concepts is not an easy job, which is why we often use problem-solving tasks to engage students in higher-level mathematical thinking. Mathematical modeling, one of the mathematical practices found in the Common Core State Standards for Mathematics (CCSSM), is a type of problem solving that can…

  13. Calculating Probabilistic Distance to Solution in a Complex Problem Solving Domain

    ERIC Educational Resources Information Center

    Sudol, Leigh Ann; Rivers, Kelly; Harris, Thomas K.

    2012-01-01

    In complex problem solving domains, correct solutions are often comprised of a combination of individual components. Students usually go through several attempts, each attempt reflecting an individual solution state that can be observed during practice. Classic metrics to measure student performance over time rely on counting the number of…

  14. An Appropriate Prompts System Based on the Polya Method for Mathematical Problem-Solving

    ERIC Educational Resources Information Center

    Lee, Chien I.

    2017-01-01

    Current mathematics education emphasizes techniques, formulas, and procedures, neglecting the importance of understanding, presentation, and reasoning. This turns students into passive listeners that are well-practiced only in using formulas that they do not understand. We therefore adopted the Polya problem-solving method to provide students with…

  15. Design and Application of Interactive Simulations in Problem-Solving in University-Level Physics Education

    NASA Astrophysics Data System (ADS)

    Ceberio, Mikel; Almudí, José Manuel; Franco, Ángel

    2016-08-01

    In recent years, interactive computer simulations have been progressively integrated in the teaching of the sciences and have contributed significant improvements in the teaching-learning process. Practicing problem-solving is a key factor in science and engineering education. The aim of this study was to design simulation-based problem-solving teaching materials and assess their effectiveness in improving students' ability to solve problems in university-level physics. Firstly, we analyze the effect of using simulation-based materials in the development of students' skills in employing procedures that are typically used in the scientific method of problem-solving. We found that a significant percentage of the experimental students used expert-type scientific procedures such as qualitative analysis of the problem, making hypotheses, and analysis of results. At the end of the course, only a minority of the students persisted with habits based solely on mathematical equations. Secondly, we compare the effectiveness in terms of problem-solving of the experimental group students with the students who are taught conventionally. We found that the implementation of the problem-solving strategy improved experimental students' results regarding obtaining a correct solution from the academic point of view, in standard textbook problems. Thirdly, we explore students' satisfaction with simulation-based problem-solving teaching materials and we found that the majority appear to be satisfied with the methodology proposed and took on a favorable attitude to learning problem-solving. The research was carried out among first-year Engineering Degree students.

  16. Probe on training the practical ability of undergraduates

    NASA Astrophysics Data System (ADS)

    Wu, Qiaohui; Meng, Xiuxia; Leng, Bing

    2010-07-01

    Practical ability means physical and psychological characteristics that ensure the individual to make use of the knowledge and skills to solve the practical problems smoothly. Only with practical ability, the man can sum up experience from practice, at the same time he can identify problems and make innovation. This article describes the meaning and characteristics of practice and introduces how to build the capacity of the practical ability of students in foreign university. As well as the article put forward how to set up a practical training teaching system which can improve practical ability of college students and a series of training programs to help Chinese universities students to improve the student's practical ability and cultivate student's with a strong practical ability and high-quality talent.

  17. Examining the Epistemological Beliefs and Problem Solving Skills of Preservice Teachers during Teaching Practice

    ERIC Educational Resources Information Center

    Erdamar, Gurcu; Alpan, Gulgun

    2013-01-01

    This study aims to examine the development of preservice teachers' epistemological beliefs and problem solving skills in the process of teaching practice. Participants of this descriptive study were senior students from Gazi University's Faculty of Vocational Education ("n" = 189). They completed the Epistemological Belief Scale and…

  18. Large-scale studies on the transferability of general problem-solving skills and the pedagogic potential of physics

    NASA Astrophysics Data System (ADS)

    Mashood, K. K.; Singh, Vijay A.

    2013-09-01

    Research suggests that problem-solving skills are transferable across domains. This claim, however, needs further empirical substantiation. We suggest correlation studies as a methodology for making preliminary inferences about transfer. The correlation of the physics performance of students with their performance in chemistry and mathematics in highly competitive problem-solving examinations was studied using a massive database. The sample sizes ranged from hundreds to a few hundred thousand. Encouraged by the presence of significant correlations, we interviewed 20 students to explore the pedagogic potential of physics in imparting transferable problem-solving skills. We report strategies and practices relevant to physics employed by these students which foster transfer.

  19. Towards the Construction of a Framework to Deal with Routine Problems to Foster Mathematical Inquiry

    ERIC Educational Resources Information Center

    Santos-Trigo, Manuel; Camacho-Machin, Matias

    2009-01-01

    To what extent does the process of solving textbook problems help students develop a way of thinking that is consistent with mathematical practice? Can routine problems be transformed into problem solving activities that promote students' mathematical reflection? These questions are used to outline and discuss features of an inquiry framework…

  20. The Impact of a Standards Guided Equity and Problem Solving Institute on Participating Science Teachers and Their Students.

    ERIC Educational Resources Information Center

    Huber, Richard A.; Smith, Robert W.; Shotsberger, Paul G.

    This study examined the effect of a teacher enhancement project combining training on the National Science Education Standards, problem solving and equity education on middle school science teachers' attitudes and practices and, in turn, the attitudes of their students. Participating teachers reported changes in their instructional methods that…

  1. An Examination of Connections in Mathematical Processes in Students' Problem Solving: Connections between Representing and Justifying

    ERIC Educational Resources Information Center

    Stylianou, Despina A.

    2013-01-01

    Representation and justification are two central "mathematical practices". In the past, each has been examined to gain insights in the functions that they have in students' mathematical problem solving. Here, we examine the ways that representation and justification interact and influence the development of one another. We focus on the…

  2. Assessing Student Written Problem Solutions: A Problem-Solving Rubric with Application to Introductory Physics

    ERIC Educational Resources Information Center

    Docktor, Jennifer L.; Dornfeld, Jay; Frodermann, Evan; Heller, Kenneth; Hsu, Leonardo; Jackson, Koblar Alan; Mason, Andrew; Ryan, Qing X.; Yang, Jie

    2016-01-01

    Problem solving is a complex process valuable in everyday life and crucial for learning in the STEM fields. To support the development of problem-solving skills it is important for researchers and curriculum developers to have practical tools that can measure the difference between novice and expert problem-solving performance in authentic…

  3. The Effect of Tutoring With Nonstandard Equations for Students With Mathematics Difficulty.

    PubMed

    Powell, Sarah R; Driver, Melissa K; Julian, Tyler E

    2015-01-01

    Students often misinterpret the equal sign (=) as operational instead of relational. Research indicates misinterpretation of the equal sign occurs because students receive relatively little exposure to equations that promote relational understanding of the equal sign. No study, however, has examined effects of nonstandard equations on the equation solving and equal-sign understanding of students with mathematics difficulty (MD). In the present study, second-grade students with MD (n = 51) were randomly assigned to standard equations tutoring, combined tutoring (standard and nonstandard equations), and no-tutoring control. Combined tutoring students demonstrated greater gains on equation-solving assessments and equal-sign tasks compared to the other two conditions. Standard tutoring students demonstrated improved skill on equation solving over control students, but combined tutoring students' performance gains were significantly larger. Results indicate that exposure to and practice with nonstandard equations positively influence student understanding of the equal sign. © Hammill Institute on Disabilities 2013.

  4. Comparison of the Effects of Computer-Based Practice and Conceptual Understanding Interventions on Mathematics Fact Retention and Generalization

    ERIC Educational Resources Information Center

    Kanive, Rebecca; Nelson, Peter M.; Burns, Matthew K.; Ysseldyke, James

    2014-01-01

    The authors' purpose was to determine the effects of computer-based practice and conceptual interventions on computational fluency and word-problem solving of fourth- and fifth-grade students with mathematics difficulties. A randomized pretest-posttest control group design found that students assigned to the computer-based practice intervention…

  5. Assessing Mathematics 4. Problem Solving: The APU Approach.

    ERIC Educational Resources Information Center

    Foxman, Derek; And Others

    1984-01-01

    Presented are examples of problem-solving items from practical and written mathematics tests. These tests are part of an English survey designed to assess the mathematics achievement of students aged 11 and 15. (JN)

  6. A Meta-Analysis of Schema Instruction on the Problem-Solving Performance of Elementary School Students

    ERIC Educational Resources Information Center

    Peltier, Corey; Vannest, Kimberly J.

    2017-01-01

    A variety of instructional practices have been recommended to increase the problem-solving (PS) performance of elementary school children. The purpose of this meta-analysis was to systematically review research on the use of schema instruction to increase the PS performance of elementary school-age students. A total of 21 studies, with 3,408…

  7. Cultural and Political Vignettes in the English Classroom: Problem-Posing, Problem-Solving, and the Imagination

    ERIC Educational Resources Information Center

    Darvin, Jacqueline

    2009-01-01

    One way to merge imagination with problem-posing and problem-solving in the English classroom is by asking students to respond to "cultural and political vignettes" (CPVs). CPVs are cultural and political situations that are presented to students so that they can practice the creative and essential decision-making skills that they will need to use…

  8. Use of a Mobile Application to Help Students Develop Skills Needed in Solving Force Equilibrium Problems

    ERIC Educational Resources Information Center

    Yang, Eunice

    2016-01-01

    This paper discusses the use of a free mobile engineering application (app) called Autodesk® ForceEffect™ to provide students assistance with spatial visualization of forces and more practice in solving/visualizing statics problems compared to the traditional pencil-and-paper method. ForceEffect analyzes static rigid-body systems using free-body…

  9. "We Definitely Wouldn't Be Able to Solve It All by Ourselves, but Together…": Group Synergy in Tertiary Students' Problem-Solving Practices

    ERIC Educational Resources Information Center

    Clark, Kathleen; James, Alex; Montelle, Clemency

    2014-01-01

    The ability to address and solve problems in minimally familiar contexts is the core business of research mathematicians. Recent studies have identified key traits and techniques that individuals exhibit while problem solving, and revealed strategies and behaviours that are frequently invoked in the process. We studied advanced calculus students…

  10. Understanding the Benefits of Providing Peer Feedback: How Students Respond to Peers' Texts of Varying Quality

    ERIC Educational Resources Information Center

    Patchan, Melissa M.; Schunn, Christian D.

    2015-01-01

    Prior research on peer assessment often overlooks how much students learn from providing feedback to peers. By practicing revision skills, students might strengthen their ability to detect, diagnose, and solve writing problems. However, both reviewer ability and the quality of the peers' texts affect the amount of practice available to learners.…

  11. Mathematics Competency for Beginning Chemistry Students Through Dimensional Analysis.

    PubMed

    Pursell, David P; Forlemu, Neville Y; Anagho, Leonard E

    2017-01-01

    Mathematics competency in nursing education and practice may be addressed by an instructional variation of the traditional dimensional analysis technique typically presented in beginning chemistry courses. The authors studied 73 beginning chemistry students using the typical dimensional analysis technique and the variation technique. Student quantitative problem-solving performance was evaluated. Students using the variation technique scored significantly better (18.3 of 20 points, p < .0001) on the final examination quantitative titration problem than those who used the typical technique (10.9 of 20 points). American Chemical Society examination scores and in-house assessment indicate that better performing beginning chemistry students were more likely to use the variation technique rather than the typical technique. The variation technique may be useful as an alternative instructional approach to enhance beginning chemistry students' mathematics competency and problem-solving ability in both education and practice. [J Nurs Educ. 2017;56(1):22-26.]. Copyright 2017, SLACK Incorporated.

  12. Effect of Worked Examples and Cognitive Tutor Training on Constructing Equations

    ERIC Educational Resources Information Center

    Reed, Stephen K.; Corbett, Albert; Hoffman, Bob; Wagner, Angela; MacLaren, Ben

    2013-01-01

    Algebra students studied either static-table, static-graphics, or interactive-graphics instructional worked examples that alternated with Algebra Cognitive Tutor practice problems. A control group did not study worked examples but solved both the instructional and practice problems on the Cognitive Tutor (CT). Students in the control group…

  13. Identifying Learning Disabled Students: Guidelines for Decision Making.

    ERIC Educational Resources Information Center

    Chalfant, James C.

    The report examines current problems in assessing and identifying learning disabled students and recommends practices to solve those problems. An initial chapter reviews the reasons for misidentification of this population. Section I presents a summary of identification practices drawn from guidelines of 50 state educational agencies, the District…

  14. Mathematics Reform Curricula and Special Education: Identifying Intersections and Implications for Practice

    ERIC Educational Resources Information Center

    Sayeski, Kristin L.; Paulsen, Kim J.

    2010-01-01

    In many general education classrooms today, teachers are using "reform" mathematics curricula. These curricula emphasize the application of mathematics in real-life contexts and include such practices as collaborative, group problem solving and student-generated algorithms. Students with learning disabilities in the area of mathematics can…

  15. Scholarly Mission Fostering Scholarship in Research, Theory, and Practice.

    ERIC Educational Resources Information Center

    LaMontagne, Lynda L.; And Others

    1996-01-01

    Graduate programs at the Vanderbilt University School of Nursing are designed to enlarge students' knowledge of research and its relevance to their particular types of practice and to enhance students' precision in using the scientific approach to identify phenomena of concern and to solve nursing and health care problems. (Author)

  16. Effective Schools Practices That Work.

    ERIC Educational Resources Information Center

    Lezotte, Lawrence W., Ed.; Jacoby, Barbara C., Ed.

    This monograph describes a number of successful solutions that have been used in schools involved in school improvement planning. Problem-solving strategies used by schools across the United States to address various situations are described, in which each school focused on student achievement and teaching learning for all students. The practices,…

  17. An investigation of the effect of instruction in physics on the formation of mental models for problem-solving in the context of simple electric circuits

    NASA Astrophysics Data System (ADS)

    Beh, Kian Lim

    2000-10-01

    This study was designed to explore the effect of a typical traditional method of instruction in physics on the formation of useful mental models among college students for problem-solving using simple electric circuits as a context. The study was also aimed at providing a comprehensive description of the understanding regarding electric circuits among novices and experts. In order to achieve these objectives, the following two research approaches were employed: (1) A students survey to collect data from 268 physics students; and (2) An interview protocol to collect data from 23 physics students and 24 experts (including 10 electrical engineering graduates, 4 practicing electrical engineers, 2 secondary school physics teachers, 8 physics lecturers, and 4 electrical engineers). Among the major findings are: (1) Most students do not possess accurate models of simple electric circuits as presented implicitly in physics textbooks; (2) Most students display good procedural understanding for solving simple problems concerning electric circuits but have no in-depth conceptual understanding in terms of practical knowledge of current, voltage, resistance, and circuit connections; (3) Most students encounter difficulty in discerning parallel connections that are drawn in a non-conventional format; (4) After a year of college physics, students show significant improvement in areas, including practical knowledge of current and voltage, ability to compute effective resistance and capacitance, ability to identify circuit connections, and ability to solve problems; however, no significance was found in practical knowledge of resistance and ability to connect circuits; and (5) The differences and similarities between the physics students and the experts include: (a) Novices perceive parallel circuits more in terms of 'branch', 'current', and 'resistors with the same resistance' while experts perceive parallel circuits more in terms of 'node', 'voltage', and 'less resistance'; and (b) Both novices and experts use phrases such as 'side-by side' and 'one on top of the other' in describing parallel circuits which emphasize the geometry of the standard circuit drawing when describing parallel resistors.

  18. Pedagogy and Practice: Providing Opportunities for Students to Develop Criticality in an Undergraduate Black Studies Course

    ERIC Educational Resources Information Center

    Reid, Jacqueline M.

    2012-01-01

    A growing number of researchers claim that diverse students with potentially diverse literacies are unable to take up the necessary literate practices to be successful in the university and upon leaving they are unable to master these literate practices, specifically the need to address critical thinking, problem-solving, and writing and to…

  19. Reform of experimental teaching based on quality cultivation

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Yan, Xingwei; Liu, Wei; Yao, Tianfu; Shi, Jianhua; Lei, Bing; Hu, Haojun

    2017-08-01

    Experimental teaching plays an import part in quality education which devotes to cultivating students with innovative spirit, strong technological talents and practical ability. However, in the traditional experimental teaching mode, the experiments are treated as a vassal or supplementary mean of theoretical teaching, and students prefer focus on theory to practice. Therefore, the traditional experimental teaching mode is difficult to meet the requirements of quality education. To address this issue, the reform of experimental teaching is introduced in this paper taking the photoelectric detector experiment as the example. The new experimental teaching mode is designed from such aspects as experimental content, teaching method and experimental evaluation. With the purpose of cultivating students' practical ability, two different-level experimental content is designed. Not only the basic experiments used to verify the theory are set to consolidate the students' learned theoretical knowledge, but also comprehensive experiments are designed to encourage the students to apply their learned knowledge to solve practical problems. In the teaching process, heuristic teaching thought is adopt and the traditional `teacher-centered' teaching form is replaced by `student-centered' form, which aims to encourage students to design the experimental systems by their own with the teacher's guidance. In addition to depending on stimulating the students' interest of science research, experimental evaluation is necessary to urge students to complete the experiments efficiently. Multifaceted evaluation method is proposed to test the students' mastery of theoretical knowledge, practice ability, troubleshooting and problem solving skills, and innovation capability comprehensively. Practices demonstrated the satisfying effect of our experimental teaching mode.

  20. The Development of Student’s Activity Sheets (SAS) Based on Multiple Intelligences and Problem-Solving Skills Using Simple Science Tools

    NASA Astrophysics Data System (ADS)

    Wardani, D. S.; Kirana, T.; Ibrahim, M.

    2018-01-01

    The aim of this research is to produce SAS based on MI and problem-solving skills using simple science tools that are suitable to be used by elementary school students. The feasibility of SAS is evaluated based on its validity, practicality, and effectiveness. The completion Lesson Plan (LP) implementation and student’s activities are the indicators of SAS practicality. The effectiveness of SAS is measured by indicators of increased learning outcomes and problem-solving skills. The development of SAS follows the 4-D (define, design, develop, and disseminate) phase. However, this study was done until the third stage (develop). The written SAS was then validated through expert evaluation done by two experts of science, before its is tested to the target students. The try-out of SAS used one group with pre-test and post-test design. The result of this research shows that SAS is valid with “good” category. In addition, SAS is considered practical as seen from the increase of student activity at each meeting and LP implementation. Moreover, it was considered effective due to the significant difference between pre-test and post-test result of the learning outcomes and problem-solving skill test. Therefore, SAS is feasible to be used in learning.

  1. Conceptual Versus Algorithmic Problem-solving: Focusing on Problems Dealing with Conservation of Matter in Chemistry

    NASA Astrophysics Data System (ADS)

    Salta, Katerina; Tzougraki, Chryssa

    2011-08-01

    The students' performance in various types of problems dealing with the conservation of matter during chemical reactions has been investigated at different levels of schooling. The participants were 499 ninth grade (ages 14, 15 years) and 624 eleventh grade (ages 16, 17 years) Greek students. Data was collected using a written questionnaire concerning basic chemical concepts. Results of statistical factor and correlation analysis confirmed the classification of the problems used in three types: "algorithmic-type", "particulate-type", and "conceptual-type". All the students had a far better performance in "particulate-type" problems than in the others. Although students' ability in solving "algorithmic-type" problem increases as their school experience in chemistry progresses, their ability in solving "conceptual-type" problems decreases. Students' achievement in chemistry was measured by a Chemical Concepts Test (CCT) containing 57 questions of various forms. High-achievement students scored higher both on "algorithmic-type" and "particulate-type" problems than low achievers with the greatest difference observed in solving "algorithmic-type" problems. It is concluded that competence in "particulate-type" and "algorithmic-type" problem solving may be independent of competence in solving "conceptual-type" ones. Furthermore, it was found that students' misconceptions concerning chemical reactions and equivalence between mass and energy are impediments to their problem solving abilities. Finally, based on the findings, few suggestions concerning teaching practices are discussed.

  2. Surveying college introductory physics students’ attitudes and approaches to problem solving

    NASA Astrophysics Data System (ADS)

    Mason, Andrew J.; Singh, Chandralekha

    2016-09-01

    Students’ attitudes and approaches to problem solving in physics can greatly impact their actual problem solving practices and also influence their motivation to learn and ultimately the development of expertise. We developed and validated an attitudes and approaches to problem solving (AAPS) survey and administered it to students in the introductory physics courses in a typical large research university in the US. Here, we discuss the development and validation of the survey and analysis of the student responses to the survey questions in introductory physics courses. The introductory physics students’ responses to the survey questions were also compared with those of physics faculty members and physics PhD students. We find that introductory students are in general less expert-like than the physics faculty members and PhD students. Moreover, on some AAPS survey questions, the responses of students and faculty have unexpected trends. Those trends were interpreted via individual interviews, which helped clarify reasons for those survey responses.

  3. A Metacognitive Profile of Vocational High School Student’s Field Independent in Mathematical Problem Solving

    NASA Astrophysics Data System (ADS)

    Nugraheni, L.; Budayasa, I. K.; Suwarsono, S. T.

    2018-01-01

    The study was designed to discover examine the profile of metacognition of vocational high school student of the Machine Technology program that had high ability and field independent cognitive style in mathematical problem solving. The design of this study was exploratory research with a qualitative approach. This research was conducted at the Machine Technology program of the vocational senior high school. The result revealed that the high-ability student with field independent cognitive style conducted metacognition practices well. That involved the three types of metacognition activities, consisting of planning, monitoring, and evaluating at metacognition level 2 or aware use, 3 or strategic use, 4 or reflective use in mathematical problem solving. The applicability of the metacognition practices conducted by the subject was never at metacognition level 1 or tacit use. This indicated that the participant were already aware, capable of choosing strategies, and able to reflect on their own thinking before, after, or during the process at the time of solving mathematical problems.That was very necessary for the vocational high school student of Machine Technology program.

  4. Students' Use of Mathematical Representations in Problem Solving.

    ERIC Educational Resources Information Center

    Santos-Trigo, Manuel

    2002-01-01

    Documents the experiences of 25 first-year university students with regard to the kinds of tasks calculus instructors should design in order to engage students in mathematical practices that often require the use of a graphing calculator. (MM)

  5. The effects of cumulative practice on mathematics problem solving.

    PubMed

    Mayfield, Kristin H; Chase, Philip N

    2002-01-01

    This study compared three different methods of teaching five basic algebra rules to college students. All methods used the same procedures to teach the rules and included four 50-question review sessions interspersed among the training of the individual rules. The differences among methods involved the kinds of practice provided during the four review sessions. Participants who received cumulative practice answered 50 questions covering a mix of the rules learned prior to each review session. Participants who received a simple review answered 50 questions on one previously trained rule. Participants who received extra practice answered 50 extra questions on the rule they had just learned. Tests administered after each review included new questions for applying each rule (application items) and problems that required novel combinations of the rules (problem-solving items). On the final test, the cumulative group outscored the other groups on application and problem-solving items. In addition, the cumulative group solved the problem-solving items significantly faster than the other groups. These results suggest that cumulative practice of component skills is an effective method of training problem solving.

  6. The effects of cumulative practice on mathematics problem solving.

    PubMed Central

    Mayfield, Kristin H; Chase, Philip N

    2002-01-01

    This study compared three different methods of teaching five basic algebra rules to college students. All methods used the same procedures to teach the rules and included four 50-question review sessions interspersed among the training of the individual rules. The differences among methods involved the kinds of practice provided during the four review sessions. Participants who received cumulative practice answered 50 questions covering a mix of the rules learned prior to each review session. Participants who received a simple review answered 50 questions on one previously trained rule. Participants who received extra practice answered 50 extra questions on the rule they had just learned. Tests administered after each review included new questions for applying each rule (application items) and problems that required novel combinations of the rules (problem-solving items). On the final test, the cumulative group outscored the other groups on application and problem-solving items. In addition, the cumulative group solved the problem-solving items significantly faster than the other groups. These results suggest that cumulative practice of component skills is an effective method of training problem solving. PMID:12102132

  7. Visual Reasoning Tools in Action: Double Number Lines, Area Models, and Other Diagrams Power Up Students' Ability to Solve and Make Sense of Various Problems

    ERIC Educational Resources Information Center

    Watanabe, Tad

    2015-01-01

    The Common Core State Standards for Mathematics (CCSSM) (CCSSI 2010) identifies the strategic use of appropriate tools as one of the mathematical practices and emphasizes the use of pictures and diagrams as reasoning tools. Starting with the early elementary grades, CCSSM discusses students' solving of problems "by drawing." In later…

  8. Redesigning a Course to Help Students Achieve Higher-Order Cognitive Thinking Skills: From Goals and Mechanics to Student Outcomes

    ERIC Educational Resources Information Center

    Casagrand, Janet; Semsar, Katharine

    2017-01-01

    Here we describe a 4-yr course reform and its outcomes. The upper-division neurophysiology course gradually transformed from a traditional lecture in 2004 to a more student-centered course in 2008, through the addition of evidence-based active learning practices, such as deliberate problem-solving practice on homework and peer learning structures,…

  9. Attitude and practice of physical activity and social problem-solving ability among university students.

    PubMed

    Sone, Toshimasa; Kawachi, Yousuke; Abe, Chihiro; Otomo, Yuki; Sung, Yul-Wan; Ogawa, Seiji

    2017-04-04

    Effective social problem-solving abilities can contribute to decreased risk of poor mental health. In addition, physical activity has a favorable effect on mental health. These previous studies suggest that physical activity and social problem-solving ability can interact by helping to sustain mental health. The present study aimed to determine the association between attitude and practice of physical activity and social problem-solving ability among university students. Information on physical activity and social problem-solving was collected using a self-administered questionnaire. We analyzed data from 185 students who participated in the questionnaire surveys and psychological tests. Social problem-solving as measured by the Social Problem-Solving Inventory-Revised (SPSI-R) (median score 10.85) was the dependent variable. Multiple logistic regression analysis was employed to calculate the odds ratios (ORs) and 95% confidence intervals (CIs) for higher SPSI-R according to physical activity categories. The multiple logistic regression analysis indicated that the ORs (95% CI) in reference to participants who said they never considered exercising were 2.08 (0.69-6.93), 1.62 (0.55-5.26), 2.78 (0.86-9.77), and 6.23 (1.81-23.97) for participants who did not exercise but intended to start, tried to exercise but did not, exercised but not regularly, and exercised regularly, respectively. This finding suggested that positive linear association between physical activity and social problem-solving ability (p value for linear trend < 0.01). The present findings suggest that regular physical activity or intention to start physical activity may be an effective strategy to improve social problem-solving ability.

  10. Strategies for Success: Uncovering What Makes Students Successful in Design and Learning

    ERIC Educational Resources Information Center

    Apedoe, Xornam S.; Schunn, Christian D.

    2013-01-01

    While the purposes of design and science are often different, they share some key practices and processes. Design-based science learning, which combines the processes of engineering design with scientific inquiry, is one attempt to engage students in scientific reasoning via solving practical problems. Although research suggests that engaging…

  11. A Case-Based Learning Model in Orthodontics.

    ERIC Educational Resources Information Center

    Engel, Francoise E.; Hendricson, William D.

    1994-01-01

    A case-based, student-centered instructional model designed to mimic orthodontic problem solving and decision making in dental general practice is described. Small groups of students analyze case data, then record and discuss their diagnoses and treatments. Students and instructors rated the seminars positively, and students reported improved…

  12. Evaluating critical thinking in clinical practice.

    PubMed

    Oermann, M H

    1997-01-01

    Although much has been written about measurement instruments for evaluating critical thinking in nursing, this article describes clinical evaluation strategies for critical thinking. Five methods are discussed: 1) observation of students in practice; 2) questions for critical thinking, including Socratic questioning; 3) conferences; 4) problem-solving strategies; and 5) written assignments. These methods provide a means of evaluating students' critical thinking within the context of clinical practice.

  13. Formative feedback and scaffolding for developing complex problem solving and modelling outcomes

    NASA Astrophysics Data System (ADS)

    Frank, Brian; Simper, Natalie; Kaupp, James

    2018-07-01

    This paper discusses the use and impact of formative feedback and scaffolding to develop outcomes for complex problem solving in a required first-year course in engineering design and practice at a medium-sized research-intensive Canadian university. In 2010, the course began to use team-based, complex, open-ended contextualised problems to develop problem solving, communications, teamwork, modelling, and professional skills. Since then, formative feedback has been incorporated into: task and process-level feedback on scaffolded tasks in-class, formative assignments, and post-assignment review. Development in complex problem solving and modelling has been assessed through analysis of responses from student surveys, direct criterion-referenced assessment of course outcomes from 2013 to 2015, and an external longitudinal study. The findings suggest that students are improving in outcomes related to complex problem solving over the duration of the course. Most notably, the addition of new feedback and scaffolding coincided with improved student performance.

  14. Hong Kong baccalaureate nursing students' stress and their coping strategies in clinical practice.

    PubMed

    Chan, Christine K L; So, Winnie K W; Fong, Daniel Y T

    2009-01-01

    This study examined Hong Kong baccalaureate nursing students' stress and their coping strategies in clinical practice. Two hundred five nursing students completed a self-administrative survey including demographics, Perceived Stress Scale, and Coping Behavior Inventory. Results showed that students perceived a moderate level of stress (M = 2.10, SD =0.44). The most common stressor was lack of professional knowledge and skills. Among the four types of coping strategies (transference, stay optimistic, problem solving, and avoidance), transference was the most frequently used. Furthermore, senior students who perceived a higher level of stress from taking care of patients were more likely to choose problem-solving strategies. Senior students who had no religious belief and perceived a higher level of stress from teachers and nursing staff were more likely to use avoidance strategies. The results provided valuable information for clinical educators in identifying students' needs, facilitating their learning in the clinical setting, and developing effective interventions to reduce stress.

  15. Problem-Solving Training: Effects on the Problem-Solving Skills and Self-Efficacy of Nursing Students

    ERIC Educational Resources Information Center

    Ancel, Gulsum

    2016-01-01

    Problem Statement: Problem-Solving (PS) skills have been determined to be an internationally useful strategy for better nursing. That is why PS skills underlie all nursing practice, teamwork, and health care management, and are a main topic in undergraduate nursing education. Thus, there is a need to develop effective methods to teach…

  16. Teaching for Connection: Critical Thinking Skills, Problem Solving, and Academic and Occupational Competencies. Lesson Plans.

    ERIC Educational Resources Information Center

    Hedges, Lowell E.

    This document contains 48 sample lesson plans that practicing teachers of vocational and academic education have developed to train vocational students to think critically and to solve problems. Discussed in the introduction are the following topics: critical thinking, problem solving, and decision making as the building blocks of teaching;…

  17. Developing Physics Concepts through Hands-On Problem Solving: A Perspective on a Technological Project Design

    ERIC Educational Resources Information Center

    Hong, Jon-Chao; Chen, Mei-Yung; Wong, Ashley; Hsu, Tsui-Fang; Peng, Chih-Chi

    2012-01-01

    In a contest featuring hands-on projects, college students were required to design a simple crawling worm using planning, self-monitoring and self-evaluation processes to solve contradictive problems. To enhance the efficiency of problem solving, one needs to practice meta-cognition based on an application of related scientific concepts. The…

  18. Formal Reasoning and School Mathematics.

    ERIC Educational Resources Information Center

    Hendrickson, A. Dean

    1986-01-01

    Provides examples of if-then and combinatorial reasoning situations that have proved successful with college students and can be used with secondary school students. Proposes that practice with these problem solving processes can eliminate the need to memorize formulas that students may not understand. (ML)

  19. Music Cards

    ERIC Educational Resources Information Center

    Roche, Anne; Clarke, Doug M.

    2013-01-01

    Students' success in solving problems involving proportional reasoning is an indication that they have moved beyond additive thinking to multiplicative thinking. However, classroom work indicates that many students do not reason proportionally in many practical contexts. The authors discuss a particular task that reveals students'…

  20. Designing Opportunities to Learn Mathematics Theory-Building Practices

    ERIC Educational Resources Information Center

    Bass, Hyman

    2017-01-01

    Mathematicians commonly distinguish two modes of work in the discipline: "Problem solving," and "theory building." Mathematics education offers many opportunities to learn problem solving. This paper explores the possibility, and value, of designing instructional activities that provide supported opportunities for students to…

  1. What Are You Assuming?

    ERIC Educational Resources Information Center

    Kennedy, Nadia Stoyanova

    2012-01-01

    Students are often encouraged to work on problems "like mathematicians"--to be persistent, to investigate different approaches, and to evaluate solutions. This behavior, regarded as problem solving, is an essential component of mathematical practice. Some crucial aspects of problem solving include defining and interpreting problems, working with…

  2. An investigation of successful and unsuccessful students' problem solving in stoichiometry

    NASA Astrophysics Data System (ADS)

    Gulacar, Ozcan

    In this study, I investigated how successful and unsuccessful students solve stoichiometry problems. I focus on three research questions: (1) To what extent do the difficulties in solving stoichiometry problems stem from poor understanding of pieces (domain-specific knowledge) versus students' inability to link those pieces together (conceptual knowledge)? (2) What are the differences between successful and unsuccessful students in knowledge, ability, and practice? (3) Is there a connection between students' (a) cognitive development levels, (b) formal (proportional) reasoning abilities, (c) working memory capacities, (d) conceptual understanding of particle nature of matter, (e) understanding of the mole concept, and their problem-solving achievement in stoichiometry? In this study, nine successful students and eight unsuccessful students participated. Both successful and unsuccessful students were selected among the students taking a general chemistry course at a mid-western university. The students taking this class were all science, non-chemistry majors. Characteristics of successful and unsuccessful students were determined through tests, audio and videotapes analyses, and subjects' written works. The Berlin Particle Concept Inventory, the Mole Concept Achievement Test, the Test of Logical Thinking, the Digits Backward Test, and the Longeot Test were used to measure students' conceptual understanding of particle nature of matter and mole concept, formal (proportional) reasoning ability, working memory capacity, and cognitive development, respectively. Think-aloud problem-solving protocols were also used to better explore the differences between successful and unsuccessful students' knowledge structures and behaviors during problem solving. Although successful students did not show significantly better performance on doing pieces (domain-specific knowledge) and solving exercises than unsuccessful counterparts did, they appeared to be more successful in linking the pieces (conceptual knowledge) and solving complex problems than the unsuccessful student did. Successful students also appeared to be different in how they approach problems, what strategies they use, and in making fewer algorithmic mistakes when compared to unsuccessful students. Successful students, however, did not seem to be statistically significantly different from the unsuccessful students in terms of quantitatively tested cognitive abilities except formal (proportional) reasoning ability and in the understanding of mole concept.

  3. The Evaluation of Reflective Learning Practice: Preparing College Students for Globalization

    ERIC Educational Resources Information Center

    Richard, Cathleen Becnel

    2010-01-01

    A problem facing education today is that learning typically requires rote memorization rather than the use of higher-order thinking skills. Higher-order thinking is needed in a global society to solve real world problems, therefore students should be required to develop and practice higher-order thinking skills. The purpose of this mixed method…

  4. A Scholarly Approach to Solving the Feedback Dilemma in Practice

    ERIC Educational Resources Information Center

    O'Donovan, Berry; Rust, Chris; Price, Margaret

    2016-01-01

    It is clear from the literature that feedback is potentially the most powerful and potent part of the assessment cycle when it comes to improving further student learning. However, for some time, there has been a growing amount of research evidence that much feedback practice does not fulfil this potential to influence future student learning…

  5. Distance Learning Engineering Students Languish under Project-Based Learning, but Thrive in Case Studies and Practical Workshops

    ERIC Educational Resources Information Center

    Swart, Arthur James

    2016-01-01

    The International Engineering Alliance lists 12 important graduate attributes that students must demonstrate during their higher educational career. One of these important graduate attributes is the ability to solve problems, which can be demonstrated by the use of project-based learning, case studies, and practical workshops. The purpose of this…

  6. Science at Your Fingertips. Teaching Science.

    ERIC Educational Resources Information Center

    Leyden, Michael B.

    1993-01-01

    Describes the use of fingerprinting to interest students in the practical applications of science. Teachers can have students fingerprint each other, compare prints, and learn how they are used to solve crimes and find missing children. (MDM)

  7. Bringing us back to our creative senses: Fostering creativity in graduate-level nursing education: A literary review.

    PubMed

    Duhamel, Karen V

    2016-10-01

    The purpose of this paper is to explore empirical findings of five studies related to graduate-level nurse educators' and nursing students' perceptions about the roles of creativity and creative problem-solving in traditional and innovative pedagogies, and examines conceptual differences in the value of creativity from teacher and student viewpoints. Five peer-reviewed scholarly articles; professional nursing organizations; conceptual frameworks of noted scholars specializing in creativity and creative problem-solving; business-related sources; primary and secondary sources of esteemed nurse scholars. Quantitative and qualitative studies were examined that used a variety of methodologies, including surveys, focus groups, 1:1 interviews, and convenience sampling of both nursing and non-nursing college students and faculty. Innovative teaching strategies supported student creativity and creative problem-solving development. Teacher personality traits and teaching styles receptive to students' needs led to greater student success in creative development. Adequate time allocation and perceived usefulness of creativity and creative problem-solving by graduate-level nurse educators must be reflected in classroom activities and course design. Findings indicated conservative teaching norms, evident in graduate nursing education today, should be revised to promote creativity and creative problem-solving development in graduate-level nursing students for best practice outcomes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Assessing metacognition of grade 2 and grade 4 students using an adaptation of multi-method interview approach during mathematics problem-solving

    NASA Astrophysics Data System (ADS)

    Kuzle, A.

    2018-06-01

    The important role that metacognition plays as a predictor for student mathematical learning and for mathematical problem-solving, has been extensively documented. But only recently has attention turned to primary grades, and more research is needed at this level. The goals of this paper are threefold: (1) to present metacognitive framework during mathematics problem-solving, (2) to describe their multi-method interview approach developed to study student mathematical metacognition, and (3) to empirically evaluate the utility of their model and the adaptation of their approach in the context of grade 2 and grade 4 mathematics problem-solving. The results are discussed not only with regard to further development of the adapted multi-method interview approach, but also with regard to their theoretical and practical implications.

  9. Design Studio.

    ERIC Educational Resources Information Center

    Draze, Dianne; Palouda, Annelise

    This book presents information about 10 areas of design, with the main emphasis on graphic design. One section presents the creative problem solving process and provides practice in using this process to solve design problems. Students are given a glimpse of other areas of design, including fashion, industrial, architectural, decorative,…

  10. Geo-Sandbox: An Interactive Geoscience Training Tool with Analytics to Better Understand Student Problem Solving Approaches

    NASA Astrophysics Data System (ADS)

    Butt, N.; Pidlisecky, A.; Ganshorn, H.; Cockett, R.

    2015-12-01

    The software company 3 Point Science has developed three interactive learning programs designed to teach, test and practice visualization skills and geoscience concepts. A study was conducted with 21 geoscience students at the University of Calgary who participated in 2 hour sessions of software interaction and written pre and post-tests. Computer and SMART touch table interfaces were used to analyze user interaction, problem solving methods and visualization skills. By understanding and pinpointing user problem solving methods it is possible to reconstruct viewpoints and thought processes. This could allow us to give personalized feedback in real time, informing the user of problem solving tips and possible misconceptions.

  11. Implementation of basic chemistry experiment based on metacognition to increase problem-solving and build concept understanding

    NASA Astrophysics Data System (ADS)

    Zuhaida, A.

    2018-04-01

    Implementation of the experiment have the three aspects of the goal: 1) develop basic skills of experimenting; 2) develop problem-solving skills with a scientific approach; 3) improve understanding of the subject matter. On the implementation of the experiment, students have some weaknesses include: observing, identifying problems, managing information, analyzing, and evaluating. This weakness is included in the metacognition indicator.The objective of the research is to implementation of Basic Chemistry Experiment based on metacognition to increase problem-solving skills and build concept understanding for students of Science Education Department. The method of this research is a quasi- experimental method with pretest-posttest control group design. Problem-solving skills are measured through performance assessments using rubrics from problem solving reports, and results presentation. The conceptual mastery is measured through a description test. The result of the research: (1) improve the problem solving skills of the students with very high category; (2) increase the students’ concept understanding better than the conventional experiment with the result of N-gain in medium category, and (3) increase student's response positively for learning implementation. The contribution of this research is to extend the implementation of practical learning for some subjects, and to improve the students' competence in science.

  12. Adapting Experiential Learning to Develop Problem-Solving Skills in Deaf and Hard-of-Hearing Engineering Students.

    PubMed

    Marshall, Matthew M; Carrano, Andres L; Dannels, Wendy A

    2016-10-01

    Individuals who are deaf and hard-of-hearing (DHH) are underrepresented in science, technology, engineering, and mathematics (STEM) professions, and this may be due in part to their level of preparation in the development and retention of mathematical and problem-solving skills. An approach was developed that incorporates experiential learning and best practices of STEM instruction to give first-year DHH students enrolled in a postsecondary STEM program the opportunity to develop problem-solving skills in real-world scenarios. Using an industrial engineering laboratory that provides manufacturing and warehousing environments, students were immersed in real-world scenarios in which they worked on teams to address prescribed problems encountered during the activities. The highly structured, Plan-Do-Check-Act approach commonly used in industry was adapted for the DHH student participants to document and communicate the problem-solving steps. Students who experienced the intervention realized a 14.6% improvement in problem-solving proficiency compared with a control group, and this gain was retained at 6 and 12 months, post-intervention. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Problem Solvers: Problem--Jesse's Train

    ERIC Educational Resources Information Center

    James, Julie; Steimle, Alice

    2014-01-01

    Persevering in problem solving and constructing and critiquing mathematical arguments are some of the mathematical practices included in the Common Core State Standards for Mathematics (CCSSI 2010). To solve unfamiliar problems, students must make sense of the situation and apply current knowledge. Teachers can present such opportunities by…

  14. In Search of Quality Student Teachers in a Digital Era: Reframing the Practices of Soft Skills in Teacher Education

    ERIC Educational Resources Information Center

    Hadiyanto; Mukmimnin, Amirul; Failasofah; Arif, Nely; Fajaryani, Nunung; Habibi, Akhmad

    2017-01-01

    The purpose of this current study was to examine and document the practices of soft skills (communication, IT, numeracy, learning how to learn, problem solving, working with others, and subject-specific competencies) among English as foreign language (EFL) student teachers at one public university teacher education program in Jambi, Indonesia. The…

  15. Teachers' Teaching Practices and Beliefs Regarding Context-Based Tasks and Their Relation with Students' Difficulties in Solving These Tasks

    ERIC Educational Resources Information Center

    Wijaya, Ariyadi; van den Heuvel-Panhuizen, Marja; Doorman, Michiel

    2015-01-01

    In this study, we investigated teachers' teaching practices and their underlying beliefs regarding context-based tasks to find a possible explanation for students' difficulties with these tasks. The research started by surveying 27 Junior High School teachers from seven schools in Indonesia through a written questionnaire. Then, to further examine…

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bridge, Pete, E-mail: pete.bridge@qut.edu.au; Gunn, Therese; Kastanis, Lazaros

    A novel realistic 3D virtual reality (VR) application has been developed to allow medical imaging students at Queensland University of Technology to practice radiographic techniques independently outside the usual radiography laboratory. A flexible agile development methodology was used to create the software rapidly and effectively. A 3D gaming environment and realistic models were used to engender presence in the software while tutor-determined gold standards enabled students to compare their performance and learn in a problem-based learning pedagogy. Students reported high levels of satisfaction and perceived value and the software enabled up to 40 concurrent users to prepare for clinical practice.more » Student feedback also indicated that they found 3D to be of limited value in the desktop version compared to the usual 2D approach. A randomised comparison between groups receiving software-based and traditional practice measured performance in a formative role play with real equipment. The results of this work indicated superior performance with the equipment for the VR trained students (P = 0.0366) and confirmed the value of VR for enhancing 3D equipment-based problem-solving skills. Students practising projection techniques virtually performed better at role play assessments than students practising in a traditional radiography laboratory only. The application particularly helped with 3D equipment configuration, suggesting that teaching 3D problem solving is an ideal use of such medical equipment simulators. Ongoing development work aims to establish the role of VR software in preparing students for clinical practice with a range of medical imaging equipment.« less

  17. Best Practices for Launching a Flipped Classroom

    ERIC Educational Resources Information Center

    Hall, Ashley A.; DuFrene, Debbie D.

    2016-01-01

    Popularity is growing for flipped classroom instruction, which replaces lectures with out-of-class delivery of streaming video, reading materials, online chats, and other modalities. Face-to-face class time is spent on instructor-student and student-student interaction, including small group problem solving and discussion. Classroom flipping has…

  18. High School Students' Goals for Working Together in Mathematics Class: Mediating the Practical Rationality of Studenting

    ERIC Educational Resources Information Center

    Webel, Corey

    2013-01-01

    In this article I explore high school students' perspectives on working together in a mathematics class in which they spent a significant amount of time solving problems in small groups. The data included viewing session interviews with eight students in the class, where each student watched video clips of their own participation, explaining and…

  19. Effects of problem-based learning vs. traditional lecture on Korean nursing students' critical thinking, problem-solving, and self-directed learning.

    PubMed

    Choi, Eunyoung; Lindquist, Ruth; Song, Yeoungsuk

    2014-01-01

    Problem-based learning (PBL) is a method widely used in nursing education to develop students' critical thinking skills to solve practice problems independently. Although PBL has been used in nursing education in Korea for nearly a decade, few studies have examined its effects on Korean nursing students' learning outcomes, and few Korean studies have examined relationships among these outcomes. The objectives of this study are to examine outcome abilities including critical thinking, problem-solving, and self-directed learning of nursing students receiving PBL vs. traditional lecture, and to examine correlations among these outcome abilities. A quasi-experimental non-equivalent group pretest-posttest design was used. First-year nursing students (N=90) were recruited from two different junior colleges in two cities (GY and GJ) in South Korea. In two selected educational programs, one used traditional lecture methods, while the other used PBL methods. Standardized self-administered questionnaires of critical thinking, problem-solving, and self-directed learning abilities were administered before and at 16weeks (after instruction). Learning outcomes were significantly positively correlated, however outcomes were not statistically different between groups. Students in the PBL group improved across all abilities measured, while student scores in the traditional lecture group decreased in problem-solving and self-directed learning. Critical thinking was positively associated with problem-solving and self-directed learning (r=.71, and r=.50, respectively, p<.001); problem-solving was positively associated with self-directed learning (r=.75, p<.001). Learning outcomes of PBL were not significantly different from traditional lecture in this small underpowered study, despite positive trends. Larger studies are recommended to study effects of PBL on critical student abilities. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Effects of team-based learning on problem-solving, knowledge and clinical performance of Korean nursing students.

    PubMed

    Kim, Hae-Ran; Song, Yeoungsuk; Lindquist, Ruth; Kang, Hee-Young

    2016-03-01

    Team-based learning (TBL) has been used as a learner-centered teaching strategy in efforts to improve students' problem-solving, knowledge and practice performance. Although TBL has been used in nursing education in Korea for a decade, few studies have studied its effects on Korean nursing students' learning outcomes. To examine the effects of TBL on problem-solving ability and learning outcomes (knowledge and clinical performance) of Korean nursing students. Randomized controlled trial. 63 third-year undergraduate nursing students attending a single university were randomly assigned to the TBL group (n=32), or a control group (n=31). The TBL and control groups attended 2h of class weekly for 3weeks. Three scenarios with pulmonary disease content were employed in both groups. However, the control group received lectures and traditional case study teaching/learning strategies instead of TBL. A questionnaire of problem-solving ability was administered at baseline, prior to students' exposure to the teaching strategies. Students' problem-solving ability, knowledge of pulmonary nursing care, and clinical performance were assessed following completion of the three-week pulmonary unit. After the three-week educational interventions, the scores on problem-solving ability in the TBL group were significantly improved relative to that of the control group (t=10.89, p<.001). In addition, there were significant differences in knowledge, and in clinical performance with standardized patients between the two groups (t=2.48, p=.016, t=12.22, p<.001). This study demonstrated that TBL is an effective teaching strategy to enhance problem-solving ability, knowledge and clinical performance. More research on other specific learning outcomes of TBL for nursing students is recommended. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Instructional Qualities of a Successful Mathematical Problem-Solving Class.

    ERIC Educational Resources Information Center

    Santos-Trigo, Manuel

    1998-01-01

    Describes activities that have been successfully implemented by an expert during a mathematical problem-solving course. Focuses on the identification of the qualities of these problems used to promote the development of student strategies and values that reflect mathematical practice in the classroom. Contains 17 references. (ASK)

  2. Modelling Mathematics Problem Solving Item Responses Using a Multidimensional IRT Model

    ERIC Educational Resources Information Center

    Wu, Margaret; Adams, Raymond

    2006-01-01

    This research examined students' responses to mathematics problem-solving tasks and applied a general multidimensional IRT model at the response category level. In doing so, cognitive processes were identified and modelled through item response modelling to extract more information than would be provided using conventional practices in scoring…

  3. Problem-Solving Style, Teaching Style, and Teaching Practices among In-Service Teachers

    ERIC Educational Resources Information Center

    Mandelbaum, Matthew Gary

    2013-01-01

    While educational psychologists have found evidence for effective teaching behaviors that lead to academic achievement, pedagogy still lacks prescriptive accuracy for all students at all times. Teaching style and problem-solving style may be underlying mechanisms behind teaching behaviors. The present study looked at these three…

  4. A four-tier problem-solving scaffold to teach pain management in dental school.

    PubMed

    Ivanoff, Chris S; Hottel, Timothy L

    2013-06-01

    Pain constitutes a major reason patients pursue dental treatment. This article presents a novel curriculum to provide dental students comprehensive training in the management of pain. The curriculum's four-tier scaffold combines traditional and problem-based learning to improve students' diagnostic, pharmacotherapeutic, and assessment skills to optimize decision making when treating pain. Tier 1 provides underpinning knowledge of pain mechanisms with traditional and contextualized instruction by integrating clinical correlations and studying worked cases that stimulate clinical thinking. Tier 2 develops critical decision making skills through self-directed learning and actively solving problem-based cases. Tier 3 exposes students to management approaches taken in allied health fields and cultivates interdisciplinary communication skills. Tier 4 provides a "knowledge and experience synthesis" by rotating students through community pain clinics to practice their assessment skills. This combined teaching approach aims to increase critical thinking and problem-solving skills to assist dental graduates in better management of pain throughout their careers. Dental curricula that have moved to comprehensive care/private practice models are well-suited for this educational approach. The goal of this article is to encourage dental schools to integrate pain management into their curricula, to develop pain management curriculum resources for dental students, and to provide leadership for change in pain management education.

  5. Effects of computer-based graphic organizers to solve one-step word problems for middle school students with mild intellectual disability: A preliminary study.

    PubMed

    Sheriff, Kelli A; Boon, Richard T

    2014-08-01

    The purpose of this study was to examine the effects of computer-based graphic organizers, using Kidspiration 3© software, to solve one-step word problems. Participants included three students with mild intellectual disability enrolled in a functional academic skills curriculum in a self-contained classroom. A multiple probe single-subject research design (Horner & Baer, 1978) was used to evaluate the effectiveness of computer-based graphic organizers to solving mathematical one-step word problems. During the baseline phase, the students completed a teacher-generated worksheet that consisted of nine functional word problems in a traditional format using a pencil, paper, and a calculator. In the intervention and maintenance phases, the students were instructed to complete the word problems using a computer-based graphic organizer. Results indicated that all three of the students improved in their ability to solve the one-step word problems using computer-based graphic organizers compared to traditional instructional practices. Limitations of the study and recommendations for future research directions are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Social Media for Learning and Teaching Undergraduate Sciences: Good Practice Guidelines from Intervention

    ERIC Educational Resources Information Center

    Thalluri, Jyothi; Penman, Joy

    2015-01-01

    In 2013, Facebook was used in learning and teaching clinical problem solving in a Pathology and a Clinical Sciences course delivered at a South Australian university. It involved first- and second-year Medical Radiation students and second-year Nursing students, Of the 152 students enrolled in the Pathology course, there were 148 students who…

  7. A Comparison Study of 9th Graders in the U.S. and Albania

    ERIC Educational Resources Information Center

    Garo, Sofokli

    2008-01-01

    The purpose of this research is to compare American and Albanian students' achievement in Algebra 1 and to identify the educational practices that influence students' achievement in each country. The study compared algebraic solving abilities of 242 ninth-grade American students in Grand Forks (U.S.) and 219 students in Durres (Albania). The data…

  8. Advanced Mathematical Thinking and Students' Mathematical Learning: Reflection from Students' Problem-Solving in Mathematics Classroom

    ERIC Educational Resources Information Center

    Sangpom, Wasukree; Suthisung, Nisara; Kongthip, Yanin; Inprasitha, Maitree

    2016-01-01

    Mathematical teaching in Thai tertiary education still employs traditional methods of explanation and the use of rules, formulae, and theories in order for students to memorize and apply to their mathematical learning. This results in students' inability to concretely learn, fully comprehend and understand mathematical concepts and practice. In…

  9. Lessons from the Labor Organizing Community and Health Project: Meeting the Challenges of Student Engagement in Community Based Participatory Research

    ERIC Educational Resources Information Center

    Allison, Juliann Emmons; Khan, Tabassum; Reese, Ellen; Dobias, Becca Spence; Struna, Jason

    2015-01-01

    Community Based Participatory Research (CBPR) provides opportunities for scholars and students to respond directly to community needs; students also practice critical thinking, problem-solving, and conflict-resolution skills necessary for professional life and engaged citizenship. The challenges of involving undergraduate students in CBPR include…

  10. Utilization of mathematics amongst healthcare students towards problem solving during their occupational safety health internship

    NASA Astrophysics Data System (ADS)

    Umasenan a/l Thanikasalam

    2017-05-01

    Occupational safety health is a multidisciplinary discipline concentrating on the safety, health and welfare of workers in the working place. Healthcare Students undergoing Occupational Safety Health internships are required to apply mathematical in areas such as safety legislation, safety behavior, ergonomics, chemical safety, OSH practices, industrial hygiene, risk management and safety health practices as problem solving. The aim of this paper is to investigate the level of mathematics and logic utilization from these students during their internship looking at areas of Hazard identification, Determining the population exposed to the hazard, Assessing the risk of the exposure to the hazards and Taking preventive and control. A total of 142 returning healthcare students from their Occupational Safety Health, internship were given a questionnaire to measure their perceptions towards mathematical and logic utilization. The overall results indicated a strong positive skewed result towards the use of Mathematics during their internship. The findings showed that mathematics were well delivered by the students during their internship. Mathematics could not be separated from OSH practice as a needed precision in quantifying safety, health an d welfare of workers in addition to empiricism.

  11. Teaching basic science to optimize transfer.

    PubMed

    Norman, Geoff

    2009-09-01

    Basic science teachers share the concern that much of what they teach is soon forgotten. Although some evidence suggests that relatively little basic science is forgotten, it may not appear so, as students commonly have difficulty using these concepts to solve or explain clinical problems: This phenomenon, using a concept learned in one context to solve a problem in a different context, is known to cognitive psychologists as transfer. The psychology literature shows that transfer is difficult; typically, even though students may know a concept, fewer than 30% will be able to use it to solve new problems. However a number of strategies to improve transfer can be adopted at the time of initial teaching of the concept, in the use of exemplars to illustrate the concept, and in practice with additional problems. In this article, we review the literature in psychology to identify practical strategies to improve transfer. Critical review of psychology literature to identify factors that enhance or impede transfer. There are a number of strategies available to teachers to facilitate transfer. These include active problem-solving at the time of initial learning, imbedding the concept in a problem context, using everyday analogies, and critically, practice with multiple dissimilar problems. Further, mixed practice, where problems illustrating different concepts are mixed together, and distributed practice, spread out over time, can result in significant and large gains. Transfer is difficult, but specific teaching strategies can enhance this skill by factors of two or three.

  12. Students' Perceptions of Teaching Methods That Bridge Theory to Practice in Dental Hygiene Education.

    PubMed

    Wilkinson, Denise M; Smallidge, Dianne; Boyd, Linda D; Giblin, Lori

    2015-10-01

    Health care education requires students to connect classroom learning with patient care. The purpose of this study was to explore dental hygiene students' perceptions of teaching tools, activities and teaching methods useful in closing the gap between theory and practice as students transition from classroom learning into the clinical phase of their training. This was an exploratory qualitative study design examining retrospective data from journal postings of a convenience sample of dental hygiene students (n=85). Open-ended questions related to patient care were given to junior and senior students to respond in a reflective journaling activity. A systematic approach was used to establish themes. Junior students predicted hands-on experiences (51%), critical thinking exercises (42%) and visual aids (27%) would be the most supportive in helping them connect theory to practice. Senior students identified critical thinking exercises (44%) and visual aids (44%) as the most beneficial in connecting classroom learning to patient care. Seniors also identified barriers preventing them from connecting theory to patient care. Barriers most often cited were not being able to see firsthand what is in the text (56%) and being unsure that what was seen during clinical practice was the same as what was taught (28%). Students recognized the benefits of critical thinking and problem solving skills after having experienced patient care and were most concerned with performance abilities prior to patient care experiences. This information will be useful in developing curricula to enhance critical thinking and problem solving skills. Copyright © 2015 The American Dental Hygienists’ Association.

  13. Conducting clinical post-conference in clinical teaching: a qualitative study.

    PubMed

    Hsu, Li-Ling

    2007-08-01

    The aim of this study was to explore nurse educators' perceptions regarding clinical postconferences. Additional aims included the exploration of interaction characteristics between students and faculty in clinical postconferences. Nursing students are challenged to think and learn in ways that will prepare them for practice in a complex health care environment. Clinical postconferences give students the opportunity to share knowledge gained through transformative learning and provide a forum for discussion and critical thinking. Faculty members must guide students as the latter participate in discussions, develop problem-solving skills and express feedings and attitudes in clinical conferences. The study used qualitative research methods, including participant observation and an open-ended questionnaire. Participant observers watched interaction activities between teachers and students in clinical postconferences. A total of 20 clinical postconferences, two conferences per teacher, were observed. The Non-Numerical Unstructured Data Indexing Searching and Theory-building qualitative software program was used in data analysis. Research findings indicated that, of the six taxonomy questions, lower-level questions (knowledge and comprehensive questions) were mostly asked by faculty members' postclinical conferences. The most frequently used guideline was task orientation, which is related to practice goals and was found in discussions of assignments, reading reports, discussions of clinical experiences, role plays, psychomotor skill practice, quizzes and student evaluations. It is an essential responsibility of nurse educators to employ postconferences to assist students in applying their knowledge in practical situations, in developing professional values and in enhancing their problem solving abilities.

  14. Energy. Physical Science in Action. Teacher's Manual and Workbook.

    ERIC Educational Resources Information Center

    Sneider, Cary I.; Piccotto, Henri

    The Science in Action series is designed to teach practical science concepts to special-needs students. It is intended to develop students' problem-solving skills by teaching them to observe, record, analyze, conclude, and predict. This document contains a student workbook which deals with basic principles of physical science. Six separate units…

  15. The Use of a Daily Quiz "TOPday" as Supportive Learning Method for Medical Students

    ERIC Educational Resources Information Center

    Maessen, Martijn F. H.; Fluit, Cornelia R. M. G.; Holla, Micha; Drost, Gea; Vorstenbosch, Marc A. T. M.; de Waal Malefijt, Maarten C.; Kooloos, Jan G. M.; Tanck, Esther

    2016-01-01

    Medical students consider anatomy, neurology, and traumatology as difficult study topics. A recent study showed that the daily quiz "Two Opportunities to Practice per day (TOPday)" positively supported biomedical students in analyzing and solving biomechanical problems. The main purpose of this study was to investigate the effect of…

  16. Examining the Impact of Adaptively Faded Worked Examples on Student Learning Outcomes

    ERIC Educational Resources Information Center

    Flores, Raymond; Inan, Fethi

    2014-01-01

    The purpose of this study was to explore effective ways to design guided practices within a web-based mathematics problem solving tutorial. Specifically, this study examined student learning outcome differences between two support designs (e.g. adaptively faded and fixed). In the adaptively faded design, students were presented with problems in…

  17. Sound. Physical Science in Action. Teacher's Manual and Workbook.

    ERIC Educational Resources Information Center

    Chan, Janis Fisher; Friedland, Mary

    The Science in Action series is designed to teach practical science concepts to special-needs students. It is intended to develop students' problem-solving skills by teaching them to observe, record, analyze, conclude, and predict. This document contains a student workbook which deals with basic principles of physical science. Six separate units…

  18. Animals. Life Science in Action. Teacher's Manual and Workbook.

    ERIC Educational Resources Information Center

    Roderman, Winifred Ho; Booth, Gerald

    The Science in Action series is designed to teach practical science concepts to special-needs students. It is intended to develop students' problem-solving skills by teaching them to observe, record, analyze, conclude, and predict. This document contains a student workbook which deals with basic principles of life science. Six separate units…

  19. Math Thinkercises. A Good Apple Math Activity Book for Students. Grades 4-8.

    ERIC Educational Resources Information Center

    Daniel, Becky

    This booklet designed for students in grades 4-8 provides 52 activities, including puzzles and problems. Activities range from simple to complex, giving learners practice in finding patterns, numeration, permutation, and problem solving. Calculators should be available, and students should be encouraged to discuss solutions with classmates,…

  20. Techno Savvy: A Web 2.0 Curriculum Encouraging Critical Thinking

    ERIC Educational Resources Information Center

    Herro, Danielle

    2014-01-01

    This paper reports results from a case study focused on understanding student practices regarding production-oriented problem-solving with digital media. Thirty-seven students participated in an elective curriculum called, "Techno Savvy," a nine-week course focused on student exploration of global issues, and designed around Web 2.0…

  1. Mainstreaming the Teacher.

    ERIC Educational Resources Information Center

    Barnsley, Roger; And Others

    1989-01-01

    Describes the practice teaching experience of a profoundly deaf woman in a mainstream junior high science classroom. Although problems had to be solved in communication, classroom management, and teaching methods, students and teachers described the outcome as educationally positive with additional benefits in students' non-academic learning. (DHP)

  2. Undergraduate Student Advising: Options for Advertising Education.

    ERIC Educational Resources Information Center

    Marra, James L.; Schweitzer, John C.

    1992-01-01

    Investigates issues surrounding undergraduate student advising in advertising. Examines adviser work loads, advising practices, rewards or recognition for advising, and faculty attitudes toward advising. Finds that innovative solutions for solving advising problems are in scarce supply in business, advertising, and, presumably, journalism and mass…

  3. [Problem-solving approach in the training of healthcare professionals].

    PubMed

    Batista, Nildo; Batista, Sylvia Helena; Goldenberg, Paulete; Seiffert, Otília; Sonzogno, Maria Cecília

    2005-04-01

    To discuss the problem-solving approach in the training of healthcare professionals who would be able to act both in academic life and in educational practices in services and communities. This is an analytical description of an experience of problem-based learning in specialization-level training that was developed within a university-level healthcare education institution. The analysis focuses on three perspectives: course design, student-centered learning and the teacher's role. The problem-solving approach provided impetus to the learning experience for these postgraduate students. There was increased motivation, leadership development and teamworking. This was translated through their written work, seminars and portfolio preparation. The evaluation process for these experiences presupposes well-founded practices that express the views of the subjects involved: self-assessment and observer assessment. The impact of this methodology on teaching practices is that there is a need for greater knowledge of the educational theories behind the principles of significant learning, teachers as intermediaries and research as an educational axiom. The problem-solving approach is an innovative response to the challenges of training healthcare professionals. Its potential is recognized, while it is noted that educational innovations are characterized by causing ruptures in consolidated methods and by establishing different ways of responding to demands presented at specific moments. The critical problems were identified, while highlighting the risk of considering this approach to be a technical tool that is unconnected with the design of the teaching policy. Experiences and analyses based on the problem-solving assumptions need to be shared, thus enabling the production of knowledge that strengthens the transformation of educational practices within healthcare.

  4. Influence of Family Processes, Motivation, and Beliefs about Intelligence on Creative Problem Solving of Scientifically Talented Individuals

    ERIC Educational Resources Information Center

    Cho, Seokhee; Lin, Chia-Yi

    2011-01-01

    Predictive relationships among perceived family processes, intrinsic and extrinsic motivation, incremental beliefs about intelligence, confidence in intelligence, and creative problem-solving practices in mathematics and science were examined. Participants were 733 scientifically talented Korean students in fourth through twelfth grades as well as…

  5. When Creative Problem Solving Strategy Meets Web-Based Cooperative Learning Environment in Accounting Education

    ERIC Educational Resources Information Center

    Cheng, Kai Wen

    2011-01-01

    Background: Facing highly competitive and changing environment, cultivating citizens with problem-solving attitudes is one critical vision of education. In brief, the importance of education is to cultivate students with practical abilities. Realizing the advantages of web-based cooperative learning (web-based CL) and creative problem solving…

  6. Effect of Worked Examples on Mental Model Progression in a Computer-Based Simulation Learning Environment

    ERIC Educational Resources Information Center

    Darabi, Aubteen; Nelson, David W.; Meeker, Richard; Liang, Xinya; Boulware, Wilma

    2010-01-01

    In a diagnostic problem solving operation of a computer-simulated chemical plant, chemical engineering students were randomly assigned to two groups: one studying product-oriented worked examples, the other practicing conventional problem solving. Effects of these instructional strategies on the progression of learners' mental models were examined…

  7. Cognitive Activities in Solving Mathematical Tasks: The Role of a Cognitive Obstacle

    ERIC Educational Resources Information Center

    Antonijevic, Radovan

    2016-01-01

    In the process of learning mathematics, students practice various forms of thinking activities aimed to substantially contribute to the development of their different cognitive structures. In this paper, the subject matter is a "cognitive obstacle", a phenomenon that occurs in the procedures of solving mathematical tasks. Each task in…

  8. Effects of Two Interventions on Solving Basic Fact Problems by Second Graders with Mathematics Learning Disabilities

    ERIC Educational Resources Information Center

    Dennis, Minyi Shih; Sorrells, Audrey McCray; Falcomata, Terry S.

    2016-01-01

    This study used a multiple probe across participants design, replicated across two interventions and counterbalanced across participant groups to examine the effects of number sense intervention and extensive practice intervention on strategy transformation when students with mathematics learning disabilities (MLD) solved basic fact problems. In…

  9. The development and evaluation of a medical imaging training immersive environment

    PubMed Central

    Bridge, Pete; Gunn, Therese; Kastanis, Lazaros; Pack, Darren; Rowntree, Pamela; Starkey, Debbie; Mahoney, Gaynor; Berry, Clare; Braithwaite, Vicki; Wilson-Stewart, Kelly

    2014-01-01

    Introduction A novel realistic 3D virtual reality (VR) application has been developed to allow medical imaging students at Queensland University of Technology to practice radiographic techniques independently outside the usual radiography laboratory. Methods A flexible agile development methodology was used to create the software rapidly and effectively. A 3D gaming environment and realistic models were used to engender presence in the software while tutor-determined gold standards enabled students to compare their performance and learn in a problem-based learning pedagogy. Results Students reported high levels of satisfaction and perceived value and the software enabled up to 40 concurrent users to prepare for clinical practice. Student feedback also indicated that they found 3D to be of limited value in the desktop version compared to the usual 2D approach. A randomised comparison between groups receiving software-based and traditional practice measured performance in a formative role play with real equipment. The results of this work indicated superior performance with the equipment for the VR trained students (P = 0.0366) and confirmed the value of VR for enhancing 3D equipment-based problem-solving skills. Conclusions Students practising projection techniques virtually performed better at role play assessments than students practising in a traditional radiography laboratory only. The application particularly helped with 3D equipment configuration, suggesting that teaching 3D problem solving is an ideal use of such medical equipment simulators. Ongoing development work aims to establish the role of VR software in preparing students for clinical practice with a range of medical imaging equipment. PMID:26229652

  10. Effective pedagogies for teaching math to nursing students: a literature review.

    PubMed

    Hunter Revell, Susan M; McCurry, Mary K

    2013-11-01

    Improving mathematical competency and problem-solving skills in undergraduate nursing students has been an enduring challenge for nurse educators. A number of teaching strategies have been used to address this problem with varying degrees of success. This paper discusses a literature review which examined undergraduate nursing student challenges to learning math, methods used to teach math and problem-solving skills, and the use of innovative pedagogies for teaching. The literature was searched using the Cumulative Index of Nursing and Allied Health Literature and Education Resource Information Center databases. Key search terms included: math*, nurs*, nursing student, calculation, technology, medication administration, challenges, problem-solving, personal response system, clickers, computer and multi-media. Studies included in the review were published in English from 1990 to 2011. Results support four major themes which include: student challenges to learning, traditional pedagogies, curriculum strategies, and technology and integrative methods as pedagogy. The review concludes that there is a need for more innovative pedagogical strategies for teaching math to student nurses. Nurse educators in particular play a central role in helping students learn the conceptual basis, as well as practical hands-on methods, to problem solving and math competency. It is recommended that an integrated approach inclusive of technology will benefit students through better performance, increased understanding, and improved student satisfaction. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Linear Equations. [Student Worksheets for Vocational Agricultural Courses].

    ERIC Educational Resources Information Center

    Jewell, Larry R.

    This learning module provides students with practice in applying algebraic operations to vocational agriculture. The module consists of unit objectives, definitions, information, problems to solve, worksheets suitable for various levels of vocational agriculture instruction, and answer keys for the problems and worksheets. This module, which…

  12. Common Fractions. [Student Worksheets for Vocational Agricultural Courses].

    ERIC Educational Resources Information Center

    Jewell, Larry R.

    This learning module provides students with practice in applying mathematical operations to vocational agriculture. The module consists of unit objectives, definitions, information, problems to solve, worksheets suitable for various levels of vocational agriculture instruction, and answer keys for the problems and worksheets. This module, which…

  13. A functional neuroimaging study of the clinical reasoning of medical students.

    PubMed

    Chang, Hyung-Joo; Kang, June; Ham, Byung-Joo; Lee, Young-Mee

    2016-12-01

    As clinical reasoning is a fundamental competence of physicians for good clinical practices, medical academics have endeavored to teach reasoning skills to undergraduate students. However, our current understanding of student-level clinical reasoning is limited, mainly because of the lack of evaluation tools for this internal cognitive process. This functional magnetic resonance imaging (fMRI) study aimed to examine the clinical reasoning processes of medical students in response to problem-solving questions. We recruited 24 2nd-year medical students who had completed their preclinical curriculum. They answered 40 clinical vignette-based multiple-choice questions during fMRI scanning. We compared the imaging data for 20 problem-solving questions (reasoning task) and 20 recall questions (recall task). Compared to the recall task, the reasoning task resulted in significantly greater activation in nine brain regions, including the dorsolateral prefrontal cortex and inferior parietal cortex, which are known to be associated with executive function and deductive reasoning. During the recall task, significant activation was observed in the brain regions that are related to memory and emotions, including the amygdala and ventromedial prefrontal cortex. Our results support that medical students mainly solve clinical questions with deductive reasoning involving prior knowledge structures and executive functions. The problem-solving questions induced the students to utilize higher cognitive functions compared with the recall questions. Interestingly, the results suggested that the students experienced some emotional distress while they were solving the recall questions. In addition, these results suggest that fMRI is a promising research tool for investigating students' cognitive processes.

  14. Reflective practice and its implications for pharmacy education.

    PubMed

    Tsingos, Cherie; Bosnic-Anticevich, Sinthia; Smith, Lorraine

    2014-02-12

    Pharmacy students require critical-thinking and problem-solving skills to integrate theory learned in the classroom with the complexities of practice, yet many pharmacy students fall short of acquiring these skills.(1-2) Reflective practice activities encourage learning from the student's own experiences and those of others, and offer a possible solution for the integration of knowledge-based curricula with the ambiguities of practice, as well as enhance communication and collaboration within a multidisciplinary team. Although reflective practices have been embraced elsewhere in health professions education, their strengths and shortcomings need to be considered when implementing such practices into pharmacy curricula. This review provides an overview of the evolution of theories related to reflective practice, critically examines the use of reflective tools (such as portfolios and blogs), and discusses the implications of implementing reflective practices in pharmacy education.

  15. Coping in the World of Work. Practice in Problem Solving. Student Guide. Research and Development Series 120B.

    ERIC Educational Resources Information Center

    Campbell, Robert E.; And Others

    This student guide supplements a career development unit on coping in the world of work designed to assist students in developing coping strategies to deal with work entry and job adjustment problems. (Other components of the unit--instructor's handbook, handout/transparency masters, and filmstrip/sound cassette programs, are available…

  16. Investigating Mathematics Students' Use of Multiple Representations when Solving Linear Equations with One Unknown

    ERIC Educational Resources Information Center

    Beyranevand, Matthew L.

    2010-01-01

    Although it is difficult to find any current literature that does not encourage use of multiple representations in mathematics classrooms, there has been very limited research that compared such practice to student achievement level on standardized tests. This study examined the associations between students' achievement levels and their (a)…

  17. Planning Together: Positive Classroom Environments. Diversity in the Classroom Series, Number Four.

    ERIC Educational Resources Information Center

    Hindle, Doug

    This document, the fourth in a series on diversity in the classroom, supports the belief that challenges faced by teachers working with diverse students can only be met through teacher practices that increase levels of positive teacher-student interaction and that create, in each student, effective social and problem solving skills. Section 1,…

  18. The Sky's the Limit! With Math and Science. Aerodynamics. Book 2.

    ERIC Educational Resources Information Center

    Wiebe, Arthur, Ed.; And Others

    Developed for use primarily with students of grades five through nine, the activities presented in this book provide teachers and students with opportunities of exploring the science of aerodynamics. The activities are designed so that students can practice and apply the 22 skills and concepts related to flight in problem-solving situations. Each…

  19. Student-Teachers' Emotional Needs and Dichotomous Problem-Solving: Non-Cognitive Root Causes of Teaching and Learning Problems

    ERIC Educational Resources Information Center

    Soslau, Elizabeth

    2016-01-01

    This study investigated whether typical field instruction practice adequately addressed student-teachers' emotional needs and discerned whether unmet needs interrupted teacher learning. Four student-teachers completed weekly needs-based writing tasks, based on a broad application of Needs Theory. At the conclusion of the 16-week practicum, data…

  20. Proof of Learning Outcome by the Advanced Clinical Competency Examination Trial after the Long-term Student's Practice in Pharmaceutical Education.

    PubMed

    Komori, Koji; Kataoka, Makoto; Kuramoto, Nobuyuki; Tsuji, Takumi; Nakatani, Takafumi; Yasuhara, Tomohisa; Mitamura, Shinobu; Hane, Yumiko; Ogita, Kiyokazu

    2016-01-01

    At Setsunan University, a debrief session (a poster session) is commonly performed by the students who have completed the long-term students' practice. Since the valuable changes in practical competency of the students cannot be evaluated through this session, we specified items that can help evaluate and methods that can help estimate the students' competency as clinical pharmacists. We subsequently carried out a trial called the "Advanced Clinical Competency Examination". We evaluated 103 students who had concluded the students' practice for the second period (Sep 1, 2014, to Nov 16, 2014): 70 students (called "All finish students") who had completed the practice in a hospital and pharmacy, and 33 students (called "Hospital finish students") who had finished the practice at a hospital only. The trial was executed in four stages. In the first stage, students drew pictures of something impressive they had learned during the practice. In the second stage, students were given patient cases and were asked, "What is this patient's problem?" and "How would you solve this problem?". In the third stage, the students discussed their answers in a group. In the fourth stage, each group made a poster presentation in separate rooms. By using a rubric, the teachers evaluated each student individually, the results of which showed that the "All finish students" could identify more problems than the "Hospital finish students".

  1. Modeling Mathematical Ideas: Developing Strategic Competence in Elementary and Middle School

    ERIC Educational Resources Information Center

    Suh, Jennifer M.; Seshaiyer, Padmanabhan

    2016-01-01

    "Modeling Mathematical Ideas" combining current research and practical strategies to build teachers and students strategic competence in problem solving.This must-have book supports teachers in understanding learning progressions that addresses conceptual guiding posts as well as students' common misconceptions in investigating and…

  2. The Metric System. [Student Worksheets for Vocational Agricultural Courses].

    ERIC Educational Resources Information Center

    Jewell, Larry R.

    This learning module provides students with practice in applying mathematical operations to vocational agriculture. The module consists of unit objectives, definitions, information, problems to solve, worksheets suitable for various levels of vocational agriculture instruction, and answer keys for the problems and worksheets. This module, which…

  3. Thinking: How Do We Know Students Are Getting Better At It?

    ERIC Educational Resources Information Center

    Costa, Arthur L.

    1984-01-01

    Since thinking is most often performed in problem-solving situations, teachers can become observers by providing situations in which students can practice and demonstrate intelligent behaviors. Some indicators include: perseverance, precision of language, problem finding, decreased impulsivity, metacognition, checking for accuracy, transference,…

  4. The Prevalent Rate of Problem-Solving Approach in Teaching Mathematics in Ghanaian Basic Schools

    ERIC Educational Resources Information Center

    Nyala, Joseph; Assuah, Charles; Ayebo, Abraham; Tse, Newel

    2016-01-01

    Stakeholders of mathematics education decry the rate at which students' performance are falling below expectation; they call for a shift to practical methods of teaching the subject in Ghanaian basic schools. The study explores the extent to which Ghanaian basic school mathematics teachers use problem-solving approach in their lessons. The…

  5. Developing Ill-Structured Problem-Solving Skills through Wilderness Education

    ERIC Educational Resources Information Center

    Collins, Rachel H.; Sibthorp, Jim; Gookin, John

    2016-01-01

    In a society that is becoming more dynamic, complex, and diverse, the ability to solve ill-structured problems (ISPs) has become an increasingly critical skill. Students who enter adult roles with the cognitive skills to address ISPs will be better able to assume roles in the emerging economies. Opportunities to develop and practice these skills…

  6. Instructional Strategies for Online Introductory College Physics Based on Learning Styles

    ERIC Educational Resources Information Center

    Ekwue, Eleazer U.

    2013-01-01

    The practical nature of physics and its reliance on mathematical presentations and problem solving pose a challenge toward presentation of the course in an online environment for effective learning experience. Most first-time introductory college physics students fail to grasp the basic concepts of the course and the problem solving skills if the…

  7. Effect of Internet-Based Cognitive Apprenticeship Model (i-CAM) on Statistics Learning among Postgraduate Students.

    PubMed

    Saadati, Farzaneh; Ahmad Tarmizi, Rohani; Mohd Ayub, Ahmad Fauzi; Abu Bakar, Kamariah

    2015-01-01

    Because students' ability to use statistics, which is mathematical in nature, is one of the concerns of educators, embedding within an e-learning system the pedagogical characteristics of learning is 'value added' because it facilitates the conventional method of learning mathematics. Many researchers emphasize the effectiveness of cognitive apprenticeship in learning and problem solving in the workplace. In a cognitive apprenticeship learning model, skills are learned within a community of practitioners through observation of modelling and then practice plus coaching. This study utilized an internet-based Cognitive Apprenticeship Model (i-CAM) in three phases and evaluated its effectiveness for improving statistics problem-solving performance among postgraduate students. The results showed that, when compared to the conventional mathematics learning model, the i-CAM could significantly promote students' problem-solving performance at the end of each phase. In addition, the combination of the differences in students' test scores were considered to be statistically significant after controlling for the pre-test scores. The findings conveyed in this paper confirmed the considerable value of i-CAM in the improvement of statistics learning for non-specialized postgraduate students.

  8. GRIPs (Group Investigation Problems) for Introductory Physics

    NASA Astrophysics Data System (ADS)

    Moore, Thomas A.

    2006-12-01

    GRIPs lie somewhere between homework problems and simple labs: they are open-ended questions that require a mixture of problem-solving skills and hands-on experimentation to solve practical puzzles involving simple physical objects. In this talk, I will describe three GRIPs that I developed for a first-semester introductory calculus-based physics course based on the "Six Ideas That Shaped Physics" text. I will discuss the design of the three GRIPs we used this past fall, our experience in working with students on these problems, and students' response as reported on course evaluations.

  9. Effects of Blended Cardiopulmonary Resuscitation and Defibrillation E-learning on Nursing Students' Self-efficacy, Problem Solving, and Psychomotor Skills.

    PubMed

    Park, Ju Young; Woo, Chung Hee; Yoo, Jae Yong

    2016-06-01

    This study was conducted to identify the educational effects of a blended e-learning program for graduating nursing students on self-efficacy, problem solving, and psychomotor skills for core basic nursing skills. A one-group pretest/posttest quasi-experimental design was used with 79 nursing students in Korea. The subjects took a conventional 2-week lecture-based practical course, together with spending an average of 60 minutes at least twice a week during 2 weeks on the self-guided e-learning content for basic cardiopulmonary resuscitation and defibrillation using Mosby's Nursing Skills database. Self- and examiner-reported data were collected between September and November 2014 and analyzed using descriptive statistics, paired t test, and Pearson correlation. The results showed that subjects who received blended e-learning education had improved problem-solving abilities (t = 2.654) and self-efficacy for nursing practice related to cardiopulmonary resuscitation and defibrillation (t = 3.426). There was also an 80% to 90% rate of excellent postintervention performance for the majority of psychomotor skills, but the location of chest compressions, compression rate per minute, artificial respiration, and verification of patient outcome still showed low levels of performance. In conclusion, blended E-learning, which allows self-directed repetitive learning, may be more effective in enhancing nursing competencies than conventional practice education.

  10. Integrated Concentration in Science (iCons): Undergraduate Education Through Interdisciplinary, Team-Based, Real-World Problem Solving

    NASA Astrophysics Data System (ADS)

    Tuominen, Mark

    2013-03-01

    Attitude, Skills, Knowledge (ASK) - In this order, these are fundamental characteristics of scientific innovators. Through first-hand practice in using science to unpack and solve complex real-world problems, students can become self-motivated scientific leaders. This presentation describes the pedagogy of a recently developed interdisciplinary undergraduate science education program at the University of Massachusetts Amherst focused on addressing global challenges with scientific solutions. Integrated Concentration in Science (iCons) is an overarching concentration program that supplements the curricula provided within each student's chosen major. iCons is a platform for students to perform student-led research in interdisciplinary collaborative teams. With a schedule of one course per year over four years, the cohort of students move through case studies, analysis of real-world problems, development of potential solutions, integrative communication, laboratory practice, and capstone research projects. In this presentation, a track emphasizing renewable energy science is used to illustrate the iCons pedagogical methods. This includes discussion of a third-year laboratory course in renewable energy that is educationally scaffolded: beginning with a boot camp in laboratory techniques and culminating with student-designed research projects. Among other objectives, this course emphasizes the practice of using reflection and redesign, as a means of generating better solutions and embedding learning for the long term. This work is supported in part by NSF grant DUE-1140805.

  11. Fostering Creativity in the Classroom: Effects of Teachers' Epistemological Beliefs, Motivation, and Goal Orientation

    ERIC Educational Resources Information Center

    Hong, Eunsook; Hartzell, Stephanie A.; Greene, Mary T.

    2009-01-01

    The relationships of teachers' epistemological beliefs, motivation, and goal orientation to their instructional practices that foster student creativity were examined. Teachers' perceived instructional practices that facilitate the development of multiple perspectives in problem solving, transfer, task commitment, creative skill use, and…

  12. Creating Tesselations with Pavement Chalk: Implementing Best Practices in Mathematics

    ERIC Educational Resources Information Center

    Furner, Joseph M.; Goodman, Barbara; Meeks, Shirley

    2004-01-01

    Implementing best practices like cooperative learning, using concrete manipulatives, problem solving, technology, active learning, multi-age grouping, and team teaching have shown benefits for students when learning mathematics concepts within the curriculum (Zemelman, Daniels & Hyde, 1998; NCTM, 2000). What started as a professional development…

  13. Interactive Simulated Patient: Experiences with Collaborative E-Learning in Medicine

    ERIC Educational Resources Information Center

    Bergin, Rolf; Youngblood, Patricia; Ayers, Mary K.; Boberg, Jonas; Bolander, Klara; Courteille, Olivier; Dev, Parvati; Hindbeck, Hans; Edward, Leonard E., II; Stringer, Jennifer R.; Thalme, Anders; Fors, Uno G. H.

    2003-01-01

    Interactive Simulated Patient (ISP) is a computer-based simulation tool designed to provide medical students with the opportunity to practice their clinical problem solving skills. The ISP system allows students to perform most clinical decision-making procedures in a simulated environment, including history taking in natural language, many…

  14. The Learner-Directed Classroom: Developing Creative Thinking Skills through Art

    ERIC Educational Resources Information Center

    Jaquith, Diane B., Ed.; Hathaway, Nan E., Ed.

    2012-01-01

    Educators at all levels want their students to develop habits of self-directed learning and critical problem-solving skills that encourage ownership and growth. In "The Learner-Directed Classroom," practicing art educators (PreK-16) offer both a comprehensive framework for understanding student-directed learning and concrete pedagogical strategies…

  15. Collaborative Learning Utilizing Case-Based Problems

    ERIC Educational Resources Information Center

    Hilvano, Nestor T.; Mathis, Karen M.; Schauer, Daniel P.

    2014-01-01

    Engaging students in discussion and creating high impact teaching and learning practices are a challenge in every classroom. Small group discussion and poster presentations were used to solve case-based problems to highlight issues for the learner and to allow each student to demonstrate understanding and application of theory to real life…

  16. A Senior Medical Student Seminar Designed to Promote Problem-Solving.

    ERIC Educational Resources Information Center

    Donohue, James F.; Shumway, James M.

    1983-01-01

    A seminar was developed to increase students' learning opportunities in respiratory disease and to identify common problem areas in hospital medical care. It provided practice in clinical diagnosis and patient management by promoting dialog, faculty feedback, and self-evaluation. Specific case studies are used for discussion. (MSE)

  17. Case Studies for Educational Leadership: Solving Administrative Dilemmas

    ERIC Educational Resources Information Center

    Midlock, Stephen F.

    2010-01-01

    "Case Studies for Educational Leadership" gives educational leadership students an opportunity to project themselves into real-life administrative situations and prepare for their future positions in the field. Each case study contained in this practical first edition book asks students to analyze complex problems, consider the moral ramifications…

  18. Productive Struggle in Mathematics. Interactive STEM Research + Practice Brief

    ERIC Educational Resources Information Center

    Pasquale, Marian

    2016-01-01

    Mathematical problems and puzzles that require commitment and perseverance to solve can help foster deep mathematics understanding in students. In this brief, the author describes factors that influence productive struggle, shares four examples of how teachers often respond to their students' productive struggles, and offers four strategies to…

  19. The Geoboard Triangle Quest

    ERIC Educational Resources Information Center

    Allen, Kasi C.

    2013-01-01

    In line with the Common Core and Standards for Mathematical Practice that portray a classroom where students are engaged in problem-solving experiences, and where various tools and arguments are employed to grow their strategic thinking, this article is the story of such a student-initiated problem. A seemingly simple question was posed by…

  20. Teaching Molecular Phylogenetics through Investigating a Real-World Phylogenetic Problem

    ERIC Educational Resources Information Center

    Zhang, Xiaorong

    2012-01-01

    A phylogenetics exercise is incorporated into the "Introduction to biocomputing" course, a junior-level course at Savannah State University. This exercise is designed to help students learn important concepts and practical skills in molecular phylogenetics through solving a real-world problem. In this application, students are required to identify…

  1. Fifteen: Combining Magic Squares and Tic-Tac-Toe

    ERIC Educational Resources Information Center

    Yeo, Joseph B. W.

    2012-01-01

    Most students love to play games. Ernest (1986) believed that games could be used to teach mathematics effectively in four areas: motivation, concept development, reinforcement of skills, and practice of problem-solving strategies. Fifteen is an interesting and thought-provoking game that helps students learn mathematics at the same time. Playing…

  2. Supporting Mathematical Discourse in the Early Grades. Interactive STEM Research + Practice Brief

    ERIC Educational Resources Information Center

    Stiles, Jennifer

    2016-01-01

    This research brief discusses the benefits of teachers using mathematical discourse--allowing students to explain, justify, and debate their individual techniques for solving math problems--to enhance learning. Using this strategy requires educators to discard traditional teacher-centered modes of instruction and adopt new student-centered modes…

  3. The Promise and Pitfalls of Making Connections in Mathematics

    ERIC Educational Resources Information Center

    Fyfe, Emily R.; Alibali, Martha W.; Nathan, Mitchell J.

    2017-01-01

    Making connections during math instruction is a recommended practice, but may increase the difficulty of the lesson. We used an avatar video instructor to qualitatively examine the role of linking multiple representations for 24 middle school students learning algebra. Students were taught how to solve polynomial multiplication problems, such as…

  4. Activities to Promote Critical Thinking. Classroom Practices in Teaching English, 1986.

    ERIC Educational Resources Information Center

    National Council of Teachers of English, Urbana, IL.

    Intended to involve students in language and communication study in such a way that significant thinking occurs, this collection of teaching ideas outlines ways to teach literature and composition that engage the students in such thinking processes as inferring, sequencing, predicting, classifying, problem solving, and synthesizing. The activities…

  5. Application of Case-Task Based Approach in Business English Teaching--A Case Study of the Marketing Course in SEIB of GDUFS

    ERIC Educational Resources Information Center

    Guiyu, Dai; Yi, Cai

    2017-01-01

    Business English Teaching aims at cultivating students' ability to analyze and solve problems, improving students' comprehensive language competence and honing their business practical skills. Adhering to the principle of learning by doing and learning by teaching others, Case-Task Based Approach emphasizes students' ability of language use in…

  6. Initiative Games in Physical Education: A Practical Approach for Teaching Critical Thinking Skills--Part II

    ERIC Educational Resources Information Center

    Maina, Michael P.; Maina, Julie Schlegel; Hunt, Kevin

    2016-01-01

    Often students have a difficult time when asked to use critical thinking skills to solve a problem. Perhaps students have a difficult time adjusting because teachers frequently tell them exactly what to do and how to do it. When asked to use critical thinking skills, students may suddenly become confused and discouraged because the teacher no…

  7. Teachers' Conceptualization and Actual Practice in the Student Evaluation Process at the Upper Secondary School Level in Japan, Focusing on Problem Solving Skills.

    ERIC Educational Resources Information Center

    Wai, Nu Nu; Hirakawa, Yukiko

    2001-01-01

    Studied the participation and performance of upper secondary school teachers in Japan through surveys completed by 360 Geography teachers. Findings suggest that the importance of developing problem-solving skills is widely recognized among these teachers. Implementing training in such skills is much more difficult. Developing effective teaching…

  8. A Further Study of Productive Failure in Mathematical Problem Solving: Unpacking the Design Components

    ERIC Educational Resources Information Center

    Kapur, Manu

    2011-01-01

    This paper replicates and extends my earlier work on productive failure in mathematical problem solving (Kapur, doi:10.1007/s11251-009-9093-x, 2009). One hundred and nine, seventh-grade mathematics students taught by the same teacher from a Singapore school experienced one of three learning designs: (a) traditional lecture and practice (LP), (b)…

  9. The Locker Problem: An Open and Shut Case

    ERIC Educational Resources Information Center

    Kimani, Patrick M.; Olanoff, Dana; Masingila, Joanna O.

    2016-01-01

    This article discusses how teaching via problem solving helps enact the Mathematics Teaching Practices and supports students' learning and development of the Standards for Mathematical Practice. This approach involves selecting and implementing mathematical tasks that serve as vehicles for meeting the learning goals for the lesson. For the lesson…

  10. The Dissertation in Practice: A Student's Perspective

    ERIC Educational Resources Information Center

    Stacy, Jaime C.

    2013-01-01

    This article describes the impact that coursework related to Virginia Commonwealth University's inaugural EdD program had on a public school administrator; particularly how the Carnegie Project for the Educational Doctorate's (CPED) working principles continue to play a role in solving "Problems of Practice" in an at-risk school long…

  11. Visualization Skills and Their Incorporation in Biology Curriculum

    ERIC Educational Resources Information Center

    Osodo, J.; Amory, A.; Graham-Jolly, M.; Indoshi, F. C.

    2010-01-01

    Many graduates of various levels and disciplines appear unable to practically apply their knowledge in problem solving situations. However, few education systems are adopting modern education practices such as visualization skills that intrinsically motivate and engage learners and are at the same time flexible enough to consider students'…

  12. The Future of Pedagogical Action Research in Psychology

    ERIC Educational Resources Information Center

    Cormack, Sophie; Bourne, Victoria; Deuker, Charmaine; Norton, Lin; O'Siochcru, Cathal; Watling, Rosamond

    2014-01-01

    Psychology lecturers are well-qualified to carry out action research which would contribute to the theoretical understanding of learning as well as having practical benefits for students. Pedagogical action research demonstrates how knowledge of psychology can be applied to solve practical problems, providing role models of psychological literacy…

  13. Restorative Practices from Candy and Punishment to Celebrations and Problem-Solving Circles

    ERIC Educational Resources Information Center

    Goldys, Patrice H.

    2016-01-01

    Norwood Elementary, a Title I science, technology, engineering, and math (STEM) school in Baltimore County, MD, recently realized that traditional behavior management programs and processes were not working with their students. Over time, school administrators discovered more successful approaches, and restorative practices became the way to…

  14. Problem Solving-based Learning Materials on Fraction for Training Creativity of Elementary School Students

    NASA Astrophysics Data System (ADS)

    Widhitama, Y. N.; Lukito, A.; Khabibah, S.

    2018-01-01

    The aim of this research is to develop problem solving based learning materials on fraction for training creativity of elementary school students. Curriculum 2006 states that mathematics should be studied by all learners starting from elementary level in order for them mastering thinking skills, one of them is creative thinking. To our current knowledge, there is no such a research topic being done. To promote this direction, we initiate by developing learning materials with problem solving approach. The developed materials include Lesson Plan, Student Activity Sheet, Mathematical Creativity Test, and Achievement Test. We implemented a slightly modified 4-D model by Thiagajan et al. (1974) consisting of Define, Design, Development, and Disseminate. Techniques of gathering data include observation, test, and questionnaire. We applied three good qualities for the resulted materials; that is, validity, practicality, and effectiveness. The results show that the four mentioned materials meet the corresponding criteria of good quality product.

  15. Technology Management Education for Students with Educational Background of Engineering

    NASA Astrophysics Data System (ADS)

    Aoyama, Atsushi; Abe, Atsushi

    Japanese industry has been encouraged to transform from a mode of ‘recovery’ to one of 'front-runner' in effective innovation and creation of new businesses and markets based in accomplishments of basic research. Graduate School of Technology Management at Ritsumeikan University strives to not only offer knowledge and skills, but also business experiences to its students so that they may acquire the abilities to discover and solve practical problems logically, analytically and systematically. To achieve these aims, it has inaugurated the Ritsumeikan University Practicum Program by enhancing existing internship programs. Under the guidance of its faculties, this program will allow its students a chance to set and solve actual problems in real world business environments.

  16. Student-Directed Video Validation of Psychomotor Skills Performance: A Strategy to Facilitate Deliberate Practice, Peer Review, and Team Skill Sets.

    PubMed

    DeBourgh, Gregory A; Prion, Susan K

    2017-03-22

    Background Essential nursing skills for safe practice are not limited to technical skills, but include abilities for determining salience among clinical data within dynamic practice environments, demonstrating clinical judgment and reasoning, problem-solving abilities, and teamwork competence. Effective instructional methods are needed to prepare new nurses for entry-to-practice in contemporary healthcare settings. Method This mixed-methods descriptive study explored self-reported perceptions of a process to self-record videos for psychomotor skill performance evaluation in a convenience sample of 102 pre-licensure students. Results Students reported gains in confidence and skill acquisition using team skills to record individual videos of skill performance, and described the importance of teamwork, peer support, and deliberate practice. Conclusion Although time consuming, the production of student-directed video validations of psychomotor skill performance is an authentic task with meaningful accountabilities that is well-received by students as an effective, satisfying learner experience to increase confidence and competence in performing psychomotor skills.

  17. Increased structure and active learning reduce the achievement gap in introductory biology.

    PubMed

    Haak, David C; HilleRisLambers, Janneke; Pitre, Emile; Freeman, Scott

    2011-06-03

    Science, technology, engineering, and mathematics instructors have been charged with improving the performance and retention of students from diverse backgrounds. To date, programs that close the achievement gap between students from disadvantaged versus nondisadvantaged educational backgrounds have required extensive extramural funding. We show that a highly structured course design, based on daily and weekly practice with problem-solving, data analysis, and other higher-order cognitive skills, improved the performance of all students in a college-level introductory biology class and reduced the achievement gap between disadvantaged and nondisadvantaged students--without increased expenditures. These results support the Carnegie Hall hypothesis: Intensive practice, via active-learning exercises, has a disproportionate benefit for capable but poorly prepared students.

  18. Designing Undergraduate-Level Organic Chemistry Instructional Problems: Seven Ideas from a Problem-Solving Study of Practicing Synthetic Organic Chemists

    ERIC Educational Resources Information Center

    Raker, Jeffrey R.; Towns, Marcy H.

    2012-01-01

    The development of curricular problems based on the practice of synthetic organic chemistry has not been explored in the literature. Such problems have broadly been hypothesized to promote student persistence and interest in STEM fields. This study reports seven ideas about how practice-based problems can be developed for sophomore-level organic…

  19. Oral Exams as a Tool for Teaching and Assessment

    ERIC Educational Resources Information Center

    Sayre, Eleanor C.

    2014-01-01

    Oral exams are a fruitful and practical alternative to written exams in small-enrolment Science classes. In an oral exam, the instructor can assess conceptual understanding, problem-solving, scientific communication skills, and a student's philosophy of science. In contrast, a written exam gives a much poorer picture of how students learn and…

  20. Return of the Tug-of-War

    ERIC Educational Resources Information Center

    McNamara, Julie

    2017-01-01

    Long before the release of the Common Core State Standards (CCSSI 2010), the Mathematical Tug-of-War was engaging students in the type of reasoning and problem solving described by the Standards for Mathematical Practice (SMP). In this updated version of a Marilyn Burns task, students use algebraic reasoning to determine the outcome of a contest…

  1. Memorisation Methods in Science Education: Tactics to Improve the Teaching and Learning Practice

    ERIC Educational Resources Information Center

    Pals, Frits F. B.; Tolboom, Jos L. J.; Suhre, Cor J. M.; van Geert, Paul L. C.

    2018-01-01

    How can science teachers support students in developing an appropriate declarative knowledge base for solving problems? This article focuses on the question whether the development of students' memory of scientific propositions is better served by writing propositions down on paper or by making drawings of propositions either by silent or…

  2. Understanding Student-Teachers' Performances within an Inquiry-Based Practicum

    ERIC Educational Resources Information Center

    Méndez Rivera, Pilar; Pérez Gómez, Francisco

    2017-01-01

    The role of an inquiry-based practicum in the education of future teachers has been identified as a key component to foster student-teachers' abilities to face problems, try to solve them, work on doubts and produce situated and valuable learning from their own practices (Cochran-Smith & Little, 2001; Beck, 2001). The interaction between…

  3. Students' Attention When Using Touchscreens and Pen Tablets in a Mathematics Classroom

    ERIC Educational Resources Information Center

    Chen, Cheng-Huan; Chiu, Chiung-Hui; Lin, Chia-Ping; Chou, Ying-Chun

    2017-01-01

    Aim/Purpose: The present study investigated and compared students' attention in terms of time-on-task and number of distractors between using a touchscreen and a pen tablet in mathematical problem solving activities with virtual manipulatives. Background: Although there is an increasing use of these input devices in educational practice, little…

  4. Learning Process and Vocational Experience Attainments.

    ERIC Educational Resources Information Center

    Colardyn, Danielle; White, Kathleen M.

    From a search of (mostly French) literature, a hypothesis was formulated that students with both academic training and work experience would solve a practical learning problem more easily than students with academic learning only. A study was conducted at the Conservatoire National des Arts et Metiers in Paris to test this hypothesis. Two groups,…

  5. Mathematical Instructional Practices and Self-Efficacy of Kindergarten Teachers

    ERIC Educational Resources Information Center

    Schillinger, Tammy

    2016-01-01

    A local urban school district recently reported that 86% of third graders did not demonstrate proficiency on the Math Standardized Test, which challenges students to solve problems and justify solutions. It is beneficial if these skills are developed prior to third grade. Students may be more academically successful if kindergarten teachers have…

  6. A Lesson in Vectors "Plain" and Simple

    ERIC Educational Resources Information Center

    Bradshaw, David M.

    2004-01-01

    The United States Military Academy (USMA) has a four course core mathematics curriculum that is studied by all students. The third course is MA205, Calculus II; a multivariate calculus course filled with practical applications. During a Problem Solving Lab (PSL), students participated in a hands-on exercise with multiple vector operations,…

  7. Effects of Enhanced Laboratory Instructional Technique on Senior Secondary Students' Attitude toward Chemistry in Oyo Township, Oyo State, Nigeria

    ERIC Educational Resources Information Center

    Adesoji, Francis Adewumi; Raimi, Sikiru Morakinyo

    2004-01-01

    The study examined the effect of supplementing laboratory instruction with problem solving strategy and or practical skills teaching on students' attitude toward chemistry. A total of 286 senior secondary class II students (145 males and 141 females) drawn from four local government areas in Oyo township in Oyo state, Nigeria, took part in the…

  8. Simulated annealing algorithm for solving chambering student-case assignment problem

    NASA Astrophysics Data System (ADS)

    Ghazali, Saadiah; Abdul-Rahman, Syariza

    2015-12-01

    The problem related to project assignment problem is one of popular practical problem that appear nowadays. The challenge of solving the problem raise whenever the complexity related to preferences, the existence of real-world constraints and problem size increased. This study focuses on solving a chambering student-case assignment problem by using a simulated annealing algorithm where this problem is classified under project assignment problem. The project assignment problem is considered as hard combinatorial optimization problem and solving it using a metaheuristic approach is an advantage because it could return a good solution in a reasonable time. The problem of assigning chambering students to cases has never been addressed in the literature before. For the proposed problem, it is essential for law graduates to peruse in chambers before they are qualified to become legal counselor. Thus, assigning the chambering students to cases is a critically needed especially when involving many preferences. Hence, this study presents a preliminary study of the proposed project assignment problem. The objective of the study is to minimize the total completion time for all students in solving the given cases. This study employed a minimum cost greedy heuristic in order to construct a feasible initial solution. The search then is preceded with a simulated annealing algorithm for further improvement of solution quality. The analysis of the obtained result has shown that the proposed simulated annealing algorithm has greatly improved the solution constructed by the minimum cost greedy heuristic. Hence, this research has demonstrated the advantages of solving project assignment problem by using metaheuristic techniques.

  9. Nurses' perceptions of the impact of Team-Based Learning participation on learning style, team behaviours and clinical performance: An exploration of written reflections.

    PubMed

    Oldland, Elizabeth; Currey, Judy; Considine, Julie; Allen, Josh

    2017-05-01

    Team-Based Learning (TBL) is a teaching strategy designed to promote problem solving, critical thinking and effective teamwork and communication skills; attributes essential for safe healthcare. The aim was to explore postgraduate student perceptions of the role of TBL in shaping learning style, team skills, and professional and clinical behaviours. An exploratory descriptive approach was selected. Critical care students were invited to provide consent for the use for research purposes of written reflections submitted for course work requirements. Reflections of whether and how TBL influenced their learning style, teamwork skills and professional behaviours during classroom learning and clinical practice were analysed for content and themes. Of 174 students, 159 participated. Analysis revealed three themes: Deep Learning, the adaptations students made to their learning that resulted in mastery of specialist knowledge; Confidence, in knowledge, problem solving and rationales for practice decisions; and Professional and Clinical Behaviours, including positive changes in their interactions with colleagues and patients described as patient advocacy, multidisciplinary communication skills and peer mentorship. TBL facilitated a virtuous cycle of feedback encouraging deep learning that increased confidence. Increased confidence improved deep learning that, in turn, led to the development of professional and clinical behaviours characteristic of high quality practice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Developing material for promoting problem-solving ability through bar modeling technique

    NASA Astrophysics Data System (ADS)

    Widyasari, N.; Rosiyanti, H.

    2018-01-01

    This study aimed at developing material for enhancing problem-solving ability through bar modeling technique with thematic learning. Polya’s steps of problem-solving were chosen as the basis of the study. The methods of the study were research and development. The subject of this study were five teen students of the fifth grade of Lab-school FIP UMJ elementary school. Expert review and student’ response analysis were used to collect the data. Furthermore, the data were analyzed using qualitative descriptive and quantitative. The findings showed that material in theme “Selalu Berhemat Energi” was categorized as valid and practical. The validity was measured by using the aspect of language, contents, and graphics. Based on the expert comments, the materials were easy to implement in the teaching-learning process. In addition, the result of students’ response showed that material was both interesting and easy to understand. Thus, students gained more understanding in learning problem-solving.

  11. Teaching problem solving: Don't forget the problem solver(s)

    NASA Astrophysics Data System (ADS)

    Ranade, Saidas M.; Corrales, Angela

    2013-05-01

    The importance of intrapersonal and interpersonal intelligences has long been known but educators have debated whether to and how to incorporate those topics in an already crowded engineering curriculum. In 2010, the authors used the classroom as a laboratory to observe the usefulness of including selected case studies and exercises from the fields of neurology, artificial intelligence, cognitive sciences and social psychology in a new problem-solving course. To further validate their initial findings, in 2012, the authors conducted an online survey of engineering students and engineers. The main conclusion is that engineering students will benefit from learning more about the impact of emotions, culture, diversity and cognitive biases when solving problems. Specifically, the work shows that an augmented problem-solving curriculum needs to include lessons on labelling emotions and cognitive biases, 'evidence-based' data on the importance of culture and diversity and additional practice on estimating conditional probability.

  12. The Effectiveness of "Pencasts" in Physics Courses

    NASA Astrophysics Data System (ADS)

    Weliweriya, Nandana; Sayre, Eleanor C.; Zollman, Dean A.

    2018-03-01

    Pencasts are videos of problem solving with narration by the problem solver. Pedagogically, students can create pencasts to illustrate their own problem solving to the instructor or to their peers. Pencasts have implications for teaching at multiple levels from elementary grades through university courses. In this article, we describe the use of pencasts in a university-level upper-division electromagnetic fields course usually taken by junior and senior physics majors. For each homework assignment, students created and submitted pencasts of ordinary problems several days before the problem set was due. We compare students' performance in the class (grades for pencast submission excluded) with the pencast submission rate. Students who submitted more pencasts tend to do better in the course. We conclude with some practical suggestions for implementing pencasts in other courses.

  13. Self-diagnosis as a tool for supporting students’ conceptual understanding and achievements in physics: the case of 8th-graders studying force and motion

    NASA Astrophysics Data System (ADS)

    Safadi, Rafi'

    2017-01-01

    I examined the impact of a self-diagnosis activity on students’ conceptual understanding and achievements in physics. This activity requires students to self-diagnose their solutions to problems that they have solved on their own—namely, to identify and explain their errors—and self-score them—that is, assign scores to their solutions—aided by a rubric demonstrating how to solve each problem step by step. I also examined a common practice in the physics classroom in which teachers manage a whole class discussion during which they solve, together with their students, problems that students had solved on their own. Three 8th-grade classes studying force and motion with the same teacher participated. Students were first taught the unit in force and motion. Then a first summative exam was administered. Next, two classes (59 students) were assigned to the self-diagnosis activity and the other class to the whole class discussion (27 students). To assess students’ learning with these activities, a repeat exam was administered. Results suggest that at least for teachers who are not competent in managing argumentative class discussions, the self-diagnosis activity is more effective than the whole class discussion in advancing students’ conceptual understanding and achievements. I account for these results and suggest possible directions for future research.

  14. Algorithmic tools for interpreting vital signs.

    PubMed

    Rathbun, Melina C; Ruth-Sahd, Lisa A

    2009-07-01

    Today's complex world of nursing practice challenges nurse educators to develop teaching methods that promote critical thinking skills and foster quick problem solving in the novice nurse. Traditional pedagogies previously used in the classroom and clinical setting are no longer adequate to prepare nursing students for entry into practice. In addition, educators have expressed frustration when encouraging students to apply newly learned theoretical content to direct the care of assigned patients in the clinical setting. This article presents algorithms as an innovative teaching strategy to guide novice student nurses in the interpretation and decision making related to vital sign assessment in an acute care setting.

  15. Relationship among Students' Problem-Solving Attitude, Perceived Value, Behavioral Attitude, and Intention to Participate in a Science and Technology Contest

    ERIC Educational Resources Information Center

    Huang, Neng-Tang Norman; Chiu, Li-Jia; Hong, Jon-Chao

    2016-01-01

    The strong humanistic and ethics-oriented philosophy of Confucianism tends to lead people influenced by these principles to undervalue the importance of hands-on practice and creativity in education. GreenMech, a science and technology contest, was implemented to encourage real-world, hands-on problem solving in an attempt to mitigate this effect.…

  16. Catholic School Principals' Decision-Making and Problem-Solving Practices during Times of Change and Uncertainty: A North American Analysis

    ERIC Educational Resources Information Center

    Polka, Walter; Litchka, Peter; Mete, Rosina; Ayaga, Augustine

    2016-01-01

    The authors of the article outline a historical review of Catholic education and student enrollment in North America and a recent perspective of Catholic school principals' decision-making and problem-solving preferences. The purpose of this article is to provide the reader with an understanding of events which impacted the evolution of Catholic…

  17. Study the Problem.

    ERIC Educational Resources Information Center

    Choate, Joyce S.

    1990-01-01

    The initial step of a strategic process for solving mathematical problems, "studying the question," is discussed. A lesson plan for teaching students to identify and revise arithmetic problems is presented, involving directed instruction and supervised practice. (JDD)

  18. Developing Effective Fractions Instruction for Kindergarten through 8th Grade. IES Practice Guide. NCEE 2010-4039

    ERIC Educational Resources Information Center

    Siegler, Robert; Carpenter, Thomas; Fennell, Francis; Geary, David; Lewis, James; Okamoto, Yukari; Thompson, Laurie; Wray, Jonathan

    2010-01-01

    This practice guide presents five recommendations intended to help educators improve students' understanding of, and problem-solving success with, fractions. Recommendations progress from proposals for how to build rudimentary understanding of fractions in young children; to ideas for helping older children understand the meaning of fractions and…

  19. School Psychology for the 21st Century: Foundations and Practices. Second Edition

    ERIC Educational Resources Information Center

    Merrell, Kenneth W.; Ervin, Ruth A.; Peacock, Gretchen Gimpel

    2011-01-01

    A leading introductory text, this authoritative volume comprehensively describes the school psychologist's role in promoting positive academic, behavioral, and emotional outcomes for all students. The book emphasizes a problem-solving-based, data-driven approach to practice in today's diverse schools. It grounds the reader in the concepts and…

  20. Comprehension Instruction: Research-Based Best Practices. Solving Problems in the Teaching of Literacy.

    ERIC Educational Resources Information Center

    Block, Cathy Collins, Ed.; Pressley, Michael, Ed.

    Noting that comprehension instruction is widely recognized as an essential component of developing students' pleasure and profit from reading, this book presents 25 essays on comprehension instruction that summarize current research and provide best-practice guidelines for teachers and teacher educators. Each chapter in the book presents key…

  1. E-mentoring in public health nursing practice.

    PubMed

    Miller, Louise C; Devaney, Susan W; Kelly, Glenda L; Kuehn, Alice F

    2008-09-01

    Attrition in the public health nursing work force combined with a lack of faculty to teach public health prompted development of a "long-distance" learning project. Practicing associate degree nurses enrolled in an online course in population-based practice worked with experienced public health nurse "e-mentors." Student-mentor pairs worked through course assignments, shared public health nursing experiences, and problem-solved real-time public health issues. Nursing faculty served as coordinators for student learning and mentor support. Over 3 years, 38 student-mentor pairs participated in the project. Students reported they valued the expertise and guidance of their mentors. Likewise, mentors gained confidence in their practice and abilities to mentor. Issues related to distance learning and e-mentoring centered around use of technology and adequate time to communicate with one another. E-mentoring is a viable strategy to connect nurses to a learning, sharing environment while crossing the barriers of distance, agency isolation, and busy schedules.

  2. Understanding Undergraduates’ Problem-Solving Processes †

    PubMed Central

    Nehm, Ross H.

    2010-01-01

    Fostering effective problem-solving skills is one of the most longstanding and widely agreed upon goals of biology education. Nevertheless, undergraduate biology educators have yet to leverage many major findings about problem-solving processes from the educational and cognitive science research literatures. This article highlights key facets of problem-solving processes and introduces methodologies that may be used to reveal how undergraduate students perceive and represent biological problems. Overall, successful problem-solving entails a keen sensitivity to problem contexts, disciplined internal representation or modeling of the problem, and the principled management and deployment of cognitive resources. Context recognition tasks, problem representation practice, and cognitive resource management receive remarkably little emphasis in the biology curriculum, despite their central roles in problem-solving success. PMID:23653710

  3. Toward High-Performance Communications Interfaces for Science Problem Solving

    NASA Astrophysics Data System (ADS)

    Oviatt, Sharon L.; Cohen, Adrienne O.

    2010-12-01

    From a theoretical viewpoint, educational interfaces that facilitate communicative actions involving representations central to a domain can maximize students' effort associated with constructing new schemas. In addition, interfaces that minimize working memory demands due to the interface per se, for example by mimicking existing non-digital work practice, can preserve students' attentional focus on their learning task. In this research, we asked the question: What type of interface input capabilities provide best support for science problem solving in both low- and high- performing students? High school students' ability to solve a diverse range of biology problems was compared over longitudinal sessions while they used: (1) hardcopy paper and pencil (2) a digital paper and pen interface (3) pen tablet interface, and (4) graphical tablet interface. Post-test evaluations revealed that time to solve problems, meta-cognitive control, solution correctness, and memory all were significantly enhanced when using the digital pen and paper interface, compared with tablet interfaces. The tangible pen and paper interface also was the only alternative that significantly facilitated skill acquisition in low-performing students. Paradoxically, all students nonetheless believed that the tablet interfaces provided best support for their performance, revealing a lack of self-awareness about how to use computational tools to best advantage. Implications are discussed for how pen interfaces can be optimized for future educational purposes, and for establishing technology fluency curricula to improve students' awareness of the impact of digital tools on their performance.

  4. The Social Competency Program of the Reach Out to Schools Project. Project Report, 1991-92. No. 3.

    ERIC Educational Resources Information Center

    Krasnow, Jean H.; And Others

    This document presents outcomes of the Social Competency Program: Reach Out to Schools Project, a program designed to help elementary students learn and practice interpersonal and problem-solving skills. It is based on the understanding that positive peer relationships and a supportive, caring classroom community are essential to students' social…

  5. Case Designs for Ill-Structured Problems: Analysis and Implications for Practice

    ERIC Educational Resources Information Center

    Dabbagh, Nada; Blijd, Cecily Williams

    2009-01-01

    This study is a third in a series of studies that examined students' information seeking and problem solving behaviors while interacting with one of two types of web-based representations of an ill-structured instructional design case: hierarchical (tree-like) and heterarchical (network-like). A Java program was used to track students' hypermedia…

  6. Using an Epistemic Game to Facilitate Students' Problem-Solving: The Case of Hospitality Management

    ERIC Educational Resources Information Center

    Wang, Shwu-Huey; Wang, Hsiu-Yuan

    2017-01-01

    Hospitality students are required to be able to address challenging cases or problems in the work environment. However, traditional lecture- or exam-based instruction leaves a gap between theory and practice. On the other hand, modern youth live and socialise in an increasingly digital environment, and one of their biggest pastimes is playing…

  7. Quieting the Cacophony of the Mind: The Role of Mindfulness in Adult Learning

    ERIC Educational Resources Information Center

    Parish, Kay Annette

    2010-01-01

    The purpose of this study was to investigate the role between mindfulness practice and adult learning. The participants were full-time students enrolled in a two-year radiography program at a Midwestern community college. Critical thinking and problem solving skills are essential to students' success and to healthcare professionals. The main…

  8. The Role and Importance of Research and Scholarship in Dental Education and Practice.

    ERIC Educational Resources Information Center

    Bertolami, Charles N.

    2002-01-01

    Asserts that an education colored by research in one way of achieving the intellectual rigor necessary for the dentistry professional. Suggests that the key is cultivating in students a taste for complexity, for problems, and for problem solving. Students would therefore become people of science able to acquire and assimilate new knowledge and…

  9. Practicing versus Inventing with Contrasting Cases: The Effects of Telling First on Learning and Transfer

    ERIC Educational Resources Information Center

    Schwartz, Daniel L.; Chase, Catherine C.; Oppezzo, Marily A.; Chin, Doris B.

    2011-01-01

    Being told procedures and concepts before problem solving can inadvertently undermine the learning of deep structures in physics. If students do not learn the underlying structure of physical phenomena, they will exhibit poor transfer. Two studies on teaching physics to adolescents compared the effects of "telling" students before and after…

  10. The Effect of Worked Examples on Student Learning and Error Anticipation in Algebra

    ERIC Educational Resources Information Center

    Booth, Julie L.; Begolli, Kreshnik N.; McCann, Nicholas

    2016-01-01

    The present study examines the effectiveness of incorporating worked examples with prompts for self-explanation into a middle school math textbook. Algebra 1 students (N = 75) completed an equation-solving unit with reform textbooks either containing the original practice problems or in which a portion of those problems were converted into…

  11. A Practical Approach to Teaching about Communication with Terminal Cancer Patients.

    ERIC Educational Resources Information Center

    Anderson, John L.

    1979-01-01

    An exercise was devised at the Middlesex Hospital Medical School, London, to facilitate medical students' ability to discuss death and dying with cancer patients. Students begin with a written situation to problem-solve and then move into pairs and groups to reach a consensus and discuss the problem. A videotaped simulation is also used. (JMD)

  12. Integrating IS Curriculum Knowledge through a Cluster-Computing Project--A Successful Experiment

    ERIC Educational Resources Information Center

    Kitchens, Fred L.; Sharma, Sushil K.; Harris, Thomas

    2004-01-01

    MIS curricula in business schools are challenged to provide MIS courses that give students a strong practical understanding of the basic technologies, while also providing enough hands-on experience to solve real life problems. As an experimental capstone MIS course, the authors developed a cluster-computing project to expose business students to…

  13. Money Management and the Consumer, Basic Economic Skills: "Baffled, Bothered, Bewildered".

    ERIC Educational Resources Information Center

    Florida State Dept. of Education, Tallahassee. Div. of Elementary and Secondary Education.

    This document, one in a series of six Project SCAT (Skills for Consumers Applied Today) units for senior high school students, provides an overview of basic economic skills and consumer practices. Project SCAT is designed to help students develop basic skills, solve problems, and apply consumer knowledge necessary for making wise choices in the…

  14. "No Child Left Untested [sic]" Battle or Battle Cry Guiding Research and Practice? Making Research User-Friendly.

    ERIC Educational Resources Information Center

    Hough, David L.

    2003-01-01

    Critiques five articles from an online research journal in middle-level education on mathematical problem solving, social inclusion of students with disabilities in physical education, school and dispositional aggression among middle school boys, problem-based learning, and students' views of futuristics. Asserts that embracing the view that all…

  15. Problem Solving. Technology Learning Activity. Teacher Edition. Technology Education Series.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This curriculum guide provides technology learning activities designed to prepare students in grades 6-10 to work in the world of the future. The 8-day course provides exploratory, hands-on learning activities and information that can enhance the education of students of all types in an integrated curriculum that provides practical applications of…

  16. Cultivating the Ineffable: The Role of Contemplative Practice in Enactivist Learning

    ERIC Educational Resources Information Center

    Morgan, Patricia; Abrahamson, Dor

    2016-01-01

    We consider designs for conceptual learning where students first engage in pre-symbolic problem solving and then articulate their solutions formally. An enduring problem in these designs has been to support students in accessing their pre-conceptual situated process, so that they can reflect on it and couch it in mathematical form. Contemplative…

  17. Responses to Different Types of Inquiry Prompts: College Students' Discourse, Performance, and Perceptions of Group Work in an Engineering Class

    ERIC Educational Resources Information Center

    Balgopal, Meena M.; Casper, Anne Marie A.; Atadero, Rebecca A.; Rambo-Hernandez, Karen E.

    2017-01-01

    Working in small groups to solve problems is an instructional strategy that allows university students in science, technology, engineering, and mathematics disciplines the opportunity to practice interpersonal and professional skills while gaining and applying discipline-specific content knowledge. Previous research indicates that not all group…

  18. Educational Effects of Practical Education Using a Debate Exercise on Engineering Ethics

    NASA Astrophysics Data System (ADS)

    Takanokura, Masato; Hayashi, Shigeo

    The educational effects of practical education using a debate exercise are investigated using questionnaires. For the group-work composed of discussion and debate, students understand thoroughly various engineering ethical topics, such as factors preventing ethical decision-making. Students enhance their abilities to make a rational and logical decision by themselves such as a judgment based on correct information. Mutual evaluation by students through group interaction elevates positive educational effects. However, students answer fewer questions related to the understanding of professional duties and cooperate social responsibility because of the group-work using failure cases. Students also show less progress in their abilities to communicate with others and to express their opinions to audiences. A more suitable number of group members solves the latter problem.

  19. The Humpty-Dumpty Challenge.

    ERIC Educational Resources Information Center

    Chock, Jan S.

    1995-01-01

    Describes a twist on the egg-drop challenge activity for an 8th grade physical science unit. Students engage in active inquiry and explore the laws of physics, develop critical thinking skills, and practice problem-solving tasks. (NB)

  20. Development of syntax of intuition-based learning model in solving mathematics problems

    NASA Astrophysics Data System (ADS)

    Yeni Heryaningsih, Nok; Khusna, Hikmatul

    2018-01-01

    The aim of the research was to produce syntax of Intuition Based Learning (IBL) model in solving mathematics problem for improving mathematics students’ achievement that valid, practical and effective. The subject of the research were 2 classes in grade XI students of SMAN 2 Sragen, Central Java. The type of the research was a Research and Development (R&D). Development process adopted Plomp and Borg & Gall development model, they were preliminary investigation step, design step, realization step, evaluation and revision step. Development steps were as follow: (1) Collected the information and studied of theories in Preliminary Investigation step, studied about intuition, learning model development, students condition, and topic analysis, (2) Designed syntax that could bring up intuition in solving mathematics problem and then designed research instruments. They were several phases that could bring up intuition, Preparation phase, Incubation phase, Illumination phase and Verification phase, (3) Realized syntax of Intuition Based Learning model that has been designed to be the first draft, (4) Did validation of the first draft to the validator, (5) Tested the syntax of Intuition Based Learning model in the classrooms to know the effectiveness of the syntax, (6) Conducted Focus Group Discussion (FGD) to evaluate the result of syntax model testing in the classrooms, and then did the revision on syntax IBL model. The results of the research were produced syntax of IBL model in solving mathematics problems that valid, practical and effective. The syntax of IBL model in the classroom were, (1) Opening with apperception, motivations and build students’ positive perceptions, (2) Teacher explains the material generally, (3) Group discussion about the material, (4) Teacher gives students mathematics problems, (5) Doing exercises individually to solve mathematics problems with steps that could bring up students’ intuition: Preparations, Incubation, Illumination, and Verification, (6) Closure with the review of students have learned or giving homework.

  1. Supporting students in developing literacy in science.

    PubMed

    Krajcik, Joseph S; Sutherland, LeeAnn M

    2010-04-23

    Reading, writing, and oral communication are critical literacy practices for participation in a global society. In the context of science inquiry, literacy practices support learners by enabling them to grapple with ideas, share their thoughts, enrich understanding, and solve problems. Here we suggest five instructional and curricular features that can support students in developing literacy in the context of science: (i) linking new ideas to prior knowledge and experiences, (ii) anchoring learning in questions that are meaningful in the lives of students, (iii) connecting multiple representations, (iv) providing opportunities for students to use science ideas, and (v) supporting students' engagement with the discourses of science. These five features will promote students' ability to read, write, and communicate about science so that they can engage in inquiry throughout their lives.

  2. Fellowship Connects Principal Learning to Student Achievement: How an External Benefactor, a Research University, and an Urban School District Build Capacity for Problem Solving

    ERIC Educational Resources Information Center

    Dunbar, Krista; Monson, Robert J.

    2011-01-01

    Much has been written about the disconnect between education research produced in graduate schools of education and the practice of school leaders. In this article, the authors share one story of an external partnership that promotes the development of a principal's capacity for complex problem solving and the early research that suggests this…

  3. Improving the learning of clinical reasoning through computer-based cognitive representation.

    PubMed

    Wu, Bian; Wang, Minhong; Johnson, Janice M; Grotzer, Tina A

    2014-01-01

    Objective Clinical reasoning is usually taught using a problem-solving approach, which is widely adopted in medical education. However, learning through problem solving is difficult as a result of the contextualization and dynamic aspects of actual problems. Moreover, knowledge acquired from problem-solving practice tends to be inert and fragmented. This study proposed a computer-based cognitive representation approach that externalizes and facilitates the complex processes in learning clinical reasoning. The approach is operationalized in a computer-based cognitive representation tool that involves argument mapping to externalize the problem-solving process and concept mapping to reveal the knowledge constructed from the problems. Methods Twenty-nine Year 3 or higher students from a medical school in east China participated in the study. Participants used the proposed approach implemented in an e-learning system to complete four learning cases in 4 weeks on an individual basis. For each case, students interacted with the problem to capture critical data, generate and justify hypotheses, make a diagnosis, recall relevant knowledge, and update their conceptual understanding of the problem domain. Meanwhile, students used the computer-based cognitive representation tool to articulate and represent the key elements and their interactions in the learning process. Results A significant improvement was found in students' learning products from the beginning to the end of the study, consistent with students' report of close-to-moderate progress in developing problem-solving and knowledge-construction abilities. No significant differences were found between the pretest and posttest scores with the 4-week period. The cognitive representation approach was found to provide more formative assessment. Conclusions The computer-based cognitive representation approach improved the learning of clinical reasoning in both problem solving and knowledge construction.

  4. Improving the learning of clinical reasoning through computer-based cognitive representation.

    PubMed

    Wu, Bian; Wang, Minhong; Johnson, Janice M; Grotzer, Tina A

    2014-01-01

    Clinical reasoning is usually taught using a problem-solving approach, which is widely adopted in medical education. However, learning through problem solving is difficult as a result of the contextualization and dynamic aspects of actual problems. Moreover, knowledge acquired from problem-solving practice tends to be inert and fragmented. This study proposed a computer-based cognitive representation approach that externalizes and facilitates the complex processes in learning clinical reasoning. The approach is operationalized in a computer-based cognitive representation tool that involves argument mapping to externalize the problem-solving process and concept mapping to reveal the knowledge constructed from the problems. Twenty-nine Year 3 or higher students from a medical school in east China participated in the study. Participants used the proposed approach implemented in an e-learning system to complete four learning cases in 4 weeks on an individual basis. For each case, students interacted with the problem to capture critical data, generate and justify hypotheses, make a diagnosis, recall relevant knowledge, and update their conceptual understanding of the problem domain. Meanwhile, students used the computer-based cognitive representation tool to articulate and represent the key elements and their interactions in the learning process. A significant improvement was found in students' learning products from the beginning to the end of the study, consistent with students' report of close-to-moderate progress in developing problem-solving and knowledge-construction abilities. No significant differences were found between the pretest and posttest scores with the 4-week period. The cognitive representation approach was found to provide more formative assessment. The computer-based cognitive representation approach improved the learning of clinical reasoning in both problem solving and knowledge construction.

  5. An Investigation of Secondary Teachers’ Understanding and Belief on Mathematical Problem Solving

    NASA Astrophysics Data System (ADS)

    Yuli Eko Siswono, Tatag; Wachidul Kohar, Ahmad; Kurniasari, Ika; Puji Astuti, Yuliani

    2016-02-01

    Weaknesses on problem solving of Indonesian students as reported by recent international surveys give rise to questions on how Indonesian teachers bring out idea of problem solving in mathematics lesson. An explorative study was undertaken to investigate how secondary teachers who teach mathematics at junior high school level understand and show belief toward mathematical problem solving. Participants were teachers from four cities in East Java province comprising 45 state teachers and 25 private teachers. Data was obtained through questionnaires and written test. The results of this study point out that the teachers understand pedagogical problem solving knowledge well as indicated by high score of observed teachers‘ responses showing understanding on problem solving as instruction as well as implementation of problem solving in teaching practice. However, they less understand on problem solving content knowledge such as problem solving strategies and meaning of problem itself. Regarding teacher's difficulties, teachers admitted to most frequently fail in (1) determining a precise mathematical model or strategies when carrying out problem solving steps which is supported by data of test result that revealed transformation error as the most frequently observed errors in teachers’ work and (2) choosing suitable real situation when designing context-based problem solving task. Meanwhile, analysis of teacher's beliefs on problem solving shows that teachers tend to view both mathematics and how students should learn mathematics as body static perspective, while they tend to believe to apply idea of problem solving as dynamic approach when teaching mathematics.

  6. A Deliberate Practice Instructional Approach for Upper Division Physics Courses

    NASA Astrophysics Data System (ADS)

    Jones, David

    2015-05-01

    In upper division physics courses, an overarching educational goal is to have students think about and use the material much as a practicing physicist in the field does. Specifically, this would include knowledge (such as concepts, formalism, and instruments), approaches, and metacognitive skills that physicists use in solving ``typical'' (research context) problems to both understand and predict physical observations and accompanying models. Using an interactive instructional approach known as deliberate practice (described earlier in this session) we will discuss our work on how to provide students with the necessary practice and feedback to achieve these skills in a core DAMOP course of modern optics. We present the results of a direct and explicit comparison between this approach and traditional lecture-based instruction revealing evidence that a significant improvement of the students' mastery of these skills occurs when deliberate practice is employed. Our work was supported by the University of British Columbia through the CWSEI.

  7. Improving Geoscience Students' Spatial Thinking Skills: Applying Cognitive Science Research in the Classroom

    NASA Astrophysics Data System (ADS)

    Ormand, C. J.; Shipley, T. F.; Manduca, C. A.; Tikoff, B.

    2011-12-01

    Spatial thinking skills are critical to success in many subdisciplines of the geosciences (and beyond). There are many components of spatial thinking, such as mental rotation, penetrative visualization, disembedding, perspective taking, and navigation. Undergraduate students in introductory and upper-level geoscience courses bring a wide variety of spatial skill levels to the classroom, as measured by psychometric tests of many of these components of spatial thinking. Furthermore, it is not unusual for individual students to excel in some of these areas while struggling in others. Although pre- and post-test comparisons show that student skill levels typically improve over the course of an academic term, average gains are quite modest. This suggests that it may be valuable to develop interventions to help undergraduate students develop a range of spatial skills that can be used to solve geoscience problems. Cognitive science research suggests a number of strong strategies for building students' spatial skills. Practice is essential, and time on task is correlated to improvement. Progressive alignment may be used to scaffold students' successes on simpler problems, allowing them to see how more complex problems are related to those they can solve. Gesturing has proven effective in moving younger students from incorrect problem-solving strategies to correct strategies in other disciplines. These principles can be used to design instructional materials to improve undergraduate geoscience students' spatial skills; we will present some examples of such materials.

  8. The Use of Comics in Experimental Instructions in a Non-Formal Chemistry Learning Context

    ERIC Educational Resources Information Center

    Affeldt, Fiona; Meinhart, Daniel; Eilks, Ingo

    2018-01-01

    Practical work is an essential component of science education. However, insufficient approaches towards practical work can limit the potential it has for promoting both students' motivation and situational interest. One suggestion to solve this problem is to use alternative forms of lab instruction which are both motivating and easy to comprehend.…

  9. Teachers' Concerns Regarding the Implementation and Continued Use of an Evidence-Based Educational Practice

    ERIC Educational Resources Information Center

    Becker, Mallory K.

    2011-01-01

    Teachers need practices that can be implemented in the classroom to teach children how to address conflict and solve problems proactively. There are curricula available for teachers to use in promoting improvement in the social behavior of students and for further enhancing their ability to self-regulate their behavior (Smith, Lochman, &…

  10. Assessing Dimensions of Inquiry Practice by Middle School Science Teachers Engaged in a Professional Development Program

    ERIC Educational Resources Information Center

    Lakin, Joni M.; Wallace, Carolyn S.

    2015-01-01

    Inquiry-based teaching promotes students' engagement in problem-solving and investigation as they learn science concepts. Current practice in science teacher education promotes the use of inquiry in the teaching of science. However, the literature suggests that many science teachers hold incomplete or incorrect conceptions of inquiry.…

  11. Simple Practice Doesn't Always Make Perfect: Evidence from the Worked Example Effect

    ERIC Educational Resources Information Center

    Booth, Julie L.; McGinn, Kelly M.; Young, Laura K.; Barbieri, Christina

    2015-01-01

    Findings from the fields of cognitive science and cognitive development propose a variety of evidence-based principles for improving learning. One such recommendation is that instead of having students practice solving long strings of problems on their own after a lesson, worked-out examples of problem solutions should be incorporated into…

  12. A PLG (Professional Learning Group): How to Stimulate Learners' Engagement in Problem-Solving

    ERIC Educational Resources Information Center

    Sheety, Alia; Rundell, Frida

    2012-01-01

    This paper aims to describe, discuss and reflect the use of PLGs (professional learning groups) in higher education as a practice for enhancing student learning and team building. It will use theories supporting group-learning processes, explore optimal social contexts that enhance team collaboration, and reflect on the practice of PLG. The…

  13. How does a Next Generation Science Standard Aligned, Inquiry Based, Science Unit Impact Student Achievement of Science Practices and Student Science Efficacy in an Elementary Classroom?

    NASA Astrophysics Data System (ADS)

    Whittington, Kayla Lee

    This study examined the impact of an inquiry based Next Generation Science Standard aligned science unit on elementary students' understanding and application of the eight Science and Engineering Practices and their relation in building student problem solving skills. The study involved 44 second grade students and three participating classroom teachers. The treatment consisted of a school district developed Second Grade Earth Science unit: What is happening to our playground? that was taught at the beginning of the school year. Quantitative results from a Likert type scale pre and post survey and from student content knowledge assessments showed growth in student belief of their own abilities in the science classroom. Qualitative data gathered from student observations and interviews performed at the conclusion of the Earth Science unit further show gains in student understanding and attitudes. This study adds to the existing literature on the importance of standard aligned, inquiry based science curriculum that provides time for students to engage in science practices.

  14. The effect of explanations on mathematical reasoning tasks

    NASA Astrophysics Data System (ADS)

    Norqvist, Mathias

    2018-01-01

    Studies in mathematics education often point to the necessity for students to engage in more cognitively demanding activities than just solving tasks by applying given solution methods. Previous studies have shown that students that engage in creative mathematically founded reasoning to construct a solution method, perform significantly better in follow up tests than students that are given a solution method and engage in algorithmic reasoning. However, teachers and textbooks, at least occasionally, provide explanations together with an algorithmic method, and this could possibly be more efficient than creative reasoning. In this study, three matched groups practiced with either creative, algorithmic, or explained algorithmic tasks. The main finding was that students that practiced with creative tasks did, outperform the students that practiced with explained algorithmic tasks in a post-test, despite a much lower practice score. The two groups that got a solution method presented, performed similarly in both practice and post-test, even though one group got an explanation to the given solution method. Additionally, there were some differences between the groups in which variables predicted the post-test score.

  15. Creativity and Ethics: The Relationship of Creative and Ethical Problem-Solving.

    PubMed

    Mumford, Michael D; Waples, Ethan P; Antes, Alison L; Brown, Ryan P; Connelly, Shane; Murphy, Stephen T; Devenport, Lynn D

    2010-02-01

    Students of creativity have long been interested in the relationship between creativity and deviant behaviors such as criminality, mental disease, and unethical behavior. In the present study we wished to examine the relationship between creative thinking skills and ethical decision-making among scientists. Accordingly, 258 doctoral students in the health, biological, and social sciences were asked to complete a measure of creative processing skills (e.g., problem definition, conceptual combination, idea generation) and a measure of ethical decision-making examining four domains, data management, study conduct, professional practices, and business practices. It was found that ethical decision-making in all four of these areas was related to creative problem-solving processes with late cycle processes (e.g., idea generation and solution monitoring) proving particularly important. The implications of these findings for understanding the relationship between creative and deviant thought are discussed.

  16. Creativity and Ethics: The Relationship of Creative and Ethical Problem-Solving

    PubMed Central

    Mumford, Michael D.; Waples, Ethan P.; Antes, Alison L.; Brown, Ryan P.; Connelly, Shane; Murphy, Stephen T.; Devenport, Lynn D.

    2010-01-01

    Students of creativity have long been interested in the relationship between creativity and deviant behaviors such as criminality, mental disease, and unethical behavior. In the present study we wished to examine the relationship between creative thinking skills and ethical decision-making among scientists. Accordingly, 258 doctoral students in the health, biological, and social sciences were asked to complete a measure of creative processing skills (e.g., problem definition, conceptual combination, idea generation) and a measure of ethical decision-making examining four domains, data management, study conduct, professional practices, and business practices. It was found that ethical decision-making in all four of these areas was related to creative problem-solving processes with late cycle processes (e.g., idea generation and solution monitoring) proving particularly important. The implications of these findings for understanding the relationship between creative and deviant thought are discussed. PMID:21057603

  17. Supporting traditional instructional methods with a constructivist approach to learning: Promoting conceputal change and understanding of stoichiometry using e-learning tools

    NASA Astrophysics Data System (ADS)

    Abayan, Kenneth Munoz

    Stoichiometry is a fundamental topic in chemistry that measures a quantifiable relationship between atoms, molecules, etc. Stoichiometry is usually taught using expository teaching methods. Students are passively given information, in the hopes they will retain the transmission of information to be able to solve stoichiometry problems masterfully. Cognitive science research has shown that this kind of instructional teaching method is not very effecting in meaningful learning practice. Instead, students must take ownership of their learning. The students need to actively construct their own knowledge by receiving, interpreting, integrating and reorganizing that information into their own mental schemas. In the absence of active learning practices, tools must be created in such a way to be able to scaffold difficult problems by encoding opportunities necessary to make the construction of knowledge memorable, thereby creating a usable knowledge base. Using an online e-learning tool and its potential to create a dynamic and interactive learning environment may facilitate the learning of stoichiometry. The study entailed requests from volunteer students, IRB consent form, a baseline questionnaire, random assignment of treatment, pre- and post-test assessment, and post assessment survey. These activities were given online. A stoichiometry-based assessment was given in a proctored examination at the University of Texas at Arlington (UTA) campus. The volunteer students who took part in these studies were at least 18 of age and were enrolled in General Chemistry 1441, at the University of Texas at Arlington. Each participant gave their informed consent to use their data in the following study. Students were randomly assigned to one of 4 treatments groups based on teaching methodology, (Dimensional Analysis, Operational Method, Ratios and Proportions) and a control group who just received instruction through lecture only. In this study, an e-learning tool was created to demonstrate several methodologies, on how to solve stoichiometry, which are all supported by chemical education research. Comparisons of student performance based on pre- and post-test assessment, and a stoichiometry-based examination was done to determine if the information provided within the e-learning tool yielded greater learning outcomes compared to the students in the absence of scaffold learning material. The e-learning tool was created to help scaffold the problem solving process necessary to help students (N=394) solve stoichiometry problems. Therein the study investigated possible predictors for success on a stoichiometry based examination, students' conceptual understanding of solving stoichiometry problems, and their explanation of reasoning. It was found that the way the student answered a given stoichiometry question (i.e. whether the student used dimensional analysis, operational method or any other process) was not statistically relevant (p=0.05). More importantly, if the students were able to describe their thought process clearly, these students scored significantly higher on stoichiometry test (mean 84, p<0.05). This finding has major implications in teaching the topic, as lecturers tend to stress and focus on the method rather than the process on how to solve stoichiometry problems.

  18. Teaching Reform of Civil Engineering Materials Course Based on Project-Driven Pedagogy

    NASA Astrophysics Data System (ADS)

    Yidong, Xu; Wei, Chen; WeiguoJian, You; Jiansheng, Shen

    2018-05-01

    In view of the scattered experimental projects in practical courses of civil engineering materials, the poor practical ability of students and the disconnection between practical teaching and theoretical teaching, this paper proposes a practical teaching procedure. Firstly, the single experiment should be offered which emphasizes on improving the students’ basic experimental operating ability. Secondly, the compressive experiment is offered and the overall quality of students can be examined in the form of project team. In order to investigate the effect of teaching reform, the comparative analysis of the students of three grades (2014, 2015 and 2016) majored in civil engineering was conducted. The result shows that the students’ ability of experimental operation is obviously improved by using the project driven method-based teaching reform. Besides, the students’ ability to analyse and solve problems has also been improved.

  19. Problem solving, loneliness, depression levels and associated factors in high school adolescents.

    PubMed

    Sahin, Ummugulsum; Adana, Filiz

    2016-01-01

    To determine problem solving, loneliness, depression levels and associated factors in high school adolescents. This cross-sectional study was conducted in a city west of Turkey (Bursa) in a public high school and the population was 774 and the sampling was 394 students. Students to be included in the study were selected using the multiple sampling method. A personal Information Form with 23 questions, Problem Solving Inventory (PSI), Loneliness Scale (UCLA), Beck Depression Inventory (BDI) were used as data collection tools in the study. Basic statistical analyses, t-test, Kruskall Wallis-H, One Way Anova and Pearson Correlation test were used to evaluate the data. Necessary permissions were obtained from the relevant institution, students, parents and the ethical committee. The study found significant differences between "problem solving level" and family type, health assessment, life quality and mothers', fathers' siblings' closeness level; between "loneliness level" and gender, family income, health assessment, life quality and mothers', fathers', siblings' closeness level; between "depression level" and life quality, family income, fathers' closeness level. Unfavorable socio-economic and cultural conditions can have an effect on the problem solving, loneliness and depression levels of adolescents. Providing structured education to adolescents at risk under school mental health nursing practices is recommended.

  20. Use of a Mobile Application to Help Students Develop Skills Needed in Solving Force Equilibrium Problems

    NASA Astrophysics Data System (ADS)

    Yang, Eunice

    2016-02-01

    This paper discusses the use of a free mobile engineering application (app) called Autodesk® ForceEffect™ to provide students assistance with spatial visualization of forces and more practice in solving/visualizing statics problems compared to the traditional pencil-and-paper method. ForceEffect analyzes static rigid-body systems using free-body diagrams (FBDs) and provides solutions in real time. It is a cost-free software that is available for download on the Internet. The software is supported on the iOS™, Android™, and Google Chrome™ platforms. It is easy to use and the learning curve is approximately two hours using the tutorial provided within the app. The use of ForceEffect has the ability to provide students different problem modalities (textbook, real-world, and design) to help them acquire and improve on skills that are needed to solve force equilibrium problems. Although this paper focuses on the engineering mechanics statics course, the technology discussed is also relevant to the introductory physics course.

  1. Reflective Practice and Its Implications for Pharmacy Education

    PubMed Central

    Bosnic-Anticevich, Sinthia; Smith, Lorraine

    2014-01-01

    Pharmacy students require critical-thinking and problem-solving skills to integrate theory learned in the classroom with the complexities of practice, yet many pharmacy students fall short of acquiring these skills.1-2 Reflective practice activities encourage learning from the student’s own experiences and those of others, and offer a possible solution for the integration of knowledge-based curricula with the ambiguities of practice, as well as enhance communication and collaboration within a multidisciplinary team. Although reflective practices have been embraced elsewhere in health professions education, their strengths and shortcomings need to be considered when implementing such practices into pharmacy curricula. This review provides an overview of the evolution of theories related to reflective practice, critically examines the use of reflective tools (such as portfolios and blogs), and discusses the implications of implementing reflective practices in pharmacy education. PMID:24558286

  2. Change the curriculum--or transform the conditions of practice?

    PubMed

    Clare, J

    1993-08-01

    This paper explores the notion that contemporary teaching practices reinforce and maintain the legitimacy of traditional relations of power between teachers and students of nursing. Nurse teachers and clinicians have socially constructed and legitimated power over students which acts to constrain the development of critical consciousness. Student-centred learning packages and strategies such as problem-solving, questioning and dialogue may give the impression of student empowerment while leaving the authoritarian nature of teacher-student relationships intact. Furthermore nursing education is premised on the belief that 'real' learning takes place in the classroom (where teaching occurs) and is consolidated by practice (where nursing occurs). This situation creates a major dilemma for all teachers since the contradictions between classroom knowledge and experiential clinical knowledge are seldom officially recognised. The rhetoric of critical social science however, suggests that emancipation and empowerment of teachers and students would follow their enlightenment as to the nature of these contradictions. This assumption discounts the ways in which hegemonic ideology shapes the consciousness of nurses to accept dominant views of what constitutes professional practice or legitimate knowledge and how that may be obtained.

  3. The Development of Physics Learning Instrument Based on Hypermedia and Its Influence on the Student Problem Solving Skill

    ERIC Educational Resources Information Center

    Amin, Bunga Dara; Mahmud, Alimuddin; Muris

    2016-01-01

    This research aims to produce a learning instrument based on hypermedia which is valid, interesting, practical, and effective as well as to know its influence on the problem based skill of students Mathematical and Science Faculty, Makassar State University. This research is a research and development at (R&D) type. The development procedure…

  4. Language Learners' Writing Task Representation and Its Effect on Written Performance in an EFL Context

    ERIC Educational Resources Information Center

    Zarei, Gholam Reza; Pourghasemian, Hossein; Jalali, Hassan

    2017-01-01

    The present study attempts to give an account of how students represent writing task in an EAP course. Further, the study is intended to discover if learners' mental representation of writing would contribute to their written performance. During a 16-week term, students were instructed to practice writing as a problem solving activity. At almost…

  5. A Comparison between the Effectiveness of PBL and LBL on Improving Problem-Solving Abilities of Medical Students Using Questioning

    ERIC Educational Resources Information Center

    He, Yunfeng; Du, Xiangyun; Toft, Egon; Zhang, Xingli; Qu, Bo; Shi, Jiannong; Zhang, Huan; Zhang, Hui

    2018-01-01

    In daily patient-history taking and diagnosis practice, doctors ask questions to gather information from patients and narrow down diagnostic hypotheses. Training medical students to be efficient problem solvers through the use of questioning is therefore important. In this study, the effectiveness of problem-based learning (PBL) and lecture-based…

  6. Coping in the World of Work. Practice in Problem Solving. Instructor's Handbook. Research and Development Series 120A.

    ERIC Educational Resources Information Center

    Campbell, Robert E.; And Others

    This instructor's handbook is part of a career development unit on coping in the world of work, designed to assist students in developing coping strategies to deal with work-entry and job adjustment problems. (Other components of the unit--student guide, handout/transparency masters, and filmstrip/sound cassette programs--are available…

  7. A Project-Based Digital Storytelling Approach for Improving Students' Learning Motivation, Problem-Solving Competence and Learning Achievement

    ERIC Educational Resources Information Center

    Hung, Chun-Ming; Hwang, Gwo-Jen; Huang, Iwen

    2012-01-01

    Although project-based learning is a well-known and widely used instructional strategy, it remains a challenging issue to effectively apply this approach to practical settings for improving the learning performance of students. In this study, a project-based digital storytelling approach is proposed to cope with this problem. With a…

  8. Empowering biomedical engineering undergraduates to help teach design.

    PubMed

    Allen, Robert H; Tam, William; Shoukas, Artin A

    2004-01-01

    We report on our experience empowering upperclassmen and seniors to help teach design courses in biomedical engineering. Initiated in the fall of 1998, these courses are a projects-based set, where teams of students from freshmen level to senior level converge to solve practical problems in biomedical engineering. One goal in these courses is to teach the design process by providing experiences that mimic it. Student teams solve practical projects solicited from faculty, industry and the local community. To hone skills and have a metric for grading, written documentation, posters and oral presentations are required over the two-semester sequence. By requiring a mock design and build exercise in the fall, students appreciate the manufacturing process, the difficulties unforeseen in the design stage and the importance of testing. A Web-based, searchable design repository captures reporting information from each project since its inception. This serves as a resource for future projects, in addition to traditional ones such as library, outside experts and lab facilities. Based on results to date, we conclude that characteristics about our design program help students experience design and learn aspects about teamwork and mentoring useful in their profession or graduate education.

  9. The dynamics of student learning within a high school virtual reality design class

    NASA Astrophysics Data System (ADS)

    Morales, Teresa M.

    This mixed method study investigated knowledge and skill development of high school students in a project-based VR design class, in which 3-D projects were developed within a student-centered, student-directed environment. This investigation focused on student content learning, and problem solving. Additionally the social dynamics of the class and the role of peer mentoring were examined to determine how these factors influenced student behavior and learning. Finally, parent and teachers perceptions of the influence of the class were examined. The participants included freshmen through senior students, parents, teachers and the high school principal. Student interviews and classroom observations were used to collect data from students, while teachers and parents completed surveys. The results of this study suggested that this application of virtual reality (VR) learning environment promoted the development of; meaningful cognitive experiences, creativity, leadership, global socialization, problem solving and a deeper understanding of academic content. Further theoretical implications for 3-D virtual reality technology are exceedingly promising, and warrant additional research and development as an instructional tool for practical use.

  10. Five heads are better than one: preliminary results of team-based learning in a communication disorders graduate course.

    PubMed

    Epstein, Baila

    2016-01-01

    Clinical problem-solving is fundamental to the role of the speech-language pathologist in both the diagnostic and treatment processes. The problem-solving often involves collaboration with clients and their families, supervisors, and other professionals. Considering the importance of cooperative problem-solving in the profession, graduate education in speech-language pathology should provide experiences to foster the development of these skills. One evidence-based pedagogical approach that directly targets these abilities is team-based learning (TBL). TBL is a small-group instructional method that focuses on students' in-class application of conceptual knowledge in solving complex problems that they will likely encounter in their future clinical careers. The purpose of this pilot study was to investigate the educational outcomes and students' perceptions of TBL in a communication disorders graduate course on speech and language-based learning disabilities. Nineteen graduate students (mean age = 26 years, SD = 4.93), divided into three groups of five students and one group of four students, who were enrolled in a required graduate course, participated by fulfilling the key components of TBL: individual student preparation; individual and team readiness assurance tests (iRATs and tRATs) that assessed preparedness to apply course content; and application activities that challenged teams to solve complex and authentic clinical problems using course material. Performance on the tRATs was significantly higher than the individual students' scores on the iRATs (p < .001, Cohen's d = 4.08). Students generally reported favourable perceptions of TBL on an end-of-semester questionnaire. Qualitative analysis of responses to open-ended questions organized thematically indicated students' high satisfaction with application activities, discontent with the RATs, and recommendations for increased lecture in the TBL process. The outcomes of this pilot study suggest the effectiveness of TBL as an instructional method that provides student teams with opportunities to apply course content in problem-solving activities followed by immediate feedback. This research also addresses the dearth of empirical information on how graduate programmes in speech-language pathology bridge students' didactic learning and clinical practice. Future studies should examine the utility of this approach in other courses within the field and with more heterogeneous student populations. © 2015 Royal College of Speech and Language Therapists.

  11. Turning Potential Flexibility Into Flexible Performance: Moderating Effect of Self-Efficacy and Use of Flexible Cognition

    PubMed Central

    Liu, Ru-De; Wang, Jia; Star, Jon R.; Zhen, Rui; Jiang, Rong-Huan; Fu, Xin-Chen

    2018-01-01

    This study examined the relationship between two types of mathematical flexibility – potential flexibility, which indicates individuals’ knowledge of multiple strategies and strategy efficiency, and practical flexibility, which refers to individuals’ flexible performances when solving math problems. Both types of flexibility were assessed in the domain of linear equation solving. Furthermore, two types of beliefs – self-efficacy and use of flexible cognition (UFC) – were investigated as potential moderators between potential and practical flexibility. 121 8th grade students from China took part in this study. Results indicate that potential flexibility positively predicted practical flexibility. Additionally, self-efficacy and UFC might moderate the relationship between these two types of flexibility, suggesting that potential flexibility may lead to different degrees of practical flexibility depending on different levels of beliefs. Implications of these findings for research on mathematical flexibility and for educational practice are discussed. PMID:29780344

  12. Scaffolding Student Learning in the Discipline-Specific Knowledge through Contemporary Science Practices: Developing High-School Students' Epidemiologic Reasoning through Data Analysis

    NASA Astrophysics Data System (ADS)

    Oura, Hiroki

    Science is a disciplined practice about knowing puzzling observations and unknown phenomena. Scientific knowledge of the product is applied to develop technological artifacts and solve complex problems in society. Scientific practices are undeniably relevant to our economy, civic activity, and personal lives, and thus public education should help children acquire scientific knowledge and recognize the values in relation to their own lives and civil society. Likewise, developing scientific thinking skills is valuable not only for becoming a scientist, but also for becoming a citizen who is able to critically evaluate everyday information, select and apply only the trustworthy, and make wise judgments in their personal and cultural goals as well as for obtaining jobs that require complex problem solving and creative working in the current knowledge-based economy and rapid-changing world. To develop students' scientific thinking, science instruction should focus not only on scientific knowledge and inquiry processes, but also on its epistemological aspects including the forms of causal explanations and methodological choices along with epistemic aims and values under the social circumstances in focal practices. In this perspective, disciplinary knowledge involves heterogeneous elements including material, cognitive, social, and cultural ones and the formation differs across practices. Without developing such discipline-specific knowledge, students cannot enough deeply engage in scientific "practices" and understand the true values of scientific enterprises. In this interest, this dissertation explores instructional approaches to make student engagement in scientific investigations more authentic or disciplinary. The present dissertation work is comprised of three research questions as stand-alone studies written for separate publication. All of the studies discuss different theoretical aspects related to disciplinary engagement in epidemiologic inquiry and student development in epidemiologic reasoning. The first chapter reviews literature on epistemological instruction and explores theoretical frameworks for epistemically-guided instruction. The second chapter explores methodological strategies to elicit students' disciplinary understanding and demonstrates an approach with a case study in which students engaged in a curriculum unit for an epidemiologic investigation. The last chapter directs the focus into scientific reasoning and demonstrates how the curriculum unit and its scaffolds helped students develop epidemiologic reasoning with a focus on population-based reasoning.

  13. Investigating the Effects of Group Practice Performed Using Psychodrama Techniques on Adolescents' Conflict Resolution Skills

    ERIC Educational Resources Information Center

    Karatas, Zeynep

    2011-01-01

    The aim of this study is to examine the effects of group practice which is performed using psychodrama techniques on adolescents' conflict resolution skills. The subjects, for this study, were selected among the high school students who have high aggression levels and low problem solving levels attending Haci Zekiye Arslan High School, in Nigde.…

  14. Solar Radiation and the UV Index: An Application of Numerical Integration, Trigonometric Functions, Online Education and the Modelling Process

    ERIC Educational Resources Information Center

    Downs, Nathan; Parisi, Alfio V.; Galligan, Linda; Turner, Joanna; Amar, Abdurazaq; King, Rachel; Ultra, Filipina; Butler, Harry

    2016-01-01

    A short series of practical classroom mathematics activities employing the use of a large and publicly accessible scientific data set are presented for use by students in years 9 and 10. The activities introduce and build understanding of integral calculus and trigonometric functions through the presentation of practical problem solving that…

  15. Application of Real-World Problems in Computer Science Education: Teachers' Beliefs, Motivational Orientations and Practices

    ERIC Educational Resources Information Center

    Ferreira, Deller James; Ambrósio, Ana Paula Laboissière; Melo, Tatiane F. N.

    2018-01-01

    This article describes how it is due to the fact that computer science is present in many activities of daily life, students need to develop skills to solve problems to improve the lives of people in general. This article investigates correlations between teachers' motivational orientations, beliefs and practices with respect to the application of…

  16. Improving Disciplinary Practices in an Urban School: Solving the Problem of Practice

    ERIC Educational Resources Information Center

    Colcord, Cean R.; Mathur, Sarup R.; Zucker, Stanley H.

    2016-01-01

    In this article, the authors share a case study of a special educator who worked closely with a leadership team in an urban elementary school to establish universal behavior expectations for all students. The special educator was a behavior coach in the urban elementary school located in a southwestern school of the United States of America.…

  17. Cooperative Stakeholding: Optimising Students' Educational Practice through Need-Centred Self-Determination, Connectedness with Learning Environment and Passion

    ERIC Educational Resources Information Center

    Ottu, Iboro F. A.

    2017-01-01

    The paper offers social-psychological options to solving the growing problems of educational decline in Nigeria. It takes a holistic view of educational practice in the country and asserts that quality education is achievable in Nigeria if everyone takes a position to contribute meaningfully to our presumably ailing educational system. The…

  18. P3: a practice focused learning environment

    NASA Astrophysics Data System (ADS)

    Irving, Paul W.; Obsniuk, Michael J.; Caballero, Marcos D.

    2017-09-01

    There has been an increased focus on the integration of practices into physics curricula, with a particular emphasis on integrating computation into the undergraduate curriculum of scientists and engineers. In this paper, we present a university-level, introductory physics course for science and engineering majors at Michigan State University called P3 (projects and practices in physics) that is centred around providing introductory physics students with the opportunity to appropriate various science and engineering practices. The P3 design integrates computation with analytical problem solving and is built upon a curriculum foundation of problem-based learning, the principles of constructive alignment and the theoretical framework of community of practice. The design includes an innovative approach to computational physics instruction, instructional scaffolds, and a unique approach to assessment that enables instructors to guide students in the development of the practices of a physicist. We present the very positive student related outcomes of the design gathered via attitudinal and conceptual inventories and research interviews of students’ reflecting on their experiences in the P3 classroom.

  19. Neighbourhood as community: A qualitative descriptive study of nursing students' experiences of community health nursing.

    PubMed

    Babenko-Mould, Yolanda; Ferguson, Karen; Atthill, Stephanie

    2016-03-01

    Explore the use of a neighbourhood practice placement with nursing students to gain insight into how the experience influenced their learning and how the reconceptualization of community can be a model for students' professional development. The integration of community health nursing competencies in undergraduate nursing education is a critical element of student development. Neighbourhood placements have been found to support development of such competencies by exposing students to issues such as culture, social justice, partnership, and community development. A qualitative design was used with a sample of 48 Year 3 baccalaureate nursing students enrolled in a community health nursing practice course. Students submitted reflective reviews where they responded to questions and subsequently participated in focus groups. Meaning making of narrative data took place using the descriptive qualitative analysis approach. Students became more self-directed learners and developed team process skills. Some found it challenging to adapt to a role outside of the traditional acute care context. Nursing practice in a neighbourhood context requires students to be innovative and creative in problem-solving and relationship building. The placement also requires neighbourhood liaison persons who are adept at helping students bridge the theory-practice gap. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Interactive whiteboards in third grade science instruction

    NASA Astrophysics Data System (ADS)

    Rivers, Grier

    Strategies have been put into place to affect improvement in science achievement, including the use of Interactive Whiteboards (IWBs) in science instruction. IWBs enable rich resources, appropriate pacing, and multimodal presentation of content deemed as best practices. Professional development experiences, use of resources, instructional practices, and changes in professional behavior in science teachers were recorded. Also recorded were differences in the engagement and motivation of students in IWB classrooms versus IWB-free classrooms and observed differences in students' problem solving, critical thinking, and collaboration. Using a mixed-method research design quantitative data were collected to identify achievement levels of the target population on the assumption that all students, regardless of ability, will achieve greater mastery of science content in IWB classrooms. Qualitative data were collected through observations, interviews, videotapes, and a survey to identify how IWBs lead to increased achievement in third grade classrooms and to develop a record of teachers' professional practices, and students' measures of engagement and motivation. Comparative techniques determined whether science instruction is more effective in IWB classroom than in IWB-free classrooms. The qualitative findings concluded that, compared to science teachers who work in IWB-free settings, elementary science teachers who used IWBs incorporated more resources to accommodate learning objectives and the varied abilities and learning styles of their students. They assessed student understanding more frequently and perceived their classrooms as more collaborative and interactive. Furthermore, they displayed willingness to pursue professional development and employed different engagement strategies. Finally, teachers who used IWBs supported more instances of critical thinking and problem-solving. Quantitative findings concluded that students of all ability levels were more motivated and engaged in IWB classes. Best practices distilled included combining IWBs with handheld peripherals to maximize assessment; the determination that formal professional development is more effective than peer coaching; that effectively managing an IWB classroom is as vital as learning how to use board itself; and that IWB teachers should be able to modify resources to tailor them for the circumstances of their classroom.

  1. A Pathway for Mathematical Practices

    ERIC Educational Resources Information Center

    Wenrick, Melanie; Behrend, Jean L.; Mohs, Laura C.

    2013-01-01

    How can teachers engage students in learning essential mathematics? The National Council of Teachers of Mathematics recommends using "contexts that promote problem solving, reasoning, communication, making connections, and designing and analyzing representations" (NCTM 2006, p. 11). Understanding the Process Standards (NCTM 2000) enables teachers…

  2. The Dependence of Strength in Plastics upon Polymer Chain Length and Chain Orientation: An Experiment Emphasizing the Statistical Handling and Evaluation of Data.

    ERIC Educational Resources Information Center

    Spencer, R. Donald

    1984-01-01

    Describes an experiment (using plastic bags) designed to give students practical understanding on using statistics to evaluate data and how statistical treatment of experimental results can enhance their value in solving scientific problems. Students also gain insight into the orientation and structure of polymers by examining the plastic bags.…

  3. 'There's so much to it': the ways physiotherapy students and recent graduates experience practice.

    PubMed

    Barradell, S; Peseta, T; Barrie, S

    2018-05-01

    Health science courses aim to prepare students for the demands of their chosen profession by learning ways appropriate to that profession and the contexts they will work and live in. Expectations of what students should learn become re-contextualised and translated into entry-level curriculum, with students operating as a connection between what is intended and enacted in curriculum, and required in the real world. Drawing on phenomenology, this paper explores how students understand practice-the collective, purposeful knowing, doing and being of a community-in entry-level physiotherapy programs. Ways of thinking and practising (WTP)-a framework attentive to the distinctive nature of a discipline, its values, philosophies and world-view (McCune and Hounsell in High Educ 49(3):255-289, 2005)-provides the conceptual lens. Six themes describing how students see the WTP of physiotherapy practice emerged from the analysis: discovery of new knowledge; problem solving client related contexts; adopting a systems based approach to the body; contributing to a positive therapeutic alliance; developing a sense of self and the profession; and the organisation of the workforce. The study produces knowledge about practice by focusing on physiotherapy students' experiences of disciplinary learning. Including students in educational research in this way is an approach that can help students realise their potential as part of a community of practice.

  4. The Implementation of Problem-Solving Based Laboratory Activities to Teach the Concept of Simple Harmonic Motion in Senior High School

    NASA Astrophysics Data System (ADS)

    Iradat, R. D.; Alatas, F.

    2017-09-01

    Simple harmonic motion is considered as a relatively complex concept to be understood by students. This study attempts to implement laboratory activities that focus on solving contextual problems related to the concept. A group of senior high school students participated in this pre-experimental method from a group’s pretest-posttest research design. Laboratory activities have had a positive impact on improving students’ scientific skills, such as, formulating goals, conducting experiments, applying laboratory tools, and collecting data. Therefore this study has added to the theoretical and practical knowledge that needs to be considered to teach better complicated concepts in physics learning.

  5. Modified task-based learning program promotes problem-solving capacity among Chinese medical postgraduates: a mixed quantitative survey.

    PubMed

    Tian, Yanping; Li, Chengren; Wang, Jiali; Cai, Qiyan; Wang, Hanzhi; Chen, Xingshu; Liu, Yunlai; Mei, Feng; Xiao, Lan; Jian, Rui; Li, Hongli

    2017-09-07

    Despite great advances, China's postgraduate education faces many problems, for example traditional lecture-based learning (LBL) method provides fewer oppotunities to apply knowledge in a working situation. Task-based learning (TBL) is an efficient strategy for increasing the connections among skills, knowledge and competences. This study aimed to evaluate the effect of a modified TBL model on problem-solving abilities among postgraduate medical students in China. We allocated 228 first-year postgraduate students at Third Military Medical University into two groups: the TBL group and LBL group. The TBL group was taught using a TBL program for immunohistochemistry. The curriculum consisted of five phases: task design, self-learning, experimental operations, discussion and summary. The LBL group was taught using traditional LBL. After the course, learning performance was assessed using theoretical and practical tests. The students' preferences and satisfaction of TBL and LBL were also evaluated using questionnaires. There were notable differences in the mean score rates in the practical test (P < 0.05): the number of high scores (>80) in the TBL group was higher than that in the LBL group. We observed no substantial differences in the theoretical test between the two groups (P > 0.05). The questionnaire results indicated that the TBL students were satisfied with teaching content, teaching methods and experiment content. The TBL program was also beneficial for the postgraduates in completing their research projects. Furthermore, the TBL students reported positive effects in terms of innovative thinking, collaboration, and communication. TBL is a powerful educational strategy for postgraduate education in China. Our modified TBL imparted basic knowledge to the students and also engaged them more effectively in applying knowledge to solve real-world issues. In conclusion, our TBL established a good foundation for the students' future in both medical research and clinical work.

  6. Leave Her out of It: Person-Presentation of Strategies is Harmful for Transfer.

    PubMed

    Riggs, Anne E; Alibali, Martha W; Kalish, Charles W

    2015-11-01

    A common practice in textbooks is to introduce concepts or strategies in association with specific people. This practice aligns with research suggesting that using "real-world" contexts in textbooks increases students' motivation and engagement. However, other research suggests this practice may interfere with transfer by distracting students or leading them to tie new knowledge too closely to the original learning context. The current study investigates the effects on learning and transfer of connecting mathematics strategies to specific people. A total of 180 college students were presented with an example of a problem-solving strategy that was either linked with a specific person (e.g., "Juan's strategy") or presented without a person. Students who saw the example without a person were more likely to correctly transfer the novel strategy to new problems than students who saw the example presented with a person. These findings are the first evidence that using people to present new strategies is harmful for learning and transfer. Copyright © 2015 Cognitive Science Society, Inc.

  7. Effect of Internet-Based Cognitive Apprenticeship Model (i-CAM) on Statistics Learning among Postgraduate Students

    PubMed Central

    Saadati, Farzaneh; Ahmad Tarmizi, Rohani

    2015-01-01

    Because students’ ability to use statistics, which is mathematical in nature, is one of the concerns of educators, embedding within an e-learning system the pedagogical characteristics of learning is ‘value added’ because it facilitates the conventional method of learning mathematics. Many researchers emphasize the effectiveness of cognitive apprenticeship in learning and problem solving in the workplace. In a cognitive apprenticeship learning model, skills are learned within a community of practitioners through observation of modelling and then practice plus coaching. This study utilized an internet-based Cognitive Apprenticeship Model (i-CAM) in three phases and evaluated its effectiveness for improving statistics problem-solving performance among postgraduate students. The results showed that, when compared to the conventional mathematics learning model, the i-CAM could significantly promote students’ problem-solving performance at the end of each phase. In addition, the combination of the differences in students' test scores were considered to be statistically significant after controlling for the pre-test scores. The findings conveyed in this paper confirmed the considerable value of i-CAM in the improvement of statistics learning for non-specialized postgraduate students. PMID:26132553

  8. Identification of good practices for teachers and students training activity in the ENVRIPLUS project

    NASA Astrophysics Data System (ADS)

    D'Addezio, Giuliana; Marsili, Antonella; Beranzoli, Laura

    2016-04-01

    We elaborated basic guiding principles that will be used to improve the content of the ENVRIPLUS e-Training Platform for multimedia education of Secondary School level teachers and students. The purpose is to favour teacher training and consequently students training on selected scientific themes faced within the ENVRIPLUS Research Infrastructures. "Best practices" could positively impacts on students by providing motivation on promoting scientific research and to increase the awareness of the Earth System complexity and Environmental challenges for its preservation and sustainability. Best practice teaching strategies represent an inherent part of a curriculum that exemplifies the connection and relevance identified in education research. The actions are designed to develop thinking and problem-solving skill through integration and active learning. Relationships are built though opportunities for communication and teamwork. Best practices motivate, engage and prompt student to learn and achieve. A starting list of principles is discussed in respect of the following main Best Practices pillars: • Identify the conceptual framework of the subject of the dissemination • Increase personal awareness of the individual potential • Easy personal elaboration and the connection of the subject with the school curriculum.

  9. Providing health services for children with special health care needs on out-of-state field trips.

    PubMed

    Erwin, Karen; Clark, Saudi; Mercer, Sharon Eli

    2014-03-01

    An increasing number of children attend school with special health care needs. Title II of the Americans with Disabilities Act (ADA) requires all school-sponsored activities to be easily accessible to all students. School-sponsored field trips enhance students' education, and students who require health services may not be excluded. For students with special health care needs, fully participating in the field trip experience presents unique challenges. These challenges are further complicated by out-of-state field trips due to variances in nurse practice acts, variances in delegation regulations, and most recently, state-by-state participation or nonparticipation in the Nurse Licensure Compact. Review of state laws, regulations, and nursing scope of practice for school health services is critical when planning and problem solving for students requiring health services on out-of-state field trips.

  10. Reviewing and Viewing.

    ERIC Educational Resources Information Center

    Clements, Douglas H., Ed.; And Others

    1988-01-01

    Presents reviews of three software packages. Includes "Cube Builder: A 3-D Geometry Tool," which allows students to build three-dimensional shapes; "Number Master," a multipurpose practice program for whole number computation; and "Safari Search: Problem Solving and Inference," which focuses on decision making in mathematical analysis. (PK)

  11. I Could Really Focus on the Students

    ERIC Educational Resources Information Center

    Kelting, Taylor; Jenkins, Jayne M.; Gaudreault, Karen Lux

    2014-01-01

    Clinical supervision is practiced across all stages of teacher development to improve instructional behaviors by providing objective feedback, as well as diagnosing and solving instructional problems. Clinical supervision is composed of three elements: planning conference, classroom observation, and feedback conference. Clinical supervision is…

  12. Implementing an Effective Mathematics Fact Fluency Practice Activity

    ERIC Educational Resources Information Center

    Riccomini, Paul J.; Stocker, James D., Jr.; Morano, Stephanie

    2017-01-01

    Proficiency in mathematics involves the seamless synchronization of conceptual understanding, procedural knowledge, computational fluency, and problem solving (NMAP, 2008). Clearly, fluency with mathematics facts is one element embedded within mathematical proficiency and important for students with disabilities to develop. As more and more…

  13. The Activity-Based Approach to Achieving Theoretical and Practical Consensus in Pedagogy of N. F. Talyzina

    ERIC Educational Resources Information Center

    Chapaev, Nikolay K.; Akimova, Olga B.; Selivanov, Andrey V.; Shaforostova, Tatiana V.

    2016-01-01

    The relevance of the problem under study is based on the necessity to solve the permanent problem of the unity of theory and practice in the content of students' cognitive activity in the modern conditions. The purpose of the article is to analyze and to generalize the main concepts of pedagogy by N.F. Talyzina for implementation of the…

  14. Size and consistency of problem-solving consultation outcomes: an empirical analysis.

    PubMed

    Hurwitz, Jason T; Kratochwill, Thomas R; Serlin, Ronald C

    2015-04-01

    In this study, we analyzed extant data to evaluate the variability and magnitude of students' behavior change outcomes (academic, social, and behavioral) produced by consultants through problem-solving consultation with teachers. Research questions were twofold: (a) Do consultants produce consistent and sizeable positive student outcomes across their cases as measured through direct and frequent assessment? and (b) What proportion of variability in student outcomes is attributable to consultants? Analyses of extant data collected from problem-solving consultation outcome studies that used single-case, time-series AB designs with multiple participants were analyzed. Four such studies ultimately met the inclusion criteria for the extant data, comprising 124 consultants who worked with 302 school teachers regarding 453 individual students. Consultants constituted the independent variable, while the primary dependent variable was a descriptive effect size based on student behavior change as measured by (a) curriculum-based measures, (b) permanent products, or (c) direct observations. Primary analyses involved visual and statistical evaluation of effect size magnitude and variability observed within and between consultants and studies. Given the nested nature of the data, multilevel analyses were used to assess consultant effects on student outcomes. Results suggest that consultants consistently produced positive effect sizes on average across their cases, but outcomes varied between consultants. Findings also indicated that consultants, teachers, and the corresponding studies accounted for a significant proportion of variability in student outcomes. This investigation advances the use of multilevel and integrative data analyses to evaluate consultation outcomes and extends research on problem-solving consultation, consultant effects, and meta-analysis of case study AB designs. Practical implications for evaluating consultation service delivery in school settings are also discussed. Copyright © 2015 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.

  15. Best practices for measuring students' attitudes toward learning science.

    PubMed

    Lovelace, Matthew; Brickman, Peggy

    2013-01-01

    Science educators often characterize the degree to which tests measure different facets of college students' learning, such as knowing, applying, and problem solving. A casual survey of scholarship of teaching and learning research studies reveals that many educators also measure how students' attitudes influence their learning. Students' science attitudes refer to their positive or negative feelings and predispositions to learn science. Science educators use attitude measures, in conjunction with learning measures, to inform the conclusions they draw about the efficacy of their instructional interventions. The measurement of students' attitudes poses similar but distinct challenges as compared with measurement of learning, such as determining validity and reliability of instruments and selecting appropriate methods for conducting statistical analyses. In this review, we will describe techniques commonly used to quantify students' attitudes toward science. We will also discuss best practices for the analysis and interpretation of attitude data.

  16. Swedish students' and preceptors' perceptions of what students learn in a six-month advanced pharmacy practice experience.

    PubMed

    Wallman, Andy; Sporrong, Sofia Kälvemark; Gustavsson, Maria; Lindblad, Asa Kettis; Johansson, Markus; Ring, Lena

    2011-12-15

    To identify what pharmacy students learn during the 6-month advanced pharmacy practice experience (APPE) in Sweden. Semi-structured interviews were conducted with 18 pharmacy APPE students and 17 pharmacist preceptors and analyzed in a qualitative directed content analysis using a defined workplace learning typology for categories. The Swedish APPE provides students with task performance skills for work at pharmacies and social and professional knowledge, such as teamwork, how to learn while in a work setting, self-evaluation, understanding of the pharmacist role, and decision making and problem solving skills. Many of these skills and knowledge are not accounted for in the curricula in Sweden. Using a workplace learning typology to identify learning outcomes, as in this study, could be useful for curricula development. Exploring the learning that takes place during the APPE in a pharmacy revealed a broad range of skills and knowledge that students acquire.

  17. New approaches in teaching spectroscopy technique and application classes: history, experiments and frontier lectures

    NASA Astrophysics Data System (ADS)

    Yang, Qing; Zhuge, Minghua; Yuan, Bo

    2017-08-01

    Spectroscopy has a long history. The theory of is difficult for students to understand. So we want to improve the traditional teaching to some way of interesting experience combined with historical knowledge, practical application and development frontiers. We make use of all kinds of resources to get vivid information of big events of spectroscopy development in order to show students the specific process of some phenomenon. Meanwhile, students will be suggested to read all kinds of latest papers relevantly to obtain much more information about this discipline. Both in class and in lab, we lead students to do some very useful experiments and give them guidance. Through this practice, they will understand the theory much more deeply, especially they will know how to solve the problems in research.

  18. Clinical education and clinical evaluation of respiratory therapy students.

    PubMed

    Cullen, Deborah L

    2005-09-01

    Different blends of knowledge, decision making, problem solving,professional behaviors, values, and technical skills are necessary in the changing health care environments in which respiratory therapists practice. Frequently, novice students are expected to perform quickly and efficiently,and it may be forgotten that students are still learning and mastering the foundation pieces of practice. Clinical educators take on the responsibility of student development in addition to overseeing patient care. Normally,these volunteer instructors are role models for respiratory therapy students. The characteristic of initiative when demonstrated by a beginning student is attractive to the clinical instructor, promotes sharing of experiences, and may evolve into a mentor-protege relationship. Some clinical instructors may be underprepared to teach and are uncomfortable with student evaluation. Respiratory therapy facilities in conjunction with academic institutions may consider sponsoring ongoing programs for clinical teachers. Teaching and learning in the clinical environment is more than demonstration of skills and knowledge. Furthermore, it can be debated whether the memorization of facts or of the steps of a skill is more valuable than competency in problem solving, clinical reasoning, or information retrieval. New knowledge is built within a context and is further integrated when grounded by experience. Development of "prediction in practice" or the anticipation of the next necessary actions may be worth integrating into the instructional toolbox. Intuition has been defined as an "understanding without a rationale". This definition separates intuition from rational decision making and presents intuition as a type of innate ability. Reflection when guided by clinical instructors can help deepen critical thinking, as will Socratic questioning on a regular basis. Most clinical staff can agree on the performance of an incompetent student, but discrimination of the levels of competence is more challenging. Observations allow the assessor to obtain the data necessary to evaluate performance, followed by assessment, which denotes a judgment made on the basis of an observation of events. Performance assessment should have stability and consistency, measure what is intended to be measured, and truly determine competence. In contrast, reflective analysis has been shown to be successful for clinical evaluation, thus departing from strict competency and product-based assessment. Students yearn to become clinically knowledgeable, and their enthusiasm should be fostered. An interest in clinical practice is the primary reason individuals enroll in respiratory therapy education programs. Educators,managers, and staff should assure that students experience an appropriate, rich, and diverse clinical curriculum that with practice develops clinical judgment, reasoning, and reflection on practice.

  19. Analysing task design and students' responses to context-based problems through different analytical frameworks

    NASA Astrophysics Data System (ADS)

    Broman, Karolina; Bernholt, Sascha; Parchmann, Ilka

    2015-05-01

    Background:Context-based learning approaches are used to enhance students' interest in, and knowledge about, science. According to different empirical studies, students' interest is improved by applying these more non-conventional approaches, while effects on learning outcomes are less coherent. Hence, further insights are needed into the structure of context-based problems in comparison to traditional problems, and into students' problem-solving strategies. Therefore, a suitable framework is necessary, both for the analysis of tasks and strategies. Purpose:The aim of this paper is to explore traditional and context-based tasks as well as students' responses to exemplary tasks to identify a suitable framework for future design and analyses of context-based problems. The paper discusses different established frameworks and applies the Higher-Order Cognitive Skills/Lower-Order Cognitive Skills (HOCS/LOCS) taxonomy and the Model of Hierarchical Complexity in Chemistry (MHC-C) to analyse traditional tasks and students' responses. Sample:Upper secondary students (n=236) at the Natural Science Programme, i.e. possible future scientists, are investigated to explore learning outcomes when they solve chemistry tasks, both more conventional as well as context-based chemistry problems. Design and methods:A typical chemistry examination test has been analysed, first the test items in themselves (n=36), and thereafter 236 students' responses to one representative context-based problem. Content analysis using HOCS/LOCS and MHC-C frameworks has been applied to analyse both quantitative and qualitative data, allowing us to describe different problem-solving strategies. Results:The empirical results show that both frameworks are suitable to identify students' strategies, mainly focusing on recall of memorized facts when solving chemistry test items. Almost all test items were also assessing lower order thinking. The combination of frameworks with the chemistry syllabus has been found successful to analyse both the test items as well as students' responses in a systematic way. The framework can therefore be applied in the design of new tasks, the analysis and assessment of students' responses, and as a tool for teachers to scaffold students in their problem-solving process. Conclusions:This paper gives implications for practice and for future research to both develop new context-based problems in a structured way, as well as providing analytical tools for investigating students' higher order thinking in their responses to these tasks.

  20. Teaching Kids with Learning Difficulties in Today's Classroom: How Every Teacher Can Help Struggling Students Succeed. Revised and Updated Third Edition

    ERIC Educational Resources Information Center

    Winebrenner, Susan

    2014-01-01

    A gold mine of practical, easy­-to-­use teaching methods, strategies, and tips to improve learning outcomes for students who score below proficiency levels. This fully revised and updated third edition provides information on integrated learning, problem solving, and critical thinking in line with Common Core State Standards and 21st-­century…

  1. Job Skills of the Financial Aid Professional.

    ERIC Educational Resources Information Center

    Heist, Vali

    2002-01-01

    Describes the skills practiced by student financial aid professionals which are valued by all employers, including problem solving, human relations, computer programming, teaching/training, information management, money management, business management, and science and math. Also describes how to develop skills outside of the office. (EV)

  2. EINO the Answer

    ERIC Educational Resources Information Center

    Hollister, James; Richie, Sam; Weeks, Arthur

    2010-01-01

    This study investigated the various methods involved in creating an intelligent tutor for the University of Central Florida Web Applets (UCF Web Applets), an online environment where student can perform and/or practice experiments. After conducting research into various methods, two major models emerged. These models include: 1) solving the…

  3. Life Skills Activities for Secondary Students with Special Needs.

    ERIC Educational Resources Information Center

    Mannix, Darlene

    This resource for life skills activities for adolescents with special needs covers aspects of interpersonal relationships, communication skills, academic and school skills, practical living skills, vocational skills, problem-solving skills, and lifestyle choices. Included are 190 illustrated activity sheets with related exercises, discussion…

  4. A Local Government Services Program

    ERIC Educational Resources Information Center

    Jacobs, Bruce

    1975-01-01

    The Local Government Services Program, a cooperative venture of Ferris State College and six community colleges in northern Michigan, is providing local government leaders with a wide range of educational and practical problem solving services. Students and faculty conduct seminars, workshops, and training programs; they also provide consultation…

  5. Service-based Solutions.

    ERIC Educational Resources Information Center

    Cummings, Lynda; Winston, Michael

    1998-01-01

    Describes the Solutions model used at Shelley High School in Idaho which gives students the opportunity to gain practical experience while tackling community problems. This approach is built on the three fundamentals of an integrated curriculum, a problem-solving focus, and service-based learning. Sample problems include increasing certain trout…

  6. Building Arguments: Key to Collaborative Scaffolding

    ERIC Educational Resources Information Center

    Cáceres, M.; Nussbaum, M.; Marroquín, M.; Gleisner, S.; Marquínez, J. T.

    2018-01-01

    Collaborative problem-solving in the classroom is a student-centred pedagogical practice that looks to improve learning. However, collaboration does not occur spontaneously; instead it needs to be guided by appropriate scaffolding. In this study we explore whether a script that explicitly incorporates constructing arguments in collaborative…

  7. Provision of medical student teaching in UK general practices: a cross-sectional questionnaire study

    PubMed Central

    Harding, Alex; Rosenthal, Joe; Al-Seaidy, Marwa; Gray, Denis Pereira; McKinley, Robert K

    2015-01-01

    Background Health care is increasingly provided in general practice. To meet this demand, the English Department of Health recommends that 50% of all medical students should train for general practice after qualification. Currently 19% of medical students express general practice as their first career choice. Undergraduate exposure to general practice positively influences future career choice. Appropriate undergraduate exposure to general practice is therefore highly relevant to workforce planning Aim This study seeks to quantify current exposure of medical students to general practice and compare it with past provision and also with postgraduate provision. Design and setting A cross-sectional questionnaire in the UK. Method A questionnaire regarding provision of undergraduate teaching was sent to the general practice teaching leads in all UK medical schools. Information was gathered on the amount of undergraduate teaching, how this was supported financially, and whether there was an integrated department of general practice. The data were then compared with results from previous studies of teaching provision. The provision of postgraduate teaching in general practice was also examined. Results General practice teaching for medical students increased from <1.0% of clinical teaching in 1968 to 13.0% by 2008; since then, the percentage has plateaued. The total amount of general practice teaching per student has fallen by 2 weeks since 2002. Medical schools providing financial data delivered 14.6% of the clinical curriculum and received 7.1% of clinical teaching funding. The number of departments of general practice has halved since 2002. Provision of postgraduate teaching has tripled since 2000. Conclusion Current levels of undergraduate teaching in general practice are too low to fulfil future workforce requirements and may be falling. Financial support for current teaching is disproportionately low and the mechanism counterproductive. Central intervention may be required to solve this. PMID:26009536

  8. Case-based learning facilitates critical thinking in undergraduate nutrition education: students describe the big picture.

    PubMed

    Harman, Tara; Bertrand, Brenda; Greer, Annette; Pettus, Arianna; Jennings, Jill; Wall-Bassett, Elizabeth; Babatunde, Oyinlola Toyin

    2015-03-01

    The vision of dietetics professions is based on interdependent education, credentialing, and practice. Case-based learning is a method of problem-based learning that is designed to heighten higher-order thinking. Case-based learning can assist students to connect education and specialized practice while developing professional skills for entry-level practice in nutrition and dietetics. This study examined student perspectives of their learning after immersion into case-based learning in nutrition courses. The theoretical frameworks of phenomenology and Bloom's Taxonomy of Educational Objectives triangulated the design of this qualitative study. Data were drawn from 426 written responses and three focus group discussions among 85 students from three upper-level undergraduate nutrition courses. Coding served to deconstruct the essence of respondent meaning given to case-based learning as a learning method. The analysis of the coding was the constructive stage that led to configuration of themes and theoretical practice pathways about student learning. Four leading themes emerged. Story or Scenario represents the ways that students described case-based learning, changes in student thought processes to accommodate case-based learning are illustrated in Method of Learning, higher cognitive learning that was achieved from case-based learning is represented in Problem Solving, and Future Practice details how students explained perceived professional competency gains from case-based learning. The skills that students acquired are consistent with those identified as essential to professional practice. In addition, the common concept of Big Picture was iterated throughout the themes and demonstrated that case-based learning prepares students for multifaceted problems that they are likely to encounter in professional practice. Copyright © 2015 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  9. Preparing Teacher-Students for Twenty-First-Century Learning Practices (PREP 21): A Framework for Enhancing Collaborative Problem-Solving and Strategic Learning Skills

    ERIC Educational Resources Information Center

    Häkkinen, Päivi; Järvelä, Sanna; Mäkitalo-Siegl, Kati; Ahonen, Arto; Näykki, Piia; Valtonen, Teemu

    2017-01-01

    With regard to the growing interest in developing teacher education to match the twenty-first-century skills, while many assumptions have been made, there has been less theoretical elaboration and empirical research on this topic. The aim of this article is to present our pedagogical framework for the twenty-first-century learning practices in…

  10. Pizza Boy vs the Highway Department

    NASA Astrophysics Data System (ADS)

    Ilyes, Mark A.; Filizzi, James M.

    2005-10-01

    Many physics teachers and physics education researchers have found that students are highly motivated by classroom or laboratory experiences involving practical, "real-life" scenarios. Rather than attempting to verify a known relationship, they are asked to use an existing relationship to solve some practical problem. The purpose of this experimental investigation is to determine the speed of a car prior to applying the brakes and skidding into a flatbed tractor-trailer.

  11. Professional boundaries: the perspective of the third year medical student in negotiating three boundary challenges.

    PubMed

    Gaufberg, Elizabeth; Baumer, Nicole; Hinrichs, Margaret; Krupat, Ed

    2008-01-01

    The negotiation and maintenance of professional boundaries is a central developmental challenge for medical students in clinical training. The purpose of this study is to assess problem solving strategies, decisions made, level of confidence, and language used by beginning third year medical students when faced with professional boundary challenges. Forty-two students in the first quarter of their third year at Harvard Medical School viewed three brief audiovisual "trigger" tapes, each depicting a medical student faced with a boundary challenge (the offer of a gift, a personal question from a patient, an errand request by a supervisor). There was a high degree of agreement and confidence among students about how to negotiate a monetary gift (reject) and how to respond to a patient's "too personal" question (not answer and/or redirect). However, the students were less confident and more divided on the issue of whether or not to run a personal errand for the team at the request of a superior. Our findings have implications for medical professionalism curricula, especially regarding the importance of mentorship and role modeling in medical education. Effective professional boundaries curricula allow the student to problem solve and practice communication skills in boundary challenging situations.

  12. A case study on modeling and independent practice cycles in teaching beginning science inquiry

    NASA Astrophysics Data System (ADS)

    Sadeghpour-Kramer, Margaret Ann Plattenberger

    With increasing pressure to produce high standardized test scores, school systems will be looking for the surest ways to increase scores. Decision makers uninformed about the value of inquiry science may recommend more direct teaching methods and curricula in the hope that students will more quickly accumulate factual information for high test scores. This researcher and other proponents of inquiry science suggest that the best preparation for any test is the ability to use all available information and problem solving skills to think through to a solution. This study proposes to test the theory that inquiry problem solving skills need to be modeled and practiced in increasingly independent situations to be learned. Students tend to copy what they have been led to believe is correct, and to avoid continued copying, their skills must be applied in new situations requiring independent practice and improvement. This study follows ten sixth grade students, selected for maximum variation, as they participate in a series of five cycles of modeling and practicing inquiry science investigations as part of an ongoing unit on water quality. The cycles were designed to make the students increasingly independent in their use of inquiry. The results showed that all ten students made significant progress from copying teacher modeling in investigation #1 towards independent inquiry, with nine of the ten achieving acceptable to good beginning independent inquiry in investigation #5. Each case was analyzed independently using such case study methodology as pattern matching, case study protocols, and theoretical propositions. Constant comparison and other case study methods were used in a cross-case analysis. Eight cases confirmed a matching set of propositions and the hypothesis, in literal replication, and the other two cases confirmed a set of propositions and the hypothesis through theoretical replication. The study suggests to educators that repeated cycles of modeling and increasingly independent practice serve three purposes; first to develop independent inquiry skills by providing multiple opportunities with intermittent modeling, second to repeat the modeling initially in very similar situations and then encourage transfer to new situations, and third to provide repeated modeling for those students who do not grasp the concepts as quickly as do their classmates.

  13. The Effect of a Self-Reflection and Insight Program on the Nursing Competence of Nursing Students: A Longitudinal Study.

    PubMed

    Pai, Hsiang-Chu

    2015-01-01

    Nurses have to solve complex problems for their patients and their families, and as such, nursing care capability has become a focus of attention. The aim of this longitudinal study was to develop a self-reflection practice exercise program for nursing students to be used during clinical practice and to evaluate the effects of this program empirically and longitudinally on change in students' clinical competence, self-reflection, stress, and perceived teaching quality. An additional aim was to determine the predictors important to nursing competence. We sampled 260 nursing students from a total of 377 practicum students to participate in this study. A total of 245 students nurse completed 4 questionnaires, Holistic Nursing Competence Scale, Self-Reflection and Insight Scale, Perceived Stress Scale, and Clinical Teaching Quality Scale, at 2, 4, and 6 months after clinical practice experience. Generalized estimating equation models were used to examine the change in scores on each of the questionnaires. The findings showed that, at 6 months after clinical practice, nursing competence was significantly higher than at 2 and 4 months, was positively related to self-reflection and insight, and was negatively related to practice stress. Nursing students' competence at each time period was positively related to clinical teachers' instructional quality at 4 and 6 months. These results indicate that a clinical practice program with self-reflection learning exercise improves nursing students' clinical competence and that nursing students' self-reflection and perceived practice stress affect their nursing competence. Nursing core competencies are enhanced with a self-reflection program, which helps nursing students to improve self-awareness and decrease stress that may interfere with learning. Further, clinical practice experience, self-reflection and insight, and practice stress are predictors of nursing students' clinical competence. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Understanding and Accommodating Students with Depression in the Classroom

    ERIC Educational Resources Information Center

    Crundwell, R. Marc; Killu, Kim

    2007-01-01

    Depression and mood disorders present a significant challenge in the classroom; resulting symptoms can impact memory, recall, motivation, problem solving, task completion, physical and motor skills, and social interactions. Little information is available on practical instructional accommodations and modifications for use by the classroom teacher.…

  15. The Underlying Message in LD Intervention Research: Findings from Research Syntheses.

    ERIC Educational Resources Information Center

    Vaughn, Sharon; Gersten, Russell; Chard, David J.

    2000-01-01

    This article summarizes the critical findings of recent research syntheses concerning intervention with students who have learning disabilities. The syntheses examined research on higher-order processing and problem- solving, reading comprehension, written expression, and grouping practices associated with improved outcomes in reading. Principles…

  16. How Engineers Perceive the Importance of Ethics in Finland

    ERIC Educational Resources Information Center

    Taajamaa, Ville; Majanoja, Anne-Maarit; Bairaktarova, Diana; Airola, Antti; Pahikkala, Tapio; Sutinen, Erkki

    2018-01-01

    Success in complex and holistic engineering practices requires more than problem-solving abilities and technical competencies. Engineering education must offer proficient technical competences and also train engineers to think and act ethically. A technical "engineering-like" focus and demand have made educators and students overlook the…

  17. Solving Conflicts--Not Just for Children.

    ERIC Educational Resources Information Center

    Scherer, Marge

    1992-01-01

    Although teachers can gain as much as students from practicing conflict resolution procedures, they often remain unconvinced about benefits unless they actually try them. Drawing on experimental programs in Pittsburgh and New York City, this article describes the basics of moving adults from conflict to collaboration. Morton Deutsch's sidebar…

  18. The Development and Implementation of an Integrating Pharmacy Practice Laboratory.

    ERIC Educational Resources Information Center

    Newton, Gail D.; And Others

    1990-01-01

    The intent of an integrating laboratory was to help pharmacy students learn to solve problems, make decisions, and develop good communication skills. Educational units included exercises in guided design, patient profile review, patient inquiries, extemporaneous prescription compounding, clinical literature evaluation, and videotapes of simulated…

  19. A Math-Box Tale

    ERIC Educational Resources Information Center

    Nelson, Catherine J.

    2012-01-01

    The author is a strong proponent of incorporating the Content and Process Standards (NCTM 2000) into the teaching of mathematics. For candidates in her methods course, she models research-based best practices anchored in the Standards. Her students use manipulatives, engage in problem-solving activities, listen to children's literature, and use…

  20. [Effects of practical training to increase motivation for learning and related factors].

    PubMed

    Yamaguchi, Takumi; Akiyama, Shinji; Sagara, Hidenori; Tanaka, Akihiro; Miyauchi, Yoshirou; Araki, Hiroaki; Shibata, Kazuhiko; Izushi, Fumio; Namba, Hiroyuki

    2014-01-01

    Under the six-year pharmaceutical education system that was initiated in April 2006, students who had completed the course in March 2012 became the first graduates. The six-year system encourages students to develop a well-rounded personality, a deep sense of ethics, knowledge required for health care professionals, abilities to identify and solve problems, and practical skills required in clinical settings, as well as basic knowledge and skills. Under the new education system based on the "pharmaceutical education model core curriculums" and "practical training model core curriculums", general pharmaceutical education is implemented in each college, and five-month practical training is conducted in clinical settings. Clinical tasks experienced by students for the first time are expected to significantly influence their motivation to learn and future prospects. In the present survey research, students who had completed practical training evaluated the training program, and correspondence and logistic regression analyses of the results were conducted to examine the future effects and influences of the training on the students. The results suggest that the students viewed the practical training program positively. In addition, clinical experience during the training sessions not only influenced their decisions on future careers, but also significantly increased their motivation to learn. Furthermore, their motivation for learning was increased most by the enthusiasm of pharmacists who advised them in clinical settings, rather than the training program itself. To improve pharmaceutical clinical learning, it is important to develop teaching and working environments for pharmacists in charge of advising students in clinical training.

  1. Intelligent tutoring using HyperCLIPS

    NASA Technical Reports Server (NTRS)

    Hill, Randall W., Jr.; Pickering, Brad

    1990-01-01

    HyperCard is a popular hypertext-like system used for building user interfaces to databases and other applications, and CLIPS is a highly portable government-owned expert system shell. We developed HyperCLIPS in order to fill a gap in the U.S. Army's computer-based instruction tool set; it was conceived as a development environment for building adaptive practical exercises for subject-matter problem-solving, though it is not limited to this approach to tutoring. Once HyperCLIPS was developed, we set out to implement a practical exercise prototype using HyperCLIPS in order to demonstrate the following concepts: learning can be facilitated by doing; student performance evaluation can be done in real-time; and the problems in a practical exercise can be adapted to the individual student's knowledge.

  2. A nested virtualization tool for information technology practical education.

    PubMed

    Pérez, Carlos; Orduña, Juan M; Soriano, Francisco R

    2016-01-01

    A common problem of some information technology courses is the difficulty of providing practical exercises. Although different approaches have been followed to solve this problem, it is still an open issue, specially in security and computer network courses. This paper proposes NETinVM, a tool based on nested virtualization that includes a fully functional lab, comprising several computers and networks, in a single virtual machine. It also analyzes and evaluates how it has been used in different teaching environments. The results show that this tool makes it possible to perform demos, labs and practical exercises, greatly appreciated by the students, that would otherwise be unfeasible. Also, its portability allows to reproduce classroom activities, as well as the students' autonomous work.

  3. What Physicist Mean By The Equals Sign In Undergraduate Education

    NASA Astrophysics Data System (ADS)

    Zohrabi Alaee, Dina; Kornick, Kellianne; Sayre, Eleanor C.; Franklin, Scott V.

    2017-01-01

    Mathematical concepts and tools have an important role in physics. Faculties want students to think critically about mathematics and the underlying fundamental concepts, rather than simply memorizing a series of equations and answers. The equals sign - ubiquitous in problem solving - carries different conceptual meaning depending on how it is used; this meaning is deeply tied to cultural practices in problem solving in physics. We use symbolic forms to investigate the conceptual and cultural meanings of the equals sign across physics contexts. We built and validated a rubric to classify the ways that physics students use the equals sign in their written work. Our categories are causality, assignments, definitional, balancing, and just math. We analyze students' use of the equals sign in their written homework and exam solutions in an upper-division electrostatics course. We correlate the kinds of equal signs within problem solutions with the difficulty of the problem. We compare they ways students use the equals sign to their course lectures and textbook.

  4. A Practice of Rescue Robot Contest in Junior High Schools

    NASA Astrophysics Data System (ADS)

    Kawada, Kazuo; Nagamatsu, Masayasu; Yamamoto, Toru

    The rescue robot contest for junior high school students was created to give students an opportunity to design a robot to rescue the victims under large scale disasters. The activity was not only intended as an humanitarian project but also aiming at students to : (1) take the role of victims and imagining the situation from his or her perspective, (2) enhance thinking skills, creativity through the problem solving processes and, (3) work cooperatively in groups. From results of questionnaire for the participated students, important factors for further implementation as curriculum of technology education are implied.

  5. A Practical Decision Guide for Integrating Digital Applications and Handheld Devices into Advanced Individual Training

    DTIC Science & Technology

    2013-07-01

    the devices increase efficiency and make instruction easier for them. (1) Demonstrate the ability of mobile learning to improve student learning ...predictors of learning , after controlling for the effects of cognitive ability and pre-training knowledge of the subject matter. Equally as...conventional teaching. PBL is an instructional model originally developed in medical schools , in which students are given a complex problem to solve that may

  6. Coping in the World of Work. Practice in Problem Solving. Presentation Scripts. Filmstrip No. 1: Problems on the Job; and Filmstrip No. 2: Work Entry and Job Adjustment Problems.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center for Vocational Education.

    Presentation scripts for two sound filmstrips are contained in this document, which accompanies a career development unit on coping in the world of work designed to assist students in developing coping strategies to deal with work entry and job adjustment problems. (Other components of the unit--instructor's handbook, student guide, and…

  7. ASP, Art and Science of Practice: Educating Military Operations Research Practitioners

    DTIC Science & Technology

    2015-04-01

    the ships are relatively slow. This is a multiple traveling salesman problem with moving customers, where the Navy may consume a gallon of fuel to...Defense, in a unique relationship that ensures NPS students and faculty are focused on critical and important problems facing the military. Our students...integrate graduate education with a commitment to solving real military problems , and our programs have already been documented in the open literature

  8. Exploring creativity and critical thinking in traditional and innovative problem-based learning groups.

    PubMed

    Chan, Zenobia C Y

    2013-08-01

    To explore students' attitude towards problem-based learning, creativity and critical thinking, and the relevance to nursing education and clinical practice. Critical thinking and creativity are crucial in nursing education. The teaching approach of problem-based learning can help to reduce the difficulties of nurturing problem-solving skills. However, there is little in the literature on how to improve the effectiveness of a problem-based learning lesson by designing appropriate and innovative activities such as composing songs, writing poems and using role plays. Exploratory qualitative study. A sample of 100 students participated in seven semi-structured focus groups, of which two were innovative groups and five were standard groups, adopting three activities in problem-based learning, namely composing songs, writing poems and performing role plays. The data were analysed using thematic analysis. There are three themes extracted from the conversations: 'students' perceptions of problem-based learning', 'students' perceptions of creative thinking' and 'students' perceptions of critical thinking'. Participants generally agreed that critical thinking is more important than creativity in problem-based learning and clinical practice. Participants in the innovative groups perceived a significantly closer relationship between critical thinking and nursing care, and between creativity and nursing care than the standard groups. Both standard and innovative groups agreed that problem-based learning could significantly increase their critical thinking and problem-solving skills. Further, by composing songs, writing poems and using role plays, the innovative groups had significantly increased their awareness of the relationship among critical thinking, creativity and nursing care. Nursing educators should include more types of creative activities than it often does in conventional problem-based learning classes. The results could help nurse educators design an appropriate curriculum for preparing professional and ethical nurses for future clinical practice. © 2013 Blackwell Publishing Ltd.

  9. Exploration on the matching between Optical Comprehensive Design Experiment and Washington Accord

    NASA Astrophysics Data System (ADS)

    Cao, Yiping; Chen, Wenjing; Zhang, Qican; Liu, Yuankun; Li, Dahai; Zhou, Xinzhi; Wei, Jun

    2017-08-01

    Common problems faced in optical comprehensive design experiment and going against the Washington Accord are pointed out. For resolving these problems, an instructional and innovative teaching scheme for Optics Comprehensive Design Experiment is proposed. We would like to understand the student that can improve the hands-on practical ability, theory knowledge understanding ability, complex problem solving ability, engineering application ability, cooperative ability after tracking and researching the student who have attended the class about Optical Comprehensive Design Experiment, We found that there are some problems on the course such as the experiment content vague, the student beginning less time, phase separation theory and engineering application, the experiment content lack of selectivity and so on. So we have made some improvements reference to the Washington Accord for the class teaching plan about Optical Comprehensive Design Experiment. This class must relevant to the engineering basic courses, professional foundation course and the major courses, so far as to the future study and work that which can play a role in inheriting and continuity to the students. The Optical Comprehensive Design Experiment teaching program requires students learning this course to have learnt basic courses like analog electronics technique, digital electronic technique, applied optics and computer and other related courses which students are required to comprehensively utilize. This teaching scheme contains six practical complex engineering problems which are respectively optical system design, light energy meter design, illuminometer design, material refractive index measuring system design, light intensity measuring system design and open design. Establishing the optional experiment and open experiment can provide students with a greater choice and enhance the students' creativity, vivid teaching experimental teachers and enriching contents of experiment can make the experiment more interesting, providing students with more opportunities to conduct experiment and improving students' practical ability with long learning time, putting emphasis on student's understanding of complex engineering problems and the cognitive of the process to solve complex engineering problems with actual engineering problems. Applying the scheme in other courses and improving accordingly will be able to ensure the quality of engineering education. Look forward to offering useful reference for the curriculum system construction in colleges and universities.

  10. Aptitude-treatment interactions revisited: effect of metacognitive intervention on subtypes of written expression in elementary school students.

    PubMed

    Hooper, Stephen R; Wakely, Melissa B; de Kruif, Renee E L; Swartz, Carl W

    2006-01-01

    We examined the effectiveness of a metacognitive intervention for written language performance, based on the Hayes model of written expression, for 73 fourth-grade (n = 38) and fifth-grade (n = 35) students. The intervention consisted of twenty 45-min writing lessons designed to improve their awareness of writing as a problem-solving process. Each of the lessons addressed some aspect of planning, translating, and reflecting on written products; their self-regulation of these processes; and actual writing practice. All instruction was conducted in intact classrooms. Prior to the intervention, all students received a battery of neurocognitive tests measuring executive functions, attention, and language. In addition, preintervention writing samples were obtained and analyzed holistically and for errors in syntax, semantics, and spelling. Following the intervention, the writing tasks were readministered and cluster analysis of the neurocognitive data was conducted. Cluster analytic procedures yielded 7 reliable clusters: 4 normal variants, 1 Problem Solving weakness, 1 Problem Solving Language weaknesses, and 1 Problem Solving strength. The response to the single treatment by these various subtypes revealed positive but modest findings. Significant group differences were noted for improvement in syntax errors and spelling, with only spelling showing differential improvement for the Problem Solving Language subtype. In addition, there was a marginally significant group effect for holistic ratings. These findings provide initial evidence that Writing Aptitude (subtype) x Single Treatment interactions exist in writing, but further research is needed with other classification schemes and interventions.

  11. Teaching Problem Solving Skills to Elementary Age Students with Autism

    ERIC Educational Resources Information Center

    Cote, Debra L.; Jones, Vita L.; Barnett, Crystal; Pavelek, Karin; Nguyen, Hoang; Sparks, Shannon L.

    2014-01-01

    Students with disabilities need problem-solving skills to promote their success in solving the problems of daily life. The research into problem-solving instruction has been limited for students with autism. Using a problem-solving intervention and the Self Determined Learning Model of Instruction, three elementary age students with autism were…

  12. The Value of Clinical Jazz: Teaching Critical Reflection on, in, and Toward Action.

    PubMed

    Casapulla, Sharon; Longenecker, Randall; Beverly, Elizabeth A

    2016-05-01

    Clinical Jazz is a small-group strategy in medical education designed to develop interpersonal skills and improve doctor-patient and interprofessional relationships. The purpose of this study was to explore medical students' and faculty facilitators' perceived value of Clinical Jazz. We conducted a modified Nominal Group Process with participating medical students (n=21), faculty facilitators (n=5), and research team members (n=3). Students and faculty facilitators independently answered the question, "What do you value about Clinical Jazz?" We then conducted content and thematic analyses on the resulting data. Three themes emerged during analysis: (1) students and faculty appreciated the opportunity to learn and practice a thoughtful and structured process for problem solving, (2) students and faculty valued the safety of the group process in sharing a diversity of perspectives on topics in medicine, and (3) students and faculty acknowledged the importance of addressing real and challenging problems that are rarely addressed in formal lectures and other planned small-group settings. Clinical Jazz provides students and faculty with the opportunity to address the hidden and/or informal curriculum in medical education, while providing a safe space and time to solve important clinical and interprofessional problems.

  13. Extraction and Antibacterial Properties of Thyme Leaf Extracts: Authentic Practice of Green Chemistry

    ERIC Educational Resources Information Center

    Purcell, Sean C.; Pande, Prithvi; Lin, Yingxin; Rivera, Ernesto J.; Paw U, Latisha; Smallwood, Luisa M.; Kerstiens, Geri A.; Armstrong, Laura B.; Robak, MaryAnn T.; Baranger, Anne M.; Douskey, Michelle C.

    2016-01-01

    In this undergraduate analytical chemistry experiment, students quantitatively assess the antibacterial activity of essential oils found in thyme leaves ("Thymus vulgaris") in an authentic, research-like environment. This multi-week experiment aims to instill green chemistry principles as intrinsic to chemical problem solving. Students…

  14. Integrating Quantitative Skills in Introductory Ecology: Investigations of Wild Bird Feeding Preferences

    ERIC Educational Resources Information Center

    Small, Christine J.; Newtoff, Kiersten N.

    2013-01-01

    Undergraduate biology education is undergoing dramatic changes, emphasizing student training in the "tools and practices" of science, particularly quantitative and problem-solving skills. We redesigned a freshman ecology lab to emphasize the importance of scientific inquiry and quantitative reasoning in biology. This multi-week investigation uses…

  15. Instructional Design Issues in a Distributed Collaborative Engineering Design (CED) Instructional Environment

    ERIC Educational Resources Information Center

    Koszalka, Tiffany A.; Wu, Yiyan

    2010-01-01

    Changes in engineering practices have spawned changes in engineering education and prompted the use of distributed learning environments. A distributed collaborative engineering design (CED) course was designed to engage engineering students in learning about and solving engineering design problems. The CED incorporated an advanced interactive…

  16. Biotechnology Apprenticeship for Secondary-Level Students: Teaching Advanced Cell Culture Techniques for Research.

    ERIC Educational Resources Information Center

    Lewis, Jennifer R.; Kotur, Mark S.; Butt, Omar; Kulcarni, Sumant; Riley, Alyssa A.; Ferrell, Nick; Sullivan, Kathryn D.; Ferrari, Mauro

    2002-01-01

    Discusses small-group apprenticeships (SGAs) as a method for introducing cell culture techniques to high school participants. Teaches cell culture practices and introduces advance imaging techniques to solve various biomedical engineering problems. Clarifies and illuminates the value of small-group laboratory apprenticeships. (Author/KHR)

  17. Development of Legal Expertise

    ERIC Educational Resources Information Center

    Glöckner, Andreas; Towfigh, Emanuel; Traxler, Christian

    2013-01-01

    In a comprehensive empirical investigation (N = 71,405) we analyzed the development of legal expertise in a critical 1-year period of academic legal training in which advanced law students start practicing to solve complex cases. We were particularly interested in the functional form of the learning curve and inter-individual differences in…

  18. Promoting Meaningful Learning: Innovations in Educating Early Childhood Professionals.

    ERIC Educational Resources Information Center

    Yelland, Nicola J., Ed.

    Grounded in active learning, inquiry, and problem solving embedded in a social and cultural context, this book presents a collection of ideas illustrating innovative practices for educating early childhood professionals in university and other contexts. The book is presented in three parts. Part 1, "Listening to Student Voices," is…

  19. Get Real!--Physically Reasonable Values for Teaching Electrostatics

    ERIC Educational Resources Information Center

    Morse, Robert A.

    2016-01-01

    Students get a sense of realistic values for physical situations from texts, but more importantly from solving problems. Therefore, problems should use realistic values for quantities to provide needed practice. Unfortunately, some problems on tests and in textbooks do not use realistic values. Physical situations in electrostatics seem to be…

  20. Class Acts: Activities and Games for the Business Classroom.

    ERIC Educational Resources Information Center

    Villee, Pat A. Gallo; Kaser, Kenneth J.

    This collection of 30 business classroom activities is designed to help students become active thinkers and doers. It provides a variety of ways for reinforcing concepts, practicing problem-solving and critical-thinking skills, and having fun. This manual provides an objective, instructions, and a material list for each activity. Several…

  1. The Heat Is on: An Inquiry-Based Investigation for Specific Heat

    ERIC Educational Resources Information Center

    Herrington, Deborah G.

    2011-01-01

    A substantial number of upper-level science students and practicing physical science teachers demonstrate confusion about thermal equilibrium, heat transfer, heat capacity, and specific heat capacity. The traditional method of instruction, which involves learning the related definitions and equations, using equations to solve heat transfer…

  2. Problem Solving and Comprehension. Third Edition.

    ERIC Educational Resources Information Center

    Whimbey, Arthur; Lochhead, Jack

    This book is directed toward increasing students' ability to analyze problems and comprehend what they read and hear. It outlines and illustrates the methods that good problem solvers use in attacking complex ideas, and provides practice in applying these methods to a variety of questions involving comprehension and reasoning. Chapter I includes a…

  3. Professional Competence Development at the Cooper Union School of Engineering. Project Report.

    ERIC Educational Resources Information Center

    Bussard, Ellen

    A 3-year project was developed to increase students' abilities to perform competently as professional engineers. The project sought to infuse into existing courses concern for, practice with, and development of three competencies critical to professional success: problem-solving, communication, and value clarification. Eight elementary and…

  4. Project-Based Learning in Electronic Technology: A Case Study

    ERIC Educational Resources Information Center

    Li, Li

    2015-01-01

    A case study of project-based learning (PBL) implemented in Tianjin University of Technology and Education is presented. This multidiscipline project is innovated to meet the novel requirements of industry while keeping its traditional effectiveness in driving students to apply knowledge to practice and problem-solving. The implementation of PBL…

  5. The School Library Media Center.

    ERIC Educational Resources Information Center

    Prostano, Emanuel T.; Prostano, Joyce S.

    With the aim of providing a realistic, professional approach to solving problems of administration, organization, and operation of the library media center, this textbook has been written for both practicing librarians as well as for students of library science. Included in the nine chapters are: an overview of terminology and the present state of…

  6. Math 3008--Developmental Mathematics II. Course Outline.

    ERIC Educational Resources Information Center

    New York Inst. of Tech., Old Westbury.

    This document contains the course syllabus and 12 independent practice modules for an introductory college algebra course designed to develop student proficiency in the basic algebraic skills. This is designed as the second of a two-semester sequence. Topics include performing operations with radicals and exponents; learning to solve equations;…

  7. Semantic Annotation of Ubiquitous Learning Environments

    ERIC Educational Resources Information Center

    Weal, M. J.; Michaelides, D. T.; Page, K.; De Roure, D. C.; Monger, E.; Gobbi, M.

    2012-01-01

    Skills-based learning environments are used to promote the acquisition of practical skills as well as decision making, communication, and problem solving. It is important to provide feedback to the students from these sessions and observations of their actions may inform the assessment process and help researchers to better understand the learning…

  8. School Psychology for the 21st Century: Foundations and Practices

    ERIC Educational Resources Information Center

    Merrell, Kenneth W.; Ervin, Ruth A.; Gimpel, Gretchen A.

    2005-01-01

    This engaging, authoritative introductory text comprehensively describes the role of the school psychologist in promoting positive educational and mental health outcomes for all students in today's schools. The book emphasizes a data-driven, problem-solving based approach to prevention and intervention with diverse children, youth, and their…

  9. Structurally Based Therapeutic Evaluation: A Therapeutic and Practical Approach to Teaching Medicinal Chemistry.

    ERIC Educational Resources Information Center

    Alsharif, Naser Z.; And Others

    1997-01-01

    Explains structurally based therapeutic evaluation of drugs, which uses seven therapeutic criteria in translating chemical and structural knowledge into therapeutic decision making in pharmaceutical care. In a Creighton University (Nebraska) medicinal chemistry course, students apply the approach to solve patient-related therapeutic problems in…

  10. Epistemic beliefs of middle and high school students in a problem-based, scientific inquiry unit: An exploratory, mixed methods study

    NASA Astrophysics Data System (ADS)

    Gu, Jiangyue

    Epistemic beliefs are individuals' beliefs about the nature of knowledge, how knowledge is constructed, and how knowledge can be justified. This study employed a mixed-methods approach to examine: (a) middle and high school students' self-reported epistemic beliefs (quantitative) and epistemic beliefs revealed from practice (qualitative) during a problem-based, scientific inquiry unit, (b) How do middle and high school students' epistemic beliefs contribute to the construction of students' problem solving processes, and (c) how and why do students' epistemic beliefs change by engaging in PBL. Twenty-one middle and high school students participated in a summer science class to investigate local water quality in a 2-week long problem-based learning (PBL) unit. The students worked in small groups to conduct water quality tests at in their local watershed and visited several stakeholders for their investigation. Pretest and posttest versions of the Epistemological Beliefs Questionnaire were conducted to assess students' self-reported epistemic beliefs before and after the unit. I videotaped and interviewed three groups of students during the unit and conducted discourse analysis to examine their epistemic beliefs revealed from scientific inquiry activities and triangulate with their self-reported data. There are three main findings from this study. First, students in this study self-reported relatively sophisticated epistemic beliefs on the pretest. However, the comparison between their self-reported beliefs and beliefs revealed from practice indicated that some students were able to apply sophisticated beliefs during the unit while others failed to do so. The inconsistency between these two types of epistemic beliefs may due to students' inadequate cognitive ability, low validity of self-report measure, and the influence of contextual factors. Second, qualitative analysis indicated that students' epistemic beliefs of the nature of knowing influenced their problem solving processes and construction of arguments during their inquiry activities. Students with more sophisticated epistemic beliefs acquired knowledge, presented solid evidence, and used it to support their claims more effectively than their peers. Third, students' self-reported epistemic beliefs became significantly more sophisticated by engaging in PBL. Findings from this study can potentially help researchers to better understand the relation between students' epistemic beliefs and their scientific inquiry practice,

  11. The relation between students' communicative moves during laboratory work in physics and outcomes of their actions

    NASA Astrophysics Data System (ADS)

    Andersson, J.; Enghag, M.

    2017-01-01

    In this case study, we explore students' communication during practical work in physics at an upper secondary school in Sweden from a sociocultural perspective. We investigate the relation between the interaction and content of students' communication and outcomes of their actions, with the purpose of finding new knowledge for informing teachers in their choice of instruction. We make discourse analysis of how students interact but also of what students are discussing in terms of underlying content at a linguistic and cognitive level. Twenty students divided into five groups were video recorded while performing four practical tasks at different stations during laboratory work about motion. An analytical framework was developed and applied for one group to three parts of the transcripts in which three different talk-types occurred. Discursive, content, action and purposive moves in the process were identified for each talk-type at both linguistic and cognitive levels. These moves represent information concerning what the teacher actually assigns students to do, and how students make meaning of the activities. Through these different communicative moves, students experience how laboratory work can enhance their competence to collaborate in a scientific environment with complex practical and theoretical questions to solve quickly. Implications of the findings are discussed.

  12. Space colonization as a tool for teaching anthropology

    NASA Astrophysics Data System (ADS)

    Melchionne, Thomas L.; Rosen, Steven L.

    1986-08-01

    One hundred years of anthropological research has sought to discover the properties of human nature. This research bears directly on the problem of creating new societies in alien environments. Space colonization presents theoretical and practical problems which anthropology can help solve. These problems and the attempt to solve them can be used in the classroom as a vehicle for teaching both ethnology and physical anthropology. In such a course students would explore the findings of both cultural and biosocial anthropology, and use these findings to construct a space colony which has reasonable prognosis for survival.

  13. Swedish Students' and Preceptors' Perceptions of What Students Learn in a Six-Month Advanced Pharmacy Practice Experience

    PubMed Central

    Sporrong, Sofia Kälvemark; Gustavsson, Maria; Lindblad, Åsa Kettis; Johansson, Markus; Ring, Lena

    2011-01-01

    Objective. To identify what pharmacy students learn during the 6-month advanced pharmacy practice experience (APPE) in Sweden. Methods. Semi-structured interviews were conducted with 18 pharmacy APPE students and 17 pharmacist preceptors and analyzed in a qualitative directed content analysis using a defined workplace learning typology for categories. Results. The Swedish APPE provides students with task performance skills for work at pharmacies and social and professional knowledge, such as teamwork, how to learn while in a work setting, self-evaluation, understanding of the pharmacist role, and decision making and problem solving skills. Many of these skills and knowledge are not accounted for in the curricula in Sweden. Using a workplace learning typology to identify learning outcomes, as in this study, could be useful for curricula development. Conclusions. Exploring the learning that takes place during the APPE in a pharmacy revealed a broad range of skills and knowledge that students acquire. PMID:22345716

  14. Problem representation and mathematical problem solving of students of varying math ability.

    PubMed

    Krawec, Jennifer L

    2014-01-01

    The purpose of this study was to examine differences in math problem solving among students with learning disabilities (LD, n = 25), low-achieving students (LA, n = 30), and average-achieving students (AA, n = 29). The primary interest was to analyze the processes students use to translate and integrate problem information while solving problems. Paraphrasing, visual representation, and problem-solving accuracy were measured in eighth grade students using a researcher-modified version of the Mathematical Processing Instrument. Results indicated that both students with LD and LA students struggled with processing but that students with LD were significantly weaker than their LA peers in paraphrasing relevant information. Paraphrasing and visual representation accuracy each accounted for a statistically significant amount of variance in problem-solving accuracy. Finally, the effect of visual representation of relevant information on problem-solving accuracy was dependent on ability; specifically, for students with LD, generating accurate visual representations was more strongly related to problem-solving accuracy than for AA students. Implications for instruction for students with and without LD are discussed.

  15. Encouraging Students to Think Strategically when Learning to Solve Linear Equations

    ERIC Educational Resources Information Center

    Robson, Daphne; Abell, Walt; Boustead, Therese

    2012-01-01

    Students who are preparing to study science and engineering need to understand equation solving but adult students returning to study can find this difficult. In this paper, the design of an online resource, Equations2go, for helping students learn to solve linear equations is investigated. Students learning to solve equations need to consider…

  16. Students’ difficulties in probabilistic problem-solving

    NASA Astrophysics Data System (ADS)

    Arum, D. P.; Kusmayadi, T. A.; Pramudya, I.

    2018-03-01

    There are many errors can be identified when students solving mathematics problems, particularly in solving the probabilistic problem. This present study aims to investigate students’ difficulties in solving the probabilistic problem. It focuses on analyzing and describing students errors during solving the problem. This research used the qualitative method with case study strategy. The subjects in this research involve ten students of 9th grade that were selected by purposive sampling. Data in this research involve students’ probabilistic problem-solving result and recorded interview regarding students’ difficulties in solving the problem. Those data were analyzed descriptively using Miles and Huberman steps. The results show that students have difficulties in solving the probabilistic problem and can be divided into three categories. First difficulties relate to students’ difficulties in understanding the probabilistic problem. Second, students’ difficulties in choosing and using appropriate strategies for solving the problem. Third, students’ difficulties with the computational process in solving the problem. Based on the result seems that students still have difficulties in solving the probabilistic problem. It means that students have not able to use their knowledge and ability for responding probabilistic problem yet. Therefore, it is important for mathematics teachers to plan probabilistic learning which could optimize students probabilistic thinking ability.

  17. Iteration in Early-Elementary Engineering Design

    NASA Astrophysics Data System (ADS)

    McFarland Kendall, Amber Leigh

    K-12 standards and curricula are beginning to include engineering design as a key practice within Science Technology Engineering and Mathematics (STEM) education. However, there is little research on how the youngest students engage in engineering design within the elementary classroom. This dissertation focuses on iteration as an essential aspect of engineering design, and because research at the college and professional level suggests iteration improves the designer's understanding of problems and the quality of design solutions. My research presents qualitative case studies of students in kindergarten and third-grade as they engage in classroom engineering design challenges which integrate with traditional curricula standards in mathematics, science, and literature. I discuss my results through the lens of activity theory, emphasizing practices, goals, and mediating resources. Through three chapters, I provide insight into how early-elementary students iterate upon their designs by characterizing the ways in which lesson design impacts testing and revision, by analyzing the plan-driven and experimentation-driven approaches that student groups use when solving engineering design challenges, and by investigating how students attend to constraints within the challenge. I connect these findings to teacher practices and curriculum design in order to suggest methods of promoting iteration within open-ended, classroom-based engineering design challenges. This dissertation contributes to the field of engineering education by providing evidence of productive engineering practices in young students and support for the value of engineering design challenges in developing students' participation and agency in these practices.

  18. The influence of achievement goals on the constructive activity of low achievers during collaborative problem solving.

    PubMed

    Gabriele, Anthony J

    2007-03-01

    Previous research on small-group learning has found that level of constructive activity (solving or explaining how to solve problems using ideas stated or implied in the explanation provided by a partner) was a better predictor of post-test achievement than either a student's prior achievement or the quality of help received (Webb, Troper, & Fall, 1995). The purpose of this study was to extend this research by examining the influence of additional factors, in particular, achievement goals and comprehension monitoring, on low achieving students' constructive activity after receiving help from a high achieving peer. Thirty-two low achieving upper elementary students from an urban school district in the mid-west of the United States were paired with high achieving partners. Videotape data from a previously reported study on peer collaboration were transcribed and reanalyzed. In that study, dyads were randomly assigned instructions designed to induce either a learning or performance goal and were videotaped as they worked together to solve a set of mathematical word problems. The following day, students were individually post-tested on problems similar to the ones worked on in pairs. Consistent with previous research, low achieving students' level of constructive activity predicted post-test performance. In addition, constructive activity was found to mediate the relationship between achievement goals and learning. However, achievement goals were not related to low achievers constructive use of help. Instead, achievement goals were related to low achievers' relative accuracy in comprehension monitoring, which in turn was related to level of constructive activity. The meaning of these results for understanding the processes by which low achievers learn from peer help and implications for classroom practice are discussed.

  19. Improving the learning of clinical reasoning through computer-based cognitive representation

    PubMed Central

    Wu, Bian; Wang, Minhong; Johnson, Janice M.; Grotzer, Tina A.

    2014-01-01

    Objective Clinical reasoning is usually taught using a problem-solving approach, which is widely adopted in medical education. However, learning through problem solving is difficult as a result of the contextualization and dynamic aspects of actual problems. Moreover, knowledge acquired from problem-solving practice tends to be inert and fragmented. This study proposed a computer-based cognitive representation approach that externalizes and facilitates the complex processes in learning clinical reasoning. The approach is operationalized in a computer-based cognitive representation tool that involves argument mapping to externalize the problem-solving process and concept mapping to reveal the knowledge constructed from the problems. Methods Twenty-nine Year 3 or higher students from a medical school in east China participated in the study. Participants used the proposed approach implemented in an e-learning system to complete four learning cases in 4 weeks on an individual basis. For each case, students interacted with the problem to capture critical data, generate and justify hypotheses, make a diagnosis, recall relevant knowledge, and update their conceptual understanding of the problem domain. Meanwhile, students used the computer-based cognitive representation tool to articulate and represent the key elements and their interactions in the learning process. Results A significant improvement was found in students’ learning products from the beginning to the end of the study, consistent with students’ report of close-to-moderate progress in developing problem-solving and knowledge-construction abilities. No significant differences were found between the pretest and posttest scores with the 4-week period. The cognitive representation approach was found to provide more formative assessment. Conclusions The computer-based cognitive representation approach improved the learning of clinical reasoning in both problem solving and knowledge construction. PMID:25518871

  20. Blended E-learning in a Web-based virtual hospital: a useful tool for undergraduate education in urology.

    PubMed

    Horstmann, M; Renninger, M; Hennenlotter, J; Horstmann, C C; Stenzl, A

    2009-08-01

    E-learning is a teaching tool used successfully in many medical subspecialties. Experience with its use in urology, however, is scarce. We present our teaching experience with the INMEDEA simulator to teach urological care to medical students. The INMEDEA simulator is an interactive e-learning system built around a virtual hospital which includes a department of urology. It allows students to solve virtual patient cases online. In this study, students were asked to prepare two urological cases prior to discussion of the cases in small groups. This blended teaching approach was evaluated by students through anonymous questionnaires. Of 70 4th year medical students 76% judged this teaching method as good or very good. Eighty-seven percent felt that it offered a good way to understand urological diseases better and 72% felt that learning with this method was fun. Nevertheless, 30 out of 70 free text statements revealed that further improvements of the program, including an easier and more comfortable navigation and a faster supply of information are necessary. Virtual patient cases offer a practicable solution for teaching based on problem solving in urology with a high acceptance rate by students.

  1. [Inventive activity of the Department of Metabolism Regulation of the Palladin Institute of Biochemistry of NAS of Ukraine].

    PubMed

    Danilova, V M; Vynogradova, R P; Chernysh, I G; Petrenko, T M

    2016-01-01

    The article is devoted to the inventive activity of the Department of Metabolism Regulation of the Palladin Institute of Biochemistry of NAS of Ukraine in the context of the history of its inception, development and the research activities of its founder, academician of NAS of Ukraine M. F. Guly as well as his students and followers. It briefly tells about practical achievements of M. F. Guly which were as significant, immense and diverse as his scientific accomplishments. The paper analyses in detail the practical results of scientific research of his students and followers aimed to solve practical problems of medicine, food-processing, agriculture, and which are essentially a continuation of the ideas and projects of M. F. Guly.

  2. From university to company: education of optical communications in cooperation with industry at Technical University of Ostrava

    NASA Astrophysics Data System (ADS)

    Vasinek, Vladimir; Skapa, Jan; Siska, Petr; Hanacek, Frantisek; Latal, Jan; Koudelka, Petr; Petrikova, Iva

    2009-06-01

    Paper deals with cooperation between companies and university, especially with interactions companies and students, companies and pedagogues. At present it is possible to observe insufficient level of practical skills and knowledge among students and their pedagogues, there is no articulation for companies' demands. We try to solve this situation with the help of pilot compartment. Its main task is to associate university teachers, graduate students and companies` specialists. Within the scope activities of the compartment is to prepare one or two day's long special courses. Their mass point is focused to practical training; prepare conditions for trainee-ships dedicated to teachers and students on one side and special courses for technicians, dealers and companies' management on the other. The main goal of this compartment is an interconnection between university education and requirements out coming from praxis. There are many ways of how to fulfill such cooperation.

  3. TGT for chemistry learning to enhance students' achievement and critical thinking skills

    NASA Astrophysics Data System (ADS)

    Bolhassan, Norlailatulakma; Taha, Hafsah

    2017-05-01

    The form of cooperative learning known as Teams-Games-Tournament (TGT) in this study favors the use of teams work and learning tools combined with student play and practice to foster students' achievement and critical thinking skills. Using this paradigm, this study incorporates Teams-Games-Tournament and Flash Cards Games Kit during an 8-weeks experimental instruction period that includes 67 Form Four students; 34 students in the experimental group and 33 in the control group. The learning design in experimental group emphasizes scaffolding, guided practices, cooperative learning, and active participation in learning. While the experimental group experienced the TGT approach, the control group encountered the conventional teaching approach of chemistry drills. An achievement chemistry test and Watson Glaser Critical Thinking Appraisal (WGCTA) were used for the pretest and posttest. The finding indicates that TGT learning was more effective than drills in promoting chemistry performance, and the playful competiveness among students promotes students' critical thinking. In addition, TGT cooperative learning also creates an active learning environment in solving problems and discussions among students and teachers.

  4. Acknowledging Spanish and English resources during mathematical reasoning

    NASA Astrophysics Data System (ADS)

    LópezLeiva, Carlos A.; Torres, Zayoni; Khisty, Lena L.

    2013-12-01

    As English-only efforts continue in the US schooling system, dual-language programs have served as attempts to preserve students' home language. An after-school, dual-language, Spanish-English, mathematics program, Los Rayos was developed in a predominantly Mexican/Mexican-American neighborhood in Chicago. As participant observers with a sociocultural perspective, we explored the linguistic and personal resources used by participating 4th grade bilingual Latina/o students. We found that students used imaginative, playful, and hybrid linguistic resources to make sense of and solve probability tasks when engaged within a zone of mathematical practice. Results challenge narrow perspectives on bilingual students' linguistic resources. Language implications are discussed.

  5. Problem Solving for the Twenty-First Century: Global Education Activities in the Social Studies Curriculum (K-12).

    ERIC Educational Resources Information Center

    Peters, Richard

    Educators are encouraged in this document to practice a multi-disciplinary approach in the classroom to prepare students for new management styles in an interrelated society. The first section on perceptions covers the following: information processing (planning, implementing, assessing); the learning process (exploration, invention, application);…

  6. MBA Program Trends and Best Practices in Teaching Sustainability: Live Project Courses

    ERIC Educational Resources Information Center

    Sroufe, Robert; Ramos, Diane

    2011-01-01

    This study offers a model for incorporating live sustainability consulting projects in an MBA curriculum to nurture cross-functional faculty collaboration while offering students proving ground for solving contemporary challenges related to ethical management of all forms of capital. We attempt to first lay a foundation for the recent evolution of…

  7. Service-Learning in Entomology: Teaching, Research, and Outreach Domestically and Abroad

    ERIC Educational Resources Information Center

    Robinette, Marianne Shockley; Noblet, Ray

    2009-01-01

    Insects are ideal models for demonstrating an array of biological and ecological concepts and the application of biology to solve real-world problems. Integrating service-learning, a pedagogy bridging theory and practice, into the entomology curriculum at the University of Georgia provides students an opportunity to participate in developing and…

  8. Differentiating Instruction: Providing the Right Kinds of Worked Examples for Individual Students

    ERIC Educational Resources Information Center

    Booth, Julie L.; Koedinger, Kenneth R.; Newton, Kristie J.; Lange, Karin E.

    2013-01-01

    A plethora of laboratory studies have shown that including the study of worked examples during problem-solving practice improves learning (Sweller, 1999; Sweller & Cooper, 1985). While most worked-example research focuses on the use of correct examples, recent work suggests that asking children to explain a combination of correct and incorrect…

  9. Majoring in the Rest of Your Life. Career Secrets for College Students.

    ERIC Educational Resources Information Center

    Carter, Carol

    Primarily intended for college freshmen, this book provides practical advice and hints on ways to succeed in college and on setting career goals. Thirteen chapters outline and discuss various life skills and "tools" for succeeding in college and on the job, including planning and organizing; problem solving/analytical skills;…

  10. Learning Ethics through Everyday Problems: Informed Consent

    ERIC Educational Resources Information Center

    Verdu, Fernando; Frances, Francesc; Castello, Ana

    2012-01-01

    The teaching of bioethics and its importance in clinical relationships is to a certain extent complicated when we address students of medicine, young people who are more used to dealing with and solving strictly clinical problems. Informed Consent is one of the aspects of professional practice that is generally and widely accepted in Western…

  11. ULg Spectra: An Interactive Software Tool to Improve Undergraduate Students' Structural Analysis Skills

    ERIC Educational Resources Information Center

    Agnello, Armelinda; Carre, Cyril; Billen, Roland; Leyh, Bernard; De Pauw, Edwin; Damblon, Christian

    2018-01-01

    The analysis of spectroscopic data to solve chemical structures requires practical skills and drills. In this context, we have developed ULg Spectra, a computer-based tool designed to improve the ability of learners to perform complex reasoning. The identification of organic chemical compounds involves gathering and interpreting complementary…

  12. A Framework for Analyzing the Collaborative Construction of Arguments and Its Interplay with Agency

    ERIC Educational Resources Information Center

    Mueller, Mary; Yankelewitz, Dina; Maher, Carolyn

    2012-01-01

    In this report, we offer a framework for analyzing the ways in which collaboration influences learners' building of mathematical arguments and thus promotes mathematical understanding. Building on a previous model used to analyze discursive practices of students engaged in mathematical problem solving, we introduce three types of collaboration and…

  13. The Portable Patient Problem Pack: A Problem-Based Learning Unit

    ERIC Educational Resources Information Center

    Barrows, Howard S.; Tamblyn, Robyn M.

    1977-01-01

    The Portable Patient Problem Pack (P4), a method of simulating a patient's problem in a card deck format, is designed to develop the student's problem-solving or diagnostic skills in a manner consistent with the skills of the practicing clinician. Its effectiveness at McMaster University is reported. (LBH)

  14. Videotaping EST/ESP Student Projects: "Real World" Research Projects for Professional and Academic Preparation.

    ERIC Educational Resources Information Center

    Gallowich, Kay

    Descriptive information and supporting documents for courses taught in the language center of a school of mines are presented here. The first is a four-semester engineering practices introductory course sequence that incorporates professional-level technical problem-solving, cooperative learning, and the preparation of written and oral…

  15. Professional Competence Development at the Cooper Union School of Engineering. Course Development and Course Materials.

    ERIC Educational Resources Information Center

    Bussard, Ellen

    A 3-year project was developed to increase students' abilities to perform competently as professional engineers. The project sought to infuse into existing courses concern for, practice with, and development of three competencies critical to professional success: problem-solving, communication, and value clarification. Eight elementary and…

  16. Exploring Focal and Aberration Properties of Electrostatic Lenses through Computer Simulation

    ERIC Educational Resources Information Center

    Sise, Omer; Manura, David J.; Dogan, Mevlut

    2008-01-01

    The interactive nature of computer simulation allows students to develop a deeper understanding of the laws of charged particle optics. Here, the use of commercially available optical design programs is described as a tool to aid in solving charged particle optics problems. We describe simple and practical demonstrations of basic electrostatic…

  17. Facilitation and Assessment of Student Learning in Business Communication

    ERIC Educational Resources Information Center

    Mahin, Linda; Kruggel, Thomas G.

    2006-01-01

    Business and professional writing courses offer ideal contexts for incorporating service learning into the academic classroom. The focus of such courses on rhetorical analysis and language as social action provide a sound theoretical and practical ground for the application of writing and speaking skills to solve problems and effect change. In…

  18. Moving the Learning of Teaching Closer to Practice: Teacher Education Implications of School-Based Inquiry Teams

    ERIC Educational Resources Information Center

    Gallimore, Ronald; Ermeling, Bradley A.; Saunders, William M.; Goldenberg, Claude

    2009-01-01

    A 5-year prospective, quasi-experimental investigation demonstrated that grade-level teams in 9 Title 1 schools using an inquiry-focused protocol to solve instructional problems significantly increased achievement. Teachers applying the inquiry protocol shifted attribution of improved student performance to their teaching rather than external…

  19. A Reconfigurable Simulation-Based Test System for Automatically Assessing Software Operating Skills

    ERIC Educational Resources Information Center

    Su, Jun-Ming; Lin, Huan-Yu

    2015-01-01

    In recent years, software operating skills, the ability in computer literacy to solve problems using specific software, has become much more important. A great deal of research has also proven that students' software operating skills can be efficiently improved by practicing customized virtual and simulated examinations. However, constructing…

  20. Implications of Informal Education Experiences for Mathematics Teachers' Ability to Make Connections beyond Formal Classroom

    ERIC Educational Resources Information Center

    Popovic, Gorjana; Lederman, Judith S.

    2015-01-01

    The Common Core Standard for Mathematical Practice 4: Model with Mathematics specifies that mathematically proficient students are able to make connections between school mathematics and its applications to solving real-world problems. Hence, mathematics teachers are expected to incorporate connections between mathematical concepts they teach and…

  1. Using Mathematics and Engineering to Solve Problems in Secondary Level Biology

    ERIC Educational Resources Information Center

    Cox, Charles; Reynolds, Birdy; Schunn, Christian; Schuchardt, Anita

    2016-01-01

    There are strong classroom ties between mathematics and the sciences of physics and chemistry, but those ties seem weaker between mathematics and biology. Practicing biologists realize both that there are interesting mathematics problems in biology, and that viewing classroom biology in the context of another discipline could support students'…

  2. A Knowledge Conversion Model Based on the Cognitive Load Theory for Architectural Design Education

    ERIC Educational Resources Information Center

    Wu, Yun-Wu; Liao, Shin; Wen, Ming-Hui; Weng, Kuo-Hua

    2017-01-01

    The education of architectural design requires balanced curricular arrangements of respectively theoretical knowledge and practical skills to really help students build their knowledge structures, particularly helping them in solving the problems of cognitive load. The purpose of this study is to establish an architectural design knowledge…

  3. A Promising Practice: Social Emotional Learning in Teacher Education

    ERIC Educational Resources Information Center

    Rich, Jennifer Eve

    2016-01-01

    It is difficult to imagine any classroom teacher who is not concerned with helping students develop skills to recognize and address their feelings, solve conflicts appropriately, help their peers, and contribute in positive ways to the world in which they live to some degree (Elias et al., 1997; Weissberg, Durlak, Domitrovitch, & Gullotta,…

  4. Preparing Teachers for a Globalized Era: An Examination of Teaching Practices in Kenya

    ERIC Educational Resources Information Center

    Nganga, Lydiah; Kambutu, John

    2017-01-01

    In an increasingly globalized 21st century, an education that is student-centered is invaluable because it supports the development of collaborative, communication and problem-solving skills (Cooke-Canitz, 2013; Kambutu & Nganga, 2009). Indeed, globalization thrives in a context of collaboration between people of different cultural persuasions…

  5. Biotechnology Apprenticeship for Secondary-Level Students: Teaching Advanced Cell Culture Techniques for Research

    ERIC Educational Resources Information Center

    Lewis, Jennifer R.; Kotur, Mark S.; Butt, Omar; Kulcarni, Sumant; Riley, Alyssa A.; Ferrell, Nick; Sullivan, Kathryn D.; Ferrari, Mauro

    2002-01-01

    The purpose of this article is to discuss "small-group apprenticeships (SGAs)" as a method to instruct cell culture techniques to high school participants. The study aimed to teach cell culture practices and to introduce advanced imaging techniques to solve various biomedical engineering problems. Participants designed and completed experiments…

  6. BioMusic in the Classroom: Interdisciplinary Elementary Science and Music Curriculum Development

    ERIC Educational Resources Information Center

    Carrier, Sarah; Wiebe, Eric N.; Gray, Patricia; Teachout, David

    2011-01-01

    Policymakers and industry leaders are calling for a 21st century education that is more interdisciplinary in nature, including the ability to solve problems and think creatively. Traditional teaching practices that present subjects as separate and distinct disciplines do not encourage students to make connections between subjects in school and in…

  7. Effects of the SOLVE Strategy on the Mathematical Problem Solving Skills of Secondary Students with Learning Disabilities

    ERIC Educational Resources Information Center

    Freeman-Green, Shaqwana M.; O'Brien, Chris; Wood, Charles L.; Hitt, Sara Beth

    2015-01-01

    This study examined the effects of explicit instruction in the SOLVE Strategy on the mathematical problem solving skills of six Grade 8 students with specific learning disabilities. The SOLVE Strategy is an explicit instruction, mnemonic-based learning strategy designed to help students in solving mathematical word problems. Using a multiple probe…

  8. Mathematical Problem Solving Ability of Junior High School Students through Ang’s Framework for Mathematical Modelling Instruction

    NASA Astrophysics Data System (ADS)

    Fasni, N.; Turmudi, T.; Kusnandi, K.

    2017-09-01

    This research background of this research is the importance of student problem solving abilities. The purpose of this study is to find out whether there are differences in the ability to solve mathematical problems between students who have learned mathematics using Ang’s Framework for Mathematical Modelling Instruction (AFFMMI) and students who have learned using scientific approach (SA). The method used in this research is a quasi-experimental method with pretest-postest control group design. Data analysis of mathematical problem solving ability using Indepent Sample Test. The results showed that there was a difference in the ability to solve mathematical problems between students who received learning with Ang’s Framework for Mathematical Modelling Instruction and students who received learning with a scientific approach. AFFMMI focuses on mathematical modeling. This modeling allows students to solve problems. The use of AFFMMI is able to improve the solving ability.

  9. Perceptual learning modules in mathematics: enhancing students' pattern recognition, structure extraction, and fluency.

    PubMed

    Kellman, Philip J; Massey, Christine M; Son, Ji Y

    2010-04-01

    Learning in educational settings emphasizes declarative and procedural knowledge. Studies of expertise, however, point to other crucial components of learning, especially improvements produced by experience in the extraction of information: perceptual learning (PL). We suggest that such improvements characterize both simple sensory and complex cognitive, even symbolic, tasks through common processes of discovery and selection. We apply these ideas in the form of perceptual learning modules (PLMs) to mathematics learning. We tested three PLMs, each emphasizing different aspects of complex task performance, in middle and high school mathematics. In the MultiRep PLM, practice in matching function information across multiple representations improved students' abilities to generate correct graphs and equations from word problems. In the Algebraic Transformations PLM, practice in seeing equation structure across transformations (but not solving equations) led to dramatic improvements in the speed of equation solving. In the Linear Measurement PLM, interactive trials involving extraction of information about units and lengths produced successful transfer to novel measurement problems and fraction problem solving. Taken together, these results suggest (a) that PL techniques have the potential to address crucial, neglected dimensions of learning, including discovery and fluent processing of relations; (b) PL effects apply even to complex tasks that involve symbolic processing; and (c) appropriately designed PL technology can produce rapid and enduring advances in learning. Copyright © 2009 Cognitive Science Society, Inc.

  10. The outcome of interprofessional education: Integrating communication studies into a standardized patient experience for advanced practice nursing students.

    PubMed

    Defenbaugh, Nicole; Chikotas, Noreen E

    2016-01-01

    The purpose of this qualitative study was to examine the impact of standardized patient experiences (SPE) in the education of the Advanced Practice Nurse (APN). The education of the APN requires educators to make every attempt to promote competency in the areas of communication and clinical-decision making. SPE programs have been found to improve the interpersonal, problem solving, and critical thinking skills of nursing students. For this research twenty-nine APN students participated in SPEs over the course of two semesters. Fifteen student volunteers of those 29 participants were then interviewed three months after the experience. Results revealed that having an expert in the field of communication studies increased awareness of communication skills and how to improve nurse-patient encounters in the clinical setting. The interprofessional collaboration during the SPEs assisted in facilitating the application of learned communication skills into patient-centered care of the APN student. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Framework and implementation for improving physics essential skills via computer-based practice: Vector math

    NASA Astrophysics Data System (ADS)

    Mikula, Brendon D.; Heckler, Andrew F.

    2017-06-01

    We propose a framework for improving accuracy, fluency, and retention of basic skills essential for solving problems relevant to STEM introductory courses, and implement the framework for the case of basic vector math skills over several semesters in an introductory physics course. Using an iterative development process, the framework begins with a careful identification of target skills and the study of specific student difficulties with these skills. It then employs computer-based instruction, immediate feedback, mastery grading, and well-researched principles from cognitive psychology such as interleaved training sequences and distributed practice. We implemented this with more than 1500 students over 2 semesters. Students completed the mastery practice for an average of about 13 min /week , for a total of about 2-3 h for the whole semester. Results reveal large (>1 SD ) pretest to post-test gains in accuracy in vector skills, even compared to a control group, and these gains were retained at least 2 months after practice. We also find evidence of improved fluency, student satisfaction, and that awarding regular course credit results in higher participation and higher learning gains than awarding extra credit. In all, we find that simple computer-based mastery practice is an effective and efficient way to improve a set of basic and essential skills for introductory physics.

  12. Pharmacy students' use and perceptions of Apple mobile devices incorporated into a basic health science laboratory.

    PubMed

    Bryant, Jennifer E; Richard, Craig A H

    To describe pharmacy students' use of mobile devices in a basic health science laboratory and to report the students' perceptions on how solving cases with their mobile devices influenced their attitudes, abilities, and view on the use of mobile devices as tools for pharmacists. First-year pharmacy students utilized mobile devices to solve clinical case studies in a basic health sciences laboratory. A pre-survey and two post-surveys were administered to assess the students' comfort, awareness, use, and perceptions on the use of their mobile devices and apps. The pre-survey and first post-survey each had a response rate of 99%, and the second post-survey had a response rate of 100%. In comparing the pre-survey and first post-survey data, there was a statistically significant increase in the number of students that agreed or strongly agreed that they were more comfortable utilizing their mobile device (p = 0.025), they were more aware of apps for pharmacists (p < 0.005), and they have used more apps that can be useful for pharmacists (p < 0.005). The second post-survey demonstrated that over 78% of students agreed or strongly agreed that completing the case studies influenced them to be more comfortable with their mobile devices, to be more aware of apps that can be useful for pharmacists, and to be more agreeable with mobile device utilization by pharmacists in improving patient care. In addition, the second post-survey also demonstrated that 84% of students responded that using their mobile devices to solve the cases influenced them to either use their mobile device in a clinical setting for a clinical and/or pharmacy-related purpose for the first time or to use it more frequently for this purpose. The use of mobile devices to solve clinical cases in a first-year basic health science laboratory course was perceived as beneficial by students and influenced them to utilize their mobile device even more in a pharmacy practice setting. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. The critical thinking curriculum model

    NASA Astrophysics Data System (ADS)

    Robertson, William Haviland

    The Critical Thinking Curriculum Model (CTCM) utilizes a multidisciplinary approach that integrates effective learning and teaching practices with computer technology. The model is designed to be flexible within a curriculum, an example for teachers to follow, where they can plug in their own critical issue. This process engages students in collaborative research that can be shared in the classroom, across the country or around the globe. The CTCM features open-ended and collaborative activities that deal with current, real world issues which leaders are attempting to solve. As implemented in the Critical Issues Forum (CIF), an educational program administered by Los Alamos National Laboratory (LANL), the CTCM encompasses the political, social/cultural, economic, and scientific realms in the context of a current global issue. In this way, students realize the importance of their schooling by applying their efforts to an endeavor that ultimately will affect their future. This study measures student attitudes toward science and technology and the changes that result from immersion in the CTCM. It also assesses the differences in student learning in science content and problem solving for students involved in the CTCM. A sample of 24 students participated in classrooms at two separate high schools in New Mexico. The evaluation results were analyzed using SPSS in a MANOVA format in order to determine the significance of the between and within-subjects effects. A comparison ANOVA was done for each two-way MANOVA to see if the comparison groups were equal. Significant findings were validated using the Scheffe test in a Post Hoc analysis. Demographic information for the sample population was recorded and tracked, including self-assessments of computer use and availability. Overall, the results indicated that the CTCM did help to increase science content understanding and problem-solving skills for students, thereby positively effecting critical thinking. No matter if the students liked science or not, enjoyed computers or not, the CTCM approach helped to increase science content understanding and problem-solving skills. The CTCM clearly provides an educational framework that can aid all students in the development of critical thinking skills.

  14. Students' understandings of electrochemistry

    NASA Astrophysics Data System (ADS)

    O'Grady-Morris, Kathryn

    Electrochemistry is considered by students to be a difficult topic in chemistry. This research was a mixed methods study guided by the research question: At the end of a unit of study, what are students' understandings of electrochemistry? The framework of analysis used for the qualitative and quantitative data collected in this study was comprised of three categories: types of knowledge used in problem solving, levels of representation of knowledge in chemistry (macroscopic, symbolic, and particulate), and alternative conceptions. Although individually each of the three categories has been reported in previous studies, the contribution of this study is the inter-relationships among them. Semi-structured, task-based interviews were conducted while students were setting up and operating electrochemical cells in the laboratory, and a two-tiered, multiple-choice diagnostic instrument was designed to identify alternative conceptions that students held at the end of the unit. For familiar problems, those involving routine voltaic cells, students used a working-forwards problem-solving strategy, two or three levels of representation of knowledge during explanations, scored higher on both procedural and conceptual knowledge questions in the diagnostic instrument, and held fewer alternative conceptions related to the operation of these cells. For less familiar problems, those involving non-routine voltaic cells and electrolytic cells, students approached problem-solving with procedural knowledge, used only one level of representation of knowledge when explaining the operation of these cells, scored higher on procedural knowledge than conceptual knowledge questions in the diagnostic instrument, and held a greater number of alternative conceptions. Decision routines that involved memorized formulas and procedures were used to solve both quantitative and qualitative problems and the main source of alternative conceptions in this study was the overgeneralization of theory related to the particulate level of representation of knowledge. The findings from this study may contribute further to our understanding of students' conceptions in electrochemistry. Furthermore, understanding the influence of the three categories in the framework of analysis and their inter-relationships on how students make sense of this field may result in a better understanding of classroom practice that could promote the acquisition of conceptual knowledge --- knowledge that is "rich in relationships".

  15. Investigating Students' Success in Solving and Attitudes towards Context-Rich Open-Ended Problems in Chemistry

    ERIC Educational Resources Information Center

    Overton, Tina L.; Potter, Nicholas M.

    2011-01-01

    Much research has been carried out on how students solve algorithmic and structured problems in chemistry. This study is concerned with how students solve open-ended, ill-defined problems in chemistry. Over 200 undergraduate chemistry students solved a number of open-ended problem in groups and individually. The three cognitive variables of…

  16. Analysing student written solutions to investigate if problem-solving processes are evident throughout

    NASA Astrophysics Data System (ADS)

    Kelly, Regina; McLoughlin, Eilish; Finlayson, Odilla E.

    2016-07-01

    An interdisciplinary science course has been implemented at a university with the intention of providing students the opportunity to develop a range of key skills in relation to: real-world connections of science, problem-solving, information and communications technology use and team while linking subject knowledge in each of the science disciplines. One of the problems used in this interdisciplinary course has been selected to evaluate if it affords students the opportunity to explicitly display problem-solving processes. While the benefits of implementing problem-based learning have been well reported, far less research has been devoted to methods of assessing student problem-solving solutions. A problem-solving theoretical framework was used as a tool to assess student written solutions to indicate if problem-solving processes were present. In two academic years, student problem-solving processes were satisfactory for exploring and understanding, representing and formulating, and planning and executing, indicating that student collaboration on problems is a good initiator of developing these processes. In both academic years, students displayed poor monitoring and reflecting (MR) processes at the intermediate level. A key impact of evaluating student work in this way is that it facilitated meaningful feedback about the students' problem-solving process rather than solely assessing the correctness of problem solutions.

  17. Integrating different knowledge sources and disciplines for practical applications in Forest and Agricultural Engineering

    NASA Astrophysics Data System (ADS)

    Guzmán, Gema; Castillo, Carlos; Taguas, Encarnación

    2013-04-01

    One of the aims of 'The Bologna Process' is to promote among the students the acquisition of practical, social and creative skills to face real-life situations and to solve the difficulties they might find during their professional life. It involves an important change in the educational system, from a traditional approach focused on teaching, towards a new one that encourages learning. Under this context, University teaching implies the design of activities addressed to the dissemination of "know-how" to solve different problems associated with two technical disciplines: Forest and Agricultural Engineering. This study presents a preliminary experience where a group of information and communication technologies (ICT) such as, audiovisual resources (videos, reports and photo gallery), virtual visits to blogs and interactive activities have been used to provide a comprehensive knowledge of the environmental and sociocultural components of the landscape in order to facilitate the decision-making process in the engineering project context . With these tools, the students must study and characterize all these aspects in order to justify the chosen solutions and the project design. This approach was followed in the analysis of the limiting factors of practical cases in projects about forestation, landscape restoration and hydrological planning. This communication shows how this methodology has been applied in Forest and Agricultural Engineering and the students' experience with these innovative tools. The use of ICTs involved a friendly framework that stimulated students' interest and made subjects more attractive, since it allowed to assess the complex relationships between landscape, history and economy. Furthermore, this type of activities promotes the interdisciplinary training and the acquisition of creative and autonomous skills which are not included in many cases into the main objectives of the subjects.

  18. Genetics and evolution: an iOS application to supplement introductory courses in transmission and evolutionary genetics.

    PubMed

    Myers, Russell B; Millman, Brandon; Noor, Mohamed A F

    2014-04-11

    Students in college courses struggle to understand many concepts fundamental to transmission and evolutionary genetics, including multilocus inheritance, recombination, Hardy-Weinberg, and genetic drift. These students consistently ask for more demonstrations and more practice problems. With this demand in mind, the "Genetics and Evolution" app was designed to help students (and their instructors) by providing a suite of tools granting them the ability to: (1) simulate genetic crosses with varying numbers of genes and patterns of inheritance, (2) simulate allele frequency changes under natural selection and/ or genetic drift, (3) quiz themselves to reinforce terminology (customizable by any instructor for their whole classroom), *4) solve various problems (recombination fractions, Hardy-Weinberg, heritability, population growth), and (5) generate literally an infinite number of practice problems in all of these areas to try on their own. Although some of these functions are available elsewhere, the alternatives do not have the ability to instantly generate new practice problems or achieve these diverse functions in devices that students carry in their pockets every day. Copyright © 2014 Myers et al.

  19. Improving Student Engagement in Veterinary Business Studies.

    PubMed

    Armitage-Chan, Elizabeth; Jackson, Elizabeth

    2018-01-01

    Improving Student Engagement in Veterinary Business StudiesIn a densely packed veterinary curriculum, students may find it particularly challenging to engage in the less overtly clinical subjects, yet pressure from industry and an increasingly competitive employment market necessitate improved veterinary student education in business and management skills. We describe a curriculum intervention (formative reflective assignment) that optimizes workplace learning opportunities and aims to provide better student scaffolding for their in-context business learning. Students were asked to analyze a business practice they experienced during a period of extra-mural studies (external work placement). Following return to the college, they were then instructed to discuss their findings in their study group, and produce a group reflection on their learning. To better understand student engagement in this area, we analyzed individual and group components of the assignment. Thematic analysis revealed evidence of various depths of student engagement, and provided indications of the behaviors they used when engaging at different levels. Interactive and social practices (discussing business strategies with veterinary employees and student peers) appeared to facilitate student engagement, assist the perception of relevance of these skills, and encourage integration with other curriculum elements such as communication skills and clinical problem solving.

  20. Design and implementation of a laboratory-based drug design and synthesis advanced pharmacy practice experience.

    PubMed

    Philip, Ashok; Stephens, Mark; Mitchell, Sheila L; Watkins, E Blake

    2015-04-25

    To provide students with an opportunity to participate in medicinal chemistry research within the doctor of pharmacy (PharmD) curriculum. We designed and implemented a 3-course sequence in drug design or drug synthesis for pharmacy students consisting of a 1-month advanced elective followed by two 1-month research advanced pharmacy practice experiences (APPEs). To maximize student involvement, this 3-course sequence was offered to third-year and fourth-year students twice per calendar year. Students were evaluated based on their commitment to the project's success, productivity, and professionalism. Students also evaluated the course sequence using a 14-item course evaluation rubric. Student feedback was overwhelmingly positive. Students found the experience to be a valuable component of their pharmacy curriculum. We successfully designed and implemented a 3-course research sequence that allows PharmD students in the traditional 4-year program to participate in drug design and synthesis research. Students report the sequence enhanced their critical-thinking and problem-solving skills and helped them develop as independent learners. Based on the success achieved with this sequence, efforts are underway to develop research APPEs in other areas of the pharmaceutical sciences.

  1. Progression in Complexity: Contextualizing Sustainable Marine Resources Management in a 10th Grade Classroom

    NASA Astrophysics Data System (ADS)

    Bravo-Torija, Beatriz; Jiménez-Aleixandre, María-Pilar

    2012-01-01

    Sustainable management of marine resources raises great challenges. Working with this socio-scientific issue in the classroom requires students to apply complex models about energy flow and trophic pyramids in order to understand that food chains represent transfer of energy, to construct meanings for sustainable resources management through discourse, and to connect them to actions and decisions in a real-life context. In this paper we examine the process of elaboration of plans for resources management in a marine ecosystem by 10th grade students (15-16 year) in the context of solving an authentic task. A complete class ( N = 14) worked in a sequence about ecosystems. Working in small groups, the students made models of energy flow and trophic pyramids, and used them to solve the problem of feeding a small community for a long time. Data collection included videotaping and audiotaping of all of the sessions, and collecting the students' written productions. The research objective is to examine the process of designing a plan for sustainable resources management in terms of the discursive moves of the students across stages in contextualizing practices, or different degrees of complexity (Jiménez-Aleixandre & Reigosa International Journal of Science Education, 14(1): 51-61 2006), understood as transformations from theoretical statements to decisions about the plan. The analysis of students' discursive moves shows how the groups progressed through stages of connecting different models, between them and with the context, in order to solve the task. The challenges related to taking this sustainability issue to the classroom are discussed.

  2. The Effects of Cognitive Strategy Instruction on Knowledge of Math Problem-Solving Processes of Middle School Students with Learning Disabilities

    ERIC Educational Resources Information Center

    Krawec, Jennifer; Huang, Jia; Montague, Marjorie; Kressler, Benikia; de Alba, Amanda Melia

    2013-01-01

    This study investigated the effectiveness of "Solve It!" instruction on students' knowledge of math problem-solving strategies. "Solve It!" is a cognitive strategy intervention designed to improve the math problem solving of middle school students with learning disabilities (LD). Participants included seventh- and eighth-grade…

  3. Conceptual and procedural knowledge community college students use when solving a complex science problem

    NASA Astrophysics Data System (ADS)

    Steen-Eibensteiner, Janice Lee

    2006-07-01

    A strong science knowledge base and problem solving skills have always been highly valued for employment in the science industry. Skills currently needed for employment include being able to problem solve (Overtoom, 2000). Academia also recognizes the need for effectively teaching students to apply problem solving skills in clinical settings. This thesis investigates how students solve complex science problems in an academic setting in order to inform the development of problem solving skills for the workplace. Students' use of problem solving skills in the form of learned concepts and procedural knowledge was studied as students completed a problem that might come up in real life. Students were taking a community college sophomore biology course, Human Anatomy & Physiology II. The problem topic was negative feedback inhibition of the thyroid and parathyroid glands. The research questions answered were (1) How well do community college students use a complex of conceptual knowledge when solving a complex science problem? (2) What conceptual knowledge are community college students using correctly, incorrectly, or not using when solving a complex science problem? (3) What problem solving procedural knowledge are community college students using successfully, unsuccessfully, or not using when solving a complex science problem? From the whole class the high academic level participants performed at a mean of 72% correct on chapter test questions which was a low average to fair grade of C-. The middle and low academic participants both failed (F) the test questions (37% and 30% respectively); 29% (9/31) of the students show only a fair performance while 71% (22/31) fail. From the subset sample population of 2 students each from the high, middle, and low academic levels selected from the whole class 35% (8/23) of the concepts were used effectively, 22% (5/23) marginally, and 43% (10/23) poorly. Only 1 concept was used incorrectly by 3/6 of the students and identified as a misconception. One of 21 (5%) problem-solving pathway characteristics was used effectively, 7 (33%) marginally, and 13 (62%) poorly. There were very few (0 to 4) problem-solving pathway characteristics used unsuccessfully most were simply not used.

  4. A development optical course based on optical fiber white light interference

    NASA Astrophysics Data System (ADS)

    Jiang, Haili; Sun, Qiuhua; Zhao, Yancheng; Li, Qingbo

    2017-08-01

    The Michelson interferometer is a very important instrument in optical part for college physics teaching. But most students only know the instrument itself and don't know how to use it in practical engineering problems. A case about optical fiber white light interference based on engineering practice was introduced in the optical teaching of college physics and then designed a development course of university physical optics part. This system based on low-coherence white light interferometric technology can be used to measure distribution strain or temperature. It also could be used in the case of temperature compensation mode.This teaching design can use the knowledge transfer rule to enable students to apply the basic knowledge in the university physics to the new knowledge domain, which can promote the students' ability of using scientific methods to solve complex engineering problems.

  5. Mathematics reform in the education of deaf and hard of hearing students.

    PubMed

    Pagliaro, C M

    1998-03-01

    In response to increased demand for competent workers who possess skills in problem solving, cooperative work, and technology, education professionals have set out to reform mathematics education. The purpose of the present study was to determine the state of mathematics reform in the education of deaf and hard of hearing students. A national survey was sent to administrators and faculty at schools for the Deaf seeking information on mathematics programs and instruction. Data were analyzed by profession (i.e., administrator, teacher) and grade level (K-4, 5-8, 9-12). Results show that some aspects of reform (e.g., problem solving, use of concrete materials) have been incorporated into the deaf education mathematics curriculum but that many 'traditional' techniques (e.g., drill and practice, rote memorization) remain in use. Data support the need for increased attention to mathematics education reform within deaf education. Recommendations are provided to professionals in the field to better prepare students for the 21st century.

  6. “A memorable consultation”: Writing reflective accounts articulates students’ learning in general practice

    PubMed Central

    Svenberg, Kristian; Wahlqvist, Mats; Mattsson, Bengt

    2007-01-01

    Objectives To explore and analyse students’ learning experiences of a memorable consultation during a final-year attachment in general practice. Setting After a two-week primary care attachment in the undergraduate curriculum, students were invited to write a reflective account of a memorable consultation. Design A total of 52 reflective accounts were read and processed according to qualitative content analysis. Credibility of the analysis was validated by two co-authors reading the descriptions separately and trustworthiness was tested at local seminars. Results Three main themes emerged. In “The person beyond symptoms” the students recognize the individual properties of a consultation. “Facing complexity” mirrors awareness of changing tracks in problem-solving and strategies of handling unclear conditions. “In search of a professional role” reflects the interest in role modelling and the relation to the supervisor. Conclusion Involving students in writing reflective accounts appears to stimulate them to articulate practice experiences of the consultation. PMID:17497483

  7. A Cognitive Analysis of Students’ Mathematical Problem Solving Ability on Geometry

    NASA Astrophysics Data System (ADS)

    Rusyda, N. A.; Kusnandi, K.; Suhendra, S.

    2017-09-01

    The purpose of this research is to analyze of mathematical problem solving ability of students in one of secondary school on geometry. This research was conducted by using quantitative approach with descriptive method. Population in this research was all students of that school and the sample was twenty five students that was chosen by purposive sampling technique. Data of mathematical problem solving were collected through essay test. The results showed the percentage of achievement of mathematical problem solving indicators of students were: 1) solve closed mathematical problems with context in math was 50%; 2) solve the closed mathematical problems with the context beyond mathematics was 24%; 3) solving open mathematical problems with contexts in mathematics was 35%; And 4) solving open mathematical problems with contexts outside mathematics was 44%. Based on the percentage, it can be concluded that the level of achievement of mathematical problem solving ability in geometry still low. This is because students are not used to solving problems that measure mathematical problem solving ability, weaknesses remember previous knowledge, and lack of problem solving framework. So the students’ ability of mathematical problems solving need to be improved with implement appropriate learning strategy.

  8. Tracing for the problem-solving ability in advanced calculus class based on modification of SAVI model at Universitas Negeri Semarang

    NASA Astrophysics Data System (ADS)

    Pujiastuti, E.; Waluya, B.; Mulyono

    2018-03-01

    There were many ways of solving the problem offered by the experts. The author combines various ways of solving the problem as a form of novelty. Among the learning model that was expected to support the growth of problem-solving skills was SAVI. The purpose, to obtain trace results from the analysis of the problem-solving ability of students in the Dual Integral material. The research method was a qualitative approach. Its activities include tests was filled with mathematical connections, observation, interviews, FGD, and triangulation. The results were: (1) some students were still experiencing difficulties in solving the problems. (2) The application of modification of SAVI learning model effective in supporting the growth of problem-solving abilities. (3) The strength of the students related to solving the problem, there were two students in the excellent category, there were three students in right classes and one student in the medium group.

  9. Flexibility in Mathematics Problem Solving Based on Adversity Quotient

    NASA Astrophysics Data System (ADS)

    Dina, N. A.; Amin, S. M.; Masriyah

    2018-01-01

    Flexibility is an ability which is needed in problem solving. One of the ways in problem solving is influenced by Adversity Quotient (AQ). AQ is the power of facing difficulties. There are three categories of AQ namely climber, camper, and quitter. This research is a descriptive research using qualitative approach. The aim of this research is to describe flexibility in mathematics problem solving based on Adversity Quotient. The subjects of this research are climber student, camper student, and quitter student. This research was started by giving Adversity Response Profile (ARP) questioner continued by giving problem solving task and interviews. The validity of data measurement was using time triangulation. The results of this research shows that climber student uses two strategies in solving problem and doesn’t have difficulty. The camper student uses two strategies in solving problem but has difficulty to finish the second strategies. The quitter student uses one strategy in solving problem and has difficulty to finish it.

  10. Clinical teaching and learning within a preceptorship model in an acute care hospital in Ireland; a qualitative study.

    PubMed

    McSharry, Edel; Lathlean, Judith

    2017-04-01

    A preceptorship model of clinical teaching was introduced to support the new all-graduate nurse education programme in Ireland in 2002. Little is known about how this model impacts upon the pedagogical practices of the preceptor or student learning in clinical practice leading to question what constitutes effective teaching and learning in clinical practice at undergraduate level. This study aimed to explore the clinical teaching and learning within a preceptorship model in an acute care hospital in Ireland and identify when best practice, based on current theoretical professional and educational principles occurred. A qualitative research study of a purposively selected sample of 13 students and 13 preceptors, working together in four clinical areas in one hospital in Ireland. Methods were semi-structured interviews, analysed thematically, complemented by documentary analysis relating to the teaching and assessment of the students. Ethical approval was gained from the hospital's Ethics Committee. Preceptor-student contact time within an empowering student-preceptor learning relationship was the foundation of effective teaching and learning and assessment. Dialoguing and talking through practice enhanced the students' knowledge and understanding, while the ability of the preceptor to ask higher order questions promoted the students' clinical reasoning and problem solving skills. Insufficient time to teach, and an over reliance on students' ability to participate in and contribute to practice with minimal guidance were found to negatively impact students' learning. Concepts such as cognitive apprenticeship, scaffolding and learning in communities of practice can be helpful in understanding the processes entailed in preceptorship. Preceptors need extensive educational preparation and support to ensure they have the pedagogical competencies necessary to provide the cognitive teaching techniques that foster professional performance and clinical reasoning. National competency based standards for preceptor preparation should be developed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Shaping the Future with Math, Science, and Technology: Solutions and Lesson Plans to Prepare Tomorrow's Innovators

    ERIC Educational Resources Information Center

    Adams, Dennis; Hamm, Mary

    2011-01-01

    "Shaping the Future with Math, Science, and Technology" examines how ingenuity, creativity, and teamwork skills are part of an intellectual toolbox associated with math, science, and technology. The book provides new ideas, proven processes, practical tools, and examples useful to educators who want to encourage students to solve problems and…

  12. Can Computerized Adaptive Testing Work in Students' Admission to Higher Education Programs in Turkey?

    ERIC Educational Resources Information Center

    Kalender, Ilker; Berberoglu, Giray

    2017-01-01

    Admission into university in Turkey is very competitive and features a number of practical problems regarding not only the test administration process itself, but also concerning the psychometric properties of test scores. Computerized adaptive testing (CAT) is seen as a possible alternative approach to solve these problems. In the first phase of…

  13. Toward an Analysis of Video Games for Mathematics Education

    ERIC Educational Resources Information Center

    Offenholley, Kathleen

    2011-01-01

    Video games have tremendous potential in mathematics education, yet there is a push to simply add mathematics to a video game without regard to whether the game structure suits the mathematics, and without regard to the level of mathematical thought being learned in the game. Are students practicing facts, or are they problem-solving? This paper…

  14. Classroom Literacy Assessment. Making Sense of What Students Know and Do. Solving Problems in the Teaching of Literacy Series

    ERIC Educational Resources Information Center

    Paratore, Jeanne R. Ed.; McCormack, Rachel L. Ed.; Block, Cathy, Collins Ed.

    2007-01-01

    Showcasing assessment practices that can help teachers plan effective instruction, this book addresses the real-world complexities of teaching literacy in grades K-8. Leading contributors present trustworthy approaches that examine learning processes as well as learning products, that yield information on how the learning environment can be…

  15. Integration of Digital Technology and Innovative Strategies for Learning and Teaching Large Classes: A Calculus Case Study

    ERIC Educational Resources Information Center

    Vajravelu, Kuppalapalle; Muhs, Tammy

    2016-01-01

    Successful science and engineering programs require proficiency and dynamics in mathematics classes to enhance the learning of complex subject matter with a sufficient amount of practical problem solving. Improving student performance and retention in mathematics classes requires inventive approaches. At the University of Central Florida (UCF) the…

  16. Response to Intervention as a Vehicle for Powerful Mental Health Interventions in the Schools

    ERIC Educational Resources Information Center

    Froiland, John Mark

    2011-01-01

    School psychologists can work within a Response to Intervention (RtI) framework to increasingly promote the mental health of students. This article shares the unfolding of two composite case studies that exemplify how a practicing school psychologist can use a problem-solving framework to deliver effective mental health interventions to individual…

  17. Spontaneous Dancemaking with Beginning Improvisers: Foundational Practices in Presence, Stillness, and Problem Solving

    ERIC Educational Resources Information Center

    Martin, Nina

    2017-01-01

    Many dance artists in their first encounters with improvisational dance making begin not only to learn how to compose spontaneously, but also to gain skills for coping with the uncertainties inherent in the form. This article suggests helpful dance scores for beginning students of physical improvisation and those who teach improvisational…

  18. An Examination of the Statistical Problem-Solving Process as a Potential Means for Developing an Understanding of Argumentation

    ERIC Educational Resources Information Center

    Smith Baum, Brittany Deshae

    2017-01-01

    As part of the recent history of the mathematics curriculum, reasoning and argument have been emphasized throughout mathematics curriculum standards. Specifically, as part of the Common Core State Standards for Mathematics, the Standards for Mathematical Practice were presented, which included the expectation that students develop arguments and…

  19. Employment Skills for the 21st Century: Applied Activities To Develop a Competitive American Workforce. Teacher Edition.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This publication is a collection of 201 activities designed to give students practice in developing and applying in meaningful real-life settings both basic academic skills in reading, writing, and computation, and the more advanced higher-order skills of problem solving, critical thinking, group interaction, and oral communication. These…

  20. A Bermuda Triangle? A Case Study of the Disappearance of Competence-Based Vocational Training Policy in the Context of Practice.

    ERIC Educational Resources Information Center

    Bates, Inge; Dutson, Judith

    1995-01-01

    Observations of job training of special needs students were analyzed in terms of operational demands, staffing levels, resources, and trainee interaction. The competence approach often disappeared in the face of more pressing concerns; it serves to legitimate a political response rather than solve an educational problem. (SK)

  1. Integration of Biological Applications into the Core Undergraduate Curriculum: A Practical Strategy

    ERIC Educational Resources Information Center

    Komives, Claire; Prince, Michael; Fernandez, Erik; Balcarcel, Robert

    2011-01-01

    A web database of solved problems has been created to enable faculty to incorporate biological applications into core courses. Over 20% of US ChE departments utilized problems from the website, and 19 faculty attended a workshop to facilitate teaching the modules. Assessment of student learning showed some gains related to biological outcomes, as…

  2. Climbing up the Leaderboard: An Empirical Study of Applying Gamification Techniques to a Computer Programming Class

    ERIC Educational Resources Information Center

    Fotaris, Panagiotis; Mastoras, Theodoros; Leinfellner, Richard; Rosunally, Yasmine

    2016-01-01

    Conventional taught learning practices often experience difficulties in keeping students motivated and engaged. Video games, however, are very successful at sustaining high levels of motivation and engagement through a set of tasks for hours without apparent loss of focus. In addition, gamers solve complex problems within a gaming environment…

  3. Case Method in the Teaching of Food Safety

    ERIC Educational Resources Information Center

    Gallego, Alfredo; Fortunato, Maria S.; Rossi, Susana L.; Korol, Sonia E.; Moretton, Juan A.

    2013-01-01

    One of the fundamental aims of education is the integration of theory and practice. The case method is a teaching strategy in which students must apply their knowledge to solve real-life situations. They have to analyze the case described and propose the best possible solution. Although the case may be written, the use of new information and…

  4. A Problem Posing-Based Practicing Strategy for Facilitating Students' Computer Programming Skills in the Team-Based Learning Mode

    ERIC Educational Resources Information Center

    Wang, Xiao-Ming; Hwang, Gwo-Jen

    2017-01-01

    Computer programming is a subject that requires problem-solving strategies and involves a great number of programming logic activities which pose challenges for learners. Therefore, providing learning support and guidance is important. Collaborative learning is widely believed to be an effective teaching approach; it can enhance learners' social…

  5. Mathematics in a Second Grade Classroom: The Effects of Cognitively Guided Problem Solving

    ERIC Educational Resources Information Center

    Spilde, Amy

    2013-01-01

    The need for improved mathematics education in many of America's schools that serve students from low income households has been extensively documented. This practical action research study, set in a suburban Title I school with a primarily Hispanic, non-native English speaking population, is designed to explore the effects of the progression…

  6. Same Old Problem, New Name? Alerting Students to the Nature of the Problem-Solving Process

    ERIC Educational Resources Information Center

    Yerushalmi, Edit; Magen, Esther

    2006-01-01

    Students frequently misconceive the process of problem-solving, expecting the linear process required for solving an exercise, rather than the convoluted search process required to solve a genuine problem. In this paper we present an activity designed to foster in students realization and appreciation of the nature of the problem-solving process,…

  7. Science classroom inquiry (SCI) simulations: a novel method to scaffold science learning.

    PubMed

    Peffer, Melanie E; Beckler, Matthew L; Schunn, Christian; Renken, Maggie; Revak, Amanda

    2015-01-01

    Science education is progressively more focused on employing inquiry-based learning methods in the classroom and increasing scientific literacy among students. However, due to time and resource constraints, many classroom science activities and laboratory experiments focus on simple inquiry, with a step-by-step approach to reach predetermined outcomes. The science classroom inquiry (SCI) simulations were designed to give students real life, authentic science experiences within the confines of a typical classroom. The SCI simulations allow students to engage with a science problem in a meaningful, inquiry-based manner. Three discrete SCI simulations were created as website applications for use with middle school and high school students. For each simulation, students were tasked with solving a scientific problem through investigation and hypothesis testing. After completion of the simulation, 67% of students reported a change in how they perceived authentic science practices, specifically related to the complex and dynamic nature of scientific research and how scientists approach problems. Moreover, 80% of the students who did not report a change in how they viewed the practice of science indicated that the simulation confirmed or strengthened their prior understanding. Additionally, we found a statistically significant positive correlation between students' self-reported changes in understanding of authentic science practices and the degree to which each simulation benefitted learning. Since SCI simulations were effective in promoting both student learning and student understanding of authentic science practices with both middle and high school students, we propose that SCI simulations are a valuable and versatile technology that can be used to educate and inspire a wide range of science students on the real-world complexities inherent in scientific study.

  8. Students discussing their mathematical ideas: the role of the teacher

    NASA Astrophysics Data System (ADS)

    Pijls, Monique; Dekker, Rijkje

    2011-12-01

    This article adds to current research on enhancing student discourse in mathematics teaching specifically in secondary schools but with equal relevance to elementary schools. Three mathematics teachers in secondary education were confronted with the question of how to encourage students to discuss their work with each other in the daily practice of their mathematical lessons. In response to this question the teachers devised three different approaches to encourage student discourse. One of the teachers chose to experiment with another setting to perform mathematical tasks that involved students working together on a group test. The second teacher experimented with a new kind of help when students were working on their maths tasks and asked for assistance. The third created a new setting in which the teacher (temporarily) did not provide mathematical hints and the students had to solve their own problems. The three teachers were very motivated, but they all had difficulties in not giving explanations themselves when supporting their students in their collaborative mathematical learning. They found that temporarily diminishing their product help stimulated discussion between students. It also became clear that the process of teacher reflection and follow-up discussions with the researcher/observers promoted changes of practice.

  9. Teaching practice and effect of the curriculum design and simulation courses under the support of professional optical software

    NASA Astrophysics Data System (ADS)

    Lin, YuanFang; Zheng, XiaoDong; Huang, YuJia

    2017-08-01

    Curriculum design and simulation courses are bridges to connect specialty theories, engineering practice and experimental skills. In order to help students to have the computer aided optical system design ability adapting to developments of the times, a professional optical software-Advanced System of Analysis Program (ASAP) was used in the research teaching of curriculum design and simulation courses. The ASAP tutorials conducting, exercises both complementing and supplementing the lectures, hands-on practice in class, autonomous learning and independent design after class were bridged organically, to guide students "learning while doing, learning by doing", paying more attention to the process instead of the results. Several years of teaching practice of curriculum design and simulation courses shows that, project-based learning meets society needs of training personnel with knowledge, ability and quality. Students have obtained not only skills of using professional software, but also skills of finding and proposing questions in engineering practice, the scientific method of analyzing and solving questions with specialty knowledge, in addition, autonomous learning ability, teamwork spirit and innovation consciousness, still scientific attitude of facing failure and scientific spirit of admitting deficiency in the process of independent design and exploration.

  10. When procedures discourage insight: epistemological consequences of prompting novice physics students to construct force diagrams

    NASA Astrophysics Data System (ADS)

    Kuo, Eric; Hallinen, Nicole R.; Conlin, Luke D.

    2017-05-01

    One aim of school science instruction is to help students become adaptive problem solvers. Though successful at structuring novice problem solving, step-by-step problem-solving frameworks may also constrain students' thinking. This study utilises a paradigm established by Heckler [(2010). Some consequences of prompting novice physics students to construct force diagrams. International Journal of Science Education, 32(14), 1829-1851] to test how cuing the first step in a standard framework affects undergraduate students' approaches and evaluation of solutions in physics problem solving. Specifically, prompting the construction of a standard diagram before problem solving increases the use of standard procedures, decreasing the use of a conceptual shortcut. Providing a diagram prompt also lowers students' ratings of informal approaches to similar problems. These results suggest that reminding students to follow typical problem-solving frameworks limits their views of what counts as good problem solving.

  11. [Clinical pharmacy practice education in master's course of Meijo University in affiliation with medical school].

    PubMed

    Matsuba, Kazuhisa

    2009-08-01

    In 2003, Meijo University has developed a new program to train students in master's degree in the field of clinical practice. This new curriculum has three big pillars of educational goal: Problem-Based Learning (PBL), communication skill and clinical pharmacy practice training. Before exposing students to clinical training, they must learn first how to solve various patients' problems through PBL and enhance their communication skill. To provide a clinical environment, education and training, the Faculty of Pharmacy cooperated with the School of Medicine of Fujita Health University. Master's students together with other members of the healthcare team observe patient's disease state and most especially monitor pharmacotherapy. At first, students will be trained for a month at the pharmacy division and experience one week-nursing job. Next, they will be trained at the clinical divisions such as General Internal Medicine, Cardiology, Endocrinology, Gastroenterology, Respiratory Medicine, Hematology, Chemotherapy, Gastroenterological Surgery, Psychiatry, and Emergency Unit. Students rotate three-month training on four clinical divisions during one year. The head physicians of the medical department hold concurrent post as professors and share responsibility with the pharmacy faculty in training the students. To have its venue where students, faculty and physicians conduct their discussion on clinical cases, a pharmacy satellite seminar class room was set up at Fujita Health University hospital. Through this, pharmacy students and faculty had more opportunities to exchange knowledge on medicine and pharmacy. Master's students are expected to acquire professionalism, ethical knowledge and pharmaceutical care skills through the clinical pharmacy practice program.

  12. Errors analysis of problem solving using the Newman stage after applying cooperative learning of TTW type

    NASA Astrophysics Data System (ADS)

    Rr Chusnul, C.; Mardiyana, S., Dewi Retno

    2017-12-01

    Problem solving is the basis of mathematics learning. Problem solving teaches us to clarify an issue coherently in order to avoid misunderstanding information. Sometimes there may be mistakes in problem solving due to misunderstanding the issue, choosing a wrong concept or misapplied concept. The problem-solving test was carried out after students were given treatment on learning by using cooperative learning of TTW type. The purpose of this study was to elucidate student problem regarding to problem solving errors after learning by using cooperative learning of TTW type. Newman stages were used to identify problem solving errors in this study. The new research used a descriptive method to find out problem solving errors in students. The subject in this study were students of Vocational Senior High School (SMK) in 10th grade. Test and interview was conducted for data collection. Thus, the results of this study suggested problem solving errors in students after learning by using cooperative learning of TTW type for Newman stages.

  13. Students' Errors in Solving the Permutation and Combination Problems Based on Problem Solving Steps of Polya

    ERIC Educational Resources Information Center

    Sukoriyanto; Nusantara, Toto; Subanji; Chandra, Tjang Daniel

    2016-01-01

    This article was written based on the results of a study evaluating students' errors in problem solving of permutation and combination in terms of problem solving steps according to Polya. Twenty-five students were asked to do four problems related to permutation and combination. The research results showed that the students still did a mistake in…

  14. Assessing student written problem solutions: A problem-solving rubric with application to introductory physics

    NASA Astrophysics Data System (ADS)

    Docktor, Jennifer L.; Dornfeld, Jay; Frodermann, Evan; Heller, Kenneth; Hsu, Leonardo; Jackson, Koblar Alan; Mason, Andrew; Ryan, Qing X.; Yang, Jie

    2016-06-01

    Problem solving is a complex process valuable in everyday life and crucial for learning in the STEM fields. To support the development of problem-solving skills it is important for researchers and curriculum developers to have practical tools that can measure the difference between novice and expert problem-solving performance in authentic classroom work. It is also useful if such tools can be employed by instructors to guide their pedagogy. We describe the design, development, and testing of a simple rubric to assess written solutions to problems given in undergraduate introductory physics courses. In particular, we present evidence for the validity, reliability, and utility of the instrument. The rubric identifies five general problem-solving processes and defines the criteria to attain a score in each: organizing problem information into a Useful Description, selecting appropriate principles (Physics Approach), applying those principles to the specific conditions in the problem (Specific Application of Physics), using Mathematical Procedures appropriately, and displaying evidence of an organized reasoning pattern (Logical Progression).

  15. An Exploration of Strategies Used by Students To Solve Problems with Multiple Ways of Solution.

    ERIC Educational Resources Information Center

    Santos-Trigo, Manuel

    1996-01-01

    Describes a study that provides information about the extent to which students actually use their mathematical resources and strategies to solve problems. Interviews were used to analyze the problem solving abilities of high school students (N=35) as they solved five problems. (DDR)

  16. Enhancing Students' Problem-Solving Skills through Context-Based Learning

    ERIC Educational Resources Information Center

    Yu, Kuang-Chao; Fan, Szu-Chun; Lin, Kuen-Yi

    2015-01-01

    Problem solving is often challenging for students because they do not understand the problem-solving process (PSP). This study presents a three-stage, context-based, problem-solving, learning activity that involves watching detective films, constructing a context-simulation activity, and introducing a project design to enable students to construct…

  17. Kindergarten Students Solving Mathematical Word Problems

    ERIC Educational Resources Information Center

    Johnson, Nickey Owen

    2013-01-01

    The purpose of this study was to explore problem solving with kindergarten students. This line of inquiry is highly significant given that Common Core State Standards emphasize deep, conceptual understanding in mathematics as well as problem solving in kindergarten. However, there is little research on problem solving with kindergarten students.…

  18. How Students Circumvent Problem-Solving Strategies that Require Greater Cognitive Complexity.

    ERIC Educational Resources Information Center

    Niaz, Mansoor

    1996-01-01

    Analyzes the great diversity in problem-solving strategies used by students in solving a chemistry problem and discusses the relationship between these variables and different cognitive variables. Concludes that students try to circumvent certain problem-solving strategies by adapting flexible and stylistic innovations that render the cognitive…

  19. Word Problem Solving of Students with Autistic Spectrum Disorders and Students with Typical Development

    ERIC Educational Resources Information Center

    Bae, Young Seh

    2013-01-01

    Mathematical Word Problem Solving of Students with Autistic Spectrum Disorders and Students with Typical Development Young Seh Bae This study investigated mathematical word problem solving and the factors associated with the solution paths adopted by two groups of participants (N=40), students with autism spectrum disorders (ASDs) and typically…

  20. Science Classroom Inquiry (SCI) Simulations: A Novel Method to Scaffold Science Learning

    PubMed Central

    Peffer, Melanie E.; Beckler, Matthew L.; Schunn, Christian; Renken, Maggie; Revak, Amanda

    2015-01-01

    Science education is progressively more focused on employing inquiry-based learning methods in the classroom and increasing scientific literacy among students. However, due to time and resource constraints, many classroom science activities and laboratory experiments focus on simple inquiry, with a step-by-step approach to reach predetermined outcomes. The science classroom inquiry (SCI) simulations were designed to give students real life, authentic science experiences within the confines of a typical classroom. The SCI simulations allow students to engage with a science problem in a meaningful, inquiry-based manner. Three discrete SCI simulations were created as website applications for use with middle school and high school students. For each simulation, students were tasked with solving a scientific problem through investigation and hypothesis testing. After completion of the simulation, 67% of students reported a change in how they perceived authentic science practices, specifically related to the complex and dynamic nature of scientific research and how scientists approach problems. Moreover, 80% of the students who did not report a change in how they viewed the practice of science indicated that the simulation confirmed or strengthened their prior understanding. Additionally, we found a statistically significant positive correlation between students’ self-reported changes in understanding of authentic science practices and the degree to which each simulation benefitted learning. Since SCI simulations were effective in promoting both student learning and student understanding of authentic science practices with both middle and high school students, we propose that SCI simulations are a valuable and versatile technology that can be used to educate and inspire a wide range of science students on the real-world complexities inherent in scientific study. PMID:25786245

  1. Relationship of students' conceptual representations and problem-solving abilities in acid-base chemistry

    NASA Astrophysics Data System (ADS)

    Powers, Angela R.

    2000-10-01

    This study explored the relationship between secondary chemistry students' conceptual representations of acid-base chemistry, as shown in student-constructed concept maps, and their ability to solve acid-base problems, represented by their score on an 18-item paper and pencil test, the Acid-Base Concept Assessment (ABCA). The ABCA, consisting of both multiple-choice and short-answer items, was originally designed using a question-type by subtopic matrix, validated by a panel of experts, and refined through pilot studies and factor analysis to create the final instrument. The concept map task included a short introduction to concept mapping, a prototype concept map, a practice concept-mapping activity, and the instructions for the acid-base concept map task. The instruments were administered to chemistry students at two high schools; 108 subjects completed both instruments for this study. Factor analysis of ABCA results indicated that the test was unifactorial for these students, despite the intention to create an instrument with multiple "question-type" scales. Concept maps were scored both holistically and by counting valid concepts. The two approaches were highly correlated (r = 0.75). The correlation between ABCA score and concept-map score was 0.29 for holistically-scored concept maps and 0.33 for counted-concept maps. Although both correlations were significant, they accounted for only 8.8 and 10.2% of variance in ABCA scores, respectively. However, when the reliability of the instruments used is considered, more than 20% of the variance in ABCA scores may be explained by concept map scores. MANOVAs for ABCA and concept map scores by instructor, student gender, and year in school showed significant differences for both holistic and counted concept-map scores. Discriminant analysis revealed that the source of these differences was the instruction variable. Significant differences between classes receiving different instruction were found in the frequency of concepts listed by students for 9 of 10 concepts evaluated. Mean ABCA scores did not differ significantly between the two instruction groups. The results of this study failed to provide evidence of conceptual distinctions among different "types" of problem-solving items. The results suggested that several factors influence success in chemistry problem solving, including concept knowledge and organization. Further research into the nature of chemistry problems and problem solving is recommended.

  2. Pre-service mathematics teachers’ ability in solving well-structured problem

    NASA Astrophysics Data System (ADS)

    Paradesa, R.

    2018-01-01

    This study aimed to describe the mathematical problem-solving ability of undergraduate students of mathematics education in solving the well-structured problem. The type of this study was qualitative descriptive. The subjects in this study were 100 undergraduate students of Mathematics Education at one of the private universities in Palembang city. The data in this study was collected through two test items with essay form. The results of this study showed that, from the first problem, only 8% students can solve it, but do not check back again to validate the process. Based on a scoring rubric that follows Polya strategy, their answer satisfied 2 4 2 0 patterns. But, from the second problem, 45% students satisfied it. This is because the second problem imitated from the example that was given in learning process. The average score of undergraduate students mathematical problem-solving ability in solving well-structured problems showed 56.00 with standard deviation was 13.22. It means that, from 0 - 100 scale, undergraduate students mathematical problem-solving ability can be categorized low. From this result, the conclusion was undergraduate students of mathematics education in Palembang still have a problem in solving mathematics well-structured problem.

  3. WWC Review of the Report "The Effects of Cognitive Strategy Instruction on Math Problem Solving of Middle School Students of Varying Ability." What Works Clearinghouse Single Study Review

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2014

    2014-01-01

    A recent study, "The Effects of Cognitive Strategy Instruction on Math Problem Solving of Middle School Students of Varying Ability," examined the effectiveness of "Solve It!," a program intended to improve the problem-solving skills of seventh-grade math students. During the program, students are taught cognitive strategies of…

  4. Students' Dilemmas in Reaction Stoichiometry Problem Solving: Deducing the Limiting Reagent in Chemical Reactions

    ERIC Educational Resources Information Center

    Chandrasegaran, A. L.; Treagust, David F.; Waldrip, Bruce G.; Chandrasegaran, Antonia

    2009-01-01

    A qualitative case study was conducted to investigate the understanding of the limiting reagent concept and the strategies used by five Year 11 students when solving four reaction stoichiometry problems. Students' written problem-solving strategies were studied using the think-aloud protocol during problem-solving, and retrospective verbalisations…

  5. Thinking Process of Naive Problem Solvers to Solve Mathematical Problems

    ERIC Educational Resources Information Center

    Mairing, Jackson Pasini

    2017-01-01

    Solving problems is not only a goal of mathematical learning. Students acquire ways of thinking, habits of persistence and curiosity, and confidence in unfamiliar situations by learning to solve problems. In fact, there were students who had difficulty in solving problems. The students were naive problem solvers. This research aimed to describe…

  6. Encouraging Sixth-Grade Students' Problem-Solving Performance by Teaching through Problem Solving

    ERIC Educational Resources Information Center

    Bostic, Jonathan D.; Pape, Stephen J.; Jacobbe, Tim

    2016-01-01

    This teaching experiment provided students with continuous engagement in a problem-solving based instructional approach during one mathematics unit. Three sections of sixth-grade mathematics were sampled from a school in Florida, U.S.A. and one section was randomly assigned to experience teaching through problem solving. Students' problem-solving…

  7. Using Digital Mapping Tool in Ill-Structured Problem Solving

    ERIC Educational Resources Information Center

    Bai, Hua

    2013-01-01

    Scaffolding students' problem solving and helping them to improve problem solving skills are critical in instructional design courses. This study investigated the effects of students' uses of a digital mapping tool on their problem solving performance in a design case study. It was found that the students who used the digital mapping tool…

  8. The Effects of Thinking Aloud Pair Problem Solving on High School Students' Chemistry Problem-Solving Performance and Verbal Interactions

    NASA Astrophysics Data System (ADS)

    Jeon, Kyungmoon; Huffman, Douglas; Noh, Taehee

    2005-10-01

    This study investigated the effects of a thinking aloud pair problem solving (TAPPS) approach on students' chemistry problem-solving performance and verbal interactions. A total of 85 eleventh grade students from three classes in a Korean high school were randomly assigned to one of three groups; either individually using a problem-solving strategy, using a problem-solving strategy with TAPPS, or the control group. After instruction, students' problem-solving performance was examined. The results showed that students in both the individual and TAPPS groups performed better than those in the control group on recalling the related law and mathematical execution, while students in the TAPPS group performed better than those in the other groups on conceptual knowledge. To investigate the verbal behaviors using TAPPS, verbal behaviors of solvers and listeners were classified into 8 categories. Listeners' verbal behavior of "agreeing" and "pointing out", and solvers' verbal behavior of "modifying" were positively related with listeners' problem-solving performance. There was, however, a negative correlation between listeners' use of "point out" and solvers' problem-solving performance. The educational implications of this study are discussed.

  9. The Effect of Hints and Model Answers in a Student-Controlled Problem-Solving Program for Secondary Physics Education

    ERIC Educational Resources Information Center

    Pol, Henk J.; Harskamp, Egbert G.; Suhre, Cor J. M.; Goedhart, Martin J.

    2008-01-01

    Many students experience difficulties in solving applied physics problems. Most programs that want students to improve problem-solving skills are concerned with the development of content knowledge. Physhint is an example of a student-controlled computer program that supports students in developing their strategic knowledge in combination with…

  10. Problem-solving skills appraisal mediates hardiness and suicidal ideation among malaysian undergraduate students.

    PubMed

    Abdollahi, Abbas; Talib, Mansor Abu; Yaacob, Siti Nor; Ismail, Zanariah

    2015-01-01

    Recent evidence suggests that suicidal ideation is increased among university students, it is essential to increase our knowledge concerning the etiology of suicidal ideation among university students. This study was conducted to examine the relationships between problem-solving skills appraisal, hardiness, and suicidal ideation among university students. In addition, this study was conducted to examine problem-solving skills appraisal (including the three components of problem-solving confidence, approach-avoidance style, and personal control of emotion) as a potential mediator between hardiness and suicidal ideation. The participants consisted of 500 undergraduate students from Malaysian public universities. Structural Equation Modelling (SEM) estimated that undergraduate students with lower hardiness, poor problem-solving confidence, external personal control of emotion, and avoiding style was associated with higher suicidal ideation. Problem-solving skills appraisal (including the three components of problem-solving confidence, approach-avoidance style, and personal control of emotion) partially mediated the relationship between hardiness and suicidal ideation. These findings underline the importance of studying mediating processes that explain how hardiness affects suicidal ideation.

  11. Analysis of students’ creative thinking level in problem solving based on national council of teachers of mathematics

    NASA Astrophysics Data System (ADS)

    Hobri; Suharto; Rifqi Naja, Ahmad

    2018-04-01

    This research aims to determine students’ creative thinking level in problem solving based on NCTM in function subject. The research type is descriptive with qualitative approach. Data collection methods which were used are test and interview. Creative thinking level in problem solving based on NCTM indicators consists of (1) Make mathematical model from a contextual problem and solve the problem, (2) Solve problem using various possible alternatives, (3) Find new alternative(s) to solve the problem, (4) Determine the most efficient and effective alternative for that problem, (5) Review and correct mistake(s) on the process of problem solving. Result of the research showed that 10 students categorized in very satisfying level, 23 students categorized in satisfying level and 1 students categorized in less satisfying level. Students in very satisfying level meet all indicators, students in satisfying level meet first, second, fourth, and fifth indicator, while students in less satisfying level only meet first and fifth indicator.

  12. Enhancing chemistry problem-solving achievement using problem categorization

    NASA Astrophysics Data System (ADS)

    Bunce, Diane M.; Gabel, Dorothy L.; Samuel, John V.

    The enhancement of chemistry students' skill in problem solving through problem categorization is the focus of this study. Twenty-four students in a freshman chemistry course for health professionals are taught how to solve problems using the explicit method of problem solving (EMPS) (Bunce & Heikkinen, 1986). The EMPS is an organized approach to problem analysis which includes encoding the information given in a problem (Given, Asked For), relating this to what is already in long-term memory (Recall), and planning a solution (Overall Plan) before a mathematical solution is attempted. In addition to the EMPS training, treatment students receive three 40-minute sessions following achievement tests in which they are taught how to categorize problems. Control students use this time to review the EMPS solutions of test questions. Although problem categorization is involved in one section of the EMPS (Recall), treatment students who received specific training in problem categorization demonstrate significantly higher achievement on combination problems (those problems requiring the use of more than one chemical topic for their solution) at (p = 0.01) than their counterparts. Significantly higher achievement for treatment students is also measured on an unannounced test (p = 0.02). Analysis of interview transcripts of both treatment and control students illustrates a Rolodex approach to problem solving employed by all students in this study. The Rolodex approach involves organizing equations used to solve problems on mental index cards and flipping through them, matching units given when a new problem is to be solved. A second phenomenon observed during student interviews is the absence of a link in the conceptual understanding of the chemical concepts involved in a problem and the problem-solving skills employed to correctly solve problems. This study shows that explicit training in categorization skills and the EMPS can lead to higher achievement in complex problem-solving situations (combination problems and unannounced test). However, such achievement may be limited by the lack of linkages between students' conceptual understanding and improved problem-solving skill.

  13. A receptor-grounded approach to teaching nonsteroidal antiinflammatory drug chemistry and structure-activity relationships.

    PubMed

    Roche, Victoria F

    2009-12-17

    To describe a receptor-based approach to promote learning about nonsteroidal anti-inflammatory drug (NSAID) chemistry, structure-activity relationships, and therapeutic decision-making. Three lessons on cyclooxygenase (COX) and NSAID chemistry, and NSAID therapeutic utility, were developed using text-based resources and primary medicinal chemistry and pharmacy practice literature. Learning tools were developed to assist students in content mastery. Student learning was evaluated via performance on quizzes and examinations that measured understanding of COX and NSAID chemistry, and the application of that knowledge to therapeutic problem solving. Student performance on NSAID-focused quizzes and examinations documented the success of this approach.

  14. Cognitive Strategy Instruction for Teaching Word Problems to Primary-Level Struggling Students

    ERIC Educational Resources Information Center

    Pfannenstiel, Kathleen Hughes; Bryant, Diane Pedrotty; Bryant, Brian R.; Porterfield, Jennifer A.

    2015-01-01

    Students with mathematics difficulties and learning disabilities (LD) typically struggle with solving word problems. These students often lack knowledge about efficient, cognitive strategies to utilize when solving word problems. Cognitive strategy instruction has been shown to be effective in teaching struggling students how to solve word…

  15. Students' Use of Technological Features while Solving a Mathematics Problem

    ERIC Educational Resources Information Center

    Lee, Hollylynne Stohl; Hollebrands, Karen F.

    2006-01-01

    The design of technology tools has the potential to dramatically influence how students interact with tools, and these interactions, in turn, may influence students' mathematical problem solving. To better understand these interactions, we analyzed eighth grade students' problem solving as they used a java applet designed to specifically accompany…

  16. Climate change: could it help develop 'adaptive expertise'?

    PubMed

    Bell, Erica; Horton, Graeme; Blashki, Grant; Seidel, Bastian M

    2012-05-01

    Preparing health practitioners to respond to the rising burden of disease from climate change is emerging as a priority in health workforce policy and planning. However, this issue is hardly represented in the medical education research. The rapidly evolving wide range of direct and indirect consequences of climate change will require health professionals to have not only broad content knowledge but also flexibility and responsiveness to diverse regional conditions as part of complex health problem-solving and adaptation. It is known that adaptive experts may not necessarily be quick at solving familiar problems, but they do creatively seek to better solve novel problems. This may be the result of an acquired approach to practice or a pathway that can be fostered by learning environments. It is also known that building adaptive expertise in medical education involves putting students on a learning pathway that requires them to have, first, the motivation to innovatively problem-solve and, second, exposure to diverse content material, meaningfully presented. Including curriculum content on the health effects of climate change could help meet these two conditions for some students at least. A working definition and illustrative competencies for adaptive expertise for climate change, as well as examples of teaching and assessment approaches extrapolated from rural curricula, are provided.

  17. Diagrams benefit symbolic problem-solving.

    PubMed

    Chu, Junyi; Rittle-Johnson, Bethany; Fyfe, Emily R

    2017-06-01

    The format of a mathematics problem often influences students' problem-solving performance. For example, providing diagrams in conjunction with story problems can benefit students' understanding, choice of strategy, and accuracy on story problems. However, it remains unclear whether providing diagrams in conjunction with symbolic equations can benefit problem-solving performance as well. We tested the impact of diagram presence on students' performance on algebra equation problems to determine whether diagrams increase problem-solving success. We also examined the influence of item- and student-level factors to test the robustness of the diagram effect. We worked with 61 seventh-grade students who had received 2 months of pre-algebra instruction. Students participated in an experimenter-led classroom session. Using a within-subjects design, students solved algebra problems in two matched formats (equation and equation-with-diagram). The presence of diagrams increased equation-solving accuracy and the use of informal strategies. This diagram benefit was independent of student ability and item complexity. The benefits of diagrams found previously for story problems generalized to symbolic problems. The findings are consistent with cognitive models of problem-solving and suggest that diagrams may be a useful additional representation of symbolic problems. © 2017 The British Psychological Society.

  18. Social problem-solving in Chinese baccalaureate nursing students.

    PubMed

    Fang, Jinbo; Luo, Ying; Li, Yanhua; Huang, Wenxia

    2016-11-01

    To describe social problem solving in Chinese baccalaureate nursing students. A descriptive cross-sectional study was conducted with a cluster sample of 681 Chinese baccalaureate nursing students. The Chinese version of the Social Problem-Solving scale was used. Descriptive analyses, independent t-test and one-way analysis of variance were applied to analyze the data. The final year nursing students presented the highest scores of positive social problem-solving skills. Students with experiences of self-directed and problem-based learning presented significantly higher scores in Positive Problem Orientation subscale. The group with Critical thinking training experience, however, displayed higher negative problem solving scores compared with nonexperience group. Social problem solving abilities varied based upon teaching-learning strategies. Self-directed and problem-based learning may be recommended as effective way to improve social problem-solving ability. © 2016 Chinese Cochrane Center, West China Hospital of Sichuan University and John Wiley & Sons Australia, Ltd.

  19. The Application of Linear and Nonlinear Water Tanks Case Study in Teaching of Process Control

    NASA Astrophysics Data System (ADS)

    Li, Xiangshun; Li, Zhiang

    2018-02-01

    In the traditional process control teaching, the importance of passing knowledge is emphasized while the development of creative and practical abilities of students is ignored. Traditional teaching methods are not very helpful to breed a good engineer. Case teaching is a very useful way to improve students’ innovative and practical abilities. In the traditional case teaching, knowledge points are taught separately based on different examples or no examples, thus it is very hard to setup the whole knowledge structure. Though all the knowledge is learned, how to use the knowledge to solve engineering problems keeps challenging for students. In this paper, the linear and nonlinear tanks are taken as illustrative examples which involves several knowledge points of process control. The application method of each knowledge point is discussed in detail and simulated. I believe the case-based study will be helpful for students.

  20. Evaluating moral reasoning in nursing education.

    PubMed

    McLeod-Sordjan, Renee

    2014-06-01

    Evidence-based practice suggests the best approach to improving professionalism in practice is ethics curricula. However, recent research has demonstrated that millennium graduates do not advocate for patients or assert themselves during moral conflicts. The aim of this article is the exploration of evaluation techniques to evaluate one measurable outcome of ethics curricula: moral reasoning. A review of literature, published between 1995 and 2013, demonstrated that the moral orientations of care and justice as conceptualized by Gilligan and Kohlberg are utilized by nursing students to solve ethical dilemmas. Data obtained by means of reflective journaling, Ethics of Care Interview (ECI) and Defining Issues Test (DIT), would objectively measure the interrelated pathways of care-based and justice-based moral reasoning. In conclusion, educators have an ethical responsibility to foster students' ability to exercise sound clinical judgment, and support their professional development. It is recommended that educators design authentic assessments to demonstrate student's improvement of moral reasoning. © The Author(s) 2013.

  1. Interference thinking in constructing students’ knowledge to solve mathematical problems

    NASA Astrophysics Data System (ADS)

    Jayanti, W. E.; Usodo, B.; Subanti, S.

    2018-04-01

    This research aims to describe interference thinking in constructing students’ knowledge to solve mathematical problems. Interference thinking in solving problems occurs when students have two concepts that interfere with each other’s concept. Construction of problem-solving can be traced using Piaget’s assimilation and accommodation framework, helping to know the students’ thinking structures in solving the problems. The method of this research was a qualitative method with case research strategy. The data in this research involving problem-solving result and transcripts of interviews about students’ errors in solving the problem. The results of this research focus only on the student who experience proactive interference, where student in solving a problem using old information to interfere with the ability to recall new information. The student who experience interference thinking in constructing their knowledge occurs when the students’ thinking structures in the assimilation and accommodation process are incomplete. However, after being given reflection to the student, then the students’ thinking process has reached equilibrium condition even though the result obtained remains wrong.

  2. Community as client: environmental issues in the real world. A SimCity computer simulation.

    PubMed

    Bareford, C G

    2001-01-01

    The ability to think critically has become a crucial part of professional practice and education. SimCity, a popular computer simulation game, provides an opportunity to practice community assessment and interventions using a systems approach. SimCity is an interactive computer simulation game in which the player takes an active part in community planning. SimCity is supported on either a Windows 95/98 or a Macintosh platform and is available on CD-ROM at retail stores or at www.simcity.com. Students complete a tutorial and then apply a selected scenario in SimCity. Scenarios consist of hypothetical communities that have varying types and degrees of environmental problems, e.g., traffic, crime, nuclear meltdown, flooding, fire, and earthquakes. In problem solving with the simulated scenarios, students (a) identify systems and subsystems within the community that are critical factors impacting the environmental health of the community, (b) create changes in the systems and subsystems in an effort to solve the environmental health problem, and (c) evaluate the effectiveness of interventions based on the game score, demographic and fiscal data, and amount of community support. Because the consequences of planned intervention are part of the simulation, nursing students are able to develop critical-thinking skills. The simulation provides essential content in community planning in an interesting and interactive format.

  3. Engineering education in the wake of hurricane Katrina

    PubMed Central

    Lima, Marybeth

    2007-01-01

    Living through hurricane Katrina and its aftermath and reflecting on these experiences from technical and non-technical standpoints has led me to reconsider my thoughts and philosophy on engineering education. I present three ideas regarding engineering education pedagogy that I believe will prepare future engineers for problem-solving in an increasingly complex world. They are (1) we must practice radical (to the root) engineering, (2) we must illustrate connections between engineering and public policy, and (3) we will join the charge to find sustainable solutions to problems. Ideas for bringing each of these concepts into engineering curricula through methods such as case study, practicing broad information gathering and data interpretation, and other methods inside and outside the classroom, are discussed. I believe that the consequences of not considering the root issues of problems to be solved, and of not including policy and sustainability considerations when problems to be solved are framed will lead our profession toward well meaning but insufficient utility. Hurricane Katrina convinced me that we must do better as educators to prepare our students for engineering for a sustainable world. PMID:18271988

  4. Reflections on Descriptive Psychology: NASA, Media and Technology, Observation

    NASA Technical Reports Server (NTRS)

    Aucoin, Paschal J., Jr.

    1999-01-01

    At NASA, we have used methods of Descriptive Psychology (DP) to solve problems in several areas: Simulation of proposed Lunar/Mars missions at high level to assess feasibility and needs in the robotics and automation areas. How we would go about making a "person-like" robot. Design and implementation of Systems Engineering practices on behalf of future projects with emphasis on interoperability. Design of a Question and Answer dialog system to handle student questions about Advanced Life Support (ALS) systems - students learn biology by applying it to ALS projects.

  5. Self-directed questions to improve students' ability in solving chemical problems

    NASA Astrophysics Data System (ADS)

    Sanjaya, Rahmat Eko; Muna, Khairiatul; Suharto, Bambang; Syahmani

    2017-12-01

    Students' ability in solving chemical problems is seen from their ability to solve chemicals' non-routine problems. It is due to learning faced directly on non-routine problems will generate a meaningful learning for students. Observations in Banjarmasin Public High School 1 (SMA Negeri 1 Banjarmasin) showed that students did not give the expected results when they were given the non-routine problems. Learning activities by emphasizing problem solving was implemented based on the existence of knowledge about cognition and regulation of cognition. Both of these elements are components of metacognition. The self-directed question is a strategy that involves metacognition in solving chemical problems. This research was carried out using classroom action research design in two cycles. Each cycle consists of four stages: planning, action, observation and reflection. The subjects were 34 students of grade XI-4 at majoring science (IPA) of SMA Negeri 1 Banjarmasin. The data were collected using tests of the students' ability in problem solving and non-tests instrument to know the process of implementation of the actions. Data were analyzed with descriptivequantitativeand qualitative analysis. The ability of students in solving chemical problems has increased from an average of 37.96 in cycle I became 61.83 in cycle II. Students' ability to solve chemical problems is viewed based on their ability to answer self-directed questions. Students' ability in comprehension questions increased from 73.04 in the cycle I became 96.32 in cycle II. Connection and strategic questions increased from 54.17 and 16.50 on cycle I became 63.73 and 55.23 on cycle II respectively. In cycle I, reflection questions were 26.96 and elevated into 36.27 in cycle II. The self-directed questions have the ability to help students to solve chemical problems through metacognition questions. Those questions guide students to find solutions in solving chemical problems.

  6. [Approach to Evidence-based Medicine Exercises Using Flipped Teaching: Introductory Education for Clinical Practice for 4th-Year Pharmacy Students].

    PubMed

    Onda, Mitsuko; Takagaki, Nobumasa

    2018-01-01

     Osaka University of Pharmaceutical Sciences has included an evidence-based medicine (EBM) exercise in the introductory education for clinical practice for 4th-year pharmacy students since 2015. The purpose of this exercise is to learn the process of practice and basic concepts of EBM, especially to cultivate the practical ability to solve patients' problems and answer their questions. Additionally, in 2016, we have attempted flipped teaching. The students are instructed to review the basic knowledge necessary for active learning in this exercise by watching video teaching materials and to bring reports summarizing the contents on the flipped teaching days. The program includes short lectures [overview of EBM, document retrieval, randomized controlled trials (RCTs), and systematic review], exercises [patient, intervention, comparison, outcome (PICO) structuring, critical appraisal of papers in small groups with tutors], and presentations. The program includes: step 1, PICO structuring based on scenarios; step 2, critical appraisal of English-language papers on RCTs using evaluation worksheets; and step 3, reviewing the results of the PICO exercise with patients. The results of the review are shared among groups through general discussion. In this symposium, I discuss students' attitudes, the effectiveness of small group discussions using flipped teaching, and future challenges to be addressed in this program.

  7. Design and Usability Assessment of a Dialogue-Based Cognitive Tutoring System to Model Expert Problem Solving in Research Design

    ERIC Educational Resources Information Center

    Hung, Wei-Chen; Smith, Thomas J.; Smith, M. Cecil

    2015-01-01

    Technology provides the means to create useful learning and practice environments for learners. Well-designed cognitive tutor systems, for example, can provide appropriate learning environments that feature cognitive supports (ie, scaffolding) for students to increase their procedural knowledge. The purpose of this study was to conduct a series of…

  8. Integration of Algebraic Habits of Mind into the Classroom Practice

    ERIC Educational Resources Information Center

    Eroglu, Deniz; Tanisli, Dilek

    2017-01-01

    Getting students adopt the habits of mind specific to many disciplines can be seen as an anchor that will support them to solve the problems in their daily lives. Starting from this premise, a new subject, featuring the habits of mind and how to use and improve them in educational environments seems to worth thinking on. This article describes an…

  9. "Practicing What We Preach: An Argument for Cooperative Learning Opportunities for Elementary and Secondary Educators"

    ERIC Educational Resources Information Center

    Coke, Pamela K.

    2005-01-01

    Van Allen (1996) supports a paradigm shift in how Americans think about education, from a view of school as hierarchy to school as continuum. While the relationship between elementary and secondary education is not always visible, teachers can model cooperative learning for students by working as a team across grade levels to solve problem,…

  10. A Conceptual Framework for Best Practices in Information Literacy Instruction Based on Stakeholders' Perceptions: A Case Study of Four Vietnamese Academic Libraries

    ERIC Educational Resources Information Center

    Diep, Kim Chi

    2011-01-01

    Information Literacy (IL) competencies are defined as "the ability to locate, evaluate, and use information effectively" and are considered essential for students in their academic lives and future careers (ALA, 1989). IL plays an important role in developing critical thinking and problem solving skills, and improving academic…

  11. Teaching Practice of a Social Studies Practicum Student Who Is Blind: A Case Study

    ERIC Educational Resources Information Center

    Kaya, Erdogan

    2014-01-01

    Problem Statement: It is emphasized in the Council of Europe's action plan for people with disabilities (PD) that it is important to solve the employment problem to enable PD to integrate into society and improve the quality of their lives. In order to achieve this, educational opportunities along with employment for PD at places in which physical…

  12. Meeting the New AASL Standards for the 21st-Century Learner via Big6 Problem Solving

    ERIC Educational Resources Information Center

    Needham, Joyce

    2010-01-01

    "AASL Standards for the 21st-Century Learner." New standards for library media programs! What does it mean to practicing library media specialists? Does this mean they must abandon all the strategies, activities, and lessons they have developed based upon "Information Power's Information Literacy Standards for Student Learning" and create all new…

  13. Making Sure They Make It! Best Practices for Ensuring the Academic Success of First-Generation College Students. CIC/Walmart College Success Awards Report

    ERIC Educational Resources Information Center

    Strand, Kerry J.

    2013-01-01

    A baccalaureate degree is essential to success in the contemporary United States. The degree offers improved economic security and the development of capabilities such as critical thinking, effective communication, quantitative reasoning, creativity, problem solving, personal and social responsibility, and social and cultural capital. Failure to…

  14. Collaborative Teacher Inquiry as a Tool for Building Theory on the Development and Use of Rich Mathematical Tasks

    ERIC Educational Resources Information Center

    Slavit, David; Nelson, Tamara Holmlund

    2010-01-01

    This article describes the collaborative inquiry activity of a group of high school mathematics teachers interested in increasing student engagement and problem solving in the classroom. Specific findings related to the nature of the teacher interactions and subsequent impacts on practice are discussed. The findings focus on (a) the nature of the…

  15. A Safe Place: The Role of Librarians and Writing Centers in Addressing Citation Practices and Plagiarism

    ERIC Educational Resources Information Center

    Buranen, Lise

    2009-01-01

    In American colleges and universities, plagiarism is a hot topic: teachers wail and moan about the rise in student plagiarism (though often without evidence to demonstrate this supposed rise); they complain that the Web has "caused" plagiarism; and at the same time, many believe that technology is the key to "solving" the problem of student…

  16. Metacognitive skills and students' motivation toward chemical equilibrium problem solving ability: A correlational study on students of XI IPA SMAN 2 Banjarmasin

    NASA Astrophysics Data System (ADS)

    Muna, Khairiatul; Sanjaya, Rahmat Eko; Syahmani, Bakti, Iriani

    2017-12-01

    The demand for students to have metacognitive skills and problem solving ability can be seen in the core competencies of the 2013 curriculum. Metacognitive skills are the skills which affect students' success in solving problems depending on students' motivation. This explains the possibility of the relationship between metacognition and motivation in affecting students' achievement including problem solving. Due to the importance of metacognitive skills to solve problems and the possible relationship between metacognition and motivation, a study to find the relationship among the variables is necessary to conduct, particularly on chemistry problem solving. This one shot case study using quantitative method aimed to investigate the correlation between metacognitive skills and motivation toward problem solving ability focusing on chemical equilibrium. The research population was students of grade XI of majoring Science of Banjarmasin Public High Scool 2 (XI IPA SMAN 2 Banjarmasin) with the samples of 33 students obtained by using purposive sampling technique. The research data were collected using test and non-test and analyzed using multiple regression in SPSS 21. The results of this study showed that (1) the students' metacognitive skills and motivation correlated positively with coefficient of +0.450 to problem solving ability on chemical equilibrium: (2) inter-variables of students' motivation (self-efficacy, active learning strategies, science/chemistry learning value, performance goal, achievement goal, and learning environment stimulations) correlated positively to metacognitive skills with the correlation coefficients of +0.580, +0.537, +0.363, +0.241, +0.516, and +0.271, respectively. Based on the results, it is necessary for teachers to implement learning which develops students' metacognitive skills and motivation, such as learning with scientific approach. The implementation of the learning is also supposed to be complemented with the use of learning device, such as student worksheet, to help students use their metacognitive skills in solving problems, particularly on chemistry subject.

  17. An American and Dutch partnership for psychiatric mental health advance nursing practice: nurturing a relationship across the ocean.

    PubMed

    Maas, Lillian; Ezeobele, I Ezebuiro; Tetteroo, Marieke

    2012-07-01

    The purpose of this article is to discuss the challenges and rewards of developing and nurturing an international clinical psychiatric mental health advanced nursing practice exchange between the Netherlands and the United States. Since 1997, Rotterdam University of Applied Sciences in the Netherlands has been participating in international clinical experiences for their psychiatric mental health (PMH) advanced practice nursing students. The international experience is mandatory prior to graduation and is the first of its kind in Europe to mandate such a unique experience. This study sample included eight Dutch PMH advanced practice nursing students enrolled in a full-time master's in advanced nursing practice program. The descriptive study included reflective reports and one-on-one discussions over a 3-year period. With proper planning, an international nursing experience provides a unique opportunity for nurses to think beyond their own culture and healthcare system. Solving problems together through different perspectives creates opportunities for creative solutions. International partnerships within PMH advanced practice nursing promotes sharing of knowledge and solutions as patients and diseases have no border. © 2011 Wiley Periodicals, Inc.

  18. Chinese and Singaporean Sixth-Grade Students' Strategies for Solving Problems about Speed

    ERIC Educational Resources Information Center

    Jiang, Chunlian; Hwang, Stephen; Cai, Jinfa

    2014-01-01

    This study examined 361 Chinese and 345 Singaporean sixth-grade students' performance and problem-solving strategies for solving 14 problems about speed. By focusing on students from two distinct high-performing countries in East Asia, we provide a useful perspective on the differences that exist in the preparation and problem-solving strategies…

  19. Surveying Turkish High School and University Students' Attitudes and Approaches to Physics Problem Solving

    ERIC Educational Resources Information Center

    Balta, Nuri; Mason, Andrew J.; Singh, Chandralekha

    2016-01-01

    Students' attitudes and approaches to physics problem solving can impact how well they learn physics and how successful they are in solving physics problems. Prior research in the U.S. using a validated Attitude and Approaches to Problem Solving (AAPS) survey suggests that there are major differences between students in introductory physics and…

  20. A Randomized Trial of the Effects of Schema-Based Instruction on Proportional Problem-Solving for Students With Mathematics Problem-Solving Difficulties.

    PubMed

    Jitendra, Asha K; Harwell, Michael R; Dupuis, Danielle N; Karl, Stacy R

    This article reports results from a study investigating the efficacy of a proportional problem-solving intervention, schema-based instruction (SBI), in seventh grade. Participants included 806 students with mathematical difficulties in problem solving (MD-PS) from an initial pool of 1,999 seventh grade students in a larger study. Teachers and their students in the larger study were randomly assigned to an SBI or control condition and teachers in both conditions then provided instruction on the topics of ratio, proportion, and percent. We found that students with MD-PS in SBI classrooms scored on average higher than their counterparts in control classrooms on a posttest and delayed posttest administered 9 weeks later. Given students' difficulties with proportional problem-solving and the consequences of these difficulties, an important contribution of this research is the finding that when provided with appropriate instruction, students with MD-PS are capable of enhanced proportional problem-solving performance.

  1. Ecological literacy and beyond: Problem-based learning for future professionals.

    PubMed

    Lewinsohn, Thomas M; Attayde, José Luiz; Fonseca, Carlos Roberto; Ganade, Gislene; Jorge, Leonardo Ré; Kollmann, Johannes; Overbeck, Gerhard E; Prado, Paulo Inácio; Pillar, Valério D; Popp, Daniela; da Rocha, Pedro L B; Silva, Wesley Rodrigues; Spiekermann, Annette; Weisser, Wolfgang W

    2015-03-01

    Ecological science contributes to solving a broad range of environmental problems. However, lack of ecological literacy in practice often limits application of this knowledge. In this paper, we highlight a critical but often overlooked demand on ecological literacy: to enable professionals of various careers to apply scientific knowledge when faced with environmental problems. Current university courses on ecology often fail to persuade students that ecological science provides important tools for environmental problem solving. We propose problem-based learning to improve the understanding of ecological science and its usefulness for real-world environmental issues that professionals in careers as diverse as engineering, public health, architecture, social sciences, or management will address. Courses should set clear learning objectives for cognitive skills they expect students to acquire. Thus, professionals in different fields will be enabled to improve environmental decision-making processes and to participate effectively in multidisciplinary work groups charged with tackling environmental issues.

  2. The effectiveness of a simulated scenario to teach nursing students how to perform a bed bath: A randomized clinical trial.

    PubMed

    Miranda, Renata Pinto Ribeiro; de Cássia Lopes Chaves, Érika; Silva Lima, Rogério; Braga, Cristiane Giffoni; Simões, Ivandira Anselmo Ribeiro; Fava, Silvana Maria Coelho Leite; Iunes, Denise Hollanda

    2017-10-01

    Simulation allows students to develop several skills during a bed bath that are difficult to teach only in traditional classroom lectures, such as problem-solving, student interactions with the simulator (patient), reasoning in clinical evaluations, evaluation of responses to interventions, teamwork, communication, security and privacy. This study aimed to evaluate the effectiveness of a simulated bed bath scenario on improving cognitive knowledge, practical performance and satisfaction among nursing students. Randomized controlled clinical trial. Nursing students that were in the fifth period from two educational institutions in Brazil. Nursing students (n=58). The data were collected using the assessments of cognitive knowledge, practical performance and satisfaction were made through a written test about bed baths, an Objective Structured Clinical Examination (OSCE) and a satisfaction questionnaire. We identified that the acquisition and assimilation of cognitive knowledge was significantly higher in the simulation group (p=0.001). The performance was similar in both groups regardless of the teaching strategy (p=0.435). At follow-up, the simulation group had significantly more satisfaction with the teaching method than the control group (p=0.007). The teaching strategy based on a simulated scenario of a bed bath proved to be effective for the acquisition of cognitive knowledge regarding bed baths in clinical practice and improved student satisfaction with the teaching process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Epistemic Beliefs about Justification Employed by Physics Students and Faculty in Two Different Problem Contexts

    NASA Astrophysics Data System (ADS)

    Çağlayan Mercan, Fatih

    2012-06-01

    This study examines the epistemic beliefs about justification employed by physics undergraduate and graduate students and faculty in the context of solving a standard classical physics problem and a frontier physics problem. Data were collected by a think-aloud problem solving session followed by a semi-structured interview conducted with 50 participants, 10 participants at freshmen, seniors, masters, PhD, and faculty levels. Seven modes of justification were identified and used for exploring the relationships between each justification mode and problem context, and expertise level. The data showed that justification modes were not mutually exclusive and many respondents combined different modes in their responses in both problem contexts. Success on solving the standard classical physics problem was not related to any of the justification modes and was independent of expertise level. The strength of the association across the problem contexts for the authoritative, rational, and empirical justification modes fell in the medium range and for the modeling justification mode fell in the large range of practical significance. Expertise level was not related with the empirical and religious justification modes. The strength of the association between the expertise level and the authoritative, rational, experiential, and relativistic justification modes fell in the medium range, and the modeling justification mode fell in the large range of practical significance. The results provide support for the importance of context for the epistemic beliefs about justification and are discussed in terms of the implications for teaching and learning science.

  4. A Comparison of Students in Physical Education and Sports College and the Students in Other Departments in Terms of Problem Solving Skills

    ERIC Educational Resources Information Center

    Görücü, Alpaslan; Cantav, Erkan

    2017-01-01

    In this research, it is aimed to analyze the problem solving skills of university students in terms of different variables and to analyze the differences among the levels of perceived problem solving skill of the students of Physical Education and Sports College and other branch students. The sample consists of the university students from the…

  5. Problem-Solving Skills and Suicidal Ideation Among Malaysian College Students: the Mediating Role of Hopelessness.

    PubMed

    Abdollahi, Abbas; Talib, Mansor Abu; Yaacob, Siti Nor; Ismail, Zanariah

    2016-04-01

    Recent evidence suggests that suicidal ideation has increased among Malaysian college students over the past two decades; therefore, it is essential to increase our knowledge concerning the etiology of suicidal ideation among Malaysian college students. This study was conducted to examine the relationships between problem-solving skills, hopelessness, and suicidal ideation among Malaysian college students. The participants included 500 undergraduate students from two Malaysian public universities who completed the self-report questionnaires. Structural equation modeling estimated that college students with poor problem-solving confidence, external personal control of emotion, and avoiding style were more likely to report suicidal ideation. Hopelessness partially mediated the relationship between problem-solving skills and suicidal ideation. These findings reinforce the importance of poor problem-solving skills and hopelessness as risk factors for suicidal ideation among college students.

  6. Pre-Service Physics Teachers’ Problem-solving Skills in Projectile Motion Concept

    NASA Astrophysics Data System (ADS)

    Sutarno, S.; Setiawan, A.; Kaniawati, I.; Suhandi, A.

    2017-09-01

    This study is a preliminary research aiming at exploring pre-service physics teachers’ skills in applying the stage of problem-solving strategies. A total of 76 students of physics education study program at a college in Bengkulu Indonesia participated in the study. The skills on solving physics problems are being explored through exercises that demand the use of problem-solving strategies with several stages such as useful description, physics approach, specific application of physics, physics equation, mathematical procedures, and logical progression. Based on the results of data analysis, it is found that the pre-service physics teachers’ skills are in the moderate category for physics approach and mathematical procedural, and low category for the others. It was concluded that the pre-service physics teachers’ problem-solving skills are categorized low. It is caused by the learning of physics that has done less to practice problem-solving skills. The problems provided are only routine and poorly trained in the implementation of problem-solving strategies.The results of the research can be used as a reference for the importance of the development of physics learning based on higher order thinking skills.

  7. Geospatial Service Platform for Education and Research

    NASA Astrophysics Data System (ADS)

    Gong, J.; Wu, H.; Jiang, W.; Guo, W.; Zhai, X.; Yue, P.

    2014-04-01

    We propose to advance the scientific understanding through applications of geospatial service platforms, which can help students and researchers investigate various scientific problems in a Web-based environment with online tools and services. The platform also offers capabilities for sharing data, algorithm, and problem-solving knowledge. To fulfil this goal, the paper introduces a new course, named "Geospatial Service Platform for Education and Research", to be held in the ISPRS summer school in May 2014 at Wuhan University, China. The course will share cutting-edge achievements of a geospatial service platform with students from different countries, and train them with online tools from the platform for geospatial data processing and scientific research. The content of the course includes the basic concepts of geospatial Web services, service-oriented architecture, geoprocessing modelling and chaining, and problem-solving using geospatial services. In particular, the course will offer a geospatial service platform for handson practice. There will be three kinds of exercises in the course: geoprocessing algorithm sharing through service development, geoprocessing modelling through service chaining, and online geospatial analysis using geospatial services. Students can choose one of them, depending on their interests and background. Existing geoprocessing services from OpenRS and GeoPW will be introduced. The summer course offers two service chaining tools, GeoChaining and GeoJModelBuilder, as instances to explain specifically the method for building service chains in view of different demands. After this course, students can learn how to use online service platforms for geospatial resource sharing and problem-solving.

  8. Teaching ethics to engineers: ethical decision making parallels the engineering design process.

    PubMed

    Bero, Bridget; Kuhlman, Alana

    2011-09-01

    In order to fulfill ABET requirements, Northern Arizona University's Civil and Environmental engineering programs incorporate professional ethics in several of its engineering courses. This paper discusses an ethics module in a 3rd year engineering design course that focuses on the design process and technical writing. Engineering students early in their student careers generally possess good black/white critical thinking skills on technical issues. Engineering design is the first time students are exposed to "grey" or multiple possible solution technical problems. To identify and solve these problems, the engineering design process is used. Ethical problems are also "grey" problems and present similar challenges to students. Students need a practical tool for solving these ethical problems. The step-wise engineering design process was used as a model to demonstrate a similar process for ethical situations. The ethical decision making process of Martin and Schinzinger was adapted for parallelism to the design process and presented to students as a step-wise technique for identification of the pertinent ethical issues, relevant moral theories, possible outcomes and a final decision. Students had greatest difficulty identifying the broader, global issues presented in an ethical situation, but by the end of the module, were better able to not only identify the broader issues, but also to more comprehensively assess specific issues, generate solutions and a desired response to the issue.

  9. Study of the comprehension of the scientific method by members of a university health research laboratory.

    PubMed

    Burlamaque-Neto, A C; Santos, G R; Lisbôa, L M; Goldim, J R; Machado, C L B; Matte, U; Giugliani, R

    2012-02-01

    In Brazil, scientific research is carried out mainly at universities, where professors coordinate research projects with the active participation of undergraduate and graduate students. However, there is no formal program for the teaching/learning of the scientific method. The objective of the present study was to evaluate the comprehension of the scientific method by students of health sciences who participate in scientific projects in an academic research laboratory. An observational descriptive cross-sectional study was conducted using Edgar Morin complexity as theoretical reference. In a semi-structured interview, students were asked to solve an abstract logical puzzle - TanGram. The collected data were analyzed using the hermeneutic-dialectic analysis method proposed by Minayo and discussed in terms of the theoretical reference of complexity. The students' concept of the scientific method is limited to participation in projects, stressing the execution of practical procedures as opposed to scientific thinking. The solving of the TanGram puzzle revealed that the students had difficulties in understanding questions and activities focused on subjects and their processes. Objective answers, even when dealing with personal issues, were also reflected on the students' opinions about the characteristics of a successful researcher. Students' difficulties concerning these issues may affect their scientific performance and result in poorly designed experiments. This is a preliminary study that should be extended to other centers of scientific research.

  10. Study of the comprehension of the scientific method by members of a university health research laboratory

    PubMed Central

    Burlamaque-Neto, A.C.; Santos, G.R.; Lisbôa, L.M.; Goldim, J.R.; Machado, C.L.B.; Matte, U.; Giugliani, R.

    2012-01-01

    In Brazil, scientific research is carried out mainly at universities, where professors coordinate research projects with the active participation of undergraduate and graduate students. However, there is no formal program for the teaching/learning of the scientific method. The objective of the present study was to evaluate the comprehension of the scientific method by students of health sciences who participate in scientific projects in an academic research laboratory. An observational descriptive cross-sectional study was conducted using Edgar Morin complexity as theoretical reference. In a semi-structured interview, students were asked to solve an abstract logical puzzle - TanGram. The collected data were analyzed using the hermeneutic-dialectic analysis method proposed by Minayo and discussed in terms of the theoretical reference of complexity. The students' concept of the scientific method is limited to participation in projects, stressing the execution of practical procedures as opposed to scientific thinking. The solving of the TanGram puzzle revealed that the students had difficulties in understanding questions and activities focused on subjects and their processes. Objective answers, even when dealing with personal issues, were also reflected on the students' opinions about the characteristics of a successful researcher. Students' difficulties concerning these issues may affect their scientific performance and result in poorly designed experiments. This is a preliminary study that should be extended to other centers of scientific research. PMID:22249427

  11. Safety in numbers 7: Veni, vidi, duci: a grounded theory evaluation of nursing students' medication dosage calculation problem-solving schemata construction.

    PubMed

    Weeks, Keith W; Higginson, Ray; Clochesy, John M; Coben, Diana

    2013-03-01

    This paper evaluates nursing students' transition through schemata construction and competence development in medication dosage calculation problem-solving (MDC-PS). We advance a grounded theory from interview data that reflects the experiences and perceptions of two groups of undergraduate pre-registration nursing students: eight students exposed to a prototype authentic MDC-PS environment and didactic transmission methods of education and 15 final year students exposed to the safeMedicate authentic MDC-PS environment. We advance a theory of how classroom-based 'chalk and talk' didactic transmission environments offered multiple barriers to accurate MDC-PS schemata construction among novice students. While conversely it was universally perceived by all students that authentic learning and assessment environments enabled MDC-PS schemata construction through facilitating: 'seeing' the authentic features of medication dosage problems; context-based and situational learning; learning within a scaffolded environment that supported construction of cognitive links between the concrete world of clinical MDC-PS and the abstract world of mathematics; and confidence-building in their cognitive and functional competence ability. Drawing on the principle of veni, vidi, duci (I came, I saw, I calculated), we combined the two sets of evaluations to offer a grounded theoretical basis for schemata construction and competence development within this critical domain of professional practice. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Modeling Students' Problem Solving Performance in the Computer-Based Mathematics Learning Environment

    ERIC Educational Resources Information Center

    Lee, Young-Jin

    2017-01-01

    Purpose: The purpose of this paper is to develop a quantitative model of problem solving performance of students in the computer-based mathematics learning environment. Design/methodology/approach: Regularized logistic regression was used to create a quantitative model of problem solving performance of students that predicts whether students can…

  13. Associations of Students' Beliefs with Self-Regulated Problem Solving in College Algebra

    ERIC Educational Resources Information Center

    Cifarelli, Victor; Goodson-Espy, Tracy; Chae, Jeong-Lim

    2010-01-01

    This paper reports results from a study of self-regulated problem solving actions of students enrolled in College Algebra (N = 139). The study examined the associations between the expressed mathematical beliefs of students and the students' self-regulated actions in solving mathematics problems. The research questions are: (a) What are some…

  14. Analyzing Interpersonal Problem Solving in Terms of Solution Focused Approach and Humor Styles of University Student

    ERIC Educational Resources Information Center

    Koc, Hayri; Arslan, Coskun

    2017-01-01

    In this study university students interpersonal problem solving approaches were investigated in terms of solution focused approach and humor styles. The participants were 773 (542 female and 231 male, between 17-33 years old) university students. To determine the university students' problem solving approaches "Interpersonal Problem Solving…

  15. Improving Students' Problem Solving in a Virtual Chemistry Simulation through Metacognitive Messages

    ERIC Educational Resources Information Center

    Beal, Carole R.; Stevens, Ronald H.

    2011-01-01

    Recent assessments indicate that American students do not score well on tests of scientific problem solving, relative to students in other nations. IMMEX is a web-based virtual environment that provides students with opportunities to solve science problems by viewing information resources through a suite of menu options, developing a hypothesis…

  16. Find the Dimensions: Students Solving a Tiling Problem

    ERIC Educational Resources Information Center

    Obara, Samuel

    2018-01-01

    Students learn mathematics by solving problems. Mathematics textbooks are full of problems, and mathematics teachers use these problems to test students' understanding of mathematical concepts. This paper discusses how problem-solving skills can be fostered with a geometric tiling problem.

  17. Calculation and word problem-solving skills in primary grades - Impact of cognitive abilities and longitudinal interrelations with task-persistent behaviour.

    PubMed

    Jõgi, Anna-Liisa; Kikas, Eve

    2016-06-01

    Primary school math skills form a basis for academic success down the road. Different math skills have different antecedents and there is a reason to believe that more complex math tasks require better self-regulation. The study aimed to investigate longitudinal interrelations of calculation and problem-solving skills, and task-persistent behaviour in Grade 1 and Grade 3, and the effect of non-verbal intelligence, linguistic abilities, and executive functioning on math skills and task persistence. Participants were 864 students (52.3% boys) from 33 different schools in Estonia. Students were tested twice - at the end of Grade1 and at the end of Grade 3. Calculation and problem-solving skills, and teacher-rated task-persistent behaviour were measured at both time points. Non-verbal intelligence, linguistic abilities, and executive functioning were measured in Grade 1. Cross-lagged structural equation modelling indicated that calculation skills depend on previous math skills and linguistic abilities, while problem-solving skills require also non-verbal intelligence, executive functioning, and task persistence. Task-persistent behaviour in Grade 3 was predicted by previous problem-solving skills, linguistic abilities, and executive functioning. Gender and mother's educational level were added as covariates. The findings indicate that math skills and self-regulation are strongly related in primary grades and that solving complex tasks requires executive functioning and task persistence from children. Findings support the idea that instructional practices might benefit from supporting self-regulation in order to gain domain-specific, complex skill achievement. © 2015 The British Psychological Society.

  18. Step by Step: Biology Undergraduates’ Problem-Solving Procedures during Multiple-Choice Assessment

    PubMed Central

    Prevost, Luanna B.; Lemons, Paula P.

    2016-01-01

    This study uses the theoretical framework of domain-specific problem solving to explore the procedures students use to solve multiple-choice problems about biology concepts. We designed several multiple-choice problems and administered them on four exams. We trained students to produce written descriptions of how they solved the problem, and this allowed us to systematically investigate their problem-solving procedures. We identified a range of procedures and organized them as domain general, domain specific, or hybrid. We also identified domain-general and domain-specific errors made by students during problem solving. We found that students use domain-general and hybrid procedures more frequently when solving lower-order problems than higher-order problems, while they use domain-specific procedures more frequently when solving higher-order problems. Additionally, the more domain-specific procedures students used, the higher the likelihood that they would answer the problem correctly, up to five procedures. However, if students used just one domain-general procedure, they were as likely to answer the problem correctly as if they had used two to five domain-general procedures. Our findings provide a categorization scheme and framework for additional research on biology problem solving and suggest several important implications for researchers and instructors. PMID:27909021

  19. The Use of a Bar Model Drawing to Teach Word Problem Solving to Students with Mathematics Difficulties

    ERIC Educational Resources Information Center

    Morin, Lisa L.; Watson, Silvana M. R.; Hester, Peggy; Raver, Sharon

    2017-01-01

    For students with mathematics difficulties (MD), math word problem solving is especially challenging. The purpose of this study was to examine the effects of a problem-solving strategy, bar model drawing, on the mathematical problem-solving skills of students with MD. The study extended previous research that suggested that schematic-based…

  20. An Assessment of the Effect of Collaborative Groups on Students' Problem-Solving Strategies and Abilities

    ERIC Educational Resources Information Center

    Cooper, Melanie M.; Cox, Charles T., Jr.; Nammouz, Minory; Case, Edward; Stevens, Ronald

    2008-01-01

    Improving students' problem-solving skills is a major goal for most science educators. While a large body of research on problem solving exists, assessment of meaningful problem solving is very difficult, particularly for courses with large numbers of students in which one-on-one interactions are not feasible. We have used a suite of software…

Top