Sample records for students scientists engineers

  1. How Middle Schoolers Draw Engineers and Scientists

    NASA Astrophysics Data System (ADS)

    Fralick, Bethany; Kearn, Jennifer; Thompson, Stephen; Lyons, Jed

    2009-02-01

    The perceptions young students have of engineers and scientists are often populated with misconceptions and stereotypes. Although the perceptions that young people have of engineers and of scientists have been investigated separately, they have not been systematically compared. The research reported in this paper explores the question "How are student perceptions of engineers and scientists similar and how are they different?" Approximately 1,600 middle school students from urban and suburban schools in the southeastern United States were asked to draw either an engineer or a scientist at work. Drawings included space for the students to explain what their person was doing in the picture. A checklist to code the drawings was developed and used by two raters. This paper discusses similarities and differences in middle school perceptions of scientists and engineers. Results reveal that the students involved in this study frequently perceive scientists as working indoors conducting experiments. A large fraction of the students have no perception of engineering. Others frequently perceive engineers as working outdoors in manual labor. The findings have implications for the development and implementation of engineering outreach efforts.

  2. Career preference theory: A grounded theory describing the effects of undergraduate career preferences on student persistence in engineering

    NASA Astrophysics Data System (ADS)

    Dettinger, Karen Marie

    This study used grounded theory in a case study at a large public research university to develop a theory about how the culture in engineering education affects students with varying interests and backgrounds. According to Career Preference Theory, the engineering education system has evolved to meet the needs of one type of student, the Physical Scientist. While this educational process serves to develop the next generation of engineering faculty members, the majority of engineering undergraduates go on to work as practicing engineers, and are far removed from working as physical scientists. According to Career Preference Theory, students with a history of success in mathematics and sciences, and a focus on career, enter engineering. These students, who actually have a wide range of interests and values, each begin seeking an identity as a practicing engineer. Career Preference Theory is developed around a concept, Career Identity Type, that describes five different types of engineering students: Pragmatic, Physical Scientist, "Social" Scientist, Designer, and Educator. According to the theory, each student must develop an identity within the engineering education system if they are to persist in engineering. However, the current undergraduate engineering education system has evolved in such a way that it meets only the needs of the Physical Scientist. Pragmatic students are also likely to succeed because they tend to be extremely goal-focused and maintain a focus on the rewards they will receive once they graduate with an engineering degree. However, "Social" Scientists, who value interpersonal relationships and giving back to society; Designers, who value integrating ideas across disciplines to create aesthetically pleasing and useful products; and Educators, who have a strong desire to give back to society by working with young people, must make some connection between these values and a future engineering career if they are to persist in engineering. According to Career Preference Theory, "Social" Scientists, Designers, and Educators are likely to leave engineering, while Pragmatics and Physical Scientists are likely to persist.

  3. 45 CFR 9.3 - Delegations of authority.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... ACADEMIC SCIENTISTS, ENGINEERS, AND STUDENTS § 9.3 Delegations of authority. (a) The heads of operating... qualified academic scientists, engineers, and students. (b) The heads of operating agencies may (and are...

  4. 45 CFR 9.3 - Delegations of authority.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... ACADEMIC SCIENTISTS, ENGINEERS, AND STUDENTS § 9.3 Delegations of authority. (a) The heads of operating... qualified academic scientists, engineers, and students. (b) The heads of operating agencies may (and are...

  5. 45 CFR 9.3 - Delegations of authority.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... ACADEMIC SCIENTISTS, ENGINEERS, AND STUDENTS § 9.3 Delegations of authority. (a) The heads of operating... qualified academic scientists, engineers, and students. (b) The heads of operating agencies may (and are...

  6. 45 CFR 9.3 - Delegations of authority.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... ACADEMIC SCIENTISTS, ENGINEERS, AND STUDENTS § 9.3 Delegations of authority. (a) The heads of operating... qualified academic scientists, engineers, and students. (b) The heads of operating agencies may (and are...

  7. 45 CFR 9.4 - Criteria.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION USE OF HHS RESEARCH FACILITIES BY ACADEMIC... of the academic scientist, or engineer, or student, with the prospect of fruitful interchange of ideas and information between Department personnel and the academic scientist, or engineer, or student...

  8. 45 CFR 9.4 - Criteria.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION USE OF HHS RESEARCH FACILITIES BY ACADEMIC... of the academic scientist, or engineer, or student, with the prospect of fruitful interchange of ideas and information between Department personnel and the academic scientist, or engineer, or student...

  9. 45 CFR 9.4 - Criteria.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION USE OF HHS RESEARCH FACILITIES BY ACADEMIC... of the academic scientist, or engineer, or student, with the prospect of fruitful interchange of ideas and information between Department personnel and the academic scientist, or engineer, or student...

  10. 45 CFR 9.4 - Criteria.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Department of Health and Human Services GENERAL ADMINISTRATION USE OF HHS RESEARCH FACILITIES BY ACADEMIC... of the academic scientist, or engineer, or student, with the prospect of fruitful interchange of ideas and information between Department personnel and the academic scientist, or engineer, or student...

  11. 45 CFR 9.4 - Criteria.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION USE OF HHS RESEARCH FACILITIES BY ACADEMIC... of the academic scientist, or engineer, or student, with the prospect of fruitful interchange of ideas and information between Department personnel and the academic scientist, or engineer, or student...

  12. How Middle Schoolers Draw Engineers and Scientists

    ERIC Educational Resources Information Center

    Fralick, Bethany; Kearn, Jennifer; Thompson, Stephen; Lyons, Jed

    2009-01-01

    The perceptions young students have of engineers and scientists are often populated with misconceptions and stereotypes. Although the perceptions that young people have of engineers and of scientists have been investigated separately, they have not been systematically compared. The research reported in this paper explores the question "How are…

  13. Reading about Real Scientists

    ERIC Educational Resources Information Center

    Cummins, Sunday

    2015-01-01

    Although students do need hands-on experiences to master key skills in science, technology, and engineering, Cummins asserts, K-12 teachers should also help students understand key STEM concepts by reading, writing, and talking about the work of professional scientists and engineers. Cummins lists high-quality texts that help young people…

  14. Reaching Students: What Research Says about Effective Instruction in Undergraduate Science and Engineering

    ERIC Educational Resources Information Center

    Kober, Nancy

    2015-01-01

    The undergraduate years are a turning point in producing scientifically literate citizens and future scientists and engineers. Evidence from research about how students learn science and engineering shows that teaching strategies that motivate and engage students will improve their learning. So how do students best learn science and engineering?…

  15. Turkish Adaptation of Questionnaire on Attitudes towards Engineers and Scientists

    ERIC Educational Resources Information Center

    Ergün, Aysegül; Balçin, Muhammed Dogukan

    2017-01-01

    The aim of this research was to present the Turkish adaptation of the survey for Middle-School Students' Attitudes toward Engineers and Scientists prepared by Lyons, Fralick and Kearn (2009) 32 items in a 5-point Likert type scale. The questionnaire was administered to 707 students receiving education in the fifth, sixth, seventh and eighth grades…

  16. Addressing the Misconceptions of Middle School Students About Becoming a Scientist or Engineer

    NASA Technical Reports Server (NTRS)

    Newsom, H. E.; Sorge, C.; Hagerty, J. J.

    2000-01-01

    Assessment of our educational outreach program shows that students and their parents are excited about space science, but stereotypes about science and scientists drastically effect student attitudes about science and pursuing a technical career.

  17. Intending to Stay: Images of Scientists, Attitudes Toward Women, and Gender as Influences on Persistence among Science and Engineering Majors

    NASA Astrophysics Data System (ADS)

    Wyer, Mary

    Contemporary research on gender and persistence in undergraduate education in science and engineering has routinely focused on why students leave their majors rather than asking why students stay. This study compared three common ways of measuring persistence-commitment to major, degree aspirations, and commitment to a science or engineering career-and emphasized factors that would encourage students to persist, including positive images of scientists and engineers, positive attitudes toward gender equity in science and engineering, and positive classroom experiences. A survey was administered in classrooms to a total of 285 female and male students enrolled in two required courses for majors. The results indicate that the different measures of persistence were sensitive to different influences but that students' gender did not interact with their images, attitudes, and experiences in predicted ways. The study concludes that an individual student's gender may be a more important factor in explaining why some female students leave their science and engineering majors than in explaining why others stay.

  18. An examination of undergraduate engineering students' stereotype of scientists and their career intentions

    NASA Astrophysics Data System (ADS)

    Stara, Michelle M.

    The US Government Accountability Office (GAO) (2013) has acknowledged that additional graduates are needed in engineering and related STEM fields. However, the GAO has also noted that it is difficult to determine if the additional graduates will align with employer demand at the time of entry into the workforce. This research study attempts to examine undergraduate engineering students' perceptions of scientists and if they were related to students' intentions to pursue science by examining the constructs of Stereotypes of Scientists (SOS) and Career Intentions in Science (CIS). While results of data analysis were not significant, patterns were seen that provided valuable information with regard to the variability of undergraduate engineering students and the complexity of what goes into stereotype formation and career choice. As a practitioner, there were pertinent applications that could be implemented from the results of this and related studies. From the perspective of practitioners, the findings may be used to target recruitment, retention, and specific teaching strategies to increase enrollment and graduate numbers in the lesser known engineering and STEM fields.

  19. Involving scientists in public and pre-college education at Princeton University

    NASA Astrophysics Data System (ADS)

    Steinberg, D. J.

    2011-12-01

    The Princeton Center for Complex Materials (PCCM) is a National Science Foundation (NSF) funded Materials Research Science and Engineering Center (MRSEC). As a MRSEC, it is part of the PCCM's mission to inspire and educate school children, teachers and the public about STEM and materials science. Research shows that it is critical to excite students at a young age and maintain that excitement, and without that these students are two to three times less likely to have any interest in science and engineering and pursue science careers as adults. We conduct over a dozen different education programs at Princeton University, in which scientists and engineers are directly involved with students, teachers and the public. As an ongoing MRSEC education and outreach program, we have developed many successful educational partnerships to increase our impact. The scientists and engineers who participate in our programs are leading experts in their research field and excellent communicators to their peers. They are not experts in precollege pedagogy or in communication to the public. Scientists often require some preparation in order to have the greatest chance of success. The amount and type of professional development required for these scientists to succeed in education programs depends on many factors. These include the age of the audience, the type of interaction, and the time involved. Also different researchers require different amount of help, advice, and training. Multiple education programs that involve Princeton University researchers will be discussed here. We will focus on what has worked best when preparing scientists and engineers for involvement in education programs. The Princeton University Materials Academy (PUMA) is a three week total immersion in science for minority high school students involving many faculty and their research groups. Our Making Stuff day reaches 100's of middle school students in which faculty interact directly with students and teachers at activity tables give auditorium presentations. Teacher development programs and holiday lectures will be highlighted as well.

  20. SNOOPY: Student Nanoexperiments for Outreach and Observational Planetary Inquiry

    NASA Technical Reports Server (NTRS)

    Kuhlma, K. R.; Hecht, M. H.; Brinza, D. E.; Feldman, J. E.; Fuerstenau, S. D.; Friedman, L.; Kelly, L.; Oslick, J.; Polk, K.; Moeller, L. E.

    2001-01-01

    As scientists and engineers primarily employed by the public, we have a responsibility to "communicate the results of our research so that the average American could understand that NASA is an investment in our future...". Not only are we employed by the public, but they are also the source of future generations of scientists and engineers. Teachers typically don't have the time or expertise to research recent advances in space science and reduce them to a form that students can absorb. Teachers are also often intimidated by both the subject and the researchers themselves. Therefore, the burden falls on us - the space scientists and engineers of the world - to communicate our findings in ways both teachers and students can understand. Student Nanoexperiments for Outreach and Observational Planetary InquirY (SNOOPY) provides just such an opportunity to directly involve our customers in planetary science missions.

  1. Telling Your Story: Ocean Scientists in the K-12 Classroom

    NASA Astrophysics Data System (ADS)

    McWilliams, H.

    2006-12-01

    Most scientists and engineers are accustomed to presenting their research to colleagues or lecturing college or graduate students. But if asked to speak in front of a classroom full of elementary school or junior high school students, many feel less comfortable. TERC, as part of its work with The Center for Ocean Sciences Education Excellence-New England (COSEE-NE) has designed a workshop to help ocean scientists and engineers develop skills for working with K-12 teachers and students. We call this program: Telling Your Story (TYS). TYS has been offered 4 times over 18 months for a total audience of approximately 50 ocean scientists. We will discuss the rationale for the program, the program outline, outcomes, and what we have learned. ne.net/edu_project_3/index.php

  2. Opportunities for Scientists to Engage the Public & Inspire Students in Science

    NASA Astrophysics Data System (ADS)

    Vaughan, R. G.; Worssam, J.; Vaughan, A. F.

    2014-12-01

    Increasingly, research scientists are learning that communicating science to broad, non-specialist audiences, particularly students, is just as important as communicating science to their peers via peer-reviewed scientific publications. This presentation highlights opportunities that scientists in Flagstaff, AZ have to foster public support of science & inspire students to study STEM disciplines. The goal here is to share ideas, personal experiences, & the rewards, for both students & research professionals, of engaging in science education & public outreach. Flagstaff, AZ, "America's First STEM Community," has a uniquely rich community of organizations engaged in science & engineering research & innovation, including the Flagstaff Arboretum, Coconino Community College, Gore Industries, Lowell Observatory, Museum of Northern Arizona, National Weather Service, National Park Service, National Forest Service, Northern Arizona University, Northern Arizona Center for Entrepreneurship & Technology, US Geological Survey, US Naval Observatory, & Willow Bend Environmental Education Center. These organizations connect with the Northern Arizona community during the yearly Flagstaff Festival of Science - the third oldest science festival in the world - a 10 day long, free, science festival featuring daily public lectures, open houses, interactive science & technology exhibits, field trips, & in-school speaker programs. Many research scientists from these organizations participate in these activities, e.g., public lectures, open houses, & in-school speaker programs, & also volunteer as mentors for science & engineering themed clubs in local schools. An example of a novel, innovative program, developed by a local K-12 science teacher, is the "Scientists-in-the-Classroom" mentor program, which pairs all 7th & 8th grade students with a working research scientist for the entire school year. Led by the student & guided by the mentor, they develop a variety of science / technology projects, which the students then present at year's end. From the perspective of an active research scientist, such outreach activities take little time & effort (~ 0.05 FTE), but pay large dividends in the long run, in inciting public support for science & inspiring the next generation of scientists & engineers.

  3. Science Outside the Lab: Helping Graduate Students in Science and Engineering Understand the Complexities of Science Policy.

    PubMed

    Bernstein, Michael J; Reifschneider, Kiera; Bennett, Ira; Wetmore, Jameson M

    2017-06-01

    Helping scientists and engineers challenge received assumptions about how science, engineering, and society relate is a critical cornerstone for macroethics education. Scientific and engineering research are frequently framed as first steps of a value-free linear model that inexorably leads to societal benefit. Social studies of science and assessments of scientific and engineering research speak to the need for a more critical approach to the noble intentions underlying these assumptions. "Science Outside the Lab" is a program designed to help early-career scientists and engineers understand the complexities of science and engineering policy. Assessment of the program entailed a pre-, post-, and 1 year follow up survey to gauge student perspectives on relationships between science and society, as well as a pre-post concept map exercise to elicit student conceptualizations of science policy. Students leave Science Outside the Lab with greater humility about the role of scientific expertise in science and engineering policy; greater skepticism toward linear notions of scientific advances benefiting society; a deeper, more nuanced understanding of the actors involved in shaping science policy; and a continued appreciation of the contributions of science and engineering to society. The study presents an efficacious program that helps scientists and engineers make inroads into macroethical debates, reframe the ways in which they think about values of science and engineering in society, and more thoughtfully engage with critical mediators of science and society relationships: policy makers and policy processes.

  4. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 53: From student to entry-level professional: Examining the technical communications practices of early career-stage US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Holloway, Karen; Barclay, Rebecca O.; Kennedy, John M.

    1995-01-01

    Studies indicate that communications and information-related activities take up a substantial portion of an engineer's work week; therefore, effective communications and information-use skills are one of the key engineering competencies that early career-stage aerospace engineers and scientists must possess to be successful. Feedback from industry rates communications and information-use skills high in terms of their importance to engineering practice; however, this same feedback rates the communications and information-use skills of early career-stage engineers low. To gather adequate and generalizable data about the communications and information-related activities of entry-level aerospace engineers and scientists, we surveyed 264 members of the AIAA who have no more than 1-5 years of aerospace engineering work experience. To learn more about the concomitant communications norms, we compared the results of this study with data (1,673 responses) we collected from student members of the AIAA and with data (341 responses) we collected from a study of aerospace engineering professionals. In this paper, we report selected results from these studies that focused on the communications practices and information-related activities of early career-stage U.S. aerospace engineers and scientists in the workplace.

  5. The women in science and engineering scholars program

    NASA Technical Reports Server (NTRS)

    Falconer, Etta Z.; Guy, Lori Ann

    1989-01-01

    The Women in Science and Engineering Scholars Program provides scientifically talented women students, including those from groups underrepresented in the scientific and technical work force, with the opportunity to pursue undergraduate studies in science and engineering in the highly motivating and supportive environment of Spelman College. It also exposes students to research training at NASA Centers during the summer. The program provides an opportunity for students to increase their knowledge of career opportunities at NASA and to strengthen their motivation through exposure to NASA women scientists and engineers as role models. An extensive counseling and academic support component to maximize academic performance supplements the instructional and research components. The program is designed to increase the number of women scientists and engineers with graduate degrees, particularly those with an interest in a career with NASA.

  6. Workforce Challenges and Retention Success Stories

    NASA Technical Reports Server (NTRS)

    Donohue, John T.

    2008-01-01

    This viewgraph document discusses the current and future challenges in building and retaining the required workforce of scientist and engineers for NASA. Specifically, the talk reviews the current situation at the Goddard Space Flight Center in Greenbelt, Maryland. Several programs at NASA for high school and college students to assist in inspiring the next generation of scientist and engineers are reviewed. The issue of retention of the best of the young scientists and engineers is also reviewed, with a brief review of several young engineers and their success with and for NASA.

  7. Resources in Technology and Engineering: A Journey to Increase Student Engagement

    ERIC Educational Resources Information Center

    Akers, Ruth

    2017-01-01

    Increasing student achievement is a fundamental concern for many school districts and teachers. Providing students with engaging, blended STEM educational experiences may help them understand how scientists and engineers solve problems. The purpose of this article is to share teaching strategies and student activities that will not only increase…

  8. Brains--Computers--Machines: Neural Engineering in Science Classrooms

    ERIC Educational Resources Information Center

    Chudler, Eric H.; Bergsman, Kristen Clapper

    2016-01-01

    Neural engineering is an emerging field of high relevance to students, teachers, and the general public. This feature presents online resources that educators and scientists can use to introduce students to neural engineering and to integrate core ideas from the life sciences, physical sciences, social sciences, computer science, and engineering…

  9. Improving Student Writing: Methods You Can Use in Science and Engineering Classrooms

    NASA Astrophysics Data System (ADS)

    Hitt, S. J.; Bright, K.

    2013-12-01

    Many educators in the fields of science and engineering assure their students that writing is an important and necessary part of their work. According to David Lindsay, in Scientific Writing=Thinking in Words, 99% of scientists agree that writing is an integral part of their jobs. However, only 5% of those same scientists have ever had formal instruction in scientific writing, and those who are also educators may then feel unconfident in teaching this skill to their students (2). Additionally, making time for writing instruction in courses that are already full of technical content can cause it to be hastily and/or peremptorily included. These situations may be some of the contributing factors to the prevailing attitude of frustration that pervades the conversation about writing in science and engineering classrooms. This presentation provides a summary of past, present, and ongoing Writing Center research on effective writing tutoring in order to give science and engineering educators integrated approaches for working with student writers in their disciplines. From creating assignments, providing instruction, guiding revisions, facilitating peer review, and using assessments, we offer a comprehensive approach to getting your students motivated to improve their writing. Our new research study focuses on developing student writing resources and support in science and engineering institutions, with the goal of utilizing cross-disciplinary knowledge that can be used by the various constituencies responsible for improving the effectiveness of writing among student engineers and scientists. We will will draw upon recent findings in the study of the rhetoric and compositional pedagogy and apply them to the specific needs of the science and engineering classroom. The fields of communication, journalism, social sciences, rhetoric, technical writing, and philosophy of science have begun to integrate these findings into classroom practice, and we will show how these can also benefit educators in science and engineering, with the goal of producing more effective student writing.

  10. Biomedical engineering and society: policy and ethics.

    PubMed

    Flexman, J A; Lazareck, L

    2007-01-01

    Biomedical engineering impacts health care and contributes to fundamental knowledge in medicine and biology. Policy, such as through regulation and research funding, has the potential to dramatically affect biomedical engineering research and commercialization. New developments, in turn, may affect society in new ways. The intersection of biomedical engineering and society and related policy issues must be discussed between scientists and engineers, policy-makers and the public. As a student, there are many ways to become engaged in the issues surrounding science and technology policy. At the University of Washington in Seattle, the Forum on Science Ethics and Policy (FOSEP, www.fosep.org) was started by graduate students and post-doctoral fellows interested in improving the dialogue between scientists, policymakers and the public and has received support from upper-level administration. This is just one example of how students can start thinking about science policy and ethics early in their careers.

  11. The Burden of Being "Model": Racialized Experiences of Asian STEM College Students

    ERIC Educational Resources Information Center

    McGee, Ebony O.; Thakore, Bhoomi K.; LaBlance, Sandra S.

    2017-01-01

    This qualitative study used narrative methodology to investigate what becoming a scientist or engineer entails for Asian and Asian American college students stereotyped as "model minorities." We present the narratives of 23 high-achieving science, technology, engineering, and mathematics (STEM) college students who self-identified as…

  12. Science in action: An interdisciplinary science education program

    NASA Technical Reports Server (NTRS)

    Horton, Linda L.

    1992-01-01

    Science in Action is an education outreach program for pre-collegiate students. It is based on the concept that, in order to interest students in science, they must see science and scientists at work. The program encompasses the full range of scientific disciplines - the core sciences, engineering, and mathematics. A unique aspect of the program is the involvement and support of scientists and engineers representing local professional societies, industries, business, and academic institutions. An outline of the program is given.

  13. K-12 Students' Perceptions of Scientists: Finding a Valid Measurement and Exploring Whether Exposure to Scientists Makes an Impact

    ERIC Educational Resources Information Center

    Hillman, Susan J.; Bloodsworth, Kylie H.; Tilburg, Charles E.; Zeeman, Stephan I.; List, Henrietta E.

    2014-01-01

    This study was launched from a National Science Foundation GK-12 grant in which graduate fellows in Science, Technology, Engineering, and Mathematics (STEM) are placed in classrooms to engage K-12 students in STEM activities. The investigation explored whether the STEM Fellows' presence impacted the K-12 students' stereotypical image of a…

  14. Mixed Methods: Incorporating multiple learning styles into a measurements course

    NASA Astrophysics Data System (ADS)

    Pallone, Arthur

    2010-03-01

    The best scientists and engineers regularly combine creative and critical skill sets. As faculty, we are responsible to provide future scientists and engineers with those skills sets. EGR 390: Engineering Measurements at Murray State University is structured to actively engage students in the processes that develop and enhance those skills. Students learn through a mix of traditional lecture and homework, active discussion of open-ended questions, small group activities, structured laboratory exercises, oral and written communications exercises, student chosen team projects, and peer evaluations. Examples of each of these activities, the skill set addressed by each activity, outcomes from and effectiveness of each activity and recommendations for future directions in the EGR 390 course as designed will be presented.

  15. Learning Styles of Mexican Food Science and Engineering Students

    ERIC Educational Resources Information Center

    Palou, Enrique

    2006-01-01

    People have different learning styles that are reflected in different academic strengths, weaknesses, skills, and interests. Given the almost unlimited variety of job descriptions within food science and engineering, it is safe to say that students with every possible learning style have the potential to succeed as food scientists and engineers.…

  16. Supply and Demand for Scientists and Engineers in the Coming Decade.

    ERIC Educational Resources Information Center

    Vetter, Betty M.

    1990-01-01

    With fewer traditional students in the population, and fewer of these electing to earn a degree in natural science and engineering, American colleges are reaching out for women, minorities, and foreign students. Concludes, barring unexpected decline in American economy, job opportunities, especially in engineering, should be excellent. (Author/TE)

  17. Research Institute for Technical Careers

    NASA Technical Reports Server (NTRS)

    Glenn, Ronald L.

    1996-01-01

    The NASA research grant to Wilberforce University enabled us to establish the Research Institute for Technical Careers (RITC) in order to improve the teaching of science and engineering at Wilberforce. The major components of the research grant are infrastructure development, establishment of the Wilberforce Intensive Summer Experience (WISE), and Joint Research Collaborations with NASA Scientists. (A) Infrastructure Development. The NASA grant has enabled us to improve the standard of our chemistry laboratory and establish the electronics, design, and robotics laboratories. These laboratories have significantly improved the level of instruction at Wilberforce University. (B) Wilberforce Intensive Summer Experience (WISE). The WISE program is a science and engineering bridge program for prefreshman students. It is an intensive academic experience designed to strengthen students' knowledge in mathematics, science, engineering, computing skills, and writing. (C) Joint Collaboration. Another feature of the grant is research collaborations between NASA Scientists and Wilberforce University Scientists. These collaborations have enabled our faculty and students to conduct research at NASA Lewis during the summer and publish research findings in various journals and scientific proceedings.

  18. Astrobiobound! Search for Life in the Solar System: Scientists and Engineers Bringing their Challenges to K-12 Students

    NASA Astrophysics Data System (ADS)

    Klug Boonstra, S. L.; Swann, J.; Manfredi, L.; Zippay, A.; Boonstra, D.

    2014-12-01

    The Next Generation Science Standards (NGSS) brought many dynamic opportunities and capabilities to the K-12 science classroom - especially with the inclusion of engineering. Using science as a context to help students engage in the engineering practices and engineering disciplinary core ideas is an essential step to students' understanding of how science drives engineering and how engineering enables science. Real world examples and applications are critical for students to see how these disciplines are integrated. Furthermore, the interface of science and engineering raise the level of science understanding, and facilitate higher order thinking skills through relevant experiences. Astrobiobound! is designed for the NGSS (Next Generation Science Standards) and CCSS (Common Core State Standards). Students also practice and build 21st Century Skills. Astrobiobound! help students see how science and systems engineering are integrated to achieve a focused scientific goal. Students engage in the engineering design process to design a space mission which requires them to balance the return of their science data with engineering limitations such as power, mass and budget. Risk factors also play a role during this simulation and adds to the excitement and authenticity. Astrobiobound! presents the authentic first stages of NASA mission design process. This simulation mirrors the NASA process in which the science goals, type of mission, and instruments to return required data to meet mission goals are proposed within mission budget before any of the construction part of engineering can begin. NASA scientists and engineers were consulted in the development of this activity as an authentic simulation of their mission proposal process.

  19. Investigation into Omani Secondary School Students' Perceptions of Scientists and Their Work

    ERIC Educational Resources Information Center

    Ambusaidi, Abdullah; Al-Muqeemi, Fatma; Al-Salmi, Maya

    2015-01-01

    The purpose of this study was to investigate Omani 12th grade students' perceptions about scientists and their work and accordingly propose some recommendations in order to encourage new generations to choose science and engineering-oriented specialisations in higher education. A 37-item questionnaire was designed to determine these perceptions…

  20. How Can Students Be Scientists and Still Be Themselves: Understanding the Intersectionality of Science Identity and Multiple Social Identities through Graduate Student Experiences

    ERIC Educational Resources Information Center

    Tran, Minh C.

    2011-01-01

    According to a report released in 2005, titled "Rising Above the Gathering Storm," there is a critical priority to develop, recruit, and retain top students, scientists, and engineers to maintain U.S. economic competitiveness in response to rapid globalization. To improve our global competitiveness, the U.S. must retain individuals from…

  1. Processes and Procedures of the Higher Education Programs at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Heard, Pamala D.

    2002-01-01

    The purpose of my research was to investigate the policies, processes, procedures and timelines for the higher education programs at Marshall Space Flight Center. The three higher education programs that comprised this research included: the Graduate Student Researchers Program (GSRP), the National Research Council/Resident Research Associateships Program (NRC/RRA) and the Summer Faculty Fellowship Program (SFFP). The GSRP award fellowships each year to promising U.S. graduate students whose research interest coincides with NASA's mission. Fellowships are awarded for one year and are renewable for up to three years to competitively selected students. Each year, the award provides students the opportunity to spend a period in residence at a NASA center using that installation's unique facilities. This program is renewable for three years, students must reapply. The National Research Council conducts the Resident Research Associateships Program (NRC/RRA), a national competition to identify outstanding recent postdoctoral scientists and engineers and experience senior scientists and engineers, for tenure as guest researchers at NASA centers. The Resident Research Associateship Program provides an opportunity for recipients of doctoral degrees to concentrate their research in association with NASA personnel, often as a culmination to formal career preparation. The program also affords established scientists and engineers an opportunity for research without any interruptions and distracting assignments generated from permanent career positions. All opportunities for research at NASA Centers are open to citizens of the U.S. and to legal permanent residents. The Summer Faculty Fellowship Program (SFFP) is conducted each summer. NASA awards research fellowships to university faculty through the NASA/American Society for Engineering Education. The program is designed to promote an exchange of ideas between university faculties, NASA scientists and engineers. Selected participants in fields of science, engineering, math, and other disciplines spend approximately 10 weeks working with their professional peers on research projects at NASA facilities. Workshops and seminars further enrich the experience. This program is only for U.S. citizens.

  2. Women in a Man's World: The Female Engineers

    ERIC Educational Resources Information Center

    Durchholz, Pat

    1977-01-01

    Comparisons and contrasts between female engineers, male engineers, and female scientists are made utilizing freshmen engineering and science students at the University of Cincinnati. Data including attitudes, career influences, parents' educational level, and career advantage ranking are included. (SL)

  3. Eighth Grade Students Conceptions of How Engineers Use Math and Science in the Field of Engineering: A Comparison of Two Cohorts

    ERIC Educational Resources Information Center

    Farland-Smith, Donna; Tiarani, Vinta

    2016-01-01

    Over the last fifteen years, engineering has made its way into science curriculum at all levels, elementary, middle, and high school. A need to analyze students' perception the field of engineering is warranted. Previous techniques for studying representations of scientists and build on what researchers in the science field have learned from…

  4. Evaluating virtual STEM mentoring programs: The SAGANet.org experience

    NASA Astrophysics Data System (ADS)

    Som, S. M.; Walker, S. I.; Miller, E.; Anbar, M.; Kacar, B.; Forrester, J. H.

    2014-12-01

    Many school districts within the United States continue to seek new ways of engaging students within Science, Technology, Engineering, and Mathematics (STEM) disciplines. SAGANet.org, a web-based 501c3 Astrobiology outreach initiative, works with a number of schools, partnering K-12 students and their families with professional scientist mentors from around the world to teach and inspire students using virtual technology platforms. Current programs include two mentoring partnerships: pairing scientist-mentors with at-risk youth at the Pittsburg Community School in Pittsburg CA, and pairing scientist-mentors with families from the Kyrene del Cielo Elementary School in Chandler AZ. These programs represent two very different models for utilizing the virtual media platform provided by SAGANet.org to engage K-12 students and their families in STEM. For the former, scientists mentor the students of the Pittsburg School as part of the formal in-class curriculum. For the latter, scientists work with K-5 students and their families through Cielo's Science & Engineering Discovery Room to develop a science project as part of an informal learning experience that is independent of the formal curriculum. In this presentation, we (1) discuss the challenges and successes of engaging these two distinct audiences through virtual media, (2) present the results of how these two very-different mentoring partnership impact K-12 students science self-efficacy, interest in science, and STEM career awareness, and (3) share the impact of the mentoring experience on the mentor's confidence and self-efficacy with communicating science to the public.

  5. Physics for Scientists and Engineers, 5th edition - Volume 1

    NASA Astrophysics Data System (ADS)

    Tipler, Paul A.; Mosca, Gene P.

    For nearly 30 years, Paul Tipler's Physics for Scientists and Engineers has set the standard in the introductory calculus-based physics course for clarity, accuracy, and precision. In this fifth edition, Paul has recruited Gene Mosca to bring his years of teaching experience to bear on the text, to scrutinize every explanation and example from the perspective of the freshman student. The result is a teaching tool that retains its precision and rigor, but offers struggling students the support they need to solve problems strategically and to gain real understanding of physical concepts.

  6. Students Inspiring Students: An Online Tool for Science Fair Participants

    ERIC Educational Resources Information Center

    Seeman, Jeffrey I.; Lawrence, Tom

    2011-01-01

    One goal of 21st-century education is to develop mature citizens who can identify issues, solve problems, and communicate solutions. What better way for students to learn these skills than by participating in a science and engineering fair? Fair participants face the same challenges as professional scientists and engineers, even Nobel laureates.…

  7. Marine Technology for Teachers and Students: A Multi-modal Approach to Integrate Technology and Ocean Sciences Instruction

    NASA Astrophysics Data System (ADS)

    Gingras, A.; Knowlton, C. W.; Scowcroft, G. A.; Babb, I.; Coleman, D.; Morin, H.

    2016-02-01

    The Marine Technology for Teachers and Students (MaTTS) Project implements a year-long continuum of activities beginning with educators reading and reporting on peer-reviewed publications, followed by face-to-face, hands-on weekend workshops and virtual professional development activities. Teams of teacher and student leaders then participate in an intensive, residential Summer Institute (SI) that emphasizes hands-on building of marine related technologies and exposure to career pathways through direct interactions with ocean scientists and engineers. During the school year, teachers integrate ocean science technology and data into their classrooms and participate, along with colleagues and students from their schools, in science cafes and webinars. Student leaders transfer knowledge gained by engaging their district's middle school students in ocean science activities and technologies by serving as hosts for live broadcasts that connect classrooms with ocean scientists and engineers though the Inner Space Center, a national ocean science telecommunications hub. Communication technologies bridge formal and informal learning environments, allowing MaTTS participants to interact with their fellow cohort members, scientists, and engineers both during and outside of school. Evaluation results indicate that for teachers both the weekend workshops and SI were most effective in preparing them to integrate ocean science and technology in STEM curricula and increase their ocean science content knowledge and leadership characteristics. For students the SI and the middle school interactions supported gains in knowledge, awareness, leadership skills and interest in ocean sciences and technologies, and related STEM careers. In particular, the connections made by working directly with scientists have positively impacted both student and teacher leaders. This presentation will provide an overview of the MaTTS model and early evaluation results.

  8. Increasing the Number of Canadian Indigenous Students in STEM at the University of Regina, Saskatchewan, Canada

    NASA Astrophysics Data System (ADS)

    St-Jacques, J. M.; McGee, S.; Janze, R.; Longman, M.; Pete, S.; Starblanket, N.

    2016-12-01

    Canadian Indigenous people are an extremely poorly represented group in STEM today due to major barriers in obtaining a high school and then a university education. Approximately 10% of the undergraduate student population out of a total 12,600 students at the University of Regina, Regina, Saskatchewan, is First Nations, Métis or Inuit. The university is located in a catchment region where 30% of the population is First Nations or Métis. Approximately 100 students majoring in the sciences, mathematics and engineering have self-declared themselves to be Indigenous. For the past two years, we have been running a pilot project, the Initiative to Support and Increase the Number of Indigenous Students in the Sciences, Mathematics and Engineering at the Aboriginal Student Centre, with financial support from the Deans of Science and Engineering. We provide student networking lunches, Indigenous scientist and engineer speakers and mentors and supplemental tutoring. Our program is actively supported and guided by Elder Noel Starblanket, former president of the National Indian Brotherhood (now the Assembly of First Nations). Our students are greatly interested in the health and environmental sciences (particularly water quality), with a sprinkling of physics, mathematics and engineering majors. Our students have gone on to graduate work with prestigious scholarships and a paid internship in engineering. We report here on various lessons learned: the involvement of elders is key, as is the acceptance of non-traditional academic paths, and any STEM support program must respect Indigenous culture. There is great interest in science and engineering on the part of these students, if scientists and engineers are willing to listen and learn to talk with these students on their own terms.

  9. Able Scientists--Disabled Persons. Biographical Sketches Illustrating Careers in the Sciences for Able Disabled Students.

    ERIC Educational Resources Information Center

    Stearner, Phyllis

    This book describes the lives and achievements of 27 disabled scientists and students of science who are overcoming obstacles and are carrying on careers and studies in their chosen field of science or engineering, graphically showing that individuals with physical disabilities can succeed in scientific and technical work. The book presents a…

  10. "I Want To Be like...": Middle School Students' Identification with Scientists on Television

    ERIC Educational Resources Information Center

    Ryan, Lisa; Steinke, Jocelyn

    2010-01-01

    This article describes a study funded by the Research on Gender in Science and Engineering (GSE) Program of the National Science Foundation (NSF). The study focused on gaining a better understanding of how middle school students perceive television depictions of scientists. This study involved collaboration between a major research university and…

  11. Student Planetary Investigators: A Program to Engage Students in Authentic Research Using NASA Mission Data

    NASA Astrophysics Data System (ADS)

    Hallau, K.; Turney, D.; Beisser, K.; Edmonds, J.; Grigsby, B.

    2015-12-01

    The Student Planetary Investigator (PI) Program engages students in authentic scientific research using NASA mission data. This student-focused STEM (Science, Technology, Engineering and Math) program combines problem-based learning modules, Next Generation Science Standards (NGSS) aligned curriculum, and live interactive webinars with mission scientists to create authentic research opportunities and career-ready experiences that prepare and inspire students to pursue STEM occupations. Primarily for high school students, the program employs distance-learning technologies to stream live presentations from mission scientists, archive those presentations to accommodate varied schedules, and collaborate with other student teams and scientists. Like its predecessor, the Mars Exploration Student Data Team (MESDT) program, the Student PI is free and open to teams across the country. To date, students have drafted research-based reports using data from the Lunar Reconnaissance Orbiter Mini-RF instrument and the MESSENGER Mercury orbiter, with plans to offer similar programs aligned with additional NASA missions in the future pending available funding. Overall, the program has reached about 600 students and their educators. Assessments based on qualitative and quantitative data gathered for each Student PI program have shown that students gain new understanding about the scientific process used by real-world scientists as well as gaining enthusiasm for STEM. Additionally, it is highly adaptable to other disciplines and fields. The Student PI program was created by the Johns Hopkins University Applied Physics Laboratory (APL) Space Department Education and Public Outreach office with support from NASA mission and instrument science and engineering teams.

  12. Redefining Scientist-Educator Partnerships: Science in Service at Stanford

    NASA Astrophysics Data System (ADS)

    Beck, K.

    2005-05-01

    The Stanford Solar Observatories Group and Haas Center for Public Service have created an innovative model for scientist-educator partnerships in which science students are trained and mentored by public service education professionals to create outreach events for local communities. The program, Science in Service, is part of the EPO plan for the Solar Group's participation in NASA's Solar Dynamics Observatory mission. Based on the principles of service learning, the Science in Service Program mentors college science students in best practices for communicating science and engages these students in public service projects that center on teaching solar science. The program goals are to - Enhance and expand the learning experiences that pre-college students, from underserved and underrepresented groups in particular, have in science and technology. - Promote leadership in community service in the area of science and engineering among the next generation of scientists and engineers, today's undergraduate students. - Encourage science and engineering faculty to think creatively about their outreach requirements and to create a community of faculty committed to quality outreach programs. This talk will describe the unique advantages and challenges of a research-public service partnership, explain the structure of Stanford's Science in Service Program, and present the experiences of the undergraduates and the outreach communities that have been involved in the program.

  13. Telepresence field research experience for undergraduate and graduate students: An R/V Okeanos Explorer/AUV Sentry success story

    NASA Astrophysics Data System (ADS)

    Van Dover, C. L.; German, C. R.; Yoerger, D. R.; Kaiser, C. L.; Brothers, L.

    2012-12-01

    Telepresence and ocean exploration are generally perceived as rich visual experiences informed by streaming video of ocean environments from ship to shore. In an NSF/NOAA-funded partnership, our team of engineers, scientists, and students pushed the boundary of what it means to engage in a telepresence research experience. Instead of using a tethered ROV as our data-gathering platform, we used the autonomous underwater vehicle Sentry on science missions to explore the Blake Ridge and Cape Fear Diapirs off the Carolina coast. The shore-based team included one senior engineer, two senior scientists, the talented support staff of the Inner Space Center at the University of Rhode Island, three PhD students, four undergraduate interns, and one MFA graduate student. The ship-based team included an engineer, a scientist, and extremely capable NOAA personnel. Sentry was deployed nightly on science missions designed from shore with input from shipboard science and engineering. The vehicle was recovered and data was downloaded and sent to shore each morning, where the data was 'attacked' by student teams. Within three days of the start of the field program, the student teams had developed their research questions under the mentorship of the senior scientists and identified the priority data streams required from Sentry. Students initially were audience to science mission planning discussions, but less than halfway through the 11-mission program, student teams were providing key data to inform planning decisions. Their entrepreneurial engagement with the research was so complete that the last two missions were designed by the students in collaboration with the engineers who programmed each mission. This scientific maturation of the students was markedly swift by usual standards and is attributed in large part to the data-sharing and data-processing capacity of the Inner Space Center. Post-cruise analysis of the data by students continued with the same avidity, resulting in new knowledge and new ways of visualizing relationships among bubble flares in the water column, near-bottom sensor signals (e.g., backscatter, dissolved oxygen), high-resolution seafloor bathymetry, side-scan sonar images, sub-bottom profiles, and images of chemosynthetic communities. The scientific success of the cruise would not have been anywhere near as great without the student talent and their analysis of large data files and many 10's of thousands of images. We began this expedition uncertain of whether one could do AUV-based research from shore that would meaningfully entrain the next generation of scientists. The resounding answer, with >6 terabytes of data to explore and >80 person-hours per day to undertake this data exploration, was: ABSOLUTELY.

  14. STEM Mentor Breakfast at Debus Center

    NASA Image and Video Library

    2017-05-25

    Gioia Massa, at left, a NASA payload scientist, talks to students during a Women in STEM breakfast inside the Debus Conference Center at the Kennedy Space Center Visitor Complex in Florida. STEM is science, technology, engineering and math. The special event gave students competing in NASA's 8th Annual Robotic Mining Competition the chance to learn from female NASA scientists, engineers and professionals about their careers and the paths they took to working at Kennedy. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.

  15. A Successful Program for Women Faculty and Graduate Students in Natural Sciences, Mathematics, and Engineering at the University of Nevada, Las Vegas.

    ERIC Educational Resources Information Center

    Rees, Margaret N. (Peg); Amy, Penny; Jacobson, Ellen; Weistrop, Donna E.

    2000-01-01

    Introduces a program initiated at the University of Nevada, Las Vegas to stimulate the retention and promotion of women scientists, mathematicians, and engineers and support women graduate students in the same fields. Results of the program suggest that such initiatives can increase the number of women in science, mathematics, and engineering.…

  16. Uncovering Scientist Stereotypes and Their Relationships with Student Race and Student Success in a Diverse, Community College Setting

    PubMed Central

    Schinske, Jeffrey; Cardenas, Monica; Kaliangara, Jahana

    2015-01-01

    A number of studies have identified correlations between children’s stereotypes of scientists, their science identities, and interest or persistence in science, technology, engineering, and mathematics. Yet relatively few studies have examined scientist stereotypes among college students, and the literature regarding these issues in predominantly nonwhite and 2-yr college settings is especially sparse. We piloted an easy-to-analyze qualitative survey of scientist stereotypes in a biology class at a diverse, 2-yr, Asian American and Native American Pacific Islander–Serving Institution. We examined the reliability and validity of the survey, and characterized students’ comments with reference to previous research on stereotypes. Positive scientist stereotypes were relatively common in our sample, and negative stereotypes were rare. Negative stereotypes appeared to be concentrated within certain demographic groups. We found that students identifying nonstereotypical images of scientists at the start of class had higher rates of success in the course than their counterparts. Finally, evidence suggested many students lacked knowledge of actual scientists, such that they had few real-world reference points to inform their stereotypes of scientists. This study augments the scant literature regarding scientist stereotypes in diverse college settings and provides insights for future efforts to address stereotype threat and science identity. PMID:26338318

  17. High school students as science researchers: Opportunities and challenges

    NASA Astrophysics Data System (ADS)

    Smith, W. R.; Grannas, A. M.

    2007-12-01

    Today's K-12 students will be the scientists and engineers who bring currently emerging technologies to fruition. Existing research endeavors will be continued and expanded upon in the future only if these students are adequately prepared. High school-university collaborations provide an effective means of recruiting and training the next generation of scientists and engineers. Here, we describe our successful high school-university collaboration in the context of other models. We have developed an authentic inquiry-oriented environmental chemistry research program involving high school students as researchers. The impetus behind the development of this project was twofold. First, participation in authentic research may give some of our students the experience and drive to enter technical studies after high school. One specific goal was to develop a program to recruit underrepresented minorities into university STEM (science, technology, engineering, and mathematics) programs. Second, inquiry-oriented lessons have been shown to be highly effective in developing scientific literacy among the general population of students. This collaboration involves the use of local resources and equipment available to most high schools and could serve as a model for developing high school- university partnerships.

  18. Science Career Magazine.

    ERIC Educational Resources Information Center

    Halsey, Linda B., Ed.; Sweeley, Charles C., Ed.

    This magazine is designed for teachers and students in junior and senior high schools. It is intended to help students become more aware about what scientists and engineers do, what's new and exciting in the fields of science and engineering, and what satisfactions might be expected from a career in one of the many different areas of science and…

  19. Pathways to the Geosciences Summer High School Program: A Ten-Year Evaluation

    ERIC Educational Resources Information Center

    Carrick, Tina L.; Miller, Kate C.; Hagedorn, Eric A.; Smith-Konter, Bridget R.; Velasco, Aaron A.

    2016-01-01

    The high demand for scientists and engineers in the workforce means that there is a continuing need for more strategies to increase student completion in science, technology, engineering, and mathematics (STEM) majors. The challenge lies in finding and enacting effective strategies to increase students' completion of STEM degrees and in recruiting…

  20. An Analysis of the Impact of Student-Scientist Interaction in a Technology Design Activity, Using the Expectancy-Value Model of Achievement Related Choice

    ERIC Educational Resources Information Center

    Masson, Anne-Lotte; Klop, Tanja; Osseweijer, Patricia

    2016-01-01

    Many education initiatives in science and technology education aim to create enthusiasm among young people to pursue a career in Science, Technology, Engineering, and Mathematics (STEM). Research suggests that personal interaction between secondary school students and scientists could be a success factor, but there is a need for more in-depth…

  1. KSC-2011-7393

    NASA Image and Video Library

    2011-10-14

    CAPE CANAVERAL, Fla. – Mechanical engineering students from Louisiana State University joined engineers and scientists at Launch Pad 39B at NASA's Kennedy Space Center in Florida as the students toured the facility to have a look at the flame trench. Designers are looking for new, flame and vibration-resistant materials to line the trench. To help in the search, a team of mechanical engineering students at Louisiana State University are to build a scaled-down version of the flame trench that Kennedy's scientists can use to try out sample materials for the trench. If the samples work in the lab, they can be tried out in the real flame trenches at Launch Pad 39A and 39B. The launch pad has been refurbished extensively and work is continuing to modify the pad to support a variety of launch vehicles in the future. Photo credit: NASA/Jim Grossmann

  2. KSC-2011-7394

    NASA Image and Video Library

    2011-10-14

    CAPE CANAVERAL, Fla. – Mechanical engineering students from Louisiana State University joined engineers and scientists at Launch Pad 39B at NASA's Kennedy Space Center in Florida as the students toured the facility to have a look at the flame trench. Designers are looking for new, flame and vibration-resistant materials to line the trench. To help in the search, a team of mechanical engineering students at Louisiana State University are to build a scaled-down version of the flame trench that Kennedy's scientists can use to try out sample materials for the trench. If the samples work in the lab, they can be tried out in the real flame trenches at Launch Pad 39A and 39B. The launch pad has been refurbished extensively and work is continuing to modify the pad to support a variety of launch vehicles in the future. Photo credit: NASA/Jim Grossmann

  3. KSC-2011-7395

    NASA Image and Video Library

    2011-10-14

    CAPE CANAVERAL, Fla. – Mechanical engineering students from Louisiana State University, the group on the left, joined engineers and scientists at Launch Pad 39B at NASA's Kennedy Space Center in Florida as the students toured the facility to have a look at the flame trench. Designers are looking for new, flame and vibration-resistant materials to line the trench. To help in the search, a team of mechanical engineering students at Louisiana State University are to build a scaled-down version of the flame trench that Kennedy's scientists can use to try out sample materials for the trench. If the samples work in the lab, they can be tried out in the real flame trenches at Launch Pad 39A and 39B. The launch pad has been refurbished extensively and work is continuing to modify the pad to support a variety of launch vehicles in the future. Photo credit: NASA/Jim Grossmann

  4. Alliance for NanoHealth (ANH) Training Program for the development of future generations of interdisciplinary scientists and collaborative research focused upon the advancement of nanomedicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorenstein, David

    The objectives of this program are to promote the mission of the Department of Energy (DOE) Science, Technology, Engineering, Math (STEM) Program by recruiting students to science and engineering disciplines with the intent of mentoring and supporting the next generation of scientists; to foster interdisciplinary and collaborative research under the sponsorship of ANH for the discovery and design of nano-based materials and devices with novel structures, functions, and properties; and to prepare a diverse work force of scientists, engineers, and clinicians by utilizing the unique intellectual and physical resources to develop novel nanotechnology paradigms for clinical application.

  5. Exploring Native American Students' Perceptions of Scientists

    NASA Astrophysics Data System (ADS)

    Laubach, Timothy A.; Crofford, Geary Don; Marek, Edmund A.

    2012-07-01

    The purpose of this descriptive study was to explore Native American (NA) students' perceptions of scientists by using the Draw-A-Scientist Test and to determine if differences in these perceptions exist between grade level, gender, and level of cultural tradition. Data were collected for students in Grades 9-12 within a NA grant off-reservation boarding school. A total of 133 NA students were asked to draw a picture of a scientist at work and to provide a written explanation as to what the scientist was doing. A content analysis of the drawings indicated that the level of stereotype differed between all NA subgroups, but analysis of variance revealed that these differences were not significant between groups except for students who practised native cultural tradition at home compared to students who did not practise native cultural tradition at home (p < 0.05). The results suggest that NA students who practise cultural traditions at home are more able to function fluidly between indigenous knowledge and modern western science than their non-practising counterparts. Overall, these NA students do not see themselves as scientists, which may influence their educational and career science, technology, engineering, and mathematics paths in the future. The educational implication is that once initial perceptions are identified, researchers and teachers can provide meaningful experiences to combat the stereotypes.

  6. Integrative Curriculum Development in Nuclear Education and Research Vertical Enhancement Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Egarievwe, Stephen U.; Jow, Julius O.; Edwards, Matthew E.

    Using a vertical education enhancement model, a Nuclear Education and Research Vertical Enhancement (NERVE) program was developed. The NERVE program is aimed at developing nuclear engineering education and research to 1) enhance skilled workforce development in disciplines relevant to nuclear power, national security and medical physics, and 2) increase the number of students and faculty from underrepresented groups (women and minorities) in fields related to the nuclear industry. The program uses multi-track training activities that vertically cut across the several education domains: undergraduate degree programs, graduate schools, and post-doctoral training. In this paper, we present the results of an integrativemore » curriculum development in the NERVE program. The curriculum development began with nuclear content infusion into existing science, engineering and technology courses. The second step involved the development of nuclear engineering courses: 1) Introduction to Nuclear Engineering, 2) Nuclear Engineering I, and 2) Nuclear Engineering II. The third step is the establishment of nuclear engineering concentrations in two engineering degree programs: 1) electrical engineering, and 2) mechanical engineering. A major outcome of the NERVE program is a collaborative infrastructure that uses laboratory work, internships at nuclear facilities, on-campus research, and mentoring in collaboration with industry and government partners to provide hands-on training for students. The major activities of the research and education collaborations include: - One-week spring training workshop at Brookhaven National Laboratory: The one-week training and workshop is used to enhance research collaborations and train faculty and students on user facilities/equipment at Brookhaven National Laboratory, and for summer research internships. Participants included students, faculty members at Alabama A and M University and research collaborators at BNL. The activities include 1) tour and introduction to user facilities/equipment at BNL that are used for research in room-temperature semiconductor nuclear detectors, 2) presentations on advances on this project and on wide band-gap semiconductor nuclear detectors in general, and 3) graduate students' research presentations. - Invited speakers and lectures: This brings collaborating research scientist from BNL to give talks and lectures on topics directly related to the project. Attendance includes faculty members, researchers and students throughout the university. - Faculty-students team summer research at BNL: This DOE and National Science Foundation (NSF) program help train students and faculty members in research. Faculty members go on to establish research collaborations with scientists at BNL, develop and submit research proposals to funding agencies, transform research experience at BNL to establish and enhance reach capabilities at home institution, and integrate their research into teaching through class projects and hands-on training for students. The students go on to participate in research work at BNL and at home institution, co-author research papers for conferences and technical journals, and transform their experiences into developing senior and capstone projects. - Grant proposal development: Faculty members in the NERVE program collaborate with BNL scientists to develop proposals, which often help to get external funding needed to expand and sustain the continuity of research activities and supports for student's wages and scholarships (stipends, tuition and fees). - Faculty development and mentoring: The above collaboration activities help faculty professional development. The experiences, grants, joint publications in technical journals, and supervision of student's research, including thesis and dissertation research projects, contribute greatly to faculty development. Senior scientists at BNL and senior faculty members on campus jointly mentor junior faculty members to enhance their professional growth. - Graduate thesis and dissertation research: Brookhaven National Laboratory provides unique opportunities and outstanding research resources for the NERVE program graduate research. Scientists from BNL serve in master's degree thesis and PhD dissertation committees, where they play active roles in the supervision of the research. (authors)« less

  7. Connecting Scientists, College Students, Middle School Students & Elementary Students through Intergenerational Afterschool STEM Programming

    NASA Astrophysics Data System (ADS)

    Ali, N. A.; Paglierani, R.; Raftery, C. L.; Romero, V.; Harper, M. R.; Chilcott, C.; Peticolas, L. M.; Hauck, K.; Yan, D.; Ruderman, I.; Frappier, R.

    2015-12-01

    The Multiverse education group at UC Berkeley's Space Sciences Lab created the NASA-funded "Five Stars Pathway" model in which five "generations" of girls and women engage in science together in an afterschool setting, with each generation representing one stage in the pathway of pursuing a career in science, technology, engineering, or math (STEM). The five stages are: elementary-age students, middle-school-age students, undergraduate-level college students, graduate-level college students and professional scientists. This model was field-tested at two Girls Inc. afterschool locations in the San Francisco Bay Area and distributed to Girls Inc. affiliates and other afterschool program coordinators nationwide. This presentation will explore some of the challenges and success of implementing a multigenerational STEM model as well as distributing the free curriculum for interested scientists and college students to use with afterschool programs.

  8. WATERS - Integrating Science and Education Through the Development of an Education & Outreach Program that Engages Scientists, Students and Citizens

    NASA Astrophysics Data System (ADS)

    Eschenbach, E. A.; Conklin, M. H.

    2007-12-01

    The need to train students in hydrologic science and environmental engineering is well established. Likewise, the public requires a raised awareness of the seriousness of water quality and availability problems. The WATERS Network (WATer and Environmental Research Systems Network ) has the potential to significantly change the way students, researchers, citizens, policy makers and industry members learn about environmental problems and solutions regarding water quality, quantity and distribution. This potential can be met if the efforts of water scientists, computer scientists, and educators are integrated appropriately. Successful pilot projects have found that cyberinfrastructure for education and outreach needs to be developed in parallel with research related cyberinfrastructure. We propose further integration of research, education and outreach activities. Through the use of technology that connects students, faculty, researchers, policy makers and others, WATERS Network can provide learning opportunities and teaching efficiencies that can revolutionize environmental science and engineering education. However, there are a plethora of existing environmental science and engineering educational programs. In this environment, WATERS can make a greater impact through careful selection of activities that build upon its unique strengths, that have high potential for engaging the members, and that meet identified needs: (i) modernizing curricula and pedagogy (ii) integrating science and education, (iii) sustainable professional development, and (iv) training the next generation of interdisciplinary water and social scientists and environmental engineers. National and observatory-based education facilities would establish the physical infrastructure necessary to coordinate education and outreach activities. Each observatory would partner with local educators and citizens to develop activities congruent with the scientific mission of the observatory. An unprecedented opportunity exists for educational research of both formal and informal environmental science and engineering education in order to understand how the Network can be efficiently used to create effective technology-based learning environments for all participants.

  9. Students' Evaluations about Climate Change

    ERIC Educational Resources Information Center

    Lombardi, Doug; Brandt, Carol B.; Bickel, Elliot S.; Burg, Colin

    2016-01-01

    Scientists regularly evaluate alternative explanations of phenomena and solutions to problems. Students should similarly engage in critical evaluation when learning about scientific and engineering topics. However, students do not often demonstrate sophisticated evaluation skills in the classroom. The purpose of the present study was to…

  10. PREFACE: 21th International Conference for Students and Young Scientists: Modern Technique and Technologies (MTT'2015)

    NASA Astrophysics Data System (ADS)

    2015-10-01

    Involving young researchers in the scientific process, and allowing them to gain scientific experience, are important issues for scientific development. The International Conference for Students and Young Scientists ''Modern Technique and Technologies'' is one of a number of scientific events, held at National Research Tomsk Polytechnic University aimed at training and forming the scientific elite. During previous years the conference established itself as a serious scientific event at an international level, attracting members which annually number about 400 students and young scientists from Russia and near and far abroad. An important indicator of this scientific event is the large number of scientific areas covered, such as power engineering, heat power engineering, electronic devices for monitoring and diagnostics, instrumentation, materials and technologies of new generations, methods of research and diagnostics of materials, automatic control and system engineering, physical methods science and engineering, design and artistic aspects of engineering, social and humanitarian aspects of engineering. The main issues, which are discussed at the conference by young researchers, are connected with analysis of contemporary problems, application of new techniques and technologies, and consideration of their relationship. Over the years, the conference committee has gained a lot of experience in organizing scientific meetings. There are all the necessary conditions: the staff of organizers includes employees of Tomsk Polytechnic University; the auditoriums are equipped with modern demonstration and office equipment; leading scientists are TPU professors; the status of the Tomsk Polytechnic University as a leading research university in Russia also plays an important role. All this allows collaboration between leading scientists from all around the world, who are annually invited to give lectures at the conference. The editorial board expresses gratitude to the Administration of Tomsk Polytechnic University (TPU Rector, Professor P.S. Chubik and Vice Rector for Research and Innovation, Professor A.N. Dyachenko) for financial support of the conference. Also, we heartily thank both chairmen of the conference sections and the organizing committee's members for the great, effective, creative work in organizing and developing the conference as well as a significant contribution to the safeguarding and replenishment of the intellectual potential of Russia.

  11. Open Campus: Strategic Plan

    DTIC Science & Technology

    2016-05-01

    The formal and informal interactions among scientists, engineers, and business and technology specialists fostered by this environment will lead...pathways for highly trained graduates of science, technology, engineering, and mathematics (STEM) academic programs, and help academic institutions...engineering and mathematics (STEM) disciplines relevant to ARL science and technology programs. Under EPAs, visiting students and professors

  12. Save the Penguins: Teaching the Science of Heat Transfer through Engineering Design

    ERIC Educational Resources Information Center

    Schnittka, Christine; Bell, Randy; Richards, Larry

    2010-01-01

    Engineers, scientists, and environmental groups around the globe are hard at work finding solutions to mitigate or halt global warming. One major goal of the curriculum described here, Save the Penguins, is to help students recognize that what we do at home can affect how penguins fare in the Southern Hemisphere. In addition, students learn how…

  13. How Do Science, Technology, Engineering, and Mathematics Minority Faculty Members Describe Their Experiences of Graduate Student and Faculty Socialization?

    ERIC Educational Resources Information Center

    Johnson, Ayana M.

    2012-01-01

    To remain globally competitive in science, technology, engineering, and mathematics (STEM), we must increase our number of underrepresented minority scientists (URMs) as our country's population becomes more diverse. For URMs to move up the educational and professional ranks, they need to be properly socialized as graduate students and…

  14. Fermilab Science Education Office - Classroom Presentations

    Science.gov Websites

    | Fermilab Home | Employees | Students | Visitors | Undergraduates Fermilab Ed Site Search Google Custom and provide your students with the opportunity to meet a Fermilab scientist or engineer. We put on engaging interactive physics presentations. These presentations will expose students to Next Generation

  15. Next Generation Scientists, Next Opportunities: EPA's Science To Achieve Results (STAR) Program

    NASA Astrophysics Data System (ADS)

    Jones, M.

    2004-12-01

    Scientific research is one of the most powerful tools we have for understanding and protecting our environment. It provides the foundation for what we know about our planet, how it has changed, and how it could be altered in the future. The National Center for Environmental Research (NCER) in the U.S. Environmental Protection Agency's (EPA) Office of Research and Development (ORD) supports high-quality, extramural research by the nation's leading scientists and engineers to strengthen the basis for decisions about local and national environmental issues. NCER works with academia, state and local governments, other federal agencies, and scientists in EPA to increase human knowledge of how to protect our health and natural resources through its three major programs: · Science to Achieve Results (STAR) Grants · Small Business Innovative Research (SBIR) · Science to Achieve Results (STAR) Fellowships STAR, NCER's primary program, funds research grants and graduate fellowships in environmental science and engineering. Developing the next generation of environmental scientists and engineers is one of NCER's most important objectives. Each year, NCER helps between 80 and 160 students achieve Master's or Ph.D. degrees in environmental science and engineering through its STAR and Greater Research Opportunities (GRO) fellowships. Some of these students have moved on to careers in government while others are now full-time professors and researchers. Still others are working for state environmental agencies or furthering their studies through postdoctoral positions at universities. Since the inception of the NCER program, STAR fellowships (along with grants and SBIR projects) have been awarded in every state in the country. With the help of STAR, current and future scientists and engineers have been able to explore ways to preserve and protect human health and our precious resources.

  16. NASA and Earth Science Week: a Model for Engaging Scientists and Engineers in Education and Outreach

    NASA Astrophysics Data System (ADS)

    Schwerin, T. G.; deCharon, A.; Brown de Colstoun, E. C.; Chambers, L. H.; Woroner, M.; Taylor, J.; Callery, S.; Jackson, R.; Riebeek, H.; Butcher, G. J.

    2014-12-01

    Earth Science Week (ESW) - the 2nd full week in October - is a national and international event to help the public, particularly educators and students, gain a better understanding and appreciation for the Earth sciences. The American Geosciences Institute (AGI) organizes ESW, along with partners including NASA, using annual themes (e.g., the theme for 2014 is Earth's Connected Systems). ESW provides a unique opportunity for NASA scientists and engineers across multiple missions and projects to share NASA STEM, their personal stories and enthusiasm to engage and inspire the next generation of Earth explorers. Over the past five years, NASA's ESW campaign has been planned and implemented by a cross-mission/cross-project group, led by the NASA Earth Science Education and Pubic Outreach Forum, and utilizing a wide range of media and approaches (including both English- and Spanish-language events and content) to deliver NASA STEM to teachers and students. These included webcasts, social media (blogs, twitter chats, Google+ hangouts, Reddit Ask Me Anything), videos, printed and online resources, and local events and visits to classrooms. Dozens of NASA scientists, engineers, and communication and education specialists contribute and participate each year. This presentation will provide more information about this activity and offer suggestions and advice for others engaging scientists and engineers in education and outreach programs and events.

  17. Intending to stay: Positive images, attitudes, and classroom experiences as influences on students' intentions to persist in science and engineering majors

    NASA Astrophysics Data System (ADS)

    Wyer, Mary Beth

    2000-10-01

    Contemporary research on persistence in undergraduate education in science and engineering has focused primarily on identifying the structural, social, and psychological barriers to participation by students in underrepresented groups. As a result, there is a wealth of data to document why students leave their majors, but there is little direct empirical data to support prevailing presumptions about why students stay. Moreover, researchers have used widely differing definitions and measures of persistence, and they have seldom explored field differences. This study compared three ways of measuring persistence. These constituted three criterion variables: commitment to major, degree aspirations, and commitment to a science/engineering career. The study emphasized social factors that encourage students to persist, including four predictor variables---(1) positive images of scientists/engineers, (2) positive attitudes toward gender and racial equality, (3) positive classroom experiences, and (4) high levels of social integration. In addition, because researchers have repeatedly documented the degree to which women are more likely than men to drop out of science and engineering majors, the study examined the potential impact of gender in relation to these predictor variables. A survey was administered in the classroom to a total of 285 students enrolled in a required course for either a biological sciences and or an engineering major. Predictor variables were developed from standard scales, including the Images of Science/Scientists Scale, the Attitudes toward Women Scale, the Women in Science Scale, and the Perceptions of Prejudice Scale. Based on logistic regression models, results indicate that positive images of scientists and engineers was significantly related to improving the odds of students having a high commitment to major, high degree aspirations, and high commitment to career. There was also evidence that positive attitudes toward gender and racial equality as well as positive classroom experiences improved the odds of students' having high degree aspirations. There was limited evidence to suggest the significance of gender in interaction with the predictor variables. There was tentative evidence that field differences may play a critical role in persistence. The study concludes on two points. The first is that gender may be a more important factor in explaining why some students leave their science and engineering majors than in explaining why others stay. The second is that research directed at improving diversity in science would benefit from discussion about the measures of persistence.

  18. The mentoring of male and female scientists during their doctoral studies

    NASA Astrophysics Data System (ADS)

    Filippelli, Laura Ann

    The mentoring relationships of male and female scientists during their doctoral studies were examined. Male and female biologists, chemists, engineers and physicists were compared regarding the importance of doctoral students receiving career enhancing and psychosocial mentoring from their doctoral chairperson and student colleagues. Scientists' satisfaction with their chairperson and colleagues as providers of these mentoring functions was also investigated. In addition, scientists identified individuals other than their chairperson and colleagues who were positive influencers on their professional development as scientists and those who hindered their development. A reliable instrument, "The Survey of Accomplished Scientists' Doctoral Experiences," was developed to assess career enhancing and psychosocial mentoring of doctoral chairpersons and student colleagues based on the review of literature, interviews with scientists and two pilot studies. Surveys were mailed to a total of 400 men and women scientists with earned doctorates, of which 209 were completed and returned. The findings reveal that female scientists considered the doctoral chairperson furnishing career enhancing mentoring more important than did the men, while both were in accordance with the importance of them providing psychosocial mentoring. In addition, female scientists were not as satisfied as men with their chairperson providing most of the career enhancing and psychosocial mentoring functions. For doctoral student colleagues, female scientists, when compared to men, indicated that they considered student colleagues more important in providing career enhancing and psychosocial mentoring. However, male and female scientists were equally satisfied with their colleagues as providers of these mentoring functions. Lastly, the majority of male scientists indicated that professors served as a positive influencer, while women revealed that spouses and friends positively influenced their professional development as scientists. Several recommended changes in science departments are provided.

  19. Biographies of Women Scientists for Young Readers.

    ERIC Educational Resources Information Center

    Bettis, Catherine; Smith, Walter S.

    The participation of women in the physical sciences and engineering woefully lags behind that of men. One significant vehicle by which students learn to identify with various adult roles is through the literature they read. This annotated bibliography lists and describes biographies on women scientists primarily focusing on publications after…

  20. Should Scientists Be Involved in Teaching Science Writing and If So, How?

    ERIC Educational Resources Information Center

    Goodell, Rae

    Realizing the importance of writing skills in communicating with other professionals and in educating the public, scientists and scientific institutions have renewed their interest in the writing education of science students. Informal surveys show that technological and engineering schools are reinstituting writing requirements and staffing the…

  1. NASA Planetary Science Summer School: Preparing the Next Generation of Planetary Mission Leaders

    NASA Astrophysics Data System (ADS)

    Budney, C. J.; Lowes, L. L.; Sohus, A.; Wheeler, T.; Wessen, A.; Scalice, D.

    2010-12-01

    Sponsored by NASA’s Planetary Science Division, and managed by the Jet Propulsion Laboratory, the Planetary Science Summer School prepares the next generation of engineers and scientists to participate in future solar system exploration missions. Participants learn the mission life cycle, roles of scientists and engineers in a mission environment, mission design interconnectedness and trade-offs, and the importance of teamwork. For this professional development opportunity, applicants are sought who have a strong interest and experience in careers in planetary exploration, and who are science and engineering post-docs, recent PhDs, and doctoral students, and faculty teaching such students. Disciplines include planetary science, geoscience, geophysics, environmental science, aerospace engineering, mechanical engineering, and materials science. Participants are selected through a competitive review process, with selections based on the strength of the application and advisor’s recommendation letter. Under the mentorship of a lead engineer (Dr. Charles Budney), students select, design, and develop a mission concept in response to the NASA New Frontiers Announcement of Opportunity. They develop their mission in the JPL Advanced Projects Design Team (Team X) environment, which is a cross-functional multidisciplinary team of professional engineers that utilizes concurrent engineering methodologies to complete rapid design, analysis and evaluation of mission concept designs. About 36 students participate each year, divided into two summer sessions. In advance of an intensive week-long session in the Project Design Center at JPL, students select the mission and science goals during a series of six weekly WebEx/telecons, and develop a preliminary suite of instrumentation and a science traceability matrix. Students assume both a science team and a mission development role with JPL Team X mentors. Once at JPL, students participate in a series of Team X project design sessions, during which their mentors aid them in finalizing their mission design and instrument suite, and in making the necessary trade-offs to stay within the cost cap. Tours of JPL facilities highlight the end-to-end life cycle of a mission. At week’s end, students present their Concept Study to a “proposal review board” of JPL scientists and engineers and NASA Headquarters executives, who feed back the strengths and weaknesses of their proposal and mission design. The majority of students come from top US universities with planetary science or engineering programs, such as Brown University, MIT, Georgia Tech, University of Colorado, Caltech, Stanford, University of Arizona, UCLA, and University of Michigan. Almost a third of Planetary Science Summer School alumni from the last 10 years of the program are currently employed by NASA or JPL. The Planetary Science Summer School is implemented by the JPL Education Office in partnership with JPL’s Team X Project Design Center.

  2. Next generation of scientists and engineers: Who`s in the pipeline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babco, E.L.

    1995-12-31

    Our ability to produce the next generation of scientists and engineers is dependent upon two important demographic changes: the trends in the number of births and the increasingly diverse racial and ethnic backgrounds of those already born. The number of births dropped 25% from 1956 to 1976. As a consequence, the number of high school graduates dropped from 3.1 million in 1977 to 2.4 million in 1992 and will not reach the 1977 high until after 2000. More than half of these graduates are women, and one of every four is a member of minority group. Women now make upmore » more than half of all undergraduates and almost half of all graduate students, but are underrepresented in the natural science and engineering fields. Minority students are about half as likely to be enrolled in college as white students. About 32% of all precollege students and 20% of all college students are members of minority groups. Based on current graduate enrollment figures in natural science and engineering, there will be little increase in women`s share of doctorates in the next several years. The number of PhDs earned by American minorities continues to be very small. Not known is when our economy will require more professionals trained in science and engineering. But any serious attempt to increase the number of students eligible to choose college majors in science or engineering must take both sex and race/ethnicity into account. The nation cannot afford to waste the talent in two-thirds of our increasingly diverse population.« less

  3. ROBOTIC MINING COMPETITORS BREAKFAST WITH NASA WOMEN ENGINEERS AND SCIENTISTS

    NASA Image and Video Library

    2017-05-25

    More than 40 female NASA engineers and scientists shared insights into their successful careers with several hundred students at NASA’s Women in STEM Mentoring Breakfast on Thursday, May 25, at Kennedy Space Center’s Debus Center in Florida. The students, members of the 45 teams in the 2017 NASA Robotic Mining Competition, sat alongside the female mentors and, between bites, learned of what paths the women took to establish their own careers in a field of science, technology, engineering and math, also known as STEM. Managed by, and held annually at Kennedy Space Center, the Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to engage and retain students in STEM fields by expanding opportunities for student research and design. The project provides a competitive environment to foster innovative ideas and solutions with potential use on NASA’s deep space exploration missions, including to Mars. SOTs (In order of appearance): Janet Petro, Deputy Director, NASA Kennedy Space Center Camille Stimpson, Melbourne Central Catholic High School (Florida), Observer of Event Lynette Sugatan, Oakton Comminity College (Illinois), “Oaktobotics”

  4. George Washington University Visa Project-Streamlining Our Visa and Immigration Systems for Scientists and Engineers

    NASA Astrophysics Data System (ADS)

    Teich, Albert H.

    2014-03-01

    Many scientists believe that current U.S. visa and immigration systems are out of sync with today's increasingly globalized science and technology. This talk will highlight specific proposals that would facilitate the recruitment of promising STEM students by U.S. universities and better enable international scientists and engineers to visit the United States for scientific conferences and research collaboration. Most of these proposals could be implemented without additional resources and without compromising U.S. security. The talk is based on the results of an 18 month study conducted at the George Washington University's Center for International Science & Technology Policy.

  5. Software Development in the Water Sciences: a view from the divide (Invited)

    NASA Astrophysics Data System (ADS)

    Miles, B.; Band, L. E.

    2013-12-01

    While training in statistical methods is an important part of many earth scientists' training, these scientists often learn the bulk of their software development skills in an ad hoc, just-in-time manner. Yet to carry out contemporary research scientists are spending more and more time developing software. Here I present perspectives - as an earth sciences graduate student with professional software engineering experience - on the challenges scientists face adopting software engineering practices, with an emphasis on areas of the science software development lifecycle that could benefit most from improved engineering. This work builds on experience gained as part of the NSF-funded Water Science Software Institute (WSSI) conceptualization award (NSF Award # 1216817). Throughout 2013, the WSSI team held a series of software scoping and development sprints with the goals of: (1) adding features to better model green infrastructure within the Regional Hydro-Ecological Simulation System (RHESSys); and (2) infusing test-driven agile software development practices into the processes employed by the RHESSys team. The goal of efforts such as the WSSI is to ensure that investments by current and future scientists in software engineering training will enable transformative science by improving both scientific reproducibility and researcher productivity. Experience with the WSSI indicates: (1) the potential for achieving this goal; and (2) while scientists are willing to adopt some software engineering practices, transformative science will require continued collaboration between domain scientists and cyberinfrastructure experts for the foreseeable future.

  6. Young Engineers and Scientists: a Mentorship Program

    NASA Astrophysics Data System (ADS)

    Boice, Daniel C.; Wuest, Martin; Marilyn, Koch B.

    The Young Engineers and Scientists (YES) Program is a community partnership between Southwest Research Institute (SwRI) and local high schools in San Antonio Texas (USA). It provides talented high school juniors and seniors a bridge between classroom instruction and real-world research experiences in physical sciences and engineering. YES consists of two parts: 1) an intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems attend mini-courses and seminars on electronics computers and the Internet careers science ethics and other topics; and select individual research projects to be completed during the academic year; and 2) a collegial mentorship where students complete individual research projects under the guidance of their mentors during the academic year and earn honors credit. At the end of the school year students publicly present and display their work acknowledging their accomplishments and spreading career awareness to other students and teachers. YES has been highly successful during the past 10 years. All YES graduates have entered college several have worked for SwRI and three scientific publications have resulted. Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors.

  7. Approaching Undergraduate Research with Students Who Are Deaf and Hard-of-Hearing

    ERIC Educational Resources Information Center

    Gehret, Austin U.; Trussell, Jessica W.; Michel, Lea V.

    2017-01-01

    An undergraduate research experience can provide a unique opportunity for students to learn and grow as scientists; when positive, this experience is often transformative and motivates students to pursue science, technology, engineering and mathematics (STEM) graduate degrees or careers. Conversely, negative research experiences can sour a…

  8. Introducing a Girl to Engineering Day

    NASA Image and Video Library

    2018-02-22

    NASA engineer Krista Shaffer, left, speaks to Rachel Power of NASA’s Digital Expansion to Engage the Public (DEEP) Network inside Kennedy Space Center’s Vehicle Assembly Building during Introduce a Girl to Engineering Day. Held in conjunction with National Engineers Week and Girl Day, the event allowed students from throughout the nation to speak with female NASA scientists and technical experts.

  9. Introducing a Girl to Engineering Day

    NASA Image and Video Library

    2018-02-22

    NASA engineer Krista Shaffer, right, is interviewed by Rachel Power of NASA’s Digital Expansion to Engage the Public (DEEP) Network inside Kennedy Space Center’s Vehicle Assembly Building during Introduce a Girl to Engineering Day. Held in conjunction with National Engineers Week and Girl Day, the event allowed students from throughout the nation to speak with female NASA scientists and technical experts.

  10. Introducing a Girl to Engineering Day

    NASA Image and Video Library

    2018-02-22

    Inside Kennedy Space Center’s Vehicle Assembly Building, Bethanne’ Hull, left, of NASA Outreach, and engineer Krista Shaffer, right, participate in Introduce a Girl to Engineering Day on NASA’s Digital Expansion to Engage the Public (DEEP) Network. Held in conjunction with National Engineers Week and Girl Day, the event allowed students from throughout the nation to speak with female NASA scientists and technical experts.

  11. Working as a Team

    ERIC Educational Resources Information Center

    Brooks, Hannah

    2017-01-01

    In most STEM industries, teamwork is essential. Engineers, scientists, statisticians, and medical professionals, for example, must communicate with one another and work together. Someday, students may enter the STEM (science, technology, engineering, and math) workforce, where they also will need to collaborate effectively. This article describes…

  12. A Course for Engineering and Science Students

    ERIC Educational Resources Information Center

    Companion, A.; Schug, K.

    1973-01-01

    Discusses the features of a course which emphasizes training of scientists and engineers with broad interdisciplinary knowledge in addition to those with a highly specialized professional preparation. Included is a list of books relating to applications of materials science concepts in general chemistry. (CC)

  13. Education through Experience.

    ERIC Educational Resources Information Center

    Fowler, Brian D.

    1995-01-01

    Describes the Langley Aerospace Research Summer Scholars Program, a 10-week internship program for junior and senior undergraduates and first-year graduate students who are pursuing degrees in engineering or science. The program enables participants to conduct research under the supervision of NASA scientists and engineers. Profiles American…

  14. NASA Planetary Science Summer School: Preparing the Next Generation of Planetary Mission Leaders

    NASA Astrophysics Data System (ADS)

    Lowes, L. L.; Budney, C. J.; Sohus, A.; Wheeler, T.; Urban, A.; NASA Planetary Science Summer School Team

    2011-12-01

    Sponsored by NASA's Planetary Science Division, and managed by the Jet Propulsion Laboratory, the Planetary Science Summer School prepares the next generation of engineers and scientists to participate in future solar system exploration missions. Participants learn the mission life cycle, roles of scientists and engineers in a mission environment, mission design interconnectedness and trade-offs, and the importance of teamwork. For this professional development opportunity, applicants are sought who have a strong interest and experience in careers in planetary exploration, and who are science and engineering post-docs, recent PhDs, and doctoral students, and faculty teaching such students. Disciplines include planetary science, geoscience, geophysics, environmental science, aerospace engineering, mechanical engineering, and materials science. Participants are selected through a competitive review process, with selections based on the strength of the application and advisor's recommendation letter. Under the mentorship of a lead engineer (Dr. Charles Budney), students select, design, and develop a mission concept in response to the NASA New Frontiers Announcement of Opportunity. They develop their mission in the JPL Advanced Projects Design Team (Team X) environment, which is a cross-functional multidisciplinary team of professional engineers that utilizes concurrent engineering methodologies to complete rapid design, analysis and evaluation of mission concept designs. About 36 students participate each year, divided into two summer sessions. In advance of an intensive week-long session in the Project Design Center at JPL, students select the mission and science goals during a series of six weekly WebEx/telecons, and develop a preliminary suite of instrumentation and a science traceability matrix. Students assume both a science team and a mission development role with JPL Team X mentors. Once at JPL, students participate in a series of Team X project design sessions, during which their mentors aid them in finalizing their mission design and instrument suite, and in making the necessary trade-offs to stay within the cost cap. Tours of JPL facilities highlight the end-to-end life cycle of a mission. At week's end, students present their Concept Study to a "proposal review board" of JPL scientists and engineers and NASA Headquarters executives, who feed back the strengths and weaknesses of their proposal and mission design. A survey of Planetary Science Summer School alumni administered in summer of 2011 provides information on the program's impact on students' career choices and leadership roles as they pursue their employment in planetary science and related fields. Preliminary results will be discussed during the session. Almost a third of the approximately 450 Planetary Science Summer School alumni from the last 10 years of the program are currently employed by NASA or JPL. The Planetary Science Summer School is implemented by the JPL Education Office in partnership with JPL's Team X Project Design Center.

  15. Lunar Reconnaissance Orbiter Lunar Workshops for Educators

    NASA Astrophysics Data System (ADS)

    Jones, A. P.; Hsu, B. C.; Hessen, K.; Bleacher, L.

    2012-12-01

    The Lunar Workshops for Educators (LWEs) are a series of weeklong professional development workshops, accompanied by quarterly follow-up sessions, designed to educate and inspire grade 6-12 science teachers, sponsored by the Lunar Reconnaissance Orbiter (LRO). Participants learn about lunar science and exploration, gain tools to help address common student misconceptions about the Moon, find out about the latest research results from LRO scientists, work with data from LRO and other lunar missions, and learn how to bring these data to their students using hands-on activities aligned with grade 6-12 National Science Education Standards and Benchmarks and through authentic research experiences. LWEs are held around the country, primarily in locations underserved with respect to NASA workshops. Where possible, workshops also include tours of science facilities or field trips intended to help participants better understand mission operations or geologic processes relevant to the Moon. Scientist and engineer involvement is a central tenant of the LWEs. LRO scientists and engineers, as well as scientists working on other lunar missions, present their research or activities to the workshop participants and answer questions about lunar science and exploration. This interaction with the scientists and engineers is consistently ranked by the LWE participants as one of the most interesting and inspiring components of the workshops. Evaluation results from the 2010 and 2011 workshops, as well as preliminary analysis of survey responses from 2012 participants, demonstrated an improved understanding of lunar science concepts among LWE participants in post-workshop assessments (as compared to identical pre-assessments) and a greater understanding of how to access and effectively share LRO data with students. Teachers reported increased confidence in helping students conduct research using lunar data, and learned about programs that would allow their students to make authentic contributions to lunar science. Participant feedback on workshop surveys was enthusiastically positive. 2012 was the third and final year for the LWEs in the current funding cycle. They will continue in a modified version at NASA Goddard Space Flight Center in Greenbelt, MD, where the LRO Project Office and Education and Public Outreach Team are based. We will present evaluation results from our external evaluator, and share lessons learned from this workshop series. The LWEs can serve as a model for others interested in incorporating scientist and engineer involvement, data from planetary missions, and data-based activities into a thematic professional development experience for science educators. For more information about the LWEs, please visit http://lunar.gsfc.nasa.gov/lwe/index.html.

  16. Summer enrichment partnership (SEP) - society of hispanic professional engineers (SHPE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vela, C.E.

    1994-12-31

    SEP recruits talented Hispanic high school students in the Washington metropolitan area and seeks to increase the number of Hispanics who enter graduate programs in engineering and science. New students are exposed to engineering, experimental science and business, and visit R&D centers and corporations. Returning students take college level courses, such as Vector-Based Analytic Geometry and Probability and Statistics. Advanced students work on special projects. Hispanic engineers, scientists, and managers offer career guidance. Parental participation is actively encouraged. Students are selected based on: (a) commitment to succeed, (b) academic record, and (c) willingness to attend the program through graduation. Coursesmore » are taught by university faculty, with one teacher assistant per five students. Program evaluation encompasses: (1) student participation and performance, (2) school achievement, and (3) continuation to college. SEP is a partnership between the Society of Hispanic Professional Engineers, The Catholic University of America, NASA, school districts, parents and students, and Hispanic professionals.« less

  17. Scientist in the Classroom: Highlights of a Plasma Outreach Program

    NASA Astrophysics Data System (ADS)

    Nagy, A.; Lee, R. L.

    2000-10-01

    The General Atomics education program ``Scientist in the Classroom'' now in its third year, uses scientists and engineers to present ``Plasma the fourth state of matter,'' to students in the classroom. A program goal is to make science an enjoyable experience while showing students how plasma plays an important role in their world. A fusion overview is presented, including topics on energy and environment. Using hands-on equipment, students manipulate a plasma discharge using magnets, observe its spectral properties and observe the plasma in a fluorescent tube. In addition, they observe physical properties of liquid nitrogen, and use an infrared camera to observe radiant heat energy. Several program benefits are; it costs less than facility tours, is more flexible in scheduling, and is adaptable for grades 2--adult. The program has doubled in coverage since last year, with over 2200 students at 20 schools visited by 8 scientists. Increased participation by the DIII-D staff in this program has been achieved by enlisting them to bring the program to their children's school.

  18. Scientist in the Classroom: The First Year Highlights of a Plasma Outreach Program

    NASA Astrophysics Data System (ADS)

    Nagy, A.; Danielson, C. A.; Lee, R. L.; Winter, P. S.; Valentine, J. R.

    1999-11-01

    The General Atomics education program ``Scientist in the Classroom'' uses scientists, engineers, and technicians to discuss plasma physics with students in the classroom. A program goal is to make science an enjoyable experience while showing students how plasma physics plays an important role in their world. A fusion overview is presented, including topics on energy and environment. Using hands-on equipment, students manipulate plasma discharges using magnetic fields and observe their spectral properties. Students also observe physical properties of liquid nitrogen, infrared waves, and radioactive particles. The benefit of this program, relative to facility tours, is that it optimizes cost and scheduling between the scientific staff and students. This program and its equipment are receiving accolades as an adjunct teaching option available to schools at no cost. This year we have presented to over 1000 students at 11 schools. Student exit interviews reflect strong positive comments regarding their hands-on learning experience and science appreciation.

  19. Teaching the Next Generation of Scientists and Engineers the NASA Design Process

    NASA Technical Reports Server (NTRS)

    Caruso, Pamela W.; Benfield, Michael P. J.; Justice, Stefanie H.

    2011-01-01

    The Integrated Product Team (IPT) program, led by The University of Alabama in Huntsville (UAH), is a multidisciplinary, multi-university, multi-level program whose goal is to provide opportunities for high school and undergraduate scientists and engineers to translate stakeholder needs and requirements into viable engineering design solutions via a distributed multidisciplinary team environment. The current program supports three projects. The core of the program is the two-semester senior design experience where science, engineering, and liberal arts undergraduate students from UAH, the College of Charleston, Southern University at Baton Rouge, and Ecole Suprieure des Techniques Aronautiques et de Construction Automobile (ESTACA) in Paris, France form multidisciplinary competitive teams to develop system concepts of interest to the local aerospace community. External review boards form to provide guidance and feedback throughout the semester and to ultimately choose a winner from the competing teams. The other two projects, the Innovative Student Project for the Increased Recruitment of Engineering and Science Students (InSPIRESS) Level I and Level II focus exclusively on high school students. InSPIRESS Level I allows high schools to develop a payload to be accommodated on the system being developed by senior design experience teams. InSPIRESS Level II provides local high school students first-hand experience in the senior design experience by allowing them to develop a subsystem or component of the UAH-led system over the two semesters. This program provides a model for NASA centers to engage the local community to become more involved in design projects.

  20. Advertising Post-Experience Courses in Science and Engineering

    ERIC Educational Resources Information Center

    Thomas, Edward

    1978-01-01

    Describes ten different forms of advertising that have been used to recruit scientists and engineers to residential postexperience courses. Reports the results of a survey conducted to assess the relative cost-benefit of each advertising method in attracting adult students to specialized postexperience courses. (EM)

  1. America's Children: Providing Early Exposure to STEM (Science, Technology, Engineering and Math) Initiatives

    ERIC Educational Resources Information Center

    DeJarnette, Nancy K.

    2012-01-01

    Recent attention has been brought to light in the United States regarding low numbers of students pursing STEM (Science, Technology, Engineering and Math) disciplines and degree programs (National Science Board, 2010). There is a great need in America for talented scientists and engineers. Numerous programs abound for high school and middle school…

  2. Uncovering Scientist Stereotypes and Their Relationships with Student Race and Student Success in a Diverse, Community College Setting.

    PubMed

    Schinske, Jeffrey; Cardenas, Monica; Kaliangara, Jahana

    2015-01-01

    A number of studies have identified correlations between children's stereotypes of scientists, their science identities, and interest or persistence in science, technology, engineering, and mathematics. Yet relatively few studies have examined scientist stereotypes among college students, and the literature regarding these issues in predominantly nonwhite and 2-yr college settings is especially sparse. We piloted an easy-to-analyze qualitative survey of scientist stereotypes in a biology class at a diverse, 2-yr, Asian American and Native American Pacific Islander-Serving Institution. We examined the reliability and validity of the survey, and characterized students' comments with reference to previous research on stereotypes. Positive scientist stereotypes were relatively common in our sample, and negative stereotypes were rare. Negative stereotypes appeared to be concentrated within certain demographic groups. We found that students identifying nonstereotypical images of scientists at the start of class had higher rates of success in the course than their counterparts. Finally, evidence suggested many students lacked knowledge of actual scientists, such that they had few real-world reference points to inform their stereotypes of scientists. This study augments the scant literature regarding scientist stereotypes in diverse college settings and provides insights for future efforts to address stereotype threat and science identity. © 2015 J. Schinske et al. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  3. Practical Guidance on Science and Engineering Ethics Education for Instructors and Administrators: Papers and Summary from a Workshop, December 12, 2012

    ERIC Educational Resources Information Center

    Benya, Frazier F., Ed.; Fletcher, Cameron H.,Ed.; Hollander, Rachelle D.,Ed.

    2013-01-01

    Over the last two decades, colleges and universities in the United States have significantly increased the formal ethics instruction they provide in science and engineering. Today, science and engineering programs socialize students into the values of scientists and engineers as well as their obligations in the conduct of scientific research and…

  4. Introducing a Girl to Engineering Day

    NASA Image and Video Library

    2018-02-22

    The camera in the foreground is recording NASA engineer Krista Shaffer, left, and Rachel Power of NASA’s Digital Expansion to Engage the Public (DEEP) Network inside Kennedy Space Center’s Vehicle Assembly Building during Introduce a Girl to Engineering Day. Held in conjunction with National Engineers Week and Girl Day, the event allowed students from throughout the nation to speak with female NASA scientists and technical experts.

  5. Increasing Middle School Student Interest in STEM Careers with Videos of Scientists

    ERIC Educational Resources Information Center

    Wyss, Vanessa L.; Heulskamp, Diane; Siebert, Cathy J.

    2012-01-01

    Students are making choices in middle school that will impact their desire and ability to pursue STEM careers. Providing middle school students with accurate information about STEM (Science, Technology, Engineering, Mathematics) careers enables them to make more knowledgeable choices about courses of study and career paths. Practical ways of…

  6. Graduate Student Support and Manpower Resources in Graduate Science Education, Fall 1970.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC.

    Current data on graduate student support and manpower resources in graduate science education are important to science administrators, educators, and others concerned with the education of highly qualified scientists and engineers and other related manpower issues. They are also of interest to prospective graduate students, vocational counselors,…

  7. PREFACE: International Scientific Conference of Young Scientists: Advanced Materials in Construction and Engineering (TSUAB2014)

    NASA Astrophysics Data System (ADS)

    Kopanitsa, Natalia O.

    2015-01-01

    In October 15-17, 2014 International Scientific Conference of Young Scientists: Advanced Materials in Construction and Engineering (TSUAB2014) took place at Tomsk State University of Architecture and Building (Tomsk, Russia). The Conference became a discussion platform for researchers in the fields of studying structure and properties of advanced building materials and included open lectures of leading scientists and oral presentations of master, postgraduate and doctoral students. A special session was devoted to reports of school children who further plan on starting a research career. The Conference included an industrial exhibition where companies displayed the products and services they supply. The companies also gave presentations of their products within the Conference sessions.

  8. From Local to EXtreme Environments (FLEXE) Student-Scientist Online Forums: hypothesis-based research examining ways to involve scientists in effective science education

    NASA Astrophysics Data System (ADS)

    Goehring, L.; Carlsen, W.; Fisher, C. R.; Kerlin, S.; Trautmann, N.; Petersen, W.

    2011-12-01

    Science education reform since the mid-1990's has called for a "new way of teaching and learning about science that reflects how science itself is done, emphasizing inquiry as a way of achieving knowledge and understanding about the world" (NRC, 1996). Scientists and engineers, experts in inquiry thinking, have been called to help model these practices for students and demonstrate scientific habits of mind. The question, however, is "how best to involve these experts?" given the very real challenges of limited availability of scientists, varying experience with effective pedagogy, widespread geographic distribution of schools, and the sheer number of students involved. Technology offers partial solutions to enable Student-Scientist Interactions (SSI). The FLEXE Project has developed online FLEXE Forums to support efficient, effective SSIs, making use of web-based and database technology to facilitate communication between students and scientists. More importantly, the FLEXE project has approached this question of "how best to do this?" scientifically, combining program evaluation with hypothesis-based research explicitly testing the effects of such SSIs on student learning and attitudes towards science. FLEXE Forums are designed to showcase scientific practices and habits of mind through facilitated interaction between students and scientists. Through these Forums, students "meet" working scientists and learn about their research and the environments in which they work. Scientists provide students with intriguing "real-life" datasets and challenge students to analyze and interpret the data through guiding questions. Students submit their analyses to the Forum, and scientists provide feedback and connect the instructional activity with real-life practice, showcasing their activities in the field. In the FLEXE project, Forums are embedded within inquiry-based instructional units focused on essential learning concepts, and feature the deep-sea environment in contrast to students' local environments to deepen students' understanding of earth systems processes. This presentation will provide an overview of the FLEXE project, a partnership between the Ridge2000 research scientists, science learning researchers, and educators, and will report findings from pilot studies implemented in collaboration with the GLOBE program, a worldwide network of scientists, science educators, and their students. FLEXE Forums have been tested with approximately 1400 students in the US, Germany, Australia and Thailand in 2009, and 1100 students in the US, Thailand, England and Costa Rica in 2010. Description of research methods (e.g., educational hypotheses, assessment of student learning and attitudes through analysis of student writing, and "quick question" surveys) and results will be shared, along with current tests examining the transferability of the approach to other scientists/science educator teams.

  9. Encouraging Girls into Science and Technology with Feminine Role Model: Does This Work?

    NASA Astrophysics Data System (ADS)

    Bamberger, Yael M.

    2014-08-01

    This study examines the effect of a program that aimed to encourage girls to choose a science, technology, engineering, and mathematics (STEM) career in Israel. The program involved school visits to a high-tech company and meeting with role model female scientists. Sixty ninth-grade female students from a Jewish modern-orthodox single-sex secondary school in the same city as the company participated in the study. The control group contained 30 girls from the same classes who did not participate in the program. Data were collected through pre-post questionnaires, observations, and focus group interviews. It was analyzed for three main themes: perceptions of scientists and engineers, capability of dealing with STEM, and future career choice. Findings indicated respect toward the women scientists as being smart and creative, but significant negative change on the perceptions of women scientists/engineers, the capability of dealing with STEM, and the STEM career choices. Possible causes for these results are discussed, as well as implications for education.

  10. German for Engineers and Scientists: Initiatives in International Education.

    ERIC Educational Resources Information Center

    Weinmann, Sigrid

    The Michigan Technological University program in German area studies is described. The program is designed for science and engineering students at both undergraduate and graduate levels. Its components include: a 1-year scientific German sequence, stressing specialized vocabulary, reading skills, use of reference materials, translation into…

  11. Summer of Innovation Kick Off

    NASA Image and Video Library

    2010-06-09

    Julie Townsend, JPL Engineer, talks about her experiences to teachers and middle school students during the kick off of NASA's Summer of Innovation program at the Jet Propulsion Laboratory in Pasadena, Calif., Thursday, June 10, 2010. Through the program, NASA will engage thousands of middle school students and teachers in stimulating math and science-based education programs with the goal of increasing the number of future scientists, mathematicians, and engineers. Photo Credit: (NASA/Bill Ingalls)

  12. Careers in Government: Bench Scientist to Policy Wonk

    NASA Astrophysics Data System (ADS)

    Gebbie, Katharine B.

    1998-04-01

    The U.S. system for graduate education in physics is arguably the most effective system yet devised for advanced training in physics. Focused as it is on original research, it teaches students to identify significant problems, study them in depth, and communicate the results. Because it trains them to be analytical, adaptable, persevering, and pragmatic problem solvers, it prepares them for a wide variety of nontraditional careers. Hence the demand for physicists by Wall Street and management consultant teams. Yet, as stressed in the 1995 report by the Committee on Science, Engineering and Public Policy (COSEPUP)("Reshaping the Graduate Education of Scientists and Engineers," COSEPUP; National Academy of Sciences/National Academy of Engineering/Institute of Medicine. National Academy Press, 1995), what is lacking is exposure to career information and guidance. Many students appear to be unaware of the range and richness of opportunities outside academe. In an effort to fill this gap, illustrative examples of diverse careers and career changes in government will be presented, together with examples of cooperative programs that can enhance the student's appreciation of career possibilities.

  13. Gummi-Bears On Fire! Bringing Students and Scientists Together at the Alaska Summer Research Academy (ASRA)

    NASA Astrophysics Data System (ADS)

    Drake, J.; Schamel, D.; Fisher, P.; Terschak, J. A.; Stelling, P.; Almberg, L.; Phillips, E.; Forner, M.; Gregory, D.

    2002-12-01

    When a gummi-bear is introduced into hot potassium chlorate there is a powerful reaction. This is analogous to the response we have seen to the Alaska Summer Research Academy (ASRA). ASRA is a residential science research camp supported by the College of Science, Engineering and Mathematics at the University of Alaska Fairbanks. The hallmark of ASRA is the opportunity for small groups of 4 or fewer students, ages 10-17, to conduct scientific research and participate in engineering design projects with university faculty and researchers as mentors. Participating scientists, engineers, faculty, graduate students, and K-12 teachers from a variety of disciplines design individual research units and guide the students through designing and constructing a project, collecting data, and synthesizing results. The week-long camp culminates with the students from each project making a formal presentation to the camp and public. In its second year ASRA is already a huge success, quadrupling in size from 21 students in 2001 to 89 students in 2002. Due to a high percentage of returning students, we anticipate there will be a waiting list next year. This presentation contains perspectives from administrators, instructors, staff, and students. Based on our experience we feel there is a large potential demand for education and public outreach (EPO) in university settings. We believe the quality and depth of the ASRA experience directly contributes to the success of a worthwhile EPO program. ASRA will be portrayed as a useful model for EPO at other institutions.

  14. G-2008-0819-014

    NASA Image and Video Library

    2008-10-06

    Young Scientist Challenge YSC was held on October 6, 2008 at Goddard sponsored by 3M. It gave students opportunity to demonstrate their scientific/engineering skills by participating in live demonstrations.

  15. A century of light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Anne Frances; Lamontagne, Nancy D.

    2016-06-15

    Since its founding in 1916, The Optical Society has brought together a global community of scientists, engineers, business leaders, and students whose work in optics and photonics has transformed the world.

  16. The Young Engineers and Scientists (YES) mentorship program

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Clarac, T.

    The Young Engineers and Scientists (YES) Program is a community partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA). It provides talented high school juniors and seniors a bridge between classroom instruction and real-world, research experiences in physical sciences (including space science and astronomy) and engineering. YES consists of two parts: 1) an intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year; and 2) a collegial mentorship where students complete individual research projects under the guidance of their mentors during the academic year and earn honors credit. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. YES has been highly successful during the past 11 years. All YES graduates have entered college, several have worked for SwRI, and three scientific publications have resulted. Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors.

  17. The Young Engineers and Scientists Mentorship Program

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Lin, C.; Clarac, T.

    2004-12-01

    The Young Engineers and Scientists (YES) Program is a community partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA). It provides talented high school juniors and seniors a bridge between classroom instruction and real-world, research experiences in physical sciences (including space science and astronomy) and engineering. YES consists of two parts: 1) an intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year; and 2) a collegial mentorship where students complete individual research projects under the guidance of their mentors during the academic year and earn honors credit. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. YES has been highly successful during the past 12 years. All YES graduates have entered college, several have worked for SwRI, and three scientific publications have resulted. Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors. We acknowledge funding from local charitable foundations and the NASA E/PO program.

  18. Team Problem Solving Strategies with a Survey of These Methods Used by Faculty Members in Engineering Technology

    ERIC Educational Resources Information Center

    Marcus, Michael L.; Winters, Dixie L.

    2004-01-01

    Students from science, engineering, and technology programs should be able to work together as members of project teams to find solutions to technical problems. The exercise in this paper describes the methods actually used by a project team from a Biomedical Instrumentation Corporation in which scientists, technicians, and engineers from various…

  19. Using Biographies of Outstanding Women in Bioengineering to Dispel Biology Teachers' Misperceptions of Engineers

    ERIC Educational Resources Information Center

    Hoh, Yin Kiong

    2009-01-01

    The perception that engineers and scientists are intelligent Caucasian men who are socially inept and absent-minded people is prevalent among students of all levels, from elementary school to college. While the media may, by chance or choice, promote this image, the reality is that most engineers are men. These stereotypical images of engineers…

  20. Basic Writing Concepts for Scientists and Engineers.

    ERIC Educational Resources Information Center

    Mitchell, John H.

    1980-01-01

    Notes the differences between poetry and technical communication. Charges English teacher/humanists with confusing students about emotional writing, style, and effective technical communication. Offers five concepts that technical writing teachers can use to place "style" on a rational basis and to make students understand the true purposes of…

  1. How To Get a Job Working for NASA

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan

    2011-01-01

    In an informal meeting with students, I will give an overview of NASA and discuss who works for NASA: astronauts, scientists, engineers, managers and secretaries, and how they are selected, hired and employed. I will discuss the process for applying for NASA jobs, including student programs.

  2. How to get a job working for NASA

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2012-01-01

    In an informal meeting with students, I will give an overview of NASA and discuss who works for NASA: astronauts, scientists, engineers, managers and secretaries, and how they are selected, hired and employed. I will discuss the process for applying for NASA jobs, including student programs.

  3. Identifying Comprehensive Public Institutions that Develop Minority Scientists

    ERIC Educational Resources Information Center

    Hubbard, Steven M.; Stage, Frances K.

    2010-01-01

    The ratio of minority students earning baccalaureate degrees in science, technology, engineering, and mathematics (STEM) continues to decline. In the past three decades, research on students of color in the mathematics/science pipeline has rapidly expanded. Many government agencies and nonprofit organizations have supported research and…

  4. Transitional to Formal Operational: Using Authentic Research Experiences to Get Non-Science Students to Think More Like Scientists

    ERIC Educational Resources Information Center

    Moore, J. Christopher

    2012-01-01

    University and high school students not pursuing a science, technology, engineering, and/or mathematics (STEM) course of study demonstrate less developed scientific reasoning than their STEM-based peers. Previous studies show that the majority of non-STEM students can be classified as either concrete operational or transitional reasoners in…

  5. Graduate students in oceanography: Recruitment, success, and career prospects

    NASA Astrophysics Data System (ADS)

    Nowell, Arthur R. M.; Hollister, Charles D.

    Graduate education, student quality, stipend support, and subsequent employment form a triad of concern to many oceanographers. While the number of graduate degree programs in oceanography in the U.S. exceeds 50, remarkably few data are available on numbers of student applications, student survival rates, the quality of the applicants and accepted students, and their subsequent employment.Consequently, most discussions within an institution are based on data from a single school, while most statements made to federal government program managers by scientists are based on personal perceptions and feelings. With the emerging global initiatives, which are very labor intensive, it appears appropriate to ask, “Is there an impending crisis in graduate education in oceanography?” Widespread concern about availability of new talent, the quality of incoming students, and the overall national crisis in science and engineering student recruitment has led many scientists to state that oceanography has widespread problems in terms of student numbers and, more importantly, quality. Often, when a scientist does not find a student in the spring application rites, the scientist declares there is a national shortage of well-qualified students. Moreover, in certain subdisciplines of the field (e.g., physical oceanography) the crisis is perceived as severe and immediate, though as we shall see, physical oceanography is in an improving mode and is also experiencing an interesting increase in the numbers of well-qualified women applicants.

  6. The Role of Prototype Matching in Science Pursuits: Perceptions of Scientists That Are Inaccurate and Diverge From Self-Perceptions Predict Reduced Interest in a Science Career.

    PubMed

    McPherson, Erin; Park, Bernadette; Ito, Tiffany A

    2018-06-01

    Self-to-prototype matching is a strategy of mental comparisons between the self-concept and the typical or "representative" member of a group to make some judgment. Such a process might contribute to interest in pursuing a science career and, relatedly, women's underrepresentation in physical science, technology, engineering, and mathematics (pSTEM) fields. Across four studies, we measured self-scientist discrepancies on communal, agentic, and scientific dimensions, and assessed participants' interest in a science career. The most consistent predictor of science interest was the discrepancy between self and scientist on the scientific dimension (e.g., intelligent, meticulous). Study 4 established that students with larger self-scientist discrepancies also had less accurate perceptions of students pursuing science, and that inaccuracy was related to lower science interest. Thus, students with lower science interest do not just perceive scientists differently from themselves but also erroneously. Discrepancy and inaccuracy together explained a significant portion of the gender gap in pSTEM interest.

  7. More than Data: Using Interactive Science Notebooks to Engage Students in Science and Engineering

    ERIC Educational Resources Information Center

    Mason, Kevin; Bohl, Heather

    2017-01-01

    A traditional science notebook is an official record of a scientist's research. Even in today's digital world, it is still common practice for scientists to record their experimental procedures, data, analysis, results, notes, and other thoughts on the right pages of a bound notebook in permanent ink with nothing written on the left side or back…

  8. Education Highlights: Synthetic Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gambacorta, Francesca; Michalska, Martyna

    Argonne intern Francesca Gambacorta from University of Illinois at Urbana–Champaign worked with Argonne mentor Phil Laible and Postdoctoral mentor Martyna Michalska to study how black silicon, a synthetic nanomaterial, kills bacteria. This research will help scientists predict other applications of this material in the biomedical field. Argonne aims to develop the next generation of scientists, researchers, and engineers by mentoring over 300 undergraduate and graduate students a year from over 40 STEM majors in over 15 different career development programs. Students come from over 160 colleges and universities in 41 states and 15 countries.

  9. Using NMR to Expand Chemistry Research and Educational Experiences at North Carolina Central University, an Historically Black University

    DTIC Science & Technology

    analytical chemistry . Most students do not get hands-on training with an NMR within their classroom or laboratory courses. The NMR will provide...unique opportunities to our students as they train to become the next generation of scientists, doctors, and engineers .

  10. My Two Boots ... A Walk through the Wetlands. An Annual Outing for 700 Middle School Students

    ERIC Educational Resources Information Center

    Cwikla, Julie; Lasalle, Mark; Wilner, Sybil

    2009-01-01

    Project WetKids (www.projectwetkids.net) provides wetland, environmental, estuary, and watershed experiences with local scientists, engineers, and naturalists to Pascagoula, Mississippi students and their families. Extensive activities provide participants: (1) real world, locally relevant science-based events; (2) meaningful scientific…

  11. Teaching a Course about the Space Telescope.

    ERIC Educational Resources Information Center

    Page, Thornton

    1983-01-01

    "Astronomy with the Space Telescope" is a course designed to show scientists/engineers how this instrument can make important advances in astrophysics, planetology, and geophysics. A description of the course (taught to 11 students working for the National Aeronautics and Space Administration) and sample student paper on black holes are…

  12. Solar Sprint

    ERIC Educational Resources Information Center

    Tabor, Richard; Anderson, Stephen

    2007-01-01

    In the "Solar Sprint" activity, students design, test, and race a solar-powered car built with Legos. The use of ratios is incorporated to simulate the actual work of scientists and engineers. This method encourages fourth-grade students to think about multiple variables and stimulates their curiosity when an activity doesn't come out as…

  13. Describing the What and Why of Students' Difficulties in Boolean Logic

    ERIC Educational Resources Information Center

    Herman, Geoffrey L.; Loui, Michael C.; Kaczmarczyk, Lisa; Zilles, Craig

    2012-01-01

    The ability to reason with formal logic is a foundational skill for computer scientists and computer engineers that scaffolds the abilities to design, debug, and optimize. By interviewing students about their understanding of propositional logic and their ability to translate from English specifications to Boolean expressions, we characterized…

  14. Young Engineers and Scientists (YES) - Engaging Students and Teachers in Research

    NASA Astrophysics Data System (ADS)

    Boice, Daniel C.; Reiff, P.

    2012-10-01

    Young Engineers and Scientists (YES) has been a community partnership between local high schools in San Antonio, Texas (USA), and Southwest Research Institute (SwRI) for the past 20 years. The goals of YES are to increase the number of high school students, especially those from underrepresented groups, seeking careers in science and engineering and to enhance their success in entering the college and major of their choice. This is accomplished by expanding career awareness, including information on "hot" career areas through seminars and laboratory tours by SwRI staff, and allowing students to interact on a continuing basis with role models at SwRI in a real-world research experiences in physical sciences (including astronomy), information sciences, and a variety of engineering fields. YES consists of two parts: 1) An intensive three-week summer workshop held at SwRI where students experience the research environment and 2) a collegial mentorship where students complete individual research projects under the guidance of SwRI mentors during the academic year. At the end of the school year, students publicly present and display their work, spreading career awareness to other students and teachers. Twenty-one YES 2012 students developed a website for the Dawn Mission (yesserver.space.swri.edu) and five high school science teachers are developing space-related lessons for classroom presentation. Partnerships between research institutes, local high schools, and community foundations, like the YES Program, positively affect students’ preparation for STEM careers via real-world research experiences with mentorship teams consisting of professional staff and qualified teachers. Acknowledgements. We acknowledge support from the NASA MMS Mission, SwRI, and local charitable foundations.

  15. Planting local seed for growth to nationwide E/PO efforts

    NASA Astrophysics Data System (ADS)

    Fox, N.; Beisser, K.; Mendez, F.; Cockrell, D.; Wilhide, B.

    The Johns Hopkins University Applied Physics Laboratory (JHU/APL) is the home to hundreds of scientists and engineers, all involved in research, design and implementation of space missions. Many of these people actively seek out ways to raise awareness and interest in the local community by visiting schools, giving public lectures and supporting events held at the laboratory. During the past few years, APL has begun to foster a number of firm partnerships with organizations to further these community opportunities and provide a test bed for both formal and informal education activities through the Space Department E/PO office One of our ongoing partnerships is with the Maryland Science Center in Baltimore. A continual challenge faced by museums is how to stay current and allow visitors to experience the immediacy and excitement of scientific discovery. To help meet these challenges, the Maryland Science Center houses "SpaceLink", the Nation's first space, science and astronomy update center. Part media center, part discovery room, and part newsroom, the exhibit is a multi-purpose Professional Development Site for educators and a "classroom of the future" for K 12 students. APL scientists and- engineers regularly support SpaceLink's flexible programming, including scientist in residence, monthly credited seminars for educators (Teachers' Thursdays), a menu of Classroom Programs on request, Distance Learning Teacher Presentations, and special Live Events to highlight mission milestones and space-related anniversaries. This allows the guest scientists and engineers to interact directly with the public. These events also compliment the APL exhibits housed at the Science Center. JHU/APL offers an exciting environment for the study of applications in space by hosting the annual Maryland Summer Center for Space Science sponsored by the Maryland State Department of Education. Rising 6t h and 7t h grade students learn to harness the power of technology and keep pace with the expanding knowledge of space science. They experience the process involved in planning/launching a simulated space mission, including design/fabrication of instrumentation for a spacecraft. They are part of a Mission Team that built a spacecraft scale model complete with instrumentation and even give a full mission overview oral presentation to their peers. During this 2 week experience, the students interact with the APL scientists and engineers directly responsible for the featured missions. Scientists and engineers team up with Comcast Cablevision of Maryland, Cable in the Classroom, and the Maryland State Department of Education to give Maryland middle school students a true outer space experience focusing on specific NASA missions. The students move from behind their desks to behind the scenes of a deep- space mission at JHU/APL. The students hear mission briefings and take part in a special student press conference with mission team members. They don clean-room suits and tour the Lab's space facilities, including the Mission Operations Center, the space environment simulation lab, the vibration test lab, and the satellite communications facility. These local programs for outreach opportunities have often served as the test bed for national programs and partnerships. In this presentation we will review the local programs to show how the organizations benefit from the partnership with APL and also how the APL outreach programs gain a much wider and more appreciative audience. We will also show how these programs are being expanded to a more nationwide focus.

  16. Introducing a Girl to Engineering Day

    NASA Image and Video Library

    2018-02-22

    The laptop computer in the foreground displays Rachel Power, left, of NASA’s Digital Expansion to Engage the Public (DEEP) Network; Bethanne’ Hull, center, of NASA Outreach; and NASA engineer Krista Shaffer inside Kennedy Space Center’s Vehicle Assembly Building during Introduce a Girl to Engineering Day. Held in conjunction with National Engineers Week and Girl Day, the event allowed students from throughout the nation to speak with female NASA scientists and technical experts.

  17. G-2008-0813-034

    NASA Image and Video Library

    2008-10-05

    Young Scientist Challenge YSC was held at Goddard on October 5-6, 2008 sponsored by 3M. It gave students an opportunity to demonstrate their engineering and scientific skills by participating in live demonstrations.

  18. G-2008-0824-009

    NASA Image and Video Library

    2008-10-06

    Young Scientist Challenge YSC was held at Goddard on October 5-6, 2008 sponsored by 3M. It gave students the opportunity to demonstrate their scientific and engineering skills by participating in live demonstrations.

  19. A Talent for Tinkering: Developing Talents in Children from Low-Income Households through Engineering Curriculum

    ERIC Educational Resources Information Center

    Robinson, Ann; Adelson, Jill L.; Kidd, Kristy A.; Cunningham, Christine M.

    2018-01-01

    Guided by the theoretical framework of curriculum as a platform for talent development, this quasi-experimental field study investigated an intervention focused on engineering curriculum and curriculum based on a biography of a scientist through a comparative design implemented in low-income schools. Student outcome measures included science…

  20. International Rules for Precollege Science Research: Guidelines for Science and Engineering Fairs, 2007-2008

    ERIC Educational Resources Information Center

    Science Service, 2007

    2007-01-01

    This publication presents changes and modifications for 2007-2008 to the "International Rules for Precollege Science Research: Guidelines for Science and Engineering Fairs." It is written to guide fair directors, teachers, scientists, parents, and adult volunteers as they pursue their work of encouraging students to explore and investigate their…

  1. International Rules for Precollege Science Research: Guidelines for Science and Engineering Fairs, 2006-2007

    ERIC Educational Resources Information Center

    Science Service, 2006

    2006-01-01

    This publication presents changes and modifications for 2006-2007 to the "International Rules for Precollege Science Research: Guidelines for Science and Engineering Fairs." It is written to guide fair directors, teachers, scientists, parents, and adult volunteers as they pursue their work of encouraging students to explore and investigate their…

  2. Enhancement of Global Communication Skill at the School of Engineering

    NASA Astrophysics Data System (ADS)

    Morimura, Kumiko

    Globalization is one of the most important challenges for universities. Especially for the School of Engineering, it is crucial to foster researchers or engineers with broader perspective. International communication competency is essential for them in order to deal with other professionals from overseas. Center for Innovation in Engineering Education established in the School of Engineering at the University of Tokyo in 2005 started two programs for graduate and undergraduate students to enhance their international communication competency and to increase international competitiveness. ‘English for Scientists and Engineers A, B’ are for the graduate students to learn how to write papers in English and how to make good presentations. Special English Lessons are for the undergraduate students to have a chance to practice English conversation or prepare for TOEFL test. In this paper, the authors discuss the details of the programs, their purpose and the future tasks.

  3. Original Research by Young Twinkle Students (ORBYTS): When Can Students Start Performing Original Research?

    ERIC Educational Resources Information Center

    Sousa-Silva, Clara; McKemmish, Laura K.; Chubb, Katy L.; Gorman, Marie N.; Baker, Jack S.; Barton, Emma J.; Rivlin, Tom; Tennyson, Jonathan

    2018-01-01

    Involving students in state-of-the-art research from an early age eliminates the idea that science is only for the scientists and empowers young people to explore STEM (Science, Technology, Engineering and Maths) subjects. It is also a great opportunity to dispel harmful stereotypes about who is suitable for STEM careers, while leaving students…

  4. Bridging the Gap Between Scientists and Classrooms: Scientist Engagement in the Expedition Earth and Beyond Program

    NASA Technical Reports Server (NTRS)

    Graff, P. V.; Stefanov, W. L.; Willis, K. J.; Runco, S.

    2012-01-01

    Teachers in today s classrooms need to find creative ways to connect students with science, technology, engineering, mathematics (STEM) experts. These STEM experts can serve as role models and help students think about potential future STEM careers. They can also help reinforce academic knowledge and skills. The cost of transportation restricts teachers ability to take students on field trips exposing them to outside experts and unique learning environments. Additionally, arranging to bring in guest speakers to the classroom seems to happen infrequently, especially in schools in rural areas. The Expedition Earth and Beyond (EEAB) Program [1], facilitated by the Astromaterials Research and Exploration Science (ARES) Directorate Education Program at the NASA Johnson Space Center has created a way to enable teachers to connect their students with STEM experts virtually. These virtual connections not only help engage students with role models, but are also designed to help teachers address concepts and content standards they are required to teach. Through EEAB, scientists are able to actively engage with students across the nation in multiple ways. They can work with student teams as mentors, participate in virtual student team science presentations, or connect with students through Classroom Connection Distance Learning (DL) Events.

  5. NASA Science Mission Directorate Forum Support of Scientists and Engineers to Engage in Education and Outreach

    NASA Astrophysics Data System (ADS)

    Buxner, S.; Grier, J.; Meinke, B. K.; Schneider, N. M.; Low, R.; Schultz, G. R.; Manning, J. G.; Fraknoi, A.; Gross, N. A.; Shipp, S. S.

    2015-12-01

    For the past six years, the NASA Science Education and Public Outreach (E/PO) Forums have supported the NASA Science Mission Directorate (SMD) and its E/PO community by enhancing the coherency and efficiency of SMD-funded E/PO programs. The Forums have fostered collaboration and partnerships between scientists with content expertise and educators with pedagogy expertise. As part of this work, in collaboration with the AAS Division of Planetary Sciences, we have interviewed SMD scientists, and more recently engineers, to understand their needs, barriers, attitudes, and understanding of education and outreach work. Respondents told us that they needed additional resources and professional development to support their work in education and outreach, including information about how to get started, ways to improve their communication, and strategies and activities for their teaching and outreach. In response, the Forums have developed and made available a suite of tools to support scientists and engineers in their E/PO efforts. These include "getting started" guides, "tips and tricks" for engaging in E/PO, vetted lists of classroom and outreach activities, and resources for college classrooms. NASA Wavelength (http://nasawavelength.org/), an online repository of SMD funded activities that have been reviewed by both educators and scientists for quality and accuracy, provides a searchable database of resources for teaching as well as ready-made lists by topic and education level, including lists for introductory college classrooms. Additionally, we have also supported scientists at professional conferences through organizing oral and poster sessions, networking activities, E/PO helpdesks, professional development workshops, and support for students and early careers scientists. For more information and to access resources for scientists and engineers, visit http://smdepo.org.

  6. Engineering Education in K-12 Schools

    NASA Astrophysics Data System (ADS)

    Spence, Anne

    2013-03-01

    Engineers rely on physicists as well as other scientists and mathematicians to explain the world in which we live. Engineers take this knowledge of the world and use it to create the world that never was. The teaching of physics and other sciences as well as mathematics is critical to maintaining our national workforce. Science and mathematics education are inherently different, however, from engineering education. Engineering educators seek to enable students to develop the habits of mind critical for innovation. Through understanding of the engineering design process and how it differs from the scientific method, students can apply problem and project based learning to solve the challenges facing society today. In this talk, I will discuss the elements critical to a solid K-12 engineering education that integrates science and mathematics to solve challenges throughout the world.

  7. Impact of Context-Rich, Multifaceted Problems on Students' Attitudes Towards Problem-Solving

    NASA Astrophysics Data System (ADS)

    Ogilvie, Craig

    2008-04-01

    Young scientists and engineers need strong problem-solving skills to enable them to address the broad challenges they will face in their careers. These challenges will likely be ill-defined and open-ended with either unclear goals, insufficient constraints, multiple possible solutions, and different criteria for evaluating solutions so that our young scientists and engineers must be able to make judgments and defend their proposed solutions. In contrast, many students believe that problem-solving is being able to apply set procedures or algorithms to tasks and that their job as students is to master an ever-increasing list of procedures. This gap between students' beliefs and the broader, deeper approaches of experts is a strong barrier to the educational challenge of preparing students to succeed in their future careers. To start to address this gap, we have used multi-faceted, context-rich problems in a sophomore calculus-based physics course. To assess whether there was any change in students' attitudes or beliefs towards problem-solving, students were asked to reflect on their problem-solving at the beginning and at the end of the semester. These reflections were coded as containing one or more problem-solving ideas. The change in students' beliefs will be shown in this talk.

  8. Determining and Testing Factors Impacting upon the Supply of Minority and Women Scientists, Engineers, and Technologists for Defense Industries and Installations. Phase 1

    DTIC Science & Technology

    1988-06-01

    other developed * countries and the United States in attitudes towards engineers and teachers of science which need 30 to be investigated Aore thoroughly...physical/environmental and math students, respectively. Anglo females reached their highest representation, 23%, among mathematics students. In the science...including mathematics and computer science) and to the determination of the factors which previous researchers have found to affect the decisions of women

  9. The Lassen Astrobiology Intern Program - Concept, Implementation and Evaluation

    NASA Astrophysics Data System (ADS)

    Des Marais, D. J.; Dueck, S. L.; Davis, H. B.; Parenteau, M. N.; Kubo, M. D.

    2014-12-01

    The program goal was to provide a hands-on astrobiology learning experience to high school students by introducing astrobiology and providing opportunities to conduct field and lab research with NASA scientists. The program sought to increase interest in interdisciplinary science, technology, engineering, math and related careers. Lassen Volcanic National Park (LVNP), Red Bluff High School and the Ames Team of the NASA Astrobiology Institute led the program. LVNP was selected because it shares aspects of volcanism with Mars and it hosts thermal springs with microbial mat communities. Students documented volcanic deposits, springs and microbial mats. They analyzed waters and sampled rocks, water and microorganisms. They cultured microorganisms and studied chemical reactions between rocks and simulated spring waters. Each student prepared a report to present data and discuss relationships between volcanic rocks and gases, spring waters and microbial mats. At a "graduation" event the students presented their findings to the Red Bluff community. They visited Ames Research Center to tour the facilities and learn about science and technology careers. To evaluate program impact, surveys were given to students after lectures, labs, fieldwork and discussions with Ames scientists. Students' work was scored using rubrics (labs, progress reports, final report, presentation). Students took pre/post tests on core astrobiology concepts. Parents, teachers, rangers, Ames staff and students completed end-of-year surveys on program impact. Several outcomes were documented. Students had a unique and highly valued learning experience with NASA scientists. They understood what scientists do through authentic scientific work, and what scientists are like as individuals. Students became knowledgeable about astrobiology and how it can be pursued in the lab and in the field. The students' interest increased markedly in astrobiology, interdisciplinary studies and science generally.

  10. Northwest Tribal Interaction with Washington State University: Research and Education Opportunities Afforded Through the Center for Multiphase Environmental Research

    NASA Astrophysics Data System (ADS)

    Rumburg, B.; Yonge, D.; Jacob, J.

    2003-12-01

    The under-representation of Native Americans in engineering and science at the student and practicing engineer or scientist level is a national problem. To begin addressing this problem Washington State University (WSU) has initiated discussio with local Native American tribes to strengthen the relationship between WSU and the tribes and to improve the educational opportunities available to tribal members. The Center for Multiphase Environmental Research (CMER) received a 1999 National Science Foundation (NSF) Integrative Graduate Education and Research Training (IGERT) grant to train Ph.D. students. The main goal of the program is to foster multidisciplinary research and education for future scientists and engineers in the broad field of study that incorporates the fate and transport of environmentally significant species between interfaces. We are also focused on recruiting and educating Native American students. CMER is committed to cultivating its relationship with Native American tribes by identifying the environmental concerns of the tribes and developing collaborative research efforts utilizing CMER's infrastructure. Through these collaborative projects the CMER hopes to better understand the social and cultural aspects important to the tribes and develop the familiarity needed to effectively enhance student recruitment. This poster highlights the CMER's interdisciplinary research and teaching efforts and focuses on Native American recruitment.

  11. Integrating Computational Science Tools into a Thermodynamics Course

    NASA Astrophysics Data System (ADS)

    Vieira, Camilo; Magana, Alejandra J.; García, R. Edwin; Jana, Aniruddha; Krafcik, Matthew

    2018-01-01

    Computational tools and methods have permeated multiple science and engineering disciplines, because they enable scientists and engineers to process large amounts of data, represent abstract phenomena, and to model and simulate complex concepts. In order to prepare future engineers with the ability to use computational tools in the context of their disciplines, some universities have started to integrate these tools within core courses. This paper evaluates the effect of introducing three computational modules within a thermodynamics course on student disciplinary learning and self-beliefs about computation. The results suggest that using worked examples paired to computer simulations to implement these modules have a positive effect on (1) student disciplinary learning, (2) student perceived ability to do scientific computing, and (3) student perceived ability to do computer programming. These effects were identified regardless of the students' prior experiences with computer programming.

  12. The Young Engineers and Scientists (YES) Mentorship Program

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Clarac, T.; Lin, C.

    2004-11-01

    The Young Engineers and Scientists (YES) Program is a community partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA). It provides talented high school juniors and seniors a bridge between classroom instruction and real-world, research experiences in physical sciences (including space science and astronomy) and engineering. YES consists of two parts: 1) an intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year; and 2) a collegial mentorship where students complete individual research projects under the guidance of their mentors during the academic year and earn honors credit. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. YES has been highly successful during the past 11 years. All YES graduates have entered college, several have worked for SwRI, and three scientific publications have resulted. Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors. We acknowledge funding from local charitable foundations and the NASA E/PO program.

  13. The Young Engineers and Scientists Mentorship Program

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Jahn, J.; Hummel, P.

    2003-12-01

    The Young Engineers and Scientists (YES) Program is a ommunity partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA). It provides talented high school juniors and seniors a bridge between classroom instruction and real-world, research experiences in physical sciences (including space science and astronomy) and engineering. YES consists of two parts: 1) an intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year; and 2) a collegial mentorship where students complete individual research projects under the guidance of their mentors during the academic year and earn honors credit. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. YES has been highly successful during the past 10 years. All YES graduates have entered college, several have worked for SwRI, and three scientific publications have resulted. Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors. We gratefully acknowledge partial funding for the YES Program from a NASA EPO grant.

  14. Socio-ethical education in nanotechnology engineering programmes: a case study in Malaysia.

    PubMed

    Balakrishnan, Balamuralithara; Er, Pek Hoon; Visvanathan, Punita

    2013-09-01

    The unique properties of nanotechnology have made nanotechnology education and its related subjects increasingly important not only for students but for mankind at large. This particular technology brings educators to work together to prepare and produce competent engineers and scientists for this field. One of the key challenges in nanotechnology engineering is to produce graduate students who are not only competent in technical knowledge but possess the necessary attitude and awareness toward the social and ethical issues related to nanotechnology. In this paper, a research model has been developed to assess Malaysian nanotechnology engineering students' attitudes and whether their perspectives have attained the necessary objectives of ethical education throughout their programme of study. The findings from this investigation show that socio ethical education has a strong influence on the students' knowledge, skills and attitudes pertaining to socio ethical issues related to nanotechnology.

  15. NASA Space Science Days: An Out of School Program Using National Partnerships to Further Influence Future Scientists and Engineers.

    NASA Technical Reports Server (NTRS)

    Galindo, Charles; Allen, Jaclyn; Garcia, Javier; Hrrera, Stephanie

    2012-01-01

    The National Math and Science Initiative states that American students are falling behind in the essential subjects of math and science, putting our position in the global economy at risk a foreboding statement that has caused the U.S. to re-evaluate how we view STEM education. Developing science and engineering related out of school programs that expose middle school students to math and science in a nontraditional university environment has the potential to motivate young students to look at the physical sciences in an exciting out of the norm environment.

  16. Using Television Technology to Teach Technical Writing.

    ERIC Educational Resources Information Center

    Wallisch, Bill

    Technical writing teachers at the U.S. Air Force Academy enhance student motivation by bringing real Air Force writing situations into the classroom through short videotapes which allow students to see how scientists and engineers cope with report writing in their daily work. Also, a special English honors course, which is part of the "Blue…

  17. Student Misconceptions Caused by Misuse of Technology

    ERIC Educational Resources Information Center

    Paige, Robert

    2007-01-01

    Calculators used widely by students, teachers, scientists, engineers and many others provide an interesting case study of a compelling technology that has helped change the way many professionals work. They not only help in enhancing problem solving skills of most individuals, but also help visualise solutions to problems in a better way. Research…

  18. Problem Solving with Patents

    ERIC Educational Resources Information Center

    Moore, Jerilou; Sumrall, William J.

    2008-01-01

    Exploring our patent system is a great way to engage students in creative problem solving. As a result, the authors designed a teaching unit that uses the study of patents to explore one avenue in which scientists and engineers do science. Specifically, through the development of an idea, students learn how science and technology are connected.…

  19. Yes! We Are Rocket Scientists!

    ERIC Educational Resources Information Center

    Macduff, J. Trevor

    2006-01-01

    This article is an outline of what the author did in his classroom to incorporate the help of two volunteer engineers to create a powerful learning unit and cumulative review for his eighth-grade physical science students. This unit reviews what students have learned during the school year regarding force, motion, Newton's laws, gas laws, and…

  20. Where the Wild Microbes Are: Education and Outreach on Sub-Seafloor Microbes

    NASA Astrophysics Data System (ADS)

    Cooper, S. K.; Kurtz, K.; Orcutt, B.; Strong, L.; Collins, J.; Feagan, A.

    2014-12-01

    Sub-seafloor microbiology has the power to spark the imaginations of children, students and the general public with its mysterious nature, cutting-edge research, and connections to the search for extraterrestrial life. These factors have been utilized to create a number of educational and outreach products to bring subsurface microbes to non-scientist audiences in creative and innovative ways. The Adopt a Microbe curriculum for middle school students provides hands-on activities and investigations for students to learn about microbes and the on-going research about them, and provides opportunities to connect with active expeditions. A new series of videos engages non-scientists with stories about research expeditions and the scientists themselves. A poster and associated activities explore the nature of science using a microbiologist and her research as examples. A new e-book for young children will engage them with age-appropriate text and illustrations. These projects are multidisciplinary, involve science and engineering practices, are available to all audiences and provide examples of high level and meaningful partnerships between scientists and educators and the kinds of products that can result. Subseafloor microbiology projects such as these, aimed at K-12 students and the general public, have the potential to entice the interest of the next generation of microbe scientists and increase general awareness of this important science.

  1. Managing Transitions, Building Bridges: An Evaluation of a Summer Bridge Program for African American Scientists and Engineers

    ERIC Educational Resources Information Center

    Johnson, Jennifer Michelle

    2016-01-01

    Purpose: This paper aims to highlight the potential of science, technology, engineering and mathematics (STEM) summer bridge programs to promote college persistence by fostering a positive science identity among participants that is culturally consistent with the values and experiences of African American students. Design/methodology/approach:…

  2. Interfacing microbiology and biotechnology. Conference abstracts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maupin, Julia A.

    2001-05-19

    The Interfacing Microbiology and Biotechnology Conference was attended by over 100 faculty, post-docs, students, and research scientists from the US, Europe, and Latin America. The conference successfully stimulated communication and the dissemination of knowledge among scientists involved in basic and applied research. The focus of the conference was on microbial physiology and genetics and included sessions on C1 metabolism, archaeal metabolism, proteases and chaperones, gene arrays, and metabolic engineering. The meeting provided the setting for in-depth discussions between scientists who are internationally recognized for their research in these fields. The following objectives were met: (1) The promotion of interaction andmore » future collaborative projects among scientists involved in basic and applied research which incorporates microbial physiology, genetics, and biochemistry; (2) the facilitation of communication of new research findings through seminars, posters, and abstracts; (3 ) the stimulation of enthusiasm and education among participants including graduate and undergraduate students.« less

  3. PREFACE: 1st International School and Conference "Saint Petersburg OPEN 2014" on Optoelectronics, Photonics, Engineering and Nanostructures

    NASA Astrophysics Data System (ADS)

    2014-09-01

    Dear Colleagues, 1st International School and Conference "Saint Petersburg OPEN 2014" on Optoelectronics, Photonics, Engineering and Nanostructures was held on March 25 - 27, 2014 at St. Petersburg Academic University - Nanotechnology Research and Education Centre of the Russian Academy of Sciences. The School and Conference included a series of invited talks given by leading professors with the aim to introduce young scientists with actual problems and major advances in physics and technology. The keynote speakers were: Mikhail Glazov (Ioffe Physico-Technical Institute RAS, Russia) Vladimir Dubrovskii (Saint Petersburg Academic University RAS, Russia) Alexey Kavokin (University of Southampton, United Kingdom and St. Petersburg State University, Russia) Vladimir Korenev (Ioffe Physico-Technical Institute RAS, Russia) Sergey Kukushkin (Institute of Problems of Mechanical Engineering RAS, Russia) Nikita Pikhtin (Ioffe Physico-Technical Institute RAS, Russia and "Elfolum" Ltd., Russia) Dmitry Firsov (Saint Petersburg State Polytechnical University, Russia) During the poster session all undergraduate and graduate students attending the conference presented their works. Sufficiently large number of participants with more than 160 student attendees from all over the world allowed the Conference to provide a fertile ground for the fruitful discussions between the young scientists as well as to become a perfect platform for the valuable discussions between student authors and highly experienced scientists. The best student papers, which were selected by the Program Committee and by the invited speakers basing on the theses and their poster presentation, were awarded with diplomas of the conference - see the photos. This year's School and Conference is supported by SPIE (The International Society for Optics and Photonics), OSA (The Optical Society), St. Petersburg State Polytechnical University and by Skolkovo Foundation. It is a continuation of the annual schools and seminars for youth on topical problems of physics and technology that is organized by the Academic University since 2009. We invite all the students and young scientists to attend "Saint Petersburg OPEN" in 2015! Please, find details at http://spbopen2015.spbau.com/ With best wishes, Editorial Board, Program and Organizing Committees

  4. Virtual classroom

    NASA Astrophysics Data System (ADS)

    Carlowicz, Michael

    After four decades of perfecting techniques for communication with spacecraft on the way to other worlds, space scientists are now working on new ways to reach students in this one. In a partnership between NASA and the University of North Dakota (UND), scientists and engineers from both institutions will soon lead an experiment in Internet learning.Starting January 22, UND will offer a threemonth computerized course in telerobotics. Using RealAudio and CU-SeeMe channels of the Internet to allow real-time transmission of video and audio, instructors will teach college-and graduate-level students the fundamentals of the remote operation and control of a robot.

  5. Experiences Obtained with Integration of Student Response Systems for iPod Touch and iPhone into e-Learning Environments

    ERIC Educational Resources Information Center

    Stav, John; Nielsen, Kjetil; Hansen-Nygard, Gabrielle; Thorseth, Trond

    2010-01-01

    A new type of Student Response System (SRS) based up on the latest wireless technologies and hand held mobile devices has been developed to enhance active learning methods and assess students' understanding. The key services involve a set of XML technologies, web services and modern mobile devices. A group consisting of engineers, scientists and…

  6. Handbook of Electrochemical Nanotechnology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Yuehe; Nalwa, H. S.

    2009-02-12

    This 2-volume handbook provides an overview of recent advances in the field of electrochemical nanotechnology. It will be of great interst to graduate students, scientists, and engineering professionals whose research is at the interface of electrochemistry and nanotechnology.

  7. G-2008-0813-024

    NASA Image and Video Library

    2008-10-05

    Young Scientist Challenge YSC was held at Goddard on October 5-6, 2008 sponsored by 3M. It gave students the opportunity to demonstrate their scientific and engineering skills by participating in live demonstrations. Jim Garvin explains Mars

  8. YES 2K6: A mentorship program for young engineers and scientists

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Asbell, H. E.

    The Young Engineers and Scientists 2006 YES 2K6 Program is a community partnership between Southwest Research Institute SwRI and local high schools in San Antonio Texas USA YES has been highly successful during the past 14 years and YES 2K6 continues this trend This program provides talented high school juniors and seniors a bridge between classroom instruction and real world research experiences in physical sciences including space science and astronomy and engineering YES 2K6 consists of two parts 1 an intensive three-week summer workshop held at SwRI where students experience the research environment first-hand develop skills and acquire tools for solving scientific problems attend mini-courses and seminars on electronics computers and the Internet careers science ethics and other topics and select individual research projects to be completed during the academic year and 2 a collegial mentorship where students complete individual research projects under the guidance of their mentors during the academic year and earn honors credit At the end of the school year students publicly present and display their work acknowledging their accomplishments and spreading career awareness to other students and teachers YES 2K6 developed a website for the Magnetospheric Multiscale Mission MMS from the perspective of high school students Over the past 14 years all YES graduates have entered college several have worked for SwRI and three scientific publications have resulted Student evaluations indicate the effectiveness of YES on

  9. STEM Mentor Breakfast at Debus Center

    NASA Image and Video Library

    2017-05-25

    Jonette Stecklein (in the blue shirt), a flight systems engineer from Johnson Space Center in Houston, talks to students during a Women in STEM mentoring breakfast inside the Debus Conference Center at the Kennedy Space Center Visitor Complex in Florida. STEM is science, technology, engineering and math. The special event gave students competing in NASA's 8th Annual Robotic Mining Competition the chance to learn from female NASA scientists, engineers and professionals about their careers and the paths they took to working at Kennedy. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.

  10. KSC-02pd0661

    NASA Image and Video Library

    2002-05-14

    KENNEDY SPACE CENTER, FLA. -- Former astronaut Story Musgrave speaks to students and faculty from across the nation gathered at the KSC Visitor Complex for this year's NASA MarsPort Engineering Design Student Competition 2002 conference. The participants are presenting papers on engineering trade studies to design optimal configurations for a MarsPort Deployable Greenhouse for operation on the surface of Mars. Judges in the competition were from KSC, Dynamac Corporation and Florida Institute of Technology. The winning team's innovative ideas will be used by NASA to evaluate and study other engineering trade concepts. Featured at the opening ceremony were Dr. Sam Durrance, FSGC director and former astronaut, and Dr. Gary Stutte, plant scientist, Dynamac Corporation.

  11. KSC-02pd0662

    NASA Image and Video Library

    2002-05-14

    KENNEDY SPACE CENTER, FLA. -- Former astronaut Story Musgrave speaks to students and faculty from across the nation gathered at the KSC Visitor Complex for this year's NASA MarsPort Engineering Design Student Competition 2002 conference. The participants are presenting papers on engineering trade studies to design optimal configurations for a MarsPort Deployable Greenhouse for operation on the surface of Mars. Judges in the competition were from KSC, Dynamac Corporation and Florida Institute of Technology. The winning team's innovative ideas will be used by NASA to evaluate and study other engineering trade concepts. Featured at the opening ceremony were Dr. Sam Durrance, FSGC director and former astronaut, and Dr. Gary Stutte, plant scientist, Dynamac Corporation.

  12. Factors that affect the physical science career interest of female students: Testing five common hypotheses

    NASA Astrophysics Data System (ADS)

    Hazari, Zahra; Potvin, Geoff; Lock, Robynne M.; Lung, Florin; Sonnert, Gerhard; Sadler, Philip M.

    2013-12-01

    There are many hypotheses regarding factors that may encourage female students to pursue careers in the physical sciences. Using multivariate matching methods on national data drawn from the Persistence Research in Science and Engineering (PRiSE) project (n=7505), we test the following five commonly held beliefs regarding what factors might impact females’ physical science career interest: (i) having a single-sex physics class, (ii) having a female physics teacher, (iii) having female scientist guest speakers in physics class, (iv) discussing the work of female scientists in physics class, and (v) discussing the underrepresentation of women in physics class. The effect of these experiences on physical science career interest is compared for female students who are matched on several factors, including prior science interests, prior mathematics interests, grades in science, grades in mathematics, and years of enrollment in high school physics. No significant effects are found for single-sex classes, female teachers, female scientist guest speakers, and discussing the work of female scientists. However, discussions about women’s underrepresentation have a significant positive effect.

  13. KSC-2011-7397

    NASA Image and Video Library

    2011-10-14

    CAPE CANAVERAL, Fla. – Louisiana State University mechanical engineering students Kevin Schenker, from left, and Jacob Koch join Luz Marina Calle, a scientist at NASA's Kennedy Space in Florida, as they examine a portion of the wall of the flame trench at Launch Pad 39B. Designers are looking for new, flame and vibration-resistant materials to line the trench. To help in the search, a team of mechanical engineering students at Louisiana State University are to build a scaled-down version of the flame trench that Kennedy's scientists can use to try out sample materials for the trench. If the samples work in the lab, they can be tried out in the real flame trenches at Launch Pad 39A and 39B. The launch pad has been refurbished extensively and work is continuing to modify the pad to support a variety of launch vehicles in the future. Photo credit: NASA/Jim Grossmann

  14. Engaging Students in Space Research: Young Engineers and Scientists 2008

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Asbell, H. E.; Reiff, P. H.

    2008-12-01

    Young Engineers and Scientists (YES) is a community partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA) during the past 16 years. The YES program provides talented high school juniors and seniors a bridge between classroom instruction and real world, research experiences in physical sciences (including space science) and engineering. YES consists of an intensive three-week summer workshop held at SwRI and a collegial mentorship where students complete individual research projects under the guidance of their professional mentors during the academic year. During the summer workshop, students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. YES has developed a website for topics in space science from the perspective of high school students, including NASA's Magnetospheric Multiscale Mission (MMS) (http://yesserver.space.swri.edu). Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors. Over the past 16 years, all YES graduates have entered college, several have worked for SwRI, one business has started, and three scientific publications have resulted. Acknowledgements. We acknowledge funding and support from the NASA MMS Mission, Texas Space Grant Consortium, Northside Independent School District, SwRI, and several local charitable foundations.

  15. Factors Influencing Postsecondary STEM Students' Views of the Public Communication of an Emergent Technology: a Cross-National Study from Five Universities

    NASA Astrophysics Data System (ADS)

    Gardner, Grant E.; Jones, M. Gail; Albe, Virginie; Blonder, Ron; Laherto, Antti; Macher, Daniel; Paechter, Manuela

    2017-10-01

    Recent efforts in the science education community have highlighted the need to integrate research and theory from science communication research into more general science education scholarship. These synthesized research perspectives are relatively novel but serve an important need to better understand the impacts that the advent of rapidly emerging technologies will have on a new generation of scientists and engineers including their formal communication with engaged citizenry. This cross-national study examined postsecondary science and engineering students' ( n = 254 from five countries: Austria, Finland, France, Israel, and USA) perspectives on the role of science communication in their own formal science and engineering education. More broadly, we examined participants' understanding of their perceived responsibilities of communicating science and engineering to the general public when an issue contains complex social and ethical implications (SEI). The study is contextualized in the emergent technology of nanotechnology for which SEI are of particular concern and for which the general public often perceives conflicting risks and benefits. Findings indicate that student participants' hold similar views on the need for their own training in communication as future scientists and engineers. When asked about the role that ethics and risk perception plays in research, development, and public communication of nanotechnology, participants demonstrate similar trajectories of perspectives that are, however, often anchored in very different levels of beginning concern. Results are discussed in the context of considerations for science communication training within formal science education curricula globally.

  16. THE MAN MADE WORLD, A HIGH SCHOOL COURSE ON THE THEORIES AND TECHNIQUES WHICH CONTRIBUTE TO OUR TECHNOLOGICAL CIVILIZATION.

    ERIC Educational Resources Information Center

    Commission on Engineering Education, Washington, DC.

    THIS STUDENTS' MANUAL FOR THE ENGINEERING CONCEPTS CURRICULUM PROJECT'S (ECCP) HIGH SCHOOL COURSE, "THE MAN MADE WORLD," IS THE THIRD DRAFT OF THE EXPERIMENTAL VERSION. THE MATERIAL WRITTEN BY SCIENTISTS, ENGINEERS, AND EDUCATORS, EMPHASIZES THE THEORIES AND TECHNIQUES WHICH CONTRIBUTE TO OUR TECHNOLOGICAL CIVILIZATION. RESOURCES OF THE MAN-MADE…

  17. Introducing "Green" and "Nongreen" Aspects of Noble Metal Nanoparticle Synthesis: An Inquiry-Based Laboratory Experiment for Chemistry and Engineering Students

    ERIC Educational Resources Information Center

    Paluri, Sesha L. A.; Edwards, Michelle L.; Lam, Nhi H.; Williams, Elizabeth M.; Meyerhoefer, Allie; Pavel Sizemore, Ioana E.

    2015-01-01

    In recent years, nanoscience and nanotechnology have been drawing enormous attention due to the numerous applications of nanomaterials. In an attempt to nurture interest towards these areas in young minds and to develop the next generation of environmentally conscious scientists and engineers, this new laboratory module focuses on the green and…

  18. An Arduino Investigation of Simple Harmonic Motion

    ERIC Educational Resources Information Center

    Galeriu, Calin; Edwards, Scott; Esper, Geoffrey

    2014-01-01

    We cannot hope for a new generation of scientists and engineers if we don't let our young students take ownership of their scientific and engineering explorations, if we don't let them enjoy the hands-on cycle of design and production, and if we don't let them implant their creativity into a technologically friendly environment.…

  19. Using Long-Distance Scientist Involvement to Enhance NASA Volunteer Network Educational Activities

    NASA Astrophysics Data System (ADS)

    Ferrari, K.

    2012-12-01

    Since 1999, the NASA/JPL Solar System Ambassadors (SSA) and Solar System Educators (SSEP) programs have used specially-trained volunteers to expand education and public outreach beyond the immediate NASA center regions. Integrating nationwide volunteers in these highly effective programs has helped optimize agency funding set aside for education. Since these volunteers were trained by NASA scientists and engineers, they acted as "stand-ins" for the mission team members in communities across the country. Through the efforts of these enthusiastic volunteers, students gained an increased awareness of NASA's space exploration missions through Solar System Ambassador classroom visits, and teachers across the country became familiarized with NASA's STEM (Science, Technology, Engineering and Mathematics) educational materials through Solar System Educator workshops; however the scientist was still distant. In 2003, NASA started the Digital Learning Network (DLN) to bring scientists into the classroom via videoconferencing. The first equipment was expensive and only schools that could afford the expenditure were able to benefit; however, recent advancements in software allow classrooms to connect to the DLN via personal computers and an internet connection. Through collaboration with the DLN at NASA's Jet Propulsion Laboratory and the Goddard Spaceflight Center, Solar System Ambassadors and Solar System Educators in remote parts of the country are able to bring scientists into their classroom visits or workshops as guest speakers. The goals of this collaboration are to provide special elements to the volunteers' event, allow scientists opportunities for education involvement with minimal effort, acquaint teachers with DLN services and enrich student's classroom learning experience.;

  20. I Want to Be a Scientist/A Teacher: Students' Perceptions of Career Decision-Making in Gender-Typed, Non-Traditional Areas of Work

    ERIC Educational Resources Information Center

    Buschor, Christine Bieri; Kappler, Christa; Keck Frei, Andrea; Berweger, Simone

    2014-01-01

    The study examines the career decision-making of Swiss academic high school students opting for a career in a non-traditional, gender-typed area of work during the transition to higher education. Based on a longitudinal study, a qualitative study with 11 female students in Science, Technology, Engineering and Mathematics (STEM) and 13 male student…

  1. The experiences of female high school students and interest in STEM: Factors leading to the selection of an engineering or computer science major

    NASA Astrophysics Data System (ADS)

    Genoways, Sharon K.

    STEM (Science, Technology, Engineering and Math) education creates critical thinkers, increases science literacy, and enables the next generation of innovators, which leads to new products and processes that sustain our economy (Hossain & Robinson, 2012). We have been hearing the warnings for several years, that there simply are not enough young scientists entering into the STEM professional pathways to replace all of the retiring professionals (Brown, Brown, Reardon, & Merrill, 2011; Harsh, Maltese, & Tai, 2012; Heilbronner, 2011; Scott, 2012). The problem is not necessarily due to a lack of STEM skills and concept proficiency. There also appears to be a lack of interest in these fields. Recent evidence suggests that many of the most proficient students, especially minority students and women, have been gravitating away from science and engineering toward other professions. (President's Council of Advisors on Science and Technology, 2010). The purpose of this qualitative research study was an attempt to determine how high schools can best prepare and encourage young women for a career in engineering or computer science. This was accomplished by interviewing a pool of 21 women, 5 recent high school graduates planning to major in STEM, 5 college students who had completed at least one full year of coursework in an engineering or computer science major and 11 professional women who had been employed as an engineer or computer scientist for at least one full year. These women were asked to share the high school courses, activities, and experiences that best prepared them to pursue an engineering or computer science major. Five central themes emerged from this study; coursework in physics and calculus, promotion of STEM camps and clubs, teacher encouragement of STEM capabilities and careers, problem solving, critical thinking and confidence building activities in the classroom, and allowing students the opportunity to fail and ask questions in a safe environment. These themes may be implemented by any instructor, in any course, who wishes to provide students with the means to success in their quest for a STEM career.

  2. Opportunities for Space Science Education Using Current and Future Solar System Missions

    NASA Astrophysics Data System (ADS)

    Matiella Novak, M.; Beisser, K.; Butler, L.; Turney, D.

    2010-12-01

    The Education and Public Outreach (E/PO) office in The Johns Hopkins University Applied Physics Laboratory (APL) Space Department strives to excite and inspire the next generation of explorers by creating interactive education experiences. Since 1959, APL engineers and scientists have designed, built, and launched 61 spacecraft and over 150 instruments involved in space science. With the vast array of current and future Solar System exploration missions available, endless opportunities exist for education programs to incorporate the real-world science of these missions. APL currently has numerous education and outreach programs tailored for K-12 formal and informal education, higher education, and general outreach communities. Current programs focus on Solar System exploration missions such as the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM), Miniature Radio Frequency (Mini-RF) Moon explorer, the Radiation Belt Storm Probes (RBSP), New Horizons mission to Pluto, and the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) Satellite, to name a few. Education and outreach programs focusing on K-12 formal education include visits to classrooms, summer programs for middle school students, and teacher workshops. APL hosts a Girl Power event and a STEM (Science, Technology, Engineering, and Mathematics) Day each year. Education and outreach specialists hold teacher workshops throughout the year to train educators in using NASA spacecraft science in their lesson plans. High school students from around the U.S. are able to engage in NASA spacecraft science directly by participating in the Mars Exploration Student Data Teams (MESDT) and the Student Principal Investigator Programs. An effort is also made to generate excitement for future missions by focusing on what mysteries will be solved. Higher education programs are used to recruit and train the next generation of scientists and engineers. The NASA/APL Summer Internship Program offers a unique glimpse into the Space Department’s “end-to-end” approach to mission design and execution. College students - both undergraduate and graduate - are recruited from around the U.S. to work with APL scientists and engineers who act as mentors to the students. Many students are put on summer projects that allow them to work with existing spacecraft systems, while others participate in projects that investigate the operational and science objectives of future planned spacecraft systems. In many cases these interns have returned to APL as full-time staff after graduation.

  3. The University of Texas Science and Engineering Apprentice Program as a Model for an REU Site

    NASA Astrophysics Data System (ADS)

    Davis, M. B.; Blankenship, D. D.; Ellins, K. E.

    2004-12-01

    The University of Texas Institute for Geophysics at (UTIG) is one of five research labs in the Austin area that hosts recent high school graduates for summer research projects through the Applied Research Lab Science and Engineering Apprenticeship Program (SEAP). The SEAP is a program designed to provide summer research opportunities to recent high school undergraduates who excel in science and math. UTIG has been a large proponent of the SEAP and has typically mentored two to four students each year and a total alumni of about twenty. The program has successfully targeted groups that are typically underrepresented in sciences and engineering. Current statistics show that 25% of past SEAP students are members of an ethnic minority and 80% of SEAP students are female. Many of these students have stayed on after the summer program and continued to work part-time or return during summers to UTIG while completing their undergraduate careers. A significant portion of these students present results at professional meetings and ultimately commit to careers in science and engineering, both in industry and academia. SEAP students at UTIG work alongside scientists and graduate students as part of a team, and, through this interaction, improve their scientific knowledge and problem solving skills. Both graduate and undergraduate students involved in NSF-funded research grants mentor the SEAP students, giving them the opportunity to work on their own research problem while contributing data and interpretation to a more fundamental research problem. By uniting student research under the umbrella of Antarctic ice sheet research, students learn how their individual research projects relate to the more unifying science problem centered on ice sheet variability, and Antarctic continental evolution. They also gain an understanding of how research is carried out. At the same time, scientists and graduate students learn how to communicate their knowledge so that it is interesting and relevant to student learning. We are interested in expanding the SEAP model for student research to a scale that can support multidisciplinary REU site activities by extending research possibilities into polar research, marine studies, seismology, planetary science, and science education at UTIG in future years.

  4. 2009 ESMD Space Grant Faculty Project Final Report

    NASA Technical Reports Server (NTRS)

    Murphy, Gloria; Ghanashyam, Joshi; Guo, Jiang; Conrad, James; Bandyopadhyay, Alak; Cross, William

    2009-01-01

    The Constellation Program is the medium by which we will maintain a presence in low Earth orbit, return to the moon for further exploration and develop procedures for Mars exploration. The foundation for its presence and success is built by the many individuals that have given of their time, talent and even lives to help propel the mission and objectives of NASA. The Exploration Systems Mission Directorate (ESMD) Faculty Fellows Program is a direct contributor to the success of directorate and Constellation Program objectives. It is through programs such as the ESMD Space Grant program that students are inspired and challenged to achieve the technological heights that will propel us to meet the goals and objectives of ESMD and the Constellation Program. It is through ESMD Space Grant programs that future NASA scientists, engineers, and mathematicians begin to dream of taking America to newer heights of space exploration. The ESMD Space Grant program is to be commended for taking the initiative to develop and implement programs that help solidify the mission of NASA. With the concerted efforts of the Kennedy Space Center educational staff, the 2009 ESMD Space Grant Summer Faculty Fellows Program allowed faculty to become more involved with NASA personnel relating to exploration topics for the senior design projects. The 2009 Project was specifically directed towards NASA's Strategic Educational Outcome 1. In-situ placement of Faculty Fellows at the NASA field Centers was essential; this allowed personal interactions with NASA scientists and engineers. In particular, this was critical to better understanding the NASA problems and begin developing a senior design effort to solve the problems. The Faculty Fellows are pleased that the ESMD Space Grant program is taking interest in developing the Senior Design courses at the university level. These courses are needed to help develop the NASA engineers and scientists of the very near future. It has been a pleasure to be part of the evaluation process to help ensure that these courses are developed in such a way that the students' educational objectives are maximized. Ultimately, with NASA-related content used as projects in the course, students will be exposed to space exploration concepts and issues while still in college. This will help to produce NASA engineers and scientists that are knowledgeable of space exploration. By the concerted efforts of these five senior design projects, NASA's ESMD Space Grant Project is making great strides at helping to develop talented engineers and scientists that will continue our exploration into space.

  5. Do we need more famous fluid dynamicists?

    NASA Astrophysics Data System (ADS)

    Reckinger, Shanon; Brinkman, Bethany; Fenner, Raenita; London, Mara

    2015-11-01

    One of the main reasons students do not join the STEM fields is that they lack interest in technical topics. But do people (young students, the general public, or even our own engineering students) know what an engineer is and/or does? In this talk, results from a recent study on the perceptions of different professions will be presented. The study was designed based off of ``draw-an-engineer'' and ``draw-a-scientist'' tests used on elementary schools kids. The idea is to have participants visualize professionals (engineers, lawyers, and medical doctors were chosen for this study), and determine if there are any patterns within different demographic groups. The demographics that were focused on include gender, race, age, college major, highest level of education, and profession. One of the main findings of this survey was that participants had the most difficult time visualizing an engineer compared to a lawyer or a medical doctor. Therefore, maybe we need more famous engineers (and fluid dynamicists)?

  6. An Internship Model for Culturally Relevant Success for Native American High School Students

    NASA Astrophysics Data System (ADS)

    Nall, J.; Graham, E. M.

    2004-12-01

    Culturally relevant educational practices can be challenging to implement in the workplace. In an effort to support equity in access to undergraduate internship opportunities for Native American students, NASA Jet Propulsion Laboratory's (JPL) Education Office, Minority Education Initiatives offers a unique approach to supporting students from Native American reservation high schools in Washington State to participate in eight-week technical (Science, Technology, Engineering and Mathematics related) summer internships. This talk will address the Alliance for Learning and Vision for Americans (ALVA) program's twelve years of success based on four programmatic principals, annual review and the critical support of scientists and engineers.

  7. Inspiring the Next Generation of Explorers: Scientist Involvement in the Expedition Earth and Beyond Program

    NASA Astrophysics Data System (ADS)

    Graff, P. V.; Stefanov, W. L.; Willis, K.; Runco, S.

    2012-12-01

    Scientists, science experts, graduate and even undergraduate student researchers have a unique ability to inspire the next generation of explorers. These science, technology, engineering, and mathematics (STEM) experts can serve as role models for students and can help inspire them to consider future STEM-related careers. They have an exceptional ability to instill a sense of curiosity and fascination in the minds of students as they bring science to life in the classroom. Students and teachers are hungry for opportunities to interact with scientists. They feel honored when these experts take time out of their busy day to share their science, their expertise, and their stories. The key for teachers is to be cognizant of opportunities to connect their students with scientists. For scientists, the key is to know how to get involved, to have options for participation that involve different levels of commitment, and to work with educational specialists who can help facilitate their involvement. The Expedition Earth and Beyond (EEAB) Program, facilitated by the Astromaterials Research and Exploration Science (ARES) Directorate at the NASA Johnson Space Center, is an Earth and planetary science education program designed to inspire, engage, and educate teachers and students by getting them actively involved with NASA exploration, discovery, and the process of science. One of the main goals of the program is to facilitate student research in the classroom. The program uses astronaut photographs, provided through the ARES Crew Earth Observations (CEO) payload on the International Space Station (ISS) as the hook to help students gain an interest in a research topic. Student investigations can focus on Earth or involve comparative planetology. Student teams are encouraged to use additional imagery and data from Earth or planetary orbital spacecraft, or ground-based data collection tools, to augment the astronaut photography dataset. A second goal of the program is to provide opportunities for meaningful connections between scientists and classrooms. To do this, EEAB offers multiple opportunities for scientist involvement. One opportunity involves having scientists work as mentors for student teams conducting research. These student teams, ranging from grades 4 through 12, are able to obtain guidance, suggestions, and input from STEM experts as they conduct a research investigation. Another opportunity for scientist involvement is participation in Classroom Connection Distance Learning (DL) events. These DL events entail interactive and engaging presentations that enable STEM experts to share their expertise with students and teachers (grades 3 through 12) from all across the nation. A third opportunity for scientist involvement involves participation in virtual student team science presentations. Student teams have the opportunity to share their research and results by presenting it to science experts through the use of WebEx, an easy-to-use online conferencing tool. The impact STEM experts have on students in today's classrooms is powerful. They serve as role models to these students, and they open students' eyes to a potential career path they may not have known existed otherwise. The more scientists and STEM experts we can connect with students, the greater the impact we can make as we strive to inspire and prepare our nation's next generation of explorers.

  8. Inspiring the Next Generation of Explorers: Scientist Involvement in the Expedition Earth and Beyond Program

    NASA Technical Reports Server (NTRS)

    Graff, Paige; Stefanov, William; Willis, Kim; Runco, Susan

    2012-01-01

    Scientists, science experts, graduate and even undergraduate student researchers have a unique ability to inspire the next generation of explorers. These science, technology, engineering, and mathematics (STEM) experts can serve as role models for students and can help inspire them to consider future STEM-related careers. They have an exceptional ability to instill a sense of curiosity and fascination in the minds of students as they bring science to life in the classroom. Students and teachers are hungry for opportunities to interact with scientists. They feel honored when these experts take time out of their busy day to share their science, their expertise, and their stories. The key for teachers is to be cognizant of opportunities to connect their students with scientists. For scientists, the key is to know how to get involved, to have options for participation that involve different levels of commitment, and to work with educational specialists who can help facilitate their involvement. The Expedition Earth and Beyond (EEAB) Program, facilitated by the Astromaterials Research and Exploration Science (ARES) Directorate at the NASA Johnson Space Center, is an Earth and planetary science education program designed to inspire, engage, and educate teachers and students by getting them actively involved with NASA exploration, discovery, and the process of science. One of the main goals of the program is to facilitate student research in the classroom. The program uses astronaut photographs, provided through the ARES Crew Earth Observations (CEO) payload on the International Space Station (ISS) as the hook to help students gain an interest in a research topic. Student investigations can focus on Earth or involve comparative planetology. Student teams are encouraged to use additional imagery and data from Earth or planetary orbital spacecraft, or ground-based data collection tools, to augment the astronaut photography dataset. A second goal of the program is to provide opportunities for meaningful connections between scientists and classrooms. To do this, EEAB offers multiple opportunities for scientist involvement. One opportunity involves having scientists work as mentors for student teams conducting research. These student teams, ranging from grades 4 through 12, are able to obtain guidance, suggestions, and input from STEM experts as they conduct a research investigation. Another opportunity for scientist involvement is participation in Classroom Connection Distance Learning (DL) events. These DL events entail interactive and engaging presentations that enable STEM experts to share their expertise with students and teachers (grades 3 through 12) from all across the nation. A third opportunity for scientist involvement involves participation in virtual student team science presentations. Student teams have the opportunity to share their research and results by presenting it to science experts through the use of WebEx, an easy-to-use online conferencing tool. The impact STEM experts have on students in today s classrooms is powerful. They serve as role models to these students, and they open students eyes to a potential career path they may not have known existed otherwise. The more scientists and STEM experts we can connect with students, the greater the impact we can make as we strive to inspire and prepare our nation s next generation of explorers.

  9. Lab Aliens, Legendary Fossils, and Deadly Science Potions: Views of Science and Scientists from Fifth Graders in a Free-Choice Creative Writing Program

    NASA Astrophysics Data System (ADS)

    Hellman, Leslie G.

    This qualitative study uses children's writing to explore the divide between a conception of Science as a humanistic discipline reliant on creativity, ingenuity and out of the box thinking and a persistent public perception of science and scientists as rigid and methodical. Artifacts reviewed were 506 scripts written during 2014 and 2016 by 5th graders participating in an out-of classroom, mentor supported, free-choice 10-week arts and literacy initiative. 47% (237) of these scripts were found to contain content relating to Science, Scientists, Science Education and the Nature of Science. These 237 scripts were coded for themes; characteristics of named scientist characters were tracked and analyzed. Findings included NOS understandings being expressed by representation of Science and Engineering Practices; Ingenuity being primarily linked to Engineering tasks; common portrayals of science as magical or scientists as villains; and a persistence in negative stereotypes of scientists, including a lack of gender equity amongst the named scientist characters. Findings suggest that representations of scientists in popular culture highly influence the portrayals of scientists constructed by the students. Recommendations to teachers include encouraging explicit consideration of big-picture NOS concepts such as ethics during elementary school and encouraging the replacement of documentary or educational shows with more engaging fictional media.

  10. G-2008-0821-024

    NASA Image and Video Library

    2008-10-06

    Young Scientist Challenge YSC was held at Goddard on October 5-6, 2008 sponsored by 3M. It gave students the opportunity to demonstrate their scientific and engineering skills by participating in live demonstrations. Melissa Rey (Center) was the grand prize winner.

  11. Building place-based collaborations to develop high school students' groundwater systems knowledge and decision-making capacity

    NASA Astrophysics Data System (ADS)

    Podrasky, A.; Covitt, B. A.; Woessner, W.

    2017-12-01

    The availability of clean water to support human uses and ecological integrity has become an urgent interest for many scientists, decision makers and citizens. Likewise, as computational capabilities increasingly revolutionize and become integral to the practice of science, technology, engineering and math (STEM) disciplines, the STEM+ Computing (STEM+C) Partnerships program seeks to integrate the use of computational approaches in K-12 STEM teaching and learning. The Comp Hydro project, funded by a STEM+C grant from the National Science Foundation, brings together a diverse team of scientists, educators, professionals and citizens at sites in Arizona, Colorado, Maryland and Montana to foster water literacy, as well as computational science literacy, by integrating authentic, place- and data- based learning using physical, mathematical, computational and conceptual models. This multi-state project is currently engaging four teams of six teachers who work during two academic years with educators and scientists at each site. Teams work to develop instructional units specific to their region that integrate hydrologic science and computational modeling. The units, currently being piloted in high school earth and environmental science classes, provide a classroom context to investigate student understanding of how computation is used in Earth systems science. To develop effective science instruction that is rich in place- and data- based learning, effective collaborations between researchers, educators, scientists, professionals and citizens are crucial. In this poster, we focus on project implementation in Montana, where an instructional unit has been developed and is being tested through collaboration among University scientists, researchers and educators, high school teachers and agency and industry scientists and engineers. In particular, we discuss three characteristics of effective collaborative science education design for developing and implementing place- and data- based science education to support students in developing socio-scientific and computational literacy sufficient for making decisions about real world issues such as groundwater contamination. These characteristics include that science education experiences are real, responsive/accessible and rigorous.

  12. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 27: The technical communication practices of engineering and science students: Results of the phase 3 academic surveys

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Hecht, Laura M.; Kennedy, John M.

    1994-01-01

    This report describes similarities and differences between undergraduate and graduate engineering science students in the context of two general aspects of the educational experience. First, we explore the extent to which students differ regarding the factors that lead to the choice of becoming an engineer or a scientist, current satisfaction with that choice, and career-related goals and objectives. Second, we look at the technical communication practices, habits, and training of engineers and science (Physics) students. The reported data were obtained from a survey of students enrolled in the College of Engineering at the University of Illinois at Urbana-Champaign, Bowling Green State University, and Texas A&M University. The survey was undertaken as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. Data are reported for the following categories: student demographics; skill importance, skill training, and skill helpfulness; collaborative writing; computer and information technology use and importance, use of electronic networks; use and importance of libraries and library services; use and importance of information sources and products; use of foreign technical reports; and foreign language (reading and speaking) skills.

  13. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 28: The technical communication practices of aerospace engineering and science students: Results of the phase 4 cross-national surveys

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Hecht, Laura M.; Barclay, Rebecca O.; Kennedy, John M.

    1994-01-01

    This report describes similarities and differences between undergraduate and graduate aerospace engineering and science students in the context of two general aspects of the educational experience. First, we explore the extent to which students differ regarding the factors that lead to the choice of becoming an aerospace engineer or a scientist, current satisfaction with that choice, and career-related goals and objectives. Second, we look at the technical communication skills, practices, habits, and training of aerospace engineering and science students. The reported data were obtained from a survey of students enrolled in aerospace engineering and science programs at universities in India, Japan, Russia, and the United Kingdom. The surveys were undertaken as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. Data are reported for the following categories: student demographics; skill importance, skill training, and skill helpfulness; collaborative writing; computer and information technology use and importance, use of electronic networks; use and importance of libraries and library services; use and importance of information sources and products; use of foreign language technical reports; and foreign language (reading and speaking) skills.

  14. ASPIRE: Teachers and researchers working together to enhance student learning

    NASA Astrophysics Data System (ADS)

    Yager, P. L.; Garay, D. L.; Warburton, J.

    2016-02-01

    Given the impact of human activities on the ocean, involving teachers, students, and their families in scientific inquiry has never been more important. Science, Technology, Engineering, and Math (STEM) disciplines have become key focus areas in the education community of the United States. Newly adopted across the nation, Next Generation Science Standards require that educators embrace innovative approaches to teaching. Transforming classrooms to actively engage students through a combination of knowledge and practice develops conceptual understanding and application skills. The partnerships between researchers and educators during the Amundsen Sea Polynya International Research Expedition (ASPIRE) offer an example of how academic research can enhance K-12 student learning. In this presentation, we illustrate how ASPIRE teacher-scientist partnerships helped engage students with actual and virtual authentic scientific investigations. Scientists benefit from teacher/researcher collaborations as well, as funding for scientific research also depends on effective communication between scientists and the public. While contributing to broader impacts needed to justify federal funding, scientists also benefit by having their research explained in ways that the broader public can understand: collaborations with teachers produce classroom lessons and published work that generate interest in the scientists' research specifically and in marine science in general. Researchers can also learn from their education partners about more effective teaching strategies that can be transferred to the college level. Researchers who work with teachers in turn gain perspectives on the constraints that teachers and students face in the pre-college classroom. Crosscutting concepts of research in polar marine science can serve as intellectual tools to connect important ideas about ocean and climate science for the public good.

  15. Young Engineers and Scientists (YES 2K6): Independent and Group Mentorship Projects

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Asbell, H. E.

    2006-12-01

    The Young Engineers and Scientists (YES) Program is a community partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA). YES has been highly successful during the past 14 years, and YES 2K6 continued this trend. It provides talented high school juniors and seniors a bridge between classroom instruction and real-world, research experiences in physical sciences and engineering. YES 2K6 consists of two parts: 1) a three-week summer workshop and 2) a mentorship where students complete individual research projects during their academic year. The intensive workshop is held at SwRI where students experience the research environment first-hand. They also develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year. YES 2K6 students developed a website for the Magnetospheric Multiscale (MMS) Mission from the perspective of a high school student. The collegial mentorship takes place during their academic year where students complete individual research projects under the guidance of their mentors and earn honors credit. At the end of the school year, students publicly present and display their work at their schools. This acknowledges their accomplishments and spreads career awareness to other students and teachers. Over the past 14 years, all YES graduates have entered college, several have worked for SwRI, and three scientific publications have resulted. Student evaluations indicate the benefits of YES for their academic preparation and choice of college majors. We acknowledge E/PO funding from the NASA MMS Mission and local charitable foundations.

  16. Priming the Innovation Pump: America Needs More Scientists, Engineers, and Basic Research

    DTIC Science & Technology

    2011-01-01

    students through its Science, Mathematics, and Research for Transforma- tion ( SMART ) program. SMART funds U.S. S&E students’ education costs in exchange...slide 5). Through its Engineers in the Classroom program, LM is building school partnerships to create a pipeline of future S&E employees. From high... Classroom need to expand in size and numbers, because it can take 22–25 years to grow an experienced engineer from entry-level talent. Meanwhile, the

  17. KSC-03pd0516

    NASA Image and Video Library

    2003-02-19

    KENNEDY SPACE CENTER, FLA. - At NASA's Family & Community Mars Exploration Day, held in Cape Canaveral, Fla., James Garvin, lead scientist for the Mars Exploration Program, talks to students about the Mars Exploration Rover. Garvin is standing next to a replica of the Rover. The event informed students and the general public about Florida's key role as NASA's "Gateway to Mars" and offered an opportunity to meet with scientists, engineers, educators and others working Mars exploration missions. The Mars Exploration Rovers are being prepared for launch this spring aboard Boeing Delta II rockets from the Cape Canaveral Air Force Station. They will land on Mars and start exploring in January 2004.

  18. KSC-03PD-0516

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. - At NASA's Family & Community Mars Exploration Day, held in Cape Canaveral, Fla., James Garvin, lead scientist for the Mars Exploration Program, talks to students about the Mars Exploration Rover. Garvin is standing next to a replica of the Rover. The event informed students and the general public about Florida's key role as NASA's 'Gateway to Mars' and offered an opportunity to meet with scientists, engineers, educators and others working Mars exploration missions. The Mars Exploration Rovers are being prepared for launch this spring aboard Boeing Delta II rockets from the Cape Canaveral Air Force Station. They will land on Mars and start exploring in January 2004.

  19. A project to transfer technology from NASA centers in support of industrial innovation in the midwest

    NASA Technical Reports Server (NTRS)

    Barr, B. G.

    1986-01-01

    A technology transfer program utilizing graduate students in mechanical engineering at the University of Kansas was initiated in early 1981. The objective of the program was to encourage industrial innovation in the Midwest through improved industry/university cooperation and the utilization of NASA technology. A related and important aspect of the program was the improvement of graduate engineering education through the involvement of students in the identification and accomplishment of technological objectives in cooperation with scientists at NASA centers and engineers in industry. The pilot NASA/University Industrial Innovation Program was an outstanding success based on its ability to: attract top graduate students; secure industry support; and stimulate industry/university cooperation leading to enhanced university capability and utilization of advanced technology by industry.

  20. Utilizing the Scientist as Teacher Through the Initiating New Science Partnerships in Rural Education (INSPIRE) Program

    NASA Astrophysics Data System (ADS)

    Pierce, D.; McNeal, K. S.; Radencic, S.

    2011-12-01

    The presence of a scientist or other STEM expert in secondary school science classroom can provide fresh new ideas for student learning. Through the Initiating New Science Partnerships in Rural Education (INSPIRE) program sponsored by NSF Graduate STEM Fellows in K-12 Education (GK-12), scientists and engineers at Mississippi State University work together with graduate students and area teachers to provide hands-on inquiry-based learning to middle school and high school students. Competitively selected graduate fellows from geosciences, physics, chemistry, and engineering spend ten hours per week in participating classrooms for an entire school year, working as a team with their assigned teacher to provide outstanding instruction in science and mathematics and to serve as positive role models for the students. We are currently in the second year of our five-year program, and we have already made significant achievements in science and mathematics instruction. We successfully hosted GIS Day on the Mississippi State University campus, allowing participating students to design an emergency response to a simulated flooding of the Mississippi Delta. We have also developed new laboratory exercises for high school physics classrooms, including a 3-D electric field mapping exercise, and the complete development of a robotics design course. Many of the activities developed by the fellows and teachers are written into formal lesson plans that are made publicly available as free downloads through our project website. All participants in this program channel aspects of their research interests and methods into classroom learning, thus providing students with the real-world applications of STEM principles. In return, participants enhance their own communication and scientific inquiry skills by employing lesson design techniques that are similar to defining their own research questions.

  1. Journal of Undergraduate Research, Volume VIII, 2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stiner, K. S.; Graham, S.; Khan, M.

    Th e Journal of Undergraduate Research (JUR) provides undergraduate interns the opportunity to publish their scientific innovation and to share their passion for education and research with fellow students and scientists. Fields in which these students worked include: Biology; Chemistry; Computer Science; Engineering; Environmental Science; General Sciences; Materials Sciences; Medical and Health Sciences; Nuclear Sciences; Physics; Science Policy; and Waste Management.

  2. Progressively Fostering Students' Chemical Information Skills in a Three-Year Chemical Engineering Program in France

    ERIC Educational Resources Information Center

    Gozzi, Christel; Arnoux, Marie-Jose´; Breuzard, Jere´my; Marchal, Claire; Nikitine, Clémence; Renaudat, Alice; Toulgoat, Fabien

    2016-01-01

    Literature searches are essential for scientists. Thus, courses on how to do a good literature search have been integrated in studies at CPE Lyon for many years. Recently, we modified our pedagogical approach in order to initiate students progressively in the search for chemical information. In addition, this new teaching organization is now based…

  3. Young Engineers and Scientists (YES) - A Science Education Partnership

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Asbell, H. E.; Reiff, P. H.

    2007-12-01

    Young Engineers and Scientists (YES) is a community partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA). YES has been highly successful during the past 15 years and YES 2K7 continued this trend. The YES program provides talented high school juniors and seniors a bridge between classroom instruction and real world, research experiences in physical sciences (including space science and astronomy) and engineering. YES consists of two parts: 1) an intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year; and 2) a collegial mentorship where students complete individual research projects under the guidance of their mentors during the academic year and earn honors credit. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. YES 2K7 developed a website for the Magnetospheric Multiscale Mission (MMS) from the perspective of 20 high school students (yesserver.space.swri.edu). Over the past 15 years, all YES graduates have entered college, several have worked for SwRI, and three scientific publications have resulted. Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors. Acknowledgements: We acknowledge funding and support from the NASA MMS Mission, SwRI, Northside Independent School District, and local charitable foundations.

  4. YES 2K5: Young Engineers and Scientists Mentorship Program

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Asbell, H. E.

    2005-12-01

    The Young Engineers and Scientists (YES) Program is a community partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA). YES has been highly successful during the past 13 years, and YES 2K5 continued this trend. It provides talented high school juniors and seniors a bridge between classroom instruction and real-world, research experiences in physical sciences (including space science and astronomy) and engineering. YES 2K5 consists of two parts: 1) an intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year; and 2) a collegial mentorship where students complete individual research projects under the guidance of their mentors during the academic year and earn honors credit. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. YES 2K5 developed a website for the Magnetospheric Multiscale Mission (MMS) from the perspective of a high school student. Over the past 13 years, all YES graduates have entered college, several have worked for SwRI, and three scientific publications have resulted. Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors. We acknowledge funding from the NASA MMS Mission, the NASA E/PO program, and local charitable foundations.

  5. NASA/State Education Cooperation

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA is cooperating with state departments of education in a number of special education programs. An example is Maryland Summer Centers for Gifted and Talented Students sponsored by the Maryland State Department of Education. Some 2,600 students participated in the 1990 program. One of the 12 centers is the Center for Space Science and Technology at Goddard Space Flight Center, which provides instruction to students of the 9-12 grade level. This center is operated by a three organization partnership that includes the Maryland State Department of Education, the University of Maryland and Goddard Space Flight Center, which hosts the instructional program and provides volunteer scientists and engineers as instructors. Typical two-week space intern program includes panel discussions, lectures, tours, field trips and hands-on activity focusing on various space science topics. Senior high students benefit from a one-to-one mentor relationship with a volunteer scientist or engineer. Another example was the Paducah (Kentucky) NASA Community Involvement Project, a joint educational effort of Langley and Lewis Research Centers, Marshall Space Flight Center, the Kentucky Department of Education, the City of Paducah and Paducah Independent Schools. It was a 16 day exposition/symposium featuring seminars on space subjects.

  6. Summer of Innovation Kick Off

    NASA Image and Video Library

    2010-06-09

    A group of Jet Propulsion Laboratory (JPL) engineers are recognized during the kick off of NASA's Summer of Innovation program at JPL in Pasadena, Calif., Thursday, June 10, 2010. Through the program, NASA will engage thousands of middle school students and teachers in stimulating math and science-based education programs with the goal of increasing the number of future scientists, mathematicians, and engineers. Photo Credit: (NASA/Bill Ingalls)

  7. Annual report 1993 - Science and Engineering Alliance, Inc.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-04-01

    By combining their resources and with support from the US Department of Energy (DOE), Science and Engineering Alliance (SEA) has worked for the past three years to increase the participation of African-Americans in science, engineering, and related fields. At the core of the SEA is a combined population of over 33,000 African-American students, and a combined Historically Black Colleges and Universities research faculty and staff of nearly 400 individuals that specialize in several major areas of science and engineering. SEA views its approach as a constructive, long-term solution to increasing the nation`s technical manpower talent pool. For the faculty andmore » students, SEA develops new collaborative research opportunities, creates new summer research internships and coop programs, strengthens existing programs, provides students participation in technical conferences, workshops, and seminars, and grants scholarships and incentive awards to future scientists and engineers. SEA relies on the collective talents of its members to build partnerships with the Federal government and private industry that help create opportunities for African-American science and engineering students, and promote activities that advance this mission. As the number of science and engineering students graduating from SEA institutions continues to rise, SEA is pleased to report that the program is making a difference.« less

  8. 45 CFR 9.1 - Purpose.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 1 2013-10-01 2013-10-01 false Purpose. 9.1 Section 9.1 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION USE OF HHS RESEARCH FACILITIES BY ACADEMIC... and study facilities to academic scientists, engineers, and qualified students. ...

  9. 45 CFR 9.1 - Purpose.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 1 2014-10-01 2014-10-01 false Purpose. 9.1 Section 9.1 Public Welfare Department of Health and Human Services GENERAL ADMINISTRATION USE OF HHS RESEARCH FACILITIES BY ACADEMIC... and study facilities to academic scientists, engineers, and qualified students. ...

  10. 45 CFR 9.1 - Purpose.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 1 2012-10-01 2012-10-01 false Purpose. 9.1 Section 9.1 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION USE OF HHS RESEARCH FACILITIES BY ACADEMIC... and study facilities to academic scientists, engineers, and qualified students. ...

  11. KSC-2012-6218

    NASA Image and Video Library

    2012-11-08

    CAPE CANAVERAL, Fla. -- Inside a laboratory in the Engineering Development Laboratory, or EDL, at NASA’s Kennedy Space Center in Florida, research scientist Michael Hogue, in the green plaid shirt, describes several technologies to a group of Society of Physics students. About 800 graduate and undergraduate physics students toured Kennedy facilities. A group of about 40 students toured laboratories in the Operations and Checkout Building and the EDL during their visit. The physics students were in Orlando for the 2012 Quadrennial Physics Congress. Photo credit: NASA/Cory Huston

  12. KSC-2012-6217

    NASA Image and Video Library

    2012-11-08

    CAPE CANAVERAL, Fla. -- – Inside a laboratory in the Engineering Development Laboratory, or EDL, at NASA’s Kennedy Space Center in Florida, research scientist Michael Johansen, in the blue polo shirt, describes dust mitigation technology to a group of Society of Physics students. About 800 graduate and undergraduate physics students toured Kennedy facilities. A group of about 40 students toured laboratories in the Operations and Checkout Building and the EDL during their visit. The physics students were in Orlando for the 2012 Quadrennial Physics Congress. Photo credit: NASA/Cory Huston

  13. KSC-2015-1205

    NASA Image and Video Library

    2015-01-28

    VANDENBERG AIR FORCE BASE, Calif. – Jared Entin, program scientist for NASA's Soil Moisture Active Passive mission, or SMAP, discusses the science and engineering of the mission with the audience of a NASA Social held at Vandenberg Air Force Base in California. This NASA Social brought together mission scientists and engineers with an audience of 70 students, educators, social media managers, bloggers, photographers and videographers who were selected from a pool of 325 applicants from 45 countries to participate in launch activities and communicate their experience with social media followers. The SMAP mission is scheduled to launch from Vandenberg on Jan. 29. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/Kim Shiflett

  14. KSC-2015-1204

    NASA Image and Video Library

    2015-01-28

    VANDENBERG AIR FORCE BASE, Calif. – Jared Entin, program scientist for NASA's Soil Moisture Active Passive mission, or SMAP, discusses the science and engineering of the mission with the audience of a NASA Social held at Vandenberg Air Force Base in California. This NASA Social brought together mission scientists and engineers with an audience of 70 students, educators, social media managers, bloggers, photographers and videographers who were selected from a pool of 325 applicants from 45 countries to participate in launch activities and communicate their experience with social media followers. The SMAP mission is scheduled to launch from Vandenberg on Jan. 29. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/Kim Shiflett

  15. Training the next generation of Space and Earth Science Engineers and Scientists through student design and development of an Earth Observation Nanosatellite, AlbertaSat-1

    NASA Astrophysics Data System (ADS)

    Lange, B. A.; Bottoms, J.

    2011-12-01

    This presentation addresses the design and developmental process of a Nanosatellite by an interdisciplinary team of undergraduate and graduate students at the University of Alberta. The Satellite, AlbertaSat-1, is the University of Alberta's entry in the Canadian Satellite Design Challenge (CDSC); an initiative to entice Canadian students to contribute to space and earth observation technologies and research. The province of Alberta, while home to a few companies, is very limited in its space industry capacity. The University of Alberta reflects this fact, where one of the major unifying foci of the University is oil, the provinces greatest resource. For students at the U of A, this lack of focus on astronautical, aerospace and space/earth observational research limits their education in these industries/disciplines. A fully student operated project such as AlbertaSat-1 provides this integral experience to almost every discipline. The AlbertaSat-1 team is comprised of students from engineering, physics, chemistry, earth and atmospheric science, business, and computer science. While diverse in discipline, the team is also diverse in experience, spanning all levels from 1st year undergraduate to experienced PhD. Many skill sets are required and the diverse group sees that this is covered and all opinions voiced. Through immersion in the project, students learn quickly and efficiently. The necessity for a flawless product ensures that only the highest quality of work is presented. Students participating must research and understand their own subsystem as well as all others. This overall system view provides the best educational tool, as students are able to see the real impacts of their work on other subsystems. As the project is completely student organized, the participants gain not only technical engineering, space and earth observational education, but experience in operations and financial management. The direct exposure to all aspects of the space and earth science industry through a student satellite development program is one of the best methods of developing the next generation of space and earth science engineers and scientists.

  16. College student perceptions of science teachers and the effect on science teaching as a career path

    NASA Astrophysics Data System (ADS)

    Cost, Michael George

    2000-10-01

    Past research documented that student perceptions of scientists constituted a stereotypical image that had a negative effect on the students' attitudes towards science and resulted in low numbers of students studying to become scientists and engineers in college. The present study paralleled the research on student perceptions of scientists to investigate to what extent student perceptions of science teachers affect their willingness to consider science teaching as a career. This was accomplished by surveying 91 college students and 25 science teachers at the beginning, middle, and end of the collegiate career path of becoming a science teacher. Each survey contained quantitative data utilizing seven-point semantic differential scales and written open response questions. In-depth interviews with two members of each level were conducted to supplement the survey data. The study found that college students begin college with a positive perception of teaching as a career and highly rank teachers, especially science teachers, as having a positive influence on their career path. The qualities of job enjoyment, job stability, and helping others that are characteristic of teaching were also found to be of high importance. Perceptions of the personal, social, professional, and career qualities of a science teacher were found to differ from a scientist. While both science teachers and scientists were found to be responsible, persistent, and productive, science teachers were perceived as being a distinct career possessing qualities that make them more personable, sociable, and wise than scientists. Some gender differences were detected but there was no evidence of gender bias affecting students choosing a career path to science teaching. Science teachers were perceived to be very supportive of females pursuing scientific career paths. The study also found evidence that some introductory level college students steer away from science teaching because of low salary, the lack of promotion, and the efforts of influential people including science teachers. The study calls for departments of science education to take a more active role in the recruitment of new science teachers and the improvement of undergraduate science education.

  17. K-12 Students' Perceptions of Scientists: Finding a valid measurement and exploring whether exposure to scientists makes an impact

    NASA Astrophysics Data System (ADS)

    Hillman, Susan J.; Bloodsworth, Kylie H.; Tilburg, Charles E.; Zeeman, Stephan I.; List, Henrietta E.

    2014-10-01

    This study was launched from a National Science Foundation GK-12 grant in which graduate fellows in Science, Technology, Engineering, and Mathematics (STEM) are placed in classrooms to engage K-12 students in STEM activities. The investigation explored whether the STEM Fellows' presence impacted the K-12 students' stereotypical image of a scientist. Since finding a valid instrument is critical, the study involved (1) determining the validity of the commonly administered Draw-A-Scientist Test (DAST) against a newly designed six-question survey and (2) using a combination of both instruments to determine what stereotypes are currently held by children. A pretest-posttest design was used on 485 students, grades 3-11, attending 6 different schools in suburban and rural Maine communities. A significant but low positive correlation was found between the DAST and the survey; therefore, it is imperative that the DAST not be used alone, but corroboration with interviews or survey questions should occur. Pretest results revealed that the children held common stereotypes of scientists, but these stereotypes were neither as extensive nor did they increase with the grade level as past research has indicated, suggesting that a shift has occurred with children having a broader concept of who a scientist can be. Finally, the presence of an STEM Fellow corresponded with decreased stereotypes in middle school and high school, but no change in elementary age children. More research is needed to determine whether this reflects resiliency in elementary children's perceptions or limitations in either drawing or in writing out their responses.

  18. KSC-02pd1680

    NASA Image and Video Library

    2002-11-07

    KENNEDY SPACE CENTER, FLA. -- New methods of environmental cleanup are explained during a presentation to government and business representatives, scientists and engineers at Launch Complex 34-A, Cape Canaveral Spaceport. At left is Laura Filipek, a University of Central Florida graduate chemistry student involved in the science.

  19. The Amateur Scientist.

    ERIC Educational Resources Information Center

    Walker, Jearl

    1979-01-01

    Describes a student investigation of a reverse flame in a atmosphere of methane that won second place in the physics division of the International Science and Engineering Fair. Includes a discussion of falling and fracturing behavior, specifically dealing with chimneys, trees, pencil point, stirring rods, and chalk. (BT)

  20. STEM Mentor Breakfast at Debus Center

    NASA Image and Video Library

    2017-05-25

    Kim Stratton, at left, with Caterpillar, talks to students during a Women in STEM breakfast inside the Debus Conference Center at the Kennedy Space Center Visitor Complex in Florida. STEM is science, technology, engineering and math. The special event gave students competing in NASA's 8th Annual Robotic Mining Competition the chance to learn from female NASA scientists, engineers and professionals about their careers and the paths they took to working at Kennedy. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.

  1. STEM Mentor Breakfast at Debus Center

    NASA Image and Video Library

    2017-05-25

    Kennedy Space Center Deputy Director Janet Petro speaks to students during a Women in STEM mentoring breakfast inside the Debus Conference Center at the Kennedy Space Center Visitor Complex in Florida. STEM is science, technology, engineering and math. The special event gave students competing in NASA's 8th Annual Robotic Mining Competition the chance to learn from female NASA scientists, engineers and professionals about their careers and the paths they took to working at Kennedy. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.

  2. Young Engineers and Scientists (YES) 2009 - Engaging Students and Teachers in Space Research

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Reiff, P. H.

    2009-12-01

    During the past 17 years, Young Engineers and Scientists (YES) has been a community partnership between local high schools in San Antonio, Texas (USA), and Southwest Research Institute (SwRI). The goals of YES are to increase the number of high school students, especially those from underrepresented groups, seeking careers in science and engineering, to enhance their success in entering the college and major of their choice, and to promote teacher development in STEM fields. This is accomplished by allowing students and teachers to interact on a continuing basis with role models at SwRI in real-world research experiences in physical sciences (including space science), information sciences, and a variety of engineering fields. A total of 218 students have completed YES or are currently enrolled. Of these students, 37% are females and 56% are ethnic minorities, reflecting the local ethnic diversity, and 67% represent underserved groups. Presently, there are 20 students and 3 teachers enrolled in the YES 2009/2010 Program. YES consists of an intensive three-week summer workshop held at SwRI where students and teachers experience the research environment and a collegial mentorship where they complete individual research projects under the guidance of SwRI mentors during the academic year. At the end of the school year, students publicly present and display their work, spreading career awareness to other students and teachers. Teachers participate in an in-service workshop to share classroom materials and spread awareness of space-related research. YES students develop a website (yesserver.space.swri.edu) for topics in space science (this year was NASA's MMS Mission) and high school science teachers develop space-related lessons for classroom presentation. Partnerships between research institutes, local high schools, and community foundations, like the YES Program, can positively affect students’ preparation for STEM careers via real-world research experiences with mentorship teams consisting of professional staff and qualified teachers. Acknowledgements. We acknowledge support from the NASA MMS Mission, Texas Space Grant Consortium, SwRI, and local charitable foundations.

  3. NASA y Tú (NASA and You) - NASA's partnership with UNIVISION to promote Science, Technology, Engineering, and Math (STEM) careers among Hispanic youth

    NASA Astrophysics Data System (ADS)

    Colon-Robles, M.; Gilman, I.; Verstynen, S.; Jaramillo, R.; Bednar, S.; Shortridge, T.; Bravo, J.; Bowers, S.

    2010-12-01

    NASA is working with Univision Communications Inc. in support of the Spanish-language media outlet's initiative to improve high school graduation rates, prepare Hispanic students for college, and encourage them to pursue careers in science, technology, engineering and mathematics, or STEM, disciplines. A total of 52 Public Service Announcements (PSAs) named “Visión NASA” or “Vision: NASA” are being developed by NASA centered on current innovative technologies from all four NASA mission directorates (Science, Exploration Systems, Space Operations, and Aerodynamics). Public service announcements are being produced from scratch in both English and Spanish for a total of 26 announcements in each language. Interviews were conducted with NASA Hispanic Scientists or Engineers on the selected PSAs topics to both supply information on their subject matter and to serve as role models for Hispanic youth. Each topic selected for the PSAs has an accompanying website which includes the announcements, interviews with a Hispanic scientists or engineers, background information on the topic, and educational resources for students, parents and teachers. Products developed through this partnership will be presented including the websites of each PSA and their accompanying educational resources. The use of these educational resources for professional development, outreach and informal events, and for in-classroom uses will also be presented. This collaboration with Univision complements NASA's current education efforts to engage underrepresented and underserved students in the critical STEM fields.

  4. Global Science Share: Connecting young scientists from developing countries with science writing mentors to strengthen and widen the international science community

    NASA Astrophysics Data System (ADS)

    Hasenkopf, C. A.

    2012-12-01

    Collaborative science in which scientists are able to form research questions based on the current body of scientific knowledge and get feedback from colleagues on their ideas and work is essential for pushing science forward. However, not all scientists are able to fully participate in the international science community. Scientists from developing countries can face barriers to communicating with the international community due to, among other issues: fewer scientists in their home country, difficulty in getting language-specific science writing training, fewer established pre-existing international collaborations and networks, and sometimes geographic isolation. These barriers not only result in keeping individual scientists from contributing their ideas, but they also slow down the progress of the scientific enterprise for everyone. Global Science Share (http://globalscienceshare.org/) is a new project, entering its pilot phase in Fall 2012, which will work to reduce this disparity by connecting young scientists and engineers from developing countries seeking to improve their technical writing with other scientists and engineers around the world via online collaborations. Scientist-volunteers act as mentors and are paired up with mentees according to their academic field and writing needs. The mentors give feedback and constructive technical and editorial criticisms on mentees' submitted pieces of writing through a four-step email discussion. Mentees gain technical writing skills, as well as make international connections with other scientists and engineers in fields related to their own. Mentors also benefit by gaining new international scientific colleagues and honing their own writing skills through their critiques. The Global Science Share project will begin its pilot phase by first inviting Mongolian science students to apply as mentees this fall. This abstract will introduce the Global Science Share program, present a progress report from its first semester, and inform members of the geoscience community about this unique outreach opportunity to help strengthen and widen the international science community that can be done in the comfort of one's office or home.

  5. Training and Mentoring the Next Generation of Scientists and Engineers to Secure Continuity and Successes of the US DOE's Environmental Remediation Efforts - 13387

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lagos, L.

    The DOE Office of Environmental Management (DOE-EM) oversees one of the largest and most technically challenging cleanup programs in the world. The mission of DOE-EM is to complete the safe cleanup of the environmental legacy from five decades of nuclear weapons development and government-sponsored nuclear energy research. Since 1995, Florida International University's Applied Research Center (FIU-ARC) has supported the DOE-EM mission and provided unique research capabilities to address some of these highly technical and difficult challenges. This partnership has allowed FIU-ARC to create a unique infrastructure that is critical for the training and mentoring of science, technology, engineering, and mathmore » (STEM) students and has exposed many STEM students to 'hands-on' DOE-EM applied research, supervised by the scientists and engineers at ARC. As a result of this successful partnership between DOE and FIU, DOE requested FIU-ARC to create the DOE-FIU Science and Technology Workforce Development Initiative in 2007. This innovative program was established to create a 'pipeline' of minority STEM students trained and mentored to enter DOE's environmental cleanup workforce. The program was designed to help address DOE's future workforce needs by partnering with academic, government and private companies (DOE contractors) to mentor future minority scientists and engineers in the research, development, and deployment of new technologies and processes addressing DOE's environmental cleanup challenges. Since its inception in 2007, the program has trained and mentored 78 FIU STEM minority students. Although, the program has been in existence for only five years, a total of 75 internships have been conducted at DOE National Laboratories, DOE sites, DOE Headquarters and field offices, and DOE contractors. Over 85 DOE Fellows have participated in the Waste Management Symposia since 2008 with a total of 68 student posters and 7 oral presentations given at WM. The DOE Fellows participation at WM has resulted in three Best Student Poster Awards (WM09, WM10, and WM11) and one Best Professional Poster Award (WM09). DOE Fellows have also presented their research at ANS DD and R and ANS Robotics Topical meetings. Moreover, several of our DOE Fellows have already obtained employment with DOE-EM, other federal agencies, DOE contractors. This paper will discuss how DOE Fellows program is training and mentoring FIU STEM students in Department of Energy's Office of Environmental Management technical challenges and research. This training and mentoring has resulted in the development of well trained and polished young scientists and engineers that will become the future workforce in charge of carrying on DOE-EM's environmental cleanup mission. The paper will showcase FIU's DOE Fellows model and highlight some of the applied research the DOE Fellows have conducted at FIU's Applied Research Center and across the Complex by participating in summer internship assignments. This paper will also present and highlight other Fellowships and internships programs sponsored by National Nuclear Security Agency (NNSA), DOE-EM, NRC, Energy (NE), and other federal agencies targeting workforce development. (authors)« less

  6. Intrinsic and Extrinsic Factors That Impact the Retention and Completion of African-American Male and Female High School Students in the Pre-Engineering Program: Project Lead the Way

    ERIC Educational Resources Information Center

    Green, Patrice Tolbert

    2012-01-01

    African Americans have a long and very important history in the engineering fields. With a tradition that includes accomplished scientists such as George Washington Carver, Norman Buknor, and Mark Dean, African Americans have been very important to the development of new products, technology, inventions, and innovations (Gordon, 2008). The…

  7. Introduction to Geostatistics

    NASA Astrophysics Data System (ADS)

    Kitanidis, P. K.

    1997-05-01

    Introduction to Geostatistics presents practical techniques for engineers and earth scientists who routinely encounter interpolation and estimation problems when analyzing data from field observations. Requiring no background in statistics, and with a unique approach that synthesizes classic and geostatistical methods, this book offers linear estimation methods for practitioners and advanced students. Well illustrated with exercises and worked examples, Introduction to Geostatistics is designed for graduate-level courses in earth sciences and environmental engineering.

  8. International conference on Recent Advances in Aerospace Engineering (ICRAAE-2017)

    NASA Astrophysics Data System (ADS)

    2017-10-01

    Introduction The First International conference on Recent Advances in Aerospace Engineering (ICRAAE-2017) will be conducted by the Department of Aerospace Engineering at Karunya University, Coimbatore, Tamilnadu, India, on 3rd and 4th March, 2017. The conference aims to bring together students, academicians, leading scientists, researchers and industrialists working in diverse fields of Aerospace Engineering. This conference provides an inter-disciplinary platform for the educators, researchers and practitioners to present, share and discuss the recent trends, innovations, concerns and solutions in the cutting edge technologies of Aerospace Engineering for mutual benefit and the growth of the nation. Objectives The conference is devoted to benefit the participants who will have the opportunity to gain insight into state-of-the-art technologies in the field of Aerospace Engineering by the expert lectures of scientists and pioneering researchers from India and abroad. In addition, the two-day conference will enable knowledge sharing by personnel involved in active research working on the recent developments in this diverse field. List of International Deep Drawing Research Group, Conference Topics, Facts and Statistics, Achknowledgement, Keynote Speakers, Scientific Committee, Editors all are available in this PDF.

  9. Eclipse 2017: Partnering with NASA MSFC to Inspire Students

    NASA Technical Reports Server (NTRS)

    Fry, Craig " Ghee" ; Adams, Mitzi; Gallagher, Dennis; Krause, Linda

    2017-01-01

    NASA's Marshall Space Flight Center (MSFC) is partnering with the U.S. Space and Rocket Center (USSRC), and Austin Peay State University (APSU) to engage citizen scientists, engineers, and students in science investigations during the 2017 American Solar Eclipse. Investigations will support the Citizen Continental America Telescopic Eclipse (CATE), Ham Radio Science Citizen Investigation(HamSCI), and Interactive NASA Space Physics Ionosphere Radio Experiments (INSPIRE). All planned activities will engage Space Campers and local high school students in the application of the scientific method as they seek to explore a wide range of observations during the eclipse. Where planned experiments touch on current scientific questions, the camper/students will be acting as citizen scientists, participating with researchers from APSU and MSFC. Participants will test their expectations and after the eclipse, share their results, experiences, and conclusions to younger Space Campers at the US Space & Rocket Center.

  10. A Partnership between English Language Learners and a Team of Rocket Scientists: EPO for the NASA SDO Extreme Ultraviolet Variability Experiment (EVE)

    NASA Astrophysics Data System (ADS)

    Buhr, S. M.; McCaffrey, M. S.; Eparvier, F.; Murillo, M.

    2008-05-01

    Recent immigrant high school students were successfully engaged in learning about Sun-Earth connections through a partnership with the NASA Solar Dynamics Observatory Extreme Ultraviolet Variability Experiment (EVE) project. The students were enrolled in a pilot course as part of the Math, Engineering and Science Achievement (MESA) program. The English Language Learner (ELL) students doubled their achievement on a pre- and post- assessment on the content of the course. Students learned scientific content and vocabulary in English with support in Spanish, attended field trips, hosted scientist speakers, built antenna and deployed space weather monitors as part of the Stanford SOLAR project, and gave final presentations in English, showcasing their new computer skills. Teachers who taught the students in other courses noted gains in the students' willingness to use English in class and noted gains in math skills. The course has been broken into modules for use in shorter after-school environments, or for use by EVE scientists who are outside of the Boulder area. Video footage of "The Making of a Satellite", and "All About EVE" is completed for use in the kits. Other EVE EPO includes upcoming professional development for teachers and content workshops for journalists.

  11. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 50: From student to entry-level professional: Examining the role of language and written communications in the reacculturation of aerospace engineering students

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Keene, Michael L.; Kennedy, John M.; Hecht, Laura F.

    1995-01-01

    When students graduate and enter the world of work, they must make the transition from an academic to a professional knowledge community. Kenneth Bruffee's model of the social construction of knowledge suggests that language and written communication play a critical role in the reacculturation process that enables successful movement from one knowledge community to another. We present the results of a national (mail) survey that examined the technical communications abilities, skills, and competencies of 1,673 aerospace engineering students, who represent an academic knowledge community. These results are examined within the context of the technical communications behaviors and practices reported by 2,355 aerospace engineers and scientists employed in government and industry, who represent a professional knowledge community that the students expect to join. Bruffee's claim of the importance of language and written communication in the successful transition from an academic to a professional knowledge community is supported by the responses from the two communities we surveyed. Implications are offered for facilitating the reacculturation process of students to entry-level engineering professionals.

  12. Thinking Big

    ERIC Educational Resources Information Center

    Kastens, Kim; Krumhansl, Ruth; Baker, Irene

    2015-01-01

    This article is aimed at teachers already experienced with activities involving small, student-collected data sets and who are now ready to begin working with large, online data sets collected by scientists and engineers. The authors discuss challenges, instructional strategies, and sources of appropriate lesson plans. With guidance, plus online…

  13. Electromagnetic Induction

    ERIC Educational Resources Information Center

    Yochum, Hank; Vinion-Dubiel, Arlene; Granger, Jill; Lindsay, Lynne; Maass, Teresa; Mayhew, Sarah

    2013-01-01

    Engaging children in authentic investigation opens the doors for them to gain deep conceptual understanding in science. As students engage in investigation, they experience the practices employed by scientists and engineers, as highlighted in the Next Generation Science Standards (Achieve Inc. 2013). They also begin to understand the nature of…

  14. 45 CFR 9.2 - Policy.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... laboratories and other study and research facilities of the Department will be made available to the national... study and research facilities of the Department. When such facilities are used by academic scientists, engineers, and students, the costs incurred for the operation of the unique or unusual research facilities...

  15. 45 CFR 9.2 - Policy.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... laboratories and other study and research facilities of the Department will be made available to the national... study and research facilities of the Department. When such facilities are used by academic scientists, engineers, and students, the costs incurred for the operation of the unique or unusual research facilities...

  16. 45 CFR 9.2 - Policy.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... laboratories and other study and research facilities of the Department will be made available to the national... study and research facilities of the Department. When such facilities are used by academic scientists, engineers, and students, the costs incurred for the operation of the unique or unusual research facilities...

  17. 45 CFR 9.2 - Policy.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... laboratories and other study and research facilities of the Department will be made available to the national... study and research facilities of the Department. When such facilities are used by academic scientists, engineers, and students, the costs incurred for the operation of the unique or unusual research facilities...

  18. 45 CFR 9.2 - Policy.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... laboratories and other study and research facilities of the Department will be made available to the national... study and research facilities of the Department. When such facilities are used by academic scientists, engineers, and students, the costs incurred for the operation of the unique or unusual research facilities...

  19. Cellulose Breakdown

    ERIC Educational Resources Information Center

    Greenler, John; Nye, Leith; Tangen, Travis

    2014-01-01

    Production of liquid fuels such as ethanol from fibrous plant biomass could potentially be a significant sustainable component of the U.S. energy portfolio. Engineers and scientists are actively researching this area, and high school students can engage in this contemporary inquiry process by experimenting with different types of biomass, varying…

  20. University of Colorado CubeSat Student Projects as Successful Model for Teaching Students about Engineering Practices

    NASA Astrophysics Data System (ADS)

    Palo, S. E.; Li, X.; Woods, T. N.; Kohnert, R.

    2014-12-01

    There is a long history of cooperation between students at the University of Colorado, Boulder and professional engineers and scientists at LASP, which has led to many successful space missions with direct student involvement. The recent student-led missions include the Student Nitric Oxide Explorer (SNOE, 1998 - 2002), the Student Dust Counter (SDC) on New Horizons (2006 - present), the Colorado Student Space Weather Experiment (CSSWE), being a very successful NSF CubeSat that launched in September 2012, and the NASA Miniature X-ray Solar Spectrometer (MinXSS) CubeSat (launch will be in early 2015). Students are involved in all aspects of the design, and they experience the full scope of the mission process from concept, to fabrication and test, and mission operations. A significant part of the student involvement in the CubeSat projects is gained by using the CubeSat development as a focal point for an existing two-semester course sequence in CU's Aerospace Engineering Sciences (AES) Department: the Space Hardware Design section of Graduate Projects I & II (ASEN 5018 & ASEN 6028). The goal of these courses is to teach graduate students how to design and build systems using a requirement-based approach and fundamental systems engineering practices. The two-semester sequence takes teams of about 15 students from requirements definition and preliminary design through manufacturing, integration, and testing. In addition to the design process, students learn key professional skills such as working effectively in groups, finding solutions to open-ended problems, and actually building a system to their own set of specifications. The partnership between AES and LASP allows us to include engineering professionals in the mix, thus more effectively training science and engineering students for future roles in the civilian or commercial space industry. The mentoring process with LASP engineers helps to mitigate risk of the inexperience of the students and ensures consistent system engineer oversight for the multi-year CubeSat programs.

  1. Robotic Mission to Mars: Hands-on, minds-on, web-based learning

    NASA Astrophysics Data System (ADS)

    Mathers, Naomi; Goktogen, Ali; Rankin, John; Anderson, Marion

    2012-11-01

    Problem-based learning has been demonstrated as an effective methodology for developing analytical skills and critical thinking. The use of scenario-based learning incorporates problem-based learning whilst encouraging students to collaborate with their colleagues and dynamically adapt to their environment. This increased interaction stimulates a deeper understanding and the generation of new knowledge. The Victorian Space Science Education Centre (VSSEC) uses scenario-based learning in its Mission to Mars, Mission to the Orbiting Space Laboratory and Primary Expedition to the M.A.R.S. Base programs. These programs utilize methodologies such as hands-on applications, immersive-learning, integrated technologies, critical thinking and mentoring to engage students in Science, Technology, Engineering and Mathematics (STEM) and highlight potential career paths in science and engineering. The immersive nature of the programs demands specialist environments such as a simulated Mars environment, Mission Control and Space Laboratory, thus restricting these programs to a physical location and limiting student access to the programs. To move beyond these limitations, VSSEC worked with its university partners to develop a web-based mission that delivered the benefits of scenario-based learning within a school environment. The Robotic Mission to Mars allows students to remotely control a real rover, developed by the Australian Centre for Field Robotics (ACFR), on the VSSEC Mars surface. After completing a pre-mission training program and site selection activity, students take on the roles of scientists and engineers in Mission Control to complete a mission and collect data for further analysis. Mission Control is established using software developed by the ACRI Games Technology Lab at La Trobe University using the principles of serious gaming. The software allows students to control the rover, monitor its systems and collect scientific data for analysis. This program encourages students to work scientifically and explores the interaction between scientists and engineers. This paper presents the development of the program, including the involvement of university students in the development of the rover, the software, and the collation of the scientific data. It also presents the results of the trial phase of this program including the impact on student engagement and learning outcomes.

  2. Young Engineers and Scientists (YES) 2010 - Engaging Teachers in Space Research

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Reiff, P. H.

    2010-12-01

    During the past 18 years, Young Engineers and Scientists (YES) has been a community partnership between local high schools in San Antonio, Texas (USA), and Southwest Research Institute (SwRI). The goals of YES are to increase the number of high school students, especially those from underrepresented groups, seeking careers in science and engineering, to enhance their success in entering the college and major of their choice, and to promote teacher development in STEM fields. This is accomplished by allowing students and teachers to interact on a continuing basis with role models at SwRI in real-world research experiences in physical sciences (including space science), information sciences, and a variety of engineering fields. A total of 239 students have completed YES or are currently enrolled. Of these students, 38% are females and 56% are ethnic minorities, reflecting the local ethnic diversity, and 67% represent underserved groups. Presently, there are 21 students and 9 secondary school teachers enrolled in the YES 2010/2011 Program. YES consists of an intensive three-week summer workshop held at SwRI where students and teachers experience the research environment and a collegial mentorship where they complete individual research projects under the guidance of SwRI mentors during the academic year. YES students develop a website (yesserver.space.swri.edu) for topics in space science (this year was ESA's Rosetta Mission) and high school STEM teachers develop space-related lessons for classroom presentation. Teachers participate in an in-service workshop to share their developed classroom materials and spread awareness of space-related research. At the end of the school year, students publicly present and display their work, spreading career awareness to other students and teachers. Partnerships between research institutes, local high schools, and community foundations, like the YES Program, can positively affect students’ preparation for STEM careers via real-world research experiences with mentorship teams consisting of professional staff and qualified teachers. Acknowledgements: We acknowledge support from the NASA MMS Mission, Texas Space Grant Consortium, SwRI, and local charitable foundations.

  3. Young engineers and scientists - a mentorship program emphasizing space education

    NASA Astrophysics Data System (ADS)

    Boice, Daniel; Asbell, Elaine; Reiff, Patricia

    Young Engineers and Scientists (YES) is a community partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA) during the past 16 years. The YES program provides talented high school juniors and seniors a bridge between classroom instruction and real world, research experiences in physical sciences (including space science) and engineering. The first component of YES is an intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year. Afterwards, students complete individual research projects under the guidance of their mentors during the academic year and earn honors credit. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. During these years, YES has developed a website for topics in space science from the perspective of high school students, including NASA's Magnetospheric Multiscale Mission (MMS) (http://yesserver.space.swri.edu). High school science teachers participate in the workshop and develop space-related lessons for classroom presentation in the academic year. Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors. Over the past 16 years, all YES graduates have entered college, several have worked for SwRI, one business has started, and three scientific publications have resulted. Acknowledgements. We acknowledge funding and support from the NASA MMS Mission, Texas Space Grant Consortium, Northside Independent School District, SwRI, and several local charitable foundations.

  4. YES 2K7: A Mentorship Program for Young Engineers and Scientists

    NASA Astrophysics Data System (ADS)

    Boice, Daniel C.; Asbell, E.; Reiff, P.

    2007-10-01

    The Young Engineers and Scientists 2007 (YES 2K7) Program is a community partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA). YES has been highly successful during the past 15 years, with YES 2K7 continuing this trend. The YES program provides talented high school juniors and seniors a bridge between classroom instruction and real world, research experiences in physical sciences (including space science and astronomy) and engineering. YES 2K7 consists of two parts: 1) an intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year; and 2) a collegial mentorship where students complete individual research projects under the guidance of their mentors during the academic year and earn honors credit. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. YES 2K7 developed a website for the Magnetospheric Multiscale Mission (MMS) from the perspective of 20 high school students (yesserver.space.swri.edu). Over the past 15 years, all YES graduates have entered college, several have worked for SwRI, and three scientific publications have resulted. Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors. Acknowledgements: We acknowledge funding and support from the NASA MMS Mission, SwRI, Northside Independent School District, and local charitable foundations.

  5. The James Webb Space Telescope RealWorld-InWorld Design Challenge: Involving Professionals in a Virtual Classroom

    NASA Astrophysics Data System (ADS)

    Masetti, Margaret; Bowers, S.

    2011-01-01

    Students around the country are becoming experts on the James Webb Space Telescope by designing solutions to two of the design challenges presented by this complex mission. RealWorld-InWorld has two parts; the first (the Real World portion) has high-school students working face to face in their classroom as engineers and scientists. The InWorld phase starts December 15, 2010 as interested teachers and their teams of high school students register to move their work into a 3D multi-user virtual world environment. At the start of this phase, college students from all over the country choose a registered team to lead InWorld. Each InWorld team is also assigned an engineer or scientist mentor. In this virtual world setting, each team refines their design solutions and creates a 3D model of the Webb telescope. InWorld teams will use 21st century tools to collaborate and build in the virtual world environment. Each team will learn, not only from their own team members, but will have the opportunity to interact with James Webb Space Telescope researchers through the virtual world setting, which allows for synchronous interactions. Halfway through the challenge, design solutions will be critiqued and a mystery problem will be introduced for each team. The top five teams will be invited to present their work during a synchronous Education Forum April 14, 2011. The top team will earn scholarships and technology. This is an excellent opportunity for professionals in both astronomy and associated engineering disciplines to become involved with a unique educational program. Besides the chance to mentor a group of interested students, there are many opportunities to interact with the students as a guest, via chats and presentations.

  6. NASA Symposium 76. [opportunities for minorities and women in NASA programs

    NASA Technical Reports Server (NTRS)

    1976-01-01

    New Mexico State University and the National Aeronautics and Space Administration hosted a symposium to promote NASA's efforts to increase the available pool of minority and women scientists and engineers to meet affirmative hiring goals. The conferences also provided an opportunity for key NASA officials to meet with appropriate officials of participating institutions to stimulate greater academic interest (among professors and students) in NASA's research and development programs. Minority aerospace scientists and engineers had opportunity to interact with the minority community, particulary with young people at the junior high, high school, and college levels. One aim was to raise minority community's level of understanding regarding NASA's Regional Distribution System for storage and retrieval of scientific and technical information.

  7. KSC-02pd0659

    NASA Image and Video Library

    2002-05-14

    KENNEDY SPACE CENTER, FLA. -- Gregg Buckingham, with KSC's Center for Space Education, addresses participants in this year's NASA MarsPort Engineering Design Student Competition 2002 conference at the KSC Visitor Complex, organized by the Florida Space Grant Consortium. Students and faculty from the nation's universities converged at Kennedy for the MarsPort Competition, presenting papers on engineering trade studies to design optimal configurations for a MarsPort Deployable Greenhouse for operation on the surface of Mars. Judges in the competition were from KSC, Dynamac Corporation and Florida Institute of Technology. The winning team's innovative ideas will be used by NASA to evaluate and study other engineering trade concepts. Also featured at the opening ceremony were Dr. Sam Durrance, FSGC director and former astronaut, and Dr. Gary Stutte, plant scientist, Dynamac Corporation.

  8. Modifying your Physics and Astronomy Courses to Incorporate Heliophysics - Some Examples

    NASA Astrophysics Data System (ADS)

    Cebulka, Rebecca; Cox, Amanda; Rodriguez Garrigues, Alvar; Hoshino, Laura; Fitzgerald, Cullen; Montgomery, M.; Al-Rawi, Ahlam N.; Velissaris, Christos; Flitsiyan, Elena

    2016-01-01

    Although physics and astronomy courses include heliophysics topics, students still leave the courses without knowing what heliophysics is and how heliophysics relates to their daily lives. To meet goals of NASA's Living With a Star Program, UCF Physics has modified courses such as SCALE-UP: Electricity and Magnetism for Engineers and Scientists, Astronomy (for non-science majors), and Astrophysics to include heliophysics topics. In this poster, we present the previous labs, the student-modified labs to incorporate heliophysics, and we present student learning statistics.

  9. Day at Goddard

    NASA Astrophysics Data System (ADS)

    Wawro, Martha; Van Norden, Wendy

    2013-03-01

    Day at Goddard is an all day event for high school students that the SDO EPO team has been running for 5 years now. During the event, students are given a tour of the integration and testing facilities, shown science on a sphere, participate in a meet and greet with scientists and engineers and participate in a hands-on lab activity. The purpose of these field trips is to increase the students' interest in STEM subjects, expose them to STEM-related careers and increase their awareness of the research that NASA conducts.

  10. Utility of predicting group membership and the role of spatial visualization in becoming an engineer, physical scientist, or artist.

    PubMed

    Humphreys, L G; Lubinski, D; Yao, G

    1993-04-01

    This article has two themes: First, we explicate how the prediction of group membership can augment test validation designs restricted to prediction of individual differences in criterion performance. Second, we illustrate the utility of this methodology by documenting the importance of spatial visualization for becoming an engineer, physical scientist, or artist. This involved various longitudinal analyses on a sample of 400,000 high school students tracked after 11 years following their high school graduation. The predictive validities of Spatial-Math and Verbal-Math ability composites were established by successfully differentiating a variety of educational and occupational groups. One implication of our findings is that physical science and engineering disciplines appear to be losing many talented persons by restricting assessment to conventional mathematical and verbal abilities, such as those of the Scholastic Aptitude Test (SAT) and the Graduate Record Examination (GRE).

  11. Ocean Instruments Web Site for Undergraduate, Secondary and Informal Education

    NASA Astrophysics Data System (ADS)

    Farrington, J. W.; Nevala, A.; Dolby, L. A.

    2004-12-01

    An Ocean Instruments web site has been developed that makes available information about ocean sampling and measurement instruments and platforms. The site features text, pictures, diagrams and background information written or edited by experts in ocean science and engineering and contains links to glossaries and multimedia technologies including video streaming, audio packages, and searchable databases. The site was developed after advisory meetings with selected professors teaching undergraduate classes who responded to the question, what could Woods Hole Oceanographic Institution supply to enhance undergraduate education in ocean sciences, life sciences, and geosciences? Prototypes were developed and tested with students, potential users, and potential contributors. The site is hosted by WHOI. The initial five instruments featured were provided by four WHOI scientists and engineers and by one Sea Education Association faculty member. The site is now open to contributions from scientists and engineers worldwide. The site will not advertise or promote the use of individual ocean instruments.

  12. Summer of Innovation Kick Off

    NASA Image and Video Library

    2010-06-09

    Jet Propulsion Laboratory Director Dr. Charles Elachi speaks with teachers and middle school students during the kick off of NASA's Summer of Innovation program at JPL in Pasadena, Calif., Thursday, June 10, 2010. Through the program, NASA will engage thousands of middle school students and teachers in stimulating math and science-based education programs with the goal of increasing the number of future scientists, mathematicians, and engineers. Photo Credit: (NASA/Bill Ingalls)

  13. Summer of Innovation Kick Off

    NASA Image and Video Library

    2010-06-09

    NASA astronaut Leland Melvin welcomes teachers and middle school students to the kick off of NASA's Summer of Innovation program at the Jet Propulsion Laboratory in Pasadena, Calif., Thursday, June 10, 2010. Through the program, NASA will engage thousands of middle school students and teachers in stimulating math and science-based education programs with the goal of increasing the number of future scientists, mathematicians, and engineers. Photo Credit: (NASA/Bill Ingalls)

  14. Summer of Innovation Kick Off

    NASA Image and Video Library

    2010-06-09

    NASA Administrator Charles Bolden speaks with teachers and middle school students during the kick off of NASA's Summer of Innovation program at the Jet Propulsion Laboratory in Pasadena, Calif., Thursday, June 10, 2010. Through the program, NASA will engage thousands of middle school students and teachers in stimulating math and science-based education programs with the goal of increasing the number of future scientists, mathematicians, and engineers. Photo Credit: (NASA/Bill Ingalls)

  15. Summer of Innovation Kick Off

    NASA Image and Video Library

    2010-06-09

    NASA Administrator Charles Bolden signs autographs to middle school students during the kick off of NASA's Summer of Innovation program at the Jet Propulsion Laboratory in Pasadena, Calif., Thursday, June 10, 2010. Through the program, NASA will engage thousands of middle school students and teachers in stimulating math and science-based education programs with the goal of increasing the number of future scientists, mathematicians, and engineers. Photo Credit: (NASA/Bill Ingalls)

  16. Summer of Innovation Kick Off

    NASA Image and Video Library

    2010-06-09

    NASA astronaut Leland Melvin signs autographs to middle school students during the kick off of NASA's Summer of Innovation program at the Jet Propulsion Laboratory in Pasadena, Calif., Thursday, June 10, 2010. Through the program, NASA will engage thousands of middle school students and teachers in stimulating math and science-based education programs with the goal of increasing the number of future scientists, mathematicians, and engineers. Photo Credit: (NASA/Bill Ingalls)

  17. The NASA Space Life Sciences Training Program: Accomplishments Since 2013

    NASA Technical Reports Server (NTRS)

    Rask, Jon; Gibbs, Kristina; Ray, Hami; Bridges, Desireemoi; Bailey, Brad; Smith, Jeff; Sato, Kevin; Taylor, Elizabeth

    2017-01-01

    The NASA Space Life Sciences Training Program (SLSTP) provides undergraduate students entering their junior or senior years with professional experience in space life science disciplines. This challenging ten-week summer program is held at NASA Ames Research Center. The primary goal of the program is to train the next generation of scientists and engineers, enabling NASA to meet future research and development challenges in the space life sciences. Students work closely with NASA scientists and engineers on cutting-edge research and technology development. In addition to conducting hands-on research and presenting their findings, SLSTP students attend technical lectures given by experts on a wide range of topics, tour NASA research facilities, participate in leadership and team building exercises, and complete a group project. For this presentation, we will highlight program processes, accomplishments, goals, and feedback from alumni and mentors since 2013. To date, 49 students from 41 different academic institutions, 9 staffers, and 21 mentors have participated in the program. The SLSTP is funded by Space Biology, which is part of the Space Life and Physical Sciences Research and Application division of NASA's Human Exploration and Operations Mission Directorate. The SLSTP is managed by the Space Biology Project within the Science Directorate at Ames Research Center.

  18. 45 CFR 9.1 - Purpose.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 1 2011-10-01 2011-10-01 false Purpose. 9.1 Section 9.1 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION USE OF HHS RESEARCH FACILITIES BY ACADEMIC SCIENTISTS, ENGINEERS, AND STUDENTS § 9.1 Purpose. To enhance the availability of DHHS scientific research...

  19. 45 CFR 9.1 - Purpose.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Purpose. 9.1 Section 9.1 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION USE OF HHS RESEARCH FACILITIES BY ACADEMIC SCIENTISTS, ENGINEERS, AND STUDENTS § 9.1 Purpose. To enhance the availability of DHHS scientific research...

  20. Teaching Math to the Talented

    ERIC Educational Resources Information Center

    Hanushek, Eric A.; Peterson, Paul E.; Woessmann, Ludger

    2011-01-01

    Maintaining America's productivity as a nation depends importantly on developing a highly qualified cadre of scientists, engineers, entrepreneurs, and other professionals. To realize that objective requires a system of schooling that produces students with advanced math and science skills. To see how well schools in the United States do at…

  1. Vocabulary, Concept, Evidence, and Examples

    ERIC Educational Resources Information Center

    D'Alessandro, John; Sorenson, Tim; Homoelle, Bradley; Hodun, Tony

    2014-01-01

    Reading is critical for scientific thinking. It is a foundation for many of the skills in which scientists and engineers must be proficient, such as conducting research, developing informed conjectures, and engaging in reasoned argument (NRC 2012). Yet, students frequently find science reading difficult, time-consuming, and frustrating. Strategies…

  2. iss055e016051

    NASA Image and Video Library

    2018-04-11

    iss055e016051 (April 11, 2018) --- NASA astronaut and Flight Engineer Ricky Arnold works with the student-designed Genes in Space-5 experiment inside the Harmony module. The genetic research is helping scientists understand the relationship between DNA alterations and weakened immune systems possibly caused by living in space.

  3. Basic Scientific Subroutines, Volume II.

    ERIC Educational Resources Information Center

    Ruckdeschel, F. R.

    This book, second in a series dealing with scientific programing in the BASIC language, provides students, engineers, and scientists with a documented library of subroutines for scientific applications. Subjects of the eight chapters include: (1) least-squares approximation of functions and smoothing of data; (2) approximating functions by series…

  4. Computing Logarithms by Hand

    ERIC Educational Resources Information Center

    Reed, Cameron

    2016-01-01

    How can old-fashioned tables of logarithms be computed without technology? Today, of course, no practicing mathematician, scientist, or engineer would actually use logarithms to carry out a calculation, let alone worry about deriving them from scratch. But high school students may be curious about the process. This article develops a…

  5. 45 CFR 9.5 - Restrictions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 1 2014-10-01 2014-10-01 false Restrictions. 9.5 Section 9.5 Public Welfare Department of Health and Human Services GENERAL ADMINISTRATION USE OF HHS RESEARCH FACILITIES BY ACADEMIC SCIENTISTS, ENGINEERS, AND STUDENTS § 9.5 Restrictions. (a) Each individual authorized to use Department...

  6. 45 CFR 9.5 - Restrictions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 1 2013-10-01 2013-10-01 false Restrictions. 9.5 Section 9.5 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION USE OF HHS RESEARCH FACILITIES BY ACADEMIC SCIENTISTS, ENGINEERS, AND STUDENTS § 9.5 Restrictions. (a) Each individual authorized to use Department...

  7. 45 CFR 9.5 - Restrictions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Restrictions. 9.5 Section 9.5 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION USE OF HHS RESEARCH FACILITIES BY ACADEMIC SCIENTISTS, ENGINEERS, AND STUDENTS § 9.5 Restrictions. (a) Each individual authorized to use Department...

  8. 45 CFR 9.5 - Restrictions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 1 2012-10-01 2012-10-01 false Restrictions. 9.5 Section 9.5 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION USE OF HHS RESEARCH FACILITIES BY ACADEMIC SCIENTISTS, ENGINEERS, AND STUDENTS § 9.5 Restrictions. (a) Each individual authorized to use Department...

  9. 45 CFR 9.5 - Restrictions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 1 2011-10-01 2011-10-01 false Restrictions. 9.5 Section 9.5 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION USE OF HHS RESEARCH FACILITIES BY ACADEMIC SCIENTISTS, ENGINEERS, AND STUDENTS § 9.5 Restrictions. (a) Each individual authorized to use Department...

  10. Training the Future - Swamp Work Activities

    NASA Image and Video Library

    2017-07-19

    In the Swamp Works laboratory at NASA's Kennedy Space Center in Florida, student interns such as Thomas Muller, left, and Austin Langdon are joining agency scientists, contributing in the area of Exploration Research and Technology. Muller is pursuing a degree in computer engineering and control systems and Florida Tech. Langdon is an electrical engineering major at the University of Kentucky. The agency attracts its future workforce through the NASA Internship, Fellowships and Scholarships, or NIFS, Program.

  11. Real Science, Real Learning: Bridging the Gap Between Scientists, Educators and Students

    NASA Astrophysics Data System (ADS)

    Lewis, Y.

    2006-05-01

    Today as never before, America needs its citizens to be literate in science and technology. Not only must we only inspire a new generation of scientists and engineers and technologists, we must foster a society capable of meeting complex, 21st-century challenges. Unfortunately, the need for creative, flexible thinkers is growing at a time when our young students are lagging in science interest and performance. Over the past 17 years, the JASON Project has worked to link real science and scientists to the classroom. This link provide viable pipeline to creating the next generation scientists and researchers. Ultimately, JASON's mission is to improve the way science is taught by enabling students to learn directly from leading scientists. Through partnerships with agencies such as NOAA and NASA, JASON creates multimedia classroom products based on current scientific research. Broadcasts of science expeditions, hosted by leading researchers, are coupled with classroom materials that include interactive computer-based simulations, video- on-demand, inquiry-based experiments and activities, and print materials for students and teachers. A "gated" Web site hosts online resources and provides a secure platform to network with scientists and other classrooms in a nationwide community of learners. Each curriculum is organized around a specific theme for a comprehensive learning experience. It may be taught as a complete package, or individual components can be selected to teach specific, standards-based concepts. Such thematic units include: Disappearing Wetlands, Mysteries of Earth and Mars, and Monster Storms. All JASON curriculum units are grounded in "inquiry-based learning." The highly interactive curriculum will enable students to access current, real-world scientific research and employ the scientific method through reflection, investigation, identification of problems, sharing of data, and forming and testing hypotheses. JASON specializes in effectively applying technology in science education by designing animated interactive visualizations that promote student understanding of complex scientific concepts and systems (Rieber, 1990, 1996). JASON's experience in utilizing the power of simulation technology has been widely recognized for its effectiveness in exciting and engaging students in science learning by independent evaluations of JASON's multimedia science curriculum (Ba et al., 2001; Goldenberg et al., 2003). The data collected indicates that JASON's science products have had a positive impact on students' science learning, have positively influenced their perceptions of scientists and of becoming scientists, and have helped diverse students grasp a deeper understanding of complex scientific content, concepts and technologies.

  12. A Partnership between English Language Learners and a Team of Rocket Scientists: EPO for the NASA SDO Extreme-Ultraviolet Variability Experiment (EVE)

    NASA Astrophysics Data System (ADS)

    Buhr, S. M.; Eparvier, F.; McCaffrey, M.; Murillo, M.

    2007-12-01

    Recent immigrant high school students were successfully engaged in learning about Sun-Earth connections through a partnership with the NASA SDO Extreme-Ultraviolet Variability Experiment (EVE) project. The students were enrolled in a pilot course as part of the Math, Engineering and Science Achievement MESA) program. For many of the students, this was the only science option available to them due to language limitations. The English Language Learner (ELL) students doubled their achievement on a pre- and post-assessment on the content of the course. Students learned scientific content and vocabulary in English with support in Spanish, attended field trips, hosted scientist speakers, built and deployed space weather monitors as part of the Stanford SOLAR project, and gave final presentations in English, showcasing their new computer skills. Teachers who taught the students in other courses noted gains in the students' willingness to use English in class and noted gains in math skills. The MESA-EVE course won recognition as a Colorado MESA Program of Excellence and is being offered again in 2007-08. The course has been broken into modules for use in shorter after-school environments, or for use by EVE scientists who are outside of the Boulder area. Other EVE EPO includes professional development for teachers and content workshops for journalists.

  13. How high school science-related experiences influenced science career persistence

    NASA Astrophysics Data System (ADS)

    Shaw, Andrew D.

    The events of 9/11 brought into focus two ongoing trends that were present before this tragedy and have continued since: (1) The United States needs more scientists if it is to ensure its freedoms and maintain its economy. (2) The number of scientists in the "pipeline" is declining because of the diminished presence of foreign scientists (they are wanted in their own countries), the under-representation of minorities and women, and the reduced numbers of students able and willing to take on the scholastic rigors necessary for a science or engineering degree. Though much has been written about improving science education, and numerous projects have been conducted to promote it, few education researchers have questioned the scientists themselves about the experiences, practices, and people that positively influenced them, particularly during their pre-college years. Towards this end, thirty-two scientists were interviewed in order to address four research questions: (1) How did practicing scientists' personal relationships with their science teachers influence their decision to pursue a career in science? (2) What pedagogical methods (e.g. lectures, demonstrations, "hands-on" work, problem solving, small groups) used in their high school science courses, if any, played a significant role in propelling certain students towards a career as a practicing scientist? (3) What high school science-related support structures (e.g. labs, equipment, textbooks, technology), if any, played a significant role in propelling certain students towards a career as a practicing scientist? (4) What high school science-related educational activities (e.g. science fairs, clubs, summer internships), if any, played a significant role in propelling certain students towards a career as a practicing scientist? Some of the scientists reported that they knew they were headed towards a career in science before they even entered high school, while others did not make a decision about a science career until after they had graduated from college. The prevailing conviction, however, was that the encouragement from others (though not exclusively by teachers), the excellence of teaching (regardless of pedagogical style), and the richness of science related experiences were the most influential factors in either maintaining or initiating a persistence in science towards a career.

  14. Training the Future - Swamp Work Activities

    NASA Image and Video Library

    2017-07-19

    In the Swamp Works laboratory at NASA's Kennedy Space Center in Florida, student interns, from the left, Jeremiah House, Thomas Muller and Austin Langdon are joining agency scientists, contributing in the area of Exploration Research and Technology. House is studying computer/electrical engineering at John Brown University in Siloam Springs, Arkansas. Muller is pursuing a degree in computer engineering and control systems and Florida Tech. Langdon is an electrical engineering major at the University of Kentucky. The agency attracts its future workforce through the NASA Internship, Fellowships and Scholarships, or NIFS, Program.

  15. Youth's Engagement as Scientists and Engineers in an Afterschool Making and Tinkering Program

    NASA Astrophysics Data System (ADS)

    Simpson, Amber; Burris, Alexandra; Maltese, Adam

    2017-11-01

    Making and tinkering is currently gaining traction as an interdisciplinary approach to education. However, little is known about how these activities and explorations in formal and informal learning spaces address the content and skills common to professionals across science, technology, engineering, and mathematics. As such, the purpose of this qualitative study was to examine how youth were engaged in the eight science and engineering practices outlined within the US Next Generation Science Standards within an informal learning environment utilizing principles of tinkering within the daily activities. Findings highlight how youth and facilitators engaged and enacted in practices common to scientists and engineers. Yet, in this study, enactment of these practices "looked" differently than might be expected in a formal learning environment such as a laboratory setting. For example, in this setting, students were observed carrying out trials on their design as opposed to carrying out a formal scientific investigation. Results also highlight instances of doing science and engineering not explicitly stated within parameters of formal education documents in the USA, such as experiences with failure.

  16. Looking into the Earth

    NASA Astrophysics Data System (ADS)

    Mussett, Alan E.; Aftab Khan, M.; Button, Illustrated By Sue

    2000-12-01

    Looking Into the Earth comprehensively describes the principles and applications of both `global' and `exploration' geophysics on all scales. It forms an introduction to geophysics suitable for those who do not necessarily intend to become professional geophysicists, including geologists, civil engineers, environmental scientists, and field archaeologists. The book is organised into two parts: Part 1 describes the geophysical methods, while Part 2 illustrates their use in a number of extended case histories. Mathematical and physical principles are introduced at an elementary level, and then developed as necessary. Student questions and exercises are included at the end of each chapter. The book is aimed primarily at introductory and intermediate university students taking courses in geology, earth science, environmental science, and engineering. It will also form an excellent introductory textbook in geophysics departments, and will help practising geologists, archaeologists and engineers understand what geophysics can offer their work. Accessible to students with little background in maths and physics Covers both global and applied geophysics Well illustrated and contains many student exercises and case studies Written by experienced teachers of geophysics

  17. Education News at NASA

    NASA Technical Reports Server (NTRS)

    2004-01-01

    NASA s challenging missions provide unique opportunities for engaging and educating America s youth, the next generation of explorers. Led by Chief Education Officer Dr. Adena Williams Loston, the Agency coordinates education programs for students, faculty, and institutions in order to help inspire and motivate the scientists and engineers of the future.

  18. A Research Proposal to Evaluate the Merits of Writing across the Curriculum

    ERIC Educational Resources Information Center

    Dana, Heather; Hancock, Carol; Phillips, JoDee

    2011-01-01

    Students live in an information and knowledge management economy in which the dissemination and analysis of information requires intellectual, technical and interpersonal skills. As a direct response to higher education's challenge to produce more engineers, scientists, and business professionals, universities have increased the numbers of…

  19. Pioneering Mars: Turning the Red Planet Green with Earth's Smallest Settlers

    ERIC Educational Resources Information Center

    Cwikla, Julie; Milroy, Scott; Reider, David; Skelton, Tara

    2014-01-01

    Pioneering Mars: Turning the Red Planet Green with the Earth's Smallest Settlers (http://pioneeringmars.org) provides a partnership model for STEM (science, technology, engineering, and mathematics) learning that brings university scientists together with high school students to investigate whether cyanobacteria from Antarctica could survive on…

  20. How to Start a STEM Team

    ERIC Educational Resources Information Center

    Hughes, Bill

    2009-01-01

    The United States' poor performance in teaching math and science eliminates many of the best and brightest school children from the ranks of future scientists and engineers. With little chance to learn in school how science and math skills might translate into professionally useful knowledge, students are unable to make informed choices about…

  1. Purposeful Leadership: The Life Calling of Successful Women Scientists

    NASA Astrophysics Data System (ADS)

    West, Ja-Quel April

    The experiences of six women who are successful in the world of science, technology, engineering, and mathematics (STEM) are examined through lenses constructed from self-efficacy, resiliency, social capital, and identity. Each of the women successfully earned a doctorate in STEM, in spite of being the minority in a male-dominated career field. Examination of individual discoveries and experiences provides a platform for enhancing an understanding of what facilitates women scientists' achievements when pursuing meaningful work. All women in this study display, how social networks and personal characteristics have helped women scientists, become leaders and advance in their field. The findings of this research provides a scaffold for young students to will better understand, and appreciate how women scientists overcome many barriers, how women in science gained their strength, and fulfilled their purposeful leadership.

  2. Engineering a Cause and Cure to Climate Change; Working a culture change with our Future Engineers.

    NASA Astrophysics Data System (ADS)

    Hudier, E. J. J.

    2014-12-01

    Where scientist unravel the laws of nature giving the human race the means to remodel their environment, engineers are the tools that put together the very technologies that give humans this power. Early on, along our first steps through this industrialization era, development was the key word, nature could digest our waste products no matter what. We have managed to tamper with our atmosphere's gas composition and the climate is slowly remodelling our way of life. Engineers are now expected to be a key part of the solution. Engineering programs have evolved to include new dimensions such as ethics, communication and environment. We want future engineers to put these dimensions first while working on new machine designs, concepts and procedures. As undergraduate students with a deep science background we also want them to be a source of information for their co-workers and more. How well are we getting through? How good teachers our future engineers will be? This work take a look at the teaching/learning successes comparing engineering students with students attending an undergraduate program in biology. Methods emphasizing the acquisition of knowledge through lectures and reading assignments are tested along with activities aiming at unraveling the scientific fundamental behind environmental issues and putting forward original solutions to specific problematic. Concept knowledge scores, communications' quality and activities evaluations by students are discussed.

  3. Factors that encourage females to pursue physical science careers: Testing five common hypotheses

    NASA Astrophysics Data System (ADS)

    Hazari, Zahra; Potvin, Geoff; Lock, Robynne M.; Lung, Florin; Sadler, Philip M.; Sonnert, Gerhard

    2012-03-01

    There are many hypotheses regarding factors that may encourage female students to pursue careers in the physical sciences. Using Propensity Score Matching (PSM) on national data (n=7505) drawn from the Persistence Research in Science and Engineering (PRiSE) project, we test five commonly held beliefs including having a single-sex physics class, having a female physics teacher, having female scientist guest speakers in physics class, discussing the work of women scientists in physics class, and discussing the under-representation of women in physics class. The effect of these experiences is compared for female students who are matched on several factors, including parental education, prior science/math interests, and academic background, thereby controlling for the effect of many confounding variables.

  4. Students Compete in NASA's Student Launch Competition

    NASA Image and Video Library

    2018-03-30

    NASA's Student Launch competition challenges middle school, high school and college teams to design, build, test and fly a high-powered, reusable rocket to an altitude of one mile above ground level while carrying a payload. During the eight-month process, the selected teams will go through a series of design, test and readiness reviews that resemble the real-world process of rocket development. In addition to building and preparing their rocket and payload, the teams must also create and execute an education and outreach program that will share their work with their communities and help inspire the next generation of scientists, engineers and explorers. Student Launch is hosted by NASA's Marshall Space Flight Center in Huntsville, Alabama, and is managed by Marshall's Academic Affairs Office to further NASA’s major education goal of attracting and encouraging students to pursue degrees and careers in the STEM fields of science, technology, engineering and mathematics.

  5. PREFACE: 2nd International School and Conference Saint-Petersburg OPEN on Optoelectronics, Photonics, Engineering and Nanostructures (SPbOPEN2015)

    NASA Astrophysics Data System (ADS)

    2015-11-01

    The 2nd International School and Conference ''Saint Petersburg OPEN 2015'' on Optoelectronics, Photonics, Engineering and Nanostructures was held on April 6 - 8, 2015 at St. Petersburg Academic University. The School and Conference included a series of invited talks given by leading professors with the aim to introduce young scientists with actual problems and major advances in physics and technology. The keynote speakers were Mikhail V. Maximov (Ioffe Physico-Technical Institute RAS, Russia) Vladimir G. Dubrovskii (St. Petersburg Academic University and St. Petersburg State University, Russia) Anton Yu. Egorov (JSC Connector Optics, Russia) Victor V. Luchinin (St. Petersburg State Electrotechnical University, Russia) Vladislav E. Bugrov (St. Petersburg University of Internet Technologies, Mechanics and Optics, Russia) Vitali A. Schukin (VI Systems, Germany) Yuri P. Svirko (University of Eastern Finland, Finland) During the poster session all undergraduate and graduate students attending the conference presented their works. A sufficiently large number of participants, with more than 170 student attendees from all over the world, allowed the Conference to provide a fertile ground for fruitful discussions between the young scientists as well as to become a perfect platform for valuable discussions between student authors and highly experienced scientists. The best student papers, which were selected by the Program Committee and by the invited speakers basing on the theses and their poster presentation, were awarded with diplomas of the conference - see the photos. This year ''Saint Petersburg OPEN 2015'' is organized by St. Petersburg Academic University in cooperation with Peter the Great St. Petersburg Polytechnic University. The School and Conference is supported by Russian Science Foundation, SPIE (The International Society for Optics and Photonics), OSA (The Optical Society) and by Skolkovo Foundation. It is a continuation of the annual schools and seminars for youth on topical problems of physics and technology that are organized by the Academic University since 2009. We invite all the students and young scientists to attend ''Saint Petersburg OPEN'' in 2016! Please, find details at http://spbopen.spbau.com/

  6. Summer of Innovation Kick Off

    NASA Image and Video Library

    2010-06-09

    Performers from Los Angeles Hamilton High School's Kid Tribe entertain teachers and middle school students during the kick off of NASA's Summer of Innovation program at the Jet Propulsion Laboratory in Pasadena, Calif., Thursday, June 10, 2010. Through the program, NASA will engage thousands of middle school students and teachers in stimulating math and science-based education programs with the goal of increasing the number of future scientists, mathematicians, and engineers. Photo Credit: (NASA/Bill Ingalls)

  7. Summer of Innovation Kick Off

    NASA Image and Video Library

    2010-06-09

    A performer from Los Angeles Hamilton High School's Kid Tribe entertains teachers and middle school students during the kick off of NASA's Summer of Innovation program at the Jet Propulsion Laboratory in Pasadena, Calif., Thursday, June 10, 2010. Through the program, NASA will engage thousands of middle school students and teachers in stimulating math and science-based education programs with the goal of increasing the number of future scientists, mathematicians, and engineers. Photo Credit: (NASA/Bill Ingalls)

  8. Summer of Innovation Kick Off

    NASA Image and Video Library

    2010-06-09

    Teachers and middle school students react to performers from Los Angeles Hamilton High School's Kid Tribe during the kick off of NASA's Summer of Innovation program at the Jet Propulsion Laboratory in Pasadena, Calif., Thursday, June 10, 2010. Through the program, NASA will engage thousands of middle school students and teachers in stimulating math and science-based education programs with the goal of increasing the number of future scientists, mathematicians, and engineers. Photo Credit: (NASA/Bill Ingalls)

  9. Summer of Innovation Kick Off

    NASA Image and Video Library

    2010-06-09

    Jet Propulsion Laboratory Manager of Elementary and Secondary Education David Seidel motivates teachers and middle school students during the kick off of NASA's Summer of Innovation program at the Jet Propulsion Laboratory in Pasadena, Calif., Thursday, June 10, 2010. Through the program, NASA will engage thousands of middle school students and teachers in stimulating math and science-based education programs with the goal of increasing the number of future scientists, mathematicians, and engineers. Photo Credit: (NASA/Bill Ingalls)

  10. Summer of Innovation Kick Off

    NASA Image and Video Library

    2010-06-09

    NASA Administrator Charles Bolden, center, listens as NASA astronaut Leland Melvin welcomes teachers and middle school students to the kick off of NASA's Summer of Innovation program at the Jet Propulsion Laboratory in Pasadena, Calif., Thursday, June 10, 2010. Through the program, NASA will engage thousands of middle school students and teachers in stimulating math and science-based education programs with the goal of increasing the number of future scientists, mathematicians, and engineers. Photo Credit: (NASA/Bill Ingalls)

  11. Summer of Innovation Kick Off

    NASA Image and Video Library

    2010-06-09

    NASA astronaut Stephanie Wilson talks about her experiences to teachers and middle school students during the kick off of NASA's Summer of Innovation program at the Jet Propulsion Laboratory in Pasadena, Calif., Thursday, June 10, 2010. Through the program, NASA will engage thousands of middle school students and teachers in stimulating math and science-based education programs with the goal of increasing the number of future scientists, mathematicians, and engineers. Photo Credit: (NASA/Bill Ingalls)

  12. Community Coordinated Modeling Center: A Powerful Resource in Space Science and Space Weather Education

    NASA Astrophysics Data System (ADS)

    Chulaki, A.; Kuznetsova, M. M.; Rastaetter, L.; MacNeice, P. J.; Shim, J. S.; Pulkkinen, A. A.; Taktakishvili, A.; Mays, M. L.; Mendoza, A. M. M.; Zheng, Y.; Mullinix, R.; Collado-Vega, Y. M.; Maddox, M. M.; Pembroke, A. D.; Wiegand, C.

    2015-12-01

    Community Coordinated Modeling Center (CCMC) is a NASA affiliated interagency partnership with the primary goal of aiding the transition of modern space science models into space weather forecasting while supporting space science research. Additionally, over the past ten years it has established itself as a global space science education resource supporting undergraduate and graduate education and research, and spreading space weather awareness worldwide. A unique combination of assets, capabilities and close ties to the scientific and educational communities enable this small group to serve as a hub for raising generations of young space scientists and engineers. CCMC resources are publicly available online, providing unprecedented global access to the largest collection of modern space science models (developed by the international research community). CCMC has revolutionized the way simulations are utilized in classrooms settings, student projects, and scientific labs and serves hundreds of educators, students and researchers every year. Another major CCMC asset is an expert space weather prototyping team primarily serving NASA's interplanetary space weather needs. Capitalizing on its unrivaled capabilities and experiences, the team provides in-depth space weather training to students and professionals worldwide, and offers an amazing opportunity for undergraduates to engage in real-time space weather monitoring, analysis, forecasting and research. In-house development of state-of-the-art space weather tools and applications provides exciting opportunities to students majoring in computer science and computer engineering fields to intern with the software engineers at the CCMC while also learning about the space weather from the NASA scientists.

  13. Foreign Science and Engineering Presence in U.S. Institutions and the Labor Force

    DTIC Science & Technology

    2007-01-12

    physical therapists . The application for H-1B status must be filed by an employer; an individual cannot obtain an H-1B visa on his or her own...scientist or engineer for permanent residence, if they meet terms established by the Immigration and Nationality Act. 3Foreign students planning to remain...56%; for physical sciences, 64%; life sciences, 63%; mathematics, 57%; computer sciences, 63%; and agricultural sciences, 38%. Stay rates are not

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perl, Martin L.; /SLAC

    This paper outlines what an individual engineer or scientist can do to increase her or his creativity. It then describes what educators can do and makes two proposals: (a) Reduce the number of courses required for undergraduate and graduate degrees in engineering and science and (b) change the nature of laboratory courses and Ph. D. research so that students have the freedom to try out their own ideas, with the expectation that they will make mistakes and will both expand their creativity and learn more, by doing.

  15. Exploring Earth Systems Through STEM

    NASA Astrophysics Data System (ADS)

    Chen, Loris; Salmon, Jennifer; Burns, Courtney

    2015-04-01

    During the 2010 school year, grade 8 science teachers at Dwight D. Eisenhower Middle School in Wyckoff, New Jersey, began using the draft of A Framework for K-12 Science Education to transition to the Next Generation Science Standards. In an evolutionary process of testing and revising, teachers work collaboratively to develop problem-based science, technology, engineering, and mathematics (STEM) units that integrate earth science, physical science, and life science topics. Students explore the interconnections of Earth's atmosphere, lithosphere, hydrosphere, and biosphere through problem-based learning. Problem-based learning engages students in (1) direct observations in the field and classroom, (2) collection and analysis of data from remote sensors and hand-held sensors, and (3) analysis of physical, mathematical, and virtual models. Students use a variety of technologies and applications in their investigations, for example iPad apps, Google Classroom, and Vernier sensors. Data from NASA, NOAA, non-government organizations, and scientific research papers inspire student questions and spark investigations. Teachers create materials and websites to support student learning. Teachers curate reading, video, simulations, and other Internet resources for students. Because curriculum is standards-based as opposed to textbook-based, teacher participation in workshops and institutes frequently translates into new or improved study units. Recent programs include Toyota International Teacher Program to Costa Rica, Japan Society Going Global, Siemens STEM Academy, U.S. Naval Academy SET Sail, and NJSTA Maitland P. Simmons Memorial Award Summer Institute. Unit themes include weather and climate, introduction to general chemistry and biochemistry, and cells and heredity. Each if the three 12-week units has embedded engineering challenges inspired by current events, community needs, and/or the work of scientists. The unit segments begin with a problem, progress to observations and data collection, and end with an engineering application. English language arts and mathematics skills are developed through performance assessments that include written arguments that require students to state a claim and support the claim with evidence, analysis, and reasoning. Student selected capstone projects are completed during the final three weeks of the school year. Partnerships with universities, research scientists, and science centers are essential to the development of unit challenges. Collaborative projects have included studies of iron cycling in the Ross Sea with scientists from Rutgers University, climate and climate change using NASA data and resources from Liberty Science Center, human and natural impacts on endangered species with San Diego Zoo Institute for Conservation Research, and air quality monitoring with the University of Northern Iowa. Grant funds have supported student research projects involving air quality improvement, urban heat island mitigation, alternative energies, and sustainability.

  16. KSC-02pd0658

    NASA Image and Video Library

    2002-05-14

    KENNEDY SPACE CENTER, FLA. -- JoAnn H. Morgan, director of External Relations and Business Development at KSC, welcomes participants in this year's NASA MarsPort Engineering Design Student Competition 2002 conference at the KSC Visitor Complex, organized by the Florida Space Grant Consortium. Students and faculty from the nation's universities converged at Kennedy for the MarsPort Competition, presenting papers on engineering trade studies to design optimal configurations for a MarsPort Deployable Greenhouse for operation on the surface of Mars. Judges in the competition were from KSC, Dynamac Corporation and Florida Institute of Technology. The winning team's innovative ideas will be used by NASA to evaluate and study other engineering trade concepts. Also featured at the opening ceremony were Dr. Sam Durrance, FSGC director and former astronaut, and Dr. Gary Stutte, plant scientist, Dynamac Corporation.

  17. 20th International Conference for Students and Young Scientists: Modern Techniques and Technologies (MTT'2014)

    NASA Astrophysics Data System (ADS)

    2014-10-01

    The active involvement of young researchers in scientific processes and the acquisition of scientific experience by gifted youth currently have a great value for the development of science. One of the research activities of National Research Tomsk Polytechnic University, aimed at the preparing and formation of the next generation of scientists, is the International Conference of Students and Young Scientists ''Modern Techniques and Technologies'', which was held in 2014 for the twentieth time. Great experience in the organization of scientific events has been acquired through years of carrying the conference. There are all the necessary resources for this: a team of organizers - employees of Tomsk Polytechnic University, premises provided with modern office equipment and equipment for demonstration, and leading scientists - professors of TPU, as well as the status of the university as a leading research university in Russia. This way the conference is able to attract world leading scientists for the collaboration. For the previous years the conference proved itself as a major scientific event at international level, which attracts more than 600 students and young scientists from Russia, CIS and other countries. The conference provides oral plenary and section reports. The conference is organized around lectures, where leading Russian and foreign scientists deliver plenary presentations to young audiences. An important indicator of this scientific event is the magnitude of the coverage of scientific fields: energy, heat and power, instrument making, engineering, systems and devices for medical purposes, electromechanics, material science, computer science and control in technical systems, nanotechnologies and nanomaterials, physical methods in science and technology, control and quality management, design and technology of artistic materials processing. The main issues considered by young researchers at the conference were related to the analysis of contemporary problems using new techniques and application of new technologies.

  18. Integration of Wind Energy Systems into Power Engineering Education Program at UW-Madison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venkataramanan, Giri; Lesieutre, Bernard; Jahns, Thomas

    This project has developed an integrated curriculum focused on the power engineering aspects of wind energy systems that builds upon a well-established graduate educational program at UW- Madison. Five new courses have been developed and delivered to students. Some of the courses have been offered on multiple occasions. The courses include: Control of electric drives for Wind Power applications, Utility Applications of Power Electronics (Wind Power), Practicum in Small Wind Turbines, Utility Integration of Wind Power, and Wind and Weather for Scientists and Engineers. Utility Applications of Power Electronics (Wind Power) has been provided for distance education as well asmore » on-campus education. Several industrial internships for students have been organized. Numerous campus seminars that provide discussion on emerging issues related to wind power development have been delivered in conjunction with other campus events. Annual student conferences have been initiated, that extend beyond wind power to include sustainable energy topics to draw a large group of stakeholders. Energy policy electives for engineering students have been identified for students to participate through a certificate program. Wind turbines build by students have been installed at a UW-Madison facility, as a test-bed. A Master of Engineering program in Sustainable Systems Engineering has been initiated that incorporates specializations that include in wind energy curricula. The project has enabled UW-Madison to establish leadership at graduate level higher education in the field of wind power integration with the electric grid.« less

  19. High school student physics research experience yields positive results

    NASA Astrophysics Data System (ADS)

    Podolak, K. R.; Walters, M. J.

    2016-03-01

    All high school students that wish to continue onto college are seeking opportunities to be competitive in the college market. They participate in extra-curricular activities which are seen to foster creativity and the skills necessary to do well in the college environment. In the case of students with an interest in physics, participating in a small scale research project while in high school gives them the hands on experience and ultimately prepares them more for the college experience. SUNY Plattsburgh’s Physics department started a five-week summer program for high school students in 2012. This program has proved not only beneficial for students while in the program, but also as they continue on in their development as scientists/engineers. Independent research, such as that offered by SUNY Plattsburgh’s five-week summer program, offers students a feel and taste of the culture of doing research, and life as a scientist. It is a short-term, risk free way to investigate whether a career in research or a particular scientific field is a good fit.

  20. Suborbital Platforms as a Tool for a Symbiotic Relationship Between Scientists, Engineers, and Students

    NASA Technical Reports Server (NTRS)

    Chamberlin, Phillip C.

    2011-01-01

    Sounding rockets started in-situ space experimentation over 60 years ago with scientific experiments replacing warheads on captured V- 2 German rockets. Prior to this, and still today, suborbital platforms such as airplanes and high-altitude balloons have provided advantageous remote sensing observations advancing many areas of Earth and Space science. There is still a place for first-rate science in both stand-alone missions as well as providing complimentary measurements to the larger orbital missions. Along with the aforementioned science, the cost effectiveness and development times provided by sub-orbital platforms allows for perfect hands-on and first rate educational opportunities for undergraduate and graduate students. This talk will give examples and discuss the mutually beneficial opportunities that scientists and students obtain in development of suborbital missions. Also discussed will be how the next generation of space vehicles should help eliminate the number one obstacle to these programs - launch opportunities.

  1. Advanced Industrial Materials (AIM) fellowship program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCleary, D.D.

    1997-04-01

    The Advanced Industrial Materials (AIM) Program administers a Graduate Fellowship Program focused toward helping students who are currently under represented in the nation`s pool of scientists and engineers, enter and complete advanced degree programs. The objectives of the program are to: (1) establish and maintain cooperative linkages between DOE and professors at universities with graduate programs leading toward degrees or with degree options in Materials Science, Materials Engineering, Metallurgical Engineering, and Ceramic Engineering, the disciplines most closely related to the AIM Program at Oak Ridge National Laboratory (ORNL); (2) strengthen the capabilities and increase the level of participation of currentlymore » under represented groups in master`s degree programs, and (3) offer graduate students an opportunity for practical research experience related to their thesis topic through the three-month research assignment or practicum at ORNL. The program is administered by the Oak Ridge Institute for Science and Education (ORISE).« less

  2. A case study of the influences of audience and purpose on the composing processes of an engineer

    NASA Technical Reports Server (NTRS)

    Stalnaker, B. J.

    1981-01-01

    The design and preliminary findings of a study of composing processes (on the job) of engineers, managers, and scientists is presented. The influences of audience and purpose on the composing process of engineers was of concern; specifically, the cognitive processes, physical behaviors, and factors that influence the evoluton of a piece of writing. An overview of the study, related literature, outlines of research design, and preliminary findings from a case study of engineers are given. It is suggested that teaching be adapted to help students learn to represent rhetorical problems to guide composing for effective writing.

  3. The McBride Honors Program in Public Affairs for Scientists and Engineers

    NASA Astrophysics Data System (ADS)

    Harrison, W. J.; Miller, R. L.; Olds, B. M.; Sacks, A. B.

    2006-12-01

    The McBride Honors Program in Public Affairs at The Colorado School of Mines (CSM), instituted in 1978, is an award-winning exemplar in the liberal arts which provides a select number of CSM engineering students an opportunity to cross the boundaries of their technical expertise in engineering and applied science, and to gain the understanding and appreciation of the contexts in which engineering and applied science and all human systems reside, and specifically to explore and integrate the social, cultural, ethical and environmental implications of their future professional judgments and their roles as citizens in varied and complex settings. The 27 semester-hour program of seminars, courses, and off-campus activities features small seminars; a cross-disciplinary approach; and opportunities for one-on-one faculty tutorials, instruction and practice in oral and written communication, a Washington, D.C. public policy seminar, a practicum experience (internship or foreign study). Circumstances external to the McBride Program itself, which include the development and growth of the field of Public Affairs nationally and the persistence of legacy courses, have created the need to revitalize and refocus the historically cross-departmental Program. A recent curriculum reform effort has achieved a more thoroughly interdisciplinary learning experience to educate engineers and scientists who, as called for in the National Academy of Engineering's The Engineer of 2020 "will assume leadership positions from which they can serve as positive influences in the making of public policy and in the administration of government and industry". In this presentation we showcase best practices in curriculum reform, exemplified by a seminar in National policy analysis where students and faculty have recently investigated federal science funding decisions in support of natural hazards including earthquakes, tsunamis, wildland fires, and pandemic disease.

  4. STEM Mentor Breakfast at Debus Center

    NASA Image and Video Library

    2017-05-25

    Barbara Brown, center at the table, strategic implementation manager with the Exploration Research and Technology Programs at NASA's Kennedy Space Center in Florida, talks to students during a Women in STEM breakfast inside the Debus Conference Center at the Kennedy Space Center Visitor Complex. STEM is science, technology, engineering and math. The special event gave students competing in NASA's 8th Annual Robotic Mining Competition the chance to learn from female NASA scientists, engineers and professionals about their careers and the paths they took to working at Kennedy. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.

  5. STEM Mentor Breakfast at Debus Center

    NASA Image and Video Library

    2017-05-25

    Hortense Diggs, at right, the deputy director of the Communication and Public Engagement Directorate at NASA's Kennedy Space Center in Florida, talks to students during a Women in STEM breakfast inside the Debus Conference Center at the Kennedy Space Center Visitor Complex in Florida. STEM is science, technology, engineering and math. The special event gave students competing in NASA's 8th Annual Robotic Mining Competition the chance to learn from female NASA scientists, engineers and professionals about their careers and the paths they took to working at Kennedy. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.

  6. NASA Brevard Top Scholars

    NASA Image and Video Library

    2017-11-13

    Students from Brevard County public high schools arrive at the NASA Kennedy Space Center Visitor Complex in Florida. Top scholars from the high schools were invited to Kennedy Space Center for a tour of facilities, lunch and a roundtable discussion with engineers and scientists at the center. The 2017-2018 Brevard Top Scholars event was hosted by the center's Education Projects and Youth Engagement office to honor the top three scholars of the graduating student class from each of Brevard County’s public high schools. The students received a personalized certificate at the end of the day.

  7. Developing the Next Generation of Science Data System Engineers

    NASA Technical Reports Server (NTRS)

    Moses, John F.; Behnke, Jeanne; Durachka, Christopher D.

    2016-01-01

    At Goddard, engineers and scientists with a range of experience in science data systems are needed to employ new technologies and develop advances in capabilities for supporting new Earth and Space science research. Engineers with extensive experience in science data, software engineering and computer-information architectures are needed to lead and perform these activities. The increasing types and complexity of instrument data and emerging computer technologies coupled with the current shortage of computer engineers with backgrounds in science has led the need to develop a career path for science data systems engineers and architects.The current career path, in which undergraduate students studying various disciplines such as Computer Engineering or Physical Scientist, generally begins with serving on a development team in any of the disciplines where they can work in depth on existing Goddard data systems or serve with a specific NASA science team. There they begin to understand the data, infuse technologies, and begin to know the architectures of science data systems. From here the typical career involves peermentoring, on-the-job training or graduate level studies in analytics, computational science and applied science and mathematics. At the most senior level, engineers become subject matter experts and system architect experts, leading discipline-specific data centers and large software development projects. They are recognized as a subject matter expert in a science domain, they have project management expertise, lead standards efforts and lead international projects. A long career development remains necessary not only because of the breadth of knowledge required across physical sciences and engineering disciplines, but also because of the diversity of instrument data being developed today both by NASA and international partner agencies and because multidiscipline science and practitioner communities expect to have access to all types of observational data.This paper describes an approach to defining career-path guidance for college-bound high school and undergraduate engineering students, junior and senior engineers from various disciplines.

  8. Developing the Next Generation of Science Data System Engineers

    NASA Astrophysics Data System (ADS)

    Moses, J. F.; Durachka, C. D.; Behnke, J.

    2015-12-01

    At Goddard, engineers and scientists with a range of experience in science data systems are needed to employ new technologies and develop advances in capabilities for supporting new Earth and Space science research. Engineers with extensive experience in science data, software engineering and computer-information architectures are needed to lead and perform these activities. The increasing types and complexity of instrument data and emerging computer technologies coupled with the current shortage of computer engineers with backgrounds in science has led the need to develop a career path for science data systems engineers and architects. The current career path, in which undergraduate students studying various disciplines such as Computer Engineering or Physical Scientist, generally begins with serving on a development team in any of the disciplines where they can work in depth on existing Goddard data systems or serve with a specific NASA science team. There they begin to understand the data, infuse technologies, and begin to know the architectures of science data systems. From here the typical career involves peer mentoring, on-the-job training or graduate level studies in analytics, computational science and applied science and mathematics. At the most senior level, engineers become subject matter experts and system architect experts, leading discipline-specific data centers and large software development projects. They are recognized as a subject matter expert in a science domain, they have project management expertise, lead standards efforts and lead international projects. A long career development remains necessary not only because of the breath of knowledge required across physical sciences and engineering disciplines, but also because of the diversity of instrument data being developed today both by NASA and international partner agencies and because multi-discipline science and practitioner communities expect to have access to all types of observational data. This paper describes an approach to defining career-path guidance for college-bound high school and undergraduate engineering students, junior and senior engineers from various disciplines.

  9. Science and Engineering of the Environment of Los Angeles: A GK-12 Experiment at Developing Science Communications Skills in UCLA's Graduate Program

    NASA Astrophysics Data System (ADS)

    Moldwin, M. B.; Hogue, T. S.; Nonacs, P.; Shope, R. E.; Daniel, J.

    2008-12-01

    Many science and research skills are taught by osmosis in graduate programs with the expectation that students will develop good communication skills (speaking, writing, and networking) by observing others, attending meetings, and self reflection. A new National Science Foundation Graduate Teaching Fellows in K- 12 Education (GK-12; http://ehrweb.aaas.org/gk12new/) program at UCLA (SEE-LA; http://measure.igpp.ucla.edu/GK12-SEE-LA/overview.html ) attempts to make the development of good communication skills an explicit part of the graduate program of science and engineering students. SEE-LA places the graduate fellows in two pairs of middle and high schools within Los Angeles to act as scientists-in- residence. They are partnered with two master science teachers and spend two-days per week in the classroom. They are not student teachers, or teacher aides, but scientists who contribute their content expertise, excitement and experience with research, and new ideas for classroom activities and lessons that incorporate inquiry science. During the one-year fellowship, the graduate students also attend a year-long Preparing Future Faculty seminar that discusses many skills needed as they begin their academic or research careers. Students are also required to include a brief (two-page) summary of their research that their middle or high school students would be able to understand as part of their published thesis. Having students actively thinking about and communicating their science to a pre-college audience provides important science communication training and helps contribute to science education. University and local pre- college school partnerships provide an excellent opportunity to support the development of graduate student communication skills while also contributing significantly to the dissemination of sound science to K-12 teachers and students.

  10. THE MAN MADE WORLD, LABORATORY MANUAL.

    ERIC Educational Resources Information Center

    Commission on Engineering Education, Washington, DC.

    THIS LABORATORY MANUAL, THE COMPANION VOLUME TO THE STUDENT'S TEXT FOR THE "MAN MADE WORLD" HIGH SCHOOL COURSE, CONTAINS 31 EXPERIMENTS DEALING WITH THE THEORY, CIRCUITRY, AND OPERATION OF COMPUTERS, AND RELATED TECHNOLOGY. THE COURSE WAS WRITTEN BY SCIENTISTS, ENGINEERS, AND EDUCATORS, AND IS INTENDED AS A PART OF THE CULTURAL CURRICULUM FOR ALL…

  11. Scaffolded Inquiry-Based Instruction with Technology: A Signature Pedagogy for STEM Education

    ERIC Educational Resources Information Center

    Crippen, Kent J.; Archambault, Leanna

    2012-01-01

    Inquiry-based instruction has become a hallmark of science education and increasingly of integrated content areas, including science, technology, engineering, and mathematics (STEM) education. Because inquiry-based instruction very clearly contains surface, deep, and implicit structures as well as engages students to think and act like scientists,…

  12. Analyzing "Real-World" Anomalous Data after Experimentation with a Virtual Laboratory

    ERIC Educational Resources Information Center

    Toth, Eva Erdosne

    2016-01-01

    Developing effective pedagogies to help students examine anomalous data is critical for the education of the next generation of scientists and engineers. By definition anomalous data do not concur with prior knowledge, theories and expectations. Such data are the common outcome of empirical investigation in hands-on laboratories (HOLs). These…

  13. CATO--A General User Interface for CAS

    ERIC Educational Resources Information Center

    Janetzko, Hans-Dieter

    2015-01-01

    CATO is a new user interface, developed by the author as a response to the significant difficulties faced by scientists, engineers, and students in their usage of computer algebra (CA) systems. Their tendency to use CA systems only occasionally means that they are unfamiliar with requisite grammar and syntax these systems require. The author…

  14. Put Some Movie Wow! in Your Chemistry Teaching

    ERIC Educational Resources Information Center

    Frey, Christopher A.; Mikasen, Marjorie L.; Griep, Mark A.

    2012-01-01

    Movies and movie clips have been used by many instructors to teach chemistry. Entire movies based on true chemical stories are used because they provide students with a common experience after which instructors can launch writing lessons about the chemistry, the scientists, or engineers, or even postscripts to the story presented in the film. In…

  15. Repairing Femoral Fractures: A Model Lesson in Biomaterial Science

    ERIC Educational Resources Information Center

    Sakakeeny, Jarred

    2006-01-01

    Biomaterial science is a rapidly growing field that has scientists and doctors searching for new ways to repair the body. A merger between medicine and engineering, biomaterials can be complex subject matter, and it can certainly capture the minds of middle school students. In the lesson described in this article, seventh graders generally learn…

  16. Biology Faculty at Large Research Institutions: The Nature of Their Pedagogical Content Knowledge

    ERIC Educational Resources Information Center

    Hill, Kathleen M.

    2013-01-01

    To address the need of scientists and engineers in the United States workforce and ensure that students in higher education become scientifically literate, research and policy has called for improvements in undergraduate education in the sciences. One particular pathway for improving undergraduate education in the science fields is to reform…

  17. Academic Ethics in Turkish Universities: Perceptions of Academicians from Engineering, Medicine and Education Colleges

    ERIC Educational Resources Information Center

    Aydin, Inayet; Demirkasimoglu, Nihan; Alkin, Senar

    2012-01-01

    Problem Statement: Academicians such as scientists contribute to the research of knowledge, to the free disclosure of knowledge, to students' training, and to public service with their special knowledge and skills. Academicians' ethical responsibilities and values a very important place in the development of universities' functions, which, in…

  18. Teaching Experiences for Graduate Student Researchers: A Study of the Design and Implementation of Science Courses for Secondary Students

    NASA Astrophysics Data System (ADS)

    Collins, Anne Wrigley

    Modern science education reform recommends that teachers provide K-12 science students a more complete picture of the scientific enterprise, one that lies beyond content knowledge and centers more on the processes and culture of scientists. In the case of Research Experience for Teachers (RET) programs, the "teacher" becomes "researcher" and it is expected that he/she will draw from the short-term science research experience in his/her classroom, offering students more opportunities to practice science as scientists do. In contrast, this study takes place in a program that allows graduate students, engaged in research full-time, to design and implement a short-duration course for high school students on Saturdays; the "researcher" becomes "teacher" in an informal science program. In this study, I investigated eleven graduate students who taught in the Saturday Science (SS) program. Analyses revealed participants' sophisticated views of the nature of science. Furthermore, participants' ideas about science clearly resonated with the tenets of NOS recommended for K-12 education (McComas et al., 1998). This study also highlighted key factors graduate students considered when designing lessons. Instructors took great care to move away from models of traditional, "lecture"-based, university science teaching. Nonetheless, instruction lacked opportunities for students to engage in scientific inquiry. In instances when instructors included discussions of NOS in SS courses, opportunities for high school students to learn NOS were not explicit enough to align with current science reform recommendations (e.g., AAAS, 2009). Graduate students did, however, offer high school students access to their own science or engineering research communities. These findings have significant implications for K-12 classroom reform. Universities continue to be a valuable resource for K-12 given access to scientists, materials or equipment, and funding. Nonetheless, and as was the case with graduate students in this study, scientists who engage in partnerships with K-12 need explicit training on effective science teaching methodologies just as classroom teachers need this training. In other words, despite membership in the science research community -- thus sound understanding of authentic science practice -- university scientists may not be prepared to or understand the importance of translating this for K-12 partners.

  19. Review of carbon dioxide research staffing and academic support

    NASA Astrophysics Data System (ADS)

    Clark, S. B.; Howard, L.; Stevenson, W.; Trice, J.

    1985-04-01

    More than 60 percent of the staff on Carbon Dioxide Research Division (CDRD) projects were university affiliated, and over one third of project scientists and engineers also had university teaching responsibilities. Almost 20 percent of project staff were students. CO2 research is unlikely to affect the general labor market for scientists and engineers because it uses such a small portion of the total pool. On the other hand, anticipated tight labor markets in some disciplines important to CO2 research may make it advantageous for CDRD to expand its support of university faculty, students, and staff to ensure that competent, knowledgeable researchers and managers are available for eventual policy decisions on CO2 issues. Options for academic support that lend themselves readily to the diffuse nature of CO2 research, while providing flexibility in the identification and accomplishment of specific programmatic objectives, include modifying procurement procedures for research contracts to enhance academic involvement, sponsoring summer institutes tailored to specific participants and focused on issues of interest to CDRD, and supporting traveling lecture programs designed to bring information of concern to CDRD to technical and nontechnical audiences.

  20. Blending Education and Polymer Science: Semi Automated Creation of a Thermodynamic Property Database.

    PubMed

    Tchoua, Roselyne B; Qin, Jian; Audus, Debra J; Chard, Kyle; Foster, Ian T; de Pablo, Juan

    2016-09-13

    Structured databases of chemical and physical properties play a central role in the everyday research activities of scientists and engineers. In materials science, researchers and engineers turn to these databases to quickly query, compare, and aggregate various properties, thereby allowing for the development or application of new materials. The vast majority of these databases have been generated manually, through decades of labor-intensive harvesting of information from the literature; yet, while there are many examples of commonly used databases, a significant number of important properties remain locked within the tables, figures, and text of publications. The question addressed in our work is whether, and to what extent, the process of data collection can be automated. Students of the physical sciences and engineering are often confronted with the challenge of finding and applying property data from the literature, and a central aspect of their education is to develop the critical skills needed to identify such data and discern their meaning or validity. To address shortcomings associated with automated information extraction, while simultaneously preparing the next generation of scientists for their future endeavors, we developed a novel course-based approach in which students develop skills in polymer chemistry and physics and apply their knowledge by assisting with the semi-automated creation of a thermodynamic property database.

  1. Blending Education and Polymer Science: Semiautomated Creation of a Thermodynamic Property Database

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tchoua, Roselyne B.; Qin, Jian; Audus, Debra J.

    Structured databases of chemical and physical properties play a central role in the everyday research activities of scientists and engineers. In materials science, researchers and engineers turn to these databases to quickly query, compare, and aggregate various properties, thereby allowing for the development or application of new materials. The vast majority of these databases have been generated manually, through decades of labor-intensive harvesting of information from the literature, yet while there are many examples of commonly used databases, a significant number of important properties remain locked within the tables, figures, and text of publications. The question addressed in our workmore » is whether and to what extent the process of data collection can be automated. Students of the physical sciences and engineering are often confronted with the challenge of finding and applying property data from the literature, and a central aspect of their education is to develop the critical skills needed to identify such data and discern their meaning or validity. To address shortcomings associated with automated information extraction while simultaneously preparing the next generation of scientists for their future endeavors, we developed a novel course-based approach in which students develop skills in polymer chemistry and physics and apply their knowledge by assisting with the semiautomated creation of a thermodynamic property database.« less

  2. Career and Workforce Impacts of the NASA Planetary Science Summer School: TEAM X model 1999-2015

    NASA Astrophysics Data System (ADS)

    Lowes, Leslie L.; Budney, Charles; Mitchell, Karl; Wessen, Alice; JPL Education Office, JPL Team X

    2016-10-01

    Sponsored by NASA's Planetary Science Division, and managed by the Jet Propulsion Laboratory (JPL), the Planetary Science Summer School prepares the next generation of engineers and scientists to participate in future solar system exploration missions. PSSS utilizes JPL's emerging concurrent mission design "Team X" as mentors. With this model, participants learn the mission life cycle, roles of scientists and engineers in a mission environment, mission design interconnectedness and trade-offs, and the importance of teamwork. Applicants are sought who have a strong interest and experience in careers in planetary exploration, and who are science and engineering post-docs, recent PhDs, doctoral or graduate students, and faculty teaching such students. An overview of the program will be presented, along with results of a diversity study conducted in fall 2015 to assess the gender and ethnic diversity of participants since 1999. PSSS seeks to have a positive influence on participants' career choice and career progress, and to help feed the employment pipeline for NASA, aerospace, and related academia. Results will also be presented of an online search that located alumni in fall 2015 related to their current occupations (primarily through LinkedIn and university and corporate websites), as well as a 2015 survey of alumni.

  3. The Future of Chemistry Is All of Us

    NASA Astrophysics Data System (ADS)

    Walter, Paul

    1999-05-01

    It is a pleasure to have this opportunity affirming the ACS's appreciation for the role you play as faculty from two-year colleges in preparing the next generation of scientists, engineers, and mathematicians. In particular, I salute the efforts of 2YC3 in reaching out to the diverse groups of students who are studying at your institutions, including older students, female students, minority, and immigrant students. The quality of the conferences you organize, and their geographic accessibility to your more than 700 members, have resulted in catalyzing professional development and growth among two-year college chemistry faculty, and thus improving the quality of instruction delivered to your students.

  4. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 14: An analysis of the technical communications practices reported by Israeli and US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Barclay, Rebecca O.; Pinelli, Thomas E.; Elazar, David; Kennedy, John M.

    1991-01-01

    As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two pilot studies were conducted that investigated the technical communications practices of Israeli and U.S. aerospace engineers and scientists. Both studies had the same five objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third, to seek their view about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line databases; and fifth, to determine the use and importance of computer and information technology to them. A self-administered questionnaire was mailed to randomly selected U.S. aerospace engineers and scientists who are working in cryogenics, adaptive walls, and magnetic suspension. A slightly modified version was sent to Israeli aerospace engineers and scientists working at Israel Aircraft Industries, LTD. Responses of the Israeli and U.S. aerospace engineers and scientists to selected questions are presented in this paper.

  5. Summer of Innovation Kick Off

    NASA Image and Video Library

    2010-06-09

    Erin Gilbert, Director of Professional Development from the National Summer Learning Associations, motivates teachers and middle school students during the kick off of NASA's Summer of Innovation program at the Jet Propulsion Laboratory in Pasadena, Calif., Thursday, June 10, 2010. Through the program, NASA will engage thousands of middle school students and teachers in stimulating math and science-based education programs with the goal of increasing the number of future scientists, mathematicians, and engineers. Photo Credit: (NASA/Bill Ingalls)

  6. Students Bring Fresh Perspective and New Technology to Webb Telescope

    NASA Image and Video Library

    2017-12-08

    Matthew Bolcar a graduate student from the University of Rochester, N.Y. now works at Goddard full-time. Credit: NASA/GSFC/Chris Gunn To read more about Matthew go to: www.nasa.gov/topics/technology/features/partnerships.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

  7. Teachers' Integration of Scientific and Engineering Practices in Primary Classrooms

    NASA Astrophysics Data System (ADS)

    Merritt, Eileen G.; Chiu, Jennie; Peters-Burton, Erin; Bell, Randy

    2017-06-01

    The Next-Generation Science Standards (NGSS) challenge primary teachers and students to work and think like scientists and engineers as they strive to understand complex concepts. Teachers and teacher educators can leverage what is already known about inquiry teaching as they plan instruction to help students meet the new standards. This cross-case analysis of a multiple case study examined teacher practices in the context of a semester-long professional development course for elementary teachers. We reviewed lessons and teacher reflections, examining how kindergarten and first grade teachers incorporated NGSS scientific and engineering practices during inquiry-based instruction. We found that most of the teachers worked with their students on asking questions; planning and carrying out investigations; analyzing and interpreting data, using mathematics and computational thinking; and obtaining, evaluating and communicating information. Teachers faced challenges in supporting students in developing their own questions that could be investigated and using data collection strategies that aligned with students' development of number sense concepts. Also, some teachers overemphasized the scientific method and lacked clarity in how they elicited and responded to student predictions. Discussion focuses on teacher supports that will be needed as states transition to NGSS.

  8. Female and male Hispanic students majoring in science or engineering: Their stories describing their educational journeys

    NASA Astrophysics Data System (ADS)

    Brown, Susan Wightman

    National statistics clearly demonstrate an underrepresentation of minorities in the fields of science and engineering. Blacks, Hispanics, American Indians, and Asians do not typically choose science or engineering as their college major; therefore, there is a very small representation of these minorities in the science and engineering labor force. The decision not to major in science and engineering may begin as soon as the child can begin to recognize role models in the media. News stories, magazine articles, television programs, teachers, parents, administrators, and other agencies have painted the picture of a scientist or engineer as being dominantly a White male. Schools have continued society's portrayal by using curriculum, textbooks, role models, instructional strategies, and counseling that continues to encourage the White male to succeed in science and engineering, but discourages the minority students, male and female, from succeeding in these fields. In this qualitative study, 22 Hispanic students, 12 female and 10 male, who are majoring in science or engineering, were interviewed using Seidman's in-depth interviewing technique. These students were shadowed in their college science or engineering classes; their high school and college transcripts were analyzed; and, a focus group was brought together at the end of the interviewing process in order to allow interaction between the participants. The goal was to explore the educational journeys of the 22 Hispanic students. What made a difference in the journeys of these 22 students so that they could succeed in majors that have historically discouraged minority students? Seven themes emerged: family support, honors program, challenging and interactive curriculum, college preparation in high school courses, caring and kind teachers, small class size, and small communities. Gender comparison of the educational journeys documents these differences between the females and males: college preparation, mentoring, special school and summer programs, and gender role conflicts. In Chapter Six, a picture is painted by these 22 Hispanic students of a school that would promote success for all minority students in science and engineering related classes. Science and math educators, and really all educators, should take note and changes need to be made in our schools in order to provide a learning environment for all students.

  9. The Development of a Conceptual Framework for New K-12 Science Education Standards (Invited)

    NASA Astrophysics Data System (ADS)

    Keller, T.

    2010-12-01

    The National Academy of Sciences has created a committee of 18 National Academy of Science and Engineering members, academic scientists, cognitive and learning scientists, and educators, educational policymakers and researchers to develop a framework to guide new K-12 science education standards. The committee began its work in January, 2010, released a draft of the framework in July, 2010, and intends to have the final framework in the first quarter of 2011. The committee was helped in early phases of the work by consultant design teams. The framework is designed to help realize a vision for science and engineering education in which all students actively engage in science and engineering practices in order to deepen their understanding of core ideas in science over multiple years of school. These three dimensions - core disciplinary ideas, science and engineering practices, and cross-cutting elements - must blend together to build an exciting, relevant, and forward looking science education. The framework will be used as a base for development of next generation K-12 science education standards.

  10. Increasing Opportunities and Success in Science, Math, Engineering and Technology Through Partnerships and Resource Convergence

    NASA Astrophysics Data System (ADS)

    Huebner, P.

    2003-12-01

    Bridging the geographic boundaries and providing educational opportunities is the goal of American Indian Programs at Arizona State University East. Since its inception in 1997, American Indian Programs has established programs and partnerships to provide opportunities and resources to Tribal communities throughout Arizona. From educational programs to enhance student achievement at the K-12 level to recruitment and retention of American Indian students at the post secondary level, American Indian Programs provides the resources to further the success of students in science, math, engineering and technology. Resource convergence is critical in providing opportunities to ensure the success of Indian students in science, math, engineering and technology. American Indian Programs has built successful programs based on partnerships between federal grant programs, corporate, federal and state agencies. Providing professional development for teachers, school assessment, science and math curriculum and data collection are the primary efforts at the K-12 level to increase student achievement. Enrichment programs to enhance K-12 activities include the development of the Arizona American Indian Science and Engineering Fair (the only State fair for American Indiana's in the country) supported entirely through corporate support, summer residential programs, after school activities and dual enrollment programs for high school students. ASU East's retention rate for first year students is 92 percent and 1in 6 graduating students enter graduate programs. American Indian Programs strives to build student relationships with federal, state and corporate agencies through internships and coops. This effort has led to the development of an E-mentoring program that allows students (and K-12 teachers) to work directly with practicing scientists, and engineers in research activities. New programs look to increase technology not only in Tribal schools but increase technology in the homes of students as well.

  11. Design and development of experimental facilities for short duration, low-gravity combustion and fire experiments

    NASA Technical Reports Server (NTRS)

    Motevalli, Vahid

    1994-01-01

    This report contains the results of three projects conducted by undergraduate students from Worcester Polytechnic Institute at the NASA's Lewis Research Center under a NASA Award NCC3-312. The students involved in these projects spent part of the summer of 1993 at the Lewis Research Center (LeRC) under the direction of Dr. Howard Ross, head of the Combustion group and other NASA engineers and scientists. The Principal Investigator at Worcester Polytechnic Institute was Professor Vahid Motevalli. Professor Motevalli served as the principal project advisor for two of the three projects which were in Mechanical Engineering. The third project was advised by Professor Duckworth of Electrical and Computer Engineering, while Professor Motevalli acted as the co-advisor. These projects provided an excellent opportunity for the students to participate in the cutting edge research and engineering design, interact with NASA engineers and gain valuable exposure to a real working environment. Furthermore, the combustion group at LeRC was able to forward their goals by employing students to work on topics of immediate use and interest such as experimental research projects planned for the space shuttle, the future space station, or to develop demonstration tools to educate the public about LeRC activities.

  12. Digital Learning Network Education Events for the Desert Research and Technology Studies

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.; Guillory, Erika R.

    2007-01-01

    NASA s Digital Learning Network (DLN) reaches out to thousands of students each year through video conferencing and webcasting. As part of NASA s Strategic Plan to reach the next generation of space explorers, the DLN develops and delivers educational programs that reinforce principles in the areas of science, technology, engineering and mathematics. The DLN has created a series of live education videoconferences connecting the Desert Research and Technology Studies (RATS) field test to students across the United States. The programs are also extended to students around the world via live webcasting. The primary focus of the events is the Vision for Space Exploration. During the programs, Desert RATS engineers and scientists inform and inspire students about the importance of exploration and share the importance of the field test as it correlates with plans to return to the Moon and explore Mars. This paper describes the events that took place in September 2006.

  13. AAAS Mass Media Science and Engineering Fellowship Program: Building Communication Skills in Young Scientists

    NASA Astrophysics Data System (ADS)

    Pasco, S.

    2006-12-01

    The AAAS Mass Media Science &Engineering Fellowship program has succeeded in training scientists to become more effective communicators for more than 30 years. The program places advanced science, engineering and mathematics students at media sites to work as science reporters for ten weeks each summer. AAAS places between 15 to 20 students a year at newspapers, magazines and radio stations. Our goal is to create better science communicators who understand their role in fostering the public's understanding of science. Fellows leave the program with a greater awareness of how to communicate complex issues by making the connection as to why people should be interested in certain developments, and more specifically, how they will impact their communities. 2004 AGU Fellow Rei Ueyama put her lessons learned to good use during her Fellowship at the Sacramento Bee. "In a regional paper like The Bee, a (story) also had to have a local touch. I needed to show why people in Sacramento (or California) should bother to read the story. One example is the story I wrote about seeding the ocean with iron particles to fight global warming. Since ocean fertilization is a global issue, I had to clearly specify the reason why The Bee and not The New York Times was running the story. The local angle I chose was to point out that the core group of scientists involved in this study was from Monterey Bay, Calif." Many alumni tell us the program has been an integral force in shaping the course of their career. Similarly, sites often report that having a scientist on staff is an invaluable resource that allows them to cover additional science stories as well as report some technical stories in more depth. The American Geophysical Union has sponsored a Mass Media Fellow since 1997. Sponsorship allows affiliate program partners to establish connections with young professionals in their field. They are then also able to take advantage of the communication skills resident in their alumni base. The OS28 Communicating Broadly: Perspectives and Tools for Ocean, Earth and Atmospheric Scientists Session would provide an ideal platform for Fellowship management to share lessons learned about science communication and to offer insight as to the challenges scientists face when communicating with the general public or media.

  14. Collaborative Lab Reports with Google Docs

    NASA Astrophysics Data System (ADS)

    Wood, Michael

    2011-03-01

    Science is a collaborative endeavor. The solitary genius working on the next great scientific breakthrough is a myth not seen much today. Instead, most physicists have worked in a group at one point in their careers, whether as a graduate student, faculty member, staff scientist, or industrial researcher. As an experimental nuclear physicist with research at the Thomas Jefferson National Accelerator Facility, my collaboration consists of over 200 scientists, both national and international. A typical experiment will have a dozen or so principal investigators. Add in the hundreds of staff scientists, engineers, and technicians, and it is clear that science is truly a collaborative effort. This paper will describe the use of Google Docs for collaborative reports for an introductory physics laboratory.

  15. Training the next generation of scientists: Modeling Infectious Disease and Water Quality of Montana Streams

    NASA Astrophysics Data System (ADS)

    Fytilis, N.; Wyman, S.; Lamb, R.; Stevens, L.; Kerans, B.; Rizzo, D. M.

    2010-12-01

    The University of Vermont College of Engineering and Mathematical Sciences and the Barrett Foundation have established a scholarship program for undergraduate students. The Barrett Scholarship program, aware of the importance of developing research quantitative and writing skills for undergraduate students, provides scholarships to outstanding undergraduate students for environmental engineering research projects. The intent is to help retain student interest early in their undergraduate engineering careers when few of their first or second year classes have little engineering or real-world application. We focus on one Barrett research project, derived from a NSF Biodiversity and Infectious Disease grant, because of the multiple disciplines (engineering, ecology, biology) and education levels (spanning secondary to graduate) involved. In this research, students across three departments at two universities (University of Vermont, Montana State University) and one independent high school (Vermont Commons School) formed a cohesive collaboration with faculty members to identify different worm taxa of T. Tubifex. Whirling disease has had a severe impact on the native population of salmonids in the upper Madison River MT, USA, resulting in the death of most fish that contract the parasite. T. Tubifex is the intermediate host for Myxobolus cerebralis, the parasite that causes whirling disease in salmonids. Samples collected from eight locations along the Madison River varied in the prevalence of whirling disease. The site-specific worm community structure has been measured and identified using molecular genetic probes and a taxonomic key to link worm communities to geochemical features (e.g. site elevation, slope, pH, conductivity, temperature, dissolved oxygen and percent of organic soil matter). Using a unique clustering algorithm, we group geochemical features to discriminate over a range of water quality gradients (i.e., “clean” to “dirty”). The link between water quality and the presence of these taxa is important in determining stream health. In addition, system dynamics software (STELLA) is used to model the non-linear relationships and feedback between worm prevalence and disease dynamics. These types of collaborations between engineers, biologists, field ecologists and geneticists from secondary, post-secondary and higher institutions proved useful in linking complex geochemical data, worm community structure and molecular genetics to develop the next-generation scientists and better understand disease dynamics.

  16. Educational NASA Computational and Scientific Studies (enCOMPASS)

    NASA Technical Reports Server (NTRS)

    Memarsadeghi, Nargess

    2013-01-01

    Educational NASA Computational and Scientific Studies (enCOMPASS) is an educational project of NASA Goddard Space Flight Center aimed at bridging the gap between computational objectives and needs of NASA's scientific research, missions, and projects, and academia's latest advances in applied mathematics and computer science. enCOMPASS achieves this goal via bidirectional collaboration and communication between NASA and academia. Using developed NASA Computational Case Studies in university computer science/engineering and applied mathematics classes is a way of addressing NASA's goals of contributing to the Science, Technology, Education, and Math (STEM) National Objective. The enCOMPASS Web site at http://encompass.gsfc.nasa.gov provides additional information. There are currently nine enCOMPASS case studies developed in areas of earth sciences, planetary sciences, and astrophysics. Some of these case studies have been published in AIP and IEEE's Computing in Science and Engineering magazines. A few university professors have used enCOMPASS case studies in their computational classes and contributed their findings to NASA scientists. In these case studies, after introducing the science area, the specific problem, and related NASA missions, students are first asked to solve a known problem using NASA data and past approaches used and often published in a scientific/research paper. Then, after learning about the NASA application and related computational tools and approaches for solving the proposed problem, students are given a harder problem as a challenge for them to research and develop solutions for. This project provides a model for NASA scientists and engineers on one side, and university students, faculty, and researchers in computer science and applied mathematics on the other side, to learn from each other's areas of work, computational needs and solutions, and the latest advances in research and development. This innovation takes NASA science and engineering applications to computer science and applied mathematics university classes, and makes NASA objectives part of the university curricula. There is great potential for growth and return on investment of this program to the point where every major university in the U.S. would use at least one of these case studies in one of their computational courses, and where every NASA scientist and engineer facing a computational challenge (without having resources or expertise to solve it) would use enCOMPASS to formulate the problem as a case study, provide it to a university, and get back their solutions and ideas.

  17. Original Research By Young Twinkle Students(ORBYTS): When can students start performingoriginal research?

    NASA Astrophysics Data System (ADS)

    Sousa-Silva, Clara; ORBYTS, Twinkle Space Mission, ExoMol

    2018-01-01

    Involving students in state-of-the-art research from an early age eliminates the idea that science is only for the scientists and empowers young people to explore STEM (Science, Technology, Engineering and Maths) subjects. It is also a great opportunity to dispel harmful stereotypes about who is suitable for STEM careers, while leaving students feeling engaged in modern science and the scientific method. As part of the Twinkle Space Mission’s educational programme, EduTwinkle, students between the ages of 15 and 18 have been performing original research associated with the exploration of space since January 2016. The student groups have each been led by junior researchers - PhD student and post-doctoral scientists - who themselves benefit substantially from the opportunity to supervise and manage a research project. This research aims to meet a standard for publication in peer-reviewed journals. At present the research of one ORBYTS team has been published in the Astrophysical Journal Supplement Series and another submitted to JQSRT; we expect more papers to follow. Here we outline the necessary steps for a productive scientific collaboration with school children, generalising from the successes and downfalls of the pilot ORBYTS projects.

  18. KSC-2012-1562

    NASA Image and Video Library

    2012-02-23

    ORLANDO, Fla. – Laura Colville, in the gray shirt at right, from the Educator Resource Center at NASA’s Kennedy Space Center, interacts with students from Meadow Woods Middle School in Orlando during NASA’s Project Management PM Challenge 2012. The demonstrations are designed to increase student interest and pursuit of the science, technology, engineering and mathematics STEM fields integral to producing the next generation of scientists and engineers. PM Challenge 2012 was held at the Caribe Royale Hotel and Convention Center in Orlando, Fla., on Feb. 22-23, to provide a forum for all stakeholders in the project management community to meet and share stories, lessons learned and new uses of technology in the industry. The PM Challenge is sponsored by NASA's Office of the Chief Engineer. For additional information, visit http://www.nasa.gov/offices/oce/pmchallenge/index.html. Photo credit: NASA/Jim Grossmann

  19. KSC-2012-1563

    NASA Image and Video Library

    2012-02-23

    ORLANDO, Fla. – Education specialist Jim Gerard, in the red shirt, from NASA’s Kennedy Space Center, prepares a physics demonstration for students from Meadow Woods Middle School in Orlando during NASA’s Project Management PM Challenge 2012. The demonstrations are designed to increase student interest and pursuit of the science, technology, engineering and mathematics STEM fields integral to producing the next generation of scientists and engineers. PM Challenge 2012 was held at the Caribe Royale Hotel and Convention Center in Orlando, Fla., on Feb. 22-23, to provide a forum for all stakeholders in the project management community to meet and share stories, lessons learned and new uses of technology in the industry. The PM Challenge is sponsored by NASA's Office of the Chief Engineer. For additional information, visit http://www.nasa.gov/offices/oce/pmchallenge/index.html. Photo credit: NASA/Jim Grossmann

  20. KSC-2012-1560

    NASA Image and Video Library

    2012-02-23

    ORLANDO, Fla. – Education project specialist Josh Santora, left, from NASA’s Kennedy Space Center, engages a student from Meadow Woods Middle School in Orlando in a physics demonstration during NASA’s Project Management PM Challenge 2012. The demonstrations are designed to increase student interest and pursuit of the science, technology, engineering and mathematics STEM fields integral to producing the next generation of scientists and engineers. PM Challenge 2012 was held at the Caribe Royale Hotel and Convention Center in Orlando, Fla., on Feb. 22-23, to provide a forum for all stakeholders in the project management community to meet and share stories, lessons learned and new uses of technology in the industry. The PM Challenge is sponsored by NASA's Office of the Chief Engineer. For additional information, visit http://www.nasa.gov/offices/oce/pmchallenge/index.html. Photo credit: NASA/Jim Grossmann

  1. STS-114: Engine Cut-Off Sensors Are a No-Go: Teaching Notes for NASA Case Study

    NASA Technical Reports Server (NTRS)

    Ransom, Khadijah S.; Johnson, Grace K.

    2013-01-01

    This case study format is intended to simulate the experience of facing the same difficult challenges and making the same critical decisions as managers, engineers, and scientists in the Space Shuttle Program. It has been designed for use in the classroom setting to help students develop skills related to decision-making. Students will read about the engine cut-off sensor anomaly which created challenges during the STS-114 mission and have the opportunity to make decisions as lead NASA engineers and Mission Management Team members. Included within this document are three case study presentation options - class discussion, group activity, and open-ended research. Please read the full case prior to in-class presentation to allow ample time for students' analysis and reflection, as well as to prepare additional questions. activities or exercises, material selection, etc. Depending upon the setting of your presentation and the number of participants, please choose at least one presentation format beforehand and plan accordingly. You may expect the following learning objectives by using the proposed formats. Learning Objectives: To enable students to experience the responsibilities of NASA management, engineers, and analysis; to discover possible procedures for investigating system anomalies; to become familiar with the liquid hydrogen low level engine cut-off sensor, including its function, connecting components, and location within the Space Shuttle; and to encourage critical analysis and stimulating discussion of Space Shuttle mission challenges.

  2. Young Engineers & Scientists (YES) - Engaging Teachers in Space Research

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Reiff, P. H.

    2011-12-01

    The Young Engineers and Scientists (YES) Program is a community partnership between Southwest Research Institute (SwRI) and local high schools in San Antonio. It provides talented high school juniors and seniors a bridge between classroom instruction and real world, research experiences in physical sciences, information sciences, and engineering. YES consists of two parts: 1) An intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, C++ programming, the Internet, careers, science ethics, social impact of technology, and other topics; and select their individual research project with their mentor (SwRI staff member) to be completed during the academic year; and 2) A collegial mentorship where students complete individual research projects under the guidance of their mentors and teachers during the academic year and earn honors credit. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. YES has been highly successful during the past nineteen (19) years. A total of 258 students have completed or are currently enrolled in YES. Of these students, 38% are females and 57% are ethnic minorities, reflecting the local diversity of the San Antonio area. All YES graduates have entered college, several work or have worked for SwRI, two businesses have formed, and three scientific publications have resulted. Sixteen (16) teacher participants have attended the YES workshop and have developed classroom materials based on their experiences in research at SwRI in the past three (3) years. In recognition of its excellence, YES received the Celebrate Success in 1996 and the Outstanding Campus Partner-of-the-Year Award in 2005, both from Northside Independent School District (San Antonio, Texas). Acknowledgments: We are grateful for support from the NASA MMS Mission E/PO Grant, SwRI, Northside Independent School District, and local charitable foundations.

  3. The National Technical Association: A Hallmark for Access and Success

    NASA Astrophysics Data System (ADS)

    Jearld, A., Jr.

    2017-12-01

    Minority Technical Organizations (MTO) are under-utilized as a valuable resource that can help develop the next generation of scientists and engineers. For over 90 years, the National Technical Association (NTA) (www.ntaonline.org) has been the premiere technical association for scientists, engineers, architects, technologist, educators, and technical business entrepreneurs for people of color, offering professional development, mentoring and awards recognition to technical professionals. NTA and its partners are developing a diverse workforce by emphasizing enhanced access opportunities to skills development for youth among underrepresented STEM populations. Established in 1925 by Charles Summer Duke, the first African American to receive an engineering degree from Harvard University, NTA served as the model organization for more than 40 other minority technical organizations that began forming in the 1970's. NTA has served as consultants to the US government on the status of African Americans in science and engineering. The first technical organization to establish community based technical mentoring programs targeting minorities, NTA shares information and assists institutions in identifying minority talent. Members developed the first science and engineering curriculum at Historically Black Colleges and Universities (HBCU's), and are working to produce more students with geoscience degrees to ensure greater career placement with increased minority participation in the geosciences. NTA addresses the lack of access, support, and the need for networking through the longest running annual conference for technical practitioners of color. A hallmark of NTA has been access and success through inter-organizational collaborations with communities of scholars, highly experienced professionals and students to discuss the definition of what is successful geoscience education, research, and employment.

  4. P3: a practice focused learning environment

    NASA Astrophysics Data System (ADS)

    Irving, Paul W.; Obsniuk, Michael J.; Caballero, Marcos D.

    2017-09-01

    There has been an increased focus on the integration of practices into physics curricula, with a particular emphasis on integrating computation into the undergraduate curriculum of scientists and engineers. In this paper, we present a university-level, introductory physics course for science and engineering majors at Michigan State University called P3 (projects and practices in physics) that is centred around providing introductory physics students with the opportunity to appropriate various science and engineering practices. The P3 design integrates computation with analytical problem solving and is built upon a curriculum foundation of problem-based learning, the principles of constructive alignment and the theoretical framework of community of practice. The design includes an innovative approach to computational physics instruction, instructional scaffolds, and a unique approach to assessment that enables instructors to guide students in the development of the practices of a physicist. We present the very positive student related outcomes of the design gathered via attitudinal and conceptual inventories and research interviews of students’ reflecting on their experiences in the P3 classroom.

  5. BRIE: The Penn State Biogeochemical Research Initiative for Education

    NASA Astrophysics Data System (ADS)

    Freeman, K. H.; Brantley, S. L.; Brenchley, J.

    2003-12-01

    Few scientists are prepared to address the interdisciplinary challenges of biogeochemical research due to disciplinary differences in vocabulary, technique, and scientific paradigm. Thus scientists and engineers trained in traditional disciplines bring a restricted view to the study of environmental systems, which can limit their ability to exploit new techniques and opportunities for scientific advancement. Although the literature is effusive with enthusiasm for interdisciplinary approaches to biogeochemistry, there remains the basic difficulty of cross-training geological and biological scientists. The NSF-IGERT funded Biogeochemical Research Initiative for Education (BRIE) program at Penn State is specifically designed to break down both disciplinary and institutional barriers and it has fostered cross-disciplinary collaboration and training since 1999. Students and faculty are drawn from environmental engineering, geochemistry, soil science, chemistry and microbiology, and the program is regarded on the Penn State campus as a successful example of how interdisciplinary science can best be promoted. There are currently 23 Ph.D. students funded by the program, with an additional 7 affiliated students. At present, a total of 6 students have completed doctoral degrees, and they have done so within normal timeframes. The program is "discipline-plus," whereby students enroll in traditional disciplinary degree programs, and undertake broad training via 12 credits of graduate coursework in other departments. Students are co-advised by faculty from different disciplines, and engage in interdisciplinary research facilitated by research "credit cards." Funding is available for international research experiences, travel to meetings, and other opportunities for professional development. Students help institutionalize interdisciplinary training by designing and conducting a teaching module that shares their expertise with a class in another department or discipline. Community building through social activities and scientific forums is a priority in both the undergraduate and graduate programs. In addition, entering Ph.D. students build cohort identity by taking a course that introduces them to BRIE faculty and research facilities through hands-on laboratory and field-based research activities. The BRIE undergraduate summer internship program has provided interdisciplinary research opportunities for a total of 35 students over the past five summers. This program aims to recruit students to the Ph.D. program, and at present, two Ph.D. students have entered this way. Our efforts have focused on attracting students from under-represented groups. Diversity in this program has been above national norms: and summer students have include 10 (29 %) African-American or Hispanic-American students, and 25 (over 70 %) females. The Ph.D. students and graduates are 50% female, with three students from minority populations.

  6. Summer of Innovation Kick Off

    NASA Image and Video Library

    2010-06-09

    NASA Administrator Charles Bolden, left, and Jet Propulsion Laboratory Director Dr. Charles Elachi lead school students to High Bay One at JPL during the kick off of NASA's Summer of Innovation program at the Jet Propulsion Laboratory in Pasadena, Calif., Thursday, June 10, 2010. Through the program, NASA will engage thousands of middle school students and teachers in stimulating math and science-based education programs with the goal of increasing the number of future scientists, mathematicians, and engineers. Photo Credit: (NASA/Bill Ingalls)

  7. Summer of Innovation Kick Off

    NASA Image and Video Library

    2010-06-09

    NASA Administrator Charles Bolden, left, along with teachers and middle school students visit High Bay One in the Spacecraft Assembly Building as part of the kick off to NASA's Summer of Innovation program at the Jet Propulsion Laboratory in Pasadena, Calif., Thursday, June 10, 2010. Through the program, NASA will engage thousands of middle school students and teachers in stimulating math and science-based education programs with the goal of increasing the number of future scientists, mathematicians, and engineers. Photo Credit: (NASA/Bill Ingalls)

  8. Summer of Innovation Kick Off

    NASA Image and Video Library

    2010-06-09

    Jet Propulsion Laboratory Director Dr. Charles Elachi, center, and NASA Administrator Charles Bolden, right, lead school students to High Bay One at JPL during the kick off of NASA's Summer of Innovation program at the Jet Propulsion Laboratory in Pasadena, Calif., Thursday, June 10, 2010. Through the program, NASA will engage thousands of middle school students and teachers in stimulating math and science-based education programs with the goal of increasing the number of future scientists, mathematicians, and engineers. Photo Credit: (NASA/Bill Ingalls)

  9. Training Program for Practical Engineering Design through the Collaboration with Regional Companies

    NASA Astrophysics Data System (ADS)

    Gofuku, Akio; Tabata, Nobuhisa; Tomita, Eiji; Funabiki, Nobuo

    An education program to bring up engineering design capabilities through long-term internship by the collaboration with regional companies has been put in practice for five years. The program is composed of two types of long-term internships and several lectures for patent systems and engineering ethics. This paper describes the outline of the program, educational effects, and our experiences. The program was improved into two educational programs in 2011. The one is a special course to educate engineers and scientists who can lead the technologies of their domains. The other is a long-term internship program for master students in engineering divisions of graduate school. This paper also describes the current activities of the latter program.

  10. Distance Mentoring in the NASA/Kennedy Space Center Virtual Science Mentor Program.

    ERIC Educational Resources Information Center

    Buckingham, Gregg

    This study examines the results of a three year video mentoring program, the NASA Virtual Science Mentor (VSM) program, which paired 56 NASA mentor engineers and scientists with 56 middle school science teachers in seven Southwest Florida counties. The study sought to determine the impact on students, mentors, and teachers participating in the…

  11. A Bold Experiment: Teachers Team with Scientists to Learn Next Generation Science Standards

    ERIC Educational Resources Information Center

    Gilman, Sharon L.; Fout, Martha C.

    2017-01-01

    The "Next Generation Science Standards" place an emphasis on the practices of science and engineering, where ensuring that students understand and experience how science works is as important as, or maybe more important than, memorizing facts. The idea is that, while some facts may change, the practices will always be applicable, and it…

  12. DOE/Industry Matching Grant Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John C. Lee

    2003-09-30

    For the academic year 2001-2002, the Department of Nuclear Engineering and Radiological Sciences received $50,000 of industrial contributions, matched by a DOE grant of $35,000. We used the combined DOE/Industry Matching Grant of $85,000 toward (a) undergraduate merit scholarships and research support, (b) graduate student support, and (c) partial support of a research scientist.

  13. The Influence of Work-Integrated Learning on Motivation to Undertake Graduate Studies

    ERIC Educational Resources Information Center

    Zegwaard, Karsten E.; McCurdy, Susan

    2014-01-01

    There has been concern around the lack of postgraduate qualified scientists and engineers (e.g., Gago et al., 2004; Koslow, 2005; Lovitts & Nelson, 2000). However, to be effective in increasing the number of science postgraduates, a greater understanding of why students go on to do graduate studies must be developed. Presented here is a study…

  14. Encouraging Girls into Science and Technology with Feminine Role Model: Does This Work?

    ERIC Educational Resources Information Center

    Bamberger, Yael M.

    2014-01-01

    This study examines the effect of a program that aimed to encourage girls to choose a science, technology, engineering, and mathematics (STEM) career in Israel. The program involved school visits to a high-tech company and meeting with role model female scientists. Sixty ninth-grade female students from a Jewish modern-orthodox single-sex…

  15. On flipping the classroom in large first year calculus courses

    NASA Astrophysics Data System (ADS)

    Jungić, Veselin; Kaur, Harpreet; Mulholland, Jamie; Xin, Cindy

    2015-05-01

    Over the course of two years, 2012--2014, we have implemented a 'flipping' the classroom approach in three of our large enrolment first year calculus courses: differential and integral calculus for scientists and engineers. In this article we describe the details of our particular approach and share with the reader some experiences of both instructors and students.

  16. Training the Future - Swamp Work Activities

    NASA Image and Video Library

    2017-07-19

    In the Swamp Works laboratory at NASA's Kennedy Space Center in Florida, student interns such as Maddy Olson are joining agency scientists, contributing in the area of Exploration Research and Technology. Olson is majoring in mechanical engineering at the University of North Dakota. The agency attracts its future workforce through the NASA Internship, Fellowships and Scholarships, or NIFS, Program.

  17. Training the Future - Swamp Work Activities

    NASA Image and Video Library

    2017-07-19

    In the Swamp Works laboratory at NASA's Kennedy Space Center in Florida, student interns such as Kevin Murphy are joining agency scientists, contributing in the area of Exploration Research and Technology. Murphy is majoring in mechanical engineering at the University of Illinois at Urbana-Champaign. The agency attracts its future workforce through the NASA Internship, Fellowships and Scholarships, or NIFS, Program.

  18. Training the Future - Swamp Work Activities

    NASA Image and Video Library

    2017-07-19

    In the Swamp Works laboratory at NASA's Kennedy Space Center in Florida, student interns such as Andrew Thoesen are joining agency scientists, contributing in the area of Exploration Research and Technology. Thoesen is studying mechanical engineering at Arizona State University in Tempe, Arizona. The agency attracts its future workforce through the NASA Internship, Fellowships and Scholarships, or NIFS, Program

  19. Stochastic processes, estimation theory and image enhancement

    NASA Technical Reports Server (NTRS)

    Assefi, T.

    1978-01-01

    An introductory account of stochastic processes, estimation theory, and image enhancement is presented. The book is primarily intended for first-year graduate students and practicing engineers and scientists whose work requires an acquaintance with the theory. Fundamental concepts of probability were reviewed that are required to support the main topics. The appendices discuss the remaining mathematical background.

  20. At the Beginning of the STEM Pipeline: A Case Study Exploring Preadolescent Female Students' Attitudes Toward Science, Perceptions of Scientists, and Developing Career Aspirations

    NASA Astrophysics Data System (ADS)

    Heacock, Lucy Vogel

    The continuous underrepresentation of women in science, technology, engineering, and math (STEM), referred to as the leaky pipeline, has been examined from multiple perspectives internationally, while the attitudes and perceptions of preadolescent girls regarding STEM remain largely ignored. Employing a constructivist paradigm, this qualitative case study explored the perceptions and attitudes of 40 public elementary school female students across three grade levels regarding science, scientists, and career aspirations. Mixed-methods data collections included three survey instruments combined with semi-structured interviews. Self-efficacy, stereotype threat, and career choice theory provided the framework for the overarching research question: What are the attitudes and perceptions of female preadolescent students at the third, fourth, and fifth grade levels regarding science and scientists, and how might these dispositions affect their early development of STEM career aspirations and interests? The Three-Dimensions of Student Attitude Towards Science (TDSAS) instrument informed the exploration of self-efficacy; the modified Draw-A-Scientist Test (mDAST) and Rubric informed the exploration of stereotype threat; and the STEM-Career Interest Survey (CIS) informed the exploration of career aspirations. Semi-structured interviews were conducted with six participants. Results from this study indicated that the majority of the preadolescent girls thought science was an important topic to study and displayed an attitude of self-confident ability to learn science and be successful in science class. They highly enjoyed scientific experimentation and deeply valued problem solving. While they inferred they did not experience gender bias, the girls did engage in stereotyping scientists. Over half the girls expected to use science in their future careers, while a minority had already determined they wanted to be scientists when they grow up. The study concludes with recommendations for education stakeholders and for future research.

  1. ISS Robotic Student Programming

    NASA Technical Reports Server (NTRS)

    Barlow, J.; Benavides, J.; Hanson, R.; Cortez, J.; Le Vasseur, D.; Soloway, D.; Oyadomari, K.

    2016-01-01

    The SPHERES facility is a set of three free-flying satellites launched in 2006. In addition to scientists and engineering, middle- and high-school students program the SPHERES during the annual Zero Robotics programming competition. Zero Robotics conducts virtual competitions via simulator and on SPHERES aboard the ISS, with students doing the programming. A web interface allows teams to submit code, receive results, collaborate, and compete in simulator-based initial rounds and semi-final rounds. The final round of each competition is conducted with SPHERES aboard the ISS. At the end of 2017 a new robotic platform called Astrobee will launch, providing new game elements and new ground support for even more student interaction.

  2. Developing student collaborations across disciplines, distances, and institutions.

    PubMed

    Knisley, Jeff; Behravesh, Esfandiar

    2010-01-01

    Because quantitative biology requires skills and concepts from a disparate collection of different disciplines, the scientists of the near future will increasingly need to rely on collaborations to produce results. Correspondingly, students in disciplines impacted by quantitative biology will need to be taught how to create and engage in such collaborations. In response to this important curricular need, East Tennessee State University and Georgia Technological University/Emory University cooperated in an unprecedented curricular experiment in which theoretically oriented students at East Tennessee State designed biophysical models that were implemented and tested experimentally by biomedical engineers at the Wallace H. Coulter Department of Biomedical Engineering at Georgia Technological University and Emory University. Implementing the collaborations between two institutions allowed an assessment of the student collaborations from before the groups of students had met for the first time until after they had finished their projects, thus providing insight about the formation and conduct of such collaborations that could not have been obtained otherwise.

  3. Developing Student Collaborations across Disciplines, Distances, and Institutions

    PubMed Central

    Behravesh, Esfandiar

    2010-01-01

    Because quantitative biology requires skills and concepts from a disparate collection of different disciplines, the scientists of the near future will increasingly need to rely on collaborations to produce results. Correspondingly, students in disciplines impacted by quantitative biology will need to be taught how to create and engage in such collaborations. In response to this important curricular need, East Tennessee State University and Georgia Technological University/Emory University cooperated in an unprecedented curricular experiment in which theoretically oriented students at East Tennessee State designed biophysical models that were implemented and tested experimentally by biomedical engineers at the Wallace H. Coulter Department of Biomedical Engineering at Georgia Technological University and Emory University. Implementing the collaborations between two institutions allowed an assessment of the student collaborations from before the groups of students had met for the first time until after they had finished their projects, thus providing insight about the formation and conduct of such collaborations that could not have been obtained otherwise. PMID:20810970

  4. ARES Education and Public Outreach

    NASA Technical Reports Server (NTRS)

    Allen, Jaclyn; Galindo, Charles; Graff, Paige; Willis, Kim

    2014-01-01

    The ARES Directorate education team is charged with translating the work of ARES scientists into content that can be used in formal and informal K-12 education settings and assisting with public outreach. This is accomplished through local efforts and national partnerships. Local efforts include partnerships with universities, school districts, museums, and the Lunar and Planetary Institute (LPI) to share the content and excitement of space science research. Sharing astromaterials and exploration science with the public is an essential part of the Directorate's work. As a small enclave of physical scientists at a NASA Center that otherwise emphasizes human space operations and engineering, the ARES staff is frequently called upon by the JSC Public Affairs and Education offices to provide presentations and interviews. Scientists and staff actively volunteer with the JSC Speaker's Bureau, Digital Learning Network, and National Engineers Week programs as well as at Space Center Houston activities and events. The education team also participates in many JSC educator and student workshops, including the Pre-Service Teacher Institute and the Texas Aerospace Scholars program, with workshop presentations, speakers, and printed materials.

  5. CosmoQuest: Training Educators and Engaging Classrooms in Citizen Science through a Virtual Research Facility

    NASA Astrophysics Data System (ADS)

    Buxner, Sanlyn; Bracey, Georgia; Summer, Theresa; Cobb, Whitney; Gay, Pamela L.; Finkelstein, Keely D.; Gurton, Suzanne; Felix-Strishock, Lisa; Kruse, Brian; Lebofsky, Larry A.; Jones, Andrea J.; Tweed, Ann; Graff, Paige; Runco, Susan; Noel-Storr, Jacob; CosmoQuest Team

    2016-10-01

    CosmoQuest is a Citizen Science Virtual Research Facility that engages scientists, educators, students, and the public in analyzing NASA images. Often, these types of citizen science activities target enthusiastic members of the public, and additionally engage students in K-12 and college classrooms. To support educational engagement, we are developing a pipeline in which formal and informal educators and facilitators use the virtual research facility to engage students in real image analysis that is framed to provide meaningful science learning. This work also contributes to the larger project to produce publishable results. Community scientists are being solicited to propose CosmoQuest Science Projects take advantage of the virtual research facility capabilities. Each CosmoQuest Science Project will result in formal education materials, aligned with Next Generation Science Standards including the 3-dimensions of science learning; core ideas, crosscutting concepts, and science and engineering practices. Participating scientists will contribute to companion educational materials with support from the CosmoQuest staff of data specialists and education specialists. Educators will be trained through in person and virtual workshops, and classrooms will have the opportunity to not only work with NASA data, but interface with NASA scientists. Through this project, we are bringing together subject matter experts, classrooms, and informal science organizations to share the excitement of NASA SMD science with future citizen scientists. CosmoQuest is funded through individual donations, through NASA Cooperative Agreement NNX16AC68A, and through additional grants and contracts that are listed on our website, cosmoquest.org.

  6. Former Intern: Amy Stull Returns to Her Roots | Poster

    Cancer.gov

    By Carolynne Keenan, Contributing Writer When Amy Stull, a 2000 graduate of Walkersville High School, began working in a laboratory at the National Cancer Institute (NCI) at Frederick, she likely did not know the role NCI would play in her career. Stull started at NCI as a Werner H. Kirsten (WHK) student intern after her junior year of high school, working in a lab as she prepared for a career in chemical engineering. The student intern program pairs rising high school seniors with laboratory scientists to encourage the students to pursue careers in both science and health care fields.

  7. Editors' overview perspectives on teaching social responsibility to students in science and engineering.

    PubMed

    Zandvoort, Henk; Børsen, Tom; Deneke, Michael; Bird, Stephanie J

    2013-12-01

    Global society is facing formidable current and future problems that threaten the prospects for justice and peace, sustainability, and the well-being of humanity both now and in the future. Many of these problems are related to science and technology and to how they function in the world. If the social responsibility of scientists and engineers implies a duty to safeguard or promote a peaceful, just and sustainable world society, then science and engineering education should empower students to fulfil this responsibility. The contributions to this special issue present European examples of teaching social responsibility to students in science and engineering, and provide examples and discussion of how this teaching can be promoted, and of obstacles that are encountered. Speaking generally, education aimed at preparing future scientists and engineers for social responsibility is presently very limited and seemingly insufficient in view of the enormous ethical and social problems that are associated with current science and technology. Although many social, political and professional organisations have expressed the need for the provision of teaching for social responsibility, important and persistent barriers stand in the way of its sustained development. What is needed are both bottom-up teaching initiatives from individuals or groups of academic teachers, and top-down support to secure appropriate embedding in the university. Often the latter is lacking or inadequate. Educational policies at the national or international level, such as the Bologna agreements in Europe, can be an opportunity for introducing teaching for social responsibility. However, frequently no or only limited positive effect of such policies can be discerned. Existing accreditation and evaluation mechanisms do not guarantee appropriate attention to teaching for social responsibility, because, in their current form, they provide no guarantee that the curricula pay sufficient attention to teaching goals that are desirable for society as a whole.

  8. Are graduate students rational? Evidence from the market for biomedical scientists.

    PubMed

    Blume-Kohout, Margaret E; Clack, John W

    2013-01-01

    The U.S. National Institutes of Health (NIH) budget expansion from 1998 through 2003 increased demand for biomedical research, raising relative wages and total employment in the market for biomedical scientists. However, because research doctorates in biomedical sciences can often take six years or more to complete, the full labor supply response to such changes in market conditions is not immediate, but rather is observed over a period of several years. Economic rational expectations models assume that prospective students anticipate these future changes, and also that students take into account the opportunity costs of their pursuing graduate training. Prior empirical research on student enrollment and degree completions in science and engineering (S&E) fields indicates that "cobweb" expectations prevail: that is, at least in theory, prospective graduate students respond to contemporaneous changes in market wages and employment, but do not forecast further changes that will arise by the time they complete their degrees and enter the labor market. In this article, we analyze time-series data on wages and employment of biomedical scientists versus alternative careers, on completions of S&E bachelor's degrees and biomedical sciences PhDs, and on research expenditures funded both by NIH and by biopharmaceutical firms, to examine the responsiveness of the biomedical sciences labor supply to changes in market conditions. Consistent with previous studies, we find that enrollments and completions in biomedical sciences PhD programs are responsive to market conditions at the time of students' enrollment. More striking, however, is the close correspondence between graduate student enrollments and completions, and changes in availability of NIH-funded traineeships, fellowships, and research assistantships.

  9. Improving Career Access in Science and Engineering for Students with Disabilities. Conference Proceedings of the National Association for Industry-Education Cooperation; American Association for the Advancement of Science; Association on Higher Education and Disability; National Parent Network on Disability, Federation for Children with Special Needs.

    ERIC Educational Resources Information Center

    National Association for Industry - Education Cooperation, Buffalo, NY.

    Many are concerned that America will not have a sufficient supply of scientists and engineers in the workforce for the 21st century. Five regional workshops were held by four organizations (in Boston, Massachusetts; Minneapolis, Minnesota; Seattle-Tacoma, Washington; and Phoenix-Tempe, Arizona) to provide a forum for all those concerned with…

  10. A successful intervention program for high ability minority students

    NASA Technical Reports Server (NTRS)

    Coleman, Winson R.

    1989-01-01

    Among professional occupations in the United States, non-Asian minorities are least represented in science and engineering fields. The Bureau of Labor Statistics predicts that over the next decade, civilian employment of scientists and engineers has the potential to grow by 40 percent. Furthermore, projections for the year 2000 indicate that 100,000 fewer B.S. and B.A. degrees will be awarded than were awarded in 1984. The latter projection takes into consideration the overall declining proportion of all 18 year old college students. Within this shrinking pool of 18 year old potential college students will be an increasing proportion of Blacks and Hispanics. In order to change the educational patterns for minority youth, an intense look at the factors that affect the science and mathematics performance of minorities. Furthermore, the work of programs that are successful at producing minority scientists and engineers must be examined and documented with the intent of replicating these programs. The fundamental concern at this time appears to be the quality of precollege experience because research has shown that lack of precollege preparation is the single most important cause of underrepresentation of minorities in science and engineering careers. For many years, intervention programs have attempted to improve the quality of the minority precollege experience by latter year intervention in grades eleven and twelve. Later efforts, such as this one, have concentrated on earlier years. The effectiveness of intervention programs is widely accepted but not rigorously documented. The mechanisms these programs have developed need to be identified and their potential for broader use evaluated. The ultimate goal of such studies would be to provide the different educational communities with a set of proven cost-effective state of the art mechanisms designed to increase participation and success of minority students in science and mathematics-related courses. One such intervention program is the Saturday Academy program for high ability minority students in the Washington, D.C. area. A description of the Saturday Academy is provided with the intent of making it available to personnel who are considering the development of similar projects. The effect of participation in the program on high school graduate rates, college enrollment, and choice of quantitative major is examined.

  11. Designing and Evaluating a Climate Change Course for Upper-Division Engineers and Scientists

    NASA Astrophysics Data System (ADS)

    Samson, P. J.

    2002-12-01

    AOSS 300, GLOBAL ENVIRONMENTAL IMPACT OF TECHNOLOGICAL CHANGE, was created to provide a mechanism for scientific exploration of the unexpected global environmental side effects of technological innovation with emphasis on issues of the atmosphere and oceans. The course is specifically designed to contribute to the desired Accreditation Board for Engineering and Technology (ABET) outcomes that engineering and science graduates possess "the broad education necessary to understand the impact of solutions in a global and societal context." To facilitate this new course a new suite of coupled Flash/PHP/MySQL tools have been created that allow personalization of the students' learning space and interaction with faculty. Using these tools students are challenged to actively participate in the construction of knowledge through development of on-line portfolios that influence course content. This paper reports on lessons learned in the first semester that will guide further course development.

  12. KSC-2012-1561

    NASA Image and Video Library

    2012-02-23

    ORLANDO, Fla. – Education specialists from NASA’s Kennedy Space Center set up a physics demonstration for the students from Meadow Woods Middle School in Orlando during NASA’s Project Management PM Challenge 2012. Here, Jim Gerard, in the red shirt at center, is assisted by Rachel Powers, in the blue shirt. The demonstrations are designed to increase student interest and pursuit of the science, technology, engineering and mathematics STEM fields integral to producing the next generation of scientists and engineers. PM Challenge 2012 was held at the Caribe Royale Hotel and Convention Center in Orlando, Fla., on Feb. 22-23, to provide a forum for all stakeholders in the project management community to meet and share stories, lessons learned and new uses of technology in the industry. The PM Challenge is sponsored by NASA's Office of the Chief Engineer. For additional information, visit http://www.nasa.gov/offices/oce/pmchallenge/index.html. Photo credit: NASA/Jim Grossmann

  13. KSC-2012-1564

    NASA Image and Video Library

    2012-02-23

    ORLANDO, Fla. – Students from Meadow Woods Middle School in Orlando take part in a hands-on activity during NASA’s Project Management PM Challenge 2012. Education specialists from NASA’s Kennedy Space Center supported the annual PM Challenge with demonstrations designed to illustrate various principles of physics. The demonstrations are designed to increase student interest and pursuit of the science, technology, engineering and mathematics STEM fields integral to producing the next generation of scientists and engineers. PM Challenge 2012 was held at the Caribe Royale Hotel and Convention Center in Orlando, Fla., on Feb. 22-23, to provide a forum for all stakeholders in the project management community to meet and share stories, lessons learned and new uses of technology in the industry. The PM Challenge is sponsored by NASA's Office of the Chief Engineer. For additional information, visit http://www.nasa.gov/offices/oce/pmchallenge/index.html. Photo credit: NASA/Jim Grossmann

  14. Pegasus XL CYGNSS Mission Science Briefing

    NASA Image and Video Library

    2016-12-10

    In the Kennedy Space Center’s Press Site auditorium, NASA and industry leaders speak to members of the media during a mission science briefing for the agency’s Cyclone Global Navigation Satellite System, or CYGNSS, spacecraft. From left are: Sean Potter of NASA Communications; Dr. Chris Ruf, CYGNSS principal investigator, Department of Climate and Space Sciences and Engineering at the University of Michigan; Aaron Ridley, CYGNSS constellation scientist in the Climate and Space Department at the University of Michigan in Ann Arbor, Michigan; and Mary Morris, doctoral student in the Department of Climate and Space Sciences and Engineering at the University of Michigan. The eight CYGNSS satellites will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data will help scientists probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a crucial role in the beginning and intensification of hurricanes.

  15. Pegasus XL CYGNSS Mission Science Briefing

    NASA Image and Video Library

    2016-12-10

    In the Kennedy Space Center’s Press Site auditorium, NASA and industry leaders speak to members of the media during a mission science briefing for the agency’s Cyclone Global Navigation Satellite System, or CYGNSS, spacecraft. From left are: Dr. Chris Ruf, CYGNSS principal investigator, Department of Climate and Space Sciences and Engineering at the University of Michigan; Aaron Ridley, CYGNSS constellation scientist in the Climate and Space Department at the University of Michigan in Ann Arbor, Michigan; and Mary Morris, doctoral student in the Department of Climate and Space Sciences and Engineering at the University of Michigan. The eight CYGNSS satellites will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data will help scientists probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a crucial role in the beginning and intensification of hurricanes.

  16. Inventing a Space Mission: The Story of the Herschel Space Observatory

    NASA Astrophysics Data System (ADS)

    Minier, Vincent; Bonnet, Roger-Maurice; Bontems, Vincent; de Graauw, Thijs; Griffin, Matt; Helmich, Frank; Pilbratt, Göran; Volonte, Sergio

    This book describes prominent technological achievements within a very successful space science mission: the Herschel space observatory. Focusing on the various processes of innovation it offers an analysis and discussion of the social, technological and scientific context of the mission that paved the way to its development. It addresses the key question raised by these processes in our modern society, i.e.: how knowledge management of innovation set the conditions for inventing the future? In that respect the book is based on a transdisciplinary analysis of the programmatic complexity of Herschel, with inputs from space scientists, managers, philosophers, and engineers. This book is addressed to decision makers, not only in space science, but also in other industries and sciences using or building large machines. It is also addressed to space engineers and scientists as well as students in science and management.

  17. Town Meeting on Plasma Physics at the National Science Foundation

    NASA Astrophysics Data System (ADS)

    2015-11-01

    We invite you to the Town Meeting on the role of the National Science Foundation (NSF) in supporting basic and applied research in Plasma Physics in the U.S. The overarching goal of NSF is to promote the progress of science and to enable training of the next generation of scientists and engineers at US colleges and universities. In this context, the role of the NSF Physics Division in leading the nearly 20 year old NSF/DOE Partnership in Basic Plasma Science and Engineering serves as an example of the long history of NSF support for basic plasma physics research. Yet, the NSF interest in maintaining a healthy university research base in plasma sciences extends across the Foundation. A total of five NSF Divisions are participating in the most recent Partnership solicitation, and a host of other multi-disciplinary and core programs provide opportunities for scientists to perform research on applications of plasma physics to Space & Solar Physics, Astrophysics, Accelerator Science, Material Science, Plasma Medicine, and many sub-disciplines within Engineering. This Town Meeting will provide a chance to discuss the full range of relevant NSF funding opportunities, and to begin a conversation on the present and future role of NSF in stewarding basic plasma science and engineering research at US colleges and universities. We would like to particularly encourage early career scientists and graduate students to participate in this Town Meeting, though everyone is invited to join what we hope to be a lively discussion.

  18. Using partnerships with scientists to enhance teacher capacity to address the NGSS

    NASA Astrophysics Data System (ADS)

    Pavelsky, T.; Haine, D. B.; Drostin, M.

    2013-12-01

    Increasingly, scientists are seeking outreach experts to assist with the education and outreach components of their research grants. These experts have the skills and expertise to assist with translating scientific research into lessons and activities that are aligned to the Next Generation Science Standards (NGSS) as well as state standards, are STEM-focused and that address the realities of the K-12 science classroom. Since 2007, the Institute for the Environment (IE) at the University of North Carolina at Chapel Hill has been conducting teacher professional development and high school student science enrichment programs to promote climate literacy. Partnering with scientists to deepen content knowledge and promote engagement with technology and real data has been a successful strategy for cultivating increased climate literacy among teachers and students. In this session, we will share strategies for effectively engaging scientists in K-12 educational activities by providing specific examples of the various ways in which scientists can be integrated into programming and their research translated into relevant classroom activities. Engaging scientists and translating their research into classroom activities is an approach that becomes even more relevant with the advent of the NGSS. The NGSS's Disciplinary Core Ideas (DCIs) that encompass climate literacy can be addressed by partnering with scientists to provide teachers with current content knowledge and technological tools needed to promote integration of relevant science and engineering practices and cross-cutting themes. Here we highlight a successful partnership in which IE science educators collaborated with with a faculty member to develop a lesson for North Carolina teachers introducing them to new research on satellite remote sensing of the water cycle, while also promoting student engagement with local data. The resulting lesson was featured during a two-day, IE-led teacher workshop for 21 North Carolina high school teachers in July 2013 titled, 'Observing regional and global water resources: Using remote sensing and field data to better understand the hydrologic cycle.'

  19. NASA's New Science Education and Public Outreach Forums: Bringing Communities and Resources Together to Increase Effectiveness and Sustainability

    NASA Astrophysics Data System (ADS)

    Smith, Denise A.; Mendez, B.; Shipp, S.; Schwerin, T.; Stockman, S.; Cooper, L. P.; Sharma, M.

    2010-01-01

    Scientists, engineers, educators, and public outreach professionals have a rich history of creatively using NASA's pioneering scientific discoveries and technology to engage and educate youth and adults nationwide in core science, technology, engineering, and mathematics topics. We introduce four new Science Education and Public Outreach Forums that will work in partnership with the community and NASA's Science Mission Directorate (SMD) to ensure that current and future SMD-funded education and public outreach (E/PO) activities form a seamless whole, with easy entry points for general public, students, K-12 formal and informal science educators, faculty, scientists, engineers, and E/PO professionals alike. The new Science Education and Public Outreach Forums support the astrophysics, heliophysics, planetary and Earth science divisions of NASA SMD in three core areas: 1) E/PO community engagement and development activities will provide clear paths of involvement for scientists and engineers interested - or potentially interested - in participating in SMD-funded E/PO activities. Collaborations with scientists and engineers are vital for infusing current, accurate SMD mission and research findings into educational products and activities. Forum activities will also yield readily accessible information on effective E/PO strategies, resources, and expertise; context for individual E/PO activities; and opportunities for collaboration. 2) A rigorous analysis of SMD-funded K-12 formal, informal, and higher education products and activities will help the community and SMD to understand how the existing collection supports education standards and audience needs, and to strategically identify areas of opportunity for new materials and activities. 3) Finally, a newly convened Coordinating Committee will work across the four SMD science divisions to address systemic issues and integrate related activities. By supporting the NASA E/PO community and facilitating coordination of E/PO activities, the NASA-SEPOF partnerships will lead to more effective, sustainable, and efficient utilization of NASA science discoveries and learning experiences.

  20. STEM Is Elementary: Challenges Faced by Elementary Teachers in the Era of the Next Generation Science Standards

    ERIC Educational Resources Information Center

    Isabelle, Aaron D.

    2017-01-01

    For students to achieve the goals of the Next Generation Science Standards (NGSS) by Grade 12, thinking and acting like scientists and engineers must begin in the elementary grades. However, elementary teachers may find this challenging -because language arts and mathematics still dominate many classrooms--often at the expense of science. This…

  1. Robot Rocket Rally

    NASA Image and Video Library

    2014-03-14

    CAPE CANAVERAL, Fla. – Students from Hagerty High School in Oviedo, Fla., participants in FIRST Robotics, show off their robots' capabilities at the Robot Rocket Rally. The three-day event at Florida's Kennedy Space Center Visitor Complex is highlighted by exhibits, games and demonstrations of a variety of robots, with exhibitors ranging from school robotics clubs to veteran NASA scientists and engineers. Photo credit: NASA/Kim Shiflett

  2. An Alternative Energy Career Project at the Warwick School, Redhill, Surrey

    ERIC Educational Resources Information Center

    Balmer, Denise

    2014-01-01

    The article describes an innovative project for year 9 (age 13-14) students that has run since 2002 with the help of professional engineers and scientists and incorporates careers information and hands-on practical work. The programme was developed to highlight alternative energy as a subject and also to provide a hands-on practical day for the…

  3. Mississippi State University Cooling, Heating, and Power (Micro-CHP) and Bio-Fuel Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mago, Pedro; Newell, LeLe

    2014-01-31

    Between 2008 and 2014, the U.S. Department of Energy funded the MSU Micro-CHP and Bio-Fuel Center located at Mississippi State University. The overall objective of this project was to enable micro-CHP (micro-combined heat and power) utilization, to facilitate and promote the use of CHP systems and to educate architects, engineers, and agricultural producers and scientists on the benefits of CHP systems. Therefore, the work of the Center focused on the three areas: CHP system modeling and optimization, outreach, and research. In general, the results obtained from this project demonstrated that CHP systems are attractive because they can provide energy, environmental,more » and economic benefits. Some of these benefits include the potential to reduce operational cost, carbon dioxide emissions, primary energy consumption, and power reliability during electric grid disruptions. The knowledge disseminated in numerous journal and conference papers from the outcomes of this project is beneficial to engineers, architects, agricultural producers, scientists and the public in general who are interested in CHP technology and applications. In addition, more than 48 graduate students and 23 undergraduate students, benefited from the training and research performed in the MSU Micro-CHP and Bio-Fuel Center.« less

  4. Connecting polar research to NGSS STEM classroom lessons

    NASA Astrophysics Data System (ADS)

    Brinker, R.; Kast, D.

    2016-12-01

    Next Generation Science Standards (NGSS) are designed to bring consistent, rigorous science teaching across the United States. Topics are categorized as Performance Expectations (PE), Disciplinary Core Ideas (DCI), Cross-Cutting Concepts (CCC), and Science and Engineering Practices (SEP). NGSS includes a focus on environmental science and climate change across grade levels. Earth and planetary sciences are required at the high school level. Integrating polar science lessons into NGSS classrooms brings relevant, rigorous climate change curriculum across grade levels. Polar science provides opportunities for students to use current data during lessons, conduct their own field work, and collaborate with scientists. Polar science provides a framework of learning that is novel to most students. Inquiry and engagement are high with polar science lessons. Phenomenon related to polar science provide an excellent tool for science teachers to use to engage students in a lesson, stimulate inquiry, and promote critical thinking. When taught effectively, students see the connections between their community, polar regions and climate change, regardless of where on the planet students live. This presentation describes examples of how to effectively implement NGSS lessons by incorporating polar science lessons and field research. Examples of introductory phenomenon and aligned PEs, CCCs, DCIs, and SEPs are given. Suggested student activities, assessments, examples of student work, student research, labs, and PolarTREC fieldwork, use of current science data, and connections to scientists in the field are provided. The goals of the presentation are to give teachers a blueprint to follow when implementing NGSS lessons, and give scientists an understanding of the basics of NGSS so they may be better able to relate their work to U.S. science education and be more effective communicators of their science findings.

  5. Undergraduate Research at SETI in Astrobiology

    NASA Astrophysics Data System (ADS)

    Kress, Monika; Phillips, C.; DeVore, E.; Hubickyj, O.

    2012-05-01

    The SETI Institute and San Jose State University (SJSU) have begun a partnership (URSA: Undergraduate Research at the SETI Institute in Astrobiology) in which undergraduate science and engineering majors from SJSU participate in research at the SETI Institute during the academic year. We are currently in our second year of the three-year NASA-funded grant. The goal of this program is to expose future scientists, engineers and educators to the science of astrobiology and to NASA in general, and by so doing, to prepare them for the transition to their future career in the Silicon Valley or beyond. The URSA students are mentored by a SETI Institute scientist who conducts research at the SETI Institute headquarters or nearby at NASA Ames Research Center. The SETI Institute is a private, nonprofit organization dedicated to scientific research, education and public outreach. Its mission is to explore, understand and explain the origin, nature and prevalence of life in the universe. SJSU is a large urban public university that serves the greater Silicon Valley area in California. Students at SJSU come from diverse ethnic, cultural and socioeconomic backgrounds. Many of them face financial pressures that force them to pursue part-time work. URSA students are paid to work for 10 hours/week during the academic year, and also participate in monthly group meetings where they practice their presentation skills and discuss future plans. We encourage underserved and underrepresented students, including women, minority, and those who are the first in their family to go to college, to apply to the URSA program and provide ongoing mentoring and support as needed. While preparing students for graduate school is not a primary goal, some of our students have gone on to MS or PhD programs or plan to do so. The URSA program is funded by NASA EPOESS.

  6. Astronautics degrees for the space industry

    NASA Astrophysics Data System (ADS)

    Gruntman, M.; Brodsky, R. F.; Erwin, D. A.; Kunc, J. A.

    2004-01-01

    The Astronautics Program (http://astronautics.usc.edu) of the University of Southern California (USC) offers a full set of undergraduate and graduate degree programs in Aerospace Engineering with emphasis in Astronautics. The Bachelor of Science and Master of Science degree programs in Astronautics combine basic science and engineering classes with specialized classes in space technology. The Certificate in Astronautics targets practicing engineers and scientists who enter space-related fields and/or who want to obtain training in specific space-related areas. Many specialized graduate classes are taught by adjunct faculty working at the leading space companies. The Master of Science degree and Certificate are available entirely through the USC Distance Education Network (DEN). Today, the Internet allows us to reach students anywhere in the world through webcasting. The majority of our graduate students, as well as those pursuing the Certificate, work full time as engineers in the space industry and government research and development centers while earning their degrees. The new world of distance learning presents new challenges and opens new opportunities. Distance learning, and particularly the introduction of webcasting, transform the organization of the graduate program and class delivery. We describe in detail the program's academic focus, student reach, and structure of program components. Program development is illustrated by the student enrollment dynamics and related industrial trends; the lessons learned emphasize the importance of feedback from the students and from the space industry.

  7. Students' explanations in complex learning of disciplinary programming

    NASA Astrophysics Data System (ADS)

    Vieira, Camilo

    Computational Science and Engineering (CSE) has been denominated as the third pillar of science and as a set of important skills to solve the problems of a global society. Along with the theoretical and the experimental approaches, computation offers a third alternative to solve complex problems that require processing large amounts of data, or representing complex phenomena that are not easy to experiment with. Despite the relevance of CSE, current professionals and scientists are not well prepared to take advantage of this set of tools and methods. Computation is usually taught in an isolated way from engineering disciplines, and therefore, engineers do not know how to exploit CSE affordances. This dissertation intends to introduce computational tools and methods contextualized within the Materials Science and Engineering curriculum. Considering that learning how to program is a complex task, the dissertation explores effective pedagogical practices that can support student disciplinary and computational learning. Two case studies will be evaluated to identify the characteristics of effective worked examples in the context of CSE. Specifically, this dissertation explores students explanations of these worked examples in two engineering courses with different levels of transparency: a programming course in materials science and engineering glass box and a thermodynamics course involving computational representations black box. Results from this study suggest that students benefit in different ways from writing in-code comments. These benefits include but are not limited to: connecting xv individual lines of code to the overall problem, getting familiar with the syntax, learning effective algorithm design strategies, and connecting computation with their discipline. Students in the glass box context generate higher quality explanations than students in the black box context. These explanations are related to students prior experiences. Specifically, students with low ability to do programming engage in a more thorough explanation process than students with high ability. This dissertation concludes proposing an adaptation to the instructional principles of worked-examples for the context of CSE education.

  8. Reviews of Data on Science Resources, No. 25. Doctoral Scientists and Engineers in Private Industry, 1973.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC. Div. of Science Resources Studies.

    Reported are manpower data needed by those engaged in science and engineering policy activities. The information is collected from scientists and engineers themselves. The basis of this report is the first survey, in a biennial series, of the Doctoral Roster of Scientists and Engineers, conducted for the National Science Foundation by the…

  9. An Inquiry-Based Approach to Teaching Space Weather to Undergraduate Non-Science Majors

    NASA Astrophysics Data System (ADS)

    Cade, W. B., III

    2016-12-01

    Undergraduate Space Weather education is an important component of creating a society that is knowledgeable about space weather and its societal impacts. The space physics community has made great strides in providing academic education for students, typically physics and engineering majors, who are interested in pursuing a career in the space sciences or space weather. What is rarely addressed, however, is providing a broader space weather education to undergraduate students as a whole. To help address this gap, I have created an introductory space weather course for non-science majors, with the idea of expanding exposure to space weather beyond the typical physics and engineering students. The philosophy and methodologies used in this course will be presented, as well as the results of the first attempts to teach it. Using an approach more tailored to the non-scientist, courses such as this can be an effective means of broadening space weather education and outreach.

  10. Ohio Space Grant Funds for Scholarship/Fellowship Students

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Ohio Aerospace Institute (OAT), a consortium of university, industry, and government, was formed to promote collaborative aerospace-related research, graduate education, and technology transfer among the nine Ohio universities with doctoral level engineering programs, NASA Lewis Research Center, Air Force Wright Laboratory, and industry. OAT provides enhanced opportunities for affiliates to utilize federal government research laboratories and facilities at Lewis Research Center (LeRC) and Wright Laboratory. As a component of the graduate education and research programs, students and faculty from the member universities, LeRC engineers and scientists, and visiting investigators from industry, government and non-member universities conduct collaborative research projects using the unique facilities at LeRC, and will participate in collaborative education programs. Faculty from the member universities who hold collateral appointments at OAT, and government and industry experts serving as adjunct faculty, can participate in the supervision of student research.

  11. Preparing technicians for engineering materials technology

    NASA Technical Reports Server (NTRS)

    Jacobs, James A.; Metzloff, Carlton H.

    1990-01-01

    A long held principle is that for every engineer and scientist there is a need for ten technicians to maximize the efficiency of the technology team for meeting needs of industry and government. Developing an adequate supply of technicians to meet the requirements of the materials related industry will be a challenge and difficult to accomplish. A variety of agencies feel the need and wish to support development of engineering materials technology programs. In a joint effort among Battelle Laboratories, the Department of Energy (DOE) and Northwest College and University Association for Science (NORCUS), the development of an engineering materials technology program for vocational programs and community colleges for the Pacific Northwest Region was recently completed. This effort has implications for a national model. The model Associate of Applied Science degree in Engineering Materials Technology shown provides a general structure. It purposely has course titles which need delimiting while also including a core of courses necessary to develop cognitive, affective and psychomotor skills with the underlining principles of math, science and technology so students have job entry skills, and so that students can learn about and adapt to evolving technology.

  12. Teaching Graduate Students How To Do Informal Science Education

    NASA Astrophysics Data System (ADS)

    Ackerman, S. A.; Crone, W.; Dunwoody, S. L.; Zenner, G.

    2011-12-01

    One of the most important skills a student needs to develop during their graduate days is the skill of communicating their scientific work with a wide array of audiences. That facility will serve them across audiences, from scientific peers to students to neighbors and the general public. Increasingly, graduate students express a need for training in skills needed to manage diverse communicative environments. In response to that need we have created a course for graduate students in STEM-related fields which provides a structured framework and experiential learning about informal science education. This course seeks to familiarize students with concepts and processes important to communicating science successfully to a variety of audiences. A semester-long course, "Informal Science Education for Scientists: A Practicum," has been co-taught by a scientist/engineer and a social scientist/humanist over several years through the Delta Program in Research, Teaching, & Learning at the University of Wisconsin-Madison. The course is project based and understanding audience is stressed throughout the class. Through development and exhibition of the group project, students experience front end, formative and summative evaluation methods. The disciplines of the participating students is broad, but includes students in the geosciences each year. After a brief description of the course and its evolution, we will present assessment and evaluation results from seven different iterations of the course showing significant gains in how informed students felt about evaluation as a tool to determine the effectiveness of their science outreach activities. Significant gains were found in the graduate students' perceptions that they were better qualified to explain a research topic to a lay audience, and in the students' confidence in using and understanding evaluation techniques to determine the effectiveness of communication strategies. There were also increases in the students' understanding of audiences and the iterative process required to design an informal education product.

  13. KSC-2011-3367

    NASA Image and Video Library

    2011-05-06

    Cape Canaveral, Fla. -- Students from across the nation gathered at NASA's Kennedy Space Center in Florida for the NASA Explorer Schools (NES) symposium. At the microphone is NASA Explorer Schools Lead Education Specialist Alicia Baturoni from NASA's Glenn Research Center. From left, the panel includes aerospace engineer with NASA's Launch Services Program Caley Burke, Gary Letchworth who is working on the Orion multipurpose crew vehicle, NASA Contract Specialist Nicole Rivera, wildlife ecologist with Innovative Heath Applications Becky Bolt, Tim Griffin who works in Kennedy's Chemical Analysis Branch, Xaivian Raymond with NASA Human Resources, aerospace engineer Sarah Cox who works on the space shuttle's thermal protection system, and chemical engineer Annie Caraccio. During the NES event, students presented their investigation project to their peers, scientists, engineers and education specialists. About 60 fourth- through 12-grade students nationwide are at the center May 4-7 participating in tours of processing and launch facilities and the U.S. Astronaut Hall of Fame, as well as several educational activities and a career panel question-and-answer session. About 30 teachers will receive professional development opportunities during the symposium. The participants were competitively selected after they completed an original investigation focused on existing NASA missions or research interests. Photo Credit: NASA/Kim Shiflett

  14. Helping students make meaning of authentic investigations: findings from a student-teacher-scientist partnership

    NASA Astrophysics Data System (ADS)

    Peker, Deniz; Dolan, Erin

    2012-03-01

    As student-teacher-scientist partnerships become more widespread, there is a need for research to understand the roles assumed by scientists and teachers as they interact with students in general and in inquiry learning environments in particular. Although teacher roles during inquiry learning have been studied, there is a paucity of research about the roles that scientists assume in their interactions with students. Socio-cultural perspectives on learning emphasize social interaction as a means for students to make meaning of scientific ideas. Thus, this naturalistic study of classroom discourse aims to explore the ways scientists and teachers help high school students make meaning during authentic inquiry investigations. Conversational analysis is conducted of video recordings of discussions between students and teachers and students and scientists from two instances of a student-teacher-scientist partnership program. A social semiotic analytic framework is used to interpret the actions of scientists and teachers. The results indicate a range of common and distinct roles for scientists and teachers with respect to the conceptual, social, pedagogical, and epistemological aspects of meaning making. While scientists provided conceptual and epistemological support related to their scientific expertise, such as explaining scientific phenomena or aspects of the nature of science, teachers played a critical role in ensuring students' access to this knowledge. The results have implications for managing the division of labor between scientists and teachers in partnership programs.

  15. Helping students make meaning of authentic investigations: findings from a student-teacher-scientist partnership.

    PubMed

    Peker, Deniz; Dolan, Erin

    2012-03-01

    As student-teacher-scientist partnerships become more widespread, there is a need for research to understand the roles assumed by scientists and teachers as they interact with students in general and in inquiry learning environments in particular. Although teacher roles during inquiry learning have been studied, there is a paucity of research about the roles that scientists assume in their interactions with students. Socio-cultural perspectives on learning emphasize social interaction as a means for students to make meaning of scientific ideas. Thus, this naturalistic study of classroom discourse aims to explore the ways scientists and teachers help high school students make meaning during authentic inquiry investigations. Conversational analysis is conducted of video recordings of discussions between students and teachers and students and scientists from two instances of a student-teacher-scientist partnership program. A social semiotic analytic framework is used to interpret the actions of scientists and teachers. The results indicate a range of common and distinct roles for scientists and teachers with respect to the conceptual, social, pedagogical, and epistemological aspects of meaning making. While scientists provided conceptual and epistemological support related to their scientific expertise, such as explaining scientific phenomena or aspects of the nature of science, teachers played a critical role in ensuring students' access to this knowledge. The results have implications for managing the division of labor between scientists and teachers in partnership programs.

  16. Turkish Primary Students' Perceptions about Scientist and What Factors Affecting the Image of the Scientists

    ERIC Educational Resources Information Center

    Turkmen, Hakan

    2008-01-01

    Students' views of science and scientists have been widely studied. The purpose of this study is to analyze image of scientist from drawn picture of scientists using The Draw-a-Scientist Test (DAST) by 5th grade students and to analyze where this image comes from students minds in changing Turkish educational perspective. Two hundred eighty seven…

  17. 76 FR 2373 - Science Advisory Board Staff Office; Request for Nominations of Experts to Augment the SAB...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-13

    ... Office is requesting public nominations for scientists and engineers to augment the SAB Scientific and... STAA Program was established in 1980 to recognize Agency scientists and engineers who published their... seeking nominations of nationally and internationally recognized scientists and engineers having...

  18. Continuing Education for Scientists and Engineers: Delivery Systems in North Carolina.

    ERIC Educational Resources Information Center

    Harrell, Daniel E.; Gibbs, Rebecca F.

    Focusing on the continuing education (CE) of scientists/engineers in North Carolina working in small (1-500 employees), geographically dispersed companies, this study: 1) identified and described CE resources currently being used by scientists/engineers to maintain and extend their professional competence and capabilities; 2) determined the extent…

  19. Study of the scientific reasoning methods: Identifying the salient reasoning characteristics exhibited by engineers and scientists in an R&D environment

    NASA Astrophysics Data System (ADS)

    Kuhn, William F.

    At the core of what it means to be a scientist or engineer is the ability to think rationally using scientific reasoning methods. Yet, typically if asked, scientist and engineers are hard press for a reply what that means. Some may argue that the meaning of scientific reasoning methods is a topic for the philosophers and psychologist, but this study believes and will prove that the answers lie with the scientists and engineers, for who really know the workings of the scientific reasoning thought process than they. This study will provide evidence to the aims: (a) determine the fundamental characteristics of cognitive reasoning methods exhibited by engineer/scientists working in R&D projects, (b) sample the engineer/scientist community to determine their views as to the importance, frequency, and ranking of each of characteristics towards benefiting their R&D projects, (c) make concluding remarks regarding any identified competency gaps in the exhibited or expected cognitive reasoning methods of engineer/scientists working on R&D projects. To drive these aims are the following three research questions. The first, what are the salient characteristics of cognitive reasoning methods exhibited by engineer/scientists in an R&D environment? The second, what do engineer/scientists consider to be the frequency and importance of the salient cognitive reasoning methods characteristics? And the third, to what extent, if at all, do patent holders and technical fellows differ with regard to their perceptions of the importance and frequency of the salient cognitive reasoning characteristics of engineer/scientists? The methodology and empirical approach utilized and described: (a) literature search, (b) Delphi technique composed of seven highly distinguish engineer/scientists, (c) survey instrument directed to distinguish Technical Fellowship, (d) data collection analysis. The results provide by Delphi Team answered the first research question. The collaborative effort validated presented characteristic and most importantly presents ten additional novel or new reasoning characteristics. These characteristics were then presented and evaluated by the Technical Fellows. Their findings answered the second and third research question. With interesting results including the data indicating "imagination" as highest in importance and frequency, and comparison analysis of the patent holders showing those having five or more patents significantly valued "intuition (independent).

  20. The Teach for America RockCorps, Year 1: Turning Authentic Research Experiences in Geophysics for STEM Teachers into Modeling Instruction™ in High School Classrooms

    NASA Astrophysics Data System (ADS)

    Garrison, D. R., Jr.; Neubauer, H.; Barber, T. J.; Griffith, W. A.

    2015-12-01

    National reform efforts such as the Next Generation Science Standards, Modeling Instruction™, and Project Lead the Way (PLTW) seek to more closely align K-12 students' STEM learning experiences with the practices of scientific and engineering inquiry. These reform efforts aim to lead students toward deeper understandings constructed through authentic scientific and engineering inquiry in classrooms, particularly via model building and testing, more closely mirroring the professional practice of scientists and engineers, whereas traditional instructional approaches have typically been lecture-driven. In this vein, we describe the approach taken in the first year of the Teach for America (TFA) RockCorps, a five-year, NSF-sponsored project designed to provide authentic research experiences for secondary teachers and foster the development of Geophysics-themed teaching materials through cooperative lesson plan development and purchase of scientific equipment. Initially, two teachers were selected from the local Dallas-Fort Worth Region of TFA to participate in original research studying the failure of rocks under impulsive loads using a Split-Hopkinson-Pressure Bar (SHPB). For the teachers, this work provides a context from which to derive Geophysics-themed lesson plans for their courses, Physics/Pre-AP and Principles of Engineering (POE), offered at two large public high schools in Dallas ISD. The Physics course will incorporate principles of seismic wave propagation to allow students to develop a model of wave behavior, including velocity, refraction, and resonance, and apply the model to predict propagation properties of a variety of waves through multiple media. For the PLTW POE course, tension and compression testing of a variety of rock samples will be incorporated into materials properties and testing units. Also, a project will give a group of seniors in the PLTW Engineering Design and Development course at this certified NAF Academy of Engineering the opportunity to collaborate with UT Arlington scientists to design and prototype a fixturing solution for material testing. These course adaptations address learning objectives specified by the Texas Essential Knowledge and Skills, using geoscience examples to make abstract concepts more concrete.

  1. KSC-03PD-0514

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. - At NASA's Family & Community Mars Exploration Day held in Cape Canaveral, Fla., students look at a remote-controlled model of the Mars Exploration Rover. The event informed students and the general public about Florida's key role as NASA's 'Gateway to Mars' and offered an opportunity to meet with scientists, engineers, educators and others working Mars exploration missions. The Mars Exploration Rovers are being prepared for launch this spring aboard Boeing Delta II rockets from the Cape Canaveral Air Force Station. They will land on Mars and start exploring in January 2004.

  2. KSC-03pd0514

    NASA Image and Video Library

    2003-02-19

    KENNEDY SPACE CENTER, FLA. - At NASA's Family & Community Mars Exploration Day held in Cape Canaveral, Fla., students look at a remote-controlled model of the Mars Exploration Rover. The event informed students and the general public about Florida's key role as NASA's "Gateway to Mars" and offered an opportunity to meet with scientists, engineers, educators and others working Mars exploration missions. The Mars Exploration Rovers are being prepared for launch this spring aboard Boeing Delta II rockets from the Cape Canaveral Air Force Station. They will land on Mars and start exploring in January 2004.

  3. Multi-Sensory Approach to Search for Young Stellar Objects in CG4

    NASA Astrophysics Data System (ADS)

    Hoette, Vivian L.; Rebull, L. M.; McCarron, K.; Johnson, C. H.; Gartner, C.; VanDerMolen, J.; Gamble, L.; Matche, L.; McCartney, A.; Doering, M.; Crump, R.; Laorr, A.; Mork, K.; Steinbergs, E.; Wigley, E.; Caruso, S.; Killingstad, N.; McCanna, T.

    2011-01-01

    Individuals with disabilities - specifically individuals who are deaf or hard of hearing (DHH) and/or blind and visually-impaired (BVI) - have traditionally been underrepresented in the fields of Science, Technology, Engineering, and Math (STEM). The low incidence rate of these populations, coupled with geographic isolation, creates limited opportunities for students to work with and receive mentoring by professionals who not only have specialty knowledge in disability areas but also work in STEM fields. Yerkes Observatory scientists, along with educators from the Wisconsin School for the Deaf, the Wisconsin Center for the Blind and Visually Impaired, Breck School, and Oak Park and River Forest High School, are engaged in active research with a Spitzer Science Center (SSC) scientist. Our ultimate goals are threefold; to engage DHH and BVI students with equal success as their sighted and hearing peers, to share our techniques to make astronomy more accessible to DHH and BVI youth, and to generate a life-long interest which will lead our students to STEM careers. This poster tracks our work with an SSC scientist during the spring, summer, and fall of 2010. The group coauthored another AAS poster on finding Young Stellar Objects (YSO) in the CG4 Nebula in Puppis. During the project, the students, scientists and teachers developed a number of techniques for learning the necessary science as well as doing the required data acquisition and analysis. Collaborations were formed between students with disabilities and their non-disabled peers to create multi-media projects. Ultimately, the projects created for our work with NITARP will be disseminated through our professional connections in order to ignite a passion for astronomy in all students - with and without disabilities. This research was made possible through the NASA/IPAC Teacher Archive Research Project (NITARP) and was funded by NASA Astrophysics Data Program and Archive Outreach funds.

  4. Combinatorial Algorithms to Enable Computational Science and Engineering: Work from the CSCAPES Institute

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boman, Erik G.; Catalyurek, Umit V.; Chevalier, Cedric

    2015-01-16

    This final progress report summarizes the work accomplished at the Combinatorial Scientific Computing and Petascale Simulations Institute. We developed Zoltan, a parallel mesh partitioning library that made use of accurate hypergraph models to provide load balancing in mesh-based computations. We developed several graph coloring algorithms for computing Jacobian and Hessian matrices and organized them into a software package called ColPack. We developed parallel algorithms for graph coloring and graph matching problems, and also designed multi-scale graph algorithms. Three PhD students graduated, six more are continuing their PhD studies, and four postdoctoral scholars were advised. Six of these students and Fellowsmore » have joined DOE Labs (Sandia, Berkeley), as staff scientists or as postdoctoral scientists. We also organized the SIAM Workshop on Combinatorial Scientific Computing (CSC) in 2007, 2009, and 2011 to continue to foster the CSC community.« less

  5. Do Gender Differences in Perceived Prototypical Computer Scientists and Engineers Contribute to Gender Gaps in Computer Science and Engineering?

    PubMed

    Ehrlinger, Joyce; Plant, E Ashby; Hartwig, Marissa K; Vossen, Jordan J; Columb, Corey J; Brewer, Lauren E

    2018-01-01

    Women are vastly underrepresented in the fields of computer science and engineering (CS&E). We examined whether women might view the intellectual characteristics of prototypical individuals in CS&E in more stereotype-consistent ways than men might and, consequently, show less interest in CS&E. We asked 269 U.S. college students (187, 69.5% women) to describe the prototypical computer scientist (Study 1) or engineer (Study 2) through open-ended descriptions as well as through a set of trait ratings. Participants also rated themselves on the same set of traits and rated their similarity to the prototype. Finally, participants in both studies were asked to describe their likelihood of pursuing future college courses and careers in computer science (Study 1) or engineering (Study 2). Across both studies, we found that women offered more stereotype-consistent ratings than did men of the intellectual characteristics of prototypes in CS (Study 1) and engineering (Study 2). Women also perceived themselves as less similar to the prototype than men did. Further, the observed gender differences in prototype perceptions mediated the tendency for women to report lower interest in CS&E fields relative to men. Our work highlights the importance of prototype perceptions for understanding the gender gap in CS&E and suggests avenues for interventions that may increase women's representation in these vital fields.

  6. High School Students' Reasons for Their Science Dispositions: Community-Based Innovative Technology-Embedded Environmental Research Projects

    NASA Astrophysics Data System (ADS)

    Ebenezer, Jazlin; Kaya, Osman Nafiz; Kasab, Dimma

    2018-05-01

    The purpose of this investigation was to qualitatively describe high school students' reasons for their science dispositions (attitude, perception, and self-confidence) based on their long-term experience with innovative technology-embedded environmental research projects. Students in small groups conducted research projects in and out of school with the help of their teachers and community experts (scientists and engineers). During the 3-year period of this nationally funded project, a total of 135 students from five schools in a mid-west State participated in research activities. Of the 135 students, 53 students were individually interviewed to explore reasons for their science dispositions. Students' reasons for each disposition were grouped into categories, and corresponding frequency was converted to a percentage. The categories of reasons were not only attributed to the use of innovative technologies in environmental research but also the contexts and events that surrounded it. The reasons that influenced students' science dispositions positively were because engaging in environmental research projects with technology contributed to easing fear and difficulty, building a research team, disseminating findings, communicating with the community, researching with scientists, training by teachers, and acknowledging teachers' knowledge. These results advanced how and why students develop science dispositions in the positive direction, which are as follows: building science teacher capacity, developing a community of inquirers, and committing to improve pedagogical practices.

  7. NASA Brevard Top Scholars

    NASA Image and Video Library

    2017-11-13

    Retired NASA astronaut Tom Jones talks to high school students during "Lunch with an Astronaut" at the NASA Kennedy Space Center Visitor Complex in Florida. Top scholars from Brevard County public high schools were invited to Kennedy Space Center for a tour of facilities, lunch and a roundtable discussion with engineers and scientists at the center. The 2017-2018 Brevard Top Scholars event was hosted by the center's Education Projects and Youth Engagement office to honor the top three scholars of the 2017-2018 graduating student class from each of Brevard County’s public high schools. The students received a personalized certificate at the end of the day.

  8. Are Graduate Students Rational? Evidence from the Market for Biomedical Scientists

    PubMed Central

    Blume-Kohout, Margaret E.; Clack, John W.

    2013-01-01

    The U.S. National Institutes of Health (NIH) budget expansion from 1998 through 2003 increased demand for biomedical research, raising relative wages and total employment in the market for biomedical scientists. However, because research doctorates in biomedical sciences can often take six years or more to complete, the full labor supply response to such changes in market conditions is not immediate, but rather is observed over a period of several years. Economic rational expectations models assume that prospective students anticipate these future changes, and also that students take into account the opportunity costs of their pursuing graduate training. Prior empirical research on student enrollment and degree completions in science and engineering (S&E) fields indicates that “cobweb” expectations prevail: that is, at least in theory, prospective graduate students respond to contemporaneous changes in market wages and employment, but do not forecast further changes that will arise by the time they complete their degrees and enter the labor market. In this article, we analyze time-series data on wages and employment of biomedical scientists versus alternative careers, on completions of S&E bachelor's degrees and biomedical sciences PhDs, and on research expenditures funded both by NIH and by biopharmaceutical firms, to examine the responsiveness of the biomedical sciences labor supply to changes in market conditions. Consistent with previous studies, we find that enrollments and completions in biomedical sciences PhD programs are responsive to market conditions at the time of students' enrollment. More striking, however, is the close correspondence between graduate student enrollments and completions, and changes in availability of NIH-funded traineeships, fellowships, and research assistantships. PMID:24376573

  9. NASA's Space Life Sciences Training Program.

    PubMed

    Coulter, G; Lewis, L; Atchison, D

    1994-01-01

    The Space Life Sciences Training Program (SLSTP) is an intensive, six-week training program held every summer since 1985 at the Kennedy Space Center (KSC). A major goal of the SLSTP is to develop a cadre of qualified scientists and engineers to support future space life sciences and engineering challenges. Hand-picked, undergraduate college students participate in lectures, laboratory sessions, facility tours, and special projects: including work on actual Space Shuttle flight experiments and baseline data collection. At NASA Headquarters (HQ), the SLSTP is jointly sponsored by the Life Sciences Division and the Office of Equal Opportunity Programs: it has been very successful in attracting minority students and women to the fields of space science and engineering. In honor of the International Space Year (ISY), 17 international students participated in this summer's program. An SLSTP Symposium was held in Washington D.C., just prior to the World Space Congress. The Symposium attracted over 150 SLSTP graduates for a day of scientific discussions and briefings concerning educational and employment opportunities within NASA and the aerospace community. Future plans for the SLSTP include expansion to the Johnson Space Center in 1995.

  10. NASA's Space Life Sciences Training Program

    NASA Technical Reports Server (NTRS)

    Coulter, G.; Lewis, L.; Atchison, D.

    1994-01-01

    The Space Life Sciences Training Program (SLSTP) is an intensive, six-week training program held every summer since 1985 at the Kennedy Space Center (KSC). A major goal of the SLSTP is to develop a cadre of qualified scientists and engineers to support future space life sciences and engineering challenges. Hand-picked, undergraduate college students participate in lectures, laboratory sessions, facility tours, and special projects: including work on actual Space Shuttle flight experiments and baseline data collection. At NASA Headquarters (HQ), the SLSTP is jointly sponsored by the Life Sciences Division and the Office of Equal Opportunity Programs: it has been very successful in attracting minority students and women to the fields of space science and engineering. In honor of the International Space Year (ISY), 17 international students participated in this summer's program. An SLSTP Symposium was held in Washington D. C., just prior to the World Space Congress. The Symposium attracted over 150 SLSTP graduates for a day of scientific discussions and briefings concerning educational and employment opportunities within NASA and the aerospace community. Future plans for the SLSTP include expansion to the Johnson Space Center in 1995.

  11. Education on electrical phenomena involved in electroporation-based therapies and treatments: a blended learning approach.

    PubMed

    Čorović, Selma; Mahnič-Kalamiza, Samo; Miklavčič, Damijan

    2016-04-07

    Electroporation-based applications require multidisciplinary expertise and collaboration of experts with different professional backgrounds in engineering and science. Beginning in 2003, an international scientific workshop and postgraduate course electroporation based technologies and treatments (EBTT) has been organized at the University of Ljubljana to facilitate transfer of knowledge from leading experts to researches, students and newcomers in the field of electroporation. In this paper we present one of the integral parts of EBTT: an e-learning practical work we developed to complement delivery of knowledge via lectures and laboratory work, thus providing a blended learning approach on electrical phenomena involved in electroporation-based therapies and treatments. The learning effect was assessed via a pre- and post e-learning examination test composed of 10 multiple choice questions (i.e. items). The e-learning practical work session and both of the e-learning examination tests were carried out after the live EBTT lectures and other laboratory work. Statistical analysis was performed to compare and evaluate the learning effect measured in two groups of students: (1) electrical engineers and (2) natural scientists (i.e. medical doctors, biologists and chemists) undergoing the e-learning practical work in 2011-2014 academic years. Item analysis was performed to assess the difficulty of each item of the examination test. The results of our study show that the total score on the post examination test significantly improved and the item difficulty in both experimental groups decreased. The natural scientists reached the same level of knowledge (no statistical difference in total post-examination test score) on the post-course test take, as do electrical engineers, although the engineers started with statistically higher total pre-test examination score, as expected. The main objective of this study was to investigate whether the educational content the e-learning practical work presented to the students with different professional backgrounds enhanced their knowledge acquired via lectures during EBTT. We compared the learning effect assessed in two experimental groups undergoing the e-learning practical work: electrical engineers and natural scientists. The same level of knowledge on the post-course examination was reached in both groups. The results indicate that our e-learning platform supported by blended learning approach provides an effective learning tool for populations with mixed professional backgrounds and thus plays an important role in bridging the gap between scientific domains involved in electroporation-based technologies and treatments.

  12. Supply and Demand for Scientists and Engineers. Second Edition.

    ERIC Educational Resources Information Center

    Vetter, Betty M.

    This report, which includes 51 tables and charts, examines past, present, and future imbalances in the supply of and demand for scientists and engineers. The supply is assessed by source and by field, and compared with current and short-range demand for new graduates and for experienced scientists and engineers, including assessment of the…

  13. Okeanos Explorer 2014 Gulf of Mexico Expedition: engaging and connecting with diverse and geographically dispersed audiences

    NASA Astrophysics Data System (ADS)

    Russell, C. W.; Elliott, K.; Lobecker, E.; McKenna, L.; Haynes, S.; Crum, E.; Gorell, F.

    2014-12-01

    From February to May 2014, NOAA Ship Okeanos Explorer conducted a telepresence-enabled ocean exploration expedition addressing NOAA and National deepwater priorities in the U.S. Gulf of Mexico. The community-driven expedition connected diverse and geographically dispersed audiences including scientists from industry, academia, and government, and educators, students, and the general public. Expedition planning included input from the ocean science and management community, and was executed with more than 70 scientists and students from 14 U.S. states participating from shore in real time. Training the next generation permeated operations: a mapping internship program trained undergraduate and graduate students; an ROV mentorship program trained young engineers to design, build and operate the system; and undergraduate through doctoral students around the country collaborated with expedition scientists via telepresence. Online coverage of the expedition included background materials, daily updates, and mission logs that received more than 100,000 visits by the public. Live video feeds of operations received more than 700,000 views online. Additionally, professional development workshops hosted in multiple locations throughout the spring introduced educators to the Okeanos Explorer Educational Materials Collection and the live expedition, and taught them how to use the website and education resources in their classrooms. Social media furthered the reach of the expedition to new audiences, garnered thousands of new followers and provided another medium for real-time interactions with the general public. Outreach continued through live interactions with museums and aquariums, Exploration Command Center tours, outreach conducted by partners, and media coverage in more than 190 outlets in the U.S. and Europe. Ship tours were conducted when the ship came in to port to engage local scientists, ocean managers, and educators. After the expedition, data and products were archived and quickly shared with ocean managers and scientists working in the region, providing a baseline of publicly available data and stimulating follow-on exploration, research and management activities within a few months of expedition completion.

  14. DEEP: Discover, Explore, and Enjoy Physics & Engineering via High Impact Educational Experiences at Texas A&M and Beyond

    NASA Astrophysics Data System (ADS)

    Erukhimova, Tatiana; Fry, Edward

    2014-03-01

    We will present the first results of an innovative program at Texas A&M University that aims to enhance the learning and research experiences of undergraduate and graduate students through their participation in high-profile outreach activities: principally the Texas A&M Physics and Engineering Festival and the Physics Shows. The goals are to enhance students' knowledge of fundamental physics concepts through collaborative hands-on research and educational activities, to teach them effective communication skills and responsibility, and to enhance their opportunities for interactions with their peers and professors outside the classroom. The program activities include (i) students working side-by-side with their peers and professors on research, concept, design, and fabrication of physics demonstration experiments, (ii) presentation of these exhibits during the Festival and Shows in teams of several students and faculty members, (iii) assessment of students teamwork, and (iv) incorporation of new demonstrations in core curriculum classes. Texas A&M Physics and Engineering Festival is a major annual outreach event at TAMU attracting over 4000 visitors and featuring over 100 interactive exhibits, public lectures by prominent scientists, and various hands-on activities. This program is supported by Tier One Grant from Texas A&M University.

  15. Turbulence

    NASA Astrophysics Data System (ADS)

    Frisch, Uriel

    1996-01-01

    Written five centuries after the first studies of Leonardo da Vinci and half a century after A.N. Kolmogorov's first attempt to predict the properties of flow, this textbook presents a modern account of turbulence, one of the greatest challenges in physics. "Fully developed turbulence" is ubiquitous in both cosmic and natural environments, in engineering applications and in everyday life. Elementary presentations of dynamical systems ideas, probabilistic methods (including the theory of large deviations) and fractal geometry make this a self-contained textbook. This is the first book on turbulence to use modern ideas from chaos and symmetry breaking. The book will appeal to first-year graduate students in mathematics, physics, astrophysics, geosciences and engineering, as well as professional scientists and engineers.

  16. Basic exploration geophysics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, E.S.

    1988-01-01

    An introduction to geophysical methods used to explore for natural resources and to survey earth's geology is presented in this volume. It is suitable for second-and third-year undergraduate students majoring in geology or engineering and for professional engineering and for professional engineers and earth scientists without formal instruction in geophysics. The author assumes the reader is familiar with geometry, algebra, and trigonometry. Geophysical exploration includes seismic refraction and reflection surveying, electrical resistivity and electromagnetic field surveying, and geophysical well logging. Surveying operations are described in step-by-step procedures and are illustrated by practical examples. Computer-based methods of processing and interpreting datamore » as well as geographical methods are introduced.« less

  17. Gender Differences in Science, Technology, Engineering, and Mathematics (STEM) Interest, Credits Earned, and NAEP Performance in the 12th Grade. Stats in Brief. NCES 2015-075

    ERIC Educational Resources Information Center

    Cunningham, Brittany C.; Hoyer, Kathleen Mulvaney; Sparks, Dinah

    2015-01-01

    As technical and scientific innovation continue to drive the global economy, educators, policymakers, and scientists seek to promote students' interest and achievement in the STEM fields to maintain the nation's competitive position (National Academy of Sciences 2006; National Science Board 2007; President's Council of Advisors on Science and…

  18. Summer of Innovation Kick Off

    NASA Image and Video Library

    2010-06-09

    Rapper and Actor Daniel Curtis Lee performs during the kick off of NASA's Summer of Innovation program at the Jet Propulsion Laboratory in Pasadena, Calif., Thursday, June 10, 2010. Through the program, NASA will engage thousands of middle school students and teachers in stimulating math and science-based education programs with the goal of increasing the number of future scientists, mathematicians, and engineers. Photo Credit: (NASA/Bill Ingalls)

  19. Gender Differences in Conceptualizations of STEM Career Interest: Complementary Perspectives from Data Mining, Multivariate Data Analysis and Multidimensional Scaling

    ERIC Educational Resources Information Center

    Knezek, Gerald; Christensen, Rhonda; Tyler-Wood, Tandra; Gibson, David

    2015-01-01

    Data gathered from 325 middle school students in four U.S. states indicate that both male (p < 0.0005, RSQ = 0.33) and female (p < 0.0005, RSQ = 0.36) career aspirations for "being a scientist" are predictable based on knowledge of dispositions toward mathematics, science and engineering, plus self-reported creative tendencies. For…

  20. Robot Rocket Rally

    NASA Image and Video Library

    2014-03-14

    CAPE CANAVERAL, Fla. – Students gather to watch as a DARwin-OP miniature humanoid robot from Virginia Tech Robotics demonstrates its soccer abilities at the Robot Rocket Rally. The three-day event at Florida's Kennedy Space Center Visitor Complex is highlighted by exhibits, games and demonstrations of a variety of robots, with exhibitors ranging from school robotics clubs to veteran NASA scientists and engineers. Photo credit: NASA/Kim Shiflett

  1. Robot Rocket Rally

    NASA Image and Video Library

    2014-03-14

    CAPE CANAVERAL, Fla. – Students observe as Otherlab shows off a life-size, inflatable robot from its "" program. The demonstration was one of several provided during the Robot Rocket Rally. The three-day event at Florida's Kennedy Space Center Visitor Complex is highlighted by exhibits, games and demonstrations of a variety of robots, with exhibitors ranging from school robotics clubs to veteran NASA scientists and engineers. Photo credit: NASA/Kim Shiflett

  2. Training the Future - Interns Harvesting & Testing Plant Experim

    NASA Image and Video Library

    2017-07-19

    In the Space Life Sciences Laboratory at NASA's Kennedy Space Center in Florida, student interns such as Payton Barnwell are joining agency scientists, contributing in the area of plant growth research for food production in space. Barnwell is a mechanical engineering and nanotechnology major at Florida Polytechnic University. The agency attracts its future workforce through the NASA Internship, Fellowships and Scholarships, or NIFS, Program.

  3. Science for All: Strengthening Pathways for Scientists and Engineers to Bring Real-World Relevancy to STEM Concepts During Just-in-Time Learning

    NASA Astrophysics Data System (ADS)

    Klug Boonstra, S.

    2017-12-01

    With the advent and widespread adoption of virtual connectivity, it is possible for scientists, engineers, and other STEM professionals to reach every place the youth of America learn! Arizona State University's School of Earth and Space Exploration, in planned collaboration with national STEM organizations, agencies, and education partners, are proposing a bold, collaborative, national model that will better enable STEM professionals of all disciplines to meet the needs of their audiences more effectively and efficiently. STEM subject matter experts (SMEs) can bring timely and authentic, real-world examples that engage and motivate learners in the conceptual learning journey presented through formal and informal curricula while also providing a personal face and story of their STEM journey and experience. With over 6.2 million scientists and engineers, 55.6 million PreK-12 students, and 6.3 million community college students in the US, the possible reach, long-term impact, and benefits of the virtual, just-in-time interactions between SMEs, teachers, and students has the potential to provide the missing links of relevancy and real-world application that will engage learners and enhance STEM understanding at a higher, deeper level while having the capacity to do this at a national scale. Providing professional development training for the SMEs will be an essential element in helping them to understand where their STEM work is relevant and appropriate within educational learning progressions. The vision for STEM Connect will be to prepare the STEM SMEs to share their expertise in a way that will show the dynamic and iterative nature of STEM research and design, helping them to bring their STEM expertise to formal and informal learners in a strategic and meaningful way. Discussions with possible STEM Connect collaborators (e.g., national STEM member-based organizations, technology providers, federal agencies, and professional educational organizations) are underway to bring together a national design and implementation vision, start to build a collaborative team, and to look for funding mechanisms. We hope to empower this national pathway for STEM professionals to impact the way the next generation will understand and appreciate STEM's impact on our everyday lives.

  4. CosmoQuest: Supporting Subject Matter Experts in Broadening the Impacts of their Work beyond their Institutional Walls.

    NASA Astrophysics Data System (ADS)

    Noel-Storr, J.; Buxner, S.; Grier, J.; Gay, P.

    2016-12-01

    CosmoQuest is a virtual research facility, which, like its physical counterparts, provides tools for scientists to acquire reduced data products (thanks to our cadre of citizen scientists working to analyze images and produce results online), and also to participate in education and outreach activities either directly through CosmoQuest activities (such as CosmoAcademy and the Educators' Zone) or with the support of CosmoQuest. Here, we present our strategies to inspire, engage and support Subject Matter Experts (SMEs - Scientists, Engineers, Technologists and Mathematicians) in activities outside of their institutions, and beyond college classroom teaching. We provide support for SMEs who are interested in increasing the impacts of their science knowledge and expertise by interacting with people online, or in other venues outside of their normal work environment. This includes a broad spectrum of opportunities for those interested in hosting webinars; running short courses for the public; using Facebook, Twitter or other social media to communicate science; or other diverse activities such as supporting an open house, science fair, or star party. As noted by Katheryn Woods-Townsend and colleagues, "...face-to-face interactions with scientists allowed students to view scientists as approachable and normal people, and to begin to understand the range of scientific areas and careers that exist. Scientists viewed the scientist-student interactions as a vehicle for science communication" (2015). As CosmoQuest fosters these relationships, it We present a framework for SMEs which combine opportunities for continuing professional development (virtually and in person at conferences) with ongoing online support, creating a dynamic professional learning network. The goal of this is to deepen SME capacity-knowledge, attitudes and behaviors-both encouraging and empowering them to connect to broader audiences in new ways.

  5. Scientists' Perceptions of Communicating During Crises

    NASA Astrophysics Data System (ADS)

    Dohaney, J. A.; Hudson-Doyle, E.; Brogt, E.; Wilson, T. M.; Kennedy, B.

    2015-12-01

    To further our understanding of how to enhance student science and risk communication skills in natural hazards and earth science courses, we conducted a pilot study to assess the different perceptions of expert scientists and risk communication practitioners versus the perceptions of students. These differences will be used to identify expert views on best practice, and improve the teaching of communication skills at the University level. In this pilot study, a perceptions questionnaire was developed and validated. Within this, respondents (geoscientists, engineers, and emergency managers; n=44) were asked to determine their agreement with the use and effectiveness of specific communication strategies (within the first 72 hours after a devastating earthquake) when communicating to the public. In terms of strategies and information to the public, the respondents were mostly in agreement, but there were several statements which elicited large differences between expert responses: 1) the role and purpose of the scientific communication during crises (to persuade people to care, to provide advice, to empower people to take action); 2) the scientist's delivery (showing the scientists emotions and enthusiasm for scientific concepts they are discussing); and 3) the amount of data that is discussed (being comprehensive versus 'only the important' data). The most disagreed upon dimension was related to whether to disclose any political influence on the communication. Additionally, scientists identified that being an effective communicator was an important part of their job, and agreed that it is important to practice these skills. Respondents generally indicated that while scientists should be accountable for the science advice provided, they should not be held liable.

  6. Middle and high school students shine

    NASA Astrophysics Data System (ADS)

    Asher, Pranoti; Saltzman, Jennifer

    2012-02-01

    Middle and high school students participating in after-school and summer research experiences in the Earth and space sciences are invited to participate in AGU's Bright Students Training as Research Scientists (Bright STaRS) program. The Bright STaRS program provides a dedicated forum for these students to present their research results to the scientific community at AGU's Fall Meeting, where they can also learn about exciting research, education, and career opportunities in the Earth and space sciences. Last year's program included 33 abstracts from middle and high school students involved with the Stanford University School of Earth Sciences; Raising Interest in Science and Engineering summer internship program sponsored by the Office of Science Outreach at Stanford; Lawrence Hall of Science at the University of California, Berkeley; the University of California, Santa Cruz; California Academy of Science; San Francisco State University; the University of Arizona; and the National Oceanic and Atmospheric Administration's Gulf of the Farallones National Marine Sanctuary. Their work spanned a variety of topics ranging from structural geology and paleontology to environmental geology and polar science. Nearly 100 Bright STaRS students presented their research posters on Thursday morning (8 December) of the Fall Meeting and had a chance to interact with scientists, AGU staff, and other meeting attendees.

  7. Moving beyond the treatment package approach to developing behavioral interventions: addressing questions that arose during an application of the Multiphase Optimization Strategy (MOST).

    PubMed

    Wyrick, David L; Rulison, Kelly L; Fearnow-Kenney, Melodie; Milroy, Jeffrey J; Collins, Linda M

    2014-09-01

    Given current pressures to increase the public health contributions of behavioral interventions, intervention scientists may wish to consider moving beyond the classical treatment package approach that focuses primarily on achieving statistical significance. They may wish also to focus on goals directly related to optimizing public health impact. The Multiphase Optimization Strategy (MOST) is an innovative methodological framework that draws on engineering principles to achieve more potent behavioral interventions. MOST is increasingly being adopted by intervention scientists seeking a systematic framework to engineer an optimized intervention. As with any innovation, there are challenges that arise with early adoption. This article describes the solutions to several critical questions that we addressed during the first-ever iterative application of MOST. Specifically, we describe how we have applied MOST to optimize an online program (myPlaybook) for the prevention of substance use among college student-athletes. Our application of MOST can serve as a blueprint for other intervention scientists who wish to design optimized behavioral interventions. We believe using MOST is feasible and has the potential to dramatically improve program effectiveness thereby advancing the public health impact of behavioral interventions.

  8. Lamont-Doherty Earth Observatory Student Research Opportunities in Support of the Next Generation Science Standards

    NASA Astrophysics Data System (ADS)

    Passow, M. J.; Xu, C.; Newton, R.; Turrin, M.

    2016-12-01

    The Framework for K-12 Science and Next Generation Science Standards envision that students engage in practices that scientists use to deepen understanding of scientific ideas over time. The Lamont-Doherty Earth Observatory (LDEO) of Columbia University provides a suite of educational programs for high school students which strongly support this goal. Through summer and school year programs, LDEO offers access to vibrant, world-class research laboratories and scientists who have contributed to our understanding about the solid Earth, oceans, atmosphere, climate change, ice sheets, and more. Students become part of a research campus with state-of-the-art facilities. Programs include: A Day in the Life (collecting water variable data to construct a picture of Hudson River estuary dynamics); Rockland PLUS (experiences for students interested in planning sustainable development in their own communities); the Secondary School Field Research program (project-based research focused on biodiversity and environmental problem in New York metro area wetlands); Earth2Class (monthly Saturday workshops on a range of themes); and internships with cooperating researchers . Other examples of the scientific content include analyzing deep-sea sediments, examining rocks formed during an interglacial period 125,000 years ago to gain new insights about sea-level change, and monitoring invasive species in a nearby salt marsh. Students from NYC have their first exposure to collecting water samples, seining, and canoeing in the Hudson River, a contrast to the laboratory-based experiences ASR programs in cooperating hospitals. Students attend talks about cutting-edge investigations from Lamont scientists who are leaders in many fields, as well as advice about careers and college choices. Programs differ in length and location, but have fundamental commonalities: mentoring by early career and senior scientists, minimum scaffolding, treating data as publishable, and ensuring rigorous protocols. These programs serve as important models for developing and scaling programs that support the NGSS vision of helping students better understand how scientific knowledge develops and experience meaningful connections between crosscutting concepts, integrating engineering and technology, and disciplinary core ideas.

  9. A Seven-Year Longitudinal Study of the Research Outcomes for the CASPER Physics Circus

    NASA Astrophysics Data System (ADS)

    Carmona-Reyes, Jorge; Land-Zandstra, Anna; Stark, Gary; Tarman, Lisa; Menefee, Matt; Wang, Li; Cook, Mike; Schmoke, Jimmy; Matthews, Lorin; Hyde, Truell

    2014-10-01

    The CASPER Physics Circus was specifically designed to increase student interest in science, technology, engineering and mathematics (STEM) careers where the current generation of scientists and engineers is rapidly approaching retirement age. The Physics Circus followed Waco and LaVega ISD students starting in the sixth grade and ending in the twelfth grade with this cohort group attending the Physics Circus event on the Baylor University campus, interacting with CASPER graduate students and participating in hands-on instructional activities. The event was designed as an informal learning environment intervention and operated under the discovery, project and guided-inquiry base framework wrapped in a learner-center ideology. Participating students were allowed to experiment with hands-on manipulatives while interacting with physicists, science educators and graduate students in both STEM and science education fields. Professional Development was also a part of the Physics Circus for all science teachers within the cohort. This paper presents the results of a seven-year longitudinal study on the Physics Circus and presents future plans to expand the program's effectiveness and impact.

  10. Bringing Female Scientists into the Elementary Classroom: Confronting the Strength of Elementary Students' Stereotypical Images of Scientists.

    ERIC Educational Resources Information Center

    Buck, Gayle A.; Leslie-Pelecky, Diandra; Kirby, Susan K.

    2002-01-01

    Explores the effectiveness of bringing female scientists into elementary classrooms to promote change in the stereotypical images of scientists. Indicates that despite the efforts of the scientists to encourage students to question their image of a scientist, students held onto stereotypical images. Uses both qualitative and quantitative methods…

  11. Digital Learning Network Education Events of NASA's Extreme Environments Mission Operations

    NASA Technical Reports Server (NTRS)

    Paul, Heather; Guillory, Erika

    2007-01-01

    NASA's Digital Learning Network (DLN) reaches out to thousands of students each year through video conferencing and web casting. The DLN has created a series of live education videoconferences connecting NASA s Extreme Environment Missions Operations (NEEMO) team to students across the United States. The programs are also extended to students around the world live web casting. The primary focus of the events is the vision for space exploration. During the programs, NEEMO Crewmembers including NASA astronauts, engineers and scientists inform and inspire students about the importance of exploration and share the impact of the project as it correlates with plans to return to the moon and explore the planet Mars. These events highlight interactivity. Students talk live with the aquanauts in Aquarius, the National Oceanic and Atmospheric Administration s underwater laboratory. With this program, NASA continues the Agency s tradition of investing in the nation's education programs. It is directly tied to the Agency's major education goal of attracting and retaining students in science, technology, and engineering disciplines. Before connecting with the aquanauts, the students conduct experiments of their own designed to coincide with mission objectives. This paper describes the events that took place in September 2006.

  12. Learning chronobiology by improving Wikipedia.

    PubMed

    Chiang, C D; Lewis, C L; Wright, M D E; Agapova, S; Akers, B; Azad, T D; Banerjee, K; Carrera, P; Chen, A; Chen, J; Chi, X; Chiou, J; Cooper, J; Czurylo, M; Downs, C; Ebstein, S Y; Fahey, P G; Goldman, J W; Grieff, A; Hsiung, S; Hu, R; Huang, Y; Kapuria, A; Li, K; Marcu, I; Moore, S H; Moseley, A C; Nauman, N; Ness, K M; Ngai, D M; Panzer, A; Peters, P; Qin, E Y; Sadhu, S; Sariol, A; Schellhase, A; Schoer, M B; Steinberg, M; Surick, G; Tsai, C A; Underwood, K; Wang, A; Wang, M H; Wang, V M; Westrich, D; Yockey, L J; Zhang, L; Herzog, E D

    2012-08-01

    Although chronobiology is of growing interest to scientists, physicians, and the general public, access to recent discoveries and historical perspectives is limited. Wikipedia is an online, user-written encyclopedia that could enhance public access to current understanding in chronobiology. However, Wikipedia is lacking important information and is not universally trusted. Here, 46 students in a university course edited Wikipedia to enhance public access to important discoveries in chronobiology. Students worked for an average of 9 h each to evaluate the primary literature and available Wikipedia information, nominated sites for editing, and, after voting, edited the 15 Wikipedia pages they determined to be highest priorities. This assignment (http://www.nslc.wustl.edu/courses/Bio4030/wikipedia_project.html) was easy to implement, required relatively short time commitments from the professor and students, and had measurable impacts on Wikipedia and the students. Students created 3 new Wikipedia sites, edited 12 additional sites, and cited 347 peer-reviewed articles. The targeted sites all became top hits in online search engines. Because their writing was and will be read by a worldwide audience, students found the experience rewarding. Students reported significantly increased comfort with reading, critiquing, and summarizing primary literature and benefited from seeing their work edited by other scientists and editors of Wikipedia. We conclude that, in a short project, students can assist in making chronobiology widely accessible and learn from the editorial process.

  13. The Nautilus Exploration Program: Utilizing Live Ocean Exploration as a Platform for STEM Education and Outreach

    NASA Astrophysics Data System (ADS)

    Fundis, A.; Cook, M.; Sutton, K.; Garson, S.; Poulton, S.; Munro, S.

    2016-02-01

    By sparking interest in scientific inquiry and engineering design at a young age through exposure to ocean exploration and innovative technologies, and building on that interest throughout students' educational careers, the Ocean Exploration Trust (OET) aims to motivate more students to be lifelong learners and pursue careers in STEM fields. Utilizing research conducted aboard Exploration Vessel Nautilus, the ship's associated technologies, and shore-based facilities at the University of Rhode Island — including the Graduate School of Oceanography and the Inner Space Center — we guide students to early career professionals through a series of educational programs focused on STEM disciplines and vocational skills. OET also raises public awareness of ocean exploration and research through a growing online presence, live streaming video, and interactions with the team aboard the ship 24 hours a day via the Nautilus Live website (www.nautiluslive.org). Annually, our outreach efforts bring research launched from Nautilus to tens of millions worldwide and allow the public, students, and scientists to participate in expeditions virtually from shore. We share the Nautilus Exploration Program's strategies, successes, and lessons learned for a variety of our education and outreach efforts including: 1) enabling global audiences access to live ocean exploration online and via social media; 2) engaging onshore audiences in live and interactive conversations with scientists and engineers on board; 3) engaging young K-12 learners in current oceanographic research via newly developed lessons and curricula; 4) onshore and offshore professional development opportunities for formal and informal educators; 5) programs and authentic research opportunities for high school, undergraduate, and graduate students onshore and aboard Nautilus; and 6) collaborative opportunities for early career and seasoned researchers to participate virtually in telepresence-enabled, interdisciplinary expeditions.

  14. Turkish Elementary and Secondary Students' Views about Science and Scientist

    ERIC Educational Resources Information Center

    Akcay, Behiye

    2011-01-01

    The aim of this study was to determine elementary and secondary students' views concerning science and scientists. Data gathered from Draw-a-Scientist Test (DAST) and essays written by students were used to analyze their views. The study involved 359 students in grades 5 through 11. The results indicate that student's perceived scientists as to be…

  15. Viewpoint of Science Council of Japan

    NASA Astrophysics Data System (ADS)

    Ikeda, Syunsuke

    The Science Council of Japan (SCJ) is an academic body that represents Japanese 700,000 scientists. The activity of SCJ is changing rapidly, in which the science associated with society is increasingly important. In this context, the engineering education for ethics is treated at SCJ. The importance of engineering ethics was first recognized at the 5th division of 17th term (1999-2001) of SCJ, in which education for engineering ethics based on the analysis of ethical problems occurred in Japan is recommended and it asked the engineering societies to establish the code of ethics. Following this proposal, SCJ founded a committee to treat the problem at 18th and 19th terms. The committee proposed a procedure to prevent misconduct associated with scientific activities and the importance of education of science and engineering ethics especially for young students at tertiary education.

  16. The Impact of Federal Programs and Policies on Manpower Planning for Scientists and Engineers: Problems and Progress.

    ERIC Educational Resources Information Center

    Scientific Manpower Commission, Washington, DC.

    This document reports the results of a workshop held to assess the impact of federal programs and legislation on manpower planning for scientists and engineers. Included are presentations relating to manpower utilization and planning via federal government agencies and professional societies for scientists and engineers. It was concluded that the…

  17. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 56: Technical Communications in Engineering and Science: The Practices Within a Government Defense Laboratory

    NASA Technical Reports Server (NTRS)

    VonSeggern, Marilyn; Jourdain, Janet M.; Pinelli, Thomas E.

    1996-01-01

    Research in recent decades has identified the varied information needs of engineers versus scientists. While most of that research looked at the differences among organizations, we surveyed engineers and scientists within a single Air Force research and development laboratory about their information gathering, usage, and production practices. The results of the Phillips Laboratory survey confirm prior assumptions about distinctions between engineering and science. Because military employees responded at a much higher rate than civilian staff, the survey also became an opportunity to profile a little-known segment of the engineer/scientist population. In addition to the effect Phillips Laboratory's stated mission may have on member engineers and scientists, other factors causing variations in technical communication and information-related activities are identified.

  18. Engineering Employment and Unemployment, 1971. Engineering Manpower Bulletin Number 19.

    ERIC Educational Resources Information Center

    Alden, John D.

    Statistics concerning employment of scientists were obtained from 59,300 scientists responding to an Engineers Joint Council questionnaire. Findings reported are: (1) the overall unemployment rate was 3 percent for engineers compared to a rate of 5.8 percent for all other workers; (2) considering engineers not having engineering jobs, the…

  19. Everyone Knows What a Scientist Looks Like: The Image of a Modern Scientist

    NASA Astrophysics Data System (ADS)

    Enevoldsen, A. A. G.

    2008-11-01

    Children are inspired to follow career paths when they can imagine themselves there. Seeing pictures of adult individuals who look like them working in a given career can provide this spark to children's imaginations. Most (though not all) of the current available posters of scientists are of Einstein, and Einstein-like scientists. This is not representative of the current face of science. To change this, Pacific Science Center will host a photography exhibit: photographs of real, current scientists from all races, genders, beliefs, and walks of life. Photos will be taken and short biographies written by Discovery Corps Interns (Pacific Science Center's youth development program) to increase the amount of direct contact between students and scientists, and to give the exhibit an emotional connection for local teachers and families. We plan to make the photographs from this exhibit available to teachers for use in their classrooms, in addition to being displayed at Pacific Science Center during the International Year of Astronomy. The objectives of this project are to fill a need for representative photographs of scientists in the world community and to meet two of the goals of the International Year of Astronomy: to provide a modern image of science and scientists, and to improve the gender-balanced representation of scientists at all levels and promote greater involvement by under-represented minorities in scientific and engineering careers.

  20. Incorporating global components into ethics education.

    PubMed

    Wang, George; Thompson, Russell G

    2013-03-01

    Ethics is central to science and engineering. Young engineers need to be grounded in how corporate social responsibility principles can be applied to engineering organizations to better serve the broader community. This is crucial in times of climate change and ecological challenges where the vulnerable can be impacted by engineering activities. Taking a global perspective in ethics education will help ensure that scientists and engineers can make a more substantial contribution to development throughout the world. This paper presents the importance of incorporating the global and cross culture components in the ethic education. The authors bring up a question to educators on ethics education in science and engineering in the globalized world, and its importance, necessity, and impendency. The paper presents several methods for discussion that can be used to identify the differences in ethics standards and practices in different countries; enhance the student's knowledge of ethics in a global arena.

  1. Researchers Dispute Notion that America Lacks Scientists and Engineers

    ERIC Educational Resources Information Center

    Monastersky, Richard

    2007-01-01

    Researchers who track the American labor market told Congress last week that, contrary to conventional wisdom, the United States has more than enough scientists and engineers and that federal agencies and universities should reform the way they train young scientists to better match the supply of scientists with the demand for researchers. At a…

  2. Charting the pipeline: Identifying the critical elements in the development of successful African American scientists, engineers, and mathematicians

    NASA Astrophysics Data System (ADS)

    Williams, Brian Anthony

    Many educational researchers are concerned with the apparent poor performance of different racial and ethnic groups in the fields of science, engineering, and mathematics in the United States. Despite improvements in the performance of African Americans, Hispanic Americans, and Native Americans in these areas over the past decade, these groups are still less likely to enroll in advanced math and science courses or score at or above the proficient level in mathematics. Furthermore, these groups continue to be underrepresented in the nation's technical and scientific workforce. The purpose of this study was to identify the critical elements related to the success of African Americans in science, engineering, and mathematics. Specifically, this study was designed to answer the following questions as they pertained to African American graduate students: What factors were perceived to have contributed to the students' initial interest in science, engineering, or mathematics? What factors were perceived to have contributed to the students' decisions to continue their studies in their specific areas of interest? What factors, associated with the K--12 schooling experience, were perceived to have contributed to the students' success in science, engineering, or mathematics? The data for the study were acquired from interviews with 32 African American students (16 males and 16 females) who were engaged in graduate work in science, engineering, or mathematics. Four major themes emerged from the analysis of the interview data. The first was that all students were involved in experiences that allowed a significant level of participation in science, engineering, and mathematics. Second, all of the students experienced some form of positive personal intervention by another person. Third, all students possessed perceptions of these fields that involved some sort of positive outcome. Finally, all of the of the students believed they possessed intrinsic qualities that qualified and prepared them for their involvement with science, engineering, and mathematics. These four themes exhibited themselves in different ways during the course of the students' lives. As a result, the discussion of the results of the study was divided among the three developmental periods: the interest-building phase, the knowledge-acquisition phase, and the careerbuilding phase. The study's findings provide valuable information to schools, educators, policy makers, and researchers on how to prepare effectively all children for a science and technology driven society, and for some, induction into tomorrow's scientific community.

  3. Joint electrical engineering/physics course sequence for optics fundamentals and design

    NASA Astrophysics Data System (ADS)

    Magnusson, Robert; Maldonado, Theresa A.; Black, Truman D.

    2000-06-01

    Optics is a key technology in a broad range of engineering and science applications of high national priority. Engineers and scientists with a sound background in this field are needed to preserve technical leadership and to establish new directions of research and development. To meet this educational need, a joint Electrical Engineering/Physics optics course sequence was created as PHYS 3445 Fundamentals of Optics and EE 4444 Optical Systems Design, both with a laboratory component. The objectives are to educate EE and Physics undergraduate students in the fundamentals of optics; in interdisciplinary problem solving; in design and analysis; in handling optical components; and in skills such as communications and team cooperation. Written technical reports in professional format are required, formal presentations are given, and participation in paper design contests is encouraged.

  4. Meet the Scientist: The Value of Short Interactions between Scientists and Students

    ERIC Educational Resources Information Center

    Woods-Townsend, Kathryn; Christodoulou, Andri; Rietdijk, Willeke; Byrne, Jenny; Griffiths, Janice B.; Grace, Marcus M.

    2016-01-01

    Students have been reported to have stereotypical views of scientists as middle-aged white men in lab coats. We argue that a way to provide students with a more realistic view of scientists and their work is to provide them with the opportunity to interact with scientists during short, discussion-based sessions. For that reason, 20 scientists from…

  5. Astronautics Degrees for Space Industry

    NASA Astrophysics Data System (ADS)

    Gruntman, M.; Brodsky, R.; Erwin, D.; Kunc, J.

    The Astronautics Program (http://astronautics.usc.edu) of the University of Southern California (USC) offers a full set of undergraduate and graduate degree programs in Aerospace Engineering with emphasis in Astronautics. The Bachelor of Science degree program in Astronautics combines basic science and engineering classes with specialized astronautics classes. The Master of Science degree program in Astronautics offers classes in various areas of space technology. The Certificate in Astronautics targets practicing engineers and scientists who enter space-related fields and/or who want to obtain training in specific space-related areas. Many specialized graduate classes are taught by adjunct faculty working at the leading space companies. The Master of Science degree and Certificate are available through the USC Distance Education Network (DEN). Today, the Internet allows us to reach students anywhere in the world through webcasting. The majority of our graduate students, as well as those pursuing the Certificate, work full time as engineers in the space industry and government research and development centers. The new world of distance learning presents new challenges and opens new opportunities. We show how the transformation of distance learning and particularly the introduction of webcasting transform organization of the program and class delivery. We will describe in detail the academic focus of the program, student reach, and structure of program components. Program development is illustrated by the student enrollment dynamics and related industrial trends; the lessons learned emphasize the importance of feedback from the students and from the space industry.

  6. Greek primary school students' images of scientists and their work: has anything changed?

    NASA Astrophysics Data System (ADS)

    Emvalotis, Anastassios; Koutsianou, Athina

    2018-01-01

    Background: A growing interest in student's perceptions of scientists has been identified in the literature, relying on the argument that stereotypical perceptions of scientists may affect student attitudes towards science and their willingness to pursue a science-related career. Thus, over the past 30 years, many studies have investigated students' images of scientists through students' drawings.

  7. Finding Meaningful Roles for Scientists in science Education Reform

    NASA Astrophysics Data System (ADS)

    Evans, Brenda

    Successful efforts to achieve reform in science education require the active and purposeful engagement of professional scientists. Working as partners with teachers, school administrators, science educators, parents, and other stakeholders, scientists can make important contributions to the improvement of science teaching and learning in pre-college classrooms. The world of a practicing university, corporate, or government scientist may seem far removed from that of students in an elementary classroom. However, the science knowledge and understanding of all future scientists and scientifically literate citizens begin with their introduction to scientific concepts and phenomena in childhood and the early grades. Science education is the responsibility of the entire scientific community and is not solely the responsibility of teachers and other professional educators. Scientists can serve many roles in science education reform including the following: (1) Science Content Resource, (2) Career Role Model, (3) Interpreter of Science (4) Validator for the Importance of Learning Science and Mathematics, (5) Champion of Real World Connections and Value of Science, (6) Experience and Access to Funding Sources, (7) Link for Community and Business Support, (8) Political Supporter. Special programs have been developed to assist scientists and engineers to be effective partners and advocates of science education reform. We will discuss the rationale, organization, and results of some of these partnership development programs.

  8. Helping students make meaning of authentic investigations: findings from a student–teacher–scientist partnership

    PubMed Central

    Dolan, Erin

    2013-01-01

    As student–teacher–scientist partnerships become more widespread, there is a need for research to understand the roles assumed by scientists and teachers as they interact with students in general and in inquiry learning environments in particular. Although teacher roles during inquiry learning have been studied, there is a paucity of research about the roles that scientists assume in their interactions with students. Socio-cultural perspectives on learning emphasize social interaction as a means for students to make meaning of scientific ideas. Thus, this naturalistic study of classroom discourse aims to explore the ways scientists and teachers help high school students make meaning during authentic inquiry investigations. Conversational analysis is conducted of video recordings of discussions between students and teachers and students and scientists from two instances of a student–teacher–scientist partnership program. A social semiotic analytic framework is used to interpret the actions of scientists and teachers. The results indicate a range of common and distinct roles for scientists and teachers with respect to the conceptual, social, pedagogical, and epistemological aspects of meaning making. While scientists provided conceptual and epistemological support related to their scientific expertise, such as explaining scientific phenomena or aspects of the nature of science, teachers played a critical role in ensuring students' access to this knowledge. The results have implications for managing the division of labor between scientists and teachers in partnership programs. PMID:23828722

  9. The Science Race: Training and Utilization of Scientists and Engineers, US and USSR.

    ERIC Educational Resources Information Center

    Ailes, Catherine P.; Rushing, Francis W.

    This book represents a comparison of the systems of training and utilization of scientists/engineers in the United States and Soviet Union. Chapter 1 provides a general description of the economic structure and organization in which the training of scientists/engineers is conducted and in which such trained personnel are employed. In chapters 2-5,…

  10. The technical communication practices of Russian and U.S. aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Keene, Michael L.; Flammia, Madelyn; Kennedy, John M.

    1993-01-01

    As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communication practices of Russian and U.S. aerospace engineers and scientists. Both studies had the same five objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communication to their professions; second, to determine the use and production of technical communication by aerospace engineers and scientists; third, to seek their views about the appropriate content of the undergraduate course in technical communication; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line databases; and fifth, to determine the use and importance of computer and information technology to them. A self administered questionnaire was distributed to Russian aerospace engineers and scientists at the Central Aero-Hydrodynamic Institute (TsAGI) and to their U.S. counterparts at the NASA Ames Research Center and the NASA Langley Research Center. The completion rates for the Russian and U.S. surveys were 64 and 61 percent, respectively. Responses of the Russian and U.S. participants to selected questions are presented in this paper.

  11. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 16: A comparison of the technical communications practices of Russian and US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Kennedy, John M.; Barclay, Rebecca O.

    1993-01-01

    As part of Phase 4 of the NASA/DOD Aerospace Knowledge Diffusion Project, two studies were conducted that investigated the technical communications practices of Russian and U.S. aerospace engineers and scientists. Both studies have the same five objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third, to seek their views about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line data bases; and fifth, to determine the use and importance of computer and information technology to them. A self-administered questionnaire was distributed to aerospace engineers and scientists at the Central Aero-Hydrodynamic Institute (TsAGI), NASA ARC, and NASA LaRC. The completion rates for the Russian and U.S. surveys were 64 and 61 percent, respectively. The responses of the Russian and U.S. participants, to selected questions, are presented in this report.

  12. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 28: The technical communication practices of Russian and US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Keene, Michael L.; Flammia, Madelyn; Kennedy, John M.

    1993-01-01

    As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communication practices of Russian and U.S. aerospace engineers and scientists. Both studies had the same five objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communication to their professions; second, to determine the use and production of technical communication by aerospace engineers and scientists; third, to seek their views about the appropriate content of the undergraduate course in technical communication; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line databases; and fifth, to determine the use and importance of computer and information technology to them. A self administered questionnaire was distributed to Russian aerospace engineers and scientists at the Central Aero-Hydrodynamic Institute (TsAGI) and to their U.S. counterparts at the NASA Ames Research Center and the NASA Langley Research Center. The completion rates for the Russian and U.S. surveys were 64 and 61 percent, respectively. Responses of the Russian and U.S. participants to selected questions are presented in this paper.

  13. KSC-2011-3366

    NASA Image and Video Library

    2011-05-06

    Cape Canaveral, Fla. -- Students from across the nation gathered at NASA's Kennedy Space Center in Florida for the NASA Explorer Schools (NES) symposium. Here, the panel and students participate in a question-and-answer session. During the NES event, students presented their investigation project to their peers, scientists, engineers and education specialists. About 60 fourth- through 12-grade students nationwide are at the center May 4-7 participating in tours of processing and launch facilities and the U.S. Astronaut Hall of Fame, as well as several educational activities and a career panel question-and-answer session. About 30 teachers will receive professional development opportunities during the symposium. The participants were competitively selected after they completed an original investigation focused on existing NASA missions or research interests. Photo Credit: NASA/Kim Shiflett

  14. 1.2 million kids and counting-Mobile science laboratories drive student interest in STEM.

    PubMed

    Jones, Amanda L; Stapleton, Mary K

    2017-05-01

    In today's increasingly technological society, a workforce proficient in science, technology, engineering, and mathematics (STEM) skills is essential. Research has shown that active engagement by K-12 students in hands-on science activities that use authentic science tools promotes student learning and retention. Mobile laboratory programs provide this type of learning in schools and communities across the United States and internationally. Many programs are members of the Mobile Lab Coalition (MLC), a nonprofit organization of mobile and other laboratory-based education programs built on scientist and educator collaborations. A recent survey of the member programs revealed that they provide an impressive variety of programming and have collectively served over 1.2 million students across the US.

  15. The DOE fellows program-a workforce development initiative for the US department of energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lagos, Leonel E.

    The US Department of Energy Office of Environmental Management (DOE-EM) oversees one of the largest and most technically challenging cleanup programs in the world. The mission of DOE-EM is to complete the safe cleanup of the environmental legacy from five decades of nuclear weapons development and government-sponsored nuclear energy research. Since 1995, Florida International University's Applied Research Center (FIU-ARC) has supported the DOE-EM mission and provided unique research capabilities to address some of these highly technical and difficult challenges. This partnership has allowed FIU-ARC to create a unique infrastructure that is critical for the training and mentoring of science, technology,more » engineering, and math (STEM) students and has exposed many STEM students to 'hands-on' DOE-EM applied research, supervised by the scientists and engineers at ARC. As a result of this successful partnership between DOE and FIU, DOE requested FIU-ARC to create the DOE-FIU Science and Technology Workforce Development Initiative in 2007. This innovative program was established to create a 'pipeline' of minority STEM students trained and mentored to enter DOE's environmental cleanup workforce. The program was designed to help address DOE's future workforce needs by partnering with academic, government and private companies (DOE contractors) to mentor future minority scientists and engineers in the research, development, and deployment of new technologies and processes addressing DOE's environmental cleanup challenges. Since its inception in 2007, the program has trained and mentored 78 FIU STEM minority students. Although, the program has been in existence for only six years, a total of 75 internships have been conducted at DOE National Laboratories, DOE sites, DOE Headquarters and field offices, and DOE contractors. Over 100 DOE Fellows have participated in the Waste Management (WM) Symposia since 2008 with a total of 84 student posters and 7 oral presentations given at WM. The DOE Fellows participation at WM has resulted in three Best Student Poster Awards (WM09, WM10, and WM11) and one Best Professional Poster Award (WM09). DOE Fellows have also presented their research at ANS DD and R and ANS Robotics Topical meetings and this year two Fellows will present at the International Conference on Environmental Remediation and Radioactive Waste Management (ICEM13) in Brussels, Belgium. Moreover, several of our DOE Fellows have already obtained employment with DOE-EM, other federal agencies, DOE contractors, commercial nuclear power companies, and other STEM industry (GE, Boeing, Lockheed Martin, Johnson and Johnson, Beckman-Coulter, and other top companies). This paper will discuss how DOE Fellows program is training and mentoring FIU STEM students in Department of Energy's Office of Environmental Management technical challenges and research. This training and mentoring has resulted in the development of well-trained and polished young scientists and engineers that will become the future workforce in charge of carrying on DOE-EM's environmental cleanup mission. The paper will showcase FIU's DOE Fellows model and highlight some of the applied research the DOE Fellows have conducted at FIU's Applied Research Center and across the DOE Complex by participating in summer internship assignments. (authors)« less

  16. Year of the Oceans: Science of Information Handling. [Proceedings of the] Annual Conference of the International Association of Marine Science Libraries and Information Centers (10th, Woods Hole, Massachusetts, October 2-5, 1984).

    ERIC Educational Resources Information Center

    Grundy, R. L., Ed.; Ford, R. T., Ed.

    International Association of Marine Science Libraries and Information Centers (IAMSLIC) conferences provide a format for libraries and information specialists to discuss common interests and concerns so that services and information can be made available to scientists, administrators, engineers, educators and students in the discipline of marine…

  17. Robot Rocket Rally

    NASA Image and Video Library

    2014-03-14

    CAPE CANAVERAL, Fla. – A miniature humanoid robot known as DARwin-OP, from Virginia Tech Robotics, plays soccer with a red tennis ball for a crowd of students at the Robot Rocket Rally. The three-day event at Florida's Kennedy Space Center Visitor Complex is highlighted by exhibits, games and demonstrations of a variety of robots, with exhibitors ranging from school robotics clubs to veteran NASA scientists and engineers. Photo credit: NASA/Kim Shiflett

  18. Inspiring the Next Generation of Engineers and Scientists

    NASA Astrophysics Data System (ADS)

    Tambara, Kevin

    2013-04-01

    Students are usually not excited about abstract concepts, and teachers struggle to inject "pizzazz" into many of their lessons. K-12 teachers need opportunities and the associated pedagogical training to bring meaningful and authentic learning to their students. The professional educator community needs to develop a learning environment which connects desired content knowledge with science and engineering practices that students need to be successful future technology leaders. Furthermore, this environment must foster student exploration and discovery by encouraging them to use their natural creativity with newly acquired technical skills to complete assigned projects. These practices are explicitly listed in the US "Next Generation Science Standards" document that is due for final publication in the very near future. Education in America must unleash students' desires to create and make with their hands, using their intellect, and growing academic knowledge. In this submission I will share various student projects that I have created and implemented for middle and high school. For each project, students were required to learn and implement engineering best practices while designing, building, and testing prototype models, according to pre-assigned teacher specifications. As in all real-world engineering projects, students were required to analyze test data, re-design their models accordingly, and iterate the design process several times to meet specifications. Another key component to successful projects is collaboration between student team members. All my students come to realize that nothing of major significance is ever accomplished alone, that is, without the support of a team. I will highlight several projects that illustrate key engineering practices as well as lessons learned, for both student and teacher. Projects presented will include: magnetically levitated vehicles (maglev) races, solar-powered and mousetrap-powered cars and boats, Popsicle stick catapults and bridges, egg drop "lunar landers", egg-passenger car crashes, cardboard boat races (with human passengers), and working roller coasters made with only paper and tape. Each project requires minimal, low-cost materials commonly found at home or in local stores. I will share the most common student misperceptions about inquiry and problem-solving I have observed while working alongside my students during these projects.

  19. Broadening the Participation of Native Americans in Earth Science

    NASA Astrophysics Data System (ADS)

    Bueno Watts, Nievita

    Climate change is not a thing of the future. Indigenous people are being affected by climate changes now. Native American Earth scientists could help Native communities deal with both climate change and environmental pollution issues, but are noticeably lacking in Earth Science degree programs. The Earth Sciences produce the lowest percentage of minority scientists when compared with other science and engineering fields. Twenty semi-structured interviews were gathered from American Indian/ Alaska Native Earth Scientists and program directors who work directly with Native students to broaden participation in the field. Data was analyzed using qualitative methods and constant comparison analysis. Barriers Native students faced in this field are discussed, as well as supports which go the furthest in assisting achievement of higher education goals. Program directors give insight into building pathways and programs to encourage Native student participation and success in Earth Science degree programs. Factors which impede obtaining a college degree include financial barriers, pressures from familial obligations, and health issues. Factors which impede the decision to study Earth Science include unfamiliarity with geoscience as a field of study and career choice, the uninviting nature of Earth Science as a profession, and curriculum that is irrelevant to the practical needs of Native communities or courses which are inaccessible geographically. Factors which impede progress that are embedded in Earth Science programs include educational preparation, academic information and counseling and the prevalence of a Western scientific perspective to the exclusion of all other perspectives. Intradepartmental relationships also pose barriers to the success of some students, particularly those who are non-traditional students (53%) or women (80%). Factors which support degree completion include financial assistance, mentors and mentoring, and research experiences. Earth scientists can begin broaden participation by engaging in community-inspired research, which stems from the needs of a community and is developed in collaboration with it. Designed to be useful in meeting the needs of the community, it should include using members of the community to help gather and analyze data. These community members could be students or potential students who might be persuaded to pursue an Earth Science degree.

  20. Five Years of NASA Science and Engineering in the Classroom: The Integrated Product Team/NASA Space Missions Course

    NASA Astrophysics Data System (ADS)

    Hakkila, Jon; Runyon, Cassndra; Benfield, M. P. J.; Turner, Matthew W.; Farrington, Phillip A.

    2015-08-01

    We report on five years of an exciting and successful educational collaboration in which science undergraduates at the College of Charleston work with engineering seniors at the University of Alabama in Huntsville to design a planetary science mission in response to a mock announcement of opportunity. Alabama high schools are also heavily involved in the project, and other colleges and universities have also participated. During the two-semester course students learn about scientific goals, past missions, methods of observation, instrumentation, and component integration, proposal writing, and presentation. More importantly, students learn about real-world communication and teamwork, and go through a series of baseline reviews before presenting their results at a formal final review for a panel of NASA scientists and engineers. The project is competitive, with multiple mission designs competing with one another for the best review score. Past classes have involved missions to Venus, Europa, Titan, Mars, asteroids, comets, and even the Moon. Classroom successes and failures have both been on epic scales.

  1. Morality and soap in engineers and social scientists: the Macbeth effect interacts with professions.

    PubMed

    Schaefer, Michael

    2017-11-07

    Several studies demonstrate that physical cleansing is actually efficacious to cope with threatened morality, thus demonstrating that physical and moral purity are psychologically interwoven. This so-called Macbeth effect has been explained, for example, by the conceptual metaphor theory that suggests an embodiment of the moral purity metaphor. Recent research draws attention to individual differences when using conceptual metaphors. The present study shows that the moral purity link interacts with different professions. Engineering and social science students were asked to hand copy a text in which the protagonist behaved in an immoral way (or in a moral way, control condition). Subsequently, they had to rate cleansing and other products. Both groups of participants showed higher ratings for cleansing products when hand copying the unethical story, but this Macbeth effect was significantly stronger for the group of engineering students. The results demonstrate that the Macbeth effect interacts with individual differences of the chosen profession. The outcome is discussed in terms of recent theories on individual differences in disgust sensitivity.

  2. NASA GSFC Science Communication Working Group: Addressing Barriers to Scientist and Engineer Participation in Education and Public Outreach Activities

    NASA Astrophysics Data System (ADS)

    Bleacher, L.; Hsu, B. C.; Campbell, B. A.; Hess, M.

    2011-12-01

    The Science Communication Working Group (SCWG) at NASA Goddard Space Flight Center (GSFC) has been in existence since late 2007. The SCWG is comprised of education and public outreach (E/PO) professionals, public affairs specialists, scientists, and engineers. The goals of the SCWG are to identify barriers to scientist and engineer engagement in E/PO activities and to enable those scientists and engineers who wish to contribute to E/PO to be able to do so. SCWG members have held meetings with scientists and engineers across GSFC to determine barriers to their involvement in E/PO. During these meetings, SCWG members presented examples of successful, ongoing E/PO projects, encouraged active research scientists and engineers to talk about their own E/PO efforts and what worked for them, discussed the E/PO working environment, discussed opportunities for getting involved in E/PO (particularly in high-impact efforts that do not take much time), handed out booklets on effective E/PO, and asked scientists and engineers what they need to engage in E/PO. The identified barriers were consistent among scientists in GSFC's four science divisions (Earth science, planetary science, heliophysics, and astrophysics). Common barriers included 1) lack of time, 2) lack of funding support, 3) lack of value placed on doing E/PO by supervisors, 4) lack of training on doing appropriate/effective E/PO for different audiences, 5) lack of awareness and information about opportunities, 6) lack of understanding of what E/PO really is, and 7) level of effort required to do E/PO. Engineers reported similar issues, but the issues of time and funding support were more pronounced due to their highly structured work day and environment. Since the barriers were identified, the SCWG has taken a number of steps to address and rectify them. Steps have included holding various events to introduce scientists and engineers to E/PO staff and opportunities including an E/PO Open House, brown bag seminars on various E/PO topics, and an E/PO proposal writing workshop. SCWG members have also worked to incorporate information about E/PO, including what it is, points of contact, and opportunities for participation, into ongoing training sessions at GSFC, such as New Employee Orientation, Road to Mission Success, and Project Scientist Training. In addition, SCWG members have met with GSFC's upper management to voice barriers and concerns raised by scientists and engineers. We will expand on the barriers, efforts to address them, and the results of those efforts.

  3. The art of scientific writing

    NASA Astrophysics Data System (ADS)

    Gad-El-Hak, Mohamed

    2015-11-01

    The humanities teach students how to learn and communicate. Science teaches why everything works. Engineering teaches how to make things work. But scientists and engineers need to communicate their ideas amongst themselves as well as to everyone else. A newly developed technical writing course is outlined. In the class, offered to senior undergraduate and beginning graduate students, we read numerous short novels, essays, and op-eds. Some of the reading materials are technical but many are not. The students also have weekly writing assignments. When the first assignment is returned to the students with a grade of 20-30%, their first reaction is, ``how come I did not receive my usual 80-90%?'' I retort, ``you reach that level only when your essay is ready to be published in The New York Times.'' What is emphasized in the class is the process of creating something to write about, researching that something, expressing ideas coherently and comprehensibly, then endlessly editing the essay. The elective class has been offered three times thus far, all of its available seats are always filled, the students' evaluations have been outstanding, and the improvements in the students' ability to write by the end of the semester is quite impressive.

  4. Piloting Telepresence-Enabled Education and Outreach Programs from a UNOLS Ship - Live Interactive Broadcasts from the R/V Endeavor

    NASA Astrophysics Data System (ADS)

    Pereira, M.; Coleman, D.; Donovan, S.; Sanders, R.; Gingras, A.; DeCiccio, A.; Bilbo, E.

    2016-02-01

    The University of Rhode Island's R/V Endeavor was recently equipped with a new satellite telecommunication system and a telepresence system to enable live ship-to-shore broadcasts and remote user participation through the Inner Space Center. The Rhode Island Endeavor Program, which provides state-funded ship time to support local oceanographic research and education, funded a 5-day cruise off the Rhode Island coast that involved a multidisciplinary team of scientists, engineers, students, educators and video producers. Using two remotely operated vehicle (ROV) systems, several dives were conducted to explore various shipwrecks including the German WWII submarine U-853. During the cruise, a team of URI ocean engineers supported ROV operations and performed engineering tests of a new manipulator. Colleagues from the United States Coast Guard Academy operated a small ROV to collect imagery and environmental data around the wreck sites. Additionally, a team of engineers and oceanographers from URI tested a new acoustic sound source and small acoustic receivers developed for a fish tracking experiment. The video producers worked closely with the participating scientists, students and two high school science teachers to communicate the oceanographic research during live educational broadcasts streamed into Rhode Island classrooms, to the public Internet, and directly to Rhode Island Public Television. This work contributed to increasing awareness of possible career pathways for the Rhode Island K-12 population, taught about active oceanographic research projects, and engaged the public in scientific adventures at sea. The interactive nature of the broadcasts included live responses to questions submitted online and live updates and feedback using social media tools. This project characterizes the power of telepresence and video broadcasting to engage diverse learners and exemplifies innovative ways to utilize social media and the Internet to draw a varied audience.

  5. An Earth System Scientist Network for Student and Scientist Partnerships

    NASA Astrophysics Data System (ADS)

    Ledley, T. S.

    2001-05-01

    Successful student and scientist partnerships require that there is a mutual benefit from the partnership. This means that the scientist needs to be able to see the advantage of having students work on his/her project, and the students and teachers need to see that the students contribute to the project and develop the skills in inquiry and the content knowledge in the geosciences that are desired. Through the Earth System Scientist Network (ESSN) for Student and Scientist Partnerships project we are working toward developing scientific research projects for the participation of high school students. When these research projects are developed they will be posted on the ESSN web site that will appear in the Digital Library for Earth System Education (DLESE). In DLESE teachers and students who are interested in participating in a research program will be able to examine the criteria for each project and select the one that matches their needs and situation. In this paper we will report on how the various ESSN research projects are currently being developed to assure that both the scientist and the students benefit from the partnership. The ESSN scientists are working with a team of scientists and educators to 1) completely define the research question that the students will be addressing, 2) determine what role the students will have in the project, 3) identify the data that the students and teachers will work with, 4) map out the scientific protocols that the students will follow, and 5) determine the background and support materials needed to facilitate students successfully participating in the project. Other issues that the team is addressing include 1) identifying the selection criteria for the schools, 2) identifying rewards and recognition for the students and teacher by the scientist, and 3) identifying issues in Earth system science, relevant to the scientists data, that the students and teachers could use as a guide help develop students investigative skills and content knowledge in the geosciences. The importance of fully developing each of these aspects of the ESSN research projects and how they can differ between projects will be discussed.

  6. Virginia Demonstration Project Encouraging Middle School Students in Pursuing STEM Careers

    NASA Technical Reports Server (NTRS)

    Bachman, Jane T.; Kota, Dena H.; Kota, Aaron J.

    2011-01-01

    Encouraging students at all grade levels to consider pursuing a career in Science, Technology, Engineering, and Mathematics (STEM) fields i s a national focus. In 2005, the Naval Surface Warfare Center, Dahlgren Division (NSWCDD), a Department of Defense laboratory located in Da hlgren, Virginia, began work on the Virginia Demonstration Project (VDP) with the goal of increasing more student interest in STEM educatio n and pursuing STEM careers. This goal continues as the program enters its sixth year. This project has been successful through the partici pation of NSWCDD's scientists and engineers who are trained as mentor s to work in local middle school classrooms throughout the school year, As an extension of the in-class activities, several STEM summer aca demies have been conducted at NSWCDD, These academies are supported by the Navy through the VDP and the STEM Learning Module Project. These projects are part of more extensive outreach efforts offered by the National Defense Education Program (NDEP), sponsored by the Director, Defense Research and Engineering. The focus of this paper is on the types of activities conducted at the summer academy, an overview of the academy planning process, and recommendations to help support a nati onal plan of integrating modeling and simulation-based engineering and science into all grade levels. based upon the lessons learned

  7. Summer High School Apprenticeship Research Program (SHARP) of the National Aeronautics and Space Administration

    NASA Technical Reports Server (NTRS)

    1984-01-01

    A total of 125 talented high school students had the opportunity to gain first hand experience about science and engineering careers by working directly with a NASA scientist or engineer during the summer. This marked the fifth year of operation for NASA's Summer High School Apprenticehsip Research Program (SHARP). Ferguson Bryan served as the SHARP contractor and worked closely with NASA staff at Headquarters and the eight participating sites to plan, implement, and evaluate the Program. The main objectives were to strengthen SHARP and expand the number of students in the Program. These eight sites participated in the Program: Ames Research Center North, Ames' Dryden Flight Research Facility, Goddard Space Flight Center, Goddard's Wallops Flight Facility, Kennedy Space Center, Langley Research Center, Lewis Research Center, and Marshall Space Flight Center.

  8. Building the Next Generation of Scientific Explorers through Active Engagement with STEM Experts and International Space Station Resources

    NASA Technical Reports Server (NTRS)

    Graff, P. V.; Vanderbloemen, L.; Higgins, M.; Stefanov, W. L.; Rampe, E.

    2015-01-01

    Connecting students and teachers in classrooms with science, technology, engineering, and mathematics (STEM) experts provides an invaluable opportunity for all. These experts can share the benefits and utilization of resources from the International Space Station (ISS) while sharing and "translating" exciting science being conducted by professional scientists. Active engagement with these STEM experts involves students in the journey of science and exploration in an enthralling and understandable manner. This active engagement, connecting classrooms with scientific experts, helps inspire and build the next generation of scientific explorers in academia, private industry, and government.

  9. SCALE-UP Your Astronomy and Physics Undergraduate Courses to Incorporate Heliophysics

    NASA Astrophysics Data System (ADS)

    Al-Rawi, Ahlam N.; Cox, Amanda; Hoshino, Laura; Fitzgerald, Cullen; Cebulka, Rebecca; Rodriguez Garrigues, Alvar; Montgomery, Michele; Velissaris, Chris; Flitsiyan, Elena

    2016-01-01

    Although physics and astronomy courses include heliophysics topics, students still leave these courses without knowing what heliophysics is and how heliophysics relates to their daily lives. To meet goals of NASA's Living With a Star Program of incorporating heliophysics into undergraduate curriculum, UCF Physics has modified courses such as Astronomy (for non-science majors), Astrophysics, and SCALE-UP: Electricity and Magnetism for Engineers and Scientists to incorporate heliophysics topics. In this presentation, we discuss these incorporations and give examples that have been published in NASA Wavelength. In an associated poster, we present data on student learnin

  10. NASA Brevard Top Scholars

    NASA Image and Video Library

    2017-11-13

    Top scholars from Brevard County public high schools participate in roundtable discussions with NASA engineers and scientists at the Public Engagement Center at Kennedy Space Center Visitor Complex in Florida. Top scholars from the high schools were invited to Kennedy Space Center for a tour of facilities, lunch and a roundtable discussion. The 2017-2018 Brevard Top Scholars event was hosted by the center's Education Projects and Youth Engagement office to honor the top three scholars of the graduating student class from each of Brevard County’s public high schools. The students received a personalized certificate at the end of the day.

  11. Using Case Studies in Calculus-based Physics

    NASA Astrophysics Data System (ADS)

    Katz, Debora M.

    2006-12-01

    Do your students believe that the physics only works in your classroom or laboratory? Or do they see that physics underlies their everyday experience? Case studies in physics help students connect physics principles to their everyday experience. For decades, case studies have been used to teach law, medicine and biology, but they are rarely used in physics. I am working on a calculus-based physics textbook for scientists and engineers. Case studies are woven into each chapter. Stop by and get a case study to test out in your classroom. I would love to get your feedback.

  12. Fostering Student Awareness in Observatory STEM Careers

    NASA Astrophysics Data System (ADS)

    Keonaonaokalauae Acohido, Alexis Ann; Michaud, Peter D.; Gemini Public Information and Outreach Staff

    2016-01-01

    It takes more than scientists to run an observatory. Like most observatories, only about 20% of Gemini Observatory's staff is PhD. Scientists, but 100% of those scientists would not be able to do their jobs without the help of engineers, administrators, and other support staff that make things run smoothly. Gemini's Career Brochure was first published in 2014 to show that there are many different career paths available (especially in local host communities) at an astronomical observatory. Along with the printed career brochure, there are supplementary videos available on Gemini's website and Youtube pages that provide a more detailed and personal glimpse into the day-in-the-life of a wide assortment of Gemini employees. A weakness in most observatory's outreach programming point to the notion that students (and teachers) feel there is a disconnect between academics and where students would like to end up in their career future. This project is one of the ways Gemini addresses these concerns. During my 6-month internship at Gemini, I have updated the Career Brochure website conducted more in-depth interviews with Gemini staff to include as inserts with the brochure, and expanded the array of featured careers. The goal of my work is to provide readers with detailed and individualized employee career paths to show; 1) that there are many ways to establish a career in the STEM fields, and 2), that the STEM fields are vastly diverse.

  13. NanoJapan: international research experience for undergraduates program: fostering U.S.-Japan research collaborations in terahertz science and technology of nanostructures

    NASA Astrophysics Data System (ADS)

    Phillips, Sarah R.; Matherly, Cheryl A.; Kono, Junichiro

    2014-09-01

    The international nature of science and engineering research demands that students have the skillsets necessary to collaborate internationally. However, limited options exist for science and engineering undergraduates who want to pursue research abroad. The NanoJapan International Research Experience for Undergraduates Program is an innovative response to this need. Developed to foster research and international engagement among young undergraduate students, it is funded by a National Science Foundation Partnerships for International Research and Education (PIRE) grant. Each summer, NanoJapan sends 12 U.S. students to Japan to conduct research internships with world leaders in terahertz (THz) spectroscopy, nanophotonics, and ultrafast optics. The students participate in cutting-edge research projects managed within the framework of the U.S-Japan NSF-PIRE collaboration. One of our focus topics is THz science and technology of nanosystems (or `TeraNano'), which investigates the physics and applications of THz dynamics of carriers and phonons in nanostructures and nanomaterials. In this article, we will introduce the program model, with specific emphasis on designing high-quality international student research experiences. We will specifically address the program curriculum that introduces students to THz research, Japanese language, and intercultural communications, in preparation for work in their labs. Ultimately, the program aims to increase the number of U.S. students who choose to pursue graduate study in this field, while cultivating a generation of globally aware engineers and scientists who are prepared for international research collaboration.

  14. KSC-2011-3369

    NASA Image and Video Library

    2011-05-06

    Cape Canaveral, Fla. -- Students and teachers from across the nation gathered for a photo opportunity during closing events of the NASA Explorer Schools (NES) symposium. During the NES gathering, students presented their investigation project to their peers, scientists, engineers and education specialists. About 60 fourth- through 12-grade students nationwide are at the center May 4-7 participating in tours of processing and launch facilities and the U.S. Astronaut Hall of Fame, as well as several educational activities and a career panel question-and-answer session. About 30 teachers will receive professional development opportunities during the symposium. The participants were competitively selected after they completed an original investigation focused on existing NASA missions or research interests. Photo Credit: NASA/Kim Shiflett

  15. KSC-2011-3372

    NASA Image and Video Library

    2011-05-06

    Cape Canaveral, Fla. -- Students and teachers from across the nation gathered for a photo opportunity during closing events of the NASA Explorer Schools (NES) symposium. During the NES gathering, students presented their investigation project to their peers, scientists, engineers and education specialists. About 60 fourth- through 12-grade students nationwide are at the center May 4-7 participating in tours of processing and launch facilities and the U.S. Astronaut Hall of Fame, as well as several educational activities and a career panel question-and-answer session. About 30 teachers will receive professional development opportunities during the symposium. The participants were competitively selected after they completed an original investigation focused on existing NASA missions or research interests. Photo Credit: NASA/Kim Shiflett

  16. KSC-2011-3370

    NASA Image and Video Library

    2011-05-06

    Cape Canaveral, Fla. -- Students and teachers from across the nation gathered for a photo opportunity during closing events of the NASA Explorer Schools (NES) symposium. During the NES gathering, students presented their investigation project to their peers, scientists, engineers and education specialists. About 60 fourth- through 12-grade students nationwide are at the center May 4-7 participating in tours of processing and launch facilities and the U.S. Astronaut Hall of Fame, as well as several educational activities and a career panel question-and-answer session. About 30 teachers will receive professional development opportunities during the symposium. The participants were competitively selected after they completed an original investigation focused on existing NASA missions or research interests. Photo Credit: NASA/Kim Shiflett

  17. KSC-2011-3371

    NASA Image and Video Library

    2011-05-06

    Cape Canaveral, Fla. -- Students and teachers from across the nation gathered for a photo opportunity during closing events of the NASA Explorer Schools (NES) symposium. During the NES gathering, students presented their investigation project to their peers, scientists, engineers and education specialists. About 60 fourth- through 12-grade students nationwide are at the center May 4-7 participating in tours of processing and launch facilities and the U.S. Astronaut Hall of Fame, as well as several educational activities and a career panel question-and-answer session. About 30 teachers will receive professional development opportunities during the symposium. The participants were competitively selected after they completed an original investigation focused on existing NASA missions or research interests. Photo Credit: NASA/Kim Shiflett

  18. Careers in science and technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The objective of this book is to expose junior and senior high school students to the science and technology fields. It also will convey the importance of getting a general education in science and mathematics while still in high school and of continuing such studies in college. This is intended to encourge students, particularly underrepresented minorities and women, to consider and prepare for careers in science and technology. This book attempts to point out the increasing importance of such knowledge in daily life regardless of occupational choice. This book is intended to be used by junior and senior high schoolmore » students, as a classroom reference by teachers, and by scientist and engineers participating in outreach activities.« less

  19. The Robert E. Hopkins Center for Optical Design and Engineering

    NASA Astrophysics Data System (ADS)

    Zavislan, James M.; Brown, Thomas G.

    2008-08-01

    In 1929, a grant from Eastman Kodak and Bausch and Lomb established The Institute of Optics as the nation's first academic institution devoted to training optical scientists and engineers. The mission was 'to study light in all its phases', and the curriculum was designed to educate students in the fundamentals of optical science and build essential skills in applied optics and optical engineering. Indeed, our historic strength has been a balance between optical science and engineering--we have alumni who are carrying out prize-winning research in optical physics, alumni who are innovative optical engineers, and still other alumni who are leaders in the business community. Faculty who are top-notch optical engineers are an important resource to optical physics research groups -- likewise, teaching and modeling excellent optical science provides a strong underpinning for students on the applied/engineering end of the spectrum. This model -an undergraduate and graduate program that balances fundamental optics, applied optics, and optical engineering- has served us well. The impressive and diverse range of opportunities for our BS graduates has withstood economic cycles, and the students graduate with a healthy dose of practical experience. Undergraduate advisors, with considerable initiative from the program coordinator, are very aggressive in pointing students toward summer research and engineering opportunities. The vast majority of our undergraduate students graduate with at least one summer of experience in a company or a research laboratory. For example, 95% of the class of 2008 spent the summer of 2007 at companies and/or research laboratories: These include Zygo, NRL, Bausch and Lomb, The University of Rochester(The Institute of Optics, Medical Center, and Laboratory for Laser Energetics), QED, ARL Night Vision laboratories, JPL, Kollsman, OptiMax, Northrup Grumman, and at least two other companies. It is an impressive list, and bodes well for the career preparation for these students. While this extracurricular experience is truly world-class, an integrated design experience defined within our academic program is increasingly necessary for those going on to professional careers in engineering. This paper describes the philosophy behind a revision to our undergraduate curriculum that integrates a design experience and describes the engineering laboratory that has been established to make it a reality. The laboratory and design center has been named in honor of Robert E. Hopkins, former director and professor, co-founder of Tropel corporation, and a lifelong devotee to engineering innovation.

  20. Toward citizenship science education: what students do to make the world a better place?

    NASA Astrophysics Data System (ADS)

    Vesterinen, Veli-Matti; Tolppanen, Sakari; Aksela, Maija

    2016-01-01

    With increased focus on sustainability and socioscientific issues, dealing with issues related to citizenship is now seen as an important element of science education. However, in order to make the world a better place, mere understanding about socioscientific issues is not enough. Action must also be taken. In this study, 35 international gifted students-potential scientists-aged 15-19 were interviewed to investigate what they were doing to make the world a better place. The interviews were analyzed using qualitative content analysis with focus on students' actions toward a better world, their rationalizations for such actions, and the role of science in the rationalizations. The analysis shows that students consciously take a wide range of actions, and that they see citizenship as a process of constant self-development. The three categories created to highlight the variation in the ways students take action were personally responsible actions, participatory actions, and preparing for future. Although many students saw that science and scientists play a big role in solving especially the environmental problems, most of them also discussed the structural causes for problems, as well as the interplay of social, economic, and political forces. The results indicate that citizenship science education should take the variety of students' actions into consideration, give students the possibility to take individual and participatory action, as well as give students opportunities to get to know and discuss the ways a career in science or engineering can contribute to saving the world.

  1. Alpbach Summer School - a unique learning experience

    NASA Astrophysics Data System (ADS)

    Kern, K.; Aulinas, J.; Clifford, D.; Krejci, D.; Topham, R.

    2011-12-01

    The Alpbach Summer School is a ten-day program that provides a unique opportunity for young european science and engineering students, both undergraduate and graduate, to learn how to approach the entire design process of a space mission. The theme of the 2010 Summer School was "New Space Missions to Understand Climate Change", a current, challenging, very broad and complex topic. The program was established more than 35 years ago and is organised in two interrelated parts: a series of lectures held by renowned experts in the field (in the case of this specific year, climate change and space engineering experts) that provides a technical and scientific background for the workshops that follow, the core of the Summer School. For the workshops the students are split into four international, interdisciplinary teams of about 15 students. In 2010 every team had to complete a number of tasks, four in total: (1) identify climate change research gaps and design a space mission that has not yet been flown or proposed, (2) define the science objectives and requirements of the mission, (3) design a spacecraft that meets the mission requirements, which includes spacecraft design and construction, payload definition, orbit calculations, but also the satellite launch, operation and mission costs and (4) write up a short mission proposal and present the results to an expert review panel. Achieving these tasks in only a few days in a multicultural, interdisciplinary team represents a major challenge for all participants and provides an excellent practical learning experience. Over the course of the program, students do not just learn facts about climate change and space engineering, but scientists also learn from engineers and engineers from scientists. The participants have to deepen their knowledge in an often unfamiliar field, develop organisational and team-work skills and work under pressure. Moreover, teams are supported by team and roving tutors and get the opportunity to meet and learn from international experts. This presentation will provide an overview of the Alpbach Summer School program from a student's perspective. The different stages of this unique and enriching experience will be covered. Special attention will be paid to the workshops, which, as mentioned above, are the core of the Alpbach Summer School. During these intense workshops, participants work towards the proposed goals resulting in the design proposal of a space mission. The Alpbach Summer School is organised by FFG and co-sponsored by ESA, ISSI and the national space authorities of ESA member and cooperating states.

  2. Successfully Engaging Scientists in NASA Education and Public Outreach: Examples from a Teacher Professional Development Workshop Series and a Planetary Analog Festival

    NASA Astrophysics Data System (ADS)

    Jones, A. P.; Hsu, B. C.; Bleacher, L.; Shaner, A. J.

    2014-12-01

    The Lunar Workshops for Educators are a series of weeklong workshops for grade 6-9 science teachers focused on lunar science and exploration, sponsored by the Lunar Reconnaissance Orbiter (LRO). These workshops have been held across the country for the past five years, in places underserved with respect to NASA workshops and at LRO team member institutions. MarsFest is a planetary analog festival that has been held annually in Death Valley National Park since 2012, made possible with support from the Curiosity (primarily the Sample Analysis at Mars) Education and Public Outreach team, NASA's Ames Research Center, NASA's Goddard Space Flight Center, the SETI Institute, and Death Valley National Park. Both the Lunar Workshops for Educators and MarsFest rely strongly on scientist engagement for their success. In the Lunar Workshops, scientists and engineers give talks for workshop participants, support facility tours and field trips, and, where possible, have lunch with the teachers to interact with them in a less formal setting. Teachers have enthusiastically appreciated and benefited from all of these interactions, and the scientists and engineers also provide positive feedback about their involvement. In MarsFest, scientists and engineers give public presentations and take park visitors on field trips to planetary analog sites. The trips are led by scientists who do research at the field trip sites whenever possible. Surveys of festival participants indicate an appreciation for learning about scientific research being conducted in the park from the people involved in that research, and scientists and engineers report enjoying sharing their work with the public through this program. The key to effective scientist engagement in all of the workshops and festivals has been a close relationship and open communication between the scientists and engineers and the activity facilitators. I will provide more details about both of these programs, how scientists and engineers are involved in them, and offer suggestions for others who would like to engage scientists and engineers in similar activities.

  3. Science, Engineering Employment Up in 1970s.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1984

    1984-01-01

    Highlights findings from the National Science Foundation's "1982 Postcensal Survey of Natural and Social Scientists and Engineers." Indicates that, from 1972 to 1982, employment of scientists and engineers increased 4 percent per year. However, these employment gains do not reflect the picture for chemists or chemical engineers. (JN)

  4. Engaging Students and Scientists through ROV Competitions

    NASA Astrophysics Data System (ADS)

    Zande, J.

    2004-12-01

    The Marine Advanced Technology Education (MATE) Center's network of regional and national remotely operated vehicle (ROV) competitions for students provide a unique and exciting way for the scientific community to get involved in education and outreach and meet broader impact requirements. From Hawaii to New England, MATE's ROV competitions also facilitate collaborations among the scientific community, professional societies, government agencies, business and industry, and public aquaria. Since 2001, the MATE Center and organizations such as the Marine Technology Society (MTS), NOAA's Office of Ocean Exploration, and the Birch Aquarium at Scripps Institution of Oceanography, among others, have challenged 1,000+ students to design and build ROVs for underwater tasks based on science and exploration missions taking place in the real world. From the Monterey Bay Aquarium Research Institute to Woods Hole Oceanographic Institution (WHOI), more than 60 scientists, engineers, and their organizations have supported the students participating in these events and, in doing so, have contributed to E&O and increased the awareness and impact of their work. What does it take to get involved with this E&O effort? That depends on the time, technical expertise, facilities, equipment, building materials, and/or funds that you can afford to contribute. Examples of how scientists and their institutions have and continue to support MATE's ROV competitions include: -Serving as technical advisors, judges, and competition-day technical assistants. -Sharing time and technical expertise as mentors. -Providing access to facilities and equipment. -Donating building materials and supplies. -Hosting the event at your institution. In addition to helping you to become involved in E&O and meet broader impact requirements, benefits to you include: -Exposing yourself to technologies that could support your science. -Getting ideas for creative and inexpensive solutions to challenges that you may face while doing your work. -Recruiting students to your institution. -Heightening your and your institution's visibility within the scientific community -Building a positive image within your own local community. -Networking with other scientists and research and academic institutions as well as professional societies, industry, government, and other organizations such as aquaria. Whether or not you use ROVs to support your work is not important. What is important are the knowledge and skills that you do use to accomplish your research goals. In the case of the competition, ROVs are the vehicle to teach concepts such as physics, oceanography, math, science, and engineering - the same concepts that you understand and apply when doing your science. By sharing your time and expertise, you can help students solidify what they are learning as they design and build their ROVs and make the connection to how it can be applied to other disciplines.

  5. Career Issues and Laboratory Climates: Different Challenges and Opportunities for Women Engineers and Scientists (survey of Fiscal Year 1997 Powre Awardees)

    NASA Astrophysics Data System (ADS)

    Rosser, Sue V.; Zieseniss, Mireille

    A survey of fiscal year 1997 POWRE (Professional Opportunities for Women in Research and Education) awardees from the National Science Foundation revealed that women engineers and scientists face similar issues, challenges, and opportunities and think that the laboratory climate has similar impacts on their careers. Separating responses of women scientists from those of women engineers revealed that 70% of both groups listed balancing work with family responsibilities as the most difficult issue. Discrepancies in percentages of women, coupled with differences among disciplinary and subdisciplinary cultures within science, engineering, mathematics, and technology fields, complicate work climates and their impact on women's careers. More frequently than women scientists, women engineers listed issues such as (a) low numbers of women leading to isolation, (b) lack of camaraderie and mentoring, (c) gaining credibility/respect from peers and administrators, (d) time management, (e) prioritizing responsibilities due to disproportionate demands, and (f) learning the rules of the game to survive in a male-dominated environment. Women engineers also listed two positive issues more frequently than women scientists: active recruitment/more opportunities for women and impact of successful women in the profession. The small number of women engineers may explain these results and suggests that it may be inappropriate to group them with other women scientists for analysis, programs, and policies.

  6. Teaching the Fundamentals of Cell Phones and Wireless Communications

    NASA Astrophysics Data System (ADS)

    Davids, Mark; Forrest, Rick; Pata, Don

    2010-04-01

    Wireless communications are ubiquitous. Students and teachers use iPhones®, BlackBerrys®, and other smart phones at home and at work. More than 275 million Americans had cell phones in June of 2009 and expanded access to broadband is predicted this year.2 Despite the plethora of users, most students and teachers do not understand "how they work." Over the past several years, three high school teachers have collaborated with engineers at Cingular, Motorola, and the University of Michigan to explore the underlying science and design a three-week, student-centered unit with a constructivist pedagogy consistent with the "Modeling in Physics" philosophy.3 This unique pilot program reinforces traditional physics topics including vibrations and waves, sound, light, electricity and magnetism, and also introduces key concepts in communications and information theory. This article will describe the motivation for our work, outline a few key concepts with the corresponding student activities, and provide a summary of the program that has been developed to engage and inspire the next generation of scientists, engineers, and citizens.

  7. A National Study of Mathematics Requirements for Scientists and Engineers. Final Report.

    ERIC Educational Resources Information Center

    Miller, G. H.

    The National Study of Mathematics Requirements for Scientists and Engineers is concerned with establishing the mathematics experiences desired for the many specializations in science and engineering, such as microbiology, organic chemistry, electrical engineering, and molecular physics. An instruction and course content sheet and a course…

  8. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 18: A comparison of the technical communication practices of aerospace engineers and scientists in India and the United States

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1993-01-01

    As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communications practices of India and U.S. aerospace engineers and scientists. Both studies have the same seven objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third, to seek their views about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line data bases; fifth, to determine the use and importance of computer and information technology to them; sixth, to determine their use of electronic networks; and seventh, to determine their use of foreign and domestically produced technical reports. A self-administered questionnaire was distributed to aerospace engineers and scientists at the Indian Institute of Science and the NASA Langley Research Center. The completion rates for the India and U.S. surveys were 48 and 53 percent, respectively. Responses of the India and U.S. participants to selected questions are presented in this report.

  9. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 17: A comparison of the technical communication practices of Dutch and US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Barclay, Rebecca O.; Pinelli, Thomas E.; Kennedy, John M.

    1993-01-01

    As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communications practices of Dutch and U.S. aerospace engineers and scientists. Both studies have the same seven objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third, to seek their views about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line data bases; fifth, to determine the use and importance of computer and information technology to them; sixth, to determine their use of electronic networks; and seventh, to determine their use of foreign and domestically produced technical reports. A self-administered questionnaire was distributed to aerospace engineers and scientists at the National Aerospace Laboratory (NLR), and NASA Ames Research Center, and the NASA Langley Research Center. The completion rates for the Dutch and U.S. surveys were 55 and 61 percent, respectively. Responses of the Dutch and U.S. participants to selected questions are presented.

  10. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 29: A comparison of the technical communications practices of Japanese and US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1994-01-01

    As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communications practices of Japanese and U.S. aerospace engineers and scientists. Both studies have the same seven objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third; to seek their views about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line data bases; fifth, to determine the use and importance of computer and information technology to them; sixth, to determine their use of electronic networks; and seventh, to determine their use of foreign and domestically produced technical reports. A self-administered questionnaire was distributed to aerospace engineers and scientists in Japan and at the NASA Ames Research Center and the NASA Langley Research Center. The completion rates for the Japanese and U.S. surveys were 85 and 61 percent, respectively. Responses of the Japanese and U.S. participants to selected questions are presented in this report.

  11. The Engagement of Engineers in Education and Public Outreach: Beginning the Conversation

    NASA Astrophysics Data System (ADS)

    Grier, J.; Buxner, S.; Vezino, B.; Shipp, S. S.

    2014-12-01

    The Next Generation Science Standards (NGSS) are a new set of K-12 science standards that have been developed through a collaborative, state-led process. Based on the National Research Council (NRC) 'Framework for K-12 Education,' the NGSS are designed to provide all students with a coherent education possessing both robust content and rigorous practice. Within these standards is an enhanced emphasis on the intersection between science and engineering. The focus is not only on asking questions and finding answers (science) but also in identifying and designing solution to problems (engineering.) The NASA SMD (Science Mission Directorate) Education and Public Outreach (E/PO) Forums have been working with space scientists for many years to assist with their engagement in E/PO efforts, thus supporting the needs of previous science standards. In order to properly address the needs of NGSS, this conversation is being expanded to include engineers. Our initial efforts include a series of semi-structured interviews with a dozen engineers involved in different aspects of space science and mission development. We will present the responses from the survey and compare this information to our knowledge base about space scientists, their needs, attitudes, and understandings of E/PO. In addition to a new emphasis on engineering in the NGSS, we also consider engineering habits of mind such as systems thinking, creativity, optimism, collaboration, communication, and attention to ethical considerations as described by an NRC policy document for engineering education. Using the overall results, we will consider strategies, further ideas for investigation, and possible steps for going forward with this important aspect of including engineering in education and outreach programming.

  12. National Educators' Workshop: Update 2002 - Standard Experiments in Engineering, Materials Science, and Technology

    NASA Technical Reports Server (NTRS)

    Prior, Edwin J. (Compiler); Jacobs, James A. (Compiler); Chung, W. Richard (Compiler)

    2003-01-01

    This document contains a collection of experiments presented and demonstrated at the National Educators' Workshop: Update 2002 held in San Jose, California, October 13-16,2002. This publication provides experiments and demonstrations that can serve as a valuable guide to faculty who are interested in useful activities for their students. The material was the result of years of research aimed at better methods of teaching technical subjects. The experiments developed by faculty, scientists, and engineers throughout the United States and abroad add to the collection from past workshops. They include a blend of experiments on new materials and traditional materials.

  13. Mentoring Undergraduate Students through the Space Shuttle Hitchhiker GoldHELOX Project

    NASA Astrophysics Data System (ADS)

    Moody, J. Ward; Barnes, Jonathan; Roming, Peter; Durfee, Dallin; Campbell, Branton; Turley, Steve; Eastman, Paul

    2015-01-01

    In the late 1980s a team of four BYU undergraduate students designed a space-based telescope to image the sun in soft x-rays from 171-181 Angstroms to gain information on microflares and their relation to the corona-chromosphere transition region. The telescope used a near-normal incidence multi-layered mirror imaging onto film through a micro-channel plate. The system was capable of 1.0 sec time resolution and 2.5 arcsec spatial resolution. Aided by a NASA grant in 1991, a system was built and successfully tested in 1998 at Marshall Space Flight Center. Originally designed to be deployed from a Get-Away-Special (GAS) canister in the bay of a space shuttle, the good results of this test elevated GoldHelox to greater-priority Hitchhiker status. Even so technical and procedural difficulties delayed a launch until after 2003. Unfortunately after the Columbia re-entry break-up in February 2003, the Hitchhiker program was cancelled and the GoldHelox project ended.Well over 200 undergraduate students worked on GoldHelox. Many of these have since earned advanced degrees in a variety of technical fields. Several have gone on to work in the space industry, becoming NASA scientists and engineers with one becoming a PI on the Swift satellite. The broad range of talent on the team has included students majoring in physics, astronomy, mechanical engineering, electrical engineering, manufacturing engineering, design engineering, business and even English majors who have written technical and public relations documents. We report on lessons learned and the pitfalls and successes of this unique mentoring experience.

  14. Technology and the civil future in space; Proceedings of the Twenty-sixth Goddard Memorial Symposium, Greenbelt, MD, Mar. 16-18, 1988

    NASA Technical Reports Server (NTRS)

    Harris, Leonard A. (Editor)

    1989-01-01

    Reviews, reports, lectures, and panel discussions on technological aspects of current and planned NASA space missions are presented. Included are the viewpoints of NASA, the U.S. aerospace industry, potential commercial users of the civil space infrastructure, and university scientists and engineers. Sections are devoted to technology policy and plans, technology needs, technology directions, and the Astronautical Society student program.

  15. Modeling the Skills and Practices of Scientists through an “All-Inclusive” Comparative Planetology Student Research Investigation

    NASA Technical Reports Server (NTRS)

    Graff, Paige; Bandfield, J.; Stefanov, W.; Vanderbloemen, L.; Willis, K.; Runco, S.

    2013-01-01

    To effectively prepare the nation's future Science, Technology, Engineering, and Mathematics (STEM) workforce, students in today's classrooms need opportunities to engage in authentic experiences that model skills and practices used by STEM professionals. Relevant, real-world authentic research experiences allow students to behave as scientists as they model the process of science. This enables students to get a true sense of STEM-related professions and also allows them to develop the requisite knowledge, skills, curiosity, and creativity necessary for success in STEM careers. Providing professional development and opportunities to help teachers infuse research in the classroom is one of the primary goals of the Expedition Earth and Beyond (EEAB) program. EEAB, facilitated by the Astromaterials Research and Exploration Science (ARES) Directorate at the NASA Johnson Space Center, is an Earth and planetary science education program designed to inspire, engage, and educate teachers and students in grades 5-12 by getting them actively involved with exploration, discovery, and the process of science. The program combines the expertise of scientists and educators to ensure the professional development provided to classroom teachers is scientifically valid and also recognizes classroom constraints. For many teachers, facilitating research in the classroom can be challenging. In addition to addressing required academic standards and dealing with time constraints, challenges include structuring a research investigation the entire class can successfully complete. To build educator confidence, foster positive classroom research experiences, and enable teachers to help students model the skills and practices of scientists, EEAB has created an "allinclusive" comparative planetology research investigation activity. This activity addresses academic standards while recognizing students (and teachers) potentially lack experience with scientific practices involved in conducting research. Designed as an entry level research engagement investigation, the activity introduces, illustrates, and teaches the skills involved in each step of the research process. Students use astronaut photos, provided through the ARES Crew Earth Observations (CEO) payload on the International Space Station (ISS) as well as remote sensing imagery of other planetary worlds. By including all the necessary tools to complete the investigation, students can focus on gaining experience in the process of science. Additionally, students are able to extend their experience of modeling the skills and practices of scientists through the opportunity to request new data of Earth from the ISS. Professional development offered through in-person and webinar trainings, along with the resources provided, enable educators to gain first-hand experience implementing a structured research investigation in the classroom. Through data and feedback collected from teachers, this type of "all-inclusive" investigation activity aims to become a model that can be utilized for other research topics and STEM disciplines.

  16. Modeling the Skills and Practices of Scientists through an 'All-Inclusive' Comparative Planetology Student Research Investigation

    NASA Astrophysics Data System (ADS)

    Graff, P. V.; Bandfield, J. L.; Stefanov, W. L.; Vanderbloemen, L.; Willis, K. J.; Runco, S.

    2013-12-01

    To effectively prepare the nation's future Science, Technology, Engineering, and Mathematics (STEM) workforce, students in today's classrooms need opportunities to engage in authentic experiences that model skills and practices used by STEM professionals. Relevant, real-world authentic research experiences allow students to behave as scientists as they model the process of science. This enables students to get a true sense of STEM-related professions and also allows them to develop the requisite knowledge, skills, curiosity, and creativity necessary for success in STEM careers. Providing professional development and opportunities to help teachers infuse research in the classroom is one of the primary goals of the Expedition Earth and Beyond (EEAB) program. EEAB, facilitated by the Astromaterials Research and Exploration Science (ARES) Directorate at the NASA Johnson Space Center, is an Earth and planetary science education program designed to inspire, engage, and educate teachers and students in grades 5-12 by getting them actively involved with exploration, discovery, and the process of science. The program combines the expertise of scientists and educators to ensure the professional development provided to classroom teachers is scientifically valid and also recognizes classroom constraints. For many teachers, facilitating research in the classroom can be challenging. In addition to addressing required academic standards and dealing with time constraints, challenges include structuring a research investigation the entire class can successfully complete. To build educator confidence, foster positive classroom research experiences, and enable teachers to help students model the skills and practices of scientists, EEAB has created an 'all-inclusive' comparative planetology research investigation activity. This activity addresses academic standards while recognizing students (and teachers) potentially lack experience with scientific practices involved in conducting research. Designed as an entry level research engagement investigation, the activity introduces, illustrates, and teaches the skills involved in each step of the research process. Students use astronaut photos, provided through the ARES Crew Earth Observations (CEO) payload on the International Space Station (ISS) as well as remote sensing imagery of other planetary worlds. By including all the necessary tools to complete the investigation, students can focus on gaining experience in the process of science. Additionally, students are able to extend their experience of modeling the skills and practices of scientists through the opportunity to request new data of Earth from the ISS. Professional development offered through in-person and webinar trainings, along with the resources provided, enable educators to gain first-hand experience implementing a structured research investigation in the classroom. Through data and feedback collected from teachers, this type of 'all-inclusive' investigation activity aims to become a model that can be utilized for other research topics and STEM disciplines.

  17. Written Communication Skills for Scientists and Engineers

    NASA Astrophysics Data System (ADS)

    Narayanan, M.

    2016-12-01

    Lord Chancellor, Francis Bacon of England said: Reading maketh a full man; conference a ready man; and writing an exact man. Even after his death, Francis Bacon remained extremely influential through his works, especially as philosophical advocate and practitioner of the scientific method during the scientific revolution. Written communication skills are extremely important for scientists and engineers because it helps them to achieve their goals effectively and meet stipulated deadlines according to a pre-established schedule. Richard Arum and Josipa Roksa claim that American students are learning very little during their first two years of college (Arum and Roksa, 2011). Written communication involves expressing yourself clearly, using language with precision; constructing a logical argument; taking notes; editing and summarizing; and writing reports. There are three main elements to written communication. First and foremost is the structure because this in principle outlines clearly the way the entire content is laid out. Second, the style which primarily indicates the way it is written and how communication is made effective and vibrant. Third, the content which should document in complete detail, what you are writing about. Some researchers indicate that colleges and universities are failing to prepare the students to meet the demanding challenges of the present day workforce and are struggling to maintain an international status (Johnson, K. 2013). In this presentation, the author provides some guidelines to help students improve their written communication skills. References: Johnson, Kristine (2013) "Why Students Don't Write: Educating in the Era of Credentialing: Academically Adrift: Limited Learning on College Campuses," Conversations on Jesuit Higher Education: Vol. 43, Article 9. Available at: http://epublications.marquette.edu/conversations/vol43/iss1/9 Arum, Richard and Roksa, Josipa (2011) Academically Adrift: Limited Learning on College Campuses. Chicago, Illinois: University of Chicago Press. (ISBN 9780226028569)

  18. RCOP: Research Center for Optical Physics

    NASA Technical Reports Server (NTRS)

    Tabibi, Bagher M. (Principal Investigator)

    1996-01-01

    During the five years since its inception, Research Center for Optical Physics (RCOP) has excelled in the goals stated in the original proposal: 1) training of the scientists and engineers needed for the twenty-first century with special emphasis on underrepresented citizens and 2) research and technological development in areas of relevance to NASA. In the category of research training, there have been 16 Bachelors degrees and 9 Masters degrees awarded to African American students working in RCOP during the last five years. RCOP has also provided research experience to undergraduate and high school students through a number of outreach programs held during the summer and the academic year. RCOP has also been instrumental in the development of the Ph.D. program in physics which is in its fourth year at Hampton. There are currently over 40 graduate students in the program and 9 African American graduate students, working in RCOP, that have satisfied all of the requirements for Ph.D. candidancy and are working on their dissertation research. At least three of these students will be awarded their doctoral degrees during 1997. RCOP has also excelled in research and technological development. During the first five years of existence, RCOP researchers have generated well over $3 M in research funding that directly supports the Center. Close ties with NASA Langley and NASA Lewis have been established, and collaborations with NASA scientists, URC's and other universities as well as with industry have been developed. This success is evidenced by the rate of publishing research results in refereed journals, which now exceeds that of the goals in the original proposal (approx. 2 publications per faculty per year). Also, two patents have been awarded to RCOP scientists.

  19. What can scientific practice look like in a classroom? Insights from scientists' critique of high school students' climate change argumentation practice

    NASA Astrophysics Data System (ADS)

    Walsh, E.; McGowan, V. C.

    2015-12-01

    The Next Generation Science Standards promote a vision in which learners engage in authentic knowledge in practice to tackle personally consequential science problems in the classroom. However, there is not yet a clear understanding amongst researchers and educators of what authentic practice looks like in a classroom and how this can be accomplished. This study explores these questions by examining interactions between scientists and students on a social media platform during two pilot enactments of a project-based curriculum focusing on the ecological impacts of climate change. During this unit, scientists provided feedback to students on infographics, visual representations of scientific information meant to communicate to an audience about climate change. We conceptualize the feedback and student work as boundary objects co-created by students and scientists moving between the school and scientific contexts, and analyze the structure and content of the scientists' feedback. We find that when giving feedback on a particular practice (e.g. argumentation), scientists would provide avenues, critiques and questions that incorporated many other practices (e.g. data analysis, visual communication); thus, scientists encouraged students to participate systemically in practices instead of isolating one particular practice. In addition, scientists drew attention to particular habits of mind that are valued in the scientific community and noted when students' work aligned with scientific values. In this way, scientists positioned students as capable of participating "scientifically." While traditionally, incorporating scientific inquiry in a classroom has emphasized student experimentation and data generation, in this work, we found that engaging with scientists around established scientific texts and data sets provided students with a platform for developing expertise in other important scientific practices during argment construction.

  20. Explore Earth Science Datasets for STEM with the NASA GES DISC Online Visualization and Analysis Tool, Giovanni

    NASA Technical Reports Server (NTRS)

    Liu, Z.; Acker, J.; Kempler, S.

    2016-01-01

    The NASA Goddard Earth Sciences (GES) Data and Information Services Center(DISC) is one of twelve NASA Science Mission Directorate (SMD) Data Centers that provide Earth science data, information, and services to users around the world including research and application scientists, students, citizen scientists, etc. The GESDISC is the home (archive) of remote sensing datasets for NASA Precipitation and Hydrology, Atmospheric Composition and Dynamics, etc. To facilitate Earth science data access, the GES DISC has been developing user-friendly data services for users at different levels in different countries. Among them, the Geospatial Interactive Online Visualization ANd aNalysis Infrastructure (Giovanni, http:giovanni.gsfc.nasa.gov) allows users to explore satellite-based datasets using sophisticated analyses and visualization without downloading data and software, which is particularly suitable for novices (such as students) to use NASA datasets in STEM (science, technology, engineering and mathematics) activities. In this presentation, we will briefly introduce Giovanni along with examples for STEM activities.

Top