Sample records for studied ph range

  1. Effect of pH on structure, function, and stability of mitochondrial carbonic anhydrase VA.

    PubMed

    Idrees, Danish; Shahbaaz, Mohd; Bisetty, Krishna; Islam, Asimul; Ahmad, Faizan; Hassan, Md Imtaiyaz

    2017-02-01

    Mitochondrial carbonic anhydrase VA (CAVA) catalyzes the hydration of carbon dioxide to produce proton and bicarbonate which is primarily expressed in the mitochondrial matrix of liver, and involved in numerous physiological processes including lipogenesis, insulin secretion from pancreatic cells, ureagenesis, gluconeogenesis, and neuronal transmission. To understand the effect of pH on the structure, function, and stability of CAVA, we employed spectroscopic techniques such as circular dichroism, fluorescence, and absorbance measurements in wide range of pH (from pH 2.0 to pH 11.5). CAVA showed an aggregation at acidic pH range from pH 2.0 to pH 5.0. However, it remains stable and maintains its secondary structure in the pH range, pH 7.0-pH 11.5. Furthermore, this enzyme has an appreciable activity at more than pH 7.0 (7.0 < pH ≤ 11.5) with maximum activity at pH 9.0. The maximal values of k cat and k cat /K m at pH 9.0 are 3.7 × 10 6  s -1 and 5.5 × 10 7  M -1  s -1 , respectively. However, this enzyme loses its activity in the acidic pH range. We further performed 20-ns molecular dynamics simulation of CAVA to see the dynamics at different pH values. An excellent agreement was observed between in silico and in vitro studies. This study provides an insight into the activity of CAVA in the pH range of subcellular environment.

  2. Solubility of ammonium acid urate nephroliths from bottlenose dolphins (Tursiops truncatus).

    PubMed

    Argade, Sulabha; Smith, Cynthia R; Shaw, Timothy; Zupkas, Paul; Schmitt, Todd L; Venn-Watson, Stephanie; Sur, Roger L

    2013-12-01

    Nephrolithiasis has been identified in managed populations of bottlenose dolphins (Tursiops truncatus); most of these nephroliths are composed of 100% ammonium acid urate (AAU). Several therapies are being investigated to treat and prevent nephrolithiasis in dolphins including the alkalization of urine for dissolution of nephroliths. This study evaluates the solubility of AAU nephroliths in a phosphate buffer, pH range 6.0-8.0, and in a carbonate-bicarbonate buffer, pH range 9.0-10.8. AAU nephroliths were obtained from six dolphins and solubility studies were conducted using reverse-phase high performance liquid chromatography with ultraviolet detection at 290 nm. AAU nephroliths were much more soluble in a carbonate-bicarbonate buffer, pH range 9.0-10.8 compared to phosphate buffer pH range 6.0-8.0. In the pH range 6.0-8.0, the solubility was 45% lower in potassium phosphate buffer compared to sodium phosphate buffer. When citrate was used along with phosphate in the same pH range, the solubility was improved by 13%. At pH 7 and pH 8, 150 mM ionic strength buffer was optimum for dissolution. In summary, adjustment of urinary pH alone does not appear to be a useful way to treat AAU stones in bottlenose dolphins. Better understanding of the pathophysiology of AAU nephrolithiasis in dolphins is needed to optimize kidney stone prevention and treatment.

  3. Denitrifying sulfur conversion-associated EBPR: The effect of pH on anaerobic metabolism and performance.

    PubMed

    Guo, Gang; Wu, Di; Hao, Tianwei; Mackey, Hamish Robert; Wei, Li; Chen, Guanghao

    2017-10-15

    The performance of the denitrifying sulfur conversion-associated enhanced biological phosphorus removal (DS-EBPR) process tends to be unstable and requires further study and development. This in turn requires extensive study of the anaerobic metabolism in terms of its stoichiometry and kinetics. This study evaluates the corresponding responses of DS-EBPR to pH, as it significantly influences both stoichiometry and biochemical kinetics. The impacts of five representative pH values ranging between 6.5 and 8.5 on the anaerobic metabolism were investigated, followed by identification of the optimal pH for performance optimization. A mature DS-EBPR sludge was used in the study, enriched with approximately 30% sulfate-reducing bacteria (SRB) and 33% sulfide-oxidizing bacteria (SOB). Through a series of batch tests, the optimal pH range was determined as 7.0-7.5. In this pH range, the anaerobic stoichiometry of phosphorus released/volatile fatty acid (VFA) uptake ratio, sulfate reduction, and internal polymer production (including poly-β-hydroxyalkanoates and polysulfide and/or elemental sulfur) all increased along with the anaerobic kinetics of the VFA uptake ratio. Consequently, phosphorus removal was maximized at this pH range (≥95% vs. 84-93% at other pH values), as was sulfur conversion (16 mg S/L vs. 10-13 mg S/L). This pH range therefore favors the activity and synergy of the key functional bacteria (i.e. SRB and SOB). Anaerobic maintenance tests showed these bacteria required 38-61% less energy for maintenance than that reported for GAOs regardless of pH changes, improving their ability to cope with anaerobic starvation. Adversely, both bacteria showed much lower VFA uptake rates than that of GAOs at all tested pH values (0.03-0.06 vs. 0.2-0.24 mol-C/C-mol biomass/h), possibly revealing the primary cause of frequent instability in the DS-EBPR process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Minimally invasive wireless motility capsule to study canine gastrointestinal motility and pH.

    PubMed

    Warrit, K; Boscan, P; Ferguson, L E; Bradley, A M; Dowers, K L; Rao, S; Twedt, D C

    2017-09-01

    The aim of this study was to describe the feasibility of using a gastrointestinal tract wireless motility capsule (WMC) that measured intraluminal pressure, pH and transit time through the gastrointestinal tract, in dogs in their home environment. Forty-four adult healthy dogs, eating a standard diet, were prospectively enrolled. The WMC was well tolerated by all dogs and provided data from the different sections of the gastrointestinal tract. Median gastric emptying time was 20h (range, 6.3-119h), demonstrating a large range. The gastric pressure pattern and pH depended on the phase of food consumption. The small bowel transit time was 3.1h (range, 1.6-5.4h) with average contraction pressures of 6.5mmHg (range, 1.1-21.4mmHg) and pH 7.8 (range, 7-8.9). The large bowel transit time was 21h (range, 1-69h) with average contractions pressures of 0.9mmHg (range, 0.3-2.7mmHg) and pH 6.4 (range, 5.3-8.2). There was considerable individual variation in motility patterns and transit times between dogs. No difference was observed between the sexes. No relationships between any transit time, bowel pH or pressure pattern and bodyweights were identified. The WMC likely represents movement of a large non-digestible particle rather than normal ingesta. Due to its large size, the WMC should not be use in smaller dogs. The WMC is a promising minimally invasive tool to assess GIT solid phase transit times, pressures and pH. However, further studies are necessary due to the current limitations observed. Published by Elsevier Ltd.

  5. Pb and Cd binding to natural freshwater biofilms developed at different pH: the important role of culture pH.

    PubMed

    Hua, Xiuyi; Dong, Deming; Ding, Xiaoou; Yang, Fan; Jiang, Xu; Guo, Zhiyong

    2013-01-01

    The effects of solution pH on adsorption of trace metals to different types of natural aquatic solid materials have been studied extensively, but few studies have been carried out to investigate the effect of pH at which the solid materials were formed on the adsorption. The purpose of present study is to examine this effect of culture pH on metal adsorption to natural freshwater biofilms. The adsorption of Pb and Cd to biofilms which were developed at different culture pH values (ranging from 6.5 to 9.0) was measured at the same adsorption pH value (6.5). The culture pH had considerable effects on both composition and metal adsorption ability of the biofilms. Higher culture pH usually promoted the accumulation of organic material and Fe oxides in the biofilms. The culture pH also affected the quantity and species of algae in the biofilms. The adsorption of Pb and Cd to the biofilms generally increased with the increase of culture pH. This increase was minor at lower pH range and significant at higher pH range and was more remarkable for Cd adsorption than for Pb adsorption. The notable contribution of organic material to the adsorption at higher culture pH values was also observed. The profound impacts of culture pH on adsorption behavior of biofilms mainly resulted from the variation of total contents of the biofilm components and were also affected by the alteration of composition and properties of the components.

  6. Evaluation of pH of Bathing Soaps and Shampoos for Skin and Hair Care.

    PubMed

    Tarun, Jose; Susan, Jose; Suria, Jacob; Susan, Veronica John; Criton, Sebastian

    2014-09-01

    Normal healthy skin has potential of hydrogen (pH) range of 5.4-5.9 and a normal bacterial flora. Use of soap with high pH causes an increase in skin pH, which in turn causes an increase in dehydrative effect, irritability and alteration in bacterial flora. The majority of soaps and shampoos available in the market do not disclose their pH. The aim of this study was to assess the pH of different brands of bathing soaps and shampoos available in the market. The samples of soaps and shampoos were collected from shops in the locality. The samples of different brands are coded before the analysis of the pH. Solution of each sample was made and pH was measured using pH meter. Majority of the soaps have a pH within the range of 9-10. Majority of the shampoos have a pH within the range of 6-7. The soaps and shampoos commonly used by the population at large have a pH outside the range of normal skin and hair pH values. Therefore, it is hoped that before recommending soap to patient especially those who have sensitive and acne prone skin, due consideration is given to the pH factor and also that manufacturers will give a thought to pH of soaps and shampoos manufactured by them, so that their products will be more skin and hair friendly.

  7. Hydrazine functionalized probes for chromogenic and fluorescent ratiometric sensing of pH and F-: experimental and DFT studies.

    PubMed

    Roy Chowdhury, Additi; Mondal, Amita; Roy, Biswajit Gopal; K, Jagadeesh C Bose; Mukhopadhyay, Sudit; Banerjee, Priyabrata

    2017-11-08

    Two novel hydrazine based sensors, BPPIH (N 1 ,N 3 -bis(perfluorophenyl)isophthalohydrazide) and BPBIH (N 1' ,N 3' -bis(perfluorobenzylidene)isophthalohydrazide), are presented here. BPPIH is found to be a highly sensitive pH sensor in the pH range 5.0 to 10.0 in a DMSO-water solvent mixture with a pK a value of 9.22. Interesting optical responses have been observed for BPPIH in the above mentioned pH range. BPBIH on the other hand turns out to be a less effective pH sensor in the above mentioned pH range. The increase in fluorescence intensity at a lower pH for BPPIH was explained by using density functional theory. The ability of BPPIH to monitor the pH changes inside cancer cells is a useful application of the sensor as a functional material. In addition fluoride (F - ) selectivity studies of these two chemosensors have been performed and show that between them, BPBIH shows greater selectivity towards F - . The interaction energy calculated from the DFT-D3 supports the experimental findings. The pH sensor (BPPIH) can be further interfaced with suitable circuitry interfaced with desired programming for ease of access and enhancement of practical applications.

  8. Establishment of a high-resolution 2-D reference map of human spermatozoal proteins from 12 fertile sperm-bank donors.

    PubMed

    Li, Ling-Wei; Fan, Li-Qing; Zhu, Wen-Bing; Nien, Hong-Chuan; Sun, Bo-Lan; Luo, Ke-Li; Liao, Ting-Ting; Tang, Le; Lu, Guang-Xiu

    2007-05-01

    To extend the analysis of the proteome of human spermatozoa and establish a 2-D gel electrophoresis (2-DE) reference map of human spermatozoal proteins in a pH range of 3.5-9.0. In order to reveal more protein spots, immobilized pH gradient strips (24 cm) of broad range of pH 3-10 and the narrower range of pH 6-9, as well as different overlapping narrow range pH immobilized pH gradient (IPG) strips, including 3.5-4.5, 4.0-5.0, 4.5-5.5, 5.0-6.0 and 5.5-6.7, were used. After 2-DE, several visually identical spots between the different pH range 2-D gel pairs were cut from the gels and confirmed by mass spectrometry and used as landmarks for computer analysis. The 2-D reference map with pH value from 3.5 to 9.0 was synthesized by using the ImageMaster analysis software. The overlapping spots were excluded, so that every spot was counted only once. A total of 3872 different protein spots were identified from the reference map, an approximately 3-fold increase compared to the broad range pH 3-10 IPG strip (1306 spots). The present 2-D pattern is a high resolution 2-D reference map for human fertile spermatozoal protein spots. A comprehensive knowledge of the protein composition of human spermatozoa is very meaningful in studying dysregulation of male fertility.

  9. Thermodynamic Driving Force of Hydrogen on Rumen Microbial Metabolism: A Theoretical Investigation

    PubMed Central

    van Lingen, Henk J.; Plugge, Caroline M.; Fadel, James G.; Kebreab, Ermias; Bannink, André; Dijkstra, Jan

    2016-01-01

    Hydrogen is a key product of rumen fermentation and has been suggested to thermodynamically control the production of the various volatile fatty acids (VFA). Previous studies, however, have not accounted for the fact that only thermodynamic near-equilibrium conditions control the magnitude of reaction rate. Furthermore, the role of NAD, which is affected by hydrogen partial pressure (PH2), has often not been considered. The aim of this study was to quantify the control of PH2 on reaction rates of specific fermentation pathways, methanogenesis and NADH oxidation in rumen microbes. The control of PH2 was quantified using the thermodynamic potential factor (FT), which is a dimensionless factor that corrects a predicted kinetic reaction rate for the thermodynamic control exerted. Unity FT was calculated for all glucose fermentation pathways considered, indicating no inhibition of PH2 on the production of a specific type of VFA (e.g., acetate, propionate and butyrate) in the rumen. For NADH oxidation without ferredoxin oxidation, increasing PH2 within the rumen physiological range decreased FT from unity to zero for different NAD+ to NADH ratios and pH of 6.2 and 7.0, which indicates thermodynamic control of PH2. For NADH oxidation with ferredoxin oxidation, increasing PH2 within the rumen physiological range decreased FT from unity at pH of 7.0 only. For the acetate to propionate conversion, FT increased from 0.65 to unity with increasing PH2, which indicates thermodynamic control. For propionate to acetate and butyrate to acetate conversions, FT decreased to zero below the rumen range of PH2, indicating full thermodynamic suppression. For methanogenesis by archaea without cytochromes, FT differed from unity only below the rumen range of PH2, indicating no thermodynamic control. This theoretical investigation shows that thermodynamic control of PH2 on individual VFA produced and associated yield of hydrogen and methane cannot be explained without considering NADH oxidation. PMID:27783615

  10. Pilot study of Iopamidol-based quantitative pH imaging on a clinical 3T MR scanner.

    PubMed

    Müller-Lutz, Anja; Khalil, Nadia; Schmitt, Benjamin; Jellus, Vladimir; Pentang, Gael; Oeltzschner, Georg; Antoch, Gerald; Lanzman, Rotem S; Wittsack, Hans-Jörg

    2014-12-01

    The objective of this study was to show the feasibility to perform Iopamidol-based pH imaging via clinical 3T magnetic resonance imaging (MRI) using chemical exchange saturation transfer (CEST) imaging with pulse train presaturation. The pulse train presaturation scheme of a CEST sequence was investigated for Iopamidol-based pH measurements using a 3T magnetic resonance (MR) scanner. The CEST sequence was applied to eight tubes filled with 100-mM Iopamidol solutions with pH values ranging from 5.6 to 7.0. Calibration curves for pH quantification were determined. The dependence of pH values on the concentration of Iopamidol was investigated. An in vivo measurement was performed in one patient who had undergone a previous contrast-enhanced computed tomography (CT) scan with Iopamidol. The pH values of urine measured with CEST MRI and with a pH meter were compared. In the measured pH range, pH imaging using CEST imaging with pulse train presaturation was possible. Dependence between the pH value and the concentration of Iopamidol was not observed. In the in vivo investigation, the pH values in the human bladder measured by the Iopamidol CEST sequence and in urine were consistent. Our study shows the feasibility of using CEST imaging with Iopamidol for quantitative pH mapping in vitro and in vivo on a 3T MR scanner.

  11. Present-day nearshore pH differentially depresses fertilization in congeneric sea urchins.

    PubMed

    Frieder, Christina A

    2014-02-01

    Ocean acidification impacts fertilization in some species of sea urchin, but whether sensitivity is great enough to be influenced by present-day pH variability has not been documented. In this study, fertilization in two congeneric sea urchins, Strongylocentrotus purpuratus and S. franciscanus, was found to be sensitive to reduced pH, <7.50, but only within a range of sperm-egg ratios that was species-specific. By further testing fertilization across a broad range of pH, pH-fertilization curves were generated and revealed that S. purpuratus was largely robust to pH, while fertilization in S. franciscanus was sensitive to even modest reductions in pH. Combining the pH-fertilization response curves with pH data collected from these species' habitat demonstrated that relative fertilization success remained high for S. purpuratus but could be as low as 79% for S. franciscanus during periods of naturally low pH. In order for S. franciscanus to maintain high fertilization success in the present and future, adequate adult densities, and thus sufficient sperm-egg ratios, will be required to negate the effects of low pH. In contrast, fertilization of S. purpuratus was robust to a broad range of pH, encompassing both present-day and future ocean acidification scenarios, even though the two congeners have similar habitats.

  12. Effect of pH on growth and lipid accumulation kinetics of the microalga Chlorella vulgaris grown heterotrophically under sulfur limitation.

    PubMed

    Sakarika, Myrsini; Kornaros, Michael

    2016-11-01

    The goal of the present study was to investigate the pH range that can support the growth of C. vulgaris, and, more specifically, to identify the optimal pH for the microalga's growth, under heterotrophic conditions. Furthermore, the effect of pH on the accumulation of intracellular lipids was studied. A wide range of pH values was tested using the respective buffer solutions. The optimal pH for biomass growth and lipid accumulation under sulfur limitation was found to be 7.5, resulting in maximum specific growth rate of 0.541days(-1) and maximum total lipid content of 53.43%ggDW(-1). The fatty acid composition of C. vulgaris was found to be unrelated to pH, as the lipid content did not present significant variations in the pH values tested. The fatty acid profile was mainly composed of monounsaturated fatty acids (MUFAs) with the dominant one being oleic acid (C18:1). Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Stream Water Quality Modeling in the Great Smoky Mountains National Park

    NASA Astrophysics Data System (ADS)

    Barnett, T. W.; Robinson, R. B.

    2003-12-01

    The purpose of this study was to examine water quality in the acid-impacted Great Smoky Mountains National Park (GRSM). Water samples have been collected roughly quarterly at ninety sampling sites throughout the Park from October, 1993 to November, 2002.. These samples were analyzed for pH, acid neutralizing capacity (ANC), conductivity, major cations, and major anions. The trout fisheries of the GRSM are considered some of the best in the eastern United States. However, fisheries biologists at the GRSM believe that some of the streams that once supported trout populations twenty or thirty years ago, no longer do. This study outlines and quantifies surface water quality conditions that might be harmful to trout populations through a literature review. This study identifies 71 sites (79 percent of total sampling sites) that currently have a median pH of greater than 6.0, above which, is unlikely to be harmful to trout species unless a high runoff of acid, Al-rich water creates a mixing zone where Al(OH)3 precipitates. The precipitate can accumulate on the gills and impede normal diffusion of O2, CO2, and nutrients. There are 17 sites (18 percent) that have median pH values in the 5.0 to 6.0 range. This range of pH values is likely to be harmful to trout species when aluminum concentrations exceed about 0.2 mg/l. The lower end of this range is probably harmful to the eggs and fry of trout and also to non-acclimated trout especially when calcium, sodium, and chloride concentrations are low. Only two sampling sites have median pH values in the 4.5 to 5.0 range. This pH range is likely harmful to eggs, fry and adult trout, particularly in the soft water conditions prevalent in the GRSM. The mechanisms adversely affecting trout in these ranges are ionoregulatory dysfunction, respiratory stress, and circulatory stress. Currently, there are no sampling sites with median pH values less than 4.5, although pH values could be lowered by more than one pH unit during high-flow episodic events depending on the ANC in the stream. Stepwise multiple linear regression was used to model pH, ANC, nitrate and sulfate. This study incorporates basin characteristics, time, acid deposition data, USGS stream flow data as surrogate hydrologic data, and precipitation data, e.g., inches of rain on preceding days, to determine whether these variables are associated with water quality. Acid deposition data came from biweekly wet only and throughfall monitoring at the Noland Divide, which is a high elevation acid deposition monitoring site within the Park. Precipitation data is collected at five National Weather Service monitoring sites within the Park. Each of the above variables were found to be statistically significant (p<0.05) influencing factors to water quality, particularly pH. Water quality conditions were adversely (decreasing pH and ANC and increasing sulfate and nitrate) affected by increased stream flows, acid deposition and precipitation. Models for pH and ANC produced R-square values around 0.71 and 0.86, respectively. Nitrate and sulfate modeling produced R-square values around 0.30. This study also analyzes temporal trends in pH. Modeling reveals statistically significant decreasing trends in pH with time. If conditions remain the same and past trends continue, models suggest that 30.0 percent of the sampling sites will reach pH values less than 6.0 in less than 10 years, 63.3 percent of the sites will reach pH values less than 6.0 in less than 25 years, and 96.7 percent of the sites will reach pH values less than 6.0 in less than 50 years. The models used to predict future pH values explain around 70 percent of the variability in the data.

  14. Archaeal Abundance across a pH Gradient in an Arable Soil and Its Relationship to Bacterial and Fungal Growth Rates

    PubMed Central

    Sterngren, Anna E.; Rousk, Johannes

    2012-01-01

    Soil pH is one of the most influential factors for the composition of bacterial and fungal communities, but the influence of soil pH on the distribution and composition of soil archaeal communities has yet to be systematically addressed. The primary aim of this study was to determine how total archaeal abundance (quantitative PCR [qPCR]-based estimates of 16S rRNA gene copy numbers) is related to soil pH across a pH gradient (pH 4.0 to 8.3). Secondarily, we wanted to assess how archaeal abundance related to bacterial and fungal growth rates across the same pH gradient. We identified two distinct and opposite effects of pH on the archaeal abundance. In the lowest pH range (pH 4.0 to 4.7), the abundance of archaea did not seem to correspond to pH. Above this pH range, there was a sharp, almost 4-fold decrease in archaeal abundance, reaching a minimum at pH 5.1 to 5.2. The low abundance of archaeal 16S rRNA gene copy numbers at this pH range then sharply increased almost 150-fold with pH, resulting in an increase in the ratio between archaeal and bacterial copy numbers from a minimum of 0.002 to more than 0.07 at pH 8. The nonuniform archaeal response to pH could reflect variation in the archaeal community composition along the gradient, with some archaea adapted to acidic conditions and others to neutral to slightly alkaline conditions. This suggestion is reinforced by observations of contrasting outcomes of the (competitive) interactions between archaea, bacteria, and fungi toward the lower and higher ends of the examined pH gradient. PMID:22706045

  15. Archaeal abundance across a pH gradient in an arable soil and its relationship to bacterial and fungal growth rates.

    PubMed

    Bengtson, Per; Sterngren, Anna E; Rousk, Johannes

    2012-08-01

    Soil pH is one of the most influential factors for the composition of bacterial and fungal communities, but the influence of soil pH on the distribution and composition of soil archaeal communities has yet to be systematically addressed. The primary aim of this study was to determine how total archaeal abundance (quantitative PCR [qPCR]-based estimates of 16S rRNA gene copy numbers) is related to soil pH across a pH gradient (pH 4.0 to 8.3). Secondarily, we wanted to assess how archaeal abundance related to bacterial and fungal growth rates across the same pH gradient. We identified two distinct and opposite effects of pH on the archaeal abundance. In the lowest pH range (pH 4.0 to 4.7), the abundance of archaea did not seem to correspond to pH. Above this pH range, there was a sharp, almost 4-fold decrease in archaeal abundance, reaching a minimum at pH 5.1 to 5.2. The low abundance of archaeal 16S rRNA gene copy numbers at this pH range then sharply increased almost 150-fold with pH, resulting in an increase in the ratio between archaeal and bacterial copy numbers from a minimum of 0.002 to more than 0.07 at pH 8. The nonuniform archaeal response to pH could reflect variation in the archaeal community composition along the gradient, with some archaea adapted to acidic conditions and others to neutral to slightly alkaline conditions. This suggestion is reinforced by observations of contrasting outcomes of the (competitive) interactions between archaea, bacteria, and fungi toward the lower and higher ends of the examined pH gradient.

  16. Sensitivity of sea urchin fertilization to pH varies across a natural pH mosaic.

    PubMed

    Kapsenberg, Lydia; Okamoto, Daniel K; Dutton, Jessica M; Hofmann, Gretchen E

    2017-03-01

    In the coastal ocean, temporal fluctuations in pH vary dramatically across biogeographic ranges. How such spatial differences in pH variability regimes might shape ocean acidification resistance in marine species remains unknown. We assessed the pH sensitivity of the sea urchin Strongylocentrotus purpuratus in the context of ocean pH variability. Using unique male-female pairs, originating from three sites with similar mean pH but different variability and frequency of low pH (pH T  ≤ 7.8) exposures, fertilization was tested across a range of pH (pH T 7.61-8.03) and sperm concentrations. High fertilization success was maintained at low pH via a slight right shift in the fertilization function across sperm concentration. This pH effect differed by site. Urchins from the site with the narrowest pH variability regime exhibited the greatest pH sensitivity. At this site, mechanistic fertilization dynamics models support a decrease in sperm-egg interaction rate with decreasing pH. The site differences in pH sensitivity build upon recent evidence of local pH adaptation in S. purpuratus and highlight the need to incorporate environmental variability in the study of global change biology.

  17. Comparison of pH measurements made using 31P NMR and a fibreoptic pH meter.

    PubMed

    Jayasundar, R; Hall, L D; Bleehen, N M

    1992-01-01

    The objective of this study was to compare pH measurements made in biological samples using 31P NMR (pHNMR) with those made with a novel, dye-based fibreoptic pH measurement system (pHF), which is compatible with use in electromagnetic fields without field perturbation. Using protein-free model solutions, pHNMR was calibrated against pHF, giving a correlation coefficient of 0.969 and a mean difference (+/- SD) between pHNMR and pHF of 0.037 +/- 0.054 over the pH range 6.8-7.7. Further calibration of pHNMR with pHF was carried out for human red blood lysates and then pHNMR was compared with pHF for whole, packed red blood cells over the pH range 7.0-7.8. Values for pHNMR, the intracellular pH, were consistently lower than for pHF, the extracellular pH, by a mean (+/- SD) of 0.15 +/- 0.02 units. A close correlation of extracellular pHNMR with pHF was demonstrated for a blood sample exhibiting two P(i) peaks, over the pH range 7.03-7.71. We conclude that concurrent use of NMR and the fibreoptic pH meter provides a reliable method of simultaneous measurement of intracellular and extracellular pH in biological systems.

  18. Effect of pH on the stability of hemochromatosis factor E: a combined spectroscopic and molecular dynamics simulation-based study.

    PubMed

    Khan, Parvez; Shandilya, Ashutosh; Jayaram, B; Islam, Asimul; Ahmad, Faizan; Hassan, Md Imtaiyaz

    2017-05-01

    Hereditary hemochromatosis is an iron overburden condition, which is mainly governed by hereditary hemochromatosis factor E (HFE), a member of major histocompatibility complex class I. To understand the effect of pH on the structure and stability of HFE, we have cloned, expressed, and purified the HFE in the bacterial system and performed circular dichroism, fluorescence, and absorbance measurements at a wide pH range (pH 3.0-11.0). We found that HFE remains stable in the pH range 7.5-11.0 and gets completely acid denatured at low pH values. In this work, we also analyzed the contribution of salt bridges to the stability of HFE. We further performed molecular dynamics simulations for 80 ns at different pH values. An excellent agreement was observed between results from biophysical and MD simulation studies. At lower pH, HFE undergoes denaturation and may be driven toward a degradation pathway, such as ubiquitination. Hence, HFE is not available to bind again with transferrin receptor1 to negatively regulate iron homeostasis. Further we postulated that, might be low pH of cancerous cells helps them to meet their high iron requirement.

  19. Cytoplasmic pH Response to Acid Stress in Individual Cells of Escherichia coli and Bacillus subtilis Observed by Fluorescence Ratio Imaging Microscopy

    PubMed Central

    Martinez, Keith A.; Kitko, Ryan D.; Mershon, J. Patrick; Adcox, Haley E.; Malek, Kotiba A.; Berkmen, Melanie B.

    2012-01-01

    The ability of Escherichia coli and Bacillus subtilis to regulate their cytoplasmic pH is well studied in cell suspensions but is poorly understood in individual adherent cells and biofilms. We observed the cytoplasmic pH of individual cells using ratiometric pHluorin. A standard curve equating the fluorescence ratio with pH was obtained by perfusion at a range of external pH 5.0 to 9.0, with uncouplers that collapse the transmembrane pH difference. Adherent cells were acid stressed by switching the perfusion medium from pH 7.5 to pH 5.5. The E. coli cytoplasmic pH fell to a value that varied among individual cells (range of pH 6.2 to 6.8), but a majority of cells recovered (to pH 7.0 to 7.5) within 2 min. In an E. coli biofilm, cells shifted from pH 7.5 to pH 5.5 failed to recover cytoplasmic pH. Following a smaller shift (from pH 7.5 to pH 6.0), most biofilm cells recovered fully, although the pH decreased further than that of isolated adherent cells, and recovery took longer (7 min or longer). Some biofilm cells began to recover pH and then failed, a response not seen in isolated cells. B. subtilis cells were acid shifted from pH 7.5 to pH 6.0. In B. subtilis, unlike the case with E. coli, cytoplasmic pH showed no “overshoot” but fell to a level that was maintained. This level of cytoplasmic pH post-acid shift varied among individual B. subtilis cells (range of pH, 7.0 to 7.7). Overall, the cytoplasmic pHs of individual bacteria show important variation in the acid stress response, including novel responses in biofilms. PMID:22427503

  20. Cytoplasmic pH response to acid stress in individual cells of Escherichia coli and Bacillus subtilis observed by fluorescence ratio imaging microscopy.

    PubMed

    Martinez, Keith A; Kitko, Ryan D; Mershon, J Patrick; Adcox, Haley E; Malek, Kotiba A; Berkmen, Melanie B; Slonczewski, Joan L

    2012-05-01

    The ability of Escherichia coli and Bacillus subtilis to regulate their cytoplasmic pH is well studied in cell suspensions but is poorly understood in individual adherent cells and biofilms. We observed the cytoplasmic pH of individual cells using ratiometric pHluorin. A standard curve equating the fluorescence ratio with pH was obtained by perfusion at a range of external pH 5.0 to 9.0, with uncouplers that collapse the transmembrane pH difference. Adherent cells were acid stressed by switching the perfusion medium from pH 7.5 to pH 5.5. The E. coli cytoplasmic pH fell to a value that varied among individual cells (range of pH 6.2 to 6.8), but a majority of cells recovered (to pH 7.0 to 7.5) within 2 min. In an E. coli biofilm, cells shifted from pH 7.5 to pH 5.5 failed to recover cytoplasmic pH. Following a smaller shift (from pH 7.5 to pH 6.0), most biofilm cells recovered fully, although the pH decreased further than that of isolated adherent cells, and recovery took longer (7 min or longer). Some biofilm cells began to recover pH and then failed, a response not seen in isolated cells. B. subtilis cells were acid shifted from pH 7.5 to pH 6.0. In B. subtilis, unlike the case with E. coli, cytoplasmic pH showed no "overshoot" but fell to a level that was maintained. This level of cytoplasmic pH post-acid shift varied among individual B. subtilis cells (range of pH, 7.0 to 7.7). Overall, the cytoplasmic pHs of individual bacteria show important variation in the acid stress response, including novel responses in biofilms.

  1. Determination of a practical pH cutoff level for reliable confirmation of nasogastric tube placement.

    PubMed

    Gilbertson, Heather Ruth; Rogers, Elizabeth Jessie; Ukoumunne, Obioha Chukwunyere

    2011-07-01

    Enteral feeding is a common method of nutrition support when oral intake is inadequate. Confirmation of correct nasogastric (NG) tube placement is essential. Risks of morbidity/mortality associated with misplacement in the lung are well documented. Studies indicate that pH ≤ 4 confirms gastric aspirate, but in pediatrics, a pH of gastric aspirate is often >4. The goal of this study was to determine a reliable and practical pH value to confirm NG tube placement, without increasing the risk of not identifying a misplaced NG tube. Pediatric inpatients older than 4 weeks receiving enteral nutrition (nasogastric or gastrostomy) were recruited over 9 months. Aspirate samples were pH tested at NG tube placement and before feedings. If pH >4, NG tube position was confirmed by chest radiograph or further investigations. In addition, intensive care unit (ICU) patients who required endotracheal suctioning were recruited, and endotracheal aspirate samples were pH tested. A total of 4,330 gastric aspirate samples (96% nasogastric) were collected from 645 patients with a median (interquartile range [IQR]) age of 1.0 years (0.3-5.2 years). The mean (standard deviation [SD]) pH of these gastric samples was 3.6 (1.4) (range, 0-9). pH was >4 in 1,339 (30.9%) gastric aspirate samples, and of these, 244 were radiographed, which identified 10 misplaced tubes (1 with pH 5.5). A total of 65 endotracheal aspirate samples were collected from 19 ICU patients with a median (IQR) age of 0.6 years (0.4-5.2 years). The mean (SD) pH of these samples was 8.4 (0.8) (range, 6-9.5). Given that the lowest pH value of endotracheal aspirate sample was 6, and a misplaced NG tube was identified with pH 5.5, it is proposed that a gastric aspirate pH ≤ 5 is a safer, reliable, and practical cutoff in this population.

  2. Rare earth element partitioning between hydrous ferric oxides and acid mine water during iron oxidation

    USGS Publications Warehouse

    Verplanck, P.L.; Nordstrom, D. Kirk; Taylor, Howard E.; Kimball, B.A.

    2004-01-01

    Ferrous iron rapidly oxidizes to Fe (III) and precipitates as hydrous Fe (III) oxides in acid mine waters. This study examines the effect of Fe precipitation on the rare earth element (REE) geochemistry of acid mine waters to determine the pH range over which REEs behave conservatively and the range over which attenuation and fractionation occur. Two field studies were designed to investigate REE attenuation during Fe oxidation in acidic, alpine surface waters. To complement these field studies, a suite of six acid mine waters with a pH range from 1.6 to 6.1 were collected and allowed to oxidize in the laboratory at ambient conditions to determine the partitioning of REEs during Fe oxidation and precipitation. Results from field experiments document that even with substantial Fe oxidation, the REEs remain dissolved in acid, sulfate waters with pH below 5.1. Between pH 5.1 and 6.6 the REEs partitioned to the solid phases in the water column, and heavy REEs were preferentially removed compared to light REEs. Laboratory experiments corroborated field data with the most solid-phase partitioning occurring in the waters with the highest pH. ?? 2004 Elsevier Ltd. All rights reserved.

  3. The Influence of pH on Prokaryotic Cell Size and Temperature

    NASA Astrophysics Data System (ADS)

    Sundararajan, D.; Gutierrez, F.; Heim, N. A.; Payne, J.

    2015-12-01

    The pH of a habitat is essential to an organism's growth and success in its environment. Although most organisms maintain a neutral internal pH, their environmental pH can vary greatly. However, little research has been done concerning an organism's environmental pH across a wide range of taxa. We studied pH tolerance in prokaryotes and its relationship with biovolume, taxonomic classification, and ideal temperature. We had three hypotheses: pH and temperature are not correlated; pH tolerance is similar within taxonomic groups; and extremophiles have small cell sizes. To test these hypotheses, we used pH, size, and taxonomic data from The Prokaryotes. We found that the mean optimum external pH was neutral for prokaryotes as a whole and when divided by domain, phylum, and class. Using ANOVA to test for pH within and among group variances, we found that variation of pH in domains, phyla, classes, and families was greater than between them. pH and size did not show much of a correlation, except that the largest and smallest sized prokaryotes had nearly neutral pH. This seems significant because extremophiles need to divert more of their energy from growth to maintain a neutral internal pH. Acidophiles showed a larger range of optimum pH values than alkaliphiles. A similar result was seen with the minimum and maximum pH values of acidophiles and alkaliphiles. While acidophiles were spread out and had some alkaline maximum values, alkaliphiles had smaller ranges, and unlike some acidophiles that had pH minimums close to zero, alkaliphile pH maximums did not go beyond a pH of 12. No statistically significant differences were found between sizes of acidophiles and alkaliphiles. However, optimum temperatures of acidophiles and alkaliphiles did have a statistically significant difference. pH and temperature had a negative correlation. Therefore, pH seems to have a correlation with cell size, temperature, and taxonomy to some extent.

  4. Study of properties of modified silicones at solid-liquid interface: fabric-silicone interactions.

    PubMed

    Purohit, P; Somasundaran, P; Kulkarni, R

    2006-06-15

    Silicones are special reagents that impart desired surface properties such as softness, bounciness and antiwrinkle properties to fabrics and related materials. Although these finishing processes have been practiced routinely, very little is known about the mechanisms involved in modification so that they could be improved. The current study was undertaken to develop basic understanding of the mechanisms responsible for surface modification of fibers using silicones. PDMS based amino silicone emulsions, quaternized to various degrees using dimethyl sulphate, were used in the present study. The electrokinetic properties of the modified silicones were studied as a function of pH. It was expected that the silicone emulsions would show a steady positive zeta potential throughout the pH range due to the quaternization by dimethyl sulphate. Surprisingly, a sudden drop in the zeta potential was observed around pH 8 with the samples turning hazy in the pH range of 8-10. Turbidimetric studies also showed a sudden increase in the turbidity in the pH range 8-10 where commercial processes also encounter problems. It was concluded that the emulsions were destabilized at pH 8-10 thus rendering them ineffective for surface treatment. In order to identify reason for the improvement in fabric properties, fiber structure was monitored using atomic force microscopy. It was observed that the treated fibers were far smoother, relaxed and uniform as compared to the untreated fibers. Thus the morphology of the fabric is modified in a specific way by treatment with specialty silicones.

  5. The effect of pH on phosphorus availability and speciation in an aquaponics nutrient solution.

    PubMed

    Cerozi, Brunno da Silva; Fitzsimmons, Kevin

    2016-11-01

    The interaction between the main ions in aquaponics nutrient solutions affects chemical composition and availability of nutrients, and nutrient uptake by plant roots. This study determined the effect of pH on phosphorus (P) speciation and availability in an aquaponics nutrient solution and used Visual MINTEQ to simulate P species and P activity. In both experimental and simulated results, P availability decreased with increase in pH of aquaponics nutrient solutions. According to simulations, P binds to several cations leaving less free phosphate ions available in solution. High pH values resulted in the formation of insoluble calcium phosphate species. The study also demonstrated the importance of organic matter and alkalinity in keeping free phosphate ions in solution at high pH ranges. It is recommended though that pH in aquaponics systems is maintained at a 5.5-7.2 range for optimal availability and uptake by plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Highly Sensitive and Wide-Dynamic-Range Multichannel Optical-Fiber pH Sensor Based on PWM Technique.

    PubMed

    Khan, Md Rajibur Rahaman; Kang, Shin-Won

    2016-11-09

    In this study, we propose a highly sensitive multichannel pH sensor that is based on an optical-fiber pulse width modulation (PWM) technique. According to the optical-fiber PWM method, the received sensing signal's pulse width changes when the optical-fiber pH sensing-element of the array comes into contact with pH buffer solutions. The proposed optical-fiber PWM pH-sensing system offers a linear sensing response over a wide range of pH values from 2 to 12, with a high pH-sensing ability. The sensitivity of the proposed pH sensor is 0.46 µs/pH, and the correlation coefficient R² is approximately 0.997. Additional advantages of the proposed optical-fiber PWM pH sensor include a short/fast response-time of about 8 s, good reproducibility properties with a relative standard deviation (RSD) of about 0.019, easy fabrication, low cost, small size, reusability of the optical-fiber sensing-element, and the capability of remote sensing. Finally, the performance of the proposed PWM pH sensor was compared with that of potentiometric, optical-fiber modal interferometer, and optical-fiber Fabry-Perot interferometer pH sensors with respect to dynamic range width, linearity as well as response and recovery times. We observed that the proposed sensing systems have better sensing abilities than the above-mentioned pH sensors.

  7. Highly Sensitive and Wide-Dynamic-Range Multichannel Optical-Fiber pH Sensor Based on PWM Technique

    PubMed Central

    Khan, Md. Rajibur Rahaman; Kang, Shin-Won

    2016-01-01

    In this study, we propose a highly sensitive multichannel pH sensor that is based on an optical-fiber pulse width modulation (PWM) technique. According to the optical-fiber PWM method, the received sensing signal’s pulse width changes when the optical-fiber pH sensing-element of the array comes into contact with pH buffer solutions. The proposed optical-fiber PWM pH-sensing system offers a linear sensing response over a wide range of pH values from 2 to 12, with a high pH-sensing ability. The sensitivity of the proposed pH sensor is 0.46 µs/pH, and the correlation coefficient R2 is approximately 0.997. Additional advantages of the proposed optical-fiber PWM pH sensor include a short/fast response-time of about 8 s, good reproducibility properties with a relative standard deviation (RSD) of about 0.019, easy fabrication, low cost, small size, reusability of the optical-fiber sensing-element, and the capability of remote sensing. Finally, the performance of the proposed PWM pH sensor was compared with that of potentiometric, optical-fiber modal interferometer, and optical-fiber Fabry–Perot interferometer pH sensors with respect to dynamic range width, linearity as well as response and recovery times. We observed that the proposed sensing systems have better sensing abilities than the above-mentioned pH sensors. PMID:27834865

  8. High Sensitivity pH Sensor Based on Porous Silicon (PSi) Extended Gate Field-Effect Transistor

    PubMed Central

    Al-Hardan, Naif H.; Abdul Hamid, Muhammad Azmi; Ahmed, Naser M.; Jalar, Azman; Shamsudin, Roslinda; Othman, Norinsan Kamil; Kar Keng, Lim; Chiu, Weesiong; Al-Rawi, Hamzah N.

    2016-01-01

    In this study, porous silicon (PSi) was prepared and tested as an extended gate field-effect transistor (EGFET) for pH sensing. The prepared PSi has pore sizes in the range of 500 to 750 nm with a depth of approximately 42 µm. The results of testing PSi for hydrogen ion sensing in different pH buffer solutions reveal that the PSi has a sensitivity value of 66 mV/pH that is considered a super Nernstian value. The sensor considers stability to be in the pH range of 2 to 12. The hysteresis values of the prepared PSi sensor were approximately 8.2 and 10.5 mV in the low and high pH loop, respectively. The result of this study reveals a promising application of PSi in the field for detecting hydrogen ions in different solutions. PMID:27338381

  9. High Sensitivity pH Sensor Based on Porous Silicon (PSi) Extended Gate Field-Effect Transistor.

    PubMed

    Al-Hardan, Naif H; Abdul Hamid, Muhammad Azmi; Ahmed, Naser M; Jalar, Azman; Shamsudin, Roslinda; Othman, Norinsan Kamil; Kar Keng, Lim; Chiu, Weesiong; Al-Rawi, Hamzah N

    2016-06-07

    In this study, porous silicon (PSi) was prepared and tested as an extended gate field-effect transistor (EGFET) for pH sensing. The prepared PSi has pore sizes in the range of 500 to 750 nm with a depth of approximately 42 µm. The results of testing PSi for hydrogen ion sensing in different pH buffer solutions reveal that the PSi has a sensitivity value of 66 mV/pH that is considered a super Nernstian value. The sensor considers stability to be in the pH range of 2 to 12. The hysteresis values of the prepared PSi sensor were approximately 8.2 and 10.5 mV in the low and high pH loop, respectively. The result of this study reveals a promising application of PSi in the field for detecting hydrogen ions in different solutions.

  10. pH dominates variation in tropical soil archaeal diversity and community structure.

    PubMed

    Tripathi, Binu M; Kim, Mincheol; Lai-Hoe, Ang; Shukor, Nor A A; Rahim, Raha A; Go, Rusea; Adams, Jonathan M

    2013-11-01

    Little is known of the factors influencing soil archaeal community diversity and composition in the tropics. We sampled soils across a range of forest and nonforest environments in the equatorial tropics of Malaysia, covering a wide range of pH values. DNA was PCR-amplified for the V1-V3 region of the 16S rRNA gene, and 454-pyrosequenced. Soil pH was the best predictor of diversity and community composition of Archaea, being a stronger predictor than land use. Archaeal OTU richness was highest in the most acidic soils. Overall archaeal abundance in tropical soils (determined by qPCR) also decreased at higher pH. This contrasts with the opposite trend previously found in temperate soils. Thaumarcheota group 1.1b was more abundant in alkaline soils, whereas group 1.1c was only detected in acidic soils. These results parallel those found in previous studies in cooler climates, emphasizing niche conservatism among broad archaeal groups. Among the most abundant operational taxonomic units (OTUs), there was clear evidence of niche partitioning by pH. No individual OTU occurred across the entire range of pH values. Overall, the results of this study show that pH plays a major role in structuring tropical soil archaeal communities. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  11. How Prepared Are MSW Graduates for Doctoral Research? Views of PhD Research Faculty

    ERIC Educational Resources Information Center

    Drisko, James W.; Evans, Kristin

    2018-01-01

    This national survey of PhD faculty assessed the research preparation of entering doctoral social work students on a wide range of research knowledge and related skills. The prior literature shows that PhD programs repeat much BSW and MSW research course content. This study shows that the trend continues and has perhaps widened. PhD research…

  12. Effect of urine pH on the effectiveness of shock wave lithotripsy: A pilot study.

    PubMed

    Majzoub, Ahmad; Al-Ani, Ammar; Gul, Tawiz; Kamkoum, Hatem; Al-Jalham, Khalid

    2016-01-01

    Shock wave lithotripsy (SWL) is a well-established modality in the treatment of urolithiasis. Studying the effect of urine pH on SWL success is appealing as pH can be manipulated before SWL to insure a better outcome. This is a prospective study performed at a tertiary medical center. Patients presenting to the SWL unit with a single renal stone <2 cm in size were included in this study. In addition to standard laboratory and radiologic investigations, urine pH measurement was performed on all patients before their procedure. The number of sessions performed, and the stone-free rate (SFR) were assessed. Patients were divided into two groups according to stone clearance. Group 1 was stone-free, whereas Group 2 had residual stones after three sessions of SWL. Data was also classified according to different pH ranges. Influential factors were compared among the study groups and pH ranges. A total of 175 patients were included in this study. The SFR was 54.3%. The mean number of sessions performed was 2.2 ± 0.8. Group 1 included 95 patients, whereas Group 2 had eighty patients. Among all studied factors, stone size (P = 0.03) and skin to stone distance (P = 0.04) significantly affected SFR with SWL. Urine pH was not found to have a statistically significant influence on SWL outcome (P = 0.51). Urine pH was not found in this study population to influence the effectiveness of SWL. Further experimental studies are required to help investigate this notion.

  13. Development of a calibration for the B isotope paleo-pH proxy in the deep sea coral Desmophyllum dianthus

    NASA Astrophysics Data System (ADS)

    Anagnostou, E.; Huang, K.; You, C.; Sherrell, R. M.

    2011-12-01

    The boron isotope ratio (δ11B) of foraminifera and coral carbonate has been proposed to record seawater pH. Here we test this pH proxy in the deep sea coral Desmophyllum dianthus (D. dianthus ). This coral species is cosmopolitan in geographic distribution and tolerates a wide temperature and depth range. Previous studies have shown that fossil D. dianthus skeletons can be dated precisely with U/Th measurements. Additionally, skeletal mass is sufficient for multiple elemental, isotopic, and radiocarbon measurements per sample making it a powerful candidate for paleoceanographic reconstructions. Ten modern corals from a depth range of 274-1470m in the Atlantic, Pacific, and Southern Oceans were analyzed using the sublimation method and multi-collector ICP-MS (Neptune), and the measured δ11B was regressed against ambient pH taken from hydrographic data sets (range pH 7.6 to 8.1). Replicate skeletal subsamples from a single coral agree within 0.35% (2SD). The array of δ11B values for these corals plots above the seawater borate δ11B vs. pH curve (Klochko et al., 2006) by an apparently constant value of 11.7 ± 1.2%, well above the range of values seen in foraminifera and surface corals. This offset is attributed to either partial incorporation of boric acid from seawater or, more likely, to physiological manipulation of the calcifying fluid to pH 8.7-9.0. The uncertainty in calculation of seawater pH from δ11B, dominated by the uncertainty in the offset value, currently limits the precision of absolute pH reconstructions to ±0.09pH units. However, the empirical calibration could be used to examine relative pH changes, thereby overcoming contributions to the uncertainty in the offset that result from the calculation of the empirical fractionation factor α and from sampling bias and variable vital effects among individuals, reducing the reconstruction error envelope. This study provides the first evidence that δ11B in D. dianthus has the potential to record ambient seawater pH.

  14. Evaluating nanoparticle sensor design for intracellular pH measurements.

    PubMed

    Benjaminsen, Rikke V; Sun, Honghao; Henriksen, Jonas R; Christensen, Nynne M; Almdal, Kristoffer; Andresen, Thomas L

    2011-07-26

    Particle-based nanosensors have over the past decade been designed for optical fluorescent-based ratiometric measurements of pH in living cells. However, quantitative and time-resolved intracellular measurements of pH in endosomes and lysosomes using particle nanosensors are challenging, and there is a need to improve measurement methodology. In the present paper, we have successfully carried out time-resolved pH measurements in endosomes and lyosomes in living cells using nanoparticle sensors and show the importance of sensor choice for successful quantification. We have studied two nanoparticle-based sensor systems that are internalized by endocytosis and elucidated important factors in nanosensor design that should be considered in future development of new sensors. From our experiments it is clear that it is highly important to use sensors that have a broad measurement range, as erroneous quantification of pH is an unfortunate result when measuring pH too close to the limit of the sensitive range of the sensors. Triple-labeled nanosensors with a pH measurement range of 3.2-7.0, which was synthesized by adding two pH-sensitive fluorophores with different pK(a) to each sensor, seem to be a solution to some of the earlier problems found when measuring pH in the endosome-lysosome pathway.

  15. Surface Chemical Studies on Pyrite in the Presence of Polysaccharide-Based Flotation Depressants.

    PubMed

    Rath; Subramanian; Pradeep

    2000-09-01

    The interaction of dextrin and guar gum with pyrite has been investigated through adsorption, flotation, and electrokinetic measurements. The adsorption densities of the polysaccharides onto pyrite reveal a region of higher adsorption density in the pH range 7.5-11, with a maximum around pH 10 for both polymers. The isotherms exhibit Langmuirian behavior. The adsorption density of guar gum onto pyrite is higher than that of dextrin. Electrokinetic measurements indicate a decrease in the electrophoretic mobility values in proportion to the concentration of the polymer added. Co-precipitation tests confirm polymer-ferric species interaction in the bulk solution, especially in the pH range 5.5-8.5. The pH range for higher adsorption, significant co-precipitation, and appreciable depression of pyrite encompass each other. XPS and FTIR spectroscopic studies provide evidence in support of chemical interaction between hydroxylated pyrite and the hydroxyl groups of the polymeric depressants. Copyright 2000 Academic Press.

  16. Chloride Fluxes in Isolated Dialyzed Barnacle Muscle Fibers

    PubMed Central

    DiPolo, R.

    1972-01-01

    Chloride outflux and influx has been studied in single isolated muscle fibers from the giant barnacle under constant internal composition by means of a dialysis perfusion technique. Membrane potential was continually recorded. The chloride outfluxes and influxes were 143 and 144 pmoles/cm2-sec (mean resting potential: 58 mv, temperature: 22°–24°C) with internal and external chloride concentrations of 30 and 541 mM, respectively. The chloride conductance calculated from tracer measurements using constant field assumptions is about fourfold greater than that calculated from published electrical data. Replacing 97% of the external chloride ions by propionate reduces the chloride efflux by 51%. Nitrate ions applied either to the internal or external surface of the membrane slows the chloride efflux. The external pH dependence of the chloride efflux follows the external pH dependence of the membrane conductance, in the range pH 3.9–4.7, increasing with decreasing pH. In the range pH 5–9, the chloride efflux increased with increasing pH, in a manner similar to that observed in frog muscle fibers. The titration curve for internal pH changes in the range 4.0–7.0 was quantitatively much different from that for external pH change, indicating significant asymmetry in the internal and external pH dependence of the chloride efflux. PMID:5074810

  17. A novel acidic pH fluorescent probe based on a benzothiazole derivative

    NASA Astrophysics Data System (ADS)

    Ma, Qiujuan; Li, Xian; Feng, Suxiang; Liang, Beibei; Zhou, Tiqiang; Xu, Min; Ma, Zhuoyi

    2017-04-01

    A novel acidic pH fluorescent probe 1 based on a benzothiazole derivative has been designed, synthesized and developed. The linear response range covers the acidic pH range from 3.44 to 6.46, which is valuable for pH researches in acidic environment. The evaluated pKa value of the probe 1 is 4.23. The fluorescence enhancement of the studied probe 1 with an increase in hydrogen ions concentration is based on the hindering of enhanced photo-induced electron transfer (PET) process. Moreover, the pH sensor possesses a highly selective response to H+ in the presence of metal ions, anions and other bioactive small molecules which would be interfere with its fluorescent pH response. Furthermore, the probe 1 responds to acidic pH with short response time that was less than 1 min. The probe 1 has been successfully applied to confocal fluorescence imaging in live HeLa cells and can selectively stain lysosomes. All of such good properties prove it can be used to monitoring pH fluctuations in acidic environment with high sensitivity, pH dependence and short response time.

  18. Six Month In Situ High-Resolution Carbonate Chemistry and Temperature Study on a Coral Reef Flat Reveals Asynchronous pH and Temperature Anomalies.

    PubMed

    Kline, David I; Teneva, Lida; Hauri, Claudine; Schneider, Kenneth; Miard, Thomas; Chai, Aaron; Marker, Malcolm; Dunbar, Rob; Caldeira, Ken; Lazar, Boaz; Rivlin, Tanya; Mitchell, Brian Gregory; Dove, Sophie; Hoegh-Guldberg, Ove

    2015-01-01

    Understanding the temporal dynamics of present thermal and pH exposure on coral reefs is crucial for elucidating reef response to future global change. Diel ranges in temperature and carbonate chemistry parameters coupled with seasonal changes in the mean conditions define periods during the year when a reef habitat is exposed to anomalous thermal and/or pH exposure. Anomalous conditions are defined as values that exceed an empirically estimated threshold for each variable. We present a 200-day time series from June through December 2010 of carbonate chemistry and environmental parameters measured on the Heron Island reef flat. These data reveal that aragonite saturation state, pH, and pCO2 were primarily modulated by biologically-driven changes in dissolved organic carbon (DIC) and total alkalinity (TA), rather than salinity and temperature. The largest diel temperature ranges occurred in austral spring, in October (1.5 - 6.6°C) and lowest diel ranges (0.9 - 3.2°C) were observed in July, at the peak of winter. We observed large diel total pH variability, with a maximum range of 7.7 - 8.5 total pH units, with minimum diel average pH values occurring during spring and maximum during fall. As with many other reefs, the nighttime pH minima on the reef flat were far lower than pH values predicted for the open ocean by 2100. DIC and TA both increased from June (end of Fall) to December (end of Spring). Using this high-resolution dataset, we developed exposure metrics of pH and temperature individually for intensity, duration, and severity of low pH and high temperature events, as well as a combined metric. Periods of anomalous temperature and pH exposure were asynchronous on the Heron Island reef flat, which underlines the importance of understanding the dynamics of co-occurrence of multiple stressors on coastal ecosystems.

  19. Six Month In Situ High-Resolution Carbonate Chemistry and Temperature Study on a Coral Reef Flat Reveals Asynchronous pH and Temperature Anomalies

    PubMed Central

    Kline, David I.; Teneva, Lida; Hauri, Claudine; Schneider, Kenneth; Miard, Thomas; Chai, Aaron; Marker, Malcolm; Dunbar, Rob; Caldeira, Ken; Lazar, Boaz; Rivlin, Tanya; Mitchell, Brian Gregory; Dove, Sophie; Hoegh-Guldberg, Ove

    2015-01-01

    Understanding the temporal dynamics of present thermal and pH exposure on coral reefs is crucial for elucidating reef response to future global change. Diel ranges in temperature and carbonate chemistry parameters coupled with seasonal changes in the mean conditions define periods during the year when a reef habitat is exposed to anomalous thermal and/or pH exposure. Anomalous conditions are defined as values that exceed an empirically estimated threshold for each variable. We present a 200-day time series from June through December 2010 of carbonate chemistry and environmental parameters measured on the Heron Island reef flat. These data reveal that aragonite saturation state, pH, and pCO2 were primarily modulated by biologically-driven changes in dissolved organic carbon (DIC) and total alkalinity (TA), rather than salinity and temperature. The largest diel temperature ranges occurred in austral spring, in October (1.5 – 6.6°C) and lowest diel ranges (0.9 – 3.2°C) were observed in July, at the peak of winter. We observed large diel total pH variability, with a maximum range of 7.7 – 8.5 total pH units, with minimum diel average pH values occurring during spring and maximum during fall. As with many other reefs, the nighttime pH minima on the reef flat were far lower than pH values predicted for the open ocean by 2100. DIC and TA both increased from June (end of Fall) to December (end of Spring). Using this high-resolution dataset, we developed exposure metrics of pH and temperature individually for intensity, duration, and severity of low pH and high temperature events, as well as a combined metric. Periods of anomalous temperature and pH exposure were asynchronous on the Heron Island reef flat, which underlines the importance of understanding the dynamics of co-occurrence of multiple stressors on coastal ecosystems. PMID:26039687

  20. Temporal and spatial variability of rainfall pH

    Treesearch

    Richard G. Semonin

    1977-01-01

    The distribution of average rainwater pH over an area of 1,800 km² containing 81 collectors was determined from 25 storm events. The areal average of the data was pH 4.9, with a range of values from 4.3 to 6.8. A single storm event was studied to determine the change of pH as a function of time. The initial rain was pH 7.1, decreasing to 4.1. An excellent...

  1. A novel "modularized" optical sensor for pH monitoring in biological matrixes.

    PubMed

    Liu, Xun; Zhang, Shang-Qing; Wei, Xing; Yang, Ting; Chen, Ming-Li; Wang, Jian-Hua

    2018-06-30

    A novel core-shell structure optical pH sensor is developed with upconversion nanoparticles (UCNPs) serving as the core and silica as the shell, followed by grafting bovineserumalbumin (BSA) as another shell via glutaraldehyde cross-linking. The obtained core-shell-shell structure is shortly termed as UCNPs@SiO 2 @BSA, and its surface provides a platform for loading various pH sensitive dyes, which are alike "modules" to make it feasible for measuring pHs within different pH ranges by simply regulating the type of dyes. Generally, a single pH sensitive dye is adopted to respond within a certain pH range. This study employs bromothymol blue (BTB) and rhodamine B (RhB) to facilitate their responses to pH variations within two ranges, i.e., pH 5.99-8.09 and pH 4.98-6.40, respectively, with detection by ratio-fluorescence protocol. The core-shell-shell structure offers superior sensitivity, which is tens of times more sensitive than those achieved by ratio-fluorescence approaches based on various nanostructures, and favorable stability is achieved in high ionic strength medium. In addition, this sensor exhibits superior photostability under continuous excitation at 980 nm. Thanks to the near infrared excitation in the core-shell-shell structure, it effectively avoids the self-fluorescence from biological samples and thus facilitates accurate sensing of pH in various biological sample matrixes. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Investigating controls on boron isotope ratios in shallow marine carbonates

    NASA Astrophysics Data System (ADS)

    Zhang, Shuang; Henehan, Michael J.; Hull, Pincelli M.; Reid, R. Pamela; Hardisty, Dalton S.; Hood, Ashleigh v. S.; Planavsky, Noah J.

    2017-01-01

    The boron isotope-pH proxy has been widely used to reconstruct past ocean pH values. In both planktic foraminifera and corals, species-specific calibrations are required in order to reconstruct absolute values of pH, due to the prevalence of so-called vital effects - physiological modification of the primary environmental signals by the calcifying organisms. Shallow marine abiotic carbonate (e.g. ooids and cements) could conceivably avoid any such calibration requirement, and therefore provide a potentially useful archive for reconstructions in deep (pre-Cenozoic) time. However, shallow marine abiotic carbonates could also be affected by local shifts in pH caused by microbial photosynthesis and respiration, something that has up to now not been fully tested. In this study, we present boron isotope measurements from shallow modern marine carbonates, from the Bahama Bank and Belize to investigate the potential of using shallow water carbonates as pH archives, and to explore the role of microbial processes in driving nominally 'abiogenic' carbonate deposition. For Bahama bank samples, our boron-based pH estimates derived from a range of carbonate types (i.e. ooids, peloids, hardground cements, carbonate mud, stromatolitic micrite and calcified filament micrite) are higher than the estimated modern mean-annual seawater pH values for this region. Furthermore, the majority (73%) of our marine carbonate-based pH estimates fall out of the range of the estimated pre-industrial seawater pH values for this region. In shallow sediment cores, we did not observe a correlation between measured pore water pH and boron-derived pH estimates, suggesting boron isotope variability is a depositional rather than early diagenetic signal. For Belize reef cements, conversely, the pH estimates are lower than likely in situ seawater pH at the time of cement formation. This study indicates the potential for complications when using shallow marine non-skeletal carbonates as marine pH archives. In addition, variability in δ11B based pH estimates provides additional support for the idea that photosynthetic CO2 uptake plays a significant role in driving carbonate precipitation in a wide range of shallow water carbonates.

  3. Non-invasive pH determination adjacent to degradable biomaterials in vivo.

    PubMed

    Bartsch, Ivonne; Willbold, Elmar; Rosenhahn, Bodo; Witte, Frank

    2014-01-01

    An appropriate pH level is an important prerequisite for the physiologal functioning of cells and tissues. Changes in the extracellular pH often lead to specific cellular reactions and an altered metabolism of cells and tissues influences the extracellular pH range. Thus a method to monitor the extracellular pH is a valuable tool to track specific tissue reactions. In this article we describe a method for the determination of the pH range adjacent to degradable biomaterials using wireless in vivo imaging. Using hairless but immunocompetent mice the fluorophor 5-(6)-carboxy SNARF-1 and the in vivo fluorescence and multispectral acquisition and analysis system Maestro it is possible to track shifts in pH in small living animals over a longer period of time. This method is especially suitable for studies which focus on the interaction of degrading biomaterials with their adjacent tissues. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Surface Charge Development on Transition Metal Sulfides: An Electrokinetic Study

    NASA Astrophysics Data System (ADS)

    Bebie, Joakim; Schoonen, Martin A. A.; Fuhrmann, Mark; Strongin, Daniel R.

    1998-02-01

    The isoelectric points, pH i.e.p., of ZnS, PbS, CuFeS 2, FeS, FeS 2, NiS 2, CoS 2, and MnS 2 in NaCl supported electrolyte solutions are estimated to be between pH 3.3 and 0.6, with most of the isoelectric points below pH 2. The first electrokinetic measurements on NiS 2, CoS 2, and MnS 2 are reported here. Below pH i.e.p. the metal-sulfide surfaces are positively charged, above pH i.e.p. the surfaces are negatively charged. The addition of Me 2+ ions shifts the pH i.e.p. and changes the pH dependence considerably. The isoelectric points of the measured transition metal sulfides in the absence of metal ions or dissolved sulfide (H 2S or HS -) are in agreement with those found in earlier studies. The pH range of observed isoelectric points for metal sulfides (0.6-3.3) is compared to the considerably wider pH i.e.p. range (2-12) found for oxides. The correlation between pH i.e.p. and the electronegativities of the metal sulfides suggests that all metal sulfides will have an isoelectric point between pH 0.6 and 3.3. Compared to metal oxides, sulfides exhibit an isoelectric point that is largely independent of the nature of the metal cation in the solid.

  5. Oesophageal lumen pH in yearling horses and effects of management and administration of omeprazole.

    PubMed

    Wilson, C S; Brookes, V J; Hughes, K J; Trope, G D; Ip, H; Gunn, A J

    2017-05-01

    In human subjects, arytenoid chondritis can be caused by chemical trauma of mucosa attributable to gastro-oesophageal reflux. Although a similar process may be involved in the aetiopathogenesis of arytenoid chondritis in horses, the oesophageal lumen pH in this species is poorly understood. To determine if gastro-oesophageal reflux occurs in horses by characterising oesophageal lumen pH. Blinded, randomised, placebo-controlled, crossover, experimental study. Luminal oesophageal pH in six yearling horses was recorded over four 24 h periods using an ambulatory pH recorder attached to a catheter with two electrodes (proximal and distal) inserted into the oesophagus. Recordings of pH were made during three management protocols. Initially, horses grazed in a paddock (Protocol A). Horses were then moved to stables to simulate sale preparation of Thoroughbred yearlings, and were given either omeprazole (Protocol B) or placebo paste (Protocol C) orally once per day. Protocol A was repeated for each horse (after a 13 day washout period) between Protocols B and C. Summary statistics described pH range and frequency of pH changes. Associations with predictor variables were investigated using linear mixed-effects models. Data are presented as the mean ± s.d. Oesophageal lumen pH ranged from 4.90 to 9.70 (7.36 ± 0.27 and 7.18 ± 0.24 for the proximal and distal electrodes, respectively) and varied frequently (1.2 ± 0.9 changes/min and 0.8 ± 0.8 changes/min for the proximal and distal electrodes, respectively). Oesophageal lumen pH was associated with time since concentrate feeding, activity and time of day, but not with treatment of omeprazole. A small number of horses were used and measurement periods were limited. Gastro-oesophageal reflux occurs in clinically normal yearling horses. Although omeprazole had no detectable effect, oesophageal lumen pH recorded during this study did not fall within the therapeutic range of omeprazole. © 2016 EVJ Ltd.

  6. Temperature and pH effect on glucose production from pretreated bagasse by a novel species of Citrobacter and other bacteria.

    PubMed

    Jones, Jamila A D; Kerr, R G; Haltli, B A; Tinto, Winston F

    2018-06-01

    Cellulolytic bacteria that produce cellulases, which are active over a range of pH and temperatures, can be used to catalyze hydrolysis of pretreated lignocellulosic material. This is important in the production of second generation biofuels among other biotechnological applications. In this investigation, bacteria isolated from sugarcane bagasse were identified as strains of Enterobacter xiangfangensis , Serratia rubidaea , Klebsiella pneumoniae and a novel species of Citrobacter designated Citrobacter sp. UWIBGS10. The glucose production potential of these strains was studied on thermally and solvent pretreated sugarcane bagasse. This was performed at 24-hour intervals up to 168 hours in the range of pH 5-9 and temperature range 25-40 °C. Maximal concentrations of glucose for Citrobacter sp. UWIBGS10 occurred at pH 6 and 25 °C. For E. xiangfangensis , S. rubidaea , K. pneumoniae glucose concentrations were consistent across the pH and temperature ranges examined. From these results it could be concluded that the bacteria demonstrated ability for lignocellulolytic hydrolysis for the production of glucose and could be further explored for the characterization of commercial cellulolytic enzymes.

  7. Assessment of the suitability of Durafet-based sensors for pH measurement in dynamic estuarine environments

    NASA Astrophysics Data System (ADS)

    Gonski, Stephen F.; Cai, Wei-Jun; Ullman, William J.; Joesoef, Andrew; Main, Christopher R.; Pettay, D. Tye; Martz, Todd R.

    2018-01-01

    The suitability of the Honeywell Durafet to the measurement of pH in productive, high-fouling, and highly-turbid estuarine environments was investigated at the confluence of the Murderkill Estuary and Delaware Bay (Delaware, USA). Three different flow configurations of the SeapHOx sensor equipped with a Honeywell Durafet and its integrated internal (Ag/AgCl reference electrode containing a 4.5 M KCl gel liquid junction) and external (solid-state chloride ion selective electrode, Cl-ISE) reference electrodes were deployed for four periods between April 2015 and September 2016. In this environment, the Honeywell Durafet proved capable of making high-resolution and high-frequency pH measurements on the total scale between pH 6.8 and 8.4. Natural pH fluctuations of >1 pH unit were routinely captured over a range of timescales. The sensor pH collected between May and August 2016 using the most refined SeapHOx configuration exhibited good agreement with multiple sets of independently measured reference pH values. When deployed in conjunction with rigorous discrete sampling and calibration schemes, the sensor pH had a root-mean squared error ranging between 0.011 and 0.036 pH units across a wide range of salinity relative to both pHT calculated from measured dissolved inorganic carbon and total alkalinity and pHNBS measured with a glass electrode corrected to pHT at in situ conditions. The present work demonstrates the viability of the Honeywell Durafet to the measurement of pH to within the weather-level precision defined by the Global Ocean Acidification Observing Network (GOA-ON, ≤ 0.02 pH units) as a part of future estuarine CO2 chemistry studies undertaken in dynamic environments.

  8. Characterization of glutamate decarboxylase from Lactobacillus plantarum and its C-terminal function for the pH dependence of activity.

    PubMed

    Shin, Sun-Mi; Kim, Hana; Joo, Yunhye; Lee, Sang-Jae; Lee, Yong-Jik; Lee, Sang Jun; Lee, Dong-Woo

    2014-12-17

    The gadB gene encoding glutamate decarboxylase (GAD) from Lactobacillus plantarum was cloned and expressed in Escherichia coli. The recombinant enzyme exhibited maximal activity at 40 °C and pH 5.0. The 3D model structure of L. plantarum GAD proposed that its C-terminal region (Ile454-Thr468) may play an important role in the pH dependence of catalysis. Accordingly, C-terminally truncated (Δ3 and Δ11 residues) mutants were generated and their enzyme activities compared with that of the wild-type enzyme at different pH values. Unlike the wild-type GAD, the mutants showed pronounced catalytic activity in a broad pH range of 4.0-8.0, suggesting that the C-terminal region is involved in the pH dependence of GAD activity. Therefore, this study may provide effective target regions for engineering pH dependence of GAD activity, thereby meeting industrial demands for the production of γ-aminobutyrate in a broad range of pH values.

  9. Oxidation of iodide and iodine on birnessite (delta-MnO2) in the pH range 4-8.

    PubMed

    Allard, Sébastien; von Gunten, Urs; Sahli, Elisabeth; Nicolau, Rudy; Gallard, Hervé

    2009-08-01

    The oxidation of iodide by synthetic birnessite (delta-MnO(2)) was studied in perchlorate media in the pH range 4-8. Iodine (I(2)) was detected as an oxidation product that was subsequently further oxidized to iodate (IO(3)(-)). The third order rate constants, second order on iodide and first order on manganese oxide, determined by extraction of iodine in benzene decreased with increasing pH (6.3-7.5) from 1790 to 3.1M(-2) s(-1). Both iodine and iodate were found to adsorb significantly on birnessite with an adsorption capacity of 12.7 microM/g for iodate at pH 5.7. The rate of iodine oxidation by birnessite decreased with increasing ionic strength, which resulted in a lower rate of iodate formation. The production of iodine in iodide-containing waters in contact with manganese oxides may result in the formation of undesired iodinated organic compounds (taste and odor, toxicity) in natural and technical systems. The probability of the formation of such compounds is highest in the pH range 5-7.5. For pH <5 iodine is quickly oxidized to iodate, a non-toxic and stable sink for iodine. At pH >7.5, iodide is not oxidized to a significant extent.

  10. Rain pH estimation based on the particulate matter pollutants and wet deposition study.

    PubMed

    Singh, Shweta; Elumalai, Suresh Pandian; Pal, Asim Kumar

    2016-09-01

    In forecasting of rain pH, the changes caused by particulate matter (PM) are generally neglected. In regions of high PM concentration like Dhanbad, the role of PM in deciding the rain pH becomes important. Present work takes into account theoretical prediction of rain pH by two methods. First method considers only acid causing gases (ACG) like CO2, SO2 and NOx in pH estimation, whereas, second method additionally accounts for effect of PM (ACG-PM). In order to predict the rain pH, site specific deposited dust that represents local PM was studied experimentally for its impact on pH of neutral water. After incorporation of PM correction factor, it was found that, rain pH values estimated were more representative of the observed ones. Fractional bias (FB) for the ACG-PM method reduced to values of the order of 10(-2) from those with order of 10(-1) for the ACG method. The study confirms neutralization of rain acidity by PM. On account of this, rain pH was found in the slightly acidic to near neutral range, despite of the high sulfate flux found in rain water. Although, the safer range of rain pH blurs the severity of acid rain from the picture, yet huge flux of acidic and other ions get transferred to water bodies, soil and ultimately to the ground water system. Simple use of rain pH for rain water quality fails to address the issues of its increased ionic composition due to the interfering pollutants and thus undermines severity of pollutants transferred from air to rain water and then to water bodies and soil. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Dual-Emitting Fluorescent Metal-Organic Framework Nanocomposites as a Broad-Range pH Sensor for Fluorescence Imaging.

    PubMed

    Chen, Haiyong; Wang, Jing; Shan, Duoliang; Chen, Jing; Zhang, Shouting; Lu, Xiaoquan

    2018-05-15

    pH plays an important role in understanding physiological/pathologic processes, and abnormal pH is a symbol of many common diseases such as cancer, stroke, and Alzheimer's disease. In this work, an effective dual-emission fluorescent metal-organic framework nanocomposite probe (denoted as RB-PCN) has been constructed for sensitive and broad-range detection of pH. RB-PCN was prepared by encapsulating the DBI-PEG-NH 2 -functionalized Fe 3 O 4 into Zr-MOFs and then further reacting it with rhodamine B isothiocyanates (RBITC). In RB-PCN, RBITC is capable of sensing changes in pH in acidic solutions. Zr-MOFs not only enrich the target analyte but also exhibit a fluorescence response to pH changes in alkaline solutions. Based on the above structural and compositional features, RB-PCN could detect a wide range of pH changes. Importantly, such a nanoprobe could "see" the intracellular pH changes by fluorescence confocal imaging as well as "measure" the wider range of pH in actual samples by fluorescence spectroscopy. To the best of our knowledge, this is the first time a MOF-based dual-emitting fluorescent nanoprobe has been used for a wide range of pH detection.

  12. pH-Dependent Solubility and Dissolution Behavior of Carvedilol--Case Example of a Weakly Basic BCS Class II Drug.

    PubMed

    Hamed, Rania; Awadallah, Areeg; Sunoqrot, Suhair; Tarawneh, Ola; Nazzal, Sami; AlBaraghthi, Tamadur; Al Sayyad, Jihan; Abbas, Aiman

    2016-04-01

    The objective of this study was to investigate the pH-dependent solubility and dissolution of weakly basic Biopharmaceutical Classification Systems (BCS) class II drugs, characterized by low solubility and high permeability, using carvedilol, a weak base with a pK a value of 7.8, as a model drug. A series of solubility and in vitro dissolution studies was carried out using media that simulate the gastric and intestinal fluids and cover the physiological pH range of the GI from 1.2 to 7.8. The effect of ionic strength, buffer capacity, and buffer species of the dissolution media on the solubility and dissolution behavior of carvedilol was also investigated. The study revealed that carvedilol exhibited a typical weak base pH-dependent solubility profile with a high solubility at low pH (545.1-2591.4 μg/mL within the pH range 1.2-5.0) and low solubility at high pH (5.8-51.9 μg/mL within the pH range 6.5-7.8). The dissolution behavior of carvedilol was consistent with the solubility results, where carvedilol release was complete (95.8-98.2% released within 60 min) in media simulating the gastric fluid (pH 1.2-5.0) and relatively low (15.9-86.2% released within 240 min) in media simulating the intestinal fluid (pH 6.5-7.8). It was found that the buffer species of the dissolution media may influence the solubility and consequently the percentage of carvedilol released by forming carvedilol salts of varying solubilities. Carvedilol solubility and dissolution decreased with increasing ionic strength, while lowering the buffer capacity resulted in a decrease in carvedilol solubility and dissolution rate.

  13. Graphite Screen-Printed Electrodes Applied for the Accurate and Reagentless Sensing of pH.

    PubMed

    Galdino, Flávia E; Smith, Jamie P; Kwamou, Sophie I; Kampouris, Dimitrios K; Iniesta, Jesus; Smith, Graham C; Bonacin, Juliano A; Banks, Craig E

    2015-12-01

    A reagentless pH sensor based upon disposable and economical graphite screen-printed electrodes (GSPEs) is demonstrated for the first time. The voltammetric pH sensor utilizes GSPEs which are chemically pretreated to form surface immobilized oxygenated species that, when their redox behavior is monitored, give a Nernstian response over a large pH range (1-13). An excellent experimental correlation is observed between the voltammetric potential and pH over the entire pH range of 1-13 providing a simple approach with which to monitor solution pH. Such a linear response over this dynamic pH range is not usually expected but rather deviation from linearity is encountered at alkaline pH values; absence of this has previously been attributed to a change in the pKa value of surface immobilized groups from that of solution phase species. This non-deviation, which is observed here in the case of our facile produced reagentless pH sensor and also reported in the literature for pH sensitive compounds immobilized upon carbon electrodes/surfaces, where a linear response is observed over the entire pH range, is explained alternatively for the first time. The performance of the GSPE pH sensor is also directly compared with a glass pH probe and applied to the measurement of pH in "real" unbuffered samples where an excellent correlation between the two protocols is observed validating the proposed GSPE pH sensor.

  14. Zr/ZrO2 sensors for in situ measurement of pH in high-temperature and -pressure aqueous solutions.

    PubMed

    Zhang, R H; Zhang, X T; Hu, S M

    2008-04-15

    The aim of this study is to develop new pH sensors that can be used to test and monitor hydrogen ion activity in hydrothermal conditions. A Zr/ZrO2 oxidation electrode is fabricated for in situ pH measurement of high-temperature aqueous solutions. This sensor responds rapidly and precisely to pH over a wide range of temperature and pressure. The Zr/ZrO2 electrode was made by oxidizing zirconium metal wire with Na2CO3 melt, which produced a thin film of ZrO2 on its surface. Thus, an oxidation-reduction electrode was produced. The Zr/ZrO2 electrode has a good electrochemical stability over a wide range of pH in high-temperature aqueous solutions when used with a Ag/AgCl reference electrode. Measurements of the Zr/ZrO2 sensor potential against a Ag/AgCl reference electrode is shown to vary linearly with pH between temperatures 20 and 200 degrees C. The slope of the potential versus pH at high temperature is slightly below the theoretical value indicated by the Nernst equation; such deviation is attributed to the fact that the sensor is not strictly at equilibrium with the solution to be tested in a short period of time. The Zr/ZrO2 sensor can be calibrated over the conditions that exist in the natural deep-seawater. Our studies showed that the Zr/ZrO2 electrode is a suitable pH sensor for the hydrothermal systems at midocean ridge or other geothermal systems with the high-temperature environment. Yttria-stabilized zirconia sensors have also been used to investigate the pH of hydrothermal fluids in hot springs vents at midocean ridge. These sensors, however, are not sensitive below 200 degrees C. Zr/ZrO2 sensors have wider temperature range and can be severed as good alternative sensors for measuring the pH of hydrothermal fluids.

  15. Surface Complexation Modeling of Fluoride Adsorption by Soil and the Role of Dissolved Aluminum on Adsorption

    NASA Astrophysics Data System (ADS)

    Padhi, S.; Tokunaga, T.

    2017-12-01

    Adsorption of fluoride (F) on soil can control the mobility of F and subsequent contamination of groundwater. Hence, accurate evaluation of adsorption equilibrium is a prerequisite for understanding transport and fate of F in the subsurface. While there have been studies for the adsorption behavior of F with respect to single mineral constituents based on surface complexation models (SCM), F adsorption to natural soil in the presence of complexing agents needs much investigation. We evaluated the adsorption processes of F on a natural granitic soil from Tsukuba, Japan, as a function of initial F concentration, ionic strength, and initial pH. A SCM was developed to model F adsorption behavior. Four possible surface complexation reactions were postulated with and without including dissolved aluminum (Al) and Al-F complex sorption. Decrease in F adsorption with the increase in initial pH was observed in between the initial pH range of 4 to 9, and a decrease in the rate of the reduction of adsorbed F with respect to the increase in the initial pH was observed in the initial pH range of 5 to 7. Ionic strength variation in the range of 0 to 100mM had insignificant effect on F removal. Changes in solution pH were observed by comparing the solution before and after F adsorption experiments. At acidic pH, the solution pH increased, whereas at alkaline pH, the solution pH decreased after equilibrium. The SCM including dissolved Al and the adsorption of Al-F complex can simulate the experimental results quite successfully. Also, including dissolved Al and the adsorption of Al-F complex to the model explained the change in solution pH after F adsorption.

  16. Humboldt's spa: microbial diversity is controlled by temperature in geothermal environments

    PubMed Central

    Sharp, Christine E; Brady, Allyson L; Sharp, Glen H; Grasby, Stephen E; Stott, Matthew B; Dunfield, Peter F

    2014-01-01

    Over 200 years ago Alexander von Humboldt (1808) observed that plant and animal diversity peaks at tropical latitudes and decreases toward the poles, a trend he attributed to more favorable temperatures in the tropics. Studies to date suggest that this temperature–diversity gradient is weak or nonexistent for Bacteria and Archaea. To test the impacts of temperature as well as pH on bacterial and archaeal diversity, we performed pyrotag sequencing of 16S rRNA genes retrieved from 165 soil, sediment and biomat samples of 36 geothermal areas in Canada and New Zealand, covering a temperature range of 7.5–99 °C and a pH range of 1.8–9.0. This represents the widest ranges of temperature and pH yet examined in a single microbial diversity study. Species richness and diversity indices were strongly correlated to temperature, with R2 values up to 0.62 for neutral–alkaline springs. The distributions were unimodal, with peak diversity at 24 °C and decreasing diversity at higher and lower temperature extremes. There was also a significant pH effect on diversity; however, in contrast to previous studies of soil microbial diversity, pH explained less of the variability (13–20%) than temperature in the geothermal samples. No correlation was observed between diversity values and latitude from the equator, and we therefore infer a direct temperature effect in our data set. These results demonstrate that temperature exerts a strong control on microbial diversity when considered over most of the temperature range within which life is possible. PMID:24430481

  17. Humboldt's spa: microbial diversity is controlled by temperature in geothermal environments.

    PubMed

    Sharp, Christine E; Brady, Allyson L; Sharp, Glen H; Grasby, Stephen E; Stott, Matthew B; Dunfield, Peter F

    2014-06-01

    Over 200 years ago Alexander von Humboldt (1808) observed that plant and animal diversity peaks at tropical latitudes and decreases toward the poles, a trend he attributed to more favorable temperatures in the tropics. Studies to date suggest that this temperature-diversity gradient is weak or nonexistent for Bacteria and Archaea. To test the impacts of temperature as well as pH on bacterial and archaeal diversity, we performed pyrotag sequencing of 16S rRNA genes retrieved from 165 soil, sediment and biomat samples of 36 geothermal areas in Canada and New Zealand, covering a temperature range of 7.5-99 °C and a pH range of 1.8-9.0. This represents the widest ranges of temperature and pH yet examined in a single microbial diversity study. Species richness and diversity indices were strongly correlated to temperature, with R(2) values up to 0.62 for neutral-alkaline springs. The distributions were unimodal, with peak diversity at 24 °C and decreasing diversity at higher and lower temperature extremes. There was also a significant pH effect on diversity; however, in contrast to previous studies of soil microbial diversity, pH explained less of the variability (13-20%) than temperature in the geothermal samples. No correlation was observed between diversity values and latitude from the equator, and we therefore infer a direct temperature effect in our data set. These results demonstrate that temperature exerts a strong control on microbial diversity when considered over most of the temperature range within which life is possible.

  18. Narrow pH Range of Surface Water Bodies Receiving Pesticide Input in Europe.

    PubMed

    Bundschuh, Mirco; Weyers, Arnd; Ebeling, Markus; Elsaesser, David; Schulz, Ralf

    2016-01-01

    Fate and toxicity of the active ingredients (AI's) of plant protection products in surface waters is often influenced by pH. Although a general range of pH values is reported in literature, an evaluation targeting aquatic ecosystems with documented AI inputs is lacking at the larger scale. Results show 95% of European surface waters (n = 3075) with a documented history of AI exposure fall within a rather narrow pH range, between 7.0 and 8.5. Spatial and temporal variability in the data may at least be partly explained by the calcareous characteristics of parental rock material, the affiliation of the sampling site to a freshwater ecoregion, and the photosynthetic activity of macrophytes (i.e., higher pH values with photosynthesis). Nonetheless, the documented pH range fits well with the standard pH of most ecotoxicological test guidelines, confirming the fate and ecotoxicity of AIs are usually adequately addressed.

  19. Hydroxylated near-infrared BODIPY fluorophores as intracellular pH sensors

    PubMed Central

    Salim, Mohamed M.; Owens, Eric A.; Gao, Tielong; Lee, Jeong Heon; Hyun, Hoon; Choi, Hak Soo; Henary, Maged

    2015-01-01

    In this study, a series of new, highly sensitive BF2-chelated tetraarylazadipyrromethane dyes are synthesized and analyzed to be suitable as on/off photo-induced electron transfer modulated fluorescent sensors for determination of intracellular pH. The ethanolic solutions of the new indicators feature absorption maxima in the range of 696–700 nm and a fluorescence emission maximum at 720 nm. Molar absorptivity and fluorescence quantum yield data were determined for the studied set of aza-BODIPY indicators. These indicators have high molar absorption coefficients of ~80 000 M−1 cm−1 and quantum yields (up to 18%). Corresponding pKa values of indicators are determined from absorbance and fluorescence measurements and range from 9.1 to 10.8, depending on the selective positioning of electron-donating functionalities. The excellent photostability of the aza-BODIPY indicators makes them particularly suitable for long duration measurements. The in vitro cellular staining of living tissues in PC3 cells based on the isosbestic point at pH 7.8 and pH 9.3 has been employed which shows an increase in fluorescence intensity at 800 nm with increase in pH for certain compounds and fluorescence intensity decreases at 700 nm. Therefore, the new indicators are suitable for exploitation and adaptation in a diverse range of analytical applications. PMID:25105177

  20. An enzyme kinetics study of the pH dependence of chloride activation of oxygen evolution in photosystem II.

    PubMed

    Baranov, Sergei; Haddy, Alice

    2017-03-01

    Oxygen evolution by photosystem II (PSII) involves activation by Cl - ion, which is regulated by extrinsic subunits PsbQ and PsbP. In this study, the kinetics of chloride activation of oxygen evolution was studied in preparations of PSII depleted of the PsbQ and PsbP subunits (NaCl-washed and Na 2 SO 4 /pH 7.5-treated) over a pH range from 5.3 to 8.0. At low pH, activation by chloride was followed by inhibition at chloride concentrations >100 mM, whereas at high pH activation continued as the chloride concentration increased above 100 mM. Both activation and inhibition were more pronounced at lower pH, indicating that Cl - binding depended on protonation events in each case. The simplest kinetic model that could account for the complete data set included binding of Cl - at two sites, one for activation and one for inhibition, and four protonation steps. The intrinsic (pH-independent) dissociation constant for Cl - activation, K S , was found to be 0.9 ± 0.2 mM for both preparations, and three of the four pK a s were determined, with the fourth falling below the pH range studied. The intrinsic inhibition constant, K I , was found to be 64 ± 2 and 103 ± 7 mM for the NaCl-washed and Na 2 SO 4 /pH7.5-treated preparations, respectively, and is considered in terms of the conditions likely to be present in the thylakoid lumen. This enzyme kinetics analysis provides a more complete characterization of chloride and pH dependence of O 2 evolution activity than has been previously presented.

  1. Reflection-mode micro-spherical fiber-optic probes for in vitro real-time and single-cell level pH sensing.

    PubMed

    Yang, Qingbo; Wang, Hanzheng; Lan, Xinwei; Cheng, Baokai; Chen, Sisi; Shi, Honglan; Xiao, Hai; Ma, Yinfa

    2015-02-01

    pH sensing at the single-cell level without negatively affecting living cells is very important but still a remaining issue in the biomedical studies. A 70 μm reflection-mode fiber-optic micro-pH sensor was designed and fabricated by dip-coating thin layer of organically modified aerogel onto a tapered spherical probe head. A pH sensitive fluorescent dye 2', 7'-Bis (2-carbonylethyl)-5(6)-carboxyfluorescein (BCECF) was employed and covalently bonded within the aerogel networks. By tuning the alkoxide mixing ratio and adjusting hexamethyldisilazane (HMDS) priming procedure, the sensor can be optimized to have high stability and pH sensing ability. The in vitro real-time sensing capability was then demonstrated in a simple spectroscopic way, and showed linear measurement responses with a pH resolution up to an average of 0.049 pH unit within a narrow, but biological meaningful pH range of 6.12-7.81. Its novel characterizations of high spatial resolution, reflection mode operation, fast response and high stability, great linear response within biological meaningful pH range and high pH resolutions, make this novel pH probe a very cost-effective tool for chemical/biological sensing, especially within the single cell level research field.

  2. Reflection-mode micro-spherical fiber-optic probes for in vitro real-time and single-cell level pH sensing

    PubMed Central

    Yang, Qingbo; Wang, Hanzheng; Lan, Xinwei; Cheng, Baokai; Chen, Sisi; Shi, Honglan; Xiao, Hai; Ma, Yinfa

    2014-01-01

    pH sensing at the single-cell level without negatively affecting living cells is very important but still a remaining issue in the biomedical studies. A 70 μm reflection-mode fiber-optic micro-pH sensor was designed and fabricated by dip-coating thin layer of organically modified aerogel onto a tapered spherical probe head. A pH sensitive fluorescent dye 2′, 7′-Bis (2-carbonylethyl)-5(6)-carboxyfluorescein (BCECF) was employed and covalently bonded within the aerogel networks. By tuning the alkoxide mixing ratio and adjusting hexamethyldisilazane (HMDS) priming procedure, the sensor can be optimized to have high stability and pH sensing ability. The in vitro real-time sensing capability was then demonstrated in a simple spectroscopic way, and showed linear measurement responses with a pH resolution up to an average of 0.049 pH unit within a narrow, but biological meaningful pH range of 6.12–7.81. Its novel characterizations of high spatial resolution, reflection mode operation, fast response and high stability, great linear response within biological meaningful pH range and high pH resolutions, make this novel pH probe a very cost-effective tool for chemical/biological sensing, especially within the single cell level research field. PMID:25530670

  3. Assessing physiological tipping point of sea urchin larvae exposed to a broad range of pH.

    PubMed

    Dorey, Narimane; Lançon, Pauline; Thorndyke, Mike; Dupont, Sam

    2013-11-01

    Our ability to project the impact of global change on marine ecosystem is limited by our poor understanding on how to predict species sensitivity. For example, the impact of ocean acidification is highly species-specific, even in closely related taxa. The aim of this study was to test the hypothesis that the tolerance range of a given species to decreased pH corresponds to their natural range of exposure. Larvae of the green sea urchin Strongylocentrotus droebachiensis were cultured from fertilization to metamorphic competence (29 days) under a wide range of pH (from pHT  = 8.0/pCO2  ≈ 480 μatm to pHT  = 6.5/pCO2  ≈ 20 000 μatm) covering present (from pHT 8.7 to 7.6), projected near-future variability (from pHT 8.3 to 7.2) and beyond. Decreasing pH impacted all tested parameters (mortality, symmetry, growth, morphometry and respiration). Development of normal, although showing morphological plasticity, swimming larvae was possible as low as pHT  ≥ 7.0. Within that range, decreasing pH increased mortality and asymmetry and decreased body length (BL) growth rate. Larvae raised at lowered pH and with similar BL had shorter arms and a wider body. Relative to a given BL, respiration rates and stomach volume both increased with decreasing pH suggesting changes in energy budget. At the lowest pHs (pHT  ≤ 6.5), all the tested parameters were strongly negatively affected and no larva survived past 13 days post fertilization. In conclusion, sea urchin larvae appeared to be highly plastic when exposed to decreased pH until a physiological tipping point at pHT  = 7.0. However, this plasticity was associated with direct (increased mortality) and indirect (decreased growth) consequences for fitness. © 2013 John Wiley & Sons Ltd.

  4. Small angle neutron scattering (SANS) study of gastric mucin solutions

    NASA Astrophysics Data System (ADS)

    Hong, Z.; Bansil, R.; Waigh, T.; Turner, B.; Bhaskar, K. R.; Afdhal, N.; Lal, J.

    2002-03-01

    We report the first results from a SANS study of purified porcine gastric mucin solutions in D2O. The ability of this glycoprotein to protect the stomach epithelium from acid damage, may be due to a pH dependent conformational transition which leads to gelation at low pH Cao et. al. (Biophysical. J. 76, 1250, 1999). SANS measurements were made over the concentration range of 1 -15 mg/ml at pH 7, 4 and 2. The data indicate that at pH 7 the excluded volume exponent is 1.7, characteristic of swollen chains whereas at pH 2 this exponent increases to 2, indicating theta or poor solvent conditions, consistent with the hydrophobic interactions increasing at lower pH. From a Guinier analysis of the 1mg/ml data at low q's (0.003- 0.007 Å-1) we estimate the cross section radius of the effective cylinder to be 23nm and its length as 96nm in an unbuffered sample, i.e. close to pH 7. In the intermediate q-range (0.01 -0.1Å-1) at pH 7 a fit to the Debye chain gives radius of gyration Rg of 16nm. Mucin is best modelled as an elongated micelle with a cylindrical or worm-like chain to represent the protein core and the sugar chains forming the corona. Results of such calculations will be presented.

  5. Superlattice photonic crystal as broadband solar absorber for high temperature operation.

    PubMed

    Rinnerbauer, Veronika; Shen, Yichen; Joannopoulos, John D; Soljačić, Marin; Schäffler, Friedrich; Celanovic, Ivan

    2014-12-15

    A high performance solar absorber using a 2D tantalum superlattice photonic crystal (PhC) is proposed and its design is optimized for high-temperature energy conversion. In contrast to the simple lattice PhC, which is limited by diffraction in the short wavelength range, the superlattice PhC achieves solar absorption over broadband spectral range due to the contribution from two superposed lattices with different cavity radii. The superlattice PhC geometry is tailored to achieve maximum thermal transfer efficiency for a low concentration system of 250 suns at 1500 K reaching 85.0% solar absorptivity. In the high concentration case of 1000 suns, the superlattice PhC absorber achieves a solar absorptivity of 96.2% and a thermal transfer efficiency of 82.9% at 1500 K, amounting to an improvement of 10% and 5%, respectively, versus the simple square lattice PhC absorber. In addition, the performance of the superlattice PhC absorber is studied in a solar thermophotovoltaic system which is optimized to minimize absorber re-emission by reducing the absorber-to-emitter area ratio and using a highly reflective silver aperture.

  6. Effect of pH shifts on IgE-binding capacity and conformational structure of tropomyosin from short-neck clam (Ruditapes philippinarum).

    PubMed

    Lin, Haixin; Li, Zhenxing; Lin, Hong; Song, Yongna; Lv, Liangtao; Hao, Zina

    2015-12-01

    The aim of the present study was to assess pH-induced changes in conformational structures and potential allergenicity of tropomyosin from short-neck clams. As defined with circular dichroism (CD), an unfolded structure was found at pH values ranging from 2.0 to 5.0, followed by the loss of secondary structure at pH of 1.0. Correspondingly, surface hydrophobicity was reduced by 97.7% when pH was reduced from 7.0 to 1.0. Further indirect ELISA and dot-blot results of pH shifted tropomyosin showed that potential allergenicity correlated well with structural changes, as well as with SGF digestibility. Allergenicity decreased significantly with unfolding of the protein and was stable when surface hydrophobicity recovered back to neutral conditions. These results showed that conformational changes in tropomyosin induced by pH shifting significantly influenced the allergenicity of tropomyosin, and that the resulting changes occurred predominately in the acidic pH range. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Characterizing the variation in pH measurements with apheresis platelets.

    PubMed

    Moroff, Gary; Seetharaman, Shalini; Kurtz, James; Wagner, Stephen J

    2011-11-01

    pH measurements of platelet (PLT) components remain a key parameter when assessing how storage and shipping conditions influence the retention of PLT properties. Studies were conducted to characterize variations in pH measured with two pH meters and a blood gas analyzer. Samples were obtained from apheresis PLT units that were stored with or without continuous agitation to measure a range of pH values. pH values were determined with pH meters at room temperature (20-24°C) upon placing of samples in 5-mL sterile polypropylene tubes and with the blood gas analyzer at 37°C upon injection of identical samples, with conversion to 22°C. The calculated coefficient of variation (%CV) of pH measurements using pH meters (n = 10) was 0.43% or less. The %CV values were comparable with different samples having pH values ranging from 6.0 to 7.4. The %CV levels with the blood gas analyzer were comparable to those observed with the pH meters. The difference in the mean pH values for the two pH meters was no greater than 0.10 units, with 9 of 10 samples having differences in values of 0.05 or less; however, greater differences of values (0.1 to 0.2) were observed between pH measured using the blood gas analyzer and pH meters. Our data show good precision and comparability of pH measurements with two pH meters. Differences in pH values were greater on comparison of the blood gas analyzer with the pH meters. © 2011 American Association of Blood Banks.

  8. Influence of in-office whitening gel pH on hydrogen peroxide diffusion through enamel and color changes in bovine teeth.

    PubMed

    Pignoly, Christian; Camps, Lila; Susini, Guy; About, Imad; Camps, Jean

    2012-04-01

    To assess the influence of in-office whitening gel pH on whitening efficiency. Hydrogen peroxide diffusion and color changes on bovine teeth were assessed. Three gels with close hydrogen peroxide concentrations but with various pH levels were tested: Zoom 2 (Discus Dental), Opalescence Endo and Opalescence Boost (Ultradent). The pH levels were respectively: 3.0, 5.0 and 7.0. Thirty enamel slices and tooth crowns were used for both studies (n = 10 per group per study). Hydrogen peroxide diffusion through the enamel slices and the tooth crowns was spectrophotometrically recorded every 10 minutes for 1 hour to calculate the diffusion coefficients. Color changes were spectrophotometrically recorded every 10 minutes for 1 hour and quantified in term of CIE-Lab. The hydrogen peroxide diffusion coefficient through enamel ranged from 5.12 +/- 0.82 x 10(-9) cm2 s(-1) for pH 3 to 5.19 +/- 0.92 x 10(-9) cm2 S(-1) for pH 7. Through tooth crowns it ranged from 4.80 +/- 1.75 x 10(-10) cm2 s(-1) for pH 5 to 4.85 +/- 1.82 x 10(-10) cm2 s(-1) for pH 3. After 1 hour, the deltaE varied from 5.6 +/- 4.0 for pH 7 to 7.0 +/- 5.0 for pH 3 on enamel slices and from 3.9 +/- 2.5 for pH 5 to 4.9 +/- 3.5 for pH 7 on tooth crowns. There was no statistically significant difference between groups for both parameters.

  9. Chemigation with micronized sulfur rapidly reduces soil pH in northern highbush blueberry

    USDA-ARS?s Scientific Manuscript database

    Northern highbush blueberry is adapted to low soil pH in the range of 4.5–5.5. When pH is higher, soil is usually acidified by incorporating elemental sulfur (S) prior to planting. A study was conducted to determine the potential of applying micronized S by chemigation through the drip system to red...

  10. Resolubilization of Protein from Water-Insoluble Phlorotannin–Protein Complexes upon Acidification

    PubMed Central

    2017-01-01

    Marine phlorotannins (PhT) from Laminaria digitata might protect feed proteins from ruminal digestion by formation of insoluble non-covalent tannin–protein complexes at rumen pH (6–7). Formation and disintegration of PhT–protein complexes was studied with β-casein (random coil) and bovine serum albumin (BSA, globular) at various pH. PhT had similar binding affinity for β-casein and BSA as pentagalloyl glucose, as studied by fluorescence quenching. The affinity of PhT for both proteins was independent of pH (3.0, 6.0, and 8.0). In the presence of PhT, the pH range for precipitation of tannin–protein complexes widened to 0.5–1.5 pH units around the isoelectric point (pI) of the protein. Complete protein resolubilization from insoluble PhT–protein complexes was achieved at pH 7 and 2 for β-casein and BSA, respectively. It was demonstrated that PhT modulate the solubility of proteins at neutral pH and that resolubilization of PhT–protein complexes at pH deviating from pI is mainly governed by the charge state of the protein. PMID:29058916

  11. A protein-dye hybrid system as a narrow range tunable intracellular pH sensor.

    PubMed

    Anees, Palapuravan; Sudheesh, Karivachery V; Jayamurthy, Purushothaman; Chandrika, Arunkumar R; Omkumar, Ramakrishnapillai V; Ajayaghosh, Ayyappanpillai

    2016-11-18

    Accurate monitoring of pH variations inside cells is important for the early diagnosis of diseases such as cancer. Even though a variety of different pH sensors are available, construction of a custom-made sensor array for measuring minute variations in a narrow biological pH window, using easily available constituents, is a challenge. Here we report two-component hybrid sensors derived from a protein and organic dye nanoparticles whose sensitivity range can be tuned by choosing different ratios of the components, to monitor the minute pH variations in a given system. The dye interacts noncovalently with the protein at lower pH and covalently at higher pH, triggering two distinguishable fluorescent signals at 700 and 480 nm, respectively. The pH sensitivity region of the probe can be tuned for every unit of the pH window resulting in custom-made pH sensors. These narrow range tunable pH sensors have been used to monitor pH variations in HeLa cells using the fluorescence imaging technique.

  12. PH-dependence of detergent-induced hemolysis and vesiculation of erythrocytes.

    PubMed

    Chernitsky, E A; Rozin, V V; Senkovich, O A

    2001-01-01

    The influence of pH of the medium on the parameters of detergent-induced fast hemolysis and vesiculation of human erythrocytes was studied. In the range of pH 6.3-7.2 neither the extent nor the rate of the vesiculation induced by 25 microM sodium dodecyl sulfate (SDS) changed. However, a decrease of pH from 8.0 to 5.8 strongly modified both the extent and the rate of the hemolysis induced by SDS. Within the range of pH 8.0-6.4, the effect can be ascribed to the increase of the positive charge of the membrane. This could lead to the accumulation of the membrane-bound anion detergent and, hence, to the change of the hemolysis parameters. Non-charged detergent Triton X-100 did not display any pH-dependence. At pH between 6.4 and 5.8 the extent and rate of hemolysis changed in a complicated manner. The kinetic curves of hemolysis could be approximated by a single exponential within the pH range between 8.0 and 7.2. Upon further reduction of pH, a second exponential component, with a larger time constant, appeared in the kinetic curves. At 5.8 < pH < 7.2, the contribution of the "fast" hemolysis dropped virtually to zero, with pK about 6.0. This points to a structural transition of the membrane, possibly involving histidine. We suggest that the parameters of the detergent-induced hemolysis are sensitive to the changes of the charge and structural state of erythrocyte membrane.

  13. Supersaturation of aqueous species and hydrothermal crystal growth of ZnO

    NASA Astrophysics Data System (ADS)

    Gelabert, M. C.

    2015-05-01

    Synthesis of ZnO crystals prepared with zinc acetate or chloride, disodium dihydrogen ethylenediaminetetraacetate (EDTA), potassium hydroxide and sodium triflate at 200 °C and variable pH 8-12 is reported. Crystals were imaged and size-analyzed with optical microscopy. Using aqueous speciation modeling software, supersaturation dependence on pH was calculated for five zinc species-Zn2+, Zn(OH)+, Zn(OH)2, Zn(OH)3- and Zn(OH)42- -to investigate connections between predominate crystal habits at different pH and dominant aqueous species. For zinc acetate and chloride systems, the zinc species with highest supersaturation was Zn(OH)42- throughout the pH 8-12 range, and the second highest was Zn2+ or Zn(OH)3-, with a crossover pH of 10.2-10.4 depending on counterion. The prominence of the tetrahydroxyl zinc species in ZnO crystal growth is supported by these calculations, and total supersaturation is inversely proportional to average crystal sizes, as expected. Optical microscopy and size analysis on products revealed crystals with a needle or prismatic habit throughout the studied pH range, and the change in aspect ratio correlates with supersaturation changes for the Zn2+ in this pH range, thus suggesting that growth rates along the [001] crystallographic direction are affected by small concentration changes of this ion.

  14. Metabolism of 14C-azoxystrobin in water at different pH.

    PubMed

    Singh, Neera; Singh, Shashi B; Mukerjee, Irani; Gupta, Suman; Gajbhiye, Vijay T; Sharma, Praveen K; Goel, Mayurika; Dureja, Prem

    2010-02-01

    Metabolism of (14)C-azoxystrobin was studied in water at pH 4, 7 and 9. The study suggested that volatilization losses of azoxystrobin were very low (3%) during 130 days of incubation. Only 2.5-4.2% of azoxystrobin was mineralised to CO(2) and pH of water did not have much effect on rate of mineralisation. The dissipation of azoxystrobin in water of all the three pHs followed first order kinetic with half-life values ranging from 143 to 158 d; degradation was the fastest at pH 9. Azoxystrobin acid, a major metabolite, was detected 4-7 day onwards and its concentration increased up to 130 days. The formation of azoxystrobin acid was more and faster under alkaline (pH 9) condition than neutral (pH 7) or acidic (pH 4) conditions.

  15. pH dependent unfolding characteristics of DLC8 dimer: Residue level details from NMR.

    PubMed

    Mohan, P M Krishna; Hosur, Ramakrishna V

    2008-11-01

    Environment dependence of folding and unfolding of a protein is central to its function. In the same vein, knowledge of pH dependence of stability and folding/unfolding is crucial for many biophysical equilibrium and kinetic studies designed to understand protein folding mechanisms. In the present study we investigated the guanidine induced unfolding transition of dynein light chain protein (DLC8), a cargo adaptor of the dynein complex in the pH range 7-10. It is observed that while the protein remains a dimer in the entire pH range, its stability is somewhat reduced at alkaline pH. Global unfolding features monitored using fluorescence spectroscopy revealed that the unfolding transition of DLC8 at pH 7 is best described by a three-state model, whereas, that at pH 10 is best described by a two-state model. Chemical shift perturbations due to pH change provided insights into the corresponding residue level structural perturbations in the DLC8 dimer. Likewise, backbone (15)N relaxation measurements threw light on the corresponding motional changes in the dimeric protein. These observations have been rationalized on the basis of expected changes with increasing pH in the protonation states of the titratable residues on the structure of the protein. These, in turn provide an explanation for the change from three-state to two-state guanidine induced unfolding transition as the pH is increased from 7 to 10. All these results exemplify and highlight the role of environment vis-à-vis the sequence and structure of a given protein in dictating its folding/unfolding characteristics.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarasevich, Barbara J.; Philo, John S.; Maluf, Nasib Karl

    Amelogenin proteins are critical to the formation of enamel in teeth and may have roles in promoting nucleation, controlling growth, and regulating microstructures of the intricately woven hydroxyapatite (HAP). Leucine-rich amelogenin protein (LRAP) is a 59-residue splice variant of amelogenin and contains the N- and C-terminal charged regions of the full-length protein thought to control crystal growth. Although the quaternary structure of full-length amelogenin in solution has been well studied and can consist of self-assemblies of monomers called nanospheres, the quaternary structure of LRAP is not as well studied. Here, analytical ultracentrifugation sedimentation velocity (SV) and small angle neutron scatteringmore » (SANS) were used to study the tertiary and quaternary structure of LRAP over a range of pH values, ionic strengths, and concentrations. SV has advantages over other techniques in accurately quantifying protein speciation in polydisperse solutions. We found that the monomer was the dominant species of phosphorylated LRAP (LRAP(+P)) over a range of solution conditions (pH 2.7 to 4.1, pH 4.5 to 8, 50 mmol/L( mM) to 200 mM NaCl, 0.065 to 2 mg/mL). The monomer was also the dominant species for unphosphorylated LRAP (LRAP(-P)) at pH 7.4 and LRAP(+P) in the presence of 2.5 mM calcium at pH 7.4. LRAP aggregated in a narrow pH range near the isoelectric point (pH 4.1). We conclude that LRAP does not form nanospheres under physiological solution conditions. Both SV and SANS showed that the LRAP monomer has a radius of ~2.0 nm and adopts an extended structure which solution NMR studies show is intrinsically disordered. This work provides new insights into the tertiary and quaternary structure of LRAP and further evidence that the monomeric species is an important functional form of amelogenins« less

  17. The leucine-rich amelogenin protein (LRAP) is primarily monomeric and unstructured in physiological solution

    DOE PAGES

    Tarasevich, Barbara J.; Philo, John S.; Maluf, Nasib Karl; ...

    2014-10-25

    Amelogenin proteins are critical to the formation of enamel in teeth and may have roles in promoting nucleation, controlling growth, and regulating microstructures of the intricately woven hydroxyapatite (HAP). Leucine-rich amelogenin protein (LRAP) is a 59-residue splice variant of amelogenin and contains the N- and C-terminal charged regions of the full-length protein thought to control crystal growth. Although the quaternary structure of full-length amelogenin in solution has been well studied and can consist of self-assemblies of monomers called nanospheres, the quaternary structure of LRAP is not as well studied. Here, analytical ultracentrifugation sedimentation velocity (SV) and small angle neutron scatteringmore » (SANS) were used to study the tertiary and quaternary structure of LRAP over a range of pH values, ionic strengths, and concentrations. SV has advantages over other techniques in accurately quantifying protein speciation in polydisperse solutions. We found that the monomer was the dominant species of phosphorylated LRAP (LRAP(+P)) over a range of solution conditions (pH 2.7 to 4.1, pH 4.5 to 8, 50 mmol/L( mM) to 200 mM NaCl, 0.065 to 2 mg/mL). The monomer was also the dominant species for unphosphorylated LRAP (LRAP(-P)) at pH 7.4 and LRAP(+P) in the presence of 2.5 mM calcium at pH 7.4. LRAP aggregated in a narrow pH range near the isoelectric point (pH 4.1). We conclude that LRAP does not form nanospheres under physiological solution conditions. Both SV and SANS showed that the LRAP monomer has a radius of ~2.0 nm and adopts an extended structure which solution NMR studies show is intrinsically disordered. This work provides new insights into the tertiary and quaternary structure of LRAP and further evidence that the monomeric species is an important functional form of amelogenins« less

  18. Novel fluorescent pH sensor based on coumarin with piperazine and imidazole substituents.

    PubMed

    Saleh, Na'il; Al-Soud, Yaseen A; Nau, Werner M

    2008-12-01

    A new coumarin derivative containing piperazine and imidazole moieties is reported as a fluorophore for hydrogen ions sensing. The fluorescence enhancement of the studied sensor with an increase in hydrogen ions concentration is based on the hindering of photoinduced electron transfer from the piperazinyl amine and the imidazolyl amine to the coumarin fluorophore by protonation. The presented sensor has a novel design of fluorophore-spacer-receptor(1)-receptor(2) format, which is proposed to sense two ranges of pH (from 2.5 to 5.5) and (from 10 to 12) instead of sensing one pH range. A model compound, in which the piperazinyl ring is absent, was synthesized as well to confirm the novel pH sensing of the proposed sensor.

  19. Effects of soil pH on the Vicia-micronucleus genotoxicity assay.

    PubMed

    Dhyèvre, Adrien; Foltête, Anne Sophie; Aran, Delphine; Muller, Serge; Cotelle, Sylvie

    2014-11-01

    In the field of contaminated sites and soil management, chemical analyses only bring typological data about pollution. As far as bioavailability and effects on organisms are concerned, we need ecotoxicology tools. In this domain, among many existing tests, we chose to study genotoxicity because it is a short-term endpoint with long-term consequences. The aim of this study is to assess the effects of soil pH on the results of the Vicia faba root tip micronucleus test for the two following reasons: (i) to define the pH range within which the test can be performed without modifying the soil to be tested, within the framework of the ISO standard of the test and (ii) to provides information about the effects of the pH on the genotoxic potential of soils. In this context, we modified the pH of a standard soil with HCl or NaOH and we spiked the matrix with copper (2, 4 and 8 mmol kg(-1) dry soil) or with maleic hydrazide, an antigerminative chemical (5, 10 and 20 μmol kg(-1) dry soil). We concluded that the pH had no effect on the mitotic index or micronucleus frequency in the root cells of the negative controls: extreme pH values did not induce micronucleus formation in root cells. Moreover, according to our results, the Vicia-micronucleus test can be performed with pH values ranging between 3.2 and 9.0, but in the ISO 29200 "Soil quality--assessment of genotoxic effects on higher plants--V. faba micronucleus test" we recommended to use a control soil with a pH value ranging between 5 and 8 for a more accurate assessment of chemical genotoxicity. We also found that acid pH could increase the genotoxic potential of pollutants, especially heavy metals. With hydrazide maleic spiked soil, plants were placed in a situation of double stress, i.e. toxicity caused by extreme pH values and toxicity induced by the pollutant. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Finding stable cellulase and xylanase: evaluation of the synergistic effect of pH and temperature.

    PubMed

    Farinas, Cristiane S; Loyo, Marcel Moitas; Baraldo, Anderson; Tardioli, Paulo W; Neto, Victor Bertucci; Couri, Sonia

    2010-12-31

    Ethanol from lignocellulosic biomass has been recognized as one of the most promising alternatives for the production of renewable and sustainable energy. However, one of the major bottlenecks holding back its commercialization is the high costs of the enzymes needed for biomass conversion. In this work, we studied the enzymes produced from a selected strain of Aspergillus niger under solid state fermentation. The cellulase and xylanase enzymatic cocktail was characterized in terms of pH and temperature by using response surface methodology. Thermostability and kinetic parameters were also determined. The statistical analysis of pH and temperature effects on enzymatic activity showed a synergistic interaction of these two variables, thus enabling to find a pH and temperature range in which the enzymes have a higher activity. The results obtained allowed the construction of mathematical models used to predict endoglucanase, β-glucosidase and xylanase activities under different pH and temperature conditions. Optimum temperature values for all three enzymes were found to be in the range between 35°C and 60°C, and the optimum pH range was found between 4 and 5.5. The methodology employed here was very effective in estimating enzyme behavior under different process conditions. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Optimization of protein solution by a novel experimental design method using thermodynamic properties.

    PubMed

    Kim, Nam Ah; An, In Bok; Lee, Sang Yeol; Park, Eun-Seok; Jeong, Seong Hoon

    2012-09-01

    In this study, the structural stability of hen egg white lysozyme in solution at various pH levels and in different types of buffers, including acetate, phosphate, histidine, and Tris, was investigated by means of differential scanning calorimetry (DSC). Reasonable pH values were selected from the buffer ranges and were analyzed statistically through design of experiment (DoE). Four factors were used to characterize the thermograms: calorimetric enthalpy (ΔH), temperature at maximum heat flux (T( m )), van't Hoff enthalpy (ΔH( V )), and apparent activation energy of protein solution (E(app)). It was possible to calculate E(app) through mathematical elaboration from the Lumry-Eyring model by changing the scan rate. The transition temperature of protein solution, T( m ), increased when the scan rate was faster. When comparing the T( m ), ΔH( V ), ΔH, and E(app) of lysozyme in various pH ranges and buffers with different priorities, lysozyme in acetate buffer at pH 4.767 (scenario 9) to pH 4.969 (scenario 11) exhibited the highest thermodynamic stability. Through this experiment, we found a significant difference in the thermal stability of lysozyme in various pH ranges and buffers and also a new approach to investigate the physical stability of protein by DoE.

  2. Prebiotic Peptide (Amide) Bond Synthesis Accelerated by Glycerol and Bicarbonate Under Neutral to Alkaline Dry-Down Conditions

    NASA Technical Reports Server (NTRS)

    Forsythe, J. G.; Weber, A. L.

    2017-01-01

    Past studies of prebiotic peptide bond synthesis have generally been carried out in the acidic to neutral pH range [1, 2]. Here we report a new process for peptide bond (amide) synthesis in the neutral to alkaline pH range that involves simple dry-down heating of amino acids in the presence of glycerol and bicarbonate. Glycerol was included in the reaction mixture as a solvent and to provide hydroxyl groups for possible formation of ester intermediates previously implicated in peptide bond synthesis under acidic to neutral conditions [1]. Bicarbonate was added to raise the reaction pH to 8-9.

  3. Nitrogen-rich functional groups carbon nanoparticles based fluorescent pH sensor with broad-range responding for environmental and live cells applications.

    PubMed

    Shi, Bingfang; Su, Yubin; Zhang, Liangliang; Liu, Rongjun; Huang, Mengjiao; Zhao, Shulin

    2016-08-15

    A nitrogen-rich functional groups carbon nanoparticles (N-CNs) based fluorescent pH sensor with a broad-range responding was prepared by one-pot hydrothermal treatment of melamine and triethanolamine. The as-prepared N-CNs exhibited excellent photoluminesence properties with an absolute quantum yield (QY) of 11.0%. Furthermore, the N-CNs possessed a broad-range pH response. The linear pH response range was 3.0 to 12.0, which is much wider than that of previously reported fluorescent pH sensors. The possible mechanism for the pH-sensitive response of the N-CNs was ascribed to photoinduced electron transfer (PET). Cell toxicity experiment showed that the as-prepared N-CNs exhibited low cytotoxicity and excellent biocompatibility with the cell viabilities of more than 87%. The proposed N-CNs-based pH sensor was used for pH monitoring of environmental water samples, and pH fluorescence imaging of live T24 cells. The N-CNs is promising as a convenient and general fluorescent pH sensor for environmental monitoring and bioimaging applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Characterizing the correlation between dephosphorization and solution pH in a calcined water treatment plant sludge.

    PubMed

    Zhou, Zhenming; Liu, Qidi; Li, Shuwen; Li, Fei; Zou, Jing; Liao, Xiaobin; Yuan, Baoling; Sun, Wenjie

    2018-04-26

    This study focused on characterizing the correlation between the dephosphorization process of calcined water treatment plant sludge (C-WTPS) and the solution initial pH in batch experiments. The specific aim was to illustrate the effect of different initial pH on the adsorption and desorption of phosphorous in C-WTPS. In addition, the effects of solution initial pH on the release of ammonia nitrogen and total organic carbon (TOC) from C-WTPS and the change of pH after adsorption were also investigated. The results demonstrated that the initial pH significantly influenced the adsorption of phosphorus on C-WTPS. When initial pH was increased from 3 to 10, the phosphorous absorption capacity reduced by 76.5%. Especially, when the initial pH reached to 11, the phosphorus adsorption capacity became a negative value, indicating that C-WTPS released phosphorus into the solution. The addition of C-WTPS to the solution had little impact on the initial pH of the solution. The absorbed phosphorous on C-WTPS was relatively stable in the pH range of 3 to 10. Nevertheless, when the solution pH was higher than 11, it can be easily released into the solution. Furthermore, by comparison with WTPS, C-WTPS released less ammonia nitrogen and TOC into the solution and adsorbed more phosphorus from the solution in the experimental pH range. Therefore, C-WTPS is more suitable to serve as a cost-effective sorbent for phosphorus removal.

  5. Distribution of Surface pH and Total Alkalinity at the Sea of Okhotsk and the East Sea in October 2007

    NASA Astrophysics Data System (ADS)

    Shim, J.; Kang, D.; Jin, Y.; Obzhirov, A.

    2008-12-01

    Surface pH, total alkalinity, temperature and salinity were measured at the Sea of Okhotsk and the East Sea (along a track from Vladivostok to the northeastern slope of Sakhalin Island through Soya Strait: 42°N, 132°E - 55°N, 145°E) in October 2007. Continuous pH measurements were conducted using an underway potentiometric pH system modified from Tishchenko et al. (2002) and discrete total alkalinity measurements were made by direct titration with hydrochloric acid. Warm saline surface waters were observed in the East Sea (from Vladivostok to Soya Strait), and relatively cold less-saline waters were observed in the Sea of Okhotsk (at the eastern slopes of Sakhalin Island). In the East Sea and the Sea of Okhotsk, surface pH ranged from 8.063 to 8.158 and 8.047 to 8.226, and total alkalinity normalized to salinity 35 ranged from 2323 to 2344 μmol kg-1 and 2367 to 2422 μmol kg-1, respectively. Due to the freshwater input from rivers and geochemical activity in the water column and sediment, the Sea of Okhotsk generally showed much wider ranges of water properties and richer in carbonate parameters than those of the East Sea. Particularly, water properties changed dramatically at the eastern slopes of Sakhalin Island; surface salinity decreased southward by about 0.5-1 psu and pH and normalized total alkalinity increased southward by about 0.05-0.1 and 20-50 μmol kg-1, respectively. Thus, pCO2 concentration calculated from pH and total alkalinity, ranged from 350-375 μatm in the north to 280-300 μatm in the south of the Okhotsk Sea. The high pH and normalized total alkalinity, and low pCO2 and salinity in the south might be the result of surface water mixing with fresh water discharge from rivers and/or the results of massive primary production along the eastern coast of Sakhalin Island. In the most study area, surface pCO2 ranged from 280 to 370 μatm and was undersaturated relative to atmosphere. Therefore, the Sea of Okhotsk and the East Sea acted as effective CO2 sinks during the study period

  6. The role of counterions in the membrane-disruptive properties of pH-sensitive lysine-based surfactants.

    PubMed

    Nogueira, D R; Mitjans, M; Infante, M R; Vinardell, M P

    2011-07-01

    Surfactants are among the most versatile and widely used excipients in pharmaceuticals. This versatility, together with their pH-responsive membrane-disruptive activity and low toxicity, could also enable their potential application in drug delivery systems. Five anionic lysine-based surfactants which differ in the nature of their counterion were studied. Their capacity to disrupt the cell membrane was examined under a range of pH values, concentrations and incubation times, using a standard hemolysis assay as a model for endosomal membranes. The surfactants showed pH-sensitive hemolytic activity and improved kinetics at the endosomal pH range. Low concentrations resulted in negligible hemolysis at physiological pH and high membrane lytic activity at pH 5.4, which is in the range characteristic of late endosomes. With increasing concentration, the surfactants showed an enhanced capacity to lyse cell membranes, and also caused significant membrane disruption at physiological pH. This observation indicates that, at high concentrations, surfactant behavior is independent of pH. The mechanism of surfactant-mediated membrane destabilization was addressed, and scanning electron microscopy studies were also performed to evaluate the effects of the compounds on erythrocyte morphology as a function of pH. The in vitro cytotoxicity of the surfactants was assessed by MTT and NRU assays with the 3T3 cell line. The influence of different types of counterion on hemolytic activity and the potential applications of these surfactants in drug delivery are discussed. The possibility of using pH-sensitive surfactants for endosome disruption could hold great promise for intracellular drug delivery systems in future therapeutic applications. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Quality by design in formulation and process development for a freeze-dried, small molecule parenteral product: a case study.

    PubMed

    Mockus, Linas N; Paul, Timothy W; Pease, Nathan A; Harper, Nancy J; Basu, Prabir K; Oslos, Elizabeth A; Sacha, Gregory A; Kuu, Wei Y; Hardwick, Lisa M; Karty, Jacquelyn J; Pikal, Michael J; Hee, Eun; Khan, Mansoor A; Nail, Steven L

    2011-01-01

    A case study has been developed to illustrate one way of incorporating a Quality by Design approach into formulation and process development for a small molecule, freeze-dried parenteral product. Sodium ethacrynate was chosen as the model compound. Principal degradation products of sodium ethacrynate result from hydrolysis of the unsaturated ketone in aqueous solution, and dimer formation from a Diels-Alder condensation in the freeze-dried solid state. When the drug crystallizes in a frozen solution, the eutectic melting temperature is above -5°C. Crystallization in the frozen system is affected by pH in the range of pH 6-8 and buffer concentration in the range of 5-50 mM, where higher pH and lower buffer concentration favor crystallization. Physical state of the drug is critical to solid state stability, given the relative instability of amorphous drug. Stability was shown to vary considerably over the ranges of pH and buffer concentration examined, and vial-to-vial variability in degree of crystallinity is a potential concern. The formulation design space was constructed in terms of pH and drug concentration, and assuming a constant 5 mM concentration of buffer. The process design space is constructed to take into account limitations on the process imposed by the product and by equipment capability.

  8. A comparative study on the effect of Curcumin and Chlorin-p6 on the transport of the LDS cation across a negatively charged POPG bilayer: Effect of pH

    NASA Astrophysics Data System (ADS)

    Varshney, G. K.; Kintali, S. R.; Gupta, P. K.; Das, K.

    2017-02-01

    We report the use of interface selective Second Harmonic generation technique to investigate the transport of the LDS cation across POPG liposomes in the pH range of 4.0 to 8.0 in the presence and absence of two amphiphilic drugs, Curcumin and Chlorin-p6 (Cp6). Our results show that bilayer permeability of liposomes is significantly affected by the presence of the drugs and pH of the medium as evidenced by significant changes in the transport kinetics of the LDS. Studies carried out in the pH range 4.0-8.0 show that while Cp6 significantly enhanced the transport of LDS at pH 4.0, the transport of the cation was seen to increase with increasing pH, with maximum effect at pH 7.4 for Curcumin. The pH dependent bilayer localization of both the drugs was investigated by conducting steady state FRET studies using DPH labeled lipids as donors. The FRET results and the relative population of the various ionic/nonionic species of the drugs at different pH suggest that distance dependent interaction between the various ionic species of the drugs and polar head groups of the lipid is responsible for the observed pH dependence enhancement of the drug induced membrane permeability. Another interesting observation was that the stability of Curcumin in presence of POPG liposomes was observed to degrade significantly near physiological pH (7.4 and 8.0). Although this degradation did not affect the liposome integrity, interestingly this was observed to enhance the transport of the LDS cation across the bilayer. That the degradation products of Curcumin are equally effective as the drug itself in enhancing the membrane permeability lends additional support to the current opinion that the bioactive degradation products of the drug may have a significant contribution to its observed pharmacological effects.

  9. Gastric reflux: association with aspiration and oral secretion pH as marker of reflux: a descriptive correlational study.

    PubMed

    Schallom, Marilyn; Orr, James A; Metheny, Norma; Kirby, John; Pierce, Janet

    2015-01-01

    Gastric reflux leading to pulmonary aspiration is a frequent event in mechanically ventilated, gastric-fed patients, which can lead to ventilator-associated complications and pneumonia. The objectives of this study were to determine the association between gastric reflux and aspiration using the presence of pepsin in oral or tracheal secretions as a marker of reflux or aspiration and to determine the association between the pH (range, 0-14) and the presence of pepsin in oral secretions. A descriptive correlational study was conducted in mechanically ventilated surgical or medical patients receiving gastric tube feedings. Oral secretions were suctioned hourly and tracheal secretions every 2 to 3 hours for 12-hour periods over 1 to 2 days in 15 patients. There were 142 paired samples of oral tracheal secretions. A majority of samples (60%) had the same results, with 32% both pepsin-positive and 27% both pepsin-negative. The range of pH measurements was 4 to 8, with a mean of 6.3 ± 0.05. Ninety oral specimens had a pH of 4 to 6. Forty-seven of the oral specimens with pH measures between 4 and 6 (52%) were pepsin-positive. The correlation of pH percent pepsin-positive oral secretions was not significant. Aspiration events were more frequent than reflux events. Measurement of actual pepsin concentration to detect new reflux and aspiration events is recommended in future studies. Bedside pH measures of oral secretions are not a valid marker of gastric reflux.

  10. Variations of thiaminase I activity pH dependencies among typical Great Lakes forage fish and Paenibacillus thiaminolyticus.

    USGS Publications Warehouse

    Zajicek, J.L.; Brown, L.; Brown, S.B.; Honeyfield, D.C.; Fitzsimons, J.D.; Tillitt, D.E.

    2009-01-01

    The source of thiaminase in the Great Lakes food web remains unknown. Biochemical characterization of the thiaminase I activities observed in forage fish was undertaken to provide insights into potential thiaminase sources and to optimize catalytic assay conditions. We measured the thiaminase I activities of crude extracts from five forage fish species and one strain of Paenibacillus thiaminolyticus over a range of pH values. The clupeids, alewife Alosa pseudoharengus and gizzard shad Dorosoma cepedianum, had very similar thiaminase I pH dependencies, with optimal activity ranges (> or = 90% of maximum activity) between pH 4.6 and 5.5. Rainbow smelt Osmerus mordax and spottail shiner Notropis hudsonius had optimal activity ranges between pH 5.5-6.6. The thiaminase I activity pH dependence profile of P. thiaminolyticus had an optimal activity range between pH 5.4 and 6.3, which was similar to the optimal range for rainbow smelt and spottail shiners. Incubation of P. thiaminolyticus extracts with extracts from bloater Coregonus hoyi (normally, bloaters have little or no detectable thiaminase I activity) did not significantly alter the pH dependence profile of P. thiaminolyticus-derived thiaminase I, such that it continued to resemble that of the rainbow smelt and spottail shiner, with an apparent optimal activity range between pH 5.7 and 6.6. These data are consistent with the hypothesis of a bacterial source for thiaminase I in the nonclupeid species of forage fish; however, the data also suggest different sources of thiaminase I enzymes in the clupeid species.

  11. Managing Criticism in Ph.D. Supervision: A Qualitative Case Study

    ERIC Educational Resources Information Center

    Li, Sarah; Seale, Clive

    2007-01-01

    This article is part of a larger study which presents findings from an in-depth longitudinal case study of a student's Ph.D. journey. It shows how criticism is produced and managed in the supervisory relationship. As well as an overview of types of criticism produced across a range of supervisory interactions, the article presents a micro-analysis…

  12. m-Cresol purple functionalized surface enhanced Raman scattering paper chips for highly sensitive detection of pH in the neutral pH range.

    PubMed

    Zou, Xinxin; Wang, Yunqing; Liu, Wanhui; Chen, Lingxin

    2017-06-26

    Herein, a pH sensitive paper SERS chip was prepared by selecting m-cresol purple, a molecule with halochromic properties in the neutral pH range as a Raman reporter. The adsorbed m-cresol purple underwent a reversible change in its electronic configuration from a non-resonant species to a resonant species, which resulted in a significant Raman signal intensity variation due to the transformation of the sensing mode from SERS to surface-enhanced resonance Raman scattering (SERRS). The chips have a sensitive pH range of 6.0 to 8.0 and exhibited good performance for the detection of natural water samples with detection precision of approximately 0.03 pH units, suggesting great potential for environmental pH monitoring applications.

  13. The initial freezing point temperature of beef rises with the rise in pH: a short communication.

    PubMed

    Farouk, M M; Kemp, R M; Cartwright, S; North, M

    2013-05-01

    This study tested the hypothesis that the initial freezing point temperature of meat is affected by pH. Sixty four bovine M. longissimus thoracis et lumborum were classified into two ultimate pH groups: low (<5.8) and high pH (>6.2) and their cooling and freezing point temperatures were determined. The initial freezing temperatures for beef ranged from -0.9 to -1.5°C (∆=0.6°C) with the higher and lower temperatures associated with high and low ultimate pH respectively. There was a significant correlation (r=+0.73, P<0.01) between beef pH and freezing point temperature in the present study. The outcome of this study has implications for the meat industry where evidence of freezing (ice formation) in a shipment as a result of high pH meat could result in a container load of valuable chilled product being downgraded to a lower value frozen product. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Bacterially produced Pt-GFP as ratiometric dual-excitation sensor for in planta mapping of leaf apoplastic pH in intact Avena sativa and Vicia faba.

    PubMed

    Geilfus, Christoph-Martin; Mühling, Karl H; Kaiser, Hartmut; Plieth, Christoph

    2014-01-01

    Ratiometric analysis with H(+)-sensitive fluorescent sensors is a suitable approach for monitoring apoplastic pH dynamics. For the acidic range, the acidotropic dual-excitation dye Oregon Green 488 is an excellent pH sensor. Long lasting (hours) recordings of apoplastic pH in the near neutral range, however, are more problematic because suitable pH indicators that combine a good pH responsiveness at a near neutral pH with a high photostability are lacking. The fluorescent pH reporter protein from Ptilosarcus gurneyi (Pt-GFP) comprises both properties. But, as a genetically encoded indicator and expressed by the plant itself, it can be used almost exclusively in readily transformed plants. In this study we present a novel approach and use purified recombinant indicators for measuring ion concentrations in the apoplast of crop plants such as Vicia faba L. and Avena sativa L. Pt-GFP was purified using a bacterial expression system and subsequently loaded through stomata into the leaf apoplast of intact plants. Imaging verified the apoplastic localization of Pt-GFP and excluded its presence in the symplast. The pH-dependent emission signal stood out clearly from the background. PtGFP is highly photostable, allowing ratiometric measurements over hours. By using this approach, a chloride-induced alkalinizations of the apoplast was demonstrated for the first in oat. Pt-GFP appears to be an excellent sensor for the quantification of leaf apoplastic pH in the neutral range. The presented approach encourages to also use other genetically encoded biosensors for spatiotemporal mapping of apoplastic ion dynamics.

  15. Membrane potential and human erythrocyte shape.

    PubMed Central

    Gedde, M M; Huestis, W H

    1997-01-01

    Altered external pH transforms human erythrocytes from discocytes to stomatocytes (low pH) or echinocytes (high pH). The process is fast and reversible at room temperature, so it seems to involve shifts in weak inter- or intramolecular bonds. This shape change has been reported to depend on changes in membrane potential, but control experiments excluding roles for other simultaneously varying cell properties (cell pH, cell water, and cell chloride concentration) were not reported. The present study examined the effect of independent variation of membrane potential on red cell shape. Red cells were equilibrated in a set of solutions with graduated chloride concentrations, producing in them a wide range of membrane potentials at normal cell pH and cell water. By using assays that were rapid and accurate, cell pH, cell water, cell chloride, and membrane potential were measured in each sample. Cells remained discoid over the entire range of membrane potentials examined (-45 to +45 mV). It was concluded that membrane potential has no independent effect on red cell shape and does not mediate the membrane curvature changes known to occur in red cells equilibrated at altered pH. Images FIGURE 2 FIGURE 9 PMID:9138568

  16. A study of the parameters affecting the effectiveness of Moringa oleifera in drinking water purification

    NASA Astrophysics Data System (ADS)

    Pritchard, M.; Craven, T.; Mkandawire, T.; Edmondson, A. S.; O'Neill, J. G.

    The powder obtained from the seeds of the Moringa oleifera tree has been shown to be an effective primary coagulant for water treatment. When the seeds are dried, dehusked, crushed and added to water, the powder acts as a coagulant binding colloidal particles and bacteria to form agglomerated particles (flocs), which settle allowing the clarified supernatant to be poured off. Very little research has been undertaken on the parameters affecting the effectiveness of M. oleifera, especially in Malawi, for purification of drinking water and there is a great need for further testing in this area. Conclusive data needs to be compiled to demonstrate the effects of various water parameters have on the efficiency of the seeds. A parametric study was undertaken at Leeds Metropolitan University, UK, with the aim to establish the most appropriate dosing method; the optimum dosage for removal of turbidity; the influence of pH and temperature; together with the shelf life of the M. oleifera seeds. The study revealed that the most suitable dosing method was to mix the powder into a concentrated paste, hence forming a stock suspension. The optimum M. oleifera dose, for turbidity values between 40 and 200 NTU, ranged between 30 and 55 mg/l. With turbidity set at 130 NTU and a M. oleifera dose within the optimum range at 50 mg/l, pH levels were varied between 4 and 9. It was discovered that the coagulant performance was not too sensitive to pH fluctuations when conditions were within the optimum range. The most efficient coagulation, determined by the greatest reduction in turbidity, occurred at pH 6.5. Alkaline conditions were overall more favourable than acidic conditions; pH 9 had an efficiency of 65% of optimum, whilst at pH 5 the efficiency dropped to around 55%. The efficiency further dropped at pH 4, where the powder only produced results of around 10% of optimum conditions. A temperature range of 4-60 °C was studied in this research. Colder waters (<15 °C) were found to hinder the effectiveness of the coagulation process. The higher the temperature the more effective was the coagulation. It was also found that the age of the seeds, up to 18 months, did not have any noticeable effect on dose level and percentage reduction in turbidity, although at 18 months the seeds had a narrower dosing range to produce near-optimum reduction. Seeds aged 24 months showed a significant decline in coagulant efficiency.

  17. Kinetics and mechanism of imazosulfuron hydrolysis.

    PubMed

    Morrica, P; Barbato, F; Della Iacovo, R; Seccia, S; Ungaro, F

    2001-08-01

    Knowledge of the kinetics and pathways of hydrolytic degradation is crucial to the prediction of the fate and transport mechanism of chemicals. This work first describes the kinetics of the chemical hydrolysis of imazosulfuron, a new sulfonylurea herbicide, and evaluates the results to propose a degradation pathway. The hydrolysis of imazosulfuron has been studied in aqueous buffers both within the pH range 1.9-12.3 at ambient temperature (thermostated at 25 +/- 2 degrees C) and at pH 3.6 within the temperature range of 15-55 degrees C. The hydrolysis rate of imazosulfuron was characterized by a first-order kinetics, pH- and temperature-dependent, and accelerated by acidic conditions and higher temperatures. The calculated half-lives at pH 4.5 and 5.9 were 36.5 and 578 days, respectively. At pH 6.6, 7.4, 9.2, and 12.3 no significant change in imazosulfuron concentration was observed after 150 days. Half-lives were much lower at pH <4 (= imazosulfuron pK(a)), at which they ranged from 3.3 to 6.3 days. Moreover, a change in temperature from 15 to 25 degrees C in acidic conditions (pH 3.6) decreased the half-life of imazosulfuron by a factor of approximately 4.0; in any case, a 3-5-fold increase in the rate of hydrolysis was found for each 10 degrees C increase in temperature. In acidic conditions the only hydrolysis products were the two molecules resulting from the cleavage of the sulfonylurea bridge.

  18. A parametric comparative study of electrocoagulation and coagulation using ultrafine quartz suspensions.

    PubMed

    Kiliç, Mehtap Gülsün; Hoşten, Cetin; Demirci, Sahinde

    2009-11-15

    This paper attempts to compare electrocoagulation using aluminum anodes and stainless steel cathodes with conventional coagulation by aluminum sulfate dosing on aqueous suspensions of ultrafine quartz. Several key parameters affecting the efficiency of electrocoagulation and coagulation were investigated with laboratory scale experiments in search of optimal parameter values. Optimal values of the parameters were determined on the basis of the efficiency of turbidity removal from ultrafine quartz suspensions. The parameters investigated in the study were suspension pH, electrical potential, current density, electrocoagulation time, and aluminum dosage. A comparison between electrocoagulation and coagulation was made on the basis of total dissolved aluminum, revealing that electrocoagulation and coagulation were equally effective at the same aluminum dosage for the removal of quartz particles from suspensions. Coagulation, however, was more effective in a wider pH range (pH 6-9) than electrocoagulation which yielded optimum effectiveness in a relatively narrower pH range around 9, where, in both methods, these pH values corresponded to near-zero zeta potentials of quartz particles. Furthermore, experimental results confirmed that electrocoagulation could display some pH buffering capacity. The kinetics of electrocoagulation was very fast (<10 min) in approaching a residual turbidity, which could be modeled with a second-order rate equation.

  19. The stability of 6-mercaptopurine riboside in neutral and basic medium.

    PubMed

    Jelińska, A; Magdziarz, M

    2000-01-01

    The kinetics of hydrolysis of 6-mercaptopurine riboside (R-6-MP) was studied in aqueous solutions over the pH range of 6.11-12.13 at 353 K. The decomposition was investigated by HPLC method. At the pH range from 6.11 to 12.13 hydrolysis of 6-mercaptopurine riboside includes: spontaeous hydrolysis of non-protonated R-6-MP molecules mono- and di-anions R-6-MP molecules under the effect of water.

  20. Quantitative Chemical Exchange Saturation Transfer MRI of Intervertebral Disc in a Porcine Model

    PubMed Central

    Zhou, Zhengwei; Bez, Maxim; Tawackoli, Wafa; Giaconi, Joseph; Sheyn, Dmitriy; de Mel, Sandra; Maya, Marcel M.; Pressman, Barry D.; Gazit, Zulma; Pelled, Gadi; Gazit, Dan; Li, Debiao

    2017-01-01

    Purpose Previous studies have associated low pH in interver-tebral discs (IVDs) with discogenic back pain. The purpose of this study was to determine whether quantitative CEST (qCEST) MRI can be used to detect pH changes in IVDs in vivo. Methods The exchange rate ksw between glycosaminoglycan (GAG) protons and water protons was determined from qCEST analysis. Its dependence on pH value was investigated in GAG phantoms with varying pH and concentrations. The relationship between ksw and pH was studied further in vivo in a porcine model on a 3T MR scanner and validated using a pH meter. Sodium lactate was injected into the IVDs to induce various pH values within the discs ranging from 5 to 7. Results Phantom and animal results revealed that ksw measured using qCEST MRI is highly correlated with pH level. In the animal studies, the relationship can be described as ksw =9.2 × 106 × 10−pH + 196.9, R2 = 0.7883. Conclusion The exchange rate between GAG and water protons determined from qCEST MRI is closely correlated with pH value. This technique has the potential to noninvasively measure pH in the IVDs of patients with discogenic pain. PMID:27670140

  1. Sorption mechanisms of metals to graphene oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Showalter, Allison R.; Duster, Thomas A.; Szymanowski, Jennifer E. S.

    2016-05-01

    Environmental toxic metal contamination remediation and prevention is an ongoing issue. Graphene oxide is highly sorptive for many heavy metals over a wide pH range under different ionic strength conditions. We present x-ray absorption fine structure (XAFS) spectroscopy results investigating the binding environment of Pb(II), Cd(II) and U(VI) ions onto multi-layered graphene oxide (MLGO). Analysis indicates that the dominant sorption mechanism of Pb to MLGO changes as a function of pH, with increasing inner sphere contribution as pH increases. In contrast, the sorption mechanism of Cd to MLGO remains constant under the studied pH range. This adsorption mechanism is anmore » electrostatic attraction between the hydrated Cd+2 ion and the MLGO surface. The U(VI), present as the uranyl ion, changes only subtly as a function of pH and is bound to the surface via an inner sphere bond. Knowledge of the binding mechanism for each metal is necessary to help in optimizing environmental remediation or prevention in filtration systems.« less

  2. Nano-assemblies of cationic mPEG brush block copolymers with gadolinium polyoxotungstate [Gd(W5O18)2]9- form stable, high relaxivity MRI contrast agents.

    PubMed

    Ly, Joanne; Li, Yuhuan; Vu, Mai N; Moffat, Bradford A; Jack, Kevin S; Quinn, John F; Whittaker, Michael R; Davis, Thomas P

    2018-04-19

    Polyoxometalates (POMs) incorporating paramagnetic ions, such as gadolinium, show promise as contrast agents for application in magnetic resonance imaging (MRI). Specifically, [Gd(W5O18)2]9- (denoted as GdWO) has been reported to have a higher relaxivity than commercially available contrast agents, but it's clinical utility has been limited by the intrinsic instability of POMs at physiological pH (7.4). In the current report we present a stability study on neat GdWO and nano-assemblies of block copolymers with GdWO in the pH range 5.0-7.4 to assess their suitability as MRI contrast agents. Neat GdWO only maintained structural stability between pH 5.4 and 6.4, and demonstrated poor MRI contrast at pH 7.4. To address this pH instability, GdWO was self-assembled with cationic mPEG brush block copolymers containing 20 or 40 units derived from the cationic monomer, 2-dimethylaminoethyl methacrylate (DMAEMA). Nano-assemblies with different charge ratios were synthesised and characterised according to their size, stability, contrasting properties and toxicity. The longitudinal relaxivity (r1) of the nano-assemblies was found to be dependent on the charge ratio, but not on the length of the cationic polymer block. Further investigation of PDMAEMA20 nano-assemblies demonstrated that they were stable over the pH range 5.0-7.4, exhibiting a higher r1 than either neat GdWO (2.77 s-1 mM-1) or clinical MRI contrast agent Gd-DTPA (4.1 s-1 mM-1) at pH 7.4. Importantly, the nano-assembly with the lowest charge ratio (0.2), showed the highest r1 (12.1 s-1 mM-1) whilst, stabilising GdWO over the pH range studied, eliciting low toxicity with MDA-MB231 cells.

  3. A novel pH optical sensor using methyl orange based on triacetylcellulose membranes as support.

    PubMed

    Hosseini, Mohammad; Heydari, Rouhollah; Alimoradi, Mohammad

    2014-07-15

    A novel pH optical sensor based on triacetylcellulose membrane as solid support was developed by using immobilization of methyl orange indicator. The prepared optical sensor was fixed into a flow cell for on-line pH monitoring. Variables affecting sensor performance, such as pH of dye bonding to triacetylcellulose membrane and dye concentration have been fully evaluated and optimized. The calibration curve showed good behavior and precision (RSD<0.4%) in the pH range of 4.0-12.0. No significant variation was observed on sensor response with increasing the ionic strength in the range of 0.0-0.5M of sodium chloride. Determination of pH by using the proposed optical sensor is on-line, quick, inexpensive, selective and sensitive in the pH range of 4.0-12.0. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. A wide range and highly sensitive optical fiber pH sensor using polyacrylamide hydrogel

    NASA Astrophysics Data System (ADS)

    Pathak, Akhilesh Kumar; Singh, Vinod Kumar

    2017-12-01

    In the present study we report the fabrication and characterization of no-core fiber sensor (NCFS) using smart hydrogel coating for pH measurement. The no-core fiber (NCF) is stubbed between two single-mode fibers with SMA connector before immobilizing of smart hydrogel. The wavelength interrogation technique is used to calculate the sensitivity of the proposed sensor. The result shows a high sensitivity of 1.94 nm/pH for a wide range of pH values varied from 3 to 10 with a good linear response. In addition to high sensitivity, the fabricated sensor provides a fast response time with a good stability, repeatability and reproducibility.

  5. Voltammetric assay of Guaifenesin in pharmaceutical formulation.

    PubMed

    Tapsoba, I; Belgaied, J-E; Boujlel, K

    2005-06-01

    The electrochemical oxidation of Guaifenesin in a pharmaceutical formulation containing Guaifenesin has been carried out in Britton-Robinson buffer (BRB) (0.04 mol L-1) on platinum electrode. Guaifenesin exhibits a well-defined irreversible oxidation peak at 0.924 V/ref. The influence of pH on the oxidation of Guaifenesin was studied in BRB (pH range 2-5). A method for the analysis of Guaifenesin in BRB (0.04 mol L-1, pH 2), which allows quantification over the range 20-60 microg mL-1, was proposed and successfully applied to the determination of Guaifenesin in syrup with mean recovery and relative standard deviation of 103.3% and 1.32%, respectively.

  6. CHARACTERIZATION AND PH/EH-BASED LEACHING TESTS OF MINING WASTES CONTAINING MERCURY

    EPA Science Inventory

    This study was undertaken as a part of developing treatment alternatives for waste materials, primarily waste rock and roaster tailings, from sites contaminated with mercury (Hg) mining wastes. Leaching profiles of waste rock over a range of different pH and oxidation-reduction (...

  7. CHARACTERIZATION AND PH/EH-BASED LEACHING TESTS OF MINING WASTES CONTAINING MERCURY

    EPA Science Inventory

    This study was undertaken as a part of developing treatment alternatives for waste materials, primarily waste rock and roaster tailings, from sites contaminated with Mercury (Hg) mining wastes. Leaching profiles of waste rock over a range of different pH and oxidation-reduction ...

  8. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: collaborative study.

    PubMed

    Lee, Jungmin; Durst, Robert W; Wrolstad, Ronald E

    2005-01-01

    This collaborative study was conducted to determine the total monomeric anthocyanin concentration by the pH differential method, which is a rapid and simple spectrophotometric method based on the anthocyanin structural transformation that occurs with a change in pH (colored at pH 1.0 and colorless at pH 4.5). Eleven collaborators representing commercial laboratories, academic institutions, and government laboratories participated. Seven Youden pair materials representing fruit juices, beverages, natural colorants, and wines were tested. The repeatability relative standard deviation (RSDr) varied from 1.06 to 4.16%. The reproducibility relative standard deviation (RSDR) ranged from 2.69 to 10.12%. The HorRat values were < or = 1.33 for all materials. The Study Director recommends that the method be adopted Official First Action.

  9. Adsorption of bovine serum albumin on silicon dioxide nanoparticles: Impact of pH on nanoparticle-protein interactions.

    PubMed

    Givens, Brittany E; Diklich, Nina D; Fiegel, Jennifer; Grassian, Vicki H

    2017-05-03

    Bovine serum albumin (BSA) adsorbed on amorphous silicon dioxide (SiO 2 ) nanoparticles was studied as a function of pH across the range of 2 to 8. Aggregation, surface charge, surface coverage, and protein structure were investigated over this entire pH range. SiO 2 nanoparticle aggregation is found to depend upon pH and differs in the presence of adsorbed BSA. For SiO 2 nanoparticles truncated with hydroxyl groups, the largest aggregates were observed at pH 3, close to the isoelectric point of SiO 2 nanoparticles, whereas for SiO 2 nanoparticles with adsorbed BSA, the aggregate size was the greatest at pH 3.7, close to the isoelectric point of the BSA-SiO 2 complex. Surface coverage of BSA was also the greatest at the isoelectric point of the BSA-SiO 2 complex with a value of ca. 3 ±   1 × 10 11 molecules cm -2 . Furthermore, the secondary protein structure was modified when compared to the solution phase at all pH values, but the most significant differences were seen at pH 7.4 and below. It is concluded that protein-nanoparticle interactions vary with solution pH, which may have implications for nanoparticles in different biological fluids (e.g., blood, stomach, and lungs).

  10. [Characteristics of precipitation pH and conductivity at Mt. Huang].

    PubMed

    Shi, Chun-e; Deng, Xue-liang; Wu, Bi-wen; Hong, Jie; Zhang, Su; Yang, Yuan-jian

    2013-05-01

    To understand the general characteristics of pH distribution and pollution in precipitation at Mt. Huang, statistical analyses were conducted for the routine measurements of pH and conductivity (K) at Mt. Huang during 2006-2011. The results showed that: (1) Over the period of study, the annual volume weighted mean (VWM) precipitation pH varied from 4.81 to 5.57, with precipitation acidity strengthening before 2009 and weakening thereafter. The precipitation acidity showed evident seasonal variations, with the VWM pH lowest in winter (4.78), and highest in summer (5.33). The occurrence frequency of acid rain was 46% , accounting for 45% of total rainfalls and with the most frequent pH falling into weak acid to neutral rain. (2) The annual VWM K varied from 16.91 to 27.84 microS x cm(-1), with no evident trend. As for ions pollution, the precipitation was relatively clean at Mt. Huang, with the most frequent K range being below 15 microS x cm(-1), followed by 15-25 microS x cm(-1). From February 2010 to December 2011, precipitation samples were collected on daily basis for ions analysis, as well as pH and K measurement in lab. Detailed comparisons were conducted between the two sets of pH and K, one set from field measurement and the other from lab measurement. The results indicated: (1) The lab measured pH (K) was highly correlated with the field pH (K); however, the lab pH tended to move towards neutral comparing with the corresponding field pH, and the shift range was closely correlated with the field pH and rainfall. The shift range of K from field to lab was highly correlated with the total ion concentration of precipitation. The field K showed evident negative correlation with the field pH with a correlation coefficient of -0.51. (2) When sampling with nylon-polyethylene bags, the statistics showed smaller bias between two sets of pH, with higher correlation coefficient between two sets of K. Furthermore, the lab K also showed evident negative correlation with the lab pH. Comparing with the observations at other alpine sites in central to eastern China, the natural precipitation at Mt. Huang was weaker in acidity and contains lower ion concentration.

  11. Electrophoretic separation of proteins in space

    NASA Technical Reports Server (NTRS)

    Brown, R. K.

    1976-01-01

    Commercially available and synthetic wide range and short range ampholytes used in the isoelectric focusing of proteins was analyzed by ion exchange chromatography. A pH gradient over the pH range 3.8 to 11.0 was used to elute the ampholytes from a column of a sulfonated polystyrene resin. The wide range ampholytes were resolved into some 60 to 70 ninhydrin positive components. The recovery obtained with the method was quantitative. Acid short range ampholytes have approximately 35 components which elute readily from the ion exchange resin. Basic short range ampholytes gave about 50 components, most of which eluted at alkaline pH.

  12. Influence of pH Regulation Mode in Glucose Fermentation on Product Selection and Process Stability.

    PubMed

    Mohd-Zaki, Zuhaida; Bastidas-Oyanedel, Juan R; Lu, Yang; Hoelzle, Robert; Pratt, Steven; Slater, Fran R; Batstone, Damien J

    2016-01-04

    Mixed culture anaerobic fermentation generates a wide range of products from simple sugars, and is potentially an effective process for producing renewable commodity chemicals. However it is difficult to predict product spectrum, and to control the process. One of the key control handles is pH, but the response is commonly dependent on culture history. In this work, we assess the impact of pH regulation mode on the product spectrum. Two regulation modes were applied: in the first, pH was adjusted from 4.5 to 8.5 in progressive steps of 0.5 and in the second, covered the same pH range, but the pH was reset to 5.5 before each change. Acetate, butyrate, and ethanol were produced throughout all pH ranges, but there was a shift from butyrate at pH < 6.5 to ethanol at pH > 6.5, as well as a strong and consistent shift from hydrogen to formate as pH increased. Microbial analysis indicated that progressive pH resulted in dominance by Klebsiella, while reset pH resulted in a bias towards Clostridium spp., particularly at low pH, with higher variance in community between different pH levels. Reset pH was more responsive to changes in pH, and analysis of Gibbs free energy indicated that the reset pH experiments operated closer to thermodynamic equilibrium, particularly with respect to the formate/hydrogen balance. This may indicate that periodically resetting pH conforms better to thermodynamic expectations.

  13. Influence of pH Regulation Mode in Glucose Fermentation on Product Selection and Process Stability

    PubMed Central

    Mohd-Zaki, Zuhaida; Bastidas-Oyanedel, Juan R.; Lu, Yang; Hoelzle, Robert; Pratt, Steven; Slater, Fran R.; Batstone, Damien J.

    2016-01-01

    Mixed culture anaerobic fermentation generates a wide range of products from simple sugars, and is potentially an effective process for producing renewable commodity chemicals. However it is difficult to predict product spectrum, and to control the process. One of the key control handles is pH, but the response is commonly dependent on culture history. In this work, we assess the impact of pH regulation mode on the product spectrum. Two regulation modes were applied: in the first, pH was adjusted from 4.5 to 8.5 in progressive steps of 0.5 and in the second, covered the same pH range, but the pH was reset to 5.5 before each change. Acetate, butyrate, and ethanol were produced throughout all pH ranges, but there was a shift from butyrate at pH < 6.5 to ethanol at pH > 6.5, as well as a strong and consistent shift from hydrogen to formate as pH increased. Microbial analysis indicated that progressive pH resulted in dominance by Klebsiella, while reset pH resulted in a bias towards Clostridium spp., particularly at low pH, with higher variance in community between different pH levels. Reset pH was more responsive to changes in pH, and analysis of Gibbs free energy indicated that the reset pH experiments operated closer to thermodynamic equilibrium, particularly with respect to the formate/hydrogen balance. This may indicate that periodically resetting pH conforms better to thermodynamic expectations. PMID:27681895

  14. Cementitious porous pavement in stormwater quality control: pH and alkalinity elevation.

    PubMed

    Kuang, Xuheng; Sansalone, John

    2011-01-01

    A certain level of alkalinity acts as a buffer and maintains the pH value in a stable range in water bodies. With rapid urban development, more and more acidic pollutants flow to watersheds with runoff and drop alkalinity to a very low level and ultimately degrade the water environment. Cementitious porous pavement is an effective tool for stormwater acidic neutralization. When stormwater infiltrates cement porous pavement (CPP) materials, alkalinity and pH will be elevated due to the basic characteristics of cement concrete. The elevated alkalinity will neutralize acids in water bodies and maintain the pH in a stable level as a buffer. It is expected that CPP materials still have a certain capability of alkalinity elevation after years of service, which is important for CPP as an effective tool for stormwater management. However, few previous studies have reported on how CPP structures would elevate runoff alkalinity and pH after being exposed to rainfall-runoff for years. In this study, three groups of CPP specimens, all exposed to rainfall-runoff for 3 years, were used to test the pH and alkalinity elevation properties. It was found that runoff pH values were elevated from 7.4 to the range of 7.8-8.6 after infiltrating through the uncoated specimens, and from 7.4 to 8.5-10.7 after infiltrating through aluminum-coated specimens. Runoff alkalinity elevation efficiencies are 11.5-14.5% for uncoated specimens and 42.2% for coated specimens. The study shows that CPP is an effective passive unit operation for stormwater acid neutralization in our built environment.

  15. Immobilization of chromate in hyperalkaline waste streams by green rusts and zero-valent iron.

    PubMed

    Rogers, Christine M; Burke, Ian T; Ahmed, Imad A M; Shaw, Samuel

    2014-01-01

    Zero-valent iron (ZVI) and green rusts can be used as reductants to convert chromium from soluble, highly toxic Cr(VI) to insoluble Cr(III). This study compared the reduction rates of Cr(VI) by ZVI and two carbonate green rust phases in alkaline/hyperalkaline solutions. Batch experiments were carried out with synthetic chromate solutions at pH 7.7-12.3 and a chromite ore processing residue (COPR) leachate (pH approximately 12.2). Green rust removes chromate from high pH solutions (pH 10-12.5) very rapidly (<400 s). Chromate reduction rates for both green rust phases were consistently higher than for ZVI throughout the pH range studied; the surface area normalized rate constants were two orders of magnitude higher in the COPR leachate solution at pH 12.2. The performances of both green rusts were unaffected by changes in pH. In contrast, ZVI exhibited a marked decline in reduction rate with increasing pH to become almost ineffective above pH12.

  16. Change of pH during excess sludge fermentation under alkaline, acidic and neutral conditions.

    PubMed

    Yuan, Yue; Peng, Yongzhen; Liu, Ye; Jin, Baodan; Wang, Bo; Wang, Shuying

    2014-12-01

    The change in pH during excess sludge (ES) fermentation of varying sludge concentrations was investigated in a series of reactors at alkaline, acidic, and neutral pHs. The results showed that the changes were significantly affected by fermentative conditions. Under different conditions, pH exhibited changing profiles. When ES was fermented under alkaline conditions, pH decreased in a range of (10±1). At the beginning of alkaline fermentation, pH dropped significantly, at intervals of 4h, 4h, and 5h with sludge concentrations of 8665.6mg/L, 6498.8mg/L, and 4332.5mg/L, then it would become moderate. However, under acidic conditions, pH increased from 4 to 5. Finally, under neutral conditions pH exhibited a decrease then an increase throughout entire fermentation process. Further study showed short-chain fatty acids (SCFAs), ammonia nitrogen and cations contributed to pH change under various fermentation conditions. This study presents a novel strategy based on pH change to predict whether SCFAs reach their stable stage. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Alkaline pH sensor molecules.

    PubMed

    Murayama, Takashi; Maruyama, Ichiro N

    2015-11-01

    Animals can survive only within a narrow pH range. This requires continual monitoring of environmental and body-fluid pH. Although a variety of acidic pH sensor molecules have been reported, alkaline pH sensor function is not well understood. This Review describes neuronal alkaline pH sensors, grouped according to whether they monitor extracellular or intracellular alkaline pH. Extracellular sensors include the receptor-type guanylyl cyclase, the insulin receptor-related receptor, ligand-gated Cl- channels, connexin hemichannels, two-pore-domain K+ channels, and transient receptor potential (TRP) channels. Intracellular sensors include TRP channels and gap junction channels. Identification of molecular mechanisms underlying alkaline pH sensing is crucial for understanding how animals respond to environmental alkaline pH and how body-fluid pH is maintained within a narrow range. © 2015 Wiley Periodicals, Inc.

  18. A novel optical probe for pH sensing in gastro-esophageal apparatus

    NASA Astrophysics Data System (ADS)

    Baldini, F.; Ghini, G.; Giannetti, A.; Senesi, F.; Trono, C.

    2011-03-01

    Monitoring gastric pH for long periods, usually 24 h, may be essential in analyzing the physiological pattern of acidity, in obtaining information on changes in activity during peptic ulcer disease, and in assessing the effect of antisecretory drugs. Gastro-esophageal reflux, which causes a pH decrease in the esophagus content from pH 7 even down to pH 2, can determine esophagitis with possible strictures and Barrett's esophagus. One of the difficulties of the optical measurement of pH in the gastro-esophageal apparatus lies in the required extended working range from 1 to 8 pH units. The present paper deals with a novel optical pH sensor, using methyl red as optical pH indicator. Contrary to all acidbase indicators characterized by working ranges limited to 2-3 pH units, methyl red, after its covalent immobilization on controlled pore glass (CPG), is characterized by a wide working range which fits with the clinical requirements. The novel probe design here described is suitable for gastro-esophageal applications and allows the optimization of the performances of the CPG with the immobilised indicator. This leads to a very simple configuration characterized by a very fast response time.

  19. Influence of pH on the acute toxicity of ammonia to juvenile freshwater mussels (fatmucket, Lampsills siliquoidea)

    USGS Publications Warehouse

    Wang, N.; Erickson, R.J.; Ingersoll, C.G.; Ivey, C.D.; Brunson, E.L.; Augspurger, T.; Barnhart, M.C.

    2008-01-01

    The objective of the present study was to evaluate the influence of pH on the toxicity of ammonia to juvenile freshwater mussels. Acute 96-h ammonia toxicity tests were conducted with 10-d-old juvenile mussels (fatmucket, Lampsilis siliquoidea) at five pH levels ranging from 6.5 to 9.0 in flow-through diluter systems at 20??C. Acute 48-h tests with amphipods (Hyalella azteca) and 96-h tests with oligochaetes (Lumbriculus variegatus) were conducted concurrently under the same test conditions to determine the sensitivity of mussels relative to these two commonly tested benthic invertebrate species. During the exposure, pH levels were maintained within 0.1 of a pH unit and ammonia concentrations were relatively constant through time (coefficient of variation for ammonia concentrations ranged from 2 to 30% with a median value of 7.9%). The median effective concentrations (EC50s) of total ammonia nitrogen (N) for mussels were at least two to six times lower than the EC50s for amphipods and oligochaetes, and the EC50s for mussels decreased with increasing pH and ranged from 88 mg N/L at pH 6.6 to 0.96 mg N/L at pH 9.0. The EC50s for mussels were at or below the final acute values used to derive the U.S. Environmental Protection Agency's acute water quality criterion (WQC). However, the quantitative relationship between pH and ammonia toxicity to juvenile mussels was similar to the average relationship for other taxa reported in the WQC. These results indicate that including mussel toxicity data in a revision to the WQC would lower the acute criterion but not change the WQC mathematical representation of the relative effect of pH on ammonia toxicity. ?? 2008 SETAC.

  20. Stability of sodium bicarbonate injection 8.4% in syringes over a six-week period in refrigerated temperature.

    PubMed

    Seki, Jack T; Wang, Tian Q; Yip, Paul M; Mazzulli, Tony; Minden, Mark D

    2018-04-01

    Background Dysfunctional central venous catheter prohibits the administration of potential life-saving chemotherapy and the delivery of essential supportive care needs to patients. Sodium bicarbonate injection has been shown to impede against fibrin clot formation and prolong prothrombin time and thrombin clotting time. Sodium bicarbonate injection has been tried as a second-line agent with good results in a small number of patients (internal data not published) when alteplase failed. We assessed whether the pre-filled sodium bicarbonate injection in 5 mL syringes would not only preserve sterility and retain its pH and concentration but also amount to the potential cost savings for future use when stored in a refrigerated environment. Methodology Twelve pre-filled 5 mL syringes were prepared aseptically, of which four each were tested for pH, sodium bicarbonate injection concentration and sterility when stored in refrigerated temperature over a six-week period. A standard pH meter, enzymatic carbon dioxide analyzer, and a 14-day incubation for microbial detection were employed for this study. Results Sodium bicarbonate concentration measured in the form of carbon dioxide ranged from 923 mmol/L or (1846 mosol/L) to 1006 mmol/L or (2012 mosmol/L), and pH ranged from (7.88 to 8.05) were reported over the duration of the study period. The 14-day incubation period resulted in no microbial growth. Conclusion Our study results have indicated that the pH and sodium bicarbonate injection concentration values were stable and within range, comparable to those reported by the manufacturer within the study period. The contents of the subdivided sodium bicarbonate injection 5 mL syringes retained sterility over a 14-day incubation period.

  1. Risk screening of pharmaceutical compounds in Romanian aquatic environment.

    PubMed

    Gheorghe, Stefania; Petre, Jana; Lucaciu, Irina; Stoica, Catalina; Nita-Lazar, Mihai

    2016-06-01

    The aquatic environment is under increased pressure by pharmaceutically active compounds (PhACs) due to anthropogenic activities. In spite of being found at very low concentrations (ng/L to μg/L) in the environment, PhACs represent a real danger to aquatic ecosystems due to their bioaccumulation and long-term effects. In this study, the presence in the aquatic environment of six non-steroidal anti-inflammatory drugs (ibuprofen, diclofenac, acetaminophen, naproxen, indomethacin, and ketoprofen), caffeine, and carbamazepine were monitored. Moreover, their aquatic risk and ecotoxicity by three biological models were evaluated. The monitoring studies performed in Romania showed that all studied PhACs were naturally present at concentrations >0.01 μg/L, pointing out the necessity to perform further toxicity tests for environmental risk assessment. The toxicity studies were carried out on aquatic organisms or bacteria and they indicated, for most of the tested PhACs, an insignificant or low toxicity effects: lethal concentrations (LC50) on fish Cyprinus carpio ranged from 42.60 mg/L to more than 100 mg/L; effective concentrations (EC50) on planktonic crustacean Daphnia magna ranged from 11.02 mg/L to more than 100 mg/L; inhibitory concentrations (IC50)/microbial toxic concentrations (MTC) on Vibrio fischeri and other bacterial strains ranged from 7.02 mg/L to more than 100 mg/L. The PhAC aquatic risk was assessed by using the ratio between measured environmental concentration (MEC) and predicted no effect concentration (PNEC) calculated for each type of organism. The average of quotient risks (RQs) revealed that the presence of these compounds in Romania's aquatic environment induced a lower or moderate aquatic risk.

  2. Quality characteristics of broiler chicken meat from free-range and industrial poultry system for the consumers.

    PubMed

    da Silva, Débora Cristina Fernandes; de Arruda, Alex Martins Varela; Gonçalves, Alex Augusto

    2017-06-01

    The aim of this study was to determine and compare the quality parameters of broiler chicken meat from free-range and industrial poultry system. Proximate composition, color, pH, shear force, microbial quality and sensory characteristics were evaluated. Both free-range and industrial chicken meat presented PSE (pale, soft and exudative) anomaly ( L * > 53). An inverse correlation between lightness, pH and shear force was observed. The free range broiler meat had higher yellow color ( b * 11.56) and shear force (2.75 kgf) and lower red color ( a * 1.65) and pH (5.75) in comparison to the industrial broiler meat, due intensive physical activity on growing phase and influence of the pre-slaughter stress on the rigor mortis. The thigh cut from free range broiler meat showed higher protein levels (18.00%), while to the thigh and drumstick cuts of industrial broiler meat showed higher total fat levels (3.4 and 5.0%, respectively). In general, each strain and chickens producing methods gave the peculiar characteristics to meat (chemical, physical, microbiological and sensorial).

  3. Size control of Au NPs supported by pH operation

    NASA Astrophysics Data System (ADS)

    Ichiji, Masumi; Akiba, Hiroko; Hirasawa, Izumi

    2017-07-01

    Au NPs are expected to become useful functional particles, as particle gun used for plant gene transfer and also catalysts. We have studied PSD (particle size distribution) control of Au NPs by reduction crystallization. Previous study found out importance of seeds policy and also feeding profile. In this paper, effect of pH in the reduction crystallization was investigated to clarify the possibility of Au NPs PSD control by pH operation and also their growth process. Au NPs of size range 10-600 nm were obtained in single-jet system using ascorbic acid (AsA) as a reducing agent with adjusting pH of AsA. Au NPs are found to grow in the process of nucleation, agglomeration, agglomeration growth and surface growth. Au NPs tend to grow by agglomeration and become larger size in lower pH regions, and to grow only by surface growth and become smaller size in higher pH regions.

  4. Extreme soil acidity from biodegradable trap and skeet targets increases severity of pollution at shooting ranges.

    PubMed

    McTee, Michael R; Mummey, Daniel L; Ramsey, Philip W; Hinman, Nancy W

    2016-01-01

    Lead pollution at shooting ranges overshadows the potential for contamination issues from trap and skeet targets. We studied the environmental influence of targets sold as biodegradable by determining the components of the targets and sampling soils at a former sporting clay range. Targets comprised approximately 53% CaCO3, 41% S(0), and 6% modifiers, and on a molar basis, there was 2.3 times more S(0) than CaCO3. We observed a positive correlation between target cover and SO4(2-) (ρ=0.82, P<0.001), which indicated the oxidation of S(0) to H2SO4. Sulfate was negatively correlated with pH (ρ=-0.93, P<0.001) because insufficient CaCO3 existed in the targets to neutralize all the acid produced from S(0) oxidation. Plant cover decreased with decreasing soil pH (ρ=0.62, P=0.006). For sites that had pH values below 3, 24tons of lime per 1000tons of soil would be required to raise soil pH to 6.5. Lime-facilitated pH increases would be transitory because S(0) would continue to oxidize to H2SO4 until the S(0) is depleted. This study demonstrates that biodegradable trap and skeet targets can acidify soil, which has implications for increasing the mobility of Pb from shotgun pellets. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Soil pH effects on the interactions between dissolved zinc, non-nano- and nano-ZnO with soil bacterial communities.

    PubMed

    Read, Daniel S; Matzke, Marianne; Gweon, Hyun S; Newbold, Lindsay K; Heggelund, Laura; Ortiz, Maria Diez; Lahive, Elma; Spurgeon, David; Svendsen, Claus

    2016-03-01

    Zinc oxide nanoparticles (ZnO NPs) are used in an array of products and processes, ranging from personal care products to antifouling paints, textiles, food additives, antibacterial agents and environmental remediation processes. Soils are an environment likely to be exposed to manmade nanoparticles due to the practice of applying sewage sludge as a fertiliser or as an organic soil improver. However, understanding on the interactions between soil properties, nanoparticles and the organisms that live within soil is lacking, especially with regards to soil bacterial communities. We studied the effects of nanoparticulate, non-nanoparticulate and ionic zinc (in the form of zinc chloride) on the composition of bacterial communities in soil with a modified pH range (from pH 4.5 to pH 7.2). We observed strong pH-dependent effects on the interaction between bacterial communities and all forms of zinc, with the largest changes in bacterial community composition occurring in soils with low and medium pH levels (pH 4.8 and 5.9). The high pH soil (pH 7.2) was less susceptible to the effects of zinc exposure. At the highest doses of zinc (2500 mg/kg dw soil), both nano and non-nano particulate zinc applications elicited a similar response in the soil bacterial community, and this differed significantly to the ionic zinc salt treatment. The results highlight the importance of considering soil pH in nanotoxicology studies, although further work is needed to determine the exact mechanisms controlling the toxicity and fate and interactions of nanoparticles with soil microbial communities.

  6. Influences of heating temperature, pH, and soluble solids on the decimal reduction times of acid-adapted and non-adapted Escherichia coli O157:H7 (HCIPH 96055) in a defined liquid heating medium.

    PubMed

    Gabriel, Alonzo A

    2012-11-01

    The study characterized the influences of various combinations of process and product parameters namely, heating temperature (53, 55, 57.5, 60, 62 °C), pH (2.0, 3.0, 4.5, 6.0, 7.0), and soluble solids (SS) (1.4, 15, 35, 55, 69°Brix) on the thermal inactivation of non-adapted and acid-adapted E. coli O157:H7 (HCIPH 96055) in a defined liquid heating medium (LHM). Acid adaptation was conducted by propagating cells in a gradually acidifying nutrient broth medium, supplemented with 1% glucose. The D values of non-adapted cells ranged from 1.43 s (0.02 min) to 304.89 s (5.08 min). Acid-adapted cells had D values that ranged from 1.33 s (0.02 min) to 2628.57 s (43.81 min). Adaptation did not always result in more resistant cells as indicated by the Log (D(adapted)/D(non-adapted)) values calculated in all combinations tested, with values ranging from -1.10 to 1.40. The linear effects of temperature and pH, and the joint effects of pH and SS significantly influenced the thermal resistance of non-adapted cells. Only the linear and quadratic effects of both pH and SS significantly influenced the D values of acid-adapted cells. Generally, the D values of acid-adapted cells decreased at SS greater than 55 °Brix, suggesting the possible cancelation of thermal cross protection by acid habituation at such SS levels. The relatively wide ranges of LHM pH and SS values tested in the study allowed for better examination of the effects of these factors on the thermal death of the pathogen. The results established in this work may be used in the evaluation, control and improvement of safety of juice products; and of other liquid foods with physicochemical properties that fall within the ranges tested in this work. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Stability studies on florfenicol using developed derivative spectrophotometric methods.

    PubMed

    Elimam, M M; Shantier, S W; Gadkariem, E A; Mohamed, M A; Osman, Z

    2017-01-01

    This study aims to investigate the stability of florfenicol using previously developed derivative spectrophotometric methods (D 1 and D 2 ). The studied stability-indicating pararmeters included alkali (NaOH, 1M), acid (HCl, 1M), pH changes (buffer pH 2.2-11), temperature (80°C and 100°C at pH 10) and light. A constructed pH profile for the drug degradation rate revealed a significant effect of pH on the drug stability between pH ranges 8 and 11. The obtained profile indicated first order dependence of K obs on [OH - ]. Arrhenius plot at pH 10 was found linear at temperatures 80°C and 100°C with estimated activation energy of 19.35kcal/mol. The calculated rate constant (K obs ), t ½ and t 90 at 25°C were found to be 1.8×10 -3 h, 385h and 58.3h, respectively. The photostability of florfenicol was also studied by exposing the drug solution to direct sunlight during mid-day time. The obtained results reflected the instability of florfenicol under the study conditions. Copyright © 2016 Académie Nationale de Pharmacie. Published by Elsevier Masson SAS. All rights reserved.

  8. High-resolution ocean pH dynamics in four subtropical Atlantic benthic habitats

    NASA Astrophysics Data System (ADS)

    Hernández, C. A.; Clemente, S.; Sangil, C.; Hernández, J. C.

    2015-12-01

    Oscillations of ocean pH are largely unknown in coastal environments and ocean acidification studies often do not account for natural variability yet most of what is known about marine species and populations is found out via studies conducted in near shore environments. Most experiments designed to make predictions about future climate change scenarios are carried out in coastal environments with no research that takes into account the natural pH variability. In order to fill this knowledge gap and to provide reliable measures of pH oscillation, seawater pH was measured over time using moored pH sensors in four contrasting phytocenoses typical of the north Atlantic subtropical region. Each phytocenosis was characterized by its predominant engineer species: (1) Cystoseira abies-marina, (2) a mix of gelidiales and geniculate corallines, (3) Lobophora variegata, and (4) encrusting corallines. The autonomous pH measuring systems consisted of a pH sensor; a data logger and a battery encased in a waterproof container and allowed the acquisition of high-resolution continuous pH data at each of the study sites. The pH variation observed ranged by between 0.09 and 0.24 pHNBS units. A clear daily variation in seawater pH was detected at all the studied sites (0.04-0.12 pHNBS units). Significant differences in daily pH oscillations were also observed between phytocenoses, which shows that macroalgal communities influence the seawater pH in benthic habitats. Natural oscillations in pH must be taken into account in future ocean acidification studies to put findings in perspective and for any ecological recommendations to be realistic.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Many times the start up of granular activated carbon adsorption systems for the control of organic contaminants in wastewater cm exhibit unacceptable increases in the adscurber effluent pH. Experience shows that the duration of the pH increase ranges from several hours to several days, during which time several hundred bed volumes of water can be discharged with a pH in excess of 9. Laboratory studies have identified the cause of the pH rise as an interaction between the naturally occurring anions and protons ar the water and the carbon surface. The interaction can be described as an ion exchange typemore » of phenomenon, in which the carbon surface sorbs the anions and corresponding hydronium ions from the water. Capacities of the carbon for the anions range from 2 to 9 mg/g GAC, depending upon the water characteristics, the carbon type, the nature of the anion and its influent concentration. These studies have shown de the anion sorption and resulting pH increase is independent of the raw material used for die activated carbon production, e.g. bituminous or sub-bituminous coal, peat, wood or coconut. Also, the pH excursions occur with virgin, reactivated, and acid washed granular carbons. Current pH control technologies focus on adjustment of wastewater pH prior to discharge or recycle of the initial effluent water until the pH increase abates. However, improved water pH control options have been realized by altering the carbon surface rather than the water chemistry. The change to the carbon surface is accomplished through a controlled oxidation process. This process provides a more acidic carbon surface with a reduced affinity for the anions in the waste water. As a result, the pH excursions above 9 are eliminated and the initial effluent from the adsorption system can be discharged without further treatment.« less

  10. Amperometric micro pH measurements in oxygenated saliva.

    PubMed

    Chaisiwamongkhol, Korbua; Batchelor-McAuley, Christopher; Compton, Richard G

    2017-07-24

    An amperometric micro pH sensor has been developed based on the chemical oxidation of carbon fibre surfaces (diameter of 9 μm and length of ca. 1 mm) to enhance the population of surface quinone groups for the measurement of salivary pH. The pH analysis utilises the electrochemically reversible two-electron, two-proton behaviour of surface quinone groups on the micro-wire electrodes. A Nernstian response is observed across the pH range 2-8 which is the pH range of many biological fluids. We highlight the measurement of pH in small volumes of biological fluids without the need for oxygen removal and specifically the micro pH electrode is examined by measuring the pH of commercial synthetic saliva and authentic human saliva samples. The results correspond well with those obtained by using commercial glass pH electrodes on large volume samples.

  11. Photo-Fenton and modified photo-Fenton at neutral pH for the treatment of emerging contaminants in wastewater treatment plant effluents: a comparison.

    PubMed

    Klamerth, N; Malato, S; Agüera, A; Fernández-Alba, A

    2013-02-01

    This study compares two different solar photo-Fenton processes, conventional photo-Fenton at pH3 and modified photo-Fenton at neutral pH with minimal Fe (5 mg L⁻¹) and minimal initial H₂O₂ (50 mg L⁻¹) concentrations for the degradation of emerging contaminants in Municipal Wastewater Treatment Plants effluents in solar pilot plant. As Fe precipitates at neutral pH, complexing agents which are able to form photoactive species, do not pollute the environment or increase toxicity have to be used to keep the iron in solution. This study was done using real effluents containing over 60 different contaminants, which were monitored during treatment by liquid chromatography coupled to a hybrid quadrupole/linear ion trap mass analyzer (LC-QTRAP-MS/MS) operating in selected reaction monitoring (SRM) mode. Concentrations of the selected contaminants ranged from a few ng L⁻¹ to tens of μg L⁻¹. It was demonstrated in all cases the removal of over 95% of the contaminants. Photo-Fenton at pH3 provided the best treatment time, but has the disadvantage that the water must be previously acidified. The most promising process was photo-Fenton modified with Ethylenediamine-N,N'-disuccinic acid (EDDS), as the pH remained in the neutral range. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Molecular interactions in self-assembled nano-structures of chitosan-sodium alginate based polyelectrolyte complexes.

    PubMed

    Wasupalli, Geeta Kumari; Verma, Devendra

    2018-03-16

    We report here the self-assembled structures of polyelectrolyte complexes (PECs) of polyanionic sodium alginate with the polycationic chitosan at room temperature. The PECs prepared at different pH values exhibited two distinct morphologies. The chitosan-alginate PECs self-assembled into the fibrous structure in a low pH range of pH3 to 7. The PECs obtained at high pH series around pH8 and above resulted in the formation of colloidal nanoparticles in the range of 120±9.48nm to 46.02±16.66nm. The zeta potential measurement showed that PECs prepared at lower pH (pH<6) exhibited nearly neutral surface charge, whereas PECs prepared at higher pH than 6 exhibited highly negative surface charge. The molecular interactions in nano-colloids and fibers were evaluated using FTIR analysis. The results attest that the ionic state of the chitosan and alginate plays an important role controlling the morphologies of the PECS. The present study has identified the enormous potential of the polyelectrolytes complexes to exploit shape by the alteration of ionic strength. These findings might be useful in the development of novel biomaterial. The produced fibers and nanocolloids could be applied as a biomaterial for tissue engineering and drug delivery. Copyright © 2017. Published by Elsevier B.V.

  13. Sensitive SERS-pH sensing in biological media using metal carbonyl functionalized planar substrates.

    PubMed

    Kong, Kien Voon; Dinish, U S; Lau, Weber Kam On; Olivo, Malini

    2014-04-15

    Conventional nanoparticle based Surface enhanced Raman scattering (SERS) technique for pH sensing often fails due to the aggregation of particles when detecting in acidic medium or biosamples having high ionic strength. Here, We develop SERS based pH sensing using a novel Raman reporter, arene chromium tricarbonyl linked aminothiophenol (Cr(CO)3-ATP), functionalized onto a nano-roughened planar substrates coated with gold. Unlike the SERS spectrum of the ATP molecule that dominates in the 400-1700 cm(-1) region, which is highly interfered by bio-molecules signals, metal carbonyl-ATP (Cr(CO)3)-ATP) offers the advantage of monitoring the pH dependent strong CO stretching vibrations in the mid-IR (1800-2200 cm(-1)) range. Raman signal of the CO stretching vibrations at ~1820 cm(-1) has strong dependency on the pH value of the environment, where its peak undergo noticeable shift as the pH of the medium is varied from 3.0 to 9.0. The sensor showed better sensitivity in the acidic range of the pH. We also demonstrate the pH sensing in a urine sample, which has high ionic strength and our data closely correlate to the value obtained from conventional sensor. In future, this study may lead to a sensitive chip based pH sensing platform in bio-fluids for the early diagnosis of diseases. © 2013 Published by Elsevier B.V.

  14. Fabrication of triple-labeled polyelectrolyte microcapsules for localized ratiometric pH sensing.

    PubMed

    Song, Xiaoxue; Li, Huanbin; Tong, Weijun; Gao, Changyou

    2014-02-15

    Encapsulation of pH sensitive fluorophores as reporting molecules provides a powerful approach to visualize the transportation of multilayer capsules. In this study, two pH sensitive dyes (fluorescein and oregon green) and one pH insensitive dye (rhodamine B) were simultaneously labeled on the microcapsules to fabricate ratiometric pH sensors. The fluorescence of the triple-labeled microcapsule sensors was robust and nearly independent of other intracellular species. With a dynamic pH measurement range of 3.3-6.5, the microcapsules can report their localized pH at a real time. Cell culture experiments showed that the microcapsules could be internalized by RAW 246.7 cells naturally and finally accumulated in acidic organelles with a pH value of 5.08 ± 0.59 (mean ± s.d.; n=162). Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Template-free synthesis of ZnWO{sub 4} powders via hydrothermal process in a wide pH range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hojamberdiev, Mirabbos, E-mail: mirabbos_uz@yahoo.com; Zhu, Gangqiang; Xu, Yunhua

    ZnWO{sub 4} powders with different morphologies were fabricated through a template-free hydrothermal method at 180 {sup o}C for 8 h in a wide pH range. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-visible and luminescence spectrophotometers were applied to study the effects of pH values on crystallinity, morphology, optical and luminescence properties. The XRD results showed that the WO{sub 3} + ZnWO{sub 4}, ZnWO{sub 4}, and ZnO phases could form after hydrothermal processing at 180 {sup o}C for 8 h with the pH values of 1, 3-11, and 13, respectively. The SEM and TEM observation revealedmore » that the morphological transformation of ZnWO{sub 4} powders occurred with an increase in pH values as follows: star anise-, peony-, and desert rose-like microstructures and soya bean- and rod-like nanostructures. The highest luminescence intensity was found to be in sample consisting of star anise-like crystallites among all the samples due to the presence of larger particles with high crystallinity resulted from the favorable pH under the current hydrothermal conditions.« less

  16. Preparation of a novel pH optical sensor using orange (II) based on agarose membrane as support.

    PubMed

    Heydari, Rouhollah; Hosseini, Mohammad; Amraei, Ahmadreza; Mohammadzadeh, Ali

    2016-04-01

    A novel and cost effective optical pH sensor was prepared using covalent immobilization of orange (II) indicator on the agarose membrane as solid support. The fabricated optical sensor was fixed into a sample holder of a spectrophotometer instrument for pH monitoring. Variables affecting sensor performance including pH of dye bonding to agarose membrane and dye concentration were optimized. The sensor responds to the pH changes in the range of 3.0-10.0 with a response time of 2.0 min and appropriate reproducibility (RSD ≤ 0.9%). No significant variation was observed on sensor response after increasing the ionic strength in the range of 0.0-0.5M of sodium chloride. Determination of pH using the proposed optical sensor is quick, simple, inexpensive, selective and sensitive in the pH range of 3.0-10.0. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Analytical advantages of copolymeric microspheres for fluorimetric sensing - tuneable sensitivity sensors and titration agents.

    PubMed

    Stelmach, Emilia; Maksymiuk, Krzysztof; Michalska, Agata

    2017-01-15

    Analytical benefits related to application of copolymeric microspheres containing different number of carboxylic acid mers have been studied on example of acrylate copolymers. These structures can be used as a reagent in heterogeneous pH titration, benefiting from different number of reactive groups - i.e. different concentration of a titrant - within the series of copolymers. Thus introducing the same amount of different microspheres from a series to the sample, different amount of the titrant is introduced. Copolymeric microspheres also can be used as optical sensors - in this respect the increasing number of reactive groups in the series is useful to improve the analytical performance of microprobes - sensitivity of determination or/and response range. The increase in ion-permeability of the spheres with increasing number of reactive mers is advantageous. It is shown that for pH sensitive microspheres containing higher number of carboxyl groups the higher sensitivity for alkaline pH samples is observed for an indicator present in the beads. The significant increase of optical responses is related to enhanced ion transport within the microspheres. For zinc or potassium ions model sensors tested it was shown that by choice of pH conditions and type of microspheres from the series, the optical responses can be tuned - to enhance sensitivity for analyte concentration change as well as to change the response pattern from sigmoidal (higher sensitivity, narrow range) to linear (broader response range). For classical optode systems (e.g. microspheres containing an optical transducer - pH sensitive dye and optically silent ionophore - receptor) copolymeric microspheres containing carboxylic acid mers in their structure allow application of the sensor in alkaline pH range, which is usually inaccessible for applied optical transducer. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. A comparative study on the effect of Curcumin and Chlorin-p6 on the transport of the LDS cation across a negatively charged POPG bilayer: Effect of pH.

    PubMed

    Varshney, G K; Kintali, S R; Gupta, P K; Das, K

    2017-02-15

    We report the use of interface selective Second Harmonic generation technique to investigate the transport of the LDS cation across POPG liposomes in the pH range of 4.0 to 8.0 in the presence and absence of two amphiphilic drugs, Curcumin and Chlorin-p 6 (Cp 6 ). Our results show that bilayer permeability of liposomes is significantly affected by the presence of the drugs and pH of the medium as evidenced by significant changes in the transport kinetics of the LDS. Studies carried out in the pH range 4.0-8.0 show that while Cp 6 significantly enhanced the transport of LDS at pH4.0, the transport of the cation was seen to increase with increasing pH, with maximum effect at pH7.4 for Curcumin. The pH dependent bilayer localization of both the drugs was investigated by conducting steady state FRET studies using DPH labeled lipids as donors. The FRET results and the relative population of the various ionic/nonionic species of the drugs at different pH suggest that distance dependent interaction between the various ionic species of the drugs and polar head groups of the lipid is responsible for the observed pH dependence enhancement of the drug induced membrane permeability. Another interesting observation was that the stability of Curcumin in presence of POPG liposomes was observed to degrade significantly near physiological pH (7.4 and 8.0). Although this degradation did not affect the liposome integrity, interestingly this was observed to enhance the transport of the LDS cation across the bilayer. That the degradation products of Curcumin are equally effective as the drug itself in enhancing the membrane permeability lends additional support to the current opinion that the bioactive degradation products of the drug may have a significant contribution to its observed pharmacological effects. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Growth and mycotoxin production by Chaetomium globosum is favored in a neutral pH.

    PubMed

    Fogle, Matthew R; Douglas, David R; Jumper, Cynthia A; Straus, David C

    2008-12-01

    Chaetomium globosum is frequently isolated in water-damaged buildings and produces two mycotoxins called chaetoglobosins A and C when cultured on building material. In this study, the influence of ambient pH on the growth of C. globosum was examined on an artificial medium. This fungus was capable of growth on potato dextrose agar ranging in pH from 4.3 to 9.4 with optimal growth and chaetoglobosin C production occurring at a neutral pH. In addition, our results show that sporulation is favored in an acidic environment.

  20. Growth and Mycotoxin Production by Chaetomium globosum Is Favored in a Neutral pH

    PubMed Central

    Fogle, Matthew R.; Douglas, David R.; Jumper, Cynthia A.; Straus, David C.

    2008-01-01

    Chaetomium globosum is frequently isolated in water-damaged buildings and produces two mycotoxins called chaetoglobosins A and C when cultured on building material. In this study, the influence of ambient pH on the growth of C. globosum was examined on an artificial medium. This fungus was capable of growth on potato dextrose agar ranging in pH from 4.3 to 9.4 with optimal growth and chaetoglobosin C production occurring at a neutral pH. In addition, our results show that sporulation is favored in an acidic environment. PMID:19330080

  1. Investigation of pH and Temperature Profiles in the GI Tract of Fasted Human Subjects Using the Intellicap(®) System.

    PubMed

    Koziolek, Mirko; Grimm, Michael; Becker, Dieter; Iordanov, Ventzeslav; Zou, Hans; Shimizu, Jeff; Wanke, Christoph; Garbacz, Grzegorz; Weitschies, Werner

    2015-09-01

    Gastrointestinal (GI) pH and temperature profiles under fasted-state conditions were investigated in two studies with each 10 healthy human subjects using the IntelliCap(®) system. This telemetric drug delivery device enabled the determination of gastric emptying time, small bowel transit time, and colon arrival time by significant pH and temperature changes. The study results revealed high variability of GI pH and transit times. The gastric transit of IntelliCap(®) was characterized by high fluctuations of the pH with mean values ranging from pH 1.7 to pH 4.7. Gastric emptying was observed after 7-202 min (median: 30 min). During small bowel transit, which had a duration of 67-532 min (median: 247 min), pH values increased slightly from pH 5.9-6.3 in proximal parts to pH 7.4-7.8 in distal parts. Colonic pH conditions were characterized by values fluctuating mainly between pH 5 and pH 8. The pH profiles and transit times described in this work are highly relevant for the comprehension of drug delivery of solid oral dosage forms comprising ionizable drugs and excipients with pH-dependent solubility. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  2. Evaluation of the relation between lipid coat, transepidermal water loss, and skin pH.

    PubMed

    Algiert-Zielińska, Barbara; Batory, Mirella; Skubalski, Janusz; Rotsztejn, Helena

    2017-11-01

    The epidermis is an epidermal barrier which accumulates lipid substances and participates in skin moisturizing. An evaluation of the epidermal barrier efficiency can be made, among others, by the measurement of the following values: the lipid coat, the transepidermal water loss (TEWL) index, and pH. The study involved 50 Caucasian, healthy women aged 19-35 years (mean 20.56). Measurements were made using Courage & Khazaka Multi Probe Adapter MPA 580: Tewameter TM 300, pH-Meter PH 905, Sebumeter SM 815. The areas of measurements included forehead, nose, left cheek, right cheek, chin, and thigh. In the T-zone, the lipid coat was in the range between 0 and 270 μg/cm 2 (mean 128 μg/cm 2 ), TEWL between 1 and 55 g/m 2 /h (mean 11.1 g/m 2 /h), and pH 4.0-5.6 (mean 5.39). Lower values of the lipid coat up to 100 μg/cm 2 were accompanied by TEWL greater than 30 g/m 2 /h and less acidic pH of 5.6-9.0. In the U-zone the range of lipid coat was up to 200 μg/cm 2 (mean 65.2 μg/cm 2 ), the skin pH remained 4.0-5.6 (mean 5.47), and TEWL was in the range between 1 and 20 g/m 2 /h (mean 8.7 g/m 2 /h). Lower values of the lipid coat up to 100 μg/cm 2 were accompanied by TEWL between 1 and 20 g/m 2 /h and less acidic pH of 5.6-9.0. High values of the lipid coat between 180 and 200 μg/cm 2 were connected with TEWL of 1-15 g/m 2 /h. On the skin of the thigh, we observed a very thin lipid coat - 35 μg/cm 2 (mean 5.6 μg/cm 2 ), pH (mean 5.37), and TEWL (mean 8.5 g/m 2 /h) were considered by us to be within regular limits. In the T-zone, a thinner lipid coat resulted in relatively high TEWL and pH levels changing toward alkaline. In the U-zone, thinner lipid coat was accompanied by lower TEWL and pH changing toward alkaline. We also observed that lower values of lipid coat up to 100 μg/cm 2 were associated with higher pH values ranging toward the basic character pH 5.6-9.0). © 2017 The International Society of Dermatology.

  3. Magnetic iron oxide and manganese-doped iron oxide nanoparticles for the collection of alpha-emitting radionuclides from aqueous solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Hara, Matthew J.; Carter, Jennifer C.; Warner, Cynthia L.

    Magnetic nanoparticles are well known to possess chemically active surfaces and large surface areas that can be employed to extract a range of ions from aqueous solutions. In addition, their superparamagnetic properties provide a convenient means for bulk collection of the material from solution after the targeted ions have been adsorbed. We evaluated two nanoscale amphoteric metal oxides, each possessing useful magnetic attributes for their ability to collect trace levels of a chemically diverse range of alpha emitting radioactive isotopes (polonium (Po), radium (Ra), uranium (U), and americium (Am)) from a wide range of aqueous solutions. The nanomaterials include commerciallymore » available magnetite (Fe3O4) and magnetite modified to incorporate manganese (Mn) into the crystal structure. The chemical stability of these nanomaterials was evaluated in Hanford Site, WA ground water between the natural pH (~8) and pH 1. Whereas the magnetite was observed to have good stability over the pH range, the Mn-doped material was observed to leach Mn at low pH. The materials were evaluated in parallel to characterize their uptake performance of the alpha-emitting radionuclide spikes from ground water across a range of pH (from ~8 down to 2). In addition, radiotracer uptake experiments were performed on Columbia River water, seawater, and human urine at their natural pH and at pH 2. Despite the observed leaching of Mn from the Mn-doped nanomaterial in the lower pH range, it exhibited generally superior analyte extraction performance compared to the magnetite, and analyte uptake was observed across a broader pH range. We show that the uptake behavior of the various radiotracers on these two materials at different pH levels can generally be explained by the amphoteric nature of the nanoparticle surfaces. Finally, the rate of sorption of the radiotracers on the two materials in unacidified ground water was evaluated. The uptake curves generally indicate that equilibrium is obtained within a few minutes, which is attributed to the high surface areas of the nanomaterials and the high level of dispersion in the liquids. In sum, our results indicate that these nanomaterials may have the potential to be employed for a range of applications to extract radionuclides from aqueous solutions.« less

  4. Magnetic iron oxide and manganese-doped iron oxide nanoparticles for the collection of alpha-emitting radionuclides from aqueous solutions

    DOE PAGES

    O'Hara, Matthew J.; Carter, Jennifer C.; Warner, Cynthia L.; ...

    2016-10-31

    Magnetic nanoparticles are well known to possess chemically active surfaces and large surface areas that can be employed to extract a range of ions from aqueous solutions. In addition, their superparamagnetic properties provide a convenient means for bulk collection of the material from solution after the targeted ions have been adsorbed. We evaluated two nanoscale amphoteric metal oxides, each possessing useful magnetic attributes for their ability to collect trace levels of a chemically diverse range of alpha emitting radioactive isotopes (polonium (Po), radium (Ra), uranium (U), and americium (Am)) from a wide range of aqueous solutions. The nanomaterials include commerciallymore » available magnetite (Fe3O4) and magnetite modified to incorporate manganese (Mn) into the crystal structure. The chemical stability of these nanomaterials was evaluated in Hanford Site, WA ground water between the natural pH (~8) and pH 1. Whereas the magnetite was observed to have good stability over the pH range, the Mn-doped material was observed to leach Mn at low pH. The materials were evaluated in parallel to characterize their uptake performance of the alpha-emitting radionuclide spikes from ground water across a range of pH (from ~8 down to 2). In addition, radiotracer uptake experiments were performed on Columbia River water, seawater, and human urine at their natural pH and at pH 2. Despite the observed leaching of Mn from the Mn-doped nanomaterial in the lower pH range, it exhibited generally superior analyte extraction performance compared to the magnetite, and analyte uptake was observed across a broader pH range. We show that the uptake behavior of the various radiotracers on these two materials at different pH levels can generally be explained by the amphoteric nature of the nanoparticle surfaces. Finally, the rate of sorption of the radiotracers on the two materials in unacidified ground water was evaluated. The uptake curves generally indicate that equilibrium is obtained within a few minutes, which is attributed to the high surface areas of the nanomaterials and the high level of dispersion in the liquids. In sum, our results indicate that these nanomaterials may have the potential to be employed for a range of applications to extract radionuclides from aqueous solutions.« less

  5. Understanding short-chain fatty acids accumulation enhanced in waste activated sludge alkaline fermentation: kinetics and microbiology.

    PubMed

    Zhang, Peng; Chen, Yinguang; Zhou, Qi; Zheng, Xiong; Zhu, Xiaoyu; Zhao, Yuxiao

    2010-12-15

    Most of the studies on sewage sludge treatment in literature were conducted for methane generation under acidic or near neutral pH conditions. It was reported in our previous studies that the accumulation of short-chain fatty acids (SCFAs), the preferred carbon source of biological wastewater nutrient removal, was significantly enhanced when sludge was fermented under alkaline conditions, but the optimal pH was temperature-dependent (pH 10 at ambient temperature, pH 9 at mesophilic, and pH 8 at thermophilic), and the maximal SCFAs yields were in the following order: thermophilic pH 8 > mesophilic pH 9 > ambient pH 10 > ambient uncontrolled pH. In this study the kinetic and microbiological features of waste activated sludge fermented in the range of pH 7-10 were investigated to understand the mechanism of remarkably high SCFAs accumulation under alkaline conditions. The developed sludge alkaline fermentation model could be applied to predicate the experimental data in either batch or semicontinuous sludge alkaline fermentation tests, and the relationships among alkaline pH, kinetic parameters, and SCFAs were discussed. Further analyses with fluorescence in situ hybridization (FISH) and PCR-based 16S rRNA gene clone library indicated that both the ratio of bacteria to archaea and the fraction of SCFAs producer accounting for bacteria were in the sequence of thermophilic pH 8 > mesophilic pH 9 > ambient pH 10 > ambient uncontrolled pH, which was in correspondence with the observed order of maximal SCFAs yields.

  6. MICROBIAL SULFATE REDUCTION AND METAL ATTENUATION IN PH 4 ACID MINE WATER

    EPA Science Inventory

    Sediments recovered from the flooded mine workings of the Penn Mine, a Cu-Zn mine abandoned since the early 1960s, were cultured for anaerobic bacteria over a range of pH (4 to 7.5). The molecular biology of sediments and cultures was studied to determine whether sulfate-reducing...

  7. Effect of silicic acid on arsenate and arsenite retention mechanisms on 6-L ferrihydrite: A spectroscopic and batch adsorption approach

    PubMed Central

    Gao, Xiaodong; Root, Robert A.; Farrell, James; Ela, Wendell; Chorover, Jon

    2014-01-01

    The competitive adsorption of arsenate and arsenite with silicic acid at the ferrihydrite-water interface was investigated over a wide pH range using batch sorption experiments, attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, extended X-ray absorption fine structure (EXAFS) spectroscopy, and density functional theory (DFT) modeling. Batch sorption results indicate that the adsorption of arsenate and arsenite on the 6-L ferrihydrite surface exhibits a strong pH-dependence, and the effect of pH on arsenic sorption differs between arsenate and arsenite. Arsenate adsorption decreases consistently with increasing pH; whereas arsenite adsorption initially increases with pH to a sorption maximum at pH 7–9, where after sorption decreases with further increases in pH. Results indicate that competitive adsorption between silicic acid and arsenate is negligible under the experimental conditions; whereas strong competitive adsorption was observed between silicic acid and arsenite, particularly at low and high pH. In-situ, flow-through ATR-FTIR data reveal that in the absence of silicic acid, arsenate forms inner-sphere, binuclear bidentate, complexes at the ferrihydrite surface across the entire pH range. Silicic acid also forms inner-sphere complexes at ferrihydrite surfaces throughout the entire pH range probed by this study (pH 2.8 – 9.0). The ATR-FTIR data also reveal that silicic acid undergoes polymerization at the ferrihydrite surface under the environmentally-relevant concentrations studied (e.g., 1.0 mM). According to ATR-FTIR data, arsenate complexation mode was not affected by the presence of silicic acid. EXAFS analyses and DFT modeling confirmed that arsenate tetrahedra were bonded to Fe metal centers via binuclear bidentate complexation with average As(V)-Fe bond distance of 3.27 Å. The EXAFS data indicate that arsenite forms both mononuclear bidentate and binuclear bidentate complexes with 6-L ferrihydrite as indicated by two As(III)-Fe bond distances of ~2.92–2.94 and 3.41–3.44 Å, respectively. The As-Fe bond distances in both arsenate and arsenite EXAFS spectra remained unchanged in the presence of Si, suggesting that whereas Si diminishes arsenite adsorption preferentially, it has a negligible effect on As-Fe bonding mechanisms. PMID:25382933

  8. A new lime material for container substrates

    USDA-ARS?s Scientific Manuscript database

    The primary component in greenhouse potting substrates is sphagnum peatmoss. Substrate solution pH of non-amended peatmoss ranges from 4.0 to 4.5. Ideal pH for most greenhouse floriculture crops ranges from 5.8 to 6.2. Dolomitic lime is most often used to elevate substrate pH in peatmoss-based me...

  9. Cadmium Accumulation and Pathological Alterations in the Midgut Gland of Terrestrial Snail Helix pomatia L. from a Zinc Smelter Area: Role of Soil pH.

    PubMed

    Włostowski, Tadeusz; Kozłowski, Paweł; Łaszkiewicz-Tiszczenko, Barbara; Oleńska, Ewa

    2016-04-01

    The purpose of this study was to determine whether cadmium (Cd) accumulation and toxicity in the midgut gland of Helix pomatia snails living in a Cd-contaminated area were related to soil pH. Toxic responses in the midgut gland (i.e., increased vacuolization and lipid peroxidation) occurred in H. pomatia snails exhibiting the highest Cd levels in the gland (265-274 µg/g dry wt) and living on acidic soil (pH 5.3-5.5), while no toxicity was observed in snails accumulating less Cd (90 µg/g) and ranging on neutral soil (pH 7.0), despite the fact that total soil Cd was similar in the two cases. The accumulation of Cd in the gland was directly related to the water extractable Cd in soil, which in turn correlated inversely with soil pH, indicating that this factor had a significant effect on tissue Cd. It appeared further that the occurrence of Cd toxicity was associated with low levels of metallothionein in the gland of snails ranging on acidic soil.

  10. Studying the influence of stem composition in pH-sensitive molecular beacons onto their sensing properties.

    PubMed

    Dembska, Anna; Kierzek, Elzbieta; Juskowiak, Bernard

    2017-10-16

    Intracellular sensing using fluorescent molecular beacons is a potentially useful strategy for real-time, in vivo monitoring of important cellular events. This work is focused on evaluation of pyrene excimer signaling molecular beacons (MBs) for the monitoring of pH changes in vitro as well as inside living cells. The recognition element in our MB called pHSO (pH-sensitive oligonucleotide) is the loop enclosing cytosine-rich fragment that is able to form i-motif structure in a specific pH range. However, alteration of a sequence of the 6 base pairs containing stem of MB allowed the design of pHSO probes that exhibited different dynamic pH range and possessed slightly different transition midpoint between i-motif and open loop configuration. Moreover, this conformational transition was accompanied by spectral changes showing developed probes different pyrene excimer-monomer emission ratio triggered by pH changes. The potential of these MBs for intracellular pH sensing is demonstrated on the example of HeLa cells line. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Stable and selective self-assembly of α-lipoic acid on Ge(001) for biomolecule immobilization

    NASA Astrophysics Data System (ADS)

    Kazmierczak, M.; Flesch, J.; Mitzloff, J.; Capellini, G.; Klesse, W. M.; Skibitzki, O.; You, C.; Bettenhausen, M.; Witzigmann, B.; Piehler, J.; Schroeder, T.; Guha, S.

    2018-05-01

    We demonstrate a novel method for the stable and selective surface functionalization of germanium (Ge) embedded in silicon dioxide. The Ge(001) surface is functionalized using α-lipoic acid (ALA), which can potentially be utilized for the immobilization of a wide range of biomolecules. We present a detailed pH-dependence study to establish the effect of the incubation pH value on the adsorption layer of the ALA molecules. A threshold pH value for functionalization is identified, dividing the examined pH range into two regions. Below a pH value of 7, the formation of a disordered ALA multilayer is observed, whereas a stable well-ordered ALA mono- to bi-layer on Ge(001) is achieved at higher pH values. Furthermore, we analyze the stability of the ALA layer under ambient conditions, revealing the most stable functionalized Ge(001) surface to effectively resist oxidation for up to one week. Our established functionalization method paves the way towards the successful immobilization of biomolecules in future Ge-based biosensors.

  12. [Spatial heterogeneity of soil salinization and its influencing factors in the typical region of the Mu Us Desert-Loess Plateau transitional zone, Northwest China].

    PubMed

    Zhao, Xuan; Hao, Qi Li; Sun, Ying Ying

    2017-06-18

    Studies on the spatial heterogeneity of saline soil in the Mu Us Desert-Loess Plateau transition zone are meaningful for understanding the mechanisms of land desertification. Taking the Mu Us Desert-Loess Plateau transition zone as the study subject, its spatial heterogeneity of pH, electrical conductivity (EC) and total salt content were analyzed by using on-site sampling followed with indoor analysis, classical statistical and geostatistical analysis. The results indicated that: 1) The average values of pH, EC and total salt content were 8.44, 5.13 mS·cm -1 and 21.66 g·kg -1 , respectively, and the coefficient of variation ranged from 6.9% to 73.3%. The pH was weakly variable, while EC and total salt content were moderately variable. 2) Results of semivariogram analysis showed that the most fitting model for spatial variability of all three indexes was spherical model. The C 0 /(C 0 +C) ratios of three indexes ranged from 8.6% to 14.3%, which suggested the spatial variability of all indexes had a strong spatial autocorrelation, and the structural factors played a more important role. The variation range decreased in order of pH

  13. Quantitative description and local structures of trivalent metal ions Eu(III) and Cm(III) complexed with polyacrylic acid.

    PubMed

    Montavon, G; Bouby, M; Huclier-Markai, S; Grambow, B; Geckeis, H; Rabung, T; Pashalidis, I; Amekraz, B; Moulin, C

    2008-11-15

    The trivalent metal ion (M(III)=Cm, Eu)/polyacrylic acid (PAA) system was studied in the pH range between 3 and 5.5 for a molar PAA-to-metal ratio above 1. The interaction was studied for a wide range of PAA (0.05 mg L(-1)-50 g L(-1)) and metal ion concentrations (2x10(-9)-10(-3) M). This work aimed at 3 goals (i) to determine the stoichiometry of M(III)-PAA complexes, (ii) to determine the number of complexed species and the local environment of the metal ion, and (iii) to quantify the reaction processes. Asymmetric flow-field-flow fractionation (AsFlFFF) coupled to ICP-MS evidenced that size distributions of Eu-PAA complexes and PAA were identical, suggesting that Eu bound to only one PAA chain. Time-resolved laser fluorescence spectroscopy (TRLFS) measurements performed with Eu and Cm showed a continuous shift of the spectra with increasing pH. The environment of complexed metal ions obviously changes with pH. Most probably, spectral variations arose from conformational changes within the M(III)-PAA complex due to pH variation. Complexation data describing the distribution of complexed and free metal ion were measured with Cm by TRLFS. They could be quantitatively described in the whole pH-range studied by considering the existence of only a single complexed species. This indicates that the slight changes in M(III) speciation with pH observed at the molecular level do not significantly affect the intrinsic binding constant. The interaction constant obtained from the modelling must be considered as a mean interaction constant.

  14. Comparative Study of Poly (ε-Caprolactone) and Poly(Lactic-co-Glycolic Acid) -Based Nanofiber Scaffolds for pH-Sensing.

    PubMed

    Di, Wenjun; Czarny, Ryan S; Fletcher, Nathan A; Krebs, Melissa D; Clark, Heather A

    2016-10-01

    This study aims to develop biodegradable and biocompatible polymer-based nanofibers that continuously monitor pH within microenvironments of cultured cells in real-time. In the future, these fibers will provide a scaffold for tissue growth while simultaneously monitoring the extracellular environment. Sensors to monitor pH were created by directly electrospinning the sensor components within a polymeric matrix. Specifically, the entire fiber structure is composed of the optical equivalent of an electrode, a pH-sensitive fluorophore, an ionic additive, a plasticizer, and a polymer to impart mechanical stability. The resulting poly(ε-caprolactone) (PCL) and poly(lactic-co-glycolic acid) (PLGA) based sensors were characterized by morphology, dynamic range, reversibility and stability. Since PCL-based nanofibers delivered the most desirable analytical response, this matrix was used for cellular studies. Electrospun nanofiber scaffolds (NFSs) were created directly out of optode material. The resulting NFS sensors respond to pH changes with a dynamic range centered at 7.8 ± 0.1 and 9.6 ± 0.2, for PCL and PLGA respectively. NFSs exhibited multiple cycles of reversibility with a lifetime of at least 15 days with preservation of response characteristics. By comparing the two NFSs, we found PCL-NFSs are more suitable for pH sensing due to their dynamic range and superior reversibility. The proposed sensing platform successfully exhibits a response to pH and compatibility with cultured cells. NSFs will be a useful tool for creating 3D cellular scaffolds that can monitor the cellular environment with applications in fields such as drug discovery and tissue engineering.

  15. A long lifetime chemical sensor: study on fluorescence property of fluorescein isothiocyanate and preparation of pH chemical sensor.

    PubMed

    Ma, Li Ying; Wang, Huai You; Xie, Hui; Xu, Li Xiao

    2004-07-01

    The fluorescence property of fluorescein isothiocyanate (FITC) in acid-alkaline medium was studied by spectrofluorimetry. The characteristic of FITC response to hydrogen ion has been examined in acid-alkaline solution. A novel pH chemical sensor was prepared based on the relationship between the relative fluorescence intensity of FITC and pH. The measurement of relative fluorescence intensity was carried out at 362 nm with excitation at 250 nm. The excellent linear relationship was obtained between relative fluorescence intensity and pH in the range of pH 1-5. The linear regression equation of the calibration graph is F = 66.871 + 6.605 pH (F is relative fluorescence intensity), with a correlation coefficient of linear regression of 0.9995. Effects of temperature, concentration of FITC on the response to hydrogen ion had been examined. It was important that this chemical sensor was long lifetime, and the property of response to hydrogen ion was stable for at least 70 days. This pH sensor can be used for measuring pH value in water solution. The accuracy is 0.01 pH unit. The results obtained by the pH sensor agreed with those by the pH meter. Obviously, this pH sensor is potential for determining pH change real time in biological system.

  16. A long lifetime chemical sensor: study on fluorescence property of fluorescein isothiocyanate and preparation of pH chemical sensor

    NASA Astrophysics Data System (ADS)

    Ma, Li Ying; Wang, Huai You; Xie, Hui; Xu, Li Xiao

    2004-07-01

    The fluorescence property of fluorescein isothiocyanate (FITC) in acid-alkaline medium was studied by spectrofluorimetry. The characteristic of FITC response to hydrogen ion has been examined in acid-alkaline solution. A novel pH chemical sensor was prepared based on the relationship between the relative fluorescence intensity of FITC and pH. The measurement of relative fluorescence intensity was carried out at 362 nm with excitation at 250 nm. The excellent linear relationship was obtained between relative fluorescence intensity and pH in the range of pH 1-5. The linear regression equation of the calibration graph is F=66.871+6.605 pH ( F is relative fluorescence intensity), with a correlation coefficient of linear regression of 0.9995. Effects of temperature, concentration of FITC on the response to hydrogen ion had been examined. It was important that this chemical sensor was long lifetime, and the property of response to hydrogen ion was stable for at least 70 days. This pH sensor can be used for measuring pH value in water solution. The accuracy is 0.01 pH unit. The results obtained by the pH sensor agreed with those by the pH meter. Obviously, this pH sensor is potential for determining pH change real time in biological system.

  17. Scales and sources of pH and dissolved oxygen variability in a shallow, upwelling-driven ecosystem

    NASA Astrophysics Data System (ADS)

    Tanner, C. A.; Martz, T.; Levin, L. A.

    2011-12-01

    In the coastal zone extreme variability in carbonate chemistry and oxygen is driven by fluctuations in temperature, salinity, air-sea gas exchange, mixing processes, and biology. This variability appears to be magnified in upwelling-driven ecosystems where low oxygen and low pH waters intrude into shallow depths. The oxygen and carbon chemistry signal can be further confounded by highly productive ecosystems such as kelp beds where photosynthesis and respiration consume and release significant amounts of dissolved inorganic carbon and oxygen. This variability poses a challenge for scientists assessing the impacts of climate change on nearshore ecosystems. We deployed physical & biogeochemical sensors in order to observe these processes in situ. The "SeapHOx" instruments used in this study consist of a modified Honeywell Durafet° ISFET pH sensor, an Aanderra Optode Oxygen sensor, and a SBE-37 conductivity, temperature, pressure sensor. The instruments were deployed on and around the La Jolla Kelp Forest at a variety of depths. Our goals were to (a) characterize the link between pH and oxygen and identify the magnitude of pH and oxygen variability over a range of intra-annual time scales and (b) investigate spatial patterns of pH and oxygen variability associated with depth, proximity to shore, and presence of kelp. Results thus far reveal a strong relationship between oxygen and pH. Temporal variability is greatest at the semidiurnal frequency where pH (at 7 m) can range up to 0.3 units and oxygen can change 50% over 6 h. Diurnal variability is a combination of the diurnal tidal component and diel cycles of production and respiration. Event-scale dynamics associated with upwelling can maintain pH and oxygen below 7.8 units and 200 μmol kg-1, respectively, for multiple days. Frequent current reversals drive changes in the observed oxygen and pH variability. When alongshore currents are flowing southward, driven by upwelling-favorable winds, the magnitude of semidiurnal pH variability increases 5-fold relative to the magnitude of change during northward alongshore. Applying an empirically-determined alkalinity relationship, we conclude that changes in the carbonate chemistry parameters are largely driven by changes in total carbon. On small spatial scales, cross-shore differences exist in mean oxygen and pH but differences in alongshore mean oxygen and pH at a given depth appears to be negligible. Cross-shore differences can equate to a 0.05 pH unit decrease and 25 μmol kg-1 oxygen decrease over 1 km at a given depth. Strong spatial variability in pH and oxygen conditions exist over vertical gradients in the kelp forest, with mean pH at the surface (7m) being 0.2 pH units greater than at the bottom (17m) and mean oxygen being 104 μmol kg-1 greater. The observed range of pH (7.55-8.22) observed in this shallow environment during the course of a year is greater than open ocean predictions for a global mean pH reduction of 0.2-0.3 units predicted by the year 2100. These results suggest that organisms on exposed upwelling coasts may be adapted to a range of pH conditions and highlight the need for scientists to consider biological response to varying scales of pH change in order to develop more realistic predictions of the impacts of climate change for the coastal zone.

  18. 40 CFR 421.34 - Standards of performance for new sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... grease .000 .000 pH (1) (1) 1 Within the range of 7.0 to 10.0 at all times. (d) Subpart C—Demagging Wet....330 3.330 pH (2) (2) 1 At the source. 2 Within the range of 7.0 to 10.0 at all times. (f) Subpart C....290 13.290 pH (1) (1) 1 Within the range of 7.0 to 10.0 at all times. (g) Subpart C—Ingot Conveyor...

  19. 40 CFR 421.254 - Standards of performance for new sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Oil and Grease 4.000 4.000 Total suspended solids 6.000 4.800 pH (1) (1) 1 Within the range of 7.5 to....000 Total suspended solids 19.500 15.600 pH (1) (1) 1 Within the range of 7.5 to 10.0 at all times. (b... pH (1) (1) 1 Within the range of 7.5 to 10.0 at all times. (d) Electrolyte preparation wet air...

  20. 40 CFR 421.234 - Standards of performance for new sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... solids 0.508 0.406 pH 1 1 1 Within the range of 7.5 to 10.0 at all times. (c) Nickel reduction decant... Total suspended solids 1.155 0.924 pH 1 1 1 Within the range of 7.5 to 10.0 at all times. (b) Nickel....400 152.300 pH 1 1 1 Within the range of 7.5 to 10.0 at all times. (d) Cobalt reduction decant. NSPS...

  1. 40 CFR 421.34 - Standards of performance for new sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... grease .000 .000 pH (1) (1) 1 Within the range of 7.0 to 10.0 at all times. (d) Subpart C—Demagging Wet....330 3.330 pH (2) (2) 1 At the source. 2 Within the range of 7.0 to 10.0 at all times. (f) Subpart C....290 13.290 pH (1) (1) 1 Within the range of 7.0 to 10.0 at all times. (g) Subpart C—Ingot Conveyor...

  2. Microfluidic study of environmental control of genetic competence in Streptococcus mutans

    NASA Astrophysics Data System (ADS)

    Son, Minjun; Ghoreishilangroudi, Seyedehdelaram; Ahn, Sang-Joon; Burne, Robert; Hagen, Stephen

    2015-03-01

    The bacterial pathogen Streptococcus mutans has the ability to enter a transient state of genetic competence in which it can integrate exogenous DNA. It regulates the competent state in response to several environmental inputs that include two quorum sensing peptides (CSP and XIP) as well as pH and other variables. However the interplay of these variables in regulating the competent state is poorly understood. We are using microfluidics to isolate and control environmental inputs and examine how the competence regulatory circuit responds at the single cell level. Our studies reveal that the pH of the growth environment plays a critical role in determining how cells respond to the quorum sensing signals: The response to both peptides is sharply tuned to a narrow window of near-neutral pH. Within this optimal pH range, a population responds unimodally to a XIP stimulus, and bimodally to CSP; outside this range the response to both signals is suppressed. Because a growing S. mutans culture acidifies its medium, our findings suggest that the passage of the pH through the sensitivity window transiently activates the competence circuit. In this way a sharply tuned environmental response gives S. mutans fine control over the duration of its competent state. This work is supported by the NIH under NIDCR awards R01 DE023339.

  3. Ab initio study of weakly bound halogen complexes: RX⋯PH3.

    PubMed

    Georg, Herbert C; Fileti, Eudes E; Malaspina, Thaciana

    2013-01-01

    Ab initio calculations were employed to study the role of ipso carbon hybridization in halogenated compounds RX (R=methyl, phenyl, acetyl, H and X=F, Cl, Br and I) and its interaction with a phosphorus atom, as occurs in the halogen bonded complex type RX⋯PH3. The analysis was performed using ab initio MP2, MP4 and CCSD(T) methods. Systematic energy analysis found that the interaction energies are in the range -4.14 to -11.92 kJ mol(-1) (at MP2 level without ZPE correction). Effects of electronic correlation levels were evaluated at MP4 and CCSD(T) levels and a reduction of up to 27% in interaction energy obtained in MP2 was observed. Analysis of the electrostatic maps confirms that the PhCl⋯PH3 and all MeX⋯PH3 complexes are unstable. NBO analysis suggested that the charge transfer between the moieties is bigger when using iodine than bromine and chlorine. The electrical properties of these complexes (dipole and polarizability) were determined and the most important observed aspect was the systematic increase at the dipole polarizability, given by the interaction polarizability. This increase is in the range of 0.7-6.7 u.a. (about 3-7%).

  4. Penicillin-binding site on the Escherichia coli cell envelope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amaral, L.; Lee, Y.; Schwarz, U.

    The binding of /sup 35/S-labeled penicillin to distinct penicillin-binding proteins (PBPs) of the cell envelope obtained from the sonication of Escherichia coli was studied at different pHs ranging from 4 to 11. Experiments distinguishing the effect of pH on penicillin binding by PBP 5/6 from its effect on beta-lactamase activity indicated that although substantial binding occurred at the lowest pH, the amount of binding increased with pH, reaching a maximum at pH 10. Based on earlier studies, it is proposed that the binding at high pH involves the formation of a covalent bond between the C-7 of penicillin and freemore » epsilon amino groups of the PBPs. At pHs ranging from 4 to 8, position 1 of penicillin, occupied by sulfur, is considered to be the site that establishes a covalent bond with the sulfhydryl groups of PBP 5. The use of specific blockers of free epsilon amino groups or sulfhydryl groups indicated that wherever the presence of each had little or no effect on the binding of penicillin by PBP 5, the presence of both completely prevented binding. The specific blocker of the hydroxyl group of serine did not affect the binding of penicillin.« less

  5. Phosphorus Imaging as a Tool for Studying the pH Metabolism in Living Insects

    NASA Astrophysics Data System (ADS)

    Skibbe, U.; Christeller, J. T.; Eccles, C. D.; Laing, W. A.; Callaghan, P. T.

    1995-09-01

    Comparative 31P NMR and 1H NMR imaging experiments at submillimeter pixel resolution were carried out, using a specially constructed solenoidal RF coil. Chemical-shift imaging is used to provide pH maps from the midgut of a Lepidopteran larvae and to demonstrate physiological dependence in the resulting images, The titration curve of pH versus chemical shift for inorganic phosphate is extended beyond the "normal" biological range to the strong alkaline limit.

  6. A new half-condensed Schiff base compound: highly selective and sensitive pH-responsive fluorescent sensor.

    PubMed

    Saha, Uday Chand; Dhara, Koushik; Chattopadhyay, Basab; Mandal, Sushil Kumar; Mondal, Swastik; Sen, Supriti; Mukherjee, Monika; van Smaalen, Sander; Chattopadhyay, Pabitra

    2011-09-02

    A new probe, 3-[(3-benzyloxypyridin-2-ylimino)methyl]-2-hydroxy-5-methylbenzaldehyde (1-H) behaves as a highly selective fluorescent pH sensor in a Britton-Robinson buffer at 25 °C. The pH titrations show a 250-fold increase in fluorescence intensity within the pH range of 4.2 to 8.3 with a pK(a) value of 6.63 which is valuable for studying many of the biological organelles.

  7. Methods to Select Chemicals for In Situ Biodegradation of Fuel Hydrocarbons

    DTIC Science & Technology

    1990-07-01

    nutrients at a variety of C:N:P ratios have been added to bioreclamation sites, often with equivocal results ( Atlas , 1981; Bossert and Bartha , 1984...pH in the range of 5 to 9. Since desirable pH for microbial growth is near 7 ( Atlas , 1981), it is not possible to decrease significantly the pH of...34Potentiometric Study on the Formation of Perboric Acids," Acta Chemica Scandinavica, Vol. 10, pp. 756-760, 1956. Atlas , R.M. Microbial Degradation

  8. Structural and photodynamic properties of the anti-cancer drug irinotecan in aqueous solutions of different pHs.

    PubMed

    di Nunzio, Maria Rosaria; Douhal, Yasmin; Organero, Juan Angel; Douhal, Abderrazzak

    2018-05-23

    This work reports on photophysical studies of the irinotecan (IRT) anti-cancer drug in water solutions of different acidities (pH = 1.11-9.46). We found that IRT co-exists as mono-cationic (C1), di-cationic (C2), or neutral (N) forms. The population of each prototropic species depends on the pH of the solution. At pH = 1.11-3.01, the C1 and C2 structures are stabilized. At pH = 7.00, the most populated species is C1, while at pH values larger than 9.46 the N form is the most stable species. In the 1.11-2.61 pH range, the C1* emission is efficiently quenched by protons to give rise to the emission from C2*. The dynamic quenching constant, KD, is ∼32 M-1. While the diffusion governs the rate of excited-state proton-transfer (ESPT) under these conditions, the reaction rate increases with the proton concentration. A two-step diffusive Debye-Smoluchowski model was applied at pH = 1.11-2.61 to describe the protonation of C1*. The ESPT time constants derived for C1* are 382 and 1720 ps at pH = 1.11 and 1.95, respectively. We found that one proton species is involved in the protonation of C1* to give C2*, in the analyzed acidic pH range. Under alkaline conditions (pH = 9.46), the N form is the most stable structure of IRT. These results indicate the influence of the pH of the medium on the structural and dynamical properties of IRT in water solution. They may help to provide a better understanding on the relationship between the structure and biological activity of IRT.

  9. Does the Exposure of Urine Samples to Air Affect Diagnostic Tests for Urine Acidification?

    PubMed Central

    Yi, Joo-Hark; Shin, Hyun-Jong; Kim, Sun-Moon; Han, Sang-Woong; Oh, Man-Seok

    2012-01-01

    Summary Background and objectives For accurate measurement of pH, urine collection under oil to limit the escape of CO2 on air exposure is recommended. This study aims to test the hypothesis that urine collection under oil is not necessary in acidic urine in which bicarbonate and CO2 are minor buffers, because loss of CO2 would have little effect on its pH. Design, setting, participants, & measurements One hundred consecutive random urine samples were collected under oil and analyzed for pH, pCO2, and HCO3− immediately and after 5 minutes of vigorous shaking in uncovered flasks to allow CO2 escape. Results The pH values in 97 unshaken samples ranged from 5.03 to 6.83. With shaking, urine pCO2 decreased by 76%, whereas urine HCO3− decreased by 60%. Meanwhile, urine baseline median pH (interquartile range) of 5.84 (5.44–6.25) increased to 5.93 (5.50–6.54) after shaking (ΔpH=0.12 [0.07–0.29], P<0.001). ΔpH with pH≤6.0 was significantly lower than the ΔpH with pH>6.0 (0.08 [0.05–0.12] versus 0.36 [0.23–0.51], P<0.001). Overall, the lower the baseline pH, the smaller the ΔpH. Conclusions The calculation of buffer reactions in a hypothetical acidic urine predicted a negligible effect on urine pH on loss of CO2 by air exposure, which was empirically proven by the experimental study. Therefore, exposure of urine to air does not substantially alter the results of diagnostic tests for urine acidification, and urine collection under oil is not necessary. PMID:22700881

  10. Spatial distribution of pH and organic matter in urban soils and its implications on site-specific land uses in Xuzhou, China.

    PubMed

    Mao, Yingming; Sang, Shuxun; Liu, Shiqi; Jia, Jinlong

    2014-05-01

    The spatial variation of soil pH and soil organic matter (SOM) in the urban area of Xuzhou, China, was investigated in this study. Conventional statistics, geostatistics, and a geographical information system (GIS) were used to produce spatial distribution maps and to provide information about land use types. A total of 172 soil samples were collected based on grid method in the study area. Soil pH ranged from 6.47 to 8.48, with an average of 7.62. SOM content was very variable, ranging from 3.51 g/kg to 17.12 g/kg, with an average of 8.26 g/kg. Soil pH followed a normal distribution, while SOM followed a log-normal distribution. The results of semi-variograms indicated that soil pH and SOM had strong (21%) and moderate (44%) spatial dependence, respectively. The variogram model was spherical for soil pH and exponential for SOM. The spatial distribution maps were achieved using kriging interpolation. The high pH and high SOM tended to occur in the mixed forest land cover areas such as those in the southwestern part of the urban area, while the low values were found in the eastern and the northern parts, probably due to the effect of industrial and human activities. In the central urban area, the soil pH was low, but the SOM content was high, which is mainly attributed to the disturbance of regional resident activities and urban transportation. Furthermore, anthropogenic organic particles are possible sources of organic matter after entering the soil ecosystem in urban areas. These maps provide useful information for urban planning and environmental management. Copyright © 2014 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  11. Development of a fluorescence endoscopic system for pH mapping of gastric tissue

    NASA Astrophysics Data System (ADS)

    Rochon, Philippe; Mordon, Serge; Buys, Bruno; Dhelin, Guy; Lesage, Jean C.; Chopin, Claude

    2003-10-01

    Measurement of gastro intestinal intramucosal pH (pHim) has been recognized as an important factor in the detection of hypoxia induced dysfonctions. However, current pH measurements techniques are limited in terms of time and spatial resolutions. A major advance in accurate pH measurement was the development of the ratiometric fluorescent indicator dye, 2',7'-bis(carboxyethyl)-5,6-carboxyfluorescein (BCECF). BCECF which pKa is in the physiological pH range is suitable for pH tissue measurements in vivo. This study aimed to develop and evaluate an endoscopic imaging system for real time pH measurements in the stomach in order to provide to ICU a new tool for gastro intestinal intramucosal pH (pHim) measurements. This fluorescence imaging technique should allow the temporal exploration of sequential events, particularly in ICU where the pHim provides a predictive information of the patient' status. The experimental evaluations of this new and innovative endoscopic fluorescence system confirms the accuracy of pH measurement using BCECF.

  12. The effect of humic acid on uranyl sorption onto bentonite at trace uranium levels.

    PubMed

    Ivanov, Peter; Griffiths, Tamara; Bryan, Nick D; Bozhikov, Gospodin; Dmitriev, Serguei

    2012-11-01

    The effect of humic acid (HA) on U(VI) sorption on bentonite was studied in batch experiments at room temperature and ambient atmosphere at a (237)U(VI) concentration of 8.4 × 10(-11) M and HA concentration of 100 mg L(-1). The distribution of U(VI) between the liquid and solid phases was studied as a function of pH and ionic strength both in the absence and presence of HA. It was shown that the uranyl sorption on bentonite is strongly dependent on pH and the presence of humics, and the effect of the addition order was negligible. In the absence of HA an enhancement in the uptake with increasing pH was observed and a sharp sorption edge was found to take place between pH 3.2 and 4.2. The presence of HA slightly increases uranium(VI) sorption at low pH and curtails it at moderate pH, compared to the absence of HA. In the basic pH range for both the presence and absence of HA the sorption of uranium is significantly reduced, which could be attributed to the formation of soluble uranyl carbonate complexes. The influence of ionic strength on U(VI) and HA uptake by bentonite were investigated in the range of 0.01-1.0 M, and while there was an enhancement in the sorption of humic acid with increasing ionic strength, no significant effect of the ionic strength on the U(VI) sorption was observed in both the absence and presence of HA.

  13. Role of pH on the stress corrosion cracking of titanium alloys

    NASA Technical Reports Server (NTRS)

    Khokhar, M. I.; Beck, F. H.; Fontana, M. G.

    1973-01-01

    Stress corrosion cracking (SCC) experiments were conducted on Ti-8-1-1 wire specimens in hydrochloric and sulfuric acids of variable pH in order to determine the effect of pH on the susceptibility to cracking. The alloy exhibited increasing susceptibility with decreasing pH. By varying the applied potential, it was observed that susceptibility zones exist both in the cathodic and the anodic ranges. In the cathodic range, susceptibility also increased with decreasing applied potential. Corrosion potential-time data in hydrochloric acid (pH 1.7) and sulfuric acid (pH 1.7) indicate that chloride ions lower the corrosion potential of the specimen which, in turn, increases the susceptibility.

  14. Monitoring of the interconversion of gamma-butyrolactone (GBL) to gamma hydroxybutyric acid (GHB) by Raman spectroscopy.

    PubMed

    Munshi, Tasnim; Brewster, Victoria L; Edwards, Howell G M; Hargreaves, Michael D; Jilani, Shelina K; Scowen, Ian J

    2013-08-01

    Gamma-hydroxybutyric acid (GHB) is a drug-of-abuse that has recently become associated with drug-facilitated sexual assault, known as date rape. For this reason the drug is commonly found 'spiked' in alcoholic beverages. When GHB is in solution it may undergo conversion into the corresponding lactone, Gamma-butyrolactone (GBL). Studies have been carried out to determine the detection limits of GHB and GBL in various solutions by Raman spectroscopy and to monitor the interconversion of GHB and GBL in solution with different pH conditions and temperature. In this study, a portable Raman spectrometer was used to study the interconversion of GHB and GBL in water and ethanol solutions as a function of pH, time, and temperature. The aim of this was to determine the optimum pH range for conversion in order to relate this to the pH ranges that the drug is likely to be subjected to, first in spiked beverages and secondly after ingestion in the digestive system. The aim was also to identify a timescale for this conversion in relation to possible scenarios, for example if GHB takes a number of hours to convert to GBL, it is likely for the beverage to be ingested before esterification can take place. GHB and GBL were then spiked into a selection of beverages of known pH in order to study the stability of GHB and GBL in real systems. Copyright © 2012 John Wiley & Sons, Ltd.

  15. Physicochemical characterization of phyllanthin from Phyllanthus amarus Schum. et Thonn.

    PubMed

    Hanh, Nguyen Duc; Sinchaipanid, Nuttanan; Mitrevej, Ampol

    2014-06-01

    Phyllanthin is a major bioactive lignan component of Phyllanthus amarus, with several known biological activities. This study dealt with the isolation and physicochemical characterization of phyllanthin. Phyllanthin was isolated from P. amarus leaves by column chromatography and purified by recrystallization to obtain phyllanthin crystals with a purity of more than 98%. UV, IR, MS, (1)H NMR and (13)C NMR spectra were employed to identify phyllanthin. The physicochemical properties of phyllanthin were characterized using differential scanning calorimetry, thermogravimetric analysis, X-ray diffraction, pH-solubility, ionization property and lipophilicity. The results indicated that phyllanthin crystals had the melting point and melting enthalpy range of 96.67-97.03 °C and 109.61-116.34 J/g, respectively. Three kinds of phyllanthin crystals, recrystallized by petroleum ether, absolute ethanol and 25% ethanol solution, showed only one polymorph and no polymorphic impurity. Phyllanthin in a solid state was found to undergo significant thermal decomposition above 200 °C. The compound demonstrated good stability in aqueous solution over a pH range of 1.07-10.02 for at least 4 h. The solubility of phyllanthin appeared to be pH-independent of pH range from 1.07 to 10.26. Ionization property studied by absorbance spectroscopy method was in agreement with the result of pH-solubility study, showing that phyllanthin has no pKa over a pH range of 1.12-10.02. The log Pow value of phyllanthin was found to be 3.30 ± 0.05 at pH 7.48, suggesting that phyllanthin may have good permeability through biological membranes. The findings could be useful tools for the development of stable and bioavailable oral dosage forms of phyllanthin.

  16. A New Approach to Evaluating the Well-Being of PhD Research Students

    ERIC Educational Resources Information Center

    Juniper, Bridget; Walsh, Elaine; Richardson, Alan; Morley, Bernard

    2012-01-01

    This study describes the development of an assessment to evaluate the well-being of PhD researchers using a clinically approved methodology that places the perceptions and experiences of the subject population at the heart of its construction. It identifies and assesses the range and relative importance of seven distinct dimensions which are shown…

  17. INFLUENCE OF PH AND OXIDATION-REDUCTION POTENTIAL (EH) ON THE DISSOLUTION OF MERCURY-CONTAINING MINE WASTES FROM THE SULFUR BANK MERCURY MINE

    EPA Science Inventory

    This study was undertaken as a part of developing treatment alternatives for waste materials, primarily waste rock and roaster tailings, from sites contaminated with mercury (Hg) mining wastes. Leaching profiles of waste rock over a range of different pH and oxidation-reduction (...

  18. A Study to Draw a Normative Database of Laryngopharynx pH Profile in Chinese

    PubMed Central

    Feng, Guijian; Wang, Junyao; Zhang, Lihong; Liu, Yulan

    2014-01-01

    Background/Aims To draw a normative database of laryngopharynx pH profile in Chinese subjects. Methods Normal volunteers were recruited from “www.Ganji.com” and People’s hospital between May 2008 and December 2009. The Restech pH Probes were calibrated in pH 7 and pH 4 buffer solutions according to the manufacturer's instructions. Each volunteer was asked to wear the device for a 24-hour period and was encouraged to participate in normal daily activities. Results The healthy volunteers consisted of 20 males and 9 females with a median age of 23 years (interquartile range, 21 to 32 years). The 95th percentiles for % total times at pH < 4, pH < 4.5, pH < 5.0 and pH < 5.5 for the oropharynx pH catheter were 0.06%, 1.01%, 7.23% and 27.34%, respectively. The 95th percentile for number of reflux events within the 24-hour period at pH < 4, pH < 4.5, pH < 5.0 and pH < 5.5 were 2.0, 18.0, 107.5 and 284.5, respectively. Conclusions This is the first study to systematically assess the degree of reflux detected by the new pH probe in healthy asymptomatic Chinese volunteers and to report normative values in Chinese people. Using an oropharyngeal pH catheter to monitor laryngopharyngeal reflux indicated that in healthy Chinese, reflux should be considered normal if the percent time at pH less than 4.5 is no more than 1%. PMID:24948130

  19. 40 CFR 467.32 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and grease 7.32 4.39 Suspended solids 15.0 7.13 pH (1) (1) 1 Within the range of 7.0 to 10.0 at all... solids 60.60 28.82 pH (1) (1) 1 With the range of 7.0 to 10.0 at all times. Subpart C Direct Chill... wastewater in which case the pH shall be within the range of 6.0 to 10.0 at all times. Subpart C Press Heat...

  20. 40 CFR 421.154 - Standards of performance for new sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...,700.0 4,378.0 Total Suspended solids 3,300.0 2,640.0 pH (1) (1) 1 Within the range of 7.5 to 10.0 at....000 Total Suspended solids 33,690.000 26,950.000 pH (1) (1) 1 Within the range of 7.5 to 10.0 at all...,269.000 Total Suspended solids 3,218.000 2,574.000 pH (1) (1) 1 Within the range of 7.5 to 10.0 at all...

  1. 40 CFR 421.152 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... pH (1) (1) 1 Within the range of 7.5 to 10.0 at all times. (c) Beryllium Carbonate Filtrate. BPT... suspended solids 9,430.0 4,485.0 pH (1) (1) 1 Within the range of 7.5 to 10.0 at all times. (g) Process... Fluoride 3.535 2.010 Total Suspended Solids 4.141 1.970 pH (1) (1) 1 Within the range of 7.5 to 10.0 at all...

  2. 40 CFR 471.23 - New source performance standards (NSPS).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 4.37 Fluoride 4.44 1.97 Oil and grease 0.746 0.746 TSS 1.12 0.895 pH (1) (1) 1 Within the range of 7... 7.63 Oil and grease 2.89 2.89 TSS 4.34 3.47 pH (1) (1) 1 Within the range of 7.5 to 10.0 at all... 59.3 47.4 pH (1) (1) 1 Within the range of 7.5 to 10.0 at all times. (f) Surface treatment spent...

  3. 40 CFR 467.32 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and grease 7.32 4.39 Suspended solids 15.0 7.13 pH (1) (1) 1 Within the range of 7.0 to 10.0 at all... solids 60.60 28.82 pH (1) (1) 1 With the range of 7.0 to 10.0 at all times. Subpart C Direct Chill... wastewater in which case the pH shall be within the range of 6.0 to 10.0 at all times. Subpart C Press Heat...

  4. 40 CFR 434.55 - New source performance standards (NSPS).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... consecutive days Concentrations in mg/1 Iron, total 6.0 3.0 TSS 70.0 35.0 pH (1) (1) 1 Within the range 6.0 to... property Limitations Settleable Solids 0.5 ml/1 maximum not to be exceeded. pH (1) (1) Within the range 6.0..., total 4.0 2.0 TSS 70.0 35.0 pH (1) (1) 1 Within the range 6.0 to 9.0 at all times. (2) Except as...

  5. Hydrologic data from the integrated lake-watershed acidification study in the west-central Adirondack Mountains, New York : October 1977 through January 1982

    USGS Publications Warehouse

    Peters, N.E.; Murdoch, Peter S.; Dalton, F.N.

    1987-01-01

    Hydrologic data were collected from three forested headwater lake watersheds in Herkimer and Hamilton Counties from October 1977 through early January 1982 as part of the Integrated Lake-Watersheds Acidification Study (ILWAS). ILWAS was established in 1977 to determine why these lakes differ in pH when all receive equal amounts of acidic atmospheric deposition. Woods Lake is acidic (pH ranges from 4 to 5), Panther Lake is neutral (pH ranges from 5 to 7.5), and Sagamore Lake is intermediate (pH ranges from 5 to 6). The data tabulated herein include discharge at the three lake outlets and in a tributary to each lake; lake-water stage at each lake; chemical quality of lake water, including total concentrations of zinc, iron, manganese, and lead, at each lake outlet and at Lost Brook (a tributary to Sagamore Lake); groundwater stage from 29 wells; major ion concentrations of groundwater from 22 of these wells; temperature of soil from three depths at one site in each watershed; soil-moisture tension at three depths at eight sites - four in the neutral-lake basin, three in the acidic-lake basin , and one in the intermediate-lake basin; and average snowpack depths and water equivalents at approximately 20 snow-course sites in each basin for three sampling periods during the 1979-80 winter. (USGS)

  6. Nutrient leaching, soil pH and changes in microbial community increase with time in lead-contaminated boreal forest soil at a shooting range area.

    PubMed

    Selonen, Salla; Setälä, Heikki

    2017-02-01

    Despite the known toxicity of lead (Pb), Pb pellets are widely used at shotgun shooting ranges over the world. However, the impacts of Pb on soil nutrients and soil microbes, playing a crucial role in nutrient cycling, are poorly understood. Furthermore, it is unknown whether these impacts change with time after the cessation of shooting. To shed light on these issues, three study sites in the same coniferous forest in a shooting range area were studied: an uncontaminated control site and an active and an abandoned shooting range, both sharing a similar Pb pellet load in the soil, but the latter with a 20-year longer contamination history. Soil pH and nitrate concentration increased, whilst soil phosphate concentration and fungal phospholipid fatty acid (PLFA) decreased due to Pb contamination. Our results imply that shooting-derived Pb can influence soil nutrients and microbes not only directly but also indirectly by increasing soil pH. However, these mechanisms cannot be differentiated here. Many of the Pb-induced changes were most pronounced at the abandoned range, and nutrient leaching was increased only at that site. These results suggest that Pb disturbs the structure and functions of the soil system and impairs a crucial ecosystem service, the ability to retain nutrients. Furthermore, the risks of shooting-derived Pb to the environment increase with time.

  7. Evaluation of metal ion absorptive characteristics of three types of plastic sample bags used for pecipitation sampling

    USGS Publications Warehouse

    Good, A.B.; Schroder, L.J.

    1984-01-01

    Simulated precipitation samples containing 16 metal ions were prepared at 4 pH values. Absorptive characteristics of polypropylene, polyethylene, and polyester/polyolefin sacks were evaluated at pH 3.5, 4.0, 4.5, and 5.0. Simulated precipitation was in contact with the sacks for 17 days, and subsamples were removed for chemical analysis at 3, 7, 10, 14, and 17 days after initial contact. All three types of plastic sacks absorbed Fe throughout the entire pH range. Polypropylene and polyethylene absorbed Pb throughout the entire pH range; polyester/polyolefin sacks absorbed Pb at pH 4.0 or greater. All plastic sacks also absorbed Cu, Mo, and V at pH 4.5 and 5.0. Leaching the plastic sacks with 0.7 percent HNO3 did not result in 100 percent of Cu, Fe, Pb, and V. These sacks would be suitable collection vessels for Ba, Be, Ca, Cd, Co, Li, Mg, Mn, Na Sr and Zn in precipitation through the pH range of 3.5 to 5.0.

  8. Adsorption of Cu(II) to Bacillus subtilis: A pH-dependent EXAFS and thermodynamic modelling study

    NASA Astrophysics Data System (ADS)

    Moon, Ellen M.; Peacock, Caroline L.

    2011-11-01

    Bacteria are very efficient sorbents of trace metals, and their abundance in a wide variety of natural aqueous systems means biosorption plays an important role in the biogeochemical cycling of many elements. We measured the adsorption of Cu(II) to Bacillus subtilis as a function of pH and surface loading. Adsorption edge and XAS experiments were performed at high bacteria-to-metal ratio, analogous to Cu uptake in natural geologic and aqueous environments. We report significant Cu adsorption to B. subtilis across the entire pH range studied (pH ˜2-7), with adsorption increasing with pH to a maximum at pH ˜6. We determine directly for the first time that Cu adsorbs to B. subtilis as a (CuO 5H n) n-8 monodentate, inner-sphere surface complex involving carboxyl surface functional groups. This Cu-carboxyl complex is able to account for the observed Cu adsorption across the entire pH range studied. Having determined the molecular adsorption mechanism of Cu to B. subtilis, we have developed a new thermodynamic surface complexation model for Cu adsorption that is informed by and consistent with EXAFS results. We model the surface electrostatics using the 1p K basic Stern approximation. We fit our adsorption data to the formation of a monodentate, inner-sphere tbnd RCOOCu + surface complex. In agreement with previous studies, this work indicates that in order to accurately predict the fate and mobility of Cu in complex biogeochemical systems, we must incorporate the formation of Cu-bacteria surface complexes in reactive transport models. To this end, this work recommends log K tbnd RCOOCu + = 7.13 for geologic and aqueous systems with generally high B. subtilis-to-metal ratio.

  9. Batch and fed-batch production of butyric acid by Clostridium butyricum ZJUCB

    PubMed Central

    He, Guo-qing; Kong, Qing; Chen, Qi-he; Ruan, Hui

    2005-01-01

    The production of butyric acid by Clostridium butyricum ZJUCB at various pH values was investigated. In order to study the effect of pH on cell growth, butyric acid biosynthesis and reducing sugar consumption, different cultivation pH values ranging from 6.0 to 7.5 were evaluated in 5-L bioreactor. In controlled pH batch fermentation, the optimum pH for cell growth and butyric acid production was 6.5 with a cell yield of 3.65 g/L and butyric acid yield of 12.25 g/L. Based on these results, this study then compared batch and fed-batch fermentation of butyric acid production at pH 6.5. Maximum value (16.74 g/L) of butyric acid concentration was obtained in fed-batch fermentation compared to 12.25 g/L in batch fermentation. It was concluded that cultivation under fed-batch fermentation mode could enhance butyric acid production significantly (P<0.01) by C. butyricum ZJUCB. PMID:16252341

  10. pH-dependence of single-protein adsorption and diffusion at a liquid chromatographic interface.

    PubMed

    Kisley, Lydia; Poongavanam, Mohan-Vivekanandan; Kourentzi, Katerina; Willson, Richard C; Landes, Christy F

    2016-02-01

    pH is a common mobile phase variable used to control protein separations due to the tunable nature of amino acid and adsorbent charge. Like other column variables such as column density and ligand loading density, pH is usually optimized empirically. Single-molecule spectroscopy extracts molecular-scale data to provide a framework for mechanistic optimization of pH. The adsorption and diffusion of a model globular protein, α-lactalbumin, was studied by single-molecule microscopy at a silica-aqueous interface analogous to aqueous normal phase and hydrophilic interaction chromatography and capillary electrophoresis interfaces at varied pH. Electrostatic repulsion resulting in free diffusion was observed at pH above the isoelectric point of the protein. In contrast, at low pH strong adsorption and surface diffusion with either no (D ∼ 0.01 μm(2) /s) or translational (D ∼ 0.3 μm(2) /s) motion was observed where the protein likely interacted with the surface through electrostatic, hydrophobic, and hydrogen bonding forces. The fraction of proteins immobilized could be increased by lowering the pH. These results show that retention of proteins at the silica interface cannot be viewed solely as an adsorption/desorption process and that the type of surface diffusion, which ultimately leads to ensemble chromatographic separations, can be controlled by tuning long-range electrostatic and short-range hydrophobic and hydrogen bonding forces with pH. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Systematic interpolation method predicts protein chromatographic elution with salt gradients, pH gradients and combined salt/pH gradients.

    PubMed

    Creasy, Arch; Barker, Gregory; Carta, Giorgio

    2017-03-01

    A methodology is presented to predict protein elution behavior from an ion exchange column using both individual or combined pH and salt gradients based on high-throughput batch isotherm data. The buffer compositions are first optimized to generate linear pH gradients from pH 5.5 to 7 with defined concentrations of sodium chloride. Next, high-throughput batch isotherm data are collected for a monoclonal antibody on the cation exchange resin POROS XS over a range of protein concentrations, salt concentrations, and solution pH. Finally, a previously developed empirical interpolation (EI) method is extended to describe protein binding as a function of the protein and salt concentration and solution pH without using an explicit isotherm model. The interpolated isotherm data are then used with a lumped kinetic model to predict the protein elution behavior. Experimental results obtained for laboratory scale columns show excellent agreement with the predicted elution curves for both individual or combined pH and salt gradients at protein loads up to 45 mg/mL of column. Numerical studies show that the model predictions are robust as long as the isotherm data cover the range of mobile phase compositions where the protein actually elutes from the column. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. pH controls spermatozoa motility in the Pacific oyster (Crassostrea gigas)

    PubMed Central

    Suquet, Marc; Malo, Florent; Queau, Isabelle; Pignet, Patricia; Ratiskol, Dominique; Le Grand, Jacqueline; Huber, Matthias; Cosson, Jacky

    2018-01-01

    ABSTRACT Investigating the roles of chemical factors stimulating and inhibiting sperm motility is required to understand the mechanisms of spermatozoa movement. In this study, we described the composition of the seminal fluid (osmotic pressure, pH, and ions) and investigated the roles of these factors and salinity in initiating spermatozoa movement in the Pacific oyster, Crassostrea gigas. The acidic pH of the gonad (5.82±0.22) maintained sperm in the quiescent stage and initiation of flagellar movement was triggered by a sudden increase of spermatozoa external pH (pHe) when released in seawater (SW). At pH 6.4, percentage of motile spermatozoa was three times higher when they were activated in SW containing 30 mM NH4Cl, which alkalinizes internal pH (pHi) of spermatozoa, compared to NH4Cl-free SW, revealing the role of pHi in triggering sperm movement. Percentage of motile spermatozoa activated in Na+-free artificial seawater (ASW) was highly reduced compared to ASW, suggesting that change of pHi triggering sperm motility was mediated by a Na+/H+ exchanger. Motility and swimming speed were highest in salinities between 33.8 and 42.7‰ (within a range of 0 to 50 ‰), and pH values above 7.5 (within a range of 4.5 to 9.5). PMID:29483075

  13. Groundwater quality and the relation between pH values and occurrence of trace elements and radionuclides in water samples collected from private wells in part of the Kickapoo Tribe of Oklahoma Jurisdictional Area, central Oklahoma, 2011

    USGS Publications Warehouse

    Becker, Carol J.

    2013-01-01

    From 1999 to 2007, the Indian Health Service reported that gross alpha-particle activities and concentrations of uranium exceeded the Maximum Contaminant Levels for public drinking-water supplies in water samples from six private wells and two test wells in a rural residential neighborhood in the Kickapoo Tribe of Oklahoma Jurisdictional Area, in central Oklahoma. Residents in this rural area use groundwater from Quaternary-aged terrace deposits and the Permian-aged Garber-Wellington aquifer for domestic purposes. Uranium and other trace elements, specifically arsenic, chromium, and selenium, occur naturally in rocks composing the Garber-Wellington aquifer and in low concentrations in groundwater throughout its extent. Previous studies have shown that pH values above 8.0 from cation-exchange processes in the aquifer cause selected metals such as arsenic, chromium, selenium, and uranium to desorb (if present) from mineral surfaces and become mobile in water. On the basis of this information, the U.S. Geological Survey, in cooperation with the Kickapoo Tribe of Oklahoma, conducted a study in 2011 to describe the occurrence of selected trace elements and radionuclides in groundwater and to determine if pH could be used as a surrogate for laboratory analysis to quickly and inexpensively identify wells that might contain high concentrations of uranium and other trace elements. The pH and specific conductance of groundwater from 59 private wells were measured in the field in an area of about 18 square miles in Lincoln and Pottawatomie Counties. Twenty of the 59 wells also were sampled for dissolved concentrations of major ions, trace elements, gross alpha-particle and gross beta-particle activities, uranium, radium-226, radium-228, and radon-222 gas. Arsenic concentrations exceeded the Maximum Contaminant Level of 10 micrograms per liter in one sample having a concentration of 24.7 micrograms per liter. Selenium concentrations exceeded the Maximum Contaminant Level of 50 micrograms per liter in one sample having a concentration of 147 micrograms per liter. Both samples had alkaline pH values, 8.0 and 8.4, respectively. Uranium concentrations ranged from 0.02 to 383 micrograms per liter with 5 of 20 samples exceeding the Maximum Contaminant Level of 30 micrograms per liter; the five wells with uranium concentrations exceeding 30 micrograms per liter had pH values ranging from 8.0 to 8.5. Concentrations of uranium and radon-222 and gross alpha-particle activity showed a positive relation to pH, with the highest concentrations and activity in samples having pH values of 8.0 or above. The groundwater samples contained dissolved oxygen and high concentrations of bicarbonate; these characteristics are also factors in increasing uranium solubility. Concentrations of radium-226 and radium-228 (combined) ranged from 0.03 to 1.7 picocuries per liter, with a median concentration of 0.45 picocuries per liter for all samples. Radon-222 concentrations ranged from 95 to 3,600 picocuries per liter with a median concentration of 261 picocuries per liter. Eight samples having pH values ranging from 8.0 to 8.7 exceeded the proposed Maximum Contaminant Level of 300 picocuries per liter for radon-222. Eight samples exceeded the 15 picocuries per liter Maximum Contaminant Level for gross alpha-particle activity at 72 hours (after sample collection) and at 30 days (after the initial count); those samples had pH values ranging from 8.0 to 8.5. Gross beta-particle activity increased in 15 of 21 samples during the interval from 72 hours to 30 days. The increase in gross beta-particle activity over time probably was caused by the ingrowth and decay of uranium daughter products that emit beta particles. Water-quality data collected for this study indicate that pH values above 8.0 are associated with potentially high concentrations of uranium and radon-222 and high gross alpha-particle activity in the study area. High pH values also are associated with potentially high concentrations of arsenic, chromium, and selenium in groundwater when these elements occur in the aquifer matrix along groundwater-flow paths.

  14. The effect of pH on the rheology of mixed gels containing whey protein isolate and xanthan-curdlan hydrogel.

    PubMed

    Shiroodi, Setareh Ghorban; Lo, Y Martin

    2015-11-01

    The ultimate goal of this work was to examine the effect of xanthan-curdlan hydrogel complex (XCHC) on the rheology of whey protein isolate (WPI) within the pH range of 4-7 upon heating and cooling. Dynamic rheological properties of WPI and XCHC were studied individually and in combination, as a function of time or temperature. For pure WPI, gels were pH-dependent, and in all pH values except 7, gels formed upon first heating from 40 to 90 °C. At pH 7, WPI did not form gel upon first heating, and the storage modulus (G') started to increase during the holding time at 90 °C. The onset of gelation temperature of WPI was lower in acidic pH ranges compared to the neutral pH. In mixed gels, the presence of XCHC increased the G' of the gels. The rheological behaviour was pH-dependent and initially was controlled by XCHC; however, after the consolidation of WPI network, the behaviour was led by the whey protein isolate. Results showed that XCHC had a synergistic effect on enhancing the elastic modulus of the gels after the consolidation of WPI network. Based on the results of this study, it is possible to use these biopolymers in the formulation of frozen dairy-based products and enable food manufactures to improve the textural and physicochemical properties, and as a result the consumer acceptance of the food product.

  15. Melanin as an active layer in biosensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piacenti da Silva, Marina, E-mail: marinaness@yahoo.com; Congiu, Mirko, E-mail: congiumat@gmail.com; Oliveira Graeff, Carlos Frederico de, E-mail: graeff@fc.unesp.br

    2014-03-15

    The development of pH sensors is of great interest due to its extensive application in several areas such as industrial processes, biochemistry and particularly medical diagnostics. In this study, the pH sensing properties of an extended gate field effect transistor (EGFET) based on melanin thin films as active layer are investigated and the physical mechanisms related to the device operation are discussed. Thin films were produced from different melanin precursors on indium tin oxide (ITO) and gold substrates and were investigated by Atomic Force Microscopy and Electrochemical Impedance Spectroscopy. Experiments were performed in the pH range from 2 to 12.more » EGFETs with melanin deposited on ITO and on gold substrates showed sensitivities ranging from 31.3 mV/pH to 48.9 mV/pH, depending on the melanin precursor and the substrate used. The pH detection is associated with specific binding sites in its structure, hydroxyl groups and quinone imine.« less

  16. Determination of long-range scalar (1)H-(1)H coupling constants responsible for polarization transfer in SABRE.

    PubMed

    Eshuis, Nan; Aspers, Ruud L E G; van Weerdenburg, Bram J A; Feiters, Martin C; Rutjes, Floris P J T; Wijmenga, Sybren S; Tessari, Marco

    2016-04-01

    SABRE (Signal Amplification By Reversible Exchange) nuclear spin hyperpolarization method can provide strongly enhanced NMR signals as a result of the reversible association of small molecules with para-hydrogen (p-H2) at an iridium metal complex. The conversion of p-H2 singlet order to enhanced substrate proton magnetization within such complex is driven by the scalar coupling interactions between the p-H2 derived hydrides and substrate nuclear spins. In the present study these long-range homonuclear couplings are experimentally determined for several SABRE substrates using an NMR pulse sequence for coherent hyperpolarization transfer at high magnetic field. Pyridine and pyrazine derivatives appear to have a similar ∼1.2 Hz (4)J coupling to p-H2 derived hydrides for their ortho protons, and a much lower (5)J coupling for their meta protons. Interestingly, the (4)J hydride-substrate coupling for five-membered N-heterocyclic substrates is well below 1 Hz. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Determination of long-range scalar 1H-1H coupling constants responsible for polarization transfer in SABRE

    NASA Astrophysics Data System (ADS)

    Eshuis, Nan; Aspers, Ruud L. E. G.; van Weerdenburg, Bram J. A.; Feiters, Martin C.; Rutjes, Floris P. J. T.; Wijmenga, Sybren S.; Tessari, Marco

    2016-04-01

    SABRE (Signal Amplification By Reversible Exchange) nuclear spin hyperpolarization method can provide strongly enhanced NMR signals as a result of the reversible association of small molecules with para-hydrogen (p-H2) at an iridium metal complex. The conversion of p-H2 singlet order to enhanced substrate proton magnetization within such complex is driven by the scalar coupling interactions between the p-H2 derived hydrides and substrate nuclear spins. In the present study these long-range homonuclear couplings are experimentally determined for several SABRE substrates using an NMR pulse sequence for coherent hyperpolarization transfer at high magnetic field. Pyridine and pyrazine derivatives appear to have a similar ∼1.2 Hz 4J coupling to p-H2 derived hydrides for their ortho protons, and a much lower 5J coupling for their meta protons. Interestingly, the 4J hydride-substrate coupling for five-membered N-heterocyclic substrates is well below 1 Hz.

  18. Heavy Metal Uptake by Herbs. IV. Influence of Soil pH on the Content of Heavy Metals in Valeriana officinalis L.

    PubMed

    Adamczyk-Szabela, Dorota; Markiewicz, Justyna; Wolf, Wojciech M

    The aim of the study was to estimate the influence of soil pH on the uptake of copper, zinc, and manganese by Valeriana officinalis . Preliminary studies involved soil analyses to determine acidity, organic matter content, and copper, zinc, and manganese total and bioavailable forms. The study involved atomic absorption spectrometry to determine the concentration of the elements, and mineral soil of pH = 5.1 was used in the study, as being typical for central Poland. The copper, zinc, and manganese contents were determined in plants grown in soils which had been modified to cover a wide range of pH values 3÷13. The intensity of germination was strongly pH dependent with the highest yield obtained in original, unmodified soil. Surprisingly, high soil alkalinity stimulated copper and manganese uptake while at the same time resulting in a decrease in zinc content.

  19. Recovery and characterization of proteins from pangas (Pangasius pangasius) processing waste obtained through pH shift processing.

    PubMed

    Surasani, Vijay Kumar Reddy; Kudre, Tanaji; Ballari, Rajashekhar V

    2018-04-01

    Study was conducted to recover proteins from pangas (Pangasius pangasius) processing waste (fillet frames) using pH shift method and to characterize the recovered isolates. pH 2.0 from acidic range and pH 13.0 from alkaline range were found to have maximum protein recovery (p < 0.05). During the recovery process, acidic pH (pH 2.0) was found to have minimal effect on proteins resulting in more stable isolates and strong protein gels. Alkaline pH (pH 13.0) caused protein denaturation resulting in less stable proteins and poor gel network. Both acidic and alkaline-aided processing caused significant (p < 0.05) reductions in total lipid, myoglobin, and pigment content thus by resulting in whiter protein isolates and gels. The content of total essential amino acids increased during pH shift processing, indicating the enrichment of essential amino acids. No microbial counts were detected in any of the isolates prepared using acid and alkaline extraction methods. pH shift processing was found to be promising in the utilization of fish processing waste for the recovery of functional proteins from pangas processing waste thus by reducing the supply demand gap as well pollution problems.

  20. Structural stability of vault particles.

    PubMed

    Esfandiary, Reza; Kickhoefer, Valerie A; Rome, Leonard H; Joshi, Sangeeta B; Middaugh, C Russell

    2009-04-01

    Vaults, at 13 MDa, are the largest ribonucleoprotein particles known. In vitro, expression of the major vault protein (MVP) alone in Sf9 insect cells results in the production of recombinant particles with characteristic vault structure. With the ultimate goal of using recombinant vaults as nanocapsules for the delivery of biomolecules, we have employed a variety of spectroscopic techniques (i.e., circular dichroism, fluorescence spectroscopy, and light scattering) along with electron microscopy, to characterize the structural stability of vaults over a wide range of pH (3-8) and temperature (10-90 degrees C). Ten different conformational states of the vaults were identified over the pH and temperature range studied with the most stable region at pH 6-8 below 40 degrees C and least stable at pH 4-6 above 60 degrees C. A unique intermediate molten globulelike state was also identified at pH 6 and approximately 55 degrees C. EM imaging showed the opening of intact vaults into flowerlike structures when transitioning from neutral to acidic pH. This information has potential use in the development of recombinant vaults into nanocapsules for drug delivery since one mechanism by which therapeutic agents entrapped in vaults could be released is through an opening of the intact vault structure.

  1. Functional properties of tropical banded cricket (Gryllodes sigillatus) protein hydrolysates.

    PubMed

    Hall, Felicia G; Jones, Owen G; O'Haire, Marguerite E; Liceaga, Andrea M

    2017-06-01

    Recently, the benefits of entomophagy have been widely discussed. Due to western cultures' reluctance, entomophagy practices are leaning more towards incorporating insects into food products. In this study, whole crickets (Gryllodes sigillatus) were hydrolyzed with alcalase at 0.5, 1.5, and 3.0% (w/w) for 30, 60, and 90min. Degree of hydrolysis (DH), amino acid composition, solubility, emulsion and foaming properties were evaluated. Hydrolysis produced peptides with 26-52% DH compared to the control containing no enzyme (5% DH). Protein solubility of hydrolysates improved (p<0.05) over a range of pH's, exhibiting >30% soluble protein at pH 3 and 7 and 50-90% at alkaline pH, compared with the control. Emulsion activity index ranged from 7 to 32m 2 /g, while foamability ranged from 100 to 155% for all hydrolysates. These improved functional properties demonstrate the potential to develop cricket protein hydrolysates as a source of functional alternative protein in food ingredient formulations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Temperature range and degree of acidity growth of isolate of indigenous bacteria on fermented feed “fermege”

    NASA Astrophysics Data System (ADS)

    Isnawati; Trimulyono, G.

    2018-01-01

    Fermege is a fermented feed of ruminants, especially goats made from water hyacinth (Eichhornia crassipes). Temperature range and pH need to know in making starter formula for acceleration of fermentation process at making ruminant feed made from this materials. The starter formula expired period can be extended by adjusting starter storage temperature and pH of the starter. This research was aimed to find the temperature and pH range for the growth of isolate of indigenous bacteria “fermege.” This research is an explorative research conducted by growing bacteria isolate indigenous fermege in liquid medium with various pH and incubation in various temperature. Bacterial population was calculated based on turbidity of bacterial suspension with turbidometer. The stages of this research were to isolate the bacteria present in the fermege, purify the isolates found, and then grow the isolates in a liquid medium with various pH values. The isolated bacterials were incubated at different temperature variations. The cell population density of the isolates was calculated after incubation for 24 hours. The results showed there were eight indigenous bacterial isolates. All isolates can grow in the pH range 6 and 7. Two isolates (Bacillus subtilis and B. pumilus) can grow at 4°C. All isolates obtained can grow at a temperature of 30°C. Isolates Bacillus badius, B. subtilis, B. cereus, Pseudomonas stutzeri and P. diminuta can grow at 50°C. Based on research indicates that indigenous fermege bacterial isolates have the ability to grow in the neutral pH range and temperature range between 4°C and 50°C.

  3. Optical fibre PH sensor based on immobilized indicator

    NASA Astrophysics Data System (ADS)

    Cai, Defu; Cao, Qiang; Han, JingHong; Cai, Jine; Li, YaTing; Zhu, ZeMin; Fan, Jie; Gao, Ning

    1991-08-01

    An optical fiber pH sensor which has the immobilized pH sensitive indicator dye reagents on the tip of the optical fiber has been studied. The probe is made by covalently immobilizing the phenol red, bromine phenol blue, or bromothymol blue on the polyacrylamide microsphere fixed by polyterafluoroethylene (PTFE) film. A gap between the dye and optical fiber was used to make the diffusion of the hydrogen ions easier. The parameters of the optical fiber pH sensor have been given completely. The ranges of measurement are 3.0 - 5.0 pH, 7.0 - 8.5 pH, and 8.0 - 10.0 pH for bromine phenol blue, phenol red, and bromothymol blue, respectively. The sensitivity is 66.6 mV/pH. The probe has a precision of better than 0.55 pH. The linear correlation coefficient is 0.999. The response time is 1 - 2 min. The hysteresis is 0.52%. The repeatability is 0.013 mV, while the stability is 0.015 pH/h.

  4. An exploratory study on low-concentration hexavalent chromium adsorption by Fe(III)-cross-linked chitosan beads

    PubMed Central

    Zhang, Yuanjing; Qian, Jin; Xin, Xu; Hu, Sihai; Zhang, Shuai; Wei, Jianguo

    2017-01-01

    In this study, Fe(III)-cross-linked chitosan beads (Fe(III)-CBs) were synthesized and employed to explore the characteristics and primary mechanism of their hexavalent chromium (Cr(VI)) adsorption under low concentration Cr(VI) (less than 20.0 mg l−1) and a pH range from 2.0 to 8.0. Batch tests were conducted to determine the Cr(VI) adsorption capacity and kinetics, and the effects of pH and temperature on the adsorption under low concentration Cr(VI) and a pH range from 2.0 to 8.0. Scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy were employed to explore the characteristics of Fe(III)-CBs and their Cr(VI) adsorption mechanisms. The results show that, unlike the adsorption of other absorbents, the Cr(VI) adsorption was efficient in a wide pH range from 2.0 to 6.0, and well described by the pseudo-first-order model and the Langmuir–Freundlich isotherm model. The capacity of Cr(VI) adsorption by Fe(III)-CBs was as high as 166.3 mg g−1 under temperature 25°C and pH 6.0. The desorption test was also carried out by 0.1 mol l−1 NaOH solution for Fe(III)-CBs regeneration. It was found that Fe(III)-CBs could be re-used for five adsorption–desorption cycles without significant decrease in Cr(VI) adsorption capacity. Ion exchange was confirmed between functional groups (i.e. amino group) and Cr(VI) anions (i.e. CrO42−). The amino-like functional groups played a key role in Cr(VI) distribution on the Fe(III)-CBs surface; Cr(VI) adsorbed on Fe(III)-CBs was partially reduced to Cr(III) with alcoholic group served as electron donor, and then formed another rate-limiting factor. So, Fe(III)-CBs has a good prospect in purifying low concentration Cr(VI) water with a pH range from 2.0 to 6.0. PMID:29291084

  5. A cell-surface-anchored ratiometric fluorescent probe for extracellular pH sensing.

    PubMed

    Ke, Guoliang; Zhu, Zhi; Wang, Wei; Zou, Yuan; Guan, Zhichao; Jia, Shasha; Zhang, Huimin; Wu, Xuemeng; Yang, Chaoyong James

    2014-09-10

    Accurate sensing of the extracellular pH is a very important yet challenging task in biological and clinical applications. This paper describes the development of an amphiphilic lipid-DNA molecule as a simple yet useful cell-surface-anchored ratiometric fluorescent probe for extracellular pH sensing. The lipid-DNA probe, which consists of a hydrophobic diacyllipid tail and a hydrophilic DNA strand, is modified with two fluorescent dyes; one is pH-sensitive as pH indicator and the other is pH-insensitive as an internal reference. The lipid-DNA probe showed sensitive and reversible response to pH change in the range of 6.0-8.0, which is suitable for most extracellular studies. In addition, based on simple hydrophobic interactions with the cell membrane, the lipid-DNA probe can be easily anchored on the cell surface with negligible cytotoxicity, excellent stability, and unique ratiometric readout, thus ensuring its accurate sensing of extracellular pH. Finally, this lipid-DNA-based ratiometric pH indicator was successfully used for extracellular pH sensing of cells in 3D culture environment, demonstrating the potential applications of the sensor in biological and medical studies.

  6. Structure-function studies on hsp47: pH-dependent inhibition of collagen fibril formation in vitro.

    PubMed Central

    Thomson, C A; Ananthanarayanan, V S

    2000-01-01

    Hsp47, a 47 kDa heat shock protein whose expression level parallels that of collagen, has been regarded as a collagen-specific molecular chaperone. Studies from other laboratories have established the association of Hsp47 with the nascent as well as the triple-helical procollagen molecule in the endoplasmic reticulum and its dissociation from procollagen in the Golgi. One of several roles suggested for Hsp47 in collagen biosynthesis is the prevention of aggregation of procollagen in the endoplasmic reticulum. However, no experimental evidence has been available to verify this suggestion. In the present study we have followed the aggregation of mature triple-helical collagen molecules into fibrils by using turbidimetric measurements in the absence and presence of Hsp47. In the pH range 6-7, fibril formation of type I collagen, as monitored by turbidimetry, proceeds with a lag of approx. 10 min and levels off by approx. 60 min. The addition of Hsp47 at pH 7 effectively inhibits fibril formation at and above a 1:1 molar ratio of Hsp47 to triple-helical collagen. This inhibition is markedly pH-dependent, being significantly diminished at pH 6. CD and fluorescence spectral data of Hsp47 in the pH range 4.2-7.4 reveal a significant alteration in its structure at pH values below 6.2, with a decrease in alpha-helix and an increase in beta-structure. This conformational change is likely to be the basis of the decreased binding of Hsp47 to collagen in vitro at pH 6.3 as well as its inability to inhibit collagen fibril formation at this pH. Our results also provide a functional assay for Hsp47 that can be used in studies on collagen and Hsp47 interactions. PMID:10903151

  7. Investigation of the solid state properties of amoxicillin trihydrate and the effect of powder pH.

    PubMed

    Ghassempour, Alireza; Rafati, Hasan; Adlnasab, Laleh; Bashour, Yosef; Ebrahimzadeh, Homeira; Erfan, Mohammad

    2007-11-09

    The purpose of this research was to investigate some physicochemical and solid-state properties of amoxicillin trihydrate (AMT) with different powder pH within the pharmacopoeia-specified range. AMT batches prepared using Dane salt method with the pH values from 4.39 to 4.97 were subjected to further characterization studies. Optical and scanning electron microscopy showed that different batches of AMT powders were similar in crystal habit, but the length of the crystals increased as the pH increased. Further solid-state investigations using powder x-ray diffraction (PXRD) demonstrated the same PXRD pattern, but the intensity of the peaks raised by the powder pH, indicated increased crystallinity. Differential scanning calorimetry (DSC) studies further confirmed that as the powder pH increased, the crystallinity and, hence, thermal stability of AMT powders increased. Searching for the possible cause of the variations in the solid state properties, HPLC analysis showed that despite possessing the requirements of the United States Pharmacopoeia (USP) for purity/impurity profile, there was a direct relationship between the increase of the powder pH and the purity of AMT, and also decrease in the impurity I (alpha-Hydroxyphenylglycine) concentration in AMT powder. Recrystallization studies confirmed that the powder pH could be controlled by adjusting the pH of the crystallization.

  8. Bacterial Profile of Dentine Caries and the Impact of pH on Bacterial Population Diversity

    PubMed Central

    Kianoush, Nima; Adler, Christina J.; Nguyen, Ky-Anh T.; Browne, Gina V.; Simonian, Mary; Hunter, Neil

    2014-01-01

    Dental caries is caused by the release of organic acids from fermentative bacteria, which results in the dissolution of hydroxyapatite matrices of enamel and dentine. While low environmental pH is proposed to cause a shift in the consortium of oral bacteria, favouring the development of caries, the impact of this variable has been overlooked in microbial population studies. This study aimed to detail the zonal composition of the microbiota associated with carious dentine lesions with reference to pH. We used 454 sequencing of the 16S rRNA gene (V3–V4 region) to compare microbial communities in layers ranging in pH from 4.5–7.8 from 25 teeth with advanced dentine caries. Pyrosequencing of the amplicons yielded 449,762 sequences. Nine phyla, 97 genera and 409 species were identified from the quality-filtered, de-noised and chimera-free sequences. Among the microbiota associated with dentinal caries, the most abundant taxa included Lactobacillus sp., Prevotella sp., Atopobium sp., Olsenella sp. and Actinomyces sp. We found a disparity between microbial communities localised at acidic versus neutral pH strata. Acidic conditions were associated with low diversity microbial populations, with Lactobacillus species including L. fermentum, L. rhamnosus and L. crispatus, being prominent. In comparison, the distinctive species of a more diverse flora associated with neutral pH regions of carious lesions included Alloprevotella tanerrae, Leptothrix sp., Sphingomonas sp. and Streptococcus anginosus. While certain bacteria were affected by the pH gradient, we also found that ∼60% of the taxa associated with caries were present across the investigated pH range, representing a substantial core. We demonstrated that some bacterial species implicated in caries progression show selective clustering with respect to pH gradient, providing a basis for specific therapeutic strategies. PMID:24675997

  9. Multilaboratory study of the shifts in the IEP of anatase at high ionic strengths.

    PubMed

    Kosmulski, Marek; Dukhin, Andrei S; Priester, Torsten; Rosenholm, Jarl B

    2003-07-01

    The zeta-potentials of anatase at pH 2-11 in 0.1, 0.3, 0.5, and 1 moldm(-3) NaI were studied using the DT 1200 in three laboratories. At [NaI]=1 moldm(-3) the zeta-potentials were positive over the entire pH range. The previously observed tendency of the isoelectric point of anatase to shift to high pH at high ionic strength (M. Kosmulski, J.B. Rosenholm, J. Phys. Chem. 100 (1996) 11681) and the salt specificity of this effect were confirmed. The zeta-potentials obtained in different laboratories using DT 1200 are consistent within 3 mV.

  10. Stress corrosion cracking properties of 15-5PH steel

    NASA Technical Reports Server (NTRS)

    Rosa, Ferdinand

    1993-01-01

    Unexpected occurrence of failures, due to stress corrosion cracking (SCC) of structural components, indicate a need for improved characterization of materials and more advanced analytical procedures for reliably predicting structures performance. Accordingly, the purpose of this study was to determine the stress corrosion susceptibility of 15-5PH steel over a wide range of applied strain rates in a highly corrosive environment. The selected environment for this investigation was a highly acidified sodium chloride (NaCl) aqueous solution. The selected alloy for the study was a 15-5PH steel in the H900 condition. The slow strain rate technique was selected to test the metals specimens.

  11. Local pH Monitoring of Small Cluster of Cells using a Fiber-Optic Dual-Core Micro-Probe.

    PubMed

    Chen, Sisi; Yang, Qingbo; Xiao, Hai; Shi, Honglan; Ma, Yinfa

    2017-03-31

    Biological studies of tissues and cells have enabled numerous discoveries, but these studies still bear potential risks of invalidation because of cell heterogeneity. Through high-accuracy techniques, recent studies have demonstrated that discrepancies do exist between the results from low-number-cell studies and cell-population-based results. Thus the urgent need to re-evaluate key principles on limited number of cells has been provoked. In this study, a novel designed dual-core fiber-optic pH micro-probe was fabricated and demonstrated for niche environment pH sensing with high spatial resolution. An organic-modified silicate (OrMoSils) sol-gel thin layer was functionalized by entrapping a pH indicator, 2', 7'-Bis (2-carbonylethyl)-5(6)-carboxyfluorescein (BCECF), on a ~70 μm sized probe tip. Good linear correlation between fluorescence ratio of I 560 nm /I 640 nm and intercellular pH values was obtained within a biological-relevant pH range from 6.20 to 7.92 (R 2 = 0.9834), and with a pH resolution of 0.035 ± 0.005 pH units. The probe's horizontal spatial resolution was demonstrated to be less than 2mm. Moreover, the probe was evaluated by measuring the localized extracellular pH changes of cultured human lung cancer cells (A549) when exposed to titanium dioxide nanoparticles (TiO 2 NPs). Results showed that the probe has superior capability for fast, local, and continual monitoring of a small cluster of cells, which provides researchers a fast and accurate technique to conduct local pH measurements for cell heterogeneity-related studies.

  12. A Flexible Optical pH Sensor Based on Polysulfone Membranes Coated with pH-Responsive Polyaniline Nanofibers.

    PubMed

    Abu-Thabit, Nedal; Umar, Yunusa; Ratemi, Elaref; Ahmad, Ayman; Ahmad Abuilaiwi, Faraj

    2016-06-27

    A new optical pH sensor based on polysulfone (PSU) and polyaniline (PANI) was developed. A transparent and flexible PSU membrane was employed as a support. The electrically conductive and pH-responsive PANI was deposited onto the membrane surface by in situ chemical oxidative polymerization (COP). The absorption spectra of the PANI-coated PSU membranes exhibited sensitivity to pH changes in the range of 4-12, which allowed for designing a dual wavelength pH optical sensor. The performance of the membranes was assessed by measuring their response starting from high pH and going down to low pH, and vice versa. It was found that it is necessary to precondition the sensor layers before each measurement due to the slight hysteresis observed during forward and backward pH titrations. PSU membranes with polyaniline coating thicknesses in the range of ≈100-200 nm exhibited fast response times of <4 s, which are attributed to the porous, rough and nanofibrillar morphology of the polyaniline coating. The fabricated pH sensor was characterized by a sigmoidal response (R² = 0.997) which allows for pH determination over a wide dynamic range. All membranes were stable for a period of more than six months when stored in 1 M HCl solution. The reproducibility of the fabricated optical pH sensors was found to be <0.02 absorption units after one month storage in 1 M HCl solution. The performance of the optical pH sensor was tested and the obtained pH values were compared with the results obtained using a pH meter device.

  13. A Flexible Optical pH Sensor Based on Polysulfone Membranes Coated with pH-Responsive Polyaniline Nanofibers

    PubMed Central

    Abu-Thabit, Nedal; Umar, Yunusa; Ratemi, Elaref; Ahmad, Ayman; Ahmad Abuilaiwi, Faraj

    2016-01-01

    A new optical pH sensor based on polysulfone (PSU) and polyaniline (PANI) was developed. A transparent and flexible PSU membrane was employed as a support. The electrically conductive and pH-responsive PANI was deposited onto the membrane surface by in situ chemical oxidative polymerization (COP). The absorption spectra of the PANI-coated PSU membranes exhibited sensitivity to pH changes in the range of 4–12, which allowed for designing a dual wavelength pH optical sensor. The performance of the membranes was assessed by measuring their response starting from high pH and going down to low pH, and vice versa. It was found that it is necessary to precondition the sensor layers before each measurement due to the slight hysteresis observed during forward and backward pH titrations. PSU membranes with polyaniline coating thicknesses in the range of ≈100–200 nm exhibited fast response times of <4 s, which are attributed to the porous, rough and nanofibrillar morphology of the polyaniline coating. The fabricated pH sensor was characterized by a sigmoidal response (R2 = 0.997) which allows for pH determination over a wide dynamic range. All membranes were stable for a period of more than six months when stored in 1 M HCl solution. The reproducibility of the fabricated optical pH sensors was found to be <0.02 absorption units after one month storage in 1 M HCl solution. The performance of the optical pH sensor was tested and the obtained pH values were compared with the results obtained using a pH meter device. PMID:27355953

  14. Botulinum toxin A for palmar hyperhidrosis: assessment with sympathetic skin responses evoked by train of stimuli.

    PubMed

    Al-Hashel, J Y; Youssry, D; Rashaed, H M; Shamov, T; Rousseff, R T

    2016-07-01

    Objective assessment of the effect of botulinum toxin A (BT) treatment in primary palmar hyperhidrosis (PH) is attempted by different methods. We decided to use for this purpose sympathetic skin responses evoked by train of stimuli (TSSR). Twenty patients with severe PH (five female, median age 24, range 18-36) were examined regularly over 3 months after receiving 50 UI BT in each palm. TSSR were recorded from the palms after sensory stimulation by a train of three supramaximal electric pulses 3 millisecond apart. Results were compared to longitudinally studied TSSR of 20 healthy sex- and age-matched control subjects. All hyperhidrosis patients reported excellent improvement. TSSR amplitudes decreased at week 1 (mean 54% range 48%-67%) and over the following months in a clinically significant trend (slope R=-.82, P<.0001). TSSR in controls changed insignificantly (±13% from the baseline). The difference between patients and controls was highly significant at any time point (P<.001). This study suggests that TSSR may help in assessment of treatments in PH. It confirms objectively the efficacy of BT in PH. © 2016 John Wiley & Sons Ltd.

  15. Organic solvent tolerance of an α-amylase from haloalkaliphilic bacteria as a function of pH, temperature, and salt concentrations.

    PubMed

    Pandey, Sandeep; Singh, S P

    2012-04-01

    A haloalkaliphilic bacterium was isolated from salt-enriched soil of Mithapur, Gujarat (India) and identified as Bacillus agaradhaerens Mi-10-6₂ based on 16S rRNA sequence analysis (NCBI gene bank accession, GQ121032). The bacterium was studied for its α-amylase characteristic in the presence of organic solvents. The enzyme was quite active and it retained considerable activity in 30% (v/v) organic solvents, dodecane, decane, heptane, n-hexane, methanol, and propanol. At lower concentrations of solvents, the catalysis was quite comparable to control. Enzyme catalysis at wide range of alkanes and alcohol was an interesting finding of the study. Mi-10-6₂ amylase retained activity over a broader alkaline pH range, with the optimal pH at 10-11. Two molars of salt was optimum for catalysis in the presence of most of the tested solvents, though the enzyme retained significant activity even at 4 M salt. With dodecane, the optimum temperature shifted from 50 °C to 60 °C, while the enzyme was active up to 80 °C. Over all, the present study focused on the effect of organic solvents on an extracellular α-amylase from haloalkaliphilic bacteria under varying conditions of pH, temperature, and salt.

  16. Adsorption of Selenium and Strontium on Goethite: EXAFS Study and Surface Complexation Modeling of the Ternary Systems.

    PubMed

    Nie, Zhe; Finck, Nicolas; Heberling, Frank; Pruessmann, Tim; Liu, Chunli; Lützenkirchen, Johannes

    2017-04-04

    Knowledge of the geochemical behavior of selenium and strontium is critical for the safe disposal of radioactive wastes. Goethite, as one of the most thermodynamically stable and commonly occurring natural iron oxy-hydroxides, promisingly retains these elements. This work comprehensively studies the adsorption of Se(IV) and Sr(II) on goethite. Starting from electrokinetic measurements, the binary and ternary adsorption systems are investigated and systematically compared via batch experiments, EXAFS analysis, and CD-MUSIC modeling. Se(IV) forms bidentate inner-sphere surface complexes, while Sr(II) is assumed to form outer-sphere complexes at low and intermediate pH and inner-sphere complexes at high pH. Instead of a direct interaction between Se(IV) and Sr(II), our results indicate an electrostatically driven mutual enhancement of adsorption. Adsorption of Sr(II) is promoted by an average factor of 5 within the typical groundwater pH range from 6 to 8 for the concentration range studied here. However, the interaction between Se(IV) and Sr(II) at the surface is two-sided, Se(IV) promotes Sr(II) outer-sphere adsorption, but competes for inner-sphere adsorption sites at high pH. The complexity of surfaces is highlighted by the inability of adsorption models to predict isoelectric points without additional constraints.

  17. Influence of calcium and phosphorus, lactose, and salt-to-moisture ratio on Cheddar cheese quality: pH buffering properties of cheese.

    PubMed

    Upreti, P; Bühlmann, P; Metzger, L E

    2006-03-01

    The pH buffering capacity of cheese is an important determinant of cheese pH. However, the effects of different constituents of cheese on its pH buffering capacity have not been fully clarified. The objective of this study was to characterize the chemical species and chemical equilibria that are responsible for the pH buffering properties of cheese. Eight cheeses with 2 levels of Ca and P (0.67 and 0.47% vs. 0.53 and 0.39%, respectively), residual lactose (2.4 vs. 0.78%), and salt-to-moisture ratio (6.4 vs. 4.8%) were manufactured. The pH-titration curves for these cheeses were obtained by titrating cheese:water (1:39 wt/wt) dispersions with 1 N HCl, and backtitrating with 1 N NaOH. To understand the role of different chemical equilibria and the respective chemical species in controlling the pH of cheese, pH buffering was modeled mathematically. The 36 chemical species that were found to be relevant for modeling can be classified as cations (Na+, Ca2+, Mg2+), anions (phosphate, citrate, lactate), protein-bound amino acids with a side-chain pKa in the range of 3 to 9 (glutamate, histidine, serine phosphate, aspartate), metal ion complexes (phosphate, citrate, and lactate complexes of Na+, Ca2+, and Mg2+), and calcium phosphate precipitates. A set of 36 corresponding equations was solved to give the concentrations of all chemical species as a function of pH, allowing the prediction of buffering curves. Changes in the calculated species concentrations allowed the identification of the chemical species and chemical equilibria that dominate the pH buffering properties of cheese in different pH ranges. The model indicates that pH buffering in the pH range from 4.5 to 5.5 is predominantly due to a precipitate of Ca and phosphate, and the protonation equilibrium involving the side chains of protein-bound glutamate. In the literature, the precipitate is often referred to as amorphous colloidal calcium phosphate. A comparison of experimental data and model predictions shows that the buffering properties of the precipitate can be explained, assuming that it consists of hydroxyapatite [Ca5(OH)(PO4)3] or Ca3(PO4)2. The pH buffering in the region from pH 3.5 to 4.5 is due to protonation of side-chain carboxylates of protein-bound glutamate, aspartate, and lactate, in order of decreasing significance. In addition, pH buffering between pH 5 to 8 in the backtitration results from the reprecipitation of calcium and phosphate either as CaHPO4 or Ca4H(PO4)3.

  18. Physiological changes induced in bacteria following pH stress as a model for space research

    NASA Astrophysics Data System (ADS)

    Baatout, Sarah; Leys, Natalie; Hendrickx, Larissa; Dams, Annik; Mergeay, Max

    2007-02-01

    The physiology of the environmental bacterium Cupriavidus metallidurans CH34 (previously Ralstonia metallidurans) is being studied in comparison to the clinical model bacterium Escherichia coli in order to understand its behaviour and resistance under extreme conditions (pH, temperature, etc.). This knowledge is of importance in the light of the potential use and interest of this strain for space biology and bioremediation. Flow cytometry provides powerful means to measure a wide range of cell characteristics in microbiological research. In order to estimate physiological changes associated with pH stress, flow cytometry was employed to estimate the extent of damage on cell size, membrane integrity and potential, and production of superoxides in the two bacterial strains. Suspensions of C. metallidurans and E. coli were submitted to a 1-h pH stress (2 to 12). For flow cytometry, fluorochromes, including propidium iodide, 3, 3'-dihexyloxacarbocyanine iodide and hydroethidine were chosen as analytical parameters for identifying the physiological state and the overall fitness of individual cells. A physiologic state of the bacterial population was assessed with a Coulter EPICS XL analyser based on the differential uptakes of these fluorescent stains. C. metallidurans cells exhibited a different staining intensity than E. coli cells. For both bacterial strains, the physiological status was only slightly affected between pH 6 and 8 in comparison with pH 7 which represents the reference pH. Moderate physiological damage could be observed at pH 4 and 5 as well as at pH 9 in both strains. At pH 2, 10 and 12, membrane permeability and potential and superoxide anion production were increased to high levels showing dramatic physiological changes. It is apparent that a range of significant physiological alterations occurs after pH stress. Fluorescent staining methods coupled with flow cytometry are useful and complementary for monitoring physiological changes induced not only by pH stress but also temperature and oxidative stress, radiation, pressure as well as space stress.

  19. [Successful esophageal pH monitoring with Bravo capsule in patients with gastroesophageal reflux disease].

    PubMed

    Valdovinos Díaz, Miguel A; Remes Troche, José Ma; Ruiz Aguilar, Juan Carlos; Schmulson, Max J; Valdovinos-Andraca, Francisco

    2004-01-01

    Esophageal 24-h pH monitoring (24-pH) is the most useful test to diagnose and treat patients with gastroesophageal reflux disease (GERD). The traditional system for 24-pH requires transnasal introduction of a catheter with pH sensors. This technique produces discomfort, inconvenience and interference with daily activity. Recently, the Bravo pH system has been proposed as an alternative and promising method for 24-pH. In this study, the initial experience in Mexico with this system is reported. To evaluate safety, tolerability and performance of the pH Bravo capsule in patients with GERD. Patients with GERD symptoms at least twice a week during the last three months, with indication for 24-pH were evaluated. pH Bravo capsule was placed 6 cm above squamocolumnar junction (SCJ). Symptoms, quality and duration of pH tracings, capsule detachment and patient global satisfaction were evaluated. Eleven patients (nine female, two male) mean age 42 years (range 26-62 years), two with erosive and nine with non-erosive GERD were studied. pH capsule was correctly positioned at 6 cm above SCJ in all patients. Nine patients noted a mild foreign body sensation (especially while eating) and four had mild chest pain; two patients had no discomfort. Capsule detachment occurred spontaneously in all patients on day 10. pH record for > 43 h was obtained in the 11 patients. There were no differences in pH parameters between days 1 and 2. Two patients with normal acid exposure on day 1 had abnormal pH parameters on day 2. Esophageal pH monitoring with Bravo capsule is a safe, reliable and tolerable method in patients with GERD. Extended pH recordings increases abnormal esophageal acid exposure detection in patients with this disease.

  20. 2D ratiometric fluorescent pH sensor for tracking of cells proliferation and metabolism.

    PubMed

    Ma, Jun; Ding, Changqin; Zhou, Jie; Tian, Yang

    2015-08-15

    Extracellular pH plays a vital role no matter in physiological or pathological studies. In this work, a hydrogel, CD@Nile-FITC@Gel (Gel sensor), entrapping the ratiometric fluorescent probe CD@Nile-FITC was developed. The Gel sensor was successfully used for real-time extracellular pH monitoring. In the case of CD@Nile-FITC, pH-sensitive fluorescent dye fluorescein isothiocyanate (FITC) was chosen as the response signal for H(+) and Nile blue chloride (Nile) as the reference signal. The developed fluorescent probe exhibited high selectivity for pH over other metal ions and amino acids. Meanwhile, the carbon-dots-based inorganic-organic probe demonstrated excellent photostability against long-term light illumination. In order to study the extracellular pH change in processes of cell proliferation and metabolism, CD@Nile-FITC probe was entrapped in sodium alginate gel and consequently formed CD@Nile-FITC@Gel. The MTT assay showed low cytotoxicity of the Gel and the pH titration indicated that it could monitor the pH fluctuations linearly and rapidly within the pH range of 6.0-9.0, which is valuable for physiological pH determination. As expected, the real-time bioimaging of the probe was successfully achieved. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Effectiveness of partially hydrolyzed rice glutelin as a food emulsifier: Comparison to whey protein.

    PubMed

    Xu, Xingfeng; Zhong, Junzhen; Chen, Jun; Liu, Chengmei; Luo, Liping; Luo, Shunjing; Wu, Lixin; McClements, David Julian

    2016-12-15

    The emulsifying properties of partially hydrolyzed rice glutelin (H-RG, 2% degree of hydrolysis) were compared to those of whey isolate protein (WPI), a commonly used protein-based emulsifier. The surface load of WPI (1% emulsifier, d32=167.5nm) was 2.8 times lower than that of H-RG (3% emulsifier, d32=159.0nm). Emulsions containing WPI-coated lipid droplets had better stability to pH changes (2-8), NaCl addition (0-500mM) and thermal processing (30-90°C, 0 or 200mM NaCl). Nevertheless, H-RG emulsions were stable over a range of conditions: pH 6-8; NaCl≤200 (pH 7); temperatures≤90°C in the absence of salt (pH 7); and temperatures≤50°C in the presence of 200mM NaCl (pH 7). This study indicates that H-RG may be utilized as a natural emulsifier in the development of label-friendly emulsion-based food products, but that further work is needed to increase the range of applications. Copyright © 2016. Published by Elsevier Ltd.

  2. 40 CFR 471.31 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... TSS 6.97 3.32 pH (1) (1) 1 Within the range of 7.5 to 10.0 at all times. (c) Rolling contact cooling... Nickel 7.24 4.79 Fluoride 225 99.6 Oil and grease 75.4 45.3 TSS 155 73.5 pH (1) (1) 1 Within the range of... 0.295 Fluoride 13.8 6.13 Oil and grease 4.64 2.79 TSS 9.51 4.53 pH (1) (1) 1 Within the range of 7.5...

  3. 40 CFR 471.31 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... TSS 6.97 3.32 pH (1) (1) 1 Within the range of 7.5 to 10.0 at all times. (c) Rolling contact cooling... Nickel 7.24 4.79 Fluoride 225 99.6 Oil and grease 75.4 45.3 TSS 155 73.5 pH (1) (1) 1 Within the range of... 0.295 Fluoride 13.8 6.13 Oil and grease 4.64 2.79 TSS 9.51 4.53 pH (1) (1) 1 Within the range of 7.5...

  4. Influence of molecular weight and pH on adsorption of chitosan at the surface of large and giant vesicles.

    PubMed

    Quemeneur, Francois; Rinaudo, Marguerite; Pépin-Donat, Brigitte

    2008-01-01

    This paper describes the mechanisms of adsorption of chitosan, a positively charged polyelectrolyte, on the DOPC lipid membrane of large and giant unilamellar vesicles (respectively, LUVs and GUVs). We observe that the variation of the zeta potential of LUVs as a function of chitosan concentration is independent on the chitosan molecular weight (Mw). This result is interpreted in terms of electrostatic interactions, which induce a flat adsorption of the chitosan on the surface of the membrane. The role of electrostatic interactions is further studied by observing the variation of the zeta potential as a function of the chitosan concentration for two different charge densities tuned by the pH. Results show a stronger chitosan-membrane affinity at pH 6 (lipids are negatively charged, and 40% chitosan amino groups are protonated) than at pH 3.4 (100% of protonated amino groups but zwitterionic lipids are positively charged) which confirms that adsorption is of electrostatic origin. Then, we investigate the stability of decorated LUVs and GUVs in a large range of pH (6.0 < pH < 12.0) in order to complete a previous study made in acidic conditions [Quemeneur et al. Biomacromolecules 2007, 8, 2512-2519]. A comparative study of the variation of the zeta potential as a function of the pH (2.0 < pH < 12.0) reveals a difference in behavior between naked and chitosan-decorated LUVs. This result is further confirmed by a comparative observation by optical microscopy of naked and chitosan-decorated GUVs in basic conditions (6.0 < pH < 12.0): at pH > 10.0, in the absence of chitosan, the vesicles present complex shapes, contrary to the chitosan-decorated vesicles which remain spherical, confirming thus that chitosan remains adsorbed on vesicles in basic conditions up to pH = 12.0. These results, in addition with our previous data, show that the chitosan-decorated vesicles are stable over a very broad range of pH (2.0 < pH < 12.0), which holds promise for their in vivo applications. Finally, the quantification of the chitosan adsorption on a LUV membrane is performed by zeta potential and fluorescence measurements. The fraction of membrane surface covered by chitosan is estimated to be lower than 40 %, which corresponds to the formation of a flat layer of chitosan on the membrane surface on an electrostatic basis.

  5. Acid-suppressive effects of rabeprazole, omeprazole, and lansoprazole at reduced and standard doses: a crossover comparative study in homozygous extensive metabolizers of cytochrome P450 2C19.

    PubMed

    Shimatani, Tomohiko; Inoue, Masaki; Kuroiwa, Tomoko; Xu, Jing; Mieno, Hiroshi; Nakamura, Masuo; Tazuma, Susumu

    2006-01-01

    To improve clinical outcomes of the initial therapy for gastroesophageal reflux disease, intragastric pH should be above 4.0 for more than 20 hours a day (83.3%) and nocturnal gastric acid breakthrough, defined as 60 continuous minutes of intragastric pH below 4.0 at night, should be inhibited. A "step-down" therapy sometimes fails because of insufficient acid suppression. Therefore we compared the acid-suppressive effects of proton pump inhibitors. This was a prospective, randomized, open-label, 8-way crossover study. In 9 healthy Helicobacter pylori-negative cytochrome P450 (CYP) 2C19 homozygous extensive metabolizers, intragastric pH was measured for 24 hours on day 7 of treatment with rabeprazole, omeprazole, and lansoprazole orally administered once daily at reduced and standard doses. Compared with baseline data (7% [range, 5%-20%]), the median values of the 24-hour percent of time that intragastric pH was above 4.0 significantly increased but did not exceed 83.3% under any of the 7 regimens, which were as follows: 10 mg rabeprazole (51% [range, 28%-78%], P < .01), 20 mg rabeprazole (59% [range, 36%-83%], P < .01), 10 mg omeprazole (26% [range, 4%-33%], P < .05), 20 mg omeprazole (48% [range, 31%-73%], P < .01), 40 mg omeprazole (62% [range, 47%-87%], P < .01), 15 mg lansoprazole (34% [range, 5%-51%], P < .05), and 30 mg lansoprazole (56% [range, 20%-76%], P < .05). Significant differences were observed among 10, 20, and 40 mg omeprazole (10 mg versus 20 mg, P < .01; 10 mg versus 40 mg, P < .01; and 20 mg versus 40 mg, P < .05) and between 15 and 30 mg lansoprazole (P < .01), whereas no significant difference was observed between 10 and 20 mg rabeprazole. Nocturnal gastric acid breakthrough was observed under all regimens. Rabeprazole, omeprazole, and lansoprazole, given once daily at standard doses, cannot be expected to achieve ideal acid suppression for the initial therapy for gastroesophageal reflux disease in Helicobacter-negative CYP2C19 homozygous extensive metabolizers. Rabeprazole 10 mg may be appropriate for step-down therapy.

  6. Intracellular pH in early Xenopus embryos: its effect on current flow between blastomeres.

    PubMed Central

    Turin, L; Warner, A E

    1980-01-01

    1. Electrophysiological techniques were used to monitor the flow of electric current from one cell to the next in Xenopus laevis embryos between the 4-cell and early blastula stages of development. Intracellular pH and blastocoel pH were determined using pH-sensitive micro-electrodes. 2. The resting intracellular pH was 7.74+/-0.02 (S.E. of mean, n = 29); there were no systematic differences between developmental stages. Blastocoel cavity pH was 8.4+/-0.06 (S.E. of mean, n = 10). The intracellular buffer value was 18 m-equiv. H+/pH unit per litre. 3. In embryos treated with bicarbonate buffered Holtfreter solution equilibrated with 100% CO2 the intracellular pH fell to 6.3+/-0.17 (S.D., n = 8). The membrane potential fell and the input resistance increased. The size of the effect on membrane potential and input resistance varied. 4. From the 32-cell stage onwards current flow from one cell to the next was abolished when the intracellular pH fell to below 6.5; the effect was rapid in onset and completely reversible. At cleavage stages of development lowering intracellular pH with CO2 had no effect on current flow from cell to cell. 5. The relationship between intracellular pH and current flow from cell to cell was sigmoid and covered between 0.2 and 0.4 pH units. The pH at which current flow was completely abolished ranged from 6.85 to 6.4. 6. Alterations in extraembryonic pH over the range 5.8-7.5 had no effect on any parameter measured. 7. We conclude that lowering the intracellular pH increases the resistance of both non-junctional junctional membranes. The data do not allow us to extract the pH junctional conductance relationship. 8. Variations in intracellular pH may provide a useful tool for the study of the functional role of direct cell to cell communication in both adult organs and early embryos. PMID:6770084

  7. δ11B as monitor of calcification site pH in divergent marine calcifying organisms

    NASA Astrophysics Data System (ADS)

    Sutton, Jill N.; Liu, Yi-Wei; Ries, Justin B.; Guillermic, Maxence; Ponzevera, Emmanuel; Eagle, Robert A.

    2018-03-01

    The boron isotope composition (δ11B) of marine biogenic carbonates has been predominantly studied as a proxy for monitoring past changes in seawater pH and carbonate chemistry. However, a number of assumptions regarding chemical kinetics and thermodynamic isotope exchange reactions are required to derive seawater pH from δ11B biogenic carbonates. It is also probable that δ11B of biogenic carbonate reflects seawater pH at the organism's site of calcification, which may or may not reflect seawater pH. Here, we report the development of methodology for measuring the δ11B of biogenic carbonate samples at the multi-collector inductively coupled mass spectrometry facility at Ifremer (Plouzané, France) and the evaluation of δ11BCaCO3 in a diverse range of marine calcifying organisms reared for 60 days in isothermal seawater (25 °C) equilibrated with an atmospheric pCO2 of ca. 409 µatm. Average δ11BCaCO3 composition for all species evaluated in this study range from 16.27 to 35.09 ‰, including, in decreasing order, coralline red alga Neogoniolithion sp. (35.89 ± 3.71 ‰), temperate coral Oculina arbuscula (24.12 ± 0.19 ‰), serpulid worm Hydroides crucigera (19.26 ± 0.16 ‰), tropical urchin Eucidaris tribuloides (18.71 ± 0.26 ‰), temperate urchin Arbacia punctulata (16.28 ± 0.86 ‰), and temperate oyster Crassostrea virginica (16.03 ‰). These results are discussed in the context of each species' proposed mechanism of biocalcification and other factors that could influence skeletal and shell δ11B, including calcifying site pH, the proposed direct incorporation of isotopically enriched boric acid (instead of borate) into biogenic calcium carbonate, and differences in shell/skeleton polymorph mineralogy. We conclude that the large inter-species variability in δ11BCaCO3 (ca. 20 ‰) and significant discrepancies between measured δ11BCaCO3 and δ11BCaCO3 expected from established relationships between abiogenic δ11BCaCO3 and seawater pH arise primarily from fundamental differences in calcifying site pH amongst the different species. These results highlight the potential utility of δ11B as a proxy of calcifying site pH for a wide range of calcifying taxa and underscore the importance of using species-specific seawater-pH-δ11BCaCO3 calibrations when reconstructing seawater pH from δ11B of biogenic carbonates.

  8. Species and gamete-specific fertilization success of two sea urchins under near future levels of pCO2

    NASA Astrophysics Data System (ADS)

    Sung, Chan-Gyung; Kim, Tae Won; Park, Young-Gyu; Kang, Seong-Gil; Inaba, Kazuo; Shiba, Kogiku; Choi, Tae Seob; Moon, Seong-Dae; Litvin, Steve; Lee, Kyu-Tae; Lee, Jung-Suk

    2014-09-01

    Since the Industrial Revolution, rising atmospheric CO2 concentration has driven an increase in the partial pressure of CO2 in seawater (pCO2), thus lowering ocean pH. We examined the separate effects of exposure of gametes to elevated pCO2 and low pH on fertilization success of the sea urchin Strongylocentrotus nudus. Sperm and eggs were independently exposed to seawater with pCO2 levels ranging from 380 (pH 7.96-8.3) to 6000 ppmv (pH 7.15-7.20). When sperm were exposed, fertilization rate decreased drastically with increased pCO2, even at a concentration of 450 ppmv (pH range: 7.94 to 7.96). Conversely, fertilization of Hemicentrotus pulcherrimus was not significantly changed even when sperm was exposed to pCO2 concentrations as high as 750 ppmv. Exposure of S. nudus eggs to seawater with high pCO2 did not affect fertilization success, suggesting that the effect of increased pCO2 on sperm is responsible for reduced fertilization success. Surprisingly, this result was not related to sperm motility, which was insensitive to pCO2. When seawater was acidified using HCl, leaving pCO2 constant, fertilization success in S. nudus remained high (> 80%) until pH decreased to 7.3. While further studies are required to elucidate the physiological mechanism by which elevated pCO2 impairs sperm and reduces S. nudus fertilization, this study suggests that in the foreseeable future, sea urchin survival may be threatened due to lower fertilization success driven by elevated pCO2 rather than by decreased pH in seawater.

  9. Influence of pH on Cr(VI) ions removal from aqueous solutions using carboxymethyl cellulose-based hydrogel as adsorbent

    NASA Astrophysics Data System (ADS)

    Anah, L.; Astrini, N.

    2017-03-01

    The major problem in heavy metal pollution is that these metals are not biodegradable and accordingly accumulate in the bodies of living organisms, causing dangerous diseases and serious cell disorder. According to World Health Organization (WHO), the long term exposure of Cr(VI) levels of over 0.1 ppm causes respiratory problems, liver and kidney damage, and carcinogenicity.Due to its easy operation and of various cheap adsorbents development, adsorption has been proved to be efficient and most economically attractive technique and feasible to the removal of toxic heavy metal from wastewater. The study aimed to report the removal of Cr(VI) ions from aqueous solutions through adsorption process using carboxymethyl cellulose-graft-poly(acrylic acid) (CMC-g-PAA) hydrogel as adsorbent.Effect of pH was studied to remove hexavalent chromium.Graft copolymerization of poly(acrylic acid) onto carboxymethyl cellulose was carried out in the presence of benzoyl peroxide redox initiator and methylenbisacrylamide as crosslinker agent. Batch experiments were carried out to investigate the effects ofinitial pH.The adsorption of Cr(VI) ions as a function of pH was conducted in the initial pH range of 1 to 8. The results indicated that acidic pH strongly favored the adsorption. The optimum pH for adsorption of Cr(VI) ranged from 1 to 3, and the maximum uptake of Cr(VI) from the solution was 6.53 mg/g at pH 1 and 30°C. FTIR spectroscopy, SEM analyses were performed on the adsorbent before and after Cr(VI) binding. All analyses confirmed the complexation of Cr(VI) ions on the adsorbent.

  10. Buffer capacity of biologics--from buffer salts to buffering by antibodies.

    PubMed

    Karow, Anne R; Bahrenburg, Sven; Garidel, Patrick

    2013-01-01

    Controlling pH is essential for a variety of biopharmaceutical process steps. The chemical stability of biologics such as monoclonal antibodies is pH-dependent and slightly acidic conditions are favorable for stability in a number of cases. Since control of pH is widely provided by added buffer salts, the current study summarizes the buffer characteristics of acetate, citrate, histidine, succinate, and phosphate buffers. Experimentally derived values largely coincide with values calculated from a model that had been proposed in 1922 by van Slyke. As high concentrated protein formulations become more and more prevalent for biologics, the self-buffering potential of proteins becomes of relevance. The current study provides information on buffer characteristics for pH ranges down to 4.0 and up to 8.0 and shows that a monoclonal antibody at 50 mg/mL exhibits similar buffer capacity as 6 mM citrate or 14 mM histidine (pH 5.0-6.0). Buffer capacity of antibody solutions scales linearly with protein concentration up to more than 200 mg/mL. At a protein concentration of 220 mg/mL, the buffer capacity resembles the buffer capacity of 30 mM citrate or 50 mM histidine (pH 5.0-6.0). The buffer capacity of monoclonal antibodies is practically identical at the process relevant temperatures 5, 25, and 40°C. Changes in ionic strength of ΔI=0.15, in contrast, can alter the buffer capacity up to 35%. In conclusion, due to efficient self-buffering by antibodies in the pH range of favored chemical stability, conventional buffer excipients could be dispensable for pH stabilization of high concentrated protein solutions. Copyright © 2013 American Institute of Chemical Engineers.

  11. Effect of pH, temperature, and lead concentration on the bioremoval of lead from water using Lemna minor.

    PubMed

    Uysal, Yağmur; Taner, Fadime

    2009-09-01

    This study examined the ability of the aquatic plant Lemna minor (duckweed) to remove soluble lead under various laboratory conditions. In a batch process L. minor was exposed to different pH values (4.5-8.0) and temperature (15-35 degrees C) in presence of different lead concentrations (0.1-10.0 mg L(-1)) for 168 h. The amount of biomass obtained in the study period on a dry weight basis, the concentrations of lead in tissue and in medium and net uptake of lead by Lemna all have been determined in each condition. The percentages of lead uptake ratios (PMU) and bioconcentration factors (BCF) were also calculated for these conditions. Bioaccumulated lead concentrations and the PMU were obtained at lowest pH of 4.5, and at 30 degrees C. The highest accumulated lead concentration was found at pH 4.5 as 3.599 mg Pb g(-1) in 10.0 mg L(-1). It decreased to pH 6.0, but it did not change at pH 6.0-8.0 range. The maximum lead accumulation was obtained at 30 degrees C as 8.622 mg Pb g(-1) in 10 mg L(-1) at pH 5.0, and the minimum was at 15 degrees C as 0.291 mg g(-1) in 0.1 mg L(-1). Lead accumulation gradually increased with increasing lead in medium, but the opposite trend was observed for PMU. Lead accumulation increased up to 50 mg L(-1), but did not change significantly in the 50.0-100.0 mg L(-1) range. The lead uptake from water was modeled and the equation fit the experimental data very well

  12. Azo compound degradation kinetics and halonitromethane formation kinetics during chlorination.

    PubMed

    Fu, Jing; Wang, Xiaomao; Bai, Weiliang; Yang, Hongwei; Xie, Yuefeng F

    2017-05-01

    The chlorination of azo compounds can produce halonitromethanes (HNMs), which have attracted increasing concern due to their high genotoxicity. By impacting the speciation of chlorine and azo compounds, pH impacts apparent second-order rate constants of Methyl Orange (MO, 27.5-1.4 × 10 3  M -1  s -1 ), Acid Orange II (AO, 16.7-99.3 M -1  s -1 ), and Acid Red 1 (AR 1, 3.7-72.5 M -1  s -1 ) (pH range 6.3-9.0). The two-compartment first-order model successfully described the chloropicrin (TCNM) formation kinetics, suggesting that both fast- and slow-reacting precursors of TCNM are generated from the chlorination of azo compounds. The ratios between fast and slow formation rate constants for MO and AO were 15.6-5.4 × 10 2 , while that of AR 1 was 9.8-19.4 (pH range 6.5-9.0). The fraction of the fast-reacting TCNM precursors decreased with increasing pH for MO and AO; while that for AR 1 decreased when pH increased from 6.5 to 8.0, and then increased when pH increased from 8.0 to 9.0. The impact of pH on TCNM formation was also precursor-specific. The highest molar yields of TCNM predicted from the model in this study were 2.4%, 2.5%, and 1.5% for MO, AO, and AR 1, respectively. The study demonstrates that azo compounds are important HNM precursors, and pose a potential threat to drinking water safety. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Vibrational spectroscopic study of pH dependent solvation at a Ge(100)-water interface during an electrode potential triggered surface termination transition

    NASA Astrophysics Data System (ADS)

    Niu, Fang; Rabe, Martin; Nayak, Simantini; Erbe, Andreas

    2018-06-01

    The charge-dependent structure of interfacial water at the n-Ge(100)-aqueous perchlorate interface was studied by controlling the electrode potential. Specifically, a joint attenuated total reflection infrared spectroscopy and electrochemical experiment was used in 0.1M NaClO4 at pH ≈ 1-10. The germanium surface transformation to an H-terminated surface followed the thermodynamic Nernstian pH dependence and was observed throughout the entire pH range. A singular value decomposition-based spectra deconvolution technique coupled to a sigmoidal transition model for the potential dependence of the main components in the spectra shows the surface transformation to be a two-stage process. The first stage was observed together with the first appearance of Ge-H stretching modes in the spectra and is attributed to the formation of a mixed surface termination. This transition was reversible. The second stage occurs at potentials ≈0.1-0.3 V negative of the first one, shows a hysteresis in potential, and is attributed to the formation of a surface with maximum Ge-H coverage. During the surface transformation, the surface becomes hydrophobic, and an effective desolvation layer, a "hydrophobic gap," developed with a thickness ≈1-3 Å. The largest thickness was observed near neutral pH. Interfacial water IR spectra show a loss of strongly hydrogen-bound water molecules compared to bulk water after the surface transformation, and the appearance of "free," non-hydrogen bound OH groups, throughout the entire pH range. Near neutral pH at negative electrode potentials, large changes at wavenumbers below 1000 cm-1 were observed. Librational modes of water contribute to the observed changes, indicating large changes in the water structure.

  14. Kinetic studies of the acylation of pig muscle–d-glyceraldehyde 3-phosphate dehydrogenase by 1,3-diphosphoglycerate and of proton uptake and release in the overall enzyme mechanism

    PubMed Central

    Harrigan, P. J.; Trentham, D. R.

    1973-01-01

    In the presence of NAD+ the acylation by 1,3-diphosphoglycerate of the four active sites of pig muscle d-glyceraldehyde 3-phosphate dehydrogenase can be monitored at 365nm by the disappearance of the absorption band present in the binary complex of NAD+ and the enzyme. A non-specific salt effect decreased the acylation rate 25-fold when the ionic strength was increased from 0.10 to 1.0. This caused acylation to be the rate-limiting process in the enzyme-catalysed reductive dephosphorylation of 1,3-diphosphoglycerate at high ionic strength at pH8. The salt effect permitted investigation of the acylation over a wide range of conditions. Variation of pH from 5.4 to 8.6 produced at most a two-fold change in the acylation rate. One proton was taken up per site acylated at pH8.0. By using a chromophoric H+ indicator the rate of proton uptake could be monitored during the acylation and was also almost invariant in the pH range 5.5–8.5. Transient kinetic studies of the overall enzyme-catalysed reaction indicated that acylation was the process involving proton uptake at pH8.0. The enzyme mechanism is discussed in the light of these results. PMID:4360248

  15. Exploring the Limits of Cell Adhesion under Shear Stress within Physiological Conditions and beyond on a Chip.

    PubMed

    Stamp, Melanie E M; Jötten, Anna M; Kudella, Patrick W; Breyer, Dominik; Strobl, Florian G; Geislinger, Thomas M; Wixforth, Achim; Westerhausen, Christoph

    2016-10-21

    Cell adhesion processes are of ubiquitous importance for biomedical applications such as optimization of implant materials. Here, not only physiological conditions such as temperature or pH, but also topographical structures play crucial roles, as inflammatory reactions after surgery can diminish osseointegration. In this study, we systematically investigate cell adhesion under static, dynamic and physiologically relevant conditions employing a lab-on-a-chip system. We screen adhesion of the bone osteosarcoma cell line SaOs-2 on a titanium implant material for pH and temperature values in the physiological range and beyond, to explore the limits of cell adhesion, e.g., for feverish and acidic conditions. A detailed study of different surface roughness R q gives insight into the correlation between the cells' abilities to adhere and withstand shear flow and the topography of the substrates, finding a local optimum at R q = 22 nm. We use shear stress induced by acoustic streaming to determine a measure for the ability of cell adhesion under an external force for various conditions. We find an optimum of cell adhesion for T = 37 °C and pH = 7.4 with decreasing cell adhesion outside the physiological range, especially for high T and low pH. We find constant detachment rates in the physiological regime, but this behavior tends to collapse at the limits of 41 °C and pH 4.

  16. Interactions between soy protein from water-soluble soy extract and polysaccharides in solutions with polydextrose.

    PubMed

    Spada, Jordana C; Marczak, Ligia D F; Tessaro, Isabel C; Cardozo, Nilo S M

    2015-12-10

    This study focuses on the investigation of the interactions between polysaccharides (carrageenan and carboxymethylcellulose--CMC) and soy proteins from the water-soluble soy extract. The influence of pH (2-7) and protein-polysaccharide ratio (5:1-40:1) on the interaction between these polyelectrolytes was investigated in aqueous solutions with 10% of polydextrose and without polydextrose. The studied systems were analyzed in terms of pH-solubility profile of protein, ζ-potential, methylene blue-polysaccharide interactions, differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), and confocal laser scanning microscopy. Although the mixtures of soy extract with both carrageenan and CMC showed dependency on the pH and protein-polysaccharide ratio, they did not present the same behavior. Both polysaccharides modified the pH-solubility profile of the soy protein, shifting the pH range in which the coacervate is formed to a lower pH region with the decrease of the soy extract-polysaccharide ratio. The samples also presented detectable differences regarding to ζ-potential, DSC, FTIR and microscopy analyses. The complex formation was also detected even in a pH range where both biopolymers were net-negatively charged. The changes promoted by the presence of polydextrose were mainly detected by blue-polysaccharide interactions measures and confocal microscopy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Intracellular pH Recovery Rates in Bivalve Hemocytes Following Exposure to Acidic Environmental Conditions

    NASA Astrophysics Data System (ADS)

    Croxton, A.; Wikfors, G. H.

    2012-12-01

    Predictions of ocean acidification effects upon carbonate shell-forming species have caused great concern for the future of shellfisheries. Nevertheless, bivalve species inhabiting an estuarine environment have evolved in these environments with fluctuating pH levels. Previous experimental studies conducted in our laboratory have demonstrated the ability of oyster hemocytes to maintain intracellular homeostasis under acidic external conditions. However, little information is known of this homeostatic mechanism in other molluscan shellfish species present in these same habitats. In the current study we propose to determine if other bivalve species of aquaculture interest also possess this intracellular regulation by applying an in vitro hemocyte pH-recovery assay, previously developed for oysters, on the northern quahog, Mercenaria mercenaria, the blue mussel, Mytilus edulis, and the softshell clam, Mya arenaria. Preliminary results from the determination of initial intracellular pH levels, the initial step in the rate recovery assay, indicated a pH range between 7.0-7.4. This range was comparable to initial values measured in oysters, and consistent with data reported in the current literature. The second step of the hemocyte pH-recovery assay involves exposing oyster hemocytes to acidic external conditions and measuring the ability of the hemocyte intracellular pH to maintain homeostasis (i.e. recovery rate). Results from the recovery rate process will be presented.

  18. Systematic generation of buffer systems for pH gradient ion exchange chromatography and their application.

    PubMed

    Kröner, Frieder; Hubbuch, Jürgen

    2013-04-12

    pH gradient protein separations are widely used techniques in the field of protein analytics, of which isoelectric focusing is the most well known application. The chromatographic variant, based on the formation of pH gradients in ion exchange columns is only rarely applied due to the difficulties to form controllable, linear pH gradients over a broad pH range. This work describes a method for the systematic generation of buffer compositions with linear titration curves, resulting in well controllable pH gradients. To generate buffer compositions with linear titration curves an in silico method was successfully developed. With this tool, buffer compositions for pH gradient ion exchange chromatography with pH ranges spanning up to 7.5 pH units were established and successfully validated. Subsequently, the buffer systems were used to characterize the elution behavior of 22 different model proteins in cation and anion exchange pH gradient chromatography. The results of both chromatographic modes as well as isoelectric focusing were compared to describe differences in between the methods. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Short-term and seasonal pH,pCO2and saturation state variability in a coral-reef ecosystem

    NASA Astrophysics Data System (ADS)

    Gray, Sarah E. C.; Degrandpre, Michael D.; Langdon, Chris; Corredor, Jorge E.

    2012-09-01

    Coral reefs are predicted to be one of the ecosystems most sensitive to ocean acidification. To improve predictions of coral reef response to acidification, we need to better characterize the natural range of variability of pH, partial pressure of carbon dioxide (pCO2) and calcium carbonate saturation states (Ω). In this study, autonomous sensors for pH and pCO2 were deployed on Media Luna reef, Puerto Rico over three seasons from 2007 to 2008. High temporal resolution CaCO3 saturation states were calculated from the in situ data, giving a much more detailed characterization of reef saturation states than previously possible. Reef pH, pCO2 and aragonite saturation (ΩAr) ranged from 7.89 to 8.17 pH units, 176-613 μatm and 2.7-4.7, respectively, in the range characteristic of most other previously studied reef ecosystems. The diel pH, pCO2 and Ω cycles were also large, encompassing about half of the seasonal range of variability. Warming explained about 50% of the seasonal supersaturation in mean pCO2, with the remaining supersaturation primarily due to net heterotrophy and net CaCO3 production. Net heterotrophy was likely driven by remineralization of mangrove derived organic carbon which continued into the fall, sustaining high pCO2 levels until early winter when the pCO2 returned to offshore values. As a consequence, the reef was a source of CO2 to the atmosphere during the summer and fall and a sink during winter, resulting in a net annual source of 0.73 ± 1.7 mol m-2 year-1. These results show that reefs are exposed to a wide range of saturation states in their natural environment. Mean ΩAr levels will drop to 3.0 when atmospheric CO2 increases to 500 μatm and ΩAr will be less than 3.0 for greater than 70% of the time in the summer. Long duration exposure to these low ΩAr levels are expected to significantly decrease calcification rates on the reef.

  20. A new fluorescent pH probe for imaging lysosomes in living cells.

    PubMed

    Lv, Hong-Shui; Huang, Shu-Ya; Xu, Yu; Dai, Xi; Miao, Jun-Ying; Zhao, Bao-Xiang

    2014-01-15

    A new rhodamine B-based pH fluorescent probe has been synthesized and characterized. The probe responds to acidic pH with short response time, high selectivity and sensitivity, and exhibits a more than 20-fold increase in fluorescence intensity within the pH range of 7.5-4.1 with the pKa value of 5.72, which is valuable to study acidic organelles in living cells. Also, it has been successfully applied to HeLa cells, for its low cytotoxicity, brilliant photostability, good membrane permeability and no 'alkalizing effect' on lysosomes. The results demonstrate that this probe is a lysosome-specific probe, which can selectively stain lysosomes and monitor lysosomal pH changes in living cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Electrochemical behavior of triflusal, aspirin and their metabolites at glassy carbon and boron doped diamond electrodes.

    PubMed

    Enache, Teodor Adrian; Fatibello-Filho, Orlando; Oliveira-Brett, Ana Maria

    2010-08-01

    The electrochemical behavior of triflusal (TRF) and aspirin (ASA), before and after hydrolysis in water and in alkaline medium using two different electrode surfaces, glassy carbon and boron doped diamond, was study by differential pulse voltammetry over a wide pH range. The hydrolysis products are 2-(hydroxyl)-4-(trifluoromethyl)-benzoic acid (HTB) for triflusal and salicylic acid (SA) for aspirin, which in vivo represent their main metabolites. The hydrolysis processes were also followed by spectrophotometry. The UV results showed complete hydrolysis after one hour for TRF and after two hours for ASA in alkaline solution. The glassy carbon electrode enables only indirect determination of TRF and ASA through the electrochemical detection of their hydrolysis products HTB and SA, respectively. The oxidation processes of HTB and SA are pH dependent and involve different numbers of electrons and protons. Moreover, the difference between the oxidation peak potential of SA and HTB was equal to 100 mV in the studied pH range from 1 to 8 due to the CF3 of the aromatic ring of HTB molecule. Due to its wider oxidation potential range, the boron doped diamond electrode was used to study the direct oxidation of TRF and ASA, as well as of their respective metabolites HTB and SA.

  2. IMPACT OF WATER PH ON ZEBRA MUSSEL MORTALITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel P. Molloy

    2002-10-15

    The experiments conducted this past quarter have suggested that the bacterium Pseudomonas fluorescens strain CL0145A is effective at killing zebra mussels throughout the entire range of pH values tested (7.2 to 8.6). Highest mortality was achieved at pH values characteristic of preferred zebra mussel waterbodies, i.e., hard waters with a range of 7.8 to 8.6. In all water types tested, however, ranging from very soft to very hard, considerable mussel kill was achieved (83 to 99% mean mortality), suggesting that regardless of the pH or hardness of the treated water, significant mussel kill can be achieved upon treatment with P.more » fluorescens strain CL0145A. These results further support the concept that this bacterium has significant potential for use as a zebra mussel control agent in power plant pipes receiving waters with a wide range of physical and chemical characteristics.« less

  3. A Framework for Developing pH Guidance for Drinking Water Treatment and Distribution - abstract

    EPA Science Inventory

    Worldwide, many agencies have historically limited the range of pH values of distributed water between 6.5 and 8.5. Although this range is not a regulatory limit, many jurisdictions have used it as one. In some cases, the range has been a barrier to optimizing distribution syste...

  4. A Framework for Developing pH Guidance for Drinking Water Treatment and Distribution

    EPA Science Inventory

    Worldwide, many agencies have historically limited the range of pH values of distributed water between 6.5 and 8.5. Although this range is not a regulatory limit, many jurisdictions have used it as one. In some cases, the range has been a barrier to optimizing distribution syste...

  5. Design, calibration and application of broad-range optical nanosensors for determining intracellular pH.

    PubMed

    Søndergaard, Rikke V; Henriksen, Jonas R; Andresen, Thomas L

    2014-12-01

    Particle-based nanosensors offer a tool for determining the pH in the endosomal-lysosomal system of living cells. Measurements providing absolute values of pH have so far been restricted by the limited sensitivity range of nanosensors, calibration challenges and the complexity of image analysis. This protocol describes the design and application of a polyacrylamide-based nanosensor (∼60 nm) that covalently incorporates two pH-sensitive fluorophores, fluorescein (FS) and Oregon Green (OG), to broaden the sensitivity range of the sensor (pH 3.1-7.0), and uses the pH-insensitive fluorophore rhodamine as a reference fluorophore. The nanosensors are spontaneously taken up via endocytosis and directed to the lysosomes where dynamic changes in pH can be measured with live-cell confocal microscopy. The most important focus areas of the protocol are the choice of pH-sensitive fluorophores, the design of calibration buffers, the determination of the effective range and especially the description of how to critically evaluate results. The entire procedure typically takes 2-3 weeks.

  6. Clinical utility of pH paper versus pH meter in the measurement of critical gastric pH in stress ulcer prophylaxis.

    PubMed

    Bradley, J S; Phillips, J O; Cavanaugh, J E; Metzler, M H

    1998-11-01

    To evaluate the clinical utility of measuring gastric pH with a pH meter vs. pH paper in critical care patients. Prospective comparison of gastric pH measurements, using both pH meter and pH paper. Surgical intensive care unit (ICU) at a rural Midwestern university medical center. Fifty-one patients who received therapy for prophylaxis of stress ulcers in the surgical ICU. Therapy for stress ulcer prophylaxis was monitored. The pH of 985 gastric samples, taken from 51 patients, was measured with both pH meter and pH paper. The pH meter and pH paper measures demonstrated a concordance correlation coefficient of .896. The mean difference between the two measures (pH paper - pH meter) was estimated to be between -0.4 and 1.4, suggesting a positive bias for the paper. The prevalence of events representing clinically relevant differences between the pH meter and pH paper in the measurement of the same gastric sample was calculated. The frequency with which each of the events occurred consecutively (or, in one case, two nearly consecutive events on the same day) was also calculated. Bias in a clinically relevant range was estimated. A set of "probability profiles" was constructed. A hand-held pH meter and pH paper are not interchangeable measures of gastric pH. The pH paper exhibits an appreciable positive bias compared with a hand-held pH meter in the clinically relevant range of 2 to 6. More research is needed to determine if that bias affects treatment outcomes. We recommend the use of a pH meter for patients who demonstrate pH readings of < or = 4, consecutive with readings of < or = 5.

  7. Kidney Stones in Primary Hyperoxaluria: New Lessons Learnt

    PubMed Central

    Jacob, Dorrit E.; Grohe, Bernd; Geßner, Michaela; Beck, Bodo B.; Hoppe, Bernd

    2013-01-01

    To investigate potential differences in stone composition with regard to the type of Primary Hyperoxaluria (PH), and in relation to the patient’s medical therapy (treatment naïve patients versus those on preventive medication) we examined twelve kidney stones from ten PH I and six stones from four PH III patients. Unfortunately, no PH II stones were available for analysis. The study on this set of stones indicates a more diverse composition of PH stones than previously reported and a potential dynamic response of morphology and composition of calculi to treatment with crystallization inhibitors (citrate, magnesium) in PH I. Stones formed by PH I patients under treatment are more compact and consist predominantly of calcium-oxalate monohydrate (COM, whewellite), while calcium-oxalate dihydrate (COD, weddellite) is only rarely present. In contrast, the single stone available from a treatment naïve PH I patient as well as stones from PH III patients prior to and under treatment with alkali citrate contained a wide size range of aggregated COD crystals. No significant effects of the treatment were noted in PH III stones. In disagreement with findings from previous studies, stones from patients with primary hyperoxaluria did not exclusively consist of COM. Progressive replacement of COD by small COM crystals could be caused by prolonged stone growth and residence times in the urinary tract, eventually resulting in complete replacement of calcium-oxalate dihydrate by the monohydrate form. The noted difference to the naïve PH I stone may reflect a reduced growth rate in response to treatment. This pilot study highlights the importance of detailed stone diagnostics and could be of therapeutic relevance in calcium-oxalates urolithiasis, provided that the effects of treatment can be reproduced in subsequent larger studies. PMID:23940605

  8. Complexation of sodium caseinate with gum tragacanth: Effect of various species and rheology of coacervates.

    PubMed

    Ghorbani Gorji, Sara; Ghorbani Gorji, Elham; Mohammadifar, Mohammad Amin; Zargaraan, Azizollaah

    2014-06-01

    We investigated complex coacervation of sodium caseinate/Astragalus rahensis (A.r) as a function of pH with light scattering, spectrophotometry, and viscosity measurements. Interestingly, sodium caseinate/A.r displayed five structural transitions; pH 7.00 to pH ∼5.40: no interaction occurred, pH ∼5.40 to pH ∼4.80: initiation of the formation of primary soluble complexes, pH ∼4.80 to ∼4.30: formation of interpolymer complexes, pH ∼4.30 to ∼4.02: optimum coacervation and pH ∼4.02 to ∼2.50: suppression of coacervation. In addition, rheological properties of sodium caseinate/A.r coacervates were studied at various pH values. A much higher storage modulus (G') than loss modulus (G″) for all sodium caseinate/A.r coacervates suggests the formation of highly interconnected gel-like network structures with mainly elastic behaviour. Moreover, sodium caseinate/A.r coacervates at all pH values exhibited a shear thinning behaviour across the entire shear rate range investigated. Effects of different species of gum tragacanth on the interactions with sodium caseinate have been scarcely studied. Our study showed that systems containing various species (A.r, soluble fraction of A.r and Astragalus gossypinus (A.g)) had different critical pH values and particle sizes during complex coacervation, which could be due to different ratio of soluble to insoluble fractions and uronic acid content of various species. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. pH dynamics in sewers and its modeling.

    PubMed

    Sharma, Keshab; Ganigue, Ramon; Yuan, Zhiguo

    2013-10-15

    pH variation in sewers has a significant effect on hydrogen sulfide production and emissions, and hence its accurate prediction is critical for the optimization of mitigation strategies. In this study, the nature and dynamics of pH variation in a sewer system is examined. Three sewer systems collecting domestic wastewater were monitored, with pH in all cases showing large diurnal variations. pH in fresh sewage in all three cases had a very similar trend with maximum pH in the range of 8.5-8.7. pH variation in fresh sewage followed the same pattern as the sewage flow rate, suggesting that sewage pH is influenced by household water use. Nitrogen content of the wastewater was found to be the most influential factor causing pH variation in fresh sewage, with the total ammonium concentration variation well correlated with the pH variation. A methodology for predicting pH variation in sewers is developed and calibration protocols proposed. The methodology, which is based on the concept of charge balance, was validated using titration curves and field pH data. Measurement of the total ammonium concentration in fresh sewage was found necessary and adequate for the calibration of the charge balance-based pH model. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Activity of earthworm in Latosol under simulated acid rain stress.

    PubMed

    Zhang, Jia-En; Yu, Jiayu; Ouyang, Ying

    2015-01-01

    Acid rain is still an issue of environmental concerns. This study investigated the impacts of simulated acid rain (SAR) upon earthworm activity from the Latosol (acidic red soil). Laboratory experiment was performed by leaching the soil columns grown with earthworms (Eisenia fetida) at the SAR pH levels ranged from 2.0 to 6.5 over a 34-day period. Results showed that earthworms tended to escape from the soil and eventually died for the SAR at pH = 2.0 as a result of acid toxicity. The catalase activity in the earthworms decreased with the SAR pH levels, whereas the superoxide dismutases activity in the earthworms showed a fluctuate pattern: decreasing from pH 6.5 to 5.0 and increasing from pH 5.0 to 4.0. Results implied that the growth of earthworms was retarded at the SAR pH ≤ 3.0.

  11. Preliminary study on optimization of pH, oxidant and catalyst dose for high COD content: solar parabolic trough collector

    PubMed Central

    2013-01-01

    In the present study, solar photocatalytic oxidation has been investigated through laboratory experiments as an alternative to conventional secondary treatment for the organic content reduction of high COD wastewater. Experiments have been performed on synthetic high COD wastewater for solar photocatalytic oxidation using a parabolic trough reactor. Parameters affecting the oxidation of organics have been investigated. The experimental design followed the sequence of dark adsorption studies of organics, followed by photolytic studies (in absence of catalyst) and finally photocatalytic studies in presence and absence of additional oxidant (H2O2). All the experimental studies have been performed at pH values of 2, 4, 6,8,10 and the initial pH value of the wastewater (normal pH). For photocatalytic studies, TiO2 has been used as a photocatalyst. Optimization of catalyst dose, pH and H2O2 concentration has been done. Maximum reduction of organic content was observed at the normal pH value of the wastewater (pH = 6.8). The reaction rate was significantly enhanced in presence of hydrogen peroxide. The optimum pH other than the Normal was in the alkaline range. Acidic pH was not found to be favourable for organic content reduction. pH was found to be a dominant factor affecting reaction rate even in presence of H2O2 as an additional oxidant. Also, the solar detoxification process was effective in treating a waste with a COD level of more than 7500 mg/L, which is a otherwise a difficult waste to treat. It can therefore be used as a treatment step in the high organic wastewater treatment during the primary stage also as it effectively reduces the COD content by 86%. PMID:23369352

  12. Meta-Cresol Purple Reference Material® (RM) for Seawater pH Measurements

    NASA Astrophysics Data System (ADS)

    Easley, R. A.; Waters, J. F.; Place, B. J.; Pratt, K. W.

    2016-02-01

    The pH of seawater is a fundamental quantity that governs the carbon dioxide - carbonate system in the world's oceans. High quality pH measurements for long-term monitoring, shipboard studies, and shorter-term biological studies (mesocosm and field experiments) can be ensured through a reference material (RM) that is compatible with existing procedures and which is traceable to primary pH measurement metrology. High-precision spectrophotometric measurements of seawater pH using an indicator dye such as meta-cresol purple (mCP) are well established. However, traceability of these measurements to the International System of Units (SI) additionally requires characterizing the spectrophotometric pH response of the dye in multiple artificial seawater buffers that themselves are benchmarked via primary pH (Harned cell) measurements at a range of pH, salinity, and temperature. NIST is currently developing such a mCP pH RM using this approach. This material will also incorporate new procedures developed at NIST for assessing the purity and homogeneity of the mCP reagent itself. The resulting mCP will provide long-term (years) stability and ease of shipment compared to artificial seawater pH buffers. These efforts will provide the oceanographic user community with a NIST issued mCP (RM), characterized as to its molar absorptivity values and acid dissociation constants (pKa), with uncertainties that comply with the Guide to the Expression of Uncertainty in Measurement (GUM).

  13. Fluorescent pH sensor based on Ag@SiO2 core-shell nanoparticle.

    PubMed

    Bai, Zhenhua; Chen, Rui; Si, Peng; Huang, Youju; Sun, Handong; Kim, Dong-Hwan

    2013-06-26

    We have demonstrated a novel method for the preparation of a fluorescence-based pH sensor by combining the plasmon resonance band of Ag core and pH sensitive dye (HPTS). A thickness-variable silica shell is placed between Ag core and HPTS dye to achieve the maximum fluorescence enhancement. At the shell thickness of 8 nm, the fluorescence intensity increases 4 and 9 times when the sensor is excited at 405 and 455 nm, respectively. At the same time, the fluorescence intensity shows a good sensitivity toward pH value in the range of 5-9, and the ratio of emission intensity at 513 nm excited at 455 nm to that excited at 405 nm versus the pH value in the range of 5-9 is determined. It is believed that the present pH sensor has the potential for determining pH real time in the biological sample.

  14. Novel silica surface charge density mediated control of the optical properties of embedded optically active materials and its application for fiber optic pH sensing at elevated temperatures.

    PubMed

    Wang, Congjun; Ohodnicki, Paul R; Su, Xin; Keller, Murphy; Brown, Thomas D; Baltrus, John P

    2015-02-14

    Silica and silica incorporated nanocomposite materials have been extensively studied for a wide range of applications. Here we demonstrate an intriguing optical effect of silica that, depending on the solution pH, amplifies or attenuates the optical absorption of a variety of embedded optically active materials with very distinct properties, such as plasmonic Au nanoparticles, non-plasmonic Pt nanoparticles, and the organic dye rhodamine B (not a pH indicator), coated on an optical fiber. Interestingly, the observed optical response to varying pH appears to follow the surface charge density of the silica matrix for all the three different optically active materials. To the best of our knowledge, this optical effect has not been previously reported and it appears universal in that it is likely that any optically active material can be incorporated into the silica matrix to respond to solution pH or surface charge density variations. A direct application of this effect is for optical pH sensing which has very attractive features that can enable minimally invasive, remote, real time and continuous distributed pH monitoring. Particularly, as demonstrated here, using highly stable metal nanoparticles embedded in an inorganic silica matrix can significantly improve the capability of pH sensing in extremely harsh environments which is of increasing importance for applications in unconventional oil and gas resource recovery, carbon sequestration, water quality monitoring, etc. Our approach opens a pathway towards possible future development of robust optical pH sensors for the most demanding environmental conditions. The newly discovered optical effect of silica also offers the potential for control of the optical properties of optically active materials for a range of other potential applications such as electrochromic devices.

  15. Complexation Key to a pH Locked Redox Reaction

    ERIC Educational Resources Information Center

    Rizvi, Masood Ahmad; Dangat, Yuvraj; Shams, Tahir; Khan, Khaliquz Zaman

    2016-01-01

    An unfavorable pH can block a feasible electron transfer for a pH dependent redox reaction. In this experiment, a series of potentiometric titrations demonstrate the sequential loss in feasibility of iron(II) dichromate redox reaction over a pH range of 0-4. The pH at which this reaction failed to occur was termed as a pH locked reaction. The…

  16. Tetragonal Chicken Egg White Lysozyme Solubility in Sodium Chloride Solutions

    NASA Technical Reports Server (NTRS)

    Forsythe, Elizabeth L.; Judge, Russell A.; Pusey, Marc L.

    1998-01-01

    The solubility of chicken egg white lysozyme, crystallized in the tetragonal form was measured in sodium chloride solutions from 1.6 to 30.7 C, using a miniature column solubility apparatus. Sodium chloride solution concentrations ranged from 1 to 7% (w/v). The solutions were buffered with 0.1 M sodium acetate buffer with the solubility being measured at pH values in 0.2 pH unit increments in the range pH 4.0 to 5.4, with data also included at pH 4.5. Lysozyme solubility was found to increase with increases in temperature and decreasing salt concentration. Solution pH has a varied and unpredictable effect on solubility.

  17. Great Salt Lake Composition and Rare Earth Speciation Analysis

    DOE Data Explorer

    Jiao, Yongqin; Lammers, Laura; Brewer, Aaron

    2017-04-19

    We have conducted aqueous speciation analyses of the Great Salt Lake (GSL) brine sample (Table 1) and a mock geo sample (Table 2) spiked with 1 ppb Tb and 100 ppb Tb. The GSL speciation (Figure 1) aligns with our basic speciation expectations that strong carbonate complexes would form at mid to higher pH's. Although we expected strong aqueous complexes with fluorides at neutral pH and with chlorides, and hydroxides at low pH, we observe that the dominant species in the low to mid pH range to be Tb3+ as a free ion. Still, we do see the presence of fluoride and chloride complexes within the expected low to mid pH range.

  18. pH-dependent structures and properties of casein micelles.

    PubMed

    Liu, Yan; Guo, Rong

    2008-08-01

    The association behavior of casein over a broad pH range has first been investigated by fluorescent technique together with DLS and turbidity measurements. Casein molecules can self-assemble into casein micelles in the pH ranges 2.0 to 3.0, and 5.5 to 12.0. The hydrophobic interaction, hydrogen bond and electrostatic action are the main interactions in the formation of casein micelles. The results show that the structure of casein micelles is more compact at low pH and looser at high pH. The casein micelle has the most compact structure at pH 5.5, when it has almost no electrostatic repulsion between casein molecules.

  19. Sequential use of bentonites and solar photocatalysis to treat winery wastewater.

    PubMed

    Rodríguez, Eva; Márquez, Gracia; Carpintero, Juan Carlos; Beltrán, Fernando J; Alvarez, Pedro

    2008-12-24

    The sequential use of low-cost adsorbent bentonites and solar photocatalysis to treat winery wastewater has been studied. Three commercial sodium-bentonites (MB-M, MB-G, and MB-P) and one calcium-bentonite (Bengel) were characterized and used in this study. These clay materials were useful to totally remove turbidity (90-100%) and, to a lesser extent, color, polyphenols (PPh), and soluble chemical oxygen demand (CODS) from winery wastewater. Both surface area and cation exchange capacity (CEC) of bentonite had a positive impact on treatment efficiency. The effect of pH on turbidity removal by bentonites was studied in the 3.5-12 pH range. The bentonites were capable of greatly removing turbidity from winery wastewater at pH 3.5-5.5, but removal efficiency decreased with pH increase beyond this range. Settling characteristics (i.e., sludge volume index (SVI) and settling rate) of bentonites were also studied. Best settling properties were observed for bentonite doses around 0.5 g/L. The reuse of bentonite for winery wastewater treatment was found not to be advisable as the turbidity and PPh removal efficiencies decreased with successive uses. The resulting wastewater after bentonite treatment was exposed to solar radiation at oxic conditions in the presence of Fe(III) and Fe(III)/H2O2 catalysts. Significant reductions of COD, total organic carbon (TOC), and PPh were achieved by these solar photocatalytic processes.

  20. pH preference and avoidance responses of adult brook trout Salvelinus fontinalis and brown trout Salmo trutta.

    PubMed

    Fost, B A; Ferreri, C P

    2015-03-01

    The pH preferred and avoided by wild, adult brook trout Salvelinus fontinalis and brown trout Salmo trutta was examined in a series a laboratory tests using gradual and steep-gradient flow-through aquaria. The results were compared with those published for the observed segregation patterns of juvenile S. fontinalis and S. trutta in Pennsylvania streams. The adult S. trutta tested showed a preference for pH 4·0 while adult S. fontinalis did not prefer any pH within the range tested. Salmo trutta are not found in Pennsylvania streams with a base-flow pH < 5·8 which suggests that S. trutta prefer pH well above 4·0. Adult S. trutta displayed a lack of avoidance at pH below 5·0, as also reported earlier for juveniles. The avoidance pH of wild, adult S. fontinalis (between pH 5·5 and 6·0) and S. trutta (between pH 6·5 and 7·0) did not differ appreciably from earlier study results for the avoidance pH of juvenile S. fontinalis and S. trutta. A comparison of c.i. around these avoidance estimates indicates that avoidance pH is similar among adult S. fontinalis and S. trutta in this study. The limited overlap of c.i. for avoidance pH values for the two species, however, suggests that some S. trutta will display avoidance at a higher pH when S. fontinalis will not. The results of this study indicate that segregation patterns of adult S. fontinalis and S. trutta in Pennsylvania streams could be related to pH and that competition with S. trutta could be mediating the occurrence of S. fontinalis at some pH levels. © 2015 The Fisheries Society of the British Isles.

  1. Acid precipitation effects on soil pH and base saturation of exchange sites

    Treesearch

    W. W. McFee; J. M. Kelly; R. H. Beck

    1976-01-01

    The typical values and probable ranges of acid-precipitation are evaluated in terms of their theoretical effects on pH and cation exchange equilibrium of soils characteristic of the humid temperature region. The extent of probable change in soil pH and the time required to cause such a change are calculated for a range of common soils. Hydrogen ion input by acid...

  2. Electrosynthesis of magnetoresponsive microrobot for targeted drug delivery using calcium alginate.

    PubMed

    Chengzhi Hu; Riederer, Katharina; Klemmer, Michael; Pane, Salvador; Nelson, Bradley J

    2016-08-01

    Targeted drug delivery systems deliver drugs precisely to a specific targeted site inside the body, and can also release the drugs with controlled kinetics to prolong the efficacy of single dose administration. The advantageous properties of hydrogels make them attractive for use in the area of drug delivery. Calcium alginate is a pH sensitive hydrogel stable in acidic media and soluble in basic media. This enables the hydrogel to absorb and release aqueous solutions at certain ranges of pH values. By absorbing an aqueous solution containing a drug, an active drug release can be triggered at a specified range of pH value. In this paper, we combined calcium alginate with cobalt nickel (CoNi) in a cylindrical hybrid micro robot by electrodeposition. The designed microrobot can be wirelessly actuated with an external magnetic manipulation system and, hence, targeted to a specific location in the human body. At this specific location, characterized by its pH range, the absorbed drug will be released. Here, the fabrication steps of the specified microrobot are characterized, namely the production of a template on a silicon chip and the subsequent template-assisted electrodeposition of CoNi and alginate. Additionally, the dynamics of drug release of calcium alginate is studied.

  3. Development of an extended-range fiber optic pH sensor using evanescent wave absorption of sol-gel-entrapped pH indicators

    NASA Astrophysics Data System (ADS)

    Butler, Thomas M.; MacCraith, Brian D.; McDonagh, Colette M.

    1995-09-01

    The sol-gel process has been used to entrap pH indicators in porous glass coatings for sensor applications. This sensor is based on evanescent wave absorption using an unclad optical fiber dipcoated with the pH sensitive coating. The entrapped pH indicators show a broadening of the pH range with respect to the behavior in solution giving accurate measurement over three pH units when one indicator is used (bromophenol blue) and over six pH units (pH 3-9) when two indicators are used (bromophenol blue and bromocresol purple). The response of the pH sensor was monitored by measuring absorption at 590 nm referenced against a nonabsorbing region of the spectrum. This enabled the use of LED sources together with low cost photodiodes. The sensor displayed short response time and good repeatability. The thickness and stability of the pH sensitive coatings can be influenced by modifying the composition of the starting sol mixture. The evanescent absorption, and hence the sensitivity of the sensor, can be increased by selectively launching higher order modes in the fiber. These issues together with a full sensor characterization will be reported.

  4. Quantification of kinetic rate law parameters for the dissolution of natural autunite in the presence of aqueous bicarbonate ions at high concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gudavalli, Ravi; Katsenovich, Yelena; Wellman, Dawn

    Uranium is a key contaminant of concern in the groundwater at 91 waste sites at 18 U.S. Department of Energy (DOE) facilities within the United States and is a potential source of groundwater contamination and a risk to human health and the environment through discharges to surface water. Dissolved inorganic carbon (bicarbonate/carbonate) has a high affinity for complexing with uranium that is present as sorbed or unique uranium-bearing mineral phases within the sedimentary matrix. This process can result in the formation of soluble uranyl carbonate aqueous species, which are mobile under circumneutral pH conditions. This study was conducted to quantifymore » the rate of release of uranium from the autunite mineral, (Ca[(UO 2)(PO 4)] 2∙3H 2O), that was formed during polyphosphate injection to remediate uranium; the dissolution of uranium was studied as a function of the aqueous bicarbonate concentration, ranging from 25 to 100 mM. Experiments were carried out in the pH range from 7 to 11 in the temperature range of 23-90°C via single-pass flow-through testing. Consistent with the results of previous studies (Gudavalli et al., 2013 a, b), the rate of uranium release from autunite exhibited minimal dependency on temperature, but was strongly dependent on pH and increasing concentrations of bicarbonate in the solution. Data obtained during these experiments were compared with results of previous experiments conducted using a low-concentration range of bicarbonate solutions (0.5-3.0 mM). An 8- to 30 fold increase in the rate of uranium release was observed in the presence of high bicarbonate concentrations at pH 7-8 compared to low bicarbonate values, while at pH 9-11, there was only a 5-fold increase in uranium rate of release with an increase in bicarbonate concentrations. The rate of uranium release was calculated to be between 5.18 x 10 -8 and 1.69 x 10 -7 mol m -2 s -1. The activation energy values at high and low bicarbonate concentrations were similar, with ratio values in the range of 0.6-1.0.« less

  5. Quantification of kinetic rate law parameters for the dissolution of natural autunite in the presence of aqueous bicarbonate ions at high concentrations.

    PubMed

    Gudavalli, Ravi; Katsenovich, Yelena; Wellman, Dawn

    2018-05-02

    Uranium is a key contaminant of concern in the groundwater at U.S. Department of Energy (DOE) facilities within the United States and is a potential source of groundwater contamination and a risk to human health and the environment through discharges to surface water. Dissolved inorganic carbon (bicarbonate/carbonate) has a high affinity for complexing with uranium that is present as sorbed or unique uranium-bearing mineral phases within the sedimentary matrix. This process can result in the formation of soluble uranyl carbonate aqueous species, which are mobile under circumneutral pH conditions. This study was conducted to quantify the rate of release of uranium from the autunite mineral, (Ca[(UO 2 )(PO 4 )] 2 •3H 2 O), that was formed during polyphosphate injection to remediate uranium; the dissolution of uranium was studied as a function of the aqueous bicarbonate concentration, ranging from 25 to 100 mM. Experiments were carried out in the pH range from 7 to 11 in the temperature range of 23-90 °C via single-pass flow-through testing. Consistent with the results of previous studies (Gudavalli et al., 2013a, 2013b), the rate of uranium release from autunite exhibited minimal dependency on temperature, but was strongly dependent on pH and increasing concentrations of bicarbonate in the solution. Data obtained during these experiments were compared with results of previous experiments conducted using a low-concentration range of bicarbonate solutions (0.5-3.0 mM). An 8- to 30-fold increase in the rate of uranium release was observed in the presence of high bicarbonate concentrations at pH 7-8 compared to low bicarbonate values, while at pH 9-11, there was only a 5-fold increase in uranium rate of release with an increase in bicarbonate concentrations. The rate of uranium release was calculated to be between 5.18 × 10 -8 and 1.69 × 10 -7  mol m -2 s -1 . The activation energy values at high and low bicarbonate concentrations were similar, with ratio values in the range of 0.6-1.0. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Functional and rheological properties of proteins in frozen turkey breast meat with different ultimate pH.

    PubMed

    Chan, J T Y; Omana, D A; Betti, M

    2011-05-01

    Functional and rheological properties of proteins from frozen turkey breast meat with different ultimate pH at 24 h postmortem (pH(24)) have been studied. Sixteen breast fillets from Hybrid Tom turkeys were initially selected based on lightness (L*) values for each color group (pale, normal, and dark), with a total of 48 breast fillets. Further selection of 8 breast samples was made within each class of meat according to the pH(24). The average L* and pH values of the samples were within the following range: pale (L* >52; pH ≤5.7), normal (46 < L* < 52; 5.9 < pH <6.1), and dark (L* <46; pH ≥6.3), referred to as low, normal, and high pH meat, respectively. Ultimate pH did not cause major changes in the emulsifying and foaming properties of the extracted sarcoplasmic and myofibrillar proteins. An SDS-PAGE profile of proteins from low and normal pH meat was similar, which revealed that the extent of protein denaturation was the same. Low pH meat had the lowest water-holding capacity compared with normal and high pH meat as shown by the increase in cooking loss, which can be explained by factors other than protein denaturation. Gel strength analysis and folding test revealed that gel-forming ability was better for high pH meat compared with low and normal pH meat.Dynamic viscoelastic behavior showed that myosin denaturation temperature was independent of pH(24). Normal and high pH meat had similar hardness, springiness, and chewiness values as revealed by texture profile analysis. The results from this study indicate that high pH meat had similar or better functional properties than normal pH meat. Therefore, high pH meat is suitable for further processed products, whereas low pH meat may need additional treatment or ingredient formulations to improve its functionality.

  7. The influence of pH on biotite dissolution and alteration kinetics at low temperature

    USGS Publications Warehouse

    Acker, James G.; Bricker, O.P.

    1992-01-01

    Biotite dissolution rates in acidic solutions were determined in fluidized-bed reactors and flowthrough columns. Biotite dissolution rates increased inversely as a linear function of pH in the pH range 3-7, where the rate order n = -0.34. Biotite dissolved incongruently over this pH range, with preferential release of magnesium and iron from the octahedral layer. Release of tetrahedral silicon was much greater at pH 3 than at higher pH. Iron release was significantly enhanced by low pH conditions. Solution compositions from a continuous exposure flow-through column of biotite indicated biotite dissolves incongruently at pH 4, consistent with alteration to a vermiculite-type product. Solution compositions from a second intermittent-flow column exhibited elevated cation release rates upon the initiation of each exposure to solution. The presence of strong oxidizing agents, the mineral surface area, and sample preparation methodology also influenced the dissolution or alteration kinetics of biotite. ?? 1992.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cassingham, N.; Corkhill, C. L.; Backhouse, D. J.

    The first comprehensive assessment of the dissolution kinetics of simulant Magnox–THORP blended UK high-level waste glass, obtained by performing a range of single-pass flow-through experiments, is reported here. Inherent forward rates of glass dissolution were determined over a temperature range of 23 to 70°C and an alkaline pH range of 8.0 to 12.0. Linear regression techniques were applied to the TST kinetic rate law to obtain fundamental parameters necessary to model the dissolution kinetics of UK high-level waste glass (the activation energy (Ea), pH power law coefficient (η) and the intrinsic rate constant (k0)), which is of importance to themore » post-closure safety case for the geological disposal of vitreous products. The activation energies based on B release ranged from 55 ± 3 to 83 ± 9 kJ mol–1, indicating that Magnox–THORP blend glass dissolution has a surface-controlled mechanism, similar to that of other high- level waste simulant glass compositions such as the French SON68 and LAW in the US. Forward dissolution rates, based on Si, B and Na release, suggested that the dissolution mechanism under dilute conditions, and pH and temperature ranges of this study, was not sensitive to composition as defined by HLW-incorporation rate.« less

  9. Modeling the adsorption of metal ions (Cu 2+, Ni 2+, Pb 2+) onto ACCs using surface complexation models

    NASA Astrophysics Data System (ADS)

    Faur-Brasquet, Catherine; Reddad, Zacaria; Kadirvelu, Krishna; Le Cloirec, Pierre

    2002-08-01

    Activated carbon cloths (ACCs), whose efficiency has been demonstrated for microorganics adsorption from water, were here studied in the removal of metal ions from aqueous solution. Two ACCs are investigated, they are characterized in terms of porosity parameters (BET specific surface area, percentage of microporosity) and chemical characteristics (acidic surface groups, acidity constants, point of zero charge). A first part consists in the experimental study of three metal ions removal (Cu 2+, Ni 2+ and Pb 2+) in a batch reactor. Isotherms modeling by Freundlich and Brunauer-Emmett-Teller (BET) equations enables the following adsorption order: Cu 2+>Ni 2+>Pb 2+ to be determined for adsorption capacities on a molar basis. It may be related to adsorbates characteristics in terms of electronegativity and ionic radius. The influence of adsorbent's microporosity is also shown. Adsorption experiments carried out for pH values ranging from 2 to 10 demonstrate: (i) an adsorption occurring below the precipitation pH; (ii) the strong influence of pH, with a decrease of electrostatic repulsion due to the formation of less charged hydrolyzed species coupled with a decrease of activated carbon surface charge as pH increases. The second part focuses on the modeling of adsorption versus the pH experimental data by the diffuse layer model (DLM) using Fiteql software. The model is efficient to describe the system behavior in the pH range considered. Regarding complexation constants, they show the following affinity for ACC: Pb 2+>Cu 2+>Ni 2+. They are related to initial concentrations used for the three metal ions.

  10. The effects of starch and rapidly degradable dry matter from concentrate on ruminal digestion in dairy cows fed corn silage-based diets with fixed forage proportion.

    PubMed

    Lechartier, C; Peyraud, J-L

    2011-05-01

    This study investigated the effects of the type (starch vs. nonstarch) and rate of ruminal degradation of carbohydrates from the concentrate on digestion in dairy cows fed corn silage-based diets. Six ruminally cannulated cows were assigned to 6 treatments in a 6 × 6 Latin square design. Treatments were arranged in a 3 × 2 factorial design. Two starch levels [25 and 41% dry matter (DM) for low starch (LS) and high starch (HS) diets, respectively] were obtained by replacing starch-rich feedstuffs by nonstarch feedstuffs. These starch levels were combined with slowly, moderately, and rapidly rumen-degradable feedstuffs to obtain 3 levels of rapidly degradable carbohydrates from concentrate (18, 23, and 28% DM). These levels were estimated from the DM disappearance of concentrate after 4h of in sacco incubation (CRDM). Wheat and corn grain were used as rapidly degradable and slowly degradable starch feedstuffs, respectively. Soybean hulls and citrus pulp were used as slowly degradable and rapidly degradable nonstarch feedstuffs, respectively. No interaction effect was found between dietary starch content and CRDM on pH range, volatile fatty acid (VFA) range, or VFA profile. Increasing CRDM led to a linear decrease in acetate-to-propionate ratio (from 2.7 to 2.1), and a linear increase in the pH and VFA ranges (from 0.86 to 1.12 pH units and from 34 to 56mM, respectively). Feeding HS diets decreased acetate-to-propionate ratio (2.6 vs. 2.0) and increased pH range (0.89 vs. 1.04 pH units), but had no effect on VFA range. Increasing CRDM linearly decreased mean ruminal pH in LS diets but linearly increased mean ruminal pH in HS diets. Fibrolytic activity was unaffected in LS diets but decreased strongly in HS diets (from 62 to 50%). These findings suggest that pH regulation differs on a short-term and on a longer-term basis. In the short-term, increasing CRDM increased the rate of VFA production, which may have been partly buffered under LS diets due to the higher cation exchange capacity of nonstarch feedstuffs compared with starch-rich feedstuffs. In the longer term, feeding starch reduced fibrolytic activity, which may have led to lower total VFA production and higher mean pH. The results of this experiment clearly show that both fermentative characteristics of the concentrate and dietary starch content should be taken into account when formulating diets to prevent subacute ruminal acidosis and to predict VFA profile. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Synthesis and structural characterization of CZTS nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lydia, R.; Reddy, P. Sreedhara

    2013-06-03

    The CZTS nanoparticles were successfully synthesized by Chemical co-precipitation method with different pH values in the range of 6 to 8. The synthesized nanoparticles were characterized by X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy. XRD studies revealed that the CZTS nanoparticles exhibited Kesterite Structure with preferential orientation along the (112) direction. Sample at pH value of 7 reached the nearly stoichiometric ratio.

  12. Anaerobic bio-hydrogen production from ethanol fermentation: the role of pH.

    PubMed

    Hwang, Moon H; Jang, Nam J; Hyun, Seung H; Kim, In S

    2004-08-05

    Hydrogen was produced by an ethanol-acetate fermentation at pH of 5.0 +/- 0.2 and HRT of 3 days. The yield of hydrogen was 100-200 ml g Glu(-1) with a hydrogen content of 25-40%. This fluctuation in the hydrogen yield was attributed to the formation of propionate and the activity of hydrogen utilizing methanogens. The change in the operational pH for the inhibition of this methanogenic activity induced a change in the main fermentation pathway. In this study, the main products were butyrate, ethanol and propionate, in the pH ranges 4.0-4.5, 4.5-5.0 and 5.0-6.0, respectively. However, the activity of all the microorganisms was inhibited below pH 4.0. Therefore, pH 4.0 was regarded as the operational limit for the anaerobic bio-hydrogen production process. These results indicate that the pH plays an important role in determining the type of anaerobic fermentation pathway in anaerobic bio-hydrogen processes.

  13. Modification of pH Conferring Virucidal Activity on Dental Alginates

    PubMed Central

    Nallamuthu, Navina; Braden, Michael; Oxford, John; Williams, David; Patel, Mangala

    2015-01-01

    To formulate an alginate dental impression material with virucidal properties, experimental alginate dental impression materials were developed and the formulations adjusted in order to study the effect on pH profiles during setting. Commercially available materials served as a comparison. Eight experimental materials were tested for antiviral activity against Herpes Simplex Virus type 1 (HSV-1). Changing the amount of magnesium oxide (MgO) used in the experimental formulations had a marked effect on pH. Increasing MgO concentration corresponded with increased pH values. All experimental materials brought about viral log reductions ranging between 0.5 and 4.0 over a period of 4 h. The material with the lowest pH was the most effective. The current work highlights the very important role of MgO in controlling pH profiles. This knowledge has been applied to the formulation of experimental alginates; where materials with pH values of approximately 4.2–4.4 are able to achieve a significant log reduction when assayed against HSV-1. PMID:28788042

  14. Tailoring the structure of biphasic calcium phosphate via synthesis procedure

    NASA Astrophysics Data System (ADS)

    Mansour, S. F.; El-dek, S. I.; Ahmed, M. K.

    2017-12-01

    Nano calcium phosphate ceramics (CaPC) were synthesized using simple co-precipitation method at different preparation conditions. The selected Ca/P ratio with a variation of pH value lead to formation of dicalcium phosphate dihydrate (DCPD) at pH 5 and 6 while, hydroxyapatite (HAP) nano particles were formed at pH 9 and 12 at room temperature. The crystallite size was in the range of 15-55 nm depending on the obtained crystalline phase. The study displayed variation of decomposition depending on the annealing temperature. The significant note is the different transformation trend of each phase depending on the starting pH value. The HRTEM illustrated that the DCPD phase was formed as fibers with diameter around 4-6 nm, while HAP was formed in rod shape. The aspect ratio decreased from 6.6 at pH 9 to 4 at pH 12 which refer to the great influence of pH value on the morphology of calcium phosphates.

  15. pH profile of the adsorption of nucleotides onto montmorillonite. I - Selected homoionic clays

    NASA Technical Reports Server (NTRS)

    Lawless, J. G.; Church, F. M.; Mazzurco, J.; Banin, A.; Huff, R.; Kao, J.; Cook, A.; Lowe, T.; Orenberg, J. B.; Edelson, E.

    1985-01-01

    The effect of pH and adsorbed ions on the adsorption of purine and pyrimidine nucleotides on montmorillonite clay was studied experimentally. The specific nucleotides examined were: 5 prime-AMP; 3-prime AMP; and 5 prime-CMP. The pH of the clay samples was adjusted to various levels in the 2-12 pH range using microliter volumes of concentrated acid (1N HCl) and base (1NHNaOH). It was found that preferential adsorption among nulceotides was dependent on the pH level and on the characteristics of the substituted metal cation and anion exchange mechanisms. Below pH 4, adsorption was attributed to cation and anion exchange mechanisms. Above pH 4, however, adsorption was attributed to the complexation mechanisms occurring between the metal cations in the clay exchange site and in the biomolecule. The possible role of homoionic clays in the concentration mechanisms of biomonomers in the prebiotic environment is discussed.

  16. An analysis of nitrification during the aerobic digestion of secondary sludges.

    PubMed

    Bhargava, D S; Datar, M T

    1989-01-01

    Investigations were undertaken to study the occurrence and progress of nitrification during aerobic digestion of activated sludge in a wide range of initial concentrations of total solids (1000 to 80 000 mg litre(-1), initial pH range of 4.5 to 10.4 and digestion temperature range of 5 degrees to 60 degrees C. Batch aerobic digestion studies on activated sludge grown on wastewater (enriched with organic solids from human excretal material) indicate that almost complete elimination of the 'biodegradable' matter of the activated sludge was one of the essential prerequisites to initiate nitrification. Favourable ranges of temperature and pH for nitrification were observed to be 25 degrees to 30 degrees C and 6.0 to 8.3, respectively. With all favourable conditions, a minimum period of about 2 days was necessary for population build-up of genera Nitrosomonas and Nitrobacter, and to initiate nitrification. Nitrate formation invariably lagged behind nitrite formation, but under certain conditions both phases of nitrification were observed to progress hand in hand.

  17. Charging Properties of Cassiterite (alpha-SnO2) surfaces in NaCl and RbCl Ionic Media.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenqvist, Jorgen K; Machesky, Michael L.; Vlcek, Lukas

    2009-01-01

    The acid-base properties of cassiterite (alpha-SnO2) surfaces at 10-50 degrees C were studied using potentiometric titrations of powder suspensions in aqueous NaCl and RbCl media. The proton sorption isotherms exhibited common intersection points in the pH range of 4.0-4.5 under all conditions, and the magnitude of charging was similar but not identical in NaCl and RbCl. The hydrogen bonding configuration at the oxide-water interface, obtained from classical molecular dynamics (MD) simulations, was analyzed in detail, and the results were explicitly incorporated in calculations of protonation constants for the reactive surface sites using the revised MUSIC model. The calculations indicated thatmore » the terminal SnOH2 group is more acidic than the bridging Sn2OH group, with protonation constants (log KH) of 3.60 and 5.13 at 25 degrees C, respectively. This is contrary to the situation on the isostructural alpha-TiO2 (rutile), apparently because of the difference in electronegativity between Ti and Sn. MD simulations and speciation calculations indicated considerable differences in the speciation of Na+ and Rb+, despite the similarities in overall charging. Adsorbed sodium ions are almost exclusively found in bidentate surface complexes, whereas adsorbed rubidium ions form comparable numbers of bidentate and tetradentate complexes. Also, the distribution of adsorbed Na+ between the different complexes shows a considerable dependence on the surface charge density (pH), whereas the distribution of adsorbed Rb+ is almost independent of pH. A surface complexation model (SCM) capable of accurately describing both the measured surface charge and the MD-predicted speciation of adsorbed Na+/Rb+ was formulated. According to the SCM, the deprotonated terminal group (SnOH(-0.40)) and the protonated bridging group (Sn2OH+0.36) dominate the surface speciation over the entire pH range of this study (2.7-10). The complexation of medium cations increases significantly with increasing negative surface charge, and at pH 10, roughly 40% of the terminal sites are predicted to form cation complexes, whereas anion complexation is minor throughout the studied pH range.« less

  18. The preparation and evaluation of salt forms of linogliride with reduced solubilities as candidates for extended release.

    PubMed

    Chrzanowski, Frank A; Ahmad, Kaleem

    2017-03-01

    Salts of linogliride with reduced solubilities were prepared and evaluated as potential candidates for extended-release oral dosage forms. A once-daily dose of 300-800 mg was intended. Seven acids were selected: p-acetamidobenzoic, benzoic, p-hydroxybenzoic, 3-hydroxy-2-naphthoic, 1-napsylic, pamoic, and p-toluenesulfonic acids but only four salts were able to be prepared in suitable quantities for evaluation: linogliride pamoate, p-hydroxybenzoate, 3-hydroxy-2-naphthoate, and 1-napsylate. The pH-solubility profiles of the four new salts, free base, and fumarate salt were compared over the pH 1.43-8.3 range and the intrinsic dissolution rates of the four new salts and the free base were determined at pH 1.43, 4.4, and 7.5. The range of the pH-solubility profile and intrinsic dissolution rates of the p-hydroxybenzoate salt were less than the free base and fumarate and higher than the other three new salts. The pH-solubilities and intrinsic dissolution rates of the 1-napsylate salt were pH-independent. The solubilities and intrinsic dissolution rates of the pamoate and 3-hydroxy-2-naphthoate were higher at pH 1.4-3.4 than at higher pH. At pH 4.4 and higher, the solubilities were essentially the same, in the 1-2 mg/mL range. The intrinsic dissolution rates were also very low and not very different. Dissolution studies with capsules containing 800 mg doses of the pamoate, 1-napsylate, free base, and fumarate performed in a dissolution medium of pH beginning at 2.2 and ending at 6.8 demonstrated that the pamoate and 1-napsylate salt forms dissolved slower and could be useful as extended-release forms.

  19. Effect of Sodium Chloride and pH on Enterotoxin C Production

    PubMed Central

    Genigeorgis, Constantin; Foda, Mohamed S.; Mantis, Antony; Sadler, Walter W.

    1971-01-01

    Growth and production of enterotoxin C by Staphylococcus aureus strain 137 in 3% + 3% protein hydrolysate powder N-Z Amine NAK broths with 0 to 12% NaCl and an initial pH of 4.00 to 9.83 were studied during an 8-day incubation period at 37 C. Growth was initiated at pH values as low as 4.00 and as high as 9.83 at 0% salt level as long as the inoculum contained at least 108 cells per ml. Rate of growth decreased as the NaCl concentration was increased gradually to 12%. Enterotoxin C was produced in broths inoculated with 108 cells per ml and above and having initial pH ranges of 4.00 to 9.83, 4.40 to 9.43, 4.50 to 8.55 and respective NaCl concentrations of 0, 4, and 8%. In the presence of 10% NaCl, the pH range supporting enterotoxin C production was 5.45 to 7.30 for an inoculum level of 108 cells per ml and 6.38 to 7.30 for 3.6 × 106 cells per ml. In repeated experiments in which the inoculum contained 108 cells per ml, we failed to demonstrate enterotoxin C production in broths with 12% NaCl and a pH range of 4.50 to 8.55 and concentrated up to 14 times. The effect of NaCl on enterotoxin C production followed the same pattern as its effect on enterotoxin B production. As the concentration of NaCl increased from 0 to 10%, yields of enterotoxin B and C decreased to undetectable amounts. PMID:5574320

  20. Oxygen transport in congenital heart disease: influence of fetal hemoglobin, red cell pH, and 2,3-diphosphoglycerate.

    PubMed

    Versmold, H T; Linderkamp, C; Döhlemann, C; Riegel, K P

    1976-06-01

    In 48 individuals (age 1 day to 13 years) with congenital heart disease, blood oxygen transport function was studied in order to evaluate adaptive changes in shunt hypoxemia and to investigate the in vivo regulation of erythrocyte 2, 3-diphosphoglycerate concentration (RBC 2, 3-DPG) in the presence of fetal hemoglobin (HbF). Arterial pO2 and oxygen content, oxygen capacity, acid base status, oxygen affinity, HbF fraction, plasma pH, red cell pH, and RBC 2, 3-DPG were determined. During the first 50 days of life values of standard P50 (stdP50) (37, pH 7.4), actual in vivo P50 (actP50), RBC 2, 3-DPG, O2 capacity, arterial plasma pH, and red cell pH were scattered around the normal range, although tending to low values for stdP50 and arterial plasma pH and to high values for O2 capacity. After the third month, stdP50 actP50, RBC 2, 3-DPG, O2 capacity, and red cell pH were found to be elevated. Plasma pH and actP50 were scattered around the normal range (Figs. 1 and 2). Intraerythrocytic pH in hypoxemic infants was increased compared with normal children when related to plasma pH (Fig. 3). A close to normal intraerythrocytic pH was therefore found in the hypoxemic infants with low plasma pH, and an increased intraerythrocytic pH in the hypoxemic children with normal plasma pH (Fig. 1). A significant negative correlation exists between erythrocyte H+ ion and 2, 3-DPG concentration (Fig. 5); regression constants derived from data at high (mean 47%) and low (mean 9%) fractions of HbF are not significantly different (Regression Equations 8 and 11 in Table 1). Thus, the known difference in 2, 3-DPG binding to fetal or adult deoxyhemoglobin does not measurably influence the erythrocyte 2, 3-DPG concentration, indicating that in vivo the 2, 3-DPG synthesis in hypoxia is virtually regulated by the erythrocyte pH, which in turn is determined by plasma pH and the oxygenation state of hemoglobin.

  1. A New Desalination Pump Helps Define the pH of Ocean Worlds

    NASA Astrophysics Data System (ADS)

    Levi, A.; Sasselov, D.

    2018-04-01

    We study ocean exoplanets, for which the global surface ocean is separated from the rocky interior by a high-pressure ice mantle. We describe a mechanism that can pump salts out of the ocean, resulting in oceans of very low salinity. Here we focus on the H2O–NaCl system, though we discuss the application of this pump to other salts as well. We find our ocean worlds to be acidic, with a pH in the range of 2–4. We discuss and compare between the conditions found within our studied oceans and the conditions in which polyextremophiles were discovered. This work focuses on exoplanets in the super-Earth mass range (∼2 M ⊕), with water composing at least a few percent of their mass. However, the principle of the desalination pump might extend beyond this mass range.

  2. The Shampoo pH can Affect the Hair: Myth or Reality?

    PubMed Central

    Gavazzoni Dias, Maria Fernanda Reis; de Almeida, Andréia Munck; Cecato, Patricia Makino Rezende; Adriano, Andre Ricardo; Pichler, Janine

    2014-01-01

    Aim: Dermatologists most frequently prescribe shampoos for the treatment of hair shed and scalp disorders. Prescription of hair care products is often focused on improving scalp hair density, whereas the over-the-counter products focus on hair damage prevention. Little is taught in medical schools about the hair cosmetics, so that the prescriptions are based only on the treatment of the scalp and usually disregards the hair fiber health. Materials and Methods: In this work, we review the current literature about the mode of action of a low-pH shampoo regarding the hair shaft's health and analyze the pH of 123 shampoos of international brands. Results: All shampoo pH values ranged from 3.5 to 9.0. 38.21% of all 123 shampoos presented a pH ≤ 5.5 (IC: 29.9–47%) and 61.78% presented a pH > 5.5. 26 anti-dandruff shampoos were analyzed. About 19.23% presented pH ≤ 5.5.(IC: 7.4–37.6%). 80.77% of all anti-dandruffs shampoos presented a pH > 5.5. The dermatological shampoo group (n = 19) presented 42.10% with pH ≤ 5.5 (IC: 21.8–64.6%), and 57.90% with pH > 5.5. Among the commercial (popular) products (n = 96), 34.37% presented pH ≤ 5.5 (IC: 25.4–44.3%) and 65.62% presented pH > 5.5. 15 professional products (used in hair salons) were analyzed, of which 75% had a pH ≤ 5.5 (IC: 18–65, 4%), and 25% had a pH > 5.5. 100% of the children's shampoos presented a pH > 5.5. Conclusions: Alkaline pH may increase the negative electrical charge of the hair fiber surface and, therefore, increase friction between the fibers. This may lead to cuticle damage and fiber breakage. It is a reality and not a myth that lower pH of shampoos may cause less frizzing for generating less negative static electricity on the fiber surface. Interestingly, only 38% of the popular brand shampoos against 75% of the salons shampoos presented a pH ≤ 5.0. Pediatric shampoos had the pH of 7.0 because of the “no-tear” concept. There is no standardized value for the final pH. The authors believe that it is important to reveal the pH value on the shampoo label, but studies are needed to establish the best pH range for both the scalp and the hair fiber's health. PMID:25210332

  3. The Shampoo pH can Affect the Hair: Myth or Reality?

    PubMed

    Gavazzoni Dias, Maria Fernanda Reis; de Almeida, Andréia Munck; Cecato, Patricia Makino Rezende; Adriano, Andre Ricardo; Pichler, Janine

    2014-07-01

    Dermatologists most frequently prescribe shampoos for the treatment of hair shed and scalp disorders. Prescription of hair care products is often focused on improving scalp hair density, whereas the over-the-counter products focus on hair damage prevention. Little is taught in medical schools about the hair cosmetics, so that the prescriptions are based only on the treatment of the scalp and usually disregards the hair fiber health. In this work, we review the current literature about the mode of action of a low-pH shampoo regarding the hair shaft's health and analyze the pH of 123 shampoos of international brands. All shampoo pH values ranged from 3.5 to 9.0. 38.21% of all 123 shampoos presented a pH ≤ 5.5 (IC: 29.9-47%) and 61.78% presented a pH > 5.5. 26 anti-dandruff shampoos were analyzed. About 19.23% presented pH ≤ 5.5.(IC: 7.4-37.6%). 80.77% of all anti-dandruffs shampoos presented a pH > 5.5. The dermatological shampoo group (n = 19) presented 42.10% with pH ≤ 5.5 (IC: 21.8-64.6%), and 57.90% with pH > 5.5. Among the commercial (popular) products (n = 96), 34.37% presented pH ≤ 5.5 (IC: 25.4-44.3%) and 65.62% presented pH > 5.5. 15 professional products (used in hair salons) were analyzed, of which 75% had a pH ≤ 5.5 (IC: 18-65, 4%), and 25% had a pH > 5.5. 100% of the children's shampoos presented a pH > 5.5. Alkaline pH may increase the negative electrical charge of the hair fiber surface and, therefore, increase friction between the fibers. This may lead to cuticle damage and fiber breakage. It is a reality and not a myth that lower pH of shampoos may cause less frizzing for generating less negative static electricity on the fiber surface. Interestingly, only 38% of the popular brand shampoos against 75% of the salons shampoos presented a pH ≤ 5.0. Pediatric shampoos had the pH of 7.0 because of the "no-tear" concept. There is no standardized value for the final pH. The authors believe that it is important to reveal the pH value on the shampoo label, but studies are needed to establish the best pH range for both the scalp and the hair fiber's health.

  4. Sorption of Cr(VI), Cu(II) and Pb(II) by growing and non-growing cells of a bacterial consortium.

    PubMed

    Sannasi, P; Kader, J; Ismail, B S; Salmijah, S

    2006-03-01

    This paper reports the sorption of three metallic ions, namely Cr(VI), Cu(II) and Pb(II) in aqueous solution by a consortium culture (CC) comprising an acclimatised mixed bacterial culture collected from point and non-point sources. Metal sorption capability of growing and non-growing cells at initial pH of between 3 and 8 in the 1-100mg/L concentration range were studied based on Q(max) and K(f) values of the Langmuir and linearised Freundlich isotherm models, respectively. Maximal metal loading was generally observed to be dependent on the initial pH. Growing cells displayed significant maximal loading (Q(max)) for Pb(II) (238.09 mg/g) and Cu(II) (178.87 mg/g) at pH 6 and at pH 7 for Cr(VI) (90.91 mg/g) compared to non-growing cells (p < 0.05). At the pH range of 6-8, growing cells showed higher loading capacity compared to non-growing cells i.e. 38-52% for Cr, 17-28% for Cu and 3-17% for Pb. At lower metal concentrations and at more acidic pH (3-4) however, non-growing cells had higher metal loading capacity than growing cells. The metal sorption capacity for both populations were as follows: Pb(II) > Cu(II) > Cr(VI).

  5. Reclamation of cadmium-contaminated soil using dissolved organic matter solution originating from wine-processing waste sludge.

    PubMed

    Liu, Cheng-Chung; Chen, Guan-Bu

    2013-01-15

    Soil washing using an acid solution is a common practice for removing heavy metals from contaminated soil in Taiwan. However, serious loss of nutrients from soil is a major drawback of the washing. Distillery sludge can be used to prepare a dissolved organic matter (DOM) solution by extracting its organic constituents with alkaline solutions. This study employed DOM solutions to remediate Cd-contaminated soil (with concentrations up to 21.5 mg kg(-1)) and determine the factors affecting removal of Cd, such as pH, initial concentration of DOM solution, temperature, and washing frequency. When washing with pH 3.0 and 1250 mg L(-1) DOM solution, about 80% and 81% of Cd were removed from the topsoil at 27 °C and subsoil at 40 °C, respectively. To summarize the changes in fertility during DOM washing with various pH solutions: the increase in organic matter content ranged from 7.7% to 23.7%; cation exchange capacity (CEC) ranged from 4.6% to 13.9%; available ammonium (NNH(4)) content ranged from 39.4% to 2175%; and available phosphorus content ranged from 34.5% to 182%. Exchangeable K, Ca, and Mg remained in the topsoil after DOM washing, with concentrations of 1.1, 2.4, and 1.5 times higher than those treated with HCl solution at the same pH, respectively. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Reactions of cisplatin with cysteine and methionine at constant pH; a computational study.

    PubMed

    Zimmermann, Tomás; Burda, Jaroslav V

    2010-02-07

    Interactions of hydrated cisplatin complexes cis-[Pt(NH(3))(2)Cl(H(2)O)](+) and cis-[Pt(NH(3))(2)(OH)(H(2)O)](+) with cysteine and methionine in an aqueous solution at constant pH were explored using computational methods. Thermodynamic parameters of considered reactions were studied in a broad pH range, taking up to 4 protonation states of each molecule into account. Reaction free energies at constant pH were obtained from standard Gibbs free energies using the Legendre transformation. Solvation free energies and pK(a) values were calculated using the PCM model with UAHF cavities, recently adapted by us for transition metal complexes. The root mean square error of pK(a) values on a set of model platinum complexes and amino acids was equal to 0.74. At pH 7, the transformed Gibbs free energies differ by up to 15 kcal mol(-1) from the Gibbs free energies of model reactions with a constant number of protons. As for cysteine, calculations confirmed a strong preference for kappaS monodenate bonding in a broad pH range. The most stable product of the second reaction step, which proceeds from monodentate to chelate complex, is the kappa(2)S,N coordinated chelate. The reaction with methionine is more complex. In the first step all three considered methionine donor atoms (N, S and O) are thermodynamically preferred products depending on the platinum complex and the pH. This is in accordance with the experimental observation of a pH dependent migration between N and S donor atoms in a chemically related system. The most stable chelates of platinum with methionine are kappa(2)S,N and kappa(2)N,O bonded complexes. The comparison of reaction free energies of both amino acids suggests, that the bidentate methionine ligand can be displaced even by the monodentate cysteine ligand under certain conditions.

  7. Preformulation stability study of the EGFR inhibitor HKI-272 (Neratinib) and mechanism of degradation.

    PubMed

    Lu, Qinghong; Ku, Mannching Sherry

    2012-03-01

    The stability in solution of HKI-272 (Neratinib) was studied as a function of pH. The drug is most stable from pH 3 to 4, and degradation rate increases rapidly around pH 6 and appears to approach a maximum asymptotic limit in the range of pH 812. Pseudo first-order reaction kinetics was observed at all pH values. The structure of the major degradation product indicates that it is formed by a cascade of reactions within the dimethylamino crotonamide group of HKI-272. It is assumed that the rate-determining step is the initial isomerization from allyl amine to enamine functionality, followed by hydrolysis and subsequent cyclization to a stable lactam. The maximum change in degradation rate as a function of pH occurs at about pH 6, which corresponds closely to the theoretical pKa value of the dimethylamino group of HKI-272 when accounting for solvent/temperature effects. The observed relationship between pH and degradation rate is discussed, and a self-catalyzed mechanism for the allylamine-enamine isomerization reaction is proposed. The relevance of these findings to other allylamine drugs is discussed in terms of the relative stability of the allylic anion intermediate through which, the isomerization occurs.

  8. Formation of NDMA from ranitidine and sumatriptan: the role of pH.

    PubMed

    Shen, Ruqiao; Andrews, Susan A

    2013-02-01

    N-nitrosodimethylamine (NDMA) is an emerging disinfection by-product (DBP) which can be formed via the chloramination of amine-based precursors. The formation of NDMA is mainly determined by the speciation of chloramines and the precursor amine groups, both of which are highly dependent on pH. The impact of pH on NDMA formation has been studied for the model precursor dimethylamine (DMA) and natural organic matter (NOM), but little is known for amine-based pharmaceuticals which have been newly identified as a group of potential NDMA precursors, especially in waters impacted by treated wastewater effluents. This study investigates the role of pH in the formation of NDMA from two amine-based pharmaceuticals, ranitidine and sumatriptan, under drinking water relevant conditions. The results indicate that pH affects both the ultimate NDMA formation as well as the reaction kinetics. The maximum NDMA formation typically occurs in the pH range of 7-8. At lower pH, the reaction is limited due to the lack of non-protonated amines. At higher pH, although the initial reaction is enhanced by the increasing amount of non-protonated amines, the ultimate NDMA formation is limited because of the lack of dichloramine. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Normal 24-hour ambulatory proximal and distal gastroesophageal reflux parameters in Chinese.

    PubMed

    Hu, W H C; Wong, N Y H; Lai, K C; Hui, W M; Lam, K F; Wong, B C Y; Xia, H H X; Chan, C K; Chan, A O O; Wong, W M; Tsang, K W T; Lam, S K

    2002-06-01

    To quantify normal proximal and distal oesophageal acid parameters in healthy Chinese. Observational study. University teaching hospital, Hong Kong. Twenty healthy adults who were not on medication and were free from gastrointestinal symptoms were recruited by advertisement. Ambulatory oesophageal acid (pH<4) exposure parameters were recorded at distal and proximal sites, 5 and 20 cm, respectively above the lower oesophageal sphincter. The 95th percentile for reflux parameters assessed in the distal/proximal oesophagus were: percent total time pH<4, 4.6/0.7%; percent upright time pH<4, 7.0/1.1%; percent supine time pH<4, 4.5/0.5%; number of reflux episodes, 73/12; number of reflux episodes with pH<4 for >5 minutes, 4/0; and the longest single acid exposure episode, 11.2/3.0 minutes. Physiological gastroesophageal reflux occurs in healthy Chinese. These initial data provide a preliminary reference range that could be utilised by laboratories studying Chinese subjects.

  10. [Study of the stability of pyrimido-[5,4-e]-1,2,4-triazine antibiotics in acid-base media by NMR spectroscopy].

    PubMed

    Esipov, S E; Chernyshev, A I; Shorshnev, S V; Iakushkina, N I; Antonovskiĭ, V L

    1985-02-01

    A comparative study of the NMR 1H and 13C spectra of reumycin, fervenulin and xanthothricin in aqueous acid-base media showed that at pH or pD ranging from 8.0 to 1.0 the antibiotics were chemically stable. By the ratio of the 1H and 13C chemical shifts of reumycin at pH 4.0-10.0 the pKa values of this antibiotic were determined: 6.7 in aqueous (D2O) solution and 8.76 in dimethylsulfoxide media. Alkalization of the solutions of reumycin (pH 12.0), fervenulin (pH 9.0) and xanthothricin (pH 8.0) resulted in irreversible chemical transformation of the antibiotics. The analysis of the chemical shifts in the PMR spectra of the transformation products revealed transformation of the uracil ring in reumycin and uracil and triazine rings in fervenulin and xanthothricin. Alkalization of the xanthothricin solutions resulted also in demethylation with formation of reumycin.

  11. Studies on the extraction of nitrogenous and phosphorus-containing materials from the seeds of kidney beans (Phaseolus vulgaris)

    PubMed Central

    Pusztai, A.

    1965-01-01

    1. The conditions of extracting nitrogenous, phosphorus-containing and glucosamine-containing components of the seeds of kidney bean have been studied. 2. The dispersing of proteins was incomplete below pH 7, and the exact amount of protein extracted depended on the pH and the ionic strength of the solvent. 3. The extraction of proteins was practically complete in the range pH 7–9, but the relative amounts of the individual proteins obtained still depended on the pH of the extracting media, indicating a pH-dependent association–dissociation reaction between the protein molecules present. 4. The extraction of phosphorus-containing material showed an optimum at pH 6–7, and only a part of this was removed on dialysis. The precipitates obtained with trichloroacetic acid, on the other hand, retained very little phosphorus-containing material. 5. The significance of these findings is discussed. PMID:14340051

  12. High performance flexible pH sensor based on carboxyl-functionalized and DEP aligned SWNTs

    NASA Astrophysics Data System (ADS)

    Liu, Lu; Shao, Jinyou; Li, Xiangming; Zhao, Qiang; Nie, Bangbang; Xu, Chuan; Ding, Haitao

    2016-11-01

    The detection and control of the pH is very important in many biomedical and chemical reaction processes. A miniaturized flexible pH sensor that is light weight, robust, and conformable is very important in many applications, such as multifunctional lab-on-a-chip systems or wearable biomedical devices. In this work, we demonstrate a flexible chemiresistive pH sensor based on dielectrophoresis (DEP) aligned carboxyl-functionalized single-walled carbon nanotubes (SWNTs). Decorated carboxyl groups can react with hydrogen (H+) and hydroxide (OH-) ions, enabling the sensor to be capable of sensing the pH. DEP is used to deposit well-organized and highly aligned SWNTs in desired locations, which improves the metal-nanotube interface and highly rapid detection of the pH, resulting in better overall device performance. When pH buffer solutions are dropped onto such SWNTs, the H+ and OH- ions caninteract with the carboxyl groups and affect the generation of holes and electrons in the SWNTs, leading to resistance variations in the SWNTs. The results shows that the relative resistance variations of the sensor increases linearly with increasing the pH values in the range from 5 to 9 and the response time ranges from 0.2 s to 22.6 s. The pH sensor also shows high performance in mechanical bendability, which benefited from the combination of flexible PET substrates and SWNTs. The SWNT-based flexible pH sensor demonstrates great potential in a wide range of areas due to its simple structure, excellent performance, low power consumption, and compatibility with integrated circuits.

  13. 40 CFR 421.264 - Standards of performance for new sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Ammonia (as N) 599.900 263.700 Total suspended solids 67.500 54.000 pH (1) (1) 1 Within the range of 7.5....269 Combined metals 0.192 Ammonia (as N) 85.310 37.500 Total suspended solids 9.600 7.680 pH (1) (1) 1....000 12.000 pH (1) (1) 1 Within the range of 7.5 to 10.0 at all times. (d) Spent cyanide stripping...

  14. 40 CFR 421.74 - Standards of performance for new sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... bullion produced Lead 4.340 2.015 Zinc 15.810 6.510 Total suspended solids 232.500 186.000 pH (1) (1... solids .000 .000 pH (1) (1) 1Within the range of 7.5 to 10.0 at all times. (b) Subpart G—Blast Furnace... Zinc .000 .000 Total suspended solids .000 .000 pH (1) (1) 1Within the range of 7.5 to 10.0 at all...

  15. 40 CFR 421.74 - Standards of performance for new sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... bullion produced Lead 4.340 2.015 Zinc 15.810 6.510 Total suspended solids 232.500 186.000 pH (1) (1... solids .000 .000 pH (1) (1) 1Within the range of 7.5 to 10.0 at all times. (b) Subpart G—Blast Furnace... Zinc .000 .000 Total suspended solids .000 .000 pH (1) (1) 1Within the range of 7.5 to 10.0 at all...

  16. Variation in pH optima of hydrolytic enzyme activities in tropical rain forest soils.

    PubMed

    Turner, Benjamin L

    2010-10-01

    Extracellular enzymes synthesized by soil microbes play a central role in the biogeochemical cycling of nutrients in the environment. The pH optima of eight hydrolytic enzymes involved in the cycles of carbon, nitrogen, phosphorus, and sulfur, were assessed in a series of tropical forest soils of contrasting pH values from the Republic of Panama. Assays were conducted using 4-methylumbelliferone-linked fluorogenic substrates in modified universal buffer. Optimum pH values differed markedly among enzymes and soils. Enzymes were grouped into three classes based on their pH optima: (i) enzymes with acidic pH optima that were consistent among soils (cellobiohydrolase, β-xylanase, and arylsulfatase), (ii) enzymes with acidic pH optima that varied systematically with soil pH, with the most acidic pH optima in the most acidic soils (α-glucosidase, β-glucosidase, and N-acetyl-β-glucosaminidase), and (iii) enzymes with an optimum pH in either the acid range or the alkaline range depending on soil pH (phosphomonoesterase and phosphodiesterase). The optimum pH values of phosphomonoesterase were consistent among soils, being 4 to 5 for acid phosphomonoesterase and 10 to 11 for alkaline phosphomonoesterase. In contrast, the optimum pH for phosphodiesterase activity varied systematically with soil pH, with the most acidic pH optima (3.0) in the most acidic soils and the most alkaline pH optima (pH 10) in near-neutral soils. Arylsulfatase activity had a very acidic optimum pH in all soils (pH ≤3.0) irrespective of soil pH. The differences in pH optima may be linked to the origins of the enzymes and/or the degree of stabilization on solid surfaces. The results have important implications for the interpretation of hydrolytic enzyme assays using fluorogenic substrates.

  17. The Electro-Oxidation of Ethylene Glycol on Platinum over a Wide pH Range: Oscillations and Temperature Effects

    PubMed Central

    Sitta, Elton; Nagao, Raphael; Varela, Hamilton

    2013-01-01

    We report a comprehensive study of the electro-oxidation of ethylene glycol (EG) on platinum with emphasis on the effects exerted by the electrolyte pH, the EG concentration, and temperature, under both regular and oscillatory conditions. We extracted and discussed parameters such as voltammetric activity, reaction orders (with respect to [EG]), oscillation’s amplitude, frequency and waveform, and the evolution of the mean electrode potential at six pH values from 0 to 14. In addition, we obtained the apparent activation energies under several different conditions. Overall, we observed that increasing the electrolyte pH results in a discontinuous transition in most properties studied under both voltammetric and oscillatory regimes. As a relevant result in this direction, we found that the increase in the reaction order with pH is mediated by a minimum (~ 0) at pH = 12. Furthermore, the solution pH strongly affects all features investigated, c.f. the considerable increase in the oscillatory frequency and the decrease in the, oscillatory, activation energy as the pH increase. We suggest that adsorbed CO is probably the main surface-blocking species at low pH, and its absence at high pH is likely to be the main reason behind the differences observed. The size of the parameter region investigated and the amount of comparable parameters and properties presented in this study, as well as the discussion that followed illustrate the strategy of combining investigations under conventional and oscillatory regimes of electrocatalytic systems. PMID:24058650

  18. Acid-Activatable Michael-Type Fluorescent Probes for Thiols and for Labeling Lysosomes in Live Cells.

    PubMed

    Dai, Chun-Guang; Du, Xiao-Jiao; Song, Qin-Hua

    2015-12-18

    A Michael addition is usually taken as a base-catalyzed reaction. Most fluorescent probes have been designed to detect thiols in slightly alkaline solutions (pH 7-9). The sensing reactions of almost all Michael-type fluorescent probes for thiols are faster in a high pH solution than in a low pH solution. In this work, we synthesized a series of 7-substituted 2-(quinolin-2-ylmethylene)malonic acids (QMAs, substituents: NEt2, OH, H, Cl, or NO2) and their ethyl esters (QMEs) as Michael-type fluorescent probes for thiols. The sensing reactions of QMAs and QMEs occur in distinct pH ranges, pH < 7 for QMAs and pH > 7 for QMEs. On the basis of experimental and theoretic studies, we have clarified the distinct pH effects on the sensing reactivity between QMAs and QMEs and demonstrated that two QMAs (NEt2, OH) are highly sensitive and selective fluorescent probes for thiols in acidic solutions (pH < 7) and promising dyes that can label lysosomes in live cells.

  19. The leaching characteristics of selenium from coal fly ashes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, T.; Wang, J.; Burken, J.G.

    2007-11-15

    The leaching characteristics of selenium from several bituminous and subbituminous coal fly ashes under different pH conditions were investigated using batch methods. Results indicated that pH had a significant effect on selenium leaching from bituminous coal ash. The minimum selenium leaching occurred in the pH range between 3 and 4, while the maximum selenium leaching occurred at pH 12. The release of selenium from subbituminous coal ashes was very low for the entire experimental pH range, possibly due to the high content of calcium which can form hydration or precipitation products as a sink for selenium. The adsorption results formore » different selenium species indicated that Se(VI) was hardly adsorbable on either bituminous coal ashes or subbitumminous coal ashes at any pH. However, Se(I) was highly adsorbed by bituminous coal ashes under acidic pH conditions and was mostly removed by subbitumminous coal ashes across the entire pH range. This result suggests that the majority of selenium released from the tested fly ashes was Se(IV). A speciation-based model was developed to simulate the adsorption of Se(IV) on bituminous coal fly ash, and the pH-independent adsorption constants of HSeO{sup 3-} and SeO{sub 3}{sup 2-} were determined. The modeling approach is useful for understanding and predicting the release process of selenium from fly ash.« less

  20. Polarographic study of cadmium 5-hydroxy 2-(hydroxymethyl) 4H-pyran-4-one complex

    NASA Technical Reports Server (NTRS)

    Wilson, Ray F.; Daniels, Robert C.

    1989-01-01

    A polarographic study was performed on the products formed in the interaction of cadmium (II) with a 5-hydroxy 2-(hydroxymethyl) 4H-Pyran-4-one, using varying conditions of pH, supporting electrolytes, and concentrations. Measurements using the differential pulse method show that cadmium (II) exhibits a molar combining ratio of complexing agents to cation ranging from 1 to 1 to 3 to 1 depending on the pH and the supporting electrolyte employed.

  1. 40 CFR 432.3 - General limitation or standard for pH.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false General limitation or standard for pH... standard for pH. Any discharge subject to BPT, BCT, or NSPS limitations or standards in this part must remain within the pH range of 6 to 9. ...

  2. 40 CFR 432.3 - General limitation or standard for pH.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 30 2011-07-01 2011-07-01 false General limitation or standard for pH... standard for pH. Any discharge subject to BPT, BCT, or NSPS limitations or standards in this part must remain within the pH range of 6 to 9. ...

  3. Interaction of Tryptophane and Phenylalanine with Cadmium and Molybdenum Ferrocyanides and Its Implications in Chemical Evolution and Origins of Life.

    NASA Astrophysics Data System (ADS)

    Tewari, Brij

    2016-07-01

    Insoluble metal hexacyanoferrate(II) complexes could have concentrated biomonomers from dilute prebiotic soup during course of chemical evolution and origin of life or primitive earth. In the light of above hypothesis, adsorption of tryptophane and phenylalanine was studied on cadmium and molybdenum ferrocyanides at neutral pH (7.0 ± 0.01) and at a temperature of 30 ± 1º C. Interaction of amino acids with metal ferrocyanides are found to be maximum at neutral pH. Neutral pH is chosen for the adsorption studies because most of the reactions in biological systems taken place at neutral pH range. Adsorption trend follow Langmuir isotherm model. The Langmuir constants b and Qo were calculated at neutral pH, tryptophane was found to more adsorbed than phenylalanine on both metal ferrocyanides studied. Molybdenum ferrocyanides studied. Molybdenum ferrocyanides was found to have more uptake capacity for both adsorbates than cadmium ferrocyanides. The present study suggests that metal ferrocyanides might have played a role in the stabilization of biomolecules through their surface activity during course of chemical solution and origins of life on primitive earth.

  4. Survival and growth of wildlife shrubs and trees on acid mine spoil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, D.K.; Adkisson, L.F.

    1980-01-01

    The purpose of this study was to assess the survival and growth of selected wildlife plants over a wide range of acid mine spoil conditions and to identify species suitable for surface mine reclamation. A major criterion in selection of study sites was inclusion of a wide range of spoil acidity conditions. The Ollis Creek (Study Area A) and Farrell (Study Area B) coal surface mines located in Campbell and Scott Counties, Tennessee, were selected for study. Seven plant species, all of which had been used in past reclamation demonstrations, were introduced on the 22 plots during March 1972. Autumnmore » olive (Elaeagnus umbellata) was included as a control plant. Ten additional plant species were introduced during March 1973. With the exception of highbush blueberry (Vaccinium corymbosum var.). European filbert (Corylus avellana), and red maple (Acer rubrum), these species had not been used in TVA reclamation demonstrations. To assess the effects of spoil pH on the plants, the plots were grouped into seven pH categories, and mean percent survival and growth for each species were calculated. Results indicate that autumn olive, elaeagnus cherry, arnot locust, sawtooth oak, red maple, and Toringo crabapple are suitable for quick improvement of surface mine habitat over a wide range of spoil acidity in the Appalachian coalfield. Bessey cherry and European filbert need further study before a decision can be made regarding their reclamation utility. Species that are not recommended for quick habitat improvement over a wide range of surface mine spoil pH conditions include bush honeysuckle, barberry, Siberian crabapple, Manchu cherry, American beautyberry, bear oak, blueberry, rem-red honeysuckle, and redcedar.« less

  5. Optimization of paper bridge loading for 2-DE analysis in the basic pH region: application to the mitochondrial subproteome.

    PubMed

    Kane, Lesley A; Yung, Christina K; Agnetti, Giulio; Neverova, Irina; Van Eyk, Jennifer E

    2006-11-01

    Separation of basic proteins with 2-DE presents technical challenges involving protein precipitation, load limitations, and streaking. Cardiac mitochondria are enriched in basic proteins and difficult to resolve by 2-DE. We investigated two methods, cup and paper bridge, for sample loading of this subproteome into the basic range (pH 6-11) gels. Paper bridge loading consistently produced improved resolution of both analytical and preparative protein loads. A unique benefit of this technique is that proteins retained in the paper bridge after loading basic gels can be reloaded onto lower pH gradients (pH 4-7), allowing valued samples to be analyzed on multiple pH ranges.

  6. A survey of water activity and pH values in fresh pasta packed under modified atmosphere manufactured in Argentina and Uruguay.

    PubMed

    Schebor, C; Chirife, J

    2000-07-01

    The water activity (a(w)) and pH values of commercially available filled fresh pasta and gnocchi packed under modified atmosphere and manufactured in Argentina and Uruguay were examined. The retail survey included 58 samples (several brands) of filled pasta and 11 samples of gnocchi. Fillings consisted of different combinations of cheese (various types), beef, ricotta, ham, chicken, and spinach. The survey revealed that the a(w) values of the 58 samples of filled pasta ranged from 0.916 to 0.973, and their pH values ranged from 5.2 to 7.0. The a(w) of gnocchi was consistently higher and ranged from 0.936 to 0.983, with pH values from 4.8 to 6.4. Some samples of filled pasta and most gnocchi samples were found to have a(w) and pH values that would support growth of spores of Clostridium botulinum, if present, under conditions of temperature abuse (i.e., 30 degrees C).

  7. Disintegration performance of renal multivitamin supplements.

    PubMed

    Stamatakis, M K; Meyer-Stout, P J

    1999-04-01

    Vitamins have traditionally been regulated as dietary supplements and have not been required to meet the same rigorous product quality performance standards as drug products. Impaired product performance, such as failure to disintegrate and/or dissolve in the gastrointestinal tract, could limit the absorption of vitamins. Furthermore, patients with renal disease have been reported to experience a wide range in gastrointestinal pH, which could influence a product's performance. The purpose of this study was to determine the effect of pH on the in vitro disintegration of renal multivitamin supplements. Products were studied using the United States Pharmacopeial Convention standard disintegration apparatus. Products were tested in simulated gastric fluid, neutral fluid, and intestinal fluid. Product failure was defined as two or more individual tablets or capsules failing to disintegrate completely within compendial limits. Of 11 products tested, 4 products failed the disintegration study test in all pH conditions. Sixty-four percent of the products showed statistically significant differences in disintegration time (DT) based on pH. As pH increased, time to disintegration increased. The DT of commercially available renal multivitamin supplements was highly variable. Poorest product performance was shown in simulated intestinal fluid. The pH significantly affected in vitro disintegration in greater than half the products tested. How this affects dissolution and in vivo performance has yet to be studied.

  8. Comparison of survival of diarrhoeagenic agents in two local weaning foods (ogi and koko).

    PubMed

    Bakare, S; Smith, S I; Olukoya, D K; Akpan, E

    1998-12-01

    The pH values of both cooked and uncooked ogi and koko samples were determined and the survival rate of four diarrhoeagenic agents, enteroinvasive Escherichia coli, Salmonella typhi, Shigella flexneri, and Vibrio cholerae were studied after they were seeded into cooked ogi and koko. Analysis of the pH of the cooked inoculated samples showed that there was a slight increase in pH (decrease in acidity) during storage for 48 h and 37 degrees C (from 3.5 to 3.7 for ogi and from 3.7 to 4.1 for koko). The study also showed that ogi had a slightly lower pH value than koko both before and after cooking. In both cases, the cooked samples had a slightly lower pH value than the uncooked samples. The pH value of ogi ranged from 3.0 to 3.6 and that of koko from 3.5 to 3.9. The survival experiment showed that the inoculated enteric pathogens were inhibited in cooked ogi and koko during storage for 24-48 h. The antibacterial effect of cooked koko was more pronounced, on the four enteric pathogens studied, than that of cooked ogi. Except for Shigella flexneri and E. coli in ogi, non of the other bacteria studied was recovered after 24 h.

  9. Serum-free suspension cultivation of PER.C6(R) cells and recombinant adenovirus production under different pH conditions.

    PubMed

    Xie, Liangzhi; Pilbrough, Warren; Metallo, Christian; Zhong, Tanya; Pikus, Lana; Leung, John; Auniņs, John G; Zhou, Weichang

    2002-12-05

    PER.C6(R) cell growth, metabolism, and adenovirus production were studied in head-to-head comparisons in stirred bioreactors under different pH conditions. Cell growth rate was found to be similar in the pH range of 7.1-7.6, while a long lag phase and a slower growth rate were observed at pH 6.8. The specific consumption rates of glucose and glutamine decreased rapidly over time during batch cell growth, as did the specific lactate and ammonium production rates. Cell metabolism in both infected and uninfected cultures was very sensitive to culture pH, resulting in dramatic differences in glucose/glutamine consumption and lactate/ammonium production under different pH conditions. It appeared that glucose metabolism was suppressed at low pH but the efficiency of energy production from glucose was enhanced. Adenovirus infection resulted in profound changes in cell growth and metabolism. Cell growth was largely arrested under all pH conditions, while glucose consumption and lactate production were elevated post virus infection. Virus infection induced a reduction in glutamine consumption at low pH but an increase at high pH. The optimal pH for adenovirus production was found to be 7.3 under the experimental conditions used in the study. Deviations from this optimum resulted in significant reductions of virus productivity. The results indicate that culture pH is a very critical process parameter in PER.C6(R) cell culture and adenovirus production. Copyright 2002 Wiley Periodicals, Inc.

  10. Control of electroosmosis in coated quartz capillaries

    NASA Technical Reports Server (NTRS)

    Herren, Blair J.; Van Alstine, James; Snyder, Robert S.; Shafer, Steven G.; Harris, J. Milton

    1987-01-01

    The effectiveness of various coatings for controlling the electroosmotic fluid flow that hinders electrophoretic processes is studied using analytical particle microelectrophoresis. The mobilities of 2-micron diameter glass and polystyrene latex spheres (exhibiting both negative and zero effective surface charge) were measured in 2-mm diameter quartz capillaries filled with NaCl solutions within the 3.5-7.8 pH range. It is found that capillary inner surface coatings using 5000 molecular weight (or higher) poly(ethylene glycol): significantly reduced electroosmosis within the selected pH range, were stable for long time periods, and appeared to be more effective than dextran, methylcellulose, or silane coatings.

  11. The effect of pH on cell viability, cell migration, cell proliferation, wound closure, and wound reepithelialization: In vitro and in vivo study.

    PubMed

    Kruse, Carla R; Singh, Mansher; Targosinski, Stefan; Sinha, Indranil; Sørensen, Jens A; Eriksson, Elof; Nuutila, Kristo

    2017-04-01

    Wound microenvironment plays a major role in the process of wound healing. It contains various external and internal factors that participate in wound pathophysiology. The pH is an important factor that influences wound healing by changing throughout the healing process. Several previous studies have investigated the role of pH in relation to pathogens but studies concentrating on the effects of pH on wound healing itself are inconclusive. The purpose of this study was to comprehensively and in a controlled fashion investigate the effect of pH on wound healing by studying its effect on human primary keratinocyte and fibroblast function in vitro and on wound healing in vivo. In vitro, primary human keratinocytes and fibroblasts were cultured in different levels of pH (5.5-12.5) and the effect on cell viability, proliferation, and migration was studied. A rat full-thickness wound model was used to investigate the effect of pH (5.5-9.5) on wound healing in vivo. The effect of pH on inflammation was monitored by measuring IL-1 α concentrations from wounds and cell cultures exposed to different pH environments. Our results showed that both skin cell types tolerated wide range of pH very well. They further demonstrated that both acidic and alkaline environments decelerated cell migration in comparison to neutral environments and interestingly alkaline conditions significantly enhanced cell proliferation. Results from the in vivo experiments indicated that a prolonged, strongly acidic wound environment prevents both wound closure and reepithelialization while a prolonged alkaline environment did not have any negative impact on wound closure or reepithelialization. Separately, both in vitro and in vivo studies showed that prolonged acidic conditions significantly increased the expression of IL-1 α in fibroblast cultures and in wound fluid, whereas prolonged alkaline conditions did not result in elevated amounts of IL-1 α. © 2017 by the Wound Healing Society.

  12. Influence of pH on in vitro disintegration of phosphate binders.

    PubMed

    Stamatakis, M K; Alderman, J M; Meyer-Stout, P J

    1998-11-01

    Hyperphosphatemia, a common complication in patients with end-stage renal disease, is treated with oral phosphate-binding medications that restrict phosphorus absorption from the gastrointestinal (GI) tract. Impaired product performance, such as failure to disintegrate and/or dissolve in the GI tract, could limit the efficacy of the phosphate binder. Disintegration may be as important as dissolution for predicting in vitro product performance for medications that act locally on the GI tract, such as phosphate binders. Furthermore, patients with end-stage renal disease have a wide range in GI pH, and pH can influence a product's performance. The purpose of this study was to determine the effect of pH on in vitro disintegration of phosphate binders. Fifteen different commercially available phosphate binders (seven calcium carbonate tablet formulations, two calcium acetate tablet formulations, three aluminum hydroxide capsule formulations, and three aluminum hydroxide tablet formulations) were studied using the United States Pharmacopeia (USP) standard disintegration apparatus. Phosphate binders were tested in simulated gastric fluid (pH 1.5), distilled water (pH 5.1), and simulated intestinal fluid (pH 7.5). Product failure was defined as two or more individual tablets or capsules failing to disintegrate completely within 30 minutes. Results indicate that 9 of the 15 phosphate binders tested showed statistically significant differences in disintegration time (DT) based on pH. The percentage of binders that passed the disintegration study test in distilled water, gastric fluid, and intestinal fluid were 80%, 80%, and 73%, respectively. The findings of this study show that the disintegration of commercially available phosphate binders is highly variable. The pH significantly affected in vitro disintegration in the majority of phosphate binders tested; how significantly this affects in vivo performance has yet to be studied.

  13. Quantified pH imaging with hyperpolarized (13) C-bicarbonate.

    PubMed

    Scholz, David Johannes; Janich, Martin A; Köllisch, Ulrich; Schulte, Rolf F; Ardenkjaer-Larsen, Jan H; Frank, Annette; Haase, Axel; Schwaiger, Markus; Menzel, Marion I

    2015-06-01

    Because pH plays a crucial role in several diseases, it is desirable to measure pH in vivo noninvasively and in a spatially localized manner. Spatial maps of pH were quantified in vitro, with a focus on method-based errors, and applied in vivo. In vitro and in vivo (13) C mapping were performed for various flip angles for bicarbonate (BiC) and CO2 with spectral-spatial excitation and spiral readout in healthy Lewis rats in five slices. Acute subcutaneous sterile inflammation was induced with Concanavalin A in the right leg of Buffalo rats. pH and proton images were measured 2 h after induction. After optimizing the signal to noise ratio of the hyperpolarized (13) C-bicarbonate, error estimation of the spectral-spatial excited spectrum reveals that the method covers the biologically relevant pH range of 6 to 8 with low pH error (< 0.2). Quantification of pH maps shows negligible impact of the residual bicarbonate signal. pH maps reflect the induction of acute metabolic alkalosis. Inflamed, infected regions exhibit lower pH. Hyperpolarized (13) C-bicarbonate pH mapping was shown to be sensitive in the biologically relevant pH range. The mapping of pH was applied to healthy in vivo organs and interpreted within inflammation and acute metabolic alkalosis models. © 2014 Wiley Periodicals, Inc.

  14. Monodispersed calcium carbonate nanoparticles modulate local pH and inhibit tumor growth in vivo

    NASA Astrophysics Data System (ADS)

    Som, Avik; Raliya, Ramesh; Tian, Limei; Akers, Walter; Ippolito, Joseph E.; Singamaneni, Srikanth; Biswas, Pratim; Achilefu, Samuel

    2016-06-01

    The acidic extracellular environment of tumors potentiates their aggressiveness and metastasis, but few methods exist to selectively modulate the extracellular pH (pHe) environment of tumors. Transient flushing of biological systems with alkaline fluids or proton pump inhibitors is impractical and nonselective. Here we report a nanoparticles-based strategy to intentionally modulate the pHe in tumors. Biochemical simulations indicate that the dissolution of calcium carbonate nanoparticles (nano-CaCO3) in vivo increases pH asymptotically to 7.4. We developed two independent facile methods to synthesize monodisperse non-doped vaterite nano-CaCO3 with distinct size range between 20 and 300 nm. Using murine models of cancer, we demonstrate that the selective accumulation of nano-CaCO3 in tumors increases tumor pH over time. The associated induction of tumor growth stasis is putatively interpreted as a pHe increase. This study establishes an approach to prepare nano-CaCO3 over a wide particle size range, a formulation that stabilizes the nanomaterials in aqueous solutions, and a pH-sensitive nano-platform capable of modulating the acidic environment of cancer for potential therapeutic benefits.The acidic extracellular environment of tumors potentiates their aggressiveness and metastasis, but few methods exist to selectively modulate the extracellular pH (pHe) environment of tumors. Transient flushing of biological systems with alkaline fluids or proton pump inhibitors is impractical and nonselective. Here we report a nanoparticles-based strategy to intentionally modulate the pHe in tumors. Biochemical simulations indicate that the dissolution of calcium carbonate nanoparticles (nano-CaCO3) in vivo increases pH asymptotically to 7.4. We developed two independent facile methods to synthesize monodisperse non-doped vaterite nano-CaCO3 with distinct size range between 20 and 300 nm. Using murine models of cancer, we demonstrate that the selective accumulation of nano-CaCO3 in tumors increases tumor pH over time. The associated induction of tumor growth stasis is putatively interpreted as a pHe increase. This study establishes an approach to prepare nano-CaCO3 over a wide particle size range, a formulation that stabilizes the nanomaterials in aqueous solutions, and a pH-sensitive nano-platform capable of modulating the acidic environment of cancer for potential therapeutic benefits. Electronic supplementary information (ESI) available: Summary of experiments, theoretical schema of effect, synthesis schema, X-Ray diffraction results, TEM of effects of different solvents on particles in various solvents. See DOI: 10.1039/c5nr06162h

  15. Fine particle pH and gas-particle phase partitioning of inorganic species in Pasadena, California, during the 2010 CalNex campaign

    NASA Astrophysics Data System (ADS)

    Guo, Hongyu; Liu, Jiumeng; Froyd, Karl D.; Roberts, James M.; Veres, Patrick R.; Hayes, Patrick L.; Jimenez, Jose L.; Nenes, Athanasios; Weber, Rodney J.

    2017-05-01

    pH is a fundamental aerosol property that affects ambient particle concentration and composition, linking pH to all aerosol environmental impacts. Here, PM1 and PM2. 5 pH are calculated based on data from measurements during the California Research at the Nexus of Air Quality and Climate Change (CalNex) study from 15 May to 15 June 2010 in Pasadena, CA. Particle pH and water were predicted with the ISORROPIA-II thermodynamic model and validated by comparing predicted to measured gas-particle partitioning of inorganic nitrate, ammonium, and chloride. The study mean ± standard deviation PM1 pH was 1.9 ± 0.5 for the SO42--NO3--NH4+-HNO3-NH3 system. For PM2. 5, internal mixing of sea salt components (SO42--NO3--NH4+-Na+-Cl--K+-HNO3-NH3-HCl system) raised the bulk pH to 2.7 ± 0.3 and improved predicted nitric acid partitioning with PM2. 5 components. The results show little effect of sea salt on PM1 pH, but significant effects on PM2. 5 pH. A mean PM1 pH of 1.9 at Pasadena was approximately one unit higher than what we have reported in the southeastern US, despite similar temperature, relative humidity, and sulfate ranges, and is due to higher total nitrate concentrations (nitric acid plus nitrate) relative to sulfate, a situation where particle water is affected by semi-volatile nitrate concentrations. Under these conditions nitric acid partitioning can further promote nitrate formation by increasing aerosol water, which raises pH by dilution, further increasing nitric acid partitioning and resulting in a significant increase in fine particle nitrate and pH. This study provides insights into the complex interactions between particle pH and nitrate in a summertime coastal environment and a contrast to recently reported pH in the eastern US in summer and winter and the eastern Mediterranean. All studies have consistently found highly acidic PM1 with pH generally below 3.

  16. Intracellular pH Recovery Rates of Hemocytes from Estuarine and Open Ocean Bivalve Species Following In vitro Acid Challenge

    NASA Astrophysics Data System (ADS)

    Croxton, A.; Wikfors, G.

    2013-12-01

    Decreasing pH in estuarine systems is a growing concern for researchers studying mollusk species. Debates continue on whether estuarine bivalve species are more or less vulnerable to ocean acidification than marine species because estuaries can present multiple environmental stressors. The aim of this study is to understand the homeostatic mechanisms of bivalve hemocytes following exposure to extracellular acid treatment. Previous measurements using fluorescent SNARF probes and flow-cytometry have determined the intracellular pH of hemocytes from several bivalve species (eastern oyster, bay scallop, northern quahog, soft-shell clam, and blue mussel) to range between 7.0-7.4. In the present study of four bivalve species, recovery rate profiles were determined for intracellular hemocyte pH following addition of acid to hemolymph in vitro. These profiles indicate that soft-shell clams and bay scallops maintained homeostasis with very little change in intracellular pH. In contrast, an initial drop in intracellular pH in northern quahogs was followed by a steady recovery of intracellular pH. Contrasting results between species appear to be unrelated to mineral shell composition (aragonite vs. calcite) or habitat location (infaunal vs. epifaunal). The next phase of this study will be to determine if offshore species (surfclams and sea scallops) will have similar responses. Results from these studies will provide a better understanding of the physiological responses of estuarine and marine species exposed to acidified environments.

  17. Preliminary study on the photoproduction of hydroxyl radicals in aqueous solution with Aldrich humic acid, algae and Fe(III) under high-pressure mercury lamp irradiation.

    PubMed

    Liu, Xianli; Xu, Dong; Wu, Feng; Liao, Zhenhuan; Liu, Jiantong; Deng, Nansheng

    2004-03-01

    Under a high-pressure mercury lamp (HPML) and using an exposure time of 4 h, the photoproduction of hydroxyl radicals (*OH) could be induced in an aqueous solution containing humic acid (HA). Hydroxyl radicals were determined by high-performance liquid chromatography using benzene as a probe. The results showed that *OH photoproduction increased from 1.80 to 2.74 microM by increasing the HA concentration from 10 to 40 mg L(-1) at an exposure time of 4 h (pH 6.5). Hydroxyl radical photoproduction in aqueous solutions of HA containing algae was greater than that in the aqueous solutions of HA without algae. The photoproduction of *OH in the HA solution with Fe(III) was greater than that of the solution without Fe(III) at pH ranging from 4.0 to 8.0. The photoproduction of *OH in HA solution with algae with or without Fe(III) under a 250 W HPML was greater than that under a 125 W HPML. The photoproduction of *OH in irradiated samples was influenced by the pH. The results showed that HPML exposure for 4 h in the 4-8 pH range led to the highest *OH photoproduction at pH 4.0.

  18. Effects of elevated temperature and mobile phase composition on a novel C18 silica column.

    PubMed

    Lippert, J Andreas; Johnson, Todd M; Lloyd, Jarem B; Smith, Jared P; Johnson, Bryce T; Furlow, Jason; Proctor, Angela; Marin, Stephanie J

    2007-05-01

    A novel polydentate C18 silica column was evaluated at an elevated temperature under acidic, basic, and neutral mobile phase conditions using ACN and methanol as the mobile phase organic modifier. The temperature range was 40-200 degrees C. The mobile phase compositions were from 0 to 80% organic-aqueous v/v and the mobile phase pH levels were between 2 and 12. The maximum operating temperature of the column was affected by the amount and type of organic modifier used in the mobile phase. Under neutral conditions, the column showed good column thermal stability at temperatures ranging between 120 and 200 degrees C in methanol-water and ACN-water solvent systems. At pH 2 and 3, the column performed well up to about 160 degrees C at two fixed ACN-buffer compositions. Under basic conditions at elevated temperatures, the column material deteriorated more quickly, but still remained stable up to 100 degrees C at pH 9 and 60 degrees C at pH 10. The results of this study indicate that this novel C18 silica-based column represents a significant advancement in RPLC column technology with enhanced thermal and pH stability when compared to traditional bonded phase silica columns.

  19. Comparison of three strong ion models used for quantifying the acid-base status of human plasma with special emphasis on the plasma weak acids.

    PubMed

    Anstey, Chris M

    2005-06-01

    Currently, three strong ion models exist for the determination of plasma pH. Mathematically, they vary in their treatment of weak acids, and this study was designed to determine whether any significant differences exist in the simulated performance of these models. The models were subjected to a "metabolic" stress either in the form of variable strong ion difference and fixed weak acid effect, or vice versa, and compared over the range 25 < or = Pco(2) < or = 135 Torr. The predictive equations for each model were iteratively solved for pH at each Pco(2) step, and the results were plotted as a series of log(Pco(2))-pH titration curves. The results were analyzed for linearity by using ordinary least squares regression and for collinearity by using correlation. In every case, the results revealed a linear relationship between log(Pco(2)) and pH over the range 6.8 < or = pH < or = 7.8, and no significant difference between the curve predictions under metabolic stress. The curves were statistically collinear. Ultimately, their clinical utility will be determined both by acceptance of the strong ion framework for describing acid-base physiology and by the ease of measurement of the independent model parameters.

  20. Biochemical adaptation to ocean acidification.

    PubMed

    Stillman, Jonathon H; Paganini, Adam W

    2015-06-01

    The change in oceanic carbonate chemistry due to increased atmospheric PCO2  has caused pH to decline in marine surface waters, a phenomenon known as ocean acidification (OA). The effects of OA on organisms have been shown to be widespread among diverse taxa from a wide range of habitats. The majority of studies of organismal response to OA are in short-term exposures to future levels of PCO2 . From such studies, much information has been gathered on plastic responses organisms may make in the future that are beneficial or harmful to fitness. Relatively few studies have examined whether organisms can adapt to negative-fitness consequences of plastic responses to OA. We outline major approaches that have been used to study the adaptive potential for organisms to OA, which include comparative studies and experimental evolution. Organisms that inhabit a range of pH environments (e.g. pH gradients at volcanic CO2 seeps or in upwelling zones) have great potential for studies that identify adaptive shifts that have occurred through evolution. Comparative studies have advanced our understanding of adaptation to OA by linking whole-organism responses with cellular mechanisms. Such optimization of function provides a link between genetic variation and adaptive evolution in tuning optimal function of rate-limiting cellular processes in different pH conditions. For example, in experimental evolution studies of organisms with short generation times (e.g. phytoplankton), hundreds of generations of growth under future conditions has resulted in fixed differences in gene expression related to acid-base regulation. However, biochemical mechanisms for adaptive responses to OA have yet to be fully characterized, and are likely to be more complex than simply changes in gene expression or protein modification. Finally, we present a hypothesis regarding an unexplored area for biochemical adaptation to ocean acidification. In this hypothesis, proteins and membranes exposed to the external environment, such as epithelial tissues, may be susceptible to changes in external pH. Such biochemical systems could be adapted to a reduced pH environment by adjustment of weak bonds in an analogous fashion to biochemical adaptation to temperature. Whether such biochemical adaptation to OA exists remains to be discovered. © 2015. Published by The Company of Biologists Ltd.

  1. 40 CFR 467.34 - New source performance standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Suspended solids 5.10 4.07 pH (1) (1) 1 Within the range of 7.0 to 10.0 at all times. Subpart C Extrusion....126 Aluminum 1.82 0.81 Oil and grease 2.98 2.98 Suspended solids 4.47 3.58 pH (1) (1) 1 Within the... Suspended solids 30.56 24.45 pH (1) (1) 1 Within the range of 7.0 to 10.0 at all times. Subpart C Cleaning...

  2. 40 CFR 421.114 - Standards of performance for new sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Ammonia (as N) 82.910 36.450 Fluoride 21.770 12.440 Total suspended solids 9.330 7.464 pH (1) (1) 1 Within....100 Total Suspended Solids 138.900 111.100 pH (1) (1) AA 1 Within the range of 7.5 to 10.0 at all... solids 3.690 2.952 pH (1) (1) 1 Within the range of 7.5 to 10.0 at all times. (d) Subpart K—Precipitation...

  3. 40 CFR 421.244 - Standards of performance for new sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 24.410 12.850 Nickel 24.670 16.320 Total suspended solids 526.800 250.500 pH (1) (1) 1 Within the... Nickel 9.590 6.344 Total suspended solids 204.800 97.400 pH (1) (1) 1 Within the range of 7.5 to 10.0 at....523 Total suspended solids 49.160 23.380 pH (1) (1) 1 Within the range of 7.5 to 10.0 at all times. ...

  4. 40 CFR 467.34 - New source performance standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Suspended solids 5.10 4.07 pH (1) (1) 1 Within the range of 7.0 to 10.0 at all times. Subpart C Extrusion....126 Aluminum 1.82 0.81 Oil and grease 2.98 2.98 Suspended solids 4.47 3.58 pH (1) (1) 1 Within the... Suspended solids 30.56 24.45 pH (1) (1) 1 Within the range of 7.0 to 10.0 at all times. Subpart C Cleaning...

  5. 40 CFR 421.132 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... suspended solids 107.000 50.900 pH (1) (1) 1 Within the range of 7.5 to 10.0 at all times. (c) Subpart M... .323 .135 Ammonia (as N) .000 .000 Total suspended solids 9.061 4.310 pH (1) (1) 1 Within the range of... Lead .283 .135 Zinc .983 .411 Ammonia (as N) .000 .000 Total suspended solids 27.600 13.130 pH (1) (1...

  6. Influence of pH and europium concentration on the luminescent and morphological properties of Y2O3 powders

    NASA Astrophysics Data System (ADS)

    Esquivel-Castro, Tzipatly; Carrillo-Romo, Felipe de J.; Oliva-Uc, Jorge; García-Murillo, Antonieta; Hirata-Flores, Gustavo A.; Cayetano-Castro, Nicolás; De la Rosa, Elder; Morales-Ramírez, Angel de J.

    2015-10-01

    This work reports on the synthesis and characterization of Y2O3:Eu3+ powders obtained by the hydrothermal method. We studied the influence of different pH values (7-12) and Eu3+ concentrations (2.5-25 mol%) on the structural, morphological and luminescent characteristics of Y2O3:Eu3+ powders. The hydrothermal synthesis was performed at 200 °C for 12 h by employing Y2O3, HNO3, H2O and Eu (NO3)3 as precursors, in order to obtain two sets of samples. The first set of powders was obtained with different pH values and named Eu5PHx (x = 7, 8, 9, 10, 11, and 12), and the second set was obtained by using a constant pH = 7 with different Eu concentrations, named EuxPH7 (x = 2.5, 5, 8, 15, 20 and 25). The XRD spectra showed that the Y2O3:Eu3+ powders exhibited a cubic phase, regardless of the pH values and Eu3+ concentrations. The SEM observations indicated that pH influenced the morphology and size of phosphors; for instance, for pH = 7, hexagonal microplatelets were obtained, and microrods at pH values from 8 to 12. Doping Y2O3 with various Eu3+ concentrations (in mol%) also produced changes in morphology, in these cases, hexagonal microplatelets were obtained in the range of 2.5-5 mol%, and non uniform plates were observed at higher doping concentrations ranging from 8 to 25 mol%. According to our results, the microplatelets synthesized with a pH of 7 and an 8 mol% Eu3+ concentration presented the highest luminescence under excitation at 254 nm. All of these results indicate that our phosphors could be useful for applications of controlled drug delivery, photocatalysis and biolabeling.

  7. pH induced polychromatic UV treatment for the removal of a mixture of SMX, OTC and CIP from water.

    PubMed

    Avisar, D; Lester, Y; Mamane, H

    2010-03-15

    Water and wastewater effluents contain a vast range of chemicals in mixtures that have different chemical structures and characteristics. This study presents a treatment technology for the removal of mixtures of antibiotic residues (sulfamethoxazole (SMX), oxytetracycline (OTC) and ciprofloxacin (CIP)) from contaminated water. The treatment combines pH modification of the water to an optimal value, followed by a photolytic treatment using direct polychromatic ultraviolet (UV) irradiation by medium pressure UV lamp. The pH adjustment of the treated water leads to structural modifications of the pollutant's molecule thus may enhance direct photolysis by UV light. Results showed that an increase of water pH from 5 to 7 leads to a decrease in degradation rate of SMX and an increase in degradation rate of OTC and CIP, when studied separately and not in a mixture. Thus, the optimal pH values for UV photodegradation in a mixture, involve initial photolysis at pH 5 and then gradually changing the pH from 5 to 7 during the UV exposure. For example, this resulted in 99% degradation of SMX at pH 5 and enhanced degradation of OTC and CIP from 54% and 26% to 91% and 96% respectively when pH was increased from 5 to 7. Thus the pH induced photolytic treatment has a potential in improving treatment of antibiotics in mixtures. (c) 2009 Elsevier B.V. All rights reserved.

  8. Regulation of Organelle Acidity

    PubMed Central

    Grabe, Michael; Oster, George

    2001-01-01

    Intracellular organelles have characteristic pH ranges that are set and maintained by a balance between ion pumps, leaks, and internal ionic equilibria. Previously, a thermodynamic study by Rybak et al. (Rybak, S., F. Lanni, and R. Murphy. 1997. Biophys. J. 73:674–687) identified the key elements involved in pH regulation; however, recent experiments show that cellular compartments are not in thermodynamic equilibrium. We present here a nonequilibrium model of lumenal acidification based on the interplay of ion pumps and channels, the physical properties of the lumenal matrix, and the organelle geometry. The model successfully predicts experimentally measured steady-state and transient pH values and membrane potentials. We conclude that morphological differences among organelles are insufficient to explain the wide range of pHs present in the cell. Using sensitivity analysis, we quantified the influence of pH regulatory elements on the dynamics of acidification. We found that V-ATPase proton pump and proton leak densities are the two parameters that most strongly influence resting pH. Additionally, we modeled the pH response of the Golgi complex to varying external solutions, and our findings suggest that the membrane is permeable to more than one dominant counter ion. From this data, we determined a Golgi complex proton permeability of 8.1 × 10−6 cm/s. Furthermore, we analyzed the early-to-late transition in the endosomal pathway where Na,K-ATPases have been shown to limit acidification by an entire pH unit. Our model supports the role of the Na,K-ATPase in regulating endosomal pH by affecting the membrane potential. However, experimental data can only be reproduced by (1) positing the existence of a hypothetical voltage-gated chloride channel or (2) that newly formed vesicles have especially high potassium concentrations and small chloride conductance. PMID:11279253

  9. Arsenic (V) bioconcentration kinetics in freshwater macroinvertebrates and periphyton is influenced by pH.

    PubMed

    Lopez, Adeline R; Funk, David H; Buchwalter, David B

    2017-05-01

    Arsenic is an important environmental pollutant whose speciation and mobility in freshwater food webs is complex. Few studies have characterized uptake and efflux rates of arsenic in aquatic benthic invertebrates. Further, we lack a fundamental understanding of how pH influences uptake kinetics in these organisms or how this key environmental variable could alter dietary exposure for primary consumers. Here we used a radiotracer approach to characterize arsenate accumulation dynamics in benthic invertebrates, the influence of pH on uptake in a subset of these organisms, and the influence of pH on uptake of arsenate by periphyton - an important food source at the base of aquatic food webs. Uptake rate constants (K u ) from aqueous exposure were modest, ranging from ∼0.001 L g -1 d -1 in three species of mayfly to 0.06 L g -1 d -1 in Psephenus herricki. Efflux rate constants ranged from ∼0.03 d -1 in Corbicula fluminea to ∼0.3 d -1 in the mayfly Isonychia sp, and were generally high. Arsenate uptake decreased with increasing pH, which may be a function of increased adsorption at lower pHs. A similar but much stronger correlation was observed for periphyton where K u decreased from ∼3.0 L g -1 d -1  at 6.5 pH to ∼0.7 L g -1 d -1  at 8.5 pH, suggesting that site specific pH could significantly alter arsenic exposure, particularly for primary consumers. Together, these findings shed light on the complexity of arsenic bioavailability and help explain observed differences reported in the literature. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Magnetic iron oxide and manganese-doped iron oxide nanoparticles for the collection of alpha-emitting radionuclides from aqueous solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Hara, Matthew J.; Carter, Jennifer C.; Warner, Cynthia L.

    Magnetic nanoparticles are well known to possess chemically active surfaces and high surface areas that can be employed to extract a range of ions from aqueous solutions. Additionally, their paramagnetic property provides a convenient means for bulk collection of the material from solution after the targeted ions have been adsorbed. Herein, two nanoscale amphoteric metal oxides, each possessing useful magnetic attributes, were evaluated for their ability to collect both naturally occurring radioactive isotopes (polonium (Po), radium (Ra), and uranium (U)) as well as the transuranic element americium (Am) from a suite of naturally occurring aqueous matrices. The nanomaterials include commerciallymore » available paramagnetic magnetite (Fe3O4) and magnetite that was modified to incorporate manganese (Mn) into the crystal structure. The chemical stability of these nanomaterials was evaluated in Hanford Site, WA ground water between the natural pH (~8) and pH 1 (acidified with HCl). Whereas the magnetite was observed to have good stability over the pH range, the Mn-doped material was observed to leach Mn at low pH. The materials were evaluated in parallel to characterize their uptake performance of the aforementioned alpha-emitting radionuclide spikes from Hanford Site ground water across a range of pH (from ~8 down to 2). In addition, radiotracer uptake experiments were performed on Columbia River water, seawater, and human urine at their natural pH and at pH 2. Despite the observed leaching of Mn from the Mn-doped nanomaterial in the lower pH range, it exhibited generally superior analyte extraction performance compared to the magnetite, and analyte uptake was observed across a broader pH range. The uptake behavior of the various radiotracers on these two materials at different pH levels can generally be explained by the amphoteric nature of the nanoparticle surfaces. Finally, the rate of sorption of the radiotracers on the two materials in unacidified groundwater was evaluated. The uptake curves generally indicate that equilibrium is obtained within a few minutes, which is attributed to the high surface areas of the nanomaterials and the high level of dispersion in the liquids. Overall, the results indicate that these nanomaterials may have the potential to be employed for a range of applications to extract radionuclides from aqueous solutions. These applications may include analytical chemistry, waste water treatment and remediation, mining, and in vitro radiobioassay.« less

  11. Colorimetric and Fluorescent Bimodal Ratiometric Probes for pH Sensing of Living Cells.

    PubMed

    Liu, Yuan-Yuan; Wu, Ming; Zhu, Li-Na; Feng, Xi-Zeng; Kong, De-Ming

    2015-06-01

    pH measurement is widely used in many fields. Ratiometric pH sensing is an important way to improve the detection accuracy. Herein, five water-soluble cationic porphyrin derivatives were synthesized and their optical property changes with pH value were investigated. Their pH-dependent assembly/disassembly behaviors caused significant changes in both absorption and fluorescence spectra, thus making them promising bimodal ratiometric probes for both colorimetric and fluorescent pH sensing. Different substituent identity and position confer these probes with different sensitive pH-sensing ranges, and the substituent position gives a larger effect. By selecting different porphyrins, different signal intensity ratios and different fluorescence excitation wavelengths, sensitive pH sensing can be achieved in the range of 2.1-8.0. Having demonstrated the excellent reversibility, good accuracy and low cytotoxicity of the probes, they were successfully applied in pH sensing inside living cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. 40 CFR 420.07 - Effluent limitations guidelines and standards for pH.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... standards for pH. 420.07 Section 420.07 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... § 420.07 Effluent limitations guidelines and standards for pH. (a) The pH level in process wastewaters subject to a subpart within this part shall be within the range of 6.0 to 9.0. (b) The pH level shall be...

  13. 40 CFR 420.07 - Effluent limitations guidelines and standards for pH.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... standards for pH. 420.07 Section 420.07 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... § 420.07 Effluent limitations guidelines and standards for pH. (a) The pH level in process wastewaters subject to a subpart within this part shall be within the range of 6.0 to 9.0. (b) The pH level shall be...

  14. 40 CFR 420.07 - Effluent limitations guidelines and standards for pH.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... standards for pH. 420.07 Section 420.07 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... § 420.07 Effluent limitations guidelines and standards for pH. (a) The pH level in process wastewaters subject to a subpart within this part shall be within the range of 6.0 to 9.0. (b) The pH level shall be...

  15. 40 CFR 420.07 - Effluent limitations guidelines and standards for pH.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... standards for pH. 420.07 Section 420.07 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... § 420.07 Effluent limitations guidelines and standards for pH. (a) The pH level in process wastewaters subject to a subpart within this part shall be within the range of 6.0 to 9.0. (b) The pH level shall be...

  16. Algae in relation to mine water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, H.D.

    1969-01-01

    An annual cycle of bimonthly collections was made from 17 stations located on creeks, rivers, and ponds receiving acid mine drainage in order to obtain information on the species of algae that are tolerant to these waters. Also data were obtained to determine the relative importance of some of the major chemical factors of the water to ecology of the algae. Nitrate, phosphate, and calcium did not appear to be limiting or modifying. There was a lack of correlation between chemical factors except for total acidity, iron and pH. A range for the latter three characterized each of the habitatsmore » studied. Total acidity and the associated factors (iron and pH) appeared to have the controlling influence on the algal population in the more highly acid streams. The total number of genera and species as observed in a living condition in mine polluted water, compared favorably with numbers reported from unpolluted waters. Nearly half of the total species observed were found in the more highly acid creeks, as well as in the other habitats (less acid creeks, rivers and ponds). Algae characteristic of mine polluted water were found to be those common to a range of habitats, with the reduction in numbers of species at higher acidities and at lower pH values, being primariy in those that are less common to a range of habitats. The range of total acidity and pH values at a particular site or stream reach can be characterized by a range in the number of species and their abundance - an increase or decrease in abundance being dependent on the algal species. Some species such as Euglena mutabilis Sch., Eunotia tenella (grun) Gleve, and Pinnularia braunii (grun) Cleve, are most abundant in mine polluted water.« less

  17. Ocean warming ameliorates the negative effects of ocean acidification on Paracentrotus lividus larval development and settlement.

    PubMed

    García, Eliseba; Clemente, Sabrina; Hernández, José Carlos

    2015-09-01

    Ocean warming and acidification both impact marine ecosystems. All organisms have a limited body temperature range, outside of which they become functionally constrained. Beyond the absolute extremes of this range, they cannot survive. It is hypothesized that some stressors can present effects that interact with other environmental variables, such as ocean acidification (OA) that have the potential to narrow the thermal range where marine species are functional. An organism's response to ocean acidification can therefore be highly dependent on thermal conditions. This study evaluated the combined effects of predicted ocean warming conditions and acidification, on survival, development, and settlement, of the sea urchin Paracentrotus lividus. Nine combined treatments of temperature (19.0, 20.5 and 22.5 °C) and pH (8.1, 7.7 and 7.4 units) were carried out. All of the conditions tested were either within the current natural ranges of seawater pH and temperature or are within the ranges that have been predicted for the end of the century, in the sampling region (Canary Islands). Our results indicated that the negative effects of low pH on P. lividus larval development and settlement will be mitigated by a rise in seawater temperature, up to a thermotolerance threshold. Larval development and settlement performance of the sea urchin P. lividus was enhanced by a slight increase in temperature, even under lowered pH conditions. However, the species did show negative responses to the levels of ocean warming and acidification that have been predicted for the turn of the century. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Temperature sensitivity of organic substrate decay varies with pH

    NASA Astrophysics Data System (ADS)

    Min, K.; Lehmeier, C.; Ballantyne, F.; Billings, S. A.

    2012-12-01

    Cellulose is the most abundant biopolymer in soils and globally ubiquitous. It serves as a primary carbon source for myriad microbes able to release cellulases which cleave the cellulose into smaller molecules. For example, β-glucosidase, one type of cellulase, breaks down a terminal β-glycosidic bond of cellulose. The carbon of the liberated glucose becomes available for microbial uptake, after which it can then be mineralized and returned to the atmosphere via heterotrophic respiration. Thus, exoenzymes play an important role in the global cycling of carbon. Numerous studies suggest that global warming potentially increases the rate at which β-glucosidase breaks down cellulose, but it is not known how pH of the soil solution influences the effect of temperature on cellulose decomposition rates; this is important given the globally wide range of soil pH. Using fluorescence enzyme assay techniques, we studied the effect of temperature and pH on the reaction rate at which purified β-Glucosidase decays β-D-cellobioside (a compound often employed to simulate cellulose). We evaluated the temperature sensitivity of this reaction at five temperatures (5, 10, 15, 20, and 25°C) and six pH values (3.5, 4.5, 5.5, 6.5, 7.5, and 8.5)encompassing the naturally occurring range in soils, in a full-factorial design. First, we determined Vmax at 25°C and pH 6.5, standard conditions for measuring enzyme activities in many studies. The Vmax was 858.65 μmol h-1mg-1and was achieved at substrate concentration of 270 μM. At all pH values, the reaction rate slowed down at lower temperatures; at a pH of 3.5, no enzymatic activity was detected. The enzyme activity was significantly different between pH 4.5 and higher pHs. For example, enzyme reactivity at pH 4.5 was significantly lower than that at 7.5 at 20 and 25°C (Bonferroni-corrected P =0.0006, 0.0004, respectively), but not at lower temperatures. Similarly, enzyme reactivity at pH 4.5 was lower than that at pH 8.5 at 10, 15, and 25°C (P=0.0009, 0.0007, 0.0005, respectively), with a near-significant trend at 20°C (P=0.0023), and exhibited a nearly significant depression in response to temperature at 25°C compared to that at pH 6.5 (P=0.0015). Our results suggest that exoenzymatic cellulose decomposition with warming may be more enhanced in soil systems exhibiting higher pH. This work highlights the importance of soil solution pH as a driver of temperature sensitivity of substrate decay, and adds a level of complexity for developing accurate predictions of soil carbon cycling with climate change.

  19. Effect of heavy metals on pH buffering capacity and solubility of Ca, Mg, K, and P in non-spiked and heavy metal-spiked soils.

    PubMed

    Najafi, Sarvenaz; Jalali, Mohsen

    2016-06-01

    In many parts of the world, soil acidification and heavy metal contamination has become a serious concern due to the adverse effects on chemical properties of soil and crop yield. The aim of this study was to investigate the effect of pH (in the range of 1 to 3 units above and below the native pH of soils) on calcium (Ca), magnesium (Mg), potassium (K), and phosphorus (P) solubility in non-spiked and heavy metal-spiked soil samples. Spiked samples were prepared by cadmium (Cd), copper (Cu), nickel (Ni), and zinc (Zn) as chloride salts and incubating soils for 40 days. The pH buffering capacity (pHBC) of each sample was determined by plotting the amount of H(+) or OH(-) added (mmol kg(-1)) versus the related pH value. The pHBC of soils ranged from 47.1 to 1302.5 mmol kg(-1) for non-spiked samples and from 45.0 to 1187.4 mmol kg(-1) for spiked soil samples. The pHBC values were higher in soil 2 (non-spiked and spiked) which had higher calcium carbonate content. The results indicated the presence of heavy metals in soils generally decreased the solution pH and pHBC values in spiked samples. In general, solubility of Ca, Mg, and K decreased with increasing equilibrium pH of non-spiked and spiked soil samples. In the case of P, increasing the pH to about 7, decreased the solubility in all soils but further increase of pH from 7, enhanced P solubility. The solubility trends and values for Ca, Mg, and K did not differed significantly in non-spiked and spiked samples. But in the case of P, a reduction in solubility was observed in heavy metal-spiked soils. The information obtained in this study can be useful to make better estimation of the effects of soil pollutants on anion and cation solubility from agricultural and environmental viewpoints.

  20. Influence of Humic Acid on Stability and Attachment of nTiO2 Particles to Sand at Different pH

    NASA Astrophysics Data System (ADS)

    Cheng, T.

    2015-12-01

    Stability of nano-scale or micro-scale titanium dioxide particles (nTiO2) and their attachment to sediment grains have important implications to the fate and transport of nTiO2 in subsurface environments. nTiO2 may carry either positive or negative charges in natural water, therefore, environmental factors such as pH, humic substances, and Fe oxyhydroxide coatings on sediment grains, which are known to control the stability and transport of negatively charged colloids, may influence nTiO2 in different manners. The objective of this study is to investigate the effects of pH and humic acid (HA) on the stability and attachment of nTiO2 to sand, with special attention to low HA concentration ranges that are relevant to groundwater conditions. Stability and attachment of nTiO2 to quartz sand and Fe oxyhydroxide coated quartz sand were experimentally measured under a range of low HA concentrations at pH 5 and 9. Results showed that HA can either promote or hinder nTiO2 stability, depending on pH and HA concentration. We also found that HA can either enhance or reduce nTiO2 attachment to Fe oxyhydroxide coating at pH 5, depending on HA concentration. Results further showed that at pH 5, Fe oxyhydroxide coating reduced nTiO2 attachment to sand in the absence of HA but increased nTiO2 attachment in the presence of low concentration of HA. Derjaguin-Landau-Verwey-Overbeek (DLVO) theory was invoked to analyze particle-to-particle and particle-to-sand interactions in order to elucidate the roles of pH, HA, quartz, and Fe coating in nTiO2 stability and attachment. Overall, this study showed that changes in zeta potential of nTiO2 and Fe coating due to pH changes and/or HA adsorption are the key factors that influence stability and attachment of nTiO2.

  1. 40 CFR 432.3 - General limitation or standard for pH.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false General limitation or standard for pH... limitation or standard for pH. Any discharge subject to BPT, BCT, or NSPS limitations or standards in this part must remain within the pH range of 6 to 9. ...

  2. 40 CFR 432.3 - General limitation or standard for pH.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 31 2013-07-01 2013-07-01 false General limitation or standard for pH... limitation or standard for pH. Any discharge subject to BPT, BCT, or NSPS limitations or standards in this part must remain within the pH range of 6 to 9. ...

  3. 40 CFR 432.3 - General limitation or standard for pH.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false General limitation or standard for pH... limitation or standard for pH. Any discharge subject to BPT, BCT, or NSPS limitations or standards in this part must remain within the pH range of 6 to 9. ...

  4. Perylene Diimide Based Fluorescent Dyes for Selective Sensing of Nitroaromatic Compounds: Selective Sensing in Aqueous Medium Across Wide pH Range.

    PubMed

    Hariharan, P S; Pitchaimani, J; Madhu, Vedichi; Anthony, Savarimuthu Philip

    2016-03-01

    Water soluble perylenediimide based fluorophore salt, N,N'-bis(ethelenetrimethyl ammoniumiodide)-perylene-3,4,9,10-tetracarboxylicbisimide (PDI-1), has been used for selective fluorescence sensing of picric acid (PA) and 4-nitroaniline (4-NA) in organic as well as aqueous medium across wide pH range (1.0 to 10.0). PDI-1 showed strong fluorescence in dimethylformamide (DMF) (Φf = 0.26 (DMF) and moderate fluorescence in water. Addition of picric acid (PA) and 4-nitroaniline (4-NA) into PDI-1 in DMF/aqueous solution selectively quenches the fluorescence. The concentration dependent studies showed decrease of fluorescence linearly with increase of PA and 4-NA concentration. The interference studies demonstrate high selectivity for PA and 4-NA. Interestingly, PDI-1 showed selective fluorescence sensing of PA and 4-NA across wide pH range (1.0 to 10.0). Selective fluorescence sensing of PA and 4-NA has also been observed with trifluoroacetate (PDI-2), sulfate (PDI-3) salt of PDI-1 as well as octyl chain substituted PDI (PDI-4) without amine functionality. These studies suggest that PA and 4-NA might be having preferential interaction with PDI aromatic core and quenches the fluorescence. Thus PDI based dyes have been used for selective fluorescent sensing of explosive NACs for the first time to the best our knowledge.

  5. A novel ''donor-π-acceptor'' type fluorescence probe for sensing pH: mechanism and application in vivo.

    PubMed

    Chao, Jianbin; Wang, Huijuan; Zhang, Yongbin; Yin, Caixia; Huo, Fangjun; Song, Kailun; Li, Zhiqing; Zhang, Ting; Zhao, Yaqin

    2017-11-01

    A novel pH fluorescent probe 1-(pyren-1-yl)-3-(6-methoxypridin-3-yl)-acrylketone, (PMPA), which had a pyrene structure attached to methoxypyridine, was synthesized for monitoring extremely acidic and alkaline pH. The pH titrations indicated that PMPA displayed a remarkable emission enhancement with a pK a of 2.70 and responded linearly to minor pH fluctuations within the extremely acidic range of 1.26-3.97. Interestingly, PMPA also exhibited strong pH-dependent characteristics with pK a 9.32 and linear response to extreme-alkalinity range of 8.54-10.36. In addition, PMPA displayed a good selectivity, excellent photostability and large Stokes shift (167nm). Furthermore, the probe PMPA had excellent cell membrane permeability and was applied successfully to rapidly detect pH in living cells. pH value in these organs was closely related to many diseases, so these findings suggested that the probe had potential application in pH detecting for disease diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Interactions between Silicon Oxide Nanoparticles (SONPs) and U(VI) Contaminations: Effects of pH, Temperature and Natural Organic Matters

    PubMed Central

    Wu, Hanyu; Li, Ping; Pan, Duoqiang; Yin, Zhuoxin; Fan, Qiaohui; Wu, Wangsuo

    2016-01-01

    The interactions between contaminations of U(VI) and silicon oxide nanoparticles (SONPs), both of which have been widely used in modern industry and induced serious environmental challenge due to their high mobility, bioavailability, and toxicity, were studied under different environmental conditions such as pH, temperature, and natural organic matters (NOMs) by using both batch and spectroscopic approaches. The results showed that the accumulation process, i.e., sorption, of U(VI) on SONPs was strongly dependent on pH and ionic strength, demonstrating that possible outer- and/or inner-sphere complexes were controlling the sorption process of U(VI) on SONPs in the observed pH range. Humic acid (HA), one dominated component of NOMs, bounded SONPs can enhance U(VI) sorption below pH~4.5, whereas restrain at high pH range. The reversible sorption of U(VI) on SONPs possibly indicated that the outer-sphere complexes were prevalent at pH 5. However, an irreversible interaction of U(VI) was observed in the presence of HA (Fig 1). It was mainly due to the ternary SONPs-HA-U(VI) complexes (Type A Complexes). After SONPs adsorbed U(VI), the particle size in suspension was apparently increased from ~240 nm to ~350 nm. These results showed that toxicity of both SONPs and U(VI) will decrease to some extent after the interaction in the environment. These findings are key for providing useful information on the possible mutual interactions among different contaminants in the environment. PMID:26930197

  7. Deactivation kinetics of acid-sensing ion channel 1a are strongly pH-sensitive.

    PubMed

    MacLean, David M; Jayaraman, Vasanthi

    2017-03-21

    Acid-sensing ion channels (ASICs) are trimeric cation-selective ion channels activated by protons in the physiological range. Recent reports have revealed that postsynaptically localized ASICs contribute to the excitatory postsynaptic current by responding to the transient acidification of the synaptic cleft that accompanies neurotransmission. In response to such brief acidic transients, both recombinant and native ASICs show extremely rapid deactivation in outside-out patches when jumping from a pH 5 stimulus to a single resting pH of 8. Given that the resting pH of the synaptic cleft is highly dynamic and depends on recent synaptic activity, we explored the kinetics of ASIC1a and 1a/2a heteromers to such brief pH transients over a wider [H + ] range to approximate neuronal conditions better. Surprisingly, the deactivation of ASICs was steeply dependent on the pH, spanning nearly three orders of magnitude from extremely fast (<1 ms) at pH 8 to very slow (>300 ms) at pH 7. This study provides an example of a ligand-gated ion channel whose deactivation is sensitive to agonist concentrations that do not directly activate the receptor. Kinetic simulations and further mutagenesis provide evidence that ASICs show such steeply agonist-dependent deactivation because of strong cooperativity in proton binding. This capacity to signal across such a large synaptically relevant bandwidth enhances the response to small-amplitude acidifications likely to occur at the cleft and may provide ASICs with the ability to shape activity in response to the recent history of the synapse.

  8. Subunit interactions in horse spleen apoferritin. Dissociation by extremes of pH

    PubMed Central

    Crichton, Robert R.; Bryce, Charles F. A.

    1973-01-01

    1. The dissociation of horse spleen apoferritin as a function of pH was analysed by sedimentation-velocity techniques. The oligomer is stable in the range pH2.8–10.6. Between pH2.8 and 1.6 and 10.6 and 13.0 both oligomer and subunits can be detected. At pH values between 1.6 and 1.0 the subunit is the only species observed, although below pH1.0 aggregation of the subunits to a particle sedimenting much faster than the oligomer occurs. 2. When apoferritin is first dissociated into subunits at low pH values and then dialysed into buffers of pH1.5–5.0, the subunit reassociates to oligomer in the pH range 3.1–4.3. 3. U.v.-difference spectroscopy was used to study conformational changes occurring during the dissociation process. The difference spectrum in acid can be accounted for by the transfer of four to five tyrosine residues/subunit from the interior of the protein into the solvent. This process is reversed on reassociation, but shows the same hysteresis as found by sedimentation techniques. The difference spectrum in alkali is more complex, but is consistent with the deprotonation of tyrosine residues, which appear to have rather high pK values. 4. In addition to the involvement of tyrosine residues in the conformational change at low pH values, spectral evidence is presented that one tryptophan residue/subunit also changes its environment before dissociation and subsequent to reassociation. 5. Analysis of the dissociation and reassociation of apoferritin at low pH values suggests that this is a co-operative process involving protonation and deprotonation of at least two carboxyl functions of rather low intrinsic pK. The dissociation at alkaline pH values does not appear to be co-operative. 6. Of the five tyrosine residues/subunit only one can be nitrated with tetranitromethane. Guanidination of lysine residues results in the modification of seven out of a total of nine residues/subunit. Nine out of the ten arginine residues/subunit react with cyclohexanedione. PMID:4737425

  9. Validation of a portable, waterproof blood pH analyser for elasmobranchs.

    PubMed

    Talwar, Brendan; Bouyoucos, Ian A; Shipley, Oliver; Rummer, Jodie L; Mandelman, John W; Brooks, Edward J; Grubbs, R Dean

    2017-01-01

    Quantifying changes in blood chemistry in elasmobranchs can provide insights into the physiological insults caused by anthropogenic stress, and can ultimately inform conservation and management strategies. Current methods for analysing elasmobranch blood chemistry in the field are often costly and logistically challenging. We compared blood pH values measured using a portable, waterproof pH meter (Hanna Instruments HI 99161) with blood pH values measured by an i-STAT system (CG4+ cartridges), which was previously validated for teleost and elasmobranch fishes, to gauge the accuracy of the pH meter in determining whole blood pH for the Cuban dogfish ( Squalus cubensis ) and lemon shark ( Negaprion brevirostris ). There was a significant linear relationship between values derived via the pH meter and the i-STAT for both species across a wide range of pH values and temperatures (Cuban dogfish: 6.8-7.1 pH 24-30°C; lemon sharks: 7.0-7.45 pH 25-31°C). The relative error in the pH meter's measurements was ~±2.7%. Using this device with appropriate correction factors and consideration of calibration temperatures can result in both a rapid and accurate assessment of whole blood pH, at least for the two elasmobranch species examined here. Additional species should be examined in the future across a wide range of temperatures to determine whether correction factors are universal.

  10. Preliminary screening oxidative degradation methyl orange using ozone/ persulfate

    NASA Astrophysics Data System (ADS)

    Aqilah Razali, Nur; Zulzikrami Azner Abidin, Che; An, Ong Soon; Ridwan, Fahmi Muhammad; Haqi Ibrahim, Abdul; Nasuha Sabri, Siti; Huan Kow, Su

    2018-03-01

    The present study focusing on the performances of advanced oxidation process by using ozonation method towards Methyl Orange based on the efficiency of colour removal and Chemical Oxygen Demand (COD) removal. Factorial design with response surface methodology (RSM) was used to evaluate the interaction between operational conditions, such as pH, initial concentration, contact time and persulfate dosage to obtain the optimum range conditions using a semi-batch reactor. The range of independent variables investigated were pH (3-11), initial concentration (100-500mg/L), contact time (10-50min) and persulfate dosage (20-100mM) while the response variables were colour removal and COD removal of Methyl Orange. The experimental results and statistical analysis showed all the parameters were significant. Thus, from this findings, optimization of operational conditions that had been suggested from the ozone/persulfate RSM analysis were (pH 3, 100 mg/L, 50min, 60mM) that would be produced 99% Colour Removal and 80% COD Removal and help in promoting an efficient ozonation process. The effect list data that showed the most contributed effects to increase the percentages of colour removal were pH and persulfate dosage whereas the contact time and initial concentration had the highest positive effects on the COD removal. Other than that, the interaction between pH, contact time and persulfate dosage were found to be the most influencing interaction. Therefore the least influencing interaction was interaction between persulfate dosage and pH. In this study, the correlation coefficient value R2 for colour removal and COD removal of Methyl Orange were R2= 0.9976 and R2= 0.9924 which suggested a good fit of the first-order regression model with the experimental data.

  11. pH regulation of the kinetic stability of the lipase from Thermomyces lanuginosus.

    PubMed

    Wang, H; Andersen, K K; Sehgal, P; Hagedorn, J; Westh, P; Borch, K; Otzen, D E

    2013-01-08

    Thermomyces lanuginosus lipase (TlL) is a kinetically stable protein, resistant toward both denaturation and refolding in the presence of the ionic surfactant sodium dodecyl sulfate (SDS) and the nonionic surfactant decyl maltoside (DecM). We investigate the pH dependence of this kinetic stability. At pH 8, TlL remains folded and enzymatically active at multimillimolar surfactant concentrations but fails to refold from the acid urea-denatured state at submillimolar concentrations of SDS and DecM, indicating a broad concentration range of kinetic trapping or hysteresis. At pH 8, very few SDS molecules bind to TlL. The hysteresis SDS concentration range shrinks when moving to pH 4-6; in this pH range, SDS binds as micellelike clusters. Although hysteresis can be eliminated by reducing disulfide bonds, destabilizing the native state, and lowering the unfolding activation barrier, SDS sensitivity is not directly linked to intrinsic kinetic stability [its resistance to the general chemical denaturant guanidinium chloride (GdmCl)], because TlL unfolds more slowly in GdmCl at pH 6.0 than at pH 8.0. However, the estimated net charge drops from approximately -12 to approximately -5 between pH 8 and 6. SDS denatures TlL at pH 6.0 by nucleating via a critical number of bound SDS molecules on the surface of native TlL to form clusters. These results imply that SDS sensitivity is connected to the availability of appropriately charged regions on the protein. We suggest that conformational rigidity is a necessary but not sufficient feature of SDS resistance, because this has to be combined with sufficient negative electrostatic potential to avoid extensive SDS binding.

  12. Dose validation of PhIP hair level as a biomarker of heterocyclic aromatic amines exposure: a feeding study

    PubMed Central

    Le Marchand, Loïc; Yonemori, Kim; White, Kami K.; Franke, Adrian A.; Wilkens, Lynne R.; Turesky, Robert J.

    2016-01-01

    Hair measurement of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is a promising biomarker of exposure to this carcinogen formed in cooked meats. However, the dose relationship between normal range intake and hair levels and the modulating effects of CYP1A2 metabolism and hair melanin need to be evaluated. We conducted a randomized, cross-over feeding study among 41 non-smokers using ground beef cooked to two different levels of doneness, 5 days a week for 1 month. PhIP was measured by liquid chromatography/mass spectrometry in food (mean low dose = 0.72 µg/serving; mean high dose = 2.99 µg/serving), and change in PhIP hair level was evaluated. CYP1A2 activity was assessed in urine with the caffeine challenge test and head hair melanin was estimated by UV spectrophotometry. We observed a strong dose-dependent increase in hair PhIP levels. This increase was highly correlated with dose received (ρ = 0.68, P < 0.0001). CYP1A2 activity and normalizing for hair melanin did not modify the response to the intervention. Consumption of PhIP at doses similar to those in the American diet results in a marked dose-dependent accumulation of PhIP in hair. Hair PhIP levels may be used as a biomarker of dietary exposure in studies investigating disease risk. PMID:27207666

  13. Poor interoperability of the Adams-Harbertson method for analysis of anthocyanins: comparison with AOAC pH differential method.

    PubMed

    Brooks, Larry M; Kuhlman, Benjamin J; McKesson, Doug W; McCloskey, Leo

    2013-01-01

    The poor interoperability of anthocyanin glycosides measurements by two pH differential methods is documented. Adams-Harbertson, which was proposed for commercial winemaking, was compared to AOAC Official Method 2005.02 for wine. California bottled wines (Pinot Noir, Merlot, and Cabernet Sauvignon) were assayed in a collaborative study (n=105), which found mean precision of Adams-Harbertson winery versus reference measurements to be 77 +/- 20%. Maximum error is expected to be 48% for Pinot Noir, 42% for Merlot, and 34% for Cabernet Sauvignon from reproducibility RSD. Range of measurements was actually 30 to 91% for Pinot Noir. An interoperability study (n=30) found Adams-Harbertson produces measurements that are nominally 150% of the AOAC pH differential method. Large analytical chemistry differences are: AOAC method uses Beer-Lambert equation and measures absorbance at pH 1.0 and 4.5, proposed a priori by Flueki and Francis; whereas Adams-Harbertson uses "universal" standard curve and measures absorbance ad hoc at pH 1.8 and 4.9 to reduce the effects of so-called co-pigmentation. Errors relative to AOAC are produced by Adams-Harbertson standard curve over Beer-Lambert and pH 1.8 over pH 1.0. The study recommends using AOAC Official Method 2005.02 for analysis of wine anthocyanin glycosides.

  14. Hydrolysis mechanism of methyl parathion evidenced by Q-Exactive mass spectrometry.

    PubMed

    Liu, Yuan; Zhang, Caixiang; Liao, Xiaoping; Luo, Yinwen; Wu, Sisi; Wang, Jianwei

    2015-12-01

    Organophosphorus pesticides (OPPs), a kind of widely used pesticides, are currently attracting great attention due to their adverse effects on human central nervous systems, particularly in children. Although the hydrolysis behavior of OPPs has been studied well, its hydrolysis mechanism remained controversial, especially at various pH conditions, partly due to their relatively complex structures and abundant moieties that were prone to be attacked by nucleophiles. The Q-Exactive mass spectrometer, part of those hybrid high-resolution mass spectrometers (HRMS), was used to determine hydrolysis products of methyl parathion (MP), a kind of OPPs in situ buffer aqueous solution with pH ranging from 1 to 13 in this study. Most of the complex hydrolysis products of MP were identified due to the high sensitivity and accuracy of HRMS. The results demonstrated that the hydrolysis rate and pathway of MP were strong pH dependent. With the increase of pH, the hydrolysis rate of MP increased, and two different reaction mechanisms were identified: SN (2)@P pathway dominated the hydrolysis process at high pH (e.g., pH ≥ 11) while SN (2)@C was the main behavior at low pH (e.g., pH ≤ 9). This study helps understand the hydrolysis mechanism of OPPs at various pH and extends the use of Q-Exactive mass spectrometry in identifying organic pollutants and their degradation products in environmental matrices.

  15. Use of metallurgical dust for removal chromium ions from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Pająk, Magdalena; Dzieniszewska, Agnieszka; Kyzioł-Komosińska, Joanna; Chrobok, Michał

    2018-01-01

    The aim of the study was to determine the potential for the application of dust from steel plant as an effective sorbent for removing Cr(III) and Cr(VI) in the form of simple and complex ions - Acid Blue 193 dye from aqueous solutions. Three isotherms models were used to interpret the experimental results namely: Langmuir, Freundlich, and Dubinin-Radushkevich. Estimated equations parameters allowed to determine the binding mechanism. Based on laboratory studies it was found that the dust was characterized by high sorption capacities for Cr ions and dye from the aqueous solution. The sorption capacity of the dust for Cr(III) and Cr(VI) ions depended on the degree of oxidation, pH of solution and kind of anion and changed in series: Cr(III)-Cl pH=5.0> Cr(III)-SO4 pH=5.0> Cr(III)-Cl pH=3.0> Cr(III)-SO4 pH=3.0> Cr(VI) pH=5.0> Cr(VI) pH=3.0. Dust was also characterized by a high maximum sorption capacity of dye at a range of 38.2 - 91.7 mg/g, depending on the dose of dust. Based on the study it was found that dust from a steel plant, containing iron oxides, can be used as low-cost and effective sorbent to remove pollutions containing chromium ions, especially from acidic wastewater.

  16. The pH of commonly available soaps, liquid cleansers, detergents and alcohol gels.

    PubMed

    Boonchai, Waranya; Iamtharachai, Pacharee

    2010-01-01

    The hydrogen ion concentration (pH) of a cleanser certainly has an impact on skin condition. Dermatologists always need to recommend a cleanser to patients with hand dermatitis or sensitive skin; particularly during the outbreak of swine (AH1N1 virus) influenza, frequent hand washing and alcohol gel cleansing were greatly recommended. The purpose of this study was to evaluate the pH of various commonly available cleansers and alcohol gels on the market to assess patient comfort in using such products and to make good recommendations to our patients. Multiple brands of liquid cleansers, dishwashing liquids, soaps, laundry detergents, and alcohol gels commonly available on the market were assessed for pH by using a pH meter and pH-indicator strips. The pH assessment imitated real-life conditions by diluting each cleanser with tap water and then comparing the changed pH. The pH levels of liquid cleansers, dishwashing liquids, a beauty bar, and alcohol gels were acidic to neutral and compatible with normal skin pH. Most bar soaps, baby soaps, and powdered laundry detergents had a pH in the alkali range. The pH of concentrated cleansers was slightly different from that of their dissolved forms. Regarding the antiseptic property and pH of the cleansers, alcohol gels with moisturizers appeared to be the best hand cleansers to recommend to our patients.

  17. MOVEMENT IN THE CYANOPHYCEAE

    PubMed Central

    Burkholder, Paul R.

    1933-01-01

    The effect of pH upon the velocity of translatory movement of Oscillatoria formosa Bory in inorganic culture solutions was determined. Unhindered movement occurred in the range of about pH 6.4 to 9.5. Above and below these limits inhibition was marked. In the unfavorable acid and alkaline ranges inhibition was progressive with exposure time; in the favorable range continuous movement was maintained for 24 hours. PMID:19872745

  18. Characteristics and mechanisms of nickel adsorption on biochars produced from wheat straw pellets and rice husk.

    PubMed

    Shen, Zhengtao; Zhang, Yunhui; McMillan, Oliver; Jin, Fei; Al-Tabbaa, Abir

    2017-05-01

    The adsorption characteristics and mechanisms of Ni 2+ on four-standard biochars produced from wheat straw pellets (WSP550, WSP700) and rice husk (RH550, RH700) at 550 and 700 °C, respectively, were investigated. The kinetic results show that the adsorption of Ni 2+ on the biochars reached an equilibrium within 5 min. The increase of the solid to liquid ratio resulted in an increase of Ni 2+ removal percentage but a decrease of the adsorbed amount of Ni 2+ per weight unit of biochar. The Ni 2+ removal percentage increased with the increasing of initial solution pH values at the range of 2-4, was relatively constant at the pH range of 4-8, and significantly increased to ≥98% at pH 9 and stayed constantly at the pH range of 9-10. The calculated maximum adsorption capacities of Ni 2+ for the biochars follow the order of WSP700 > WSP550 > RH700 > RH550. Both cation exchange capacity and pH of biochar can be a good indicator of the maximum adsorption capacity for Ni 2+ showing a positively linear and exponential relationship, respectively. This study also suggests that a carefully controlled standardised production procedure can make it reliable to compare the adsorption capacities between different biochars and investigate the mechanisms involved.

  19. Characterization of sulfate reducing bacteria isolated from urban soil

    NASA Astrophysics Data System (ADS)

    Zhang, Mingliang; Wang, Haixia

    2017-05-01

    Sulfate reducing bacteria (SRB) was isolated from urban soil and applied for the remediation of heavy metals pollution from acid mine drainage. The morphology and physiological characteristics (e.g. pH and heavy metals tolerance) of SRB was investigated. The SRB was gram-negative bacteria, long rod with slight curve, cell size 0.5× (1.5-2.0) μm. The pH of medium had significant effect on SRB growth and the efficiency of sulfate reduction, and it showed that the suitable pH range was 5-9 and SRB could not survive at pH less than 4. The maximum tolerance of Fe (II), Zn (II), Cd (II), and Cu (II) under acidic condition (pH 5.0) was about 600 mg/L, 150 mg/L, 25 mg/L and 25 mg/L, respectively. The result indicated that SRB isolated in this study could be used for the bioremediation of acid mine drainage (pH>4) within the heavy metals concentrations tolerance.

  20. Mechanisms of intragastric pH sensing.

    PubMed

    Goo, Tyralee; Akiba, Yasutada; Kaunitz, Jonathan D

    2010-12-01

    Luminal amino acids and lack of luminal acidity as a result of acid neutralization by intragastric foodstuffs are powerful signals for acid secretion. Although the hormonal and neural pathways underlying this regulatory mechanism are well understood, the nature of the gastric luminal pH sensor has been enigmatic. In clinical studies, high pH, tryptic peptides, and luminal divalent metals (Ca(2+) and Mg(2+)) increase gastrin release and acid production. The calcium-sensing receptor (CaSR), first described in the parathyroid gland but expressed on gastric G cells, is a logical candidate for the gastric acid sensor. Because CaSR ligands include amino acids and divalent metals, and because extracellular pH affects ligand binding in the pH range of the gastric content, its pH, metal, and nutrient-sensing functions are consistent with physiologic observations. The CaSR is thus an attractive candidate for the gastric luminal sensor that is part of the neuroendocrine negative regulatory loop for acid secretion.

  1. Effects of temperature, pH and NaCl on protease activity in digestive tract of young turbot, Scophthalmus maximus

    NASA Astrophysics Data System (ADS)

    Chen, Muyan; Zhang, Xiumei; Gao, Tianxiang; Chen, Chao

    2006-09-01

    The protease activity in digestive tract of young turbot Scophthalmus maximum was studied, and the optimal pH, temperature and NaCl concentration were determined for different portions of the fish's internal organs. The optimal activity in the fish's stomach was at pH of 2.2, while that in the intestinal extracts was within the alkaline range from 9.5 to 10.0. In hepatopancreas, the optimal pH was in low alkalinity at 8.5. The optimal reaction temperature was above 40°C in stomach, intestine and hepatopancreas. With increasing temperature, the pH value increased in stomach, while in the intestine, an opposite tendency was observed due to combined effect of pH and temperature. NaCl concentration showed inhibitory impact on protein digestion in hepatopancreas. The main protease for protein digestion in turbot seemed to be pepsin. Moreover, the maximum protease activity in different segments of intestine existed in the hindgut.

  2. A rhodamine 6G derived Schiff base as a fluorescent and colorimetric probe for pH detection and its crystal structure

    NASA Astrophysics Data System (ADS)

    Guo, Ping; Liu, Lijuan; Shi, Qian; Yin, Chunyan; Shi, Xuefang

    2017-02-01

    A fluorescent and colorimetric pH probe based on a rhodamine 6G derivative, RP1, was designed and synthesized. The probe was based on the pH induced change in the structure between the spirocyclic (non-fluorescent, colorless) and quinoid (fluorescent, pink) forms of rhodamine 6G. The effect of the acid concentration on the fluorescence "off-on" behaviors of RP1 was investigated. RP1 was fluorescent in the pH range of 1.1-3.1 and has a pKa value of 2.08 (±0.07). Thus RP1 should be useful for studies in strongly acidic environments. Possible interferences from fourteen common metal ions were tested and excluded showing the excellent selectivity of the probe. Finally, the probe exhibits an intense color change at pH values lower than 3.1 which makes it useful for naked-eye pH detection.

  3. 40 CFR 421.102 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Ammonia (as N) 4,773.000 2,098.000 Total suspended solids 1,468.000 698.300 pH (1) (1) 1 Within the range... 59.900 25.030 Ammonia (as N) 5,469.000 2,404.00 Total suspended solids 1,682.000 800.000 pH (1) (1) 1... suspended solids 0.000 0.000 pH (1) (1) 1 Within the range of 7.0 to 10.0 at all times. (d) Subpart J—Alkali...

  4. 40 CFR 436.42 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...— TSS 45 mg/l 25 mg/l. pH (1) (1) 1 Within the range 6.0 to 9.0. (2) Except as provided in paragraphs (a... daily values for 30 consecutive days shall not exceed— TSS 0.046 0.023 Total fluoride .006 .003 pH (1... consecutive days shall not exceed— TSS 45 mg/l 25 mg/l. pH (1) (1) 1 Within the range 6.0 to 9.0. (b) Any...

  5. 40 CFR 421.102 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Ammonia (as N) 4,773.000 2,098.000 Total suspended solids 1,468.000 698.300 pH (1) (1) 1 Within the range... 59.900 25.030 Ammonia (as N) 5,469.000 2,404.00 Total suspended solids 1,682.000 800.000 pH (1) (1) 1... suspended solids 0.000 0.000 pH (1) (1) 1 Within the range of 7.0 to 10.0 at all times. (d) Subpart J—Alkali...

  6. 40 CFR 471.53 - New source performance standards (NSPS).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 4.29 TSS 6.44 5.15 pH (1) (1) 1 Within the range of 7.5 to 10.0 at all times. (c) Drawing spent... Nickel 0.655 0.441 Fluoride 70.8 31.4 Molybdenum 5.99 2.66 Oil and grease 11.9 11.9 TSS 17.9 14.3 pH (1... and grease 2.81 2.81 TSS 4.22 3.37 pH (1) (1) 1 Within the range of 7.5 to 10.0 at all times. (j...

  7. 40 CFR 421.122 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....833 3.070 Zinc 4.482 1.873 Ammonia (as N) 409.300 179.900 Total suspended solids 125.900 59.870 pH (1... Ammonia (as N) 6,712.000 2,951.000 Total suspended solids 2,065.000 981.800 pH (1) (1) 1 Within the range... (as N) 129.300 56.840 Total suspended solids 39.770 18.920 pH (1) (1) 1 Within the range of 7.5 to 10...

  8. 40 CFR 471.53 - New source performance standards (NSPS).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 4.29 TSS 6.44 5.15 pH (1) (1) 1 Within the range of 7.5 to 10.0 at all times. (c) Drawing spent... Nickel 0.655 0.441 Fluoride 70.8 31.4 Molybdenum 5.99 2.66 Oil and grease 11.9 11.9 TSS 17.9 14.3 pH (1... and grease 2.81 2.81 TSS 4.22 3.37 pH (1) (1) 1 Within the range of 7.5 to 10.0 at all times. (j...

  9. 40 CFR 421.122 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....833 3.070 Zinc 4.482 1.873 Ammonia (as N) 409.300 179.900 Total suspended solids 125.900 59.870 pH (1... Ammonia (as N) 6,712.000 2,951.000 Total suspended solids 2,065.000 981.800 pH (1) (1) 1 Within the range... (as N) 129.300 56.840 Total suspended solids 39.770 18.920 pH (1) (1) 1 Within the range of 7.5 to 10...

  10. Medium pressure UV combined with chlorine advanced oxidation for trichloroethylene destruction in a model water.

    PubMed

    Wang, Ding; Bolton, James R; Hofmann, Ron

    2012-10-01

    The effectiveness of ultraviolet (UV) combined with chlorine as a novel advanced oxidation process (AOP) for drinking water treatment was evaluated in a bench scale study by comparing the rate of trichloroethylene (TCE) decay when using UV/chlorine to the rates of decay by UV alone and UV/hydrogen peroxide (H₂O₂) at various pH values. A medium pressure mercury UV lamp was used. The UV/chlorine process was more efficient than the UV/H₂O₂ process at pH 5, but in the neutral and alkaline pH range, the UV/H₂O₂ process became more efficient. The pH effect was probably controlled by the increasing concentration of OCl⁻ at higher pH values. A mechanistic kinetic model of the UV/chlorine treatment of TCE showed good agreement with the experimental data. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. [Relationship between blood glucose levels and salivary pH and buffering capacity in type II diabetes patients].

    PubMed

    Elkafri, I H; Mashlah, A; Shaqifa, A

    2014-03-13

    This study was evaluated the relationship between blood glucose levels and salivary pH and buffering capacity in type II diabetic patients. The sample comprised 210 participants (age ranged 40-60 years). Based on fasting blood glucose levels the participants were divided into 3 groups: controls with normal blood glucose levels; diabetic patients with levels ≤ 200 mg/dL; and diabetic patients with levels > 200 mg/dL. Salivary pH and buffering capacity were determined in a sample of resting (non-stimulated) saliva taken from each participant. Salivary pH levels in diabetic patients with blood glucose levels > 200 mg/dL were lower than in the controls and diabetic patients with levels ≤ 200 mg/dL. Salivary pH levels were comparable in controls and diabetic patients with blood glucose levels ≤ 200 mg/dL. Salivary buffering capacity in the 3 groups was comparable.

  12. Ubiquinone modified printed carbon electrodes for cell culture pH monitoring.

    PubMed

    McBeth, Craig; Dughaishi, Rajaa Al; Paterson, Andrew; Sharp, Duncan

    2018-08-15

    The measurement of pH is important throughout many biological systems, but there are limited available technologies to enable its periodical monitoring in the complex, small volume, media often used in cell culture experiments across a range of disciplines. Herein, pad printed electrodes are developed and characterised through modification with: a commercially available fullerene multiwall carbon nanotube composite applied in Nafion, casting of hydrophobic ubiquinone as a pH probe to provide the electrochemical signal, and coated in Polyethylene glycol to reduce fouling and potentially enhance biocompatibility, which together are proven to enable the determination of pH in cell culture media containing serum. The ubiquinone oxidation peak position (E pa ) provided an indirect marker of pH across the applicable range of pH 6-9 (R 2 = 0.9985, n = 15) in complete DMEM. The electrochemical behaviour of these sensors was also proven to be robust; retaining their ability to measure pH in cell culture media supplemented with serum up to 20% (v/v) [encompassing the range commonly employed in cell culture], cycled > 100 times in 10% serum containing media and maintain > 60% functionality after 5 day incubation in a 10% serum containing medium. Overall, this proof of concept research highlights the potential applicability of this, or similar, electrochemical approaches to enable to detection or monitoring of pH in complex cell culture media. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Behavior of decomposition of rifampicin in the presence of isoniazid in the pH range 1-3.

    PubMed

    Sankar, R; Sharda, Nishi; Singh, Saranjit

    2003-08-01

    The extent of decomposition of rifampicin in the presence of isoniazid was determined in the pH range 1-3 at 37 degrees C in 50 min, the mean stomach residence time. With increase in pH, the degradation initially increased from pH 1 to 2 and then decreased, resulting in a bell-shaped pH-decomposition profile. This showed that rifampicin degraded in the presence of isoniazid to a higher extent at pH 2, the maximum pH in the fasting condition, under which antituberculosis fixed-dose combination (FDC) products are administered. At this pH and in 50 min, rifampicin decomposed by approximately 34%, while the fall of isoniazid was 10%. The extent of decomposition for the two drugs was also determined in marketed formulations, and the values ranged between 13-35% and 4-11%, respectively. The extents of decomposition at stomach residence times of 15 min and 3 h were 11.94% and 62.57%, respectively, for rifampicin and 4.78% and 11.12%, respectively, for isoniazid. The results show that quite an extensive loss of rifampicin and isoniazid can occur as a result of interaction between them in fasting pH conditions. This emphasizes that antituberculosis FDC formulations, which contain both drugs, should be designed in a manner that the interaction of the two drugs is prevented when the formulations are administered on an empty stomach.

  14. Environmental geochemical study of Red Mountain--an undisturbed volcanogenic massive sulfide deposit in the Bonnifield District, Alaska range, east-central Alaska: Chapter I in Recent U.S. Geological Survey studies in the Tintina Gold Province, Alaska, United States, and Yukon, Canada--results of a 5-year project

    USGS Publications Warehouse

    Eppinger, Robert G.; Briggs, Paul H.; Dusel-Bacon, Cynthia; Giles, Stuart A.; Gough, Larry P.; Hammarstrom, Jane M.; Hubbard, Bernard E.

    2007-01-01

    Water samples with the lowest pH values, highest specific conductances, and highest major- and trace-element concentrations are from springs and streams within the quartz-sericite-pyrite alteration zone. Aluminum, As, Cd, Co, Cu, Fe, Mn, Ni, Pb, Y, and particularly Zn and the REEs are all found in high concentrations, ranging across four orders of magnitude. Waters collected upstream from the alteration zone have near-neutral pH values, lower specific conductances, lower metal concentrations, and measurable alkalinities. Water samples collected downstream of the alteration zone have pH values and metal concentrations intermediate between these two extremes. Stream sediments are anomalous in Zn, Pb, S, Fe, Cu, As, Co, Sb, and Cd relative to local and regional background abundances. Red Mountain Creek and its tributaries do not support, and probably never have supported, significant megascopic faunal aquatic life.

  15. Allium sativum Protease Inhibitor: A Novel Kunitz Trypsin Inhibitor from Garlic Is a New Comrade of the Serpin Family.

    PubMed

    Shamsi, Tooba Naz; Parveen, Romana; Amir, Mohd; Baig, Mohd Affan; Qureshi, M Irfan; Ali, Sher; Fatima, Sadaf

    2016-01-01

    This study was aimed to purify and characterize the Protease inhibitor (PI) from a plant Allium sativum (garlic) with strong medicinal properties and to explore its phytodrug potentials. Allium sativum Protease Inhibitor (ASPI) was purified using ammonium sulphate fractionation and Fast Protein Liquid Chromatography on anion exchanger Hi-Trap DEAE column. The purified protein was analyzed for its purity and molecular weight by SDS PAGE. The confirmation of presence of trypsin inhibiting PI was performed by MALDI TOF-TOF and analyzed by MASCOT database. The ASPI was further investigated for its kinetic properties and stability under extreme conditions of pH, temperature and chemical denaturants. Secondary structure was determined by Circular Dichorism (CD) spectroscopy. ASPI of ~15 kDa inhibited trypsin and matched "truncated kunitz Trypsin Inhibitor (Glycine max)" in MASCOT database. The purified ASPI showed 30376.1371 U/mg specific activity with a fold purity of 159.92 and yield ~93%. ASPI was quite stable in the range of pH 2-12 showing a decline in the activity around pH 4-5 suggesting that the pI value of the protein as ASPI aggregates in this range. ASPI showed stability to a broad range of temperature (10-80°C) but declined beyond 80°C. Further, detergents, oxidizing agents and reducing agents demonstrated change in ASPI activity under varying concentrations. The kinetic analysis revealed sigmoidal relationship of velocity with substrate concentration with Vmax 240.8 (μM/min) and Km value of 0.12 μM. ASPI showed uncompetitive inhibition with a Ki of 0.08±0.01 nM). The Far UV CD depicted 2.0% α -helices and 51% β -sheets at native pH. To conclude, purified ~15 kDa ASPI exhibited fair stability in wide range of pH and temperature Overall, there was an increase in purification fold with remarkable yield. Chemical modification studies suggested the presence of lysine and tryptophan residues as lead amino acids present in the reactive sites. Therefore, ASPI with trypsin inhibitory property has the potential to be used as a non-cytotoxic clinical agents.

  16. Heavy metals content in acid mine drainage at abandoned and active mining area

    NASA Astrophysics Data System (ADS)

    Hatar, Hazirah; Rahim, Sahibin Abd; Razi, Wan Mohd; Sahrani, Fathul Karim

    2013-11-01

    This study was conducted at former Barite Mine, Tasik Chini and former iron mine Sungai Lembing in Pahang, and also active gold mine at Lubuk Mandi, Terengganu. This study was conducted to determine heavy metals content in acid mine drainage (AMD) at the study areas. Fourteen water sampling stations within the study area were chosen for this purpose. In situ water characteristic determinations were carried out for pH, electrical conductivity (EC), redox potential (ORP) and total dissolved solid (TDS) using multi parameter YSI 556. Water samples were collected and analysed in the laboratory for sulfate, total acidity and heavy metals which follow the standard methods of APHA (1999) and HACH (2003). Heavy metals in the water samples were determined directly using Inductive Coupled Plasma Mass Spectrometry (ICP-MS). Data obtained showed a highly acidic mean of pH values with pH ranged from 2.6 ± 0.3 to 3.2 ± 0.2. Mean of electrical conductivity ranged from 0.57 ± 0.25 to 1.01 ± 0.70 mS/cm. Redox potential mean ranged from 487.40 ± 13.68 to 579.9 ± 80.46 mV. Mean of total dissolved solids (TDS) in AMD ranged from 306.50 ± 125.16 to 608.14 ± 411.64 mg/L. Mean of sulfate concentration in AMD ranged from 32.33 ± 1.41 to 207.08 ± 85.06 mg/L, whereas the mean of total acidity ranged from 69.17 ± 5.89 to 205.12 ± 170.83 mgCaCO3/L. Heavy metals content in AMD is dominated by Fe, Cu, Mn and Zn with mean concentrations range from 2.16 ± 1.61 to 36.31 ± 41.02 mg/L, 0.17 ± 0.13 to 11.06 ± 2.85 mg/L, 1.12 ± 0.65 to 7.17 ± 6.05 mg/L and 0.62 ± 0.21 to 6.56 ± 4.11 mg/L, respectively. Mean concentrations of Ni, Co, As, Cd and Pb were less than 0.21, 0.51, 0.24, 0.05 and 0.45 mg/L, respectively. Significant correlation occurred between Fe and Mn, Cu, Zn, Co and Cd. Water pH correlated negatively with all the heavy metals, whereas total acidity, sulfate, total dissolved solid, and redox potential correlated positively. The concentration of heavy metals in the AMD appeared to be influenced by acidity and the formation of Fe, Mn oxide and hydroxide.

  17. Effects of pH2O, pH2 and fO2 on the Diffusion of H-Bearing Species in Lunar Basalt and an Iron-Free Basaltic Analog at 1 atm

    NASA Astrophysics Data System (ADS)

    Newcombe, M. E.; Beckett, J. R.; Baker, M. B.; Newman, S.; Guan, Y.; Eiler, J. M.; Stolper, E. M.

    2016-12-01

    We have conducted water diffusion experiments in synthetic Apollo 15 "yellow glass" (LG) and an iron-free basaltic analog melt (AD) at 1 atm and 1350 °C over a range of fO2 conditions from IW-2.2 to IW+6.7 and over a range of pH2/pH2O from nominally zero to 10. The water concentrations measured in our quenched experimental glasses by SIMS and FTIR vary from a few ppm to 430 ppm. Many studies of water diffusion at higher water concentrations indicate that the apparent diffusivity of total water (D*water; see [1]) in silicate melts is highly concentration dependent at water contents >0.1 wt% (e.g., [1]). However, water concentration gradients in each of our AD and LG experiments are well described by models in which D*water is assumed to be constant. Best-fit values of D*water obtained for our AD and LG experiments are consistent with a modified speciation model [2] in which both molecular water and hydroxyl are allowed to diffuse, and in which hydroxyl is the dominant diffusing species at the low total water concentrations of our experiments. Water concentration gradients generated during hydration and dehydration experiments conducted simultaneously propagate approximately equal distances into the melt and have the same concentration of water dissolved in the melt at the melt-vapor interface, suggesting that hydration and dehydration are symmetric under the conditions of our experiments. Best-fit values of D*water for our LG experiments vary within a factor of 2 over a range of pH2/pH2O from 0.007 to 9.7 (a range of ƒO2 from IW-2.2 to IW+4.9) and a water concentration range from 80 ppm to 280 ppm. The relative insensitivity of D*water to variations in pH2 suggests that loss of H during the degassing of the lunar melts described by [3] was not primarily by loss of dissolved H2. The value of D*water chosen by [3] for modeling diffusive degassing of lunar volcanic glasses is within a factor of three of our measured value in LG melt at 1350 °C. [1] Zhang et al. (1991) GCA 55, 441-456; [2] Ni et al. (2013) GCA 103, 36-48; [3] Saal et al. (2008) Nature 454, 192-195.

  18. Catalytic mechanism of cationic red GTL at wide pH using the Mo-Zn-Al-O nanocatalyst under room conditions.

    PubMed

    Xu, Yin; Li, Xiaoyi; Sun, Dezhi

    2014-09-01

    Catalytic mechanism of cationic red GTL at wide pH using the Mo-Zn-Al-O nanocatalyst under room conditions was investigated. The experimental results indicate that initial pH significantly affected the removal of cationic red GTL, the removal of COD, the pH value and residual oxygen in the reaction. In the range of pH value from 4 to 10, decolorization of cationic red GTL was almost above 90%. COD removal efficiency was enhanced with the decrease of pH in CWAO process and 79% of the COD was removed at pH 4.0, whereas only 57% COD removal was observed at pH 10.0. The terminal pH was in the range of 5.0-6.0 and the highest terminal concentrations of aqueous oxygen with 5.5 mg/L were observed at pH = 4.0. The radical inhibition experiments also carried out and the generation of *OH and 1O2 in catalytic wet air oxidation process were detected. It was found that the degradation of cationic red GTL occurs mainly via oxidation by 1O2 radical generated by Mo-Zn-Al-O nanocatalyst under acid conditions and *OH radical under alkaline conditions.

  19. pH regulation of mitochondrial branch chain alpha-keto acid transport and oxidation in rat heart mitochondria.

    PubMed

    Hutson, S M

    1987-07-15

    The kinetics of branched chain alpha-keto acid uptake and efflux were studied as a function of varied external and matrix pH. Matrix pH was determined by the distribution of 5,5'-dimethyloxazolidine-2,4-dione. When rat heart mitochondria were incubated under transport conditions at pH 7.0 with succinate as respiratory substrate, the matrix pH was significantly greater than 8.0. Matrix pH remained greater than or equal to 8.0 when the medium pH was varied from 6.3 to 8.3, and it was lowered below 8.0 by addition of 5 mM phosphate or uncoupler. No pH gradient was detectable when mitochondria were incubated in the presence of valinomycin and uncoupler. Efflux of alpha-ketoisocaproate or alpha-ketoisovalerate from rat heart mitochondria obeyed first order kinetics. Varying the external pH from 6.6 to 8.3 had no significant effect on efflux, and at an external pH of 7.0, the first order rate constant for efflux was not affected by decreasing the matrix pH. On the other hand, exchange was sensitive to changes in medium but not matrix pH. The K0.5 for external branched chain alpha-keto acid was lowered by changing the medium pH from 7.6 to 6.3. At medium pH values greater than or equal to 8.0 both K0.5 and Vmax were affected. Uptake was determined either by measuring initial rates or was calculated after measuring the first order approach to a final equilibrium value. Unlike efflux, uptake was sensitive to changes in both external and matrix pH. The rate of branched chain alpha-keto acid uptake was stimulated by decreasing the medium pH from 8.3 to 6.3 and by alkalinization of the mitochondrial matrix. The estimated external pK for proton binding was 6.9. The data indicate that the branched chain alpha-keto acid transporter is asymmetric, that is, binding sites for substrate on the inside and outside of the mitochondrial membrane are not identical. alpha-Ketoisocaproate oxidation was measured at 37 degrees C in isolated mitochondria over the pH range of 6.6 to 8.1. Changes in the rate of branched chain alpha-keto acid oxidation, particularly when ATP was added (increase delta pH), were found to parallel the pH effects observed on branched chain alpha-keto acid uptake. Therefore, transport, and by implication oxidation, can be regulated by pH changes within the physiological range. Furthermore, intracellular pH may affect the degree of compartmentation between the cytosolic and mitochondrial branched chain alpha-keto acid pools.

  20. In vivo optical detection of pH in microscopic tissue samples of Arabidopsis thaliana.

    PubMed

    Kašík, Ivan; Podrazký, Ondřej; Mrázek, Jan; Martan, Tomáš; Matějec, Vlastimil; Hoyerová, Klára; Kamínek, Miroslav

    2013-12-01

    Minimally invasive in vivo measurement of pH in microscopic biological samples of μm or μl size, e.g. plant cells, tissues and saps, may help to explain complex biological processes. Consequently, techniques to achieve such measurements are a focus of interest for botanists. This paper describes a technique for the in vivo measurement of pH in the range pH5.0 to pH7.8 in microscopic plant tissue samples of Arabidopsis thaliana based on a ratiometric fluorescence method using low-loss robust tapered fiber probes. For this purpose tapered fiber probes were prepared and coated with a detection layer containing ion-paired fluorescent pH-transducer 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (c-HPTS). A fluorescence ratiometric approach was employed based on excitation at 415 nm and 450 nm and on the comparison of the fluorescence response at 515 nm. The suitability of tapered fiber probes for local detection of pH between 5.0 and 7.8 was demonstrated. A pH sensitivity of 0.15 pH units was achieved within the pH ranges 5.0-5.9 and 7.1-7.8, and this was improved to 0.04 pH units within the pH range 5.9-7.1. Spatial resolution of the probes was better than 20 μm and a time response within 15-20s was achieved. Despite the minute dimensions of the tapered fiber probes the setup developed was relatively robust and compact in construction and performed reliably. It has been successfully employed for the in vivo local determination of pH of mechanically resistant plant tissues of A. thaliana of microscopic scale. The detection of momentary pH gradients across the intact plant seems to be a good tool for the determination of changes in pH in response to experimental treatments affecting for example enzyme activities, availability of mineral nutrients, hormonal control of plant development and plant responses to environmental cues. © 2013.

  1. Stability of urea in solution and pharmaceutical preparations.

    PubMed

    Panyachariwat, Nattakan; Steckel, Hartwig

    2014-01-01

    The stability of urea in solution and pharmaceutical preparations was analyzed as a function of temperature (25°-60°C), pH (3.11-9.67), and initial urea concentration (2.5%-20%). This study was undertaken to (i) obtain more extensive, quantitative information relative to the degradation of urea in both aqueous and non-aqueous solutions and in pharmaceutical preparations, and (ii) test the effects of initial urea concentration, pH, buffer, and temperature values on urea degradation. The stability analysis shows that urea is more stable at the pH range of 4-8 and the stability of urea decreases by increase in temperature for all pH values. Within the experimental range of temperature and initial urea concentration values, the lowest urea degradation was found with lactate buffer pH 6.0. The urea decomposition rate in solution and pharmaceutical preparations shows the dependence of the initial urea concentrations. At higher initial urea concentrations, the rate of degradation is a decreasing function with time. This suggests that the reverse reaction is a factor in the degradation of concentrated urea solution. For non-aqueous solvents, isopropanol showed the best effort in retarding the decomposition of urea. Since the losses in urea is directly influenced by its stability at a given temperature and pH, the stability analysis of urea by the proposed model can be used to prevent the loss and optimize the operating condition for urea-containing pharmaceutical preparations.

  2. A Novel Acid-Stable Endo-Polygalacturonase from Penicillium oxalicum CZ1028: Purification, Characterization, and Application in the Beverage Industry.

    PubMed

    Cheng, Zhong; Chen, Dong; Lu, Bo; Wei, Yutuo; Xian, Liang; Li, Yi; Luo, Zhenzhen; Huang, Ribo

    2016-06-28

    Acidic endo-polygalacturonases are the major part of pectinase preparations and extensively applied in the clarification of fruits juice, vegetables extracts, and wines. However, most of the reported fungal endo-polygalacturonases are active and stable under narrow pH range and low temperatures. In this study, an acidic endo-polygalacturonase (EPG4) was purified and characterized from a mutant strain of Penicillium oxalicum. The N-terminal amino acid sequence of EPG4 (ATTCTFSGSNGAASASKSQT) was different from those of reported endopolygalacturonases. EPG4 displayed optimal pH and temperature at 5.0 and 60-70°C towards polygalacturonic acid (PGA), respectively, and was notably stable at pH 2.2-7.0. When tested against pectins, EPG4 showed enzyme activity over a broad acidic pH range (>15.0% activity at pH 2.2-6.0 towards citrus pectin; and >26.6% activity at pH 2.2-7.0 towards apple pectin). The Km and Vmax values were determined as 1.27 mg/ml and 5,504.6 U/mg, respectively. The enzyme hydrolyzed PGA in endo-manner, releasing oligo-galacturonates from PGA, as determined by TLC. Addition of EPG4 (3.6 U/ml) significantly reduced the viscosity (by 42.4%) and increased the light transmittance (by 29.5%) of the papaya pulp, and increased the recovery (by 24.4%) of the papaya extraction. All of these properties make the enzyme a potential application in the beverage industry.

  3. Conformal self-assembled thin films for optical pH sensors

    NASA Astrophysics Data System (ADS)

    Topasna, Daniela M.; Topasna, Gregory A.; Liu, Minghanbo; Tseng, Ching-Hung

    2016-04-01

    Simple, reliable, lightweight, and inexpensive thin films based sensors are still in intense development and high demand in many applications such as biomedical, industrial, environmental, military, and consumer products. One important class of sensors is the optical pH sensor. In addition, conformal thin film based sensors extend the range of application for pH optical sensors. We present the results on the fabrication and characterization of optical pH sensing coatings made through ionic self-assembled technique. These thin films are based on the combination of a polyelectrolyte and water-soluble organic dye molecule Direct Yellow 4. A series of films was fabricated and characterized in order to determine the optimized parameters of the polymer and of the organic dye solutions. The optical pH responses of these films were also studied. The transparent films were immersed in solutions at various temperature and pH values. The films are stable when immersed in solutions with pH below 9.0 and temperatures below 90 °C and they maintain their performance after longer immersion times. We also demonstrate the functionality of these coatings as conformal films.

  4. Effect of heat, pH, ultrasonication and ethanol on the denaturation of whey protein isolate using a newly developed approach in the analysis of difference-UV spectra.

    PubMed

    Nikolaidis, Athanasios; Andreadis, Marios; Moschakis, Thomas

    2017-10-01

    A newly developed method of analysis of difference-UV spectra was successfully implemented in the study of the effect of heat, pH, ultrasonication and ethanol on the denaturation of whey protein isolate. It was found that whey proteins exhibit their highest stability against heat denaturation at pH 3.75. At very low pH values, i.e. 2.5, they exhibited considerable cold denaturation, while after heating at this pH value, the supplementary heat denaturation rate was lower compared to that at neutral pH. The highest heat denaturation rates were observed at pH values higher than neutral. High power sonication on whey proteins, previously heated at 90°C for 30min, resulted in a rather small reduction of the fraction of the heat denatured protein aggregates. Finally, when ethanol was used as a cosolvent in the concentration range 20-50%, a sharp increase in the degree of denaturation, compared to the native protein solution, was observed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Collaborative Study of Daphnia magna Static Renewal Assays.

    DTIC Science & Technology

    1986-01-01

    established that for acceptable results and practicality, the standardized medium would be a modification of Marking’s and Dawson’s formulation for hard ...by SBI personnel included the results of physical - - 12 measurements (pH, dissolved oxygen, temperature, lighting regime, hardness and alkalinity...oxygen (D.O.), temperature, hardness and alkalinity (Tables 3-6). For all four tests at each laboratory and among all laboratories, pH’s ranged from 7.3

  6. Sorption of thiabendazole in sub-tropical Brazilian soils.

    PubMed

    de Oliveira Neto, Odilon França; Arenas, Alejandro Yopasa; Fostier, Anne Hélène

    2017-07-01

    Thiabendazole (TBZ) is an ionizable anthelmintic agent that belongs to the class of benzimidazoles. It is widely used in veterinary medicine and as a fungicide in agriculture. Sorption and desorption are important processes influencing transport, transformation, and bioavailability of xenobiotic compounds in soils; data related to sorption capacity are therefore needed for environmental risk assessments. The aim of this work was to assess the sorption potential of TBZ in four Brazilians soils (sandy, sandy-clay, and clay soils), using batch equilibrium experiments at three pH ranges (2.3-3.0, 3.8-4.2, and 5.5-5.7). The Freundlich sorption coefficient (K F ) ranged from 9.0 to 58 μg 1-1/n  (mL) 1/n  g -1 , with higher values generally observed at the lower pH ranges (2.3-3.0 and 3.8-4.2) and for clay soils. The highest organic carbon-normalized sorption coefficients (K OC ) obtained at pH 3.8-5.7 (around the natural pH range of 4.1-5.0) for both clay soils and sandy-clay soil were 3255 and 2015 mL g -1 , respectively. The highest correlations K F vs SOM (r = 0.70) and K F vs clay content (r = 0.91) were observed at pH 3.8-4.2. Our results suggest that TBZ sorption/desorption is strongly pH dependent and that its mobility could be higher in the studied soils than previously reported in soils from temperate regions.

  7. Quatenary structure of methemoglobin II. Pulse radiolysis study of the binding of oxygen to the valence-hybrid. Progress report, December 1, 1978-November 30, 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chevion, M; Ilan, Y A; Samuni, A

    1979-01-01

    The pulse-radiolysis of solutions of adult human methemoglobin was used in order to reduce a single heme-iron within the protein tetramers. The valence-hybrids thus formed were reacted with oxygen. Kinetics of the reactions were studied. The effects of pH and inositol-hexaphosphate were examined. The kinetics of the ligation of oxygen to stripped valence-hybrids showed a single-phase behavior at the pH range 6.5 to 9. As the pH was lowered below 6.5 a second, slower phase became apparent. In the presence of IHP, above pH 8, the kinetics of oxygem binding was of a single phase. As the pH was loweredmore » a transition to a second, slower phase was noticed. Below pH 7 the slower phase was the only detectable one. The analysis of the relative contribution of the faster phase to the total reaction as a function of the pH showed a typical transition curve characterized by a pK = 7.5 and a Hill parameter n =2.9. On the basis it is concluded that human adult stripped methemoglobin resides in an R quarternary structure while the presence of IHP stabilizes the T structure at pH below 7.5.« less

  8. Development of pH Sensitive Nanoparticles for Intestinal Drug Delivery Using Chemically Modified Guar Gum Co-Polymer.

    PubMed

    Varma, Vegesna Naga Sravan Kumar; Shivakumar, Hosakote Gurumalappa; Balamuralidhara, Veerna; Navya, Manne; Hani, Umme

    2016-01-01

    The aim of the research work was to chemically modify guargum (GG) as a pH sensitive co-polymer and formulating intestinal targeting ESO nanoparticles (NPs) using the synthesized co-polymer. Poly acrylamide-grafted-guar gum (PAAm-g-GG) co-polymer was synthesized by free radical polymerization. Chemical modification of PAAm-g-GG by alkaline hydrolysis results in formation of a pH-sensitive co-polymer. The effect of GG and acryl amide (AAm) on grafting was studied. Esomeprazole magnesium (ESO) loaded pH sensitive NPs were prepared by nano-emulsification polymer crosslinking method and characterized. Sixteen formulations were prepared and the concentration of process variables wasvaried to obtain nanoparticles of 200-600 nm. The NPs were found to be homogenous in size distribution. The encapsulation efficiency and drug loading ranged from 33.2% to 50.1% and 12.2% to 17.2% respectively. Particle size, encapsulation efficiency and drug loading increasedalong with co-polymer concentration. In-vitro release studies at pH 1.2 for 2 h, followed by pH 6.8 showed that environment pH significantly affected the drug release. SEM has shown that NPsare spherical with smooth surface. The pH sensitive PAAm-g-GGNPs resisted the initial release of the drug from the drug loaded NPs in acidic pH and delayed the release process to a longer period in alkaline environment.

  9. Development of pH Sensitive Nanoparticles for Intestinal Drug Delivery Using Chemically Modified Guar Gum Co-Polymer

    PubMed Central

    Varma, Vegesna Naga Sravan Kumar; Shivakumar, Hosakote Gurumalappa; Balamuralidhara, Veerna; Navya, Manne; Hani, Umme

    2016-01-01

    The aim of the research work was to chemically modify guargum (GG) as a pH sensitive co-polymer and formulating intestinal targeting ESO nanoparticles (NPs) using the synthesized co-polymer. Poly acrylamide-grafted-guar gum (PAAm-g-GG) co-polymer was synthesized by free radical polymerization. Chemical modification of PAAm-g-GG by alkaline hydrolysis results in formation of a pH-sensitive co-polymer. The effect of GG and acryl amide (AAm) on grafting was studied. Esomeprazole magnesium (ESO) loaded pH sensitive NPs were prepared by nano-emulsification polymer crosslinking method and characterized. Sixteen formulations were prepared and the concentration of process variables wasvaried to obtain nanoparticles of 200-600 nm. The NPs were found to be homogenous in size distribution. The encapsulation efficiency and drug loading ranged from 33.2% to 50.1% and 12.2% to 17.2% respectively. Particle size, encapsulation efficiency and drug loading increasedalong with co-polymer concentration. In-vitro release studies at pH 1.2 for 2 h, followed by pH 6.8 showed that environment pH significantly affected the drug release. SEM has shown that NPsare spherical with smooth surface. The pH sensitive PAAm-g-GGNPs resisted the initial release of the drug from the drug loaded NPs in acidic pH and delayed the release process to a longer period in alkaline environment. PMID:27610149

  10. Model predictions of realgar precipitation by reaction of As(III) with synthetic mackinawite under anoxic conditions

    USGS Publications Warehouse

    Gallegos, T.J.; Han, Y.-S.; Hayes, K.F.

    2008-01-01

    This study investigates the removal of As(III) from solution using mackinawite, a nanoparticulate reduced iron sulfide. Mackinawite suspensions (0.1-40 g/L) effectively lower initial concentrations of 1.3 ?? 10 -5 M As(III) from pH 5-10, with maximum removal occurring under acidic conditions. Based on Eh measurements, it was found that the redox state of the system depended on the mackinawite solids concentration and pH. Higher initial mackinawite concentrations and alkaline pH resulted in a more reducing redox condition. Given this, the pH edge data were modeled thermodynamically using pe (-log[e-]) as a fitting parameter and linear pe-pH relationships within the range of measured Eh values as a function of pH and mackinawite concentration. The model predicts removal of As(III) from solution by precipitation of realgar with the formation of secondary oxidation products, greigite or a mixed-valence iron oxide phase, depending on pH. This study demonstrates that mackinawite is an effective sequestration agent for As(III) and highlights the importance of incorporating redox into models describing the As-Fe-S-H2O system. ?? 2008 American Chemical Society.

  11. Inorganic Carbon Source for Photosynthesis in the Seagrass Thalassia hemprichii (Ehrenb.) Aschers.

    PubMed

    Abel, K M

    1984-11-01

    Photosynthetic carbon uptake of the tropical seagrass Thalassia hemprichii (Ehrenb.) Aschers was studied by several methods. Photosynthesis in buffered seawater in media in the range of pH 6 to pH 9 showed an exponentially increasing rate with decreasing pH, thus indicating that free CO(2) was a photosynthetic substrate. However, these experiments were unable to determine whether photosynthesis at alkaline pH also contained some component due to HCO(3) (-) uptake. This aspect was further investigated by studying photosynthetic rates in a number of media of varying pH (7.8-8.61) and total inorganic carbon (0.75-13.17 millimolar). In these media, photosynthetic rate was correlated with free CO(2) concentration and was independent of the HCO(3) (-) concentration in the medium. Short time-course experiments were conducted during equilibration of free CO(2) and HCO(3) (-) after injection of (14)C labeled solution at acid or alkaline pH. High initial photosynthetic rates were observed when acidic solutions (largely free CO(2)) were used but not with alkaline solutions. The concentration of free CO(2) was found to be a limiting factor for photosynthesis in this plant.

  12. 40 CFR 439.4 - General limitation or standard for pH.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false General limitation or standard for pH. 439.4 Section 439.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT... General limitation or standard for pH. The pH must remain within the range 6.0 to 9.0 in any discharge...

  13. 40 CFR 439.4 - General limitation or standard for pH.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false General limitation or standard for pH. 439.4 Section 439.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT... General limitation or standard for pH. The pH must remain within the range 6.0 to 9.0 in any discharge...

  14. 40 CFR 439.4 - General limitation or standard for pH.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 31 2013-07-01 2013-07-01 false General limitation or standard for pH. 439.4 Section 439.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT... General limitation or standard for pH. The pH must remain within the range 6.0 to 9.0 in any discharge...

  15. CO2 induced pHi changes in the brain of polar fish: a TauCEST application.

    PubMed

    Wermter, Felizitas C; Maus, Bastian; Pörtner, Hans-O; Dreher, Wolfgang; Bock, Christian

    2018-06-22

    Chemical exchange saturation transfer (CEST) from taurine to water (TauCEST) can be used for in vivo mapping of taurine concentrations as well as for measurements of relative changes in intracellular pH (pH i ) at temperatures below 37°C. Therefore, TauCEST offers the opportunity to investigate acid-base regulation and neurological disturbances of ectothermic animals living at low temperatures, and in particular to study the impact of ocean acidification (OA) on neurophysiological changes of fish. Here, we report the first in vivo application of TauCEST imaging. Thus, the study aimed to investigate the TauCEST effect in a broad range of temperatures (1-37°C) and pH (5.5-8.0), motivated by the high taurine concentration measured in the brains of polar fish. The in vitro data show that the TauCEST effect is especially detectable in the low temperature range and strictly monotonic for the relevant pH range (6.8-7.5). To investigate the specificity of TauCEST imaging for the brain of polar cod (Boreogadus saida) at 1.5°C simulations were carried out, indicating a taurine contribution of about 65% to the in vivo expected CEST effect, if experimental parameters are optimized. B. saida was acutely exposed to three different CO 2 concentrations in the sea water (control normocapnia; comparatively moderate hypercapnia OA m  = 3300 μatm; high hypercapnia OA h  = 4900 μatm). TauCEST imaging of the brain showed a significant increase in the TauCEST effect under the different CO 2 concentrations of about 1.5-3% in comparison with control measurements, indicative of changes in pH i or metabolite concentration. Consecutive recordings of 1 H MR spectra gave no support for a concentration induced change of the in vivo observed TauCEST effect. Thus, the in vivo application of TauCEST offers the possibility of mapping relative changes in pH i in the brain of polar cod during exposure to CO 2 . © 2018 John Wiley & Sons, Ltd.

  16. Mechanisms of Glucagon Degradation at Alkaline pH

    PubMed Central

    Caputo, Nicholas; Castle, Jessica R.; Bergstrom, Colin P.; Carroll, Julie M.; Bakhtiani, Parkash A.; Jackson, Melanie A.; Roberts, Charles T.; David, Larry L.; Ward, W. Kenneth

    2014-01-01

    Glucagon is unstable and undergoes degradation and aggregation in aqueous solution. For this reason, its use in portable pumps for closed loop management of diabetes is limited to very short periods. In this study, we sought to identify the degradation mechanisms and the bioactivity of specific degradation products. We studied degradation in the alkaline range, a range at which aggregation is minimized. Native glucagon and analogs identical to glucagon degradation products were synthesized. To quantify biological activity in glucagon and in the degradation peptides, a protein kinase A-based bioassay was used. Aged, fresh, and modified peptides were analyzed by liquid chromatography with mass spectrometry (LCMS). Oxidation of glucagon at the Met residue was common but did not reduce bioactivity. Deamidation and isomerization were also common and were more prevalent at pH 10 than 9. The biological effects of deamidation and isomerization were unpredictable; deamidation at some sites did not reduce bioactivity. Deamidation of Gln 3, isomerization of Asp 9, and deamidation with isomerization at Asn 28 all caused marked potency loss. Studies with molecular-weight-cutoff membranes and LCMS revealed much greater fibrillation at pH 9 than 10. Further work is necessary to determine formulations of glucagon that minimize degradation and fibrillation. PMID:23651991

  17. Nanofiltration of Mine Water: Impact of Feed pH and Membrane Charge on Resource Recovery and Water Discharge

    PubMed Central

    Mullett, Mark; Fornarelli, Roberta; Ralph, David

    2014-01-01

    Two nanofiltration membranes, a Dow NF 270 polyamide thin film and a TriSep TS 80 polyamide thin film, were investigated for their retention of ionic species when filtering mine influenced water streams at a range of acidic pH values. The functional iso-electric point of the membranes, characterized by changes in retention over a small pH range, were examined by filtering solutions of sodium sulphate. Both membranes showed changes in retention at pH 3, suggesting a zero net charge on the membranes at this pH. Copper mine drainage and synthetic solutions of mine influenced water were filtered using the same membranes. These solutions were characterized by pH values within 2 and 5, thus crossing the iso-electric point of both membranes. Retention of cations was maximized when the feed solution pH was less than the iso-electric point of the membrane. In these conditions, the membrane has a net positive charge, reducing the transmission rate of cations. From the recoveries of a range of cations, the suitability of nanofiltration was discussed relative to the compliance with mine water discharge criteria and the recovery of valuable commodity metals. The nanofiltration process was demonstrated to offer advantages in metal recovery from mine waste streams, concomitantly enabling discharge criteria for the filtrate disposal to be met. PMID:24957170

  18. If Euhydric and Isotonic Do Not Work, What Are Acceptable pH and Osmolality for Parenteral Drug Dosage Forms?

    PubMed

    Roethlisberger, Dieter; Mahler, Hanns-Christian; Altenburger, Ulrike; Pappenberger, Astrid

    2017-02-01

    Parenteral products should aim toward being isotonic and euhydric (physiological pH). Yet, due to other considerations, this goal is often not reasonable or doable. There are no clear allowable ranges related to pH and osmolality, and thus, the objective of this review was to provide a better understanding of acceptable formulation pH, buffer strength, and osmolality taking into account the administration route (i.e., intramuscular, intravenous, subcutaneous) and administration technique (i.e., bolus, push, infusion). This evaluation was based on 3 different approaches: conventional, experimental, and parametric. The conventional way of defining formulation limits was based on standard pH and osmolality ranges. Experimental determination of titratable acidity or in vitro hemolysis testing provided additional drug product information. Finally, the parametric approach was based on the calculation of theoretical values such as (1) the maximal volume of injection which cannot shift the blood's pH or its molarity out of the physiological range and (b) a dilution ratio at the injection site and by verifying that threshold values are not exceeded. The combination of all 3 approaches can support the definition of acceptable pH, buffer strength, and osmolality of formulations and thus may reduce the risk of failure during preclinical and clinical development. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  19. Influence of pH and ionic strength on electrostatic properties of ferredoxin, FNR, and hydrogenase and the rate constants of their interaction

    NASA Astrophysics Data System (ADS)

    Diakonova, A. N.; Khrushchev, S. S.; Kovalenko, I. B.; Riznichenko, G. Yu; Rubin, A. B.

    2016-10-01

    Ferredoxin (Fd) protein transfers electrons from photosystem I (PSI) to ferredoxin:NADP+-reductase (FNR) in the photosynthetic electron transport chain, as well as other metabolic pathways. In some photosynthetic organisms including cyanobacteria and green unicellular algae under anaerobic conditions Fd transfers electrons not only to FNR but also to hydrogenase—an enzyme which catalyzes reduction of atomic hydrogen to H2. One of the questions posed by this competitive relationship between proteins is which characteristics of thylakoid stroma media allow switching of the electron flow between the linear path PSI-Fd-FNR-NADP+ and the path PSI-Fd-hydrogenase-H2. The study was conducted using direct multiparticle simulation approach. In this method protein molecules are considered as individual objects that experience Brownian motion and electrostatic interaction with the surrounding media and each other. Using the model we studied the effects of pH and ionic strength (I) upon complex formation between ferredoxin and FNR and ferredoxin and hydrogenase. We showed that the rate constant of Fd-FNR complex formation is constant in a wide range of physiologically significant pH values. Therefore it can be argued that regulation of FNR activity doesn’t involve pH changes in stroma. On the other hand, in the model rate constant of Fd-hydrogenase interaction dramatically depends upon pH: in the range 7-9 it increases threefold. It may seem that because hydrogenase reduces protons it should be more active when pH is acidic. Apparently, regulation of hydrogenase’s affinity to both her reaction partners (H+ and Fd) is carried out by changes in its electrostatic properties. In the dark, the protein is inactive and in the light it is activated and starts to interact with both Fd and H+. Therefore, we can conclude that in chloroplasts the rate of hydrogen production is regulated by pH through the changes in the affinity between hydrogenase and ferredoxin.

  20. Redox reactions of selenium as catalyzed by magnetite: Lessons learned from using electrochemistry and spectroscopic methods

    NASA Astrophysics Data System (ADS)

    Kim, YoungJae; Yuan, Ke; Ellis, Brian R.; Becker, Udo

    2017-02-01

    Although previous studies have demonstrated redox transformations of selenium (Se) in the presence of Fe-bearing minerals, the specific mechanism of magnetite-mediated Se electron transfer reactions are poorly understood. In this study, the redox chemistry of Se on magnetite is investigated over an environmentally relevant range of Eh and pH conditions (+0.85 to -1.0 V vs. Ag/AgCl; pH 4.0-9.5). Se redox peaks are found via cyclic voltammetry (CV) experiments at pH conditions of 4.0-8.0. A broad reduction peak centered at -0.5 V represents a multi-electron transfer process involving the transformation of selenite to Se(0) and Se(-II) and the comproportionation reaction between Se(-II) and Se(IV). Upon anodic scans, the oxidation peak centered at -0.25 V is observed and is attributed to the oxidation of Se(-II) to higher oxidation states. Deposited Se(0) may be oxidized at +0.2 V when pH is below 7.0. Over a pH range of 4.0-8.0, the pH dependence of peak potentials is less pronounced than predicted from equilibrium redox potentials. This is attributed to pH gradients in the microporous media of the cavity where the rate of proton consumption by the selenite reduction is faster relative to mass transfer from the solution. In chronoamperometry measurements at potentials ⩾-0.6 V, the current-time transients show good linearity between the current and time in a log-log scale. In contrast, deviation from the linear trend is observed at more negative potentials. Such a trend is indicative of Se(0) nucleation and growth on the magnetite surface, which can be theoretically explained by the progressive nucleation model. XPS analysis reveals the dominance of elemental selenium at potentials ⩽-0.5 V, in good agreement with the peak assignment on the cyclic voltammograms and the nucleation kinetic results.

  1. Sorption processes affecting arsenic solubility in oxidized surface sediments from Tulare Lake Bed, California

    USGS Publications Warehouse

    Gao, S.; Goldberg, S.; Herbel, M.J.; Chalmers, A.T.; Fujii, R.; Tanji, K.K.

    2006-01-01

    Elevated concentrations of arsenic (As) in shallow groundwater in Tulare Basin pose an environmental risk because of the carcinogenic properties of As and the potential for its migration to deep aquifers that could serve as a future drinking water source. Adsorption and desorption are hypothesized to be the major processes controlling As solubility in oxidized surface sediments where arsenate [As(V)] is dominant. This study examined the relationship between sorption processes and arsenic solubility in shallow sediments from the dry Tulare Lake bed by determining sorption isotherms, pH effect on solubility, and desorption-readsorption behavior (hysteresis), and by using a surface complexation model to describe sorption. The sediments showed a high capacity to adsorb As(V). Estimates of the maximum adsorption capacity were 92 mg As kg- 1 at pH 7.5 and 70 mg As kg- 1 at pH 8.5 obtained using the Langmuir adsorption isotherm. Soluble arsenic [> 97% As(V)] did not increase dramatically until above pH 10. In the native pH range (7.5-8.5), soluble As concentrations were close to the lowest, indicating that As was strongly retained on the sediment. A surface complexation model, the constant capacitance model, was able to provide a simultaneous fit to both adsorption isotherms (pH 7.5 and 8.5) and the adsorption envelope (pH effect on soluble As), although the data ranges are one order of magnitude different. A hysteresis phenomenon between As adsorbed on the sediment and As in solution phase was observed in the desorption-readsorption processes and differs from conventional hysteresis observed in adsorption-desorption processes. The cause is most likely due to modification of adsorbent surfaces in sediment samples upon extensive extractions (or desorption). The significance of the hysteresis phenomenon in affecting As solubility and mobility may be better understood by further microscopic studies of As interaction mechanisms with sediments subjected to extensive leaching in natural environments. ?? 2006 Elsevier B.V. All rights reserved.

  2. Hydrolysis of tert-butyl formate: Kinetics, products, and implications for the environmental impact of methyl tert-butyl ether

    USGS Publications Warehouse

    Church, Clinton D.; Pankow, James F.; Tratnyek, Paul G.

    1999-01-01

    Asessing the environmental fate of methyl tert-butyl ether (MTBE) has become a subject of renewed interest because of the large quantities of this compound that are being used as an oxygenated additive in gasoline. Various studies on the fate of MTBE have shown that it can be degraded to tert-butyl formate (TBF), particularly in the atmosphere. Although it is generally recognized that TBF is subject to hydrolysis, the kinetics and products of this reaction under environmentally relevant conditions have not been described previously. In this study, we determined the kinetics of TBF hydrolysis as a function of pH and temperature. Over the pH range of 5 to 7, the neutral hydrolysis pathway predominates, with kN = (1.0 ± 0.2) × 10−6/s. Outside this range, strong pH effects were observed because of acidic and basic hydrolyses, from which we determined that kA = (2.7 ± 0.5) × 10−3/(M·s) and kB = 1.7 ± 0.3/(M·s). Buffered and unbuffered systems gave the same hydrolysis rates for a given pH, indicating that buffer catalysis was not significant under the conditions tested. The activation energies corresponding to kN, kA, and kBwere determined to be 78 ± 5, 59 ± 4, and 88 ±11 kJ/mol, respectively. In all experiments, tert-butyl alcohol was found at concentrations corresponding to stoichiometric formation from TBF. Based on our kinetics data, the expected half-life for hydrolysis of TBF at pH = 2 and 4°C (as per some standard preservation protocols for water sampling) is 6 h. At neutral pH and 22°C, the estimated half-life is 5 d, and at pH = 11 and 22°C, the value is only 8 min.

  3. The effect of pectin, corn and wheat starch, inulin and pH on in vitro production of methane, short chain fatty acids and on the microbial community composition in rumen fluid.

    PubMed

    Poulsen, Morten; Jensen, Bent Borg; Engberg, Ricarda M

    2012-02-01

    Methane emission from livestock, ruminants in particular, contributes to the build up of greenhouse gases in the atmosphere. Therefore the focus on methane emission from ruminants has increased. The objective of this study was to investigate mechanisms for methanogenesis in a rumen fluid-based in vitro fermentation system as a consequence of carbohydrate source (pectin, wheat and corn starch and inulin) and pH (ranging from 5.5 to 7.0). Effects were evaluated with respect to methane and short chain fatty acid (SCFA) production, and changes in the microbial community in the ruminal fluid as assessed by terminal-restriction fragment length polymorphism (T-RFLP) analysis. Fermentation of pectin resulted in significantly lower methane production rates during the first 10 h of fermentation compared to the other substrates (P = 0.001), although total methane production was unaffected by carbohydrate source (P = 0.531). Total acetic acid production was highest for pectin and lowest for inulin (P < 0.001) and vice versa for butyric acid production from pectin and inulin (P < 0.001). Total propionic acid production was unaffected by the carbohydrate source (P = 0.791). Methane production rates were significantly lower for fermentations at pH 5.5 and 7.0 (P = 0.005), sustained as a trend after 48 h (P = 0.059), indicating that there was a general optimum for methanogenic activity in the pH range from 6.0 to 6.5. Decreasing pH from 7.0 to 5.5 significantly favored total butyric acid production (P < 0.001). Principle component analysis of T-RFLP patterns revealed that both pectin and pH 5.5 resulted in pronounced changes in the microbial community composition. This study demonstrates that both carbohydrate source and pH affect methane and SCFA production patterns, and the microbial community composition in rumen fluid. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Surface complexation modeling of zinc sorption onto ferrihydrite.

    PubMed

    Dyer, James A; Trivedi, Paras; Scrivner, Noel C; Sparks, Donald L

    2004-02-01

    A previous study involving lead(II) [Pb(II)] sorption onto ferrihydrite over a wide range of conditions highlighted the advantages of combining molecular- and macroscopic-scale investigations with surface complexation modeling to predict Pb(II) speciation and partitioning in aqueous systems. In this work, an extensive collection of new macroscopic and spectroscopic data was used to assess the ability of the modified triple-layer model (TLM) to predict single-solute zinc(II) [Zn(II)] sorption onto 2-line ferrihydrite in NaNO(3) solutions as a function of pH, ionic strength, and concentration. Regression of constant-pH isotherm data, together with potentiometric titration and pH edge data, was a much more rigorous test of the modified TLM than fitting pH edge data alone. When coupled with valuable input from spectroscopic analyses, good fits of the isotherm data were obtained with a one-species, one-Zn-sorption-site model using the bidentate-mononuclear surface complex, (triple bond FeO)(2)Zn; however, surprisingly, both the density of Zn(II) sorption sites and the value of the best-fit equilibrium "constant" for the bidentate-mononuclear complex had to be adjusted with pH to adequately fit the isotherm data. Although spectroscopy provided some evidence for multinuclear surface complex formation at surface loadings approaching site saturation at pH >/=6.5, the assumption of a bidentate-mononuclear surface complex provided acceptable fits of the sorption data over the entire range of conditions studied. Regressing edge data in the absence of isotherm and spectroscopic data resulted in a fair number of surface-species/site-type combinations that provided acceptable fits of the edge data, but unacceptable fits of the isotherm data. A linear relationship between logK((triple bond FeO)2Zn) and pH was found, given by logK((triple bond FeO)2Znat1g/l)=2.058 (pH)-6.131. In addition, a surface activity coefficient term was introduced to the model to reduce the ionic strength dependence of sorption. The results of this research and previous work with Pb(II) indicate that the existing thermodynamic framework for the modified TLM is able to reproduce the metal sorption data only over a limited range of conditions. For this reason, much work still needs to be done in fine-tuning the thermodynamic framework and databases for the TLM.

  5. Fluoride geochemistry of thermal waters in Yellowstone National Park: I. Aqueous fluoride speciation

    USGS Publications Warehouse

    Deng, Y.; Nordstrom, D. Kirk; McCleskey, R. Blaine

    2011-01-01

    Thermal water samples from Yellowstone National Park (YNP) have a wide range of pH (1–10), temperature, and high concentrations of fluoride (up to 50 mg/l). High fluoride concentrations are found in waters with field pH higher than 6 (except those in Crater Hills) and temperatures higher than 50 °C based on data from more than 750 water samples covering most thermal areas in YNP from 1975 to 2008. In this study, more than 140 water samples from YNP collected in 2006–2009 were analyzed for free-fluoride activity by ion-selective electrode (ISE) method as an independent check on the reliability of fluoride speciation calculations. The free to total fluoride concentration ratio ranged from <1% at low pH values to >99% at high pH. The wide range in fluoride activity can be explained by strong complexing with H+ and Al3+ under acidic conditions and lack of complexing under basic conditions. Differences between the free-fluoride activities calculated with the WATEQ4F code and those measured by ISE were within 0.3–30% for more than 90% of samples at or above 10−6 molar, providing corroboration for chemical speciation models for a wide range of pH and chemistry of YNP thermal waters. Calculated speciation results show that free fluoride, F−, and major complexes (HF(aq)0">HF(aq)0, AlF2+, AlF2+">AlF2+and AlF30">AlF30) account for more than 95% of total fluoride. Occasionally, some complex species like AlF4-">AlF4-, FeF2+, FeF2+">FeF2+, MgF+ and BF2(OH)2-">BF2(OH)2- may comprise 1–10% when the concentrations of the appropriate components are high. According to the simulation results by PHREEQC and calculated results, the ratio of main fluoride species to total fluoride varies as a function of pH and the concentrations and ratios of F and Al.

  6. Breath acidification in adolescent runners exposed to atmospheric pollution: A prospective, repeated measures observational study

    PubMed Central

    Ferdinands, Jill M; Crawford, Carol A Gotway; Greenwald, Roby; Van Sickle, David; Hunter, Eric; Teague, W Gerald

    2008-01-01

    Background Vigorous outdoors exercise during an episode of air pollution might cause airway inflammation. The purpose of this study was to examine the effects of vigorous outdoor exercise during peak smog season on breath pH, a biomarker of airway inflammation, in adolescent athletes. Methods We measured breath pH both pre- and post-exercise on ten days during peak smog season in 16 high school athletes engaged in daily long-distance running in a downwind suburb of Atlanta. The association of post-exercise breath pH with ambient ozone and particulate matter concentrations was tested with linear regression. Results We collected 144 pre-exercise and 146 post-exercise breath samples from 16 runners (mean age 14.9 years, 56% male). Median pre-exercise breath pH was 7.58 (interquartile range: 6.90 to 7.86) and did not change significantly after exercise. We observed no significant association between ambient ozone or particulate matter and post-exercise breath pH. However both pre- and post-exercise breath pH were strikingly low in these athletes when compared to a control sample of 14 relatively sedentary healthy adults and to published values of breath pH in healthy subjects. Conclusion Although we did not observe an acute effect of air pollution exposure during exercise on breath pH, breath pH was surprisingly low in this sample of otherwise healthy long-distance runners. We speculate that repetitive vigorous exercise may induce airway acidification. PMID:18328105

  7. Single-Dose Electrospun Nanoparticles-in-Nanofibers Wound Dressings with Enhanced Epithelialization, Collagen Deposition, and Granulation Properties.

    PubMed

    Ali, Isra H; Khalil, Islam A; El-Sherbiny, Ibrahim M

    2016-06-15

    Phenytoin (Ph), an antiepileptic drug, was reported to exhibit high wound healing activity. However, its limited solubility, bioavailability, and inefficient distribution during topical administration limit its use. Therefore, this study aims to develop new single-dose electrospun nanoparticles-in-nanofibers (NPs-in-NFs) wound dressings that allow a well-controlled release of Ph. These NPs-in-NFs systems are based on enhanced chitosan (CS)/poly(ethylene oxide) (PEO) electrospun nanofibers (NFs) incorporating optimized Ph-loaded nanocarriers. First, a study was conducted to investigate Ph loading efficiency into polymeric nanocarriers of different types; pluronic nanomicelles and poly(lactic-co-glycolic) acids nanoparticles (PLGA NPs). The drug release profile from the nanocarriers was further optimized via lecithin coating. Second, different electrospinning parameters were manipulated to fabricate beads-free homogeneous NFs with optimized polymer ratios. Plain and Ph-loaded nanocarriers were characterized using Fourier transform infrared (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), dynamic light scattering (DLS), and scanning electron microscopy (SEM). Both entrapment efficiency of Ph (EE%) and its release profile in phosphate buffer saline (PBS; pH 5.5), simulating the wound environment, were studied. Biodegradability, swelling, vapor permeability, and porosity of the developed Ph-loaded NPs-in-NFs wound dressings were investigated. Morphology of the NPs-in-NFs was also studied using SEM and confocal laser microscopy (CLSM). Besides, the release profiles of Ph from the optimized NPs-in-NFs were assessed. The newly developed wound dressings were evaluated in vitro for their cytotoxicity using human fibroblasts and in vivo using a wound healing mice model. Nanocarriers with particle size ranging from 100 to 180 nm were successfully prepared. All nanocarriers attained a high drug entrapment efficiency exceeding 94% and showed promising sustained release profiles compared to free Ph. Results also demonstrated that NFs incorporating the optimized lecithin-coated Ph-loaded PLGA NPs could be the most promising candidate for efficient wound healing. These NPs-in-NFs systems conferred a well-controlled and sustained release of Ph over 9 days. Moreover, they showed the best re-epithelization and healing quality during the in vivo study with minimal inflammatory and necrotic cells formation.

  8. Can variable pH and low oxygen moderate ocean acidification outcomes for mussel larvae?

    PubMed

    Frieder, Christina A; Gonzalez, Jennifer P; Bockmon, Emily E; Navarro, Michael O; Levin, Lisa A

    2014-03-01

    Natural variation and changing climate in coastal oceans subject meroplanktonic organisms to broad ranges of pH and oxygen ([O2 ]) levels. In controlled-laboratory experiments we explored the interactive effects of pH, [O2 ], and semidiurnal pH fluctuations on the survivorship, development, and size of early life stages of two mytilid mussels, Mytilus californianus and M. galloprovincialis. Survivorship of larvae was unaffected by low pH, low [O2 ], or semidiurnal fluctuations for both mytilid species. Low pH (<7.6) resulted in delayed transition from the trochophore to veliger stage, but this effect of low pH was absent when incorporating semidiurnal fluctuations in both species. Also at low pH, larval shells were smaller and had greater variance; this effect was absent when semidiurnal fluctuations of 0.3 units were incorporated at low pH for M. galloprovincialis but not for M. californianus. Low [O2 ] in combination with low pH had no effect on larval development and size, indicating that early life stages of mytilid mussels are largely tolerant to a broad range of [O2 ] reflective of their environment (80-260 μmol kg(-1) ). The role of pH variability should be recognized as an important feature in coastal oceans that has the capacity to modulate the effects of ocean acidification on biological responses. © 2013 John Wiley & Sons Ltd.

  9. Formation of 2D-PhCs with missing holes based on Si-layers by EBL

    NASA Astrophysics Data System (ADS)

    Utkin, D. E.; Shklyev, A. A.; Tsarev, A. V.; Latyshev, A. V.

    2017-11-01

    The fabrication of the periodic structures, that is two-dimensional photonic crystals (2D PhCs) based on Si-materials by electron beam lithography (EBL) technique has been studied. We have investigated basic lithography processes such as designing, exposition, development, etching and others. The developed top-down approach allows close-packed arrays of elements and holes to be formed in nanometre range. This can be used to produce 2D PhCs with emitting micro-cavities (missing holes) with lateral size parameters with an accuracy of about 2% in the Si (100) substrate and in silicon-on-insulator structures. Such accuracy is expected to be sufficient for obtaining the cavities-coupling radiation interference from large areas of 2D PhCs.

  10. The "high solubility" definition of the current FDA Guidance on Biopharmaceutical Classification System may be too strict for acidic drugs.

    PubMed

    Yazdanian, Mehran; Briggs, Katherine; Jankovsky, Corinne; Hawi, Amale

    2004-02-01

    The purpose of this study was to assess if the definition of high solubility as proposed in the FDA Guidance on Biopharmaceutical Classification System (BCS) is too strict for highly permeable acidic drugs. The solubility and permeability values of 20 (18 acidic and 2 non-acidic) nonsteroidal anti-inflammatory drugs (NSAID) were determined. The NSAIDs were grouped into three different sets having acetic acid, propionic acid, or other acidic moieties such as fenamate, oxicam, and salicylate. Two nonacidic NSAIDs (celecoxib and rofecoxib) were also included for comparison purposes. Equilibrium solubility values were determined at pH 1.2, 5.0, 7.4, and in biorelevant media simulating fed intestinal fluid at pH 5.0. For a select number of acids, we also measured solubility values in media simulating gastric and fasted intestinal fluids. Permeability classification was established relative to that of reference drugs in the Caco-2 cell permeability model. Permeability coefficients for all drugs were measured at concentrations corresponding to the lowest and highest marketed dose strengths dissolved in 250 ml volume, and their potential interaction with cellular efflux pumps was investigated. All NSAIDs with different acidic functional groups were classified as highly permeable based on their Caco-2 cell permeability. Only ketorolac appeared to have a potential for interaction with cellular efflux pumps. Solubility classification was based on comparison of equilibrium solubility at pH 1.2, 5.0. and 7.4 relative to marketed dose strengths in 250 ml. The pKa values for the acidic NSAIDs studied were between 3.5 and 5.1. and, as expected, their solubility increased dramatically at pH 7.4 compared to pH 1.2. Only three NSAIDs, ketorolac, ketoprofen. and acetyl salicylic acid, meet the current criteria for high solubility over the entire pH range. However, with the exception of ibuprofen, oxaprozin, and mefenamic acid, the remaining compounds can be classified as Class I drugs (high solubility-high permeability) relative to solubility at pH 7.4. The use of bio-relevant media simulating gastric and intestinal milieu for solubility measurements or increasing the dose volume to 500 ml did not provide for a better boundary for solubility classification. Based on the current definition of solubility, 15 of the 18 acidic NSAIDs in this study will be classified as Class II compounds as the solubility criteria applies to the entire pH range of 1.2 to 7.4, although the low solubility criteria does not hold true over the entire pH range. Whence, of the 18 acidic drugs, 15 can be classified as Class I based on the pH 7.4 solubility alone. This finding is intriguing because these drugs exhibit Class I behavior as their absorption does not seem to be dissolution or solubility limited. It could then be argued that for acidic drugs, the boundaries for solubility are too restrictive. Solubility at pH > 5 (pH in duodenum) may be more appropriate because most compounds are mainly absorbed in the intestinal region. Consideration for an intermediate solubility classification for highly permeable ionizable compounds that reflects physiological conditions seems warranted.

  11. Foaming and emulsifying properties of porcine red cell protein concentrate.

    PubMed

    Salvador, P; Saguer, E; Parés, D; Carretero, C; Toldrà, M

    2010-08-01

    This work focuses on studying the effects of pH (7.0 and 4.5) and protein concentration on the foaming and emulsifying properties of fresh (F) and spray-dried (SD) porcine red cell protein (RCP) concentrates in order to evaluate the proper use of this blood protein as a functional food ingredient. Also, protein solubility is measured through the pH range from 3.0 to 8.0. In each case, all concentrates show a high solubility, although this is significantly affected by pH. Spray drying slightly reduces the solubility at mild acid and neutral conditions. The foaming capacity is found to be dependent on pH as well as on the drying treatment. SD-RCP concentrates show better foaming capacity than F-RCP. The minimum protein concentration required to attain the highest foaming capacity is found under acid pH for the spray-dried concentrates. Although F-RCP shows low foam stability at acid and neutral pH, spray drying and protein content enhance the stability of foams. Emulsifying properties show dependence on pH as well as on protein content. Furthermore, spray drying affects the emulsifying properties but in different ways, depending on pH and protein concentration.

  12. The influence of pH adjustment on kinetics parameters in tapioca wastewater treatment using aerobic sequencing batch reactor system

    NASA Astrophysics Data System (ADS)

    Mulyani, Happy; Budianto, Gregorius Prima Indra; Margono, Kaavessina, Mujtahid

    2018-02-01

    The present investigation deals with the aerobic sequencing batch reactor system of tapioca wastewater treatment with varying pH influent conditions. This project was carried out to evaluate the effect of pH on kinetics parameters of system. It was done by operating aerobic sequencing batch reactor system during 8 hours in many tapioca wastewater conditions (pH 4.91, pH 7, pH 8). The Chemical Oxygen Demand (COD) and Mixed Liquor Volatile Suspended Solids (MLVSS) of the aerobic sequencing batch reactor system effluent at steady state condition were determined at interval time of two hours to generate data for substrate inhibition kinetics parameters. Values of the kinetics constants were determined using Monod and Andrews models. There was no inhibition constant (Ki) detected in all process variation of aerobic sequencing batch reactor system for tapioca wastewater treatment in this study. Furthermore, pH 8 was selected as the preferred aerobic sequencing batch reactor system condition in those ranging pH investigated due to its achievement of values of kinetics parameters such µmax = 0.010457/hour and Ks = 255.0664 mg/L COD.

  13. An interfacial and comparative in vitro study of gastrointestinal lipases and Yarrowia lipolytica LIP2 lipase, a candidate for enzyme replacement therapy.

    PubMed

    Bénarouche, Anaïs; Point, Vanessa; Carrière, Frédéric; Cavalier, Jean-François

    2014-07-01

    Lipolytic activities of Yarrowia lipolytica LIP2 lipase (YLLIP2), human pancreatic (HPL) and dog gastric (DGL) lipases were first compared using lecithin-stabilized triacylglycerol (TAG) emulsions (Intralipid) at various pH and bile salt concentrations. Like DGL, YLLIP2 was able to hydrolyze TAG droplets covered by a lecithin monolayer, while HPL was not directly active on that substrate. These results were in good agreement with the respective kinetics of adsorption on phosphatidylcholine (PC) monomolecular films of the same three lipases, YLLIP2 being the most tensioactive lipase. YLLIP2 adsorption onto a PC monolayer spread at the air/water interface was influenced by pH-dependent changes in the enzyme/lipid interfacial association constant (KAds) which was optimum at pH 6.0 on long-chain egg PC monolayer, and at pH 5.0 on medium chain dilauroylphosphatidylcholine film. Using substrate monolayers (1,2-dicaprin, trioctanoin), YLLIP2 displayed the highest lipolytic activities on both substrates in the 25-35 mN m(-1) surface pressure range. YLLIP2 was active in a large pH range and displayed a pH-dependent activity profile combining DGL and HPL features at pH values found in the stomach (pH 3-5) and in the intestine (pH 6-7), respectively. The apparent maximum activity of YLLIP2 was observed at acidic pH 4-6 and was therefore well correlated with an efficient interfacial binding at these pH levels, whatever the type of interfaces (Intralipid emulsions, substrate or PC monolayers). All these findings support the use of YLLIP2 in enzyme replacement therapy for the treatment of pancreatic exocrine insufficiency, a pathological situation in which an acidification of intestinal contents occurs. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  14. Overview and Brief History of the Boron Isotope Proxy for Past Seawater pH

    NASA Astrophysics Data System (ADS)

    Hoenisch, B.; Hemming, G.

    2007-05-01

    In 1992 Hemming and Hanson (GCA, vol. 56, p. 537-543) showed that a variety of modern marine carbonates revealed a boron isotopic composition close to the isotopic composition of dissolved borate at modern seawater pH, suggesting this was the boron species preferentially adsorbed and incorporated into marine carbonates. With a constant offset between the trigonal and tetrahedrally coordinated boron species and a pH-dependent variation in their fractions, it appeared that this system would be sensitive to pH changes in the natural range of seawater. Accordingly, it was suggested that the boron isotope composition of marine carbonates is a proxy for past seawater pH. Subsequent culture studies with living planktic foraminifers and corals, as well as synthetic precipitation experiments confirmed that the boron isotopic composition follows the isotopic composition of borate across a wide range of seawater pH. In order to use the proxy with confidence, however, all other controls apart from pH need to be thoroughly understood. Recent laboratory and sediment experiments have demonstrated that vital effects and partial shell dissolution have the potential to modify the primary seawater pH signal recorded in the boron isotopic composition of planktic foraminifers. However it has also been shown that careful sample selection allows for avoiding these potential complications. A record of reconstructed surface seawater pH and estimated aqueous PCO2 shows a remarkable match between boron isotope based atmospheric pCO2 estimates and the Vostok ice core CO2 record. This convincingly demonstrates that boron isotopes in planktic foraminifers allow quantitative estimates of atmospheric pCO2 in the past, and confirms that glacial surface ocean pH was ~0.2 units higher compared to interglacial periods. We are going to review and discuss the achievements generated in Gil Hanson's lab over the past 15 years in the light of recent empirical measurements of the boron isotope fractionation between boric acid and borate in seawater.

  15. Theaflavin-3,3′-Digallate and Lactic Acid Combinations Reduce Herpes Simplex Virus Infectivity

    PubMed Central

    Xu, Weimin

    2013-01-01

    The present study examined the efficacy of using multiple mechanisms as part of a topical microbicide to inactivate herpes simplex virus (HSV) by combining theaflavin-3,3′-digallate (TF-3) and lactic acid (LA) over the pH range of 4.0 to 5.7 to mimic conditions in the female reproductive tract. Six clinical isolates of HSV-2 and two clinical isolates of HSV-1 were almost completely inactivated when TF-3 (100 μM) was present with LA over the pH range of 4.5 to 5.7, whereas four additional HSV-1 clinical isolates required TF-3 concentrations of 250 to 500 μM for comparable virus titer reduction. LA (1%) alone at pH 4.0 reduced the titers of laboratory and clinical isolates of HSV-1 and HSV-2 by ≥5 log10, but most LA-dependent antiviral activity was lost at a pH of ≥4.5. When HSV-1 and HSV-2 were incubated at pH 4.0 without LA virus titers were not reduced. At pH 4.0, HSV-1 and HSV-2 titers were reduced 5 log10 in 20 min by LA alone. TF-3 reduced HSV-2 titers by 5 log10 in 20 to 30 min at pH 4.5, whereas HSV-1 required 60 min for comparable inactivation. Mixtures of TF-3 and LA stored at 37°C for 1 month at pH 4.0 to 5.7 maintained antiviral activity. Semen, but not cervical vaginal fluid, decreased LA-dependent antiviral activity at pH 4.0, but adding TF-3 to the mixture reduced HSV titers by 4 to 5 log10. These results indicate that a combination microbicide containing TF-3 and LA could reduce HSV transmission. PMID:23716050

  16. Liquid-containing Refluxes and Acid Refluxes May Be Less Frequent in the Japanese Population Than in Other Populations: Normal Values of 24-hour Esophageal Impedance and pH Monitoring

    PubMed Central

    Kawamura, Osamu; Kohata, Yukie; Kawami, Noriyuki; Iida, Hiroshi; Kawada, Akiyo; Hosaka, Hiroko; Shimoyama, Yasuyuki; Kuribayashi, Shiko; Fujiwara, Yasuhiro; Iwakiri, Katsuhiko; Inamori, Masahiko; Kusano, Motoyasu; Hongo, Micho

    2016-01-01

    Background/Aims Twenty-four-hour esophageal impedance and pH monitoring allows detection of all types of reflux episodes and is considered the best technique for identifying gastroesophageal refluxes. However, normative data for the Japanese population are lacking. This multicenter study aimed to establish the normal range of 24-hour esophageal impedance and pH data both in the distal and the proximal esophagus in Japanese subjects. Methods Forty-two healthy volunteers (25 men and 17 women) with a mean ± standard deviation age of 33.3 ± 12.4 years (range: 22–72 years) underwent a combined 24-hour esophageal impedance and pH monitoring. According to the physical and pH properties, distal or proximal esophageal reflux events were categorized. Results Median 45 reflux events occurred in 24 hours, and the 95th percentile was 85 events. Unlike previous reports, liquid-containing reflux events are median 25/24 hours with the 95th percentile of 62/24 hours. Acidic reflux events were median 11/24 hours with the 95th percentile of 39/24 hours. Non-acidic gas reflux events were median 15/24 hours with the 95th percentile of 39/24 hours. Proximal reflux events accounted for 80% of the total reflux events and were mainly non-acidic gas refluxes. About 19% of liquid and mixed refluxes reached the proximal esophagus. Conclusions Unlike previous studies, liquid-containing and acidic reflux events may be less frequent in the Japanese population. Non-acidic gas reflux events may be frequent and a cause of frequent proximal reflux events. This study provides important normative data for 24-hour impedance and pH monitoring in both the distal and the proximal esophagus in the Japanese population. PMID:27247103

  17. Local environment around gold (III) in aqueous chloride solutions: An EXAFS spectroscopy study

    NASA Astrophysics Data System (ADS)

    Farges, Franã§Ois; Sharps, Julia A.; Brown, Gordon E., Jr.

    1993-03-01

    The local environment around Au (III) in aqueous solutions containing 1 M NaCl was determined as a function of pH and Au concentration using X-ray absorption spectroscopy (XAS) at ambient temperature and pressure. The solution Au concentrations studied were 10 - to 10 -3 M and the pH ranged between 2 and 9.2. No significant changes of Au speciation were detected with increasing Au concentration; however, major speciation changes were caused by variations in pH. At pH = 2, Au is coordinated by four Cl atoms ( mean d [AuCl] = 2.28 -2.29 ± 0.01 Å), whereas at pH 7.5 and 9.2, Au is coordinated by three Cl and one O (or OH) and by two Cl and two O (or OH), respectively ( mean d[AuCl] = 2.28 ± 0.02 Å; mean d[AuO or AuOH] = 1.97 ± 0.02 Å), indicating replacement of Cl by O (or OH) with increasing pH. In all solutions studied, the number of first-neighbors around Au(III) is close to four. XANES analysis suggests the presence of a square-planar geometry for AuX 4 ( X = Cl, O) at all pH values studied. These results are in excellent agreement with those from our previous Raman, resonance Raman, and UV/visible spectroscopy study of gold(III)-chloride solutions (PECK et al., 1991), which found that AuCl 4-, AuCl 3(OH) -, and AuCl 2(OH) 2- are the majority species in the pH ranges 2-6, 6-8.5, and 8.5-11, respectively. We did not find evidence for Au(I)Cl 2- or Au(I)Cl(OH) - complexes in our pH 7.5 and 9.2 solutions, as was recently suggested by PAN and WOOD (1991) for acidic gold chloride solutions at temperatures > 100°C, although we can't rule these complexes out as minority species (<10% of the total Au in solution). Our EXAFS results also provide the first direct evidence for Cl second neighbors around AuCl 4- complexes in the most acidic solutions studied ( pH = 2 and 4.5). These second-neighbor Cl atoms were also detected at low Au concentrations (10 -3 M) and are similar in number and arrangement to those observed in crystalline KAuCL 4·2H 2O (two Cl at a mean d[Au-Cl(2)] = 4.42 ± 0.03 Å). No evidence was found for second-neighbor Au atoms, which indicates little or no Au polymers or colloidal particles in any of the solutions studied. Our EXAFS results are in broad agreement with earlier predictions of Au speciation based on a variety of chemical measurements. Moreover, they directly confirm that mixed chloro-hydroxo Au (III) complexes are more stable than predicted on the basis of thermodynamically estimated stability constants.

  18. Effect of pH on polyethylene glycol (PEG)-induced silk microsphere formation for drug delivery.

    PubMed

    Wu, Jianbing; Xie, Xusheng; Zheng, Zhaozhu; Li, Gang; Wang, Xiaoqin; Wang, Yansong

    2017-11-01

    The effects of changing solution pH in the range of 3.6-10.0 during a one-step silk microsphere preparation process, by mixing silk and polyethylene glycol (PEG), was assessed. The microspheres prepared at low pH (3.6) showed a more homogeneous size (1-3μm) and less porous texture than those prepared at neutral pH. High pH (10.0) inhibited microsphere formation, yielding small and inhomogeneous microspheres. Compared to neutral pH, low pH also increased the content of silk crystalline β-sheet structure from approx. 30% to above 40%. As a result, the microspheres produced at low pH were more thermally stable as well as resistant to chemical (8M urea) and enzymatic (protease XIV) degradation when compared to microspheres prepared at neutral pH. Doxorubicin hydrochloride (DOX) and curcumin (CUR) were successfully loaded in silk microspheres via control of solution pH. The loading efficiency of DOX was approx. 95% at pH7.0 and approx. 60% for CUR at pH3.6, attributed to charge-charge interactions and hydrophobic interactions between the silk and drug molecules, respectively. When PBS, pH7.4, was used as a medium for release studies, the pH3.6 microspheres released both drugs more slowly than the pH7.0 microspheres, likely due to the high content of crystalline β-sheet structure that enhanced drug-silk interactions as well as restricted drug molecule diffusion. Copyright © 2017. Published by Elsevier B.V.

  19. Phase competition in a one-dimensional three-orbital Hubbard-Holstein model

    NASA Astrophysics Data System (ADS)

    Li, Shaozhi; Tang, Yanfei; Maier, Thomas A.; Johnston, Steven

    2018-05-01

    We study the interplay between the electron-phonon (e -ph) and on-site electron-electron (e-e) interactions in a three-orbital Hubbard-Holstein model on an extended one-dimensional lattice using determinant quantum Monte Carlo. For weak e-e and e -ph interactions, we observe a competition between an orbital-selective Mott phase (OSMP) and a (multicomponent) charge-density-wave (CDW) insulating phase, with an intermediate metallic phase located between them. For large e-e and e -ph couplings, the OSMP and CDW phases persist, while the metallic phase develops short-range orbital correlations and becomes insulating when both the e-e and e -ph interactions are large but comparable. Many of our conclusions are in line with those drawn from a prior dynamical mean-field theory study of the two-orbital Hubbard-Holstein model [Phys. Rev. B 95, 121112(R) (2017), 10.1103/PhysRevB.95.121112] in infinite dimension, suggesting that the competition between the e -ph and e-e interactions in multiorbital Hubbard-Holstein models leads to rich physics, regardless of the dimension of the system.

  20. Unravelling the effects of mobile phase additives in supercritical fluid chromatography. Part I: Polarity and acidity of the mobile phase.

    PubMed

    West, Caroline; Melin, Jodie; Ansouri, Hassna; Mengue Metogo, Maïly

    2017-04-07

    The mobile phases employed in current supercritical fluid chromatography (SFC) are usually composed of a mixture of pressurized carbon dioxide and a co-solvent. The co-solvent is most often an alcohol and may contain a third component in small proportions, called an additive (acid, base or salt). The polarity of such mobile phase compositions is here re-evaluated with a solvatochromic dye (Nile Red), particularly to assess the contribution of additives. It appears that additives, when employed in usual concentration range (0.1% or 20mM) do not modify the polarity in the immediate environment of the probe. In addition, the combination of carbon dioxide and an alcohol is known to form alkoxylcarbonic acid, supposedly conferring some acidic character to SFC mobile phases. Direct measurements of the apparent pH are impossible, but colour indicators of pH can be used to define the range of apparent pH provided by carbon dioxide-alcohol mixtures, with or without additives. Five colour indicators (Thymol Blue, Bromocresol Green, Methyl Red, Bromocresol Purple, and Bromothymol Blue) were selected to provide a wide range of aqueous pK a values (from 1.7 to 8.9). UV-vis absorption spectra measured in liquid phases of controlled pH were compared to those measured with a diode-array detector employed in SFC, with the help of chemometric methods. Based on these observations, it is concluded that the apparent pH range in carbon dioxide-methanol mobile phases is close to 5. Increasing the proportion of methanol (in the course of a gradient elution for instance) causes decreasing apparent pH. Strong acids can further decrease the apparent pH below 1.7; strong bases have little influence on the apparent pH, probably because, in this range of concentrations, they are titrated by alkoxylcarbonic acid or form ion pairs with alkoxycarbonate. However, bases and salts could stabilize the acidity in the course of gradient runs. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Fine-particle pH for Beijing winter haze as inferred from different thermodynamic equilibrium models

    NASA Astrophysics Data System (ADS)

    Song, Shaojie; Gao, Meng; Xu, Weiqi; Shao, Jingyuan; Shi, Guoliang; Wang, Shuxiao; Wang, Yuxuan; Sun, Yele; McElroy, Michael B.

    2018-05-01

    pH is an important property of aerosol particles but is difficult to measure directly. Several studies have estimated the pH values for fine particles in northern China winter haze using thermodynamic models (i.e., E-AIM and ISORROPIA) and ambient measurements. The reported pH values differ widely, ranging from close to 0 (highly acidic) to as high as 7 (neutral). In order to understand the reason for this discrepancy, we calculated pH values using these models with different assumptions with regard to model inputs and particle phase states. We find that the large discrepancy is due primarily to differences in the model assumptions adopted in previous studies. Calculations using only aerosol-phase composition as inputs (i.e., reverse mode) are sensitive to the measurement errors of ionic species, and inferred pH values exhibit a bimodal distribution, with peaks between -2 and 2 and between 7 and 10, depending on whether anions or cations are in excess. Calculations using total (gas plus aerosol phase) measurements as inputs (i.e., forward mode) are affected much less by these measurement errors. In future studies, the reverse mode should be avoided whereas the forward mode should be used. Forward-mode calculations in this and previous studies collectively indicate a moderately acidic condition (pH from about 4 to about 5) for fine particles in northern China winter haze, indicating further that ammonia plays an important role in determining this property. The assumed particle phase state, either stable (solid plus liquid) or metastable (only liquid), does not significantly impact pH predictions. The unrealistic pH values of about 7 in a few previous studies (using the standard ISORROPIA model and stable state assumption) resulted from coding errors in the model, which have been identified and fixed in this study.

  2. Validation of a portable, waterproof blood pH analyser for elasmobranchs

    PubMed Central

    Bouyoucos, Ian A.; Shipley, Oliver; Rummer, Jodie L.; Mandelman, John W.; Brooks, Edward J.; Grubbs, R. Dean

    2017-01-01

    Abstract Quantifying changes in blood chemistry in elasmobranchs can provide insights into the physiological insults caused by anthropogenic stress, and can ultimately inform conservation and management strategies. Current methods for analysing elasmobranch blood chemistry in the field are often costly and logistically challenging. We compared blood pH values measured using a portable, waterproof pH meter (Hanna Instruments HI 99161) with blood pH values measured by an i-STAT system (CG4+ cartridges), which was previously validated for teleost and elasmobranch fishes, to gauge the accuracy of the pH meter in determining whole blood pH for the Cuban dogfish (Squalus cubensis) and lemon shark (Negaprion brevirostris). There was a significant linear relationship between values derived via the pH meter and the i-STAT for both species across a wide range of pH values and temperatures (Cuban dogfish: 6.8–7.1 pH 24–30°C; lemon sharks: 7.0–7.45 pH 25–31°C). The relative error in the pH meter's measurements was ~±2.7%. Using this device with appropriate correction factors and consideration of calibration temperatures can result in both a rapid and accurate assessment of whole blood pH, at least for the two elasmobranch species examined here. Additional species should be examined in the future across a wide range of temperatures to determine whether correction factors are universal. PMID:28616238

  3. Integrated titanium dioxide (TiO2) nanoparticles on interdigitated device electrodes (IDEs) for pH analysis

    NASA Astrophysics Data System (ADS)

    Azizah, N.; Hashim, U.; Arshad, M. K. Md.; Gopinath, Subash C. B.; Nadzirah, Sh.; Farehanim, M. A.; Fatin, M. F.; Ruslinda, A. R.; Ayub, R. M.

    2016-07-01

    Titanium dioxide (TiO2) nanoparticles based Interdigitated Device Electrodes (IDEs) Nanobiosensor device was developed for intracellular biochemical detection. Fabrication and characterization of pH sensors using IDE nanocoated with TiO2 was studied in this paper. In this paper, a preliminary assessment of this intracellular sensor with electrical measurement under different pH levels. 3-aminopropyltriethoxysilane (APTES) was used to enhance the sensitivity of titanium dioxide layer as well as able to provide surface modification by undergoing protonation and deprotonation process. Different types of pH solution provide different resistivity and conductivity towards the surface. Base solution has the higher current compared to an acid solution. Amine and oxide functionalized TiO2 based IDE exhibit pH-dependent could be understood in terms of the change in surface charge during protonation and deprotonation. The simple fabrication process, high sensitivity, and fast response of the TiO2 based IDEs facilitate their applications in a wide range of areas. The small size of semiconductor TiO2 based IDE for sensitive, label-free, real time detection of a wide range of biological species could be explored in vivo diagnostics and array-based screening.

  4. Removal of organic impurities in waste glycerol from biodiesel production process through the acidification and coagulation processes.

    PubMed

    Xie, Qiao-Guang; Taweepreda, Wirach; Musikavong, Charongpun; Suksaroj, Chaisri

    2012-01-01

    Treatment of waste glycerol, a by-product of the biodiesel production process, can reduce water pollution and bring significant economic benefits for biodiesel facilities. In the present study, hydrochloric acid (HCl) was used as acidification to convert soaps into salts and free fatty acids which were recovered after treatment. The pH value, dosages of polyaluminum chloride (PACl) and dosage of polyacrylamide (PAM) were considered to be the factors that can influence coagulation efficiency. The pH value of waste glycerol was adjusted to a pH range of 3-9. The PACl and PAM added were in the range of 1-6 g/L and 0.005-0.07 g/L. The results showed best coagulation efficiency occurs at pH 4 when dosage of PACl and PAM were 2 and 0.01 g/L. The removal of chemical oxygen demand (COD), biochemical oxygen demand (BOD(5)), total suspended solids (TSS) and soaps were 80, 68, 97 and 100%, respectively. The compositions of organic matters in the treated waste glycerol were glycerol (288 g/L), methanol (3.8 g/L), and other impurities (0.3 g/L).

  5. Effect of crude glycerol-derived inhibitors on ethanol production by Enterobacter aerogenes.

    PubMed

    Lee, Sang Jun; Kim, Sung Bong; Kang, Seong Woo; Han, Sung Ok; Park, Chulhwan; Kim, Seung Wook

    2012-01-01

    In this study, ethanol production from pure and crude glycerol using Enterobacter aerogenes ATCC 29007 was evaluated under anaerobic culture conditions. Inhibitory effects of substrate concentrations, pH, and salt concentrations were investigated based on crude glycerol components. Ethanol production was performed with pure glycerol concentrations ranging from 5 to 30 g/L to evaluate the effects of substrate concentration and osmotic pressure. The consumed glycerol was 5-14.33 g/L, and the yield of ethanol was higher than 0.75 mol ethanol/mol glycerol after 24 h of cultivation. To evaluate the inhibitory effects of salts (NaCl and KCl), experiments were performed with 0-20 g/L of each salt. Inhibitory effects of salts were strongest at high salt concentrations. The inhibitory effect of pH was performed in the pH range 4-10, and cell growth and ethanol production were highest at pH 5-6. Also, ethanol production was slightly inhibited at low concentration of crude glycerol comparison with pure glycerol. However, significant inhibitory effects were not observed at 1.5 and 2% crude glycerol which showed higher ethanol production compared to pure glycerol.

  6. A protease-resistant exo-polygalacturonase from Klebsiella sp. Y1 with good activity and stability over a wide pH range in the digestive tract.

    PubMed

    Yuan, Peng; Meng, Kun; Wang, Yaru; Luo, Huiying; Shi, Pengjun; Huang, Huoqing; Bai, Yingguo; Yang, Peilong; Yao, Bin

    2012-11-01

    Polygalacturonases are important feed and food additives. In the present study an exo-polygalacturonase gene (pgu B) was cloned from Klebsiella sp. Y1 CGMCC 4433 and expressed in Escherichia coli BL21 (DE3). pgu B encodes a 658-amino acid polypeptide belonging to Glycoside Hydrolase Family 28. The optimal pH and temperature of exo-PGU B activity were 6.0 and 40-50°C, respectively. The enzyme exhibited >35% of maximum activity within the pH range of 2.0-12.0. Exo-PGU B or an exo-PGU B/ endo-polygalacturonase mixture reduced the viscosity of polygalacturonic acid (1.0%, w/v) by 15.6 and 39.4%, respectively. Under simulated alimentary tract conditions, exo-PGU B was very stable (>25% activity from pH 1.5 to 6.8) and active, releasing 53.7 and 109.6μg of galacturonic acid from 400 to 800μg of polygalacturonic acid, respectively. These properties make exo-PGU B a potentially valuable additive for applications in feed and food. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Comparison of COD removal from pharmaceutical wastewater by electrocoagulation, photoelectrocoagulation, peroxi-electrocoagulation and peroxi-photoelectrocoagulation processes.

    PubMed

    Farhadi, Sajjad; Aminzadeh, Behnoush; Torabian, Ali; Khatibikamal, Vahid; Alizadeh Fard, Mohammad

    2012-06-15

    This work makes a comparison between electrocoagulation (EC), photoelectrocoagulation, peroxi-electrocoagulation and peroxi-photoelectrocoagulation processes to investigate the removal of chemical oxygen demand (COD) from pharmaceutical wastewater. The effects of operational parameters such as initial pH, current density, applied voltage, amount of hydrogen peroxide and electrolysis time on COD removal efficiency were investigated and the optimum operating range for each of these operating variables was experimentally determined. In electrocoagulation process, the optimum values of pH and voltage were determined to be 7 and 40 V, respectively. Desired pH and hydrogen peroxide concentration in the Fenton-based processes were found to be 3 and 300 mg/L, respectively. The amounts of COD, pH, electrical conductivity, temperature and total dissolved solids (TDS) were on-line monitored. Results indicated that under the optimum operating range for each process, the COD removal efficiency was in order of peroxi-electrocoagulation > peroxi-photoelectrocoagulation > photoelectrocoagulation>electrocoagulation. Finally, a kinetic study was carried out using the linear pseudo-second-order model and results showed that the pseudo-second-order equation provided the best correlation for the COD removal rate. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. The comparability of oxalate excretion and oxalate:creatinine ratio in the investigation of primary hyperoxaluria: review of data from a referral centre.

    PubMed

    Clifford-Mobley, Oliver; Tims, Christopher; Rumsby, Gill

    2015-01-01

    Urine oxalate measurement is an important investigation in the evaluation of renal stone disease. Primary hyperoxaluria (PH) is a rare inherited metabolic disease characterised by persistently elevated urine oxalate, but the diagnosis may be missed in adults until renal failure has developed. Urine oxalate results were reviewed to compare oxalate:creatinine ratio and oxalate excretion, and to estimate the potential numbers of undiagnosed PH. Urine oxalate results from August 2011 to April 2013 were reviewed. Oxalate excretion and oxalate:creatinine ratio were evaluated for 24 h collections and ratio alone for spot urine samples. Oxalate:creatinine ratio and oxalate excretion were moderately correlated (R=0.63) in 24-h urine collections from patients aged 18 years and above. Sex-related differences were found requiring implementation of male and female reference ranges for oxalate:creatinine ratio. Of samples with both ratio and excretion above the reference range, 7% came from patients with confirmed PH. There were 24 patients with grossly elevated urine oxalate who had not been evaluated for PH. Oxalate:creatinine ratio and oxalate excretion were discordant in many patients, which is likely to be a result of intra-individual variation in creatinine output and imprecision in the collection itself. Some PH patients had urine oxalate within the reference range on occasion, and therefore it is not possible to exclude PH on the finding of a single normal result. A significant number of individuals had urine oxalate results well above the reference range who potentially have undiagnosed PH and are consequently at risk of renal failure. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  9. Charging Properties of Cassiterite (alpha-SnO2) Surfaces in NaCl and RbCl Ionic Media.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenqvist, Jorgen K; Machesky, Michael L.; Vlcek, Lukas

    2009-01-01

    The acid-base properties of cassiterite ({alpha}-SnO{sub 2}) surfaces at 10-50 C were studied using potentiometric titrations of powder suspensions in aqueous NaCl and RbCl media. The proton sorption isotherms exhibited common intersection points in the pH range of 4.0-4.5 under all conditions, and the magnitude of charging was similar but not identical in NaCl and RbCl. The hydrogen bonding configuration at the oxide-water interface, obtained from classical molecular dynamics (MD) simulations, was analyzed in detail, and the results were explicitly incorporated in calculations of protonation constants for the reactive surface sites using the revised MUSIC model. The calculations indicated thatmore » the terminal SnOH{sub 2} group is more acidic than the bridging Sn{sub 2}OH group, with protonation constants (log K{sub H}) of 3.60 and 5.13 at 25 C, respectively. This is contrary to the situation on the isostructural {alpha}-TiO{sub 2} (rutile), apparently because of the difference in electronegativity between Ti and Sn. MD simulations and speciation calculations indicated considerable differences in the speciation of Na{sup +} and Rb{sup +}, despite the similarities in overall charging. Adsorbed sodium ions are almost exclusively found in bidentate surface complexes, whereas adsorbed rubidium ions form comparable numbers of bidentate and tetradentate complexes. Also, the distribution of adsorbed Na{sup +} between the different complexes shows a considerable dependence on the surface charge density (pH), whereas the distribution of adsorbed Rb{sup +} is almost independent of pH. A surface complexation model (SCM) capable of accurately describing both the measured surface charge and the MD-predicted speciation of adsorbed Na{sup +}/Rb{sup +} was formulated. According to the SCM, the deprotonated terminal group (SnOH{sup -0.40}) and the protonated bridging group (Sn{sub 2}OH{sup +0.36}) dominate the surface speciation over the entire pH range of this study (2.7-10). The complexation of medium cations increases significantly with increasing negative surface charge, and at pH 10, roughly 40% of the terminal sites are predicted to form cation complexes, whereas anion complexation is minor throughout the studied pH range.« less

  10. Limnobacter spp. as newly detected phenol-degraders among Baltic Sea surface water bacteria characterised by comparative analysis of catabolic genes.

    PubMed

    Vedler, Eve; Heinaru, Eeva; Jutkina, Jekaterina; Viggor, Signe; Koressaar, Triinu; Remm, Maido; Heinaru, Ain

    2013-12-01

    A set of phenol-degrading strains of a collection of bacteria isolated from Baltic Sea surface water was screened for the presence of two key catabolic genes coding for phenol hydroxylases and catechol 2,3-dioxygenases. The multicomponent phenol hydroxylase (LmPH) gene was detected in 70 out of 92 strains studied, and 41 strains among these LmPH(+) phenol-degraders were found to exhibit catechol 2,3-dioxygenase (C23O) activity. Comparative phylogenetic analyses of LmPH and C23O sequences from 56 representative strains were performed. The studied strains were mostly affiliated to the genera Pseudomonas and Acinetobacter. However, the study also widened the range of phenol-degraders by including the genus Limnobacter. Furthermore, using a next generation sequencing approach, the LmPH genes of Limnobacter strains were found to be the most prevalent ones in the microbial community of the Baltic Sea surface water. Four different Limnobacter strains having almost identical 16S rRNA gene sequences (99%) and similar physiological properties formed separate phylogenetic clusters of LmPH and C23O genes in the respective phylogenetic trees. Copyright © 2013 Elsevier GmbH. All rights reserved.

  11. Process development for robust removal of aggregates using cation exchange chromatography in monoclonal antibody purification with implementation of quality by design.

    PubMed

    Xu, Zhihao; Li, Jason; Zhou, Joe X

    2012-01-01

    Aggregate removal is one of the most important aspects in monoclonal antibody (mAb) purification. Cation-exchange chromatography (CEX), a widely used polishing step in mAb purification, is able to clear both process-related impurities and product-related impurities. In this study, with the implementation of quality by design (QbD), a process development approach for robust removal of aggregates using CEX is described. First, resin screening studies were performed and a suitable CEX resin was chosen because of its relatively better selectivity and higher dynamic binding capacity. Second, a pH-conductivity hybrid gradient elution method for the CEX was established, and the risk assessment for the process was carried out. Third, a process characterization study was used to evaluate the impact of the potentially important process parameters on the process performance with respect to aggregate removal. Accordingly, a process design space was established. Aggregate level in load is the critical parameter. Its operating range is set at 0-3% and the acceptable range is set at 0-5%. Equilibration buffer is the key parameter. Its operating range is set at 40 ± 5 mM acetate, pH 5.0 ± 0.1, and acceptable range is set at 40 ± 10 mM acetate, pH 5.0 ± 0.2. Elution buffer, load mass, and gradient elution volume are non-key parameters; their operating ranges and acceptable ranges are equally set at 250 ± 10 mM acetate, pH 6.0 ± 0.2, 45 ± 10 g/L resin, and 10 ± 20% CV respectively. Finally, the process was scaled up 80 times and the impurities removal profiles were revealed. Three scaled-up runs showed that the size-exclusion chromatography (SEC) purity of the CEX pool was 99.8% or above and the step yield was above 92%, thereby proving that the process is both consistent and robust.

  12. Removal of arsenic from groundwater using low cost ferruginous manganese ore.

    PubMed

    Chakravarty, S; Dureja, V; Bhattacharyya, G; Maity, S; Bhattacharjee, S

    2002-02-01

    A low cost ferruginous manganese ore (FMO) has been studied for the removal of arsenic from groundwater. The major mineral phases present in the FMO are pyrolusite and goethite. The studied FMO can adsorb both AS(III) and As(V) without any pre-treatment, adsorption of As(III) being stronger than that of As(V). Both As(II) and As(V) are adsorbed by the FMO in the pH range of 2-8. Once adsorbed, arsenic does not get desorbed even on varying the pH in the range of 2-8. Presence of bivalent cations, namely, Ni2+, Co2+ Mg2+ enhances the adsorption capability of the FMO. The FMO has been successfully used for the removal of arsenic from six real groundwater samples containing arsenic in the range of 0.04-0.18 ppm. Arsenic removals are almost 100% in all the cases. The cost of the FMO is about 50-56 US$ per metric tonne.

  13. Acetylcholinesterase-catalyzed acetate - water oxygen exchange studied by /sup 13/C-NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Etten, R.L.; Dayton, B.; Cortes, S.

    1986-05-01

    The kinetics of the oxygen exchange reaction between (l-/sup 13/C,/sup 18/O/sub 2/)acetate and H/sub 2//sup 16/O catalyzed by homogeneous acetyl-cholinesterase from the electric eel, Electrophorus electricus, was studied using the /sup 18/O-isotope-induced shift on /sup 13/C-nuclear magnetic resonance spectra. Pseudo-first-order rate constants for the exchange reactions were determined at pH values from 4.5 to 8. The exchange reaction exhibits a maximum at pH 5.8. The apparent catalytic rate constant for the exchange reaction is 10/sup 2/ to 10/sup 4/ times smaller than that for the deacylation of the acetyl-enzyme intermediate over the pH range tested. Oxygen exchange occurs by amore » random sequential pathway rather than by multiple (coupled) exchange. The inhibition of acetylcholinesterase by sodium acetate showed a sigmoidal dependence on pH, with K/sub i/ increasing 2.5 orders of magnitude over the pH range. Protonation of an active site residue having an apparent pKa of 6.8 is associated with an increase in acetate binding. Deacylation also exhibits a sigmoidal dependence on (H/sup +/). The experimental data fits titration curves with inflection points at 5.0 +/- 0.3 and 6.7 +/-0.1. Results support the role of histidine in acetylation of the active site serine, but the conjugate base of another active site residue with a pKa of 5.0 appears necessary for maximal catalytic activity in both the deacylation and exchange reactions.« less

  14. Kinetic and Mechanistic Aspects of the Reactions of Iodide and Hypoiodous Acid with Permanganate: Oxidation and Disproportionation.

    PubMed

    Zhao, Xiaodan; Salhi, Elisabeth; Liu, Huiling; Ma, Jun; von Gunten, Urs

    2016-04-19

    Oxidation kinetics of iodide and HOI/OI(-) by permanganate were studied in the pH range of 5.0-10.0. Iodide oxidation and iodate formation were faster at lower pH. The apparent second-order rate constants (k(obs)) for iodide oxidation by permanganate decrease with increasing pH from 29 M(-1) s(-1) at pH 5.0 and 6.9 M(-1) s(-1) at pH 7.0 to 2.7 M(-1) s(-1) at pH 10.0. k(obs) for HOI abatement are 56 M(-1) s(-1) at pH 5.0, 2.5 M(-1) s(-1) at pH 7.0, and 173 M(-1) s(-1) at pH 10.0. Iodate yields over HOI abatement decrease from 98% at pH 6.0 to 33% for pH ≥ 9.5, demonstrating that HOI disproportionation dominates HOI transformation by permanganate at pH ≥ 8.0. MnO2 formed as a product from permanganate reduction, oxidizes HOI to iodate for pH < 8.0, and promotes HOI disproportionation for pH ≥ 8.0. The rate of HOI oxidation or disproportionation induced by MnO2 is much lower than for permanganate. During treatment of iodide-containing waters, the potential for iodinated disinfection byproducts (I-DBPs) formation is highest at pH 7.0-8.0 due to the long lifetime of HOI. For pH < 6.0, HOI/I2 is quickly oxidized by permanganate to iodate, whereas for pH ≥ 8.0, HOI/OI(-) undergoes a fast permanganate-mediated disproportionation.

  15. 40 CFR 439.4 - General limitation or standard for pH.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 30 2011-07-01 2011-07-01 false General limitation or standard for pH. 439.4 Section 439.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT... limitation or standard for pH. The pH must remain within the range 6.0 to 9.0 in any discharge subject to BPT...

  16. A synthetic multifunctional mammalian pH sensor and CO2 transgene-control device.

    PubMed

    Ausländer, David; Ausländer, Simon; Charpin-El Hamri, Ghislaine; Sedlmayer, Ferdinand; Müller, Marius; Frey, Olivier; Hierlemann, Andreas; Stelling, Jörg; Fussenegger, Martin

    2014-08-07

    All metabolic activities operate within a narrow pH range that is controlled by the CO2-bicarbonate buffering system. We hypothesized that pH could serve as surrogate signal to monitor and respond to the physiological state. By functionally rewiring the human proton-activated cell-surface receptor TDAG8 to chimeric promoters, we created a synthetic signaling cascade that precisely monitors extracellular pH within the physiological range. The synthetic pH sensor could be adjusted by organic acids as well as gaseous CO2 that shifts the CO2-bicarbonate balance toward hydrogen ions. This enabled the design of gas-programmable logic gates, provided remote control of cellular behavior inside microfluidic devices, and allowed for CO2-triggered production of biopharmaceuticals in standard bioreactors. When implanting cells containing the synthetic pH sensor linked to production of insulin into type 1 diabetic mice developing diabetic ketoacidosis, the prosthetic network automatically scored acidic pH and coordinated an insulin expression response that corrected ketoacidosis. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. A single pH fluorescent probe for biosensing and imaging of extreme acidity and extreme alkalinity.

    PubMed

    Chao, Jian-Bin; Wang, Hui-Juan; Zhang, Yong-Bin; Li, Zhi-Qing; Liu, Yu-Hong; Huo, Fang-Jun; Yin, Cai-Xia; Shi, Ya-Wei; Wang, Juan-Juan

    2017-07-04

    A simple tailor-made pH fluorescent probe 2-benzothiazole (N-ethylcarbazole-3-yl) hydrazone (Probe) is facilely synthesized by the condensation reaction of 2-hydrazinobenzothiazole with N-ethylcarbazole-3-formaldehyde, which is a useful fluorescent probe for monitoring extremely acidic and alkaline pH, quantitatively. The pH titrations indicate that Probe displays a remarkable emission enhancement with a pK a of 2.73 and responds linearly to minor pH fluctuations within the extremely acidic range of 2.21-3.30. Interestingly, Probe also exhibits strong pH-dependent characteristics with pK a 11.28 and linear response to extreme-alkalinity range of 10.41-12.43. In addition, Probe shows a large Stokes shift of 84 nm under extremely acidic and alkaline conditions, high selectivity, excellent sensitivity, good water-solubility and fine stability, all of which are favorable for intracellular pH imaging. The probe is further successfully applied to image extremely acidic and alkaline pH values fluctuations in E. coli cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Molecular and morphological differentiation of Secret Toad-headed agama, Phrynocephalus mystaceus, with the description of a new subspecies from Iran (Reptilia, Agamidae).

    PubMed

    Solovyeva, Evgeniya N; Dunayev, Evgeniy N; Nazarov, Roman A; Mehdi Radjabizadeh; Poyarkov, Nikolay A

    2018-01-01

    The morphological and genetic variation of a wide-ranging Secret Toad-headed agama, Phrynocephalus mystaceus that inhabits sand deserts of south-eastern Europe, Middle East, Middle Asia, and western China is reviewed. Based on the morphological differences and high divergence in COI (mtDNA) gene sequences a new subspecies of Ph. mystaceus is described from Khorasan Razavi Province in Iran. Partial sequences of COI mtDNA gene of 31 specimens of Ph. mystaceus from 17 localities from all major parts of species range were analyzed. Genetic distances show a deep divergence between Ph. mystaceus khorasanus ssp. n. from Khorasan Razavi Province and all other populations of Ph. mystaceus . The new subspecies can be distinguished from other populations of Ph. mystaceus by a combination of several morphological features. Molecular and morphological analyses do not support the validity of other Ph. mystaceus subspecies described from Middle Asia and Caspian basin. Geographic variations in the Ph. mystaceus species complex and the status of previously described subspecies were discussed.

  19. Design of aquaponics water monitoring system using Arduino microcontroller

    NASA Astrophysics Data System (ADS)

    Murad, S. A. Z.; Harun, A.; Mohyar, S. N.; Sapawi, R.; Ten, S. Y.

    2017-09-01

    This paper describes the design of aquaponics water monitoring system using Arduino microcontroller. Arduino Development Environment (IDE) software is used to develop a program for the microcontroller to communicate with multiple sensors and other hardware. The circuit of pH sensor, temperature sensor, water sensor, servo, liquid crystal displays (LCD), peristaltic pump, solar and Global System for Mobile communication (GSM) are constructed and connected to the system. The system powered by a rechargeable battery using solar energy. When the results of pH, temperature and water sensor are out of range, a notification message will be sent to a mobile phone through GSM. If the pH of water is out of range, peristaltic pump is automatic on to maintain back the pH value of water. The water sensor is fixed in the siphon outlet water flow to detect water flow from grow bed to the fish tank. In addition, servo is used to auto feeding the fish for every 12 hours. Meanwhile, the LCD is indicated the pH, temperature, siphon outlet water flow and remaining time for the next feeding cycle. The pH and temperature of water are set in the ranges of 6 to 7 and 25 °C to 30 °C, respectively.

  20. Red Blood Cell Distribution Width, Hematology, and Serum Biochemistry in Dogs with Echocardiographically Estimated Precapillary and Postcapillary Pulmonary Arterial Hypertension.

    PubMed

    Mazzotta, E; Guglielmini, C; Menciotti, G; Contiero, B; Baron Toaldo, M; Berlanda, M; Poser, H

    2016-11-01

    Red blood cell distribution width (RDW) is a quantitative measurement of anisocytosis. RDW has prognostic value in humans with different cardiovascular and systemic disorders, but few studies have investigated this biomarker in dogs. To compare the RDW in dogs with precapillary and postcapillary pulmonary hypertension (PH) and a control population of dogs and to correlate RDW with demographic, echocardiographic, and laboratory variables. One hundred and twenty-seven client-owned dogs including 19 healthy dogs, 82 dogs with myxomatous mitral valve disease (50 dogs without PH and 32 dogs with postcapillary PH), and 26 dogs with precapillary PH. Prospective study. Dogs were allocated to groups according to clinical and echocardiographic evaluation. RDW and selected laboratory and echocardiographic variables were compared among dog groups. Associations between RDW and demographic, laboratory, and echocardiographic variables were analyzed using correlation and multiple regression analysis. Median RDW in dogs with precapillary PH (13.8%, interquartile range 13.2-14.9%) and postcapillary PH (13.7, 13.2-14.7%) was significantly increased compared to healthy dogs (13.3, 12.3-13.7%; P < .05 for both comparisons), but only dogs with severe PH had significantly increased RDW compared to dogs without PH (P < .05). Peak tricuspid regurgitation pressure gradient was significantly associated with increased RDW (rho = 0.263, P = .007). Serum urea concentration, hematocrit, age, and white blood cell number were significantly associated with RDW in the multivariate analysis. Underlying pathophysiologic processes associated with PH instead of severity of PH are likely responsible for increased RDW in dogs with PH. Copyright © 2016 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  1. Fluorapatite crystal growth from modified seawater solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Cappellen, P.; Berner, R.A.

    Seeded precipitation experiments were conducted in a pH/fluoride-stat system to study the crystal growth of fluorapatite (FAP) in carbonate-free NaCl-CaCl{sub 2}-NaF-Na{sub 2}HPO{sub 4} solutions, at seawater calcium concentration, chlorinity, and pH. With increasing supersaturation, the dependence of the growth rate on the relative supersaturation changes from parabolic to exponential. This is interpreted as reflecting a transition in the crystal growth mechanism from growth at dislocation-induced surface steps to surface nucleation-controlled growth. The analysis of the kinetic data leads to a mineral-aqueous solution interfacial tension for FAP of 289 mJ/M{sup 2}. The Arrhenius activation energy of the growth reaction in themore » temperature range 12 to 35C is 47 kJ/mol. The effect of pH on FAP growth was tested for pH values from 7 to 8.5. In this range, growth of FAP is catalyzed by hydrogen ions. The apparent growth rate constant is proportional to (a{sub H{sup +}}){sup m} where m, the rate order with respect to H{sup +}, is a non-integral number which depends on pH. At identical degrees of supersaturation, the growth rate of FAP at pH = 7 is nearly twice that at pH = 8. When corrected for bottom water temperatures, pore water pH, and the retardation of Mg{sup 2+}, the experimental growth rates predict that during burial in modern phosphatic sediments, apatite particles grow to sizes on the order of 0.1-10{mu}m. The relatively slow growth kinetics of FAP are consistent with the observed small particle sizes of marine sedimentary apatite.« less

  2. Serial isoelectric focusing as an effective and economic way to obtain maximal resolution and high-throughput in 2D-based comparative proteomics of scarce samples: proof-of-principle.

    PubMed

    Farhoud, Murtada H; Wessels, Hans J C T; Wevers, Ron A; van Engelen, Baziel G; van den Heuvel, Lambert P; Smeitink, Jan A

    2005-01-01

    In 2D-based comparative proteomics of scarce samples, such as limited patient material, established methods for prefractionation and subsequent use of different narrow range IPG strips to increase overall resolution are difficult to apply. Also, a high number of samples, a prerequisite for drawing meaningful conclusions when pathological and control samples are considered, will increase the associated amount of work almost exponentially. Here, we introduce a novel, effective, and economic method designed to obtain maximum 2D resolution while maintaining the high throughput necessary to perform large-scale comparative proteomics studies. The method is based on connecting different IPG strips serially head-to-tail so that a complete line of different IPG strips with sequential pH regions can be focused in the same experiment. We show that when 3 IPG strips (covering together the pH range of 3-11) are connected head-to-tail an optimal resolution is achieved along the whole pH range. Sample consumption, time required, and associated costs are reduced by almost 70%, and the workload is reduced significantly.

  3. Highly photostable near-infrared fluorescent pH indicators and sensors based on BF2-chelated tetraarylazadipyrromethene dyes.

    PubMed

    Jokic, Tijana; Borisov, Sergey M; Saf, Robert; Nielsen, Daniel A; Kühl, Michael; Klimant, Ingo

    2012-08-07

    In this study, a series of new BF(2)-chelated tetraarylazadipyrromethane dyes are synthesized and are shown to be suitable for the preparation of on/off photoinduced electron transfer modulated fluorescent sensors. The new indicators are noncovalently entrapped in polyurethane hydrogel D4 and feature absorption maxima in the range 660-710 nm and fluorescence emission maxima at 680-740 nm. Indicators have high molar absorption coefficients of ~80,000 M(-1) cm(-1), good quantum yields (up to 20%), excellent photostability and low cross-sensitivity to the ionic strength. pK(a) values of indicators are determined from absorbance and fluorescence measurements and range from 7 to 11, depending on the substitution pattern of electron-donating and -withdrawing functionalities. Therefore, the new indicators are suitable for exploitation and adaptation in a diverse range of analytical applications. Apparent pK(a) values in sensor films derived from fluorescence data show 0.5-1 pH units lower values in comparison with those derived from the absorption data due to Förster resonance energy transfer from protonated to deprotonated form. A dual-lifetime referenced sensor is prepared, and application for monitoring of pH in corals is demonstrated.

  4. Investigation of hexavalent chromium sorption in serpentine sediments

    NASA Astrophysics Data System (ADS)

    Mpouras, Thanasis; Chrysochoou, Maria; Dermatas, Dimitris

    2017-02-01

    In this study the removal of hexavalent chromium (Cr6 +) by serpentine sediments was investigated in order to delineate Cr6 + sorption behavior in aquifers with ultramafic geologic background. Batch experiments were conducted in order to determine the influence of several parameters on Cr6 + removal, including the pH of the sediment solution, mineralogy, sediment's particle size and Cr6 + initial concentration. The results showed that Cr6 + removal was due to both adsorption and reduction phenomena. Reduction was attributed to the presence of a magnetic fraction in the sediment, mostly related to magnetite, which contributed almost 50% of the total removal in the pH range 3-7. Adsorption behavior was dominated by the finer sediment fraction (d < 0.075 mm). The amount of Cr6 + adsorbed was constant in the pH range 3-7, while it decreased sharply in the range 7-8.5. Cr6 + adsorption was found to increase and decrease proportionally with increasing initial Cr6 + concentration of and particle size, respectively. The linear Langmuir and Freundlich adsorption isotherms were used to describe the experimental data, with Freundlich providing a better fit to determine distribution factors for transport modeling.

  5. Modified Organosilica Core-Shell Nanoparticles for Stable pH Sensing in Biological Solutions.

    PubMed

    Robinson, Kye J; Huynh, Gabriel T; Kouskousis, Betty P; Fletcher, Nicholas L; Houston, Zachary H; Thurecht, Kristofer J; Corrie, Simon R

    2018-04-19

    Continuous monitoring using nanoparticle-based sensors has been successfully employed in complex biological systems, yet the sensors still suffer from poor long-term stability partially because of the scaffold materials chosen to date. Organosilica core-shell nanoparticles containing a mixture of covalently incorporated pH-sensitive (shell) and pH-insensitive (core) fluorophores is presented as a continuous pH sensor for application in biological media. In contrast to previous studies focusing on similar materials, we sought to investigate the sensor characteristics (dynamic range, sensitivity, response time, stability) as a function of material properties. The ratio of the fluorescence intensities at specific wavelengths was found to be highly sensitive to pH over a physiologically relevant range (4.5-8) with a response time of <100 ms, significantly faster than that of previously reported response times using silica-based particles. Particles produced stable, pH-specific signals when stored at room temperature for more than 80 days. Finally, we demonstrated that the nanosensors successfully monitored the pH of a bacterial culture over 15 h and that pH changes in the skin of mouse cadavers could also be observed via in vivo fluorescence imaging following subcutaneous injection. The understanding gained from linking sensor characteristics and material properties will inform the next generation of optical nanosensors for continuous-monitoring applications.

  6. Controllable synthesis of green and blue fluorescent carbon nanodots for pH and Cu(2+) sensing in living cells.

    PubMed

    Shi, Lihong; Li, Yanyan; Li, Xiaofeng; Zhao, Bo; Wen, Xiangping; Zhang, Guomei; Dong, Chuan; Shuang, Shaomin

    2016-03-15

    We report a controllable strategy for fabrication of green and blue fluorescent carbon nanodots (CDs), and demonstrate their applications for pH and Cu(2+) sensing in living cells. Green and blue fluorescent CDs have been synthesized by hydrothermal method and pyrolysis of leeks, respectively, providing an easy way for the production of CDs without the request of tedious synthetic methodology or the use of toxic/expensive solvents and starting materials. Green fluorescent CDs (G-CDs) exhibit high tolerance to pH values and external cations. Blue fluorescent CDs (B-CDs) can be applied to pH and Cu(2+) sensing. The linear range of Cu(2+) detection is 0.01-10.00 μM and the detection limit is 0.05 μM. For pH detection, there is a good linearity in the pH range of 3.5-10.0. The linear and rapid response of B-CDs to Cu(2+) and pH is valuable for Cu(2+) and pH sensing in living cells. Confocal fluorescent imaging of human cervical carcinoma cells indicates that B-CDs could visualize Cu(2+) and pH fluctuations in living cells with negligible autofluorescence. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. An efficient and sensitive fluorescent pH sensor based on amino functional metal-organic frameworks in aqueous environment.

    PubMed

    Xu, Xiao-Yu; Yan, Bing

    2016-04-28

    A pH sensor is fabricated via a reaction between an Al(III) salt and 2-aminoterephthalic acid in DMF which leads to a MOF (Al-MIL-101-NH2) with free amino groups. The Al-MIL-101-NH2 samples show good luminescence and an intact structure in aqueous solutions with pH ranging from 4.0 to 7.7. Given its exceptional stability and pH-dependent fluorescence intensity, Al-MIL-101-NH2 has been applied to fluorescent pH sensing. Significantly, in the whole experimental pH range (4.0-7.7), the fluorescence intensity almost increases with increasing pH (R(2) = 0.99688) which can be rationalized using a linear equation: I = 2.33 pH + 26.04. In addition, error analysis and cycling experiments have demonstrated the accuracy and utilizability of the sensor. In practical applications (PBS and lake water), Al-MIL-101-NH2 also manifests its analytical efficiency in pH sensing. And the samples can be easily isolated from an aqueous solution by incorporating Fe3O4 nanoparticles. Moreover, the possible sensing mechanism based on amino protonation is discussed in detail. This work is on of the few cases for integrated pH sensing systems in aqueous solution based on luminescent MOFs.

  8. An ultrasensitive method of real time pH monitoring with complementary metal oxide semiconductor image sensor.

    PubMed

    Devadhasan, Jasmine Pramila; Kim, Sanghyo

    2015-02-09

    CMOS sensors are becoming a powerful tool in the biological and chemical field. In this work, we introduce a new approach on quantifying various pH solutions with a CMOS image sensor. The CMOS image sensor based pH measurement produces high-accuracy analysis, making it a truly portable and user friendly system. pH indicator blended hydrogel matrix was fabricated as a thin film to the accurate color development. A distinct color change of red, green and blue (RGB) develops in the hydrogel film by applying various pH solutions (pH 1-14). The semi-quantitative pH evolution was acquired by visual read out. Further, CMOS image sensor absorbs the RGB color intensity of the film and hue value converted into digital numbers with the aid of an analog-to-digital converter (ADC) to determine the pH ranges of solutions. Chromaticity diagram and Euclidean distance represent the RGB color space and differentiation of pH ranges, respectively. This technique is applicable to sense the various toxic chemicals and chemical vapors by situ sensing. Ultimately, the entire approach can be integrated into smartphone and operable with the user friendly manner. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Comparison of Chemical Extraction Methods for Determination of Soil Potassium in Different Soil Types

    NASA Astrophysics Data System (ADS)

    Zebec, V.; Rastija, D.; Lončarić, Z.; Bensa, A.; Popović, B.; Ivezić, V.

    2017-12-01

    Determining potassium supply of soil plays an important role in intensive crop production, since it is the basis for balancing nutrients and issuing fertilizer recommendations for achieving high and stable yields within economic feasibility. The aim of this study was to compare the different extraction methods of soil potassium from arable horizon of different types of soils with ammonium lactate method (KAL), which is frequently used as analytical method for determining the accessibility of nutrients and it is a common method used for issuing fertilizer recommendations in many Europe countries. In addition to the ammonium lactate method (KAL, pH 3.75), potassium was extracted with ammonium acetate (KAA, pH 7), ammonium acetate ethylenediaminetetraacetic acid (KAAEDTA, pH 4.6), Bray (KBRAY, pH 2.6) and with barium chloride (K_{BaCl_2 }, pH 8.1). The analyzed soils were extremely heterogeneous with a wide range of determined values. Soil pH reaction ( {pH_{H_2 O} } ) ranged from 4.77 to 8.75, organic matter content ranged from 1.87 to 4.94% and clay content from 8.03 to 37.07%. In relation to KAL method as the standard method, K_{BaCl_2 } method extracts 12.9% more on average of soil potassium, while in relation to standard method, on average KAA extracts 5.3%, KAAEDTA 10.3%, and KBRAY 27.5% less of potassium. Comparison of analyzed extraction methods of potassium from the soil is of high precision, and most reliable comparison was KAL method with KAAEDTA, followed by a: KAA, K_{BaCl_2 } and KBRAY method. Extremely significant statistical correlation between different extractive methods for determining potassium in the soil indicates that any of the methods can be used to accurately predict the concentration of potassium in the soil, and that carried out research can be used to create prediction model for concentration of potassium based on different methods of extraction.

  10. Natural variability of pCO2 and pH in the Atlantic and Pacific coastal margins of the U.S

    NASA Astrophysics Data System (ADS)

    Sutton, A. J.; Sabine, C. L.; Feely, R. A.; Newton, J.; Salisbury, J.; Vandemark, D. C.; Musielewicz, S. B.; Maenner-Jones, S.; Bott, R.; Lawrence-Slavas, N.

    2011-12-01

    The discovery that seawater chemistry is changing as a result of carbon dioxide (CO2) emissions, referred to as "ocean acidification", has prompted a large effort to understand how this changing chemistry will impact marine life. Changes in carbon chemistry have been documented in the open ocean; however, in dynamic coastal systems where many marine species live, ocean acidification and the natural biogeochemical variability that organisms are currently exposed to are poorly quantified. In 2010 we began equipping coastal moorings currently measuring pCO2 with pH and other biogeochemical sensors to measure ocean acidification parameters at 3 hour intervals in the surface water. Here we present the magnitude and diurnal to seasonal variability of pCO2 and pH during the first year of observations at 2 sites in the Atlantic and Pacific coastal margins of the U.S.: the Gulf of Maine and outer coast of Washington state. Both the magnitude and range of pCO2 and pH values were much greater at the coastal moorings compared to the open ocean mooring at Ocean Station Papa in the North Pacific and also varied between the two coastal mooring sites. We observed maximum pCO2 values in coastal waters exceeding predicted values for the open ocean at 2x pre-industrial CO2 levels. The range of pCO2 and pH values during this time series was approximately 4 times the range observed at open ocean mooring Papa (2007-2011 time series). In many cases, large variance was observed at short time scales, with values fluctuating more than 200 μatm pCO2 and 0.2 pH between 3-hour cycles. These types of observations are critical for understanding how ocean acidification will manifest in naturally dynamic coastal systems and for informing the experimental design of species response studies that aim to mimic carbon chemistry experienced by coastal marine organisms.

  11. Direct Photolysis Rates and Transformation Pathways of the Lampricides TFM and Niclosamide in Simulated Sunlight.

    PubMed

    McConville, Megan B; Hubert, Terrance D; Remucal, Christina K

    2016-09-20

    The lampricides 3-trifluoromethyl-4-nitrophenol (TFM) and 2',5-dichloro-4'-nitrosalicylanilide (niclosamide) are directly added to many tributaries of the Great Lakes that harbor the invasive parasitic sea lamprey. Despite their long history of use, the fate of lampricides is not well understood. This study evaluates the rate and pathway of direct photodegradation of both lampricides under simulated sunlight. The estimated half-lives of TFM range from 16.6 ± 0.2 h (pH 9) to 32.9 ± 1.0 h (pH 6), while the half-lives of niclosamide range from 8.88 ± 0.52 days (pH 6) to 382 ± 83 days (pH 9) assuming continuous irradiation over a water depth of 55 cm. Both compounds degrade to form a series of aromatic intermediates, simple organic acids, ring cleavage products, and inorganic ions. Experimental data were used to construct a kinetic model which demonstrates that the aromatic products of TFM undergo rapid photolysis and emphasizes that niclosamide degradation is the rate-limiting step to dehalogenation and mineralization of the lampricide. This study demonstrates that TFM photodegradation is likely to occur on the time scale of lampricide applications (2-5 days), while niclosamide, the less selective lampricide, will undergo minimal direct photodegradation during its passage to the Great Lakes.

  12. Enzymatic activities in different strains isolated from healthy and brittle leaf disease affected date palm leaves: study of amylase production conditions.

    PubMed

    Mouna, Jrad; Imen, Fendri; Choba Ines, Ben; Nourredine, Drira; Adel, Kadri; Néji, Gharsallah

    2015-02-01

    The present study aimed to investigate and compare the enzymatic production of endophytic bacteria isolated from healthy and brittle leaf disease affected date palm leaves (pectinase, cellulase, lipase, and amylase). The findings revealed that the enzymatic products from the bacterial isolates of healthy date palm leaves were primarily 33% amylolytic enzyme, 33 % cellulase, 25 % pectinase, and 25 % lipase. The isolates from brittle leaf disease date palm leaves, on the other hand, were noted to produce 16 % amylolytic enzyme, 20 % cellulose, 50 % pectinase, and 50 % lipase. The effects of temperature and pH on amylase, pectinase, and cellulose activities were investigated. The Bacillus subtilis JN934392 strain isolated from healthy date palm leaves produced higher levels of amylase activity at pH 7. A Box Behnken Design (BBD) was employed to optimize amylase extraction. Maximal activity was observed at pH and temperature ranges of pH 6-6.5 and 37-39 °C, respectively. Under those conditions, amylase activity was noted to be attained 9.37 U/ml. The results showed that the enzyme was able to maintain more than 50 % of its activity over a temperature range of 50-80 °C, with an optimum at 70 °C. This bacterial amylase showed high activity compared to other bacteria, which provides support for its promising candidacy for future industrial application.

  13. Direct photolysis rates and transformation pathways of the lampricides TFM and niclosamide in simulated sunlight

    USGS Publications Warehouse

    McConville, Megan B.; Hubert, Terrance D.; Remucal, Christina K.

    2016-01-01

    The lampricides 3-trifluoromethyl-4-nitrophenol (TFM) and 2′,5-dichloro-4′-nitrosalicylanilide (niclosamide) are directly added to many tributaries of the Great Lakes that harbor the invasive parasitic sea lamprey. Despite their long history of use, the fate of lampricides is not well understood. This study evaluates the rate and pathway of direct photodegradation of both lampricides under simulated sunlight. The estimated half-lives of TFM range from 16.6 ± 0.2 h (pH 9) to 32.9 ± 1.0 h (pH 6), while the half-lives of niclosamide range from 8.88 ± 0.52 days (pH 6) to 382 ± 83 days (pH 9) assuming continuous irradiation over a water depth of 55 cm. Both compounds degrade to form a series of aromatic intermediates, simple organic acids, ring cleavage products, and inorganic ions. Experimental data were used to construct a kinetic model which demonstrates that the aromatic products of TFM undergo rapid photolysis and emphasizes that niclosamide degradation is the rate-limiting step to dehalogenation and mineralization of the lampricide. This study demonstrates that TFM photodegradation is likely to occur on the time scale of lampricide applications (2–5 days), while niclosamide, the less selective lampricide, will undergo minimal direct photodegradation during its passage to the Great Lakes.

  14. Surface complexation model of uranyl sorption on Georgia kaolinite

    USGS Publications Warehouse

    Payne, T.E.; Davis, J.A.; Lumpkin, G.R.; Chisari, R.; Waite, T.D.

    2004-01-01

    The adsorption of uranyl on standard Georgia kaolinites (KGa-1 and KGa-1B) was studied as a function of pH (3-10), total U (1 and 10 ??mol/l), and mass loading of clay (4 and 40 g/l). The uptake of uranyl in air-equilibrated systems increased with pH and reached a maximum in the near-neutral pH range. At higher pH values, the sorption decreased due to the presence of aqueous uranyl carbonate complexes. One kaolinite sample was examined after the uranyl uptake experiments by transmission electron microscopy (TEM), using energy dispersive X-ray spectroscopy (EDS) to determine the U content. It was found that uranium was preferentially adsorbed by Ti-rich impurity phases (predominantly anatase), which are present in the kaolinite samples. Uranyl sorption on the Georgia kaolinites was simulated with U sorption reactions on both titanol and aluminol sites, using a simple non-electrostatic surface complexation model (SCM). The relative amounts of U-binding >TiOH and >AlOH sites were estimated from the TEM/EDS results. A ternary uranyl carbonate complex on the titanol site improved the fit to the experimental data in the higher pH range. The final model contained only three optimised log K values, and was able to simulate adsorption data across a wide range of experimental conditions. The >TiOH (anatase) sites appear to play an important role in retaining U at low uranyl concentrations. As kaolinite often contains trace TiO2, its presence may need to be taken into account when modelling the results of sorption experiments with radionuclides or trace metals on kaolinite. ?? 2004 Elsevier B.V. All rights reserved.

  15. Design of an optically stable pH sensor based on immobilization of Giemsa on triacetylcellulose membrane.

    PubMed

    Khodadoust, Saeid; Kouri, Narges Cham; Talebiyanpoor, Mohammad Sharif; Deris, Jamile; Pebdani, Arezou Amiri

    2015-12-01

    In this work a simple, inexpensive, and sensitive optical sensor based on triacetylcellulose membrane as solid support was developed by using immobilization of Giemsa indicator for pH measurement. In this method, the influence variables on the membrane performance including pH concentration of indicator, response time, ionic strength, and reversibility were investigated. At optimum values of all variables the response of optical pH sensor is linear in the pH range of 3.0-12.0. This optical sensor was produced through simultaneous binding of the Giemsa on the activated triacetylcellulose membrane which responded to the pH changes in a broader linear range within less than 2.0 min and suitable reproducibility (RSD<5%). Stability results showed that this sensor was stable after 6 months of storage in the water/ethanol (50:50, v/v) solution without any measurable divergence in response properties (less than 5% RSD). Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Near-infrared noninvasive spectroscopic determination of pH

    DOEpatents

    Alam, Mary K.; Robinson, Mark R.

    1998-08-11

    Methods and apparatus for, preferably, determining noninvasively and in vitro pH in a human. The non-invasive method includes the steps of: generating light at three or more different wavelengths in the range of 1000 nm to 2500 nm; irradiating blood containing tissue; measuring the intensities of the wavelengths emerging from the blood containing tissue to obtain a set of at least three spectral intensities v. wavelengths; and determining the unknown values of pH. The determination of pH is made by using measured intensities at wavelengths that exhibit change in absorbance due to histidine titration. Histidine absorbance changes are due to titration by hydrogen ions. The determination of the unknown pH values is performed by at least one multivariate algorithm using two or more variables and at least one calibration model. The determined pH values are within the physiological ranges observed in blood containing tissue. The apparatus includes a tissue positioning device, a source, at least one detector, electronics, a microprocessor, memory, and apparatus for indicating the determined values.

  17. Building the capacity to solve complex health challenges in sub-Saharan Africa: CARTA's multidisciplinary PhD training.

    PubMed

    Fonn, Sharon; Egesah, Omar; Cole, Donald; Griffiths, Frances; Manderson, Lenore; Kabiru, Caroline; Ezeh, Alex; Thorogood, Margaret; Izugbara, Chimaraoke

    2016-12-27

    To develop a curriculum (Joint Advanced Seminars [JASs]) that produced PhD fellows who understood that health is an outcome of multiple determinants within complex environments and that approaches from a range of disciplines is required to address health and development within the Consortium for Advanced Research Training in Africa (CARTA). We sought to attract PhD fellows, supervisors and teaching faculty from a range of disciplines into the program. Multidisciplinary teams developed the JAS curriculum. CARTA PhD fellowships were open to academics in consortium member institutions, irrespective of primary discipline, interested in doing a PhD in public and population health. Supervisors and JAS faculty were recruited from CARTA institutions. We use routine JAS evaluation data (closed and open-ended questions) collected from PhD fellows at every JAS, a survey of one CARTA cohort, and an external evaluation of CARTA to assess the impact of the JAS curriculum on learning. We describe our pedagogic approach, arguing its centrality to an appreciation of multiple disciplines, and illustrate how it promotes working in multidisciplinary ways. CARTA has attracted PhD fellows, supervisors and JAS teaching faculty from across a range of disciplines. Evaluations indicate PhD fellows have a greater appreciation of how disciplines other than their own are important to understanding health and its determinants and an appreciation and capacity to employ mixed methods research. In the short term, we have been effective in promoting an understanding of multidisciplinarity, resulting in fellows using methods from beyond their discipline of origin. This curriculum has international application.

  18. 40 CFR 471.21 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Zinc 4.22 1.77 Ammonia 385 170 Fluoride 172 76.3 Oil and grease 57.8 34.7 TSS 119 56.4 pH (1) 1 Within... and grease 79.0 47.4 TSS 162 77.1 pH (1) 1 Within the range of 7.5 to 10.0 at all times. (f) Surface....895 TSS 3.06 1.46 pH (1) 1 Within the range of 7.5 to 10.0 at all times. (b) Forging spent lubricants...

  19. 40 CFR 471.61 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... grease 1.44 0.863 TSS 2.95 1.4 pH (1) (1) 1 Within the range of 7.5 to 10.0 at all times. (f) Extrusion... 0.202 Zinc 1.48 0.616 Ammonia 135 59.2 Fluoride 60.1 26.7 Oil and grease 20.2 12.1 TSS 41.4 19.7 pH....50 TSS 8.53 4.06 pH (1) (1) 1 Within the range of 7.5 to 10.0 at all times. (n) Surface treatment...

  20. 40 CFR 471.81 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....028 0.017 TSS 0.057 0.027 pH (1) (1) 1 Within the range of 7.5 to 10.0 at all times. (c) Rolling... 22.0 10.5 pH (1) (1) 1 Within the range of 7.5 to 10.0 at all times. (d) Drawing spent emulsions... Cyanide 0.002 0.0007 Zinc 0.009 0.004 Oil and grease 0.116 0.070 TSS 0.238 0.113 pH (1) (1) 1 Within the...

  1. 40 CFR 471.61 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... grease 1.44 0.863 TSS 2.95 1.4 pH (1) (1) 1 Within the range of 7.5 to 10.0 at all times. (f) Extrusion... 0.202 Zinc 1.48 0.616 Ammonia 135 59.2 Fluoride 60.1 26.7 Oil and grease 20.2 12.1 TSS 41.4 19.7 pH....50 TSS 8.53 4.06 pH (1) (1) 1 Within the range of 7.5 to 10.0 at all times. (n) Surface treatment...

  2. 40 CFR 471.81 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....028 0.017 TSS 0.057 0.027 pH (1) (1) 1 Within the range of 7.5 to 10.0 at all times. (c) Rolling... 22.0 10.5 pH (1) (1) 1 Within the range of 7.5 to 10.0 at all times. (d) Drawing spent emulsions... Cyanide 0.002 0.0007 Zinc 0.009 0.004 Oil and grease 0.116 0.070 TSS 0.238 0.113 pH (1) (1) 1 Within the...

  3. 40 CFR 464.42 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 0.446 TSS 1.7 0.67 pH (1) (1) 1 Within the range of 7.0 to 10.0 at all times. Maximum for any 1 day....39 0.0098 Zinc (T) 1.14 0.43 0.0121 Oil and grease 30 10 0.223 TSS 38 15 0.446 pH (3) (3) (3) 1 kg... TTS 0.328 0.13 pH (1) (1) 1 Within the range of 7.0 to 10.0 at all times. Maximum for any 1 day...

  4. Dose validation of PhIP hair level as a biomarker of heterocyclic aromatic amines exposure: a feeding study.

    PubMed

    Le Marchand, Loïc; Yonemori, Kim; White, Kami K; Franke, Adrian A; Wilkens, Lynne R; Turesky, Robert J

    2016-07-01

    Hair measurement of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is a promising biomarker of exposure to this carcinogen formed in cooked meats. However, the dose relationship between normal range intake and hair levels and the modulating effects of CYP1A2 metabolism and hair melanin need to be evaluated. We conducted a randomized, cross-over feeding study among 41 non-smokers using ground beef cooked to two different levels of doneness, 5 days a week for 1 month. PhIP was measured by liquid chromatography/mass spectrometry in food (mean low dose = 0.72 µg/serving; mean high dose = 2.99 µg/serving), and change in PhIP hair level was evaluated. CYP1A2 activity was assessed in urine with the caffeine challenge test and head hair melanin was estimated by UV spectrophotometry. We observed a strong dose-dependent increase in hair PhIP levels. This increase was highly correlated with dose received (ρ = 0.68, P < 0.0001). CYP1A2 activity and normalizing for hair melanin did not modify the response to the intervention. Consumption of PhIP at doses similar to those in the American diet results in a marked dose-dependent accumulation of PhIP in hair. Hair PhIP levels may be used as a biomarker of dietary exposure in studies investigating disease risk. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. 40 CFR 421.104 - Standards of performance for new sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...,404.000 Total suspended solids 615.400 492.300 pH (1) (1) 1 Within the range of 7.0 to 10.0 at all...H (1) (1) 1 Within the range of 7.0 to 10.0 at all times. (c) Subpart J—Alkali Leach Wash. NSPS... Total suspended solids 0.000 0.000 pH (1) (1) 1 Within the range of 7.0 to 10.0 at all times. (d...

  6. EC-QCL mid-IR transmission spectroscopy for monitoring dynamic changes of protein secondary structure in aqueous solution on the example of β-aggregation in alcohol-denaturated α-chymotrypsin.

    PubMed

    Alcaráz, Mirta R; Schwaighofer, Andreas; Goicoechea, Héctor; Lendl, Bernhard

    2016-06-01

    In this work, a novel EC-QCL-based setup for mid-IR transmission measurements in the amide I region is introduced for monitoring dynamic changes in secondary structure of proteins. For this purpose, α-chymotrypsin (aCT) acts as a model protein, which gradually forms intermolecular β-sheet aggregates after adopting a non-native α-helical structure induced by exposure to 50 % TFE. In order to showcase the versatility of the presented setup, the effects of varying pH values and protein concentration on the rate of β-aggregation were studied. The influence of the pH value on the initial reaction rate was studied in the range of pH 5.8-8.2. Results indicate an increased aggregation rate at elevated pH values. Furthermore, the widely accessible concentration range of the laser-based IR transmission setup was utilized to investigate β-aggregation across a concentration range of 5-60 mg mL(-1). For concentrations lower than 20 mg mL(-1), the aggregation rate appears to be independent of concentration. At higher values, the reaction rate increases linearly with protein concentration. Extended MCR-ALS was employed to obtain pure spectral and concentration profiles of the temporal transition between α-helices and intermolecular β-sheets. Comparison of the global solutions obtained by the modelled data with results acquired by the laser-based IR transmission setup at different conditions shows excellent agreement. This demonstrates the potential and versatility of the EC-QCL-based IR transmission setup to monitor dynamic changes of protein secondary structure in aqueous solution at varying conditions and across a wide concentration range. Graphical abstract EC-QCL IR spectroscopy for monitoring protein conformation change.

  7. Theory and applications of a novel ion exchange chromatographic technology using controlled pH gradients for separating proteins on anionic and cationic stationary phases.

    PubMed

    Tsonev, Latchezar I; Hirsh, Allen G

    2008-07-25

    pISep is a major new advance in low ionic strength ion exchange chromatography. It enables the formation of externally controlled pH gradients over the very broad pH range from 2 to 12. The gradients can be generated on either cationic or anionic exchangers over arbitrary pH ranges wherein the stationary phases remain totally charged. Associated pISep software makes possible the calculation of either linear, nonlinear or combined, multi-step, multi-slope pH gradients. These highly reproducible pH gradients, while separating proteins and glycoproteins in the order of their electrophoretic pIs, provide superior chromatographic resolution compared to salt. This paper also presents a statistical mechanical model for protein binding to ion exchange stationary phases enhancing the electrostatic interaction theory for the general dependence of retention factor k, on both salt and pH simultaneously. It is shown that the retention factors computed from short time isocratic salt elution data of a model protein can be used to accurately predict its salt elution concentration in varying slope salt elution gradients formed at varying isocratic pH as well as the pH at which it will be eluted from an anionic exchange column by a pISep pH gradient in the absence of salt.

  8. Temperature-dependent dynamics of bovine casein micelles in the range 10-40 °C.

    PubMed

    Liu, Dylan Z; Weeks, Michael G; Dunstan, David E; Martin, Gregory J O

    2013-12-15

    Milk is a complex colloidal system that responds to changes in temperature imposed during processing. Whilst much has been learned about the effects of temperature on milk, little is known about the dynamic response of casein micelles to changes in temperature. In this study, a comprehensive physico-chemical study of casein micelles in skim milk was performed between 10 and 40 °C. When fully equilibrated, the amount of soluble casein, soluble calcium and the pH of skim milk all decreased as a function of increasing temperature, whilst the hydration and volume fraction of the casein micelles decreased. The effect of temperature on casein micelle size, as determined by dynamic light scattering and differential centrifugation, was less straightforward. Real-time measurements of turbidity and pH were used to investigate the dynamics of the system during warming and cooling of milk in the range 10-40 °C. Changes in pH are indicative of changes to the mineral system and the turbidity is a measure of alterations to the casein micelles. The pH and turbidity showed that alterations to both the casein micelles and the mineral system occurred very rapidly on warming. However, whilst mineral re-equilibration occurred very rapidly on cooling, changes to the casein micelle structure continued after 40 min of measurement, returning to equilibrium after 16 h equilibration. Casein micelle structure and the mineral system of milk were both dependent on temperature in the range 10-40 °C. The dynamic response of the mineral system to changes in temperature appeared almost instantaneous whereas equilibration of casein was considerably slower, particularly upon cooling. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. The Effect of Membrane Environment on Surfactant Protein C Stability Studied by Constant-pH Molecular Dynamics.

    PubMed

    Carvalheda, Catarina A; Campos, Sara R R; Baptista, António M

    2015-10-26

    Pulmonary surfactant protein C (SP-C) is a small peptide with two covalently linked fatty acyl chains that plays a crucial role in the formation and stabilization of the pulmonary surfactant reservoirs during the compression and expansion steps of the respiratory cycle. Although its function is known to be tightly related to its highly hydrophobic character and key interactions maintained with specific lipid components, much is left to understand about its molecular mechanism of action. Also, although it adopts a mainly helical structure while associated with the membrane, factors as pH variation and deacylation have been shown to affect its stability and function. In this work, the conformational behavior of both the acylated and deacylated SP-C isoforms was studied in a DPPC bilayer under different pH conditions using constant-pH molecular dynamics simulations. Our findings show that both protein isoforms are remarkably stable over the studied pH range, even though the acylated isoform exhibits a labile helix-turn-helix motif rarely observed in the other isoform. We estimate similar tilt angles for the two isoforms over the studied pH range, with a generally higher degree of internalization of the basic N-terminal residues in the deacylated case, and observe and discuss some protonation-conformation coupling effects. Both isoforms establish contacts with the surrounding lipid molecules (preferentially with the sn-2 ester bonds) and have a local effect on the conformational behavior of the surrounding lipid molecules, the latter being more pronounced for acylated SP-C.

  10. Anodic stripping voltammetry with carbon paste electrodes for rapid Ag(I) and Cu(II) determinations.

    PubMed

    Labar, C; Lamberts, L

    1997-05-01

    The simultaneous determination of silver(I) and copper(II) is realized for the routine analysis of trace levels of these elements by anodic stripping voltammetry (ASV) at the carbon paste electrode (CPE). The electrochemical response is studied in 14 different supporting electrolytes, ranging from acidic solutions (pH 0.1) to neutral and basic (pH 9.7) media, and the parameters governing electrodeposition and stripping steps are characterized for each medium by the use of pseudo-voltammograms. Comparison between different modes of matter transport mechanisms is also given. The dynamic range of the method is 0.05 to 150 mug 1(-1) Ag(I) in the majority of the media studied and can be extended to 400 mug l(-1) in selected media, with a general reproducibility in the +/- 2% range for five replicate measurements. The total analysis time lies between approximately 30 s and 10 min. Activation of the CPE surface has been studied, but this pretreatment is demonstrated to be unfavourable and is replaced by a simpler unique 'cleaning' procedure of dipping the CPE in diluted nitric acid.

  11. Prevalence and incidence of pulmonary hypertension among HIV-infected people in Africa: a systematic review and meta-analysis.

    PubMed

    Bigna, Jean Joel R; Nansseu, Jobert Richie N; Um, Lewis N; Noumegni, Steve Raoul N; Simé, Paule Sandra D; Aminde, Leopold Ndemngue; Koulla-Shiro, Sinata; Noubiap, Jean Jacques N

    2016-08-23

    Patients infected with HIV have a direly increased risk of developing pulmonary hypertension (PH), and of dying from the condition. While Africa carries the greatest burden of HIV infection worldwide, there is unclear data summarising the epidemiology of PH among HIV-infected people in this region. Our objective was to determine the prevalence and incidence of PH among HIV-infected people living across Africa. A systematic review and meta-analysis. HIV-infected African people residing in Africa. Prevalence and incidence of PH diagnosed through echocardiography or right heart catheterisation. Articles published in PubMed/MEDLINE, EMBASE, African Journals Online and African Index Medicus between 1 January 1980 and 30 June 2016, without any language restriction. Overall, 121 studies were screened; 3 were included in this review: 1 from Southern Africa (South Africa), 1 from Eastern Africa (Tanzania) and 1 from Central Africa (Cameroon). These studies included HIV-infected adult patients selected based on presentation with cardiovascular symptoms. No study reported PH incidence or PH incidence/prevalence among children and adolescents. The quality assessment yielded moderate risk of bias. Ages of participants ranged between 18 and 78 years, and the proportion of females varied between 52.3% and 68.8%. The prevalence of PH in the pooled sample of 664 patients was 14% (95% CI 6%-23%). Only 3 studies were found eligible from 3 regions of the African continent. The prevalence of PH among HIV-infected people in Africa seems very high. Further studies are urgently warranted to determine the incidence of HIV-induced PH, which must include all subregions of Africa. Review registration number PROSPERO CRD42016033863. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  12. Pyrearinus termitilluminans larval click beetle luciferase: active site properties, structure and function relationships and comparison with other beetle luciferases.

    PubMed

    Silva Neto, A J; Scorsato, V; Arnoldi, F G C; Viviani, V R

    2009-12-01

    Several beetle luciferases have been cloned and sequenced. However, most studies on structure and function relationships and bioanalytical applications were done with firefly luciferases, which are pH sensitive. Several years ago we cloned Pyrearinus termitilluminans larval click beetle luciferase, which displays the most blue-shifted bioluminescence among beetle luciferases and is pH insensitive. This enzyme was expressed in E. coli, purified, and its properties investigated. This luciferase shows slower luminescence kinetics, K(M) values comparable to other beetle luciferases and high catalytic constant. Fluorescence studies with 8-anilino-1-naphtalene-sulfonic acid (1,8-ANS) and modeling studies suggest that the luciferin binding site of this luciferase is very hydrophobic, supporting the solvent and orientation polarizability effects as determining mechanisms for bioluminescence colors. Although pH insensitive in the range between pH 6-8, at pH 10 this luciferase displays a remarkable red-shift and broadening of the bioluminescence spectrum. Modeling studies suggest that the residue C312 may play an important role in bioluminescence color modulation. Compared to other beetle luciferases, Pyrearinus termitilluminans luciferase also displays higher thermostability and sustained luminescence in a bacterial cell environment, which makes this luciferase particularly suitable for in vivo cell analysis and bioimaging.

  13. Generating method-specific Reference Ranges - A harmonious outcome?

    PubMed

    Lee, Graham R; Griffin, Alison; Halton, Kieran; Fitzgibbon, Maria C

    2017-12-01

    When laboratory Reference Ranges (RR) do not reflect analytical methodology, result interpretation can cause misclassification of patients and inappropriate management. This can be mitigated by determining and implementing method-specific RRs, which was the main objective of this study. Serum was obtained from healthy volunteers (Male + Female, n > 120) attending hospital health-check sessions during June and July 2011. Pseudo-anonymised aliquots were stored (at - 70 °C) prior t° analysis on Abbott ARCHITECT c16000 chemistry and i 2000SR immunoassay analysers. Data were stratified by gender where appropriate. Outliers were excluded statistically (Tukey method) to generate non-parametric RRs (2.5th + 97.5th percentiles). RRs were compared to those quoted by Abbott and UK Pathology Harmony (PH) where possible. For 7 selected tests, RRs were verified using a data mining approach. For chemistry tests (n = 23), Upper or Lower Reference Limits (LRL or URL) were > 20% different from Abbott ranges in 25% of tests (11% from PH ranges) but in 38% for immunoassay tests (n = 13). RRs (mmol/L) for sodium (138-144), potassium (3.8-4.9) and chloride (102-110) were considerably narrower than PH ranges (133-146, 3.5-5.0 and 95-108, respectively). The gender difference for ferritin (M: 29-441, F: 8-193 ng/mL) was more pronounced than reported by Abbott (M: 22-275, F: 5-204 ng/mL). Verification studies showed good agreement for chemistry tests (mean [SD] difference = 0.4% [1.2%]) but less so for immunoassay tests (27% [29%]), particularly for TSH (LRL). Where resource permits, we advocate using method-specific RRs in preference to other sources, particularly where method bias and lack of standardisation limits RR transferability and harmonisation.

  14. Variability of the carbonate chemistry in a shallow, seagrass-dominated ecosystem: implications for ocean acidification experiments

    USGS Publications Warehouse

    Challener, Roberta; Robbins, Lisa L.; Mcclintock, James B.

    2016-01-01

    Open ocean observations have shown that increasing levels of anthropogenically derived atmospheric CO2 are causing acidification of the world's oceans. Yet little is known about coastal acidification and studies are just beginning to characterise the carbonate chemistry of shallow, nearshore zones where many ecologically and economically important organisms occur. We characterised the carbonate chemistry of seawater within an area dominated by seagrass beds (Saint Joseph Bay, Florida) to determine the extent of variation in pH and pCO2 over monthly and daily timescales. Distinct diel and seasonal fluctuations were observed at daily and monthly timescales respectively, indicating the influence of photosynthetic and respiratory processes on the local carbonate chemistry. Over the course of a year, the range in monthly values of pH (7.36-8.28), aragonite saturation state (0.65-5.63), and calculated pCO2 (195-2537 μatm) were significant. When sampled on a daily basis the range in pH (7.70-8.06), aragonite saturation state (1.86-3.85), and calculated pCO2 (379-1019 μatm) also exhibited significant range and indicated variation between timescales. The results of this study have significant implications for the design of ocean acidification experiments where nearshore species are utilised and indicate that coastal species are experiencing far greater fluctuations in carbonate chemistry than previously thought.

  15. Production of an extracellular thermohalophilic lipase from a moderately halophilic bacterium, Salinivibrio sp. strain SA-2.

    PubMed

    Amoozegar, Mohammad Ali; Salehghamari, Ensieh; Khajeh, Khosro; Kabiri, Mahbube; Naddaf, Saied

    2008-06-01

    Fifty strains of moderately halophilic bacteria were isolated from various salty environments in Iran. A strain designated as SA-2 was shown to be the best producer of extracellular lipase and was selected for further studies. Biochemical and physiological characterization along with 16S rDNA sequence analysis placed SA-2 in the genus Salinivibrio. The optimum salt, pH, temperature and aeration for enzyme production were 0.1 M KCl, pH 8, 35 degrees C and 150 rpm, respectively. The enzyme production was synchronized bacterial growth and reached a maximum level during the early-stationary phase in the basal medium containing 1 M NaCl. Triacylglycerols enhanced lipase production, while carbohydrates had inhibitory effects on it. The maximum lipase activity was obtained at pH 7.5, 50 degrees C and CaCl(2) concentration of 0.01 M. The enzyme was stable at pH range of 7.5-8 and retained 90% of its activity at 80 degrees C for 30 min. Different concentrations of NaNO(3), Na(2)SO(4), KCl and NaCl had no affect on lipase stability for 3 h. These results suggest that the lipase secreted by Salinivibrio sp. strain SA-2 is industrially important from the perspective of its tolerance to a broad temperature range, its moderate thermoactivity and its high tolerance to a wide range of salt concentrations (0-3 M NaCl).

  16. Comparison of the erosive potential of gastric juice and a carbonated drink in vitro.

    PubMed

    Bartlett, D W; Coward, P Y

    2001-11-01

    The aim of this study was to compare the erosive effect of gastric juice and a carbonated drink on enamel and dentine by measuring release of calcium from 30 hemisectioned teeth in vitro. In addition, the titrable acidity (mL of 0.05 M sodium hydroxide required to neutralize) and pH of the fluids was estimated. The mean pH of the seven gastric acid samples was 2.92 (range 1.2-6.78) and mean titratable acidity 0.68 mL (range 0.03-1.64). Both the pH and the titratable acidity of the gastric juice varied between patients all of whom suffered from symptoms of reflux disease. The carbonated drink had a pH of 2.45 and a titratable acidity of 0.29 mL. The median amount of calcium released by the gastric acids from enamel was 69.6 microg L-1 (interquartile range 5.4-144) and 62.4 microg L-1 (2.2-125.3) from dentine. The carbonated drink released 18.7 microg L-1 (13.4-23.4) and 18.6 microg L-1 (11.9-35.3), respectively. The differences in calcium release by gastric juice and the carbonated drink were statistically significant for both enamel (P < 0.005) and dentine (P < 0.01). It is concluded that gastric juice has a greater potential, per unit time, for erosion than a carbonated drink.

  17. A National Content Analysis of PhD Program Objectives, Structures, and Curricula: Do Programs Address the Full Range of Social Work's Needs?

    ERIC Educational Resources Information Center

    Drisko, James; Hunnicutt, Christie; Berenson, Laura

    2015-01-01

    The Group for the Advancement of Doctoral Education (GADE) promotes excellence in PhD education in Social Work. GADE's 2013 Quality Guidelines for PhD Programs heavily emphasize preparation for research. Little is known, however, about the details of the contemporary social work PhD program structure and curriculum. Several prior surveys have…

  18. pH-induced inversion of water-in-oil emulsions to oil-in-water high internal phase emulsions (HIPEs) using core cross-linked star (CCS) polymer as interfacial stabilizer.

    PubMed

    Chen, Qijing; Deng, Xiaoyong; An, Zesheng

    2014-06-01

    A pH-responsive core cross-linked star (CCS) polymer containing poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA) arms was used as an interfacial stabilizer for emulsions containing toluene (80 v%) and water (20 v%). In the pH range of 12.1-9.3, ordinary water-in-oil emulsions were formed. Intermediate multiple emulsions of oil-in-water-in-oil and water-in-oil-in-water were formed at pH 8.6 and 7.5, respectively. Further lowering the pH resulted in the formation of gelled high internal phase emulsions of oil-in-water type in the pH range of 6.4-0.6. The emulsion behavior was correlated with interfacial tension, conductivity and configuration of the CCS polymer at different pH. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Fingerprints of Both Watson-Crick and Hoogsteen Isomers of the Isolated (Cytosine-Guanine)H+ Pair.

    PubMed

    Cruz-Ortiz, Andrés F; Rossa, Maximiliano; Berthias, Francis; Berdakin, Matías; Maitre, Philippe; Pino, Gustavo A

    2017-11-16

     Gas phase protonated guanine-cytosine (CGH + ) pair was generated using an electrospray ionization source from solutions at two different pH (5.8 and 3.2). Consistent evidence from MS/MS fragmentation patterns and differential ion mobility spectra (DIMS) point toward the presence of two isomers of the CGH + pair, whose relative populations depend strongly on the pH of the solution. Gas phase infrared multiphoton dissociation (IRMPD) spectroscopy in the 900-1900 cm -1 spectral range further confirms that the Watson-Crick isomer is preferentially produced (91%) at pH = 5.8, while the Hoogsteen isomer predominates (66%) at pH = 3.2). These fingerprint signatures are expected to be useful for the development of new analytical methodologies and to trigger isomer selective photochemical studies of protonated DNA base pairs.

  20. Immunogenic activity of the fish tapeworm Pterobothrium heteracanthum (Trypanorhyncha: Pterobothriidae) in BALB/c mice.

    PubMed

    Mattos, D P B G; Verícimo, M A; Lopes, L M S; São Clemente, S C

    2015-03-01

    The aim of this study was to verify the immunogenicity of Pterobothrium heteracanthum (Cestoda: Trypanorhyncha) crude protein extract (PH-CPE) in BALB/c mice. The parasites were obtained from Micropogonias furnieri (Osteichthyes: Sciaenidae). Groups of six mice were each immunized with 10, 50 or 100 μg of PH-CPE, on days 0 and 35. Both specific IgG and IgE responses were developed after immunization. The immunoblot assay revealed that specific IgG recognizes PH-CPE proteins with two molecular weight ranges, 60-75 and 30-40 kDa, and that IgE recognizes larger proteins over 120 kDa. This appears to be the first report on the immunogenicity of metacestodes within the Pterobothriidae and that PH-CPE is a potential inducer of a specific IgE response.

  1. Direct observation of the discrete energy spectrum of two lanthanide-based single-chain magnets by far-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Haas, Sabrina; Heintze, Eric; Zapf, Sina; Gorshunov, Boris; Dressel, Martin; Bogani, Lapo

    2014-05-01

    The far-infrared optical transmission has been studied for two lanthanide-based single-chain magnets DyPhOPh and TbPhOPh in the frequency range between 3 and 80 cm-1. The spectra were acquired at temperatures between 2 and 80 K and magnetic fields up to 6 T. Based on their magnetic field dependence in DyPhOPh two of the observed absorption lines are identified as transitions inside the crystal field split Dy3+ ground multiplet 6H15/2, coupled to the neighboring spins. In TbPhOPh one transition was observed inside the crystal-field-split Tb3+ ground multiplet 7F6. The results allow a spectroscopic investigation of the role of single-ion anisotropy and exchange in Glauber dynamics.

  2. Pre-formulation studies of resveratrol

    PubMed Central

    Robinson, Keila; Mock, Charlotta; Liang, Dong

    2015-01-01

    Context Resveratrol, a natural compound found in grapes, has potential chemotherapy effects but very low oral bioavailability in humans. Objective To evaluate the solubility, pH stability profile, plasma protein binding (PPB) and stability in plasma for resveratrol. Methods Solubility of resveratrol was measured in 10 common solvents at 25 °C using HPLC. The solution state pH stability of resveratrol was assessed in various United States Pharmacopeia buffers ranging from pH 2 to 10 for 24 h at 37 °C. Samples were analyzed up to 24 h. Human PPB was determined using ultracentrifugation technique. Standard solutions of drug were spiked to blank human plasma to yield final concentrations of 5, 12.5 or 25 µg/mL for determination. Finally, stability of resveratrol in human and rat plasma was also assessed at 37 °C. Aliquots of blank plasma were spiked with a standard drug concentration to yield final plasma concentration of 50 µg/mL. Samples were analyzed for resveratrol concentration up to 96 h. Results Resveratrol has wide solubility ranging from 0.05 mg/mL in water to 374 mg/mL in polyethylene glycol 400 (PEG-400). Resveratrol is relatively stable above pH 6 and has maximum degradation at pH 9. The mean PPB of resveratrol is 98.3%. Resveratrol degrades in human and rat plasma in a first-order process with mean half lives of 54 and 25 h, respectively. Conclusion Resveratrol is more soluble in alcohol and PEG-400 and stable in acidic pH. It binds highly to plasma proteins and degrades slower in human then rat plasma. PMID:25224342

  3. Characterization of Polyelectrolyte Complex Formation Between Anionic and Cationic Poly(amino acids) and Their Potential Applications in pH-Dependent Drug Delivery.

    PubMed

    Folchman-Wagner, Zoë; Zaro, Jennica; Shen, Wei-Chiang

    2017-06-30

    Polyelectrolyte complexes (PECs) are self-assembling nano-sized constructs that offer several advantages over traditional nanoparticle carriers including controllable size, biodegradability, biocompatibility, and lack of toxicity, making them particularly appealing as tools for drug delivery. Here, we discuss potential application of PECs for drug delivery to the slightly acidic tumor microenvironment, a pH in the range of 6.5-7.0. Poly(l-glutamic acid) (E n ), poly(l-lysine) (K n ), and a copolymer composed of histidine-glutamic acid repeats ((HE) n ) were studied for their ability to form PECs, which were analyzed for size, polydispersity, and pH sensitivity. PECs showed concentration dependent size variation at residue lengths of E 51 /K 55 and E 135 /K 127 , however, no complexes were observed when E 22 or K 21 were used, even in combination with the longer chains. (HE) 20 /K 55 PECs could encapsulate daunomycin, were stable from pH 7.4-6.5, and dissociated completely between pH 6.5-6.0. Conversely, the E 51-dauno /K 55 PEC dissociated between pH 4.0 and 3.0. These values for pH-dependent particle dissociation are consistent with the p K a 's of the ionizable groups in each formulation and indicate that the specific pH-sensitivity of (HE) 20-dauno /K 55 PECs is mediated by incorporation of histidine. This response within a pH range that is physiologically relevant to the acidic tumors suggests a potential application of these PECs in pH-dependent drug delivery.

  4. pH-dependent kinetics of copper ions binding to amyloid-β peptide.

    PubMed

    Bin, Yannan; Chen, Shu; Xiang, Juan

    2013-02-01

    Interactions of amyloid-β peptide (Aβ) with Cu(2+) are known to be pH-dependent and believed to play a crucial role in the neurotoxicity of Alzheimer's disease (AD). Some research has revealed that injured brains with lowered pH have higher risks of developing AD. However, reported experiments were performed under neutral or mildly acidic conditions, and no reports about the affinity of Aβ-Cu(2+) below pH6.0. In this study, surface plasmon resonance (SPR) sensor with immobilized Aβ was used to investigate the formation of Aβ-Cu(2+) complexes under acidic pH conditions. Dissociation constants were calculated and shown to be pH-dependent, ranging from 3.5×10(-8)M to 8.7×10(-3)M in the pH range from 7.0 to 4.0. The physiological significance of K(d) was preliminarily investigated by monitoring the generation of OH() in aerobic solutions containing Aβ-Cu(2+) and Cu(2+). The results imply that acidic conditions could aggravate the oxidative stress in the presence of Cu(2+), and the weak affinities of Aβ-Cu(2+) under mildly acidic pH of 5.0-6.0 could further enhance the oxidative damage. However, the oxidative stress effect of Aβ is negligible due to the suppressed formation of Aβ-Cu(2+) below pH5.0. This work is useful for the in-depth understanding of the role of Aβ-Cu(2+) in AD neuropathology. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  5. Oxidation of Microcystins by Permanganate: pH and Temperature-Dependent Kinetics, Effect of DOM Characteristics, and Oxidation Mechanism Revisited.

    PubMed

    Kim, Min Sik; Lee, Hye-Jin; Lee, Ki-Myeong; Seo, Jiwon; Lee, Changha

    2018-05-23

    Oxidative degradation of six representative microcystins (MCs) (MC-RR, -LR, -YR, -LF, -LW and -LA) by potassium permanganate (KMnO4; Mn(VII)) was investigated, focusing on the temperature- and pH-dependent reaction kinetics, the effect of dissolved organic matter (DOM), and the oxidation mechanisms. Second-order rate constants for the reactions of the six MCs with Mn(VII) (kMn(VII),MC) were determined to be 160.4-520.1 M-1 s-1 (MC-RR > -LR  -YR > -LF  -LW > -LA) at pH 7.2 and 21°C. The kMn(VII),MC values exhibited activation energies ranging from 15.1 to 22.4 kJ mol-1. With increasing pH from 2 to 11, the kMn(VII),MC values decreased until pH 5, and plateaued over the pH range of 5-11, except for that of MC-YR (which increased at pH > 8). Species-specific second-order rate constants were calculated using predicted pKa values of MCs. The oxidation of MCs in natural waters was accurately predicted by the kinetic model using kMn(VII),MC and Mn(VII) exposure ([Mn(VII)]dt) values. Among different characteristics of DOM in natural waters, UV254, SUVA254, and the abundance of humic-like substances characterized by fluorescence spectroscopy exhibited good correlation with [Mn(VII)]dt. A thorough product study of MC-LR oxidation by Mn(VII) was performed using liquid chromatography-mass spectrometry.

  6. Electron transfer of quinone self-assembled monolayers on a gold electrode.

    PubMed

    Nagata, Morio; Kondo, Masaharu; Suemori, Yoshiharu; Ochiai, Tsuyoshi; Dewa, Takehisa; Ohtsuka, Toshiaki; Nango, Mamoru

    2008-06-15

    Dialkyl disulfide-linked naphthoquinone, (NQ-Cn-S)2, and anthraquinone, (AQ-Cn-S)2, derivatives with different spacer alkyl chains (Cn: n=2, 6, 12) were synthesized and these quinone derivatives were self-assembled on a gold electrode. The formation of self-assembled monolayers (SAMs) of these derivatives on a gold electrode was confirmed by infrared reflection-absorption spectroscopy (IR-RAS). Electron transfer between the derivatives and the gold electrode was studied by cyclic voltammetry. On the cyclic voltammogram a reversible redox reaction between quinone (Q) and hydroquinone (QH2) was clearly observed under an aqueous condition. The formal potentials for NQ and AQ derivatives were -0.48 and -0.58 V, respectively, that did not depend on the spacer length. The oxidation and reduction peak currents were strongly dependent on the spacer alkyl chain length. The redox behavior of quinone derivatives depended on the pH condition of the buffer solution. The pH dependence was in agreement with a theoretical value of E 1/2 (mV)=E'-59pH for 2H+/2e(-) process in the pH range 3-11. In the range higher than pH 11, the value was estimated with E 1/2 (mV)=E'-30pH , which may correspond to H+/2e(-) process. The tunneling barrier coefficients (beta) for NQ and AQ SAMs were determined to be 0.12 and 0.73 per methylene group (CH2), respectively. Comparison of the structures and the alkyl chain length of quinones derivatives on these electron transfers on the electrode is made.

  7. Sorption and biodegradation of six pharmaceutically active compounds under four different redox conditions.

    PubMed

    de Wilt, Arnoud; He, Yujie; Sutton, Nora; Langenhoff, Alette; Rijnaarts, Huub

    2018-02-01

    This study explored the removal of six pharmaceutically active compounds (PhACs) in lab-scale experiments with sediments under four redox conditions, namely aerobic, nitrate reducing, sulfate reducing, and methanogenic conditions using batch and column set-ups. Redox conditions were found to influence PhAC removal by sorption and biodegradation. The most optimal PhAC removal was observed at the outer ranges of the redox spectrum, i.e. either aerobic or deep anaerobic (sulfate reducing and methanogenic conditions), whereas nitrate reducing conditions were found least effective for PhACs biodegradation and sorption. For instance, sorption coefficient K d values for metoprolol in column experiments were 90, 65, 42 and 11 L/kg for sulfate reducing, methanogenic, aerobic and nitrate reducing conditions, respectively. For the same conditions K d values for propranolol were 101, 94, 55 and 55 L/kg, respectively. As expected, biodegradation efficiencies were highest under aerobic conditions, showing >99% removal of caffeine and naproxen, but no removal for propranolol and carbamazepine. The adaptive capacity of sediment was demonstrated by pre-exposure to PhACs leading to improved PhAC biodegradation. The results of this study indicate the necessity to combine diverse redox conditions, including aerobic conditions, for maximizing PhAC removal by sorption and biodegradation. Furthermore, our findings stress the need for additional treatment measures as recalcitrant PhACs are not effectively removed under any redox condition. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. 40 CFR 467.32 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 150.25 pH (1) (1) 1 Within the range of 7.0 to 10.0 at all times. Subpart C Solution Heat Treatment... wastewater in which case the pH shall be within the range of 6.0 to 10.0 at all times. Subpart C Press Heat...

  9. 40 CFR 467.32 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 150.25 pH (1) (1) 1 Within the range of 7.0 to 10.0 at all times. Subpart C Solution Heat Treatment... wastewater in which case the pH shall be within the range of 6.0 to 10.0 at all times. Subpart C Press Heat...

  10. High-performance cation-exchange chromatofocusing of proteins.

    PubMed

    Kang, Xuezhen; Frey, Douglas D

    2003-03-28

    Chromatofocusing using high-performance cation-exchange column packings, as opposed to the more commonly used anion-exchange column packings, is investigated with regard to the performance achieved and the range of applications possible. Linear or convex gradients in the range from pH 2.6 to 9 were formed using a variety of commercially available column packings that provide a buffering capacity in different pH ranges, and either polyampholytes or simple mixtures having a small number (three or fewer) of buffering species as the elution buffer. The resolutions achieved using cation-exchange or anion-exchange chromatofocusing were in general comparable, although for certain pairs of proteins better resolution could be achieved using one type of packing as compared to the other, evidently due to the way electrostatic charges are distributed on the protein surface. Several chromatofocusing methods were investigated that take advantage of the acid-base properties of commercially available cation-exchange column packings. These include the use of gradients with a composite shape, the use of very low pH ranges, and the use of elution buffers containing a single buffering species. The advantages of chromatofocusing over ion-exchange chromatography using a salt gradient at constant pH were illustrated by employing the former method and a cation-exchange column packing to separate beta-lactoglobulins A and B, which is a separation reported to be impossible using the latter method and a cation-exchange column packing. Trends in the apparent isoelectric points determined using cation- and anion-exchange chromatofocusing were interpreted using applicable theories. Results of this study indicate that cation-exchange chromatofocusing is a useful technique which is complementary to anion-exchange chromatofocusing and isoelectric focusing for separating proteins at both the analytical and preparative scales.

  11. Macroalgal response to a warmer ocean with higher CO2 concentration.

    PubMed

    Hernández, Celso A; Sangil, Carlos; Fanai, Alessandra; Hernández, José Carlos

    2018-05-01

    Primary production and respiration rates were studied for six seaweed species (Cystoseira abies-marina, Lobophora variegata, Pterocladiella capillacea, Canistrocarpus cervicornis, Padina pavonica and Corallina caespitosa) from Subtropical North-East Atlantic, to estimate the combined effects of different pH and temperature levels. Macroalgal samples were cultured at temperature and pH combinations ranging from current levels to those predicted for the next century (19, 21, 23, 25 °C, pH: 8.1, 7.7 and 7.4). Decreased pH had a positive effect on short-term production of the studied species. Raised temperatures had a more varied and species dependent effect on short term primary production. Thermophilic algae increased their production at higher temperatures, while temperate species were more productive at lower or present temperature conditions. Temperature also affected algal respiration rates, which were higher at low temperature levels. The results suggest that biomass and productivity of the more tropical species in coastal ecosystems would be enhanced by future ocean conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Comparative study of the functional properties of lupin, green pea, fava bean, hemp, and buckwheat flours as affected by pH

    PubMed Central

    Raikos, Vassilios; Neacsu, Madalina; Russell, Wendy; Duthie, Garry

    2014-01-01

    The demand for products of high nutritional value from sustainable sources is growing rapidly in the global food market. In this study, the effect of pH on the functional properties of lupin, green pea, fava bean, hemp, and buckwheat flours was investigated and compared with wheat flour. Functional properties included solubility, emulsifying and foaming properties, gelling ability, and water holding capacity (WHC). All flours had minimal solubility at pH 4 and their corresponding values increased with increasing pH. Emulsifying properties were improved at pH 10 for all samples and emulsion stability showed a similar trend. Increasing pH in the range 4–10 enhanced the foaming properties of the flours, particularly buckwheat and hemp. Wheat, green pea, buckwheat, and fava bean were more capable of forming firm gels compared with lupin and hemp, as indicated by least gelling concentrations (LGCs). The ranking of the water binding properties of the different types of flours were lupin>hemp>fava bean>buckwheat>green pea>wheat. Results indicate that underutilized flours from sustainable plant sources could be exploited by the food industry as functional food ingredients or as replacements of wheat flour for various food applications. Depending on the application, flour functionality may be effectively tailored by pH adjustment. PMID:25493199

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norton, R.S.; Cossins, A.I.; Kem, W.R.

    The solution properties of the polypeptide neurotoxin I from the sea anemone Stichodactyla helianthus (Sh I) have been investigated by high-resolution H nuclear magnetic resonance (NMR) spectroscopy at 300 MHz. The pH dependence of the spectra has been examined over the range 1.1-12.2 at 27{degree}C. Individual pK{sub a} values have been obtained for the {alpha}-ammonium group of Ala-1 (8.6) and the side chains of Glu-8 (3.7), Tyr-36 (10.9), and Tyr-37 (10.8). For the remaining seven carboxyl groups in the molecule, four pK{sub a} values can be clearly identified. The five Lys residues titrate in the range 10.5-11, but individual pK{submore » a} values could not be obtained because of peak overlap. Conformational changes associated with the protonation of carboxylates occur below pH 4, while in the alkaline pH range major unfolding occurs above pH 10. The molecule also unfolds at elevated temperatures. Exchange of the backbone amide protons has been monitored at various values of pH and temperature in the ranges pH 4-5 and 12-27{degree}C. Comparison of these properties of Sh I in solution with those of the related polypeptides anthopleurin A and Anemonia sulcata toxins I and II indicates that Sh I is less stable thermally and that there are some significant differences in the ionic interactions that maintain the tertiary structure. The solvent accessibility of aromatic residues has been probed with photochemically induced dynamic nuclear polarization NMR at 360 MHz.« less

  14. Fluorapatite crystal growth from modified seawater solutions

    NASA Astrophysics Data System (ADS)

    Van Cappellen, Philippe; Berner, Robert A.

    Seeded precipitation experiments were conducted in a pH/fluoride-stat system to study the crystal growth of fluorapatite ( FAP ) in carbonate-free NaCl-CaCl 2-NaF-Na 2HPO 4 solutions, at seawater calcium concentration, chlorinity, and pH. With increasing supersaturation, the dependence of the growth rate on the relative supersaturation changes from parabolic to exponential. This is interpreted as reflecting a transition in the crystal growth mechanism from growth at dislocation-induced surface steps to surface nucleation-controlled growth. The analysis of the kinetic data leads to a mineral-aqueous solution interfacial tension for FAP of 289 mJ/m 2. The Arrhenius activation energy of the growth reaction in the temperature range 12 to 35°C is 47 kJ/mol. The inhibition of FAP growth by Mg 2+ ions was investigated over a range of total dissolved Mg of 0 to 60 mM. At dissolved magnesium concentrations typical of marine pore waters (40-60 mM), the rate of FAP growth is 15 to 20 times slower than in the absence of Mg 2+, for the same degree of supersaturation, at 25 °C and pH = 8. The inhibitory effect can be explained by the blocking of growth sites at the surface of FAP crystals by adsorbed Mg 2+ ions. A simple Langmuir adsorption model for the retardation effect of Mg 2+ is supported by the results. The effect of pH on FAP growth was tested for pH values from 7 to 8.5. In this range, growth of FAP is catalyzed by hydrogen ions. The apparent growth rate constant is proportional to ( aH+) m where m, the rate order with respect to H +, is a non-integral number which depends on pH. At identical degrees of supersaturation, the growth rate of FAP at pH = 7 is nearly twice that at pH = 8. When corrected for bottom water temperatures, pore water pH, and the retardation of Mg 2+, the experimental growth rates predict that during burial in modern phosphatic sediments, apatite particles grow to sizes on the order of 0.1-10 μrn. The relatively slow growth kinetics of FAP are consistent with the observed small particle sizes of marine sedimentary apatite.

  15. Arsenic Removal and Its Chemistry in Batch Electrocoagulation Studies.

    PubMed

    Sharma, Anshul; Adapureddy, Sri Malini; Goel, Sudha

    2014-04-01

    The aim of this study was to evaluate the impact of different oxidizing agents like light, aeration (by mixing) and electrocoagulation (EC) on the oxidation of As (III) and its subsequent removal in an EC batch reactor. Arsenic solutions prepared using distilled water and groundwater were evaluated. Optimum pH and the effect of varying initial pH on As removal efficiency were also evaluated. MaximumAs (III) removal efficiency with EC, light and aeration was 97% from distilled water and 71% from groundwater. Other results show that EC alone resulted in 90% As removal efficiency in the absence of light and mixing from distilled water and 53.6% from groundwater. Removal with light and mixing but without EC resulted in only 26% As removal from distilled water and 29% from groundwater proving that electro-oxidation and coagulation were more effective in removing arsenic compared to the other oxidizing agents examined. Initial pH was varied from 5 to 10 in distilled water and from 3 to 12 in groundwater for evaluating arsenic removal efficiency by EC. The optimum initial pH for arsenic removal was 7 for distilled water and groundwater. For all initial pHs tested between 5 and 10 in distilled water, the final pH ranged between 7 and 8 indicating that the EC process tends towards near neutral pH under the conditions examined in this study.

  16. A Measurement and Modeling Study of Hair Partition of Neutral, Cationic, and Anionic Chemicals.

    PubMed

    Li, Lingyi; Yang, Senpei; Chen, Tao; Han, Lujia; Lian, Guoping

    2018-04-01

    Various neutral, cationic, and anionic chemicals contained in hair care products can be absorbed into hair fiber to modulate physicochemical properties such as color, strength, style, and volume. For environmental safety, there is also an interest in understanding hair absorption to wide chemical pollutants. There have been very limited studies on the absorption properties of chemicals into hair. Here, an experimental and modeling study has been carried out for the hair-water partition of a range of neutral, cationic, and anionic chemicals at different pH. The data showed that hair-water partition not only depends on the hydrophobicity of the chemical but also the pH. The partition of cationic chemicals to hair increased with pH, and this is due to their electrostatic interaction with hair increased from repulsion to attraction. For anionic chemicals, their hair-water partition coefficients decreased with increasing pH due to their electrostatic interaction with hair decreased from attraction to repulsion. Increase in pH did not change the partition of neutral chemicals significantly. Based on the new physicochemical insight of the pH effect on hair-water partition, a new quantitative structure property relationship model has been proposed, taking into account of both the hydrophobic interaction and electrostatic interaction of chemical with hair fiber. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  17. A validation study of public health knowledge, skills, social responsibility and applied learning.

    PubMed

    Vackova, Dana; Chen, Coco K; Lui, Juliana N M; Johnston, Janice M

    2018-06-22

    To design and validate a questionnaire to measure medical students' Public Health (PH) knowledge, skills, social responsibility and applied learning as indicated in the four domains recommended by the Association of Schools & Programmes of Public Health (ASPPH). A cross-sectional study was conducted to develop an evaluation tool for PH undergraduate education through item generation, reduction, refinement and validation. The 74 preliminary items derived from the existing literature were reduced to 55 items based on expert panel review which included those with expertise in PH, psychometrics and medical education, as well as medical students. Psychometric properties of the preliminary questionnaire were assessed as follows: frequency of endorsement for item variance; principal component analysis (PCA) with varimax rotation for item reduction and factor estimation; Cronbach's Alpha, item-total correlation and test-retest validity for internal consistency and reliability. PCA yielded five factors: PH Learning Experience (6 items); PH Risk Assessment and Communication (5 items); Future Use of Evidence in Practice (6 items); Recognition of PH as a Scientific Discipline (4 items); and PH Skills Development (3 items), explaining 72.05% variance. Internal consistency and reliability tests were satisfactory (Cronbach's Alpha ranged from 0.87 to 0.90; item-total correlation > 0.59). Lower paired test-retest correlations reflected instability in a social science environment. An evaluation tool for community-centred PH education has been developed and validated. The tool measures PH knowledge, skills, social responsibilities and applied learning as recommended by the internationally recognised Association of Schools & Programmes of Public Health (ASPPH).

  18. Norcyanine dyes with benzo[c,d]indolium moiety: Spectral sensitivity with pH change for fluorescence pH imaging in living cells.

    PubMed

    Guan, Li; Liu, Qi; Zhang, Borui; Wang, Lanying

    2017-01-01

    Fluorescence pH imaging in living cells is a rapidly expanding research direction, however, it relies on the development of pH-sensitive fluorescent imaging agents. Here four norcyanine dyes with benzo[c,d]indolium moiety, exhibiting high spectral sensitivity with pH changes, were synthesized for fluorescence pH imaging in living cells, and characterized by 1 H NMR, 13 C NMR, IR, UV-Vis and HRMS. The investigation of their spectral properties in methanol and water showed that the absorption and emission maxima were in the region 488-618nm and 583-651nm, respectively, and four dyes exhibited high photostability. The pH spectral titrations showed that selective dye D1 had pH-dependent absorption spectral changes within the pH range of 2.4 to 9.4, and high fluorescent spectral sensitivity at pH5.0-8.0, with a pK a of 5.0. A cell association study indicated that dye D1 exhibited no or mild cytotoxicity at the application dose and duration, and could be accumulated in cells and mainly distributed in the cytoplasm, giving red fluorescence imaging. In particular, dye D1 could achieve pH-dependent fluorescence imaging in living cells with the increase of pH from 3.0 to 8.0, at excitation wavelength of 543nm and receiving wavelength of 655-755nm, which was valuable for studying the weak acidic, neutral and weak alkaline biological tissue compartments. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Targeted nanosensor aided three-dimensional pH mapping in tumor spheroids using two-photon microscopy

    NASA Astrophysics Data System (ADS)

    Ray, Aniruddha; Lee, Yong-Eun Koo; Elbez, Remy; Kopelman, Raoul

    2012-03-01

    Tumors are generally characterized by a pH lower than the surrounding tissues. The mapping of tumor pH is of great importance as it plays a critical role in drug delivery and its effectiveness. Here we present a pH mapping technique in tumor spheroids, using targeted, ratiometric, fluorescent, pH nano-sensor that is based on two-photon excitation. Spheroids are micro-tumors that are widely used as an in-vitro three dimensional tumor model to study the different properties of the tumor for the purpose of drug delivery, therapy etc. The nanosensor consists of 8-Hydroxypyrene- 1,3,6-trisulfonic acid (HPTS), a pH sensitive dye, encapsulated in polyacrylamide hydrogel nanoparticle matrix and F3 peptide, conjugated to the nanoparticle's surface. The nanosensor has an average size of 68nm and contains approximately 0.5% dye by weight. The fluorescence intensity ratio, at the two-photon excitation wavelengths of 900nm and 750nm, increases linearly in the pH range from 6.0 to 8.0 and is used to determine the pH of the local environment. Our study reveals the pH distribution inside human cervix cancer spheroids (of different sizes) during the various stages of their formation. This information can be used to develop more efficient drug delivery mechanisms. The two-photon excitation used for this purpose is especially useful as it drastically minimizes both photobleaching and autofluorescence, thus leading to an increase in the signal-to-noise ratio. It also enables deep tissue imaging due to higher photon penetration depth.

  20. Effects of pH on contraction of rabbit fast and slow skeletal muscle fibers.

    PubMed Central

    Chase, P B; Kushmerick, M J

    1988-01-01

    We have investigated (a) effects of varying proton concentration on force and shortening velocity of glycerinated muscle fibers, (b) differences between these effects on fibers from psoas (fast) and soleus (slow) muscles, possibly due to differences in the actomyosin ATPase kinetic cycles, and (c) whether changes in intracellular pH explain altered contractility typically associated with prolonged excitation of fast, glycolytic muscle. The pH range was chosen to cover the physiological pH range (6.0-7.5) as well as pH 8.0, which has often been used for in vitro measurements of myosin ATPase activity. Steady-state isometric force increased monotonically (by about threefold) as pH was increased from pH 6.0; force in soleus (slow) fibers was less affected by pH than in psoas (fast) fibers. For both fiber types, the velocity of unloaded shortening was maximum near resting intracellular pH in vivo and was decreased at acid pH (by about one-half). At pH 6.0, force increased when the pH buffer concentration was decreased from 100 mM, as predicted by inadequate pH buffering and pH heterogeneity in the fiber. This heterogeneity was modeled by net proton consumption within the fiber, due to production by the actomyosin ATPase coupled to consumption by the creatine kinase reaction, with replenishment by diffusion of protons in equilibrium with a mobile buffer. Lactate anion had little mechanical effect. Inorganic phosphate (15 mM total) had an additive effect of depressing force that was similar at pH 7.1 and 6.0. By directly affecting the actomyosin interaction, decreased pH is at least partly responsible for the observed decreases in force and velocity in stimulated muscle with sufficient glycolytic capacity to decrease pH. Images FIGURE 1 PMID:2969265

Top