Sample records for studies computer science

  1. Using spatial principles to optimize distributed computing for enabling the physical science discoveries

    PubMed Central

    Yang, Chaowei; Wu, Huayi; Huang, Qunying; Li, Zhenlong; Li, Jing

    2011-01-01

    Contemporary physical science studies rely on the effective analyses of geographically dispersed spatial data and simulations of physical phenomena. Single computers and generic high-end computing are not sufficient to process the data for complex physical science analysis and simulations, which can be successfully supported only through distributed computing, best optimized through the application of spatial principles. Spatial computing, the computing aspect of a spatial cyberinfrastructure, refers to a computing paradigm that utilizes spatial principles to optimize distributed computers to catalyze advancements in the physical sciences. Spatial principles govern the interactions between scientific parameters across space and time by providing the spatial connections and constraints to drive the progression of the phenomena. Therefore, spatial computing studies could better position us to leverage spatial principles in simulating physical phenomena and, by extension, advance the physical sciences. Using geospatial science as an example, this paper illustrates through three research examples how spatial computing could (i) enable data intensive science with efficient data/services search, access, and utilization, (ii) facilitate physical science studies with enabling high-performance computing capabilities, and (iii) empower scientists with multidimensional visualization tools to understand observations and simulations. The research examples demonstrate that spatial computing is of critical importance to design computing methods to catalyze physical science studies with better data access, phenomena simulation, and analytical visualization. We envision that spatial computing will become a core technology that drives fundamental physical science advancements in the 21st century. PMID:21444779

  2. Using spatial principles to optimize distributed computing for enabling the physical science discoveries.

    PubMed

    Yang, Chaowei; Wu, Huayi; Huang, Qunying; Li, Zhenlong; Li, Jing

    2011-04-05

    Contemporary physical science studies rely on the effective analyses of geographically dispersed spatial data and simulations of physical phenomena. Single computers and generic high-end computing are not sufficient to process the data for complex physical science analysis and simulations, which can be successfully supported only through distributed computing, best optimized through the application of spatial principles. Spatial computing, the computing aspect of a spatial cyberinfrastructure, refers to a computing paradigm that utilizes spatial principles to optimize distributed computers to catalyze advancements in the physical sciences. Spatial principles govern the interactions between scientific parameters across space and time by providing the spatial connections and constraints to drive the progression of the phenomena. Therefore, spatial computing studies could better position us to leverage spatial principles in simulating physical phenomena and, by extension, advance the physical sciences. Using geospatial science as an example, this paper illustrates through three research examples how spatial computing could (i) enable data intensive science with efficient data/services search, access, and utilization, (ii) facilitate physical science studies with enabling high-performance computing capabilities, and (iii) empower scientists with multidimensional visualization tools to understand observations and simulations. The research examples demonstrate that spatial computing is of critical importance to design computing methods to catalyze physical science studies with better data access, phenomena simulation, and analytical visualization. We envision that spatial computing will become a core technology that drives fundamental physical science advancements in the 21st century.

  3. Factors influencing exemplary science teachers' levels of computer use

    NASA Astrophysics Data System (ADS)

    Hakverdi, Meral

    This study examines exemplary science teachers' use of technology in science instruction, factors influencing their level of computer use, their level of knowledge/skills in using specific computer applications for science instruction, their use of computer-related applications/tools during their instruction, and their students' use of computer applications/tools in or for their science class. After a relevant review of the literature certain variables were selected for analysis. These variables included personal self-efficacy in teaching with computers, outcome expectancy, pupil-control ideology, level of computer use, age, gender, teaching experience, personal computer use, professional computer use and science teachers' level of knowledge/skills in using specific computer applications for science instruction. The sample for this study includes middle and high school science teachers who received the Presidential Award for Excellence in Science Teaching Award (sponsored by the White House and the National Science Foundation) between the years 1997 and 2003 from all 50 states and U.S. territories. Award-winning science teachers were contacted about the survey via e-mail or letter with an enclosed return envelope. Of the 334 award-winning science teachers, usable responses were received from 92 science teachers, which made a response rate of 27.5%. Analysis of the survey responses indicated that exemplary science teachers have a variety of knowledge/skills in using computer related applications/tools. The most commonly used computer applications/tools are information retrieval via the Internet, presentation tools, online communication, digital cameras, and data collection probes. Results of the study revealed that students' use of technology in their science classroom is highly correlated with the frequency of their science teachers' use of computer applications/tools. The results of the multiple regression analysis revealed that personal self-efficacy related to the exemplary science teachers' level of computer use suggesting that computer use is dependent on perceived abilities at using computers. The teachers' use of computer-related applications/tools during class, and their personal self-efficacy, age, and gender are highly related with their level of knowledge/skills in using specific computer applications for science instruction. The teachers' level of knowledge/skills in using specific computer applications for science instruction and gender related to their use of computer-related applications/tools during class and the students' use of computer-related applications/tools in or for their science class. In conclusion, exemplary science teachers need assistance in learning and using computer-related applications/tool in their science class.

  4. Approaching Gender Parity: Women in Computer Science at Afghanistan's Kabul University

    ERIC Educational Resources Information Center

    Plane, Jandelyn

    2010-01-01

    This study explores the representation of women in computer science at the tertiary level through data collected about undergraduate computer science education at Kabul University in Afghanistan. Previous studies have theorized reasons for underrepresentation of women in computer science, and while many of these reasons are indeed present in…

  5. Academic computer science and gender: A naturalistic study investigating the causes of attrition

    NASA Astrophysics Data System (ADS)

    Declue, Timothy Hall

    Far fewer women than men take computer science classes in high school, enroll in computer science programs in college, or complete advanced degrees in computer science. The computer science pipeline begins to shrink for women even before entering college, but it is at the college level that the "brain drain" is the most evident numerically, especially in the first class taken by most computer science majors called "Computer Science 1" or CS-I. The result, for both academia and industry, is a pronounced technological gender disparity in academic and industrial computer science. The study revealed the existence of several factors influencing success in CS-I. First, and most clearly, the effect of attribution processes seemed to be quite strong. These processes tend to work against success for females and in favor of success for males. Likewise, evidence was discovered which strengthens theories related to prior experience and the perception that computer science has a culture which is hostile to females. Two unanticipated themes related to the motivation and persistence of successful computer science majors. The findings did not support the belief that females have greater logistical problems in computer science than males, or that females tend to have a different programming style than males which adversely affects the females' ability to succeed in CS-I.

  6. Non-Determinism: An Abstract Concept in Computer Science Studies

    ERIC Educational Resources Information Center

    Armoni, Michal; Gal-Ezer, Judith

    2007-01-01

    Non-determinism is one of the most important, yet abstract, recurring concepts of Computer Science. It plays an important role in Computer Science areas such as formal language theory, computability theory, distributed computing, and operating systems. We conducted a series of studies on the perception of non-determinism. In the current research,…

  7. Methodical Approaches to Teaching of Computer Modeling in Computer Science Course

    ERIC Educational Resources Information Center

    Rakhimzhanova, B. Lyazzat; Issabayeva, N. Darazha; Khakimova, Tiyshtik; Bolyskhanova, J. Madina

    2015-01-01

    The purpose of this study was to justify of the formation technique of representation of modeling methodology at computer science lessons. The necessity of studying computer modeling is that the current trends of strengthening of general education and worldview functions of computer science define the necessity of additional research of the…

  8. Central Computer Science Concepts to Research-Based Teacher Training in Computer Science: An Experimental Study

    ERIC Educational Resources Information Center

    Zendler, Andreas; Klaudt, Dieter

    2012-01-01

    The significance of computer science for economics and society is undisputed. In particular, computer science is acknowledged to play a key role in schools (e.g., by opening multiple career paths). The provision of effective computer science education in schools is dependent on teachers who are able to properly represent the discipline and whose…

  9. The Effects of Integrating Service Learning into Computer Science: An Inter-Institutional Longitudinal Study

    ERIC Educational Resources Information Center

    Payton, Jamie; Barnes, Tiffany; Buch, Kim; Rorrer, Audrey; Zuo, Huifang

    2015-01-01

    This study is a follow-up to one published in computer science education in 2010 that reported preliminary results showing a positive impact of service learning on student attitudes associated with success and retention in computer science. That paper described how service learning was incorporated into a computer science course in the context of…

  10. Women in computer science: An interpretative phenomenological analysis exploring common factors contributing to women's selection and persistence in computer science as an academic major

    NASA Astrophysics Data System (ADS)

    Thackeray, Lynn Roy

    The purpose of this study is to understand the meaning that women make of the social and cultural factors that influence their reasons for entering and remaining in study of computer science. The twenty-first century presents many new challenges in career development and workforce choices for both men and women. Information technology has become the driving force behind many areas of the economy. As this trend continues, it has become essential that U.S. citizens need to pursue a career in technologies, including the computing sciences. Although computer science is a very lucrative profession, many Americans, especially women, are not choosing it as a profession. Recent studies have shown no significant differences in math, technical and science competency between men and women. Therefore, other factors, such as social, cultural, and environmental influences seem to affect women's decisions in choosing an area of study and career choices. A phenomenological method of qualitative research was used in this study, based on interviews of seven female students who are currently enrolled in a post-secondary computer science program. Their narratives provided meaning into the social and cultural environments that contribute to their persistence in their technical studies, as well as identifying barriers and challenges that are faced by female students who choose to study computer science. It is hoped that the data collected from this study may provide recommendations for the recruiting, retention and support for women in computer science departments of U.S. colleges and universities, and thereby increase the numbers of women computer scientists in industry. Keywords: gender access, self-efficacy, culture, stereotypes, computer education, diversity.

  11. Hispanic women overcoming deterrents to computer science: A phenomenological study

    NASA Astrophysics Data System (ADS)

    Herling, Lourdes

    The products of computer science are important to all aspects of society and are tools in the solution of the world's problems. It is, therefore, troubling that the United States faces a shortage in qualified graduates in computer science. The number of women and minorities in computer science is significantly lower than the percentage of the U.S. population which they represent. The overall enrollment in computer science programs has continued to decline with the enrollment of women declining at a higher rate than that of men. This study addressed three aspects of underrepresentation about which there has been little previous research: addressing computing disciplines specifically rather than embedding them within the STEM disciplines, what attracts women and minorities to computer science, and addressing the issues of race/ethnicity and gender in conjunction rather than in isolation. Since women of underrepresented ethnicities are more severely underrepresented than women in general, it is important to consider whether race and ethnicity play a role in addition to gender as has been suggested by previous research. Therefore, this study examined what attracted Hispanic women to computer science specifically. The study determines whether being subjected to multiple marginalizations---female and Hispanic---played a role in the experiences of Hispanic women currently in computer science. The study found five emergent themes within the experiences of Hispanic women in computer science. Encouragement and role models strongly influenced not only the participants' choice to major in the field, but to persist as well. Most of the participants experienced a negative atmosphere and feelings of not fitting in while in college and industry. The interdisciplinary nature of computer science was the most common aspect that attracted the participants to computer science. The aptitudes participants commonly believed are needed for success in computer science are the Twenty-First Century skills problem solving, creativity, and critical thinking. While not all the participants had experience with computers or programming prior to attending college, experience played a role in the self-confidence of those who did.

  12. Computer Science Teacher Professional Development in the United States: A Review of Studies Published between 2004 and 2014

    ERIC Educational Resources Information Center

    Menekse, Muhsin

    2015-01-01

    While there has been a remarkable interest to make computer science a core K-12 academic subject in the United States, there is a shortage of K-12 computer science teachers to successfully implement computer sciences courses in schools. In order to enhance computer science teacher capacity, training programs have been offered through teacher…

  13. Educational NASA Computational and Scientific Studies (enCOMPASS)

    NASA Technical Reports Server (NTRS)

    Memarsadeghi, Nargess

    2013-01-01

    Educational NASA Computational and Scientific Studies (enCOMPASS) is an educational project of NASA Goddard Space Flight Center aimed at bridging the gap between computational objectives and needs of NASA's scientific research, missions, and projects, and academia's latest advances in applied mathematics and computer science. enCOMPASS achieves this goal via bidirectional collaboration and communication between NASA and academia. Using developed NASA Computational Case Studies in university computer science/engineering and applied mathematics classes is a way of addressing NASA's goals of contributing to the Science, Technology, Education, and Math (STEM) National Objective. The enCOMPASS Web site at http://encompass.gsfc.nasa.gov provides additional information. There are currently nine enCOMPASS case studies developed in areas of earth sciences, planetary sciences, and astrophysics. Some of these case studies have been published in AIP and IEEE's Computing in Science and Engineering magazines. A few university professors have used enCOMPASS case studies in their computational classes and contributed their findings to NASA scientists. In these case studies, after introducing the science area, the specific problem, and related NASA missions, students are first asked to solve a known problem using NASA data and past approaches used and often published in a scientific/research paper. Then, after learning about the NASA application and related computational tools and approaches for solving the proposed problem, students are given a harder problem as a challenge for them to research and develop solutions for. This project provides a model for NASA scientists and engineers on one side, and university students, faculty, and researchers in computer science and applied mathematics on the other side, to learn from each other's areas of work, computational needs and solutions, and the latest advances in research and development. This innovation takes NASA science and engineering applications to computer science and applied mathematics university classes, and makes NASA objectives part of the university curricula. There is great potential for growth and return on investment of this program to the point where every major university in the U.S. would use at least one of these case studies in one of their computational courses, and where every NASA scientist and engineer facing a computational challenge (without having resources or expertise to solve it) would use enCOMPASS to formulate the problem as a case study, provide it to a university, and get back their solutions and ideas.

  14. Factors Influencing Exemplary Science Teachers' Levels of Computer Use

    ERIC Educational Resources Information Center

    Hakverdi, Meral; Dana, Thomas M.; Swain, Colleen

    2011-01-01

    The purpose of this study was to examine exemplary science teachers' use of technology in science instruction, factors influencing their level of computer use, their level of knowledge/skills in using specific computer applications for science instruction, their use of computer-related applications/tools during their instruction, and their…

  15. Approaching gender parity: Women in computer science at Afghanistan's Kabul University

    NASA Astrophysics Data System (ADS)

    Plane, Jandelyn

    This study explores the representation of women in computer science at the tertiary level through data collected about undergraduate computer science education at Kabul University in Afghanistan. Previous studies have theorized reasons for underrepresentation of women in computer science, and while many of these reasons are indeed present in Afghanistan, they appear to hinder advancement to degree to a lesser extent. Women comprise at least 36% of each graduating class from KU's Computer Science Department; however, in 2007 women were 25% of the university population. In the US, women comprise over 50% of university populations while only graduating on average 25% women in undergraduate computer science programs. Representation of women in computer science in the US is 50% below the university rate, but at KU, it is 50% above the university rate. This mixed methods study of KU was conducted in the following three stages: setting up focus groups with women computer science students, distributing surveys to all students in the CS department, and conducting a series of 22 individual interviews with fourth year CS students. The analysis of the data collected and its comparison to literature on university/department retention in Science, Technology, Engineering and Mathematics gender representation and on women's education in underdeveloped Islamic countries illuminates KU's uncharacteristic representation of women in its Computer Science Department. The retention of women in STEM through the education pipeline has several characteristics in Afghanistan that differ from countries often studied in available literature. Few Afghan students have computers in their home and few have training beyond secretarial applications before considering studying CS at university. University students in Afghanistan are selected based on placement exams and are then assigned to an area of study, and financially supported throughout their academic career, resulting in a low attrition rate from the program. Gender and STEM literature identifies parental encouragement, stereotypes and employment perceptions as influential characteristics. Afghan women in computer science received significant parental encouragement even from parents with no computer background. They do not seem to be influenced by any negative "geek" stereotypes, but they do perceive limitations when considering employment after graduation.

  16. Ambient belonging: how stereotypical cues impact gender participation in computer science.

    PubMed

    Cheryan, Sapna; Plaut, Victoria C; Davies, Paul G; Steele, Claude M

    2009-12-01

    People can make decisions to join a group based solely on exposure to that group's physical environment. Four studies demonstrate that the gender difference in interest in computer science is influenced by exposure to environments associated with computer scientists. In Study 1, simply changing the objects in a computer science classroom from those considered stereotypical of computer science (e.g., Star Trek poster, video games) to objects not considered stereotypical of computer science (e.g., nature poster, phone books) was sufficient to boost female undergraduates' interest in computer science to the level of their male peers. Further investigation revealed that the stereotypical broadcast a masculine stereotype that discouraged women's sense of ambient belonging and subsequent interest in the environment (Studies 2, 3, and 4) but had no similar effect on men (Studies 3, 4). This masculine stereotype prevented women's interest from developing even in environments entirely populated by other women (Study 2). Objects can thus come to broadcast stereotypes of a group, which in turn can deter people who do not identify with these stereotypes from joining that group.

  17. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    Computational Study of Excited-State Phenomena in Energy Materials Center for X-ray Optics MSD Facilities Ion and Materials Physics Scattering and Instrumentation Science Centers Center for Computational Study of Sciences Centers Center for Computational Study of Excited-State Phenomena in Energy Materials Center for X

  18. African-American males in computer science---Examining the pipeline for clogs

    NASA Astrophysics Data System (ADS)

    Stone, Daryl Bryant

    The literature on African-American males (AAM) begins with a statement to the effect that "Today young Black men are more likely to be killed or sent to prison than to graduate from college." Why are the numbers of African-American male college graduates decreasing? Why are those enrolled in college not majoring in the science, technology, engineering, and mathematics (STEM) disciplines? This research explored why African-American males are not filling the well-recognized industry need for Computer Scientist/Technologists by choosing college tracks to these careers. The literature on STEM disciplines focuses largely on women in STEM, as opposed to minorities, and within minorities, there is a noticeable research gap in addressing the needs and opportunities available to African-American males. The primary goal of this study was therefore to examine the computer science "pipeline" from the African-American male perspective. The method included a "Computer Science Degree Self-Efficacy Scale" be distributed to five groups of African-American male students, to include: (1) fourth graders, (2) eighth graders, (3) eleventh graders, (4) underclass undergraduate computer science majors, and (5) upperclass undergraduate computer science majors. In addition to a 30-question self-efficacy test, subjects from each group were asked to participate in a group discussion about "African-American males in computer science." The audio record of each group meeting provides qualitative data for the study. The hypotheses include the following: (1) There is no significant difference in "Computer Science Degree" self-efficacy between fourth and eighth graders. (2) There is no significant difference in "Computer Science Degree" self-efficacy between eighth and eleventh graders. (3) There is no significant difference in "Computer Science Degree" self-efficacy between eleventh graders and lower-level computer science majors. (4) There is no significant difference in "Computer Science Degree" self-efficacy between lower-level computer science majors and upper-level computer science majors. (5) There is no significant difference in "Computer Science Degree" self-efficacy between each of the five groups of students. Finally, the researcher selected African-American male students attending six primary schools, including the predominately African-American elementary, middle and high school that the researcher attended during his own academic career. Additionally, a racially mixed elementary, middle and high school was selected from the same county in Maryland. Bowie State University provided both the underclass and upperclass computer science majors surveyed in this study. Of the five hypotheses, the sample provided enough evidence to support the claim that there are significant differences in the "Computer Science Degree" self-efficacy between each of the five groups of students. ANOVA analysis by question and total self-efficacy scores provided more results of statistical significance. Additionally, factor analysis and review of the qualitative data provide more insightful results. Overall, the data suggest 'a clog' may exist in the middle school level and students attending racially mixed schools were more confident in their computer, math and science skills. African-American males admit to spending lots of time on social networking websites and emailing, but are 'dis-aware' of the skills and knowledge needed to study in the computing disciplines. The majority of the subjects knew little, if any, AAMs in the 'computing discipline pipeline'. The collegian African-American males, in this study, agree that computer programming is a difficult area and serves as a 'major clog in the pipeline'.

  19. Democratizing Computer Science

    ERIC Educational Resources Information Center

    Margolis, Jane; Goode, Joanna; Ryoo, Jean J.

    2015-01-01

    Computer science programs are too often identified with a narrow stratum of the student population, often white or Asian boys who have access to computers at home. But because computers play such a huge role in our world today, all students can benefit from the study of computer science and the opportunity to build skills related to computing. The…

  20. Computer Science and Engineering Students Addressing Critical Issues Regarding Gender Differences in Computing: A Case Study

    ERIC Educational Resources Information Center

    Tsagala, Evrikleia; Kordaki, Maria

    2008-01-01

    This study focuses on how Computer Science and Engineering Students (CSESs) of both genders address certain critical issues for gender differences in the field of Computer Science and Engineering (CSE). This case study is based on research conducted on a sample of 99 Greek CSESs, 43 of which were women. More specifically, these students were asked…

  1. Computer Science and the Liberal Arts

    ERIC Educational Resources Information Center

    Shannon, Christine

    2010-01-01

    Computer science and the liberal arts have much to offer each other. Yet liberal arts colleges, in particular, have been slow to recognize the opportunity that the study of computer science provides for achieving the goals of a liberal education. After the precipitous drop in computer science enrollments during the first decade of this century,…

  2. Need Assessment of Computer Science and Engineering Graduates

    ERIC Educational Resources Information Center

    Surakka, Sami; Malmi, Lauri

    2005-01-01

    This case study considered the syllabus of the first and second year studies in computer science. The aim of the study was to reveal which topics covered in the syllabi were really needed during the following years of study or in working life. The program that was assessed in the study was a Masters program in computer science and engineering at a…

  3. The effects of integrating service learning into computer science: an inter-institutional longitudinal study

    NASA Astrophysics Data System (ADS)

    Payton, Jamie; Barnes, Tiffany; Buch, Kim; Rorrer, Audrey; Zuo, Huifang

    2015-07-01

    This study is a follow-up to one published in computer science education in 2010 that reported preliminary results showing a positive impact of service learning on student attitudes associated with success and retention in computer science. That paper described how service learning was incorporated into a computer science course in the context of the Students & Technology in Academia, Research, and Service (STARS) Alliance, an NSF-supported broadening participation in computing initiative that aims to diversify the computer science pipeline through innovative pedagogy and inter-institutional partnerships. The current paper describes how the STARS Alliance has expanded to diverse institutions, all using service learning as a vehicle for broadening participation in computing and enhancing attitudes and behaviors associated with student success. Results supported the STARS model of service learning for enhancing computing efficacy and computing commitment and for providing diverse students with many personal and professional development benefits.

  4. Studies in Mathematics, Volume 22. Studies in Computer Science.

    ERIC Educational Resources Information Center

    Pollack, Seymour V., Ed.

    The nine articles in this collection were selected because they represent concerns central to computer science, emphasize topics of particular interest to mathematicians, and underscore the wide range of areas deeply and continually affected by computer science. The contents consist of: "Introduction" (S. V. Pollack), "The…

  5. Gender differences in the use of computers, programming, and peer interactions in computer science classrooms

    NASA Astrophysics Data System (ADS)

    Stoilescu, Dorian; Egodawatte, Gunawardena

    2010-12-01

    Research shows that female and male students in undergraduate computer science programs view computer culture differently. Female students are interested more in the use of computers than in doing programming, whereas male students see computer science mainly as a programming activity. The overall purpose of our research was not to find new definitions for computer science culture but to see how male and female students see themselves involved in computer science practices, how they see computer science as a successful career, and what they like and dislike about current computer science practices. The study took place in a mid-sized university in Ontario. Sixteen students and two instructors were interviewed to get their views. We found that male and female views are different on computer use, programming, and the pattern of student interactions. Female and male students did not have any major issues in using computers. In computing programming, female students were not so involved in computing activities whereas male students were heavily involved. As for the opinions about successful computer science professionals, both female and male students emphasized hard working, detailed oriented approaches, and enjoying playing with computers. The myth of the geek as a typical profile of successful computer science students was not found to be true.

  6. An Investigation of Primary School Science Teachers' Use of Computer Applications

    ERIC Educational Resources Information Center

    Ocak, Mehmet Akif; Akdemir, Omur

    2008-01-01

    This study investigated the level and frequency of science teachers' use of computer applications as an instructional tool in the classroom. The manner and frequency of science teachers' use of computer, their perceptions about integration of computer applications, and other factors contributed to changes in their computer literacy are…

  7. The Assessment of Taiwanese College Students' Conceptions of and Approaches to Learning Computer Science and Their Relationships

    ERIC Educational Resources Information Center

    Liang, Jyh-Chong; Su, Yi-Ching; Tsai, Chin-Chung

    2015-01-01

    The aim of this study was to explore Taiwanese college students' conceptions of and approaches to learning computer science and then explore the relationships between the two. Two surveys, Conceptions of Learning Computer Science (COLCS) and Approaches to Learning Computer Science (ALCS), were administered to 421 college students majoring in…

  8. Hispanic Women Overcoming Deterrents to Computer Science: A Phenomenological Study

    ERIC Educational Resources Information Center

    Herling, Lourdes

    2011-01-01

    The products of computer science are important to all aspects of society and are tools in the solution of the world's problems. It is, therefore, troubling that the United States faces a shortage in qualified graduates in computer science. The number of women and minorities in computer science is significantly lower than the percentage of the…

  9. Meta-analysis of the effectiveness of computer-based laboratory versus traditional hands-on laboratory in college and pre-college science instructions

    NASA Astrophysics Data System (ADS)

    Onuoha, Cajetan O.

    The purpose of this research study was to determine the overall effectiveness of computer-based laboratory compared with the traditional hands-on laboratory for improving students' science academic achievement and attitudes towards science subjects at the college and pre-college levels of education in the United States. Meta-analysis was used to synthesis the findings from 38 primary research studies conducted and/or reported in the United States between 1996 and 2006 that compared the effectiveness of computer-based laboratory with the traditional hands-on laboratory on measures related to science academic achievements and attitudes towards science subjects. The 38 primary research studies, with total subjects of 3,824 generated a total of 67 weighted individual effect sizes that were used in this meta-analysis. The study found that computer-based laboratory had small positive effect sizes over the traditional hands-on laboratory (ES = +0.26) on measures related to students' science academic achievements and attitudes towards science subjects (ES = +0.22). It was also found that computer-based laboratory produced more significant effects on physical science subjects compared to biological sciences (ES = +0.34, +0.17).

  10. Exemplary Science Teachers' Use of Technology

    ERIC Educational Resources Information Center

    Hakverdi-Can, Meral; Dana, Thomas M.

    2012-01-01

    The purpose of this study is to examine exemplary science teachers' level of computer use, their knowledge/skills in using specific computer applications for science instruction, their use of computer-related applications/tools during their instruction, how often they required their students to use those applications in or for their science class…

  11. What Do Computer Science Students Think about Software Piracy?

    ERIC Educational Resources Information Center

    Konstantakis, Nikos I.; Palaigeorgiou, George E.; Siozos, Panos D.; Tsoukalas, Ioannis A.

    2010-01-01

    Today, software piracy is an issue of global importance. Computer science students are the future information and communication technologies professionals and it is important to study the way they approach this issue. In this article, we attempt to study attitudes, behaviours and the corresponding reasoning of computer science students in Greece…

  12. Programmers, professors, and parasites: credit and co-authorship in computer science.

    PubMed

    Solomon, Justin

    2009-12-01

    This article presents an in-depth analysis of past and present publishing practices in academic computer science to suggest the establishment of a more consistent publishing standard. Historical precedent for academic publishing in computer science is established through the study of anecdotes as well as statistics collected from databases of published computer science papers. After examining these facts alongside information about analogous publishing situations and standards in other scientific fields, the article concludes with a list of basic principles that should be adopted in any computer science publishing standard. These principles would contribute to the reliability and scientific nature of academic publications in computer science and would allow for more straightforward discourse in future publications.

  13. Equal Time for Women.

    ERIC Educational Resources Information Center

    Kolata, Gina

    1984-01-01

    Examines social influences which discourage women from pursuing studies in computer science, including monopoly of computer time by boys at the high school level, sexual harassment in college, movies, and computer games. Describes some initial efforts to encourage females of all ages to study computer science. (JM)

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    John Wooley; Herbert S. Lin

    This study is the first comprehensive NRC study that suggests a high-level intellectual structure for Federal agencies for supporting work at the biology/computing interface. The report seeks to establish the intellectual legitimacy of a fundamentally cross-disciplinary collaboration between biologists and computer scientists. That is, while some universities are increasingly favorable to research at the intersection, life science researchers at other universities are strongly impeded in their efforts to collaborate. This report addresses these impediments and describes proven strategies for overcoming them. An important feature of the report is the use of well-documented examples that describe clearly to individuals not trainedmore » in computer science the value and usage of computing across the biological sciences, from genes and proteins to networks and pathways, from organelles to cells, and from individual organisms to populations and ecosystems. It is hoped that these examples will be useful to students in the life sciences to motivate (continued) study in computer science that will enable them to be more facile users of computing in their future biological studies.« less

  15. Science-Technology Coupling: The Case of Mathematical Logic and Computer Science.

    ERIC Educational Resources Information Center

    Wagner-Dobler, Roland

    1997-01-01

    In the history of science, there have often been periods of sudden rapprochements between pure science and technology-oriented branches of science. Mathematical logic as pure science and computer science as technology-oriented science have experienced such a rapprochement, which is studied in this article in a bibliometric manner. (Author)

  16. A Case Study of the Introduction of Computer Science in NZ Schools

    ERIC Educational Resources Information Center

    Bell, Tim; Andreae, Peter; Robins, Anthony

    2014-01-01

    For many years computing in New Zealand schools was focused on teaching students how to use computers, and there was little opportunity for students to learn about programming and computer science as formal subjects. In this article we review a series of initiatives that occurred from 2007 to 2009 that led to programming and computer science being…

  17. The impact of computer-based versus "traditional" textbook science instruction on selected student learning outcomes

    NASA Astrophysics Data System (ADS)

    Rothman, Alan H.

    This study reports the results of research designed to examine the impact of computer-based science instruction on elementary school level students' science content achievement, their attitude about science learning, their level of critical thinking-inquiry skills, and their level of cognitive and English language development. The study compared these learning outcomes resulting from a computer-based approach compared to the learning outcomes from a traditional, textbook-based approach to science instruction. The computer-based approach was inherent in a curriculum titled The Voyage of the Mimi , published by The Bank Street College Project in Science and Mathematics (1984). The study sample included 209 fifth-grade students enrolled in three schools in a suburban school district. This sample was divided into three groups, each receiving one of the following instructional treatments: (a) Mixed-instruction primarily based on the use of a hardcopy textbook in conjunction with computer-based instructional materials as one component of the science course; (b) Non-Traditional, Technology-Based -instruction fully utilizing computer-based material; and (c) Traditional, Textbook-Based-instruction utilizing only the textbook as the basis for instruction. Pre-test, or pre-treatment, data related to each of the student learning outcomes was collected at the beginning of the school year and post-test data was collected at the end of the school year. Statistical analyses of pre-test data were used as a covariate to account for possible pre-existing differences with regard to the variables examined among the three student groups. This study concluded that non-traditional, computer-based instruction in science significantly improved students' attitudes toward science learning and their level of English language development. Non-significant, positive trends were found for the following student learning outcomes: overall science achievement and development of critical thinking-inquiry skills. These conclusions support the value of a non-traditional, computer-based approach to instruction, such as exemplified by The Voyage of the Mimi curriculum, and a recommendation for reform in science teaching that has recommended the use of computer technology to enhance learning outcomes from science instruction to assist in reversing the trend toward what has been perceived to be relatively poor science performance by American students, as documented by the 1996 Third International Mathematics and Science Study (TIMSS).

  18. Studying Computer Science in a Multidisciplinary Degree Programme: Freshman Students' Orientation, Knowledge, and Background

    ERIC Educational Resources Information Center

    Kautz, Karlheinz; Kofoed, Uffe

    2004-01-01

    Teachers at universities are facing an increasing disparity in students' prior IT knowledge and, at the same time, experience a growing disengagement of the students with regard to involvement in study activities. As computer science teachers in a joint programme in computer science and business administration, we made a number of similar…

  19. The Effect of Teacher Involvement on Student Performance in a Computer-Based Science Simulation.

    ERIC Educational Resources Information Center

    Waugh, Michael L.

    Designed to investigate whether or not science teachers can positively influence student achievement in, and attitude toward, science, this study focused on a specific teaching strategy and utilization of a computer-based simulation. The software package used in the study was the simulation, Volcanoes, by Earthware Computer Services. The sample…

  20. Increasing Diversity in Computer Science: Acknowledging, yet Moving Beyond, Gender

    NASA Astrophysics Data System (ADS)

    Larsen, Elizabeth A.; Stubbs, Margaret L.

    Lack of diversity within the computer science field has, thus far, been examined most fully through the lens of gender. This article is based on a follow-on to Margolis and Fisher's (2002) study and includes interviews with 33 Carnegie Mellon University students from the undergraduate senior class of 2002 in the School of Computer Science. We found evidence of similarities among the perceptions of these women and men on definitions of computer science, explanations for the notoriously low proportion of women in the field, characterizations of a typical computer science student, impressions of recent curricular changes, a sense of the atmosphere/culture in the program, views of the Women@SCS campus organization, and suggestions for attracting and retaining well-rounded students in computer science. We conclude that efforts to increase diversity in the computer science field will benefit from a more broad-based approach that considers, but is not limited to, notions of gender difference.

  1. Diagnosing Pre-Service Science Teachers' Understanding of Chemistry Concepts by Using Computer-Mediated Predict-Observe-Explain Tasks

    ERIC Educational Resources Information Center

    Sesn, Burcin Acar

    2013-01-01

    The purpose of this study was to investigate pre-service science teachers' understanding of surface tension, cohesion and adhesion forces by using computer-mediated predict-observe-explain tasks. 22 third-year pre-service science teachers participated in this study. Three computer-mediated predict-observe-explain tasks were developed and applied…

  2. Predicting Computer Science Ph.D. Completion: A Case Study

    ERIC Educational Resources Information Center

    Cox, G. W.; Hughes, W. E., Jr.; Etzkorn, L. H.; Weisskopf, M. E.

    2009-01-01

    This paper presents the results of an analysis of indicators that can be used to predict whether a student will succeed in a Computer Science Ph.D. program. The analysis was conducted by studying the records of 75 students who have been in the Computer Science Ph.D. program of the University of Alabama in Huntsville. Seventy-seven variables were…

  3. A Review of Computer Science Resources for Learning and Teaching with K-12 Computing Curricula: An Australian Case Study

    ERIC Educational Resources Information Center

    Falkner, Katrina; Vivian, Rebecca

    2015-01-01

    To support teachers to implement Computer Science curricula into classrooms from the very first year of school, teachers, schools and organisations seek quality curriculum resources to support implementation and teacher professional development. Until now, many Computer Science resources and outreach initiatives have targeted K-12 school-age…

  4. Technology, Pedagogy, and Epistemology: Opportunities and Challenges of Using Computer Modeling and Simulation Tools in Elementary Science Methods

    ERIC Educational Resources Information Center

    Schwarz, Christina V.; Meyer, Jason; Sharma, Ajay

    2007-01-01

    This study infused computer modeling and simulation tools in a 1-semester undergraduate elementary science methods course to advance preservice teachers' understandings of computer software use in science teaching and to help them learn important aspects of pedagogy and epistemology. Preservice teachers used computer modeling and simulation tools…

  5. Prospective Students' Reactions to the Presentation of the Computer Science Major

    ERIC Educational Resources Information Center

    Weaver, Daniel Scott

    2010-01-01

    The number of students enrolling in Computer Science in colleges and Universities has declined since its peak in the early 2000s. Some claim contributing factors that intimate that prospective students fear the lack of employment opportunities if they study computing in college. However, the lack of understanding of what Computer Science is and…

  6. Computer Access and Computer Use for Science Performance of Racial and Linguistic Minority Students

    ERIC Educational Resources Information Center

    Chang, Mido; Kim, Sunha

    2009-01-01

    This study examined the effects of computer access and computer use on the science achievement of elementary school students, with focused attention on the effects for racial and linguistic minority students. The study used the Early Childhood Longitudinal Study (ECLS-K) database and conducted statistical analyses with proper weights and…

  7. A review of Computer Science resources for learning and teaching with K-12 computing curricula: an Australian case study

    NASA Astrophysics Data System (ADS)

    Falkner, Katrina; Vivian, Rebecca

    2015-10-01

    To support teachers to implement Computer Science curricula into classrooms from the very first year of school, teachers, schools and organisations seek quality curriculum resources to support implementation and teacher professional development. Until now, many Computer Science resources and outreach initiatives have targeted K-12 school-age children, with the intention to engage children and increase interest, rather than to formally teach concepts and skills. What is the educational quality of existing Computer Science resources and to what extent are they suitable for classroom learning and teaching? In this paper, an assessment framework is presented to evaluate the quality of online Computer Science resources. Further, a semi-systematic review of available online Computer Science resources was conducted to evaluate resources available for classroom learning and teaching and to identify gaps in resource availability, using the Australian curriculum as a case study analysis. The findings reveal a predominance of quality resources, however, a number of critical gaps were identified. This paper provides recommendations and guidance for the development of new and supplementary resources and future research.

  8. Closing the race and gender gaps in computer science education

    NASA Astrophysics Data System (ADS)

    Robinson, John Henry

    Life in a technological society brings new paradigms and pressures to bear on education. These pressures are magnified for underrepresented students and must be addressed if they are to play a vital part in society. Educational pipelines need to be established to provide at risk students with the means and opportunity to succeed in science, technology, engineering, and mathematics (STEM) majors. STEM educational pipelines are programs consisting of components that seek to facilitate students' completion of a college degree by providing access to higher education, intervention, mentoring, support infrastructure, and programs that encourage academic success. Successes in the STEM professions mean that more educators, scientist, engineers, and researchers will be available to add diversity to the professions and to provide role models for future generations. The issues that the educational pipelines must address are improving at risk groups' perceptions and awareness of the math, science, and engineering professions. Additionally, the educational pipelines must provide intervention in math preparation, overcome gender and race socialization, and provide mentors and counseling to help students achieve better self perceptions and provide positive role models. This study was designed to explorer the underrepresentation of minorities and women in the computer science major at Rowan University through a multilayered action research methodology. The purpose of this research study was to define and understand the needs of underrepresented students in computer science, to examine current policies and enrollment data for Rowan University, to develop a historical profile of the Computer Science program from the standpoint of ethnicity and gender enrollment to ascertain trends in students' choice of computer science as a major, and an attempt to determine if raising awareness about computer science for incoming freshmen, and providing an alternate route into the computer science major will entice more women and minorities to pursue a degree in computer science at Rowan University. Finally, this study examined my espoused leadership theories and my leadership theories in use through reflective practices as I progressed through the cycles of this project. The outcomes of this study indicated a large downward trend in women enrollment in computer science and a relatively flat trend in minority enrollment. The enrollment data at Rowan University was found to follow a nationwide trend for underrepresented students' enrollment in STEM majors. The study also indicated that students' mental models are based upon their race and gender socialization and their understanding of the world and society. The mental models were shown to play a large role in the students' choice of major. Finally, a computer science pipeline was designed and piloted as part of this study in an attempt to entice more students into the major and facilitate their success. Additionally, the mental models of the participants were challenged through interactions to make them aware of what possibilities are available with a degree in computer science. The entire study was wrapped in my leadership, which was practiced and studied over the course of this work.

  9. The Role of Physicality in Rich Programming Environments

    ERIC Educational Resources Information Center

    Liu, Allison S.; Schunn, Christian D.; Flot, Jesse; Shoop, Robin

    2013-01-01

    Computer science proficiency continues to grow in importance, while the number of students entering computer science-related fields declines. Many rich programming environments have been created to motivate student interest and expertise in computer science. In the current study, we investigated whether a recently created environment, Robot…

  10. Concept Learning through Image Processing.

    ERIC Educational Resources Information Center

    Cifuentes, Lauren; Yi-Chuan, Jane Hsieh

    This study explored computer-based image processing as a study strategy for middle school students' science concept learning. Specifically, the research examined the effects of computer graphics generation on science concept learning and the impact of using computer graphics to show interrelationships among concepts during study time. The 87…

  11. High School Students Learning University Level Computer Science on the Web: A Case Study of the "DASK"-Model

    ERIC Educational Resources Information Center

    Grandell, Linda

    2005-01-01

    Computer science is becoming increasingly important in our society. Meta skills, such as problem solving and logical and algorithmic thinking, are emphasized in every field, not only in the natural sciences. Still, largely due to gaps in tuition, common misunderstandings exist about the true nature of computer science. These are especially…

  12. Debunking the Computer Science Digital Library: Lessons Learned in Collection Development at Seneca College of Applied Arts & Technology

    ERIC Educational Resources Information Center

    Buczynski, James Andrew

    2005-01-01

    Developing a library collection to support the curriculum of Canada's largest computer studies school has debunked many myths about collecting computer science and technology information resources. Computer science students are among the heaviest print book and e-book users in the library. Circulation statistics indicate that the demand for print…

  13. Optimists Have More Fun, but Do They Learn Better? On the Influence of Emotional and Social Factors on Learning Introductory Computer Science

    ERIC Educational Resources Information Center

    Bennedsen, Jens; Caspersen, Michael E.

    2008-01-01

    In order to better understand predictors of success and, when possible, improve the design of the first year computer science courses at university to increase the likelihood of success, we study a number of factors that may potentially indicate students' computer science aptitude. Based on findings in general education, we have studied the…

  14. After Installation: Ubiquitous Computing and High School Science in Three Experienced, High-Technology Schools

    ERIC Educational Resources Information Center

    Drayton, Brian; Falk, Joni K.; Stroud, Rena; Hobbs, Kathryn; Hammerman, James

    2010-01-01

    There are few studies of the impact of ubiquitous computing on high school science, and the majority of studies of ubiquitous computing report only on the early stages of implementation. The present study presents data on 3 high schools with carefully elaborated ubiquitous computing systems that have gone through at least one "obsolescence cycle"…

  15. New Pedagogies on Teaching Science with Computer Simulations

    ERIC Educational Resources Information Center

    Khan, Samia

    2011-01-01

    Teaching science with computer simulations is a complex undertaking. This case study examines how an experienced science teacher taught chemistry using computer simulations and the impact of his teaching on his students. Classroom observations over 3 semesters, teacher interviews, and student surveys were collected. The data was analyzed for (1)…

  16. Case Studies of Liberal Arts Computer Science Programs

    ERIC Educational Resources Information Center

    Baldwin, D.; Brady, A.; Danyluk, A.; Adams, J.; Lawrence, A.

    2010-01-01

    Many undergraduate liberal arts institutions offer computer science majors. This article illustrates how quality computer science programs can be realized in a wide variety of liberal arts settings by describing and contrasting the actual programs at five liberal arts colleges: Williams College, Kalamazoo College, the State University of New York…

  17. Gender Digital Divide and Challenges in Undergraduate Computer Science Programs

    ERIC Educational Resources Information Center

    Stoilescu, Dorian; McDougall, Douglas

    2011-01-01

    Previous research revealed a reduced number of female students registered in computer science studies. In addition, the female students feel isolated, have reduced confidence, and underperform. This article explores differences between female and male students in undergraduate computer science programs in a mid-size university in Ontario. Based on…

  18. Need Assessment of Computer Science and Engineering Graduates

    NASA Astrophysics Data System (ADS)

    Surakka, Sami; Malmi, Lauri

    2005-06-01

    This case study considered the syllabus of the first and second year studies in computer science. The aim of the study was to reveal which topics covered in the syllabi were really needed during the following years of study or in working life. The program that was assessed in the study was a Masters program in computer science and engineering at a university of technology in Finland. The necessity of different subjects for the advanced studies (years 3? ?5) and for working life was assessed using four content analyses: (a) the course catalog of the institution where this study was carried out, (b) employment reports that were attached to the applications for internship credits, (c) masters theses, and (d) job advertisements in a newspaper. The results of the study imply that the necessity of physics for the advanced study and work was very low compared to the extent to which it was studied. On the other hand, the necessity for mathematics was moderate, and it had remained quite steady during the period 1989? ?2002. The most necessary computer science topic was programming. Also telecommunications and networking was needed often, whereas theoretical computer science was needed quite rarely.

  19. Effects of a Teacher Professional Development Program on Science Teachers' Views about Using Computers in Teaching and Learning

    ERIC Educational Resources Information Center

    Çetin, Nagihan Imer

    2016-01-01

    The purpose of this study was to examine science teachers' level of using computers in teaching and the impact of a teacher professional development program (TPDP) on their views regarding utilizing computers in science education. Forty-three in-service science teachers from different regions of Turkey attended a 5 day TPDP. The TPDP was…

  20. Sundials in the shade: A study of women's persistence in the first year of a computer science program in a selective university

    NASA Astrophysics Data System (ADS)

    Powell, Rita Manco

    Currently women are underrepresented in departments of computer science, making up approximately 18% of the undergraduate enrollment in selective universities. Most attrition in computer science occurs early in this major, in the freshman and sophomore years, and women drop out in disproportionately greater numbers than their male counterparts. Taking an ethnographic approach to investigating women's experiences and progress in the first year courses in the computer science major at the University of Pennsylvania, this study examined the pre-college influences that led these women to the major and the nature of their experiences in and outside of class with faculty, peers, and academic support services. This study sought an understanding of the challenges these women faced in the first year of the major with the goal of informing institutional practice about how to best support their persistence. The research reviewed for this study included patterns of leaving majors in science, math and engineering (Seymour & Hewitt 1997), the high school preparation needed to pursue math and engineering majors in college (Strenta, Elliott, Adair, Matier, & Scott, 1994), and intervention programs that have positively impacted persistence of women in computer science (Margolis & Fisher, 2002). The research method of this study employed a series of personal interviews over the course of one calendar year with fourteen first year women who had either declared on intended to declare the computer science major in the School of Engineering and Applied Science at the University of Pennsylvania. Other data sources were focus groups and personal interviews with faculty, administrators, admissions and student life professionals, teaching assistants, female graduate students, and male first year students at the University of Pennsylvania. This study found that the women in this study group came to the University of Pennsylvania with a thorough grounding in mathematics, but many either had an inadequate background in computer science, or at least perceived inadequacies in their background, which prevented them from beginning the major on an equal footing with their mostly male peers and caused some to lose confidence and consequently interest in the major. Issues also emanated from their gender-minority status in the Computer and Information Science Department, causing them to be socially isolated from their peers and further weakening their resolve to persist. These findings suggest that female first year students could benefit from multiple pathways into the major designed for students with varying degrees of prior experience with computer science. In addition, a computer science community within the department characterized by more frequent interaction and collaboration with faculty and peers could positively impact women's persistence in the major.

  1. When Life and Learning Do Not Fit: Challenges of Workload and Communication in Introductory Computer Science Online

    ERIC Educational Resources Information Center

    Benda, Klara; Bruckman, Amy; Guzdial, Mark

    2012-01-01

    We present the results of an interview study investigating student experiences in two online introductory computer science courses. Our theoretical approach is situated at the intersection of two research traditions: "distance and adult education research," which tends to be sociologically oriented, and "computer science education…

  2. Stateless Programming as a Motif for Teaching Computer Science

    ERIC Educational Resources Information Center

    Cohen, Avi

    2004-01-01

    With the development of XML Web Services, the Internet could become an integral part of and the basis for teaching computer science and software engineering. The approach has been applied to a university course for students studying introduction to computer science from the point of view of software development in a stateless, Internet…

  3. BIOCOMPUTATION: some history and prospects.

    PubMed

    Cull, Paul

    2013-06-01

    At first glance, biology and computer science are diametrically opposed sciences. Biology deals with carbon based life forms shaped by evolution and natural selection. Computer Science deals with electronic machines designed by engineers and guided by mathematical algorithms. In this brief paper, we review biologically inspired computing. We discuss several models of computation which have arisen from various biological studies. We show what these have in common, and conjecture how biology can still suggest answers and models for the next generation of computing problems. We discuss computation and argue that these biologically inspired models do not extend the theoretical limits on computation. We suggest that, in practice, biological models may give more succinct representations of various problems, and we mention a few cases in which biological models have proved useful. We also discuss the reciprocal impact of computer science on biology and cite a few significant contributions to biological science. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. Advanced Computing for Science.

    ERIC Educational Resources Information Center

    Hut, Piet; Sussman, Gerald Jay

    1987-01-01

    Discusses some of the contributions that high-speed computing is making to the study of science. Emphasizes the use of computers in exploring complicated systems without the simplification required in traditional methods of observation and experimentation. Provides examples of computer assisted investigations in astronomy and physics. (TW)

  5. Girls in computer science: A female only introduction class in high school

    NASA Astrophysics Data System (ADS)

    Drobnis, Ann W.

    This study examined the impact of an all girls' classroom environment in a high school introductory computer science class on the student's attitudes towards computer science and their thoughts on future involvement with computer science. It was determined that an all girls' introductory class could impact the declining female enrollment and female students' efficacy towards computer science. This research was conducted in a summer school program through a regional magnet school for science and technology which these students attend during the school year. Three different groupings of students were examined for the research: female students in an all girls' class, female students in mixed-gender classes and male students in mixed-gender classes. A survey, Attitudes about Computers and Computer Science (ACCS), was designed to obtain an understanding of the students' thoughts, preconceptions, attitude, knowledge of computer science, and future intentions around computer science, both in education and career. Students in all three groups were administered the ACCS prior to taking the class and upon completion of the class. In addition, students in the all girls' class wrote in a journal throughout the course, and some of those students were also interviewed upon completion of the course. The data was analyzed using quantitative and qualitative techniques. While there were no major differences found in the quantitative data, it was determined that girls in the all girls' class were truly excited by what they had learned and were more open to the idea of computer science being a part of their future.

  6. The Effect of In-Service Training of Computer Science Teachers on Scratch Programming Language Skills Using an Electronic Learning Platform on Programming Skills and the Attitudes towards Teaching Programming

    ERIC Educational Resources Information Center

    Alkaria, Ahmed; Alhassan, Riyadh

    2017-01-01

    This study was conducted to examine the effect of in-service training of computer science teachers in Scratch language using an electronic learning platform on acquiring programming skills and attitudes towards teaching programming. The sample of this study consisted of 40 middle school computer science teachers. They were assigned into two…

  7. The role of physicality in rich programming environments

    NASA Astrophysics Data System (ADS)

    Liu, Allison S.; Schunn, Christian D.; Flot, Jesse; Shoop, Robin

    2013-12-01

    Computer science proficiency continues to grow in importance, while the number of students entering computer science-related fields declines. Many rich programming environments have been created to motivate student interest and expertise in computer science. In the current study, we investigated whether a recently created environment, Robot Virtual Worlds (RVWs), can be used to teach computer science principles within a robotics context by examining its use in high-school classrooms. We also investigated whether the lack of physicality in these environments impacts student learning by comparing classrooms that used either virtual or physical robots for the RVW curriculum. Results suggest that the RVW environment leads to significant gains in computer science knowledge, that virtual robots lead to faster learning, and that physical robots may have some influence on algorithmic thinking. We discuss the implications of physicality in these programming environments for learning computer science.

  8. A Comparative Study to Evaluate the Effectiveness of Computer Assisted Instruction (CAI) versus Class Room Lecture (RL) for Computer Science at ICS Level

    ERIC Educational Resources Information Center

    Kausar, Tayyaba; Choudhry, Bushra Naoreen; Gujjar, Aijaz Ahmed

    2008-01-01

    This study was aimed to evaluate the effectiveness of CAI vs. classroom lecture for computer science at ICS level. The objectives were to compare the learning effects of two groups with class room lecture and computer assisted instruction studying the same curriculum and the effects of CAI and CRL in terms of cognitive development. Hypothesis of…

  9. A Comparative Study to Evaluate the Effectiveness of Computer Assisted Instruction (CAI) versus Class Room Lecture (CRL) for Computer Science at ICS Level

    ERIC Educational Resources Information Center

    Kausar, Tayyaba; Choudhry, Bushra Naoreen; Gujjar, Aijaz Ahmed

    2008-01-01

    This study was aimed to evaluate the effectiveness of CAI vs. classroom lecture for computer science at ICS level. The objectives were to compare the learning effects of two groups with class room lecture and computer assisted instruction studying the same curriculum and the effects of CAI and CRL in terms of cognitive development. Hypothesis of…

  10. The Computational Estimation and Instructional Perspectives of Elementary School Teachers

    ERIC Educational Resources Information Center

    Tsao, Yea-Ling; Pan, Ting-Rung

    2013-01-01

    The purpose of this study is to investigate teachers' understanding and knowledge of computational estimation, and teaching practice toward to computational estimation. There are six fifth-grade elementary teachers who participated in this study; three teachers with mathematics/ science major and three teachers with non-mathematics/science major.…

  11. Correlates of Success in Introductory Programming: A Study with Middle School Students

    ERIC Educational Resources Information Center

    Qian, Yizhou; Lehman, James D.

    2016-01-01

    The demand for computing professionals in the workplace has led to increased attention to computer science education, and introductory computer science courses have been introduced at different levels of education. This study investigated the relationship between gender, academic performance in non-programming subjects, and programming learning…

  12. Is There Such a Thing as Gender and Ethnicity of Computing?

    ERIC Educational Resources Information Center

    Turner, Eva

    2000-01-01

    Discussion of the absence of women and minority groups in computer science and information technology focuses on a study conducted at Middlesex University (England) that investigated how gender and ethnicity connected to computing are perceived by computing science students and how this may influence their decision as future computer scientists…

  13. Alice in Oman: A Study on Object-First Approaches in Computer Science Education

    ERIC Educational Resources Information Center

    Hayat, Khizar; Al-Shukaili, Naeem Ali; Sultan, Khalid

    2017-01-01

    The success of university-level education depends on the quality of underlying school education and any deficiency therein may be detrimental to a student's career. This may be more glaring with Computer Science education, given its mercurial nature. In the developing countries, the Computer Science school curricula are usually stuffed with…

  14. Using Educational Computer Games in the Classroom: Science Teachers' Experiences, Attitudes, Perceptions, Concerns, and Support Needs

    ERIC Educational Resources Information Center

    An, Yun-Jo; Haynes, Linda; D'Alba, Adriana; Chumney, Frances

    2016-01-01

    Science teachers' experiences, attitudes, perceptions, concerns, and support needs related to the use of educational computer games were investigated in this study. Data were collected from an online survey, which was completed by 111 science teachers. The results showed that 73% of participants had used computer games in teaching. Participants…

  15. Examination and Implementation of a Proposal for a Ph.D. Program in Administrative Sciences

    DTIC Science & Technology

    1992-03-01

    Review of two proposals recently approved by the Academic Council (i.e., Computer Science and Mathematics Departments). C. SCOPE OF THE STUDY Since WWII...and through the computer age, the application of administrative science theory and methodologies from the behavioral sciences and quantitative...roles in the U.S. Navy and DoD, providing people who firmly understand the technical and organizational aspects of computer -based systems which support

  16. Implicit Theories of Creativity in Computer Science in the United States and China

    ERIC Educational Resources Information Center

    Tang, Chaoying; Baer, John; Kaufman, James C.

    2015-01-01

    To study implicit concepts of creativity in computer science in the United States and mainland China, we first asked 308 Chinese computer scientists for adjectives that would describe a creative computer scientist. Computer scientists and non-computer scientists from China (N = 1069) and the United States (N = 971) then rated how well those…

  17. What Cognitive Science May Learn from Instructional Design: A Case Study in Introductory Computer Programming.

    ERIC Educational Resources Information Center

    van Merrienboer, Jeroen J. G.

    The contributions of instructional design to cognitive science are discussed. It is argued that both sciences have their own object of study, but share a common interest in human cognition and performance as part of instructional systems. From a case study based on experience in teaching introductory computer programming, it is concluded that both…

  18. CMSC-130 Introductory Computer Science, Lecture Notes

    DTIC Science & Technology

    1993-07-01

    Introductory Computer Science lecture notes are used in the classroom for teaching CMSC 130, an introductory computer science course , using the ...Unit Testing 2. The Syntax Of Subunits Will Be Studied In The Subsequent Course CMSC130 -5- Lecture 11 TOP-DOWN TESTING Data Processor Procedure...used in the preparation of these lecture notes: Reference Manual For The Ada Prosramming Language, ANSI/MIL-STD

  19. Computer Science Students' Attitudes towards the Use of Structured and Unstructured Discussion Forums in Fully Online Courses

    ERIC Educational Resources Information Center

    Tibi, Moanes H.

    2018-01-01

    This study aims to investigate and analyze the attitudes and opinions of computer science students at two academic colleges of education with regards to the use of structured and unstructured discussion forums in computer science courses conducted entirely online. Fifty-two students participated in two online courses. The students in each course…

  20. Towards a Versatile Tele-Education Platform for Computer Science Educators Based on the Greek School Network

    ERIC Educational Resources Information Center

    Paraskevas, Michael; Zarouchas, Thomas; Angelopoulos, Panagiotis; Perikos, Isidoros

    2013-01-01

    Now days the growing need for highly qualified computer science educators in modern educational environments is commonplace. This study examines the potential use of Greek School Network (GSN) to provide a robust and comprehensive e-training course for computer science educators in order to efficiently exploit advanced IT services and establish a…

  1. Peer Review-Based Scripted Collaboration to Support Domain-Specific and Domain-General Knowledge Acquisition in Computer Science

    ERIC Educational Resources Information Center

    Demetriadis, Stavros; Egerter, Tina; Hanisch, Frank; Fischer, Frank

    2011-01-01

    This study investigates the effectiveness of using peer review in the context of scripted collaboration to foster both domain-specific and domain-general knowledge acquisition in the computer science domain. Using a one-factor design with a script and a control condition, students worked in small groups on a series of computer science problems…

  2. Profiles of Motivated Self-Regulation in College Computer Science Courses: Differences in Major versus Required Non-Major Courses

    ERIC Educational Resources Information Center

    Shell, Duane F.; Soh, Leen-Kiat

    2013-01-01

    The goal of the present study was to utilize a profiling approach to understand differences in motivation and strategic self-regulation among post-secondary STEM students in major versus required non-major computer science courses. Participants were 233 students from required introductory computer science courses (194 men; 35 women; 4 unknown) at…

  3. Climate Modeling Computing Needs Assessment

    NASA Astrophysics Data System (ADS)

    Petraska, K. E.; McCabe, J. D.

    2011-12-01

    This paper discusses early findings of an assessment of computing needs for NASA science, engineering and flight communities. The purpose of this assessment is to document a comprehensive set of computing needs that will allow us to better evaluate whether our computing assets are adequately structured to meet evolving demand. The early results are interesting, already pointing out improvements we can make today to get more out of the computing capacity we have, as well as potential game changing innovations for the future in how we apply information technology to science computing. Our objective is to learn how to leverage our resources in the best way possible to do more science for less money. Our approach in this assessment is threefold: Development of use case studies for science workflows; Creating a taxonomy and structure for describing science computing requirements; and characterizing agency computing, analysis, and visualization resources. As projects evolve, science data sets increase in a number of ways: in size, scope, timelines, complexity, and fidelity. Generating, processing, moving, and analyzing these data sets places distinct and discernable requirements on underlying computing, analysis, storage, and visualization systems. The initial focus group for this assessment is the Earth Science modeling community within NASA's Science Mission Directorate (SMD). As the assessment evolves, this focus will expand to other science communities across the agency. We will discuss our use cases, our framework for requirements and our characterizations, as well as our interview process, what we learned and how we plan to improve our materials after using them in the first round of interviews in the Earth Science Modeling community. We will describe our plans for how to expand this assessment, first into the Earth Science data analysis and remote sensing communities, and then throughout the full community of science, engineering and flight at NASA.

  4. Preservice Science Teachers' Collaborative Knowledge Building through Argumentation on Healthy Eating in a Computer Supported Collaborative Learning Environment

    ERIC Educational Resources Information Center

    Namdar, Bahadir

    2017-01-01

    The purpose of this study was to investigate preservice science teachers' collaborative knowledge building through socioscientific argumentation on healthy eating in a multiple representation-rich computer supported collaborative learning (CSCL) environment. This study was conducted with a group of preservice science teachers (n = 18) enrolled in…

  5. Analysis of Turkish Prospective Science Teachers' Perceptions on Technology in Education

    ERIC Educational Resources Information Center

    Koksal, Mustafa Serdar; Yaman, Suleyman; Saka, Yavuz

    2016-01-01

    Purpose of this study was to determine and analyze Turkish pre-service science teachers' perceptions on technology in terms of learning style, computer competency level, possession of a computer, and gender. The study involved 264 Turkish pre-service science teachers. Analyses were conducted through four-way ANOVA, t-tests, Mann Whitney U test and…

  6. Knowledge Construction in Computer Science and Engineering When Learning through Making

    ERIC Educational Resources Information Center

    Charlton, Patricia; Avramides, Katerina

    2016-01-01

    This paper focuses on a design based research study about STEM (Science, Technology, Engineering and Maths) learning by making through collaboration and production. This study examines learning by making by students to explore STEM using a constructionist approach with a particular focus on computer science and engineering. The use of IoT as a…

  7. The IT Gender Gap: Experience, Motivation and Differences in Undergraduate Studies of Computer Science

    ERIC Educational Resources Information Center

    Mirjana, Ivanovic; Zoran, Putnik; Anja, Sisarica; Zoran, Budimac

    2011-01-01

    This paper reports on progress and conclusions of two-year research of gender issues in studying computer science at Department of Mathematics and Informatics, Faculty of Science, University of Novi Sad. Using statistics on data gathered by a survey, the work presented here focused on identifying, understanding, and correlating both female and…

  8. Know Your Discipline: Teaching the Philosophy of Computer Science

    ERIC Educational Resources Information Center

    Tedre, Matti

    2007-01-01

    The diversity and interdisciplinarity of computer science and the multiplicity of its uses in other sciences make it hard to define computer science and to prescribe how computer science should be carried out. The diversity of computer science also causes friction between computer scientists from different branches. Computer science curricula, as…

  9. The grand challenge of managing the petascale facility.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aiken, R. J.; Mathematics and Computer Science

    2007-02-28

    This report is the result of a study of networks and how they may need to evolve to support petascale leadership computing and science. As Dr. Ray Orbach, director of the Department of Energy's Office of Science, says in the spring 2006 issue of SciDAC Review, 'One remarkable example of growth in unexpected directions has been in high-end computation'. In the same article Dr. Michael Strayer states, 'Moore's law suggests that before the end of the next cycle of SciDAC, we shall see petaflop computers'. Given the Office of Science's strong leadership and support for petascale computing and facilities, wemore » should expect to see petaflop computers in operation in support of science before the end of the decade, and DOE/SC Advanced Scientific Computing Research programs are focused on making this a reality. This study took its lead from this strong focus on petascale computing and the networks required to support such facilities, but it grew to include almost all aspects of the DOE/SC petascale computational and experimental science facilities, all of which will face daunting challenges in managing and analyzing the voluminous amounts of data expected. In addition, trends indicate the increased coupling of unique experimental facilities with computational facilities, along with the integration of multidisciplinary datasets and high-end computing with data-intensive computing; and we can expect these trends to continue at the petascale level and beyond. Coupled with recent technology trends, they clearly indicate the need for including capability petascale storage, networks, and experiments, as well as collaboration tools and programming environments, as integral components of the Office of Science's petascale capability metafacility. The objective of this report is to recommend a new cross-cutting program to support the management of petascale science and infrastructure. The appendices of the report document current and projected DOE computation facilities, science trends, and technology trends, whose combined impact can affect the manageability and stewardship of DOE's petascale facilities. This report is not meant to be all-inclusive. Rather, the facilities, science projects, and research topics presented are to be considered examples to clarify a point.« less

  10. The Relationship between Sources of Self-Efficacy in Classroom Environments and the Strength of Computer Self-Efficacy Beliefs

    ERIC Educational Resources Information Center

    Srisupawong, Yuwarat; Koul, Ravinder; Neanchaleay, Jariya; Murphy, Elizabeth; Francois, Emmanuel Jean

    2018-01-01

    Motivation and success in computer-science courses are influenced by the strength of students' self-efficacy (SE) beliefs in their learning abilities. Students with weak SE may struggle to be successful in a computer-science course. This study investigated the factors that enhance or impede the computer self-efficacy (CSE) of computer-science…

  11. Computational Algorithmization: Limitations in Problem Solving Skills in Computational Sciences Majors at University of Oriente

    ERIC Educational Resources Information Center

    Castillo, Antonio S.; Berenguer, Isabel A.; Sánchez, Alexander G.; Álvarez, Tomás R. R.

    2017-01-01

    This paper analyzes the results of a diagnostic study carried out with second year students of the computational sciences majors at University of Oriente, Cuba, to determine the limitations that they present in computational algorithmization. An exploratory research was developed using quantitative and qualitative methods. The results allowed…

  12. Programs for attracting under-represented minority students to graduate school and research careers in computational science. Final report for period October 1, 1995 - September 30, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, James C. Jr.; Mason, Thomas; Guerrieri, Bruno

    1997-10-01

    Programs have been established at Florida A & M University to attract minority students to research careers in mathematics and computational science. The primary goal of the program was to increase the number of such students studying computational science via an interactive multimedia learning environment One mechanism used for meeting this goal was the development of educational modules. This academic year program established within the mathematics department at Florida A&M University, introduced students to computational science projects using high-performance computers. Additional activities were conducted during the summer, these included workshops, meetings, and lectures. Through the exposure provided by this programmore » to scientific ideas and research in computational science, it is likely that their successful applications of tools from this interdisciplinary field will be high.« less

  13. Investigating Pre-Service Early Childhood Teachers' Attitudes towards the Computer Based Education in Science Activities

    ERIC Educational Resources Information Center

    Yilmaz, Nursel; Alici, Sule

    2011-01-01

    The purpose of this study was to investigate pre-service early childhood teachers' attitudes towards using Computer Based Education (CBE) while implementing science activities. More specifically, the present study examined the effect of different variables such as gender, year in program, experience in preschool, owing a computer, and the…

  14. Science literacy by technology by country: USA, Finland and Mexico. making sense of it all

    NASA Astrophysics Data System (ADS)

    Papanastasiou, Elena C.

    2003-02-01

    The purpose of this study was to examine how variables related to computer availability, computer comfort and educational software are associated with higher or lower levels of science literacy in the USA, Finland and Mexico, after controlling for the socio-economic status of the students. The analyses for this study were based on a series of multivariate regression models. The data were obtained from the Program for International Student Assessment. The results of this study showed that it was not computer use itself that had a positive or negative effect on the science achievement of the students, but the way in which the computers were used within the context of each country.

  15. Teacher Perceptions of the Integration of Laptop Computers in Their High School Biology Classrooms

    NASA Astrophysics Data System (ADS)

    Gundy, Morag S.

    2011-12-01

    Studies indicate that teachers, and in particular science teachers in the senior high school grades, do not integrate laptop computers into their instruction to the extent anticipated by researchers. This technology has not spread easily to other teachers even with improved access to hardware and software, increased support, and a paradigm shift from teacher-centred to student-centred education. Although a number of studies have focused on the issues and problems related to the integration of laptops in classroom instruction, these studies, largely quantitative in nature, have tended to bypass the role teachers play in integrating laptop computers into their instruction. This thesis documents and describes the role of Ontario high school science teachers in the integration of laptop computers in the classroom. Ten teachers who have successfully integrated laptop computers into their biology courses participated in this descriptive study. Their perceptions of implementing laptops into their biology courses, key factors about the implementation process, and how the implementation was accomplished are examined. The study also identifies the conditions which they feel would allow this innovation to be implemented by other teachers. Key findings of the study indicate that teachers must initiate, implement and sustain an emergent and still evolving innovation; teacher perceptions change and continue to change with increased experience using laptops in the science classroom; changes in teaching approaches are significant as a result of the introduction of laptop technology; and, the teachers considered the acquisition and use of new teaching materials to be an important aspect of integrating laptop computers into instruction. Ongoing challenges for appropriate professional development, sharing of knowledge, skills and teaching materials are identified. The study provides a body of practical knowledge for biology teachers who are considering the integration of laptops into their instruction. The results are of interest to science teachers, those whose decisions affect the meaningful integration of technology in science education, those researching the teaching of science in secondary schools and those who prepare science graduates to teach at this level. Key Words: innovation, laptop, computer, biology, science, secondary, implementation, perceptions, instruction, professional development, qualitative, descriptive.

  16. An Investigation of the Artifacts and Process of Constructing Computers Games about Environmental Science in a Fifth Grade Classroom

    ERIC Educational Resources Information Center

    Baytak, Ahmet; Land, Susan M.

    2011-01-01

    This study employed a case study design (Yin, "Case study research, design and methods," 2009) to investigate the processes used by 5th graders to design and develop computer games within the context of their environmental science unit, using the theoretical framework of "constructionism." Ten fifth graders designed computer games using "Scratch"…

  17. The Quantitative Analysis of User Behavior Online - Data, Models and Algorithms

    NASA Astrophysics Data System (ADS)

    Raghavan, Prabhakar

    By blending principles from mechanism design, algorithms, machine learning and massive distributed computing, the search industry has become good at optimizing monetization on sound scientific principles. This represents a successful and growing partnership between computer science and microeconomics. When it comes to understanding how online users respond to the content and experiences presented to them, we have more of a lacuna in the collaboration between computer science and certain social sciences. We will use a concrete technical example from image search results presentation, developing in the process some algorithmic and machine learning problems of interest in their own right. We then use this example to motivate the kinds of studies that need to grow between computer science and the social sciences; a critical element of this is the need to blend large-scale data analysis with smaller-scale eye-tracking and "individualized" lab studies.

  18. Ignoring a Revolution in Military Affairs: The Need to Create a Separate Branch of the Armed Forces for Cyber Warfare

    DTIC Science & Technology

    2017-06-09

    those with talent in the computer sciences. Upon graduation from high school, computer -proficient teenagers are selected for an elite cyber force and...Arguably, the Massachusetts Institute of Technology (M.I.T.) is the premiere institution for computer science. M.I.T. graduates make, on average, $83,455...study specific to computer science and provide certification in programs like ethical hacking, cyber security, and programing. As with the other

  19. Some Aspects of Parallel Implementation of the Finite Element Method on Message Passing Architectures

    DTIC Science & Technology

    1988-05-01

    for Advanced Computer Studies and Department of Computer Science University of Maryland College Park, MD 20742 4, ABSTRACT We discuss some aspects of...Computer Studies and Technology & Dept. of Compute. Scienc II. CONTROLLING OFFICE NAME AND ADDRESS Viyriyf~ 12. REPORT DATE Department of the Navy uo...number)-1/ 2.) We study the performance of CG and PCG by examining its performance for u E (0,1), for solving the two model problems with an accuracy

  20. Longitudinal effects of college type and selectivity on degrees conferred upon undergraduate females in physical science, life science, math and computer science, and social science

    NASA Astrophysics Data System (ADS)

    Stevens, Stacy Mckimm

    There has been much research to suggest that a single-sex college experience for female undergraduate students can increase self-confidence and leadership ability during the college years and beyond. The results of previous studies also suggest that these students achieve in the workforce and enter graduate school at higher rates than their female peers graduating from coeducational institutions. However, some researchers have questioned these findings, suggesting that it is the selectivity level of the colleges rather than the comprised gender of the students that causes these differences. The purpose of this study was to justify the continuation of single-sex educational opportunities for females at the post-secondary level by examining the effects that college selectivity, college type, and time have on the rate of undergraduate females pursuing majors in non-traditional fields. The study examined the percentage of physical science, life science, math and computer science, and social science degrees conferred upon females graduating from women's colleges from 1985-2001, as compared to those at comparable coeducational colleges. Sampling for this study consisted of 42 liberal arts women's (n = 21) and coeducational (n = 21) colleges. Variables included the type of college, the selectivity level of the college, and the effect of time on the percentage of female graduates. Doubly multivariate repeated measures analysis of variance testing revealed significant main effects for college selectivity on social science graduates, and time on both life science and math and computer science graduates. Significant interaction was also found between the college type and time on social science graduates, as well as the college type, selectivity level, and time on math and computer science graduates. Implications of the results and suggestions for further research are discussed.

  1. A Study of the Programming Languages Used in Information Systems and in Computer Science Curricula

    ERIC Educational Resources Information Center

    Russell, Jack; Russell, Barbara; Pollacia, Lissa F.; Tastle, William J.

    2010-01-01

    This paper researches the computer languages taught in the first, second and third programming courses in Computer Information Systems (CIS), Management Information Systems (MIS or IS) curricula as well as in Computer Science (CS) and Information Technology (IT) curricula. Instructors teaching the first course in programming within a four year…

  2. Features of Computerized Educational Games in Sciences of the Elementary Phase in Jordan from the Point of View of Specialists in Teaching Science and Computer Subjects

    ERIC Educational Resources Information Center

    Al Sarhan, Khaled Ali; AlZboon, Saleem Odeh; Olimat, Khalaf Mufleh; Al-Zboon, Mohammad Saleem

    2013-01-01

    The study aims at introducing the features of the computerized educational games in sciences at the elementary school in Jordan according to the specialists in teaching science and computer subjects, through answering some questions such as: What are the features of the computerized educational games in sciences at the elementary schools in Jordan…

  3. Teachers' Organization of Participation Structures for Teaching Science with Computer Technology

    ERIC Educational Resources Information Center

    Subramaniam, Karthigeyan

    2016-01-01

    This paper describes a qualitative study that investigated the nature of the participation structures and how the participation structures were organized by four science teachers when they constructed and communicated science content in their classrooms with computer technology. Participation structures focus on the activity structures and…

  4. 1999 NCCS Highlights

    NASA Technical Reports Server (NTRS)

    Bennett, Jerome (Technical Monitor)

    2002-01-01

    The NASA Center for Computational Sciences (NCCS) is a high-performance scientific computing facility operated, maintained and managed by the Earth and Space Data Computing Division (ESDCD) of NASA Goddard Space Flight Center's (GSFC) Earth Sciences Directorate. The mission of the NCCS is to advance leading-edge science by providing the best people, computers, and data storage systems to NASA's Earth and space sciences programs and those of other U.S. Government agencies, universities, and private institutions. Among the many computationally demanding Earth science research efforts supported by the NCCS in Fiscal Year 1999 (FY99) are the NASA Seasonal-to-Interannual Prediction Project, the NASA Search and Rescue Mission, Earth gravitational model development efforts, the National Weather Service's North American Observing System program, Data Assimilation Office studies, a NASA-sponsored project at the Center for Ocean-Land-Atmosphere Studies, a NASA-sponsored microgravity project conducted by researchers at the City University of New York and the University of Pennsylvania, the completion of a satellite-derived global climate data set, simulations of a new geodynamo model, and studies of Earth's torque. This document presents highlights of these research efforts and an overview of the NCCS, its facilities, and its people.

  5. Enlist micros: Training science teachers to use microcomputers

    NASA Astrophysics Data System (ADS)

    Baird, William E.; Ellis, James D.; Kuerbis, Paul J.

    A National Science Foundation grant to the Biological Sciences Curriculum Study (BSCS) at The Colorado College supported the design and production of training materials to encourage literacy of science teachers in the use of microcomputers. ENLIST Micros is based on results of a national needs assessment that identified 22 compentencies needed by K-12 science teachers to use microcomputers for instruction. A writing team developed the 16-hour training program in the summer of 1985, and field-test coordinators tested it with 18 preservice or in-service groups during the 1985-86 academic year at 15 sites within the United States. The training materials consist of video programs, interactive computer disks for the Apple II series microcomputer, a training manual for participants, and a guide for the group leader. The experimental materials address major areas of educational computing: awareness, applications, implementation, evaluation, and resources. Each chapter contains activities developed for this program, such as viewing video segments of science teachers who are using computers effectively and running commercial science and training courseware. Role playing and small-group interaction help the teachers overcome their reluctance to use computers and plan for effective implementation of microcomputers in the school. This study examines the implementation of educational computing among 47 science teachers who completed the ENLIST Micros training at a southern university. We present results of formative evaluation for that site. Results indicate that both elementary and secondary teachers benefit from the training program and demonstrate gains in attitudes toward computer use. Participating teachers said that the program met its stated objectives and helped them obtain needed skills. Only 33 percent of these teachers, however, reported using computers one year after the training. In June 1986, the BSCS initiated a follow up to the ENLIST Micros curriculum to develop, evaluate, and disseminate a complete model of teacher enhancement for educational computing in the sciences. In that project, we use the ENLIST Micros curriculum as the first step in a training process. The project includes seminars that introduce additional skills: It contains provisions for sharing among participants, monitors use of computers in participants' classrooms, provides structured coaching of participants' use of computers in their classrooms, and offers planned observations of peers using computers in their science teaching.

  6. Critical thinking traits of top-tier experts and implications for computer science education

    NASA Astrophysics Data System (ADS)

    Bushey, Dean E.

    A documented shortage of technical leadership and top-tier performers in computer science jeopardizes the technological edge, security, and economic well-being of the nation. The 2005 President's Information and Technology Advisory Committee (PITAC) Report on competitiveness in computational sciences highlights the major impact of science, technology, and innovation in keeping America competitive in the global marketplace. It stresses the fact that the supply of science, technology, and engineering experts is at the core of America's technological edge, national competitiveness and security. However, recent data shows that both undergraduate and postgraduate production of computer scientists is falling. The decline is "a quiet crisis building in the United States," a crisis that, if allowed to continue unchecked, could endanger America's well-being and preeminence among the world's nations. Past research on expert performance has shown that the cognitive traits of critical thinking, creativity, and problem solving possessed by top-tier performers can be identified, observed and measured. The studies show that the identified attributes are applicable across many domains and disciplines. Companies have begun to realize that cognitive skills are important for high-level performance and are reevaluating the traditional academic standards they have used to predict success for their top-tier performers in computer science. Previous research in the computer science field has focused either on programming skills of its experts or has attempted to predict the academic success of students at the undergraduate level. This study, on the other hand, examines the critical-thinking skills found among experts in the computer science field in order to explore the questions, "What cognitive skills do outstanding performers possess that make them successful?" and "How do currently used measures of academic performance correlate to critical-thinking skills among students?" The results of this study suggest a need to examine how critical-thinking abilities are learned in the undergraduate computer science curriculum and the need to foster these abilities in order to produce the high-level, critical-thinking professionals necessary to fill the growing need for these experts. Due to the fact that current measures of academic performance do not adequately depict students' cognitive abilities, assessment of these skills must be incorporated into existing curricula.

  7. Scientific Inquiry Self-Efficacy and Computer Game Self-Efficacy as Predictors and Outcomes of Middle School Boys' and Girls' Performance in a Science Assessment in a Virtual Environment

    NASA Astrophysics Data System (ADS)

    Bergey, Bradley W.; Ketelhut, Diane Jass; Liang, Senfeng; Natarajan, Uma; Karakus, Melissa

    2015-10-01

    The primary aim of the study was to examine whether performance on a science assessment in an immersive virtual environment was associated with changes in scientific inquiry self-efficacy. A secondary aim of the study was to examine whether performance on the science assessment was equitable for students with different levels of computer game self-efficacy, including whether gender differences were observed. We examined 407 middle school students' scientific inquiry self-efficacy and computer game self-efficacy before and after completing a computer game-like assessment about a science mystery. Results from path analyses indicated that prior scientific inquiry self-efficacy predicted achievement on end-of-module questions, which in turn predicted change in scientific inquiry self-efficacy. By contrast, computer game self-efficacy was neither predictive of nor predicted by performance on the science assessment. While boys had higher computer game self-efficacy compared to girls, multi-group analyses suggested only minor gender differences in how efficacy beliefs related to performance. Implications for assessments with virtual environments and future design and research are discussed.

  8. Digital Game-Based Learning in High School Computer Science Education: Impact on Educational Effectiveness and Student Motivation

    ERIC Educational Resources Information Center

    Papastergiou, Marina

    2009-01-01

    The aim of this study was to assess the learning effectiveness and motivational appeal of a computer game for learning computer memory concepts, which was designed according to the curricular objectives and the subject matter of the Greek high school Computer Science (CS) curriculum, as compared to a similar application, encompassing identical…

  9. Computing and the social organization of academic work

    NASA Astrophysics Data System (ADS)

    Shields, Mark A.; Graves, William; Nyce, James M.

    1992-12-01

    This article discusses the academic computing movement during the 1980s. We focus on the Faculty Workstations Project at Brown University, where major computing initiatives were undertaken during the 1980s. Six departments are compared: chemistry, cognitive and linguistic sciences, geology, music, neural science, and sociology. We discuss the theoretical implications of our study for conceptualizing the relationship of computing to academic work.

  10. Computer Card Games in Computer Science Education: A 10-Year Review

    ERIC Educational Resources Information Center

    Kordaki, Maria; Gousiou, Anthi

    2016-01-01

    This paper presents a 10-year review study that focuses on the investigation of the use of computer card games (CCGs) as learning tools in Computer Science (CS) Education. Specific search terms keyed into 10 large scientific electronic databases identified 24 papers referring to the use of CCGs for the learning of CS matters during the last…

  11. Unlocking the Barriers to Women and Minorities in Computer Science and Information Systems Studies: Results from a Multi-Methodological Study Conducted at Two Minority Serving Institutions

    ERIC Educational Resources Information Center

    Buzzetto-More, Nicole; Ukoha, Ojiabo; Rustagi, Narendra

    2010-01-01

    The under representation of women and minorities in undergraduate computer science and information systems programs is a pervasive and persistent problem in the United States. Needed is a better understanding of the background and psychosocial factors that attract, or repel, minority students from computing disciplines. An examination of these…

  12. Finding and defining the natural automata acting in living plants: Toward the synthetic biology for robotics and informatics in vivo.

    PubMed

    Kawano, Tomonori; Bouteau, François; Mancuso, Stefano

    2012-11-01

    The automata theory is the mathematical study of abstract machines commonly studied in the theoretical computer science and highly interdisciplinary fields that combine the natural sciences and the theoretical computer science. In the present review article, as the chemical and biological basis for natural computing or informatics, some plants, plant cells or plant-derived molecules involved in signaling are listed and classified as natural sequential machines (namely, the Mealy machines or Moore machines) or finite state automata. By defining the actions (states and transition functions) of these natural automata, the similarity between the computational data processing and plant decision-making processes became obvious. Finally, their putative roles as the parts for plant-based computing or robotic systems are discussed.

  13. Finding and defining the natural automata acting in living plants: Toward the synthetic biology for robotics and informatics in vivo

    PubMed Central

    Kawano, Tomonori; Bouteau, François; Mancuso, Stefano

    2012-01-01

    The automata theory is the mathematical study of abstract machines commonly studied in the theoretical computer science and highly interdisciplinary fields that combine the natural sciences and the theoretical computer science. In the present review article, as the chemical and biological basis for natural computing or informatics, some plants, plant cells or plant-derived molecules involved in signaling are listed and classified as natural sequential machines (namely, the Mealy machines or Moore machines) or finite state automata. By defining the actions (states and transition functions) of these natural automata, the similarity between the computational data processing and plant decision-making processes became obvious. Finally, their putative roles as the parts for plant-based computing or robotic systems are discussed. PMID:23336016

  14. Developing Computational Fluency with the Help of Science: A Turkish Middle and High School Grades Study

    ERIC Educational Resources Information Center

    Corlu, M. Sencer; Capraro, Robert M.; Corlu, M. Ali

    2011-01-01

    Students need to achieve automaticity in learning mathematics without sacrificing conceptual understanding of the algorithms that are essential in being successful in algebra and problem solving, as well as in science. This research investigated the relationship between science-contextualized problems and computational fluency by testing an…

  15. Reconsidering Simulations in Science Education at a Distance: Features of Effective Use

    ERIC Educational Resources Information Center

    Blake, C.; Scanlon, E.

    2007-01-01

    This paper proposes a reconsideration of use of computer simulations in science education. We discuss three studies of the use of science simulations for undergraduate distance learning students. The first one, "The Driven Pendulum" simulation is a computer-based experiment on the behaviour of a pendulum. The second simulation, "Evolve" is…

  16. Development of a Computer-Based Measure of Listening Comprehension of Science Talk

    ERIC Educational Resources Information Center

    Lin, Sheau-Wen; Liu, Yu; Chen, Shin-Feng; Wang, Jing-Ru; Kao, Huey-Lien

    2015-01-01

    The purpose of this study was to develop a computer-based assessment for elementary school students' listening comprehension of science talk within an inquiry-oriented environment. The development procedure had 3 steps: a literature review to define the framework of the test, collecting and identifying key constructs of science talk, and…

  17. Experiences of Computer Science Curriculum Design: A Phenomenological Study

    ERIC Educational Resources Information Center

    Sloan, Arthur; Bowe, Brian

    2015-01-01

    This paper presents a qualitative study of 12 computer science lecturers' experiences of curriculum design of several degree programmes during a time of transition from year-long to semesterised courses, due to institutional policy change. The background to the study is outlined, as are the reasons for choosing the research methodology. The main…

  18. Engagement, Persistence, and Gender in Computer Science: Results of a Smartphone ESM Study.

    PubMed

    Milesi, Carolina; Perez-Felkner, Lara; Brown, Kevin; Schneider, Barbara

    2017-01-01

    While the underrepresentation of women in the fast-growing STEM field of computer science (CS) has been much studied, no consensus exists on the key factors influencing this widening gender gap. Possible suspects include gender differences in aptitude, interest, and academic environment. Our study contributes to this literature by applying student engagement research to study the experiences of college students studying CS, to assess the degree to which differences in men and women's engagement may help account for gender inequity in the field. Specifically, we use the Experience Sampling Method (ESM) to evaluate in real-time the engagement of college students during varied activities and environments. Over the course of a full week in fall semester and a full week in spring semester, 165 students majoring in CS at two Research I universities were "beeped" several times a day via a smartphone app prompting them to fill out a short questionnaire including open-ended and scaled items. These responses were paired with administrative and over 2 years of transcript data provided by their institutions. We used mean comparisons and logistic regression analysis to compare enrollment and persistence patterns among CS men and women. Results suggest that despite the obstacles associated with women's underrepresentation in computer science, women are more likely to continue taking computer science courses when they felt challenged and skilled in their initial computer science classes. We discuss implications for further research.

  19. Effect of Robotics on Elementary Preservice Teachers' Self-Efficacy, Science Learning, and Computational Thinking

    NASA Astrophysics Data System (ADS)

    Jaipal-Jamani, Kamini; Angeli, Charoula

    2017-04-01

    The current impetus for increasing STEM in K-12 education calls for an examination of how preservice teachers are being prepared to teach STEM. This paper reports on a study that examined elementary preservice teachers' ( n = 21) self-efficacy, understanding of science concepts, and computational thinking as they engaged with robotics in a science methods course. Data collection methods included pretests and posttests on science content, prequestionnaires and postquestionnaires for interest and self-efficacy, and four programming assignments. Statistical results showed that preservice teachers' interest and self-efficacy with robotics increased. There was a statistically significant difference between preknowledge and postknowledge scores, and preservice teachers did show gains in learning how to write algorithms and debug programs over repeated programming tasks. The findings suggest that the robotics activity was an effective instructional strategy to enhance interest in robotics, increase self-efficacy to teach with robotics, develop understandings of science concepts, and promote the development of computational thinking skills. Study findings contribute quantitative evidence to the STEM literature on how robotics develops preservice teachers' self-efficacy, science knowledge, and computational thinking skills in higher education science classroom contexts.

  20. Cloud Computing in the Curricula of Schools of Computer Science and Information Systems

    ERIC Educational Resources Information Center

    Lawler, James P.

    2011-01-01

    The cloud continues to be a developing area of information systems. Evangelistic literature in the practitioner field indicates benefit for business firms but disruption for technology departments of the firms. Though the cloud currently is immature in methodology, this study defines a model program by which computer science and information…

  1. Learning Oceanography from a Computer Simulation Compared with Direct Experience at Sea

    ERIC Educational Resources Information Center

    Winn, William; Stahr, Frederick; Sarason, Christian; Fruland, Ruth; Oppenheimer, Peter; Lee, Yen-Ling

    2006-01-01

    Considerable research has compared how students learn science from computer simulations with how they learn from "traditional" classes. Little research has compared how students learn science from computer simulations with how they learn from direct experience in the real environment on which the simulations are based. This study compared two…

  2. Learning to Teach Computer Science: Qualitative Insights into Secondary Teachers' Pedagogical Content Knowledge

    ERIC Educational Resources Information Center

    Hubbard, Aleata Kimberly

    2017-01-01

    In this dissertation, I explored the pedagogical content knowledge of in-service high school educators recently assigned to teach computer science for the first time. Teachers were participating in a professional development program where they co-taught introductory computing classes with tech industry professionals. The study was motivated by…

  3. Design, Development, and Evaluation of a Mobile Learning Application for Computing Education

    ERIC Educational Resources Information Center

    Oyelere, Solomon Sunday; Suhonen, Jarkko; Wajiga, Greg M.; Sutinen, Erkki

    2018-01-01

    The study focused on the application of the design science research approach in the course of developing a mobile learning application, MobileEdu, for computing education in the Nigerian higher education context. MobileEdu facilitates the learning of computer science courses on mobile devices. The application supports ubiquitous, collaborative,…

  4. Computer-Mediated Communication in English for Specific Purposes: A Case Study with Computer Science Students at Universiti Teknologi Malaysia

    ERIC Educational Resources Information Center

    Shamsudin, Sarimah; Nesi, Hilary

    2006-01-01

    This paper will describe an ESP approach to the design and implementation of computer-mediated communication (CMC) tasks for computer science students at Universiti Teknologi Malaysia, and discuss the effectiveness of the chat feature of Windows NetMeeting as a tool for developing specified language skills. CMC tasks were set within a programme of…

  5. Computer Assisted Project-Based Instruction: The Effects on Science Achievement, Computer Achievement and Portfolio Assessment

    ERIC Educational Resources Information Center

    Erdogan, Yavuz; Dede, Dinçer

    2015-01-01

    The purpose of this study is to compare the effects of computer assisted project-based instruction on learners' achievement in a science and technology course, in a computer course and in portfolio development. With this aim in mind, a quasi-experimental design was used and a sample of 70 seventh grade secondary school students from Org. Esref…

  6. In-Service Science Teachers' Attitude towards Information Communication Technology

    ERIC Educational Resources Information Center

    Kibirige, I.

    2011-01-01

    The purpose of this study is to determine the attitude of in-service science teachers towards information communication technology (ICT) in education. The study explores the relationship between in-service teachers and four independent variables: their attitudes toward computers; their cultural perception of computers; their perceived computer…

  7. Computational Science in Armenia (Invited Talk)

    NASA Astrophysics Data System (ADS)

    Marandjian, H.; Shoukourian, Yu.

    This survey is devoted to the development of informatics and computer science in Armenia. The results in theoretical computer science (algebraic models, solutions to systems of general form recursive equations, the methods of coding theory, pattern recognition and image processing), constitute the theoretical basis for developing problem-solving-oriented environments. As examples can be mentioned: a synthesizer of optimized distributed recursive programs, software tools for cluster-oriented implementations of two-dimensional cellular automata, a grid-aware web interface with advanced service trading for linear algebra calculations. In the direction of solving scientific problems that require high-performance computing resources, examples of completed projects include the field of physics (parallel computing of complex quantum systems), astrophysics (Armenian virtual laboratory), biology (molecular dynamics study of human red blood cell membrane), meteorology (implementing and evaluating the Weather Research and Forecast Model for the territory of Armenia). The overview also notes that the Institute for Informatics and Automation Problems of the National Academy of Sciences of Armenia has established a scientific and educational infrastructure, uniting computing clusters of scientific and educational institutions of the country and provides the scientific community with access to local and international computational resources, that is a strong support for computational science in Armenia.

  8. Does it matter what we call it?

    USDA-ARS?s Scientific Manuscript database

    Agronomy, soil science, plant science, crop science, agricultural science, computer science, environmental science, environmental engineering, agricultural and irrigation engineering, hydrology, meteorology – all are names that describe fields of study relevant to agriculture and the environment in ...

  9. Does Cloud Computing in the Atmospheric Sciences Make Sense? A case study of hybrid cloud computing at NASA Langley Research Center

    NASA Astrophysics Data System (ADS)

    Nguyen, L.; Chee, T.; Minnis, P.; Spangenberg, D.; Ayers, J. K.; Palikonda, R.; Vakhnin, A.; Dubois, R.; Murphy, P. R.

    2014-12-01

    The processing, storage and dissemination of satellite cloud and radiation products produced at NASA Langley Research Center are key activities for the Climate Science Branch. A constellation of systems operates in sync to accomplish these goals. Because of the complexity involved with operating such intricate systems, there are both high failure rates and high costs for hardware and system maintenance. Cloud computing has the potential to ameliorate cost and complexity issues. Over time, the cloud computing model has evolved and hybrid systems comprising off-site as well as on-site resources are now common. Towards our mission of providing the highest quality research products to the widest audience, we have explored the use of the Amazon Web Services (AWS) Cloud and Storage and present a case study of our results and efforts. This project builds upon NASA Langley Cloud and Radiation Group's experience with operating large and complex computing infrastructures in a reliable and cost effective manner to explore novel ways to leverage cloud computing resources in the atmospheric science environment. Our case study presents the project requirements and then examines the fit of AWS with the LaRC computing model. We also discuss the evaluation metrics, feasibility, and outcomes and close the case study with the lessons we learned that would apply to others interested in exploring the implementation of the AWS system in their own atmospheric science computing environments.

  10. Scientific Inquiry Self-Efficacy and Computer Game Self-Efficacy as Predictors and Outcomes of Middle School Boys' and Girls' Performance in a Science Assessment in a Virtual Environment

    ERIC Educational Resources Information Center

    Bergey, Bradley W.; Ketelhut, Diane Jass; Liang, Senfeng; Natarajan, Uma; Karakus, Melissa

    2015-01-01

    The primary aim of the study was to examine whether performance on a science assessment in an immersive virtual environment was associated with changes in scientific inquiry self-efficacy. A secondary aim of the study was to examine whether performance on the science assessment was equitable for students with different levels of computer game…

  11. The Development and Evaluation of a Computer-Simulated Science Inquiry Environment Using Gamified Elements

    ERIC Educational Resources Information Center

    Tsai, Fu-Hsing

    2018-01-01

    This study developed a computer-simulated science inquiry environment, called the Science Detective Squad, to engage students in investigating an electricity problem that may happen in daily life. The environment combined the simulation of scientific instruments and a virtual environment, including gamified elements, such as points and a story for…

  12. National Geographic Society Kids Network: Report on 1994 teacher participants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    In 1994, National Geographic Society Kids Network, a computer/telecommunications-based science curriculum, was presented to elementary and middle school teachers through summer programs sponsored by NGS and US DOE. The network program assists teachers in understanding the process of doing science; understanding the role of computers and telecommunications in the study of science, math, and engineering; and utilizing computers and telecommunications appropriately in the classroom. The program enables teacher to integrate science, math, and technology with other subjects with the ultimate goal of encouraging students of all abilities to pursue careers in science/math/engineering. This report assesses the impact of the networkmore » program on participating teachers.« less

  13. A Delphi Study on Technology Enhanced Learning (TEL) Applied on Computer Science (CS) Skills

    ERIC Educational Resources Information Center

    Porta, Marcela; Mas-Machuca, Marta; Martinez-Costa, Carme; Maillet, Katherine

    2012-01-01

    Technology Enhanced Learning (TEL) is a new pedagogical domain aiming to study the usage of information and communication technologies to support teaching and learning. The following study investigated how this domain is used to increase technical skills in Computer Science (CS). A Delphi method was applied, using three-rounds of online survey…

  14. The MORPG-Based Learning System for Multiple Courses: A Case Study on Computer Science Curriculum

    ERIC Educational Resources Information Center

    Liu, Kuo-Yu

    2015-01-01

    This study aimed at developing a Multiplayer Online Role Playing Game-based (MORPG) Learning system which enabled instructors to construct a game scenario and manage sharable and reusable learning content for multiple courses. It used the curriculum of "Introduction to Computer Science" as a study case to assess students' learning…

  15. Differentiating between Women in Hard and Soft Science and Engineering Disciplines

    ERIC Educational Resources Information Center

    Camp, Amanda G.; Gilleland, Diane S.; Pearson, Carolyn; Vander Putten, James

    2010-01-01

    The intent of this study was to investigate characteristics that differentiate between women in soft (social, psychological, and life sciences) and hard (engineering, mathematics, computer science, physical science) science and engineering disciplines. Using the Beginning Postsecondary Students Longitudinal Study: 1996-2001 (2002), a descriptive…

  16. The Effectiveness of Interactive Computer Assisted Modeling in Teaching Study Strategies and Concept Mapping of College Textbook Material.

    ERIC Educational Resources Information Center

    Mikulecky, Larry

    A study evaluated the effectiveness of a series of print materials and interactive computer-guided study programs designed to lead undergraduate students to apply basic textbook reading and concept mapping strategies to the study of science and social science textbooks. Following field testing with 25 learning skills students, 50 freshman biology…

  17. Using NCLab-karel to improve computational thinking skill of junior high school students

    NASA Astrophysics Data System (ADS)

    Kusnendar, J.; Prabawa, H. W.

    2018-05-01

    Increasingly human interaction with technology and the increasingly complex development of digital technology world make the theme of computer science education interesting to study. Previous studies on Computer Literacy and Competency reveal that Indonesian teachers in general have fairly high computational skill, but their skill utilization are limited to some applications. This engenders limited and minimum computer-related learning for the students. On the other hand, computer science education is considered unrelated to real-world solutions. This paper attempts to address the utilization of NCLab- Karel in shaping the computational thinking in students. This computational thinking is believed to be able to making learn students about technology. Implementation of Karel utilization provides information that Karel is able to increase student interest in studying computational material, especially algorithm. Observations made during the learning process also indicate the growth and development of computing mindset in students.

  18. Computer Simulations to Support Science Instruction and Learning: A critical review of the literature

    NASA Astrophysics Data System (ADS)

    Smetana, Lara Kathleen; Bell, Randy L.

    2012-06-01

    Researchers have explored the effectiveness of computer simulations for supporting science teaching and learning during the past four decades. The purpose of this paper is to provide a comprehensive, critical review of the literature on the impact of computer simulations on science teaching and learning, with the goal of summarizing what is currently known and providing guidance for future research. We report on the outcomes of 61 empirical studies dealing with the efficacy of, and implications for, computer simulations in science instruction. The overall findings suggest that simulations can be as effective, and in many ways more effective, than traditional (i.e. lecture-based, textbook-based and/or physical hands-on) instructional practices in promoting science content knowledge, developing process skills, and facilitating conceptual change. As with any other educational tool, the effectiveness of computer simulations is dependent upon the ways in which they are used. Thus, we outline specific research-based guidelines for best practice. Computer simulations are most effective when they (a) are used as supplements; (b) incorporate high-quality support structures; (c) encourage student reflection; and (d) promote cognitive dissonance. Used appropriately, computer simulations involve students in inquiry-based, authentic science explorations. Additionally, as educational technologies continue to evolve, advantages such as flexibility, safety, and efficiency deserve attention.

  19. A Study of Attrition and the Use of Student Learning Communities in the Computer Science Introductory Programming Sequence

    ERIC Educational Resources Information Center

    Howles, Trudy

    2009-01-01

    Student attrition and low graduation rates are critical problems in computer science education. Disappointing graduation rates and declining student interest have caught the attention of business leaders, researchers and universities. With weak graduation rates and little interest in scientific computing, many are concerned about the USA's ability…

  20. Computer Science Education as a Cultural Encounter: A Socio-Cultural Framework for Articulating Teaching Difficulties

    ERIC Educational Resources Information Center

    Kolikant, Yifat Ben-David

    2011-01-01

    This study demonstrates the power of the cultural encounter metaphor in explaining learning and teaching difficulties, using as an example computer science education (CSE). CSE is envisioned as an encounter between veterans of two computer-oriented cultures, that of the teachers and that of the students. Forty questionnaires administered to CS…

  1. "Hour of Code": Can It Change Students' Attitudes toward Programming?

    ERIC Educational Resources Information Center

    Du, Jie; Wimmer, Hayden; Rada, Roy

    2016-01-01

    The Hour of Code is a one-hour introduction to computer science organized by Code.org, a non-profit dedicated to expanding participation in computer science. This study investigated the impact of the Hour of Code on students' attitudes towards computer programming and their knowledge of programming. A sample of undergraduate students from two…

  2. Turkish Mathematics and Science Teachers' Technology Use in Their Classroom Instruction: Findings from TIMSS 2011

    ERIC Educational Resources Information Center

    Tas, Yasemin; Balgalmis, Esra

    2016-01-01

    The goal of this study was to describe Turkish mathematics and science teachers' use of computer in their classroom instruction by utilizing TIMSS 2011 data. Analyses results revealed that teachers most frequently used computers for preparation purpose and least frequently used computers for administration. There was no difference in teachers'…

  3. Laptop Use, Interactive Science Software, and Science Learning among At-Risk Students

    ERIC Educational Resources Information Center

    Zheng, Binbin; Warschauer, Mark; Hwang, Jin Kyoung; Collins, Penelope

    2014-01-01

    This year-long, quasi-experimental study investigated the impact of the use of netbook computers and interactive science software on fifth-grade students' science learning processes, academic achievement, and interest in further science, technology, engineering, and mathematics (STEM) study within a linguistically diverse school district in…

  4. Supporting Students' Learning in the Domain of Computer Science

    ERIC Educational Resources Information Center

    Gasparinatou, Alexandra; Grigoriadou, Maria

    2011-01-01

    Previous studies have shown that students with low knowledge understand and learn better from more cohesive texts, whereas high-knowledge students have been shown to learn better from texts of lower cohesion. This study examines whether high-knowledge readers in computer science benefit from a text of low cohesion. Undergraduate students (n = 65)…

  5. Effective Teacher Qualities from International Mathematics, Science, and Computer Teachers' Perspectives

    ERIC Educational Resources Information Center

    Sahin, Alpaslan; Adiguzel, Tufan

    2014-01-01

    The purpose of this study is to investigate how international teachers, who were from overseas but taught in the United States, rate effective teacher qualities in three domains; personal, professional, and classroom management skills. The study includes 130 international mathematics, science, and computer teachers who taught in a multi-school…

  6. Developing the Next Generation of Science Data System Engineers

    NASA Technical Reports Server (NTRS)

    Moses, John F.; Behnke, Jeanne; Durachka, Christopher D.

    2016-01-01

    At Goddard, engineers and scientists with a range of experience in science data systems are needed to employ new technologies and develop advances in capabilities for supporting new Earth and Space science research. Engineers with extensive experience in science data, software engineering and computer-information architectures are needed to lead and perform these activities. The increasing types and complexity of instrument data and emerging computer technologies coupled with the current shortage of computer engineers with backgrounds in science has led the need to develop a career path for science data systems engineers and architects.The current career path, in which undergraduate students studying various disciplines such as Computer Engineering or Physical Scientist, generally begins with serving on a development team in any of the disciplines where they can work in depth on existing Goddard data systems or serve with a specific NASA science team. There they begin to understand the data, infuse technologies, and begin to know the architectures of science data systems. From here the typical career involves peermentoring, on-the-job training or graduate level studies in analytics, computational science and applied science and mathematics. At the most senior level, engineers become subject matter experts and system architect experts, leading discipline-specific data centers and large software development projects. They are recognized as a subject matter expert in a science domain, they have project management expertise, lead standards efforts and lead international projects. A long career development remains necessary not only because of the breadth of knowledge required across physical sciences and engineering disciplines, but also because of the diversity of instrument data being developed today both by NASA and international partner agencies and because multidiscipline science and practitioner communities expect to have access to all types of observational data.This paper describes an approach to defining career-path guidance for college-bound high school and undergraduate engineering students, junior and senior engineers from various disciplines.

  7. Developing the Next Generation of Science Data System Engineers

    NASA Astrophysics Data System (ADS)

    Moses, J. F.; Durachka, C. D.; Behnke, J.

    2015-12-01

    At Goddard, engineers and scientists with a range of experience in science data systems are needed to employ new technologies and develop advances in capabilities for supporting new Earth and Space science research. Engineers with extensive experience in science data, software engineering and computer-information architectures are needed to lead and perform these activities. The increasing types and complexity of instrument data and emerging computer technologies coupled with the current shortage of computer engineers with backgrounds in science has led the need to develop a career path for science data systems engineers and architects. The current career path, in which undergraduate students studying various disciplines such as Computer Engineering or Physical Scientist, generally begins with serving on a development team in any of the disciplines where they can work in depth on existing Goddard data systems or serve with a specific NASA science team. There they begin to understand the data, infuse technologies, and begin to know the architectures of science data systems. From here the typical career involves peer mentoring, on-the-job training or graduate level studies in analytics, computational science and applied science and mathematics. At the most senior level, engineers become subject matter experts and system architect experts, leading discipline-specific data centers and large software development projects. They are recognized as a subject matter expert in a science domain, they have project management expertise, lead standards efforts and lead international projects. A long career development remains necessary not only because of the breath of knowledge required across physical sciences and engineering disciplines, but also because of the diversity of instrument data being developed today both by NASA and international partner agencies and because multi-discipline science and practitioner communities expect to have access to all types of observational data. This paper describes an approach to defining career-path guidance for college-bound high school and undergraduate engineering students, junior and senior engineers from various disciplines.

  8. Exploring the Relationships between Self-Efficacy and Preference for Teacher Authority among Computer Science Majors

    ERIC Educational Resources Information Center

    Lin, Che-Li; Liang, Jyh-Chong; Su, Yi-Ching; Tsai, Chin-Chung

    2013-01-01

    Teacher-centered instruction has been widely adopted in college computer science classrooms and has some benefits in training computer science undergraduates. Meanwhile, student-centered contexts have been advocated to promote computer science education. How computer science learners respond to or prefer the two types of teacher authority,…

  9. Engagement, Persistence, and Gender in Computer Science: Results of a Smartphone ESM Study

    PubMed Central

    Milesi, Carolina; Perez-Felkner, Lara; Brown, Kevin; Schneider, Barbara

    2017-01-01

    While the underrepresentation of women in the fast-growing STEM field of computer science (CS) has been much studied, no consensus exists on the key factors influencing this widening gender gap. Possible suspects include gender differences in aptitude, interest, and academic environment. Our study contributes to this literature by applying student engagement research to study the experiences of college students studying CS, to assess the degree to which differences in men and women's engagement may help account for gender inequity in the field. Specifically, we use the Experience Sampling Method (ESM) to evaluate in real-time the engagement of college students during varied activities and environments. Over the course of a full week in fall semester and a full week in spring semester, 165 students majoring in CS at two Research I universities were “beeped” several times a day via a smartphone app prompting them to fill out a short questionnaire including open-ended and scaled items. These responses were paired with administrative and over 2 years of transcript data provided by their institutions. We used mean comparisons and logistic regression analysis to compare enrollment and persistence patterns among CS men and women. Results suggest that despite the obstacles associated with women's underrepresentation in computer science, women are more likely to continue taking computer science courses when they felt challenged and skilled in their initial computer science classes. We discuss implications for further research. PMID:28487664

  10. Laptop Use, Interactive Science Software, and Science Learning Among At-Risk Students

    NASA Astrophysics Data System (ADS)

    Zheng, Binbin; Warschauer, Mark; Hwang, Jin Kyoung; Collins, Penelope

    2014-08-01

    This year-long, quasi-experimental study investigated the impact of the use of netbook computers and interactive science software on fifth-grade students' science learning processes, academic achievement, and interest in further science, technology, engineering, and mathematics (STEM) study within a linguistically diverse school district in California. Analysis of students' state standardized science test scores indicated that the program helped close gaps in scientific achievement between at-risk learners (i.e., English learners, Hispanics, and free/reduced-lunch recipients) and their counterparts. Teacher and student interviews and classroom observations suggested that computer-supported visual representations and interactions supported diverse learners' scientific understanding and inquiry and enabled more individualized and differentiated instruction. Finally, interviews revealed that the program had a positive impact on students' motivation in science and on their interest in pursuing science-related careers. This study suggests that technology-facilitated science instruction is beneficial for improving at-risk students' science achievement, scaffolding students' scientific understanding, and strengthening students' motivation to pursue STEM-related careers.

  11. Gender and Belonging in Undergraduate Computer Science: A Comparative Case Study of Student Experiences in Gateway Courses. WCER Working Paper No. 2016-2

    ERIC Educational Resources Information Center

    Benbow, Ross J.; Vivyan, Erika

    2016-01-01

    Building from findings showing that undergraduate computer science continues to have the highest attrition rates proportionally for women within postsecondary science, technology, engineering, and mathematics disciplines--a phenomenon that defies basic social equity goals in a high status field--this paper seeks to better understand how student…

  12. Winning the Popularity Contest: Researcher Preference When Selecting Resources for Civil Engineering, Computer Science, Mathematics and Physics Dissertations

    ERIC Educational Resources Information Center

    Dotson, Daniel S.; Franks, Tina P.

    2015-01-01

    More than 53,000 citations from 609 dissertations published at The Ohio State University between 1998-2012 representing four science disciplines--civil engineering, computer science, mathematics and physics--were examined to determine what, if any, preferences or trends exist. This case study seeks to identify whether or not researcher preferences…

  13. Sociocultural Influences On Undergraduate Women's Entry into a Computer Science Major

    NASA Astrophysics Data System (ADS)

    Lyon, Louise Ann

    Computer science not only displays the pattern of underrepresentation of many other science, technology, engineering, and math (STEM) fields, but has actually experienced a decline in the number of women choosing the field over the past two decades. Broken out by gender and race, the picture becomes more nuanced, with the ratio of females to males receiving bachelor's degrees in computer science higher for non-White ethnic groups than for Whites. This dissertation explores the experiences of university women differing along the axis of race, class, and culture who are considering majoring in computer science in order to highlight how well-prepared women are persuaded that they belong (or not) in the field and how the confluence of social categories plays out in their decision. This study focuses on a university seminar entitled "Women in Computer Science and Engineering" open to women concurrently enrolled in introductory programming and uses an ethnographic approach including classroom participant observation, interviews with seminar students and instructors, observations of students in other classes, and interviews with parents of students. Three stand-alone but related articles explore various aspects of the experiences of women who participated in the study using Rom Harre's positioning theory as a theoretical framework. The first article uses data from twenty-two interviews to uncover how interactions with others and patterns in society position women in relation to a computer science major, and how these women have arrived at the point of considering the major despite messages that they do not belong. The second article more deeply explores the cases of three women who vary greatly along the axes of race, class, and culture in order to uncover pattern and interaction differences for women based on their ethnic background. The final article focuses on the attitudes and expectations of the mothers of three students of contrasting ethnicities and how reported interactions between mothers and daughters either constrain or afford opportunities for the daughters to choose a computer science major.

  14. A meta-analysis of outcomes from the use of computer-simulated experiments in science education

    NASA Astrophysics Data System (ADS)

    Lejeune, John Van

    The purpose of this study was to synthesize the findings from existing research on the effects of computer simulated experiments on students in science education. Results from 40 reports were integrated by the process of meta-analysis to examine the effect of computer-simulated experiments and interactive videodisc simulations on student achievement and attitudes. Findings indicated significant positive differences in both low-level and high-level achievement of students who use computer-simulated experiments and interactive videodisc simulations as compared to students who used more traditional learning activities. No significant differences in retention, student attitudes toward the subject, or toward the educational method were found. Based on the findings of this study, computer-simulated experiments and interactive videodisc simulations should be used to enhance students' learning in science, especially in cases where the use of traditional laboratory activities are expensive, dangerous, or impractical.

  15. Brief History of Computer-Assisted Instruction at the Institute for Mathematical Studies in the Social Sciences.

    ERIC Educational Resources Information Center

    Stanford Univ., CA. Inst. for Mathematical Studies in Social Science.

    In 1963, the Institute began a program of research and development in computer-assisted instruction (CAI). Their efforts have been funded at various times by the Carnegie Corporation of New York, The National Science Foundation and the United States Office of Education. Starting with a medium-sized computer and six student stations, the Institute…

  16. Computer Science Lesson Study: Building Computing Skills among Elementary School Teachers

    ERIC Educational Resources Information Center

    Newman, Thomas R.

    2017-01-01

    The lack of diversity in the technology workforce in the United States has proven to be a stubborn problem, resisting even the most well-funded reform efforts. With the absence of computer science education in the mainstream K-12 curriculum, only a narrow band of students in public schools go on to careers in technology. The problem persists…

  17. Trends of Students of the College of Basic Science towards Teaching the Course of Athletics and Health by Using Computer Technology in the World Islamic Sciences and Education University (WISE)

    ERIC Educational Resources Information Center

    Salameh, Ibrahim Abdul Ghani; Khawaldeh, Mohammad Falah Ali

    2014-01-01

    The Study aimed at identifying the trends of the students of basic sciences College in the World Islamic Sciences and Education University towards teaching health and sport course by using computer technology as a teaching method, and to identify also the impact of the variables of academic level and the gender on the students' trends. The study…

  18. Alliance for Computational Science Collaboration, HBCU Partnership at Alabama A&M University Final Performance Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Z.T.

    2001-11-15

    The objective of this project was to conduct high-performance computing research and teaching at AAMU, and to train African-American and other minority students and scientists in the computational science field for eventual employment with DOE. During the project period, eight tasks were accomplished. Student Research Assistant, Work Study, Summer Interns, Scholarship were proved to be one of the best ways for us to attract top-quality minority students. Under the support of DOE, through research, summer interns, collaborations, scholarships programs, AAMU has successfully provided research and educational opportunities to minority students in the field related to computational science.

  19. Demographics of undergraduates studying games in the United States: a comparison of computer science students and the general population

    NASA Astrophysics Data System (ADS)

    McGill, Monica M.; Settle, Amber; Decker, Adrienne

    2013-06-01

    Our study gathered data to serve as a benchmark of demographics of undergraduate students in game degree programs. Due to the high number of programs that are cross-disciplinary with computer science programs or that are housed in computer science departments, the data is presented in comparison to data from computing students (where available) and the US population. Participants included students studying games at four nationally recognized postsecondary institutions. The results of the study indicate that there is no significant difference between the ratio of men to women studying in computing programs or in game degree programs, with women being severely underrepresented in both. Women, blacks, Hispanics/Latinos, and heterosexuals are underrepresented compared to the US population. Those with moderate and conservative political views and with religious affiliations are underrepresented in the game student population. Participants agree that workforce diversity is important and that their programs are adequately diverse, but only one-half of the participants indicated that diversity has been discussed in any of their courses.

  20. Computer-Game Construction: A Gender-Neutral Attractor to Computing Science

    ERIC Educational Resources Information Center

    Carbonaro, Mike; Szafron, Duane; Cutumisu, Maria; Schaeffer, Jonathan

    2010-01-01

    Enrollment in Computing Science university programs is at a dangerously low level. A major reason for this is the general lack of interest in Computing Science by females. In this paper, we discuss our experience with using a computer game construction environment as a vehicle to encourage female participation in Computing Science. Experiments…

  1. A Network on Wheels!

    ERIC Educational Resources Information Center

    Harper, Christopher

    1994-01-01

    Describes mobile computer carts developed at the Lawrence Hall of Science that use IBM PS/2 computers and Personal Science Laboratory probeware. Activities using temperature probes for elementary and secondary school students are described, including greenhouse environments, ice cream/chemical reactions, probe races, motion studies, and…

  2. The Influence of Achievement Goals on Online Help Seeking of Computer Science Students

    ERIC Educational Resources Information Center

    Hao, Qiang; Barnes, Brad; Wright, Ewan; Branch, Robert Maribe

    2017-01-01

    This study investigated the online help-seeking behaviors of computer science students with a focus on the effect of achievement goals. The online help-seeking behaviors investigated were online searching, asking teachers online for help, and asking peers or unknown people online for help. One hundred and sixty-five students studying computer…

  3. Analyzing the Use of Concept Maps in Computer Science: A Systematic Mapping Study

    ERIC Educational Resources Information Center

    dos Santos, Vinicius; de Souza, Érica F.; Felizardo, Katia R; Vijaykumar, Nandamudi L.

    2017-01-01

    Context: concept Maps (CMs) enable the creation of a schematic representation of a domain knowledge. For this reason, CMs have been applied in different research areas, including Computer Science. Objective: the objective of this paper is to present the results of a systematic mapping study conducted to collect and evaluate existing research on…

  4. Promoting Elementary Students' Epistemology of Science through Computer-Supported Knowledge-Building Discourse and Epistemic Reflection

    ERIC Educational Resources Information Center

    Lin, Feng; Chan, Carol K. K.

    2018-01-01

    This study examined the role of computer-supported knowledge-building discourse and epistemic reflection in promoting elementary-school students' scientific epistemology and science learning. The participants were 39 Grade 5 students who were collectively pursuing ideas and inquiry for knowledge advance using Knowledge Forum (KF) while studying a…

  5. Are Computer Science and Information Technology Still Masculine Fields? High School Students' Perceptions and Career Choices

    ERIC Educational Resources Information Center

    Papastergiou, M.

    2008-01-01

    This study investigated Greek high school students' intentions and motivation towards and against pursuing academic studies in Computer Science (CS), the influence of the family and the scholastic environment on students' career choices, students' perceptions of CS and the Information Technology (IT) profession as well as students' attendance at…

  6. Understanding Student Retention in Computer Science Education: The Role of Environment, Gains, Barriers and Usefulness

    ERIC Educational Resources Information Center

    Giannakos, Michail N.; Pappas, Ilias O.; Jaccheri, Letizia; Sampson, Demetrios G.

    2017-01-01

    Researchers have been working to understand the high dropout rates in computer science (CS) education. Despite the great demand for CS professionals, little is known about what influences individuals to complete their CS studies. We identify gains of studying CS, the (learning) environment, degree's usefulness, and barriers as important predictors…

  7. What Do Secondary Computer Science Teachers Need? Examining Curriculum, Pedagogy, and Contextual Support

    ERIC Educational Resources Information Center

    Sadik, Olgun

    2017-01-01

    The primary purpose of this study was to identify secondary computer science (CS) teachers' needs, related to knowledge, skills, and school setting, to create more effective CS education in the United States. In addition, this study examined how these needs change based on the participants' years of teaching experience as well as their background…

  8. Computer science: Key to a space program renaissance. The 1981 NASA/ASEE summer study on the use of computer science and technology in NASA. Volume 2: Appendices

    NASA Technical Reports Server (NTRS)

    Freitas, R. A., Jr. (Editor); Carlson, P. A. (Editor)

    1983-01-01

    Adoption of an aggressive computer science research and technology program within NASA will: (1) enable new mission capabilities such as autonomous spacecraft, reliability and self-repair, and low-bandwidth intelligent Earth sensing; (2) lower manpower requirements, especially in the areas of Space Shuttle operations, by making fuller use of control center automation, technical support, and internal utilization of state-of-the-art computer techniques; (3) reduce project costs via improved software verification, software engineering, enhanced scientist/engineer productivity, and increased managerial effectiveness; and (4) significantly improve internal operations within NASA with electronic mail, managerial computer aids, an automated bureaucracy and uniform program operating plans.

  9. A study of the effects of gender and different instructional media (computer-assisted instruction tutorials vs. textbook) on student attitudes and achievement in a team-taught integrated science class

    NASA Astrophysics Data System (ADS)

    Eardley, Julie Anne

    The purpose of this study was to determine the effect of different instructional media (computer assisted instruction (CAI) tutorial vs. traditional textbook) on student attitudes toward science and computers and achievement scores in a team-taught integrated science course, ENS 1001, "The Whole Earth Course," which was offered at Florida Institute of Technology during the Fall 2000 term. The effect of gender on student attitudes toward science and computers and achievement scores was also investigated. This study employed a randomized pretest-posttest control group experimental research design with a sample of 30 students (12 males and 18 females). Students had registered for weekly lab sessions that accompanied the course and had been randomly assigned to the treatment or control group. The treatment group used a CAI tutorial for completing homework assignments and the control group used the required textbook for completing homework assignments. The Attitude toward Science and Computers Questionnaire and Achievement Test were the two instruments administered during this study to measure students' attitudes and achievement score changes. A multivariate analysis of covariance (MANCOVA), using hierarchical multiple regression/correlation (MRC), was employed to determine: (1) treatment versus control group attitude and achievement differences; and (2) male versus female attitude and achievement differences. The differences between the treatment group's and control group's homework averages were determined by t test analyses. The overall MANCOVA model was found to be significant at p < .05. Examining research factor set independent variables separately resulted in gender being the only variable that significantly contributed in explaining the variability in a dependent variable, attitudes toward science and computers. T test analyses of the homework averages showed no significant differences. Contradictory to the findings of this study, anecdotal information from personal communication, course evaluations, and homework assignments indicated favorable attitudes and higher achievement scores for a majority of the students in the treatment group.

  10. Teachers' Organization of Participation Structures for Teaching Science with Computer Technology

    NASA Astrophysics Data System (ADS)

    Subramaniam, Karthigeyan

    2016-08-01

    This paper describes a qualitative study that investigated the nature of the participation structures and how the participation structures were organized by four science teachers when they constructed and communicated science content in their classrooms with computer technology. Participation structures focus on the activity structures and processes in social settings like classrooms thereby providing glimpses into the complex dynamics of teacher-students interactions, configurations, and conventions during collective meaning making and knowledge creation. Data included observations, interviews, and focus group interviews. Analysis revealed that the dominant participation structure evident within participants' instruction with computer technology was ( Teacher) initiation-( Student and Teacher) response sequences-( Teacher) evaluate participation structure. Three key events characterized the how participants organized this participation structure in their classrooms: setting the stage for interactive instruction, the joint activity, and maintaining accountability. Implications include the following: (1) teacher educators need to tap into the knowledge base that underscores science teachers' learning to teach philosophies when computer technology is used in instruction. (2) Teacher educators need to emphasize the essential idea that learning and cognition is not situated within the computer technology but within the pedagogical practices, specifically the participation structures. (3) The pedagogical practices developed with the integration or with the use of computer technology underscored by the teachers' own knowledge of classroom contexts and curriculum needs to be the focus for how students learn science content with computer technology instead of just focusing on how computer technology solely supports students learning of science content.

  11. A Financial Technology Entrepreneurship Program for Computer Science Students

    ERIC Educational Resources Information Center

    Lawler, James P.; Joseph, Anthony

    2011-01-01

    Education in entrepreneurship is becoming a critical area of curricula for computer science students. Few schools of computer science have a concentration in entrepreneurship in the computing curricula. The paper presents Technology Entrepreneurship in the curricula at a leading school of computer science and information systems, in which students…

  12. Quantitative Study on Computer Self-Efficacy and Computer Anxiety Differences in Academic Major and Residential Status

    ERIC Educational Resources Information Center

    Binkley, Zachary Wayne McClellan

    2017-01-01

    This study investigates computer self-efficacy and computer anxiety within 61 students across two academic majors, Aviation and Sports and Exercise Science, while investigating the impact residential status, age, and gender has on those two psychological constructs. The purpose of the study is to find if computer self-efficacy and computer anxiety…

  13. Why Are Women Underrepresented in Computer Science? Gender Differences in Stereotypes, Self-Efficacy, Values, and Interests and Predictors of Future CS Course-Taking and Grades

    ERIC Educational Resources Information Center

    Beyer, Sylvia

    2014-01-01

    This study addresses why women are underrepresented in Computer Science (CS). Data from 1319 American first-year college students (872 female and 447 male) indicate that gender differences in computer self-efficacy, stereotypes, interests, values, interpersonal orientation, and personality exist. If students had had a positive experience in their…

  14. Biological and Environmental Research Exascale Requirements Review. An Office of Science review sponsored jointly by Advanced Scientific Computing Research and Biological and Environmental Research, March 28-31, 2016, Rockville, Maryland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arkin, Adam; Bader, David C.; Coffey, Richard

    Understanding the fundamentals of genomic systems or the processes governing impactful weather patterns are examples of the types of simulation and modeling performed on the most advanced computing resources in America. High-performance computing and computational science together provide a necessary platform for the mission science conducted by the Biological and Environmental Research (BER) office at the U.S. Department of Energy (DOE). This report reviews BER’s computing needs and their importance for solving some of the toughest problems in BER’s portfolio. BER’s impact on science has been transformative. Mapping the human genome, including the U.S.-supported international Human Genome Project that DOEmore » began in 1987, initiated the era of modern biotechnology and genomics-based systems biology. And since the 1950s, BER has been a core contributor to atmospheric, environmental, and climate science research, beginning with atmospheric circulation studies that were the forerunners of modern Earth system models (ESMs) and by pioneering the implementation of climate codes onto high-performance computers. See http://exascaleage.org/ber/ for more information.« less

  15. Computer Science | Classification | College of Engineering & Applied

    Science.gov Websites

    EMS 1011 profile photo Adrian Dumitrescu, Ph.D.ProfessorComputer Science(414) 229-4265Eng & Math @uwm.eduEng & Math Sciences 919 profile photo Hossein Hosseini, Ph.D.ProfessorComputer Science(414) 229 -5184hosseini@uwm.eduEng & Math Sciences 1091 profile photo Amol Mali, Ph.D.Associate ProfessorComputer

  16. Computers in Science Education: Can They Go Far Enough? Have We Gone Too Far?

    ERIC Educational Resources Information Center

    Schrock, John Richard

    1984-01-01

    Indicates that although computers may churn out creative research, science is still dependent on science education, and that science education consists of increasing human experience. Also considers uses and misuses of computers in the science classroom, examining Edgar Dale's "cone of experience" related to laboratory computer and "extended…

  17. Mathematics and Computer Science: Exploring a Symbiotic Relationship

    ERIC Educational Resources Information Center

    Bravaco, Ralph; Simonson, Shai

    2004-01-01

    This paper describes a "learning community" designed for sophomore computer science majors who are simultaneously studying discrete mathematics. The learning community consists of three courses: Discrete Mathematics, Data Structures and an Integrative Seminar/Lab. The seminar functions as a link that integrates the two disciplines. Participation…

  18. Bioinformatics in high school biology curricula: a study of state science standards.

    PubMed

    Wefer, Stephen H; Sheppard, Keith

    2008-01-01

    The proliferation of bioinformatics in modern biology marks a modern revolution in science that promises to influence science education at all levels. This study analyzed secondary school science standards of 49 U.S. states (Iowa has no science framework) and the District of Columbia for content related to bioinformatics. The bioinformatics content of each state's biology standards was analyzed and categorized into nine areas: Human Genome Project/genomics, forensics, evolution, classification, nucleotide variations, medicine, computer use, agriculture/food technology, and science technology and society/socioscientific issues. Findings indicated a generally low representation of bioinformatics-related content, which varied substantially across the different areas, with Human Genome Project/genomics and computer use being the lowest (8%), and evolution being the highest (64%) among states' science frameworks. This essay concludes with recommendations for reworking/rewording existing standards to facilitate the goal of promoting science literacy among secondary school students.

  19. Bioinformatics in High School Biology Curricula: A Study of State Science Standards

    PubMed Central

    Sheppard, Keith

    2008-01-01

    The proliferation of bioinformatics in modern biology marks a modern revolution in science that promises to influence science education at all levels. This study analyzed secondary school science standards of 49 U.S. states (Iowa has no science framework) and the District of Columbia for content related to bioinformatics. The bioinformatics content of each state's biology standards was analyzed and categorized into nine areas: Human Genome Project/genomics, forensics, evolution, classification, nucleotide variations, medicine, computer use, agriculture/food technology, and science technology and society/socioscientific issues. Findings indicated a generally low representation of bioinformatics-related content, which varied substantially across the different areas, with Human Genome Project/genomics and computer use being the lowest (8%), and evolution being the highest (64%) among states' science frameworks. This essay concludes with recommendations for reworking/rewording existing standards to facilitate the goal of promoting science literacy among secondary school students. PMID:18316818

  20. Effect of Computer-Based Multimedia Presentation on Senior Secondary Students' Achievement in Agricultural Science

    ERIC Educational Resources Information Center

    Olori, Abiola Lateef; Igbosanu, Adekunle Olusegun

    2016-01-01

    The study was carried out to determine the use of computer-based multimedia presentation on Senior Secondary School Students' Achievement in Agricultural Science. The study was a quasi-experimental, pre-test, post-test control group research design type, using intact classes. A sample of eighty (80) Senior Secondary School One (SS II) students was…

  1. The Effects of Computer-Aided Concept Cartoons and Outdoor Science Activities on Light Pollution

    ERIC Educational Resources Information Center

    Aydin, Güliz

    2015-01-01

    The purpose of this study is to create an awareness of light pollution on seventh grade students via computer aided concept cartoon applications and outdoor science activities and to help them develop solutions; and to determine student opinions on the practices carried out. The study was carried out at a middle school in Mugla province of Aegean…

  2. A Coding System for Qualitative Studies of the Information-Seeking Process in Computer Science Research

    ERIC Educational Resources Information Center

    Moral, Cristian; de Antonio, Angelica; Ferre, Xavier; Lara, Graciela

    2015-01-01

    Introduction: In this article we propose a qualitative analysis tool--a coding system--that can support the formalisation of the information-seeking process in a specific field: research in computer science. Method: In order to elaborate the coding system, we have conducted a set of qualitative studies, more specifically a focus group and some…

  3. Integrating Laptop Computers into Classroom: Attitudes, Needs, and Professional Development of Science Teachers—A Case Study

    NASA Astrophysics Data System (ADS)

    Klieger, Aviva; Ben-Hur, Yehuda; Bar-Yossef, Nurit

    2010-04-01

    The study examines the professional development of junior-high-school teachers participating in the Israeli "Katom" (Computer for Every Class, Student and Teacher) Program, begun in 2004. A three-circle support and training model was developed for teachers' professional development. The first circle applies to all teachers in the program; the second, to all teachers at individual schools; the third to teachers of specific disciplines. The study reveals and describes the attitudes of science teachers to the integration of laptop computers and to the accompanying professional development model. Semi-structured interviews were conducted with eight science teachers from the four schools participating in the program. The interviews were analyzed according to the internal relational framework taken from the information that arose from the interviews. Two factors influenced science teachers' professional development: (1) Introduction of laptops to the teachers and students. (2) The support and training system. Interview analysis shows that the disciplinary training is most relevant to teachers and they are very interested in belonging to the professional science teachers' community. They also prefer face-to-face meetings in their school. Among the difficulties they noted were the new learning environment, including control of student computers, computer integration in laboratory work and technical problems. Laptop computers contributed significantly to teachers' professional and personal development and to a shift from teacher-centered to student-centered teaching. One-to-One laptops also changed the schools' digital culture. The findings are important for designing concepts and models for professional development when introducing technological innovation into the educational system.

  4. A Different Approach to Have Science and Technology Student-Teachers Gain Varied Methods in Laboratory Applications: A Sample of Computer Assisted POE Application

    ERIC Educational Resources Information Center

    Saka, Arzu

    2012-01-01

    The purpose of this study is to develop a new approach and assess the application for the science and technology student-teachers to gain varied laboratory methods in science and technology teaching. It is also aimed to describe the computer-assisted POE application in the subject of "Photosynthesis-Light" developed in the context of…

  5. The Effect of Simulation-Assisted Laboratory Applications on Pre-Service Teachers' Attitudes towards Science Teaching

    ERIC Educational Resources Information Center

    Ulukök, Seyma; Sari, Ugur

    2016-01-01

    In this study, the effects of computer-assisted laboratory applications on pre-service science teachers' attitudes towards science teaching were investigated and the opinions of the pre-service teachers about the application were also determined. The study sample consisted of 46 students studying science teaching Faculty of Education. The study…

  6. Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis and computer science

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, and computer science during the period April, 1986 through September 30, 1986 is summarized.

  7. 78 FR 10180 - Annual Computational Science Symposium; Conference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-13

    ...] Annual Computational Science Symposium; Conference AGENCY: Food and Drug Administration, HHS. ACTION... Computational Science Symposium.'' The purpose of the conference is to help the broader community align and share experiences to advance computational science. At the conference, which will bring together FDA...

  8. The Effects of the Computer-Based Instruction on the Achievement and Problem Solving Skills of the Science and Technology Students

    ERIC Educational Resources Information Center

    Serin, Oguz

    2011-01-01

    This study aims to investigate the effects of the computer-based instruction on the achievements and problem solving skills of the science and technology students. This is a study based on the pre-test/post-test control group design. The participants of the study consist of 52 students; 26 in the experimental group, 26 in the control group. The…

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hules, John

    This 1998 annual report from the National Scientific Energy Research Computing Center (NERSC) presents the year in review of the following categories: Computational Science; Computer Science and Applied Mathematics; and Systems and Services. Also presented are science highlights in the following categories: Basic Energy Sciences; Biological and Environmental Research; Fusion Energy Sciences; High Energy and Nuclear Physics; and Advanced Scientific Computing Research and Other Projects.

  10. Pedagogical Beliefs and Attitudes of Computer Science Teachers in Greece

    ERIC Educational Resources Information Center

    Fessakis, Georgios; Karakiza, Tsampika

    2011-01-01

    Pedagogical beliefs and attitudes significantly determine the professional skills and practice of teachers. Many professional development programs for teachers aim to the elaboration of the pedagogical knowledge in order to improve teaching quality. This paper presents the study of pedagogical beliefs of computer science teachers in Greece. The…

  11. Student Sensemaking with Science Diagrams in a Computer-Based Setting

    ERIC Educational Resources Information Center

    Furberg, Anniken; Kluge, Anders; Ludvigsen, Sten

    2013-01-01

    This paper reports on a study of students' conceptual sensemaking with science diagrams within a computer-based learning environment aimed at supporting collaborative learning. Through the microanalysis of students' interactions in a project about energy and heat transfer, we demonstrate "how" representations become productive social and cognitive…

  12. Designing Online Scaffolds for Interactive Computer Simulation

    ERIC Educational Resources Information Center

    Chen, Ching-Huei; Wu, I-Chia; Jen, Fen-Lan

    2013-01-01

    The purpose of this study was to examine the effectiveness of online scaffolds in computer simulation to facilitate students' science learning. We first introduced online scaffolds to assist and model students' science learning and to demonstrate how a system embedded with online scaffolds can be designed and implemented to help high school…

  13. Understanding Initial Undergraduate Expectations and Identity in Computing Studies

    ERIC Educational Resources Information Center

    Kinnunen, Päivi; Butler, Matthew; Morgan, Michael; Nylen, Aletta; Peters, Anne-Kathrin; Sinclair, Jane; Kalvala, Sara; Pesonen, Erkki

    2018-01-01

    There is growing appreciation of the importance of understanding the student perspective in Higher Education (HE) at both institutional and international levels. This is particularly important in Science, Technology, Engineering and Mathematics subjects such as Computer Science (CS) and Engineering in which industry needs are high but so are…

  14. Enduring Influence of Stereotypical Computer Science Role Models on Women's Academic Aspirations

    ERIC Educational Resources Information Center

    Cheryan, Sapna; Drury, Benjamin J.; Vichayapai, Marissa

    2013-01-01

    The current work examines whether a brief exposure to a computer science role model who fits stereotypes of computer scientists has a lasting influence on women's interest in the field. One-hundred undergraduate women who were not computer science majors met a female or male peer role model who embodied computer science stereotypes in appearance…

  15. A Web of Resources for Introductory Computer Science.

    ERIC Educational Resources Information Center

    Rebelsky, Samuel A.

    As the field of Computer Science has grown, the syllabus of the introductory Computer Science course has changed significantly. No longer is it a simple introduction to programming or a tutorial on computer concepts and applications. Rather, it has become a survey of the field of Computer Science, touching on a wide variety of topics from digital…

  16. Feasibility Study of a Vision-Based Landing System for Unmanned Fixed-Wing Aircraft

    DTIC Science & Technology

    2017-06-01

    International Journal of Computer Science and Network Security 7 no. 3: 112–117. Accessed April 7, 2017. http://www.sciencedirect.com/science/ article /pii...the feasibility of applying computer vision techniques and visual feedback in the control loop for an autonomous system. This thesis examines the...integration into an autonomous aircraft control system. 14. SUBJECT TERMS autonomous systems, auto-land, computer vision, image processing

  17. Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis and computer science

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, and computer science during the period April l, 1988 through September 30, 1988.

  18. Summary of research in applied mathematics, numerical analysis and computer science at the Institute for Computer Applications in Science and Engineering

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis and computer science during the period October 1, 1983 through March 31, 1984 is summarized.

  19. Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis and computer science

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, and computer science during the period October 1, 1986 through March 31, 1987 is summarized.

  20. High school computer science education paves the way for higher education: the Israeli case

    NASA Astrophysics Data System (ADS)

    Armoni, Michal; Gal-Ezer, Judith

    2014-07-01

    The gap between enrollments in higher education computing programs and the high-tech industry's demands is widely reported, and is especially prominent for women. Increasing the availability of computer science education in high school is one of the strategies suggested in order to address this gap. We look at the connection between exposure to computer science in high school and pursuing computing in higher education. We also examine the gender gap, in the context of high school computer science education. We show that in Israel, students who took the high-level computer science matriculation exam were more likely to pursue computing in higher education. Regarding the issue of gender, we will show that, in general, in Israel the difference between males and females who take computer science in high school is relatively small, and a larger, though still not very large difference exists only for the highest exam level. In addition, exposing females to high-level computer science in high school has more relative impact on pursuing higher education in computing.

  1. Economic development evaluation based on science and patents

    NASA Astrophysics Data System (ADS)

    Jokanović, Bojana; Lalic, Bojan; Milovančević, Miloš; Simeunović, Nenad; Marković, Dusan

    2017-09-01

    Economic development could be achieved through many factors. Science and technology factors could influence economic development drastically. Therefore the main aim in this study was to apply computational intelligence methodology, artificial neural network approach, for economic development estimation based on different science and technology factors. Since economic analyzing could be very challenging task because of high nonlinearity, in this study was applied computational intelligence methodology, artificial neural network approach, to estimate the economic development based on different science and technology factors. As economic development measure, gross domestic product (GDP) was used. As the science and technology factors, patents in different field were used. It was found that the patents in electrical engineering field have the highest influence on the economic development or the GDP.

  2. The Impact of Internet Virtual Physics Laboratory Instruction on the Achievement in Physics, Science Process Skills and Computer Attitudes of 10th-Grade Students

    NASA Astrophysics Data System (ADS)

    Yang, Kun-Yuan; Heh, Jia-Sheng

    2007-10-01

    The purpose of this study was to investigate and compare the impact of Internet Virtual Physics Laboratory (IVPL) instruction with traditional laboratory instruction in physics academic achievement, performance of science process skills, and computer attitudes of tenth grade students. One-hundred and fifty students from four classes at one private senior high school in Taoyuan Country, Taiwan, R.O.C. were sampled. All four classes contained 75 students who were equally divided into an experimental group and a control group. The pre-test results indicated that the students' entry-level physics academic achievement, science process skills, and computer attitudes were equal for both groups. On the post-test, the experimental group achieved significantly higher mean scores in physics academic achievement and science process skills. There was no significant difference in computer attitudes between the groups. We concluded that the IVPL had potential to help tenth graders improve their physics academic achievement and science process skills.

  3. Defining Computational Thinking for Mathematics and Science Classrooms

    NASA Astrophysics Data System (ADS)

    Weintrop, David; Beheshti, Elham; Horn, Michael; Orton, Kai; Jona, Kemi; Trouille, Laura; Wilensky, Uri

    2016-02-01

    Science and mathematics are becoming computational endeavors. This fact is reflected in the recently released Next Generation Science Standards and the decision to include "computational thinking" as a core scientific practice. With this addition, and the increased presence of computation in mathematics and scientific contexts, a new urgency has come to the challenge of defining computational thinking and providing a theoretical grounding for what form it should take in school science and mathematics classrooms. This paper presents a response to this challenge by proposing a definition of computational thinking for mathematics and science in the form of a taxonomy consisting of four main categories: data practices, modeling and simulation practices, computational problem solving practices, and systems thinking practices. In formulating this taxonomy, we draw on the existing computational thinking literature, interviews with mathematicians and scientists, and exemplary computational thinking instructional materials. This work was undertaken as part of a larger effort to infuse computational thinking into high school science and mathematics curricular materials. In this paper, we argue for the approach of embedding computational thinking in mathematics and science contexts, present the taxonomy, and discuss how we envision the taxonomy being used to bring current educational efforts in line with the increasingly computational nature of modern science and mathematics.

  4. Toward using games to teach fundamental computer science concepts

    NASA Astrophysics Data System (ADS)

    Edgington, Jeffrey Michael

    Video and computer games have become an important area of study in the field of education. Games have been designed to teach mathematics, physics, raise social awareness, teach history and geography, and train soldiers in the military. Recent work has created computer games for teaching computer programming and understanding basic algorithms. We present an investigation where computer games are used to teach two fundamental computer science concepts: boolean expressions and recursion. The games are intended to teach the concepts and not how to implement them in a programming language. For this investigation, two computer games were created. One is designed to teach basic boolean expressions and operators and the other to teach fundamental concepts of recursion. We describe the design and implementation of both games. We evaluate the effectiveness of these games using before and after surveys. The surveys were designed to ascertain basic understanding, attitudes and beliefs regarding the concepts. The boolean game was evaluated with local high school students and students in a college level introductory computer science course. The recursion game was evaluated with students in a college level introductory computer science course. We present the analysis of the collected survey information for both games. This analysis shows a significant positive change in student attitude towards recursion and modest gains in student learning outcomes for both topics.

  5. Nicholas Brunhart-Lupo | NREL

    Science.gov Websites

    . Education Ph.D., Computer Science, Colorado School of Mines M.S., Computer Science, University of Queensland B.S., Computer Science, Colorado School of Mines Brunhart-Lupo Nicholas Brunhart-Lupo Computational Science Nicholas.Brunhart-Lupo@nrel.gov

  6. The Need for Computer Science

    ERIC Educational Resources Information Center

    Margolis, Jane; Goode, Joanna; Bernier, David

    2011-01-01

    Broadening computer science learning to include more students is a crucial item on the United States' education agenda, these authors say. Although policymakers advocate more computer science expertise, computer science offerings in high schools are few--and actually shrinking. In addition, poorly resourced schools with a high percentage of…

  7. Summary of research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis and computer science

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, and computer science during the period October 1, 1988 through March 31, 1989 is summarized.

  8. Alliance for Computational Science Collaboration HBCU Partnership at Fisk University. Final Report 2001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, W. E.

    2004-08-16

    Computational Science plays a big role in research and development in mathematics, science, engineering and biomedical disciplines. The Alliance for Computational Science Collaboration (ACSC) has the goal of training African-American and other minority scientists in the computational science field for eventual employment with the Department of Energy (DOE). The involvements of Historically Black Colleges and Universities (HBCU) in the Alliance provide avenues for producing future DOE African-American scientists. Fisk University has been participating in this program through grants from the DOE. The DOE grant supported computational science activities at Fisk University. The research areas included energy related projects, distributed computing,more » visualization of scientific systems and biomedical computing. Students' involvement in computational science research included undergraduate summer research at Oak Ridge National Lab, on-campus research involving the participation of undergraduates, participation of undergraduate and faculty members in workshops, and mentoring of students. These activities enhanced research and education in computational science, thereby adding to Fisk University's spectrum of research and educational capabilities. Among the successes of the computational science activities are the acceptance of three undergraduate students to graduate schools with full scholarships beginning fall 2002 (one for master degree program and two for Doctoral degree program).« less

  9. SSMA Science Reviewers' Forecasts for the Future of Science Education.

    ERIC Educational Resources Information Center

    Jinks, Jerry; Hoffer, Terry

    1989-01-01

    Described is a study which was conducted as an exploratory assessment of science reviewers' perceptions for the future of science education. Arrives at interpretations for identified categories of computers and high technology, science curriculum, teacher education, training, certification, standards, teaching methods, and materials. (RT)

  10. 34 CFR 691.17 - Determination of eligible majors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... majors in the physical, life, or computer sciences, mathematics, technology, engineering, critical... EDUCATION, DEPARTMENT OF EDUCATION ACADEMIC COMPETITIVENESS GRANT (ACG) AND NATIONAL SCIENCE AND MATHEMATICS... years of study in mathematics and three years of study in the sciences, with a laboratory component in...

  11. 34 CFR 691.17 - Determination of eligible majors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... majors in the physical, life, or computer sciences, mathematics, technology, engineering, critical... EDUCATION, DEPARTMENT OF EDUCATION (CONTINUED) ACADEMIC COMPETITIVENESS GRANT (ACG) AND NATIONAL SCIENCE AND... years of study in mathematics and three years of study in the sciences, with a laboratory component in...

  12. 34 CFR 691.17 - Determination of eligible majors.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... majors in the physical, life, or computer sciences, mathematics, technology, engineering, critical... EDUCATION, DEPARTMENT OF EDUCATION (CONTINUED) ACADEMIC COMPETITIVENESS GRANT (ACG) AND NATIONAL SCIENCE AND... years of study in mathematics and three years of study in the sciences, with a laboratory component in...

  13. 34 CFR 691.17 - Determination of eligible majors.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... majors in the physical, life, or computer sciences, mathematics, technology, engineering, critical... EDUCATION, DEPARTMENT OF EDUCATION (CONTINUED) ACADEMIC COMPETITIVENESS GRANT (ACG) AND NATIONAL SCIENCE AND... years of study in mathematics and three years of study in the sciences, with a laboratory component in...

  14. 34 CFR 691.17 - Determination of eligible majors.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... majors in the physical, life, or computer sciences, mathematics, technology, engineering, critical... EDUCATION, DEPARTMENT OF EDUCATION (CONTINUED) ACADEMIC COMPETITIVENESS GRANT (ACG) AND NATIONAL SCIENCE AND... years of study in mathematics and three years of study in the sciences, with a laboratory component in...

  15. Curricular Influences on Female Afterschool Facilitators' Computer Science Interests and Career Choices

    NASA Astrophysics Data System (ADS)

    Koch, Melissa; Gorges, Torie

    2016-10-01

    Underrepresented populations such as women, African-Americans, and Latinos/as often come to STEM (science, technology, engineering, and mathematics) careers by less traditional paths than White and Asian males. To better understand how and why women might shift toward STEM, particularly computer science, careers, we investigated the education and career direction of afterschool facilitators, primarily women of color in their twenties and thirties, who taught Build IT, an afterschool computer science curriculum for middle school girls. Many of these women indicated that implementing Build IT had influenced their own interest in technology and computer science and in some cases had resulted in their intent to pursue technology and computer science education. We wanted to explore the role that teaching Build IT may have played in activating or reactivating interest in careers in computer science and to see whether in the years following implementation of Build IT, these women pursued STEM education and/or careers. We reached nine facilitators who implemented the program in 2011-12 or shortly after. Many indicated that while facilitating Build IT, they learned along with the participants, increasing their interest in and confidence with technology and computer science. Seven of the nine participants pursued further STEM or computer science learning or modified their career paths to include more of a STEM or computer science focus. Through interviews, we explored what aspects of Build IT influenced these facilitators' interest and confidence in STEM and when relevant their pursuit of technology and computer science education and careers.

  16. The NASA computer science research program plan

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A taxonomy of computer science is included, one state of the art of each of the major computer science categories is summarized. A functional breakdown of NASA programs under Aeronautics R and D, space R and T, and institutional support is also included. These areas were assessed against the computer science categories. Concurrent processing, highly reliable computing, and information management are identified.

  17. Productization and Commercialization of IT-Enabled Higher Education in Computer Science: A Systematic Literature Review

    ERIC Educational Resources Information Center

    Kankaanpää, Irja; Isomäki, Hannakaisa

    2013-01-01

    This paper reviews research literature on the production and commercialization of IT-enabled higher education in computer science. Systematic literature review (SLR) was carried out in order to find out to what extent this area has been studied, more specifically how much it has been studied and to what detail. The results of this paper make a…

  18. Insights on Supporting Learning during Computing Science and Engineering Students' Transition to University: A Design-Oriented, Mixed Methods Exploration of Instructor and Student Perspectives

    ERIC Educational Resources Information Center

    Guloy, Sheryl; Salimi, Farimah; Cukierman, Diana; McGee Thompson, Donna

    2017-01-01

    Using a design-based orientation, this mixed-method study explored ways to support computing science and engineering students whose study strategies may be inadequate to meet coursework expectations. Learning support workshops, paired with university courses, have been found to assist students as they transition to university learning, thereby…

  19. Exploring the Effect of Background Knowledge and Text Cohesion on Learning from Texts in Computer Science

    ERIC Educational Resources Information Center

    Gasparinatou, Alexandra; Grigoriadou, Maria

    2013-01-01

    In this study, we examine the effect of background knowledge and local cohesion on learning from texts. The study is based on construction-integration model. Participants were 176 undergraduate students who read a Computer Science text. Half of the participants read a text of maximum local cohesion and the other a text of minimum local cohesion.…

  20. On teaching computer ethics within a computer science department.

    PubMed

    Quinn, Michael J

    2006-04-01

    The author has surveyed a quarter of the accredited undergraduate computer science programs in the United States. More than half of these programs offer a 'social and ethical implications of computing' course taught by a computer science faculty member, and there appears to be a trend toward teaching ethics classes within computer science departments. Although the decision to create an 'in house' computer ethics course may sometimes be a pragmatic response to pressure from the accreditation agency, this paper argues that teaching ethics within a computer science department can provide students and faculty members with numerous benefits. The paper lists topics that can be covered in a computer ethics course and offers some practical suggestions for making the course successful.

  1. An investigation of the artifacts, outcomes, and processes of constructing computer games about environmental science in a fifth grade science classroom

    NASA Astrophysics Data System (ADS)

    Baytak, Ahmet

    Among educational researchers and practitioners, there is a growing interest in employing computer games for pedagogical purposes. The present research integrated a technology education class and a science class where 5 th graders learned about environmental issues by designing games that involved environmental concepts. The purposes of this study were to investigate how designing computer games affected the development of students' environmental knowledge, programming knowledge, environmental awareness and interest in computers. It also explored the nature of the artifacts developed and the types of knowledge represented therein. A case study (Yin, 2003) was employed within the context of a 5 th grade elementary science classroom. Fifth graders designed computer games about environmental issues to present to 2nd graders by using Scratch software. The analysis of this study was based on multiple data sources: students' pre- and post-test scores on environmental awareness, their environmental knowledge, their interest in computer science, and their game design. Included in the analyses were also data from students' computer games, participant observations, and structured interviews. The results of the study showed that students were able to successfully design functional games that represented their understanding of environment, even though the gain between pre- and post-environmental knowledge test and environmental awareness survey were minimal. The findings indicate that all students were able to use various game characteristics and programming concepts, but their prior experience with the design software affected their representations. The analyses of the interview transcriptions and games show that students improved their programming skills and that they wanted to do similar projects for other subject areas in the future. Observations showed that game design appeared to lead to knowledge-building, interaction and collaboration among students. This, in turn, encouraged students to test and improve their designs. Sharing the games, it was found, has both positive and negative effects on the students' game design process and the representation of students' understandings of the domain subject.

  2. Computational Science News | Computational Science | NREL

    Science.gov Websites

    -Cooled High-Performance Computing Technology at the ESIF February 28, 2018 NREL Launches New Website for High-Performance Computing System Users The National Renewable Energy Laboratory (NREL) Computational Science Center has launched a revamped website for users of the lab's high-performance computing (HPC

  3. Stability Analysis of Finite Difference Approximations to Hyperbolic Systems, and Problems in Applied and Computational Matrix Theory

    DTIC Science & Technology

    1988-07-08

    Marcus and C. Baczynski), Computer Science Press, Rockville, Maryland, 1986. 3. An Introduction to Pascal and Precalculus , Computer Science Press...Science Press, Rockville, Maryland, 1986. 35. An Introduction to Pascal and Precalculus , Computer Science Press, Rockville, Maryland, 1986. 36

  4. Empirical Determination of Competence Areas to Computer Science Education

    ERIC Educational Resources Information Center

    Zendler, Andreas; Klaudt, Dieter; Seitz, Cornelia

    2014-01-01

    The authors discuss empirically determined competence areas to K-12 computer science education, emphasizing the cognitive level of competence. The results of a questionnaire with 120 professors of computer science serve as a database. By using multi-dimensional scaling and cluster analysis, four competence areas to computer science education…

  5. Preparing Future Secondary Computer Science Educators

    ERIC Educational Resources Information Center

    Ajwa, Iyad

    2007-01-01

    Although nearly every college offers a major in computer science, many computer science teachers at the secondary level have received little formal training. This paper presents details of a project that could make a significant contribution to national efforts to improve computer science education by combining teacher education and professional…

  6. OPENING REMARKS: SciDAC: Scientific Discovery through Advanced Computing

    NASA Astrophysics Data System (ADS)

    Strayer, Michael

    2005-01-01

    Good morning. Welcome to SciDAC 2005 and San Francisco. SciDAC is all about computational science and scientific discovery. In a large sense, computational science characterizes SciDAC and its intent is change. It transforms both our approach and our understanding of science. It opens new doors and crosses traditional boundaries while seeking discovery. In terms of twentieth century methodologies, computational science may be said to be transformational. There are a number of examples to this point. First are the sciences that encompass climate modeling. The application of computational science has in essence created the field of climate modeling. This community is now international in scope and has provided precision results that are challenging our understanding of our environment. A second example is that of lattice quantum chromodynamics. Lattice QCD, while adding precision and insight to our fundamental understanding of strong interaction dynamics, has transformed our approach to particle and nuclear science. The individual investigator approach has evolved to teams of scientists from different disciplines working side-by-side towards a common goal. SciDAC is also undergoing a transformation. This meeting is a prime example. Last year it was a small programmatic meeting tracking progress in SciDAC. This year, we have a major computational science meeting with a variety of disciplines and enabling technologies represented. SciDAC 2005 should position itself as a new corner stone for Computational Science and its impact on science. As we look to the immediate future, FY2006 will bring a new cycle to SciDAC. Most of the program elements of SciDAC will be re-competed in FY2006. The re-competition will involve new instruments for computational science, new approaches for collaboration, as well as new disciplines. There will be new opportunities for virtual experiments in carbon sequestration, fusion, and nuclear power and nuclear waste, as well as collaborations with industry and virtual prototyping. New instruments of collaboration will include institutes and centers while summer schools, workshops and outreach will invite new talent and expertise. Computational science adds new dimensions to science and its practice. Disciplines of fusion, accelerator science, and combustion are poised to blur the boundaries between pure and applied science. As we open the door into FY2006 we shall see a landscape of new scientific challenges: in biology, chemistry, materials, and astrophysics to name a few. The enabling technologies of SciDAC have been transformational as drivers of change. Planning for major new software systems assumes a base line employing Common Component Architectures and this has become a household word for new software projects. While grid algorithms and mesh refinement software have transformed applications software, data management and visualization have transformed our understanding of science from data. The Gordon Bell prize now seems to be dominated by computational science and solvers developed by TOPS ISIC. The priorities of the Office of Science in the Department of Energy are clear. The 20 year facilities plan is driven by new science. High performance computing is placed amongst the two highest priorities. Moore's law says that by the end of the next cycle of SciDAC we shall have peta-flop computers. The challenges of petascale computing are enormous. These and the associated computational science are the highest priorities for computing within the Office of Science. Our effort in Leadership Class computing is just a first step towards this goal. Clearly, computational science at this scale will face enormous challenges and possibilities. Performance evaluation and prediction will be critical to unraveling the needed software technologies. We must not lose sight of our overarching goal—that of scientific discovery. Science does not stand still and the landscape of science discovery and computing holds immense promise. In this environment, I believe it is necessary to institute a system of science based performance metrics to help quantify our progress towards science goals and scientific computing. As a final comment I would like to reaffirm that the shifting landscapes of science will force changes to our computational sciences, and leave you with the quote from Richard Hamming, 'The purpose of computing is insight, not numbers'.

  7. CSM research: Methods and application studies

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.

    1989-01-01

    Computational mechanics is that discipline of applied science and engineering devoted to the study of physical phenomena by means of computational methods based on mathematical modeling and simulation, utilizing digital computers. The discipline combines theoretical and applied mechanics, approximation theory, numerical analysis, and computer science. Computational mechanics has had a major impact on engineering analysis and design. When applied to structural mechanics, the discipline is referred to herein as computational structural mechanics. Complex structures being considered by NASA for the 1990's include composite primary aircraft structures and the space station. These structures will be much more difficult to analyze than today's structures and necessitate a major upgrade in computerized structural analysis technology. NASA has initiated a research activity in structural analysis called Computational Structural Mechanics (CSM). The broad objective of the CSM activity is to develop advanced structural analysis technology that will exploit modern and emerging computers, such as those with vector and/or parallel processing capabilities. Here, the current research directions for the Methods and Application Studies Team of the Langley CSM activity are described.

  8. Enabling Wide-Scale Computer Science Education through Improved Automated Assessment Tools

    NASA Astrophysics Data System (ADS)

    Boe, Bryce A.

    There is a proliferating demand for newly trained computer scientists as the number of computer science related jobs continues to increase. University programs will only be able to train enough new computer scientists to meet this demand when two things happen: when there are more primary and secondary school students interested in computer science, and when university departments have the resources to handle the resulting increase in enrollment. To meet these goals, significant effort is being made to both incorporate computational thinking into existing primary school education, and to support larger university computer science class sizes. We contribute to this effort through the creation and use of improved automated assessment tools. To enable wide-scale computer science education we do two things. First, we create a framework called Hairball to support the static analysis of Scratch programs targeted for fourth, fifth, and sixth grade students. Scratch is a popular building-block language utilized to pique interest in and teach the basics of computer science. We observe that Hairball allows for rapid curriculum alterations and thus contributes to wide-scale deployment of computer science curriculum. Second, we create a real-time feedback and assessment system utilized in university computer science classes to provide better feedback to students while reducing assessment time. Insights from our analysis of student submission data show that modifications to the system configuration support the way students learn and progress through course material, making it possible for instructors to tailor assignments to optimize learning in growing computer science classes.

  9. [Evaluation of the lifestyle of students of physiotherapy and technical & computer science basing on their diet and physical activity].

    PubMed

    Medrela-Kuder, Ewa

    2011-01-01

    The aim of the study was the evaluation of a dietary habits profile and physical activity of Physiotherapy and Technical & Computer Science students. The research involved a group of 174 non-full-time students of higher education institutions in Krakow aged between 22 and 27. 81 students of the surveyed studied Physiotherapy at the University of Physical Education, whereas 93 followed a course in Technical & Computer Science at the Pedagogical University. In this project a diagnostic survey method was used. The study revealed that the lifestyle of university youth left much to be desired. Dietary errors were exemplified by irregular meals intake, low consumption of fish, milk and dairy, snacking between meals on high calorie products with a poor nutrient content. With regard to physical activity, Physiotherapy students were characterised by more positive attitudes than those from Technical & Computer Science. Such physical activity forms as swimming, team sports, cycling and strolling were declared by the surveyed the most frequently. Health-oriented education should be introduced in such a way as to improve the knowledge pertaining to a health-promoting lifestyle as a means of prevention of numerous diseases.

  10. Examination of the Effects of Dimensionality on Cognitive Processing in Science: A Computational Modeling Experiment Comparing Online Laboratory Simulations and Serious Educational Games

    ERIC Educational Resources Information Center

    Lamb, Richard L.

    2016-01-01

    Within the last 10 years, new tools for assisting in the teaching and learning of academic skills and content within the context of science have arisen. These new tools include multiple types of computer software and hardware to include (video) games. The purpose of this study was to examine and compare the effect of computer learning games in the…

  11. Pedagogical Content Knowledge in Teaching Material

    ERIC Educational Resources Information Center

    Saeli, Mara; Perrenet, Jacob; Jochems, Wim M. G.; Zwaneveld, Bert

    2012-01-01

    The scope of this article is to understand to what extent Computer Science teachers can find support for their Pedagogical Content Knowledge (PCK) in teaching material. We report the results of a study in which PCK is used as framework to develop a research instrument to examine three high school computer science textbooks, with special focus on…

  12. Computer Science Majors: Sex Role Orientation, Academic Achievement, and Social Cognitive Factors

    ERIC Educational Resources Information Center

    Brown, Chris; Garavalia, Linda S.; Fritts, Mary Lou Hines; Olson, Elizabeth A.

    2006-01-01

    This study examined the sex role orientations endorsed by 188 male and female students majoring in computer science, a male-dominated college degree program. The relations among sex role orientation and academic achievement and social cognitive factors influential in career decision-making self-efficacy were explored. Findings revealed that…

  13. Designing English for Specific Purposes Course for Computer Science Students

    ERIC Educational Resources Information Center

    Irshad, Isra; Anwar, Behzad

    2018-01-01

    The aim of this study was to design English for Academic Purposes (EAP) course for University students enrolled in the Computer Science Department. For this purpose, academic English language needs of the students were analyzed by using a 5 point Likert scale questionnaire. Additionally, interviews were also conducted with four faculty members of…

  14. Negotiating Knowledge Contribution to Multiple Discourse Communities: A Doctoral Student of Computer Science Writing for Publication

    ERIC Educational Resources Information Center

    Li, Yongyan

    2006-01-01

    Despite the rich literature on disciplinary knowledge construction and multilingual scholars' academic literacy practices, little is known about how novice scholars are engaged in knowledge construction in negotiation with various target discourse communities. In this case study, with a focused analysis of a Chinese computer science doctoral…

  15. Formal Operations and Learning Style Predict Success in Statistics and Computer Science Courses.

    ERIC Educational Resources Information Center

    Hudak, Mary A.; Anderson, David E.

    1990-01-01

    Studies 94 undergraduate students in introductory statistics and computer science courses. Applies Formal Operations Reasoning Test (FORT) and Kolb's Learning Style Inventory (LSI). Finds that substantial numbers of students have not achieved the formal operation level of cognitive maturity. Emphasizes need to examine students learning style and…

  16. Finding the Hook: Computer Science Education in Elementary Contexts

    ERIC Educational Resources Information Center

    Ozturk, Zehra; Dooley, Caitlin McMunn; Welch, Meghan

    2018-01-01

    The purpose of this study was to investigate how elementary teachers with little knowledge of computer science (CS) and project-based learning (PBL) experienced integrating CS through PBL as a part of a standards-based elementary curriculum in Grades 3-5. The researchers used qualitative constant comparison methods on field notes and reflections…

  17. A Learning Research Informed Design and Evaluation of a Web-Enhanced Object Oriented Programming Seminar

    ERIC Educational Resources Information Center

    Georgantaki, Stavroula C.; Retalis, Symeon D.

    2007-01-01

    "Object-Oriented Programming" subject is included in the ACM Curriculum Guidelines for Undergraduate and Graduate Degree Programs in Computer Science as well as in Curriculum for K-12 Computer Science. In a few research studies learning problems and difficulties have been recorded, and therefore, specific pedagogical guidelines and…

  18. Cognitive Asymmetry, Computer Science Students, and Professional Programmers.

    ERIC Educational Resources Information Center

    Gordon, Harold W.

    1990-01-01

    Discussion of right brain versus left brain skills focuses on a study that compared the performances of computer science students, professional programers, and bank employees on eight tests of brain function. Results are reported which suggest that the cognitive profile may be an important indicator for success in certain occupations. (16…

  19. Principles versus Artifacts in Computer Science Curriculum Design

    ERIC Educational Resources Information Center

    Machanick, Philip

    2003-01-01

    Computer Science is a subject which has difficulty in marketing itself. Further, pinning down a standard curriculum is difficult--there are many preferences which are hard to accommodate. This paper argues the case that part of the problem is the fact that, unlike more established disciplines, the subject does not clearly distinguish the study of…

  20. Using Frameworks in a Government Contracting Environment: Case Study at the NASA Center for Computational Sciences

    NASA Technical Reports Server (NTRS)

    McGalliard, James

    2008-01-01

    A viewgraph describing the use of multiple frameworks by NASA, GSA, and U.S. Government agencies is presented. The contents include: 1) Federal Systems Integration and Management Center (FEDSIM) and NASA Center for Computational Sciences (NCCS) Environment; 2) Ruling Frameworks; 3) Implications; and 4) Reconciling Multiple Frameworks.

  1. The Difficult Bridge between University and Industry: A Case Study in Computer Science Teaching

    ERIC Educational Resources Information Center

    Schilling, Jan; Klamma, Ralf

    2010-01-01

    Recently, there has been increasing criticism concerning academic computer science education. This paper presents a new approach based on the principles of constructivist learning design as well as the ideas of knowledge transfer in communities of practice. The course "High-tech Entrepreneurship and New Media" was introduced as an…

  2. Comparing levels of school performance to science teachers' reports on knowledge/skills, instructional use and student use of computers

    NASA Astrophysics Data System (ADS)

    Kerr, Rebecca

    The purpose of this descriptive quantitative and basic qualitative study was to examine fifth and eighth grade science teachers' responses, perceptions of the role of technology in the classroom, and how they felt that computer applications, tools, and the Internet influence student understanding. The purposeful sample included survey and interview responses from fifth grade and eighth grade general and physical science teachers. Even though they may not be generalizable to other teachers or classrooms due to a low response rate, findings from this study indicated teachers with fewer years of teaching science had a higher level of computer use but less computer access, especially for students, in the classroom. Furthermore, teachers' choice of professional development moderated the relationship between the level of school performance and teachers' knowledge/skills, with the most positive relationship being with workshops that occurred outside of the school. Eighteen interviews revealed that teachers perceived the role of technology in classroom instruction mainly as teacher-centered and supplemental, rather than student-centered activities.

  3. The effects of home computer access and social capital on mathematics and science achievement among Asian-American high school students in the NELS:88 data set

    NASA Astrophysics Data System (ADS)

    Quigley, Mark Declan

    The purpose of this researcher was to examine specific environmental, educational, and demographic factors and their influence on mathematics and science achievement. In particular, the researcher ascertained the interconnections of home computer access and social capital, with Asian American students and the effect on mathematics and science achievement. Coleman's theory on social capital and parental influence was used as a basis for the analysis of data. Subjects for this study were the base year students from the National Education Longitudinal Study of 1988 (NELS:88) and the subsequent follow-up survey data in 1990, 1992, and 1994. The approximate sample size for this study is 640 ethnic Asians from the NELS:88 database. The analysis was a longitudinal study based on the Student and Parent Base Year responses and the Second Follow-up survey of 1992, when the subjects were in 12th grade. Achievement test results from the NELS:88 data were used to measure achievement in mathematics and science. The NELS:88 test battery was developed to measure both individual status and a student's growth in a number of achievement areas. The subject's responses were analyzed by principal components factor analysis, weights, effect sizes, hierarchial regression analysis, and PLSPath Analysis. The results of this study were that prior ability in mathematics and science is a major influence in the student's educational achievement. Findings from the study support the view that home computer access has a negative direct effect on mathematics and science achievement for both Asian American males and females. None of the social capital factors in the study had either a negative or positive direct effect on mathematics and science achievement although some indirect effects were found. Suggestions were made toward increasing parental involvement in their children's academic endeavors. Computer access in the home should be considered related to television viewing and should be closely monitored by the parents to promote educational uses.

  4. Comparisons of Physicians' and Nurses' Attitudes towards Computers.

    PubMed

    Brumini, Gordana; Ković, Ivor; Zombori, Dejvid; Lulić, Ileana; Bilic-Zulle, Lidija; Petrovecki, Mladen

    2005-01-01

    Before starting the implementation of integrated hospital information systems, the physicians' and nurses' attitudes towards computers were measured by means of a questionnaire. The study was conducted in Dubrava University Hospital, Zagreb in Croatia. Out of 194 respondents, 141 were nurses and 53 physicians, randomly selected. They surveyed by an anonymous questionnaire consisting of 8 closed questions about demographic data, computer science education and computer usage, and 30 statements on attitudes towards computers. The statements were adapted to a Likert type scale. Differences in attitudes towards computers between groups were compared using Kruskal-Wallis and Mann Whitney test for post-hoc analysis. The total score presented attitudes toward computers. Physicians' total score was 130 (97-144), while nurses' total score was 123 (88-141). It points that the average answer to all statements was between "agree" and "strongly agree", and these high total scores indicated their positive attitudes. Age, computer science education and computer usage were important factors witch enhances the total score. Younger physicians and nurses with computer science education and with previous computer experience had more positive attitudes towards computers than others. Our results are important for planning and implementation of integrated hospital information systems in Croatia.

  5. Implementing an Affordable High-Performance Computing for Teaching-Oriented Computer Science Curriculum

    ERIC Educational Resources Information Center

    Abuzaghleh, Omar; Goldschmidt, Kathleen; Elleithy, Yasser; Lee, Jeongkyu

    2013-01-01

    With the advances in computing power, high-performance computing (HPC) platforms have had an impact on not only scientific research in advanced organizations but also computer science curriculum in the educational community. For example, multicore programming and parallel systems are highly desired courses in the computer science major. However,…

  6. Marrying Content and Process in Computer Science Education

    ERIC Educational Resources Information Center

    Zendler, A.; Spannagel, C.; Klaudt, D.

    2011-01-01

    Constructivist approaches to computer science education emphasize that as well as knowledge, thinking skills and processes are involved in active knowledge construction. K-12 computer science curricula must not be based on fashions and trends, but on contents and processes that are observable in various domains of computer science, that can be…

  7. Computing Whether She Belongs: Stereotypes Undermine Girls' Interest and Sense of Belonging in Computer Science

    ERIC Educational Resources Information Center

    Master, Allison; Cheryan, Sapna; Meltzoff, Andrew N.

    2016-01-01

    Computer science has one of the largest gender disparities in science, technology, engineering, and mathematics. An important reason for this disparity is that girls are less likely than boys to enroll in necessary "pipeline courses," such as introductory computer science. Two experiments investigated whether high-school girls' lower…

  8. Some Hail 'Computational Science' as Biggest Advance Since Newton, Galileo.

    ERIC Educational Resources Information Center

    Turner, Judith Axler

    1987-01-01

    Computational science is defined as science done on a computer. A computer can serve as a laboratory for researchers who cannot experiment with their subjects, and as a calculator for those who otherwise might need centuries to solve some problems mathematically. The National Science Foundation's support of supercomputers is discussed. (MLW)

  9. Complex network problems in physics, computer science and biology

    NASA Astrophysics Data System (ADS)

    Cojocaru, Radu Ionut

    There is a close relation between physics and mathematics and the exchange of ideas between these two sciences are well established. However until few years ago there was no such a close relation between physics and computer science. Even more, only recently biologists started to use methods and tools from statistical physics in order to study the behavior of complex system. In this thesis we concentrate on applying and analyzing several methods borrowed from computer science to biology and also we use methods from statistical physics in solving hard problems from computer science. In recent years physicists have been interested in studying the behavior of complex networks. Physics is an experimental science in which theoretical predictions are compared to experiments. In this definition, the term prediction plays a very important role: although the system is complex, it is still possible to get predictions for its behavior, but these predictions are of a probabilistic nature. Spin glasses, lattice gases or the Potts model are a few examples of complex systems in physics. Spin glasses and many frustrated antiferromagnets map exactly to computer science problems in the NP-hard class defined in Chapter 1. In Chapter 1 we discuss a common result from artificial intelligence (AI) which shows that there are some problems which are NP-complete, with the implication that these problems are difficult to solve. We introduce a few well known hard problems from computer science (Satisfiability, Coloring, Vertex Cover together with Maximum Independent Set and Number Partitioning) and then discuss their mapping to problems from physics. In Chapter 2 we provide a short review of combinatorial optimization algorithms and their applications to ground state problems in disordered systems. We discuss the cavity method initially developed for studying the Sherrington-Kirkpatrick model of spin glasses. We extend this model to the study of a specific case of spin glass on the Bethe lattice at zero temperature and then we apply this formalism to the K-SAT problem defined in Chapter 1. The phase transition which physicists study often corresponds to a change in the computational complexity of the corresponding computer science problem. Chapter 3 presents phase transitions which are specific to the problems discussed in Chapter 1 and also known results for the K-SAT problem. We discuss the replica method and experimental evidences of replica symmetry breaking. The physics approach to hard problems is based on replica methods which are difficult to understand. In Chapter 4 we develop novel methods for studying hard problems using methods similar to the message passing techniques that were discussed in Chapter 2. Although we concentrated on the symmetric case, cavity methods show promise for generalizing our methods to the un-symmetric case. As has been highlighted by John Hopfield, several key features of biological systems are not shared by physical systems. Although living entities follow the laws of physics and chemistry, the fact that organisms adapt and reproduce introduces an essential ingredient that is missing in the physical sciences. In order to extract information from networks many algorithm have been developed. In Chapter 5 we apply polynomial algorithms like minimum spanning tree in order to study and construct gene regulatory networks from experimental data. As future work we propose the use of algorithms like min-cut/max-flow and Dijkstra for understanding key properties of these networks.

  10. Bringing computational science to the public.

    PubMed

    McDonagh, James L; Barker, Daniel; Alderson, Rosanna G

    2016-01-01

    The increasing use of computers in science allows for the scientific analyses of large datasets at an increasing pace. We provided examples and interactive demonstrations at Dundee Science Centre as part of the 2015 Women in Science festival, to present aspects of computational science to the general public. We used low-cost Raspberry Pi computers to provide hands on experience in computer programming and demonstrated the application of computers to biology. Computer games were used as a means to introduce computers to younger visitors. The success of the event was evaluated by voluntary feedback forms completed by visitors, in conjunction with our own self-evaluation. This work builds on the original work of the 4273π bioinformatics education program of Barker et al. (2013, BMC Bioinform. 14:243). 4273π provides open source education materials in bioinformatics. This work looks at the potential to adapt similar materials for public engagement events. It appears, at least in our small sample of visitors (n = 13), that basic computational science can be conveyed to people of all ages by means of interactive demonstrations. Children as young as five were able to successfully edit simple computer programs with supervision. This was, in many cases, their first experience of computer programming. The feedback is predominantly positive, showing strong support for improving computational science education, but also included suggestions for improvement. Our conclusions are necessarily preliminary. However, feedback forms suggest methods were generally well received among the participants; "Easy to follow. Clear explanation" and "Very easy. Demonstrators were very informative." Our event, held at a local Science Centre in Dundee, demonstrates that computer games and programming activities suitable for young children can be performed alongside a more specialised and applied introduction to computational science for older visitors.

  11. Binary Logistic Regression Analysis in Assessment and Identifying Factors That Influence Students' Academic Achievement: The Case of College of Natural and Computational Science, Wolaita Sodo University, Ethiopia

    ERIC Educational Resources Information Center

    Zewude, Bereket Tessema; Ashine, Kidus Meskele

    2016-01-01

    An attempt has been made to assess and identify the major variables that influence student academic achievement at college of natural and computational science of Wolaita Sodo University in Ethiopia. Study time, peer influence, securing first choice of department, arranging study time outside class, amount of money received from family, good life…

  12. The Computing and Data Grid Approach: Infrastructure for Distributed Science Applications

    NASA Technical Reports Server (NTRS)

    Johnston, William E.

    2002-01-01

    With the advent of Grids - infrastructure for using and managing widely distributed computing and data resources in the science environment - there is now an opportunity to provide a standard, large-scale, computing, data, instrument, and collaboration environment for science that spans many different projects and provides the required infrastructure and services in a relatively uniform and supportable way. Grid technology has evolved over the past several years to provide the services and infrastructure needed for building 'virtual' systems and organizations. We argue that Grid technology provides an excellent basis for the creation of the integrated environments that can combine the resources needed to support the large- scale science projects located at multiple laboratories and universities. We present some science case studies that indicate that a paradigm shift in the process of science will come about as a result of Grids providing transparent and secure access to advanced and integrated information and technologies infrastructure: powerful computing systems, large-scale data archives, scientific instruments, and collaboration tools. These changes will be in the form of services that can be integrated with the user's work environment, and that enable uniform and highly capable access to these computers, data, and instruments, regardless of the location or exact nature of these resources. These services will integrate transient-use resources like computing systems, scientific instruments, and data caches (e.g., as they are needed to perform a simulation or analyze data from a single experiment); persistent-use resources. such as databases, data catalogues, and archives, and; collaborators, whose involvement will continue for the lifetime of a project or longer. While we largely address large-scale science in this paper, Grids, particularly when combined with Web Services, will address a broad spectrum of science scenarios. both large and small scale.

  13. Computer Science and Telecommunications Board summary of activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blumenthal, M.S.

    1992-03-27

    The Computer Science and Telecommunications Board (CSTB) considers technical and policy issues pertaining to computer science, telecommunications, and associated technologies. CSTB actively disseminates the results of its completed projects to those in a position to help implement their recommendations or otherwise use their insights. It provides a forum for the exchange of information on computer science, computing technology, and telecommunications. This report discusses the major accomplishments of CSTB.

  14. Research in applied mathematics, numerical analysis, and computer science

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Research conducted at the Institute for Computer Applications in Science and Engineering (ICASE) in applied mathematics, numerical analysis, and computer science is summarized and abstracts of published reports are presented. The major categories of the ICASE research program are: (1) numerical methods, with particular emphasis on the development and analysis of basic numerical algorithms; (2) control and parameter identification; (3) computational problems in engineering and the physical sciences, particularly fluid dynamics, acoustics, and structural analysis; and (4) computer systems and software, especially vector and parallel computers.

  15. Science-Driven Computing: NERSC's Plan for 2006-2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simon, Horst D.; Kramer, William T.C.; Bailey, David H.

    NERSC has developed a five-year strategic plan focusing on three components: Science-Driven Systems, Science-Driven Services, and Science-Driven Analytics. (1) Science-Driven Systems: Balanced introduction of the best new technologies for complete computational systems--computing, storage, networking, visualization and analysis--coupled with the activities necessary to engage vendors in addressing the DOE computational science requirements in their future roadmaps. (2) Science-Driven Services: The entire range of support activities, from high-quality operations and user services to direct scientific support, that enable a broad range of scientists to effectively use NERSC systems in their research. NERSC will concentrate on resources needed to realize the promise ofmore » the new highly scalable architectures for scientific discovery in multidisciplinary computational science projects. (3) Science-Driven Analytics: The architectural and systems enhancements and services required to integrate NERSC's powerful computational and storage resources to provide scientists with new tools to effectively manipulate, visualize, and analyze the huge data sets derived from simulations and experiments.« less

  16. Gender Differences in the Use of Computers, Programming, and Peer Interactions in Computer Science Classrooms

    ERIC Educational Resources Information Center

    Stoilescu, Dorian; Egodawatte, Gunawardena

    2010-01-01

    Research shows that female and male students in undergraduate computer science programs view computer culture differently. Female students are interested more in the use of computers than in doing programming, whereas male students see computer science mainly as a programming activity. The overall purpose of our research was not to find new…

  17. The influence of a game-making project on male and female learners' attitudes to computing

    NASA Astrophysics Data System (ADS)

    Robertson, Judy

    2013-03-01

    There is a pressing need for gender inclusive approaches to engage young people in computer science. A recent popular approach has been to harness learners' enthusiasm for computer games to motivate them to learn computer science concepts through game authoring. This article describes a study in which 992 learners across 13 schools took part in a game-making project. It provides evidence from 225 pre-test and post-test questionnaires on how learners' attitudes to computing changed during the project, as well as qualitative reflections from the class teachers on how the project affected their learners. Results indicate that girls did not enjoy the experience as much as boys, and that in fact, the project may make pupils less inclined to study computing in the future. This has important implications for future efforts to engage young people in computing.

  18. First principles calculations of thermal conductivity with out of equilibrium molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Puligheddu, Marcello; Gygi, Francois; Galli, Giulia

    The prediction of the thermal properties of solids and liquids is central to numerous problems in condensed matter physics and materials science, including the study of thermal management of opto-electronic and energy conversion devices. We present a method to compute the thermal conductivity of solids by performing ab initio molecular dynamics at non equilibrium conditions. Our formulation is based on a generalization of the approach to equilibrium technique, using sinusoidal temperature gradients, and it only requires calculations of first principles trajectories and atomic forces. We discuss results and computational requirements for a representative, simple oxide, MgO, and compare with experiments and data obtained with classical potentials. This work was supported by MICCoM as part of the Computational Materials Science Program funded by the U.S. Department of Energy (DOE), Office of Science , Basic Energy Sciences (BES), Materials Sciences and Engineering Division under Grant DOE/BES 5J-30.

  19. Opportunities for Computational Discovery in Basic Energy Sciences

    NASA Astrophysics Data System (ADS)

    Pederson, Mark

    2011-03-01

    An overview of the broad-ranging support of computational physics and computational science within the Department of Energy Office of Science will be provided. Computation as the third branch of physics is supported by all six offices (Advanced Scientific Computing, Basic Energy, Biological and Environmental, Fusion Energy, High-Energy Physics, and Nuclear Physics). Support focuses on hardware, software and applications. Most opportunities within the fields of~condensed-matter physics, chemical-physics and materials sciences are supported by the Officeof Basic Energy Science (BES) or through partnerships between BES and the Office for Advanced Scientific Computing. Activities include radiation sciences, catalysis, combustion, materials in extreme environments, energy-storage materials, light-harvesting and photovoltaics, solid-state lighting and superconductivity.~ A summary of two recent reports by the computational materials and chemical communities on the role of computation during the next decade will be provided. ~In addition to materials and chemistry challenges specific to energy sciences, issues identified~include a focus on the role of the domain scientist in integrating, expanding and sustaining applications-oriented capabilities on evolving high-performance computing platforms and on the role of computation in accelerating the development of innovative technologies. ~~

  20. Research | Computational Science | NREL

    Science.gov Websites

    Research Research NREL's computational science experts use advanced high-performance computing (HPC technologies, thereby accelerating the transformation of our nation's energy system. Enabling High-Impact Research NREL's computational science capabilities enable high-impact research. Some recent examples

  1. eScience for molecular-scale simulations and the eMinerals project.

    PubMed

    Salje, E K H; Artacho, E; Austen, K F; Bruin, R P; Calleja, M; Chappell, H F; Chiang, G-T; Dove, M T; Frame, I; Goodwin, A L; Kleese van Dam, K; Marmier, A; Parker, S C; Pruneda, J M; Todorov, I T; Trachenko, K; Tyer, R P; Walker, A M; White, T O H

    2009-03-13

    We review the work carried out within the eMinerals project to develop eScience solutions that facilitate a new generation of molecular-scale simulation work. Technological developments include integration of compute and data systems, developing of collaborative frameworks and new researcher-friendly tools for grid job submission, XML data representation, information delivery, metadata harvesting and metadata management. A number of diverse science applications will illustrate how these tools are being used for large parameter-sweep studies, an emerging type of study for which the integration of computing, data and collaboration is essential.

  2. Student teaching and research laboratory focusing on brain-computer interface paradigms--A creative environment for computer science students.

    PubMed

    Rutkowski, Tomasz M

    2015-08-01

    This paper presents an applied concept of a brain-computer interface (BCI) student research laboratory (BCI-LAB) at the Life Science Center of TARA, University of Tsukuba, Japan. Several successful case studies of the student projects are reviewed together with the BCI Research Award 2014 winner case. The BCI-LAB design and project-based teaching philosophy is also explained. Future teaching and research directions summarize the review.

  3. The comparative effect of individually-generated vs. collaboratively-generated computer-based concept mapping on science concept learning

    NASA Astrophysics Data System (ADS)

    Kwon, So Young

    Using a quasi-experimental design, the researcher investigated the comparative effects of individually-generated and collaboratively-generated computer-based concept mapping on middle school science concept learning. Qualitative data were analyzed to explain quantitative findings. One hundred sixty-one students (74 boys and 87 girls) in eight, seventh grade science classes at a middle school in Southeast Texas completed the entire study. Using prior science performance scores to assure equivalence of student achievement across groups, the researcher assigned the teacher's classes to one of the three experimental groups. The independent variable, group, consisted of three levels: 40 students in a control group, 59 students trained to individually generate concept maps on computers, and 62 students trained to collaboratively generate concept maps on computers. The dependent variables were science concept learning as demonstrated by comprehension test scores, and quality of concept maps created by students in experimental groups as demonstrated by rubric scores. Students in the experimental groups received concept mapping training and used their newly acquired concept mapping skills to individually or collaboratively construct computer-based concept maps during study time. The control group, the individually-generated concept mapping group, and the collaboratively-generated concept mapping group had equivalent learning experiences for 50 minutes during five days, excepting that students in a control group worked independently without concept mapping activities, students in the individual group worked individually to construct concept maps, and students in the collaborative group worked collaboratively to construct concept maps during their study time. Both collaboratively and individually generated computer-based concept mapping had a positive effect on seventh grade middle school science concept learning but neither strategy was more effective than the other. However, the students who collaboratively generated concept maps created significantly higher quality concept maps than those who individually generated concept maps. The researcher concluded that the concept mapping software, Inspiration(TM), fostered construction of students' concept maps individually or collaboratively for science learning and helped students capture their evolving creative ideas and organize them for meaningful learning. Students in both the individual and the collaborative concept mapping groups had positive attitudes toward concept mapping using Inspiration(TM) software.

  4. Information science and technology developments within the National Biological Information Infrastructure

    USGS Publications Warehouse

    Frame, M.T.; Cotter, G.; Zolly, L.; Little, J.

    2002-01-01

    Whether your vantage point is that of an office window or a national park, your view undoubtedly encompasses a rich diversity of life forms, all carefully studied or managed by some scientist, resource manager, or planner. A few simple calculations - the number of species, their interrelationships, and the many researchers studying them - and you can easily see the tremendous challenges that the resulting biological data presents to the information and computer science communities. Biological information varies in format and content: it may pertain to a particular species or an entire ecosystem; it can contain land use characteristics, and geospatially referenced information. The complexity and uniqueness of each individual species or ecosystem do not easily lend themselves to today's computer science tools and applications. To address the challenges that the biological enterprise presents, the National Biological Information Infrastructure (NBII) (http://www.nbii.gov) was established in 1993 on the recommendation of the National Research Council (National Research Council 1993). The NBII is designed to address these issues on a national scale, and through international partnerships. This paper discusses current information and computer science efforts within the National Biological Information Infrastructure Program, and future computer science research endeavors that are needed to address the ever-growing issues related to our nation's biological concerns. ?? 2003 by The Haworth Press, Inc. All rights reserved.

  5. Comparative Effects of Computer-Based Concept Maps, Refutational Texts, and Expository Texts on Science Learning

    ERIC Educational Resources Information Center

    Adesope, Olusola O.; Cavagnetto, Andy; Hunsu, Nathaniel J.; Anguiano, Carlos; Lloyd, Joshua

    2017-01-01

    This study used a between-subjects experimental design to examine the effects of three different computer-based instructional strategies (concept map, refutation text, and expository scientific text) on science learning. Concept maps are node-link diagrams that show concepts as nodes and relationships among the concepts as labeled links.…

  6. Exploring Students Intentions to Study Computer Science and Identifying the Differences among ICT and Programming Based Courses

    ERIC Educational Resources Information Center

    Giannakos, Michail N.

    2014-01-01

    Computer Science (CS) courses comprise both Programming and Information and Communication Technology (ICT) issues; however these two areas have substantial differences, inter alia the attitudes and beliefs of the students regarding the intended learning content. In this research, factors from the Social Cognitive Theory and Unified Theory of…

  7. A Structured Professional Development Approach to Unit Study: The Experiences of 200 Teachers in a National Teacher Development Project.

    ERIC Educational Resources Information Center

    McColskey, Wendy; Parke, Helen; Furtak, Erin; Butler, Susan

    This article addresses what was learned through the National Computational Science Leadership Program about involving teachers in planning high quality units of instruction around computational science investigations. Two cohorts of roughly 25 teacher teams nationwide were given opportunities to develop "replacement units." The goal was to support…

  8. A Purposeful MOOC to Alleviate Insufficient CS Education in Finnish Schools

    ERIC Educational Resources Information Center

    Kurhila, Jaakko; Vihavainen, Arto

    2015-01-01

    The Finnish national school curriculum, effective from 2004, does not include any topics related to Computer Science (CS). To alleviate the problem that school students are not able to study CS-related topics, the Department of Computer Science at the University of Helsinki prepared a completely online course that is open to pupils and students in…

  9. An Interdisciplinary Team Project: Psychology and Computer Science Students Create Online Cognitive Tasks

    ERIC Educational Resources Information Center

    Flannery, Kathleen A.; Malita, Mihaela

    2014-01-01

    We present our case study of an interdisciplinary team project for students taking either a psychology or computer science (CS) course. The project required psychology and CS students to combine their knowledge and skills to create an online cognitive task. Each interdisciplinary project team included two psychology students who conducted library…

  10. Thinking and Behaving Scientifically in Computer Science: When Failure is an Option!

    ERIC Educational Resources Information Center

    Venables, Anne; Tan, Grace

    2006-01-01

    In a Finnish study of four different academic disciplines, Ylijoki (2000) found that in Computer Science there was a disparity between the conceptions held by undergraduate students and staff about their discipline; students viewed it as being far more pragmatic and results focused than did their instructors. Not surprisingly, here at our…

  11. Teaching Mixed-Mode: A Case Study in Remote Delivery of Computer Science in Africa

    ERIC Educational Resources Information Center

    Howell, Sheila; Harris, Michael; Wilkinson, Simon; Zuluaga, Catherine; Voutier, Paul

    2004-01-01

    In February 2003, RMIT University in Melbourne, Australia, commenced delivery of a Computer Science diploma and degree programme using mixed mode delivery to 250 university students in sub-Saharan Africa, through a World Bank funded project designed for the African Virtual University (AVU). The project is a unique experience made possible by…

  12. How to Implement Rigorous Computer Science Education in K-12 Schools? Some Answers and Many Questions

    ERIC Educational Resources Information Center

    Hubwieser, Peter; Armoni, Michal; Giannakos, Michail N.

    2015-01-01

    Aiming to collect various concepts, approaches, and strategies for improving computer science education in K-12 schools, we edited this second special issue of the "ACM TOCE" journal. Our intention was to collect a set of case studies from different countries that would describe all relevant aspects of specific implementations of…

  13. The Impact of Interactive Computer Simulations on the Nature and Quality of Postgraduate Science Teachers' Explanations in Physics

    ERIC Educational Resources Information Center

    Zacharia, Zacharias C.

    2005-01-01

    This study investigated how individuals' construction of explanations--a way of ascertaining how well an individual understands a concept--develops from an interactive simulation. Specifically, the purpose was to investigate the effect of interactive computer simulations or science textbook assignments on the nature and quality of postgraduate…

  14. Challenges of Teaching Computer Science in Transition Countries: Albanian University Case

    ERIC Educational Resources Information Center

    Sotirofski, Kseanela; Kukeli, Agim; Kalemi, Edlira

    2010-01-01

    The main objective of our study is to determine the challenges faced during the process of teaching Computer Science in a university of a country in transition and make suggestions to improve this teaching process by perfecting the necessary conditions. Our survey builds on the thesis that we live in an information age; information technology is…

  15. Once She Makes It, She's There!: A Case Study

    ERIC Educational Resources Information Center

    Gal-Ezer, Judith; Vilner, Tamar; Zur, Ela

    2008-01-01

    Computer science is possibly one of the few remaining disciplines almost entirely dominated by men, especially university staff and in the hi-tech industries. This phenomenon prevails throughout the western world; in Israel it starts in high school, where only 30% of students who choose to take computer science as an elective are women, and…

  16. Computer Science Education in North-Rhine Westphalia, Germany--A Case Study

    ERIC Educational Resources Information Center

    Knobelsdorf, Maria; Magenheim, Johannes; Brinda, Torsten; Engbring, Dieter; Humbert, Ludger; Pasternak, Arno; Schroeder, Ulrik; Thomas, Marco; Vahrenhold, Jan

    2015-01-01

    In North-Rhine Westphalia, the most populated state in Germany, Computer Science (CS) has been taught in secondary schools since the early 1970s. This article provides an overview of the past and current situation of CS education in North-Rhine Westphalia, including lessons learned through efforts to introduce and to maintain CS in secondary…

  17. Understanding the Role of Prior Knowledge in a Multimedia Learning Application

    ERIC Educational Resources Information Center

    Rias, Riaza Mohd; Zaman, Halimah Badioze

    2013-01-01

    This study looked at the effects that individual differences in prior knowledge have on student understanding in learning with multimedia in a computer science subject. Students were identified as having either low or high prior knowledge from a series of questions asked in a survey conducted at the Faculty of Computer and Mathematical Sciences at…

  18. Listservs in the College Science Classroom: Evaluating Participation and "Richness" in Computer-Mediated Discourse

    ERIC Educational Resources Information Center

    Khan, Samia

    2005-01-01

    How do instructors motivate students to participate in computer-mediated discussion? If they do participate, how can the quality of their interactions be assessed? This study speaks to these questions by examining online participation and discourse in a science course for preservice teachers. The instructor of an introductory entomology course for…

  19. An Assessment of the Computer Science Activities of the Office of Naval Research

    DTIC Science & Technology

    1986-01-01

    A Panel of the Naval Studies Board of the National Research Council met for two days in October 1985 to assess the computer science programs of the ... Office of Naval (ONR). These programs are supported by the Contract Research Program (CRP) as well as the Naval Research Laboratory (NRL), the Naval

  20. Impact of Giving Students a Choice of Homework Assignments in an Introductory Computer Science Class

    ERIC Educational Resources Information Center

    Fulton, Steven; Schweitzer, Dino

    2011-01-01

    Student assignments have long been an integral part of many university level computer science courses to reinforce material covered in class with practical exercises. For years, researchers have studied ways to improve such student assignments by making them more interesting, applicable, and valuable to the student with a goal of improving…

  1. Evaluation of the Effectiveness of a Web-Based Learning Design for Adult Computer Science Courses

    ERIC Educational Resources Information Center

    Antonis, Konstantinos; Daradoumis, Thanasis; Papadakis, Spyros; Simos, Christos

    2011-01-01

    This paper reports on work undertaken within a pilot study concerned with the design, development, and evaluation of online computer science training courses. Drawing on recent developments in e-learning technology, these courses were structured around the principles of a learner-oriented approach for use with adult learners. The paper describes a…

  2. Science Comic Strips

    ERIC Educational Resources Information Center

    Kim, Dae Hyun; Jang, Hae Gwon; Shin, Dong Sun; Kim, Sun-Ja; Yoo, Chang Young; Chung, Min Suk

    2012-01-01

    Science comic strips entitled Dr. Scifun were planned to promote science jobs and studies among professionals (scientists, graduate and undergraduate students) and children. To this end, the authors collected intriguing science stories as the basis of scenarios, and drew four-cut comic strips, first on paper and subsequently as computer files.…

  3. A Computational Study of Commonsense Science: An Exploration in the Automated Analysis of Clinical Interview Data

    ERIC Educational Resources Information Center

    Sherin, Bruce

    2013-01-01

    A large body of research in the learning sciences has focused on students' commonsense science knowledge--the everyday knowledge of the natural world that is gained outside of formal instruction. Although researchers studying commonsense science have employed a variety of methods, 1-on-1 clinical interviews have played a unique role. The data…

  4. Computer Technology-Integrated Projects Should not Supplant Craft Projects in Science Education

    NASA Astrophysics Data System (ADS)

    Klopp, Tabatha J.; Rule, Audrey C.; Suchsland Schneider, Jean; Boody, Robert M.

    2014-03-01

    The current emphasis on computer technology integration and narrowing of the curriculum has displaced arts and crafts. However, the hands-on, concrete nature of craft work in science modeling enables students to understand difficult concepts and to be engaged and motivated while learning spatial, logical, and sequential thinking skills. Analogy use is also helpful in understanding unfamiliar, complex science concepts. This study of 28 academically advanced elementary to middle-school students examined student work and perceptions during a science unit focused on four fossil organisms: crinoid, brachiopod, horn coral and trilobite. The study compared: (1) analogy-focused instruction to independent Internet research and (2) computer technology-rich products to crafts-based products. Findings indicate student products were more creative after analogy-based instruction and when made using technology. However, students expressed a strong desire to engage in additional craft work after making craft products and enjoyed making crafts more after analogy-focused instruction. Additionally, more science content was found in the craft products than the technology-rich products. Students expressed a particular liking for two of the fossil organisms because they had been modeled with crafts. The authors recommend that room should be retained for crafts in the science curriculum to model science concepts.

  5. NASA's computer science research program

    NASA Technical Reports Server (NTRS)

    Larsen, R. L.

    1983-01-01

    Following a major assessment of NASA's computing technology needs, a new program of computer science research has been initiated by the Agency. The program includes work in concurrent processing, management of large scale scientific databases, software engineering, reliable computing, and artificial intelligence. The program is driven by applications requirements in computational fluid dynamics, image processing, sensor data management, real-time mission control and autonomous systems. It consists of university research, in-house NASA research, and NASA's Research Institute for Advanced Computer Science (RIACS) and Institute for Computer Applications in Science and Engineering (ICASE). The overall goal is to provide the technical foundation within NASA to exploit advancing computing technology in aerospace applications.

  6. Girls Save the World through Computer Science

    ERIC Educational Resources Information Center

    Murakami, Christine

    2011-01-01

    It's no secret that fewer and fewer women are entering computer science fields. Attracting high school girls to computer science is only part of the solution. Retaining them while they are in higher education or the workforce is also a challenge. To solve this, there is a need to show girls that computer science is a wide-open field that offers…

  7. Frances: A Tool for Understanding Computer Architecture and Assembly Language

    ERIC Educational Resources Information Center

    Sondag, Tyler; Pokorny, Kian L.; Rajan, Hridesh

    2012-01-01

    Students in all areas of computing require knowledge of the computing device including software implementation at the machine level. Several courses in computer science curricula address these low-level details such as computer architecture and assembly languages. For such courses, there are advantages to studying real architectures instead of…

  8. Do Gender Differences in Perceived Prototypical Computer Scientists and Engineers Contribute to Gender Gaps in Computer Science and Engineering?

    PubMed

    Ehrlinger, Joyce; Plant, E Ashby; Hartwig, Marissa K; Vossen, Jordan J; Columb, Corey J; Brewer, Lauren E

    2018-01-01

    Women are vastly underrepresented in the fields of computer science and engineering (CS&E). We examined whether women might view the intellectual characteristics of prototypical individuals in CS&E in more stereotype-consistent ways than men might and, consequently, show less interest in CS&E. We asked 269 U.S. college students (187, 69.5% women) to describe the prototypical computer scientist (Study 1) or engineer (Study 2) through open-ended descriptions as well as through a set of trait ratings. Participants also rated themselves on the same set of traits and rated their similarity to the prototype. Finally, participants in both studies were asked to describe their likelihood of pursuing future college courses and careers in computer science (Study 1) or engineering (Study 2). Across both studies, we found that women offered more stereotype-consistent ratings than did men of the intellectual characteristics of prototypes in CS (Study 1) and engineering (Study 2). Women also perceived themselves as less similar to the prototype than men did. Further, the observed gender differences in prototype perceptions mediated the tendency for women to report lower interest in CS&E fields relative to men. Our work highlights the importance of prototype perceptions for understanding the gender gap in CS&E and suggests avenues for interventions that may increase women's representation in these vital fields.

  9. Graduate Training at the Interface of Computational and Experimental Biology: An Outcome Report from a Partnership of Volunteers between a University and a National Laboratory

    PubMed Central

    von Arnim, Albrecht G.; Missra, Anamika

    2017-01-01

    Leading voices in the biological sciences have called for a transformation in graduate education leading to the PhD degree. One area commonly singled out for growth and innovation is cross-training in computational science. In 1998, the University of Tennessee (UT) founded an intercollegiate graduate program called the UT-ORNL Graduate School of Genome Science and Technology in partnership with the nearby Oak Ridge National Laboratory. Here, we report outcome data that attest to the program’s effectiveness in graduating computationally enabled biologists for diverse careers. Among 77 PhD graduates since 2003, the majority came with traditional degrees in the biological sciences, yet two-thirds moved into computational or hybrid (computational–experimental) positions. We describe the curriculum of the program and how it has changed. We also summarize how the program seeks to establish cohesion between computational and experimental biologists. This type of program can respond flexibly and dynamically to unmet training needs. In conclusion, this study from a flagship, state-supported university may serve as a reference point for creating a stable, degree-granting, interdepartmental graduate program in computational biology and allied areas. PMID:29167223

  10. Effect of Computer Animation Technique on Students' Comprehension of the "Solar System and Beyond" Unit in the Science and Technology Course

    ERIC Educational Resources Information Center

    Aksoy, Gokhan

    2013-01-01

    The purpose of this study is to determine the effect of computer animation technique on academic achievement of students in the "Solar System and Beyond" unit lecture as part of the Science and Technology course of the seventh grade in primary education. The sample of the study consists of 60 students attending to the 7th grade of primary school…

  11. A Cross-Cultural Study of the Effect of a Graph-Oriented Computer-Assisted Project-Based Learning Environment on Middle School Students' Science Knowledge and Argumentation Skills

    ERIC Educational Resources Information Center

    Hsu, P.-S.; Van Dyke, M.; Chen, Y.; Smith, T. J.

    2016-01-01

    The purpose of this mixed-methods study was to explore how seventh graders in a suburban school in the United States and sixth graders in an urban school in Taiwan developed argumentation skills and science knowledge in a project-based learning environment that incorporated a graph-oriented, computer-assisted application (GOCAA). A total of 42…

  12. Kenny Gruchalla | NREL

    Science.gov Websites

    feature extraction, human-computer interaction, and physics-based modeling. Professional Experience 2009 ., computer science, University of Colorado at Boulder M.S., computer science, University of Colorado at Boulder B.S., computer science, New Mexico Institute of Mining and Technology

  13. Dropping Out of Computer Science: A Phenomenological Study of Student Lived Experiences in Community College Computer Science

    NASA Astrophysics Data System (ADS)

    Gilbert-Valencia, Daniel H.

    California community colleges contribute alarmingly few computer science degree or certificate earners. While the literature shows clear K-12 impediments to CS matriculation in higher education, very little is known about the experiences of those who overcome initial impediments to CS yet do not persist through to program completion. This phenomenological study explores insights into that specific experience by interviewing underrepresented, low income, first-generation college students who began community college intending to transfer to 4-year institutions majoring in CS but switched to another field and remain enrolled or graduated. This study explores the lived experiences of students facing barriers, their avenues for developing interest in CS, and the persistence support systems they encountered, specifically looking at how students constructed their academic choice from these experiences. The growing diversity within California's population necessitates that experiences specific to underrepresented students be considered as part of this exploration. Ten semi-structured interviews and observations were conducted, transcribed and coded. Artifacts supporting student experiences were also collected. Data was analyzed through a social-constructivist lens to provide insight into experiences and how they can be navigated to create actionable strategies for community college computer science departments wishing to increase student success. Three major themes emerged from this research: (1) students shared pre-college characteristics; (2) faced similar challenges in college CS courses; and (3) shared similar reactions to the "work" of computer science. Results of the study included (1) CS interest development hinged on computer ownership in the home; (2) participants shared characteristics that were ideal for college success but not CS success; and (3) encounters in CS departments produced unique challenges for participants. Though CS interest was and remains abundant, opportunities for learning programming skills before college were non-existent and there were few opportunities in college to build skills or establish a peer support networks. Recommendations for institutional leaders and further research are also provided.

  14. Computer-aided design and computer science technology

    NASA Technical Reports Server (NTRS)

    Fulton, R. E.; Voigt, S. J.

    1976-01-01

    A description is presented of computer-aided design requirements and the resulting computer science advances needed to support aerospace design. The aerospace design environment is examined, taking into account problems of data handling and aspects of computer hardware and software. The interactive terminal is normally the primary interface between the computer system and the engineering designer. Attention is given to user aids, interactive design, interactive computations, the characteristics of design information, data management requirements, hardware advancements, and computer science developments.

  15. ICASE Computer Science Program

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The Institute for Computer Applications in Science and Engineering computer science program is discussed in outline form. Information is given on such topics as problem decomposition, algorithm development, programming languages, and parallel architectures.

  16. Computer Simulation in the Social Sciences/Social Studies.

    ERIC Educational Resources Information Center

    Klassen, Daniel L.

    Computers are beginning to be used more frequently as instructional tools in secondary school social studies. This is especially true of "new social studies" programs; i.e., programs which subordinate mere mastery of factual content to the recognition of and ability to deal with the social imperatives of the future. Computer-assisted…

  17. Does Computer Use Matter? The Influence of Computer Usage on Eighth-Grade Students' Mathematics Reasoning

    ERIC Educational Resources Information Center

    Ayieko, Rachel A.; Gokbel, Elif N.; Nelson, Bryan

    2017-01-01

    This study uses the 2011 Trends in International Mathematics and Science Study to investigate the relationships among students' and teachers' computer use, and eighth-grade students' mathematical reasoning in three high-achieving nations: Finland, Chinese Taipei, and Singapore. The study found a significant negative relationship in all three…

  18. Examination of the Effects of Dimensionality on Cognitive Processing in Science: A Computational Modeling Experiment Comparing Online Laboratory Simulations and Serious Educational Games

    NASA Astrophysics Data System (ADS)

    Lamb, Richard L.

    2016-02-01

    Within the last 10 years, new tools for assisting in the teaching and learning of academic skills and content within the context of science have arisen. These new tools include multiple types of computer software and hardware to include (video) games. The purpose of this study was to examine and compare the effect of computer learning games in the form of three-dimensional serious educational games, two-dimensional online laboratories, and traditional lecture-based instruction in the context of student content learning in science. In particular, this study examines the impact of dimensionality, or the ability to move along the X-, Y-, and Z-axis in the games. Study subjects ( N = 551) were randomly selected using a stratified sampling technique. Independent strata subsamples were developed based upon the conditions of serious educational games, online laboratories, and lecture. The study also computationally models a potential mechanism of action and compares two- and three-dimensional learning environments. F test results suggest a significant difference for the main effect of condition across the factor of content gain score with large effect. Overall, comparisons using computational models suggest that three-dimensional serious educational games increase the level of success in learning as measured with content examinations through greater recruitment and attributional retraining of cognitive systems. The study supports assertions in the literature that the use of games in higher dimensions (i.e., three-dimensional versus two-dimensional) helps to increase student understanding of science concepts.

  19. The Behavioral and Social Sciences Survey: Mathematical Sciences and Social Sciences.

    ERIC Educational Resources Information Center

    Kruskal, William, Ed.

    This book, one of a series prepared in connection with the Behavioral and Social Sciences Survey (BASS) conducted between 1967 and 1969, deals with problems of statistics, mathematics, and computation as they related to the social sciences. Chapter 1 shows how these subjects help in their own ways for studying learning behavior with irregular…

  20. Applications of Out-of-Domain Knowledge in Students' Reasoning about Computer Program State

    ERIC Educational Resources Information Center

    Lewis, Colleen Marie

    2012-01-01

    To meet a growing demand and a projected deficit in the supply of computer professionals (NCWIT, 2009), it is of vital importance to expand students' access to computer science. However, many researchers in the computer science education community unproductively assume that some students lack an innate ability for computer science and…

  1. Scientific Computing Strategic Plan for the Idaho National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whiting, Eric Todd

    Scientific computing is a critical foundation of modern science. Without innovations in the field of computational science, the essential missions of the Department of Energy (DOE) would go unrealized. Taking a leadership role in such innovations is Idaho National Laboratory’s (INL’s) challenge and charge, and is central to INL’s ongoing success. Computing is an essential part of INL’s future. DOE science and technology missions rely firmly on computing capabilities in various forms. Modeling and simulation, fueled by innovations in computational science and validated through experiment, are a critical foundation of science and engineering. Big data analytics from an increasing numbermore » of widely varied sources is opening new windows of insight and discovery. Computing is a critical tool in education, science, engineering, and experiments. Advanced computing capabilities in the form of people, tools, computers, and facilities, will position INL competitively to deliver results and solutions on important national science and engineering challenges. A computing strategy must include much more than simply computers. The foundational enabling component of computing at many DOE national laboratories is the combination of a showcase like data center facility coupled with a very capable supercomputer. In addition, network connectivity, disk storage systems, and visualization hardware are critical and generally tightly coupled to the computer system and co located in the same facility. The existence of these resources in a single data center facility opens the doors to many opportunities that would not otherwise be possible.« less

  2. Using Educational Games and Simulation Software in a Computer Science Course: Learning Achievements and Student Flow Experiences

    ERIC Educational Resources Information Center

    Liu, Tsung-Yu

    2016-01-01

    This study investigates how educational games impact on students' academic performance and multimedia flow experiences in a computer science course. A curriculum consists of five basic learning units, that is, the stack, queue, sort, tree traversal, and binary search tree, was conducted for 110 university students during one semester. Two groups…

  3. A Study: Exploring the Feasibility of Developing a Computer Science Online Degree Program at Tuskegee University

    ERIC Educational Resources Information Center

    Buckley, Ingrid A.; Narang, Hira

    2014-01-01

    This paper investigates the feasibility of developing an online degree for a computer science and information technology degree programs. Our motivation is to increase access to quality education with the aim of stimulating growth, attracting new students, and retaining our current student body. A survey was conducted of CS/IT online degrees which…

  4. Who Needs What: Recommendations for Designing Effective Online Professional Development for Computer Science Teachers

    ERIC Educational Resources Information Center

    Qian, Yizhou; Hambrusch, Susanne; Yadav, Aman; Gretter, Sarah

    2018-01-01

    The new Advanced Placement (AP) Computer Science (CS) Principles course increases the need for quality CS teachers and thus the need for professional development (PD). This article presents the results of a 2-year study investigating how teachers teaching the AP CS Principles course for the first time used online PD material. Our results showed…

  5. Effect of Robotics on Elementary Preservice Teachers' Self-Efficacy, Science Learning, and Computational Thinking

    ERIC Educational Resources Information Center

    Jaipal-Jamani, Kamini; Angeli, Charoula

    2017-01-01

    The current impetus for increasing STEM in K-12 education calls for an examination of how preservice teachers are being prepared to teach STEM. This paper reports on a study that examined elementary preservice teachers' (n = 21) self-efficacy, understanding of science concepts, and computational thinking as they engaged with robotics in a science…

  6. The Development of a Learning Dashboard for Lecturers: A Case Study on a Student-Centered E-Learning Environment

    ERIC Educational Resources Information Center

    Santoso, Harry B.; Batuparan, Alivia Khaira; Isal, R. Yugo K.; Goodridge, Wade H.

    2018-01-01

    Student Centered e-Learning Environment (SCELE) is a Moodle-based learning management system (LMS) that has been modified to enhance learning within a computer science department curriculum offered by the Faculty of Computer Science of large public university in Indonesia. This Moodle provided a mechanism to record students' activities when…

  7. The Effects of Mind Mapping with Cooperative Learning on Programming Performance, Problem Solving Skill and Metacognitive Knowledge among Computer Science Students

    ERIC Educational Resources Information Center

    Ismail, Mohd Nasir; Ngah, Nor Azilah; Umar, Irfan Naufal

    2010-01-01

    The purpose of the study is to investigate the effects of mind mapping with cooperative learning (MMCL) and cooperative learning (CL) on: (a) programming performance; (b) problem solving skill; and (c) metacognitive knowledge among computer science students in Malaysia. The moderating variable is the students' logical thinking level with two…

  8. Summer Institute to Train Data Processing Teachers for the New Oklahoma State-Wide Computer Science System, Phase II. Final Report.

    ERIC Educational Resources Information Center

    Tuttle, Francis

    Twenty-three instructors participated in an 8-week summer institute to develop their technical competency to teach the second year of a 2-year Technical Education Computer Science Program. Instructional material covered the following areas: (1) compiler languages and systems design, (2) cost studies, (3) business organization, (4) advanced…

  9. The Unified English Braille Code: Examination by Science, Mathematics, and Computer Science Technical Expert Braille Readers

    ERIC Educational Resources Information Center

    Holbrook, M. Cay; MacCuspie, P. Ann

    2010-01-01

    Braille-reading mathematicians, scientists, and computer scientists were asked to examine the usability of the Unified English Braille Code (UEB) for technical materials. They had little knowledge of the code prior to the study. The research included two reading tasks, a short tutorial about UEB, and a focus group. The results indicated that the…

  10. Teaching Web Application Development: A Case Study in a Computer Science Course

    ERIC Educational Resources Information Center

    Del Fabro, Marcos Didonet; de Alimeda, Eduardo Cunha; Sluzarski, Fabiano

    2012-01-01

    Teaching web development in Computer Science undergraduate courses is a difficult task. Often, there is a gap between the students' experiences and the reality in the industry. As a consequence, the students are not always well-prepared once they get the degree. This gap is due to several reasons, such as the complexity of the assignments, the…

  11. The Effect of the Integration of Computing Technology in a Science Curriculum on Female Students' Self-Efficacy Attitudes

    ERIC Educational Resources Information Center

    Cady, Donna; Terrell, Steven R.

    2008-01-01

    Females are underrepresented in technology-related careers and educational programs; many researchers suggest this can be traced back to negative feelings of computer self-efficacy developed as early as the age of 10. This study investigated the effect of embedding technology into a 5th grade science classroom and measuring its effect on…

  12. Using Mental Imagery Processes for Teaching and Research in Mathematics and Computer Science

    ERIC Educational Resources Information Center

    Arnoux, Pierre; Finkel, Alain

    2010-01-01

    The role of mental representations in mathematics and computer science (for teaching or research) is often downplayed or even completely ignored. Using an ongoing work on the subject, we argue for a more systematic study and use of mental representations, to get an intuition of mathematical concepts, and also to understand and build proofs. We…

  13. A Cognitive Model for Problem Solving in Computer Science

    ERIC Educational Resources Information Center

    Parham, Jennifer R.

    2009-01-01

    According to industry representatives, computer science education needs to emphasize the processes involved in solving computing problems rather than their solutions. Most of the current assessment tools used by universities and computer science departments analyze student answers to problems rather than investigating the processes involved in…

  14. Approaches to Classroom-Based Computational Science.

    ERIC Educational Resources Information Center

    Guzdial, Mark

    Computational science includes the use of computer-based modeling and simulation to define and test theories about scientific phenomena. The challenge for educators is to develop techniques for implementing computational science in the classroom. This paper reviews some previous work on the use of simulation alone (without modeling), modeling…

  15. Defining Computational Thinking for Mathematics and Science Classrooms

    ERIC Educational Resources Information Center

    Weintrop, David; Beheshti, Elham; Horn, Michael; Orton, Kai; Jona, Kemi; Trouille, Laura; Wilensky, Uri

    2016-01-01

    Science and mathematics are becoming computational endeavors. This fact is reflected in the recently released Next Generation Science Standards and the decision to include "computational thinking" as a core scientific practice. With this addition, and the increased presence of computation in mathematics and scientific contexts, a new…

  16. E-Laboratory Design and Implementation for Enhanced Science, Technology and Engineering Education

    ERIC Educational Resources Information Center

    Morton, William; Uhomoibhi, James

    2011-01-01

    Purpose: This paper aims to report on the design and implementation of an e-laboratory for enhanced science, technology and engineering education studies. Design/methodology/approach: The paper assesses a computer-based e-laboratory, designed for new entrants to science, technology and engineering programmes of study in further and higher…

  17. Empathy in Future Teachers of the Pedagogical and Technological University of Colombia

    ERIC Educational Resources Information Center

    Herrera Torres, Lucía; Buitrago Bonilla, Rafael Enrique; Avila Moreno, Aida Karina

    2016-01-01

    This study analyzes cognitive and emotional empathy in students who started their training at the Education Science Faculty of the Pedagogical and Technological University of Colombia. The sample was formed by 317 students enrolled in the study programs of Preschool, Plastic Arts, Natural Sciences, Physical Education, Philosophy, Computer Science,…

  18. Retrospective Evaluation of a Collaborative LearningScience Module: The Users' Perspective

    ERIC Educational Resources Information Center

    DeWitt, Dorothy; Siraj, Saedah; Alias, Norlidah; Leng, Chin Hai

    2013-01-01

    This study focuses on the retrospective evaluation of collaborative mLearning (CmL) Science module for teaching secondary school science which was designed based on social constructivist learning theories and Merrill's First Principle of Instruction. This study is part of a developmental research in which computer-mediated communication (CMC)…

  19. NASA Center for Computational Sciences: History and Resources

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Nasa Center for Computational Sciences (NCCS) has been a leading capacity computing facility, providing a production environment and support resources to address the challenges facing the Earth and space sciences research community.

  20. Institute for Computer Applications in Science and Engineering (ICASE)

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis and computer science during the period April 1, 1983 through September 30, 1983 is summarized.

  1. Computers in Science: Thinking Outside the Discipline.

    ERIC Educational Resources Information Center

    Hamilton, Todd M.

    2003-01-01

    Describes the Computers in Science course which integrates computer-related techniques into the science disciplines of chemistry, physics, biology, and Earth science. Uses a team teaching approach and teaches students how to solve chemistry problems with spreadsheets, identify minerals with X-rays, and chemical and force analysis. (Contains 14…

  2. 78 FR 64255 - Advisory Committee for Computer and Information Science and Engineering; Cancellation of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-28

    ... NATIONAL SCIENCE FOUNDATION Advisory Committee for Computer and Information Science and Engineering; Cancellation of Meeting SUMMARY: As a result of the impact of the recent government shutdown, the... Committee for Computer and Information Science and Engineering meeting. The public notice for this committee...

  3. Software Reviews.

    ERIC Educational Resources Information Center

    Science and Children, 1990

    1990-01-01

    Reviewed are seven computer software packages for IBM and/or Apple Computers. Included are "Windows on Science: Volume 1--Physical Science"; "Science Probe--Physical Science"; "Wildlife Adventures--Grizzly Bears"; "Science Skills--Development Programs"; "The Clean Machine"; "Rock Doctor";…

  4. Women's decision to major in STEM fields

    NASA Astrophysics Data System (ADS)

    Conklin, Stephanie

    This paper explores the lived experiences of high school female students who choose to enter into STEM fields, and describes the influencing factors which steered these women towards majors in computer science, engineering and biology. Utilizing phenomenological methodology, this study seeks to understand the essence of women's decisions to enter into STEM fields and further describe how the decision-making process varies for women in high female enrollment fields, like biology, as compared with low enrollment fields like, computer science and engineering. Using Bloom's 3-Stage Theory, this study analyzes how relationships, experiences and barriers influenced women towards, and possibly away, from STEM fields. An analysis of women's experiences highlight that support of family, sustained experience in a STEM program during high school as well as the presence of an influential teacher were all salient factors in steering women towards STEM fields. Participants explained that influential teacher worked individually with them, modified and extended assignments and also steered participants towards coursework and experiences. This study also identifies factors, like guidance counselors as well as personal challenges, which inhibited participant's path to STEM fields. Further, through analyzing all six participants' experiences, it is clear that a linear model, like Bloom's 3-Stage Model, with limited ability to include potential barriers inhibited the ability to capture the essence of each participant's decision-making process. Therefore, a revised model with no linear progression which allows for emerging factors, like personal challenges, has been proposed; this model focuses on how interest in STEM fields begins to develop and is honed and then mastered. This study also sought to identify key differences in the paths of female students pursuing different majors. The findings of this study suggest that the path to computer science and engineering is limited. Computer science majors faced few, if any, challenges, hoped to use computers as a tool to innovate and also participated in the same computer science program. For female engineering students, the essence of their experience focused on interaction at a young age with an expert in an engineering-related field as well as a strong desire to help solve world problems using engineering. These participants were able to articulate clearly future careers. In contrast, biology majors, faced more challenges and were undecided about their future career goals. These results suggest that a longitudinal study focused on women pursuing engineering and computer science fields is warranted; this will hopefully allow these findings to be substantiated and also for refinement of the revised theoretical model.

  5. An Overview of NASA's Intelligent Systems Program

    NASA Technical Reports Server (NTRS)

    Cooke, Daniel E.; Norvig, Peter (Technical Monitor)

    2001-01-01

    NASA and the Computer Science Research community are poised to enter a critical era. An era in which - it seems - that each needs the other. Market forces, driven by the immediate economic viability of computer science research results, place Computer Science in a relatively novel position. These forces impact how research is done, and could, in worst case, drive the field away from significant innovation opting instead for incremental advances that result in greater stability in the market place. NASA, however, requires significant advances in computer science research in order to accomplish the exploration and science agenda it has set out for itself. NASA may indeed be poised to advance computer science research in this century much the way it advanced aero-based research in the last.

  6. A pedagogical example of second-order arithmetic sequences applied to the construction of computer passwords by upper elementary grade students

    NASA Astrophysics Data System (ADS)

    Coggins, Porter E.

    2015-04-01

    The purpose of this paper is (1) to present how general education elementary school age students constructed computer passwords using digital root sums and second-order arithmetic sequences, (2) argue that computer password construction can be used as an engaging introduction to generate interest in elementary school students to study mathematics related to computer science, and (3) share additional mathematical ideas accessible to elementary school students that can be used to create computer passwords. This paper serves to fill a current gap in the literature regarding the integration of mathematical content accessible to upper elementary school students and aspects of computer science in general, and computer password construction in particular. In addition, the protocols presented here can serve as a hook to generate further interest in mathematics and computer science. Students learned to create a random-looking computer password by using biometric measurements of their shoe size, height, and age in months and to create a second-order arithmetic sequence, then converted the resulting numbers into characters that become their computer passwords. This password protocol can be used to introduce students to good computer password habits that can serve a foundation for a life-long awareness of data security. A refinement of the password protocol is also presented.

  7. Can Computers Be Used Successfully for Teaching College Mathematics?

    ERIC Educational Resources Information Center

    Hatfield, Steven H.

    1976-01-01

    Author states that the use of computers in mathematics courses tends to generate interest in course subject matter and make learning a less passive experience. Computers also introduce students to computer science as a field of study, and provide basic knowledge of computers as an important aspect of today's technology. (Author/RW)

  8. A Review of Models for Teacher Preparation Programs for Precollege Computer Science Education.

    ERIC Educational Resources Information Center

    Deek, Fadi P.; Kimmel, Howard

    2002-01-01

    Discusses the need for adequate precollege computer science education and focuses on the issues of teacher preparation programs and requirements needed to teach high school computer science. Presents models of teacher preparation programs and compares state requirements with Association for Computing Machinery (ACM) recommendations. (Author/LRW)

  9. A DDC Bibliography on Computers in Information Sciences. Volume II. Information Sciences Series.

    ERIC Educational Resources Information Center

    Defense Documentation Center, Alexandria, VA.

    The unclassified and unlimited bibliography compiles references dealing specifically with the role of computers in information sciences. The volume contains 239 annotated references grouped under three major headings: Artificial and Programming Languages, Computer Processing of Analog Data, and Computer Processing of Digital Data. The references…

  10. Making Advanced Computer Science Topics More Accessible through Interactive Technologies

    ERIC Educational Resources Information Center

    Shao, Kun; Maher, Peter

    2012-01-01

    Purpose: Teaching advanced technical concepts in a computer science program to students of different technical backgrounds presents many challenges. The purpose of this paper is to present a detailed experimental pedagogy in teaching advanced computer science topics, such as computer networking, telecommunications and data structures using…

  11. Studying the Earth's Environment from Space: Computer Laboratory Exercised and Instructor Resources

    NASA Technical Reports Server (NTRS)

    Smith, Elizabeth A.; Alfultis, Michael

    1998-01-01

    Studying the Earth's Environment From Space is a two-year project to develop a suite of CD-ROMs containing Earth System Science curriculum modules for introductory undergraduate science classes. Lecture notes, slides, and computer laboratory exercises, including actual satellite data and software, are being developed in close collaboration with Carla Evans of NASA GSFC Earth Sciences Directorate Scientific and Educational Endeavors (SEE) project. Smith and Alfultis are responsible for the Oceanography and Sea Ice Processes Modules. The GSFC SEE project is responsible for Ozone and Land Vegetation Modules. This document constitutes a report on the first year of activities of Smith and Alfultis' project.

  12. ASCR Workshop on Quantum Computing for Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aspuru-Guzik, Alan; Van Dam, Wim; Farhi, Edward

    This report details the findings of the DOE ASCR Workshop on Quantum Computing for Science that was organized to assess the viability of quantum computing technologies to meet the computational requirements of the DOE’s science and energy mission, and to identify the potential impact of quantum technologies. The workshop was held on February 17-18, 2015, in Bethesda, MD, to solicit input from members of the quantum computing community. The workshop considered models of quantum computation and programming environments, physical science applications relevant to DOE's science mission as well as quantum simulation, and applied mathematics topics including potential quantum algorithms formore » linear algebra, graph theory, and machine learning. This report summarizes these perspectives into an outlook on the opportunities for quantum computing to impact problems relevant to the DOE’s mission as well as the additional research required to bring quantum computing to the point where it can have such impact.« less

  13. Math and science technology access and use in South Dakota public schools grades three through five

    NASA Astrophysics Data System (ADS)

    Schwietert, Debra L.

    The development of K-12 technology standards, soon to be added to state testing of technology proficiency, and the increasing presence of computers in homes and classrooms reflects the growing importance of technology in current society. This study examined math and science teachers' responses on a survey of technology use in grades three through five in South Dakota. A researcher-developed survey instrument was used to collect data from a random sample of 100 public schools throughout the South Dakota. Forced choice and open-ended responses were recorded. Most teachers have access to computers, but they lack resources to purchase software for their content areas, especially in science areas. Three-fourths of teachers in this study reported multiple computers in their classrooms and 67% reported access to labs in other areas of the school building. These numbers are lower than the national average of 84% of teachers with computers in their classrooms and 95% with access to computers elsewhere in the building (USDOE, 2000). Almost eight out of 10 teachers noted time as a barrier to learning more about educational software. Additional barriers included lack of school funds (38%), access to relevant training (32%), personal funds (30%), and poor quality of training (7%). Teachers most often use math and science software as supplemental, with practice tutorials cited as another common use. The most common interest for software was math for both boys and girls. The second most common choice for boys was science and for girls, language arts. Teachers reported that there was no preference for either individual or group work on computers for girls or boys. Most teachers do not systematically evaluate software for gender preferences, but review software over subjectively.

  14. Research in Applied Mathematics, Fluid Mechanics and Computer Science

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period October 1, 1998 through March 31, 1999.

  15. [Research activities in applied mathematics, fluid mechanics, and computer science

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period April 1, 1995 through September 30, 1995.

  16. Activities of the Institute for Computer Applications in Science and Engineering

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, and computer science during the period April 1, 1985 through October 2, 1985 is summarized.

  17. Factors that Influence the Success of Male and Female Computer Programming Students in College

    NASA Astrophysics Data System (ADS)

    Clinkenbeard, Drew A.

    As the demand for a technologically skilled work force grows, experience and skill in computer science have become increasingly valuable for college students. However, the number of students graduating with computer science degrees is not growing proportional to this need. Traditionally several groups are underrepresented in this field, notably women and students of color. This study investigated elements of computer science education that influence academic achievement in beginning computer programming courses. The goal of the study was to identify elements that increase success in computer programming courses. A 38-item questionnaire was developed and administered during the Spring 2016 semester at California State University Fullerton (CSUF). CSUF is an urban public university comprised of about 40,000 students. Data were collected from three beginning programming classes offered at CSUF. In total 411 questionnaires were collected resulting in a response rate of 58.63%. Data for the study were grouped into three broad categories of variables. These included academic and background variables; affective variables; and peer, mentor, and role-model variables. A conceptual model was developed to investigate how these variables might predict final course grade. Data were analyzed using statistical techniques such as linear regression, factor analysis, and path analysis. Ultimately this study found that peer interactions, comfort with computers, computer self-efficacy, self-concept, and perception of achievement were the best predictors of final course grade. In addition, the analyses showed that male students exhibited higher levels of computer self-efficacy and self-concept compared to female students, even when they achieved comparable course grades. Implications and explanations of these findings are explored, and potential policy changes are offered.

  18. Post-Mortem and Effective Measure of Science Programs: A Study of Bangladesh Open University

    ERIC Educational Resources Information Center

    Numan, Sharker Md.; Islam, Md. Anwarul; Shah, A. K. M. Azad

    2013-01-01

    Distance education can be more learners centered if distance educators are aware of the problems, needs, attitudes and characteristics of their learners. The aim of this study was to compare the learners' profile in terms of their attitude and demography between the learners of computer science and health science. A cross-sectional study design…

  19. Student Perceptions in the Design of a Computer Card Game for Learning Computer Literacy Issues: A Case Study

    ERIC Educational Resources Information Center

    Kordaki, Maria; Papastergiou, Marina; Psomos, Panagiotis

    2016-01-01

    The aim of this work was twofold. First, an empirical study was designed aimed at investigating the perceptions that entry-level non-computing majors--namely Physical Education and Sport Science (PESS) undergraduate students--hold about basic Computer Literacy (CL) issues. The participants were 90 first-year PESS students, and their perceptions…

  20. Can a tablet device alter undergraduate science students' study behavior and use of technology?

    PubMed

    Morris, Neil P; Ramsay, Luke; Chauhan, Vikesh

    2012-06-01

    This article reports findings from a study investigating undergraduate biological sciences students' use of technology and computer devices for learning and the effect of providing students with a tablet device. A controlled study was conducted to collect quantitative and qualitative data on the impact of a tablet device on students' use of devices and technology for learning. Overall, we found that students made extensive use of the tablet device for learning, using it in preference to laptop computers to retrieve information, record lectures, and access learning resources. In line with other studies, we found that undergraduate students only use familiar Web 2.0 technologies and that the tablet device did not alter this behavior for the majority of tools. We conclude that undergraduate science students can make extensive use of a tablet device to enhance their learning opportunities without institutions changing their teaching methods or computer systems, but that institutional intervention may be needed to drive changes in student behavior toward the use of novel Web 2.0 technologies.

  1. A Quantitative Model for Assessing Visual Simulation Software Architecture

    DTIC Science & Technology

    2011-09-01

    Software Engineering Arnold Buss Research Associate Professor of MOVES LtCol Jeff Boleng, PhD Associate Professor of Computer Science U.S. Air Force Academy... science (operating and programming systems series). New York, NY, USA: Elsevier Science Ltd. Henry, S., & Kafura, D. (1984). The evaluation of software...Rudy Darken Professor of Computer Science Dissertation Supervisor Ted Lewis Professor of Computer Science Richard Riehle Professor of Practice

  2. K-16 Computationally Rich Science Education: A Ten-Year Review of the "Journal of Science Education and Technology" (1998-2008)

    ERIC Educational Resources Information Center

    Wofford, Jennifer

    2009-01-01

    Computing is anticipated to have an increasingly expansive impact on the sciences overall, becoming the third, crucial component of a "golden triangle" that includes mathematics and experimental and theoretical science. However, even more true with computing than with math and science, we are not preparing our students for this new reality. It is…

  3. Interactive Synthesis of Code Level Security Rules

    DTIC Science & Technology

    2017-04-01

    Interactive Synthesis of Code-Level Security Rules A Thesis Presented by Leo St. Amour to The Department of Computer Science in partial fulfillment...of the requirements for the degree of Master of Science in Computer Science Northeastern University Boston, Massachusetts April 2017 DISTRIBUTION...Abstract of the Thesis Interactive Synthesis of Code-Level Security Rules by Leo St. Amour Master of Science in Computer Science Northeastern University

  4. Gendered Narratives of Innovation through Competition: Lessons from Science and Technology Studies

    ERIC Educational Resources Information Center

    Calvert, Scout

    2013-01-01

    Library and information science is a technologically intensive profession with a high percentage of women, unlike computer science and other male-dominated fields. On the occasion of the 2011 ALISE conference, this essay analyzes the theme "Competitiveness and Innovation" through a review of social psychology and science and technology…

  5. Cognitive computing and eScience in health and life science research: artificial intelligence and obesity intervention programs.

    PubMed

    Marshall, Thomas; Champagne-Langabeer, Tiffiany; Castelli, Darla; Hoelscher, Deanna

    2017-12-01

    To present research models based on artificial intelligence and discuss the concept of cognitive computing and eScience as disruptive factors in health and life science research methodologies. The paper identifies big data as a catalyst to innovation and the development of artificial intelligence, presents a framework for computer-supported human problem solving and describes a transformation of research support models. This framework includes traditional computer support; federated cognition using machine learning and cognitive agents to augment human intelligence; and a semi-autonomous/autonomous cognitive model, based on deep machine learning, which supports eScience. The paper provides a forward view of the impact of artificial intelligence on our human-computer support and research methods in health and life science research. By augmenting or amplifying human task performance with artificial intelligence, cognitive computing and eScience research models are discussed as novel and innovative systems for developing more effective adaptive obesity intervention programs.

  6. 78 FR 61870 - Advisory Committee for Computer and Information Science and Engineering; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-04

    ... NATIONAL SCIENCE FOUNDATION Advisory Committee for Computer and Information Science and Engineering; Notice of Meeting In accordance with Federal Advisory Committee Act (Pub. L. 92-463, as amended... Committee for Computer and Information Science and Engineering (1115). Date/Time: Oct 31, 2013: 12:30 p.m...

  7. Beyond the first "click:" Women graduate students in computer science

    NASA Astrophysics Data System (ADS)

    Sader, Jennifer L.

    This dissertation explored the ways that constructions of gender shaped the choices and expectations of women doctoral students in computer science. Women who do graduate work in computer science still operate in an environment where they are in the minority. How much of women's underrepresentation in computer science fields results from a problem of imagining women as computer scientists? As long as women in these fields are seen as exceptions, they are exceptions that prove the "rule" that computing is a man's domain. The following questions were the focus of this inquiry: What are the career aspirations of women doctoral students in computer science? How do they feel about their chances to succeed in their chosen career and field? How do women doctoral students in computer science construct womanhood? What are their constructions of what it means to be a computer scientist? In what ways, if any, do they believe their gender has affected their experience in their graduate programs? The goal was to examine how constructions of computer science and of gender---including participants' own understanding of what it meant to be a woman, as well as the messages they received from their environment---contributed to their success as graduate students in a field where women are still greatly outnumbered by men. Ten women from four different institutions of higher education were recruited to participate in this study. These women varied in demographic characteristics like age, race, and ethnicity. Still, there were many common threads in their experiences. For example, their construction of womanhood did not limit their career prospects to traditionally female jobs. They had grown up with the expectation that they would be able to succeed in whatever field they chose. Most also had very positive constructions of programming as something that was "fun," rewarding, and intellectually stimulating. Their biggest obstacles were feelings of isolation and a resulting loss of confidence. Implications for future research are provided. There are also several implications for practice, especially the recommendation that graduate schools provide more support for all of their students. The experiences of these women also suggest ways to more effectively recruit women students to computer science. The importance of women faculty in these students' success also suggests that schools trying to counteract gender imbalances should actively recruit women faculty to teach in fields where women are underrepresented. These faculty serve as important role models and mentors to women students in their field.

  8. Activities of the Institute for Computer Applications in Science and Engineering (ICASE)

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, and computer science during the period October 1, 1984 through March 31, 1985 is summarized.

  9. [Research Conducted at the Institute for Computer Applications in Science and Engineering

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period 1 Oct. 1996 - 31 Mar. 1997.

  10. Activities of the Institute for Computer Applications in Science and Engineering (ICASE)

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This report summarizes research conducted at the Institute for Computer Applications Science and Engineering in applied mathematics, numerical analysis, and computer science during the period October 2, 1987 through March 31, 1988.

  11. [Activities of Institute for Computer Applications in Science and Engineering (ICASE)

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics. fluid mechanics, and computer science during the period April 1, 1999 through September 30. 1999.

  12. Practical Measurement of Complexity In Dynamic Systems

    DTIC Science & Technology

    2012-01-01

    policies that produce highly complex behaviors , yet yield no benefit. 21Jason B. Clark and David R. Jacques / Procedia Computer Science 8 (2012) 14... Procedia Computer Science 8 (2012) 14 – 21 1877-0509 © 2012 Published by Elsevier B.V. doi:10.1016/j.procs.2012.01.008 Available online at...www.sciencedirect.com Procedia Computer Science Procedia Computer Science 00 (2012) 000–000 www.elsevier.com/locate/ procedia Available online at

  13. Path Not Found: Disparities in Access to Computer Science Courses in California High Schools

    ERIC Educational Resources Information Center

    Martin, Alexis; McAlear, Frieda; Scott, Allison

    2015-01-01

    "Path Not Found: Disparities in Access to Computer Science Courses in California High Schools" exposes one of the foundational causes of underrepresentation in computing: disparities in access to computer science courses in California's public high schools. This report provides new, detailed data on these disparities by student body…

  14. Developing Oral and Written Communication Skills in Undergraduate Computer Science and Information Systems Curriculum

    ERIC Educational Resources Information Center

    Kortsarts, Yana; Fischbach, Adam; Rufinus, Jeff; Utell, Janine M.; Yoon, Suk-Chung

    2010-01-01

    Developing and applying oral and written communication skills in the undergraduate computer science and computer information systems curriculum--one of the ABET accreditation requirements - is a very challenging and, at the same time, a rewarding task that provides various opportunities to enrich the undergraduate computer science and computer…

  15. Computers, Networks, and Desegregation at San Jose High Academy.

    ERIC Educational Resources Information Center

    Solomon, Gwen

    1987-01-01

    Describes magnet high school which was created in California to meet desegregation requirements and emphasizes computer technology. Highlights include local computer networks that connect science and music labs, the library/media center, business computer lab, writing lab, language arts skills lab, and social studies classrooms; software; teacher…

  16. EOS MLS Science Data Processing System: A Description of Architecture and Capabilities

    NASA Technical Reports Server (NTRS)

    Cuddy, David T.; Echeverri, Mark D.; Wagner, Paul A.; Hanzel, Audrey T.; Fuller, Ryan A.

    2006-01-01

    This paper describes the architecture and capabilities of the Science Data Processing System (SDPS) for the EOS MLS. The SDPS consists of two major components--the Science Computing Facility and the Science Investigator-led Processing System. The Science Computing Facility provides the facilities for the EOS MLS Science Team to perform the functions of scientific algorithm development, processing software development, quality control of data products, and scientific analyses. The Science Investigator-led Processing System processes and reprocesses the science data for the entire mission and delivers the data products to the Science Computing Facility and to the Goddard Space Flight Center Earth Science Distributed Active Archive Center, which archives and distributes the standard science products.

  17. A Determination of the Minimum Frequency Requirements for a PATRIOT Battalion UHF Communication System.

    DTIC Science & Technology

    1982-12-01

    a computer program which simulates the PATRIOT battalion UH1F communication system. *.-.The detailed description of how the model performs this...the Degree of Master of Science .AI . j tf ti on-i by 5 , .... . :it Lard/or Gregory H. Swanson DLt Captain USA Graduate Computer Science I...5 Model Application..... . . . .. .. . . .. .. . . 6 Thesnis Overviev ....... o.000000000000000000000. .6 Previous Studies

  18. An Assessment of Computer Science Degree Programs in Virginia. A Report to the Council of Higher Education and Virginia's State-Supported Institutions of Higher Education.

    ERIC Educational Resources Information Center

    Virginia State Council of Higher Education, Richmond.

    This report presents the results of a review of all significant instructional efforts in the computer science discipline in Virginia institutions of higher education, with emphasis on those whose instructional activities constitute complete degree programs. The report is based largely on information provided by the institutions in self-studies. A…

  19. Assessing College Student Interest in Math and/or Computer Science in a Cross-National Sample Using Classification and Regression Trees

    ERIC Educational Resources Information Center

    Kitsantas, Anastasia; Kitsantas, Panagiota; Kitsantas, Thomas

    2012-01-01

    The purpose of this exploratory study was to assess the relative importance of a number of variables in predicting students' interest in math and/or computer science. Classification and regression trees (CART) were employed in the analysis of survey data collected from 276 college students enrolled in two U.S. and Greek universities. The results…

  20. Measuring the Impact of App Inventor for Android and Studio-Based Learning in an Introductory Computer Science Course for Non-Majors

    ERIC Educational Resources Information Center

    Ahmad, Khuloud Nasser

    2012-01-01

    A reexamination of the traditional instruction of introductory computer science (CS) courses is becoming a necessity. Introductory CS courses tend to have high attrition rates and low success rates. In many universities, the CS department suffered from low enrollment for several years compared to other majors. Multiple studies have linked these…

  1. Metaconceptually-Enhanced Simulation-Based Inquiry: Effects on Eighth Grade Students' Conceptual Change and Science Epistemic Beliefs

    ERIC Educational Resources Information Center

    Huang, Kun; Ge, Xun; Eseryel, Deniz

    2017-01-01

    This study investigated the effects of metaconceptually-enhanced, simulation-based inquiry learning on eighth grade students' conceptual change in science and their development of science epistemic beliefs. Two experimental groups studied the topics of motion and force using the same computer simulations but with different simulation guides: one…

  2. Preservice Science Teachers' Perceptions of Their TPACK Development after Creating Digital Stories

    ERIC Educational Resources Information Center

    Sancar-Tokmak, Hatice; Surmeli, Hikmet; Ozgelen, Sinan

    2014-01-01

    The aim of this case study was to examine pre-service science teachers' (PSTs) perceptions of their Technological Pedagogical Content Knowledge (TPACK) development after creating digital stories based on science topics drawn from the national curriculum. A total of 21 PSTs enrolled in Introduction to Computers II participated in the study. Data…

  3. Student leadership in small group science inquiry

    NASA Astrophysics Data System (ADS)

    Oliveira, Alandeom W.; Boz, Umit; Broadwell, George A.; Sadler, Troy D.

    2014-09-01

    Background: Science educators have sought to structure collaborative inquiry learning through the assignment of static group roles. This structural approach to student grouping oversimplifies the complexities of peer collaboration and overlooks the highly dynamic nature of group activity. Purpose: This study addresses this issue of oversimplification of group dynamics by examining the social leadership structures that emerge in small student groups during science inquiry. Sample: Two small student groups investigating the burning of a candle under a jar participated in this study. Design and method: We used a mixed-method research approach that combined computational discourse analysis (computational quantification of social aspects of small group discussions) with microethnography (qualitative, in-depth examination of group discussions). Results: While in one group social leadership was decentralized (i.e., students shared control over topics and tasks), the second group was dominated by a male student (centralized social leadership). Further, decentralized social leadership was found to be paralleled by higher levels of student cognitive engagement. Conclusions: It is argued that computational discourse analysis can provide science educators with a powerful means of developing pedagogical models of collaborative science learning that take into account the emergent nature of group structures and highly fluid nature of student collaboration.

  4. 77 FR 38630 - Open Internet Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-28

    ... Computer Science and Co-Founder of the Berkman Center for Internet and Society, Harvard University, is... of Technology Computer Science and Artificial Intelligence Laboratory, is appointed vice-chairperson... Jennifer Rexford, Professor of Computer Science, Princeton University Dennis Roberson, Vice Provost...

  5. Research in progress at the Institute for Computer Applications in Science and Engineering

    NASA Technical Reports Server (NTRS)

    1987-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, and computer science during the period April 1, 1987 through October 1, 1987.

  6. Graduate Training at the Interface of Computational and Experimental Biology: An Outcome Report from a Partnership of Volunteers between a University and a National Laboratory.

    PubMed

    von Arnim, Albrecht G; Missra, Anamika

    2017-01-01

    Leading voices in the biological sciences have called for a transformation in graduate education leading to the PhD degree. One area commonly singled out for growth and innovation is cross-training in computational science. In 1998, the University of Tennessee (UT) founded an intercollegiate graduate program called the UT-ORNL Graduate School of Genome Science and Technology in partnership with the nearby Oak Ridge National Laboratory. Here, we report outcome data that attest to the program's effectiveness in graduating computationally enabled biologists for diverse careers. Among 77 PhD graduates since 2003, the majority came with traditional degrees in the biological sciences, yet two-thirds moved into computational or hybrid (computational-experimental) positions. We describe the curriculum of the program and how it has changed. We also summarize how the program seeks to establish cohesion between computational and experimental biologists. This type of program can respond flexibly and dynamically to unmet training needs. In conclusion, this study from a flagship, state-supported university may serve as a reference point for creating a stable, degree-granting, interdepartmental graduate program in computational biology and allied areas. © 2017 A. G. von Arnim and A. Missra. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  7. Religious Studies as a Test-Case For Computer-Assisted Instruction In The Humanities.

    ERIC Educational Resources Information Center

    Jones, Bruce William

    Experiences with computer-assisted instructional (CAI) programs written for religious studies indicate that CAI has contributions to offer the humanities and social sciences. The usefulness of the computer for presentation, drill and review of factual material and its applicability to quantifiable data is well accepted. There now exist…

  8. DCL System Using Deep Learning Approaches for Land-Based or Ship-Based Real Time Recognition and Localization of Marine Mammals

    DTIC Science & Technology

    2015-09-30

    Clark (2014), "Using High Performance Computing to Explore Large Complex Bioacoustic Soundscapes : Case Study for Right Whale Acoustics," Procedia...34Using High Performance Computing to Explore Large Complex Bioacoustic Soundscapes : Case Study for Right Whale Acoustics," Procedia Computer Science 20

  9. A parallel-processing approach to computing for the geographic sciences; applications and systems enhancements

    USGS Publications Warehouse

    Crane, Michael; Steinwand, Dan; Beckmann, Tim; Krpan, Greg; Liu, Shu-Guang; Nichols, Erin; Haga, Jim; Maddox, Brian; Bilderback, Chris; Feller, Mark; Homer, George

    2001-01-01

    The overarching goal of this project is to build a spatially distributed infrastructure for information science research by forming a team of information science researchers and providing them with similar hardware and software tools to perform collaborative research. Four geographically distributed Centers of the U.S. Geological Survey (USGS) are developing their own clusters of low-cost, personal computers into parallel computing environments that provide a costeffective way for the USGS to increase participation in the high-performance computing community. Referred to as Beowulf clusters, these hybrid systems provide the robust computing power required for conducting information science research into parallel computing systems and applications.

  10. Enabling Earth Science Through Cloud Computing

    NASA Technical Reports Server (NTRS)

    Hardman, Sean; Riofrio, Andres; Shams, Khawaja; Freeborn, Dana; Springer, Paul; Chafin, Brian

    2012-01-01

    Cloud Computing holds tremendous potential for missions across the National Aeronautics and Space Administration. Several flight missions are already benefiting from an investment in cloud computing for mission critical pipelines and services through faster processing time, higher availability, and drastically lower costs available on cloud systems. However, these processes do not currently extend to general scientific algorithms relevant to earth science missions. The members of the Airborne Cloud Computing Environment task at the Jet Propulsion Laboratory have worked closely with the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) mission to integrate cloud computing into their science data processing pipeline. This paper details the efforts involved in deploying a science data system for the CARVE mission, evaluating and integrating cloud computing solutions with the system and porting their science algorithms for execution in a cloud environment.

  11. Quantitative and Qualitative Evaluation of The Structural Designing of Medical Informatics Dynamic Encyclopedia.

    PubMed

    Safdari, Reza; Shahmoradi, Leila; Hosseini-Beheshti, Molouk-Sadat; Nejad, Ahmadreza Farzaneh; Hosseiniravandi, Mohammad

    2015-10-01

    Encyclopedias and their compilation have become so prevalent as a valid cultural medium in the world. The daily development of computer industry and the expansion of various sciences have made indispensable the compilation of electronic, specialized encyclopedias, especially the web-based ones. This is an applied-developmental study conducted in 2014. First, the main terms in the field of medical informatics were gathered using MeSH Online 2014 and the supplementary terms of each were determined, and then the tree diagram of the terms was drawn based on their relationship in MeSH. Based on the studies done by the researchers, the tree diagram of the encyclopedia was drawn with respect to the existing areas in this field, and the terms gathered were put in related domains. In MeSH, 75 preferred terms together with 249 supplementary ones were indexed. One of the informatics' sub-branches is biomedical informatics and health which itself consists of three sub-divisions of bioinformatics, clinical informatics, and health informatics. Medical informatics which is a subdivision of clinical informatics has developed from the three fields of medical sciences, management and social sciences, and computational sciences and mathematics. Medical Informatics is created of confluence and fusion and applications of the three major scientific branches include health and biological sciences, social sciences and management sciences, computing and mathematical sciences, and according to that the structure of MeSH is weak for future development of Encyclopedia of Medical Informatics.

  12. Research 1970/1971: Annual Progress Report.

    ERIC Educational Resources Information Center

    Georgia Inst. of Tech., Atlanta. Science Information Research Center.

    The report presents a summary of science information research activities of the School of Information and Computer Science, Georgia Institute of Technology. Included are project reports on interrelated studies in science information, information processing and systems design, automata and systems theories, and semiotics and linguistics. Also…

  13. Glitch game testers: The design and study of a learning environment for computational production with young African American males

    NASA Astrophysics Data System (ADS)

    DiSalvo, Elizabeth Betsy

    The implementation of a learning environment for young African American males, called the Glitch Game Testers, was launched in 2009. The development of this program was based on formative work that looked at the contrasting use of digital games between young African American males and individuals who chose to become computer science majors. Through analysis of cultural values and digital game play practices, the program was designed to intertwine authentic game development practices and computer science learning. The resulting program employed 25 African American male high school students to test pre-release digital games full-time in the summer and part-time in the school year, with an hour of each day dedicated to learning introductory computer science. Outcomes for persisting in computer science education are remarkable; of the 16 participants who had graduated from high school as of 2012, 12 have gone on to school in computing-related majors. These outcomes, and the participants' enthusiasm for engaging in computing, are in sharp contrast to the crisis in African American male education and learning motivation. The research presented in this dissertation discusses the formative research that shaped the design of Glitch, the evaluation of the implementation of Glitch, and a theoretical investigation of the way in which participants navigated conflicting motivations in learning environments.

  14. Designing a Versatile Dedicated Computing Lab to Support Computer Network Courses: Insights from a Case Study

    ERIC Educational Resources Information Center

    Gercek, Gokhan; Saleem, Naveed

    2006-01-01

    Providing adequate computing lab support for Management Information Systems (MIS) and Computer Science (CS) programs is a perennial challenge for most academic institutions in the US and abroad. Factors, such as lack of physical space, budgetary constraints, conflicting needs of different courses, and rapid obsolescence of computing technology,…

  15. Ethics in the classroom: a reflection on integrating ethical discussions in an introductory course in computer programming.

    PubMed

    Smolarski, D C; Whitehead, T

    2000-04-01

    In this paper, we describe our recent approaches to introducing students in a beginning computer science class to the study of ethical issues related to computer science and technology. This consists of three components: lectures on ethics and technology, in-class discussion of ethical scenarios, and a reflective paper on a topic related to ethics or the impact of technology on society. We give both student reactions to these aspects, and instructor perspective on the difficulties and benefits in exposing students to these ideas.

  16. Teaching and Learning Methodologies Supported by ICT Applied in Computer Science

    ERIC Educational Resources Information Center

    Capacho, Jose

    2016-01-01

    The main objective of this paper is to show a set of new methodologies applied in the teaching of Computer Science using ICT. The methodologies are framed in the conceptual basis of the following sciences: Psychology, Education and Computer Science. The theoretical framework of the research is supported by Behavioral Theory, Gestalt Theory.…

  17. 76 FR 61118 - Advisory Committee for Computer and Information Science and Engineering; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-03

    ... Engineering; Notice of Meeting In accordance with the Federal Advisory Committee Act (Pub. L. 92- 463, as... Computer and Information Science and Engineering (1115). Date and Time: November 1, 2011 from 12 p.m.-5:30... Computer and Information Science and Engineering, National Science Foundation, 4201 Wilson Blvd., Suite...

  18. Computer Science in High School Graduation Requirements. ECS Education Trends (Updated)

    ERIC Educational Resources Information Center

    Zinth, Jennifer

    2016-01-01

    Allowing high school students to fulfill a math or science high school graduation requirement via a computer science credit may encourage more student to pursue computer science coursework. This Education Trends report is an update to the original report released in April 2015 and explores state policies that allow or require districts to apply…

  19. Characteristics of the Navy Laboratory Warfare Center Technical Workforce

    DTIC Science & Technology

    2013-09-29

    Mathematics and Information Science (M&IS) Actuarial Science 1510 Computer Science 1550 Gen. Math & Statistics 1501 Mathematics 1520 Operations...Admin. Network Systems & Data Communication Analysts Actuaries Mathematicians Operations Research Analyst Statisticians Social Science (SS...workforce was sub-divided into six broad occupational groups: Life Science , Physical Science , Engineering, Mathematics, Computer Science and Information

  20. Using embedded computer-assisted instruction to teach science to students with Autism Spectrum Disorders

    NASA Astrophysics Data System (ADS)

    Smith, Bethany

    The need for promoting scientific literacy for all students has been the focus of recent education reform resulting in the rise of the Science Technology, Engineering, and Mathematics movement. For students with Autism Spectrum Disorders and intellectual disability, this need for scientific literacy is further complicated by the need for individualized instruction that is often required to teach new skills, especially when those skills are academic in nature. In order to address this need for specialized instruction, as well as scientific literacy, this study investigated the effects of embedded computer-assisted instruction to teach science terms and application of those terms to three middle school students with autism and intellectual disability. This study was implemented within an inclusive science classroom setting. A multiple probe across participants research design was used to examine the effectiveness of the intervention. Results of this study showed a functional relationship between the number of correct responses made during probe sessions and introduction of the intervention. Additionally, all three participants maintained the acquired science terms and applications over time and generalized these skills across materials and settings. The findings of this study suggest several implications for practice within inclusive settings and provide suggestions for future research investigating the effectiveness of computer-assisted instruction to teach academic skills to students with Autism Spectrum Disorders and intellectual disability.

  1. Computational sciences in the upstream oil and gas industry

    PubMed Central

    Halsey, Thomas C.

    2016-01-01

    The predominant technical challenge of the upstream oil and gas industry has always been the fundamental uncertainty of the subsurface from which it produces hydrocarbon fluids. The subsurface can be detected remotely by, for example, seismic waves, or it can be penetrated and studied in the extremely limited vicinity of wells. Inevitably, a great deal of uncertainty remains. Computational sciences have been a key avenue to reduce and manage this uncertainty. In this review, we discuss at a relatively non-technical level the current state of three applications of computational sciences in the industry. The first of these is seismic imaging, which is currently being revolutionized by the emergence of full wavefield inversion, enabled by algorithmic advances and petascale computing. The second is reservoir simulation, also being advanced through the use of modern highly parallel computing architectures. Finally, we comment on the role of data analytics in the upstream industry. This article is part of the themed issue ‘Energy and the subsurface’. PMID:27597785

  2. PREPARING FOR EXASCALE: ORNL Leadership Computing Application Requirements and Strategy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joubert, Wayne; Kothe, Douglas B; Nam, Hai Ah

    2009-12-01

    In 2009 the Oak Ridge Leadership Computing Facility (OLCF), a U.S. Department of Energy (DOE) facility at the Oak Ridge National Laboratory (ORNL) National Center for Computational Sciences (NCCS), elicited petascale computational science requirements from leading computational scientists in the international science community. This effort targeted science teams whose projects received large computer allocation awards on OLCF systems. A clear finding of this process was that in order to reach their science goals over the next several years, multiple projects will require computational resources in excess of an order of magnitude more powerful than those currently available. Additionally, for themore » longer term, next-generation science will require computing platforms of exascale capability in order to reach DOE science objectives over the next decade. It is generally recognized that achieving exascale in the proposed time frame will require disruptive changes in computer hardware and software. Processor hardware will become necessarily heterogeneous and will include accelerator technologies. Software must undergo the concomitant changes needed to extract the available performance from this heterogeneous hardware. This disruption portends to be substantial, not unlike the change to the message passing paradigm in the computational science community over 20 years ago. Since technological disruptions take time to assimilate, we must aggressively embark on this course of change now, to insure that science applications and their underlying programming models are mature and ready when exascale computing arrives. This includes initiation of application readiness efforts to adapt existing codes to heterogeneous architectures, support of relevant software tools, and procurement of next-generation hardware testbeds for porting and testing codes. The 2009 OLCF requirements process identified numerous actions necessary to meet this challenge: (1) Hardware capabilities must be advanced on multiple fronts, including peak flops, node memory capacity, interconnect latency, interconnect bandwidth, and memory bandwidth. (2) Effective parallel programming interfaces must be developed to exploit the power of emerging hardware. (3) Science application teams must now begin to adapt and reformulate application codes to the new hardware and software, typified by hierarchical and disparate layers of compute, memory and concurrency. (4) Algorithm research must be realigned to exploit this hierarchy. (5) When possible, mathematical libraries must be used to encapsulate the required operations in an efficient and useful way. (6) Software tools must be developed to make the new hardware more usable. (7) Science application software must be improved to cope with the increasing complexity of computing systems. (8) Data management efforts must be readied for the larger quantities of data generated by larger, more accurate science models. Requirements elicitation, analysis, validation, and management comprise a difficult and inexact process, particularly in periods of technological change. Nonetheless, the OLCF requirements modeling process is becoming increasingly quantitative and actionable, as the process becomes more developed and mature, and the process this year has identified clear and concrete steps to be taken. This report discloses (1) the fundamental science case driving the need for the next generation of computer hardware, (2) application usage trends that illustrate the science need, (3) application performance characteristics that drive the need for increased hardware capabilities, (4) resource and process requirements that make the development and deployment of science applications on next-generation hardware successful, and (5) summary recommendations for the required next steps within the computer and computational science communities.« less

  3. Using the Tower of Hanoi puzzle to infuse your mathematics classroom with computer science concepts

    NASA Astrophysics Data System (ADS)

    Marzocchi, Alison S.

    2016-07-01

    This article suggests that logic puzzles, such as the well-known Tower of Hanoi puzzle, can be used to introduce computer science concepts to mathematics students of all ages. Mathematics teachers introduce their students to computer science concepts that are enacted spontaneously and subconsciously throughout the solution to the Tower of Hanoi puzzle. These concepts include, but are not limited to, conditionals, iteration, and recursion. Lessons, such as the one proposed in this article, are easily implementable in mathematics classrooms and extracurricular programmes as they are good candidates for 'drop in' lessons that do not need to fit into any particular place in the typical curriculum sequence. As an example for readers, the author describes how she used the puzzle in her own Number Sense and Logic course during the federally funded Upward Bound Math/Science summer programme for college-intending low-income high school students. The article explains each computer science term with real-life and mathematical examples, applies each term to the Tower of Hanoi puzzle solution, and describes how students connected the terms to their own solutions of the puzzle. It is timely and important to expose mathematics students to computer science concepts. Given the rate at which technology is currently advancing, and our increased dependence on technology in our daily lives, it has become more important than ever for children to be exposed to computer science. Yet, despite the importance of exposing today's children to computer science, many children are not given adequate opportunity to learn computer science in schools. In the United States, for example, most students finish high school without ever taking a computing course. Mathematics lessons, such as the one described in this article, can help to make computer science more accessible to students who may have otherwise had little opportunity to be introduced to these increasingly important concepts.

  4. A Case Study for Comparing the Effectiveness of a Computer Simulation and a Hands-on Activity on Learning Electric Circuits

    ERIC Educational Resources Information Center

    Ekmekci, Adem; Gulacar, Ozcan

    2015-01-01

    Science education reform emphasizes innovative and constructivist views of science teaching and learning that promotes active learning environments, dynamic instructions, and authentic science experiments. Technology-based and hands-on instructional designs are among innovative science teaching and learning methods. Research shows that these two…

  5. A Study of Effectiveness of Computer Assisted Instruction (CAI) over Classroom Lecture (CRL) at ICS Level

    ERIC Educational Resources Information Center

    Kaousar, Tayyeba; Choudhry, Bushra Naoreen; Gujjar, Aijaz Ahmed

    2008-01-01

    This study was aimed to evaluate the effectiveness of CAI vs. classroom lecture for computer science at ICS level. The objectives were to compare the learning effects of two groups with classroom lecture and computer-assisted instruction studying the same curriculum and the effects of CAI and CRL in terms of cognitive development. Hypotheses of…

  6. Examining the Computer Self-Efficacy Perceptions of Gifted Students

    ERIC Educational Resources Information Center

    Kaplan, Abdullah; Öztürk, Mesut; Doruk, Muhammet; Yilmaz, Alper

    2013-01-01

    This study was conducted in order to determine the computer self-efficacy perceptions of gifted students. The research group of this study is composed of gifted students (N = 36) who were studying at the Science and Arts Center in Gümüshane province in the spring semester of the 2012-2013 academic year. The "Computer Self-Efficacy Perception…

  7. Utilization of computer technology by science teachers in public high schools and the impact of standardized testing

    NASA Astrophysics Data System (ADS)

    Priest, Richard Harding

    A significant percentage of high school science teachers are not using computers to teach their students or prepare them for standardized testing. A survey of high school science teachers was conducted to determine how they are having students use computers in the classroom, why science teachers are not using computers in the classroom, which variables were relevant to their not using computers, and what are the effects of standardized testing on the use of technology in the high school science classroom. A self-administered questionnaire was developed to measure these aspects of computer integration and demographic information. A follow-up telephone interview survey of a portion of the original sample was conducted in order to clarify questions, correct misunderstandings, and to draw out more holistic descriptions from the subjects. The primary method used to analyze the quantitative data was frequency distributions. Multiple regression analysis was used to investigate the relationships between the barriers and facilitators and the dimensions of instructional use, frequency, and importance of the use of computers. All high school science teachers in a large urban/suburban school district were sent surveys. A response rate of 58% resulted from two mailings of the survey. It was found that contributing factors to why science teachers do not use computers were not enough up-to-date computers in their classrooms and other educational commitments and duties do not leave them enough time to prepare lessons that include technology. While a high percentage of science teachers thought their school and district administrations were supportive of technology, they also believed more inservice technology training and follow-up activities to support that training are needed and more software needs to be created. The majority of the science teachers do not use the computer to help students prepare for standardized tests because they believe they can prepare students more efficiently without a computer. Nearly half of the teachers, however, gave lack of time to prepare instructional materials and lack of a means to project a computer image to the whole class as reasons they do not use computers. A significant percentage thought science standardized testing was having a negative effect on computer use.

  8. What is biomedical informatics?

    PubMed Central

    Bernstam, Elmer V.; Smith, Jack W.; Johnson, Todd R.

    2009-01-01

    Biomedical informatics lacks a clear and theoretically grounded definition. Many proposed definitions focus on data, information, and knowledge, but do not provide an adequate definition of these terms. Leveraging insights from the philosophy of information, we define informatics as the science of information, where information is data plus meaning. Biomedical informatics is the science of information as applied to or studied in the context of biomedicine. Defining the object of study of informatics as data plus meaning clearly distinguishes the field from related fields, such as computer science, statistics and biomedicine, which have different objects of study. The emphasis on data plus meaning also suggests that biomedical informatics problems tend to be difficult when they deal with concepts that are hard to capture using formal, computational definitions. In other words, problems where meaning must be considered are more difficult than problems where manipulating data without regard for meaning is sufficient. Furthermore, the definition implies that informatics research, teaching, and service should focus on biomedical information as data plus meaning rather than only computer applications in biomedicine. PMID:19683067

  9. Research in progress and other activities of the Institute for Computer Applications in Science and Engineering

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics and computer science during the period April 1, 1993 through September 30, 1993. The major categories of the current ICASE research program are: (1) applied and numerical mathematics, including numerical analysis and algorithm development; (2) theoretical and computational research in fluid mechanics in selected areas of interest to LaRC, including acoustic and combustion; (3) experimental research in transition and turbulence and aerodynamics involving LaRC facilities and scientists; and (4) computer science.

  10. Research in progress in applied mathematics, numerical analysis, fluid mechanics, and computer science

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period October 1, 1993 through March 31, 1994. The major categories of the current ICASE research program are: (1) applied and numerical mathematics, including numerical analysis and algorithm development; (2) theoretical and computational research in fluid mechanics in selected areas of interest to LaRC, including acoustics and combustion; (3) experimental research in transition and turbulence and aerodynamics involving LaRC facilities and scientists; and (4) computer science.

  11. Management and Analysis of Biological and Clinical Data: How Computer Science May Support Biomedical and Clinical Research

    NASA Astrophysics Data System (ADS)

    Veltri, Pierangelo

    The use of computer based solutions for data management in biology and clinical science has contributed to improve life-quality and also to gather research results in shorter time. Indeed, new algorithms and high performance computation have been using in proteomics and genomics studies for curing chronic diseases (e.g., drug designing) as well as supporting clinicians both in diagnosis (e.g., images-based diagnosis) and patient curing (e.g., computer based information analysis on information gathered from patient). In this paper we survey on examples of computer based techniques applied in both biology and clinical contexts. The reported applications are also results of experiences in real case applications at University Medical School of Catanzaro and also part of experiences of the National project Staywell SH 2.0 involving many research centers and companies aiming to study and improve citizen wellness.

  12. Defining Usability: How Library Practice Differs from Published Research

    ERIC Educational Resources Information Center

    Chen, Yu-Hui; Germain, Carol Anne; Rorissa, Abebe

    2011-01-01

    Library/information science professionals need a clearly articulated definition of usability/Web usability to implement intuitive websites. In this study, the authors analyzed usability definitions provided by the ARL library professionals and those found in the library/information science and computer science-information systems literature.…

  13. Creating Science Simulations through Computational Thinking Patterns

    ERIC Educational Resources Information Center

    Basawapatna, Ashok Ram

    2012-01-01

    Computational thinking aims to outline fundamental skills from computer science that everyone should learn. As currently defined, with help from the National Science Foundation (NSF), these skills include problem formulation, logically organizing data, automating solutions through algorithmic thinking, and representing data through abstraction.…

  14. 77 FR 65417 - Proposal Review Panel for Computing Communication Foundations; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-26

    ...: To assess the progress of the EIC Award, ``Collaborative Research: Computational Behavioral Science... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Computing Communication Foundations; Notice... National Science Foundation announces the following meeting: Name: Site Visit, Proposal Panel Review for...

  15. Crosscut report: Exascale Requirements Reviews, March 9–10, 2017 – Tysons Corner, Virginia. An Office of Science review sponsored by: Advanced Scientific Computing Research, Basic Energy Sciences, Biological and Environmental Research, Fusion Energy Sciences, High Energy Physics, Nuclear Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerber, Richard; Hack, James; Riley, Katherine

    The mission of the U.S. Department of Energy Office of Science (DOE SC) is the delivery of scientific discoveries and major scientific tools to transform our understanding of nature and to advance the energy, economic, and national security missions of the United States. To achieve these goals in today’s world requires investments in not only the traditional scientific endeavors of theory and experiment, but also in computational science and the facilities that support large-scale simulation and data analysis. The Advanced Scientific Computing Research (ASCR) program addresses these challenges in the Office of Science. ASCR’s mission is to discover, develop, andmore » deploy computational and networking capabilities to analyze, model, simulate, and predict complex phenomena important to DOE. ASCR supports research in computational science, three high-performance computing (HPC) facilities — the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory and Leadership Computing Facilities at Argonne (ALCF) and Oak Ridge (OLCF) National Laboratories — and the Energy Sciences Network (ESnet) at Berkeley Lab. ASCR is guided by science needs as it develops research programs, computers, and networks at the leading edge of technologies. As we approach the era of exascale computing, technology changes are creating challenges for science programs in SC for those who need to use high performance computing and data systems effectively. Numerous significant modifications to today’s tools and techniques will be needed to realize the full potential of emerging computing systems and other novel computing architectures. To assess these needs and challenges, ASCR held a series of Exascale Requirements Reviews in 2015–2017, one with each of the six SC program offices,1 and a subsequent Crosscut Review that sought to integrate the findings from each. Participants at the reviews were drawn from the communities of leading domain scientists, experts in computer science and applied mathematics, ASCR facility staff, and DOE program managers in ASCR and the respective program offices. The purpose of these reviews was to identify mission-critical scientific problems within the DOE Office of Science (including experimental facilities) and determine the requirements for the exascale ecosystem that would be needed to address those challenges. The exascale ecosystem includes exascale computing systems, high-end data capabilities, efficient software at scale, libraries, tools, and other capabilities. This effort will contribute to the development of a strategic roadmap for ASCR compute and data facility investments and will help the ASCR Facility Division establish partnerships with Office of Science stakeholders. It will also inform the Office of Science research needs and agenda. The results of the six reviews have been published in reports available on the web at http://exascaleage.org/. This report presents a summary of the individual reports and of common and crosscutting findings, and it identifies opportunities for productive collaborations among the DOE SC program offices.« less

  16. Non-parallel processing: Gendered attrition in academic computer science

    NASA Astrophysics Data System (ADS)

    Cohoon, Joanne Louise Mcgrath

    2000-10-01

    This dissertation addresses the issue of disproportionate female attrition from computer science as an instance of gender segregation in higher education. By adopting a theoretical framework from organizational sociology, it demonstrates that the characteristics and processes of computer science departments strongly influence female retention. The empirical data identifies conditions under which women are retained in the computer science major at comparable rates to men. The research for this dissertation began with interviews of students, faculty, and chairpersons from five computer science departments. These exploratory interviews led to a survey of faculty and chairpersons at computer science and biology departments in Virginia. The data from these surveys are used in comparisons of the computer science and biology disciplines, and for statistical analyses that identify which departmental characteristics promote equal attrition for male and female undergraduates in computer science. This three-pronged methodological approach of interviews, discipline comparisons, and statistical analyses shows that departmental variation in gendered attrition rates can be explained largely by access to opportunity, relative numbers, and other characteristics of the learning environment. Using these concepts, this research identifies nine factors that affect the differential attrition of women from CS departments. These factors are: (1) The gender composition of enrolled students and faculty; (2) Faculty turnover; (3) Institutional support for the department; (4) Preferential attitudes toward female students; (5) Mentoring and supervising by faculty; (6) The local job market, starting salaries, and competitiveness of graduates; (7) Emphasis on teaching; and (8) Joint efforts for student success. This work contributes to our understanding of the gender segregation process in higher education. In addition, it contributes information that can lead to effective solutions for an economically significant issue in modern American society---gender equality in computer science.

  17. Tracking the PhD Students' Daily Computer Use

    ERIC Educational Resources Information Center

    Sim, Kwong Nui; van der Meer, Jacques

    2015-01-01

    This study investigated PhD students' computer activities in their daily research practice. Software that tracks computer usage (Manic Time) was installed on the computers of nine PhD students, who were at their early, mid and final stage in doing their doctoral research in four different discipline areas (Commerce, Humanities, Health Sciences and…

  18. Topics in Computational Learning Theory and Graph Algorithms.

    ERIC Educational Resources Information Center

    Board, Raymond Acton

    This thesis addresses problems from two areas of theoretical computer science. The first area is that of computational learning theory, which is the study of the phenomenon of concept learning using formal mathematical models. The goal of computational learning theory is to investigate learning in a rigorous manner through the use of techniques…

  19. Toward Using Games to Teach Fundamental Computer Science Concepts

    ERIC Educational Resources Information Center

    Edgington, Jeffrey Michael

    2010-01-01

    Video and computer games have become an important area of study in the field of education. Games have been designed to teach mathematics, physics, raise social awareness, teach history and geography, and train soldiers in the military. Recent work has created computer games for teaching computer programming and understanding basic algorithms. …

  20. Numerical Package in Computer Supported Numeric Analysis Teaching

    ERIC Educational Resources Information Center

    Tezer, Murat

    2007-01-01

    At universities in the faculties of Engineering, Sciences, Business and Economics together with higher education in Computing, it is stated that because of the difficulty, calculators and computers can be used in Numerical Analysis (NA). In this study, the learning computer supported NA will be discussed together with important usage of the…

  1. Peer Assessment among Secondary School Students: Introducing a Peer Feedback Tool in the Context of a Computer Supported Inquiry Learning Environment in Science

    ERIC Educational Resources Information Center

    Tsivitanidou, Olia; Zacharia, Zacharias C.; Hovardas, Tasos; Nicolaou, Aphrodite

    2012-01-01

    In this study we introduced a peer feedback tool to secondary school students while aiming at investigating whether this tool leads to a feedback dialogue when using a computer supported inquiry learning environment in science. Moreover, we aimed at examining what type of feedback students ask for and receive and whether the students use the…

  2. Community College Men and Women: A Test of Three Widely Held Beliefs about Who Pursues Computer Science

    ERIC Educational Resources Information Center

    Denner, Jill; Werner, Linda; O'Connor, Lisa; Glassman, Jill

    2014-01-01

    Efforts to increase the number of women who pursue and complete advanced degrees in computer and information sciences (CIS) have been limited, in part, by a lack of research on pathways into and out of community college CIS classes. This longitudinal study tests three widely held beliefs about how to increase the number of CIS majors at 4-year…

  3. Report on Computing and Networking in the Space Science Laboratory by the SSL Computer Committee

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L. (Editor)

    1993-01-01

    The Space Science Laboratory (SSL) at Marshall Space Flight Center is a multiprogram facility. Scientific research is conducted in four discipline areas: earth science and applications, solar-terrestrial physics, astrophysics, and microgravity science and applications. Representatives from each of these discipline areas participate in a Laboratory computer requirements committee, which developed this document. The purpose is to establish and discuss Laboratory objectives for computing and networking in support of science. The purpose is also to lay the foundation for a collective, multiprogram approach to providing these services. Special recognition is given to the importance of the national and international efforts of our research communities toward the development of interoperable, network-based computer applications.

  4. The experiences of female high school students and interest in STEM: Factors leading to the selection of an engineering or computer science major

    NASA Astrophysics Data System (ADS)

    Genoways, Sharon K.

    STEM (Science, Technology, Engineering and Math) education creates critical thinkers, increases science literacy, and enables the next generation of innovators, which leads to new products and processes that sustain our economy (Hossain & Robinson, 2012). We have been hearing the warnings for several years, that there simply are not enough young scientists entering into the STEM professional pathways to replace all of the retiring professionals (Brown, Brown, Reardon, & Merrill, 2011; Harsh, Maltese, & Tai, 2012; Heilbronner, 2011; Scott, 2012). The problem is not necessarily due to a lack of STEM skills and concept proficiency. There also appears to be a lack of interest in these fields. Recent evidence suggests that many of the most proficient students, especially minority students and women, have been gravitating away from science and engineering toward other professions. (President's Council of Advisors on Science and Technology, 2010). The purpose of this qualitative research study was an attempt to determine how high schools can best prepare and encourage young women for a career in engineering or computer science. This was accomplished by interviewing a pool of 21 women, 5 recent high school graduates planning to major in STEM, 5 college students who had completed at least one full year of coursework in an engineering or computer science major and 11 professional women who had been employed as an engineer or computer scientist for at least one full year. These women were asked to share the high school courses, activities, and experiences that best prepared them to pursue an engineering or computer science major. Five central themes emerged from this study; coursework in physics and calculus, promotion of STEM camps and clubs, teacher encouragement of STEM capabilities and careers, problem solving, critical thinking and confidence building activities in the classroom, and allowing students the opportunity to fail and ask questions in a safe environment. These themes may be implemented by any instructor, in any course, who wishes to provide students with the means to success in their quest for a STEM career.

  5. Snatching Defeat from the Jaws of Victory: When Good Projects Go Bad. Girls and Computer Science.

    ERIC Educational Resources Information Center

    Sanders, Jo

    In week-long semesters in the summers of 1997, 1998, and 1999, the 6APT (Summer Institute in Computer Science for Advanced Placement Teachers) project taught 240 high school teachers of Advanced Placement Computer Science (APCS) about gender equity in computers. Teachers were then followed through 2000. Results indicated that while teachers, did…

  6. 77 FR 12823 - Advanced Scientific Computing Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-02

    ... Exascale ARRA projects--Magellan final report, Advanced Networking update Status from Computer Science COV Early Career technical talks Summary of Applied Math and Computer Science Workshops ASCR's new SBIR..., Office of Science. ACTION: Notice of Open Meeting. SUMMARY: This notice announces a meeting of the...

  7. 75 FR 18407 - Investing in Innovation Fund

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-12

    ... include computer science rather than science. To correct this error, the Department makes the following..., in footnote number eight, in line six, ``including science'' is replaced with ``including computer... obtain this document in an accessible format (e.g., Braille, large print, audiotape, or computer diskette...

  8. Innovative Science Experiments Using Phoenix

    ERIC Educational Resources Information Center

    Kumar, B. P. Ajith; Satyanarayana, V. V. V.; Singh, Kundan; Singh, Parmanand

    2009-01-01

    A simple, flexible and very low cost hardware plus software framework for developing computer-interfaced science experiments is presented. It can be used for developing computer-interfaced science experiments without getting into the details of electronics or computer programming. For developing experiments this is a middle path between…

  9. The Metamorphosis of an Introduction to Computer Science.

    ERIC Educational Resources Information Center

    Ben-Jacob, Marion G.

    1997-01-01

    Introductory courses in computer science at colleges and universities have undergone significant changes in 20 years. This article provides an overview of the history of introductory computer science (FORTRAN, ANSI flowchart symbols, BASIC, data processing concepts, and PASCAL) and its future (robotics and C++). (PEN)

  10. All Roads Lead to Computing: Making, Participatory Simulations, and Social Computing as Pathways to Computer Science

    ERIC Educational Resources Information Center

    Brady, Corey; Orton, Kai; Weintrop, David; Anton, Gabriella; Rodriguez, Sebastian; Wilensky, Uri

    2017-01-01

    Computer science (CS) is becoming an increasingly diverse domain. This paper reports on an initiative designed to introduce underrepresented populations to computing using an eclectic, multifaceted approach. As part of a yearlong computing course, students engage in Maker activities, participatory simulations, and computing projects that…

  11. An Undergraduate Computer Engineering Option for Electrical Engineering.

    ERIC Educational Resources Information Center

    National Academy of Engineering, Washington, DC. Commission on Education.

    This report is the result of a study, funded by the National Science Foundation, of a group constituted as the COSINE Task Force on Undergraduate Education in Computer Engineering in 1969. The group was formed in response to the growing demand for education in computer engineering and the limited opportunities for study in this area. Computer…

  12. Computing and STEM in Greece: Gender Representation of Students and Teachers during the Decade 2002/2012

    ERIC Educational Resources Information Center

    Kordaki, Maria; Berdousis, Ioannis

    2017-01-01

    Female student representation in Computing and Science, Technology, Engineering and Mathematics (STEM) Tertiary education is under-researched in a number of countries including Greece, while studies on female secondary level education teacher representation in Computing and STEM have not yet been reported. This study focuses on the investigation…

  13. Computational Materials Science | Materials Science | NREL

    Science.gov Websites

    of water splitting and fuel cells Nanoparticles for thermal storage New Materials for High-Capacity Theoretical Methodologies for Studying Complex Materials Contact Stephan Lany Staff Scientist Dr. Lany is a

  14. After-Hours Science: Microchips and Onion Dip.

    ERIC Educational Resources Information Center

    Brugger, Steve

    1984-01-01

    Computer programs were developed for a science center nutrition exhibit. The exhibit was recognized by the National Science Teachers Association Search for Excellence in Science Education as an outstanding science program. The computer programs (Apple II) and their use in the exhibit are described. (BC)

  15. Quantum computation for solving linear systems

    NASA Astrophysics Data System (ADS)

    Cao, Yudong

    Quantum computation is a subject born out of the combination between physics and computer science. It studies how the laws of quantum mechanics can be exploited to perform computations much more efficiently than current computers (termed classical computers as oppose to quantum computers). The thesis starts by introducing ideas from quantum physics and theoretical computer science and based on these ideas, introducing the basic concepts in quantum computing. These introductory discussions are intended for non-specialists to obtain the essential knowledge needed for understanding the new results presented in the subsequent chapters. After introducing the basics of quantum computing, we focus on the recently proposed quantum algorithm for linear systems. The new results include i) special instances of quantum circuits that can be implemented using current experimental resources; ii) detailed quantum algorithms that are suitable for a broader class of linear systems. We show that for some particular problems the quantum algorithm is able to achieve exponential speedup over their classical counterparts.

  16. Texas Agricultural Science Teachers' Attitudes toward Information Technology

    ERIC Educational Resources Information Center

    Anderson, Ryan; Williams, Robert

    2012-01-01

    The researchers sought to find the Agricultural Science teachers' attitude toward five innovations (Computer-Aided Design, Record Books, E-Mail Career Development Event Registration, and World Wide Web) of information technology. The population for this study consisted of all 333 secondary Agricultural science teachers from Texas FFA Areas V and…

  17. Boys' and Girls' ICT Beliefs: Do Teachers Matter?

    ERIC Educational Resources Information Center

    Vekiri, Ioanna

    2010-01-01

    This exploratory study took place in the context of middle school information science in Greece, to examine possible relations between boys' and girls': value and efficacy beliefs about computers and information science; perceived parental support; perceived teacher expectations; and perceptions of the nature of information science instruction.…

  18. Teaching Efficacy of Universiti Putra Malaysia Science Student Teachers

    ERIC Educational Resources Information Center

    Bakar, Abd. Rahim; Konting, Mohd. Majid; Jamian, Rashid; Lyndon, Novel

    2008-01-01

    The objective of the study was to access teaching efficacy of Universiti Putra Malaysia Science student teachers. The specific objectives were to determine teaching efficacy of Science student teachers in terms of student engagement; instructional strategies; classroom management and teaching with computers in classroom; their satisfaction with…

  19. Computing Education in Korea--Current Issues and Endeavors

    ERIC Educational Resources Information Center

    Choi, Jeongwon; An, Sangjin; Lee, Youngjun

    2015-01-01

    Computer education has been provided for a long period of time in Korea. Starting as a vocational program, the content of computer education for students evolved to include content on computer literacy, Information Communication Technology (ICT) literacy, and brand-new computer science. While a new curriculum related to computer science was…

  20. 75 FR 18492 - Investing in Innovation Fund; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-12

    ... those disciplines, we intended to include computer science rather than science. To correct this error... ``including computer science.'' Program Authority: Section 14007 of division A of the American Recovery and....g., braille, large print, audiotape, or computer diskette) on request to the contact listed in this...

  1. Process-Based Development of Competence Models to Computer Science Education

    ERIC Educational Resources Information Center

    Zendler, Andreas; Seitz, Cornelia; Klaudt, Dieter

    2016-01-01

    A process model ("cpm.4.CSE") is introduced that allows the development of competence models in computer science education related to curricular requirements. It includes eight subprocesses: (a) determine competence concept, (b) determine competence areas, (c) identify computer science concepts, (d) assign competence dimensions to…

  2. Effectiveness of Kanban Approaches in Systems Engineering within Rapid Response Environments

    DTIC Science & Technology

    2012-01-01

    Procedia Computer Science Procedia Computer Science 00 (2012) 000–000 www.elsevier.com/locate/ procedia New Challenges in Systems...Author name / Procedia Computer Science 00 (2011) 000–000 inefficient use of resources. The move from ―one step to glory‖ system initiatives to...University of Science and Technology Effectiveness of kanban approaches in systems engineering within rapid response environments Richard Turner

  3. Computational perspectives in the history of science: to the memory of Peter Damerow.

    PubMed

    Laubichler, Manfred D; Maienschein, Jane; Renn, Jürgen

    2013-03-01

    Computational methods and perspectives can transform the history of science by enabling the pursuit of novel types of questions, dramatically expanding the scale of analysis (geographically and temporally), and offering novel forms of publication that greatly enhance access and transparency. This essay presents a brief summary of a computational research system for the history of science, discussing its implications for research, education, and publication practices and its connections to the open-access movement and similar transformations in the natural and social sciences that emphasize big data. It also argues that computational approaches help to reconnect the history of science to individual scientific disciplines.

  4. Research approaches to mass casualty incidents response: development from routine perspectives to complexity science.

    PubMed

    Shen, Weifeng; Jiang, Libing; Zhang, Mao; Ma, Yuefeng; Jiang, Guanyu; He, Xiaojun

    2014-01-01

    To review the research methods of mass casualty incident (MCI) systematically and introduce the concept and characteristics of complexity science and artificial system, computational experiments and parallel execution (ACP) method. We searched PubMed, Web of Knowledge, China Wanfang and China Biology Medicine (CBM) databases for relevant studies. Searches were performed without year or language restrictions and used the combinations of the following key words: "mass casualty incident", "MCI", "research method", "complexity science", "ACP", "approach", "science", "model", "system" and "response". Articles were searched using the above keywords and only those involving the research methods of mass casualty incident (MCI) were enrolled. Research methods of MCI have increased markedly over the past few decades. For now, dominating research methods of MCI are theory-based approach, empirical approach, evidence-based science, mathematical modeling and computer simulation, simulation experiment, experimental methods, scenario approach and complexity science. This article provides an overview of the development of research methodology for MCI. The progresses of routine research approaches and complexity science are briefly presented in this paper. Furthermore, the authors conclude that the reductionism underlying the exact science is not suitable for MCI complex systems. And the only feasible alternative is complexity science. Finally, this summary is followed by a review that ACP method combining artificial systems, computational experiments and parallel execution provides a new idea to address researches for complex MCI.

  5. Computer Instrumentation and the New Tools of Science.

    ERIC Educational Resources Information Center

    Snyder, H. David

    1990-01-01

    The impact and uses of new technologies in science teaching are discussed. Included are computers, software, sensors, integrated circuits, computer signal access, and computer interfaces. Uses and advantages of these new technologies are suggested. (CW)

  6. Elementary School Students' Science Talk Ability in Inquiry-Oriented Settings in Taiwan: Test Development, Verification, and Performance Benchmarks

    ERIC Educational Resources Information Center

    Lin, Sheau-Wen; Liu, Yu; Chen, Shin-Feng; Wang, Jing-Ru; Kao, Huey-Lien

    2016-01-01

    The purpose of this study was to develop a computer-based measure of elementary students' science talk and to report students' benchmarks. The development procedure had three steps: defining the framework of the test, collecting and identifying key reference sets of science talk, and developing and verifying the science talk instrument. The…

  7. European Science Notes Information Bulletin, October 1988

    DTIC Science & Technology

    1988-10-01

    D TIC Biological Sciences .................... 18 ELECTE Computer Sciences .................... 20 SP 2 5i Control Systems .............. ..... . . 24...of his research on the impact of frequent relocation on families and the individuals subject to such experience. BIOLOGICAL SCIENCES Imaging Cerebral... Bioethics : A seminar was held in Brussels to study the the Ministers also exchanged views on: various ethical aspects of biotechnology and genetic

  8. The application of cloud computing to scientific workflows: a study of cost and performance.

    PubMed

    Berriman, G Bruce; Deelman, Ewa; Juve, Gideon; Rynge, Mats; Vöckler, Jens-S

    2013-01-28

    The current model of transferring data from data centres to desktops for analysis will soon be rendered impractical by the accelerating growth in the volume of science datasets. Processing will instead often take place on high-performance servers co-located with data. Evaluations of how new technologies such as cloud computing would support such a new distributed computing model are urgently needed. Cloud computing is a new way of purchasing computing and storage resources on demand through virtualization technologies. We report here the results of investigations of the applicability of commercial cloud computing to scientific computing, with an emphasis on astronomy, including investigations of what types of applications can be run cheaply and efficiently on the cloud, and an example of an application well suited to the cloud: processing a large dataset to create a new science product.

  9. Multilinear Computing and Multilinear Algebraic Geometry

    DTIC Science & Technology

    2016-08-10

    landmark paper titled “Most tensor problems are NP-hard” (see [14] in Section 3) in the Journal of the ACM, the premier journal in Computer Science ...Higher-order cone programming,” Machine Learning Thematic Trimester, International Centre for Mathematics and Computer Science , Toulouse, France...geometry-and-data-analysis • 2014 SIMONS INSTITUTE WORKSHOP: Workshop on Tensors in Computer Science and Geometry, University of California, Berkeley, CA

  10. Student Engagement in a Computer Rich Science Classroom

    NASA Astrophysics Data System (ADS)

    Hunter, Jeffrey C.

    The purpose of this study was to examine the student lived experience when using computers in a rural science classroom. The overarching question the project sought to examine was: How do rural students relate to computers as a learning tool in comparison to a traditional science classroom? Participant data were collected using a pre-study survey, Experience Sampling during class and post-study interviews. Students want to use computers in their classrooms. Students shared that they overwhelmingly (75%) preferred a computer rich classroom to a traditional classroom (25%). Students reported a higher level of engagement in classes that use technology/computers (83%) versus those that do not use computers (17%). A computer rich classroom increased student control and motivation as reflected by a participant who shared; "by using computers I was more motivated to get the work done" (Maggie, April 25, 2014, survey). The researcher explored a rural school environment. Rural populations represent a large number of students and appear to be underrepresented in current research. The participants, tenth grade Biology students, were sampled in a traditional teacher led class without computers for one week followed by a week using computers daily. Data supported that there is a new gap that separates students, a device divide. This divide separates those who have access to devices that are robust enough to do high level class work from those who do not. Although cellular phones have reduced the number of students who cannot access the Internet, they may have created a false feeling that access to a computer is no longer necessary at home. As this study shows, although most students have Internet access, fewer have access to a device that enables them to complete rigorous class work at home. Participants received little or no training at school in proper, safe use of a computer and the Internet. It is clear that the majorities of students are self-taught or receive guidance from peers resulting in lower self-confidence or the development of misconceptions of their skill or ability.

  11. Computational Social Creativity.

    PubMed

    Saunders, Rob; Bown, Oliver

    2015-01-01

    This article reviews the development of computational models of creativity where social interactions are central. We refer to this area as computational social creativity. Its context is described, including the broader study of creativity, the computational modeling of other social phenomena, and computational models of individual creativity. Computational modeling has been applied to a number of areas of social creativity and has the potential to contribute to our understanding of creativity. A number of requirements for computational models of social creativity are common in artificial life and computational social science simulations. Three key themes are identified: (1) computational social creativity research has a critical role to play in understanding creativity as a social phenomenon and advancing computational creativity by making clear epistemological contributions in ways that would be challenging for other approaches; (2) the methodologies developed in artificial life and computational social science carry over directly to computational social creativity; and (3) the combination of computational social creativity with individual models of creativity presents significant opportunities and poses interesting challenges for the development of integrated models of creativity that have yet to be realized.

  12. Theory-Guided Technology in Computer Science.

    ERIC Educational Resources Information Center

    Ben-Ari, Mordechai

    2001-01-01

    Examines the history of major achievements in computer science as portrayed by winners of the prestigious Turing award and identifies a possibly unique activity called Theory-Guided Technology (TGT). Researchers develop TGT by using theoretical results to create practical technology. Discusses reasons why TGT is practical in computer science and…

  13. Teaching Computer Science: A Problem Solving Approach that Works.

    ERIC Educational Resources Information Center

    Allan, V. H.; Kolesar, M. V.

    The typical introductory programming course is not an appropriate first computer science course for many students. Initial experiences with programming are often frustrating, resulting in a low rate of successful completion, and focus on syntax rather than providing a representative picture of computer science as a discipline. The paper discusses…

  14. Computational Science | NREL

    Science.gov Websites

    Science Photo of person viewing 3D visualization of a wind turbine The NREL Computational Science challenges in fields ranging from condensed matter physics and nonlinear dynamics to computational fluid dynamics. NREL is also home to the most energy-efficient data center in the world, featuring Peregrine-the

  15. Tutor Training in Computer Science: Tutor Opinions and Student Results.

    ERIC Educational Resources Information Center

    Carbone, Angela; Mitchell, Ian

    Edproj, a project team of faculty from the departments of computer science, software development and education at Monash University (Australia) investigated the quality of teaching and student learning and understanding in the computer science and software development departments. Edproj's research led to the development of a training program to…

  16. Collaboration, Collusion and Plagiarism in Computer Science Coursework

    ERIC Educational Resources Information Center

    Fraser, Robert

    2014-01-01

    We present an overview of the nature of academic dishonesty with respect to computer science coursework. We discuss the efficacy of various policies for collaboration with regard to student education, and we consider a number of strategies for mitigating dishonest behaviour on computer science coursework by addressing some common causes. Computer…

  17. Entrepreneurial Health Informatics for Computer Science and Information Systems Students

    ERIC Educational Resources Information Center

    Lawler, James; Joseph, Anthony; Narula, Stuti

    2014-01-01

    Corporate entrepreneurship is a critical area of curricula for computer science and information systems students. Few institutions of computer science and information systems have entrepreneurship in the curricula however. This paper presents entrepreneurial health informatics as a course in a concentration of Technology Entrepreneurship at a…

  18. Assessment of Examinations in Computer Science Doctoral Education

    ERIC Educational Resources Information Center

    Straub, Jeremy

    2014-01-01

    This article surveys the examination requirements for attaining degree candidate (candidacy) status in computer science doctoral programs at all of the computer science doctoral granting institutions in the United States. It presents a framework for program examination requirement categorization, and categorizes these programs by the type or types…

  19. [Research Conducted at the Institute for Computer Applications in Science and Engineering for the Period October 1, 1999 through March 31, 2000

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M. (Technical Monitor)

    2000-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, computer science, fluid mechanics, and structures and materials during the period October 1, 1999 through March 31, 2000.

  20. Representing, Running, and Revising Mental Models: A Computational Model

    ERIC Educational Resources Information Center

    Friedman, Scott; Forbus, Kenneth; Sherin, Bruce

    2018-01-01

    People use commonsense science knowledge to flexibly explain, predict, and manipulate the world around them, yet we lack computational models of how this commonsense science knowledge is represented, acquired, utilized, and revised. This is an important challenge for cognitive science: Building higher order computational models in this area will…

  1. Classrooms Matter: The Design of Virtual Classrooms Influences Gender Disparities in Computer Science Classes

    ERIC Educational Resources Information Center

    Cheryan, Sapna; Meltzoff, Andrew N.; Kim, Saenam

    2011-01-01

    Three experiments examined whether the design of virtual learning environments influences undergraduates' enrollment intentions and anticipated success in introductory computer science courses. Changing the design of a virtual classroom--from one that conveys current computer science stereotypes to one that does not--significantly increased…

  2. Panel discussion on: 'Will computational science be able to provide answers to important problems of human society?'

    NASA Astrophysics Data System (ADS)

    Baiotti, Luca; Takabe, Hideaki

    2013-08-01

    The PDF contains the speech of journalist Atsuko Tsuji (Asahi Shimbun) with the title 'Requests and expectations for computational science' and the record of the following discussion on: 'Will computational science be able to provide answers to important problems of human society?'

  3. "Computer Science Can Feed a Lot of Dreams"

    ERIC Educational Resources Information Center

    Educational Horizons, 2014

    2014-01-01

    Pat Yongpradit is the director of education at Code.org. He leads all education efforts, including professional development and curriculum creation, and he builds relationships with school districts. Pat joined "Educational Horizons" to talk about why it is important to teach computer science--even for non-computer science teachers. This…

  4. Current research activities: Applied and numerical mathematics, fluid mechanics, experiments in transition and turbulence and aerodynamics, and computer science

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, fluid mechanics including fluid dynamics, acoustics, and combustion, aerodynamics, and computer science during the period 1 Apr. 1992 - 30 Sep. 1992 is summarized.

  5. Computers as learning resources in the health sciences: impact and issues.

    PubMed Central

    Ellis, L B; Hannigan, G G

    1986-01-01

    Starting with two computer terminals in 1972, the Health Sciences Learning Resources Center of the University of Minnesota Bio-Medical Library expanded its instructional facilities to ten terminals and thirty-five microcomputers by 1985. Computer use accounted for 28% of total center circulation. The impact of these resources on health sciences curricula is described and issues related to use, support, and planning are raised and discussed. Judged by their acceptance and educational value, computers are successful health sciences learning resources at the University of Minnesota. PMID:3518843

  6. Computational Science and Innovation

    NASA Astrophysics Data System (ADS)

    Dean, D. J.

    2011-09-01

    Simulations - utilizing computers to solve complicated science and engineering problems - are a key ingredient of modern science. The U.S. Department of Energy (DOE) is a world leader in the development of high-performance computing (HPC), the development of applied math and algorithms that utilize the full potential of HPC platforms, and the application of computing to science and engineering problems. An interesting general question is whether the DOE can strategically utilize its capability in simulations to advance innovation more broadly. In this article, I will argue that this is certainly possible.

  7. Applied Information Systems Research Program (AISRP). Workshop 2: Meeting Proceedings

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Earth and space science participants were able to see where the current research can be applied in their disciplines and computer science participants could see potential areas for future application of computer and information systems research. The Earth and Space Science research proposals for the High Performance Computing and Communications (HPCC) program were under evaluation. Therefore, this effort was not discussed at the AISRP Workshop. OSSA's other high priority area in computer science is scientific visualization, with the entire second day of the workshop devoted to it.

  8. Quantitative and Qualitative Evaluation of The Structural Designing of Medical Informatics Dynamic Encyclopedia

    PubMed Central

    Safdari, Reza; Shahmoradi, Leila; Hosseini-beheshti, Molouk-sadat; Nejad, Ahmadreza Farzaneh; Hosseiniravandi, Mohammad

    2015-01-01

    Introduction: Encyclopedias and their compilation have become so prevalent as a valid cultural medium in the world. The daily development of computer industry and the expansion of various sciences have made indispensable the compilation of electronic, specialized encyclopedias, especially the web-based ones. Materials and Methods: This is an applied-developmental study conducted in 2014. First, the main terms in the field of medical informatics were gathered using MeSH Online 2014 and the supplementary terms of each were determined, and then the tree diagram of the terms was drawn based on their relationship in MeSH. Based on the studies done by the researchers, the tree diagram of the encyclopedia was drawn with respect to the existing areas in this field, and the terms gathered were put in related domains. Findings: In MeSH, 75 preferred terms together with 249 supplementary ones were indexed. One of the informatics’ sub-branches is biomedical informatics and health which itself consists of three sub-divisions of bioinformatics, clinical informatics, and health informatics. Medical informatics which is a subdivision of clinical informatics has developed from the three fields of medical sciences, management and social sciences, and computational sciences and mathematics. Results and Discussion: Medical Informatics is created of confluence and fusion and applications of the three major scientific branches include health and biological sciences, social sciences and management sciences, computing and mathematical sciences, and according to that the structure of MeSH is weak for future development of Encyclopedia of Medical Informatics. PMID:26635440

  9. Applying service learning to computer science: attracting and engaging under-represented students

    NASA Astrophysics Data System (ADS)

    Dahlberg, Teresa; Barnes, Tiffany; Buch, Kim; Bean, Karen

    2010-09-01

    This article describes a computer science course that uses service learning as a vehicle to accomplish a range of pedagogical and BPC (broadening participation in computing) goals: (1) to attract a diverse group of students and engage them in outreach to younger students to help build a diverse computer science pipeline, (2) to develop leadership and team skills using experiential techniques, and (3) to develop student attitudes associated with success and retention in computer science. First, we describe the course and how it was designed to incorporate good practice in service learning. We then report preliminary results showing a positive impact of the course on all pedagogical goals and discuss the implications of the results for broadening participation in computing.

  10. Brains--Computers--Machines: Neural Engineering in Science Classrooms

    ERIC Educational Resources Information Center

    Chudler, Eric H.; Bergsman, Kristen Clapper

    2016-01-01

    Neural engineering is an emerging field of high relevance to students, teachers, and the general public. This feature presents online resources that educators and scientists can use to introduce students to neural engineering and to integrate core ideas from the life sciences, physical sciences, social sciences, computer science, and engineering…

  11. A Turing Machine Simulator.

    ERIC Educational Resources Information Center

    Navarro, Aaron B.

    1981-01-01

    Presents a program in Level II BASIC for a TRS-80 computer that simulates a Turing machine and discusses the nature of the device. The program is run interactively and is designed to be used as an educational tool by computer science or mathematics students studying computational or automata theory. (MP)

  12. Knowledge and use of information and communication technology by health sciences students of the University of Ghana.

    PubMed

    Dery, Samuel; Vroom, Frances da-Costa; Godi, Anthony; Afagbedzi, Seth; Dwomoh, Duah

    2016-09-01

    Studies have shown that ICT adoption contributes to productivity and economic growth. It is therefore important that health workers have knowledge in ICT to ensure adoption and uptake of ICT tools to enable efficient health delivery. To determine the knowledge and use of ICT among students of the College of Health Sciences at the University of Ghana. This was a cross-sectional study conducted among students in all the five Schools of the College of Health Sciences at the University of Ghana. A total of 773 students were sampled from the Schools. Sampling proportionate to size was then used to determine the sample sizes required for each school, academic programme and level of programme. Simple random sampling was subsequently used to select students from each stratum. Computer knowledge was high among students at almost 99%. About 83% owned computers (p < 0.001) and self-rated computer knowledge was also 87 % (p <0.001). Usage was mostly for studying at 93% (p< 0.001). This study shows students have adequate knowledge and use of computers. It brings about an opportunity to introduce ICT in healthcare delivery to them. This will ensure their adequate preparedness to embrace new ways of delivering care to improve service delivery. Africa Build Project, Grant Number: FP7-266474.

  13. A Context Menu for the Real World: Controlling Physical Appliances Through Head-Worn Infrared Targeting

    DTIC Science & Technology

    2013-12-10

    Edward A. Lee Björn Hartmann Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2013-200...NAME(S) AND ADDRESS(ES) University of California at Berkeley, Electrical Engineering and Computer Sciences,Berkeley,CA,94720 8. PERFORMING...movement. PHYSICAL TARGET ACQUISITION STUDY To understand the accuracy and performance of head- orientation-based selection through our device, we car - ried

  14. A Context Menu for the Real World: Controlling Physical Appliances through Head-Worn Infrared Targeting

    DTIC Science & Technology

    2013-11-04

    Edward A. Lee Björn Hartmann Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2013-182...NAME(S) AND ADDRESS(ES) University of California at Berkeley, Electrical Engineering and Computer Sciences,Berkeley,CA,94720 8. PERFORMING...accuracy and performance of head- orientation-based selection through our device, we car - ried out a comparative target acquisition study, where

  15. Large Scale Computing and Storage Requirements for High Energy Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerber, Richard A.; Wasserman, Harvey

    2010-11-24

    The National Energy Research Scientific Computing Center (NERSC) is the leading scientific computing facility for the Department of Energy's Office of Science, providing high-performance computing (HPC) resources to more than 3,000 researchers working on about 400 projects. NERSC provides large-scale computing resources and, crucially, the support and expertise needed for scientists to make effective use of them. In November 2009, NERSC, DOE's Office of Advanced Scientific Computing Research (ASCR), and DOE's Office of High Energy Physics (HEP) held a workshop to characterize the HPC resources needed at NERSC to support HEP research through the next three to five years. Themore » effort is part of NERSC's legacy of anticipating users needs and deploying resources to meet those demands. The workshop revealed several key points, in addition to achieving its goal of collecting and characterizing computing requirements. The chief findings: (1) Science teams need access to a significant increase in computational resources to meet their research goals; (2) Research teams need to be able to read, write, transfer, store online, archive, analyze, and share huge volumes of data; (3) Science teams need guidance and support to implement their codes on future architectures; and (4) Projects need predictable, rapid turnaround of their computational jobs to meet mission-critical time constraints. This report expands upon these key points and includes others. It also presents a number of case studies as representative of the research conducted within HEP. Workshop participants were asked to codify their requirements in this case study format, summarizing their science goals, methods of solution, current and three-to-five year computing requirements, and software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel, multi-core environment that is expected to dominate HPC architectures over the next few years. The report includes a section that describes efforts already underway or planned at NERSC that address requirements collected at the workshop. NERSC has many initiatives in progress that address key workshop findings and are aligned with NERSC's strategic plans.« less

  16. Development and Evaluation of the Diagnostic Power for a Computer-Based Two-Tier Assessment

    ERIC Educational Resources Information Center

    Lin, Jing-Wen

    2016-01-01

    This study adopted a quasi-experimental design with follow-up interview to develop a computer-based two-tier assessment (CBA) regarding the science topic of electric circuits and to evaluate the diagnostic power of the assessment. Three assessment formats (i.e., paper-and-pencil, static computer-based, and dynamic computer-based tests) using…

  17. Computer literacy for life sciences: helping the digital-era biology undergraduates face today's research.

    PubMed

    Smolinski, Tomasz G

    2010-01-01

    Computer literacy plays a critical role in today's life sciences research. Without the ability to use computers to efficiently manipulate and analyze large amounts of data resulting from biological experiments and simulations, many of the pressing questions in the life sciences could not be answered. Today's undergraduates, despite the ubiquity of computers in their lives, seem to be largely unfamiliar with how computers are being used to pursue and answer such questions. This article describes an innovative undergraduate-level course, titled Computer Literacy for Life Sciences, that aims to teach students the basics of a computerized scientific research pursuit. The purpose of the course is for students to develop a hands-on working experience in using standard computer software tools as well as computer techniques and methodologies used in life sciences research. This paper provides a detailed description of the didactical tools and assessment methods used in and outside of the classroom as well as a discussion of the lessons learned during the first installment of the course taught at Emory University in fall semester 2009.

  18. Future opportunities and trends for e-infrastructures and life sciences: going beyond the grid to enable life science data analysis

    PubMed Central

    Duarte, Afonso M. S.; Psomopoulos, Fotis E.; Blanchet, Christophe; Bonvin, Alexandre M. J. J.; Corpas, Manuel; Franc, Alain; Jimenez, Rafael C.; de Lucas, Jesus M.; Nyrönen, Tommi; Sipos, Gergely; Suhr, Stephanie B.

    2015-01-01

    With the increasingly rapid growth of data in life sciences we are witnessing a major transition in the way research is conducted, from hypothesis-driven studies to data-driven simulations of whole systems. Such approaches necessitate the use of large-scale computational resources and e-infrastructures, such as the European Grid Infrastructure (EGI). EGI, one of key the enablers of the digital European Research Area, is a federation of resource providers set up to deliver sustainable, integrated and secure computing services to European researchers and their international partners. Here we aim to provide the state of the art of Grid/Cloud computing in EU research as viewed from within the field of life sciences, focusing on key infrastructures and projects within the life sciences community. Rather than focusing purely on the technical aspects underlying the currently provided solutions, we outline the design aspects and key characteristics that can be identified across major research approaches. Overall, we aim to provide significant insights into the road ahead by establishing ever-strengthening connections between EGI as a whole and the life sciences community. PMID:26157454

  19. Future opportunities and trends for e-infrastructures and life sciences: going beyond the grid to enable life science data analysis.

    PubMed

    Duarte, Afonso M S; Psomopoulos, Fotis E; Blanchet, Christophe; Bonvin, Alexandre M J J; Corpas, Manuel; Franc, Alain; Jimenez, Rafael C; de Lucas, Jesus M; Nyrönen, Tommi; Sipos, Gergely; Suhr, Stephanie B

    2015-01-01

    With the increasingly rapid growth of data in life sciences we are witnessing a major transition in the way research is conducted, from hypothesis-driven studies to data-driven simulations of whole systems. Such approaches necessitate the use of large-scale computational resources and e-infrastructures, such as the European Grid Infrastructure (EGI). EGI, one of key the enablers of the digital European Research Area, is a federation of resource providers set up to deliver sustainable, integrated and secure computing services to European researchers and their international partners. Here we aim to provide the state of the art of Grid/Cloud computing in EU research as viewed from within the field of life sciences, focusing on key infrastructures and projects within the life sciences community. Rather than focusing purely on the technical aspects underlying the currently provided solutions, we outline the design aspects and key characteristics that can be identified across major research approaches. Overall, we aim to provide significant insights into the road ahead by establishing ever-strengthening connections between EGI as a whole and the life sciences community.

  20. The Effect of a Computer Program Designed with Constructivist Principles for College Non-Science Majors on Understanding of Photosynthesis and Cellular Respiration

    ERIC Educational Resources Information Center

    Wielard, Valerie Michelle

    2013-01-01

    The primary objective of this project was to learn what effect a computer program would have on academic achievement and attitude toward science of college students enrolled in a biology class for non-science majors. It became apparent that the instructor also had an effect on attitudes toward science. The researcher designed a computer program,…

  1. A Heterogeneous High-Performance System for Computational and Computer Science

    DTIC Science & Technology

    2016-11-15

    Patents Submitted Patents Awarded Awards Graduate Students Names of Post Doctorates Names of Faculty Supported Names of Under Graduate students supported...team of research faculty from the departments of computer science and natural science at Bowie State University. The supercomputer is not only to...accelerated HPC systems. The supercomputer is also ideal for the research conducted in the Department of Natural Science, as research faculty work on

  2. Relationship between Gender Identity, Perceived Social Support for Using Computers, and Computer Self-Efficacy and Value Beliefs of Undergraduate Students

    ERIC Educational Resources Information Center

    Deechuay, Naraphol; Koul, Ravinder; Maneewan, Sorakrich; Lerdpornkulrat, Thanita

    2016-01-01

    This study investigated relationship between gender identity, social support for using computers and computer self-efficacy and value beliefs. Data was collected from first year undergraduate students at a university near Bangkok (72.3% females, mean age = 18.52 years). The respondents in our survey did not intend to major in computer sciences.…

  3. Boom. Bust. Build.

    ERIC Educational Resources Information Center

    Kite, Vance; Park, Soonhye

    2018-01-01

    In 2006 Jeanette Wing, a professor of computer science at Carnegie Mellon University, proposed computational thinking (CT) as a literacy just as important as reading, writing, and mathematics. Wing defined CT as a set of skills and strategies computer scientists use to solve complex, computational problems (Wing 2006). The computer science and…

  4. A Qualitative Study of Students' Computational Thinking Skills in a Data-Driven Computing Class

    ERIC Educational Resources Information Center

    Yuen, Timothy T.; Robbins, Kay A.

    2014-01-01

    Critical thinking, problem solving, the use of tools, and the ability to consume and analyze information are important skills for the 21st century workforce. This article presents a qualitative case study that follows five undergraduate biology majors in a computer science course (CS0). This CS0 course teaches programming within a data-driven…

  5. Parameters Free Computational Characterization of Defects in Transition Metal Oxides with Diffusion Quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Santana, Juan A.; Krogel, Jaron T.; Kent, Paul R.; Reboredo, Fernando

    Materials based on transition metal oxides (TMO's) are among the most challenging systems for computational characterization. Reliable and practical computations are possible by directly solving the many-body problem for TMO's with quantum Monte Carlo (QMC) methods. These methods are very computationally intensive, but recent developments in algorithms and computational infrastructures have enabled their application to real materials. We will show our efforts on the application of the diffusion quantum Monte Carlo (DMC) method to study the formation of defects in binary and ternary TMO and heterostructures of TMO. We will also outline current limitations in hardware and algorithms. This work is supported by the Materials Sciences & Engineering Division of the Office of Basic Energy Sciences, U.S. Department of Energy (DOE).

  6. The effects of computer-assisted instruction and locus of control upon preservice elementary teachers' acquisition of the integrated science process skills

    NASA Astrophysics Data System (ADS)

    Wesley, Beth Eddinger; Krockover, Gerald H.; Devito, Alfred

    The purpose of this study was to determine the effects of computer-assisted instruction (CAI) versus a text mode of programmed instruction (PI), and the cognitive style of locus of control, on preservice elementary teachers' achievement of the integrated science process skills. Eighty-one preservice elementary teachers in six sections of a science methods class were classified as internally or externally controlled. The sections were randomly assigned to receive instruction in the integrated science process skills via a microcomputer or printed text. The study used a pretest-posttest control group design. Before assessing main and interaction effects, analysis of covariance was used to adjust posttest scores using the pretest scores. Statistical analysis revealed that main effects were not significant. Additionally, no interaction effects between treatments and loci of control were demonstrated. The results suggest that printed PI and tutorial CAI are equally effective modes of instruction for teaching internally and externally oriented preservice elementary teachers the integrated science process skills.

  7. Circus: A Replicated Procedure Call Facility

    DTIC Science & Technology

    1984-08-01

    Computer Science Laboratory, Xerox PARC, July 1082 . [24) Bruce Ja.y Nelson. Remote Procedure Ctdl. Ph.D. dissertation, Computer Science Department...t. Ph.D. dissertation, Computer Science Division, University of California, Berkeley, Xerox PARC report number CSIF 82-7, December 1082 . [30...Tandem Computers Inc. GUARDIAN Opet’ating Sy•tem Programming Mt~nulll, Volumu 1 11nd 2. C upertino, California, 1082 . [31) R. H. Thoma.s. A majority

  8. CAL-laborate: A Collaborative Publication on the Use of Computer Aided Learning for Tertiary Level Physical Sciences and Geosciences.

    ERIC Educational Resources Information Center

    Fernandez, Anne, Ed.; Sproats, Lee, Ed.; Sorensen, Stacey, Ed.

    2000-01-01

    The science community has been trying to use computers in teaching for many years. There has been much conformity in how this was to be achieved, and the wheel has been re-invented again and again as enthusiast after enthusiast has "done their bit" towards getting computers accepted. Computers are now used by science undergraduates (as well as…

  9. Teaching Bioinformatics in Concert

    PubMed Central

    Goodman, Anya L.; Dekhtyar, Alex

    2014-01-01

    Can biology students without programming skills solve problems that require computational solutions? They can if they learn to cooperate effectively with computer science students. The goal of the in-concert teaching approach is to introduce biology students to computational thinking by engaging them in collaborative projects structured around the software development process. Our approach emphasizes development of interdisciplinary communication and collaboration skills for both life science and computer science students. PMID:25411792

  10. Index to College Television Courseware. A Comprehensive Directory of Credit Courses and Concept Modules Distributed on Video Tape and Film.

    ERIC Educational Resources Information Center

    Prange, W. Werner; Bellinghausen, Carol R.

    A directory of college television courseware lists offerings in curriculum areas such as: social sciences, biology, black studies, business, mathematics, sciences, computer science, consumer protection, creative arts, drug education, ecology, engineering, humanities, physics, nursing, nutrition, religion, and vocational education, etc. Each course…

  11. Streamlining Science: Three New Science Tools Make Data Collection a Snap

    ERIC Educational Resources Information Center

    Brown, Mike

    2006-01-01

    Today, collecting, evaluating, and analyzing data--the basic concepts of scientific study--usually involves electronic probeware. Probeware combines sensors that collect data with software that analyzes it once it has been sent to a computer or calculator. Science inquiry has benefited greatly from the use of electronic probeware, providing…

  12. Identifying the Factors Leading to Success: How an Innovative Science Curriculum Cultivates Student Motivation

    ERIC Educational Resources Information Center

    Scogin, Stephen C.

    2016-01-01

    "PlantingScience" is an award-winning program recognized for its innovation and use of computer-supported scientist mentoring. Science learners work on inquiry-based experiments in their classrooms and communicate asynchronously with practicing plant scientist-mentors about the projects. The purpose of this study was to identify specific…

  13. Science Teachers' Response to the Digital Education Revolution

    ERIC Educational Resources Information Center

    Nielsen, Wendy; Miller, K. Alex; Hoban, Garry

    2015-01-01

    We report a case study of two highly qualified science teachers as they implemented laptop computers in their Years 9 and 10 science classes at the beginning of the "Digital Education Revolution," Australia's national one-to-one laptop program initiated in 2009. When a large-scale investment is made in a significant educational change,…

  14. Integrating Statistical Visualization Research into the Political Science Classroom

    ERIC Educational Resources Information Center

    Draper, Geoffrey M.; Liu, Baodong; Riesenfeld, Richard F.

    2011-01-01

    The use of computer software to facilitate learning in political science courses is well established. However, the statistical software packages used in many political science courses can be difficult to use and counter-intuitive. We describe the results of a preliminary user study suggesting that visually-oriented analysis software can help…

  15. A Pilot Meta-Analysis of Computer-Based Scaffolding in STEM Education

    ERIC Educational Resources Information Center

    Belland, Brian R.; Walker, Andrew E.; Olsen, Megan Whitney; Leary, Heather

    2015-01-01

    This paper employs meta-analysis to determine the influence of computer-based scaffolding characteristics and study and test score quality on cognitive outcomes in science, technology, engineering, and mathematics education at the secondary, college, graduate, and adult levels. Results indicate that (a) computer-based scaffolding positively…

  16. NCC and Computers in Education.

    ERIC Educational Resources Information Center

    Brown, Ron L.

    1982-01-01

    This introduction to the work of the National Computing Centre (NCC), looks at industry/education links, the development of case studies, the use of computers in training, work in the Department of Industry - Micros in Schools Scheme, and at the Department of Education and Science-Micro-Electronics in Education Programme. (MP)

  17. Introduction to the theory of machines and languages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weidhaas, P. P.

    1976-04-01

    This text is intended to be an elementary ''guided tour'' through some basic concepts of modern computer science. Various models of computing machines and formal languages are studied in detail. Discussions center around questions such as, ''What is the scope of problems that can or cannot be solved by computers.''

  18. The Effects of a Computerized Study Program on the Acquisition of Science Vocabulary

    ERIC Educational Resources Information Center

    Rollins, Karen F.

    2012-01-01

    The following study examined the difference in science vocabulary acquisition comparing computer-assisted learning and a traditional study review sheet. Fourth and fifth grade students from a suburban school in central Texas were randomly selected and randomly assigned to either experimental group or control group. Both groups were given a…

  19. A DDC Bibliography on Computers in Information Sciences. Volume I. Information Sciences Series.

    ERIC Educational Resources Information Center

    Defense Documentation Center, Alexandria, VA.

    The unclassified and unlimited bibliography compiles references dealing specifically with the role of computers in information sciences. The volume contains 249 annotated references grouped under two major headings: Time Shared, On-Line, and Real Time Systems, and Computer Components. The references are arranged in accesion number (AD-number)…

  20. Business Administration and Computer Science Degrees: Earnings, Job Security, and Job Satisfaction

    ERIC Educational Resources Information Center

    Mehta, Kamlesh; Uhlig, Ronald

    2017-01-01

    This paper examines the potential of business administration vs. computer science degrees in terms of earnings, job security, and job satisfaction. The paper focuses on earnings potential five years and ten years after the completion of business administration and computer science degrees. Moreover, the paper presents the income changes with…

  1. Evolution of an Intelligent Deductive Logic Tutor Using Data-Driven Elements

    ERIC Educational Resources Information Center

    Mostafavi, Behrooz; Barnes, Tiffany

    2017-01-01

    Deductive logic is essential to a complete understanding of computer science concepts, and is thus fundamental to computer science education. Intelligent tutoring systems with individualized instruction have been shown to increase learning gains. We seek to improve the way deductive logic is taught in computer science by developing an intelligent,…

  2. The Case for Improving U.S. Computer Science Education

    ERIC Educational Resources Information Center

    Nager, Adams; Atkinson, Robert

    2016-01-01

    Despite the growing use of computers and software in every facet of our economy, not until recently has computer science education begun to gain traction in American school systems. The current focus on improving science, technology, engineering, and mathematics (STEM) education in the U.S. School system has disregarded differences within STEM…

  3. Computer Science and the Liberal Arts: A Philosophical Examination

    ERIC Educational Resources Information Center

    Walker, Henry M.; Kelemen, Charles

    2010-01-01

    This article explores the philosophy and position of the discipline of computer science within the liberal arts, based upon a discussion of the nature of computer science and a review of the characteristics of the liberal arts. A liberal arts environment provides important opportunities for undergraduate programs, but also presents important…

  4. Arguing for Computer Science in the School Curriculum

    ERIC Educational Resources Information Center

    Fluck, Andrew; Webb, Mary; Cox, Margaret; Angeli, Charoula; Malyn-Smith, Joyce; Voogt, Joke; Zagami, Jason

    2016-01-01

    Computer science has been a discipline for some years, and its position in the school curriculum has been contested differently in several countries. This paper looks at its role in three countries to illustrate these differences. A reconsideration of computer science as a separate subject both in primary and secondary education is suggested. At…

  5. Investigating the Role of Student Motivation in Computer Science Education through One-on-One Tutoring

    ERIC Educational Resources Information Center

    Boyer, Kristy Elizabeth; Phillips, Robert; Wallis, Michael D.; Vouk, Mladen A.; Lester, James C.

    2009-01-01

    The majority of computer science education research to date has focused on purely cognitive student outcomes. Understanding the "motivational" states experienced by students may enhance our understanding of the computer science learning process, and may reveal important instructional interventions that could benefit student engagement and…

  6. Recent Advances and Issues in Computers. Oryx Frontiers of Science Series.

    ERIC Educational Resources Information Center

    Gay, Martin K.

    Discussing recent issues in computer science, this book contains 11 chapters covering: (1) developments that have the potential for changing the way computers operate, including microprocessors, mass storage systems, and computing environments; (2) the national computational grid for high-bandwidth, high-speed collaboration among scientists, and…

  7. Computer sciences

    NASA Technical Reports Server (NTRS)

    Smith, Paul H.

    1988-01-01

    The Computer Science Program provides advanced concepts, techniques, system architectures, algorithms, and software for both space and aeronautics information sciences and computer systems. The overall goal is to provide the technical foundation within NASA for the advancement of computing technology in aerospace applications. The research program is improving the state of knowledge of fundamental aerospace computing principles and advancing computing technology in space applications such as software engineering and information extraction from data collected by scientific instruments in space. The program includes the development of special algorithms and techniques to exploit the computing power provided by high performance parallel processors and special purpose architectures. Research is being conducted in the fundamentals of data base logic and improvement techniques for producing reliable computing systems.

  8. 75 FR 15675 - Professional Research Experience Program in Chemical Science and Technology Laboratory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-30

    ... in physics, chemistry, mathematics, computer science, or engineering. Institutions should have a 4..., mathematics, computer science, or engineering with work experiences in laboratories or other settings...-0141-01] Professional Research Experience Program in Chemical Science and Technology Laboratory...

  9. NASA Tech Briefs, August 1993. Volume 17, No. 8

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Topics include: Computer Graphics; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences; Books and Reports.

  10. NASA Tech Briefs, March 1993. Volume 17, No. 3

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Topics include: Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences;

  11. Virtual Transgenics: Using a Molecular Biology Simulation to Impact Student Academic Achievement and Attitudes

    NASA Astrophysics Data System (ADS)

    Shegog, Ross; Lazarus, Melanie M.; Murray, Nancy G.; Diamond, Pamela M.; Sessions, Nathalie; Zsigmond, Eva

    2012-10-01

    The transgenic mouse model is useful for studying the causes and potential cures for human genetic diseases. Exposing high school biology students to laboratory experience in developing transgenic animal models is logistically prohibitive. Computer-based simulation, however, offers this potential in addition to advantages of fidelity and reach. This study describes and evaluates a computer-based simulation to train advanced placement high school science students in laboratory protocols, a transgenic mouse model was produced. A simulation module on preparing a gene construct in the molecular biology lab was evaluated using a randomized clinical control design with advanced placement high school biology students in Mercedes, Texas ( n = 44). Pre-post tests assessed procedural and declarative knowledge, time on task, attitudes toward computers for learning and towards science careers. Students who used the simulation increased their procedural and declarative knowledge regarding molecular biology compared to those in the control condition (both p < 0.005). Significant increases continued to occur with additional use of the simulation ( p < 0.001). Students in the treatment group became more positive toward using computers for learning ( p < 0.001). The simulation did not significantly affect attitudes toward science in general. Computer simulation of complex transgenic protocols have potential to provide a "virtual" laboratory experience as an adjunct to conventional educational approaches.

  12. Computer Programs in Marine Science

    DTIC Science & Technology

    1976-04-01

    AD-A279 795 U.S. DEPARTMENT OF COMMERCE National Technical Information Service PB-258 082 Computer Programs in Marine Science National Ocearncgraphic...NO. 5 fo r- Computer nPrograms in ’StlrSO " Marine Science U.S. DEPARTMENT OF COMMERCE National Oceanic and AtmosPheric AdmInistration Environmental...N0,AA?76062212 I I 4. TITLE A?.’D.UBTITLE S. REPORT DATE Comnuter Progrims in Marine Science April 1976 Koy tc Oceanographic Records Documentation No

  13. A Theory of Object Recognition: Computations and Circuits in the Feedforward Path of the Ventral Stream in Primate Visual Cortex

    DTIC Science & Technology

    2005-12-01

    Computational Learning in the Department of Brain & Cognitive Sciences and in the Computer Science and Artificial Intelligence Laboratory at the Massachusetts...physiology and cognitive science . . . . . . . . . . . . . . . . . . . . . 67 2 CONTENTS A Appendices 68 A.1 Detailed model implementation and...physiol- ogy to cognitive science. The original model [Riesenhuber and Poggio, 1999b] made also a few predictions ranging from biophysics to psychophysics

  14. UC Merced Center for Computational Biology Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colvin, Michael; Watanabe, Masakatsu

    Final report for the UC Merced Center for Computational Biology. The Center for Computational Biology (CCB) was established to support multidisciplinary scientific research and academic programs in computational biology at the new University of California campus in Merced. In 2003, the growing gap between biology research and education was documented in a report from the National Academy of Sciences, Bio2010 Transforming Undergraduate Education for Future Research Biologists. We believed that a new type of biological sciences undergraduate and graduate programs that emphasized biological concepts and considered biology as an information science would have a dramatic impact in enabling the transformationmore » of biology. UC Merced as newest UC campus and the first new U.S. research university of the 21st century was ideally suited to adopt an alternate strategy - to create a new Biological Sciences majors and graduate group that incorporated the strong computational and mathematical vision articulated in the Bio2010 report. CCB aimed to leverage this strong commitment at UC Merced to develop a new educational program based on the principle of biology as a quantitative, model-driven science. Also we expected that the center would be enable the dissemination of computational biology course materials to other university and feeder institutions, and foster research projects that exemplify a mathematical and computations-based approach to the life sciences. As this report describes, the CCB has been successful in achieving these goals, and multidisciplinary computational biology is now an integral part of UC Merced undergraduate, graduate and research programs in the life sciences. The CCB began in fall 2004 with the aid of an award from U.S. Department of Energy (DOE), under its Genomes to Life program of support for the development of research and educational infrastructure in the modern biological sciences. This report to DOE describes the research and academic programs made possible by the CCB from its inception until August, 2010, at the end of the final extension. Although DOE support for the center ended in August 2010, the CCB will continue to exist and support its original objectives. The research and academic programs fostered by the CCB have led to additional extramural funding from other agencies, and we anticipate that CCB will continue to provide support for quantitative and computational biology program at UC Merced for many years to come. Since its inception in fall 2004, CCB research projects have continuously had a multi-institutional collaboration with Lawrence Livermore National Laboratory (LLNL), and the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, as well as individual collaborators at other sites. CCB affiliated faculty cover a broad range of computational and mathematical research including molecular modeling, cell biology, applied math, evolutional biology, bioinformatics, etc. The CCB sponsored the first distinguished speaker series at UC Merced, which had an important role is spreading the word about the computational biology emphasis at this new campus. One of CCB's original goals is to help train a new generation of biologists who bridge the gap between the computational and life sciences. To archive this goal, by summer 2006, a new program - summer undergraduate internship program, have been established under CCB to train the highly mathematical and computationally intensive Biological Science researchers. By the end of summer 2010, 44 undergraduate students had gone through this program. Out of those participants, 11 students have been admitted to graduate schools and 10 more students are interested in pursuing graduate studies in the sciences. The center is also continuing to facilitate the development and dissemination of undergraduate and graduate course materials based on the latest research in computational biology.« less

  15. NASA Tech Briefs, August 1994. Volume 18, No. 8

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Topics covered include: Computer Hardware; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences; Books and Reports.

  16. Building place-based collaborations to develop high school students' groundwater systems knowledge and decision-making capacity

    NASA Astrophysics Data System (ADS)

    Podrasky, A.; Covitt, B. A.; Woessner, W.

    2017-12-01

    The availability of clean water to support human uses and ecological integrity has become an urgent interest for many scientists, decision makers and citizens. Likewise, as computational capabilities increasingly revolutionize and become integral to the practice of science, technology, engineering and math (STEM) disciplines, the STEM+ Computing (STEM+C) Partnerships program seeks to integrate the use of computational approaches in K-12 STEM teaching and learning. The Comp Hydro project, funded by a STEM+C grant from the National Science Foundation, brings together a diverse team of scientists, educators, professionals and citizens at sites in Arizona, Colorado, Maryland and Montana to foster water literacy, as well as computational science literacy, by integrating authentic, place- and data- based learning using physical, mathematical, computational and conceptual models. This multi-state project is currently engaging four teams of six teachers who work during two academic years with educators and scientists at each site. Teams work to develop instructional units specific to their region that integrate hydrologic science and computational modeling. The units, currently being piloted in high school earth and environmental science classes, provide a classroom context to investigate student understanding of how computation is used in Earth systems science. To develop effective science instruction that is rich in place- and data- based learning, effective collaborations between researchers, educators, scientists, professionals and citizens are crucial. In this poster, we focus on project implementation in Montana, where an instructional unit has been developed and is being tested through collaboration among University scientists, researchers and educators, high school teachers and agency and industry scientists and engineers. In particular, we discuss three characteristics of effective collaborative science education design for developing and implementing place- and data- based science education to support students in developing socio-scientific and computational literacy sufficient for making decisions about real world issues such as groundwater contamination. These characteristics include that science education experiences are real, responsive/accessible and rigorous.

  17. Computer Analogies: Teaching Molecular Biology and Ecology.

    ERIC Educational Resources Information Center

    Rice, Stanley; McArthur, John

    2002-01-01

    Suggests that computer science analogies can aid the understanding of gene expression, including the storage of genetic information on chromosomes. Presents a matrix of biology and computer science concepts. (DDR)

  18. In Praise of Numerical Computation

    NASA Astrophysics Data System (ADS)

    Yap, Chee K.

    Theoretical Computer Science has developed an almost exclusively discrete/algebraic persona. We have effectively shut ourselves off from half of the world of computing: a host of problems in Computational Science & Engineering (CS&E) are defined on the continuum, and, for them, the discrete viewpoint is inadequate. The computational techniques in such problems are well-known to numerical analysis and applied mathematics, but are rarely discussed in theoretical algorithms: iteration, subdivision and approximation. By various case studies, I will indicate how our discrete/algebraic view of computing has many shortcomings in CS&E. We want embrace the continuous/analytic view, but in a new synthesis with the discrete/algebraic view. I will suggest a pathway, by way of an exact numerical model of computation, that allows us to incorporate iteration and approximation into our algorithms’ design. Some recent results give a peek into how this view of algorithmic development might look like, and its distinctive form suggests the name “numerical computational geometry” for such activities.

  19. How robotics programs influence young women's career choices : a grounded theory model

    NASA Astrophysics Data System (ADS)

    Craig, Cecilia Dosh-Bluhm

    The fields of engineering, computer science, and physics have a paucity of women despite decades of intervention by universities and organizations. Women's graduation rates in these fields continue to stagnate, posing a critical problem for society. This qualitative grounded theory (GT) study sought to understand how robotics programs influenced young women's career decisions and the program's effect on engineering, physics, and computer science career interests. To test this, a study was mounted to explore how the FIRST (For Inspiration and Recognition of Science and Technology) Robotics Competition (FRC) program influenced young women's college major and career choices. Career theories suggested that experiential programs coupled with supportive relationships strongly influence career decisions, especially for science, technology, engineering, and mathematics careers. The study explored how and when young women made career decisions and how the experiential program and! its mentors and role models influenced career choice. Online focus groups and interviews (online and face-to-face) with 10 female FRC alumnae and GT processes (inductive analysis, open coding, categorizations using mind maps and content clouds) were used to generate a general systems theory style model of the career decision process for these young women. The study identified gender stereotypes and other career obstacles for women. The study's conclusions include recommendations to foster connections to real-world challenges, to develop training programs for mentors, and to nurture social cohesion, a mostly untapped area. Implementing these recommendations could help grow a critical mass of women in engineering, physics, and computer science careers, a social change worth pursuing.

  20. Computers in Science Fiction.

    ERIC Educational Resources Information Center

    Kurland, Michael

    1984-01-01

    Science fiction writers' perceptions of the "thinking machine" are examined through a review of Baum's Oz books, Heinlein's "Beyond This Horizon," science fiction magazine articles, and works about robots including Asimov's "I, Robot." The future of computers in science fiction is discussed and suggested readings are listed. (MBR)

Top