Yin, Guanyi; Liu, Liming; Jiang, Xilong
2017-11-01
To find a solution regarding sustainable arable land use pattern in the important grain-producing area during the rapid urbanization process, this study combined agricultural production, locational condition, and ecological protection to determine optimal arable land use. Dongting Lake basin, one of the major grain producing areas in China, was chosen as the study area. The analysis of land use transition, the calculation of arable land barycenter, the landscape indices of arable land patches, and the comprehensive evaluation of arable land quality(productivity, economic location, and ecological condition) were adopted in this study. The results showed that (1) in 1990-2000, the arable land increased by 11.77%, and the transformation between arable land and other land use types actively occurred; in 2000-2010, the arable land decreased by 0.71%, and more ecological area (forestland, grassland, and water area) were disturbed and transferred into arable land; (2) urban expansion of the Changsha-Zhuzhou-Xiangtan city cluster (the major economy center of this area) induced the northward movement of the arable land barycenter; (3) the landscape fragmentation and decentralization degree of arable land patches increased during 1990-2010; (4) potential high-quality arable land is located in the zonal area around Dongting Lake, which contains the Li County, Linli County, Jinshi County, Taoyuan County, Taojiang County, Ningxiang County, Xiangxiang County, Shaoshan County, Miluo County, and Zhuzhou County. The inferior low-quality arable land is located in the northwestern Wuling mountainous area, the southeastern hilly area, and the densely populated big cities and their surrounding area. In the optimized arable land use pattern, the high-quality land should be intensively used, and the low-quality arable land should be reduced used or prohibitively used. What is more, it is necessary to quit the arable land away from the surrounding area of cities appropriately, in order to allow more space for urban expansion. This study could provide guidance for sustainable arable land use by both satisfying the future agricultural production and the local economic development, which can be used for the other major grain-producing areas in this rapid developing country.
NASA Astrophysics Data System (ADS)
Saadatkhah, Nader; Mansor, Shattri; Khuzaimah, Zailani; Asmat, Arnis; Adnan, Noraizam; Adam, Siti Noradzah
2016-09-01
Changing the land cover/ land use has serious environmental impacts affecting the ecosystem in Malaysia. The impact of land cover changes on the environmental functions such as surface water, loss water, and soil moisture is considered in this paper on the Kelantan river basin. The study area at the east coast of the peninsular Malaysia has suffered significant land cover changes in the recent years. The current research tried to assess the impact of land cover changes in the study area focused on the surface water, loss water, and soil moisture from different land use classes and the potential impact of land cover changes on the ecosystem of Kelantan river basin. To simulate the impact of land cover changes on the environmental hydrology characteristics, a deterministic regional modeling were employed in this study based on five approaches, i.e. (1) Land cover classification based on Landsat images; (2) assessment of land cover changes during last three decades; (3) Calculation the rate of water Loss/ Infiltration; (4) Assessment of hydrological and mechanical effects of the land cover changes on the surface water; and (5) evaluation the impact of land cover changes on the ecosystem of the study area. Assessment of land cover impact on the environmental hydrology was computed with the improved transient rainfall infiltration and grid based regional model (Improved-TRIGRS) based on the transient infiltration, and subsequently changes in the surface water, due to precipitation events. The results showed the direct increased in surface water from development area, agricultural area, and grassland regions compared with surface water from other land covered areas in the study area. The urban areas or lower planting density areas tend to increase for surface water during the monsoon seasons, whereas the inter flow from forested and secondary jungle areas contributes to the normal surface water.
Geospatial tools for assessing land degradation in Budgam district, Kashmir Himalaya, India
NASA Astrophysics Data System (ADS)
Rashid, Mehnaz; Lone, Mahjoor Ahmad; Romshoo, Shakil Ahmad
2011-06-01
Land degradation reduces the ability of the land to perform many biophysical and chemical functions. The main aim of this study was to determine the status of land degradation in the Budgam area of Kashmir Himalaya using remote sensing and geographic information system. The satellite data together with other geospatial datasets were used to quantify different categories of land degradation. The results were validated in the field and an accuracy of 85% was observed. Land use/land cover of the study area was determined in order to know the effect of land use on the rate of land degradation. Normalized differential vegetation index (NDVI) and slope of the area were determined using LANDSAT-enhanced thematic mapper plus (ETM+) data, advanced space borne thermal emission and reflection radiometer, and digital elevation model along with other secondary data were analysed to create various thematic maps, viz., land use/land cover, geology, NDVI and slopes used in modelling land degradation in the Kashmir Himalayan region. The vegetation condition, elevation and land use/land cover information of the area were integrated to assess the land degradation scenario in the area using the ArcGIS `Spatial Analyst Module'. The results reveal that about 13.19% of the study area has undergone moderate to high degradation, whereas about 44.12% of the area has undergone slight degradation.
NASA Technical Reports Server (NTRS)
Mealor, W. T., Jr.; Pinson, T. W.; Wertz, D. L.; Hoskin, C. M.; Williams, D. C.
1972-01-01
This multi-year study is aimed at focusing on the recognition of sediment and other affluents in a selected area of the Ross Barnett Reservoir. The principle objectives are the determination of land use types, effect of land use on erosion, and the correlation of sediment with land use in the area. The I2S multi-band imagery was employed in conjunction with ground truth data for both water and land use studies. The selected test site contains approximately forty square miles including forest, open land, and water in addition to residential and recreational areas.
NASA Astrophysics Data System (ADS)
Susilo, Bowo
2017-12-01
Studies of land use change have been undertaken by different researchers using various methods. Among those methods, modelling is widely utilized. Modelling land use change required several components remarked as model variables. Those represent any conditions or factors which considered relevant or have some degree of correlation to the changes of land use. Variables which have significant correlation to land use change are referred as determinant factors or driving forces. Those factors as well as changes of land use are distributed across space and therefore referred as spatial determinant factors. The main objective of the research was to examine land use change and its determinant factors. Area and location of land use change were analysed based on three different years of land use maps, which are 1993, 2000 and 2007. Spatial and temporal analysis were performed which emphasize to the influence of scale to both of analysis’s. Urban area of Yogyakarta was selected as study area. Study area covered three different districts (kabupaten), involving 20 sub districts and totally consists of 74 villages. Result of this study shows that during 14 years periods (1993 to 2007), there were about 1,460 hectares of land use change had been taken place. Dominant type of land use change is agricultural to residential. The uses of different spatial and temporal scale in analysis were able to reveal different factors related to land use change. In general, factors influencing the quantities of land use change in the study area were population growth and the availability of land. The use of data with different spatial resolution can reveal the presence of various factors associated with the location of the change. Locations of land use change were influenced or determined by accessibility factors.
Wang, Mei-Ling; Bing, Long-Fei; Xi, Feng-Ming; Wu, Rui; Geng, Yong
2013-07-01
Based on the QuickBird remote sensing images and with the support of GIS, this paper analyzed the spatiotemporal characteristics of land use change and its driving forces in old industrial area of Tiexi, Shenyang City of Liaoning Province in 2000-2010. During the study period, the industrial and mining warehouse land pattern had the greatest change, evolving from the historical pattern of residential land in the south and of industrial land in the north into residential land as the dominant land use pattern. In the last decade, the residential land area increased by 9%, mainly transferred from the industrial and mining warehouse land located in the north of Jianshe Road, while the industrial and mining warehouse land area decreased by 20%. The land areas for the commercial service and for the administrative and public services were increased by 1.3% and 3.1%, respectively. The land area for construction had a greater change, with an overall change rate being 76.9%. The land use change rate in 2000-2005 was greater than that in 2005-2010. National development strategies and policies, regional development planning, administrative reform, and industrial upgrading were the main driving forces of the land use change in old industrial area of Tiexi.
NASA Astrophysics Data System (ADS)
Ya-Juan, Li; Tian-Yu, Mao; Mingjing-Tian
2018-03-01
The Planning of Sea Usage of Regional Construction is a new area, and the rational analysis about the area of which is one of its difficulties. Based on “Urban land classification and land use planning and construction standards”, the land use control index method study the rationality of the sea usage area of the whole region, by accumulating for specific land use indicators for each land type within the planning area. This paper, takeing the project named “caofeidian integrated service area” for example, make a little study on the land use control index method used by the sea usage demonstration of the planning of sea usage of regional construction. The study will be good for improving the technical methods of rational analysis about the area of the planning of sea usage of regional construction.
NASA Astrophysics Data System (ADS)
Zhang, H.; Fan, J.
2015-12-01
The grassland restoration areas in China, most of which was located in arid and semi-arid areas, are affected by climate change and anthropogenic activities. Using the 3S (RS, GIS, GPS) technologies, quantitative analysis method of landscape patterns and ecological simulation, this study examines the spatiotemporal characteristics of land use/ land cover and ecosystem functions change in the grassland restoration areas in China from 2000 to 2010. We apply two parameters land use transfer matrix and land use dynamic degree to explore the speed and regional differentiation of land use change. We propose vegetation coverage, net primary production (NPP), soil and water conservation capacity to assess the ecosystem functions. This study analyzes the characteristics of landscape patterns at the class and landscape levels and explores the ecological effect of land use pattern and regional ecological processes. The results show that: (1) Grassland and others were the main landscape types in the study area in the past decade. The ecosystem structure was stable. About 0.37% of the total grassland area in 2000 experienced change in land use / land cover types. The area of woodlands, wetlands, farmlands, and built-up areas expanded. The area of others has declined. (2) The dynamic degree of regional land use was less than one percent in the recent ten years. The speed of land use and land cover change was low, and regional differentiation of change between the provinces was small. (3) The matrix of the landscape did not change in the study area. Landscape fragmentation index values decreased progressively; landscape diversity rose continuously; landscape aggregation and continuity decreased slightly; the landscape maintained relative integrity. (4) Ecosystem functions has increased as a whole. The vegetation coverages with significant increase (with a 1.99% yr-1 slope of regression) in the total study area; NPP has a fluctuating and increasing tendency, ranging from 218.23 gC·m-2yr-1 in 2000, to 226.30 gC·m-2yr-1 in 2010, with a 3.70% increase; Soil and water conservation capacity has showed an obvious increment. (5) The grassland restoration program implementation evidently improved the structure and stability of the land use/ land cover. The climatic variations (temperature and precipitation) promoted vegetation growth.
Chen, Wen-Bo; Liu, Shi-Yu; Yu, Dun; Zou, Qiu-Ming
2009-07-01
Based on the relevant studies of land use environmental impacts and the characteristics of urban land use, a conceptual model on the assessment of land use environmental impacts in urban built-up area was established. This model grouped the land use environmental impacts in built-up area into four basic processes, i. e., detailization, abstractization, matching, and evaluation. A case study was conducted in the main built-up area of Nanchang City, with noise, smell, dust, and hazard as the impact factors. In the test area, noise had a widespread impact, its impacting area accounting for 59% of the total, smell and dust impacts centralized in the east and south parts, while hazard impact was centralized in the southeast part, an industrial area. This assessment model of four basic processes was practical, and could provide basis for the decision-making of urban land use management and planning.
NASA Astrophysics Data System (ADS)
Cahya, D. L.; Martini, E.; Kasikoen, K. M.
2018-02-01
Urbanization is shown by the increasing percentage of the population in urban areas. In Indonesia, the percentage of urban population increased dramatically form 17.42% (1971) to 42.15% (2010). This resulted in increased demand for housing. Limited land in the city area push residents looking for an alternative location of his residence to the peri-urban areas. It is accompanied by a process of land conversion from green area into built-up area. Continuous land conversion in peri-urban area is becoming increasingly widespread. Bogor Regency as part of the Jakarta Metropolitan Area is experiencing rapid development. This regency has been experienced land-use change very rapidly from agricultural areas into urban built up areas. Aim of this research is to analyze the effect of urbanization on land use changes in peri-urban areas using spatial analysis methods. This research used case study of Ciawi Urban Area that experiencing rapid development. Method of this research is using descriptive quantitative approach. Data used in this research is primary data (field survey) and secondary data (maps). To analyze land use change is using Geographic Information System (GIS) as spatial analysis methods. The effect of urbanization on land use changes in Ciawi Urban Area from year 2013 to 2015 is significant. The reduction of farm land is around -4.00% and wetland is around - 2.51%. The increasing area for hotel/villa/resort is around 3.10%. Based on this research, local government (Bogor Regency) should be alert to the land use changes that does not comply with the land use plan and also consistently apply the spatial planning.
The Urban Heat Island Impact in Consideration of Spatial Pattern of Urban Landscape and Structure
NASA Astrophysics Data System (ADS)
Kim, J.; Lee, D. K.; Jeong, W.; Sung, S.; Park, J.
2015-12-01
Preceding study has established a clear relationship between land surface temperature and area of land covers. However, only few studies have specifically examined the effects of spatial patterns of land covers and urban structure. To examine how much the local climate is affected by the spatial pattern in highly urbanized city, we investigated the correlation between land surface temperature and spatial patterns of land covers. In the analysis of correlation, we categorized urban structure to four different land uses: Apartment residential area, low rise residential area, industrial area and central business district. Through this study, we aims to examine the types of residential structure and land cover pattern for reducing urban heat island and sustainable development. Based on land surface temperature, we investigated the phenomenon of urban heat island through using the data of remote sensing. This study focused on Daegu in Korea. This city, one of the hottest city in Korea has basin form. We used high-resolution land cover data and land surface temperature by using Landsat8 satellite image to examine 100 randomly selected sample sites of 884.15km2 (1)In each land use, we quantified several landscape-levels and class-level landscape metrics for the sample study sites. (2)In addition, we measured the land surface temperature in 3 year hot summer seasons (July to September). Then, we investigated the pattern of land surface temperature for each land use through Ecognition package. (3)We deducted the Pearson correlation coefficients between land surface temperature and each landscape metrics. (4)We analyzed the variance among the four land uses. (5)Using linear regression, we determined land surface temperature model for each land use. (6)Through this analysis, we aims to examine the best pattern of land cover and artificial structure for reducing urban heat island effect in highly urbanized city. The results of linear regression showed that proportional land cover of grass, tree, water and impervious surfaces well explained the temperature in apartment residential areas. In contrast, the changes in the pattern of water, grass, tree and impervious surfaces were the best to determine the temperature in low rise residential area, central business district and industrial area.
Zhao, Xiaoqing; Dai, Jinhua; Wang, Jianping
2013-01-01
Land degradation is one of the significant issues the human beings are confronted with, which has become a bottleneck of restricting the sustainable development of the regional society and economy. In order to ascertain the root causes contributed to the land degradation and characteristics of land degradation, Bijiang watershed, the most important Lead-Zinc mine area of Lanping county of Yunnan Province, was selected as the study area. One evaluation index system for land degradation that consists of 5 single factors(water-soil erosion intensity, geological disaster risk, cultivation intensity of arable land, pollution of heavy metals in soil and biodiversity deterioration) was established and 13 indicators were chosen, and the entropy method was adopted to assign weights to each single factor. By using the tools of Geographic Information System (GIS), the land degradation degree was evaluated and one spatial distribution map for land degradation was accomplished. In this study, the land of the whole watershed was divided into 4 types, including extremely-severe degradation area, severely-degraded area, moderately-degraded area and slightly-degraded area, and some solutions for ecological restoration and rehabilitation were also put forward in this study. The study results indicated that: (1) Water-soil erosion intension and pollution of heavy metals in soil have made greater contribution to the comprehensive land degradation in Bijiang watershed; (2) There is an apparent difference regarding land degradation degree in Bijiang watershed. The moderately-degraded area accounts for the most part in the region, which covers 79.66% of the whole watershed. The severely-degraded area accounts for 15.98% and the slightly-degraded regions and extremely severe degradation area accounts for 1.08% and 3.28% respectively; (3) There is an evident regularity of spatial distribution in land degradation in Bijiang watershed. The moderately-degraded areas mainly distribute in the most part of the mid-stream and down-stream, the slightly-degraded areas distribute in the mid-stream, the severely-degraded areas distribute in the upstream and south-west part of down-stream, the extremely severe degradation areas distribute in the east and middle part of the upstream; (4)From the administrative division viewpoint, the slightly-degraded areas primarily distribute in Jiancao township, Baishi town and Nuodeng town. The moderately-degraded areas distribute in Changxin township, Baofeng township, Jiancao township, Baishi town and Nuodeng town. The severely-degraded areas distribute in Jinding town, Baofeng township and Lajing town. The extremely severe degradation areas distribute in Jinding town. By connecting the spatial distribution mode for land degradation with other natural, economical elements, we drew a conclusion that the pollution in heavy metals in soil, serious water erosion and geological disasters are the main causes of the land degradation in Bijiang watershed.
Beikman, Helen M.; Hinkle, Margaret E.; Frieders, Twila; Marcus, Susan M.; Edward, James R.
1983-01-01
The Federal Land Policy and Management Act of 1976 instructed the Bureau of Land Management (BLM) to review all public lands under its jurisdiction and to determine their suitability or nonsuitability for wilderness designation. As part of this process, the Geological Survey and the Bureau of Mines conduct mineral surveys of areas for which a preliminary determination of wilderness suitability has been made. The BLM has completed its wilderness inventory phase and has found that 23.2 million acres deserve further study for wilderness consideration. These 23.2 million acres of wilderness study areas include 1 million acres of natural and primitive areas (Instant Study Areas), 5.7 million acres in the California Desert Conservation Area, and 16.5 million acres in other wilderness study areas. Mineral surveys on all areas recommended for wilderness will be completed by 1990.
Zhang, Baolei; Zhang, Qiaoyun; Feng, Qingyu; Cui, Bohao; Zhang, Shumin
2017-07-01
This study aimed at assessing the stresses from land development in or around Yellow River Delta Nature Reserve (YRDNR) and identifying the impacted areas. Major land development types (reservoirs, pond, aquafarm, salt pan, road, residential land, industry land, farming land, and fishing land) in or around the YRDNR from 1995 to 2014 were identified using spatial data sets derived from remote sensing imageries. The spatial stresses were simulated by considering disturbance due to land development activities and accessibility of disturbance using a geographic information system based model. The stresses were then used to identify the impacted area by land development (IALD). The results indicated that main increasing land development types in the study area from 1995 to 2014 were salt pan and construction land. The 98.2% of expanded land development area and 93.7% of increased pump number showed a good control of reserve function zone on land development spread. The spatial stress values and percentages of IALD increased from 1995 to 2014, and IALD percentage exceeded 50% for both parts of YRDNR in 2014. The results of this study also provided the information that detailed planning of the YRDNR (2014-2020) could decrease the spatial stress and IALD percentage of the whole YRDNR on the condition that the area of land development activities increased by 24.4 km 2 from 2014 to 2020. Effective measures should be taken to protect such areas from being further disturbed in order to achieve the goal of a more effective conservation of the YRDNR, and attention should be paid to the disordered land development activities in or around the natural reserves.
Gao, Peng; Niu, Xiang; Wang, Bing; Zheng, Yunlong
2015-01-01
Land use change is one of the important aspects of the regional ecological restoration research. With remote sensing (RS) image in 2003, 2007 and 2012, using geographic information system (GIS) technologies, the land use pattern changes in Yimeng Mountain ecological restoration area in China and its driving force factors were studied. Results showed that: (1) Cultivated land constituted the largest area during 10 years, and followed by forest land and grass land; cultivated land and unused land were reduced by 28.43% and 44.32%, whereas forest land, water area and land for water facilities and others were increased. (2) During 2003–2007, forest land change showed the largest, followed by unused land and grass land; however, during 2008–2012, water area and land for water facilities change showed the largest, followed by grass land and unused land. (3) Land use degree was above the average level, it was in the developing period during 2003–2007 and in the degenerating period during 2008–2012. (4) Ecological Restoration Projects can greatly change the micro topography, increase vegetation coverage, and then induce significant changes in the land use distribution, which were the main driving force factors of the land use pattern change in the ecological restoration area. PMID:26047160
Relationship among land surface temperature and LUCC, NDVI in typical karst area.
Deng, Yuanhong; Wang, Shijie; Bai, Xiaoyong; Tian, Yichao; Wu, Luhua; Xiao, Jianyong; Chen, Fei; Qian, Qinghuan
2018-01-12
Land surface temperature (LST) can reflect the land surface water-heat exchange process comprehensively, which is considerably significant to the study of environmental change. However, research about LST in karst mountain areas with complex topography is scarce. Therefore, we retrieved the LST in a karst mountain area from Landsat 8 data and explored its relationships with LUCC and NDVI. The results showed that LST of the study area was noticeably affected by altitude and underlying surface type. In summer, abnormal high-temperature zones were observed in the study area, perhaps due to karst rocky desertification. LSTs among different land use types significantly differed with the highest in construction land and the lowest in woodland. The spatial distributions of NDVI and LST exhibited opposite patterns. Under the spatial combination of different land use types, the LST-NDVI feature space showed an obtuse-angled triangle shape and showed a negative linear correlation after removing water body data. In summary, the LST can be retrieved well by the atmospheric correction model from Landsat 8 data. Moreover, the LST of the karst mountain area is controlled by altitude, underlying surface type and aspect. This study provides a reference for land use planning, ecological environment restoration in karst areas.
Wilderness: An unexpected second chance
Jerry Magee; Dave Harmon
2011-01-01
The Federal Land Policy & Management Act of 1976 directed the Bureau of Land Management (BLM) to inventory its lands for wilderness characteristics and to protect identified areas as "wilderness study areas" (WSAs) until acted upon by Congress. BLM conducted these inventories and studies between 1976 and 1991, finding nearly 800 areas totaling 9.6 million...
NASA Astrophysics Data System (ADS)
Konana, Charity
2017-04-01
This study investigated drivers of gully formation and development using participatory geographic information systems (PGIS) with the local communities. Changes in land use and land cover for 1985-2000, 2000-2011 and 1985-2011 were determined using PGIS. The results showed that land use and land cover changes occurred in the 4 villages (Eluai, Olepolos, Olesharo and Enkiloriti) in the study area. There were significant changes in shrubland which decreased in Eluai village (p < 0.002) and no significant changes in built up areas, bareland, agricultural land, waterbodies, grassland and shrubland in the 3 villages (Enkiloriti, Olepolos and Olesharo). It was observed that between 1985 and 2011 (26 years), there was an overall increase in built up area and bareland and decrease in shrubland and grassland in the 4 villages (Olepolos, Enkiloriti, Eluai and Olesharo). Land use change benefits noted by communities included increased access to grazing areas and firewood. Undesirable land use change effects noted were a decrease in shrubland, food production, grazing area and rainfall, and an increase in wind erosion, gully formation and flooding. Community recommendations included afforestation programmes, construction of terraces for water harvesting, training on soil conservation measures and use of appropriate alternative sources of energy other than charcoal. PGIS maps produced will help to understand the driving forces of gully erosion (built up areas, bareland, agricultural land, grassland and shrubland) that are heavily affecting the study area over the years. Participatory mapping of land use and land cover changes is therefore useful for targeting land management interventions. Key words: Land use and cover change, Soil Erosion, Narok County, PGIS
Land use change and landslide characteristics analysis for community-based disaster mitigation.
Chen, Chien-Yuan; Huang, Wen-Lin
2013-05-01
On August 8, 2009, Typhoon Morakot brought heavy rain to Taiwan, causing numerous landslides and debris flows in the Taihe village area of Meishan Township, Chiayi County, in south-central Taiwan. In the Taihe land is primary used for agriculture and land use management may be a factor in the area's landslides. This study explores Typhoon Morakot-induced landslides and land use changes between 1999 and 2009 using GIS with the aid of field investigation. Spot 5 satellite images with a resolution of 2.5 m are used for landslide interpretation and manually digitalized in GIS. A statistical analysis for landslide frequency-area distribution was used to identify the landslide characteristics associated with different types of land use. There were 243 landslides with a total area of 2.75 km(2) in the study area. The area is located in intrinsically fragile combinations of sandstone and shale. Typhoon Morakot-induced landslides show a power-law distribution in the study area. Landslides were mainly located in steep slope areas containing natural forest and in areas planted with bamboo, tea, and betel nut. Land covered with natural forest shows the highest landslide ratio, followed by bamboo, betel nut, and tea. Landslides thus show a higher ratio in areas planted with shallow root vegetation such as bamboo, betel nut, and tea. Furthermore, the degree of basin development is proportional to the landslide ratio. The results show that a change in vegetation cover results in a modified landslide area and frequency and changed land use areas have higher landslide ratios than non-changed. Land use management and community-based disaster prevention are needed in mountainous areas of Taiwan for hazard mitigation.
Land use/land cover change geo-informative Tupu of Nujiang River in Northwest Yunnan Province
NASA Astrophysics Data System (ADS)
Wang, Jin-liang; Yang, Yue-yuan; Huang, You-ju; Fu, Lei; Rao, Qing
2008-10-01
Land Use/Land Cover Change (LUCC) is the core components of global change researches. It is significant for understanding regional ecological environment and LUCC mechanism of large scale to develop the study of LUCC of regional level. Nujiang River is the upper reaches of a big river in the South Asia--Salween River. Nujiang River is a typical mountainous river which is 3200 kilometer long and its basin area is 32.5 × 105 square kilometer. It locates in the core of "Three Parallel Rivers" World Natural Heritage. It is one of international biodiversity conservation center of the world, the ecological fragile zone and key ecological construction area, as well as a remote undeveloped area with high diversity ethnic. With the rapidly development of society and economy, the land use and land cover changed in a great degree. The function of ecosystem has being degraded in some areas which will not only impact on the ecological construction of local area, but also on the ecological safety of lower reaches -- Salween River. Therefore it is necessary to carry out the research of LUCC of Nujiang River. Based on the theory and methods of geo-information Tupu, the "Spatial Pattern" and "Change Process" of land use of middle reach in Nujiang River from 1974 to 2004 had been studied in quantification and integration, so as to provide a case study in local area and mesoscale in time. Supported by the remote sensing and GIS technology, LUCC Tupu of 1974-2004 had been built and the characteristics of LUCC have been analyzed quantificationally. The results showed that the built-up land (Included in this category are cities, towns, villages, strip developments along highways, transportation, power, and communications facilities, and areas such as those occupied by mills, shopping centers, industrial and commercial complexes, and institutions that may, in some instances, be isolated from urban areas), agriculture land, shrubbery land, meadow & grassland, difficultly/unused land increased from 1974 to 2004, the increased area of shrubbery land was the greatest, while the area of forest, artificial forest, waters, glacier and snow covered land decreased. The biggest decreased area was forest land. The biggest LUCC was the transformation from forest land to shrubbery land, the transformation from forest land to rangeland and agriculture land was the second. The main area of LUCC located at Nujiang River valley, between 2200-3700m of the east slope in the Gaoligong Mountain and 2800-3900m of the west slope of the Biluo Snow Mountain. From the valley to peak of mountain, the main land use type was transited from built-up land, agricultures land, artificial forest land to natural forest, shrubbery and grass land. The natural forest was the main land in the past 30 years. The main driving forces were the increase of population of local area, the governmental policies (Conversion of Farmland to Forests and Grass Land Projects, etc.) and urbanization. In order to accelerate the sustainable development of society economy and the ecological environment protection in this ecological fragile zone, strict management should be adopted to adjust the behaviors of human beings. Finally, VCM (variable clumping method) curve had been used to analyses the internal spatial distribution difference of land-use/land cover which shown that the landscape fragmentation was increased, the number of patches was added, the distance between patches was diminished during the past thirty years (1974-2004).
NASA Astrophysics Data System (ADS)
Sun, Siqi; Xiao, Yi; Guo, Luo
2018-02-01
Eastern Sichuan Basin is one of the areas sensitive to global climate change. Due to impacts from human disturbance, the farmland in the study area has been degrading, and the desertification of land has been expanding rapidly. Based on the data of Landsat TM/ETM image in 1990, 1995, 2000, 2005 and 2010, this thesis analysed the spatial characteristics and dynamic trends of land use pattern in eastern Sichuan basin using software for remote sense and geographical information system. The driving factors of land-use change in study area were also discussed. The results indicated that: (i) the area of farmland has significantly decreased because of degradation and conversion from grassland into building land; (ii) farmland patches have changed into fragmented and isolated ones; (iii) the main landscapes in study area, are farmland and forests; (iv) land-use change is significantly associated with the human activities. This study provides a strong theoretical and technical basis for the policy-making of environmental protection and management in Eastern Sichuan Basin of Sichuan Province in china.
NASA Astrophysics Data System (ADS)
Mohd Yusof, Fasihah; Rohaizah Jamil, Nor; Inthano a/p Cha Laew, Nyvee; Aini, Norfadilah; Abd Manaf, Latifah
2016-06-01
The developing mode of the nation enhance more land area being exploited to generate economy income. Objectives of this study were to analyse the land use changes from year 2010 to 2013 and soil erosion potential rate for year 2013 of lower part of Perak river basin. All of the spatial analysis work were carried out in the GIS environment using the ArcGIS version 9.3 software. Land use maps were obtained from Department of Agriculture and been digitized accordingly. The total area was 2914.91 km2 and land use categories were clustered into various classes. Based on land use change analysis, oil palm plantation recorded some increment from year 2010 to 2013. While, area of forest depleting from 95.54km2 to 86.01 km2 indicating that the forest area were being exploited and shifted to other land use type. In the other hand, the rubber plantation decrease due to land conversion into palm oil plantation. Urban area showed some increment in coverage proving the current blooming number of population occurs rapidly. In context of cleared land, 2013 recorded higher coverage of cleared land compared to the year 2010 which recorded a shifting from 8.89km2 in 2010 to 21.24 km2 in 2013. By adopting the RUSLE model, in 2013, the soil erosion potential was categorised as very low (0-1 tons/ha/year) with some soil erosion hotspot spotted within the study area. The soil erosion range from very low to extreme class. A very low soil erosion potential class (0-1 ton/ha/yr) recorded the majority of 61% (1765.60 km2) of total area. The extreme classes (>100 ton/ha/yr) recorded about 18% (536.19km2) of the total area. According to the result, it can be concluded that the middle part of study area experience low to severe classes of potential soil erosion.
NASA Astrophysics Data System (ADS)
Marko, K.; Zulkarnain, F.; Kusratmoko, E.
2016-11-01
Land cover changes particular in urban catchment area has been rapidly occur. Land cover changes occur as a result of increasing demand for built-up area. Various kinds of environmental and hydrological problems e.g. floods and urban heat island can happen if the changes are uncontrolled. This study aims to predict land cover changes using coupling of Markov chains and cellular automata. One of the most rapid land cover changes is occurs at upper Ci Leungsi catchment area that located near Bekasi City and Jakarta Metropolitan Area. Markov chains has a good ability to predict the probability of change statistically while cellular automata believed as a powerful method in reading the spatial patterns of change. Temporal land cover data was obtained by remote sensing satellite imageries. In addition, this study also used multi-criteria analysis to determine which driving factor that could stimulate the changes such as proximity, elevation, and slope. Coupling of these two methods could give better prediction model rather than just using it separately. The prediction model was validated using existing 2015 land cover data and shown a satisfactory kappa coefficient. The most significant increasing land cover is built-up area from 24% to 53%.
NASA Astrophysics Data System (ADS)
Li, Xia; Mitra, Chandana; Dong, Li; Yang, Qichun
2018-02-01
To explore potential climatic consequences of land cover change in the Kolkata Metropolitan Development area, we projected microclimate conditions in this area using the Weather Research and Forecasting (WRF) model driven by future land use scenarios. Specifically, we considered two land conversion scenarios including an urbanization scenario that all the wetlands and croplands would be converted to built-up areas, and an irrigation expansion scenario in which all wetlands and dry croplands would be replaced by irrigated croplands. Results indicated that land use and land cover (LULC) change would dramatically increase regional temperature in this area under the urbanization scenario, but expanded irrigation tended to have a cooling effect. In the urbanization scenario, precipitation center tended to move eastward and lead to increased rainfall in eastern parts of this region. Increased irrigation stimulated rainfall in central and eastern areas but reduced rainfall in southwestern and northwestern parts of the study area. This study also demonstrated that urbanization significantly reduced latent heat fluxes and albedo of land surface; while increased sensible heat flux changes following urbanization suggested that developed land surfaces mainly acted as heat sources. In this study, climate change projection not only predicts future spatiotemporal patterns of multiple climate factors, but also provides valuable insights into policy making related to land use management, water resource management, and agriculture management to adapt and mitigate future climate changes in this populous region.
NASA Astrophysics Data System (ADS)
Rounds, Eric
The urban lowland areas of Vietnam have been at the forefront of economic liberalization over the last 30 years, while the more remote mountainous areas of the country have lagged behind. Upland areas in the Northern and Central portions of Vietnam in particular remain largely impoverished and disconnected from broader national and regional markets. To address this economic inequality in the uplands, recent economic development efforts such as the East-West Economic Corridor (EWEC) have aimed at expanding road infrastructure to remote areas in Central Vietnam. This study examines the impact of road expansion in the EWEC on a single village in Quang Tri, Vietnam. It draws from social economic data gathered during fieldwork and a historical land cover analysis to address how land use, land cover, and livelihoods have changed in recent decades. Moreover, the paper discusses the distal and proximate drivers of these changes. Findings show that the improved road connectivity provided by new roads has facilitated the transmission of distant market-related drivers into the study area, and that these drivers have fostered significant changes in land use, land cover, and livelihoods.
Mao, Qizheng; Huang, Ganlin; Ma, Keming; Sun, Zexiang
2014-01-01
Understanding the spatial pattern of soil lead (Pb) levels is essential to protecting human health. Most previous studies have examined soil Pb distributions by either urbanization gradient or land-use type. Few studies, however, have examined both factors together. It remains unclear whether the impacts of land use on soil Pb levels are consistent along the urbanization gradient. To fill this gap, we investigated variations in soil Pb level under different land-use types along the urbanization gradient in Beijing, China. We classified the degree of urbanization as the urban core, transitional zone, or suburban area and the land-use type as industrial area, roadside, residential area, institutional area, road greenbelt, park, or forest. Our results showed that the range of soil Pb levels in Beijing is <1 mg/kg–292 mg/kg, with a mean of 22 mg/kg. Along the urbanization gradient, the mean soil Pb level increased from the suburban area to the urban core. Land-use types have an impact on soil Pb levels, however, when the degree of urbanization is considered, the impact from land use on soil Pb level was only significant in the transitional zone. Parks and road greenbelts were found to have lower soil Pb, primarily due to soil restoration. Roadside and residential areas were found to have higher soil Pb because of traffic emissions, leaded paint, and previous industrial contamination. In the urban core and suburban area, the soil Pb level showed no significant differences among various land-use types. Given the results of soil Pb in various land-use types, we suggest that future studies consider the urbanization gradient in which different land-use samples are located. PMID:24646863
Mao, Qizheng; Huang, Ganlin; Ma, Keming; Sun, Zexiang
2014-03-18
Understanding the spatial pattern of soil lead (Pb) levels is essential to protecting human health. Most previous studies have examined soil Pb distributions by either urbanization gradient or land-use type. Few studies, however, have examined both factors together. It remains unclear whether the impacts of land use on soil Pb levels are consistent along the urbanization gradient. To fill this gap, we investigated variations in soil Pb level under different land-use types along the urbanization gradient in Beijing, China. We classified the degree of urbanization as the urban core, transitional zone, or suburban area and the land-use type as industrial area, roadside, residential area, institutional area, road greenbelt, park, or forest. Our results showed that the range of soil Pb levels in Beijing is <1 mg/kg-292 mg/kg, with a mean of 22 mg/kg. Along the urbanization gradient, the mean soil Pb level increased from the suburban area to the urban core. Land-use types have an impact on soil Pb levels, however, when the degree of urbanization is considered, the impact from land use on soil Pb level was only significant in the transitional zone. Parks and road greenbelts were found to have lower soil Pb, primarily due to soil restoration. Roadside and residential areas were found to have higher soil Pb because of traffic emissions, leaded paint, and previous industrial contamination. In the urban core and suburban area, the soil Pb level showed no significant differences among various land-use types. Given the results of soil Pb in various land-use types, we suggest that future studies consider the urbanization gradient in which different land-use samples are located.
The Analysis of Object-Based Change Detection in Mining Area: a Case Study with Pingshuo Coal Mine
NASA Astrophysics Data System (ADS)
Zhang, M.; Zhou, W.; Li, Y.
2017-09-01
Accurate information on mining land use and land cover change are crucial for monitoring and environmental change studies. In this paper, RapidEye Remote Sensing Image (Map 2012) and SPOT7 Remote Sensing Image (Map 2015) in Pingshuo Mining Area are selected to monitor changes combined with object-based classification and change vector analysis method, we also used R in highresolution remote sensing image for mining land classification, and found the feasibility and the flexibility of open source software. The results show that (1) the classification of reclaimed mining land has higher precision, the overall accuracy and kappa coefficient of the classification of the change region map were 86.67 % and 89.44 %. It's obvious that object-based classification and change vector analysis which has a great significance to improve the monitoring accuracy can be used to monitor mining land, especially reclaiming mining land; (2) the vegetation area changed from 46 % to 40 % accounted for the proportion of the total area from 2012 to 2015, and most of them were transformed into the arable land. The sum of arable land and vegetation area increased from 51 % to 70 %; meanwhile, build-up land has a certain degree of increase, part of the water area was transformed into arable land, but the extent of the two changes is not obvious. The result illustrated the transformation of reclaimed mining area, at the same time, there is still some land convert to mining land, and it shows the mine is still operating, mining land use and land cover are the dynamic procedure.
The Study of Driving Forces of Land Use Transformation in the Pearl River Delta during 1990 to 2010※
NASA Astrophysics Data System (ADS)
Yang, Kun; Wang, Xiuming; Zhao, Peng; Liu, Xucheng; Zhang, Yuhuan
2018-05-01
Based on the land use data of the study area in 1990, 2000 and 2010, the paper tries to analyse the characteristic of land use and cover change (LUCC) in Pearl River Delta and its driving forces as well as the differences of driving forces among Shenzhen, Dongguan and Foshan by adopting the approaches of land use dynamic degree, the land use transition matrix and case studies. The results show that a large amount of farmland and forests have been converted to construction land in the study area, and the synthesize land use dynamic degrees of the study area are 2.3% and 6.2% during 1990-2000 and 2000-2010, respectively. The results also indicate that Zhuhai and Shenzhen have the highest land use dynamic degree among the nine cities of Pearl River Delta during 1990-2000, and Dongguan has the highest land use dynamic degree during 2000-2010. It can be inferred that the transitions from farmland and forest to construction land have been propelled by the local economic development and population growth, and the land use changes in forest and grassland have been driven by natural factors such as slope and elevation.
Urban land use of the Sao Paulo metropolitan area by automatic analysis of LANDSAT data
NASA Technical Reports Server (NTRS)
Parada, N. D. J. (Principal Investigator); Niero, M.; Foresti, C.
1983-01-01
The separability of urban land use classes in the metropolitan area of Sao Paulo was studied by means of automatic analysis of MSS/LANDSAT digital data. The data were analyzed using the media K and MAXVER classification algorithms. The land use classes obtained were: CBD/vertical growth area, residential area, mixed area, industrial area, embankment area type 1, embankment area type 2, dense vegetation area and sparse vegetation area. The spectral analysis of representative samples of urban land use classes was done using the "Single Cell" analysis option. The classes CBD/vertical growth area, residential area and embankment area type 2 showed better spectral separability when compared to the other classes.
NASA Astrophysics Data System (ADS)
Ueda, Shigenori; Iwasaki, Yoh; Ushioda, Sukekatsu
2003-10-01
The magnetic domain structures of Fe thin films on two-dimensionally arranged land-and-groove structures have been studied by spin-polarized secondary electron microscopy (SP-SEM) under an applied dc field. The coercive force on the land area was found to be higher than that on the groove area under magnetization reversal. The surface roughness measured by atomic force microscopy (AFM) was greater on the land area than on the groove area. The roughness-induced high-coercivity on the land prevented the reversed magnetic domain on the groove from spreading over the land in the initial magnetization reversal. This result indicates that surface roughness is an important factor in domain size control of thin magnetic films.
Land consolidation in mountain areas. Case study from southern Poland
NASA Astrophysics Data System (ADS)
Janus, Jarosław; Łopacka, Magdalena; John, Ewa
2017-12-01
Land consolidation procedures are an attempt to comprehensively change the existing spatial structure of land in rural areas. This treatment also brings many other social and economic benefi ts, contributing to the development of consolidated areas. Land consolidation in mountain areas differs in many respects from those implemented in areas with more favorable conditions for the functioning of agriculture. The unfavorable values of land fragmentation indices, terrain conditions and lower than the average soil quality affect both the dominant forms of agricultural activity and the limited opportunities to improve the distribution of plots in space, parameters of shape, and the area as a result of land consolidation. For this reason, the effectiveness of land consolidation in mountain areas can be achieved by improving the quality of transportation network and the accessibility of the plots, arranging ownership issues and improving the quality of cadastral documentation. This article presents the evaluation of the measures of effectiveness of land consolidation realized in mountain areas on the example of Łetownia Village in the Małopolska Province, located in the southern part of Poland. Selected village is an area with unfavorable conditions for the functioning of agriculture and high values of land fragmentation indices.
Land-use legacies from dry farming in the Park Valley area of Box Elder County
USDA-ARS?s Scientific Manuscript database
Last fall in this newsletter, we reported on the initiation of a study on the land-use legacies of dry farming in the Park Valley area. Land-use legacies are the long lasting impacts of historic land uses; such as, cultivation for dry farming. The Park Valley area and Box Elder County experienced ...
Zhang, Yuanzhi; Chen, Zhengyi; Zhu, Boqin; Luo, Xiuyue; Guan, Yanning; Guo, Shan; Nie, Yueping
2008-12-01
The objective of this study is to develop techniques for assessing and analysing land desertification in Yulin of Northwest China, as a typical monitoring region through the use of remotely sensed data and geographic information systems (GIS). The methodology included the use of Landsat TM data from 1987, 1996 and 2006, supplemented by aerial photos in 1960, topographic maps, field work and use of other existing data. From this, land cover, the Normalised Difference Vegetation Index (NDVI), farmland, woodland and grassland maps at 1:100,000 were prepared for land desertification monitoring in the area. In the study, all data was entered into a GIS using ILWIS software to perform land desertification monitoring. The results indicate that land desertification in the area has been developing rapidly during the past 40 years. Although land desertification has to some extent been controlled in the area by planting grasses and trees, the issue of land desertification is still serious. The study also demonstrates an example of why the integration of remote sensing with GIS is critical for the monitoring of environmental changes in arid and semi-arid regions, e.g. in land desertification monitoring in the Yulin pilot area. However, land desertification monitoring using remote sensing and GIS still needs to be continued and also refined for the purpose of long-term monitoring and the management of fragile ecosystems in the area.
NASA Astrophysics Data System (ADS)
Koppad, A. G.; Janagoudar, B. S.
2017-05-01
The study was conducted in Uttara Kannada districts during the year 2012-2014. The study area lies between 13.92° N to 15.52° N latitude and 74.08° E to 75.09° E longitude with an area of 10,215 km2. The Indian satellite IRS P6 LISS-III imageries were used to classify the land use land cover classes with ground truth data collected with GPS through supervised classification in ERDAS software. The land use and land cover classes identified were dense forest, horticulture plantation, sparse forest, forest plantation, open land and agriculture land. The dense forest covered an area of 63.32 % (6468.70 sq km) followed by agriculture 12.88 % (1315.31 sq. km), sparse forest 10.59 % (1081.37 sq. km), open land 6.09 % (622.37 sq. km), horticulture plantation and least was forest plantation (1.07 %). Settlement, stony land and water body together cover about 4.26 percent of the area. The study indicated that the aspect and altitude influenced the forest types and vegetation pattern. The NDVI map was prepared which indicated that healthy vegetation is represented by high NDVI values between 0.1 and 1. The non-vegetated features such as water bodies, settlement, and stony land indicated less than 0.1 values. The decrease in forest area in some places was due to anthropogenic activities. The thematic map of land use land cover classes was prepared using Arc GIS Software.
Location of irrigated land classified from satellite imagery - High Plains Area, nominal date 1992
Qi, Sharon L.; Konduris, Alexandria; Litke, David W.; Dupree, Jean
2002-01-01
Satellite imagery from the Landsat Thematic Mapper (nominal date 1992) was used to classify and map the location of irrigated land overlying the High Plains aquifer. The High Plains aquifer underlies 174,000 square miles in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. The U.S. Geological Survey is conducting a water-quality study of the High Plains aquifer as part of the National Water-Quality Assessment Program. To help interpret data and select sites for the study, it is helpful to know the location of irrigated land within the study area. To date, the only information available for the entire area is 20 years old. To update the data on irrigated land, 40 summer and 40 spring images (nominal date 1992) were acquired from the National Land Cover Data set and processed using a band-ratio method (Landsat Thematic Mapper band 4 divided by band 3) to enhance the vegetation signatures. The study area was divided into nine subregions with similar environmental characteristics, and a band-ratio threshold was selected from imagery in each subregion that differentiated the cutoff between irrigated and nonirrigated land. The classified images for each subregion were mosaicked to produce an irrigated-land map for the study area. The total amount of irrigated land classified from the 1992 imagery was 13.1 million acres, or about 12 percent of the total land in the High Plains. This estimate is approximately 1.5 percent greater than the amount of irrigated land reported in the 1992 Census of Agriculture (12.8 millions acres).
Remote sensing of effects of land use practices on water quality
NASA Technical Reports Server (NTRS)
Graves, D. H.; Colthrap, G. B.
1977-01-01
An intensive study was conducted to determine the utility of manual densitometry and color additive viewing of aircraft and LANDSAT transparencies for monitoring land use and land use change. The relationship between land use and selected water quality parameters was also evaluated. Six watersheds located in the Cumberland Plateau region of eastern Kentucky comprised the study area for the project. Land uses present within the study area were reclaimed surface mining and forestry. Fertilization of one of the forested watersheds also occurred during the study period.
Mahmoud, Shereif H.; Alazba, A. A.
2015-01-01
The hydrological response to land cover changes induced by human activities in arid regions has attracted increased research interest in recent decades. The study reported herein assessed the spatial and quantitative changes in surface runoff resulting from land cover change in the Al-Baha region of Saudi Arabia between 1990 and 2000 using an ArcGIS-surface runoff model and predicted land cover and surface runoff depth in 2030 using Markov chain analysis. Land cover maps for 1990 and 2000 were derived from satellite images using ArcGIS 10.1. The findings reveal a 26% decrease in forest and shrubland area, 28% increase in irrigated cropland, 1.5% increase in sparsely vegetated land and 0.5% increase in bare soil between 1990 and 2000. Overall, land cover changes resulted in a significant decrease in runoff depth values in most of the region. The decrease in surface runoff depth ranged from 25-106 mm/year in a 7020-km2 area, whereas the increase in such depth reached only 10 mm/year in a 243-km2 area. A maximum increase of 73 mm/year was seen in a limited area. The surface runoff depth decreased to the greatest extent in the central region of the study area due to the huge transition in land cover classes associated with the construction of 25 rainwater harvesting dams. The land cover prediction revealed a greater than twofold increase in irrigated cropland during the 2000-2030 period, whereas forest and shrubland are anticipated to occupy just 225 km2 of land area by 2030, a significant decrease from the 747 km2 they occupied in 2000. Overall, changes in land cover are predicted to result in an annual increase in irrigated cropland and dramatic decline in forest area in the study area over the next few decades. The increase in surface runoff depth is likely to have significant implications for irrigation activities. PMID:25923712
Li, Xia; Mitra, Chandana; Dong, Li; ...
2017-02-02
In order to explore potential climatic consequences of land cover change in the Kolkata Metropolitan Development area, we projected microclimate conditions in this area using the Weather Research and Forecasting (WRF) model driven by future land use scenarios. Specifically, we considered two land conversion scenarios including an urbanization scenario that all the wetlands and croplands would be converted to built-up areas, and an irrigation expansion scenario in which all wetlands and dry croplands would be replaced by irrigated croplands. Our results indicated that land use and land cover (LULC) change would dramatically increase regional temperature in this area under themore » urbanization scenario, but expanded irrigation tended to have a cooling effect. In the urbanization scenario, precipitation center tended to move eastward and lead to increased rainfall in eastern parts of this region. Increased irrigation stimulated rainfall in central and eastern areas but reduced rainfall in southwestern and northwestern parts of the study area. Our study also demonstrated that urbanization significantly reduced latent heat fluxes and albedo of land surface; while increased sensible heat flux changes following urbanization suggested that developed land surfaces mainly acted as heat sources. In this study, climate change projection not only predicts future spatiotemporal patterns of multiple climate factors, but also provides valuable insights into policy making related to land use management, water resource management, and agriculture management to adapt and mitigate future climate changes in this populous region.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xia; Mitra, Chandana; Dong, Li
In order to explore potential climatic consequences of land cover change in the Kolkata Metropolitan Development area, we projected microclimate conditions in this area using the Weather Research and Forecasting (WRF) model driven by future land use scenarios. Specifically, we considered two land conversion scenarios including an urbanization scenario that all the wetlands and croplands would be converted to built-up areas, and an irrigation expansion scenario in which all wetlands and dry croplands would be replaced by irrigated croplands. Our results indicated that land use and land cover (LULC) change would dramatically increase regional temperature in this area under themore » urbanization scenario, but expanded irrigation tended to have a cooling effect. In the urbanization scenario, precipitation center tended to move eastward and lead to increased rainfall in eastern parts of this region. Increased irrigation stimulated rainfall in central and eastern areas but reduced rainfall in southwestern and northwestern parts of the study area. Our study also demonstrated that urbanization significantly reduced latent heat fluxes and albedo of land surface; while increased sensible heat flux changes following urbanization suggested that developed land surfaces mainly acted as heat sources. In this study, climate change projection not only predicts future spatiotemporal patterns of multiple climate factors, but also provides valuable insights into policy making related to land use management, water resource management, and agriculture management to adapt and mitigate future climate changes in this populous region.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xia; Mitra, Chandana; Dong, Li
To explore potential climatic consequences of land cover change in the Kolkata Metropolitan Development area, we projected microclimate conditions in this area using the Weather Research and Forecasting (WRF) model driven by future land use scenarios. Specifically, we considered two land conversion scenarios including an urbanization scenario that all the wetlands and croplands would be converted to built-up areas, and an irrigation expansion scenario in which all wetlands and dry croplands would be replaced by irrigated croplands. Results indicated that land use and land cover (LULC) change would dramatically increase regional temperature in this area under the urbanization scenario, butmore » expanded irrigation tended to have a cooling effect. In the urbanization scenario, precipitation center tended to move eastward and lead to increased rainfall in eastern parts of this region. Increased irrigation stimulated rainfall in central and eastern areas but reduced rainfall in southwestern and northwestern parts of the study area. This study also demonstrated that urbanization significantly reduced latent heat fluxes and albedo of land surface; while increased sensible heat flux changes following urbanization suggested that developed land surfaces mainly acted as heat sources. In this study, climate change projection not only predicts future spatiotemporal patterns of multiple climate factors, but also provides valuable insights into policy making related to land use management, water resource management, and agriculture management to adapt and mitigate future climate changes in this populous region. (C) 2017 Elsevier Ltd. All rights reserved.« less
NASA Astrophysics Data System (ADS)
Altürk, Bahadır; Konukcu, Fatih
2017-04-01
Agricultural lands that supply food, energy and ecosystem services for human life have been lost due to anthropogenic activities such as construction of roads, urban and industry areas. The significant reasons for the increase of artificial surfaces were poorly planned economic decisions by the government and internal migration due to this poorly planning. Unplanned urban sprawl also give rise to land fragmentation. Fragmentation of agricultural land affects both the agricultural production capacity and rural sustainable employment. In this study: i) Land use changes between 1990-2014 period were assessed using remotely sensed data and ii) Spatial and temporal agricultural land fragmentation were investigated using landscape pattern indice (effective mesh size), Morphological Spatial Pattern Analysis (MSPA) and Entropy method for 25 years period. The selected"hot spot" study area is located on east Thrace region of Turkey, being the service and industrial development zone where agricultural activities, water resources and natural habitat have been damaged due to rapid urban and industrial development for about 25 years. The results showed that agricultural lands decreased 6.44%, urban areas increased 111.68% and industry areas increased 251.19% during this 25 years period. Additionally, fragmentation analyses demonstrated that core agricultural areas sharply decreased and relative fragmentation (effective mesh size) increased from 50.68% to 56.77% during 1990 and 2014.
NASA Astrophysics Data System (ADS)
Mashame, Gofamodimo; Akinyemi, Felicia
2016-06-01
Land degradation (LD) is among the major environmental and anthropogenic problems driven by land use-land cover (LULC) and climate change worldwide. For example, poor LULC practises such as deforestation, livestock overstocking, overgrazing and arable land use intensification on steep slopes disturbs the soil structure leaving the land susceptible to water erosion, a type of physical land degradation. Land degradation related problems exist in Sub-Saharan African countries such as Botswana which is semi-arid in nature. LULC and LD linkage information is still missing in many semi-arid regions worldwide.Mapping seasonal LULC is therefore very important in understanding LULC and LD linkages. This study assesses the impact of seasonal LULC variation on LD utilizing Remote Sensing (RS) techniques for Palapye region in Central District, Botswana. LULC classes for the dry and rainy seasons were classified using LANDSAT 8 images at Level I according to the Food and Agriculture Organization (FAO) International Organization of Standardization (ISO) code 19144. Level I consists of 10 LULC classes. The seasonal variations in LULC are further related to LD susceptibility in the semi-arid context. The results suggest that about 985 km² (22%) of the study area is susceptible to LD by water, major LULC types affected include: cropland, paved/rocky material, bare land, built-up area, mining area, and water body. Land degradation by water susceptibility due to seasonal land use-land cover variations is highest in the east of the study area where there is high cropland to bare land conversion.
1978-02-10
Units ................................ 28 3.0 ARIZONA -CALIFORNIA STUDY AREA ........................ 35 3.1 Summary of Aggregate Resources...CONTENTS (Cont.) Page LIST OF APPENDICES A New Mexico-Texas Study Area Data Sheets B Arizona -California Study Area Data Sheets C Nevada-California Study...3 3 Arizona -California Study Area Location Map ..... 4 4 Nevada-California Study Area Location Map ...... 5 LIST OF TABLES 1 Preliminary
NASA Astrophysics Data System (ADS)
De Giglio, Michaela; Allocca, Maria; Franci, Francesca
2016-10-01
Land Use Land Cover Changes (LULCC) data provide objective information to support environmental policy, urban planning purposes and sustainable land development. Understanding of past land use/cover practices and current landscape patterns is critical to assess the effects of LULCC on the Earth system. Within the framework of soil sealing in Italy, the present study aims to assess the LULCC of the Nola area (Naples metropolitan area, Italy), relating to a thirty year period from 1984 to 2015. The urban sprawl affects this area causing the impervious surface increase, the loss in rural areas and landscape fragmentation. Located near Vesuvio volcano and crossed by artificial filled rivers, the study area is subject to landslide, hydraulic and volcanic risks. Landsat time series has been processed by means of the supervised per-pixel classification in order to produce multitemporal Land Use Land Cover maps. Then, post-classification comparison approach has been applied to quantify the changes occurring between 1984 and 2015, also analyzing the intermediate variations in 1999, namely every fifteen years. The results confirm the urban sprawl. The increase of the built-up areas mainly causes the habitat fragmentation and the agricultural land conversion of the Nola area that is already damaged by unauthorized disposal of urban waste. Moreover, considering the local risk maps, it was verified that some of the new urban areas were built over known hazardous sites. In order to limit the soil sealing, urgent measures and sustainable urban planning are required.
[Land Use Pattern Change and Regional Sustainability Evaluation of Wetland in Jiaogang Lake].
Yang, Yang; Cai, Yi-min; Bai, Yan-ying; Chen, Wei-ping; Yang, Xiu-chao
2015-06-01
Changes in land use and sustainability evaluation of wetland in Jiaogang Lake from 1995 to 2013 were analyzed, based on the land use change models and an index system, supported by RS, GIS, and social statistical data. The results showed: (1) dry land, paddy field, and building land were the predominant landscape in the study area. The arable land was mainly converted during 1995-2000, which was driven by the extension of agriculture, and the building land increased significantly during 2010-2013, which was driven by the tourism development. (2) Compared to the beginning research area, the building land increased by 123.3%, and the wetland decreased by 23.15%. The land system was at risk for a low proportion of wetland, scarcity of unused land, and the fragmented landscape. (3) The regional sustainability results were bad level, bad level, poor level, good level, and poor level during the different periods, with some room for improvement. (4) The fitness of regional sustainability in study area yielded satisfactory results in 2010, owing to the rapid growth of regional productivity and the regional stability. Since 2010, with the increasing environmental load, the regional sustainability fell down to the poor level. The obstruction of sustainable development is necessary to be addressed in the study area.
Xian, George; Homer, Collin G.; Fry, Joyce
2009-01-01
The recent release of the U.S. Geological Survey (USGS) National Land Cover Database (NLCD) 2001, which represents the nation's land cover status based on a nominal date of 2001, is widely used as a baseline for national land cover conditions. To enable the updating of this land cover information in a consistent and continuous manner, a prototype method was developed to update land cover by an individual Landsat path and row. This method updates NLCD 2001 to a nominal date of 2006 by using both Landsat imagery and data from NLCD 2001 as the baseline. Pairs of Landsat scenes in the same season in 2001 and 2006 were acquired according to satellite paths and rows and normalized to allow calculation of change vectors between the two dates. Conservative thresholds based on Anderson Level I land cover classes were used to segregate the change vectors and determine areas of change and no-change. Once change areas had been identified, land cover classifications at the full NLCD resolution for 2006 areas of change were completed by sampling from NLCD 2001 in unchanged areas. Methods were developed and tested across five Landsat path/row study sites that contain several metropolitan areas including Seattle, Washington; San Diego, California; Sioux Falls, South Dakota; Jackson, Mississippi; and Manchester, New Hampshire. Results from the five study areas show that the vast majority of land cover change was captured and updated with overall land cover classification accuracies of 78.32%, 87.5%, 88.57%, 78.36%, and 83.33% for these areas. The method optimizes mapping efficiency and has the potential to provide users a flexible method to generate updated land cover at national and regional scales by using NLCD 2001 as the baseline.
Geological risk assessment for the rapid development area of the Erhai Basin
NASA Astrophysics Data System (ADS)
Yang, Liu; Wang, Zhanqi; Jin, Gui; Chen, Dongdong; Wang, Zhan
For low-slope hilly land development to have more new land space in a watershed, it is particularly important that to coordinate the sharply increasing conflicts between mountainous and urban land utilization in the city. However, development of low-slope hilly land easily induce potential risks of geologic hazards such as landslide and landslip. It may lead to further environmental losses in a watershed. Hence, it is necessary to study potential risks of geo-hazards in low-slope hilly land development in urban area. Based on GIS spatial analysis technique, we select a study area, Dali City in the Erhai Basin located in watershed belt of Jinsha River, Lancang River and Red River in Yunnan Province of China. Through studying some relevant key indexes and parameters for monitoring potential risks of geo-hazards, we establish a composite index model for zoning the area with potential risks of geo-hazards in development of low-slope hilly land in the study area. Our research findings indicate that the potential risks of geo-hazards in eastern Dali City is relatively low while of that on slow hills with gentle slopes in the western area are relatively high. By using a zoning research method, generated maps show geological information of potential risks of geo-hazards on low-slope hilly land which provide important messages for guarding against natural geo-hazards and potential environmental losses in a watershed.
Population condition analysis of Jakarta land deformation area
NASA Astrophysics Data System (ADS)
Putri, R. F.; Wibirama, S.; Sukamdi; Giyarsih, S. R.
2018-04-01
Jakarta is located in the North West area of West Java Province which geographically positioned on 106°33’00”-107°00’00”BT and 5°48’30”-6°24’00”LS. Land subsidence has occured in several types of landuse such as trade, industrial and settlement area of the urban area of Jakarta. The land subsidence disaster is one of the consequences of building and road construction in Jakarta. This is caused by massive groundwater utilization and failure in landuse planning. This study aim to analyze the population density and settlement pattern in the urban area of Jakarta which the occurence of land subsidence has been detected. It is important to understand landuse and settlement planning processes in the area which land subsidence occured. Detection of land subsidence distribution become a necessary parameter in landuse planning. While the land subsidence area detected using Differential Synthetic Aperture Radar (DInSAR) method. The result shows the area which land subsidence occured has a very high population density and clustered and linear settlement pattern. This area is mainly used as industrial, trade, and settlement.
NASA Astrophysics Data System (ADS)
Tampubolon, Togi; Abdullah, Khiruddin bin; San, Lim Hwee
2013-09-01
The spectral characteristics of land cover are basic references in classifying satellite image for geophysics analysis. It can be obtained from the measurements using spectrometer and satellite image processing. The aims of this study to investigate the spectral characteristics of land cover based on the results of measurement using Spectrometer Cropscan MSR 16R and Landsat satellite imagery. The area of study in this research is in Medan, (Deli Serdang, North Sumatera) Indonesia. The scope of this study is the basic survey from the measurements of spectral land cover which is covered several type of land such as a cultivated and managed terrestrial areas, natural and semi-natural, cultivated aquatic or regularly flooded areas, natural and semi-natural aquatic, artificial surfaces and associated areas, bare areas, artificial waterbodies and natural waterbodies. The measurement and verification were conducted using a spectrometer provided their spectral characteristics and Landsat imagery, respectively. The results of the spectral characteristics of land cover shows that each type of land cover have a unique characteristic. The correlation of spectral land cover based on spectrometer Cropscan MSR 16R and Landsat satellite image are above 90 %. However, the land cover of artificial waterbodiese have a correlation under 40 %. That is because the measurement of spectrometer Cropscan MSR 16R and acquisition of Landsat satellite imagery has a time different.
Land Area Change in Coastal Louisiana: A Multidecadal Perspective (from 1956 to 2006)
Barras, John A.; Bernier, Julie C.; Morton, Robert A.
2008-01-01
The U.S. Geological Survey (USGS) analyzed changes in the configuration of land and water in coastal Louisiana by using a sequential series of 14 data sets summarizing land and water areas from 1956 to 2006. The purpose of this study is to provide a spatially and temporally consistent source of quantitative information on land area across coastal Louisiana, broken into three physiographic provinces (the term 'coastal Louisiana' is used to present data on the collective area). The land-water data sets used in this study are interpreted through spatial analysis and by linear regression analysis. The spatial depictions of land area change reveal a complex and interwoven mosaic of loss and gain patterns caused by natural and human-induced processes operating at varied temporal and spatial scales, resulting in fluctuating contributions to coastal loss. The linear regression analysis provides a robust estimate of recent change trends by comparing land area over time for all data sets from 1985 to 2004 and from 1985 to 2006 by physiographic province across coastal Louisiana. The 1956 to 2006 map showing multidecadal changes, along with the linear regressions of land area change presented in this study, provide a comprehensive and concise presentation of historical trends and rates of land area change in coastal Louisiana. Taking a broad historical view provides an in-depth understanding of land area changes over time. For example, one observation provided by our historical review is that the majority of the widespread, nontransitory land gains depicted on the map over the past 50 years, with the exception of the progradation of the Atchafafalaya River and Wax Lake deltas, are primarily related to sediment placement and landward migration of barrier islands. Another point revealed by our historical approach is that recent land losses caused by hurricanes sometimes commingled with or exacerbated older losses formed during the 1956 to 1978 period. Furthermore, our analyses also show how the immediate impacts of extreme storms can alter the long-term, time-averaged trends of landscape change, thus limiting the range of projections for the future. For this reason, this study does not include trend projections beyond 2015 because of uncertainties related to recovery from the 2005 hurricane season and the potential for other episodic events that could skew future rates of change.
Land use change around protected areas: management to balance human needs and ecological function.
DeFries, Ruth; Hansen, Andrew; Turner, B L; Reid, Robin; Liu, Jianguo
2007-06-01
Protected areas throughout the world are key for conserving biodiversity, and land use is key for providing food, fiber, and other ecosystem services essential for human sustenance. As land use change isolates protected areas from their surrounding landscapes, the challenge is to identify management opportunities that maintain ecological function while minimizing restrictions on human land use. Building on the case studies in this Invited Feature and on ecological principles, we identify opportunities for regional land management that maintain both ecological function in protected areas and human land use options, including preserving crucial habitats and migration corridors, and reducing dependence of local human populations on protected area resources. Identification of appropriate and effective management opportunities depends on clear definitions of: (1) the biodiversity attributes of concern; (2) landscape connections to delineate particular locations with strong ecological interactions between the protected area and its surrounding landscape; and (3) socioeconomic dynamics that determine current and future use of land resources in and around the protected area.
NASA Astrophysics Data System (ADS)
Koppad, A. G.; Janagoudar, B. S.
2017-10-01
The study was conducted in Uttara Kannada districts during the year 2012-2014. The study area lies between 13.92° N to 15.52° N latitude and 74.08° E to 75.09° E longitude with an area of 10,215 km2. The Indian satellite IRS P6 LISS-III imageries were used to classify the land use land cover classes with ground truth data collected with GPS through supervised classification in ERDAS software. The land use and land cover classes identified were dense forest, horticulture plantation, sparse forest, forest plantation, open land and agriculture land. The dense forest covered an area of 63.32 % (6468.70 sq km) followed by agriculture 12.88 % (1315.31 sq. km), sparse forest 10.59 % (1081.37 sq. km), open land 6.09 % (622.37 sq. km), horticulture plantation and least was forest plantation (1.07 %). Settlement, stony land and water body together cover about 4.26 percent of the area. The study indicated that the aspect and altitude influenced the forest types and vegetation pattern. The NDVI map was prepared which indicated that healthy vegetation is represented by high NDVI values between 0.1 and 1. The non- vegetated features such as water bodies, settlement, and stony land indicated less than 0.1 values. The decrease in forest area in some places was due to anthropogenic activities. The thematic map of land use land cover classes was prepared using Arc GIS Software.
Zhou, Min; Tan, Shukui; Zhang, Lu
2015-01-01
Land use planning is always officially implemented as an effective tool to control urban development and protect farmland. However, its impact on land use change remains untested in China. Using a case study of Hang-Jia-Hu region, the main objective of this paper was to investigate the influence of different land use spatial control schemes on farmland conversion and urban development. Comparisons of farmland conversion and urban development patterns between the urban planning area and the non-urban planning area were characterized by using remote sensing, geographical information systems, and landscape metrics. Results indicated that farmland conversion in the non-urban planning area was more intensive than that in the urban planning area, and that farmland patterns was more fragmented in the non-urban planning area. Built-up land patterns in the non-urban planning area showed a trend of aggregation, while those in the urban planning area had a dual trend of fragmentation and aggregation. Existing built-up areas had less influence on built-up land sprawl in the non-urban planning area than that in the urban planning area. Built-up land sprawl in the form of continuous development in the urban planning area led to farmland conversion; and in the non-urban planning area, built-up land sprawl in the form of leapfrogging development resulted in farmland areal declines and fragmentation. We argued that it is a basic requirement to integrate land use plans in urban and non-urban planning areas for land use planning and management.
Zhou, Min; Tan, Shukui; Zhang, Lu
2015-01-01
Land use planning is always officially implemented as an effective tool to control urban development and protect farmland. However, its impact on land use change remains untested in China. Using a case study of Hang-Jia-Hu region, the main objective of this paper was to investigate the influence of different land use spatial control schemes on farmland conversion and urban development. Comparisons of farmland conversion and urban development patterns between the urban planning area and the non-urban planning area were characterized by using remote sensing, geographical information systems, and landscape metrics. Results indicated that farmland conversion in the non-urban planning area was more intensive than that in the urban planning area, and that farmland patterns was more fragmented in the non-urban planning area. Built-up land patterns in the non-urban planning area showed a trend of aggregation, while those in the urban planning area had a dual trend of fragmentation and aggregation. Existing built-up areas had less influence on built-up land sprawl in the non-urban planning area than that in the urban planning area. Built-up land sprawl in the form of continuous development in the urban planning area led to farmland conversion; and in the non-urban planning area, built-up land sprawl in the form of leapfrogging development resulted in farmland areal declines and fragmentation. We argued that it is a basic requirement to integrate land use plans in urban and non-urban planning areas for land use planning and management. PMID:25915897
Land cover change impact on urban flood modeling (case study: Upper Citarum watershed)
NASA Astrophysics Data System (ADS)
Siregar, R. I.
2018-03-01
The upper Citarum River watershed utilizes remote sensing technology in Geographic Information System to provide information on land coverage by interpretation of objects in the image. Rivers that pass through urban areas will cause flooding problems causing disadvantages, and it disrupts community activities in the urban area. Increased development in a city is related to an increase in the number of population growth that added by increasing quality and quantity of life necessities. Improved urban lifestyle changes have an impact on land cover. The impact in over time will be difficult to control. This study aims to analyze the condition of flooding in urban areas caused by upper Citarum watershed land-use change in 2001 with the land cover change in 2010. This modeling analyzes with the help of HEC-RAS to describe flooded inundation urban areas. Land cover change in upper Citarum watershed is not very significant; it based on the results of data processing of land cover has the difference of area that changed is not enormous. Land cover changes for the floods increased dramatically to a flow coefficient for 2001 is 0.65 and in 2010 at 0.69. In 2001, the inundation area about 105,468 hectares and it were about 92,289 hectares in 2010.
NASA Astrophysics Data System (ADS)
Avdan, Uǧur; Demircioglu Yildiz, Nalan; Dagliyar, Ayse; Yigit Avdan, Zehra; Yilmaz, Sevgi
2014-05-01
Resolving the problems that arise due to the land use are not suitable for the purpose in the rural and urban areas most suitable for land use of parameters to be determined. Unintended and unplanned developments in the use of agricultural land in our country caused increases the losses by soil erosion. In this study, Thermal Band analysis is made in Pasinler city center with the aim of identifying bioclimatic comfort values of the different agricultural area. Satellite images can be applied for assessing the thermal urban environment as well as for defining heat islands in agricultural areas. In this context, temperature map is tried to be produced with land surface temperature (LST) analysis made on Landsat TM5 satellite image. The Landsat 5 images was obtained from USGS for the study area. Using Landsat bands of the study area was mapped by supervised classification with the maximum likelihood classification algorithm of ERDAS imagine 2011 software. Normalized Difference Vegetation Index (NDVI) image was produced by using Landsat images. The digital number of the Landsat thermal infrared band (10.40 - 12.50 µm) is converted to the spectral radiance. The surface emissivity was calculated by using NDVI. The spatial pattern of land surface temperature in the study area is taken to characterize their local effects on agricultural land. Areas having bioclimatic comfort and ecologically urbanized, are interpreted with different graphical presentation technics. The obtained results are important because they create data bases for sustainable urban planning and provide a direction for planners and governors. As a result of rapid changes in land use, rural ecosystems and quality of life are deteriorated and decreased. In the presence of increased building density, for the comfortable living of people natural and cultural resources should be analyzed in detail. For that reason, optimal land use planning should be made in rural area.
Paule, M A; Memon, S A; Lee, B-Y; Umer, S R; Lee, C-H
2014-01-01
Stormwater runoff quality is sensitive to land use and land cover (LULC) change. It is difficult to understand their relationship in predicting the pollution potential and developing watershed management practices to eliminate or reduce the pollution risk. In this study, the relationship between LULC change and stormwater runoff quality in two separate monitoring sites comprising a construction area (Site 1) and mixed land use (Site 2) was analyzed using geographic information system (GIS), event mean concentration (EMC), and correlation analysis. It was detected that bare land area increased, while other land use areas such as agriculture, commercial, forest, grassland, parking lot, residential, and road reduced. Based on the analyses performed, high maximum range and average EMCs were found in Site 2 for most of the water pollutants. Also, urban areas and increased conversion of LULC into bare land corresponded to degradation of stormwater quality. Correlation analysis between LULC and stormwater quality showed the influence of different factors such as farming practices, geographical location, and amount of precipitation, vegetation loss, and anthropogenic activities in monitoring sites. This research found that GIS application was an efficient tool for monthly monitoring, validation and statistical analysis of LULC change in the study area.
Andrews, W.J.; Fong, A.L.; Harrod, Leigh; Dittes, M.E.
1998-01-01
Land uses in the urban land use study area affected the concentrations of some water-quality constituents. Concentrations of nitrate and chloride, and frequencies of detection of pesticides and of volatile organic compounds, were greater in water samples from the surficial sand and gravel aquifer underlying the urban land use study area than in water samples from similar aquifers from part of the Upper Mississippi River Basin National Water-Quality Assessment study unit. Land uses within 500-meter radii of each well were quantified by digitizing overlays of aerial photographs that were verified and updated in the field. Concentrations of magnesium and sulfate were greater in ground water beneath areas of denser residential development, which may be a natural artifact of better drainage and a deeper water table in those areas. Frequencies of detection of some pesticides and volatile organic compounds were greater in water from wells with greater proportions of industrial and transportation land uses. Ground water in areas with less dense residential development, mostly the more recently-developed areas, tended to have greater concentrations of agricultural herbicides and some nutrients probably a relict of previous agricultural land use.
Zhou, Rui; Li, Yue-hui; Hu, Yuan-man; Su, Hai-long; Wang, Jin-nian
2011-03-01
Choosing Xinzhuang Town in south Jiangsu Province as study area, and by using 1980, 1991, 2001, and 2009 high-resolution remote sensing images and GIS spatial analysis technology, an integrated expansion degree index model was established based on the existing indicators of construction land expansion, and the general and spatiotemporal differentiation characteristics of construction land expansion in the Town in three time periods of 1980-2009 were quantitatively analyzed. In 1980-2009, with the acceleration of rural urbanization and industrialization, the area of construction land in the Town increased significantly by 19.24 km2, and especially in 2001-2009, the expanded area, expanded contribution rate, and expansion intensity reached the maximum. The construction land expansion had an obvious spatial differentiation characteristic. In 1980-1991, the newly increased construction land mainly concentrated in town area. After 1991, the focus of construction land gradually spread to the villages with developed industries. Most of the increased construction lands were converted from paddy field and dry land, accounting for 88.1% of the total increased area, while the contribution from other land types was relatively small.
Li, Xing-hua; Han, Fang; Zhang, Cun-hou; Na, Ri-su; Liu, Peng-tao
2009-01-01
By using wavelet transform and remote sensing techniques, the influence of climate change on the unique mosaic landscape of sand land-wetland in middle-east Inner Mongolia in 1961 -2005 was studied. The results showed that in 1961-2005, the annual air temperature in study area had an increment of 0.32 degrees C x (10 a)(-1), the annual precipitation fluctuated with a cycle of 30 years and of 15 years, and the annual average wind speed decreased by 0.26 m x s(-1) x (10 a)(-1). In the southeast part of study area, which located in the places between Hunshandake sand land and Keerqin Deserts, there was a district, in which, the climatic characteristics did not change evidently. Until 2010, the study area would still have an increasing air temperature, lesser precipitation, and decreasing wind speed. Under the influence of warming and drying, the total area of Hunshandake sand land and the wetland around reduced year after year, and, with the vegetation degradation on sand land, wetland shrunk and lake dried up, moving sand land enlarged ceaselessly, while immovable and semi-moving sand lands reduced obviously.
Classification of irrigated land using satellite imagery, the High Plains aquifer, nominal date 1992
Qi, Sharon L.; Konduris, Alexandria; Litke, David W.; Dupree, Jean
2002-01-01
Satellite imagery from the Landsat Thematic Mapper (nominal date 1992) was used to classify and map the location of irrigated land across the High Plains aquifer. The High Plains aquifer underlies 174,000 square miles in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. The U.S. Geological Survey is conducting a waterquality study of the High Plains aquifer as part of the National Water-Quality Assessment Program. To help interpret data and select sites for the study, it is helpful to know the location of irrigated land within the study area. To date, the only information available for the entire area is 20 years old. To update the data on irrigated land, 40 summer and 40 spring images (nominal date 1992) were acquired from the National Land Cover Data set and processed using a band-ratio method (Landsat Thematic Mapper band 4 divided by band 3) to enhance the vegetation signatures. The study area was divided into nine subregions with similar environmental characteristics, and a band-ratio threshold was selected from imagery in each subregion that differentiated the cutoff between irrigated and nonirrigated land. The classified images for each subregion were mosaicked to produce an irrigated land map for the study area. The total amount of irrigated land classified from the 1992 imagery was 13.1 million acres, or about 12 percent of the total land in the High Plains. This estimate is approximately 1.5 percent greater than the amount of irrigated land reported in the 1992 Census of Agriculture (12.8 millions acres). This information was also compared to a similar data set based on 1980 imagery. The 1980 data classified 13.7 million acres as irrigated. Although the change in the amount of irrigated land between the two times was not substantial, the location of the irrigated land did shift from areas where there were large ground-water-level declines to other areas where ground-water levels were static or rising.
14 CFR 161.11 - Identification of land uses in airport noise study area.
Code of Federal Regulations, 2011 CFR
2011-01-01
... noise study area. 161.11 Section 161.11 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRPORTS NOTICE AND APPROVAL OF AIRPORT NOISE AND ACCESS RESTRICTIONS General Provisions § 161.11 Identification of land uses in airport noise study area. For the...
14 CFR 161.11 - Identification of land uses in airport noise study area.
Code of Federal Regulations, 2010 CFR
2010-01-01
... noise study area. 161.11 Section 161.11 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRPORTS NOTICE AND APPROVAL OF AIRPORT NOISE AND ACCESS RESTRICTIONS General Provisions § 161.11 Identification of land uses in airport noise study area. For the...
NASA Astrophysics Data System (ADS)
Suherman, A.; Rahman, M. Z. A.; Busu, I.
2014-02-01
The presence of hydrocarbon seepage is generally associated with rock or mineral alteration product exposures, and changes of soil properties which manifest with bare development and stress vegetation. This alters the surface thermodynamic properties, changes the energy balance related to the surface reflection, absorption and emission, and leads to shift in albedo and LST. Those phenomena may provide a guide for seepage detection which can be recognized inexpensively by remote sensing method. District of Miri is used for study area. Available topographic maps of Miri and LANDSAT ETM+ were used for boundary construction and determination albedo and LST. Three land use classification methods, namely fixed, supervised and NDVI base classifications were employed for this study. By the intensive land use classification and corresponding statistical comparison was found a clearly shift on albedo and land surface temperature between internal and external seepage potential area. The shift shows a regular pattern related to vegetation density or NDVI value. In the low vegetation density or low NDVI value, albedo of internal area turned to lower value than external area. Conversely in the high vegetation density or high NDVI value, albedo of internal area turned to higher value than external area. Land surface temperature of internal seepage potential was generally shifted to higher value than external area in all of land use classes. In dense vegetation area tend to shift the temperature more than poor vegetation area.
Nowak, Agnieszka; Schneider, Christian
2017-07-15
Environmental degradation encompasses multiple processes that are rarely combined in analyses. This study refers to three types of environmental degradation resulting from agricultural activity: soil erosion, nutrient loss, and groundwater pollution. The research was conducted in seven distinct study areas in the Malopolska Province, Poland, each characterized by different environmental properties. Calculations were made on the basis of common models, i.e., USLE (soil erosion), InVEST (nutrient loss), and DRASTIC (groundwater pollution). Two scenarios were calculated to identify the areas contributing to potential and actual degradation. For the potential degradation scenario all study areas were treated as arable land. To identify the areas actually contributing to all three types of degradation, the de facto land use pattern was used for a second scenario. The results show that the areas most endangered by agricultural activity are located in the mountainous region, whereas most of the degraded zones were located in valley bottoms and areas with intensive agriculture. The different hazards rarely overlap spatially in the given study areas - meaning that different areas require different management approaches. The distribution of arable land was negatively correlated with soil erosion hazard, whereas no linkage was found between nutrient loss or groundwater pollution hazards and the proportion of arable land. This indicates that the soil erosion hazard is the most influential factor in the distribution of arable land, whereas nutrient loss and groundwater pollution is widely ignored during land use decision-making. Slope largely and most frequently influences all hazard types, whereas land use also played an important role in the case of soil and nutrient losses. In this study we presented a consistent methodology to capture complex degradation processes and provide robust indicators which can be included in existing impact assessment approaches like Life Cycle Assessments and Grey Water Footprint analyses. Copyright © 2017 Elsevier B.V. All rights reserved.
Effects of anthropogenic land-subsidence on inundation dynamics: the case study of Ravenna, Italy
NASA Astrophysics Data System (ADS)
Carisi, Francesca; Domeneghetti, Alessio; Castellarin, Attilio
2016-05-01
Can differential land-subsidence significantly alter river flooding dynamics, and thus flood risk in flood prone areas? Many studies show how the lowering of the coastal areas is closely related to an increase in the flood-hazard due to more important tidal flooding and see level rise. The literature on the relationship between differential land-subsidence and possible alterations to riverine flood-hazard of inland areas is still sparse, although several geographical areas characterized by significant land-subsidence rates during the last 50 years experienced intensification in both inundation magnitude and frequency. We investigate the possible impact of a significant differential ground lowering on flood hazard over a 77 km2 area around the city of Ravenna, in Italy. The rate of land-subsidence in the study area, naturally in the order of a few mm year-1, dramatically increased up to 110 mm year-1 after World War II, primarily due to groundwater pumping and gas production platforms. The result was a cumulative drop that locally exceeds 1.5 m. Using a recent digital elevation model (res. 5 m) and literature data on land-subsidence, we constructed a ground elevation model over the study area in 1897 and we characterized either the current and the historical DEM with or without road embankments and land-reclamation channels in their current configuration. We then considered these four different topographic models and a two-dimensional hydrodynamic model to simulate and compare the inundation dynamics associated with a levee failure scenario along embankment system of the river Montone, which flows eastward in the southern portion of the study area. For each topographic model, we quantified the flood hazard in terms of maximum water depth (h) and we compared the actual effects on flood-hazard dynamics of differential land-subsidence relative to those associated with other man-made topographic alterations, which resulted to be much more significant.
14 CFR 161.11 - Identification of land uses in airport noise study area.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Identification of land uses in airport..., DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRPORTS NOTICE AND APPROVAL OF AIRPORT NOISE AND ACCESS RESTRICTIONS General Provisions § 161.11 Identification of land uses in airport noise study area. For the...
14 CFR 161.11 - Identification of land uses in airport noise study area.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Identification of land uses in airport..., DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRPORTS NOTICE AND APPROVAL OF AIRPORT NOISE AND ACCESS RESTRICTIONS General Provisions § 161.11 Identification of land uses in airport noise study area. For the...
NASA Astrophysics Data System (ADS)
Ghosh, A.; Smith, J. C.; Hijmans, R. J.
2017-12-01
Since mid-1990s, the Cambodian government granted nearly 300 `Economic Land Concessions' (ELCs), occupying approximately 2.3 million ha to foreign and domestic organizations (primarily agribusinesses). The majority of Cambodian ELC deals have been issued in areas of both relatively low population density and low agricultural productivity, dominated by smallholder production. These regions often contain highly biodiverse areas, thereby increasing the ecological cost associated with land clearing for extractive purposes. These large-scale land transactions have also resulted in substantial and rapid changes in land-use patterns and agriculture practices by smallholder farmers. In this study, we investigated the spatio-temporal characteristics of land use change associated with large-scale land transactions across Cambodia using multi-temporal multi-reolution remote sensing data. We identified major regions of deforestation during the last two decades using Landsat archive, global forest change data (2000-2014) and georeferenced database of ELC deals. We then mapped the deforestation and land clearing within ELC boundaries as well as areas bordering or near ELCs to quantify the impact of ELCs on local communities. Using time-series from MODIS Vegetation Indices products for the study period, we also estimated the time period over which any particular ELC deal initiated its proposed activity. We found evidence of similar patterns of land use change outside the boundaries of ELC deals which may be associated with i) illegal land encroachments by ELCs and/or ii) new agricultural practices adopted by local farmers near ELC boundaries. We also detected significant time gaps between ELC deal granting dates and initiation of land clearing for ELC purposes. Interestingly, we also found that not all designated areas for ELCs were put into effect indicating the possible proliferation of speculative land deals. This study demonstrates the potential of remote sensing techniques as a tool for monitoring in areas with weak governance and lack of enforcement of land tenure.
Spatial and Temporal Patterns of Land Loss in Mississippi River Delta
NASA Astrophysics Data System (ADS)
Roy, S.; Edmonds, D. A.; Robeson, S. M.; Ortiz, A. C.; Nienhuis, J.
2017-12-01
Land loss across the Louisiana coast is predicted to exceed 10,000 km2 by 2100. An estimated 18-24 billion tons of sediment is needed to offset land loss, but available sediment supply from the Mississippi River falls short. As a result, coastal restoration plans must target certain areas, which highlight the importance of understanding the processes and patterns of land loss. In this study, we use remote sensing to investigate and quantify land loss patterns, as well as the corresponding morphology of the land segments that are lost. Using Google Earth Engine, we combined over 10,000 time-series Landsat imagery in the Mississippi River Delta to create twelve, three-year composites from 1983 to 2016. We then spectrally unmixed each pixel into land and water percentages, and create land-water binaries. Stratifying by hydrologic unit code boundaries and local subsidence rates, we analyze the land loss pixels using landscape metrics. Our results show that the total loss from 1983-2016 for our area of interest was 908.02 km2 (loss of 5.84%) and total land area was 6855.63 km2 (49.97 % of total area) in 2016 compared to 7763.65 km2 (44.13%) in 1983 consistent with previous estimates for our study area. Land loss pixels have a low patch density (mean of 4.80 patches/ha) and high aggregation indices (mean of 47.15), which indicates that land-loss pixels tend to clump together. The shape index of these clumped pixels are also low (mean of 2.32), which points towards long, narrow patches and edges. Local indicator of spatial autocorrelation (LISA) areas was applied to determine areas of high positive autocorrelation within the loss pixels which reinforced loss across edges. Based on spatial metrics and subsidence grid based analysis on the temporal pattern of land loss pixels we find that i) land change (both growth and loss pixels) occurs along the marsh, lake and coastal edges rather than inland; ii) subsidence, though positively correlated with landloss, is no longer the dominant process of land loss at rates greater than 8 mm/year; and iii) a frequency analysis shows 30.96% of land loss occurs gradually by changing back and forth from water to land over the study period whereas 69.04% of land loss is permanent and does not revert back. Our findings provide new insight into pathways of land loss and the morphological evolution of deltaic systems.
Land use, population dynamics, and land-cover change in Eastern Puerto Rico
W.A. Gould; S. Martinuzzi; I.K. Páres-Ramos
2012-01-01
We assessed current and historic land use and land cover in the Luquillo Mountains and surrounding area in eastern Puerto Rico, including four small subwatersheds that are study watersheds of the U.S. Geological Surveyâs Water, Energy, and Biogeochemical Budgets (WEBB) program. This region occupies an area of 1,616 square kilometers, about 18 percent of the total land...
Accuracy Assessment of the GLOBELAND30 Dataset in Jiangxi Province
NASA Astrophysics Data System (ADS)
Ren, H.; Cai, G.; Zhao, G.; Li, Z.
2018-04-01
The Globeland30 dataset is the most highly spatial resolution global land cover mapping product, which developed by the National Geomatics Center of China (NGCC) in 2015. It plays a significant role in environmental monitoring, climate change, and ecosystem assessment, etc. In this study, Jiangxi province was selected as our study area, the 1 : 100000 land use data in 2010 was employed as the reference data. We aim to examine the accuracy of the Globeland30 from three methods, including area error analysis, shape consistency analysis and confusion matrix. The results show as follows: The land cover types in the study area are primarily occupied by the cultivated land and forest, and secondarily by grassland, water bodies and artificial surfaces. The area error of cultivated land, forest and water bodies are all less than 13 %; The general conformance of the shape consistency reaches to 67 %, but the shape consistency of every land type differs to a large degree, the best shape consistency of forests is up to 75 %; The confusion matrix is obtained in two cases of different class boundary with buffer and no buffer area. It is found that the overall accuracy and kappa coefficient of GlobeLand30 are improved with buffer area. The value of overall accuracy is higher than 78 %, the value of kappa coefficient is higher than 0.52.
An equilibrium analysis of the land use structure in the Yunnan Province, China
NASA Astrophysics Data System (ADS)
van Aken, H. M.; van Veldhoven, A. K.; Veth, C.; de Ruijter, W. P. M.; van Leeuwen, P. J.; Drijfhout, S. S.; Whittle, C. P.; Rouault, M.
2014-06-01
Global land use structure is changing rapidly due to unceasing population growth and accelerated urbanization, which leads to fierce competition between the rigid demand for built-up area and the protection of cultivated land, forest, and grassland. It has been a great challenge to realize the sustainable development of land resources. Based on a computable general equilibrium model of land use change with a social accounting matrix dataset, this study implemented an equilibrium analysis of the land use structure in the Yunnan Province during the period of 2008-2020 under three scenarios, the baseline scenario, low TFP (total factor productivity) scenario, and high TFP scenario. The results indicated that under all three scenarios, area of cultivated land declined significantly along with a remarkable expansion of built-up area, while areas of forest, grassland, and unused land increased slightly. The growth rate of TFP had first negative and then positive effects on the expansion of built-up area and decline of cultivated land as it increased. Moreover, the simulated changes of both cultivated land and built-up area were the biggest under the low TFP scenario, and far exceeded the limit in the Overall Plan for Land Utilization in the Yunnan Province in 2020. The scenario-based simulation results are of important reference value for policy-makers in making land use decisions, balancing the fierce competition between the protection of cultivated land and the increasing demand for built-up area, and guaranteeing food security, ecological security, and the sustainable development of land resources.
An equilibrium analysis of the land use structure in the Yunnan Province, China
NASA Astrophysics Data System (ADS)
Luo, Jiao; Zhan, Jinyan; Lin, Yingzhi; Zhao, Chunhong
2014-09-01
Global land use structure is changing rapidly due to unceasing population growth and accelerated urbanization, which leads to fierce competition between the rigid demand for built-up area and the protection of cultivated land, forest, and grassland. It has been a great challenge to realize the sustainable development of land resources. Based on a computable general equilibrium model of land use change with a social accounting matrix dataset, this study implemented an equilibrium analysis of the land use structure in the Yunnan Province during the period of 2008-2020 under three scenarios, the baseline scenario, low TFP (total factor productivity) scenario, and high TFP scenario. The results indicated that under all three scenarios, area of cultivated land declined significantly along with a remarkable expansion of built-up area, while areas of forest, grassland, and unused land increased slightly. The growth rate of TFP had first negative and then positive effects on the expansion of built-up area and decline of cultivated land as it increased. Moreover, the simulated changes of both cultivated land and built-up area were the biggest under the low TFP scenario, and far exceeded the limit in the Overall Plan for Land Utilization in the Yunnan Province in 2020. The scenario-based simulation results are of important reference value for policy-makers in making land use decisions, balancing the fierce competition between the protection of cultivated land and the increasing demand for built-up area, and guaranteeing food security, ecological security, and the sustainable development of land resources.
Study of the Human-Driven Mechanism of LUCC in the Shenfu Mining Area, NW of China
NASA Astrophysics Data System (ADS)
Wang, Tao
2018-03-01
Taking the Shenfu mining area, located in the northwest of China, as an example, temporal and spatial changes of land use/cover and its human-driven mechanism were analyzed based on the land use and MODIS NDVI data. The results show that: (1) by the implementation of the Grain for Green Project (GGP), the area of cultivated land decreased, and grassland increased. By the exploitation of coal and other resources and the development of social and economic levels, the area of construction land increased. (2) The vegetation cover level in the mining area significantly increased from 2000 to 2015, and the implementation of GGP and the increase of precipitation were the main reasons. (3) The driving force of land use to forest land and grassland could increase the level of vegetation cover, such as with the GGP, and the promotion of cultivated land and construction land will lead to the reduction of vegetation cover level, such as with urban expansion and mining area construction caused by population growth and industrial development.
NASA Astrophysics Data System (ADS)
Colak, H. E.; Memisoglu, T.
2017-11-01
Achieving high efficiency by taking advantage of agricultural land at a high level allows the continued vitality of the soil and also contributes to the country's economy. The land with the most fertilizer from agricultural land is generally the first class agricultural land (I.) followed by second (II.) and third class (III.) agricultural lands. It is accepted that all these lands are considered to be protected and various restrictions have been introduced to these lands. Soil conservation, use and development of balanced is possible to be defined in detail by exploiting the developing science and technology possibilities, determination well-defined properties and the implementation of policies by making the necessary plans. For this reason, Trabzon province is selected as the pilot region land use capability of agricultural land classes (especially urban-rural area and plateau) ongoing changes in the past years until today are examined depending on the land use first, second and third class. In this context, satellite images for 2002, 2005, 2009 and 2017 and land use data including the non-agricultural use of the province of Trabzon has been discussed and the temporal changes of agricultural areas depending on land use capability have been examined using Geographic Information Systems (GIS). In all the productive areas of Trabzon Province, the increase in urban-rural development has been examined in detail because of especially the creation of planned areas and the occurrence of construction needs. This study is a small-scale case study and the results are examined and analyzed using GIS.
The Impact of Land Use/Land Cover Changes on Land Degradation Dynamics: A Mediterranean Case Study
NASA Astrophysics Data System (ADS)
Bajocco, S.; De Angelis, A.; Perini, L.; Ferrara, A.; Salvati, L.
2012-05-01
In the last decades, due to climate changes, soil deterioration, and Land Use/Land Cover Changes (LULCCs), land degradation risk has become one of the most important ecological issues at the global level. Land degradation involves two interlocking systems: the natural ecosystem and the socio-economic system. The complexity of land degradation processes should be addressed using a multidisciplinary approach. Therefore, the aim of this work is to assess diachronically land degradation dynamics under changing land covers. This paper analyzes LULCCs and the parallel increase in the level of land sensitivity to degradation along the coastal belt of Sardinia (Italy), a typical Mediterranean region where human pressure affects the landscape characteristics through fires, intensive agricultural practices, land abandonment, urban sprawl, and tourism concentration. Results reveal that two factors mainly affect the level of land sensitivity to degradation in the study area: (i) land abandonment and (ii) unsustainable use of rural and peri-urban areas. Taken together, these factors represent the primary cause of the LULCCs observed in coastal Sardinia. By linking the structural features of the Mediterranean landscape with its functional land degradation dynamics over time, these results contribute to orienting policies for sustainable land management in Mediterranean coastal areas.
The impact of land use/land cover changes on land degradation dynamics: a Mediterranean case study.
Bajocco, S; De Angelis, A; Perini, L; Ferrara, A; Salvati, L
2012-05-01
In the last decades, due to climate changes, soil deterioration, and Land Use/Land Cover Changes (LULCCs), land degradation risk has become one of the most important ecological issues at the global level. Land degradation involves two interlocking systems: the natural ecosystem and the socio-economic system. The complexity of land degradation processes should be addressed using a multidisciplinary approach. Therefore, the aim of this work is to assess diachronically land degradation dynamics under changing land covers. This paper analyzes LULCCs and the parallel increase in the level of land sensitivity to degradation along the coastal belt of Sardinia (Italy), a typical Mediterranean region where human pressure affects the landscape characteristics through fires, intensive agricultural practices, land abandonment, urban sprawl, and tourism concentration. Results reveal that two factors mainly affect the level of land sensitivity to degradation in the study area: (i) land abandonment and (ii) unsustainable use of rural and peri-urban areas. Taken together, these factors represent the primary cause of the LULCCs observed in coastal Sardinia. By linking the structural features of the Mediterranean landscape with its functional land degradation dynamics over time, these results contribute to orienting policies for sustainable land management in Mediterranean coastal areas.
NASA Technical Reports Server (NTRS)
Downs, S. W., Jr.; Sharma, G. C.; Bagwell, C.
1977-01-01
A land use map of a five county area in North Alabama was generated from LANDSAT data using a supervised classification algorithm. There was good overall agreement between the land use designated and known conditions, but there were also obvious discrepancies. In ground checking the map, two types of errors were encountered - shift and misclassification - and a method was developed to eliminate or greatly reduce the errors. Randomly selected study areas containing 2,525 pixels were analyzed. Overall, 76.3 percent of the pixels were correctly classified. A contingency coefficient of correlation was calculated to be 0.7 which is significant at the alpha = 0.01 level. The land use maps generated by computers from LANDSAT data are useful for overall land use by regional agencies. However, care must be used when making detailed analysis of small areas. The procedure used for conducting the ground truth study together with data from representative study areas is presented.
Land suitability assessment on a watershed of Loess Plateau using the analytic hierarchy process.
Yi, Xiaobo; Wang, Li
2013-01-01
In order to reduce soil erosion and desertification, the Sloping Land Conversion Program has been conducted in China for more than 15 years, and large areas of farmland have been converted to forest and grassland. However, this large-scale vegetation-restoration project has faced some key problems (e.g. soil drying) that have limited the successful development of the current ecological-recovery policy. Therefore, it is necessary to know about the land use, vegetation, and soil, and their inter-relationships in order to identify the suitability of vegetation restoration. This study was conducted at the watershed level in the ecologically vulnerable region of the Loess Plateau, to evaluate the land suitability using the analytic hierarchy process (AHP). The results showed that (1) the area unsuitable for crops accounted for 73.3% of the watershed, and the main factors restricting cropland development were soil physical properties and soil nutrients; (2) the area suitable for grassland was about 86.7% of the watershed, with the remaining 13.3% being unsuitable; (3) an area of 3.95 km(2), accounting for 66.7% of the watershed, was unsuitable for forest. Overall, the grassland was found to be the most suitable land-use to support the aims of the Sloping Land Conversion Program in the Liudaogou watershed. Under the constraints of soil water shortage and nutrient deficits, crops and forests were considered to be inappropriate land uses in the study area, especially on sloping land. When selecting species for re-vegetation, non-native grass species with high water requirements should be avoided so as to guarantee the sustainable development of grassland and effective ecological functioning. Our study provides local land managers and farmers with valuable information about the inappropriateness of growing trees in the study area along with some information on species selection for planting in the semi-arid area of the Loess Plateau.
Land Suitability Assessment on a Watershed of Loess Plateau Using the Analytic Hierarchy Process
Yi, Xiaobo; Wang, Li
2013-01-01
In order to reduce soil erosion and desertification, the Sloping Land Conversion Program has been conducted in China for more than 15 years, and large areas of farmland have been converted to forest and grassland. However, this large-scale vegetation-restoration project has faced some key problems (e.g. soil drying) that have limited the successful development of the current ecological-recovery policy. Therefore, it is necessary to know about the land use, vegetation, and soil, and their inter-relationships in order to identify the suitability of vegetation restoration. This study was conducted at the watershed level in the ecologically vulnerable region of the Loess Plateau, to evaluate the land suitability using the analytic hierarchy process (AHP). The results showed that (1) the area unsuitable for crops accounted for 73.3% of the watershed, and the main factors restricting cropland development were soil physical properties and soil nutrients; (2) the area suitable for grassland was about 86.7% of the watershed, with the remaining 13.3% being unsuitable; (3) an area of 3.95 km2, accounting for 66.7% of the watershed, was unsuitable for forest. Overall, the grassland was found to be the most suitable land-use to support the aims of the Sloping Land Conversion Program in the Liudaogou watershed. Under the constraints of soil water shortage and nutrient deficits, crops and forests were considered to be inappropriate land uses in the study area, especially on sloping land. When selecting species for re-vegetation, non-native grass species with high water requirements should be avoided so as to guarantee the sustainable development of grassland and effective ecological functioning. Our study provides local land managers and farmers with valuable information about the inappropriateness of growing trees in the study area along with some information on species selection for planting in the semi-arid area of the Loess Plateau. PMID:23922723
Deterioration of soil fertility by land use changes in South Sumatra, Indonesia: from 1970 to 1990
NASA Astrophysics Data System (ADS)
Lumbanraja, Jamalam; Syam, Tamaluddin; Nishide, Hiroyo; Kabul Mahi, Ali; Utomo, Muhajir; Sarno; Kimura, Makoto
1998-10-01
We monitored the land use changes in a hilly area of West Lampung, South Sumatra, Indonesia, from 1970 to 1990. The main data sources were the land use maps produced in 1970, 1978, 1984 and 1990 covering the area of 27 km×27 km. Transmigration and the resultant effect of increased population were the major driving forces in land use changes. Fifty-seven per cent of the study area was covered with primary forests in 1970, but only 13% in 1990. Areas under plantations, which were absent in 1970, increased to 60% in 1990. In addition, the change from monoculture plantations (mostly coffee plantation) to mixed plantations was noticeable from 1984 to 1990. Total upland areas including upland areas under shifting cultivation and upland fields with crops and vegetables decreased from 21% in 1970 to 0·1% in 1990. Soil chemical properties (total organic C, total N, available P, total P, exchangeable cations, cation exchangeable capacity (CEC), etc.) were analysed for lands under different land use forms after deforestation in the study area. Soil samples (surface layers, 0-20 cm, and subsurface layers, 20-40 cm) were collected from three different locations, each comprised of four different land use systems: i.e. primary forests, secondary forests, coffee plantations and cultivated lands. The contents of total organic C, total N, available P, total P, exchangeable cations and CEC decreased significantly with land use change from primary forests to the other land use forms. Cultivated lands exhibited the lowest values. Although less remarkable than in the surface layers, the amounts of total organic C, total N, total P, exchangeable cations and CEC were also decreased by forest clearing in the subsurface layers.Based on the land use changes from 1978 in the study area and the deterioration of soil chemical properties by forest clearing, total decreases in the amounts of nutrients in the surface and subsurface layers were estimated. The land use changes were estimated to have decreased the total amounts of total organic C, total N, available P, total P, exchangeable cations and CEC by 2-9% in 1984 and by 2-15% in 1990 in the surface layers, and by 1-6%% in 1984 and by 2-9% in 1990 in the subsurface layers from the levels in 1978, respectively.
Noise levels associated with urban land use.
King, Gavin; Roland-Mieszkowski, Marek; Jason, Timothy; Rainham, Daniel G
2012-12-01
Recent trends towards the intensification of urban development to increase urban densities and avoid sprawl should be accompanied by research into the potential for related health impacts from environmental exposure. The objective of the current study was to examine the effect of the built environment and land use on levels of environmental noise. Two different study areas were selected using a combination of small area census geography, land use information, air photography, and ground-truthing. The first study area represented residential land use and consisted of two- to three-story single-family homes. The second study area was characteristic of mixed-use urban planning with apartment buildings as well as commercial and institutional development. Study areas were subdivided into six grids, and a location was randomly selected within each grid for noise monitoring. Each location was sampled four times over a 24-h day, resulting in a total of 24 samples for each of the two areas. Results showed significant variability in noise within study areas and significantly higher levels of environmental noise in the mixed-use area. Both study areas exceeded recommended noise limits when evaluated against World Health Organization guidelines and yielded average noise events values in the moderate to serious annoyance range with the potential to obscure normal conversation and cause sleep disturbance.
Canaz, Sibel; Aliefendioğlu, Yeşim; Tanrıvermiş, Harun
2017-09-15
In this study, the Istanbul Province was monitored using Landsat 5 TM, MSS, Landsat 7 ETM+, and Landsat 8 OLI imagery from the years 1986, 2000, 2009, 2011, 2013, and 2015 in order to assess land cover changes in the province. The aim of the study was to classify manmade structures, land, green, and water areas, and to observe the changes in the province using satellite images. After classification, the images were compared in selected years to observe land cover. Moreover, these changes were correlated with the property tax values of Istanbul by years. The findings of the study showed that manmade structure areas increased while vegetation areas decreased due to rapid population growth, urbanization, and industrial and commercial development in Istanbul. These changes also explain the transformation of land from rural and natural areas to residential use, and serve as a tool with which to assess land value increments. Land value capturing is critical for the analysis of the linkages between the changes in land cover, and for assessing land transformation and urban growth. Due to inadequate market data, real estate tax values were used to analyze the linkages between detection changes, land cover, and taxation. In fact, the declared tax values of land owners are generally lower than the actual market values and therefore it is not possible to transfer the value increasing of land in urban areas by using property taxation from the owner to local and central governments. The research results also show that the integration of remote sensing results with real estate market data give us to determine the tax base values of real estate more realistically. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rural Land Use Change during 1986–2002 in Lijiang, China, Based on Remote Sensing and GIS Data
Peng, Jian; Wu, Jiansheng; Yin, He; Li, Zhengguo; Chang, Qing; Mu, Tianlong
2008-01-01
As a local environmental issue with global importance, land use/land cover change (LUCC) has always been one of the key issues in geography and environmental studies with the expansion of regional case studies. While most of LUCC studies in China have focused on urban land use change, meanwhile, compared with the rapid change of urban land use in the coastal areas of eastern China, slow but distinct rural land use changes have also occurred in the mountainous areas of western China since the late 1980s. In this case through a study in Lijiang County of Yunnan Province, with the application of remote sensing data and geographic information system techniques, the process of rural land use change in mountain areas of western China was monitored through extensive statistical analysis of detailed regional data. The results showed significant increases in construction land, paddy field and dry land, and a decrease in dense forest land and waste grassland between 1986 and 2002. The conversions between dense forest land and sparse forest land, grassland, waste grassland and dry land were the primary processes of rural land use change. Sparse forest land had the highest rate of land use change, with glacier or snow-capped land the lowest; while human settlement and rural economic development were found to be the main driving forces of regional difference in the integrated land use change rate among the 24 towns of Lijiang County. Quantified through landscape metrics, spatial patterns of rural land use change were represented as an increase in landscape diversity and landscape fragmentation, and the regularization of patch shapes, suggesting the intensification of human disturbances and degradation of ecological quality in the rural landscape. PMID:27873983
Rural Land Use Change during 1986-2002 in Lijiang, China, Based on Remote Sensing and GIS Data.
Peng, Jian; Wu, Jiansheng; Yin, He; Li, Zhengguo; Chang, Qing; Mu, Tianlong
2008-12-11
As a local environmental issue with global importance, land use/land cover change (LUCC) has always been one of the key issues in geography and environmental studies with the expansion of regional case studies. While most of LUCC studies in China have focused on urban land use change, meanwhile, compared with the rapid change of urban land use in the coastal areas of eastern China, slow but distinct rural land use changes have also occurred in the mountainous areas of western China since the late 1980s. In this case through a study in Lijiang County of Yunnan Province, with the application of remote sensing data and geographic information system techniques, the process of rural land use change in mountain areas of western China was monitored through extensive statistical analysis of detailed regional data. The results showed significant increases in construction land, paddy field and dry land, and a decrease in dense forest land and waste grassland between 1986 and 2002. The conversions between dense forest land and sparse forest land, grassland, waste grassland and dry land were the primary processes of rural land use change. Sparse forest land had the highest rate of land use change, with glacier or snow-capped land the lowest; while human settlement and rural economic development were found to be the main driving forces of regional difference in the integrated land use change rate among the 24 towns of Lijiang County. Quantified through landscape metrics, spatial patterns of rural land use change were represented as an increase in landscape diversity and landscape fragmentation, and the regularization of patch shapes, suggesting the intensification of human disturbances and degradation of ecological quality in the rural landscape.
Gong, Jian; Yang, Jianxin; Tang, Wenwu
2017-01-01
Exploration of land use and land cover change (LULCC) and its impacts on ecosystem services in Tibetan plateau is valuable for landscape and environmental conservation. In this study, we conduct spatial analysis on empirical land use and land cover data in the Qinghai Lake region for 1990, 2000, and 2010 and simulate land cover patterns for 2020. We then evaluate the impacts of LULCC on ecosystem service value (ESV), and analyze the sensitivity of ESV to LULCC to identify the ecologically sensitive area. Our results indicate that, from 1990 to 2010, the area of forest and grassland increased while the area of unused land decreased. Simulation results suggest that the area of grassland and forest will continue to increase and the area of cropland and unused land will decrease for 2010–2020. The ESV in the study area increased from 694.50 billion Yuan in 1990 to 714.28 billion Yuan in 2000, and to 696.72 billion Yuan in 2020. Hydrology regulation and waste treatment are the top two ecosystem services in this region. The towns surrounding the Qinghai Lake have high ESVs, especially in the north of the Qinghai Lake. The towns with high ESV sensitivity to LULCC are located in the northwest, while the towns in the north of the Qinghai Lake experienced substantial increase in sensitivity index from 2000–2010 to 2010–2020, especially for three regulation services and aesthetic landscape provision services. PMID:28754029
Gong, Jian; Li, Jingye; Yang, Jianxin; Li, Shicheng; Tang, Wenwu
2017-07-21
Exploration of land use and land cover change (LULCC) and its impacts on ecosystem services in Tibetan plateau is valuable for landscape and environmental conservation. In this study, we conduct spatial analysis on empirical land use and land cover data in the Qinghai Lake region for 1990, 2000, and 2010 and simulate land cover patterns for 2020. We then evaluate the impacts of LULCC on ecosystem service value (ESV), and analyze the sensitivity of ESV to LULCC to identify the ecologically sensitive area. Our results indicate that, from 1990 to 2010, the area of forest and grassland increased while the area of unused land decreased. Simulation results suggest that the area of grassland and forest will continue to increase and the area of cropland and unused land will decrease for 2010-2020. The ESV in the study area increased from 694.50 billion Yuan in 1990 to 714.28 billion Yuan in 2000, and to 696.72 billion Yuan in 2020. Hydrology regulation and waste treatment are the top two ecosystem services in this region. The towns surrounding the Qinghai Lake have high ESVs, especially in the north of the Qinghai Lake. The towns with high ESV sensitivity to LULCC are located in the northwest, while the towns in the north of the Qinghai Lake experienced substantial increase in sensitivity index from 2000-2010 to 2010-2020, especially for three regulation services and aesthetic landscape provision services.
NASA Astrophysics Data System (ADS)
Liu, Tingxiang; Zhang, Shuwen; Yu, Lingxue; Bu, Kun; Yang, Jiuchun; Chang, Liping
2017-05-01
The Northeast China is one of typical regions experiencing intensive human activities within short time worldwide. Particularly, as the significant changes of agriculture land and forest, typical characteristics of pattern and process of agroforestry ecotone change formed in recent decades. The intensive land use change of agroforestry ecotone has made significant change for regional land cover, which had significant impact on the regional climate system elements and the interactions among them. This paper took agroforestry ecotone of Nenjiang River Basin in China as study region and simulated temperature change based on land cover change from 1950s to 1978 and from 1978 to 2010. The analysis of temperature difference sensitivity to land cover change based on Weather Research and Forecasting (WRF) model showed that the land cover change from 1950s to 1978 induced warming effect over all the study area, including the change of grassland to agriculture land, grassland to deciduous broad-leaved forest, and deciduous broad-leaved forest to shrub land. The land cover change from 1978 to 2010 induced cooling effect over all the study area, including the change of deciduous broad-leaved forest to agriculture land, grassland to agriculture land, shrub land to agriculture land, and deciduous broad-leaved forest to grassland. In addition, the warming and cooling effect of land cover change was more significant in the region scale than specific land cover change area.
Multi-Factor Analysis for Selecting Lunar Exploration Soft Landing Area and the best Cruise Route
NASA Astrophysics Data System (ADS)
Mou, N.; Li, J.; Meng, Z.; Zhang, L.; Liu, W.
2018-04-01
Selecting the right soft landing area and planning a reasonable cruise route are the basic tasks of lunar exploration. In this paper, the Von Karman crater in the Antarctic Aitken basin on the back of the moon is used as the study area, and multi-factor analysis is used to evaluate the landing area and cruise route of lunar exploration. The evaluation system mainly includes the factors such as the density of craters, the impact area of craters, the formation of the whole area and the formation of some areas, such as the vertical structure, rock properties and the content of (FeO + TiO2), which can reflect the significance of scientific exploration factor. And the evaluation of scientific exploration is carried out on the basis of safety and feasibility. On the basis of multi-factor superposition analysis, three landing zones A, B and C are selected, and the appropriate cruising route is analyzed through scientific research factors. This study provides a scientific basis for the lunar probe landing and cruise route planning, and it provides technical support for the subsequent lunar exploration.
NASA Astrophysics Data System (ADS)
Wang, Qingrui; Liu, Ruimin; Men, Cong; Guo, Lijia
2018-05-01
The genetic algorithm (GA) was combined with the Conversion of Land Use and its Effect at Small regional extent (CLUE-S) model to obtain an optimized land use pattern for controlling non-point source (NPS) pollution. The performance of the combination was evaluated. The effect of the optimized land use pattern on the NPS pollution control was estimated by the Soil and Water Assessment Tool (SWAT) model and an assistant map was drawn to support the land use plan for the future. The Xiangxi River watershed was selected as the study area. Two scenarios were used to simulate the land use change. Under the historical trend scenario (Markov chain prediction), the forest area decreased by 2035.06 ha, and was mainly converted into paddy and dryland area. In contrast, under the optimized scenario (genetic algorithm (GA) prediction), up to 3370 ha of dryland area was converted into forest area. Spatially, the conversion of paddy and dryland into forest occurred mainly in the northwest and southeast of the watershed, where the slope land occupied a large proportion. The organic and inorganic phosphorus loads decreased by 3.6% and 3.7%, respectively, in the optimized scenario compared to those in the historical trend scenario. GA showed a better performance in optimized land use prediction. A comparison of the land use patterns in 2010 under the real situation and in 2020 under the optimized situation showed that Shennongjia and Shuiyuesi should convert 1201.76 ha and 1115.33 ha of dryland into forest areas, respectively, which represented the greatest changes in all regions in the watershed. The results of this study indicated that GA and the CLUE-S model can be used to optimize the land use patterns in the future and that SWAT can be used to evaluate the effect of land use optimization on non-point source pollution control. These methods may provide support for land use plan of an area.
Xie, Hualin; Kung, Chih-Chun; Zhang, Yanting; Li, Xiubin
2012-01-01
Ecological land is like the “liver” of a city and is very useful to public health. Ecological land change is a spatially dynamic non-linear process under the interaction between natural and anthropogenic factors at different scales. In this study, by setting up natural development scenario, object orientation scenario and ecosystem priority scenario, a Cellular Automation (CA) model has been established to simulate the evolution pattern of ecological land in Beijing in the year 2020. Under the natural development scenario, most of ecological land will be replaced by construction land and crop land. But under the scenarios of object orientation and ecosystem priority, the ecological land area will increase, especially under the scenario of ecosystem priority. When considering the factors such as total area of ecological land, loss of key ecological land and spatial patterns of land use, the scenarios from priority to inferiority are ecosystem priority, object orientation and natural development, so future land management policies in Beijing should be focused on conversion of cropland to forest, wetland protection and prohibition of exploitation of natural protection zones, water source areas and forest parks to maintain the safety of the regional ecosystem. PMID:23066410
Xie, Hualin; Kung, Chih-Chun; Zhang, Yanting; Li, Xiubin
2012-08-01
Ecological land is like the "liver" of a city and is very useful to public health. Ecological land change is a spatially dynamic non-linear process under the interaction between natural and anthropogenic factors at different scales. In this study, by setting up natural development scenario, object orientation scenario and ecosystem priority scenario, a Cellular Automation (CA) model has been established to simulate the evolution pattern of ecological land in Beijing in the year 2020. Under the natural development scenario, most of ecological land will be replaced by construction land and crop land. But under the scenarios of object orientation and ecosystem priority, the ecological land area will increase, especially under the scenario of ecosystem priority. When considering the factors such as total area of ecological land, loss of key ecological land and spatial patterns of land use, the scenarios from priority to inferiority are ecosystem priority, object orientation and natural development, so future land management policies in Beijing should be focused on conversion of cropland to forest, wetland protection and prohibition of exploitation of natural protection zones, water source areas and forest parks to maintain the safety of the regional ecosystem.
Analysis of Urban Growth in Edwardsville Illinois Using Remote Sensing and Population Change
NASA Astrophysics Data System (ADS)
Onuoha, Hilda U.
Rapid urbanization is one of the many critical, global issues. This very significant social and economic phenomenon has brought about much debate in the past twenty years and has become a very important policy issue. Understanding its dynamics and patterns is important to develop appropriate policies and make more informed planning decisions. Many dimensions to the urban land growth have been identified in related literature including drivers, relationship with other factors like population, impacts, and methods of measurement. In this study, urban growth in the Edwardsville area (composed of Edwardsville and Glen Carbon, Illinois) is analyzed spatio-temporally using remote sensing and population change from 1990 to 2015. The objectives of this study are (a) identifying the major land use changes in the Edwardsville area from 1990 to 2015, (b) analyzing the rate of urban growth and its relationship to population change in the area from 1990 to 2015, (c) identifying the general pattern and direction of urban growth in the study area. Using multi-temporal satellite images to classify and derive changes in land cover classes during the study period, results showed that the land cover classes with major changes are the urban/built-up land and agricultural/grassland, with a steady increase in the former and steady decrease in the later. Results also show the highest rate of increase in urban land was between 2000 and 2010. In comparison to population, the both show increase over the study years but urban land shows a higher rate of increase indicating dispersion. To analyze urban growth pattern in the area, the study area was divided into three zones: NE, SE, and W. The SE zone showed the highest amount of the growth and from the results, the infill type of growth was inferred.
Assessment of Land Degradation and Greening in Ken River Basin of Central India
NASA Astrophysics Data System (ADS)
Pandey, Ashish; Palmate, Santosh S.
2017-04-01
Natural systems have significant impact of land degradation on biodiversity loss, food and water insecurity. To achieve the sustainable development goals, advances in remote sensing and geographical information systems (GIS) are progressively utilized to combat climate change, land degradation and poverty issues of developing country. The Ken River Basin (KRB) has dominating land cover pattern of agriculture and forest area. Nowadays, this pattern is affected due to climate change and anthropogenic activity like deforestation. In this study, land degradation and greening status of KRB of Central India during the years 2001 to 2013 have been assessed using MODIS land cover (MCD12Q1) data sets. International Geosphere Biosphere Programme (IGBP) land cover data has been extracted from the MCD12Q1 data product. Multiple rasters of MODIS landcover were analyzed and compared for assigning unique combination of land cover dynamics employing ArcGIS software. Result reveals that 14.38% natural vegetation was degraded, and crop land and woody savannas were greened by 9.68% to 6.94% respectively. Natural vegetation degradation have been observed in the upper KRB area, and resulted to increase in crop land (3418.87 km2) and woody savannas (1242.23 km2) area. Due to transition of 1043.6 km2 area of deciduous broadleaf forest to woody savannas greening was also observed. Moreover, both crop land and woody savannas showed inter-transitions of 669.31 km2 into crop land to woody savannas, and 874.09 km2 into woody savannas to crop land. The present analysis reveals that natural vegetation has more land conversions into woody savannas and crop land in the KRB area. Further, Spatial change analysis shows that land degradation and greening has occurred mostly in the upper part of the KRB. The study reveals that the land transition information can be useful for proper planning and management of natural resources.
Gould, William A.; Martinuzzi, Sebastián; Pares-Ramos, Isabel K.; Murphy, Sheila F.; Stallard, Robert F.; Murphy, Sheila F.; Stallard, Robert F.
2012-01-01
We assessed current and historic land use and land cover in the Luquillo Mountains and surrounding area in eastern Puerto Rico, including four small subwatersheds that are study watersheds of the U.S. Geological Survey's Water, Energy, and Biogeochemical Budgets (WEBB) program. This region occupies an area of 1,616 square kilometers, about 18 percent of the total land in Puerto Rico. Closed forests occupy about 37 percent of the area, woodlands and shrublands 7 percent, nonforest vegetation 43 percent, urban development 10 percent, and water and natural barrens total less than 2 percent. The area has been classified into three main land-use categories by integrating recent census information (population density per barrio in the year 2000) with satellite image analyses (degree of developed area versus natural land cover). Urban land use (in this analysis, land with more than 20 percent developed cover within a 1-square-kilometer area and population density greater than 500 people per square kilometer) covered 16 percent of eastern Puerto Rico. Suburban land use (more than 80 percent natural land cover, more than 500 people per square kilometer, and primarily residential) covers 50 percent of the area. Rural land use (more than 80 percent natural land cover, less than 500 people per square kilometer, and primarily active or abandoned agricultural, wetland, steep slope, or protected conservation areas) covered 34 percent of the area. Our analysis of land-cover change indicates that in the 1990s, forest cover increased at the expense of woodlands and grasslands. Urban development increased by 16 percent during that time. The most pronounced change in the last seven decades has been the shift from a nonforested to a forested landscape and the intensification of the ring of urbanization that surrounds the long-protected Luquillo Experimental Forest.
Anderholm, Scott K.
1997-01-01
This report describes the quality of shallow ground water and the relations between land use and the quality of that shallow ground water in an urban area in and adjacent to Albuquerque, New Mexico. Water samples were collected from 24 shallow wells. Samples were analyzed for selected common constituents, nutrients, trace elements, radionuclides, volatile organic compounds, and pesticides. The study area, which is in the Albuquerque Basin in central New Mexico, was limited to the Rio Grande flood plain; depth to water in this area generally is less than 25 feet. The amount and composition of recharge to the shallow ground-water system are important factors that affect shallow ground-water composition in this area. Important sources of recharge that affect shallow ground-water quality in the area include infiltration of surface water, which is used in agricultural land-use areas to irrigate crops, and infiltration of septic-system effluent in residential areas. Agricultural land use represents about 28 percent of the area, and residential land use represents about 35 percent of the total study area. In most of the study area, agricultural land use is interspersed with residential land use and neither is the dominant land use in the area. Land use in the study area historically has been changing from agricultural to urban. The composition of shallow ground water in the study area varies considerably. The dissolved solids concentration in shallow ground water in the study area ranges from 272 to 1,650 milligrams per liter, although the relative percentages of selected cations and anions do not vary substantially. Calcium generally is the dominant cation and bicarbonate generally is the dominant anion. Concentrations of nutrients generally were less than 1 milligram per liter. The concentration of many trace elements in shallow ground water was below or slightly above 1 microgram per liter and there was little variation in the concentrations. Barium, iron, manganese, molybdenum, and uranium were the only trace elements analyzed for that had median concentrations greater than 5 micrograms per liter. Volatile organic compounds were detected in 5 of 24 samples. Cis-1,2-dichloroethene and 1,1-dichloroethane were the most commonly detected volatile organic compounds (detected in two samples each). Pesticides were detected in 8 of 24 samples. Prometon was the most commonly detected pesticide (detected in 5 of 24 samples). Concentrations of volatile organic compounds and pesticides detected were much smaller than any U.S. Environmental Protection Agency standards that have been established. Infiltration of surface water and the evaporation or transpiration of this water, which partially is the result of past and present agricultural land use, seem to affect the concentrations of common constituents in shallow ground water in the study area. The small excess chloride in shallow ground water relative to surface water that has been affected by evaporation or transpiration could be due to mixing of shallow ground water with small amounts of precipitation/bulk deposition or septic-system effluent. Infiltration of septic-system effluent (residential land use) has affected the shallow ground-water composition in parts of the study area on the basis of the small dissolved oxygen concentrations, large dissolved organic carbon concentrations, and excess chloride. Despite the loading of nitrogen to the shallow ground-water system as the result of infiltration of septic-system effluent, the small nitrogen concentrations in shallow ground water probably are due to the small dissolved oxygen concentrations and relatively large dissolved organic carbon concentrations. The small concentrations and lack of variation of most trace elements indicate that land use has not substantially affected the concentration
A land cover change detection and classification protocol for updating Alaska NLCD 2001 to 2011
Jin, Suming; Yang, Limin; Zhu, Zhe; Homer, Collin G.
2017-01-01
Monitoring and mapping land cover changes are important ways to support evaluation of the status and transition of ecosystems. The Alaska National Land Cover Database (NLCD) 2001 was the first 30-m resolution baseline land cover product of the entire state derived from circa 2001 Landsat imagery and geospatial ancillary data. We developed a comprehensive approach named AKUP11 to update Alaska NLCD from 2001 to 2011 and provide a 10-year cyclical update of the state's land cover and land cover changes. Our method is designed to characterize the main land cover changes associated with different drivers, including the conversion of forests to shrub and grassland primarily as a result of wildland fire and forest harvest, the vegetation successional processes after disturbance, and changes of surface water extent and glacier ice/snow associated with weather and climate changes. For natural vegetated areas, a component named AKUP11-VEG was developed for updating the land cover that involves four major steps: 1) identify the disturbed and successional areas using Landsat images and ancillary datasets; 2) update the land cover status for these areas using a SKILL model (System of Knowledge-based Integrated-trajectory Land cover Labeling); 3) perform decision tree classification; and 4) develop a final land cover and land cover change product through the postprocessing modeling. For water and ice/snow areas, another component named AKUP11-WIS was developed for initial land cover change detection, removal of the terrain shadow effects, and exclusion of ephemeral snow changes using a 3-year MODIS snow extent dataset from 2010 to 2012. The overall approach was tested in three pilot study areas in Alaska, with each area consisting of four Landsat image footprints. The results from the pilot study show that the overall accuracy in detecting change and no-change is 90% and the overall accuracy of the updated land cover label for 2011 is 86%. The method provided a robust, consistent, and efficient means for capturing major disturbance events and updating land cover for Alaska. The method has subsequently been applied to generate the land cover and land cover change products for the entire state of Alaska.
Study on temporal and spatial variations of urban land use based on land change data
NASA Astrophysics Data System (ADS)
Jiang, Ping; Liu, Yanfang; Fan, Min; Zhang, Yang
2009-10-01
With the rapid development of urbanization, demands of urban land increase in succession, hence, to analyze temporal and spatial variations of urban land use becomes more and more important. In this paper, the principle of trend surface analysis and formula of urban land sprawl index ( ULSI) are expatiated at first, and then based on land change data of Jiayu county, the author fits quadratic trend surface by choosing urban land area as dependent variable and urbanization and GDP as independent variables from 1996 to 2006, draws isoline of trend surface and residual values; and then urban land sprawl indexes of towns are calculated on the basis of urban land area of 1996 and 2006 and distribution map of ULSI is plotted. After analyzing those results, we can conclude that there is consanguineous relationship between urban land area and urbanization, economic level etc.
NASA Astrophysics Data System (ADS)
Nahari, R. V.; Alfita, R.
2018-01-01
Remote sensing technology has been widely used in the geographic information system in order to obtain data more quickly, accurately and affordably. One of the advantages of using remote sensing imagery (satellite imagery) is to analyze land cover and land use. Satellite image data used in this study were images from the Landsat 8 satellite combined with the data from the Municipality of Malang government. The satellite image was taken in July 2016. Furthermore, the method used in this study was unsupervised classification. Based on the analysis towards the satellite images and field observations, 29% of the land in the Municipality of Malang was plantation, 22% of the area was rice field, 12% was residential area, 10% was land with shrubs, and the remaining 2% was water (lake/reservoir). The shortcoming of the methods was 25% of the land in the area was unidentified because it was covered by cloud. It is expected that future researchers involve cloud removal processing to minimize unidentified area.
Yilmaz, Rüya
2010-06-01
The objective of the present study was to assess changes in land use/land cover patterns in the coastal town of Silivri, a part of greater Istanbul administratively. In the assessment, remotely sensed data, in the form of satellite images, and geographic information systems were used. Types of land use/land cover were designated as the percentage of the total area studied. Results calculated from the satellite data for land cover classification were compared successfully with the database Coordination of Information on the Environment (CORINE). This served as a reference to appraise the reliability of the study presented here. The CORINE Program was established by the European Commission to create a harmonized Geographical Information System on the state of the environment in the European Community. Unplanned urbanization is causing land use changes mainly in developing countries such as Turkey. This situation in Turkey is frequently observed in the city of Istanbul. There are only a few studies of land use-land cover changes which provide an integrated assessment of the biophysical and societal causes and consequences of environmental degradation in Istanbul. The research area comprised greater Silivri Town which is situated by the coast of Marmara Sea, and it is located approximately 60 km west of Istanbul. The city of Istanbul is one of the largest metropolises in Europe with ca. 15 million inhabitants. Additionally, greater Silivri is located near the terminal point of the state highway connecting Istanbul with Europe. Measuring of changes occurring in land use would help control future planning of settlements; hence, it is of importance for the Greater Silivri and Silivri Town. Following our evaluations, coastal zone of Silivri was classified into the land use groups of artificial surfaces agricultural areas and forests and seminatural areas with 47.1%, 12.66%, and 22.62%, respectively.
NASA Astrophysics Data System (ADS)
Guyassa, Etefa; Frankl, Amaury; Zenebe, Amanuel; Lanckriet, Sil; Demissie, Biadgilgn; Zenebe, Gebreyohanis; Poesen, Jean; Nyssen, Jan
2016-04-01
In the Highlands of Northern Ethiopia, land degradation is claimed to have occurred over a long time mainly due agricultural practices and lack of land management. However, quantitative information on the long term land use, cover and management change is rare. The knowledge of such historical changes is essential for the present and future land management for sustainable development, especially in an agriculture-based economy. Hence, this study aimed to investigate the changes of land use, cover and management around Hagere Selam, Northern Ethiopia, over the last 80 years (1935 - 2014). We recovered a flight of ten aerial photographs at an approximate scale of 1:11,500, realized by the Italian Military Geographical Institute in 1935, along a mountain ridge between 13.6490°N, 39.1848°E and 13.6785°N, 39.2658°E. Jointly with Google Earth images (2014), the historical aerial photographs were used to compare changes over the long time. The point-count technique was used by overlaying a grid of 18 x 15 points (small squares) on 20 cm x 15 cm aerial photographs and on Google Earth images representing the same area. Occurrence of major land cover types (cropland, forest, grassland, shrubland, bare land, built-up areas and water body) was counted to compute their proportion in 1935 and 2014. In 1935, cropland, shrubland and built-up areas were predominant while other land cover types were not observed. On the Google Earth images, all categories were observed except forest. The results show that in both times cropland was the dominant land cover followed by shrubland. The proportion of cropland at present (70.5%) is approximately the same as in the 1930s (72%), but shrubland decreased and bare land, grassland and built-up areas have increased. Hence, the large share of cropland was maintained over the past long period without allowing for woody vegetation to expand its area, while some cropland was abandoned and converted to grassland and bare land. The increased proportion of built-up areas also explains the shrinking of shrubland. On the studied flight of aerial photographs, forests were not existing in 1935 and have not been restored until present. The increased area of open water, on the other hand, is related to the ongoing land rehabilitation activities carried out in the region. These results confirm previous studies that severe land degradation has occurred in the Highlands of Northern Ethiopia over a long time, due to early (pre-1935) cropland expansion and deforestation.
Carbon benefits from protected areas in the conterminous United States
Daolan Zheng; Linda S. Heath; Mark J. Ducey
2013-01-01
Conversion of forests to other land cover or land use releases the carbon stored in the forests and reduces carbon sequestration potential of the land. The rate of forest conversion could be reduced by establishing protected areas for biological diversity and other conservation goals. The purpose of this study is to quantify the efficiency and potential of forest land...
Projecting large-scale area changes in land use and land cover for terrestrial carbon analyses.
Alig, Ralph J; Butler, Brett J
2004-04-01
One of the largest changes in US forest type areas over the last half-century has involved pine types in the South. The area of planted pine has increased more than 10-fold since 1950, mostly on private lands. Private landowners have responded to market incentives and government programs, including subsidized afforestation on marginal agricultural land. Timber harvest is a crucial disturbance affecting planted pine area, as other forest types are converted to planted pine after harvest. Conversely, however, many harvested pine plantations revert to other forest types, mainly due to passive regeneration behavior on nonindustrial private timberlands. We model land use and land cover changes as a basis for projecting future changes in planted pine area, to aid policy analysts concerned with mitigation activities for global climate change. Projections are prepared in two stages. Projected land use changes include deforestation due to pressures to develop rural land as the human population expands, which is a larger area than that converted from other rural lands (e.g., agriculture) to forestry. In the second stage, transitions among forest types are projected on land allocated to forestry. We consider reforestation, influences of timber harvest, and natural succession and disturbance processes. Baseline projections indicate a net increase of about 5.6 million ha in planted pine area in the South over the next 50 years, with a notable increase in sequestered carbon. Additional opportunities to expand pine plantation area warrant study of landowner behavior to aid in designing more effective incentives for inducing land use and land cover changes to help mitigate climate change and attain other goals.
Modelling land use/cover changes with markov-cellular automata in Komering Watershed, South Sumatera
NASA Astrophysics Data System (ADS)
Kusratmoko, E.; Albertus, S. D. Y.; Supriatna
2017-01-01
This research has a purpose to study and develop a model that can representing and simulating spatial distribution pattern of land use change in Komering watershed. The Komering watershed is one of nine sub Musi river basin and is located in the southern part of Sumatra island that has an area of 8060,62 km2. Land use change simulations, achieved through Markov-cellular automata (CA) methodologies. Slope, elevation, distance from road, distance from river, distance from capital sub-district, distance from settlement area area were driving factors that used in this research. Land use prediction result in 2030 also shows decrease of forest acreage up to -3.37%, agricultural land decreased up to -2.13%, and open land decreased up to -0.13%. On the other hand settlement area increased up to 0.07%, and plantation land increased up to 5.56%. Based on the predictive result, land use unconformity percentage to RTRW in Komering watershed is 18.62 % and land use conformity is 58.27%. Based on the results of the scenario, where forest in protected areas and agriculture land are maintained, shows increase the land use conformity amounted to 60.41 % and reduce unconformity that occur in Komering watershed to 17.23 %.
NASA Astrophysics Data System (ADS)
Cahyono, A. B.; Deviantari, U. W.
2017-12-01
According to statutory regulation issued by Ministry of Land and Spatial Planning/Head of National Land Agency (BPN) number 35/2016, Comprehensive Systematic land registration is a sequential activity of which continuously and systematically carried out by the government ranging from collecting, processing, recording and presenting, as well as maintaining the physical and juridical data in the form of map and list of land-plots and flats, including the transfer of legal title for land plots and flats with their inherent rights. Delineation is one method to identify land plots by utilizing map image or high resolution photo and defining the boundaries by drawing lines to determine the valid and recognizable boundaries. A guideline to delineate the unregistered land plots may be determined from this two methods’ accuracy result, using general boundary applied to aerial photo taken by multicopter RTF. Data taken from a height of 70 meter on an area obtained a number of 156 photos with 5 GCP resulting in an photo map with GSD 2.14 cm. The 11 samples parcels are selected in the sites of ± 7 ha. There are 11 samples of land parcels are tested. The area difference test for every parcel using a average standard deviation of 17,043 indicates that there are three land parcels which have significant area difference and 8 others do not have significant area difference. Based on the tolerance of National Land Agency, among 11 parcels studied, there are 8 parcels that fullfill the tolerances and three others do not fullfill tolerances. The percentage of area difference average between land registration map and orthophoto is 4,72%. The result shows that the differences in boundaries and areas that may be caused by a systematic error of method in describing the boundaries of the ground.
Changes in land cover and vegetation carbon stocks in Andalusia, Southern Spain (1956-2007).
Muñoz-Rojas, M; De la Rosa, D; Zavala, L M; Jordán, A; Anaya-Romero, M
2011-06-15
Land use has significantly changed during the recent decades at global and local scale, while the importance of ecosystems as sources/sinks of C has been highlighted, emphasizing the global impact of land use changes. Land use changes can increase C loss rates which are extremely difficult to reverse, in the short term, opposite to organic carbon (OC) which accumulates in soil in the long-term. The aim of this research is to improve and test methodologies to assess land cover change (LCC) dynamics and temporal and spatial variability in C stored in vegetation at a wide scale. LCCs between 1956 and 2007 in Andalusia (Southern Spain) were selected for this pilot study, assessed by comparison of spatial data from 1956 to 2007 and were reclassified following land cover flows (LCFs) reported in major areas in Europe. Carbon vegetation densities were related to land cover, and C vegetation stocks for 1956 and 2007 were calculated by multiplying C density for each land cover class with land cover areas. The study area has supported important changes during the studied period with significant consequences for vegetation C stocks, mainly due to afforestation and intensification of agriculture, resulting in a total vegetation C stock of 156.08Tg in 2007, with an increase of 17.24Tg since 1956. This study demonstrates the importance of LCC for C sequestration in vegetation from Mediterranean areas, highlighting possible directions for management policies in order to mitigate climate change as well as promoting land conservation. The methodologies and information generated in this project will be a useful basis for designing land management strategies helpful for decision makers. Copyright © 2011 Elsevier B.V. All rights reserved.
Monitoring Spatiotemporal Changes of Heat Island in Babol City due to Land Use Changes
NASA Astrophysics Data System (ADS)
Alavi Panah, S. K.; Kiavarz Mogaddam, M.; Karimi Firozjaei, M.
2017-09-01
Urban heat island is one of the most vital environmental risks in urban areas. The advent of remote sensing technology provides better visibility due to the integrated view, low-cost, fast and effective way to study and monitor environmental and humanistic changes. The aim of this study is a spatiotemporal evaluation of land use changes and the heat island in the time period of 1985-2015 for the studied area in the city of Babol. For this purpose, multi-temporal Landsat images were used in this study. For calculating the land surface temperature (LST), single-channel and maximum likelihood algorithms were used, to classify Images. Therefore, land use changes and LST were examined, and thereby the relationship between land-use changes was analyzed with the normalized LST. By using the average and standard deviation of normalized thermal images, the area was divided into five temperature categories, inter alia, very low, low, medium, high and very high and then, the heat island changes in the studied time period were investigated. The results indicate that land use changes for built-up lands increased by 92%, and a noticeable decrease was observed for agricultural lands. The Built-up land changes trend has direct relation with the trend of normalized surface temperature changes. Low and very low-temperature categories which follow a decreasing trend, are related to lands far away from the city. Also, high and very high-temperature categories whose areas increase annually, are adjacent to the city center and exit ways of the town. The results emphasize on the importance of attention of urban planners and managers to the urban heat island as an environmental risk.
NASA Astrophysics Data System (ADS)
Nguyen, Hieu
Land use changes are being interested in most countries, especially in developing countries. Because land use changes always impacts on sustainable development not only in a region or a country but also in whole the world. Viet Nam is a developing country, in the last 10 years, land uses have rapidly changed in most provinces. Many of agriculture areas, forest areas have changed for various purposes as urban sprawl, establishing new industrial parks, public areas, mining and other land uses relate to human activities or economic function associated with a specific piece of land. Beside efficiencies of economic and society, then environment issues have been threatening serious pollution, are from land use changes. Remote sensing images application on studying land use changes, has been done in many countries around the world, and has brought high efficiencies. However, this application is still very new and limited in Viet Nam due to lacking of materials, tools, experts of remote sensing. This study used spatial data as Landsat TM images, SPOT5 images and land use planning maps to rapidly assess on happenings of land uses in the period 2000 -2010 in Cong river basin (Thai Nguyen City, Viet Nam), and to forecast the changes of land uses in the period 2010 - 2020. The results had a good accuracy and to be important references for authorities, policy makers in local land use.
Proposal for Land Consolidation Project Solutions for Selected Problem Areas
NASA Astrophysics Data System (ADS)
Wojcik-Len, Justyna; Strek, Zanna
2017-12-01
One of the economic tools for supporting agricultural policy are the activities implemented under the Rural Development Program (RDP). By encouraging agricultural activities and creating equal opportunities for development of farms, among others in areas with unfavourable environmental conditions characterized by low productivity of soils exposed to degradation, decision makers can contribute to improving the spatial structure of rural areas. In Poland, one of the major concerns are agricultural problem areas (regions). In view of this situation, the aim of this article was to characterize the problem areas in question and propose land consolidation project solutions for selected fragments of those areas. This paper presents the results of a review of literature and an analysis of geodetic and cartographic data regarding the problem areas. The process of land consolidation, which is one of the technical and legal instruments supporting the development of rural areas, was characterized. The study allowed the present authors to establish criteria for selecting agricultural problem areas for land consolidation. To develop a proposal for rational management of the problem areas, key general criteria (location, topography, soil quality and usefulness) and specific criteria were defined and assigned weights. A conception of alternative development of the agricultural problem areas was created as part of a land consolidation project. The results were used to create a methodology for the development of agricultural problem areas to be employed during land consolidation in rural areas. Every agricultural space includes areas with unfavourable environmental and soil conditions determined by natural or anthropogenic factors. Development of agricultural problem areas through land consolidation should take into account the specific functions assigned to these areas in land use plans, as well as to comply with legal regulations.
Berndt, M.P.; Oaksford, E.T.; Darst, M.R.; Marella, R.L.
1996-01-01
The Georgia-Florida Coastal Plain study unit covers an area of nearly 62,000 square miles in the southeastern United States, mostly in the Coastal Plain physiographic province. Land resource provinces have been designated based on generalized soil classifications. Land resource provinces in the study area include: the Coastal Flatwoods, the Southern Coastal Plain, the Central Florida Ridge, the Sand Hills, and the Southern Piedmont. The study area includes all or parts of seven hydrologic subregions: the Ogeechee-Savannah, the Altamaha- St.Marys, the Suwannee, the Ochlockonee, the St. Johns, the Peace-Tampa Bay, and the Southern Florida. The primary source of water for public supply in the study area is ground water from the Upper Floridan aquifer. In 1990, more than 90 percent of the 2,888 million gallons per day of ground water used came from this aquifer. The population of the study area was 9.3 million in 1990. The cities of Jacksonville, Orlando, St. Petersburg, Tallahassee, and Tampa, Florida, and parts of Atlanta and Savannah, Georgia, are located in the study area. Forest and agricultural areas are the most common land uses in the study area, accounting for 48 percent and 25 percent of the study area, respectively. Climatic conditions range from temperate in Atlanta, Georgia, where mean annual temperature is about 61.3 degrees Fahrenheit, to subtropical in Tampa, Florida, where mean annual temperature is about 72.4 degrees Fahrenheit. Long-term average precipitation (1961-90) ranges from 43.9 inches per year in Tampa, Florida, and 44.6 in Macon, Georgia, to 65.7 inches per year in Tallahassee, Florida. Floods in the study area result from frontal systems, hurricanes, tropical storms, or severe thunderstorms. Droughts are not common in the study area,especially in the Florida part of the study area due to extensive maritime exposure. The primary physical and cultural characteristics in the study area include physiography, soils and land resource provinces, geologic setting, ground-water systems, surface- water systems, climate, floods, droughts, population, land use, and water use. Factors affecting water quality in the study area are land use (primarily urban and agricultural land uses), water use in coastal areas, hydrogeology, ground-water/surface-water interaction, geology, and climate. Surface-water quality problems in urban areas have occurred in the Ogeechee, Canoochee, Ocmulgee, St. Marys, Alapaha, Withlacoochee (north), Santa Fe, Ochlockonee, St. Johns, and Oklawaha Rivers and include nitrogen and phosphorus loading, low dissolved oxygen, elevated bacteria, sediment, and turbidity, and increased concentrations of metals. In agricultural areas, surface-water quality problems include elevated nitrogen and phosphorus concentrations, erosion, and sedimentation and have occurred in the Ocmulgee, St. Marys, Santa Fe, Ochlockonee, St. Johns, Oklawaha, Withlacoochee (South), Hillsborough, and Alafia Rivers. Ground water-quality problems such as saltwater intrusion have occurred mostly in coastal areas and were caused by excessive withdrawals.
Jeffrey D. Kline; Paul Thiers; Connie P. Ozawa; J. Alan Yeakley; Sean N. Gordon
2014-01-01
We examine land use planning outcomes over a 30-year period in the Portland, OR-Vancouver, WA (USA) metropolitan area. The four-county study region enables comparisons between three Oregon counties subject to Oregonâs 1973 Land Use Act (Senate Bill 100) and Clark County, WA which implemented land use planning under Washingtonâs 1990 Growth Management Act. We describe...
Rejman, Jerzy; Rafalska-Przysucha, Anna; Rodzik, Jan
2014-01-01
The change of primary forest areas into arable land involves the transformation of relief and modification of soils. In this study, we hypothesized that relatively flat loess area was largely transformed after the change of land use due to erosion. The modifications in soil pedons and distribution of soil properties were studied after 185 years of arable land use. Structure of pedons and solum depth were measured in 128 and soil texture and soil organic carbon in 39 points. Results showed that soils of noneroded and eroded profiles occupied 14 and 50%, respectively, and depositional soils 36% of the area. As a consequence, the clay, silt, and SOC concentration varied greatly in the plowed layer and subsoil. The reconstructed profiles of eroded soils and depositional soils without the accumulation were used to develop the map of past relief. The average inclination of slopes decreased from 4.3 to 2.2°, and slopes >5° vanished in the present topography. Total erosion was 23.8 Mg ha−1 year−1. From that amount, 88% was deposited within the study area, and 12% was removed outside. The study confirmed the hypothesis of the significant effect of the land use change on relief and soils in loess areas. PMID:25614883
Land Use Patterns and Fecal Contamination of Coastal Waters in Western Puerto Rico
NASA Technical Reports Server (NTRS)
Norat, Jose
1994-01-01
The Department of Environmental Health of the Graduate School of Public Health of the Medical Sciences Campus, University of Puerto Rico (UPR-RCM) conducted this research project on how different patterns of land use affect the microbiological quality of rivers flowing into Mayaguez Bay in Western Puerto Rico. Coastal shellfish growing areas, stream and ocean bathing beaches, and pristine marine sites in the Bay are affected by the discharge of the three study rivers. Satellite imagery was used to study watershed land uses which serve as point and nonpoint sources of pathogens affecting stream and coastal water users. The study rivers drain watersheds of different size and type of human activity (including different human waste treatment and disposal facilities). Land use and land cover in the study watersheds were interpreted, classified and mapped using remotely sensed images from NASA's Landsat Thematic Mapper (TM). This study found there is a significant relationship between watershed land cover and microbiological water quality of rivers flowing into Mayaguez Bay in Western Puerto Rico. Land covers in the Guanajibo, Anasco, and Yaguez watersheds were classified into forested areas, pastures, agricultural zones and urban areas so as to determine relative contributions to fecal water contamination. The land cover classification was made processing TM images with IDRISI and ERDAS software.
NASA Astrophysics Data System (ADS)
Rodriguez-Gallego, Lorena; Achkar, Marcel; Conde, Daniel
2012-07-01
In the present study, a land suitability assessment was conducted in the basin of four Uruguayan coastal lagoons (Southwestern Atlantic) to analyze the productive development while minimizing eutrophication, biodiversity loss and conflicts among different land uses. Suitable land for agriculture, forest, livestock ranching, tourism and conservation sectors were initially established based on a multi-attribute model developed using a geographic information system. Experts were consulted to determine the requirements for each land use sector and the incompatibilities among land use types. The current and potential conflicts among incompatible land use sectors were analyzed by overlapping land suitability maps. We subsequently applied a multi-objective model where land (pixels) with similar suitability was clustered into "land suitability groups", using a two-phase cluster analysis and the Akaike Information Criterion. Finally, a linear programming optimization procedure was applied to allocate land use sectors into land suitable groups, maximizing total suitability and minimizing interference among sectors. Results indicated that current land use overlapped by 4.7 % with suitable land of other incompatible sectors. However, the suitable land of incompatible sectors overlapped in 20.3 % of the study area, indicating a high potential for the occurrence of future conflict. The highest competition was between agriculture and conservation, followed by forest and agriculture. We explored scenarios where livestock ranching and tourism intensified, and found that interference with conservation and agriculture notably increased. This methodology allowed us to analyze current and potential land use conflicts and to contribute to the strategic planning of the study area.
Rodriguez-Gallego, Lorena; Achkar, Marcel; Conde, Daniel
2012-07-01
In the present study, a land suitability assessment was conducted in the basin of four Uruguayan coastal lagoons (Southwestern Atlantic) to analyze the productive development while minimizing eutrophication, biodiversity loss and conflicts among different land uses. Suitable land for agriculture, forest, livestock ranching, tourism and conservation sectors were initially established based on a multi-attribute model developed using a geographic information system. Experts were consulted to determine the requirements for each land use sector and the incompatibilities among land use types. The current and potential conflicts among incompatible land use sectors were analyzed by overlapping land suitability maps. We subsequently applied a multi-objective model where land (pixels) with similar suitability was clustered into "land suitability groups", using a two-phase cluster analysis and the Akaike Information Criterion. Finally, a linear programming optimization procedure was applied to allocate land use sectors into land suitable groups, maximizing total suitability and minimizing interference among sectors. Results indicated that current land use overlapped by 4.7 % with suitable land of other incompatible sectors. However, the suitable land of incompatible sectors overlapped in 20.3 % of the study area, indicating a high potential for the occurrence of future conflict. The highest competition was between agriculture and conservation, followed by forest and agriculture. We explored scenarios where livestock ranching and tourism intensified, and found that interference with conservation and agriculture notably increased. This methodology allowed us to analyze current and potential land use conflicts and to contribute to the strategic planning of the study area.
NASA Astrophysics Data System (ADS)
Keller, R.
2013-12-01
One of the highest priorities in the conservation and management of biodiversity, natural resources and other vital ecosystem services is the assessment of the mechanisms that drive urban land use change. Using key landscape indicators, this study addresses why urban land increased 6 percent overall in Germany from 2000-2006. Building on regional science and economic geography research, I develop a model of landscape change that integrates remotely sensed and other geospatial data, and socioeconomic data in a spatial autoregressive model to explain the variance in urban land use change observed in German kreise (counties) over the past decade. The results reveal three key landscape mechanisms that drive urban land use change across Germany, aligning with those observed in US studies: (1) the level of fragmentation, (2) the share of designated protected areas, and (3) the share of prime soil. First, as fragmentation of once continuous habitats in the landscape increases, extensive urban growth follows. Second, designated protected areas have the perverse effect of hastening urbanization in surrounding areas. Third, greater shares of prime, productive soil experienced less urban land take over the 6 year period, an effect that is stronger in the former East Germany, where the agricultural sector remains large. The results suggest that policy makers concentrate their conservation efforts on preexisting fragmented land with high shares of protected areas in Germany to effectively stem urban land take. Given that comparative studies of land use change are vital for the scientific community to grasp the wider global process of urbanization and coincident ecological impacts, the methodology employed here is easily exportable to land cover and land use research programs in other fields and geographic areas. Key words: Urban land use change, Ecosystem services, Landscape fragmentation, Remote sensing, Spatial regression models, GermanyOLS and Spatial Autoregressive Model Results N = 439; Standard error in ( ) . *p < .1, **p < .01, ***p < .001
NASA Technical Reports Server (NTRS)
Parada, N. D. J. (Principal Investigator); Dossantos, A. P.; Kux, H. J.; Sausen, T. M.; Bueno, A. M. T. R.; Desouza, L. F.; Nunes, J. S. D.
1982-01-01
The results of a land use and geomorphological mapping of the so-called Projeto APAPORE area, at Mato Grosso do Sul State are presented. The study was carried out using multispectral scanner (MSS) and return beam vidicon LANDSAT images (channels 5 and 7 for the MSS) at the scale of 1:250,000 from 1980 through visual interpretation. The results indicate that pastureland is the most widespead class and that the agricultural areas re concentrated in the north of the area under study. The area covered with cerradao (arboreous savanna type) has a great areal extention, thus permitting the advance of the agricultural frontier. The geomorphological mapping can be useful to regional planning of future land use within the studied area.
Analysis of Land Subsidence Monitoring in Mining Area with Time-Series Insar Technology
NASA Astrophysics Data System (ADS)
Sun, N.; Wang, Y. J.
2018-04-01
Time-series InSAR technology has become a popular land subsidence monitoring method in recent years, because of its advantages such as high accuracy, wide area, low expenditure, intensive monitoring points and free from accessibility restrictions. In this paper, we applied two kinds of satellite data, ALOS PALSAR and RADARSAT-2, to get the subsidence monitoring results of the study area in two time periods by time-series InSAR technology. By analyzing the deformation range, rate and amount, the time-series analysis of land subsidence in mining area was realized. The results show that InSAR technology could be used to monitor land subsidence in large area and meet the demand of subsidence monitoring in mining area.
Zhang, Li; Chen, Ying; Wang, Shu-tao; Men, Ming-xin; Xu, Hao
2015-08-01
Assessment and early warning of land ecological security (LES) in rapidly urbanizing coastal area is an important issue to ensure sustainable land use and effective maintenance of land ecological security. In this study, an index system for the land ecological security of Caofeidian new district was established based on the Pressure-State-Response (P-S-R) model. Initial assessment units of 1 km x 1 km created with the remote sensing data and GIS methods were spatially interpolated to a fine pixel size of 30 m x 30 m, which were combined with the early warning method (using classification tree method) to evaluate the land ecological security of Caofeidian in 2005 and 2013. The early warning level was classed into four categories: security with degradation potential, sub-security with slow degradation, sub-security with rapid degradation, and insecurity. Result indicated that, from 2005 to 2013, the average LES of Caofeidian dropped from 0.55 to 0.52, indicating a degradation of land ecological security from medium security level to medium-low security level. The areas at the levels of insecurity with rapid degradation were mainly located in the rapid urbanization areas, illustrating that rapid expansion of urban construction land was the key factor to the deterioration of the regional land ecological security. Industrial District, Shilihai town and Nanpu saltern, in which the lands at the levels of insecurity and sub-security with rapid degradation or slow degradation accounted for 58.3%, 98.9% and 81.2% of their respective districts, were at the stage of high early warning. Thus, land ecological security regulation for these districts should be strengthened in near future. The study could provide a reference for land use planning and ecological protection of Caofeidian new district.
Arnold, L.R.; Mladinich, C.S.; Langer, W.H.; Daniels, J.S.
2010-01-01
Land use in the South Platte River valley between the cities of Brighton and Fort Lupton, Colo., is undergoing change as urban areas expand, and the extent of aggregate mining in the Brighton-Fort Lupton area is increasing as the demand for aggregate grows in response to urban development. To improve understanding of land-use change and the potential effects of land-use change and aggregate mining on groundwater flow, the U.S. Geological Survey, in cooperation with the cities of Brighton and Fort Lupton, analyzed socioeconomic and land-use trends and constructed a numerical groundwater flow model of the South Platte alluvial aquifer in the Brighton-Fort Lupton area. The numerical groundwater flow model was used to simulate (1) steady-state hydrologic effects of predicted land-use conditions in 2020 and 2040, (2) transient cumulative hydrologic effects of the potential extent of reclaimed aggregate pits in 2020 and 2040, (3) transient hydrologic effects of actively dewatered aggregate pits, and (4) effects of different hypothetical pit spacings and configurations on groundwater levels. The SLEUTH (Slope, Land cover, Exclusion, Urbanization, Transportation, and Hillshade) urban-growth modeling program was used to predict the extent of urban area in 2020 and 2040. Wetlands in the Brighton-Fort Lupton area were mapped as part of the study, and mapped wetland locations and areas of riparian herbaceous vegetation previously mapped by the Colorado Division of Wildlife were compared to simulation results to indicate areas where wetlands or riparian herbaceous vegetation might be affected by groundwater-level changes resulting from land-use change or aggregate mining. Analysis of land-use conditions in 1957, 1977, and 2000 indicated that the general distribution of irrigated land and non-irrigated land remained similar from 1957 to 2000, but both land uses decreased as urban area increased. Urban area increased about 165 percent from 1957 to 1977 and about 56 percent from 1977 to 2000 with most urban growth occurring east of Brighton and Fort Lupton and along major transportation corridors. Land-use conditions in 2020 and 2040 predicted by the SLEUTH modeling program indicated urban growth will continue to develop primarily east of Brighton and Fort Lupton and along major transportation routes, but substantial urban growth also is predicted south and west of Brighton. Steady-state simulations of the hydrologic effects of predicted land-use conditions in 2020 and 2040 indicated groundwater levels declined less than 2 feet relative to simulated groundwater levels in 2000. Groundwater levels declined most where irrigated land was converted to urban area and least where non-irrigated land was converted to urban area. Simulated groundwater-level declines resulting from land-use conditions in 2020 and 2040 are not predicted to substantially affect wetlands or riparian herbaceous vegetation in the study area because the declines are small and wetlands and riparian herbaceous vegetation generally are not located where simulated declines occur. See Report PDF for unabridged abstract.
TRADITIONAL USES OF PLANTS OF COMMONLAND HABITATS IN WESTERN CHITWAN, NEPAL
Dangol, D.R.
2012-01-01
This paper is based on the flora data gathered from 138 common land plots as part of a multi-method longitudinal study of the reciprocal relations between population and environment in western Chitwan, Nepal. The paper also describes the uses and availability of different species drawing upon both field data and knowledge of indigenous and local residents in the study area. Land use in western Chitwan is changing rapidly and common land areas have been under much stress due to population increase, whereas the common land areas are valuable to local residents. Both indigenous and new migrant residents in this area use the available plant resources for different purposes which bring economic benefit to the households. Plant species provide valuable food, vegetable and medicinal products that maintain human health and general wellbeing of the household. These plants are also economically valuable to farmers with high quality forage value as well as useful for crop management (e.g., pesticide, compost, green manure). Moreover, some plant species are used as fish poison to harvest fish from rivers and streams. Likewise, the common land areas provide materials for use in house construction (e.g., thatch) and making tools with the potential and viable sites as communal grazing land. It is evident that access and utilization of common land resources are important for many households, especially those in remote and poor agricultural areas such as western Chitwan. PMID:22945971
NASA Astrophysics Data System (ADS)
Li, Rendong; Liu, Jiyuan; Zhuang, Dafang; Gao, Zhiqiang
2004-11-01
Dongting Lake area, located on the southern bank of the middle Yangtze River in central China, is one of the regions experiencing rapid land use change and seriously suffering from flooding disaster in the country. In this paper, a series of land-use coverage was generated through visually interpreting Landsat MSS, TM and ETM images, of 1980, 1990 and 2000 respectively. Then, the spatial-temporal characteristics and the driving forces of the land use changes were analyzed in the study area. The results show that, from 1980 to 2000, the areas of farmland, woodland and non-used land decreased, while those of built-up land, water area and grassland increased. There was a significant shifting from farmland to water or built-up area, and the large-scale reclamation from the lake ever in history has not been found since 1980. The fastest changed area was in Shishou City, Yueyang City and Jinshi City, and the slowest in the eastern and southeastern area. About 49% of the changes were caused by the adjustment of agricultural economic structure, 29.75% by the urbanization and industrialization, and 21.41% by the environmental pressure. The policy, market price and tax on land products also have definitively influences on the land-use changes.
Land use in the Paraiba Valley through remotely sensed data. [Brazil
NASA Technical Reports Server (NTRS)
Dejesusparada, N. (Principal Investigator); Lombardo, M. A.; Novo, E. M. L. D.; Niero, M.; Foresti, C.
1980-01-01
A methodology for land use survey was developed and land use modification rates were determined using LANDSAT imagery of the Paraiba Valley (state of Sao Paulo). Both visual and automatic interpretation methods were employed to analyze seven land use classes: urban area, industrial area, bare soil, cultivated area, pastureland, reforestation and natural vegetation. By means of visual interpretation, little spectral differences are observed among those classes. The automatic classification of LANDSAT MSS data using maximum likelihood algorithm shows a 39% average error of omission and a 3.4% error of inclusion for the seven classes. The complexity of land uses in the study area, the large spectral variations of analyzed classes, and the low resolution of LANDSAT data influenced the classification results.
[Ecological suitability assessment and optimization of urban land expansion space in Guiyang City].
Qiu, Cong-hao; Li, Yang-bing; Feng, Yuan-song
2015-09-01
Based on the case study of Guiyang City, the minimum cumulative resistance model integrating construction land source, ecological rigid constraints and ecological function type resistance factor, was built by use of cost-distance analysis of urban spatial expansion resistance value through ArcGIS 9.3 software in this paper. Then, the ecological resistance of city spatial expansion of Guiyang from 2010 was simulated dynamically and the ecological suitability classification of city spatial expansion was assessed. According to the conflict between the newly increased city construction land in 2014 and its ecological suitability, the unreasonable city land spatial allocation was discussed also. The results showed that the ecological suitability zonation and the city expansion in the study area were basically consistent during 2010-2014, but the conflict between the new city construction and its land ecological suitability was more serious. The ecological conflict area accounted for 58.2% of the new city construction sites, 35.4% of which happened in the ecological control area, 13.9% in the limited development area and 8.9% in the prohibition development area. The intensification of ecological land use conflict would impair the ecological service function and ecological safety, so this paper put forward the city spatial expansion optimal path to preserve the ecological land and improve the construction land space pattern of Guiyang City so as to ensure its ecological safety.
Land loss due to recent hurricanes in coastal Louisiana, U.S.A.
Palaseanu-Lovejoy, Monica; Kranenburg, Christine J.; Barras, John A.; Brock, John C.
2013-01-01
The aim of this study is to improve estimates of wetland land loss in two study regions of coastal Louisiana, U.S.A., due to the extreme storms that impacted the region between 2004 and 2009. The estimates are based on change-detection-mapping analysis that incorporates pre and postlandfall (Hurricanes Katrina, Rita, Gustav, and Ike) fractional-water classifications using a combination of high-resolution (<5 m) QuickBird, IKONOS, and GeoEye-1, and medium-resolution (30 m) Landsat Thematic Mapper satellite imagery. This process was applied in two study areas: the Hackberry area located in the southwestern part of chenier plain that was impacted by Hurricanes Rita (September 24, 2005) and Ike (September 13, 2008), and the Delacroix area located in the eastern delta plain that was impacted by Hurricanes Katrina (August 29, 2005) and Gustav (September 1, 2008). In both areas, effects of the hurricanes include enlargement of existing bodies of open water and erosion of fringing marsh areas. Surge-removed marsh was easily identified in stable marshes but was difficult to identify in degraded or flooded marshes. Persistent land loss in the Hackberry area due to Hurricane Rita was approximately 5.8% and increased by an additional 7.9% due to Hurricane Ike, although this additional area may yet recover. About 80% of the Hackberry study area remained unchanged since 2003. In the Delacroix area, persistent land loss due to Hurricane Katrina measured approximately 4.9% of the study area, while Hurricane Gustav caused minimal impact of 0.6% land loss by November 2009. Continued recovery in this area may further erase Hurricane Gustav's impact in the absence of new storm events.
NASA Astrophysics Data System (ADS)
Wang, G.
2017-12-01
Water and land resources play vital roles in agricultural growth. They not only remarkably support overall economic growth, but may also restrict agricultural development. To document the influence of water and land on agriculture, we examined the "drag effects" of these two resources in limiting agricultural production. In this study, data from eight counties collected during 2000-2012 from the Heihe Agricultural Production Area in Gansu Province were used to analyze the drag effects of water and land resources on agricultural growth. These effects varied largely among the eight counties, which was consistent with the availability of these resources. This study will give scientific support to coordinating development with the availability of water and land resources in agricultural areas of China
Assessing the influence of historic net and gross land changes on the carbon fluxes of Europe.
Fuchs, Richard; Schulp, Catharina J E; Hengeveld, Geerten M; Verburg, Peter H; Clevers, Jan G P W; Schelhaas, Mart-Jan; Herold, Martin
2016-07-01
Legacy effects of land cover/use on carbon fluxes require considering both present and past land cover/use change dynamics. To assess past land use dynamics, model-based reconstructions of historic land cover/use are needed. Most historic reconstructions consider only the net area difference between two time steps (net changes) instead of accounting for all area gains and losses (gross changes). Studies about the impact of gross and net land change accounting methods on the carbon balance are still lacking. In this study, we assessed historic changes in carbon in soils for five land cover/use types and of carbon in above-ground biomass of forests. The assessment focused on Europe for the period 1950 to 2010 with decadal time steps at 1-km spatial resolution using a bookkeeping approach. To assess the implications of gross land change data, we also used net land changes for comparison. Main contributors to carbon sequestration between 1950 and 2010 were afforestation and cropland abandonment leading to 14.6 PgC sequestered carbon (of which 7.6 PgC was in forest biomass). Sequestration was highest for old-growth forest areas. A sequestration dip was reached during the 1970s due to changes in forest management practices. Main contributors to carbon emissions were deforestation (1.7 PgC) and stable cropland areas on peaty soils (0.8 PgC). In total, net fluxes summed up to 203 TgC yr(-1) (98 TgC yr(-1) in forest biomass and 105 TgC yr(-1) in soils). For areas that were subject to land changes in both reconstructions (35% of total area), the differences in carbon fluxes were about 68%. Overall for Europe the difference between accounting for either gross or net land changes led to 7% difference (up to 11% per decade) in carbon fluxes with systematically higher fluxes for gross land change data. © 2015 John Wiley & Sons Ltd.
Mallinis, Giorgos; Koutsias, Nikos; Arianoutsou, Margarita
2014-08-15
The aims of this study were to map and analyze land use/land cover transitions and landscape changes in the Parnitha and Penteli mountains, which surround the Athens metropolitan area of Attica, Greece over a period of 62 years. In order to quantify the changes between land categories through time, we computed the transition matrices for three distinct periods (1945-1960, 1960-1996, and 1996-2007), on the basis of available aerial photographs used to create multi-temporal maps. We identified systematic and stationary transitions with multi-level intensity analysis. Forest areas in Parnitha remained the dominant class of land cover throughout the 62 years studied, while transitional woodlands and shrublands were the main classes involved in LULC transitions. Conversely, in Penteli, transitional woodlands, along with shrublands, dominated the study site. The annual rate of change was faster in the first and third time intervals, compared to the second (1960-1996) time interval, in both study areas. The category level analysis results indicated that in both sites annual crops avoided to gain while discontinuous urban fabric avoided to lose areas. At the transition level of analysis, similarities as well as distinct differences existed between the two areas. In both sites the gaining pattern of permanent crops with respect to annual crops and the gain of forest with respect to transitional woodland/shrublands were stationary across the three time intervals. Overall, we identified more systematic transitions and stationary processes in Penteli. We discussed these LULC changes and associated them with human interference (activity) and other major socio-economic developments that were simultaneously occurring in the area. The different patterns of change of the areas, despite their geographical proximity, throughout the period of analysis imply that site-specific studies are needed in order to comprehensively assess the driving forces and develop models of landscape transformation in Mediterranean areas. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Nampak, Haleh; Pradhan, Biswajeet
2016-07-01
Soil erosion is the common land degradation problem worldwide because of its economic and environmental impacts. Therefore, land-use change detection has become one of the major concern to geomorphologists, environmentalists, and land use planners due to its impact on natural ecosystems. The objective of this paper is to evaluate the relationship between land use/cover changes and land degradation in the Cameron highlands (Malaysia) through multi-temporal remotely sensed satellite images and ancillary data. Land clearing in the study area has resulted increased soil erosion due to rainfall events. Also unsustainable development and agriculture, mismanagement and lacking policies contribute to increasing soil erosion rates. The LULC distribution of the study area was mapped for 2005, 2010, and 2015 through SPOT-5 satellite imagery data which were classified based on object-based classification. A soil erosion model was also used within a GIS in order to study the susceptibility of the areas affected by changes to overland flow and rain splash erosion. The model consists of four parameters, namely soil erodibility, slope, vegetation cover and overland flow. The results of this research will be used in the selection of the areas that require mitigation processes which will reduce their degrading potential. Key words: Land degradation, Geospatial, LULC change, Soil erosion modelling, Cameron highlands.
1981-07-01
hills and nine wineries are located in the study area. Most agricultural land in the study area is irrigated by groundwater. Labor Force and...Vineyards in the hills supply nine wineries located in the study area. Most of the agricultural land in the study area is irrigated by pumped ground water... wineries located in the study area. Some pasture and grain are grown around the fringes of the valley floor. 4.39 There are 60 manufacturing plants in
Huang, Zhilin; Han, Liyang; Zeng, Lixiong; Xiao, Wenfa; Tian, Yaowu
2016-02-01
In this study, we have considered the relationship between the spatial configuration of land use and water quality in the Three Gorges Reservoir Area. Using land use types, landscape metrics, and long-term water quality data, as well as statistical and spatial analysis, we determined that most water quality parameters were negatively correlated with non-wood forest and urban areas but were strongly positively correlated with the proportion of forest area. Landscape indices such as patch density, contagion, and the Shannon diversity index were able to predict some water quality indicators, but the mean shape index was not significantly related to the proportions of farmland and water in the study area. Regression relationships were stronger in spring and fall than in summer, and relationships with nitrogen were stronger than those of the other water quality parameters (R(2) > 0.80) in all three seasons. Redundancy analysis showed that declining stream water quality was closely associated with configurations of urban, agricultural, and forest areas and with landscape fragmentation (PD) caused by urbanization and agricultural activities. Thus, a rational land use plan of adjusting the land use type, controlling landscape fragmentation, and increasing the proportion of forest area would help to achieve a healthier river ecosystem in the Three Gorges Reservoir Area (TGRA).
Sabr, Abutaleb; Moeinaddini, Mazaher; Azarnivand, Hossein; Guinot, Benjamin
2016-12-01
In the recent years, dust storms originating from local abandoned agricultural lands have increasingly impacted Tehran and Karaj air quality. Designing and implementing mitigation plans are necessary to study land use/land cover change (LUCC). Land use/cover classification is particularly relevant in arid areas. This study aimed to map land use/cover by pixel- and object-based image classification methods, analyse landscape fragmentation and determine the effects of two different classification methods on landscape metrics. The same sets of ground data were used for both classification methods. Because accuracy of classification plays a key role in better understanding LUCC, both methods were employed. Land use/cover maps of the southwest area of Tehran city for the years 1985, 2000 and 2014 were obtained from Landsat digital images and classified into three categories: built-up, agricultural and barren lands. The results of our LUCC analysis showed that the most important changes in built-up agricultural land categories were observed in zone B (Shahriar, Robat Karim and Eslamshahr) between 1985 and 2014. The landscape metrics obtained for all categories pictured high landscape fragmentation in the study area. Despite no significant difference was evidenced between the two classification methods, the object-based classification led to an overall higher accuracy than using the pixel-based classification. In particular, the accuracy of the built-up category showed a marked increase. In addition, both methods showed similar trends in fragmentation metrics. One of the reasons is that the object-based classification is able to identify buildings, impervious surface and roads in dense urban areas, which produced more accurate maps.
NASA Astrophysics Data System (ADS)
Lucas, M.; Trauernicht, C.; Carlson, K. M.; Miura, T.; Giambelluca, T. W.; Chen, Q.
2017-12-01
The past decades in Hawaii have seen large scale land use change and land cover shifts. However, much these dynamics are only described anecdotally or studied at a single locale, with little information on the extent, rate, or direction of change. This lack of data hinders any effort to assess, plan, and prioritize land management. To improve assessments of statewide vegetation and land cover change, this project developed high resolution, sub-pixel, percent cover maps of forest, grassland and bare earth at annual time steps from 1999 to 2016. Vegetation cover was quantified using archived LANDSAT imagery and a custom remote-sensing algorithm developed in the Google Earth Engine platform. A statistical trend analysis of annual maps of the these three proportional land covers were then used to detect land cover transitions across the archipelago. The aim of this work focused on quantifying the total area of change, annual rates of change and final vegetation cover outcomes statewide. Additionally these findings were attributed to past and current land uses and management history by compiling spatial datasets of development, agriculture, forest restoration sites and burned areas statewide. Results indicated that nearly 10% of the state's land surfaces are suspected to have transitioned between the three cover classes during the study period. Total statewide net change resulted in a gain in forest cover with largest areas of change occurring in unmanaged areas, current and past pastoral land, commercial forestry and abandoned cultivated land. The fastest annual rates of change were forest increases that occurred in restoration areas and commercial forestry. These findings indicate that Hawaii is going through a forest transition, primarily driven by agricultural abandonment with likely feedbacks from invasive species, but also influenced by the establishment of forestry production on former agricultural lands that show potential for native forest restoration. These results directly link land management history to land cover outcomes using an innovative approach to quantify change. It is also the first study to quantify forest transition dynamics in Hawaii and points to the need for similar assessments in post-agricultural landscapes on other oceanic islands.
Palaseanu-Lovejoy, Monica; Kranenburg, Christine J.; Brock, John C.
2010-01-01
In this study, we estimated the changes in land and water coverage of a 1,961-square-kilometer (km2) area in Louisiana's Chenier Plain. The study area is roughly centered on the Sabine National Wildlife Refuge, which was impacted by Hurricane Rita on September 24, 2005. The objective of this study is twofold: (1) to provide pre- and post-Hurricane Rita moderate-resolution (30-meter (m)) fractional water maps based upon multiple source images, and (2) to quantify land and water coverage changes due to Hurricane Rita.
NASA Astrophysics Data System (ADS)
Sudhakar Reddy, C.; Saranya, K. R. L.
2017-08-01
This study has generated a national level spatial database of land cover and changes in forest cover of Afghanistan for the 1975-1990, 1990-2005 and 2005-2014 periods. Using these results we have analysed the annual deforestation rates, spatial changes in forests, forest types and fragmentation classes over a period of 1975 to 2014 in Afghanistan. The land cover map of 2014 provides distribution of forest (dry evergreen, moist temperate, dry temperate, pine, sub alpine) and non-forest (grassland, scrub, agriculture, wetlands, barren land, snow and settlements) in Afghanistan. The largest land cover, barren land, contributes to 56% of geographical area of country. Forest is distributed mostly in eastern Afghanistan and constitutes an area of 1.02% of geographical area in 2014. The annual deforestation rate in Afghanistan's forests for the period from 1975 to 1990 estimated as 0.06% which was declined significantly from 2005 to 2014. The predominant forest type in Afghanistan is moist temperate which shows loss of 80 km2 of area during the last four decades of the study period. At national level, the percentage of large core forest area was calculated as 52.20% in 2014.
Salvati, Luca
2014-08-15
The present study evaluates the impact of urban expansion on landscape transformations in Rome's metropolitan area (1500 km(2)) during the last sixty years. Landscape composition, structure and dynamics were assessed for 1949 and 2008 by analyzing the distribution of 26 metrics for nine land-use classes. Changes in landscape structure are analysed by way of a multivariate statistical approach providing a summary measure of rapidity-to-change for each metric and class. Land fragmentation increased during the study period due to urban expansion. Poorly protected or medium-low value added classes (vineyards, arable land, olive groves and pastures) experienced fragmentation processes compared with protected or high-value added classes (e.g. forests, olive groves) showing larger 'core' areas and lower fragmentation. The relationship observed between class area and mean patch size indicates increased fragmentation for all uses of land (both expanding and declining) except for urban areas and forests. Reducing the impact of urban expansion for specific land-use classes is an effective planning strategy to contrast the simplification of Mediterranean landscape in peri-urban areas. Copyright © 2014 Elsevier B.V. All rights reserved.
Li, Xiaoyan; Wang, Zongming; Song, Kaishan; Zhang, Bai; Liu, Dianwei; Guo, Zhixing
2007-08-01
Due to human impact under climatic variations, western part of Northeast China has suffered substantial land degradation during past decades. This paper presents an integrated study of expansion process of salinized wasteland in Da'an County, a typical salt-affected area in Northeast China, by using Geographic Information Systems (GIS) and remote sensing. The study explores the temporal and spatial characteristics of salinized wasteland expansion from 1954 to 2004, and land use/cover changes during this period. During the past 50 years, the salinized wasteland in study area have increased by 135,995 ha, and in 2004 covers 32.31% of the total area, in the meantime grassland has decreased by 104,697 ha and in 2004 covers only 13.15% of the study area. Grasslands, croplands and swamplands were found the three main land use types converted into salinized wasteland. Land use/cover changes shows that between 1954 and 2004, 48.6% of grasslands, 42.5% of swamplands, and 14.1% of croplands were transformed into salinized wasteland, respectively. Lastly, the major factors influencing salinized wasteland expansion and land use/cover changes were also explored. In general, climatic factors supplied a potential environment for soil salinization. Human-related factors, such as policy, population, overgrazing, and intensified and unreasonable utilization of land and water resources are the main causes of salinized wasteland expansion.
Ecological Risk Assessment of Land Use Change in the Poyang Lake Eco-economic Zone, China
Xie, Hualin; Wang, Peng; Huang, Hongsheng
2013-01-01
Land use/land cover change has been attracting increasing attention in the field of global environmental change research because of its role in the social and ecological environment. To explore the ecological risk characteristics of land use change in the Poyang Lake Eco-economic Zone of China, an eco-risk index was established in this study by the combination of a landscape disturbance index with a landscape fragmentation index. Spatial distribution and gradient difference of land use eco-risk are analyzed by using the methods of spatial autocorrelation and semivariance. Results show that ecological risk in the study area has a positive correlation, and there is a decreasing trend with the increase of grain size both in 1995 and 2005. Because the area of high eco-risk value increased from 1995 to 2005, eco-environment quality declined slightly in the study area. There are distinct spatial changes in the concentrated areas with high land use eco-risk values from 1995 to 2005. The step length of spatial separation of land use eco-risk is comparatively long—58 km in 1995 and 11 km in 2005—respectively. There are still nonstructural factors affecting the quality of the regional ecological environment at some small-scales. Our research results can provide some useful information for land eco-management, eco-environmental harnessing and restoration. In the future, some measures should be put forward in the regions with high eco-risk value, which include strengthening land use management, avoiding unreasonable types of land use and reducing the degree of fragmentation and separation. PMID:23343986
Hou, Ying; Li, Bo; Müller, Felix; Chen, Weiping
2016-11-01
Watersheds provide multiple ecosystem services. Ecosystem service assessment is a promising approach to investigate human-environment interaction at the watershed scale. The spatial characteristics of ecosystem services are closely related to land use statuses in human-dominated watersheds. This study aims to investigate the effects of land use on the spatial variations of ecosystem services at the Dianchi Lake watershed in Southwest China. We investigated the spatial variations of six ecosystem services-food supply, net primary productivity (NPP), habitat quality, evapotranspiration, water yield, and nitrogen retention. These services were selected based on their significance at the Dianchi Lake watershed and the availability of their data. The quantification of these services was based on modeling, value transference, and spatial analysis in combination with biophysical and socioeconomic data. Furthermore, we calculated the values of ecosystem services provided by different land use types and quantified the correlations between ecosystem service values and land use area proportions. The results show considerable spatial variations in the six ecosystem services associated with land use influences in the Dianchi Lake watershed. The cropland and forest land use types had predominantly positive influences on food productivity and NPP, respectively. The rural residential area and forest land use types reduced and enhanced habitat quality, respectively; these influences were identical to those of evapotranspiration. Urban area and rural residential area exerted significantly positive influences on water yield. In contrast, water yield was negatively correlated with forest area proportion. Finally, cropland and forest had significantly positive and negative influences, respectively, on nitrogen retention. Our study emphasizes the importance of consideration of the influences from land use composition and distribution on ecosystem services for managing the ecosystems of human-dominated watersheds.
NASA Astrophysics Data System (ADS)
Supardan, N.; Panularsih, M.; Darmawan, M.
2018-05-01
Land use change was common in Indonesia, including Bali, especially land conversion from paddy field to other uses. Based on statistics data of Bali 2015, the area of rice fields continues to decline every year, both irrigated and rain-fed rice fields. This study was conducted to analyze land use change and its impact on food security in Denpasar. Land use change dynamics can be observed by multi-temporal land use changes. GIS analysis was performed to obtain spatial land use changes in the study area by using topographic map 1: 25,000 with data sources 2002 and land cover classification of SPOT 6 image acquisition 2015. The results of GIS analysis indicate that settlement and built-up area increased by 1,736 hectares and the area of rice field decreased by 1,695 hectares during 13 years. The increasing of settlement rate was 133,5 ha / year and the decreasing of rice field was 130 ha / year. Meanwhile, the result of food availability analysis shows that the Denpasar City still deficit of rice amount 48,997 tons in 2014, and 69,175 tons in 2015 or only fulfill about 45% of food requirement.
NASA Astrophysics Data System (ADS)
Su, Lilan; Liu, Yanfang; Gao, Xiaoyong
2009-10-01
During the process of economic growth, the industry structure transforms at different developing sections and that industrial composition as well as each department interior demand for land resources would reflect on land-use structure reform. This paper takes Hubei as the research zone, through a consecutive time sequence of 10 years period (1996-2005) just before and after the 1 plus 8 Eastern Hubei Metropolitan Area project, a quantitative study of the correlation between the industry structure and land-use structure is made based on the entropy theory. According to the classification of industrial composition, the land-use structure here is also redefined into four types as Land Use for Primary Industry, Land Use for Secondary Industry, Land Use for Tertiary Industry, and Land Use for Potential Reserve, in the aim that it should model new methods for researching the relationship of industry structure and land-use structure, and the instinct driving force would be presented more evidently at the same time. The outcomes indicate that the change of land-use structure has close relationship with the structure of industry composition; the trend of information entropy in Hubei mostly keeps increasing during the past 10 years which predicating the symmetrical degree of land-use structure is gradually built; and Eastern Hubei Metropolitan Area is of favorable power far superiority other units within province in promoting regional development, yet land-use structure adjustments are still not stable and a optimal mode of land use needs further approach.
How conflict affects land use: agricultural activity in areas seized by the Islamic State
NASA Astrophysics Data System (ADS)
Eklund, Lina; Degerald, Michael; Brandt, Martin; Prishchepov, Alexander V.; Pilesjö, Petter
2017-05-01
Socio-economic shocks, technogenic catastrophes, and armed conflicts often have drastic impacts on local and regional food security through disruption of agricultural production and food trade, reduced investments, and deterioration of land and infrastructure. Recently, more research has focused on the effects of armed conflict on land systems, but still little is known about the processes and outcomes of such events. Here we use the case of Syria and Iraq and the seizure of land by the Islamic State (IS) since 2014 as an example of armed conflict, where we investigate the effects on agricultural land use. We apply a reproducible approach using 250 m satellite-based time-series data to quantify the areas under cultivation from 2000 to 2015. Despite a common belief about widespread land abandonment in areas under conflict, results point to multiple trajectories regarding cropland cultivation in the IS seized area: (1) expansion of cropland to formerly un-cultivated areas, (2) cropland abandonment, and (3) decrease of high-intensity cropland. Our study highlights the need to understand these diverse conflict-related and context-dependent changes to the land system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boer, Rizaldi; Wasrin, Upik R.; Hendri, Perdinan
2007-06-01
Rehabilitation of degraded forest land throughimplementation of carbon sink projects can increase terrestrial carbonstock. However, carbon emissions outside the project boundary, which iscommonly referred to as leakage, may reduce or negate the sequestrationbenefits. This study assessed leakage from carbon sink projects thatcould potentially be implemented in the study area comprised of elevensub-districts in the Batanghari District, Jambi Province, Sumatra,Indonesia. The study estimates the probability of a given land use/coverbeing converted into other uses/cover, by applying a logit model. Thepredictor variables were: proximity to the center of the land use area,distance to transportation channel (road or river), area of agriculturalland, unemploymentmore » (number of job seekers), job opportunities, populationdensity and income. Leakage was estimated by analyzing with and withoutcarbon sink projects scenarios. Most of the predictors were estimated asbeing significant in their contribution to land use cover change. Theresults of the analysis show that leakage in the study area can be largeenough to more than offset the project's carbon sequestration benefitsduring the period 2002-2012. However, leakage results are very sensitiveto changes of carbon density of the land uses in the study area. Byreducing C-density of lowland and hill forest by about 10 percent for thebaseline scenario, the leakage becomes positive. Further data collectionand refinement is therefore required. Nevertheless, this study hasdemonstrated that regional analysis is a useful approach to assessleakage.« less
NASA Astrophysics Data System (ADS)
Zimmermann, Jesko; González, Ainhoa; Jones, Michael; O'Brien, Phillip; Stout, Jane C.; Green, Stuart
2016-04-01
In developed countries, cropland and grassland conversions and management can be a major factor in Land Use and Land Use Change (LULUC) related Greenhouse Gas (GHG) dynamics. Depending on land use, management and factors such as soil properties land can either act as source or sink for GHGs. Currently many countries depend on national statistics combined with socio-economic modelling to assess current land use as well as inter-annual changes. This potentially introduces a bias as it neither provides information on direct land- use change trajectories nor spatially explicit information to assess the environmental context. In order to improve reporting countries are shifting towards high resolution spatial datasets. In this case study, we used the Land Parcel Identification System (LPIS), a pan-European geographical database developed to assist farmers and authorities with agricultural subsidies, to analyse cropland dynamics in Ireland. The database offer high spatial resolution and is updated annually. Generally Ireland is considered grassland dominated with 90 % of its agricultural area under permanent grassland, and only a small area dedicated to cropland. However an in-depth analysis of the LPIS for the years 2000 to 2012 showed strong underlying dynamics. While the annual area reported as cropland remained relatively constant at 3752.3 ± 542.3 km2, the area of permanent cropland was only 1251.9 km2. Reversely, the area that was reported as cropland for at least one year during the timeframe was 7373.4 km2, revealing a significantly higher area with cropland history than annual statistics would suggest. Furthermore, the analysis showed that one quarter of the land converting from or to cropland will return to the previous land use within a year. To demonstrate potential policy impact, we assessed cropland/grassland dynamics from the 2008 to 2012 commitment period using (a) annual statistics, and (b) data including land use history derived from LPIS. Under current reporting standards temporary grassland is considered cropland for reporting purposes. Therefore taking land use history into account increases the area reported as cropland in 2008 by 45.7 % and the area remaining cropland in 2012 by 17.5 % compared to using annual statistics. In conclusion we showed that high resolution spatial datasets are an important tool to better understand land use dynamics, and can directly improve national GHG accounting efforts. Furthermore, knowledge of land use history is important to assess local GHG dynamics, and can therefore contribute to ultimately progress reporting to higher Tier level reporting.
NASA Astrophysics Data System (ADS)
Mubako, S. T.; Hargrove, W. L.; Heyman, J. M.; Reyes, C. S.
2016-12-01
Urbanization is an area of growing interest in assessing the impact of human activities on water resources in arid regions. Remote sensing techniques provide an opportunity to analyze land cover change over time, and are useful in monitoring areas undergoing rapid urban growth. This case study for the water-scarce Upper Rio Grande River Basin uses a supervised classification algorithm to quantify the rate and evaluate the pattern of urban sprawl. A focus is made on the fast growing El-Paso-Juarez metropolitan area on the US-Mexico border and the City of Las Cruces in New Mexico, areas where environmental challenges and loss of agricultural and native land to urban development are major concerns. Preliminary results show that the land cover is dominantly native with some significant agriculture along the Rio Grande River valley. Urban development across the whole study area expanded from just under 3 percent in 1990, to more than 11 percent in 2015. The urban expansion is occurring mainly around the major urban areas of El Paso, Ciudad Juarez, and Las Cruces, although there is visible growth of smaller urban settlements scattered along the Rio Grande River valley during the same analysis period. The proportion of native land cover fluctuates slightly depending on how much land is under crops each analysis year, but there is a decreasing agricultural land cover trend suggesting that land from this sector is being lost to urban development. This analysis can be useful in planning to protect the environment, preparing for growth in infrastructure such as schools, increased traffic demands, and monitoring availability of resources such as groundwater as the urban population grows.
ERIC Educational Resources Information Center
Laws, Kevin
A social studies unit and student workbook explore the historical geography of the area of Peachtree Street in Atlanta, Georgia. The unit deals with sequent occupance, a type of historical geography in which students study the same area, the changes in culture, and the changing land use in the area during certain time periods. For each period,…
Reconstruction assessment of historical land use: A case study in the Kamo River basin, Kyoto, Japan
NASA Astrophysics Data System (ADS)
Luo, Pingping; Takara, Kaoru; Apip; He, Bin; Nover, Daniel
2014-02-01
Reconstruction assessment of historical land use can be useful for understanding historical conditions and the impact of long-term land-use change. This study establishes a new method to estimate historical land use based on a set of basic rules generated from the comparison of present land-use and historical documents. This method has been formalized in the paleo-land-use reconstruction (PLUR) program, allowing users to quickly reconstruct historical land use using historical information. The 1843, 1902 and 1927 historical land use conditions were generated using the PLUR model for the Kamo River basin (KRB). Our results show that between 1902 and 1976, three golf courses (Ohara Public course, Kamigamo course and Funayama course) replaced forest land in the KRB. As a result of agricultural development, the area occupied by paddy fields in 1843 was 2.48 km2 less than that in 1902. Urban areas increased from 1843 to 1976, mainly reflecting declining coverage of paddy fields after 1902. The approach presented in this study can be used to support land-use change analyses and reconstruction of paleo-hydrology. This study also provides a discussion of the major drivers of land use change.
Investigation of Potential Landsubsidence using GNSS CORS UDIP and DinSAR, Sayung, Demak, Indonesia
NASA Astrophysics Data System (ADS)
Yuwono, B. D.; Prasetyo, Y.; Islama, L. J. F.
2018-02-01
The coastal flooding induced by land subsidence is one of major social problems in the coastal area of Central Java, especially North Demak. Recent advance technology Global Navigation Satellite System Continuously Operating System (GNSS) and Differential Synthetic Aperture Radar Interferometry ( DInSAR) is already increased our capability to identify of land subsidence processes. DInSAR required not only availability of good quality input data but also rigorous approaches. In this research we used DInSAR analysis with focusing on landsubsidence phenomena. Tests were done with geodetic GPS survey with GNSS CORS UDIP as base station. Performance assessment of development method was conducted on study area affected by land subsidence. The results of this study indicate land subsidence spreads in study area with varying degrees of subsidence.
NASA Astrophysics Data System (ADS)
Abdulle, Abdinur; Tan, Adhwa Amir; Pradhan, Biswajeet; Abdullahi, Saleh
2016-06-01
The aim of this study is to analyse land use and cover changes for the studied area during 1992-2015 and particularly evaluate the effect of civil war on these changes. Three Landsat images were used; Landsat 4 (1992), Landsat 7 (2000) and Landsat 8 (2015). Assessment of changes has been applied through three supervised classification algorithms, support vector machine, minimum classifier, and mahalanobis classifier. The result shows that SVM is providing highest overall accuracy of 98.5% for the years 2000 and 2015 with kappa coefficient of 0.9803 in year 2015. The change detection result show that the higher changes is between year 1992-2000 where vegetation land cover has dropped down to 11.1% and undeveloped area has increased to 11.4%. Whereas for year 2000-2015, higher changes belongs to build up area by 3.30% while undeveloped area and vegetation land cover keep decreasing by 2.64% and 1.93% respectively.
NASA Technical Reports Server (NTRS)
Susskind, Joel; Lee, Jae N.; Iredell, Lena
2013-01-01
The AIRS Science Team Version-6 data set is a valuable resource for meteorological studies. Quality Controlled earth's surface skin temperatures are produced on a 45 km x 45 km spatial scale under most cloud cover conditions. The same retrieval algorithm is used for all surface types under all conditions. This study used eleven years of AIRS monthly mean surface skin temperature and cloud cover products to show that land surface skin temperatures have decreased significantly in some areas and increased significantly in other areas over the period September 2002 through August 2013. These changes occurred primarily at 1:30 PM but not at 1:30 AM. Cooling land areas contained corresponding increases in cloud cover over this time period, with the reverse being true for warming land areas. The cloud cover anomaly patterns for a given month are affected significantly by El Nino/La Nina activity, and anomalies in cloud cover are a driving force behind anomalies in land surface skin temperature.
Analyses on Regional Cultivated Land Changebased on Quantitative Method
NASA Astrophysics Data System (ADS)
Cao, Yingui; Yuan, Chun; Zhou, Wei; Wang, Jing
Three Gorges Project is the great project in the world, which accelerates economic development in the reservoir area of Three Gorges Project. In the process of development in the reservoir area of Three Gorges Project, cultivated land has become the important resources, a lot of cultivated land has been occupied and become the constructing land. In the same time, a lot of cultivated land has been flooded because of the rising of the water level. This paper uses the cultivated land areas and social economic indicators of reservoir area of Three Gorges in 1990-2004, takes the statistic analyses and example research in order to analyze the process of cultivated land, get the driving forces of cultivated land change, find the new methods to stimulate and forecast the cultivated land areas in the future, and serve for the cultivated land protection and successive development in reservoir area of Three Gorges. The results indicate as follow, firstly, in the past 15 years, the cultivated land areas has decreased 200142 hm2, the decreasing quantity per year is 13343 hm2. The whole reservoir area is divided into three different areas, they are upper reaches area, belly area and lower reaches area. The trends of cultivated land change in different reservoir areas are similar to the whole reservoir area. Secondly, the curve of cultivated land areas and per capita GDP takes on the reverse U, and the steps between the change rate of cultivated land and the change rate of GDP are different in some years, which indicates that change of cultivated land and change of GDP are decoupling, besides that, change of cultivated land is connection with the development of urbanization and the policy of returning forestry greatly. Lastly, the precision of multi-regression is lower than the BP neural network in the stimulation of cultivated land, then takes use of the BP neural network to forecast the cultivated land areas in 2005, 2010 and 2015, and the forecasting results are reasonable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Treitz, P.M.; Howarth, P.J.; Gong, Peng
1992-04-01
SPOT HRV multispectral and panchromatic data were recorded and coregistered for a portion of the rural-urban fringe of Toronto, Canada. A two-stage digital analysis algorithm incorporating a spectral-class frequency-based contextual classification of eight land-cover and land-use classes resulted in an overall Kappa coefficient of 82.2 percent for training-area data and a Kappa coefficient of 70.3 percent for test-area data. A matrix-overlay analysis was then performed within the geographic information system (GIS) to combine the land-cover and land-use classes generated from the SPOT digital classification with zoning information for the area. The map that was produced has an estimated interpretation accuracymore » of 78 percent. Global Positioning System (GPS) data provided a positional reference for new road networks. These networks, in addition to the new land-cover and land-use map derived from the SPOT HRV data, provide an up-to-date synthesis of change conditions in the area. 51 refs.« less
Mapping of government land encroachment in Cameron Highlands using multiple remote sensing datasets
NASA Astrophysics Data System (ADS)
Zin, M. H. M.; Ahmad, B.
2014-02-01
The cold and refreshing highland weather is one of the factors that give impact to socio-economic growth in Cameron Highlands. This unique weather of the highland surrounded by tropical rain forest can only be found in a few places in Malaysia. It makes this place a famous tourism attraction and also provides a very suitable temperature for agriculture activities. Thus it makes agriculture such as tea plantation, vegetable, fruits and flowers one of the biggest economic activities in Cameron Highlands. However unauthorized agriculture activities are rampant. The government land, mostly forest area have been encroached by farmers, in many cases indiscriminately cutting down trees and hill slopes. This study is meant to detect and assess this encroachment using multiple remote sensing datasets. The datasets were used together with cadastral parcel data where survey lines describe property boundary, pieces of land are subdivided into lots of government and private. The general maximum likelihood classification method was used on remote sensing image to classify the land-cover in the study area. Ground truth data from field observation were used to assess the accuracy of the classification. Cadastral parcel data was overlaid on the classification map in order to detect the encroachment area. The result of this study shows that there is a land cover change of 93.535 ha in the government land of the study area between years 2001 to 2010, nevertheless almost no encroachment took place in the studied forest reserve area. The result of this study will be useful for the authority in monitoring and managing the forest.
Irrigation as a determinant of the land use impacts of biofuels
NASA Astrophysics Data System (ADS)
Liu, J.; Hertel, T. W.; Taheripour, F.
2011-12-01
Previous research into the global land use impacts of biofuels has assumed that cropland area could expand in most regions of the world. Indeed, such expansion into more carbon-rich land cover such as grassland or forest is the focus of research into the contributions of indirect land use to the GHG impacts of biofuels. Several studies have examined the global land use consequences of biofuel production. However, all of these studies have effectively treated all cropland as being rainfed. The role of irrigation in biofuel-induced cropland expansion has been wholly ignored. Irrigated croplands typically have much higher yields than their rainfed counterparts. As a consequence, irrigated lands that represent 20% global cropland cover account for 42% of global crop production. Thus, the question of whether expansion of biofuel involves irrigated or rainfed lands makes a significant difference in terms of how much new land will be required to provide the additional production called for in the presence of biofuels. If the new lands are irrigated, and therefore have higher yields than rainfed lands in the same Agro Ecological Zone (AEZs), then less land conversion will be required. However, this land conversion saving may be impossible because expansion of irrigated area is often constrained, either by insufficient water, or insufficient capacity. In this paper we explore the impact on iLUC estimates if irrigated area cannot be expanded. Since earlier studies have assumed the opposite (no constraint whatsoever on expansion), this paper offers an upper bound on the change in land use patterns once one accounts for irrigation. Results show that the change in global cropland area is 15% larger when the irrigation constraint is imposed. This is a direct consequence of the lower yields in rainfed areas. The figure is larger in the US, where the elimination of potential for expanding irrigated areas results in 23% more cropland cover change. The results also show that the presence of potential irrigation constraints significantly alters the geographic pattern of land use change in the wake of the US ethanol expansion. Since rainfed agriculture is more likely than irrigated agriculture to compete with forest, the irrigation-enhanced model shows greater conversion of forest to cropland (up from 23% to 27% of total cropland conversion globally). As a consequence, the GHG emissions from this indirect land use change are significantly higher than the previous estimates - this stems both from greater cropland expansion overall, as well as from the tendency to convert more forest per hectare of cropland.
Urban land-use study plan for the National Water-Quality Assessment Program
Squillace, P.J.; Price, C.V.
1996-01-01
This study plan is for Urban Land-Use Studies initiated as part of the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program. There are two Urban Land-Use Study objectives: (1) Define the water quality in recharge areas of shallow aquifers underlying areas of new residential and commercial land use in large metropolitan areas, and (2) determine which natural and human factors most strongly affect the occurrence of contaminants in these shallow aquifers. To meet objective 1, each NAWQA Study Unit will install and collect water samples from at least 30 randomly located monitoring wells in a metropolitan area. To meet objective 2, aquifer characteristics and land-use information will be documented. This includes particle-size analysis of each major lithologic unit both in the unsaturated zone and in the aquifer near the water table. The percentage of organic carbon also will be determined for each lithologic unit. Geographic information system coverages will be created that document existing land use around the wells. These data will aid NAWQA personnel in relating natural and human factors to the occurrence of contaminants. Water samples for age dating also will be collected from all monitoring wells, but the samples will be stored until the occurrence of contaminants has been determined. Age-date analysis will be done only on those samples that have no detectable concentrations of anthropogenic contaminants.
Ecological Carrying Capacity of Land Use Changes in Da'an City
NASA Astrophysics Data System (ADS)
Wang, H.; Zhang, J.; Li, B.
2018-04-01
Based on GIS and RS technology, this paper analyzed the land use change in Da'an city from 1995 to 2010. land-use ecological evaluation index was constructed to evaluate the land-use ecological risk of Da 'an city dynamically, and the land-use ecological risk level map was made, and then the distribution and change of the land-use ecological carrying capacity pattern of Da'an city were analyzed qualitatively. According to the evaluation results of ecological carrying capacity, the ecological environment of Da'an city has deteriorated in fifteen years. in 1995, the poor ecological environment area is mainly distributed in the northeast area of Da'an city, and the area is small, while the area of the central and southern areas is large; In 2010, the western region also appeared environmental degradation, the northeast environment deterioration is serious, the dominant area is reduced, and a small amount of deterioration in the central and southern regions. According to the study of this paper, in the future, we should strengthen the comprehensive management of this part of the area, strengthen vegetation coverage, reduce soil erosion, ensure the effective improvement of ecological environment.
Geospatial analysis of land use change in the Savannah River Basin using Google Earth Engine
NASA Astrophysics Data System (ADS)
Zurqani, Hamdi A.; Post, Christopher J.; Mikhailova, Elena A.; Schlautman, Mark A.; Sharp, Julia L.
2018-07-01
Climate and land use/cover change are among the most pervasive issues facing the Southeastern United States, including the Savannah River basin in South Carolina and Georgia. Land use directly affects the natural environment across the Savannah River basin and it is important to analyze these impacts. The objectives of this study are to: 1) determine the classes and the distribution of land cover in the Savannah River basin; 2) identify the spatial and the temporal change of the land cover that occurs as a consequence of land use change in the area; and 3) discuss the potential effects of land use change in the Savannah River basin. The land cover maps were produced using random forest supervised classification at four time periods for a total of thirteen common land cover classes with overall accuracy assessments of 79.18% (1999), 79.41% (2005), 76.04% (2009), and 76.11% (2015). The major land use change observed was due to the deforestation and reforestation of forest areas during the entire study period. The change detection results using the normalized difference vegetation index (NDVI) indicated that the proportion areas of the deforestation were 5.93% (1999-2005), 4.63% (2005-2009), and 3.76% (2009-2015), while the proportion areas of the reforestation were 1.57% (1999-2005), 0.44% (2005-2009), and 1.53% (2009-2015). These results not only indicate land use change, but also demonstrate the advantage of utilizing Google Earth Engine and the public archive database in its platform to track and monitor this change over time.
ERIC Educational Resources Information Center
Laws, Kevin
A social studies unit and student workbook explore changes in land use that have occurred over time in a semiarid area of eastern Australia, the Back Lachlan District. Part of the "outback," the District consists of a huge level plain with low rainfall, only one river, and vegetation ranging from timber to grass and shrub. Chapter I…
NASA Astrophysics Data System (ADS)
Yui, Sahoko; Yeh, Sonia
2013-12-01
Brazil aims to increase palm oil production to meet the growing national and global demand for edible oil and biodiesel while preserving environmentally and culturally significant areas. As land use change (LUC) is the result of complex interactions between socio-economic and biophysical drivers operating at multiple temporal and spatial scales, the type and location of LUC depend on drivers such as neighboring land use, conversion elasticity, access to infrastructure, distance to markets, and land suitability. The purpose of this study is to develop scenarios to measure the impact of land conversion under three different enforcement scenarios (none, some, and strict enforcement). We found that converting 22.5 million hectares of land can produce approximately 29 billion gallons (110 billion liters) of biodiesel a year. Of that, 22-71% of the area can come from forest land, conservation units, wetland and indigenous areas, emitting 14-84 gCO2e MJ-1. This direct land use emission alone can be higher than the carbon intensity of diesel that it intends to displace for lowering greenhouse gas emissions. This letter focuses narrowly on GHG emissions and does not address socio-economic-ecological prospects for these degraded lands for palm oil or for other purposes. Future studies should carefully evaluate these tradeoffs.
NASA Astrophysics Data System (ADS)
Wingate, Vladimir; Phinn, Stuart; Kuhn, Nikolaus
2016-04-01
Woodland savannahs provide essential ecosystem functions and services to communities. On the African continent, they are widely utilized and converted to intensive land uses. This study investigates the land cover changes over 108,038 km2 in NE Namibia using multi-sensor Landsat imagery, at decadal intervals from 1975 to 2014, with a post-classification change detection method and supervised Regression Tree classifiers. We discuss likely impacts of land tenure and reforms over the past four decades on changes in land use and land cover. These included losses, gains and exchanges between predominant land cover classes. Exchanges comprised logical conversions between woodland and agricultural classes, implying woodland clearing for arable farming, cropland abandonment and vegetation succession. The dominant change was a reduction in the area of the woodland class due to the expansion of the agricultural class, specifically, small-scale cereal and pastoral production. Woodland area decreased from 90% of the study area in 1975 to 83% in 2014, while cleared land increased from 9% to 14%. We found that the main land cover changes are conversion from woodland to agricultural and urban land uses, driven by urban expansion and woodland clearing for subsistence-based agriculture and pastoralism.
NASA Astrophysics Data System (ADS)
Li, G. M.; Li, S.; Ying, G. W.; Wu, X. P.
2018-04-01
According to the function, land space types are divided into key development areas, restricted development areas and forbidden development areas in Sichuan Province. This paper monitors and analyses the changes of land cover in different typical functional areas from 2010 to 2017, which based on ZY-3 high-score images data and combined with statistical yearbook and thematic data of Sichuan Province. The results show that: The land cover types of typical key development zones are mainly composed of cultivated land, forest land, garden land, and housing construction land, which accounts for the total area of land cover 87 %. The land cover types of typical restricted development zone mainly consists of forest land and grassland, which occupy 97.71 % of the total area of the surface coverage. The land cover types of the typical prohibition development zone mainly consist of forest land, grassland, desert and bared earth, which accounts for the total area of land cover 99.31 %.
Cropland Area Extraction in China with Multi-Temporal MODIS Data
NASA Astrophysics Data System (ADS)
Bagan, H.; Baruah, P. J.; Wang, Q.; Yasuoka, Y.
2007-12-01
: extracting the area of cropland in China is very important for agricultural management, land degradation and ecosystem assessment. In this study we investigate the potential and the methodology for the cropland area extraction using multi-temporal MODIS EVI data and some ancillary data. A 16-day composite EVI time-series data for 2003 (6 March 2003 - 2 December 2003) with a spatial resolution of 500 m, and the ancillary data included Land-use GIS data, Landsat TM/ETM, ASTER data, and county-level cultivated land statistical data of year 2000. The Self-Organizing Map (SOM) neural network classification algorithm was applied to the EVI data set. To focus on agricultural and desertification, we designed 9 land-cover types: 1) water, 2) woodland, 3) grassland, 4) dry cropland, 5) sandy, 6) paddy, 7) wetland, 8) urban/bare, and 9) snow/ice. The overall classification accuracy was 85% with a kappa coefficient of 0.84. The EVI data sets were sensitive and performed well in distinguishing the majority of land cover types. We also used county-level cultivated land statistical data from the year 2000 to evaluate the accuracy of the agricultural area from classification results, and found that the correlation coefficient was high in most counties. The result of this study shows that the methodology used in this study is, in general, feasible for cropland extraction in China. Keywords: MODIS, EVI, SOM, Cropland, land cover.
Impact of Land Use on PM2.5 Pollution in a Representative City of Middle China.
Yang, Haiou; Chen, Wenbo; Liang, Zhaofeng
2017-04-26
Fine particulate matter (PM 2.5 ) pollution has become one of the greatest urban issues in China. Studies have shown that PM 2.5 pollution is strongly related to the land use pattern at the micro-scale and optimizing the land use pattern has been suggested as an approach to mitigate PM 2.5 pollution. However, there are only a few researches analyzing the effect of land use on PM 2.5 pollution. This paper employed land use regression (LUR) models and statistical analysis to explore the effect of land use on PM 2.5 pollution in urban areas. Nanchang city, China, was taken as the study area. The LUR models were used to simulate the spatial variations of PM 2.5 concentrations. Analysis of variance and multiple comparisons were employed to study the PM 2.5 concentration variances among five different types of urban functional zones. Multiple linear regression was applied to explore the PM 2.5 concentration variances among the same type of urban functional zone. The results indicate that the dominant factor affecting PM 2.5 pollution in the Nanchang urban area was the traffic conditions. Significant variances of PM 2.5 concentrations among different urban functional zones throughout the year suggest that land use types generated a significant impact on PM 2.5 concentrations and the impact did not change as the seasons changed. Land use intensity indexes including the building volume rate, building density, and green coverage rate presented an insignificant or counter-intuitive impact on PM 2.5 concentrations when studied at the spatial scale of urban functional zones. Our study demonstrates that land use can greatly affect the PM 2.5 levels. Additionally, the urban functional zone was an appropriate spatial scale to investigate the impact of land use type on PM 2.5 pollution in urban areas.
Impact of Land Use on PM2.5 Pollution in a Representative City of Middle China
Yang, Haiou; Chen, Wenbo; Liang, Zhaofeng
2017-01-01
Fine particulate matter (PM2.5) pollution has become one of the greatest urban issues in China. Studies have shown that PM2.5 pollution is strongly related to the land use pattern at the micro-scale and optimizing the land use pattern has been suggested as an approach to mitigate PM2.5 pollution. However, there are only a few researches analyzing the effect of land use on PM2.5 pollution. This paper employed land use regression (LUR) models and statistical analysis to explore the effect of land use on PM2.5 pollution in urban areas. Nanchang city, China, was taken as the study area. The LUR models were used to simulate the spatial variations of PM2.5 concentrations. Analysis of variance and multiple comparisons were employed to study the PM2.5 concentration variances among five different types of urban functional zones. Multiple linear regression was applied to explore the PM2.5 concentration variances among the same type of urban functional zone. The results indicate that the dominant factor affecting PM2.5 pollution in the Nanchang urban area was the traffic conditions. Significant variances of PM2.5 concentrations among different urban functional zones throughout the year suggest that land use types generated a significant impact on PM2.5 concentrations and the impact did not change as the seasons changed. Land use intensity indexes including the building volume rate, building density, and green coverage rate presented an insignificant or counter-intuitive impact on PM2.5 concentrations when studied at the spatial scale of urban functional zones. Our study demonstrates that land use can greatly affect the PM2.5 levels. Additionally, the urban functional zone was an appropriate spatial scale to investigate the impact of land use type on PM2.5 pollution in urban areas. PMID:28445430
Kim, Ilkwon; Arnhold, Sebastian
2018-07-15
In mountainous watersheds, agricultural land use cause changes in ecosystem services, with trade-offs between crop production and erosion regulation. Management of these watersheds can generate environmental land use conflicts among regional stakeholders with different interests. Although several researches have made a start in mapping land use conflicts between human activities and conservation, spatial assessment of land use conflicts on environmental issues and ecosystem service trade-offs within agricultural areas has not been fully considered. In this study, we went further to map land use conflicts between agricultural preferences for crop production and environmental emphasis on erosion regulation. We applied an agricultural land suitability index, based on multi-criteria analysis, to estimate the spatial preference of agricultural activities, while applying the Revised Universal Soil Loss Equation (RUSLE) to reflect the environmental importance of soil erosion. Then, we classified the agricultural catchment into four levels of land use conflicts (lowest, low, high and highest) according to preference and importance of farmland areas, and we compared the classes by crop type. Soil loss in agricultural areas was estimated as 45.1thayr, and agricultural suitability as 0.873; this indicated that land use conflicts in the catchment could arise between severe soil erosion (environmental importance) and agricultural suitability (land preferences). Dry-field farms are mainly located in areas of low land use conflict level, where land preference outweighs environmental importance. When we applied farmland management scenarios with consideration of services, conversion to highest-conflict areas (Scenario 1) as 7.5% of the total area could reduce soil loss by 24.6%, while fallow land management (Scenario 2) could decrease soil loss 19.4% more than the current scenario (Business as usual). The result could maximize land management plans by extracting issues of spatial priority and use-versus-conservation conflicts as ecosystem service trade-offs from arguments over land use policy. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Triyatmo, B.; Rustadi; Priyono, S. B.
2018-03-01
The purpose of this study were to determine characteristics and environmental carrying capacities of coastal area in Yogyakarta Special Region for aquaculture. This study was conducted in 2015 by characterizing land and water dynamics, land use, and the suitability of coastal environments for aquaculture. Evaluation on the coastal environments suitability for aquaculture ponds was based on the landforms, soil properties, water quality and land. Selection of coastal locations for aquaculture development was based on the level of suitability of coastal environment. The results showed that the coastal in Kulon Progo and Bantul Regencies were characterized by sand dune and beach ridge with sandy soil texture, while in Gunungkidul Regency was characterized by limestone hill with rocky texture. Water sources of the coastal area were the sea, river, and ground water with the salinity of 31–37, 7–11, 7–31 ppt and pH of 7.4–8.4 7.0–8.2 and 7.4–9.9, respectively. The coastal lands were used for seasonal/annual planting, ponds, fish landing sites, tourism areas and conservation areas. The coastal carrying capacity was rather suitable for aquaculture, especially in the sandy soil area. Aquaculture in that area can be done intensively for shrimp (Litopenaeus vannamei), using biocrete (biological material) or plastic sheet.
Regional Climate Modeling over the Marmara Region, Turkey, with Improved Land Cover Data
NASA Astrophysics Data System (ADS)
Sertel, E.; Robock, A.
2007-12-01
Land surface controls the partitioning of available energy at the surface between sensible and latent heat,and controls partitioning of available water between evaporation and runoff. Current land cover data available within the regional climate models such as Regional Atmospheric Modeling System (RAMS), the Fifth-Generation NCAR/Penn State Mesoscale Model (MM5) and Weather Research and Forecasting (WRF) was obtained from 1- km Advanced Very High Resolution Radiometer satellite images spanning April 1992 through March 1993 with an unsupervised classification technique. These data are not up-to-date and are not accurate for all regions and some land cover types such as urban areas. Here we introduce new, up-to-date and accurate land cover data for the Marmara Region, Turkey derived from Landsat Enhanced Thematic Mapper images into the WRF regional climate model. We used several image processing techniques to create accurate land cover data from Landsat images obtained between 2001 and 2005. First, all images were atmospherically and radiometrically corrected to minimize contamination effects of atmospheric particles and systematic errors. Then, geometric correction was performed for each image to eliminate geometric distortions and define images in a common coordinate system. Finally, unsupervised and supervised classification techniques were utilized to form the most accurate land cover data yet for the study area. Accuracy assessments of the classifications were performed using error matrix and kappa statistics to find the best classification results. Maximum likelihood classification method gave the most accurate results over the study area. We compared the new land cover data with the default WRF land cover data. WRF land cover data cannot represent urban areas in the cities of Istanbul, Izmit, and Bursa. As an example, both original satellite images and new land cover data showed the expansion of urban areas into the Istanbul metropolitan area, but in the WRF land cover data only a limited area along the Bosporus is shown as urban. In addition, the new land cover data indicate that the northern part of Istanbul is covered by evergreen and deciduous forest (verified by ground truth data), but the WRF data indicate that most of this region is croplands. In the northern part of the Marmara Region, there is bare ground as a result of open mining activities and this class can be identified in our land cover data, whereas the WRF data indicated this region as woodland. We then used this new data set to conduct WRF simulations for one main and two nested domains, where the inner-most domain represents the Marmara Region with 3 km horizontal resolution. The vertical domain of both main and nested domains extends over 28 vertical levels. Initial and boundary conditions were obtained from National Centers for Environmental Prediction-Department of Energy Reanalysis II and the Noah model was selected as the land surface model. Two model simulations were conducted; one with available land cover data and one with the newly created land cover data. Using detailed meteorological station data within the study area, we find that the simulation with the new land cover data set produces better temperature and precipitation simulations for the region, showing the value of accurate land cover data and that changing land cover data can be an important influence on local climate change.
NASA Astrophysics Data System (ADS)
Zhang, Yan-yu; Wang, Jing; Shi, Yan-xi; Li, Yu-huan; Lv, Chun-yan
2005-10-01
The Crisscross Region of Wind-drift Sand Regions along the Great Wall and Loess Plateau locates in southern Ordos Plateau and northern Chinese Loess Plateau, where wind erosion and water erosion coexist and specified environmental and socio-economic factors, especially human activities induce serious land degradation. However, there are only a few studies provide an overall assessment consequences. Integrated land quality assessment considering impacts of soil, topography, vegetation, environmental hazards, social-economic factors and land managements are imperative to the regional sustainable land managements. A pilot study was made in Hengshan County (Shanxi Province) with the objective of developing comprehensive land quality evaluation model integrating data from farmers' survey and Remote Sensing. Surveys were carried out in 107 households of study area in 2003 and 2004 to get farmers' perceptions of land quality and to collect correlative information. It was found out that farmers evaluated land quality by slope, water availability, soil texture, yields, amount of fertilizer, crop performance, sandy erosion degree and water erosion degree. Scientists' indicators which emphasize on getting information by RS technology were introduced to reflecting above indicators information for the sake of developing a rapid, efficient and local-fitted land quality assessment model including social-economic, environmental and anthropogenic factors. Data from satellite and surveys were integrated with socio-economic statistic data using geographical information system (GIS) and three indexes, namely Production Press Index (PPI), Land State Index (LSI) and Farmer Behavior Index (FBI) were proposed to measure different aspects of land quality. A model was further derived from the three indexes to explore the overall land quality of the study area. Results suggest that local land prevalently had a poor quality. This paper shows that whilst the model was competent for its work in the study area and evaluation results would supply beneficial information for management decisions.
Lu, Shasha; Zhou, Min; Guan, Xingliang; Tao, Lizao
2015-03-01
A large number of mathematical models have been developed for supporting optimization of land-use allocation; however, few of them simultaneously consider land suitability (e.g., physical features and spatial information) and various uncertainties existing in many factors (e.g., land availabilities, land demands, land-use patterns, and ecological requirements). This paper incorporates geographic information system (GIS) technology into interval-probabilistic programming (IPP) for land-use planning management (IPP-LUPM). GIS is utilized to assemble data for the aggregated land-use alternatives, and IPP is developed for tackling uncertainties presented as discrete intervals and probability distribution. Based on GIS, the suitability maps of different land users are provided by the outcomes of land suitability assessment and spatial analysis. The maximum area of every type of land use obtained from the suitability maps, as well as various objectives/constraints (i.e., land supply, land demand of socioeconomic development, future development strategies, and environmental capacity), is used as input data for the optimization of land-use areas with IPP-LUPM model. The proposed model not only considers the outcomes of land suitability evaluation (i.e., topography, ground conditions, hydrology, and spatial location) but also involves economic factors, food security, and eco-environmental constraints, which can effectively reflect various interrelations among different aspects in a land-use planning management system. The case study results at Suzhou, China, demonstrate that the model can help to examine the reliability of satisfying (or risk of violating) system constraints under uncertainty. Moreover, it may identify the quantitative relationship between land suitability and system benefits. Willingness to arrange the land areas based on the condition of highly suitable land will not only reduce the potential conflicts on the environmental system but also lead to a lower economic benefit. However, a strong desire to develop lower suitable land areas will bring not only a higher economic benefit but also higher risks of violating environmental and ecological constraints. The land manager should make decisions through trade-offs between economic objectives and environmental/ecological objectives.
NASA Astrophysics Data System (ADS)
Ning, Jicai; Gao, Zhiqiang; Meng, Ran; Xu, Fuxiang; Gao, Meng
2018-06-01
This study analyzed land use and land cover changes and their impact on land surface temperature using Landsat 5 Thematic Mapper and Landsat 8 Operational Land Imager and Thermal Infrared Sensor imagery of the Yellow River Delta. Six Landsat images comprising two time series were used to calculate the land surface temperature and correlated vegetation indices. The Yellow River Delta area has expanded substantially because of the deposited sediment carried from upstream reaches of the river. Between 1986 and 2015, approximately 35% of the land use area of the Yellow River Delta has been transformed into salterns and aquaculture ponds. Overall, land use conversion has occurred primarily from poorly utilized land into highly utilized land. To analyze the variation of land surface temperature, a mono-window algorithm was applied to retrieve the regional land surface temperature. The results showed bilinear correlation between land surface temperature and the vegetation indices (i.e., Normalized Difference Vegetation Index, Adjusted-Normalized Vegetation Index, Soil-Adjusted Vegetation Index, and Modified Soil-Adjusted Vegetation Index). Generally, values of the vegetation indices greater than the inflection point mean the land surface temperature and the vegetation indices are correlated negatively, and vice versa. Land surface temperature in coastal areas is affected considerably by local seawater temperature and weather conditions.
NASA Astrophysics Data System (ADS)
Du, Ziqiang; Shen, Yudan; Wang, Jian; Cheng, Wenshi
2009-10-01
Although rapid land-use change has taken place in many arid and semi-arid regions of northwestern China, relatively less attention has been paid to studying the characteristics of land use change, as well as the ecological responses of land use change in these regions, especially in fragile agro-pastoral regions. This paper analyzes the land use change and its ecological responses during 1985-2005 based on the landscape metrics change and transition matrix of land use types by the combined use of satellite remote sensing and geographical information systems in Shandan County, a typical agro-pastoral region in the middle and upper reaches of Heihe River, northwest China. The results indicate significant changes in land use have occurred and the landscape has become more continuous, clumped and more homogeneous within the examined area. Land use change was mainly characterized by remarkable expansion of barred land and water area, slight increase of cropland and urbanized land, and evident shrinkage of grassland and woodland. The study also demonstrates that the land cover suffered severe degeneration and the ecological environment tended to deteriorate over the study period, mainly as follows: grassland degradation, land desertification and ecosystem services decline.
14 CFR 161.305 - Required analysis and conditions for approval of proposed restrictions.
Code of Federal Regulations, 2012 CFR
2012-01-01
... geographic boundaries and names of each jurisdiction that controls land use within the airport noise study... without the proposed restriction including: (A) Maps of the airport noise study area overlaid with noise... land uses within the airport noise study area with and without the proposed restriction for each year...
14 CFR 161.305 - Required analysis and conditions for approval of proposed restrictions.
Code of Federal Regulations, 2013 CFR
2013-01-01
... geographic boundaries and names of each jurisdiction that controls land use within the airport noise study... without the proposed restriction including: (A) Maps of the airport noise study area overlaid with noise... land uses within the airport noise study area with and without the proposed restriction for each year...
14 CFR 161.305 - Required analysis and conditions for approval of proposed restrictions.
Code of Federal Regulations, 2014 CFR
2014-01-01
... geographic boundaries and names of each jurisdiction that controls land use within the airport noise study... without the proposed restriction including: (A) Maps of the airport noise study area overlaid with noise... land uses within the airport noise study area with and without the proposed restriction for each year...
14 CFR 161.305 - Required analysis and conditions for approval of proposed restrictions.
Code of Federal Regulations, 2011 CFR
2011-01-01
... geographic boundaries and names of each jurisdiction that controls land use within the airport noise study... without the proposed restriction including: (A) Maps of the airport noise study area overlaid with noise... land uses within the airport noise study area with and without the proposed restriction for each year...
14 CFR 161.305 - Required analysis and conditions for approval of proposed restrictions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... geographic boundaries and names of each jurisdiction that controls land use within the airport noise study... without the proposed restriction including: (A) Maps of the airport noise study area overlaid with noise... land uses within the airport noise study area with and without the proposed restriction for each year...
Spatiotemporal dynamics of LUCC from 2001 to 2010 in Yunnan Province, China
NASA Astrophysics Data System (ADS)
Li, Z. J.; Yu, J. S.; Yao, X. L.; Chen, X.; Li, Z. L.
2016-08-01
LUCC (Land use and land cover change) is increasingly regarded as an important component of global environmental change and sustainable development. In this study, regional land cover type maps were drawn using the MODIS products from 2001 and 2010 based on the modified classification scheme embodied by the characteristics of land cover in Yunnan. Dynamic change in each type of land cover was investigated by classification statistics, dynamic transfer matrices, and landscape pattern metrics. In addition, the driving factors of LUCC were discussed. The results showed that the land cover types of the Yunnan province, especially woodland (WL), cropland (CL) and grassland (GL), had experienced noticeable changes with an area of about 30% of land during the study period. And there was an obvious vertical distribution pattern for land cover types. The average altitude of different land cover types from the highest to the lowest were unused land (UUT), WL, GL, water (WT), urban and built-up areas (UB) and CL. The average slope for most of the land-cover types did not vary over the past 10 years. Stabilization and homogenization will be the direction of land cover in the future according to landscape metrics analysis. The regional differences of land use structure in the area are strongly influenced by such factors as the geographical position, level of economic development and land use policy. The new policy of land use, Construction of Mountainous Town, would be provided to achieve the economical and intensive utilization of land resources during the rapid development of urbanization and industrialization in Yunnan.
Evaluation of impact of earthquake on agriculture in Nepal based on remote sensing
NASA Astrophysics Data System (ADS)
Sekiyama, Ayako; Shimada, Sawahiko; Okazawa, Hiromu; Mihara, Machito; Kuo, Kuang Ting
2016-07-01
The big earthquake happening on April, 2015 killed over than 8000 people in Nepal. The effect of earthquake not only affected safety of local people but also agricultural field. Agricultural economy dominates income of local people. Therefore, restoration of agricultural areas are required for improving life of local people. However, lack of information about agricultural areas is main problem for local government to assess and restore damaged agricultural areas. Remote sensing was applied for accessing damaged agricultural field due to its advantages in observing responds of environment without temporal and spatial restriction. Accordingly, the objective of the study is to evaluate impact of earthquake on agriculture in Nepal based on remote sensing. The experimental procedure includes conducting the impact of earthquake on changes of total agricultural area, and analysis of response of greenness affected by earthquake in agricultural land. For conducting agricultural land changes, land use map was first created and classified into four categories: road, city, forest, and agricultural land. Changes before and after earthquake in total area of agricultural land were analyzed by GIS. Moreover, vegetation index was used as indicator for evaluating greenness responds in agricultural land and computed based on high-resolution satellite imagery such as World view-3. Finally, the conclusion of the study and suggestions will be made and provided for helping local government in Nepal restore agricultural areas.
Xian, George Z.; Homer, Collin G.
2009-01-01
The U.S. Geological Survey (USGS) National Land Cover Database (NLCD) 2001 is widely used as a baseline for national land cover and impervious conditions. To ensure timely and relevant data, it is important to update this base to a more recent time period. A prototype method was developed to update the land cover and impervious surface by individual Landsat path and row. This method updates NLCD 2001 to a nominal date of 2006 by using both Landsat imagery and data from NLCD 2001 as the baseline. Pairs of Landsat scenes in the same season from both 2001 and 2006 were acquired according to satellite paths and rows and normalized to allow calculation of change vectors between the two dates. Conservative thresholds based on Anderson Level I land cover classes were used to segregate the change vectors and determine areas of change and no-change. Once change areas had been identified, impervious surface was estimated for areas of change by sampling from NLCD 2001 in unchanged areas. Methods were developed and tested across five Landsat path/row study sites that contain a variety of metropolitan areas. Results from the five study areas show that the vast majority of impervious surface changes associated with urban developments were accurately captured and updated. The approach optimizes mapping efficiency and can provide users a flexible method to generate updated impervious surface at national and regional scales.
Eller, Kirstin T; Katz, Brian G
2017-07-01
Nitrogen (N) from anthropogenic sources has contaminated groundwater used as drinking water in addition to impairing water quality and ecosystem health of karst springs. The Nitrogen Source Inventory and Loading Tool (NSILT) was developed as an ArcGIS and spreadsheet-based approach that provides spatial estimates of current nitrogen (N) inputs to the land surface and loads to groundwater from nonpoint and point sources within the groundwater contributing area. The NSILT involves a three-step approach where local and regional land use practices and N sources are evaluated to: (1) estimate N input to the land surface, (2) quantify subsurface environmental attenuation, and (3) assess regional recharge to the aquifer. NSILT was used to assess nitrogen loading to groundwater in two karst spring areas in west-central Florida: Rainbow Springs (RS) and Kings Bay (KB). The karstic Upper Floridan aquifer (UFA) is the source of water discharging to the springs in both areas. In the KB study area (predominantly urban land use), septic systems and urban fertilizers contribute 48% and 22%, respectively, of the estimated total annual N load to groundwater 294,400 kg-N/yr. In contrast for the RS study area (predominantly agricultural land use), livestock operations and crop fertilizers contribute 50% and 13%, respectively, of the estimated N load to groundwater. Using overall groundwater N loading rates for the KB and RS study areas, 4.4 and 3.3 kg N/ha, respectively, and spatial recharge rates, the calculated groundwater nitrate-N concentration (2.1 mg/L) agreed closely with the median nitrate-N concentration (1.7 mg/L) from groundwater samples in agricultural land use areas in the RS study area for the period 2010-2014. NSILT results provide critical information for prioritizing and designing restoration efforts for water-quality impaired springs and spring runs affected by multiple sources of nitrogen loading to groundwater. The calculated groundwater N concentration for the KB study area (1.45 mg/L) was approximately three times higher than the median N concentration (0.45 mg/L) for wells located in urban land use areas. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhao, S.; Liu, S.; Li, Z.; Sohl, Terry L.
2010-01-01
Land use activities can have a major impact on the temporal trendsandspatialpatternsofregionalland-atmosphereexchange of carbon. Federal lands generally have substantially different land management strategies from surrounding areas, and the carbon consequences have rarely been quantified and assessed. Using the Fort Benning Installation as a case study, we used the General Ensemble biogeochemical Modeling System (GEMS) to simulate and compare ecosystem carbon sequestration between the U.S. Army's Fort Benning and surrounding areas from 1992 to 2050. Our results indicate that the military installation sequestered more carbon than surrounding areas from 1992 to 2007 (76.7 vs 18.5 g C m-2 yr-1), and is projected to continue sequestering more carbon from 2008 to 2050 (75.7 vs 25.6 g C m-2 yr-1), mostly because of the proactive management approaches adopted on military training lands. Our results suggest that federal lands might play a positive and important role in sequestering and conserving atmospheric carbon because some anthropogenic disturbances (e.g., urbanization, forest harvesting, and agriculture) can be minimized or prevented on federal lands
[Spatiotemporal changes of wetlands in Hangzhou Bay Industrial Belt].
Lu, Zhang-Wei; Wu, Ci-Fang; Yue, Wen-Ze; Liu, Yong; Ren, Li-Yan
2009-07-01
By using RS and GIS techniques, the spatiotemporal changes of wetlands in Hangzhou Bay Industrial Belt, one of the most developed zones in Zhejiang Province, from 1990 to 2005 were studied. There was a frequent conversion between the wetlands and other land use types and between the wetlands themselves, mainly manifested in the conversion between wetland and farmland, and from wetland to construction land and from tidal flat to aquiculture area. The comparative advantage of other land use types and the policy of cultivated land's requisition-compensation balance decided the inherent mechanisms of these spatiotemporal changes. Driven by the aquaculture's comparative advantage to traditional agriculture, large areas of inland farmland and of the tidal flat along the coast of Hangzhou Bay were reclaimed into aquiculture area, and the rapid expansion of construction land, limited land resources, and the implement of cultivated land's requisition-compensation balance policy induced the wetlands being occupied.
Land Use Change and Land Degradation in Southeastern Mediterranean Spain
NASA Astrophysics Data System (ADS)
Symeonakis, Elias; Calvo-Cases, Adolfo; Arnau-Rosalen, Eva
2007-07-01
The magnitude of the environmental and social consequences of soil erosion and land degradation in semiarid areas of the Mediterranean region has long been recognized and studied. This paper investigates the interrelationship between land use/cover (LULC) changes and land degradation using remotely sensed and ancillary data for southeastern Spain. The area of study, the Xaló River catchment situated in the north of the Alicante Province, has been subjected to a number of LULC changes during the second half of the 20th century such as agricultural abandonment, forest fires, and tourist development. Aerial photographs dating back to 1956 were used for the delineation of historic LULC types; Landsat ETM+ data were used for the analysis and mapping of current conditions. Two important indicators of land degradation, namely, susceptibility to surface runoff and soil erosion, were estimated for the two dates using easily parametrizable models. The comparison of 1956 to 2000 conditions shows an overall “recuperating” trend over the catchment and increased susceptibility to soil erosion only in 3% of the catchment area. The results also identify potential degradation hot-spots where mitigation measures should be taken to prevent further degradation. The readily implemented methodology, based on modest data requirements demonstrated by this study, is a useful tool for catchment to regional scale land use change and land degradation studies and strategic planning for environmental management.
Land use change and land degradation in southeastern Mediterranean Spain.
Symeonakis, Elias; Calvo-Cases, Adolfo; Arnau-Rosalen, Eva
2007-07-01
The magnitude of the environmental and social consequences of soil erosion and land degradation in semiarid areas of the Mediterranean region has long been recognized and studied. This paper investigates the interrelationship between land use/cover (LULC) changes and land degradation using remotely sensed and ancillary data for southeastern Spain. The area of study, the Xaló River catchment situated in the north of the Alicante Province, has been subjected to a number of LULC changes during the second half of the 20th century such as agricultural abandonment, forest fires, and tourist development. Aerial photographs dating back to 1956 were used for the delineation of historic LULC types; Landsat ETM+ data were used for the analysis and mapping of current conditions. Two important indicators of land degradation, namely, susceptibility to surface runoff and soil erosion, were estimated for the two dates using easily parametrizable models. The comparison of 1956 to 2000 conditions shows an overall "recuperating" trend over the catchment and increased susceptibility to soil erosion only in 3% of the catchment area. The results also identify potential degradation hot-spots where mitigation measures should be taken to prevent further degradation. The readily implemented methodology, based on modest data requirements demonstrated by this study, is a useful tool for catchment to regional scale land use change and land degradation studies and strategic planning for environmental management.
Assessing the Reliability of Land-Use Data in Slovenia: A Case Study of Terraced Landscapes
NASA Astrophysics Data System (ADS)
Ažman Momirski, Lucija
2017-10-01
Land use relates to the exploitation of land through human activity in the landscape. Land use is also one of the best indicators of a landscape’s structure and processes. Land cover comprises manmade surfaces, agricultural areas, forest and semi-natural areas, wetlands, and bodies of water. In Slovenia more than half of the land (63%) is forested. Manmade surfaces represent less than 5%. A large proportion of relatively inaccessible forest is the main reason why society had a less critical impact on forests in the past in Slovenia in comparison to the majority of central European countries. Regarding the high-quality landscape in the country, Slovenia’s natural features are characterized by a mix of forest and farmland. These land categories (i.e., complex cultivation patterns and land principally used for agriculture with significant areas of natural vegetation) cover 23% of Slovenia. Land-use data for farmland are gathered and provided to the relevant institutions by landowners, who are not specialists in land-use data. In addition, land use is only a two-dimensional tool, which does not recognize elevation differences and terraced slopes. Terraced areas are either omitted from the inventory of land-use data because landowners do not report them, or they are included in the inventory because landowners do not realize that their land is not terraced. Consequently, the differences between the official data on vineyards, orchards, and olive groves on terraces and actual terraced slopes with such land use may differ significantly.
Monthly fractional green vegetation cover associated with land cover classes of the conterminous USA
Gallo, Kevin P.; Tarpley, Dan; Mitchell, Ken; Csiszar, Ivan; Owen, Timothy W.; Reed, Bradley C.
2001-01-01
The land cover classes developed under the coordination of the International Geosphere-Biosphere Programme Data and Information System (IGBP-DIS) have been analyzed for a study area that includes the Conterminous United States and portions of Mexico and Canada. The 1-km resolution data have been analyzed to produce a gridded data set that includes within each 20-km grid cell: 1) the three most dominant land cover classes, 2) the fractional area associated with each of the three dominant classes, and 3) the fractional area covered by water. Additionally, the monthly fraction of green vegetation cover (fgreen) associated with each of the three dominant land cover classes per grid cell was derived from a 5-year climatology of 1-km resolution NOAA-AVHRR data. The variables derived in this study provide a potential improvement over the use of monthly fgreen linked to a single land cover class per model grid cell.
The Impact of Land Use and Land Cover Change on Water Yield in the Jing- Jin-Ji Region in China
NASA Astrophysics Data System (ADS)
Li, Suxiao; Yang, Hong
2017-04-01
Water yield is one of the key ecosystem services sustaining both people's life and economic development. However, the water yield function is sensitive to anthropogenic activity especially the land use and land cover change (LUCC). Assessment of historical LUCC and its impact on water yield could benefit designing and implementing appropriate land use strategy that enhance the water yield capacity. Beijing (Jing) and its surrounding areas of Tianjin (Jin) and Hebei (Ji) is the political, cultural and economic center of China. The region is facing increasingly water crisis. Taking the Jing-Jin-Ji region as a study area, this study analyzed the historical LUCC and its impact on water yield by using the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model to spatially map and quantify the changes of water yield from 1995 to 2010. The results showed there was main decline in area of wetland and forest and increase in area of crop land and built up land. An abrupt decline in water yield was found for year 2000. The water yield was influenced to a great extent by precipitation and evapotranspiration, but the land use played an important role in the water yield capacity (water yield per unit area) through plant cover that affected evapotranspiration, soil water permeability and the capacity of holding the moisture content. By general ranking, the water yield capacity of different land use type was as follows: built-up>bare land>cropland> grassland>forest >wetland, which illustrated that the built-up and bare land had higher run off rate while the vegetation area had higher capacity to control surface run off to increase the groundwater. A good understanding of temporal-spatial allocation of historical LUCC and Water yield of the Jing-Jin-Ji region could help guide land use policy decisions that take into consideration of tradeoffs with respect to spatial distribution of ecosystem services amongst the three administrative entities (Jing-Jin-Ji) and tradeoffs between the economic and ecological development.
Multi Satellites Monitoring of Land Use/Cover Change and Its Driving Forces in Kashgar Region, China
NASA Astrophysics Data System (ADS)
Maimaitiaili, Ayisulitan; Aji, xiaokaiti; Kondoh, Akihiko
2016-04-01
Multi Satellites Monitoring of Land Use/Cover Change and Its Driving Forces in Kashgar Region, China Ayisulitan Maimaitiaili1, Xiaokaiti Aji2 Akihiko Kondoh2 1Graduate School of Science, Chiba University, Japan 2Center for Environmental Remote Sensing, Chiba University The spatio-temporal changes of Land Use/Cover (LUCC) and its driving forces in Kashgar region, Xinjiang Province, China, are investigated by using satellite remote sensing and a geographical information system (GIS). Main goal of this paper is to quantify the drivers of LUCC. First, considering lack of the Land Cover (LC) map in whole study area, we produced LC map by using Landsat images. Land use information from Landsat data was collected using maximum likelihood classification method. Land use change was studied based on the change detection method of land use types. Second, because the snow provides a key water resources for stream flow, agricultural production and drinking water for sustaining large population in Kashgar region, snow cover are estimated by Spot Vegetation data. Normalized Difference Snow Index (NDSI) algorithm are applied to make snow cover map, which is used to screen the LUCC and climate change. The best agreement is found with threshold value of NDSI≥0.2 to generate multi-temporal snow cover and snowmelt maps. Third, driving forces are systematically identified by LC maps and statistical data such as climate and socio-economic data, regarding to i) the climate changes and ii) socioeconomic development that the spatial correlation among LUCC, snow cover change, climate and socioeconomic changes are quantified by using liner regression model and negative / positive trend analysis. Our results showed that water bodies, bare land and grass land have decreasing notably. By contrast, crop land and urban area have continually increasing significantly, which are dominated in study area. The area of snow/ice have fluctuated and has strong seasonal trends, total annual snow cover has two peaks in 2005 and 2009. With increasing population from 2,324,375 in 1984 to 4,228,200 in 2014 and crop land reclamation from 6031.4 km2 in 1972 to 16549km2 in 2014 at the study area. Water resources consumption increased with support to large population and irrigate whole crop land area, caused the water shortages that the surface water bodies decreased from 2531.43km2 in the 1972s to 1067.05km2 in the 2014. The grass land with an acreage larger than 6749km2 in 1972 decreased to 922.6 km2 in 2014. The transformations between water bodies, garss land and bare land are remarkbale. The results also suggested high linearity between the LUCC and socioeconomic changes that specific land cover change be cause of the fact that socioeconomic development. In the recent 42 years, average annual temperature have been increasing significantly, although, precipitation have increased but partly weaken effect of the rising temperature, in addition snow cover more sensitive to precipitation than temperature. Results the change of climate showed a nagitive relationship between the NDSI with decrased of the snow cover and climate with increasing of the tempreature. Morover, the relationship between the LUCC and snow cover recorded higher linearity, because the temperature have increased, consequence influence on snow cover that provides melt water for study area which expanding crop land.
Area changes in U.S. forests and other major land uses, 1982 to 2002, with projections to 2062.
Ralph J. Alig; Andrew J. Plantinga; David Haim; Maribeth Todd
2010-01-01
This study updates an earlier assessment of the past, current, and prospective situation for the Nationâs land base. We describe area changes among major land uses on the U.S. land base for historical trends from 1982 to 2002 and projections out to 2062. Historically, 11 million acres of forest, cropland, and open space were converted to urban and other developed uses...
Yin, Jie; Yin, Zhane; Zhong, Haidong; Xu, Shiyuan; Hu, Xiaomeng; Wang, Jun; Wu, Jianping
2011-06-01
This study explored the spatio-temporal dynamics and evolution of land use/cover changes and urban expansion in Shanghai metropolitan area, China, during the transitional economy period (1979-2009) using multi-temporal satellite images and geographic information systems (GIS). A maximum likelihood supervised classification algorithm was employed to extract information from four landsat images, with the post-classification change detection technique and GIS-based spatial analysis methods used to detect land-use and land-cover (LULC) changes. The overall Kappa indices of land use/cover change maps ranged from 0.79 to 0.89. Results indicated that urbanization has accelerated at an unprecedented scale and rate during the study period, leading to a considerable reduction in the area of farmland and green land. Findings further revealed that water bodies and bare land increased, obviously due to large-scale coastal development after 2000. The direction of urban expansion was along a north-south axis from 1979 to 2000, but after 2000 this growth changed to spread from both the existing urban area and along transport routes in all directions. Urban expansion and subsequent LULC changes in Shanghai have largely been driven by policy reform, population growth, and economic development. Rapid urban expansion through clearing of vegetation has led to a wide range of eco-environmental degradation.
South Carolina, 2012 - forest inventory and analysis factsheet
Richard A. Harper; Byron Rominger
2013-01-01
South Carolina contains about 19.3 million acres of land area, less census water. The forest land area makes up 68 percent of the land area with 13.1 million acres. Commercial timberland area (land available for production of forest products) comprised >99 percent of the forest land area, or 13.0 million acres. The remaining 88,000 acres are reserved forest land...
ERIC Educational Resources Information Center
Reilly, Kate; Wooster, Betsy
2008-01-01
Riparian ecosystems are an exciting and dynamic subject for study. These areas are valuable lands and important wildlife habitats, and they contribute greatly to the environmental health of an area. Definitions for the term "riparian" vary, but in this curriculum, the land called the "Green Zone" lies between flowing water and upland ecosystems.…
Factors of land abandonment in mountainous Mediterranean areas: the case of Montenegrin settlements.
Kerckhof, Annelies; Spalevic, Velibor; Van Eetvelde, Veerle; Nyssen, Jan
2016-01-01
Land use changes have been investigated in the surroundings of 14 rural Montenegrin settlements in order to get specific information about trends in land abandonment since around 1950. Permanently, seasonally and less inhabited settlements with different geographic conditions were studied. This was done by interviewing local inhabitants, which enabled a holistic approach to reveal the underlying processes of land abandonment. According to the observed patterns of land use change, the study sites can be categorized into intensified, urbanized, extensified, overgrown and forested cases. The category of extensified settlements is characterized by a highly reduced agricultural management intensity, resulting in an increase in grasslands and fruit trees at the expense of cropland. This land use change is mainly related to emigrating and aging inhabitants, having less livestock. Such extensive land use is found in both permanently inhabited and abandoned villages. Only some studied settlements became largely overgrown by bushes and forest. The steep average slope gradients and a large distance to the nearest city are explanatory factors of such land abandonment. Land use intensification takes place in low-lying areas located nearby towns.
A long-term forecast analysis on worldwide land uses.
Zhang, Wenjun; Qi, Yanhong; Zhang, Zhiguo
2006-08-01
More and more lands worldwide are being cultivated for food production while forests are disappearing at an unprecedented rate. This paper aims to make a long-term forecast on land uses worldwide and provide the public, researchers, and government officials with a clear profile for land uses in the future. Data of land uses since 1961 were used to fit historical trajectories and make the forecast. The results show that trajectories of land areas can be well fitted with univariate linear regressions. The forecasts of land uses during the coming 25 years were given in detail. Areas of agricultural land, arable land, and permanent pasture land worldwide would increase by 6.6%, 7.2%, and 6.3% respectively in the year 2030 as compared to the current areas. Permanent crops land area all over the world is forecasted to increase 0.64% by 2030. By the year 2030 the areas of forests and woodland, nonarable and nonpermanent land worldwide would decrease by 2.4% and 0.9% against the current areas. All other land area in the world would dramatically decline by 6.4% by the year 2030. Overall the land area related to agriculture would tend to decrease in developed countries, industrialized countries, Europe, and North and Central America. The agriculture related land area would considerably increase in developing countries, least developed countries, low-income countries, Asia, Africa, South America, etc. Developing countries hold larger total land area than developed countries. Dramatic and continuous growth in agricultural land area of developing countries would largely contribute to the expected growth of world agricultural land area in the coming years. Population explosion, food shortage and poverty in the world, especially in developing countries, together caused the excessive cultivation of land for agricultural uses in the past years. Increasing agricultural land area exacerbates the climate changes and degradation of environment. How to limit the growth of human population is a key problem for reducing agricultural land expansion. Development and use of high-yielding and high-quality crop and animal varieties, diversification of human food sources, and technical and financial assistance to developing countries from developed countries, should also be implemented and strengthened in the future in order to slow down or even reverse the increase trend of agricultural land area. Sustainable agriculture is the effective way to stabilize the agricultural land area without food shortage. Through various techniques and measures, sustainable agriculture may meet the food production goals with minimum environmental risk. Public awareness and interest in sustainable agriculture will help realize and ease the increasing stress from agricultural land expansion.
Mineral resource assessment of selected areas in Clark and Nye Counties, Nevada [Chapters A-L
Ludington, Steve
2006-01-01
During 2004-2006, the U.S. Geological Survey conducted a mineral resource assessment of selected areas administered by the Bureau of Land Management in Clark and Nye Counties, Nevada. The purpose of this study is to provide the BLM with information for land planning and management and, specifically, to determine mineral resource potential in accordance with regulations in 43 CFR 2310, which governs the withdrawal of public lands. The Clark County Conservation of Public Land and Natural Resources Act of 2002 (Public Law 107-282) temporarily withdraws a group of areas designated as Areas of Critical Environmental Concern (ACECs) from mineral entry, pending final approval of an application for permanent withdrawal by the BLM. This study provides information about mineral resource potential of the ACECs. Existing information was compiled about the ACECs, including geology, geophysics, geochemistry, and mineral-deposit information. Field examinations of selected areas and mineral occurrences were conducted to determine their geologic setting and mineral potential.
NASA Astrophysics Data System (ADS)
Tsai, JuiPin; Chen, Yu Wen; Chang, Liang Cheng; Chiang, Chun Jung; Chen, Jui Er; Chen, You Cheng
2013-04-01
Groundwater recharge areas are regions with high permeability that accept surface water more readily than other regions. If the land use/cover were changed, it would affect the groundwater recharge. Also, if this area were polluted, the contamination easily infiltrates into the groundwater system. Therefore, the goal of this study is to delineate the recharge area of Choshuihsi Alluvial Fan. This study applies 6 recharge potential scale factors, including land use/land cover, soil, drainage density, annual average rainfall, hydraulic conductivity and aquifer thickness to estimate the infiltration ability and storage capacity of study area. The fundamental data of these factors were digitized using GIS (Geographic Information System) technology and their GIS maps were created. Then each of these maps was translated to a score map ranged from 1 to 100. Moreover, these score maps are integrated as a recharge potential map using arithmetic average, and this map shows recharge potential in 5 levels, such as very poor, poor, moderate, good and excellent. The result shows that majority of "good" and "excellent" areas is located at the top of the fan. This is because the land use of top-fan is agricultural and its surface soil type is gravel and coarse. The top-fan, which is close to mountain areas, has a higher average annual rainfall than other areas. Also, the aquifer thickness of top-fan is much thicker than other areas. The percentage of the areas ranged as "good" and above is 9.63% of total area, and most areas located at top-fan. As a result, we suggest that the top-fan of study area should be protected and more field surveys are required to accurately delineate the recharge area boundary.
Biological assessment for the transfer of the DP land tract
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keller, D.C.
1996-10-01
The Department of Energy (DOE) is proposing to transfer to the County of Los Alamos up to 10-ha (25-ac) of federal land located in Technical Area-21 to be developed for commercial uses. Previous studies for the proposed land transfer area indicate that potential habitat for four threatened, endangered, and sensitive species occurs in or adjacent to the proposed land transfer area. These include the northern goshawk (federal species of concern), Mexican spotted owl (federal threatened), the spotted bat (federal species of concern, state threatened), die peregrine falcon (federal endangered, state endangered), and the. In order to determine the possible influencesmore » of the land transfer on these organisms, information from species-specific surveys was collected. These surveys were used to confirm the presence of these species or to infer their absence in or near the project area. It was concluded that none of die above mentioned species occur in the project area. Stretches of the stream channel within Los Alamos Canyon have been identified as palustrine and riverine, temporarily flooded wetlands. The proposed land transfer should not affect these wetlands.« less
NASA Astrophysics Data System (ADS)
Zenis, F. M.; Supian, S.; Lesmana, E.
2018-03-01
Land is one of the most important assets for farmers in Sumedang Regency. Therefore, agricultural land should be used optimally. This study aims to obtain the optimal land use composition in order to obtain maximum income. The optimization method used in this research is Linear Programming Models. Based on the results of the analysis, the composition of land use for rice area of 135.314 hectares, corn area of 11.798 hectares, soy area of 2.290 hectares, and peanuts of 2.818 hectares with the value of farmers income of IDR 2.682.020.000.000,-/year. The results of this analysis can be used as a consideration in decisions making about cropping patterns by farmers.
Representative landscapes in the forested area of Canada.
Cardille, Jeffrey A; White, Joanne C; Wulder, Mike A; Holland, Tara
2012-01-01
Canada is a large nation with forested ecosystems that occupy over 60% of the national land base, and knowledge of the patterns of Canada's land cover is important to proper environmental management of this vast resource. To this end, a circa 2000 Landsat-derived land cover map of the forested ecosystems of Canada has created a new window into understanding the composition and configuration of land cover patterns in forested Canada. Strategies for summarizing such large expanses of land cover are increasingly important, as land managers work to study and preserve distinctive areas, as well as to identify representative examples of current land-cover and land-use assemblages. Meanwhile, the development of extremely efficient clustering algorithms has become increasingly important in the world of computer science, in which billions of pieces of information on the internet are continually sifted for meaning for a vast variety of applications. One recently developed clustering algorithm quickly groups large numbers of items of any type in a given data set while simultaneously selecting a representative-or "exemplar"-from each cluster. In this context, the availability of both advanced data processing methods and a nationally available set of landscape metrics presents an opportunity to identify sets of representative landscapes to better understand landscape pattern, variation, and distribution across the forested area of Canada. In this research, we first identify and provide context for a small, interpretable set of exemplar landscapes that objectively represent land cover in each of Canada's ten forested ecozones. Then, we demonstrate how this approach can be used to identify flagship and satellite long-term study areas inside and outside protected areas in the province of Ontario. These applications aid our understanding of Canada's forest while augmenting its management toolbox, and may signal a broad range of applications for this versatile approach.
Representative Landscapes in the Forested Area of Canada
NASA Astrophysics Data System (ADS)
Cardille, Jeffrey A.; White, Joanne C.; Wulder, Mike A.; Holland, Tara
2012-01-01
Canada is a large nation with forested ecosystems that occupy over 60% of the national land base, and knowledge of the patterns of Canada's land cover is important to proper environmental management of this vast resource. To this end, a circa 2000 Landsat-derived land cover map of the forested ecosystems of Canada has created a new window into understanding the composition and configuration of land cover patterns in forested Canada. Strategies for summarizing such large expanses of land cover are increasingly important, as land managers work to study and preserve distinctive areas, as well as to identify representative examples of current land-cover and land-use assemblages. Meanwhile, the development of extremely efficient clustering algorithms has become increasingly important in the world of computer science, in which billions of pieces of information on the internet are continually sifted for meaning for a vast variety of applications. One recently developed clustering algorithm quickly groups large numbers of items of any type in a given data set while simultaneously selecting a representative—or "exemplar"—from each cluster. In this context, the availability of both advanced data processing methods and a nationally available set of landscape metrics presents an opportunity to identify sets of representative landscapes to better understand landscape pattern, variation, and distribution across the forested area of Canada. In this research, we first identify and provide context for a small, interpretable set of exemplar landscapes that objectively represent land cover in each of Canada's ten forested ecozones. Then, we demonstrate how this approach can be used to identify flagship and satellite long-term study areas inside and outside protected areas in the province of Ontario. These applications aid our understanding of Canada's forest while augmenting its management toolbox, and may signal a broad range of applications for this versatile approach.
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Anirban; Mondal, Arun; Mukherjee, Sandip; Khatua, Dipam; Ghosh, Subhajit; Mitra, Debasish; Ghosh, Tuhin
2014-08-01
In the Himalayan states of India, with increasing population and activities, large areas of forested land are being converted into other land-use features. There is a definite cause and effect relationship between changing practice for development and changes in land use. So, an estimation of land use dynamics and a futuristic trend pattern is essential. A combination of geospatial and statistical techniques were applied to assess the present and future land use/land cover scenario of Gangtok, the subHimalayan capital of Sikkim. Multi-temporal satellite imageries of the Landsat series were used to map the changes in land use of Gangtok from 1990 to 2010. Only three major land use classes (built-up area and bare land, step cultivated area, and forest) were considered as the most dynamic land use practices of Gangtok. The conventional supervised classification, and spectral indices-based thresholding using NDVI (Normalized Difference Vegetation Index) and SAVI (Soil Adjusted Vegetation Index) were applied along with the accuracy assessments. Markov modelling was applied for prediction of land use/land cover change and was validated. SAVI provides the most accurate estimate, i.e., the difference between predicted and actual data is minimal. Finally, a combination of Markov modelling and SAVI was used to predict the probable land-use scenario in Gangtok in 2020 AD, which indicted that more forest areas will be converted for step cultivation by the year 2020.
NASA Astrophysics Data System (ADS)
Sánchez, Antonio; Malak, Dania Abdul; Schröder, Christoph; Martinez-Murillo, Juan F.
2016-04-01
Remote sensing techniques (SRS) are valid tools for wetland monitoring that could support wetland managers in assessing the spatial and temporal changes in wetland ecosystems as well as in understanding their condition and the ecosystem services they provide. This study focuses on the one hand, on drawing hydro-ecological guidelines for the delimitation of wetland ecosystems; and on the other hand, to assess the reliability of widely available satellite images (Landsat) in estimating the land use/ land cover types covering wetlands. This research develops comprehensive guidelines to determine the boundaries of the Fuente de Piedra wetland ecosystem located in Andalusia, Spain and defines the main land use/ land cover classes covering this ecosystem using Landsat 8 images. An accuracy of the SRS results delivered is tested using the regional inventory of land use produced by the regional government of Andalusia in 2011. By using the ecological and hydrological settings of the area, the boundaries of the Fuente de Piedra wetland ecosystem are determined as an alternative to improve the current delimitations methodology (the Ramsar and Natura 2000 delineations), used by the local authorities so far and based mainly on administrative reasoning. In terms of the land use land cover definition in the area, Fuente de Piedra wetland ecosystem shows to cover a total area of 195 km2 composed mainly by agricultural areas (81.46%): olive groves, non-irrigated arable land and pastures, being 54.82%, 25.71% and 0.93% of the surface respectively. Wetland related land covers (water surface, wetland vegetation) represent 6.85% while natural vegetation is distributed in forest, 1.67%, and shrub areas, 4.14%, being 5.81% in total. 4.58% of the area corresponds to urban and other artificial surfaces. The rest, 1.30%, is composed of different areas without vegetation (sands, bare rock, dumps, etc.). The classification of the Landsat images made with the newly developed SWOS toolbox (under the Horizon 2020 SWOS project) provides reliable results (r2= 0.98). The image segmentation corresponds very closely with the plots of land observed in the satellite image, and the allocation of land use coverages corresponds in 82% of the segments. Forest and olive groves are the best identified coverages with an accuracy of 93% in both cases. Wetlands are correctly classified by 87%, where linear features (narrow streams, etc.) are not detected by the methodology used due to the limitations of Landsat resolution. Arable lands are classified with an accuracy of 85.5%; where the methodology seems to confuse this land use with sparse olive grove. In the case of shrubs, accuracy round the 72%, with confusions with this land use are related with arable land, sparse forests in wetland areas. In the case of urban areas, only 60.5% of the segments are correctly classified as the distinction between urban fabric and industrial areas does not seem to be possible and linear features are not detected (highways, secondary roads,…).
Assessing the impact of urban land cover composition on CO2 flux
NASA Astrophysics Data System (ADS)
Becker, K.; Hinkle, C.
2013-12-01
Urbanization is an ever increasing trend in global land use change, and has been identified as a key driver of CO2 emissions. Therefore, understanding how urbanization affects CO2 flux across a range of climatic zones and development patterns is critical to projecting the impact of future land use on CO2 flux dynamics. A growing number of studies are applying the eddy covariance method to urban areas to quantify the CO2 flux dynamics of these systems. However, interpretation of eddy covariance data in these urban systems presents a challenge, particularly in areas with high heterogeneity due to a mixing of built and green space. Here we present a study aimed at establishing a relationship between land cover composition and CO2 flux for a heterogeneous urban area of Orlando, FL. CO2 flux has been measured at this site for > 4 years using an open path eddy covariance system. Land cover at this site was classified into built and green space, and relative weight of both land covers were calculated for each 30 min CO2 flux measurement using the Schuepp model and a source area based on +/- one standard deviation of wind direction. The results of this analysis established a relationship between built land cover and CO2 flux within the measured footprint of this urban area. These results, in combination with future projected land use data, will be a valuable resource for providing insight into the impact of future urbanization on CO2 flux dynamics in this region.
Modelling of land use change in Indramayu District, West Java Province
NASA Astrophysics Data System (ADS)
Handayani, L. D. W.; Tejaningrum, M. A.; Damrah, F.
2017-01-01
Indramayu District into a strategic area for a stopover and overseas from East Java area because Indramayu District passed the north coast main lane, which is the first as the economic lifeblood of the Java Island. Indramayu District is part of mainstream economic Java pathways so that physical development of the area and population density as well as community activities grew by leaps and bounds. Growth acceleration raised the level of land use change. Land use change and population activities in coastal area would reduce the carrying capacity and impact on environmental quality. This research aim to analyse landuse change of years 2000 and 2011 in Indramayu District. Using this land use change map, we can predict the condition of landuse change of year 2022 in Indramayu District. Cellular Automata Markov (Markov CA) Method is used to create a spatial model of land use changes. The results of this study are predictive of land use in 2022 and the suitability with Spatial Plan (RTRW). A settlement increase predicted to continue in the future the designation of the land according to the spatial plan should be maintained.
Terziotti, Silvia; McMahon, Gerard; Bell, Amanda H.
2012-01-01
As part of the U.S. Geological Survey National Water-Quality Assessment Program, the effects of urbanization on stream ecosystems (EUSE) have been intensively investigated in nine metropolitan areas in the United States, including Boston, Massachusetts; Atlanta, Georgia; Birmingham, Alabama; Raleigh, North Carolina; Salt Lake City, Utah; Denver, Colorado; Dallas–Fort Worth, Texas; Portland, Oregon; and Milwaukee–Green Bay, Wisconsin. Each of the EUSE study area watersheds was associated with one ecological region of the United States. This report evaluates whether each metropolitan area can be generalized across the ecological regions (ecoregions) within which the EUSE study watersheds are located. Seven characteristics of the EUSE watersheds that affect stream ecosystems were examined to determine the similarities in the same seven characteristics of the watersheds in the entire ecoregion. Land cover (percentage developed, forest and shrubland, and herbaceous and cultivated classes), average annual temperature, average annual precipitation, average surface elevation, and average percentage slope were selected as human-influenced, climate, and topography characteristics. Three findings emerged from this comparison that have implications for the use of EUSE data in models used to predict stream ecosystem condition. One is that the predominant or "background" land-cover type (either forested or agricultural land) in each ecoregion also is the predominant land-cover type within the associated EUSE study watersheds. The second finding is that in all EUSE study areas, the watersheds account for the range of developed land conditions that exist in the corresponding ecoregion watersheds. However, six of the nine EUSE study area watersheds have significantly different distributions of developed land from the ecoregion watersheds. Finally, in seven of the nine EUSE/ecoregion comparisons, the distributions of the values of climate variables in the EUSE watersheds are different from the distributions for watersheds in the corresponding ecoregions.
Operational monitoring of land-cover change using multitemporal remote sensing data
NASA Astrophysics Data System (ADS)
Rogan, John
2005-11-01
Land-cover change, manifested as either land-cover modification and/or conversion, can occur at all spatial scales, and changes at local scales can have profound, cumulative impacts at broader scales. The implication of operational land-cover monitoring is that researchers have access to a continuous stream of remote sensing data, with the long term goal of providing for consistent and repetitive mapping. Effective large area monitoring of land-cover (i.e., >1000 km2) can only be accomplished by using remotely sensed images as an indirect data source in land-cover change mapping and as a source for land-cover change model projections. Large area monitoring programs face several challenges: (1) choice of appropriate classification scheme/map legend over large, topographically and phenologically diverse areas; (2) issues concerning data consistency and map accuracy (i.e., calibration and validation); (3) very large data volumes; (4) time consuming data processing and interpretation. Therefore, this dissertation research broadly addresses these challenges in the context of examining state-of-the-art image pre-processing, spectral enhancement, classification, and accuracy assessment techniques to assist the California Land-cover Mapping and Monitoring Program (LCMMP). The results of this dissertation revealed that spatially varying haze can be effectively corrected from Landsat data for the purposes of change detection. The Multitemporal Spectral Mixture Analysis (MSMA) spectral enhancement technique produced more accurate land-cover maps than those derived from the Multitemporal Kauth Thomas (MKT) transformation in northern and southern California study areas. A comparison of machine learning classifiers showed that Fuzzy ARTMAP outperformed two classification tree algorithms, based on map accuracy and algorithm robustness. Variation in spatial data error (positional and thematic) was explored in relation to environmental variables using geostatistical interpolation techniques. Finally, the land-cover modification maps generated for three time intervals (1985--1990--1996--2000), with nine change-classes revealed important variations in land-cover gain and loss between northern and southern California study areas.
A Multi-scale Approach to Urban Thermal Analysis
NASA Technical Reports Server (NTRS)
Gluch, Renne; Quattrochi, Dale A.
2005-01-01
An environmental consequence of urbanization is the urban heat island effect, a situation where urban areas are warmer than surrounding rural areas. The urban heat island phenomenon results from the replacement of natural landscapes with impervious surfaces such as concrete and asphalt and is linked to adverse economic and environmental impacts. In order to better understand the urban microclimate, a greater understanding of the urban thermal pattern (UTP), including an analysis of the thermal properties of individual land covers, is needed. This study examines the UTP by means of thermal land cover response for the Salt Lake City, Utah, study area at two scales: 1) the community level, and 2) the regional or valleywide level. Airborne ATLAS (Advanced Thermal Land Applications Sensor) data, a high spatial resolution (10-meter) dataset appropriate for an environment containing a concentration of diverse land covers, are used for both land cover and thermal analysis at the community level. The ATLAS data consist of 15 channels covering the visible, near-IR, mid-IR and thermal-IR wavelengths. At the regional level Landsat TM data are used for land cover analysis while the ATLAS channel 13 data are used for the thermal analysis. Results show that a heat island is evident at both the community and the valleywide level where there is an abundance of impervious surfaces. ATLAS data perform well in community level studies in terms of land cover and thermal exchanges, but other, more coarse-resolution data sets are more appropriate for large-area thermal studies. Thermal response per land cover is consistent at both levels, which suggests potential for urban climate modeling at multiple scales.
NASA Technical Reports Server (NTRS)
Ellefsen, R.; Swain, P. H.; Wray, J. R.
1973-01-01
The study is reported to develop computer produced urban land use maps using multispectral scanner data from a satellite is reported. Data processing is discussed along with the results of the San Francisco Bay area, which was chosen as the test area.
Hollyday, E.F.; Sauer, S.P.
1976-01-01
Land-cover information is needed to select subbasins within the New River basin, Tennessee, for the study of hydrologic processes and also is needed to transfer study results to other sites affected by coal mining. It was believed that data recorded by the first Earth Resources Technology Satellite (Landsat-1) could be processed to yield the needed land-cover information. This study demonstrates that digital computer processing of the spectral information contained in each picture element (pixel) of 1.1 acres (4,500 m2) can produce maps and tables of the areal extent of selected land-cover categories.The distribution of water, rock, agricultural areas, evergreens, bare earth, hardwoods, and uncategorized areas, is portrayed on a map of the entire New River basin (1:62,500 scale) and on 15 quadrangles (1:24,000 scale). Although some categories are a mixture of land-cover types, they portray the predominant component named. Tables quantify the area of each category and indicate that agriculture covers 5 percent of the basin, evergreens cover 7 percent, bare earth covers 6 percent, three categories of hardwoods cover 81 percent, and water, rock, and uncategorized areas each cover less than 1 percent of the basin.
Arid Lands--A Study in Ecological Disaster
ERIC Educational Resources Information Center
Eckholm, Erik
1977-01-01
Reports that over-grazing and unsound agricultural practices are increasing the world-wide amount of uninhabitable land. Cites some practices which have been used to successfully reclaim arid land areas. (CP)
Historic and forecasted population and land-cover change in eastern North Carolina, 1992-2030
Claggett, Peter; Hearn,, Paul P.; Donato, David I.
2015-01-01
The Southeast Regional Partnership for Planning and Sustainability (SERPPAS) was formed in 2005 as a partnership between the Department of Defense (DOD) and State and Federal agencies to promote better collaboration in making resource-use decisions. In support of this goal, the U.S. Geological Survey (USGS) conducted a study to evaluate historic population growth and land-cover change, and to model future change, for the 13-county SERPPAS study area in southeastern North Carolina (fig. 1). Improved understanding of trends in land-cover change and the ability to forecast land-cover change that is consistent with these trends will be a key component of efforts to accommodate local military-mission imperatives while also promoting sustainable economic growth throughout the 13-county study area. The study had three principal objectives: 1. Evaluate historic changes in population and land cover for the period 1992–2006 using both previously existing as well as newly generated land-cover data. 2. Develop models to forecast future change in land cover using the data gathered in objective 1 in conjunction with ancillary data on the suitability of the various sub-areas within the study area for low- and high-intensity urban development. 3. Deliver these results—including an executive-level briefing and a USGS technical report—to DOD, other project cooperators, and local counties in hard-copy and digital formats and via the Web through a map-based data viewer. This report provides a general overview of the study and is intended for general distribution to non-technical audiences.
Modified Methodology for Projecting Coastal Louisiana Land Changes over the Next 50 Years
Hartley, Steve B.
2009-01-01
The coastal Louisiana landscape is continually undergoing geomorphologic changes (in particular, land loss); however, after the 2005 hurricane season, the changes were intensified because of Hurricanes Katrina and Rita. The amount of land loss caused by the 2005 hurricane season was 42 percent (562 km2) of the total land loss (1,329 km2) that was projected for the next 50 years in the Louisiana Coastal Area (LCA), Louisiana Ecosystem Restoration Study. The purpose of this study is to provide information on potential changes to coastal Louisiana by using a revised LCA study methodology. In the revised methodology, we used classified Landsat TM satellite imagery from 1990, 2001, 2004, and 2006 to calculate the 'background' or ambient land-water change rates but divided the Louisiana coastal area differently on the basis of (1) geographic regions ('subprovinces') and (2) specific homogeneous habitat types. Defining polygons by subprovinces (1, Pontchartrain Basin; 2, Barataria Basin; 3, Vermilion/Terrebonne Basins; and 4, the Chenier Plain area) allows for a specific erosion rate to be applied to that area. Further subdividing the provinces by habitat type allows for specific erosion rates for a particular vegetation type to be applied. Our modified methodology resulted in 24 polygons rather than the 183 that were used in the LCA study; further, actively managed areas and the CWPPRA areas were not masked out and dealt with separately as in the LCA study. This revised methodology assumes that erosion rates for habitat types by subprovince are under the influence of similar environmental conditions (sediment depletion, subsidence, and saltwater intrusion). Background change rate for three time periods (1990-2001, 1990-2004, and 1990-2006) were calculated by taking the difference in water or land among each time period and dividing it by the time interval. This calculation gives an annual change rate for each polygon per time period. Change rates for each time period were then used to compute the projected change in each subprovince and habitat type over 50 years by using the same compound rate functions used in the LCA study. The resulting maps show projected land changes based on the revised methodology and inclusion of damage by Hurricanes Katrina and Rita. Comparison of projected land change values between the LCA study and this study shows that this revised methodology - that is, using a reduced polygon subset (reduced from 183 to 24) based on habitat type and subprovince - can be used as a quick projection of land loss.
The role of land use changes in the distribution of shallow landslides.
Persichillo, Maria Giuseppina; Bordoni, Massimiliano; Meisina, Claudia
2017-01-01
The role of land use dynamics on shallow landslide susceptibility remains an unresolved problem. Thus, this work aims to assess the influence of land use changes on shallow landslide susceptibility. Three shallow landslide-prone areas that are representative of peculiar land use settings in the Oltrepò Pavese (North Apennines) are analysed: the Rio Frate, Versa and Alta Val Tidone catchments. These areas were affected by widespread land abandonment and modifications in agricultural practices from 1954 to 2012 and relevant shallow landslide phenomena in 2009, 2013 and 2014. A multi-temporal land use change analysis allows us to evaluate the degree of transformation in the three investigated areas and the influence of these changes on the susceptibility to shallow landslides. The results show that the three catchments were characterised by pronounced land abandonment and important changes in agricultural practices. In particular, abandoned cultivated lands that gradually recovered through natural grasses, shrubs and woods were identified as the land use change classes that were most prone to shallow landslides. Additionally, the negative qualities of the agricultural maintenance practices increased the surface water runoff and consequently intensified erosion processes and instability phenomena. Although the land use was identified as the most important predisposing factor in all the study areas, some cases existed in which the predisposition of certain areas to shallow landslides was influenced by the combined effect of land use changes and the geological conditions, as highlighted by the high susceptibility of slopes that are characterised by adverse local geological (thick soils derived from clayey-marly bedrocks) and geomorphological (slope angle higher than 25°) conditions. Thus, the achieved results are particularly useful to understand the best land conservation strategies to be adopted to reduce instability phenomena and the consequent economic losses in areas that are strongly linked to agricultural land use in these territories. Copyright © 2016 Elsevier B.V. All rights reserved.
GIS/RS-based Rapid Reassessment for Slope Land Capability Classification
NASA Astrophysics Data System (ADS)
Chang, T. Y.; Chompuchan, C.
2014-12-01
Farmland resources in Taiwan are limited because about 73% is mountainous and slope land. Moreover, the rapid urbanization and dense population resulted in the highly developed flat area. Therefore, the utilization of slope land for agriculture is more needed. In 1976, "Slope Land Conservation and Utilization Act" was promulgated to regulate the slope land utilization. Consequently, slope land capability was categorized into Class I-IV according to 4 criteria, i.e., average land slope, effective soil depth, degree of soil erosion, and parent rock. The slope land capability Class I-VI are suitable for cultivation and pasture. Whereas, Class V should be used for forestry purpose and Class VI should be the conservation land which requires intensive conservation practices. The field survey was conducted to categorize each land unit as the classification scheme. The landowners may not allow to overuse land capability limitation. In the last decade, typhoons and landslides frequently devastated in Taiwan. The rapid post-disaster reassessment of the slope land capability classification is necessary. However, the large-scale disaster on slope land is the constraint of field investigation. This study focused on using satellite remote sensing and GIS as the rapid re-evaluation method. Chenyulan watershed in Nantou County, Taiwan was selected to be a case study area. Grid-based slope derivation, topographic wetness index (TWI) and USLE soil loss calculation were used to classify slope land capability. The results showed that GIS-based classification give an overall accuracy of 68.32%. In addition, the post-disaster areas of Typhoon Morakot in 2009, which interpreted by SPOT satellite imageries, were suggested to classify as the conservation lands. These tools perform better in the large coverage post-disaster update for slope land capability classification and reduce time-consuming, manpower and material resources to the field investigation.
The link between land use and flood risk assessment in urban areas
NASA Astrophysics Data System (ADS)
Sörensen, Johanna; Kalantari, Zahra
2017-04-01
Densification of urban areas rises a concern for increased pluvial flooding. Flood risk in urban areas might rise under impact of land use changes. Urbanisation involves conversion of natural areas to impermeable areas giving lower infiltration rates and increased runoff. When high-intense rainfall excess the capacity of the drainage system in a city, high runoff causes pluvial flooding in low-laying areas. In the present study, a long time series (20 years) of geo-referenced flood claims from property owners has been collected and analysed in detail to assess flood risk under impact of land use changes in urban areas. The flood claim data come from property owners with flood insurance that covers property loss from overland flooding, groundwater intrusion through basement walls, as well as flooding from the drainage system, and are used as a proxy for flood severity. The spatial relationships between land use change and flood occurrences in different urban areas were analysed. Special emphasis were put on how nature-based solutions and blue-green infrastructure relates to flood risk. The relationships defined by a statistical method explaining the tendencies where the land use change contributes to flood risk changes and others engaged factors.
Assessment of land degradation and its spatial and temporal variation in Beijing surrounding area
NASA Astrophysics Data System (ADS)
Li, Shuang; Dong, Suocheng; Zhang, Xiaojun; Zhiqiang, Gao
2005-08-01
The indulgence in willful persecution of sandstorm had made great attention of many countries around the world. Chinese government and the Chinese academy of science going with some other countries have devoted a large amount of vigor to study the crucial environment problem. Due to the main source areas of sandstorm all located in the arid and semi-arid regions where there have great area, hard natural condition and bad traffic condition, it's very difficult to accomplish source area and the reason of sandstorm. For this destination, a international cooperation organization has been established to clarify the occur mechanism, transfer process and the following environment impact of sandstorm. The organization includes many researchers come form USA, Japan, Korea, and so on. Beijing surrounding area is one of the main sandstorm sources in recent years. In order to understand fully of the sandstorm form and development, we analyzed the land use degradation of Beijing surrounding area during the last ten years. 71 scenes Landsat TM/ETM, 611 scenes DRG and DEM data had been processed in our study. This paper made a detail describe of using Landsat image data and high resolution DEM data to construe the soil erosion and vegetation degenerate. The result shows that the irrational human activities and land use style are the main factors of land use degradation. In case of Beijing surrounding area, the land degradation directly impacted the frequency and intensity of sand & dust storm in Northern China. The case study region of Beijing surrounding area includes 51 counties that belong to three provinces and autonomous regions.
Water quality in the eastern Iowa basins
Kalkhoff, Stephen J.; Barnes, Kimberlee K.; Becher, Kent D.; Savoca, Mark E.; Schnoebelen, Douglas J.; Sadorf, Eric M.; Porter, Stephen D.; Sullivan, Daniel J.; Creswell, John
2001-01-01
The Eastern Iowa Basins Study Unit includes the Wapsipinicon, Cedar, Iowa, and Skunk River basins and covers approximately 19,500 square miles in eastern Iowa and southern Minnesota. More than 90 percent of the land in the study unit is used for agricultural purposes. Forested areas account for only 4 percent of the land area.
NASA Astrophysics Data System (ADS)
Xu, Feinan; Wang, Weizhen; Wang, Jiemin; Xu, Ziwei; Qi, Yuan; Wu, Yueru
2017-08-01
The determination of area-averaged evapotranspiration (ET) at the satellite pixel scale/model grid scale over a heterogeneous land surface plays a significant role in developing and improving the parameterization schemes of the remote sensing based ET estimation models and general hydro-meteorological models. The Heihe Watershed Allied Telemetry Experimental Research (HiWATER) flux matrix provided a unique opportunity to build an aggregation scheme for area-averaged fluxes. On the basis of the HiWATER flux matrix dataset and high-resolution land-cover map, this study focused on estimating the area-averaged ET over a heterogeneous landscape with footprint analysis and multivariate regression. The procedure is as follows. Firstly, quality control and uncertainty estimation for the data of the flux matrix, including 17 eddy-covariance (EC) sites and four groups of large-aperture scintillometers (LASs), were carefully done. Secondly, the representativeness of each EC site was quantitatively evaluated; footprint analysis was also performed for each LAS path. Thirdly, based on the high-resolution land-cover map derived from aircraft remote sensing, a flux aggregation method was established combining footprint analysis and multiple-linear regression. Then, the area-averaged sensible heat fluxes obtained from the EC flux matrix were validated by the LAS measurements. Finally, the area-averaged ET of the kernel experimental area of HiWATER was estimated. Compared with the formerly used and rather simple approaches, such as the arithmetic average and area-weighted methods, the present scheme is not only with a much better database, but also has a solid grounding in physics and mathematics in the integration of area-averaged fluxes over a heterogeneous surface. Results from this study, both instantaneous and daily ET at the satellite pixel scale, can be used for the validation of relevant remote sensing models and land surface process models. Furthermore, this work will be extended to the water balance study of the whole Heihe River basin.
The managed clearing: An overlooked land-cover type in urbanizing regions?
Singh, Kunwar K; Madden, Marguerite; Gray, Josh; Meentemeyer, Ross K
2018-01-01
Urban ecosystem assessments increasingly rely on widely available map products, such as the U.S. Geological Service (USGS) National Land Cover Database (NLCD), and datasets that use generic classification schemes to detect and model large-scale impacts of land-cover change. However, utilizing existing map products or schemes without identifying relevant urban class types such as semi-natural, yet managed land areas that account for differences in ecological functions due to their pervious surfaces may severely constrain assessments. To address this gap, we introduce the managed clearings land-cover type-semi-natural, vegetated land surfaces with varying degrees of management practices-for urbanizing landscapes. We explore the extent to which managed clearings are common and spatially distributed in three rapidly urbanizing areas of the Charlanta megaregion, USA. We visually interpreted and mapped fine-scale land cover with special attention to managed clearings using 2012 U.S. Department of Agriculture (USDA) National Agriculture Imagery Program (NAIP) images within 150 randomly selected 1-km2 blocks in the cities of Atlanta, Charlotte, and Raleigh, and compared our maps with National Land Cover Database (NLCD) data. We estimated the abundance of managed clearings relative to other land use and land cover types, and the proportion of land-cover types in the NLCD that are similar to managed clearings. Our study reveals that managed clearings are the most common land cover type in these cities, covering 28% of the total sampled land area- 6.2% higher than the total area of impervious surfaces. Managed clearings, when combined with forest cover, constitutes 69% of pervious surfaces in the sampled region. We observed variability in area estimates of managed clearings between the NAIP-derived and NLCD data. This suggests using high-resolution remote sensing imagery (e.g., NAIP) instead of modifying NLCD data for improved representation of spatial heterogeneity and mapping of managed clearings in urbanizing landscapes. Our findings also demonstrate the need to more carefully consider managed clearings and their critical ecological functions in landscape- to regional-scale studies of urbanizing ecosystems.
Investigating potential transferability of place-based research in land system science
NASA Astrophysics Data System (ADS)
Václavík, Tomáš; Langerwisch, Fanny; Cotter, Marc; Fick, Johanna; Häuser, Inga; Hotes, Stefan; Kamp, Johannes; Settele, Josef; Spangenberg, Joachim H.; Seppelt, Ralf
2016-09-01
Much of our knowledge about land use and ecosystem services in interrelated social-ecological systems is derived from place-based research. While local and regional case studies provide valuable insights, it is often unclear how relevant this research is beyond the study areas. Drawing generalized conclusions about practical solutions to land management from local observations and formulating hypotheses applicable to other places in the world requires that we identify patterns of land systems that are similar to those represented by the case study. Here, we utilize the previously developed concept of land system archetypes to investigate potential transferability of research from twelve regional projects implemented in a large joint research framework that focus on issues of sustainable land management across four continents. For each project, we characterize its project archetype, i.e. the unique land system based on a synthesis of more than 30 datasets of land-use intensity, environmental conditions and socioeconomic indicators. We estimate the transferability potential of project research by calculating the statistical similarity of locations across the world to the project archetype, assuming higher transferability potentials in locations with similar land system characteristics. Results show that areas with high transferability potentials are typically clustered around project sites but for some case studies can be found in regions that are geographically distant, especially when values of considered variables are close to the global mean or where the project archetype is driven by large-scale environmental or socioeconomic conditions. Using specific examples from the local case studies, we highlight the merit of our approach and discuss the differences between local realities and information captured in global datasets. The proposed method provides a blueprint for large research programs to assess potential transferability of place-based studies to other geographical areas and to indicate possible gaps in research efforts.
A comparative analysis of the Global Land Cover 2000 and MODIS land cover data sets
Giri, C.; Zhu, Z.; Reed, B.
2005-01-01
Accurate and up-to-date global land cover data sets are necessary for various global change research studies including climate change, biodiversity conservation, ecosystem assessment, and environmental modeling. In recent years, substantial advancement has been achieved in generating such data products. Yet, we are far from producing geospatially consistent high-quality data at an operational level. We compared the recently available Global Land Cover 2000 (GLC-2000) and MODerate resolution Imaging Spectrometer (MODIS) global land cover data to evaluate the similarities and differences in methodologies and results, and to identify areas of spatial agreement and disagreement. These two global land cover data sets were prepared using different data sources, classification systems, and methodologies, but using the same spatial resolution (i.e., 1 km) satellite data. Our analysis shows a general agreement at the class aggregate level except for savannas/shrublands, and wetlands. The disagreement, however, increases when comparing detailed land cover classes. Similarly, percent agreement between the two data sets was found to be highly variable among biomes. The identified areas of spatial agreement and disagreement will be useful for both data producers and users. Data producers may use the areas of spatial agreement for training area selection and pay special attention to areas of disagreement for further improvement in future land cover characterization and mapping. Users can conveniently use the findings in the areas of agreement, whereas users might need to verify the informaiton in the areas of disagreement with the help of secondary information. Learning from past experience and building on the existing infrastructure (e.g., regional networks), further research is necessary to (1) reduce ambiguity in land cover definitions, (2) increase availability of improved spatial, spectral, radiometric, and geometric resolution satellite data, and (3) develop advanced classification algorithms.
Assessment of post forest fire reclamation in Algarve, Portugal
NASA Astrophysics Data System (ADS)
Andrade, Rita; Panagopoulos, Thomas; Guerrero, Carlos; Martins, Fernando; Zdruli, Pandi; Ladisa, Gaetano
2014-05-01
Fire is a common phenomenon in Mediterranean landscapes and it plays a crucial role in its transformations, making the determination of its impact on the ecosystem essential for land management. During summer of 2012, a wildfire took place in Algarve, Portugal, on an area mainly covered by sclerophyllous vegetation (39.44%, 10080ha), broad-leaved forest (20.80%, 5300ha), agriculture land with significant areas of natural vegetation (17.40%, 4400ha) and transitional woodlands-shrubs (16.17%, 4100ha). The objective of the study was to determine fire severity in order to plan post-fire treatments and to aid vegetation recovery and land reclamation. Satellite imagery was used to estimate burn severity by detecting physical and ecological changes in the landscape caused by fire. Differenced Normalized Burn Ratio (DNBR) was used to measure burn severity with pre and post fire data of four Landsat images acquired in October 2011, February and August 2012 and April 2013. The initial and extended differenced normalized burn ratio (DiNBR and DeNBR) were calculated. The calculated burned area of 24291 ha was 552ha lower than the map data determined with field reports. The 19.5% of that area was burned with high severity, 45% with moderate severity and 28.3% with low severity. Comparing fire severity and regrowth with land use, it is shown in DiNBR that the most severely burned areas were predominantly sclerophyllous vegetation (37.6%) and broad-leaved forests (31.1%). From the DeNRB it was found that the reestablishment of vegetation was slower in mixed forests and higher in sclerophyllous vegetation and in land with significant areas of natural vegetation. Faster recovery was calculated for the land uses of sclerophyllous vegetation (46.7%) and significant regrowth in areas of natural vegetation and lands occupied by agriculture (25.4%). Next steps of the study are field validation and crossing with erosion risk maps before to take land reclamation decisions.
The Population Growth and Carrying Capacity in Semarang City
NASA Astrophysics Data System (ADS)
Hariyanto; Hadi, Sudharto P.; Buchori, Imam
2018-02-01
Population growth and development of city activities take some lands to carry them. As a result, land use competition happens among persons, society or sector. Land necessity for settlement, industry, or sector has taken over farm land, therefore farm land has been converted intensively and massively. Chronologically, population growth will cause land necessity increase. Unproductive land, especially farm land will be converted. Furthermore, farm land conversion will cause carrying capacity change. Carrying capacity has certain bio capacity. With the population growth, it will increase resource consumption; on the other side, farm land conversion will decrease carrying capacity. The objective of the study is to know about the influence of population growth towards carrying capacity (bio capacity) in Semarang city. Land consumption per capita is indeed influenced by city population, the higher the population is, the lower the land consumption per capita. With the population growth, it will influence carrying capacity. Carrying capacity here is the ratio of area to population. Analytical descriptive method is applied in the study with all sub-districts in Semarang city as the analysis unit. Population here is sub-district area and population per sub-district in Semarang city. Population growth data period is from 2000 until 2015. Main variables of the study are area per sub-district, population, population growth, carrying capacity. Result of the study shows significant influence of carrying capacity decrease, especially some outskirts in Semarang city. This condition happens because the outskirts in Semarang city tend to have dense population growth. Range of carrying capacity in Semarang city is from 0,007 to 0,117 of 0 to 1. Almost all sub-districts in Semarang city show miserable condition, except Mijen and Tugu. The conclusion of the study is that population will decrease carrying capacity. Therefore, the government should control population growth by paying attention to its distribution.
NASA Astrophysics Data System (ADS)
Ramlan, A.; Baja, S.; Arif, S.; Neswati, R.
2018-05-01
Agriculture has long become a prime sector for regional development in Buton Island, although local government emphasis on perennial crops. Food crop have been developed in very limited land areas, mainly on transmigration areas, as parts of central government programs. Today, the central government has launched a national strategic program on food self-sufficiency and has imposed the local government to optimize available land for cultivating food crop. The primary aim of study is to develop rapid assessment on a spatial basis using GIS for agricultural land suitability evaluation of agriculture commodities, i.e., rice (irrigated paddy field, rainfed rice) and corn (Zea maize L.). The study was undertaken using the following procedures: (i) conducting reconnaissance soil survey based on land units; (ii) constructing soil database in a GIS; and (iii) classifying land suitability using the FAO method. Spatial data were generated from digital topographic map, soil survey, soil characteristics, as well as climate data. Preliminary results indicate that quite large area available for food crop cultivation both in the context of land suitability (mostly in S2 and S3 classes) and land availability. All data bases were managed in GIS, then it is amenable to various operations in GIS to accommodate possible additional assessment including socio-economic and policy assessment.
NASA Astrophysics Data System (ADS)
Sugiyantoro; Christian, B.; Arianto, R.
2018-05-01
Land and it’s utilization on housing development undoubtedly have become an essential issue in various studies. The comprehension on each locations of the case has allowed several important studies of particular patterns related to the capacity of land and housing market. Especially Jakarta as the most promising area for property business, also has the highest lands and apartments price in Indonesia. Land and apartment are considered as the most unique commodities, highly profitable. But since 2014, there has been lots of warnings about possibility of apartments oversupply; stagnation of apartment sales also has been indicated in locations at the edge of this city, which will enable the demand’s transition from landed house to apartment, as form of vertical housing. Based on fundamental theories of land and apartment pricing, the research presumes that apartment development is considered as an effort of land intensifications, to trigger the enhancement of land prices in particular locations. Therefore, this research means to comprehend the correlation of distribution pattern of lands price with apartments price. The location’s selection is based on expansion of the urban development of Jakarta Metropolitan Area to southern region which has become a general tendency.
Effect of land cover change on runoff curve number estimation in Iowa, 1832-2001
Wehmeyer, Loren L.; Weirich, Frank H.; Cuffney, Thomas F.
2011-01-01
Within the first few decades of European-descended settlers arriving in Iowa, much of the land cover across the state was transformed from prairie and forest to farmland, patches of forest, and urbanized areas. Land cover change over the subsequent 126 years was minor in comparison. Between 1832 and 1859, the General Land Office conducted a survey of the State of Iowa to aid in the disbursement of land. In 1875, an illustrated atlas of the State of Iowa was published, and in 2001, the US Geological Survey National Land Cover Dataset was compiled. Using these three data resources for classifying land cover, the hydrologic impact of the land cover change at three points in time over a period of 132+ years is presented in terms of the effect on the area-weighted average curve number, a term commonly used to predict peak runoff from rainstorms. In the four watersheds studied, the area-weighted average curve number associated with the first 30 years of settlement increased from 61·4 to 77·8. State-wide mapped forest area over this same period decreased 19%. Over the next 126 years, the area-weighted average curve number decreased to 76·7, despite an additional forest area reduction of 60%. This suggests that degradation of aquatic resources (plants, fish, invertebrates, and habitat) arising from hydrologic alteration was likely to have been much higher during the 30 years of initial settlement than in the subsequent period of 126 years in which land cover changes resulted primarily from deforestation and urbanization.
Analysis of the geomorphology surrounding the Chang'e-3 landing site
NASA Astrophysics Data System (ADS)
Li, Chun-Lai; Mu, Ling-Li; Zou, Xiao-Duan; Liu, Jian-Jun; Ren, Xin; Zeng, Xing-Guo; Yang, Yi-Man; Zhang, Zhou-Bin; Liu, Yu-Xuan; Zuo, Wei; Li, Han
2014-12-01
Chang'e-3 (CE-3) landed on the Mare Imbrium basin in the east part of Sinus Iridum (19.51°W, 44.12°N), which was China's first soft landing on the Moon and it started collecting data on the lunar surface environment. To better understand the environment of this region, this paper utilizes the available high-resolution topography data, image data and geological data to carry out a detailed analysis and research on the area surrounding the landing site (Sinus Iridum and 45 km×70 km of the landing area) as well as on the topography, landform, geology and lunar dust of the area surrounding the landing site. A general topographic analysis of the surrounding area is based on a digital elevation model and digital elevation model data acquired by Chang'e-2 that have high resolution; the geology analysis is based on lunar geological data published by USGS; the study on topographic factors and distribution of craters and rocks in the surrounding area covering 4 km×4 km or even smaller is based on images from the CE-3 landing camera and images from the topographic camera; an analysis is done of the effect of the CE-3 engine plume on the lunar surface by comparing images before and after the landing using data from the landing camera. A comprehensive analysis of the results shows that the landing site and its surrounding area are identified as typical lunar mare with flat topography. They are suitable for maneuvers by the rover, and are rich in geological phenomena and scientific targets, making it an ideal site for exploration.
Land Use Change Around Nature Reserves: Implications for Sustaining Biodiversity
NASA Astrophysics Data System (ADS)
Hansen, A. J.; Defries, R.; Curran, L.; Liu, J.; Reid, R.; Turner, B.
2004-12-01
The effects of land use change outside of reserves on biodiversity within reserves is not well studied. This paper draws on research from Yellowstone, East Africa, Yucatan, Borneo, and Wolong, China to examine land use effects on nature reserves. Objectives are: quantify rates of change in land use around reserves; examine consequences for biodiversity within the context of specific ecological mechanisms; and draw implications for regional management. Within each of the study regions, semi-natural habitats around nature reserves have been converted to agricultural, rural residential, or urban land uses. Rates vary from 0.2-0.4 %/yr in Yucatan, to 9.5 %/yr in Borneo. Such land use changes may be important because nature reserves are often parts of larger ecosystems that are defined by flows in energy, materials, and organisms. Land use outside of reserves may disrupt these flows and alter biodiversity within reserves. Ecological mechanisms that connect biodiversity to these land use changes include habitat size, ecological flows, crucial habitats, and edge effects. For example, the effective size of the East African study area has been reduced by 45% by human activities. Based on the species area relationship, this reduction in habitat area will lead to a loss of 14% of bird and mammal species. A major conclusion is that the viability of nature reserves can best be ensured by managing them in the context of the surrounding region. Knowledge of the ecological mechanisms by which land use influences nature reserves provides design criteria for this regional management.
Chambers, Jeanne C.; Brooks, Matthew L.; Turner, Kent; Raish, Carol B.; Ostoja, Steven M.
2013-01-01
Maintaining and restoring the diverse ecosystems and resources that occur in southern Nevada in the face of rapid socio-economic and ecological change presents numerous challenged to Federal land managers. Rapid population growth since the 1980s, the land uses associated with that growth, and the interactions of those uses with the generally dry and highly variable climate result in numerous stresses to ecosystems, species, and cultural resource. In addition, climate models predict that the rate of temperature increase and, thus, changes in ecological processes, will be highest for ecosystems like the Mojave Desert. The Southern Nevada Agency Partnership (SNAP; http:www.SNAP.gov) was established in 1999 to address common issues pertaining to public lands in southern Nevada. Partners include the Bureau of Land Management, National Park Service, U.S. Fish and Wildlife Service, and USDA Forest Service and they work with each other, the local community, and other partners. SNAP agencies manage more than seven million acres of public lands in southern Nevada (95% of the land area). Federal land includes two national recreation areas, two national conservation area, four national wildlife refuges, 18 congressionally designated wilderness areas, five wilderness study areas, and 22 areas of critical environmental concern. The partnership's activities are mainly centered in Southern Nevada's Clark County (fig. 1.1), but lands managed by SNAP partner agencies also include portions of Lake Mead National Recreation Area in Mohave County, Arizona, U.S. Fish and Wildlife Service, and USDA Forest Service-managed lands in Lincoln and Nye Counties, Nevada, and all lands and activities managed by the Southern Nevada District Office of the Bureau of Land Management. These lands encompass nine distinct ecosystem types (fig. 1.2), support multiple species of management concern an 17 listed species, and are rich in cultural and historic resource. This introductory executive summary discusses the Science and Research Strategy developed by the SNAP agencies, the Science and Research Report, and need for science-based management in southern Nevada.
NASA Astrophysics Data System (ADS)
Hu, Y.; Jia, G.
2009-12-01
Change vector analysis (CVA) is an effective approach for detecting and characterizing land-cover change by comparing pairs of multi-spectral and multi-temporal datasets over certain area derived from various satellite platforms. NDVI is considered as an effective detector for biophysical changes due to its sensitivity to red and near infrared signals, while land surface temperature (LST) is considered as a valuable indicator for changes of ground thermal conditions. Here we try to apply CVA over satellite derived LST datasets to detect changes of land surface thermal properties parallel to climate change and anthropogenic influence in a city cluster since 2001. In this study, monthly land surface temperature datasets from 2001-2008 derived from MODIS collection 5 were used to examine change pattern of thermal environment over the Bohai coastal region by using spectral change vector analysis. The results from principle component analysis (PCA) for LST show that the PC 1-3 contain over 80% information on monthly variations and these PCA components represent the main processes of land thermal environment change over the study area. Time series of CVA magnitude combined with land cover information show that greatest change occurred in urban and heavily populated area, featured with expansion of urban heat island, while moderate change appeared in grassland area in the north. However few changes were observed over large plain area and forest area. Strong signals also are related to economy level and especially the events of surface cover change, such as emergence of railway and port. Two main processes were also noticed about the changes of thermal environment. First, weak signal was detected in mostly natural area influenced by interannual climate change in temperate broadleaf forest area. Second, land surface temperature changes were controlled by human activities as 1) moderate change of LST happened in grassland influenced by grazing and 2) urban heat island was intensifier in major cities, such as Beijing and Tianjin. Further, the continual drier climate combined with human actions over past fifties years have intensified land thermal pattern change and the continuation will be an important aspects to understand land surface processes and local climate change. Land surface temperature trends from 2000-2008 over the Bohai coastal region
Anthropogenic pressures on productive soils in Corlu and Cerkezkoy
NASA Astrophysics Data System (ADS)
Tok, Ezgi
2016-08-01
Unplanned land use is mainly arising from previous regional (local) planning policies based on economic growth, which resulted in the misuse of the land. The fertile lands are converted to industrial/urban areas along with forest areas converted to agricultural zones which directly affect the flora and fauna in a negative way. This study aims to identify the land use transformations by using Remote Sensing and GIS due to prior socio-economic return focused politics resulting in environmental degradations. Additionally, this paper presents an analysis of the transformation of fertile lands into industrial/urban zones with respect to Land Capability Classes. The study area is one of the most urbanized and industrialized zones in Turkey. The reason behind this transformation lies solely in the fact that the aforementioned area is quite appealing to industrialization due to its easy access to infrastructure and its compliance with the spatial requirements. Up until now the development plans of the region have been prepared with a socioeconomic agenda promoting the economic growth while disregarding the ecological and environmental balance, which unfortunately boosted the large-scale degradation of the environment. Although the focus area is within a zone suitable for industrialization, this region also takes place within a wide river basin (Ergene River Basin) making it an ideal location for highly productive crop cultivation (LUC Classes 1 to 4), which is a rare commodity in long term.
NASA Astrophysics Data System (ADS)
Kara, Can; Akçit, Nuhcan
2016-08-01
Land-cover change is considered one of the central components in current strategies for managing natural resources and monitoring environmental changes. It is important to manage land resources in a sustainable manner which targets at compacting and consolidating urban development. From 2005 to 2015,urban growth in Kyrenia has been quite dramatic, showing a wide and scattered pattern, lacking proper plan. As a result of this unplanned/unorganized expansion, agricultural areas, vegetation and water bodies have been lost in the region. Therefore, it has become a necessity to analyze the results of this urban growth and compare the losses between land-cover changes. With this goal in mind, a case study of Kyrenia region has been carried out using a supervised image classification method and Landsat TM images acquired in 2005 and 2015 to map and extract land-cover changes. This paper tries to assess urban-growth changes detected in the region by using Remote Sensing and GIS. The study monitors the changes between different land cover types. Also, it shows the urban occupation of primary soil loss and the losses in forest areas, open areas, etc.
NASA Astrophysics Data System (ADS)
Rachman, F.; Satriagasa, M. C.; Riasasi, W.
2018-03-01
New Yogyakarta International Airport (NYIA) is being constructed in Temon Sub District, Kulonprogo District. It lies on 587.2 ha area in the southern part of Java Island coastal area. Many areas of Kulonprogro coastal area are used for aquaculture of vanname shrimp. In that case, the aquaculture land needs to be cleared for the airport construction necessity and requires compensation. The value of the compensation needs to be right calculated by both sides, regarding the aquaculture land are local community assets. This study uses spatial analysis and visual interpretation. Whereas, the calculation of the acquisition value and income capital value uses Discounted Cash Flow (DCF) method. The result shows the area of aquaculture land which impacted to be cleared is 83 ha, means decreasing of shrimp ponds area in Temon Sub District, Kulonprogo District. The calculation of acquisition value for airport development indicates higher value than the income from the aquaculture activity. The results mean the aquaculture landlords do not incur losses due to the airport development project. These findings can be used for local government and related stakeholders to formulate a policy of aquaculture relocation and to estimate projection for aquaculture land suitability in Yogyakarta coastal area.
Identification and delineation of areas flood hazard using high accuracy of DEM data
NASA Astrophysics Data System (ADS)
Riadi, B.; Barus, B.; Widiatmaka; Yanuar, M. J. P.; Pramudya, B.
2018-05-01
Flood incidents that often occur in Karawang regency need to be mitigated. These expectations exist on technologies that can predict, anticipate and reduce disaster risks. Flood modeling techniques using Digital Elevation Model (DEM) data can be applied in mitigation activities. High accuracy DEM data used in modeling, will result in better flooding flood models. The result of high accuracy DEM data processing will yield information about surface morphology which can be used to identify indication of flood hazard area. The purpose of this study was to identify and describe flood hazard areas by identifying wetland areas using DEM data and Landsat-8 images. TerraSAR-X high-resolution data is used to detect wetlands from landscapes, while land cover is identified by Landsat image data. The Topography Wetness Index (TWI) method is used to detect and identify wetland areas with basic DEM data, while for land cover analysis using Tasseled Cap Transformation (TCT) method. The result of TWI modeling yields information about potential land of flood. Overlay TWI map with land cover map that produces information that in Karawang regency the most vulnerable areas occur flooding in rice fields. The spatial accuracy of the flood hazard area in this study was 87%.
Grady, S.J.; Weaver, M.F.
1988-01-01
The stratified-drift aquifers that underlie 7.9 sq mi of the Potatuck and 12.7 sq mi of the Pomperaug River valley, CT, consist primarily of sand and gravel deposits up to 150 ft thick. Average horizontal hydraulic conductivity of the stratified drift ranges from 20 to 170 ft/day, and groundwater flows through the aquifers at an average rate of 2 to 3 ft/day. Land use in the study areas is changing from primarily undeveloped or agricultural lands to expanding residential, commercial, and light-industrial uses. Water quality data for 1923-82, that include 127 partial chemical analyses of groundwater samples from 38 wells in the two aquifers, were augmented by sampling during 1985 from 21 new stainless-steel wells for selected major inorganic constituents, trace elements, and organic chemicals. Nonparametric statistical procedures were used to compare the water quality data from four land use areas, for the two sampling periods, and between the two aquifers. Human activities associated with agricultural, residential, and industrial/commercial land uses have affected the quality of water in the stratified-drift aquifers underlying these land use areas. Statistical comparisons of water quality data between land use areas show significant differences, with the apparent relations between land use and groundwater being: (1) Median concentrations of most groundwater constituents are smallest in undeveloped areas; (2) Groundwater in agricultural areas has the largest median sulfate and total ammonia plus organic nitrogen concentrations. Agricultural areas are also characterized by groundwater with significantly greater median specific conductance, noncarbonate hardness, carbon dioxide, and magnesium concentrations relative to undeveloped areas; (3) Median concentrations of most major inorganic constituents, excluding potassium, sulfate, and total ammonia plus organic nitrogen, are greater in groundwater in residential areas than in undeveloped and agricultural areas. (4) Groundwater in industrial/commercial areas has the greatest median specific conductance, pH, carbon dioxide, calcium, magnesium, chloride bicarbonate, dissolved solids, boron, and strontium concentrations. (Author 's abstract)
Collaborative development of land use change scenarios for analysing hydro-meteorological risk
NASA Astrophysics Data System (ADS)
Malek, Žiga; Glade, Thomas
2015-04-01
Simulating future land use changes remains a difficult task, due to uncontrollable and uncertain driving forces of change. Scenario development emerged as a tool to address these limitations. Scenarios offer the exploration of possible futures and environmental consequences, and enable the analysis of possible decisions. Therefore, there is increasing interest of both decision makers and researchers to apply scenarios when studying future land use changes and their consequences. The uncertainties related to generating land use change scenarios are among others defined by the accuracy of data, identification and quantification of driving forces, and the relation between expected future changes and the corresponding spatial pattern. To address the issue of data and intangible driving forces, several studies have applied collaborative, participatory techniques when developing future scenarios. The involvement of stakeholders can lead to incorporating a broader spectrum of professional values and experience. Moreover, stakeholders can help to provide missing data, improve detail, uncover mistakes, and offer alternatives. Thus, collaborative scenarios can be considered as more reliable and relevant. Collaborative scenario development has been applied to study a variety of issues in environmental sciences on different spatial and temporal scales. Still, these participatory approaches are rarely spatially explicit, making them difficult to apply when analysing changes to hydro-meteorological risk on a local scale. Spatial explicitness is needed to identify potentially critical areas of land use change, leading to locations where the risk might increase. In order to allocate collaboratively developed scenarios of land change, we combined participatory modeling with geosimulation in a multi-step scenario generation framework. We propose a framework able to develop scenarios that are plausible, can overcome data inaccessibility, address intangible and external driving forces of land change, and is transferable to other case study areas with different land use change processes and consequences. The framework starts with the involvement of stakeholders where driving forces of land use change are being studied by performing interviews and group discussions. In order to bridge the gap between qualitative methods and conventional geospatial techniques, we applied cognitive mapping and the Drivers-Pressures-State-Impact and Response framework (DPSIR) to develop a conceptual land use change model. This was later transformed into a spatially explicit land use change model based on remote sensing data, GIS and cellular automata spatial allocation. The methodology was developed and applied in a study area in the eastern Italian Alps, where the uncertainties regarding future urban expansion are high. Later, we transferred it to a study area in the Romanian Carpathians, where the identified prevailing process of land use change is deforestation. Both areas are subject to hydro-meteorological risk, posing a need for the analysis of the possible future spatial pattern and locations of land use change. The resulting scenarios enabled us, to point at identifying hot-spots of land use change, serving as a possible input for a risk assessment.
NASA Astrophysics Data System (ADS)
Singh, R. B.; Kumar, Dilip
2012-06-01
In India, land resources have reached a critical stage due to the rapidly growing population. This challenge requires an integrated approach toward harnessing land resources, while taking into account the vulnerable environmental conditions. Remote sensing and Geographical Information System (GIS) based technologies may be applied to an area in order to generate a sustainable development plan that is optimally suited to the terrain and to the productive potential of the local resources. The present study area is a part of the middle Ganga plain, known as Son-Karamnasa interfluve, in India. Alternative land use systems and the integration of livestock enterprises with the agricultural system have been suggested for land resources management. The objective of this paper is to prepare a land resource development plan in order to increase the productivity of land for sustainable development. The present study will contribute necessary input for policy makers to improve the socio-economic and environmental conditions of the region.
Monitoring Urban Land Cover/land Use Change in Algiers City Using Landsat Images (1987-2016)
NASA Astrophysics Data System (ADS)
Bouchachi, B.; Zhong, Y.
2017-09-01
Monitoring the Urban Land Cover/Land Use change detection is important as one of the main driving forces of environmental change because Urbanization is the biggest changes in form of Land, resulting in a decrease in cultivated areas. Using remote sensing ability to solve land resources problems. The purpose of this research is to map the urban areas at different times to monitor and predict possible urban changes, were studied the annual growth urban land during the last 29 years in Algiers City. Improving the productiveness of long-term training in land mapping, were have developed an approach by the following steps: 1) pre-processing for improvement of image characteristics; 2) extract training sample candidates based on the developed methods; and 3) Derive maps and analyzed of Algiers City on an annual basis from 1987 to 2016 using a Supervised Classifier Support Vector Machine (SVMs). Our result shows that the strategy of urban land followed in the region of Algiers City, developed areas mostly were extended to East, West, and South of Central Regions. The urban growth rate is linked with National Office of Statistics data. Future studies are required to understand the impact of urban rapid lands on social, economy and environmental sustainability, it will also close the gap in data of urbanism available, especially on the lack of reliable data, environmental and urban planning for each municipality in Algiers, develop experimental models to predict future land changes with statistically significant confidence.
Hu, Dan; Yang, Guodong; Wu, Qiong; Li, Hongqing; Liu, Xusheng; Niu, Xuefeng; Wang, Zhiheng; Wang, Qiong
2008-09-03
Remote sensing and GIS have been widely employed to study temporal and spatial urban land use changes in southern and southeastern China. However, few studies have been conducted in northeastern regions. This study analyzed land use change and spatial patterns of urban expansion in the metropolitan area of Jilin City, located on the extension of Changbai Mountain, based on aerial photos from 1989 and 2005 Spot images. The results indicated that urban land and transportation land increased dramatically (by 94.04% and 211.20%, respectively); isolated industrial and mining land decreased moderately (by 29.54%); rural residential land increased moderately (by 26.48%); dry land and paddy fields increased slightly (by 15.68% and 11.78%, respectively); forest and orchards decreased slightly (by 5.27% and 4.61%, respectively); grasslands and unused land decreased dramatically (by 99.12% and 86.04%, respectively). Sloped dry land (more than 4 degrees) was mainly distributed on the land below 10 degrees with an east, southeastern and south sunny direction aspect, and most sloped dry land transformed to forest was located on an east aspect lower than 12 degrees, while forest changed to dry land were mainly distributed on east and south aspects lower than 10 degrees. A spatial dependency analysis of land use change showed that the increased urban land was a logarithmic function of distance to the Songhua River. This study also provided some data with spatial details about the uneven land development in the upstream areas of Songhua River basin.
NASA Technical Reports Server (NTRS)
Fitzpatrick, K. A.; Lins, H. F., Jr.
1972-01-01
The author has identified the following significant results. A preliminary study on the capabilities of ERTS data in land use mapping and change detection was carried out in the area around Frederick County, Maryland, which lies in the northwest corner of the Central Atlantic Regional Ecological Test Site. The investigation has revealed that Level 1 (of the Anderson classification system) land use mapping can be performed and that, in some cases, land undergoing change can be identified. Results to date suggest that more work should be done in areas where land use changes are known to exist, in order to establish some form of base for recognizing the spectral signature indicative of change areas.
Satellites monitor Atlanta regional development
Todd, William J.; Blackmon, C.C.; Rudasill, R.G.
1979-01-01
Since the adoption of a Regional Development Plan in 1975, the Atlanta Regional Commission has investigated methods for monitoring regional development patterns in a periodic, efficient manner. A promising approach appears to be the use of Landsat satellite data. In cooperation with the Earth Resources Observation Systems (EROS) Data Center, the commission used machine processing of digital temporal overlays of Landsat data collected in 1972, 1974 and 1976 to detect land use and land cover changes in the Atlanta metropolitan area. Results of the analysis revealed the conversion of forested and open space areas to residential, commercial and industrial land use in the urban-rural fringe zone from 1972 to 1974 and from 1974 to 1976. The study indicated that a land use and land cover change-detection program may be used to revise small-area forecasts of land use, population and employment made by planning models.
Universal scaling of the distribution of land in urban areas
NASA Astrophysics Data System (ADS)
Riascos, A. P.
2017-09-01
In this work, we explore the spatial structure of built zones and green areas in diverse western cities by analyzing the probability distribution of areas and a coefficient that characterize their respective shapes. From the analysis of diverse datasets describing land lots in urban areas, we found that the distribution of built-up areas and natural zones in cities obey inverse power laws with a similar scaling for the cities explored. On the other hand, by studying the distribution of shapes of lots in urban regions, we are able to detect global differences in the spatial structure of the distribution of land. Our findings introduce information about spatial patterns that emerge in the structure of urban settlements; this knowledge is useful for the understanding of urban growth, to improve existing models of cities, in the context of sustainability, in studies about human mobility in urban areas, among other applications.
Land use change on climate parameters at Samin subwatershed in Central Java, Indonesia
NASA Astrophysics Data System (ADS)
Sutarno; Komariah; Gunawan, T.; Purnomo, D.; Suntoro
2018-03-01
The Samin sub-watershed (SSW) is one of the critical watersheds in Indonesia which need conservation. The identification of land-use/land-cover changes (LUCC) can help in deciding the priority of conservation areas as well as limiting the widespread of critical lands in the watershed, which can contribute to climate change. The purpose of this study is to determine the impact of land use change on climate parameters, i.e. precipitation, air temperature and relative air humidity. The method is by using the descriptive explorative. The study employed Indonesian topographic map and Landsat's imageries of 1996, 2001, 2006, 2011 and 2016. The climate data from 1996 to 2016 were obtained from surroundings weather station. Data were analyzed using Geographic Information System (GIS) and SPSS. The results showed that land use was dominated by rice fields 22,552.83 ha (69.20%), and converted to non-agricultural lands 165.05 hectares/year for the last 20 years. Forest area decreased 65.8 ha/year, and settlement (housing and industrial estates) increased 253.87 ha/year (11.07%). The statistical analysis resulted in a negative relationship between forest area and air temperature and, but no significant correlation with rainfall.
NASA Astrophysics Data System (ADS)
Alexakis, D. D.; Gryllakis, M. G.; Koutroulis, A. G.; Agapiou, A.; Themistocleous, K.; Tsanis, I. K.; Michaelides, S.; Pashiardis, S.; Demetriou, C.; Aristeidou, K.; Retalis, A.; Tymvios, F.; Hadjimitsis, D. G.
2013-09-01
Flooding is one of the most common natural disasters worldwide, leading to economic losses and loss of human lives. This paper highlights the hydrological effects of multi-temporal land use changes in flood hazard within the Yialias catchment area, located in central Cyprus. Calibrated hydrological and hydraulic models were used to describe the hydrological processes and internal basin dynamics of the three major sub-basins, in order to study the diachronic effects of land use changes. For the implementation of the hydrological model, land use, soil and hydrometeorological data were incorporated. The climatic and stream flow data were derived from rain and flow gauge stations located in the wider area of the watershed basin. In addition, the land use and soil data were extracted after the application of object oriented nearest neighbor algorithms of ASTER satellite images. Subsequently, the CA-Markov chain analysis was implemented to predict the 2020 Land use/Land cover (LULC) map and incorporate it to the hydrological impact assessment. The results denoted the increase of runoff in the catchment area due to the recorded extensive urban sprawl phenomenon of the last decade.
NASA Astrophysics Data System (ADS)
Alexakis, D. D.; Grillakis, M. G.; Koutroulis, A. G.; Agapiou, A.; Themistocleous, K.; Tsanis, I. K.; Michaelides, S.; Pashiardis, S.; Demetriou, C.; Aristeidou, K.; Retalis, A.; Tymvios, F.; Hadjimitsis, D. G.
2014-02-01
Floods are one of the most common natural disasters worldwide, leading to economic losses and loss of human lives. This paper highlights the hydrological effects of multi-temporal land use changes in flood hazard within the Yialias catchment area, located in central Cyprus. A calibrated hydrological model was firstly developed to describe the hydrological processes and internal basin dynamics of the three major subbasins, in order to study the diachronic effects of land use changes. For the implementation of the hydrological model, land use, soil and hydrometeorological data were incorporated. The climatic and stream flow data were derived from rain and flow gauge stations located in the wider area of the watershed basin. In addition, the land use and soil data were extracted after the application of object-oriented nearest neighbor algorithms of ASTER satellite images. Subsequently, the cellular automata (CA)-Markov chain analysis was implemented to predict the 2020 land use/land cover (LULC) map and incorporate it to the hydrological impact assessment. The results denoted the increase of runoff in the catchment area due to the recorded extensive urban sprawl phenomenon of the last decade.
NASA Astrophysics Data System (ADS)
Permata, Anggi; Juniansah, Anwar; Nurcahyati, Eka; Dimas Afrizal, Mousafi; Adnan Shafry Untoro, Muhammad; Arifatha, Na'ima; Ramadhani Yudha Adiwijaya, Raden; Farda, Nur Mohammad
2016-11-01
Landslide is an unpredictable natural disaster which commonly happens in highslope area. Aerial photography in small format is one of acquisition method that can reach and obtain high resolution spatial data faster than other methods, and provide data such as orthomosaic and Digital Surface Model (DSM). The study area contained landslide area in Clapar, Madukara District of Banjarnegara. Aerial photographs of landslide area provided advantage in objects visibility. Object's characters such as shape, size, and texture were clearly seen, therefore GEOBIA (Geography Object Based Image Analysis) was compatible as method for classifying land cover in study area. Dissimilar with PPA (PerPixel Analyst) method that used spectral information as base object detection, GEOBIA could use spatial elements as classification basis to establish a land cover map with better accuracy. GEOBIA method used classification hierarchy to divide post disaster land cover into three main objects: vegetation, landslide/soil, and building. Those three were required to obtain more detailed information that can be used in estimating loss caused by landslide and establishing land cover map in landslide area. Estimating loss in landslide area related to damage in Salak (Salacca zalacca) plantations. This estimation towards quantity of Salak tree that were drifted away by landslide was calculated in assumption that every tree damaged by landslide had same age and production class with other tree that weren't damaged. Loss calculation was done by approximating quantity of damaged trees in landslide area with data of trees around area that were acquired from GEOBIA classification method.
Liu, Jin-Yong; Kong, Fan-Hua; Yin, Hai-Wei; Yan, Wei-Jiao; Sun, Chang-Feng; Xu, Feng
2013-05-01
Based on the GIS software platform, referring to the China 'Terrestrial ecosystem services per unit area value', and by using transition matrix, Costanza evaluation formula, and sensitivity analysis, this paper studied the change characteristics of land use and ecosystem services value in Ji' nan City in 1989-2009. During the study period, the built-up area in the City increased by 99.65 km2, while agriculture land and green space reduced by 103.21 km2, 90.4% of which was taken by the built-up land. The total ecosystem services value decreased from 256.22 x 10(6) yento 214.16 x 10(6) yen, with a decrement of 42.06 x 10(6) yen, mainly due to the decrease in the areas of agriculture land and green space. For the sustainable development of the population, resources, and environment in Ji'nan City, future urban planning should pay more attention on the natural resources protection, reasonable planning of land use structure, and maintenance of ecosystem stability and balance.
Monitoring and Evaluation of Cultivated Land Irrigation Guarantee Capability with Remote Sensing
NASA Astrophysics Data System (ADS)
Zhang, C., Sr.; Huang, J.; Li, L.; Wang, H.; Zhu, D.
2015-12-01
Abstract: Cultivated Land Quality Grade monitoring and evaluation is an important way to improve the land production capability and ensure the country food safety. Irrigation guarantee capability is one of important aspects in the cultivated land quality monitoring and evaluation. In the current cultivated land quality monitoring processing based on field survey, the irrigation rate need much human resources investment in long investigation process. This study choses Beijing-Tianjin-Hebei as study region, taking the 1 km × 1 km grid size of cultivated land unit with a winter wheat-summer maize double cropping system as study object. A new irrigation capacity evaluation index based on the ratio of the annual irrigation requirement retrieved from MODIS data and the actual quantity of irrigation was proposed. With the years of monitoring results the irrigation guarantee capability of study area was evaluated comprehensively. The change trend of the irrigation guarantee capability index (IGCI) with the agricultural drought disaster area in rural statistical yearbook of Beijing-Tianjin-Hebei area was generally consistent. The average of IGCI value, the probability of irrigation-guaranteed year and the weighted average which controlled by the irrigation demand index were used and compared in this paper. The experiment results indicate that the classification result from the present method was close to that from irrigation probability in the gradation on agriculture land quality in 2012, with overlap of 73% similar units. The method of monitoring and evaluation of cultivated land IGCI proposed in this paper has a potential in cultivated land quality level monitoring and evaluation in China. Key words: remote sensing, evapotranspiration, MODIS cultivated land quality, irrigation guarantee capability Authors: Chao Zhang, Jianxi Huang, Li Li, Hongshuo Wang, Dehai Zhu China Agricultural University zhangchaobj@gmail.com
NASA Astrophysics Data System (ADS)
Gazi, M. Y.; Rahman, M.; Islam, M. A.; Kabir, S. M. M.
2016-12-01
Techniques of remote sensing and geographic information systems (GIS) have been applied for the analysis and interpretation of the Geo-environmental assessment to Sitakund area, located within the administrative boundaries of the Chittagong district, Bangladesh. Landsat ETM+ image with a ground resolution of 30-meter and Digital Elevation Model (DEM) has been adopted in this study in order to produce a set of thematic maps. The diversity of the terrain characteristics had a major role in the diversity of recipes and types of soils that are based on the geological structure, also helped to diversity in land cover and use in the region. The geological situation has affected on the general landscape of the study area. The problem of research lies in the possibility of the estimating the techniques of remote sensing and geographic information systems in the evaluation of the natural data for the study area spatially as well as determine the appropriate in grades for the appearance of the ground and in line with the reality of the region. Software for remote sensing and geographic information systems were adopted in the analysis, classification and interpretation of the prepared thematic maps in order to get to the building of the Geo-environmental assessment map of the study area. Low risk geo-environmental land mostly covered area of Quaternary deposits especially with area of slope wash deposits carried by streams. Medium and high risk geo-environmental land distributed with area of other formation with the study area, mostly the high risk shows area of folds and faults. The study has assessed the suitability of lands for agricultural purpose and settlements in less vulnerable areas within this region.
Wang, Guangxing; Murphy, Dana; Oller, Adam; Howard, Heidi R; Anderson, Alan B; Rijal, Santosh; Myers, Natalie R; Woodford, Philip
2014-07-01
The effects of military training activities on the land condition of Army installations vary spatially and temporally. Training activities observably degrade land condition while also increasing biodiversity and stabilizing ecosystems. Moreover, other anthropogenic activities regularly occur on military lands such as prescribed burns and agricultural haying-adding to the dynamics of land condition. Thus, spatially and temporally assessing the impacts of military training, prescribed burning, agricultural haying, and their interactions is critical to the management of military lands. In this study, the spatial distributions and patterns of military training-induced disturbance frequency were derived using plot observation and point observation-based method, at Fort Riley, Kansas from 1989 to 2001. Moreover, spatial and variance analysis of cumulative impacts due to military training, burning, haying, and their interactions on the land condition of Fort Riley were conducted. The results showed that: (1) low disturbance intensity dominated the majority of the study area with exception of concentrated training within centralized areas; (2) high and low values of disturbance frequency were spatially clustered and had spatial patterns that differed significantly from a random distribution; and (3) interactions between prescribed burning and agricultural haying were not significant in terms of either soil erosion or disturbance intensity although their means and variances differed significantly between the burned and non-burned areas and between the hayed and non-hayed areas.
NASA Astrophysics Data System (ADS)
Gómez-Nieto, Israel; Martín, María del Pilar; Salas, Francisco Javier; Gallardo, Marta
2013-04-01
Understanding the interaction between natural and socio-economic factors that determine fire regime is essential to make accurate projections and impact assessments. However, this requires having accurate historical, systematic, homogeneous and spatially explicit information on fire occurrence. Fire databases usually have serious limitations in this regard; therefore other sources of information, such as remote sensing, have emerged as alternatives to generate optimal fire maps on various spatial and temporal scales. Several national and international projects work in order to generate information to study the factors that determine the current fire regime and its future evolution. This work is included in the framework of the project "Forest fires under climate, social and economic Changes in Europe, the Mediterranean and other fire-affected areas of the World" (FUME http://www.fumeproject.eu), which aims to study the changes and factors related to fire regimes through time to determine the potential impacts on vegetation in Mediterranean regions and concrete steps to address future risk scenarios. We analyzed the changes in the fire regime in Madrid region (Spain) in the past three decades (1984-2010) and its relation to land use changes. We identified and mapped fires that have occurred in the region during those years using Landsat satellite images by combining digital techniques and visual analysis. The results show a clear cyclical behaviour of the fire, with years of high incidence (as 1985, 2000 and 2003, highlighted by the number of fires and the area concerned, over 2000 ha) followed by another with a clear occurrence decrease. At the same time, we analyzed the land use changes that have occurred in Madrid region between the early 80s and mid-2000s using as reference the CORINE Land-cover maps (1990, 2000 and 2006) and the Vegetation and Land Use map of the Community of Madrid, 1982. We studied the relationship between fire regimes and observed land-use and land-cover changes in the periods analyzed, it was determined that between years 1984 and 2006 most of the burned area remained pre-fire cover type (above 80% of the area). However, in areas that experienced change, the most important transitions were recorded in wooded areas, especially conifers, which became shrubs or sparsely vegetated areas, followed by non-irrigated crops, which were replaced by grasslands or industrial areas, and sparse vegetation which changed to shrubs. Finally, the analysis of land-use changes over burned areas situated shrubland as the most favored type of cover, either as a result of a vegetative degradation process after intense burning of wooded areas, especially conifers, or as stage of natural increase in areas previously covered by sparsely vegetation.
Effects of satellite image spatial aggregation and resolution on estimates of forest land area
M.D. Nelson; R.E. McRoberts; G.R. Holden; M.E. Bauer
2009-01-01
Satellite imagery is being used increasingly in association with national forest inventories (NFIs) to produce maps and enhance estimates of forest attributes. We simulated several image spatial resolutions within sparsely and heavily forested study areas to assess resolution effects on estimates of forest land area, independent of other sensor characteristics. We...
Conrad, James E.; Hill, Randall H.; Jachens, Robert C.; Neubert, John T.
1990-01-01
At the request of the U.S. Bureau of Land Management, approximately 19,300 acres of the Black Mountains North Wilderness Study Area (AZ-020-009) and 23,310 acres of the Burns Spring Wilderness Study Area (AZ-02D-010) were evaluated for mineral resources and mineral resource potential. In this report, the area studied is referred to, collectively or individually, as the 'wilderness study area' or simply 'the study area'; any reference to the Black Mountains North or Burns Spring Wilderness Study Areas refers only to that part of the wilderness study area for which a mineral survey was requested by the U.S. Bureau of Land Management. The study area is located in western Arizona, about 30 mi northwest of Kingman. There are no identified resources in the study area. An area surrounding the Portland mine and including the southern part of the Black Mountains North Wilderness Study Area and the extreme northwestern part of the Burns Spring Wilderness Study Area has high resource potential for gold and moderate resource potential for silver, lead, and mercury. The area surrounding this and including much of the northern part of the Burns Spring Wilderness Study Area has moderate potential for gold, silver, and lead. The northeastern corner of the Black Mountains North Wilderness Study Area has moderate potential for gold and low potential for silver, copper, and molybdenum resources. The central part, including the narrow strip of land just west of the central part, of the Black Mountains North Wilderness Study Area and the southern and extreme eastern parts of the Burns Spring Wilderness Study Area have low resource potential for gold. The central and southern parts of the Black Mountains North Wilderness Study Area and all but the southwestern part of the Burns Spring Wilderness Study Area have moderate resource potential for perlite. Moderate resource potential for zeolites is assigned to a large area around the Portland mine that includes parts of both study areas, to a narrow strip of land just west of the central part of the Black Mountains North Wilderness Study Area, and to all but the southwest corner of the Burns Spring Wilderness Study Area. There is no potential for oil and gas in either study area. Sand and gravel are present in both study areas, but abundant quantities of these resources are available closer to existing markets.
Development of 2010 national land cover database for the Nepal.
Uddin, Kabir; Shrestha, Him Lal; Murthy, M S R; Bajracharya, Birendra; Shrestha, Basanta; Gilani, Hammad; Pradhan, Sudip; Dangol, Bikash
2015-01-15
Land cover and its change analysis across the Hindu Kush Himalayan (HKH) region is realized as an urgent need to support diverse issues of environmental conservation. This study presents the first and most complete national land cover database of Nepal prepared using public domain Landsat TM data of 2010 and replicable methodology. The study estimated that 39.1% of Nepal is covered by forests and 29.83% by agriculture. Patch and edge forests constituting 23.4% of national forest cover revealed proximate biotic interferences over the forests. Core forests constituted 79.3% of forests of Protected areas where as 63% of area was under core forests in the outside protected area. Physiographic regions wise forest fragmentation analysis revealed specific conservation requirements for productive hill and mid mountain regions. Comparative analysis with Landsat TM based global land cover product showed difference of the order of 30-60% among different land cover classes stressing the need for significant improvements for national level adoption. The online web based land cover validation tool is developed for continual improvement of land cover product. The potential use of the data set for national and regional level sustainable land use planning strategies and meeting several global commitments also highlighted. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Afrasinei, Gabriela M.; Melis, Maria T.; Buttau, Cristina; Bradd, John M.; Arras, Claudio; Ghiglieri, Giorgio
2015-10-01
In the Wadi Biskra arid and semi-arid area, sustainable development is limited by land degradation, such as secondary salinization of soils. As an important high quality date production region of Algeria, it needs continuous monitoring of desertification indicators, since the bio-physical setting defines it as highly exposed to climate-related risks. For this particular study, for which little ground truth data was possible to acquire, we set up an assessment of appropriate methods for the identification and change detection of salt-affected areas, involving image interpretation and processing techniques employing Landsat imagery. After a first phase consisting of a visual interpretation study of the land cover types, two automated classification approaches were proposed and applied for this specific study: decision tree classification and principal components analysis (PCA) of Knepper ratios. Five of the indices employed in the Decision Tree construction were set up within the current study, among which we propose a salinity index (SMI) for the extraction of highly saline areas. The results of the 1984 to 2014 diachronic analysis of salt - affected areas variation were supported by the interpreted land cover map for accuracy estimation. Connecting the outputs with auxiliary bio-physical and socio-economic data, comprehensive results are discussed, which were indispensable for the understanding of land degradation dynamics and vulnerability to desertification. One aspect that emerged was the fact that the expansion of agricultural land in the last three decades may have led and continue to contribute to a secondary salinization of soils. This study is part of the WADIS-MAR Demonstration Project, funded by the European Commission through the Sustainable Water Integrated Management (SWIM) Program (www.wadismar.eu).
Xie, Hualin; Liu, Zhifei; Wang, Peng; Liu, Guiying; Lu, Fucai
2013-01-01
Ecological land is one of the key resources and conditions for the survival of humans because it can provide ecosystem services and is particularly important to public health and safety. It is extremely valuable for effective ecological management to explore the evolution mechanisms of ecological land. Based on spatial statistical analyses, we explored the spatial disparities and primary potential drivers of ecological land change in the Poyang Lake Eco-economic Zone of China. The results demonstrated that the global Moran’s I value is 0.1646 during the 1990 to 2005 time period and indicated significant positive spatial correlation (p < 0.05). The results also imply that the clustering trend of ecological land changes weakened in the study area. Some potential driving forces were identified by applying the spatial autoregressive model in this study. The results demonstrated that the higher economic development level and industrialization rate were the main drivers for the faster change of ecological land in the study area. This study also tested the superiority of the spatial autoregressive model to study the mechanisms of ecological land change by comparing it with the traditional linear regressive model. PMID:24384778
Studied the geomorphogy, soil and water resources in south Egypt using geoinformation technology
NASA Astrophysics Data System (ADS)
Fayed, Abdalla; Abdel Aziz, Belal
2010-05-01
The mean objective of this study was to study the geomorphology, soil and water resources in the studied area using remote sensing techniques and GIS. The studied located in between latitudes 24o 20' and 24o 40' N and longitudes 32o 45' and 33o 40' E in Kom Ombo , Aswan governorate. The climatic situation of the studied area is characterized by a long hot dry summer, a short mild winter with little rainfall, high evaporation and low relative humidity. Based on the interpretation of ETM remote data, GIS and 3Dview the following natural resources were detected. The geomorpholical unites in the studied were Nile valley and Kom Ombo plain. Soil types were clay soil is occurred in the old cultivated land. But it is medium to coarse grained fluvial sand with gravel in the reclaimed areas. The land use and land cover for the studied area were old cultivated land, urban area and channels. Three main groundwater aquifers were confirmed, these are the Nubian sandstones aquifer, the Eocene fissured limestone aquifer and the Quaternary alluvial aquifer. Kom Ombo is the ancient site of Ombos, which is from the ancient Egyptian word ‘nubt', or ‘City of Gold'. In ancient Egypt, the city was important to the caravan routes from Nubia and various gold mines. Keywords: Remote sensing, GIS, 3D model, Natural Resources Kom Ombo
Analyzing vegetation dynamics of land systems with satellite data
Eidenshink, Jeffery C.; Haas, Robert H.
1992-01-01
Large area assessment of vegetation conditions is a major requirement for understanding the impact of weather on food, fiber, and forage production. The distribution of vegetation is largely associated with climate, terrain characteristics, and human activity. The interpretation of vegetation dynamics from satellite data can be improved by stratifying the land surface into ecoregions. The Soil Conservation Service, U.S. Department of Agriculture, has developed a system for mapping major land resource areas (MLRA) that groups land areas in the United States on the basis of climate, physiography, land use, and land cover characteristics.In 1989, the U.S. Geological Survey used National Oceanic and Atmospheric Administration weather satellite data to conduct a biweekly assessment of vegetation conditions in 17 western states. Advanced Very High Resolution Radiometer data were acquired daily, and were geographically registered, and the normalized difference vegetation index (NDVI) was computed for the Western United States during the 1989 growing season. Fifteen biweekly NDVI data sets were used to evaluate MLRA's as an appropriate stratification for monitoring and interpreting vegetation conditions in the study area.The results demonstrate the feasibility of using MLRA's to stratify areas for monitoring phenological development and vegetation condition assessment within the growing season. Assessments of the NDVI at biweekly intervals are adequate for monitoring seasonal growth patterns on MLRA's where rangelands, forests, or cultivated agriculture are the primary resource type. Descriptive statistics are indicators of the uniformity or diversity of land use and land cover within an MLRA. Growing season profiles of the NDVI are characterized by the seasonal effects of climate on various land use and land cover classes.
NASA Astrophysics Data System (ADS)
Petropoulos, George P.; Kontoes, Charalambos C.; Keramitsoglou, Iphigenia
2012-08-01
In this study, the potential of EO-1 Advanced Land Imager (ALI) radiometer for land cover and especially burnt area mapping from a single image analysis is investigated. Co-orbital imagery from the Landsat Thematic Mapper (TM) was also utilised for comparison purposes. Both images were acquired shortly after the suppression of a fire occurred during the summer of 2009 North-East of Athens, the capital of Greece. The Maximum Likelihood (ML), Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs) classifiers were parameterised and subsequently applied to the acquired satellite datasets. Evaluation of the land use/cover mapping accuracy was based on the error matrix statistics. Also, the McNemar test was used to evaluate the statistical significance of the differences between the approaches tested. Derived burnt area estimates were validated against the operationally deployed Services and Applications For Emergency Response (SAFER) Burnt Scar Mapping service. All classifiers applied to either ALI or TM imagery proved flexible enough to map land cover and also to extract the burnt area from other land surface types. The highest total classification accuracy and burnt area detection capability was returned from the application of SVMs to ALI data. This was due to the SVMs ability to identify an optimal separating hyperplane for best classes' separation that was able to better utilise ALI's advanced technological characteristics in comparison to those of TM sensor. This study is to our knowledge the first of its kind, effectively demonstrating the benefits of the combined application of SVMs to ALI data further implying that ALI technology may prove highly valuable in mapping burnt areas and land use/cover if it is incorporated into the development of Landsat 8 mission, planned to be launched in the coming years.
NASA Astrophysics Data System (ADS)
Shaffer, S. R.
2017-12-01
Coupled land-atmosphere interactions in urban settings modeled with the Weather Research and Forecasting model (WRF) derive urban land cover from 30-meter resolution National Land Cover Database (NLCD) products. However, within urban areas, the categorical NLCD lose information of non-urban classifications whenever the impervious cover within a grid cell is above 0%, and the current method to determine urban area over estimates the actual area, leading to a bias of urban contribution. To address this bias of urban contribution an investigation is conducted by employing a 1-meter resolution land cover data product derived from the National Agricultural Imagery Program (NAIP) dataset. Scenes during 2010 for the Central Arizona Phoenix Long Term Ecological Research (CAP-LTER) study area, roughly a 120 km x 100 km area containing metropolitan Phoenix, are adapted for use within WRF to determine the areal fraction and urban fraction of each WRF urban class. A method is shown for converting these NAIP data into classes corresponding to NLCD urban classes, and is evaluated in comparison with current WRF implementation using NLCD. Results are shown for comparisons of land cover products at the level of input data and aggregated to model resolution (1 km). The sensitivity of WRF short-term summertime pre-monsoon predictions within metropolitan Phoenix to different input data products of land cover, to method of aggregating these data to model grid scale (1 km), for the default and derived parameter values are examined with the Noah mosaic land surface scheme adapted for using these data. Issues with adapting these non-urban NAIP classes for use in the mosaic approach will also be discussed.
Consequences of land use and land cover change
Slonecker, E. Terrence; Barnes, Christopher; Karstensen, Krista; Milheim, Lesley E.; Roig-Silva, Coral M.
2013-01-01
The U.S. Geological Survey (USGS) Climate and Land Use Change Mission Area is one of seven USGS mission areas that focuses on making substantial scientific "...contributions to understanding how Earth systems interact, respond to, and cause global change". Using satellite and other remotely sensed data, USGS scientists monitor patterns of land cover change over space and time at regional, national, and global scales. These data are analyzed to understand the causes and consequences of changing land cover, such as economic impacts, effects on water quality and availability, the spread of invasive species, habitats and biodiversity, carbon fluctuations, and climate variability. USGS scientists are among the leaders in the study of land cover, which is a term that generally refers to the vegetation and artificial structures that cover the land surface. Examples of land cover include forests, grasslands, wetlands, water, crops, and buildings. Land use involves human activities that take place on the land. For example, "grass" is a land cover, whereas pasture and recreational parks are land uses that produce a cover of grass.
Modeling Land Use/Cover Changes in an African Rural Landscape
NASA Astrophysics Data System (ADS)
Kamusoko, C.; Aniya, M.
2006-12-01
Land use/cover changes are analyzed in the Bindura district of Zimbabwe, Africa through the integration of data from a time series of Landsat imagery (1973, 1989 and 2000), a household survey and GIS coverages. We employed a hybrid supervised/unsupervised classification approach to generate land use/cover maps from which landscape metrics were calculated. Population and other household variables were derived from a sample of surveyed villages, while road accessibility and slope were obtained from topographic maps and digital elevation model, respectively. Markov-cellular automata modeling approach that incorporates Markov chain analysis, cellular automata and multi-criteria evaluation (MCE) / multi-objective allocation (MOLA) procedures was used to simulate land use/cover changes. A GIS-based MCE technique computed transition potential maps, whereas transition areas were derived from the 1973-2000 land use/cover maps using the Markov chain analysis. A 5 x 5 cellular automata filter was used to develop a spatially explicit contiguity- weighting factor to change the cells based on its previous state and those of its neighbors, while MOLA resolved land use/cover class allocation conflicts. The kappa index of agreement was used for model validation. Observed trends in land use/cover changes indicate that deforestation and the encroachment of cultivation in woodland areas is a continuous trend in the study area. This suggests that economic activities driven by agricultural expansion were the main causes of landscape fragmentation, leading to landscape degradation. Rigorous calibration of transition potential maps done by a MCE algorithm and Markovian transition probabilities produced accurate inputs for the simulation of land use/cover changes. Overall standard kappa index of agreement ranged from 0.73 to 0.83, which is sufficient for simulating land use/cover changes in the study area. Land use/cover simulations under the 1989 and 2000 scenario indicated further landscape degradation in the rural areas of the Bindura district. Keywords: Zimbabwe, land use/cover changes, landscape fragmentation, GIS, land use/cover change modeling, multi-criteria evaluation/multi-objective allocation procedures, Markov-cellular automata
National Soil Information System in Turkey
NASA Astrophysics Data System (ADS)
Emrah Erdogan, Hakki; Sahin, Mehmet; Sahin, Yuksel
2013-04-01
Land consolidation (LC) represents complexity if management, legal, economic and technical procedures realized in order to adjust the land structure according to actual human preferences and needs. It includes changes in ownership rights to land and other real estate property, exchange of parcels among owners, changes in parcel borders, parcel size and shape, joining and dividing of parcels, changes in land use, construction works as roads, bridges, water changes etc.. Since the subject of LC is agricultural lands, the quality of consolidation depends on the quality of soil data. General Directorate of Agrarian Reform (GDAR) is the responsible institution on land consolidation whole of Turkey. Under GDAR, National Soil Information System (NSIS) has been build up with base soil data in relevant scale (1:5000). NSIS contain detailed information on soil chemical and physical properties, current land use, parent material, land capability class, Storie Index Values. SI were used on land consolidation, land use planning and farm development services. LCC was used for land distribution, rental land; define of village settlement, consolidation, expropriation, reconstruction, reclamation, non-agricultural usage. LCC were also specified to subclasses in four different limited factors as i) flow and erosion risk ii) requirement of drainage and soil moisture iii) Limits of soil tillage and root (shallow soils, low water retention capacity, stony, salty .etc) iv) climatic limits. In this study, digital soil survey and mapping project located in Yumurtalik, Adana is presented as an example of NSIS data structure. The project cover an area of 45709 ha that include crop lands as an area of 28528 ha and other land use (urban, roads..etc) as an area of 17181 ha. Soil profiles were described in 45 different points and totally 1279 soil samples were collected in field study and the check bore hole were made in 3170 points.
Methodology for Assessing the Size and Liquidation of the Outer Patchwork of Land
NASA Astrophysics Data System (ADS)
Len, Przemyslaw; Oleniacz, Grzegorz; Skrzypczak, Izabela; Mika, Monika
2017-12-01
A patchwork of land ownership is one of the factors that exert a negative influence on both the organization and the level of agricultural production. Excessive land fragmentation decreases the intensity of agricultural practices and increases production costs, thus leading to a continuous reduction in income. In many areas of Poland, over the years, fields have been divided into smaller and smaller parcels, which, along with the mass migration of people to towns and abroad, resulted in a faulty land ownership structure. Nowadays, it is recommended that measures be taken to eliminate both internal and external patchworks of farmland. Two such agricultural land management measures are land consolidation and land exchange. Rural areas in Poland require profound structural changes related to agricultural production, the size of agricultural holdings, the distribution of farmland in an agricultural holding, as well as demographic, spatial and institutional structure. Land consolidation and land exchange not only result in improved living and working conditions for farmers, but also contribute to enhancing the environmental and cultural assets of a village. The study allowed conducted using checkerboard matrix tables which allow one to determine the share of farmland owned by local and out-of-village non-residents. Research based on data from the estate cadastre. The research used information on the number of land owners, the number of parcels of land, the area of these parcels. The study computed the distance between 34 villages located in Slawno municipality, Opoczno County, Lodz voivodeship. An approach like this allows one to establish a program of exchange of land between these two groups of owners and to eliminate the problematic patchwork of land ownership through land exchange and consolidation.
Anita C. Risch; Martin F. Jurgensen; Deborah S. Page-Dumroese; Martin Schutz
2013-01-01
Forest cover has increased in mountainous areas of Europe over the past decades because of the abandonment of agricultural areas (land-use change). For this reason, understanding how land-use change affects carbon (C) source-sink strength is of great importance. However, most studies have assessed mountainous systems C stocks, and less is known about C turnover rates,...
NASA Astrophysics Data System (ADS)
Rodríguez-Galiano, Víctor; Garcia-Soldado, Maria José; Chica-Olmo, Mario
The importance of accurate and timely information describing the nature and extent of land and natural resources is increasing especially in rapidly growing metropolitan areas. While metropolitan area decision makers are in constant need of current geospatial information on patterns and trends in land cover and land use, relatively little researchers has investigated the influence of the satellite data resolution for monitoring geo-enviromental information. In this research a suite of remote sensing and GIS techniques is applied in a land use mapping study. The main task is to asses the influence of the spatial and spectral resolution in the separability between classes and in the classificatiońs accuracy. This study has been focused in a very dynamical area with respect to land use, located in the province of Granada (SE of Spain). The classifications results of the Airborne Hyperspectral Scanner (AHS, Daedalus Enterprise Inc., WA, EEUU) at different spatial resolutions: 2, 4 and 6 m and Landsat 5 TM data have been compared.
Land use, residential density, and walking. The multi-ethnic study of atherosclerosis.
Rodríguez, Daniel A; Evenson, Kelly R; Diez Roux, Ana V; Brines, Shannon J
2009-11-01
The neighborhood environment may play a role in encouraging sedentary patterns, especially for middle-aged and older adults. The aim of this study was to examine the associations between walking and neighborhood population density, retail availability, and land-use distribution using data from a cohort of adults aged 45 to 84 years. Data from a multi-ethnic sample of 5529 adult residents of Baltimore MD, Chicago IL, Forsyth County NC, Los Angeles CA, New York NY, and St. Paul MN enrolled in the Multi-Ethnic Study of Atherosclerosis in 2000-2002 were linked to secondary land-use and population data. Participant reports of access to destinations and stores and objective measures of the percentage of land area in parcels devoted to retail land uses, the population divided by land area in parcels, and the mixture of uses for areas within 200 m of each participant's residence were examined. Multinomial logistic regression was used to investigate associations of self-reported and objective neighborhood characteristics with walking. All analyses were conducted in 2008 and 2009. After adjustment for individual-level characteristics and neighborhood connectivity, it was found that higher density, greater land area devoted to retail uses, and self-reported proximity of destinations and ease of walking to places were each related to walking. In models including all land-use measures, population density was positively associated with walking to places and with walking for exercise for more than 90 minutes/week, both relative to no walking. Availability of retail was associated with walking to places relative to not walking, and having a more proportional mix of land uses was associated with walking for exercise for more than 90 minutes/week, while self-reported ease of access to places was related to higher levels of exercise walking, both relative to not walking. Residential density and the presence of retail uses are related to various walking behaviors. Efforts to increase walking may benefit from attention to the intensity and type of land development.
Historical land-use influences the long-term stream turbidity response to a wildfire.
Harrison, Evan T; Dyer, Fiona; Wright, Daniel W; Levings, Chris
2014-02-01
Wildfires commonly result in an increase in stream turbidity. However, the influence of pre-fire land-use practices on post-fire stream turbidity is not well understood. The Lower Cotter Catchment (LCC) in south-eastern Australia is part of the main water supply catchment for Canberra with land in the catchment historically managed for a mix of conservation (native eucalypt forest) and pine (Pinus radiata) plantation. In January 2003, wildfires burned almost all of the native and pine forests in the LCC. A study was established in 2005 to determine stream post-fire turbidity recovery within the native and pine forest areas of the catchment. Turbidity data loggers were deployed in two creeks within burned native forest and burned pine forest areas to determine turbidity response to fire in these areas. As a part of the study, we also determined changes in bare soil in the native and pine forest areas since the fire. The results suggest that the time, it takes turbidity levels to decrease following wildfire, is dependent upon the preceding land-use. In the LCC, turbidity levels decreased more rapidly in areas previously with native vegetation compared to areas which were previously used for pine forestry. This is likely because of a higher percentage of bare soil areas for a longer period of time in the ex-pine forest estate and instream stores of fine sediment from catchment erosion during post-fire storm events. The results of our study show that the previous land-use may exert considerable control over on-going turbidity levels following a wildfire.
Rahman, M Tauhid Ur; Tabassum, Faheemah; Rasheduzzaman, Md; Saba, Humayra; Sarkar, Lina; Ferdous, Jannatul; Uddin, Syed Zia; Zahedul Islam, A Z M
2017-10-17
Change analysis of land use and land cover (LULC) is a technique to study the environmental degradation and to control the unplanned development. Analysis of the past changing trend of LULC along with modeling future LULC provides a combined opportunity to evaluate and guide the present and future land use policy. The southwest coastal region of Bangladesh, especially Assasuni Upazila of Satkhira District, is the most vulnerable to natural disasters and has faced notable changes in its LULC due to the combined effects of natural and anthropogenic causes. The objectives of this study are to illustrate the temporal dynamics of LULC change in Assasuni Upazila over the last 27 years (i.e., between 1989 and 2015) and also to predict future land use change using CA-ANN (cellular automata and artificial neural network) model for the year 2028. Temporal dynamics of LULC change was analyzed, employing supervised classification of multi-temporal Landsat images. Then, prediction of future LULC was carried out by CA-ANN model using MOLUSCE plugin of QGIS. The analysis of LULC change revealed that the LULC of Assasuni had changed notably during 1989 to 2015. "Bare lands" decreased by 21% being occupied by other land uses, especially by "shrimp farms." Shrimp farm area increased by 25.9% during this period, indicating a major occupational transformation from agriculture to shrimp aquaculture in the study area during the period under study. Reduction in "settlement" area revealed the trend of migration from the Upazila. The predicted LULC for the year 2028 showed that reduction in bare land area would continue and 1595.97 ha bare land would transform into shrimp farm during 2015 to 2028. Also, the impacts of the changing LULC on the livelihood of local people and migration status of the Upazila were analyzed from the data collected through focus group discussions and questionnaire surveys. The analysis revealed that the changing LULC and the occupational shift from paddy cultivation to shrimp farming were related to each other. Around 31.3% of the total respondents stated that at least one of their family members had migrated. Climate-driven southwestern coastal people usually migrate from the vulnerable rural areas towards the nearest relatively safe city due to adverse effects of natural disasters. To control the unplanned development and reduce the internal migration in Assasuni and other coastal areas, a comprehensive land use management plan was suggested that would accommodate the diversified uses of coastal lands and eventually lessen the threats to the life and livelihood of the local people.
NASA Astrophysics Data System (ADS)
Soepri Hantoro, Wahyoe
2018-02-01
Sunda Epicontinental Shelf occupies a large area between Asia and Indonesian Maritime Continent. This shallow shelf developed soon as stability of this area since Pliocene was achieved. Sedimentation and erosion started, following sea level variation of Milankovitch cycle that changed this area to, partly to entirely become a low lying open land. These changes imply a difference height of about 135 m sea level. Consequence of this changes from shallow sea during interglacial to the exposed low land during glacial period is producing different land cover that might influence to the surrounding area. As the large land surface, this area should be covered by low land tropical forest, savanna to wet coastal plain. This large low-lying land belongs an important river drainage system of South East Asia in the north (Gulf of Thailand) and another system that curved from Malay Peninsula, Sumatra, Bangka-Belitung and Kalimantan, named as Palaeo Sunda River. The total area of this land is about 1 million km2, this must bring consequences to the environmental condition. This change belongs to the global change on which the signal may be sent to a distance, then is preserved as geological formation. Being large and flat land, it has a long and winding river valley so this land influences the life of biota as fauna and flora but also human being that may live or just move on the passing through around East Asia. Global sea level changes through time which is then followed by the change of the area of land or water have indeed influenced the hydrology and carbon cycle balance. Through studying the stratigraphy and geology dynamic, based on seismic images and core samples from drilling work, one can be obtained, the better understanding the environmental change and its impact to the regional but could be global scale.
Simulation of land use change in the three gorges reservoir area based on CART-CA
NASA Astrophysics Data System (ADS)
Yuan, Min
2018-05-01
This study proposes a new method to simulate spatiotemporal complex multiple land uses by using classification and regression tree algorithm (CART) based CA model. In this model, we use classification and regression tree algorithm to calculate land class conversion probability, and combine neighborhood factor, random factor to extract cellular transformation rules. The overall Kappa coefficient is 0.8014 and the overall accuracy is 0.8821 in the land dynamic simulation results of the three gorges reservoir area from 2000 to 2010, and the simulation results are satisfactory.
NASA Astrophysics Data System (ADS)
Lu, Junfeng; Qian, Quangqiang; Luo, Wanyin; Dong, Zhibao
2016-04-01
Maqu county locates in the northeast of Qinghai-Tibetan Plateau, which main native vegetation is alpine meadow. It was suffered severe desertification in recent years. In this study, we used Landsat images to investigate development of desertification. The result showed that the area of desertification land increased significantly, patch numbers and patch area of desertified land also increased from 1975-1990, the increased desertified land mainly converted from grassland. The degree of desertification also increased from 1990-2000, mainly because fixed sandy land converted to mobile sandy land and semi-fixed sandy land. The area of desertification land decreased from 2000-2010, the desertification land mainly converted to low coverage grassland. The reason responsible for desertification development including natural factors, such as temperature increased, the Yellow River runoff decreased, rodents and pests damage, and unreasonable management measures, such as long-time overgrazing, digging turf for building fence and herbs. In the beginning of this century, the implementation of ecological restoration project was main reason responsible for desertification reversion.
Agriculture land suitability analysis evaluation based multi criteria and GIS approach
NASA Astrophysics Data System (ADS)
Bedawi Ahmed, Goma; Shariff, Abdul Rashid M.; Balasundram, Siva Kumar; Abdullah, Ahmad Fikri bin
2016-06-01
Land suitability evaluation (LSE) is a valuable tool for land use planning in major countries of the world as well as in Malaysia. However, previous LSE studies have been conducted with the use of biophysical and ecological datasets for the design of equally important socio-economic variables. Therefore, this research has been conducted at the sub national level to estimate suitable agricultural land for rubber crops in Seremban, Malaysia by application of physical variables in combination with widely employed biophysical and ecological variables. The objective of this study has been to provide an up-to date GIS-based agricultural land suitability evaluation (ALSE) for determining suitable agricultural land for Rubber crops in Malaysia. Biophysical and ecological factors were assumed to influence agricultural land use were assembled and the weights of their respective contributions to land suitability for agricultural uses were assessed using an analytic hierarchical process. The result of this study found Senawang, Mambau, Sandakan and Rantau as the most suitable areas for cultivating Rubber; whereas, Nilai and Labu are moderately suitable for growing rubber. Lenggeng, Mantin and Pantai are not suitable for growing rubber as the study foresaw potential environmental degradation of these locations from agricultural intensification. While this study could be useful in assessing the potential agricultural yields and potential environmental degradation in the study area, it could also help to estimate the potential conversion of agricultural land to non-agricultural uses.
Giri, Subhasis; Qiu, Zeyuan; Zhang, Zhen
2018-05-01
Understanding the relationship between land use and water quality is essential to improve water quality through carefully managing landscape change. This study applies a linear mixed model at both watershed and hydrologically sensitive areas (HSAs) scales to assess such a relationship in 28 northcentral New Jersey watersheds located in a rapidly urbanizing region in the United States. Two models differ in terms of the geographic scope used to derive land use matrices that quantify land use conditions. The land use matrices at the watershed and HSAs scales represent the land use conditions in these watersheds and their HSAs, respectively. HSAs are the hydrological "hotspots" in a watershed that are prone to runoff generation during storm events. HSAs are derived using a soil topographic index (STI) that predicts hydrological sensitivity of a landscape based on a variable source area hydrology concept. The water quality indicators in these models are total nitrogen (TN), total phosphorus (TP) and total suspended solids (TSS) concentrations in streams observed at the watershed outlets. The modeling results suggest that presence of low density urban land, agricultural land and wetlands elevate while forest decreases TN, TP and/or TSS concentrations in streams. The watershed scale model tends to emphasize the role of agricultural lands in water quality degradation while the HSA scale model highlights the role of forest in water quality improvement. This study supports the hypothesis that even though HSAs are relatively smaller area compared to watershed, still the land uses within HSAs have similar impacts on downstream water quality as the land uses in entire watersheds, since both models have negligible differences in model evaluation parameters. Inclusion of HSAs brings an interesting perspective to understand the dynamic relationships between land use and water quality. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sallustio, L.; Quatrini, V.; Geneletti, D., E-mail: davide.geneletti@unitn.it
Highlights: • We tested a new methodology for monitoring land take and its effects on C storage. • The ecological impact of urban growth derives from the previous land use. • C loss increases with the naturalness of the territory. • Different urban assets may imply different forms of land take containment. Land take due to urbanization triggers a series of negative environmental impacts with direct effects on quality of life for people living in cities. Changes in ecosystem services are associated with land take, among which is the immediate C loss due to land use conversion. Land use changemore » monitoring represents the first step in quantifying land take and its drivers and impacts. To this end, we propose an innovative methodology for monitoring land take and its effects on ecosystem services (in particular, C loss) under multi-scale contexts. The devised approach was tested in two areas with similar sizes, but different land take levels during the time-span 1990–2008 in Central Italy (the Province of Rome and the Molise Region). The estimates of total coverage of built up areas were calculated using point sampling. The area of the urban patches including each sampling point classified as built up areas in the year 1990 and/or in the year 2008 is used to estimate total abundance and average area of built up areas. Biophysical and economic values for carbon loss associated with land take were calculated using InVEST. Although land take was 7–8 times higher in the Province of Rome (from 15.1% in 1990 to 20.4% in 2008) than in Molise region, our findings show that its relative impact on C storage is higher in the latter, where the urban growth consistently affects not only croplands but also semi-natural land uses such as grasslands and other wooded lands. The total C loss due to land take has been estimated in 1.6 million Mg C, corresponding to almost 355 million €. Finally, the paper discusses the main characteristics of urban growth and their ecological impact leading to risks and challenges for future urban planning and land use policies.« less
Réquia Júnior, Weeberb João; Roig, Henrique Llacer; Koutrakis, Petros
2015-12-01
Extensive evidence shows that in addition to lifestyle factors, environmental aspects are an important risk factor for human health. Numerous approaches have been used to estimate the relationship between environment and health. For example, the urban characteristics, especially the types of land use, are considered a potential proxy indicator to evaluate risk of disease. Although several studies have used land use variables to assess human health, none of them has used the concept of Urban Morphology by Urban Structure Types (USTs) as indicators of land use. The aim of this study was to assess the relationship between USTs and cardiorespiratory disease risks in the Federal District, Brazil. Toward this end, we used a quantile regression model to estimate risk. We used 21 types of UST. Income and population density were used as covariates in our sensitivity analysis. Our analysis showed an association between cardiorespiratory diseases risk and 10 UST variables (1 related to rural area, 6 related to residential area, 1 recreational area, 1 public area and 1 commercial area). Our findings suggest that the conventional land use method may be missing important information about the effect of land use on human health. The use of USTs can be an approach to complement the conventional method. This should be of interest to policy makers in order to enhance public health policies and to create future strategies in terms of urban planning, land use and environmental health. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cuca, B.; Agapiou, A.
2017-05-01
In 2006 UNESCO report has identified soil loss as one of the main threats of climate change with possible impact to natural and cultural heritage. The study illustrated in this paper shows the results from geomatic perspective, applying an interdisciplinary approach undertaken in order to identify major natural hazards affecting cultural landscapes and archaeological heritage in rural areas in Cyprus. In particular, Earth Observation (EO) and ground-based methods were identified and applied for mapping, monitoring and estimation of the possible soil loss caused by soil erosion. Special attention was given to the land use/land cover factor (C) and its impact on the overall estimation of the soil-loss. Cover factor represents the effect of soil-disturbing activities, plants, crop sequence and productivity level, soil cover and subsurface bio-mass on soil erosion. Urban areas have a definite role in retarding the recharge process, leading to increased runoff and soil loss in the broader area. On the other hand, natural vegetation plays a predominant role in reducing water erosion. The land use change was estimated based on the difference of the NDVI value between Landsat 5 TM and Sentinel-2 data for the period between 1980s' until today. Cover factor was then estimated for both periods and significant land use changes were further examined in areas of significant cultural and natural landscape value. The results were then compared in order to study the impact of land use change on the soil erosion and hence on the soil loss rate in the selected areas.
NASA Astrophysics Data System (ADS)
Widiatmaka, Widiatmaka; Ambarwulan, Wiwin; Firmansyah, Irman; Munibah, Khursatul; Santoso, Paulus B. K.
2015-04-01
Indonesia is the country with the 4th largest population in the worlds; the population reached more than 237 million people. With rice as the staple food for more than 95 percent of the population, there is an important role of paddy field in Indonesian food security. Actually, paddy field in Java has produced 52,6% of the total rice production in Indonesia, showing the very high dependence of Indonesia on food production from paddy fields in Java island. Karawang Regency is one of the regions in West Java Province that contribute to the national food supply, due to its high soil fertility and its high extent of paddy field. Dynamics of land use change in this region are high because of its proximity to urban area; this dynamics has led to paddy field conversion to industry and residential landuse, which in turn change the regional rice production capacity. Decreasing paddy field landuse in this region could be serve as an example case of the general phenomena which occurred in Javanese rice production region. The objective of this study were: (i) to identify the suitable area for paddy field, (ii) to modelize the decreasing of paddy field in socio-economic context of the region, and (iii) to plan the spatial priority area of paddy field protection according to model prediction. A land evaluation for paddy was completed after a soil survey, while IKONOS imagery was analyzed to delineate paddy fields. Dynamic system model of paddy field land use is built, and then based on the model built, the land area of paddy field untill 2040 in some scenarios was developped. The research results showed that the land suitability class for paddy fields in Karawang Regency ranged from very suitable (S1) to marginally suitable (S3), with various land characteristics as limiting factors. The model predicts that if the situation of paddy field land use change continues in its business as usual path, paddy field area that would exist in the region in 2040 will stay half of the recent area. Based on the model, the scenario were developed for the protection of priority area. With such scenario, paddy field remains close to the value predicted oficially. Spatial information then can play a role by presenting the scenario spatially. Combining spatial information with land suitability, priority areas of paddy field protection can be delineated. Policies that followed also then be compiled, including the location of protection. Key-words: Land evaluation, food security, spatial information
Bozkaya, A Gonca; Balcik, Filiz Bektas; Goksel, Cigdem; Esbah, Hayriye
2015-03-01
Human activities in many parts of the world have greatly affected natural areas. Therefore, monitoring and forecasting of land-cover changes are important components for sustainable utilization, conservation, and development of these areas. This research has been conducted on Igneada, a legally protected area on the northwest coast of Turkey, which is famous for its unique, mangrove forests. The main focus of this study was to apply a land use and cover model that could quantitatively and graphically present the changes and its impacts on Igneada landscapes in the future. In this study, a Markov chain-based, stochastic Markov model and cellular automata Markov model were used. These models were calibrated using a time series of developed areas derived from Landsat Thematic Mapper (TM) imagery between 1990 and 2010 that also projected future growth to 2030. The results showed that CA Markov yielded reliable information better than St. Markov model. The findings displayed constant but overall slight increase of settlement and forest cover, and slight decrease of agricultural lands. However, even the slightest unsustainable change can put a significant pressure on the sensitive ecosystems of Igneada. Therefore, the management of the protected area should not only focus on the landscape composition but also pay attention to landscape configuration.
Simulating carbon sequestration using cellular automata and land use assessment for Karaj, Iran
NASA Astrophysics Data System (ADS)
Khatibi, Ali; Pourebrahim, Sharareh; Mokhtar, Mazlin Bin
2018-06-01
Carbon sequestration has been proposed as a means of slowing the atmospheric and marine accumulation of greenhouse gases. This study used observed and simulated land use/cover changes to investigate and predict carbon sequestration rates in the city of Karaj. Karaj, a metropolis of Iran, has undergone rapid population expansion and associated changes in recent years, and these changes make it suitable for use as a case study for rapidly expanding urban areas. In particular, high quality agricultural space, green space and gardens have rapidly transformed into industrial, residential and urban service areas. Five classes of land use/cover (residential, agricultural, rangeland, forest and barren areas) were considered in the study; vegetation and soil samples were taken from 20 randomly selected locations. The level of carbon sequestration was determined for the vegetation samples by calculating the amount of organic carbon present using the dry plant weight method, and for soil samples by using the method of Walkley and Black. For each area class, average values of carbon sequestration in vegetation and soil samples were calculated to give a carbon sequestration index
. A cellular automata approach was used to simulate changes in the classes. Finally, the carbon sequestration indices were combined with simulation results to calculate changes in carbon sequestration for each class. It is predicted that, in the 15 year period from 2014 to 2029, much agricultural land will be transformed into residential land, resulting in a severe reduction in the level of carbon sequestration. Results from this study indicate that expansion of forest areas in urban counties would be an effective means of increasing the levels of carbon sequestration. Finally, future opportunities to include carbon sequestration into the simulation of land use/cover changes are outlined.
Fu, Qi; Li, Bo; Hou, Ying; Bi, Xu; Zhang, Xinshi
2017-12-31
The sustainable use of ecosystem services (ES) can contribute to enhancing human well-being. Understanding the effects of land use and climate change on ES can provide scientific and targeted guidance for the sustainable use of ES. The objective of this study was to reveal the way in which land use and climate change influence the spatial and temporal variations of ES in the mountain-oasis-desert system (MODS). In this study, we assessed water yield, soil conservation, crop production, and sand fixation in 1990, 2000, and 2010 in Altay Prefecture, which is representative of the MODS, based on widely used biophysical models. Moreover, we analyzed the effects of different land use and climate change conditions on ES. The results show that the area of forest and bare land decreased in Altay Prefecture. In contrast, the area of grassland with low coverage and cropland increased. The climate of this area presented an overall warming-wetting trend, with warming-drying and cooling-wetting phenomena in some areas. Soil conservation in the mountain zone, water yield in the oasis zone, and sand fixation in the desert zone all decreased under the influence of land use change alone. The warming-drying trend led to decreased water yield in the oasis zone and increased wind erosion in the desert zone. Based on the results, we recommend that local governments achieve sustainable use of ES by planting grasslands with high coverage in the oasis zone, increasing investment in agricultural science and technology, and establishing protected areas in the mountain and desert zones. The methodology in our study can also be applied to other regions with a MODS structure. Copyright © 2017 Elsevier B.V. All rights reserved.
National Rural Studies Committee. A Proceedings (4th, Reading, Pennsylvania, May 16-17, 1991).
ERIC Educational Resources Information Center
Castle, Emery, Ed.; Baldwin, Barbara, Ed.
The theme of this conference proceedings of the National Rural Studies Committee is "rural areas in an urbanized region." The presentations cover such issues as urbanization, rural land use, public policies, farmland preservation, environmental policy, natural resources, land management, land-grant university reform, cooperative…
NASA Technical Reports Server (NTRS)
Chen, Fei; Yates, David; LeMone, Margaret
2001-01-01
To understand the effects of land-surface heterogeneity and the interactions between the land-surface and the planetary boundary layer at different scales, we develop a multiscale data set. This data set, based on the Cooperative Atmosphere-Surface Exchange Study (CASES97) observations, includes atmospheric, surface, and sub-surface observations obtained from a dense observation network covering a large region on the order of 100 km. We use this data set to drive three land-surface models (LSMs) to generate multi-scale (with three resolutions of 1, 5, and 10 kilometers) gridded surface heat flux maps for the CASES area. Upon validating these flux maps with measurements from surface station and aircraft, we utilize them to investigate several approaches for estimating the area-integrated surface heat flux for the CASES97 domain of 71x74 square kilometers, which is crucial for land surface model development/validation and area water and energy budget studies. This research is aimed at understanding the relative contribution of random turbulence versus organized mesoscale circulations to the area-integrated surface flux at the scale of 100 kilometers, and identifying the most important effective parameters for characterizing the subgrid-scale variability for large-scale atmosphere-hydrology models.
Buursink, Marc L.; Cahan, Steven M.; Warwick, Peter D.
2015-01-01
Following the geologic basin-scale assessment of technically accessible carbon dioxide storage resources in onshore areas and State waters of the United States, the U.S. Geological Survey estimated that an area of about 130 million acres (or about 200,000 square miles) of Federal lands overlies these storage resources. Consequently, about 18 percent of the assessed area associated with storage resources is allocated to Federal land management. Assessed areas are allocated to four other general land-ownership categories as follows: State lands about 4.5 percent, Tribal lands about 2.4 percent, private and other lands about 72 percent, and offshore areas about 2.6 percent.
Determination of the Actual Land Use Pattern Using Unmanned Aerial Vehicles and Multispectral Camera
NASA Astrophysics Data System (ADS)
Dindaroğlu, T.; Gündoğan, R.; Gülci, S.
2017-11-01
The international initiatives developed in the context of combating global warming are based on the monitoring of Land Use, Land Use Changes, and Forests (LULUCEF). Determination of changes in land use patterns is used to determine the effects of greenhouse gas emissions and to reduce adverse effects in subsequent processes. This process, which requires the investigation and control of quite large areas, has undoubtedly increased the importance of technological tools and equipment. The use of carrier platforms and commercially cheaper various sensors have become widespread. In this study, multispectral camera was used to determine the land use pattern with high sensitivity. Unmanned aerial flights were carried out in the research fields of Kahramanmaras Sutcu Imam University campus area. Unmanned aerial vehicle (UAV) (multi-propeller hexacopter) was used as a carrier platform for aerial photographs. Within the scope of this study, multispectral cameras were used to determine the land use pattern with high sensitivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, W.
High-resolution satellite data provide detailed, quantitative descriptions of land surface characteristics over large areas so that objective scale linkage becomes feasible. With the aid of satellite data, Sellers et al. and Wood and Lakshmi examined the linearity of processes scaled up from 30 m to 15 km. If the phenomenon is scale invariant, then the aggregated value of a function or flux is equivalent to the function computed from aggregated values of controlling variables. The linear relation may be realistic for limited land areas having no large surface contrasts to cause significant horizontal exchange. However, for areas with sharp surfacemore » contrasts, horizontal exchange and different dynamics in the atmospheric boundary may induce nonlinear interactions, such as at interfaces of land-water, forest-farm land, and irrigated crops-desert steppe. The linear approach, however, represents the simplest scenario, and is useful for developing an effective scheme for incorporating subgrid land surface processes into large-scale models. Our studies focus on coupling satellite data and ground measurements with a satellite-data-driven land surface model to parameterize surface fluxes for large-scale climate models. In this case study, we used surface spectral reflectance data from satellite remote sensing to characterize spatial and temporal changes in vegetation and associated surface parameters in an area of about 350 {times} 400 km covering the southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site of the US Department of Energy`s Atmospheric Radiation Measurement (ARM) Program.« less
NASA Astrophysics Data System (ADS)
Trombley, N.; Weber, E.; Moehl, J.
2017-12-01
Many studies invoke dasymetric mapping to make more accurate depictions of population distribution by spatially restricting populations to inhabited/inhabitable portions of observational units (e.g., census blocks) and/or by varying population density among different land classes. LandScan USA uses this approach by restricting particular population components (such as residents or workers) to building area detected from remotely sensed imagery, but also goes a step further by classifying each cell of building area in accordance with ancillary land use information from national parcel data (CoreLogic, Inc.'s ParcelPoint database). Modeling population density according to land use is critical. For instance, office buildings would have a higher density of workers than warehouses even though the latter would likely have more cells of detection. This paper presents a modeling approach by which different land uses are assigned different densities to more accurately distribute populations within them. For parts of the country where the parcel data is insufficient, an alternate methodology is developed that uses National Land Cover Database (NLCD) data to define the land use type of building detection. Furthermore, LiDAR data is incorporated for many of the largest cities across the US, allowing the independent variables to be updated from two-dimensional building detection area to total building floor space. In the end, four different regression models are created to explain the effect of different land uses on worker distribution: A two-dimensional model using land use types from the parcel data A three-dimensional model using land use types from the parcel data A two-dimensional model using land use types from the NLCD data, and A three-dimensional model using land use types from the NLCD data. By and large, the resultant coefficients followed intuition, but importantly allow the relationships between different land uses to be quantified. For instance, in the model using two-dimensional building area, commercial building area had a density 2.5 times greater than public building area and 4 times greater than industrial building area. These coefficients can be applied to define the ratios at which population is distributed to building cells. Finally, possible avenues for refining the methodology are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, J. O.; Mosey, G.
2014-04-01
Through the RE-Powering America's Land initiative, the economic and technical feasibility of utilizing contaminated lands in the Buffalo, New York, area for utility-scale wind development is explored. The study found that there is available land, electrical infrastructure, wind resource, and local interest to support a commercial wind project; however, economies of scale and local electrical markets may need further investigation before significant investment is made into developing a wind project at the Buffalo Reuse Authority site.
Analyses and simulation to spatial pattern of land utilization in Guangzhu City
NASA Astrophysics Data System (ADS)
Zhang, Xin-chang; Zhang, Wen-jiang; Ma, Kun
2006-10-01
Based on Landsat TM remote sensing images in 1990 and 2000, we analyses the temporal and spatial pattern Characters of land use in the 1990s in Guangzhou city. We also simulate the scenarios of land-use pattern in 2010 by integrating the Markov process into cellular automata model. The results show that the area of constructions was rapid increasing during the last ten years of the 20th century, at the same time the arable land, woodland and unused land areas were decreasing, the orchard and water areas were rarely changed; In the first ten years of 21st century, land use pattern keep the change trend in the 1990s, land of constructions continue rapid increasing; arable land and unused land areas continue rapid decreasing; woodland, orchard and water areas keep steadily. Research shows that the extent of urban area has increased exponentially in Guangzhou city, no evidences show that the arable land decreasing rate will slow down in the near future. So, it is necessary to enhance the control functions of land use planning and take actives measures to protect arable land.
Remote sensing application to regional activities
NASA Technical Reports Server (NTRS)
Shahrokhi, F.; Jones, N. L.; Sharber, L. A.
1976-01-01
Two agencies within the State of Tennessee were identified whereby the transfer of aerospace technology, namely remote sensing, could be applied to their stated problem areas. Their stated problem areas are wetland and land classification and strip mining studies. In both studies, LANDSAT data was analyzed with the UTSI video-input analog/digital automatic analysis and classification facility. In the West Tennessee area three land-use classifications could be distinguished; cropland, wetland, and forest. In the East Tennessee study area, measurements were submitted to statistical tests which verified the significant differences due to natural terrain, stripped areas, various stages of reclamation, water, etc. Classifications for both studies were output in the form of maps of symbols and varying shades of gray.
NASA Astrophysics Data System (ADS)
Fundisi, E.; Musakwa, W.
2017-09-01
Urban areas, particularly in developing countries face immense challenges such as climate change, poverty, lack of resources poor land use management systems, and week environmental management practices. Mitigating against these challenges is often hampered by lack of data on urban expansion, urban footprint and land cover. To support the recently adopted new urban agenda 2030 there is need for the provision of information to support decision making in the urban areas. Earth observation has been identified as a tool to foster sustainable urban planning and smarter cities as recognized by the new urban agenda, because it is a solution to unavailability of data. Accordingly, this study uses high resolution EO data Pleiades satellite imagery to map and document land cover for the rapidly expanding area of Midrand in Johannesburg, South Africa. An unsupervised land cover classification of the Pleiades satellite imagery was carried out using ENVI software, whereas NDVI was derived using ArcGIS software. The land cover had an accuracy of 85% that is highly adequate to document the land cover in Midrand. The results are useful because it provides a highly accurate land cover and NDVI datasets at localised spatial scale that can be used to support land use management strategies within Midrand and the City of Johannesburg South Africa.
NASA Astrophysics Data System (ADS)
Mujiono, Indra, T. L.; Harmantyo, D.; Rukmana, I. P.; Nadia, Z.
2017-07-01
The purpose of this study was to simulate land use change in 1996-2016 and its prediction in 2035 as well as its potential to deforestation. Both of these purposes were obtained through modeling analysis using Markov Chain Cellular Automata. This modeling method was considered important for understanding the causes and impacts. Based on the analysis, the land use change between 1996 to 2007 has caused forest loss (the region and non-region) covering an area of 62,012 ha. While in the period of 2007 to 2016, the change has lead to the east side of the slope grade of 0-15 percent and an altitude between 500-1000 meters above sea level. In this period, plantation area has increased by 50,822 ha, while the forest area has reduced from 80,038 ha. In a period of 20 years, North Bengkulu Regency has lost the forest area of 80,038 ha. The amount of intervention against forest suggested the potential for deforestation in this area. Simulation of land use change in 2035 did not indicate significant deforestation due to the limited land on physical factors such as slope and elevation. However, it should be noted that, in 2035, the area of conservation forest was reduced by 16,793 ha (29 %), while the areas of protected and production forest were reduced by 4,933 ha (19 %) and 2,114 ha (3 %), respectively. Land use change is a serious threat of deforestation, especially in forest areas in North Bengkulu Regency, where any decline in forest area means the addition of plantation area.
Monitoring the expansion of built-up areas in Seberang Perai region, Penang State, Malaysia
NASA Astrophysics Data System (ADS)
Samat, N.
2014-02-01
Rapid urbanization has caused land use transformation and encroachment of built environment into arable agriculture land. Uncontrolled expansion could bring negative impacts to society, space and the environment. Therefore, information on expansion and future spatial pattern of built-up areas would be useful for planners and decision makers in formulating policies towards managing and planning for sustainable urban development. This study demonstrates the usage of Geographic Information System in monitoring the expansion of built-up area in Seberang Perai region, Penang State, Malaysia. Built-up area has increased by approximately 20% between 1990 and 2001 and further increased by 12% between 2001 and 2007. New development is expected to continue encroach into existing open space and agriculture area since those are the only available land in this study area. The information on statistics of the expansion of built-up area and future spatial pattern of urban expansion were useful in planning and managing urban spatial growth.
2014-01-01
Abstract Pitfall traps were used to sample Carabidae in agricultural land of the Spercheios valley, Fthiotida, Central Greece. Four pairs of cultivated fields were sampled. One field of each pair was located in a heterogeneous area and the other in a more homogeneous area. Heterogeneous areas were composed of small fields. They had high percentages of non-cropped habitats and a high diversity of land use types. Homogeneous areas were composed of larger fields. They had lower percentages of non-cropped habitats and a lower diversity of land use types. One pair of fields had been planted with cotton, one with maize, one with olives and one with wheat. Altogether 28 carabid species were recorded. This paper describes the study areas, the sampling methods used and presents the data collected during the study. Neither heterogeneous nor homogeneous areas had consistently higher abundance levels, activity density levels, species richness levels or diversity levels. However, significant differences were seen in some of the comparisons between heterogeneous and homogeneous areas. PMID:24891833
Analytical solutions to trade-offs between size of protected areas and land-use intensity.
Butsic, Van; Radeloff, Volker C; Kuemmerle, Tobias; Pidgeon, Anna M
2012-10-01
Land-use change is affecting Earth's capacity to support both wild species and a growing human population. The question is how best to manage landscapes for both species conservation and economic output. If large areas are protected to conserve species richness, then the unprotected areas must be used more intensively. Likewise, low-intensity use leaves less area protected but may allow wild species to persist in areas that are used for market purposes. This dilemma is present in policy debates on agriculture, housing, and forestry. Our goal was to develop a theoretical model to evaluate which land-use strategy maximizes economic output while maintaining species richness. Our theoretical model extends previous analytical models by allowing land-use intensity on unprotected land to influence species richness in protected areas. We devised general models in which species richness (with modified species-area curves) and economic output (a Cobb-Douglas production function) are a function of land-use intensity and the proportion of land protected. Economic output increased as land-use intensity and extent increased, and species richness responded to increased intensity either negatively or following the intermediate disturbance hypothesis. We solved the model analytically to identify the combination of land-use intensity and protected area that provided the maximum amount of economic output, given a target level of species richness. The land-use strategy that maximized economic output while maintaining species richness depended jointly on the response of species richness to land-use intensity and protection and the effect of land use outside protected areas on species richness within protected areas. Regardless of the land-use strategy, species richness tended to respond to changing land-use intensity and extent in a highly nonlinear fashion. ©2012 Society for Conservation Biology.
Cai, Yuan-Bin; Zhang, Hao; Pan, Wen-Bin; Chen, Yan-Hong; Wang, Xiang-Rong
2013-06-01
This paper quantifies the allocation of ecosystem services value (ESV) associated with land use pattern and qualitatively examined impacts of land use changes and socio-economic factors on spatiotemporal variation of ESV in the Natural Wetland Distribution Area (NWDA), Fuzhou city, China. The results showed that total ESV of the study area decreased from 4,332.16 × 10(6) RMB Yuan in 1989 to 3,697.42 × 10(6) RMB Yuan in 2009, mainly due to the remarkable decreases in cropland (decreased by 55.3 %) and wetland (decreased by 74.2 %). Forest, water, and wetland played major roles in providing ecosystem services, accounting for over 90 % of the total ESV. Based on time series Landsat TM/ETM+ imagery, geographic information system, and historical data, analysis of the spatiotemporal variation of ESV from 1989 to 2009 was performed. It indicated that rapid expansion of urban areas along the Minjiang River resulted in significant changes in land use types, leading to a dramatic decline in ecosystem services. Meanwhile, because of land scarcity and unique ecosystem functions, the emergency of wetland and cropland protection in built-up area has become an urgent task of local authorities to the local government. Furthermore, there was still a significant negative correlation between ESV of cropland and wetland and the GDP. The results suggest that future planning of land use pattern should control encroachment of urban areas into cropland and wetland in addition to scientific and rational policies towards minimizing the adverse effects of urbanization.
Estimating changes in urban land and urban population using refined areal interpolation techniques
NASA Astrophysics Data System (ADS)
Zoraghein, Hamidreza; Leyk, Stefan
2018-05-01
The analysis of changes in urban land and population is important because the majority of future population growth will take place in urban areas. U.S. Census historically classifies urban land using population density and various land-use criteria. This study analyzes the reliability of census-defined urban lands for delineating the spatial distribution of urban population and estimating its changes over time. To overcome the problem of incompatible enumeration units between censuses, regular areal interpolation methods including Areal Weighting (AW) and Target Density Weighting (TDW), with and without spatial refinement, are implemented. The goal in this study is to estimate urban population in Massachusetts in 1990 and 2000 (source zones), within tract boundaries of the 2010 census (target zones), respectively, to create a consistent time series of comparable urban population estimates from 1990 to 2010. Spatial refinement is done using ancillary variables such as census-defined urban areas, the National Land Cover Database (NLCD) and the Global Human Settlement Layer (GHSL) as well as different combinations of them. The study results suggest that census-defined urban areas alone are not necessarily the most meaningful delineation of urban land. Instead, it appears that alternative combinations of the above-mentioned ancillary variables can better depict the spatial distribution of urban land, and thus make it possible to reduce the estimation error in transferring the urban population from source zones to target zones when running spatially-refined temporal areal interpolation.
NASA Astrophysics Data System (ADS)
Zoraghein, H.; Leyk, S.; Balk, D.
2017-12-01
The analysis of changes in urban land and population is important because the majority of future population growth will take place in urban areas. The U.S. Census historically classifies urban land using population density and various land-use criteria. This study analyzes the reliability of census-defined urban lands for delineating the spatial distribution of urban population and estimating its changes over time. To overcome the problem of incompatible enumeration units between censuses, regular areal interpolation methods including Areal Weighting (AW) and Target Density Weighting (TDW), with and without spatial refinement, are implemented. The goal in this study is to estimate urban population in Massachusetts in 1990 and 2000 (source zones), within tract boundaries of the 2010 census (target zones), respectively, to create a consistent time series of comparable urban population estimates from 1990 to 2010. Spatial refinement is done using ancillary variables such as census-defined urban areas, the National Land Cover Database (NLCD) and the Global Human Settlement Layer (GHSL) as well as different combinations of them. The study results suggest that census-defined urban areas alone are not necessarily the most meaningful delineation of urban land. Instead it appears that alternative combinations of the above-mentioned ancillary variables can better depict the spatial distribution of urban land, and thus make it possible to reduce the estimation error in transferring the urban population from source zones to target zones when running spatially-refined temporal areal interpolation.
Oak Ridge reservation land-use plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bibb, W. R.; Hardin, T. H.; Hawkins, C. C.
1980-03-01
This study establishes a basis for long-range land-use planning to accommodate both present and projected DOE program requirements in Oak Ridge. In addition to technological requirements, this land-use plan incorporates in-depth ecological concepts that recognize multiple uses of land as a viable option. Neither environmental research nor technological operations need to be mutually exclusive in all instances. Unique biological areas, as well as rare and endangered species, need to be protected, and human and environmental health and safety must be maintained. The plan is based on the concept that the primary use of DOE land resources must be to implementmore » the overall DOE mission in Oak Ridge. This document, along with the base map and overlay maps, provides a reasonably detailed description of the DOE Oak Ridge land resources and of the current and potential uses of the land. A description of the land characteristics, including geomorphology, agricultural productivity and soils, water courses, vegetation, and terrestrial and aquatic animal habitats, is presented to serve as a resource document. Essentially all DOE land in the Oak Ridge area is being fully used for ongoing DOE programs or has been set aside as protected areas.« less
Smiraglia, D; Ceccarelli, T; Bajocco, S; Perini, L; Salvati, L
2015-10-01
This study implements an exploratory data analysis of landscape metrics and a change detection analysis of land use and population density to assess landscape dynamics (1954-2008) in two physiographic zones (plain and hilly-mountain area) of Emilia Romagna, northern Italy. The two areas are characterized by different landscape types: a mixed urban-rural landscape dominated by arable land and peri-urban settlements in the plain and a traditional agro-forest landscape in the hilly-mountain area with deciduous and conifer forests, scrublands, meadows, and crop mosaic. Urbanization and, to a lesser extent, agricultural intensification were identified as the processes underlying landscape change in the plain. Land abandonment determining natural forestation and re-forestation driven by man was identified as the process of change most representative of the hilly-mountain area. Trends in landscape metrics indicate a shift toward more fragmented and convoluted patterns in both areas. Number of patches, the interspersion and juxtaposition index, and the large patch index are the metrics discriminating the two areas in terms of landscape patterns in 1954. In 2008, mean patch size, edge density, interspersion and juxtaposition index, and mean Euclidean nearest neighbor distance were the metrics with the most different spatial patterns in the two areas. The exploratory data analysis of landscape metrics contributed to link changes over time in both landscape composition and configuration providing a comprehensive picture of landscape transformations in a wealthy European region. Evidence from this study are hoped to inform sustainable land management designed for homogeneous landscape units in similar socioeconomic contexts.
Dynamics of land - use change in urban area in West Jakarta
NASA Astrophysics Data System (ADS)
Pangaribowo, R. L.
2018-01-01
This aim to research is to know how land use change in West Jakarta period 2000 - 2010. The research method used is descriptive method with a quantitative approach. Data analysis was done by using the result of research instrument to find out the driving of land change and to know the change of was analyzed using GIS (Geographic Information System) in Arc View GIS 3.3 program and Quantitative Analysis Model Location Quotient (LQ) and Shift-Share Analysis (SSA) In this study. The research instrument used in the analysis was observation and documentation. Based on the analysis conducted, the results of research on land use change in West Jakarta in the period of 10 years from 2000 until 2010 is caused by several aspects that are related to each other, namely political, economic, demographic, and cultural aspects. The land use change occurred in the area which decreased by minus 367,79 hectares (2.87%), the open space area decreased by minus 103.36 hectares (0.8%), the built up area increased by 201.13 hectares (1.57%), and the settlement area was 27.14 hectares (0.21%).
NASA Astrophysics Data System (ADS)
Zhu, H.; Zhao, H. L.; Jiang, Y. Z.; Zang, W. B.
2018-05-01
Soil moisture is one of the important hydrological elements. Obtaining soil moisture accurately and effectively is of great significance for water resource management in irrigation area. During the process of soil moisture content retrieval with multiremote sensing data, multi- remote sensing data always brings multi-spatial scale problems which results in inconformity of soil moisture content retrieved by remote sensing in different spatial scale. In addition, agricultural water use management has suitable spatial scale of soil moisture information so as to satisfy the demands of dynamic management of water use and water demand in certain unit. We have proposed to use land parcel unit as the minimum unit to do soil moisture content research in agricultural water using area, according to soil characteristics, vegetation coverage characteristics in underlying layer, and hydrological characteristic into the basis of study unit division. We have proposed division method of land parcel units. Based on multi thermal infrared and near infrared remote sensing data, we calculate the ndvi and tvdi index and make a statistical model between the tvdi index and soil moisture of ground monitoring station. Then we move forward to study soil moisture remote sensing retrieval method on land parcel unit scale. And the method has been applied in Hetao irrigation area. Results show that compared with pixel scale the soil moisture content in land parcel unit scale has displayed stronger correlation with true value. Hence, remote sensing retrieval method of soil moisture content in land parcel unit scale has shown good applicability in Hetao irrigation area. We converted the research unit into the scale of land parcel unit. Using the land parcel units with unified crops and soil attributes as the research units more complies with the characteristics of agricultural water areas, avoids the problems such as decomposition of mixed pixels and excessive dependence on high-resolution data caused by the research units of pixels, and doesn't involve compromises in the spatial scale and simulating precision like the grid simulation. When the application needs are met, the production efficiency of products can also be improved at a certain degree.
NASA Astrophysics Data System (ADS)
Xie, X.; Liang, S.
2013-12-01
The Three-North region of China, including the northeastern, northern, and northwestern areas, covers an area of more than three million square kilometers. This region is featured for its arid and semiarid environments with annual rainfall less than 450 mm. During the past few decades, the Three-North region has experienced noticeable water-cycle variations owing to the climate and land use changes. Typically, several large-scale forestation programs such as the Three Norths Forest Shelterbelt Program began since late 1970s, have been implemented across this region in order to solve desertification and dust storm problems, and to combat the loss of water and soil. These programs raised debates, however, because their effectiveness does not likely achieve what was expected and they even imposed negative influences on the eco-hydrologic system in some areas. Currently most studies were based on in-situ measurements and individual catchments and primarily attributed the water-cycle variations to the forestation. In this study we attempt to evaluate the impact of combined climate and land use changes using remote sensing data and a sophisticated land surface model, i.e., the Three-Layer Variable Infiltration Capacity (VIC-3L). Four land use maps derived from Landsat TM images for 1990, 1995, 2000 and 2005 were used to detect the land use changes in the three-north regions, and leaf area index (LAI) from the Global Land Surface Satellite (GLASS) LAI product was employed to assess the land cover change and the effect of forestation programs. After model calibration and validation based on gauged streamflow and evapotranspiration from China FluxNet, a series of simulation scenarios were designed to examine the impacts of climate and land use changes on soil moisture, runoff and evapotranspiration and to identify each contribution to water fluxes. It was found that within the study area as a whole, LAI shows an increasing trend during 1980-2009 in response to the forestation programs. However, the hydrologic variables (i.e., the soil moisture, runoff and evapotranspiration) in northern and northwestern regions are more significantly affected by the precipitation and temperature than by the land use changes, although the impacts of land use change are uneven across the entire region. So, the forestation probably plays a modest role in the hydrologic system.
Implications of agricultural land use change to ecosystem services in the Ganges delta.
Islam, G M Tarekul; Islam, A K M Saiful; Shopan, Ahsan Azhar; Rahman, Md Munsur; Lázár, Attila N; Mukhopadhyay, Anirban
2015-09-15
Ecosystems provide the basis for human civilization and natural capital for green economy and sustainable development. Ecosystem services may range from crops, fish, freshwater to those that are harder to see such as erosion regulation, carbon sequestration, and pest control. Land use changes have been identified as the main sources of coastal and marine pollution in Bangladesh. This paper explores the temporal variation of agricultural land use change and its implications with ecosystem services in the Ganges delta. With time agricultural lands have been decreased and wetlands have been increased at a very high rate mainly due to the growing popularity of saltwater shrimp farming. In a span of 28 years, the agricultural lands have been reduced by approximately 50%, while the wetlands have been increased by over 500%. A large portion (nearly 40%) of the study area is covered by the Sundarbans which remained almost constant which can be attributed to the strict regulatory intervention to preserve the Sundarbans. The settlement & others land use type has also been increased to nearly 5%. There is a gradual uptrend of shrimp and fish production in the study area. The findings suggest that there are significant linkages between agricultural land use change and ecosystem services in the Ganges delta in Bangladesh. The continuous decline of agricultural land (due to salinization) and an increase of wetland have been attributed to the conversion of agricultural land into shrimp farming in the study area. Such land use change requires significant capital, therefore, only investors and wealthier land owners can get the higher profit from the land conversion while the poor people is left with the environmental consequences that affect their long-term lives and livelihood. An environmental management plan is proposed for sustainable land use in the Ganges delta in Bangladesh. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hassan, Mohamed Abd El Rehim Abd El Aziz
2014-11-01
The monitoring of land use/land cover (LULC) changes in southern Port Said region area is very important for the planner of managements, governmental and non-governmental organizations, decision makers and the scientific community. This information is essential for planning and implementing policies to optimize the use of natural resources and accommodate development whilst minimizing the impact on the environment. To monitor these changes in the study area, two sets of satellite images (Landsat TM-5 and ETM+7) data were used with Path/Row (175/38) in date 1986 and 2006, respectively. The Landsat TM and ETM data are useful for this type of study due to its high spatial resolution, spectral resolution and low repetitive acquisition (16 days). A postclassification technique is used in this study based on hybrid classification (Unsupervised and Supervised). Each method used was assessed, and checked in field. Eight to Twelve LULC classes are recognized and mapping produced. The soils in southern Port Said area were classification in two orders for soil taxonomic units, which are Entisols and Aridisols and four sub-orders classes. The study land was evaluated into five classes from non suitable (N) to very highly suitable (S1) for some crops in the southern region of Port Said studied soils, with assess the nature of future change following construction of the international coastal road which crosses near to the study area.
Development and Applications of a Comprehensive Land Use Classification and Map for the US
Theobald, David M.
2014-01-01
Land cover maps reasonably depict areas that are strongly converted by human activities, but typically are unable to resolve low-density but widespread development patterns. Data products specifically designed to resolve land uses complement land cover datasets and likely improve our ability to understand the extent and complexity of human modification. Methods for developing a comprehensive land use classification system are described, and a map of land use for the conterminous United States is presented to reveal what we are doing on the land. The comprehensive, detailed and high-resolution dataset was developed through spatial analysis of nearly two-dozen publicly-available, national spatial datasets – predominately based on census housing, employment, and infrastructure, as well as land cover from satellite imagery. This effort resulted in 79 land use classes that fit within five main land use groups: built-up, production, recreation, conservation, and water. Key findings from this study are that built-up areas occupy 13.6% of mainland US, but that the majority of this occurs as low-density exurban/rural residential (9.1% of the US), while more intensive built-up land uses occupy 4.5%. For every acre of urban and suburban residential land, there are 0.13 commercial, 0.07 industrial, 0.48 institutional, and 0.29 acres of interstates/highways. This database can be used to address a variety of natural resource applications, and I provide three examples here: an entropy index of the diversity of land uses for smart-growth planning, a power-law scaling of metropolitan area population to developed footprint, and identifying potential conflict areas by delineating the urban interface. PMID:24728210
Generating local scale land use/cover change scenarios: case studies of high-risk mountain areas
NASA Astrophysics Data System (ADS)
Malek, Žiga; Glade, Thomas; Boerboom, Luc
2014-05-01
The relationship between land use/cover changes and consequences to human well-being is well acknowledged and has led to higher interest of both researchers and decision makers in driving forces and consequences of such changes. For example, removal of natural vegetation cover or urban expansion resulting in new elements at risk can increase hydro-meteorological risk. This is why it is necessary to study how the land use/cover could evolve in the future. Emphasis should especially be given to areas experiencing, or expecting, high rates of socio-economic change. A suitable approach to address these changes is scenario development; it offers exploring possible futures and the corresponding environmental consequences, and aids decision-making, as it enables to analyse possible options. Scenarios provide a creative methodology to depict possible futures, resulting from existing decisions, based on different assumptions of future socio-economic development. They have been used in various disciplines and on various scales, such as flood risk and soil erosion. Several studies have simulated future scenarios of land use/cover changes at a very high success rate, however usually these approaches are tailor made for specific case study areas and fit to available data. This study presents a multi-step scenario generation framework, which can be transferable to other local scale case study areas, taking into account the case study specific consequences of land use/cover changes. Through the use of experts' and decision-makers' knowledge, we aimed to develop a framework with the following characteristics: (1) it enables development of scenarios that are plausible, (2) it can overcome data inaccessibility, (3) it can address intangible and external driving forces of land use/cover change, and (4) it ensures transferability to other local scale case study areas with different land use/cover change processes and consequences. To achieve this, a set of different methods is applied including: qualitative methods such as interviews, group discussions and fuzzy cognitive mapping to identify land use/cover change processes, their driving forces and possible consequences, and final scenario generation; and geospatial methods such as GIS, geostatistics and environmental modeling in an environment for geoprocessing objects (Dinamica EGO) for spatial allocation of these scenarios. The methods were applied in the Italian Alps and the Romanian Carpathians. Both are mountainous areas, however they differ in terms of past and most likely future socio-economic development, and therefore consequent land use/cover changes. Whereas we focused on urban expansion due to tourism development in the Alps, we focused on possible deforestation trajectories in the Carpathians. In both areas, the recognized most significant driving forces were either not covered by accessible data, or were characterized as intangible. With the proposed framework we were able to generate futures scenarios despite these shortcomings, and enabling the transferability of the method.
NASA Astrophysics Data System (ADS)
Inoue, Yoshio; Kiyono, Yoshiyuki; Asai, Hidetoshi; Ochiai, Yukihito; Qi, Jiaguo; Olioso, Albert; Shiraiwa, Tatsuhiko; Horie, Takeshi; Saito, Kazuki; Dounagsavanh, Linkham
2010-08-01
In the tropical mountains of Southeast Asia, slash-and-burn (S/B) agriculture is a widely practiced and important food production system. The ecosystem carbon stock in this land-use is linked not only to the carbon exchange with the atmosphere but also with food and resource security. The objective of this study was to provide quantitative information on the land-use and ecosystem carbon stock in the region as well as to infer the impacts of alternative land-use and ecosystem management scenarios on the carbon sequestration potential at a regional scale. The study area was selected in a typical slash-and-burn region in the northern part of Laos. The chrono-sequential changes of land-use such as the relative areas of community age and cropping (C) + fallow (F) patterns were derived from the analysis of time-series satellite images. The chrono-sequential analysis showed that a consistent increase of S/B area during the past three decades and a rapid increase after 1990. Approximately 37% of the whole area was with the community age of 1-5 years, whereas 10% for 6-10 years in 2004. The ecosystem carbon stock at a regional scale was estimated by synthesizing the land-use patterns and semi-empirical carbon stock model derived from in situ measurements where the community age was used as a clue to the linkage. The ecosystem carbon stock in the region was strongly affected by the land-use patterns; the temporal average of carbon stock in 1C + 10F cycles, for example, was greater by 33 MgC ha -1 compared to that in 1C + 2F land-use pattern. The amount of carbon lost from the regional ecosystems during 1990-2004 periods was estimated to be 42 MgC ha -1. The study approach proved to be useful especially in such regions with low data-availability and accessibility. This study revealed the dynamic change of land-use and ecosystem carbon stock in the tropical mountain of Laos as affected by land-use. Results suggest the significant potential of carbon sequestration through changing land-use and ecosystem management scenarios. These quantitative estimates would be useful to better understand and manage the land-use and ecosystem carbon stock towards higher sustainability and food security in similar ecosystems.
NASA Technical Reports Server (NTRS)
Quattrochi, D. A.; Anderson, J. E.; Brannon, D. P.; Hill, C. L.
1982-01-01
An initial analysis of LANDSAT 4 thematic mapper (TM) data for the delineation and classification of agricultural, forested wetland, and urban land covers was conducted. A study area in Poinsett County, Arkansas was used to evaluate a classification of agricultural lands derived from multitemporal LANDSAT multispectral scanner (MSS) data in comparison with a classification of TM data for the same area. Data over Reelfoot Lake in northwestern Tennessee were utilized to evaluate the TM for delineating forested wetland species. A classification of the study area was assessed for accuracy in discriminating five forested wetland categories. Finally, the TM data were used to identify urban features within a small city. A computer generated classification of Union City, Tennessee was analyzed for accuracy in delineating urban land covers. An evaluation of digitally enhanced TM data using principal components analysis to facilitate photointerpretation of urban features was also performed.
The evaluation of alternate methodologies for land cover classification in an urbanizing area
NASA Technical Reports Server (NTRS)
Smekofski, R. M.
1981-01-01
The usefulness of LANDSAT in classifying land cover and in identifying and classifying land use change was investigated using an urbanizing area as the study area. The question of what was the best technique for classification was the primary focus of the study. The many computer-assisted techniques available to analyze LANDSAT data were evaluated. Techniques of statistical training (polygons from CRT, unsupervised clustering, polygons from digitizer and binary masks) were tested with minimum distance to the mean, maximum likelihood and canonical analysis with minimum distance to the mean classifiers. The twelve output images were compared to photointerpreted samples, ground verified samples and a current land use data base. Results indicate that for a reconnaissance inventory, the unsupervised training with canonical analysis-minimum distance classifier is the most efficient. If more detailed ground truth and ground verification is available, the polygons from the digitizer training with the canonical analysis minimum distance is more accurate.
Tian, Xiaohai; Huang, Yongping; Huang, Zhimin; Lei, Weici; Higata, Shugo
2003-10-01
The searching for a proper land reclamation and utilization method adapted to the regional natural conditions and economical level is a prime subject in the waterlogged area of Southern China. Choosing a dish-like micro-zone, one of the typical waterlogged areas deprived from a reclaimed lake as the studying region, its biophysical characteristics and developmental models was investigated, aiming at making a comprehensive development plan to this area. The results showed that with the successive change in altitude across the sector of the land, the soil type, soil profile structure, underground water level, and soil temperature were characterized by five step divergence steps. The analysis on the site and area of the individual divergences showed that the low land was unsuitable for rice planting, and the land between upland and paddy should be increased for rotation and needed to be reclaimed better. After an engineering consolidation to the land, the original five divergence steps were rehabilitated into four steps, and a utilization model of "development in a step way" focused on comprehensively agricultural development and improvement in farming systems was developed, which leaded to a great advance in economic profit of this area.
Rural land-use trends in the conterminous United States, 1950-2000
Brown, Daniel G.; Johnson, Kenneth M.; Loveland, Thomas R.; Theobald, David M.
2005-01-01
In order to understand the magnitude, direction, and geographic distribution of land-use changes, we evaluated land-use trends in U.S. counties during the latter half of the 20th century. Our paper synthesizes the dominant spatial and temporal trends in population, agriculture, and urbanized land uses, using a variety of data sources and an ecoregion classification as a frame of reference. A combination of increasing attractiveness of nonmetropolitan areas in the period 1970–2000, decreasing household size, and decreasing density of settlement has resulted in important trends in the patterns of developed land. By 2000, the area of low-density, exurban development beyond the urban fringe occupied nearly 15 times the area of higher density urbanized development. Efficiency gains, mechanization, and agglomeration of agricultural concerns has resulted in data that show cropland area to be stable throughout the Corn Belt and parts of the West between 1950 and 2000, but decreasing by about 22% east of the Mississippi River. We use a regional case study of the Mid-Atlantic and Southeastern regions to focus in more detail on the land-cover changes resulting from these dynamics. Dominating were land-cover changes associated with the timber practices in the forested plains ecoregions and urbanization in the piedmont ecoregions. Appalachian ecoregions show the slowest rates of land-cover change. The dominant trends of tremendous exurban growth, throughout the United States, and conversion and abandonment of agricultural lands, especially in the eastern United States, have important implications because they affect large areas of the country, the functioning of ecological systems, and the potential for restoration.
Lowry, J.; Ramsey, R.D.; Thomas, K.; Schrupp, D.; Sajwaj, T.; Kirby, J.; Waller, E.; Schrader, S.; Falzarano, S.; Langs, L.; Manis, G.; Wallace, C.; Schulz, K.; Comer, P.; Pohs, K.; Rieth, W.; Velasquez, C.; Wolk, B.; Kepner, W.; Boykin, K.; O'Brien, L.; Bradford, D.; Thompson, B.; Prior-Magee, J.
2007-01-01
Land-cover mapping efforts within the USGS Gap Analysis Program have traditionally been state-centered; each state having the responsibility of implementing a project design for the geographic area within their state boundaries. The Southwest Regional Gap Analysis Project (SWReGAP) was the first formal GAP project designed at a regional, multi-state scale. The project area comprises the southwestern states of Arizona, Colorado, Nevada, New Mexico, and Utah. The land-cover map/dataset was generated using regionally consistent geospatial data (Landsat ETM+ imagery (1999-2001) and DEM derivatives), similar field data collection protocols, a standardized land-cover legend, and a common modeling approach (decision tree classifier). Partitioning of mapping responsibilities amongst the five collaborating states was organized around ecoregion-based "mapping zones". Over the course of 21/2 field seasons approximately 93,000 reference samples were collected directly, or obtained from other contemporary projects, for the land-cover modeling effort. The final map was made public in 2004 and contains 125 land-cover classes. An internal validation of 85 of the classes, representing 91% of the land area was performed. Agreement between withheld samples and the validated dataset was 61% (KHAT = .60, n = 17,030). This paper presents an overview of the methodologies used to create the regional land-cover dataset and highlights issues associated with large-area mapping within a coordinated, multi-institutional management framework. ?? 2006 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The objectives of the Human Health Exposure Assessment include: (1) estimate the type and magnitude of exposures to contaminants; (2) Identify contaminants of concern; (3) Identify sites for remedial action; (4) Recommend sites for the no action remedial alternative; and (5) Provide a basis for detailed characterization of the risk associated with all sites. This document consists of the following: An executive summary. Vol I - Land use and exposed population evaluations. Vol. II III - Toxicity assessment (includes army and shell toxicity profiles). Vol. IV - PPLV Methodology. Vol. V - PPLV Calculations. Vol. VI - Study area exposuremore » analysis A introduction, B Western study ares, C Southern study area, D northern Central study area, E Central study area, F Eastern study area, G South plants study area, and H North plants study area. Vol. VII - Summary exposure assessment.« less
Xie, Jin; Li, Zhao-Li; Li, Yong-Mei; Guo, Fang-Fang
2011-12-01
Eighty-six topsoil (0-20 cm) samples were collected from 8 land use types (natural forest land, maize field, tea garden, paddy field, rubber plantation, flax field, banana plantation, and sugarcane field) in the Naban River Watershed National Nature Reserve and its surrounding areas, and the soil physical and chemical properties were analyzed, aimed to study the effects of land use type on the soil quality by the method of soil quality index (SQI). Comparing with natural forest land, all the cultivated lands had somewhat decreased soil organic matter content and higher soil bulk density, and the soil bulk density was significantly higher in tea garden, paddy field, rubber plantation, and banana plantation. In cultivated lands, fertilization and reclamation made the soil available potassium and phosphorus contents maintained at a higher level, probably due to the input of mineral potassium and phosphorus and the decomposition of soil organic matter. The SQI of the 8 land use types was in the order of flax field (0.595) > natural forest land (0.532) > maize field (0.516) > banana plantation (0.485) tea garden (0.480) sugarcane field (0.463) > paddy field (0.416) > rubber plantation (0.362). The soils in higher altitude production demonstration areas (1614 +/-115 m) had significant higher SQI, compared to the soils in lower altitude buffer areas (908 +/- 98 m) and junction areas (926 +/- 131 m). Among the 8 land use types, the rubber plantation in lower altitude areas had the lowest SQI, due to the lower soil organic matter and available potassium and phosphorus contents and the highest soil bulk density. Application of organic manure or intercropping with leguminous plants could be an available practice to improve the soil quality of the rubber plantation.
Effects of land management strategies on the dispersal pattern of a beneficial arthropod.
Marchi, Chiara; Andersen, Liselotte Wesley; Loeschcke, Volker
2013-01-01
Several arthropods are known to be highly beneficial to agricultural production. Consequently it is of great relevance to study the importance of land management and land composition for the conservation of beneficial aphid-predator arthropod species in agricultural areas. Therefore our study focusing on the beneficial arthropod Bembidion lampros had two main purposes: I) identifying the physical barriers to the species' dispersal in the agricultural landscape, and II) assessing the effect of different land management strategies (i.e. use of pesticides and intensiveness) on the dispersal patterns. The study was conducted using genetic analysis (microsatellite markers) applied to samples from two agricultural areas (in Denmark) with different agricultural intensity. Land management effects on dispersal patterns were investigated with particular focus on: physical barriers, use of pesticide and intensity of cultivation. The results showed that Bembidion lampros disperse preferably through hedges rather than fields, which act as physical barriers to gene flow. Moreover the results support the hypothesis that organic fields act as reservoirs for the re-colonization of conventional fields, but only when cultivation intensity is low. These results show the importance of non-cultivated areas and of low intensity organic managed areas within the agricultural landscape as corridors for dispersal (also for a species typically found within fields). Hence, the hypothesis that pesticide use cannot be used as the sole predictor of agriculture's effect on wild species is supported as land structure and agricultural intensity can be just as important.
Comparison Between AQUARIUS and SMOS brightness temperatures for Heterogeneous Land Areas
NASA Astrophysics Data System (ADS)
Benlloch, Amparo; Lopez-Baeza, Ernesto; Tenjo, Carolina; Navarro, Enrique
2016-07-01
Intercomparison between Aquarius and SMOS brightness temperatures (TBs) over land surfaces is more challenging than over oceans because land footprints are more heterogeneous. In this work we are comparing Aquarius and SMOS TBs under coherente conditions obtained both by considering similar areas, according to land uses and by stratifying by means of TVDI (Temperature Vegetation Dryness Index) that accounts for the dynamics of the vegetation instead of assuming static characteristics as in the previous approches. The area of study was chosen in central Spain where we could get a significant number of matches between both instruments. The study period corresponded to 2012-2014. SMOS level-3 data were obtained from the Centre Aval de Traitement des Données SMOS (CATDS) and Aquarius' from the Physical Oceanography Distributed Active Archive Center (PODAAC). Land uses were obtained from the Spanish SIOSE facility (Sistema de Informacion de Ocupacion del Suelo en España) that uses a scale of 1:25.000 and polygon geometrical structure layer. SIOSE is based on panchromatic and multispectral 2.5 m resolution SPOT-5 images together with Landsat-5 images and orthophotos from the Spanish Nacional Plan of Aerial Orthophotography (PNOA). TVDI values were obtained from MODIS operational products of land surface temperature and NDVI. SMOS ascending TBs were compared to inner-beam Aquarius descending half-orbit TBs coinciding over the study area at 06:00 h. The Aquarius inner beam has an incidence angle of 28,7º and SMOS data were considered for the 27,5º incidence angle. The SMOS products corresponded to version 2.6x (data before 31st Oct 2013) and version 2.7x (data after 1st Jan 2014). Intersections between both footprints were analysed under conditions of similar areas, land uses and TVDI values. For the latter (land uses/TVDI), a linear combination of SMOS land uses/TVDI was obtained to match the larger Aquarius footprint. A more physical approach is also under way including the Aquarius antenna pattern in the aggregation of the SMOS data.
NASA Astrophysics Data System (ADS)
Tomczyk, Aleksandra; Ewertowski, Marek
2014-05-01
The importance of conserving the natural environment has been known for a long time. It can be fulfilled by designation of protected areas as well as proper management of broader landscapes. During past two decades, conservation has shifted from a predominantly species- and habitat-focus to a more holistic "ecosystem approach" with an emphasis on "ecosystem services", which underpin the benefits which society can obtain (directly or indirectly) from ecosystems. This study aims to investigate and compare existing land use prioritization models and to develop new GIS-based frameworks for analysis for different spatial scales. Research were carried out in several conservation areas in UK and Poland. Main focus was on regulating (including regulation of soil erosion and landslide susceptibility) and recreation services. A new GIS-based model was developed which enabled to analysis of this services. Different spatial scales, ranging from whole conservation areas to single catchments were chosen for mapping and quantifying. Based on different scenarios three sets of ecosystem services were calculated. Data contained specific land-cover/land-use resulting from the different strategy of the natural conservation for each of the study sites. Modelling was carried out based on the trends identified on the basis of past changes in land-use/land-cover (based on analysis of time-series satellite images), and the probability of a particular class of land-use/land-cover for the chosen scenario. Comparison between results revealed ecosystem service tradeoffs (when the obtaining of one service results in the reducing of another service) and synergies (when multiple services can be provides simultaneously). Results of the study shows where (and under which condition): (1) conservation areas can accommodate more visitors and in the same time provide regulation of soil erosion and protection against landslide developments, (2) further development of recreation services will lead to inevitable degradation of environment. Based on these results several further activities were proposed: from changing of conservation strategy for some part of the areas to changing of the land cover/land use.
Sesli, Faik Ahmet; Karsli, Fevzi; Colkesen, Ismail; Akyol, Nihat
2009-06-01
Coastline mapping and coastline change detection are critical issues for safe navigation, coastal resource management, coastal environmental protection, and sustainable coastal development and planning. Changes in the shape of coastline may fundamentally affect the environment of the coastal zone. This may be caused by natural processes and/or human activities. Over the past 30 years, the coastal sites in Turkey have been under an intensive restraint associated with a population press due to the internal and external touristic demand. In addition, urbanization on the filled up areas, settlements, and the highways constructed to overcome the traffic problems and the other applications in the coastal region clearly confirm an intensive restraint. Aerial photos with medium spatial resolution and high resolution satellite imagery are ideal data sources for mapping coastal land use and monitoring their changes for a large area. This study introduces an efficient method to monitor coastline and coastal land use changes using time series aerial photos (1973 and 2002) and satellite imagery (2005) covering the same geographical area. Results show the effectiveness of the use of digital photogrammetry and remote sensing data on monitoring large area of coastal land use status. This study also showed that over 161 ha areas were filled up in the research area and along the coastal land 12.2 ha of coastal erosion is determined for the period of 1973 to 2005. Consequently, monitoring of coastal land use is thus necessary for coastal area planning in order to protecting the coastal areas from climate changes and other coastal processes.
Razali, Sheriza Mohd; Marin, Arnaldo; Nuruddin, Ahmad Ainuddin; Shafri, Helmi Zulhaidi Mohd; Hamid, Hazandy Abdul
2014-01-01
Various classification methods have been applied for low resolution of the entire Earth's surface from recorded satellite images, but insufficient study has determined which method, for which satellite data, is economically viable for tropical forest land use mapping. This study employed Iterative Self Organizing Data Analysis Techniques (ISODATA) and K-Means classification techniques to classified Moderate Resolution Imaging Spectroradiometer (MODIS) Surface Reflectance satellite image into forests, oil palm groves, rubber plantations, mixed horticulture, mixed oil palm and rubber and mixed forest and rubber. Even though frequent cloud cover has been a challenge for mapping tropical forests, our MODIS land use classification map found that 2008 ISODATA-1 performed well with overall accuracy of 94%, with the highest Producer's Accuracy of Forest with 86%, and were consistent with MODIS Land Cover 2008 (MOD12Q1), respectively. The MODIS land use classification was able to distinguish young oil palm groves from open areas, rubber and mature oil palm plantations, on the Advanced Land Observing Satellite (ALOS) map, whereas rubber was more easily distinguished from an open area than from mixed rubber and forest. This study provides insight on the potential for integrating regional databases and temporal MODIS data, in order to map land use in tropical forest regions. PMID:24811079
Razali, Sheriza Mohd; Marin, Arnaldo; Nuruddin, Ahmad Ainuddin; Shafri, Helmi Zulhaidi Mohd; Hamid, Hazandy Abdul
2014-05-07
Various classification methods have been applied for low resolution of the entire Earth's surface from recorded satellite images, but insufficient study has determined which method, for which satellite data, is economically viable for tropical forest land use mapping. This study employed Iterative Self Organizing Data Analysis Techniques (ISODATA) and K-Means classification techniques to classified Moderate Resolution Imaging Spectroradiometer (MODIS) Surface Reflectance satellite image into forests, oil palm groves, rubber plantations, mixed horticulture, mixed oil palm and rubber and mixed forest and rubber. Even though frequent cloud cover has been a challenge for mapping tropical forests, our MODIS land use classification map found that 2008 ISODATA-1 performed well with overall accuracy of 94%, with the highest Producer's Accuracy of Forest with 86%, and were consistent with MODIS Land Cover 2008 (MOD12Q1), respectively. The MODIS land use classification was able to distinguish young oil palm groves from open areas, rubber and mature oil palm plantations, on the Advanced Land Observing Satellite (ALOS) map, whereas rubber was more easily distinguished from an open area than from mixed rubber and forest. This study provides insight on the potential for integrating regional databases and temporal MODIS data, in order to map land use in tropical forest regions.
Terrain classification and land hazard mapping in Kalsi-Chakrata area (Garhwal Himalaya), India
NASA Astrophysics Data System (ADS)
Choubey, Vishnu D.; Litoria, Pradeep K.
Terrain classification and land system mapping of a part of the Garhwal Himalaya (India) have been used to provide a base map for land hazard evaluation, with special reference to landslides and other mass movements. The study was based on MSS images, aerial photographs and 1:50,000 scale maps, followed by detailed field-work. The area is composed of two groups of rocks: well exposed sedimentary Precambrian formations in the Himalayan Main Boundary Thrust Belt and the Tertiary molasse deposits of the Siwaliks. Major tectonic boundaries were taken as the natural boundaries of land systems. A physiographic terrain classification included slope category, forest cover, occurrence of landslides, seismicity and tectonic activity in the area.
NASA Astrophysics Data System (ADS)
Zhao, Q.; Zhan, S.; Kuai, X.; Zhan, Q.
2015-12-01
The goal of this research is to combine DMSP-OLS nighttime light data with Landsat imagery and use spatio-temporal analysis methods to evaluate the relationships between urbanization processes and temperature variation in Phoenix metropolitan area. The urbanization process is a combination of both land use change within the existing urban environment as well as urban sprawl that enlarges the urban area through the transformation of rural areas to urban structures. These transformations modify the overall urban climate environment, resulting in higher nighttime temperatures in urban areas compared to the surrounding rural environment. This is a well-known and well-studied phenomenon referred to as the urban heat island effect (UHI). What is unknown is the direct relationship between the urbanization process and the mechanisms of the UHI. To better understand this interaction, this research focuses on using nighttime light satellite imagery to delineate and detect urban extent changes and utilizing existing land use/land cover map or newly classified imagery from Landsat to analyze the internal urban land use variations. These data are combined with summer and winter land surface temperature data extracted from Landsat. We developed a time series of these combined data for Phoenix, AZ from 1992 to 2013 to analyze the relationships among land use change, land surface temperature and urban growth.
NASA Astrophysics Data System (ADS)
Hu, Wenmin; Wang, Zhongcheng; Li, Chunhua; Zhao, Jin; Li, Yi
2018-02-01
Multi-source remote sensing data is rarely used for the comprehensive assessment of land ecologic environment quality. In this study, a digital environmental model was proposed with the inversion algorithm of land and environmental factors based on the multi-source remote sensing data, and a comprehensive index (Ecoindex) was applied to reconstruct and predict the land environment quality of the Dongting Lake Area to assess the effect of human activities on the environment. The main finding was that with the decrease of Grade I and Grade II quality had a decreasing tendency in the lake area, mostly in suburbs and wetlands. Atmospheric water vapour, land use intensity, surface temperature, vegetation coverage, and soil water content were the main driving factors. The cause of degradation was the interference of multi-factor combinations, which led to positive and negative environmental agglomeration effects. Positive agglomeration, such as increased rainfall and vegetation coverage and reduced land use intensity, could increase environmental quality, while negative agglomeration resulted in the opposite. Therefore, reasonable ecological restoration measures should be beneficial to limit the negative effects and decreasing tendency, improve the land ecological environment quality and provide references for macroscopic planning by the government.
Wu, Shan-Shan; Yang, Hao; Guo, Fei; Han, Rui-Ming
2017-02-15
Multivariate statistical analyses combined with geographically weighted regression (GWR) were used to identify spatial variations of heavy metals in sediments and to examine relationships between metal pollution and land use practices in watersheds, including urban land, agriculture land, forest and water bodies. Seven metals (Cu, Zn, Pb, Cr, Ni, Mn and Fe) of sediments were measured at 31 sampling sites in Sheyang River. Most metals were under a certain degree enrichment based on the enrichment factors. Cluster analysis grouped all sites into four statistically significant cluster, severely contaminated areas were concentrated in areas with intensive human activities. Correlation analysis and PCA indicated Cu, Zn and Pb were derived from anthropogenic activities, while the sources of Cr and Ni were complicated. However, Fe and Mn originated from natural sources. According to results of GWR, there are stronger association between metal pollution with urban land than agricultural land and forest. Moreover, the relationships between land use and metal concentration were affected by the urbanization level of watersheds. Agricultural land had a weak associated with heavy metal pollution and the relationships might be stronger in less-urbanized. This study provided useful information for the assessment and management of heavy metal hazards in studied area. Copyright © 2016 Elsevier B.V. All rights reserved.
Determination of mangrove change in Matang Mangrove Forest using multi temporal satellite imageries
NASA Astrophysics Data System (ADS)
Ibrahim, N. A.; Mustapha, M. A.; Lihan, T.; Ghaffar, M. A.
2013-11-01
Mangrove protects shorelines from damaging storm and hurricane winds, waves, and floods. Mangroves also help prevent erosion by stabilizing sediments with their tangled root systems. They maintain water quality and clarity, filtering pollutants and trapping sediments originating from land. However, mangrove has been reported to be threatened by land conversion for other activities. In this study, land use and land cover changes in Matang Mangrove Forest during the past 18 years (1993 to 2011) were determined using multi-temporal satellite imageries by Landsat TM and RapidEye. In this study, classification of land use and land cover approach was performed using the maximum likelihood classifier (MCL) method along with vegetation index differencing (NDVI) technique. Data obtained was evaluated through Kappa coefficient calculation for accuracy and results revealed that the classification accuracy was 81.25% with Kappa Statistics of 0.78. The results indicated changes in mangrove forest area to water body with 2,490.6 ha, aquaculture with 890.7 ha, horticulture with 1,646.1 ha, palm oil areas with 1,959.2 ha, dry land forest with 2,906.7 ha and urban settlement area with 224.1 ha. Combinations of these approaches were useful for change detection and for indication of the nature of these changes.
Yang, Guang; Xue, Lianqing; He, Xinlin; Wang, Cui; Long, Aihua
2017-12-19
Widespread application of water-saving measures, especially advanced drip irrigation technologies, may significantly impact on the land use, and further potentially alter regional ecological environments in an arid area. In this study, the remote sensing and geographic information system technology were used to analyze the LANDSAT images (1976-2015) and the MOD16 evapotranspiration data (2000-2015) in the Manas River Basin (MRB), China where the water-saving technologies have experienced the past 40 years. Our results show that the area of the cultivated land was approximately doubled from 1976 to 2015 with a dynamic degree of cultivated land ranging from 1.7% to 4%. The reclamation rates were estimated at 9.5% in 1976 and 21.8% in 2015 and the comprehensive index of land use degree shows an increasing trend in the MRB. The evapotranspiration in the MRB suggests that the cultivated land is becoming more humid while the other regions are becoming more arid. Long-term change in the land use is mainly promoted due to the multiple years' efforts on development of the water-saving technologies. This study greatly improves our understanding of the interactions between change in ecological environments and human activities and may provide policy makers guidance of sustainable development at an arid area.
Influence of land use on the quantity and quality of runoff along Israel's coastal strip
NASA Astrophysics Data System (ADS)
Goldshleger, Naftaly; Asaf, Lior; Maor, Alon; Garzuzi, Jamil Jamil
2013-04-01
This study presents an analysis of the quantity and quality of urban runoff from various land uses by remote-sensing and GIS technology coupled with hydrological and chemical monitoring. The study areas were located in the cities of Herzliya and Ra'anana, in Israel's coastal plain, where extensive urbanization has taken place over the last 30 years. Land uses in urban basins were analyzed; rain and runoff were measured and sampled at measurement stations representing different land uses (residential, industrial, commercial, roads, gas station). The aim was to analyze land uses by different remote-sensing and GIS techniques, to evaluate the quality and quantity of urban storm water from various land uses, and to verify a method for predicting the impact of urban land uses on quantity and quality of urban storm water. The quality of urban storm water from residential areas was generally very high, and the water is suitable for reuse or direct recharge into the local aquifer. In light of the serious state of the Israeli water sector and the large amounts of unused runoff produced by Israel's cities, together with the high quality of urban storm water drained from the residential areas, it is important to exploit this water source
Geochemical sampling in arid environments by the U.S. Geological Survey
Hinkle, Margaret E.
1988-01-01
The U.S. Geological Survey (USGS) is responsible for the geochemical evaluations used for mineral resource assessments of large tracts of public lands in the Western United States. Many of these lands are administered by the Bureau of Land Management (BLM) and are studied to determine their suitability or nonsuitability for wilderness designation. Much of the Western United States is arid or semiarid. This report discusses various geochemical sample media that have been used for evaluating areas in arid environments and describes case histories in BLM wilderness study areas in which stream-sediment and heavy-mineral-concentrate sample media were compared. As a result of these case history studies, the nonmagnetic fraction of panned heavy-mineral concentrates was selected as the most effective medium for reconnaissance geochemical sampling for resources other than gold, in arid areas. Nonmagnetic heavy-mineral-concentrate samples provide the primary analytical information currently used in geochemical interpretations of mineral resource potential assessment of BLM lands.
Post-Landing Orion Crew Survival in Warm Ocean Areas: A Case Study in Iterative Environmental Design
NASA Technical Reports Server (NTRS)
Rains, George E.; Bue, Grant C.; Pantermuehl, Jerry
2008-01-01
The Orion crew module (CM) is being designed to perform survivable land and water landings. There are many issues associated with post-landing crew survival. In general, the most challenging of the realistic Orion landing scenarios from an environmental control standpoint is the off-nominal water landing. Available power and other consumables will be very limited after landing, and it may not be possible to provide full environmental control within the crew cabin for very long after splashdown. Given the bulk and thermal insulation characteristics of the crew-worn pressure suits, landing in a warm tropical ocean area would pose a risk to crew survival from elevated core body temperatures, if for some reason the crewmembers were not able to remove their suits and/or exit the vehicle. This paper summarizes the analyses performed and conclusions reached regarding post-landing crew survival following a water landing, from the standpoint of the crew s core body temperatures.
Wang, Zhanqi; Zhang, Hongwei
2017-01-01
As land resources and ecosystems provide necessary materials and conditions for human development, land use change and ecological security play increasingly important roles in sustainable development. This study aims to reveal the mutual-influence and interaction between land use change and ecological security in Wuhan, based on the coupling coordination degree model. As such, it provides strategies for the achievement of the synchronous and coordinated development of urbanization and ecological security. The results showed that, during the period from 2006 to 2012, the size of built-up area in Wuhan increased to 26.16%, and that all the other types of land use reduced due to the urbanization process, which appeared to be the main driving force of land use change. The ecological security in Wuhan has been improving as a whole although it was somewhat held back from 2006 to 2008 due to the rapid growth of built-up area. The coupling coordination analysis revealed that the relationship between built-up area and ecological security was more coordinated after 2008. The results can provide feasible recommendations for land use management and environmental protection from the viewpoint of coordinated development. To achieve sustainable development from economic and ecological perspective, policy makers should control the rate of urban expansion and exert more effort on intensive land use, clean energy development and emission reduction. PMID:29165365
Chai, Ji; Wang, Zhanqi; Zhang, Hongwei
2017-11-22
As land resources and ecosystems provide necessary materials and conditions for human development, land use change and ecological security play increasingly important roles in sustainable development. This study aims to reveal the mutual-influence and interaction between land use change and ecological security in Wuhan, based on the coupling coordination degree model. As such, it provides strategies for the achievement of the synchronous and coordinated development of urbanization and ecological security. The results showed that, during the period from 2006 to 2012, the size of built-up area in Wuhan increased to 26.16%, and that all the other types of land use reduced due to the urbanization process, which appeared to be the main driving force of land use change. The ecological security in Wuhan has been improving as a whole although it was somewhat held back from 2006 to 2008 due to the rapid growth of built-up area. The coupling coordination analysis revealed that the relationship between built-up area and ecological security was more coordinated after 2008. The results can provide feasible recommendations for land use management and environmental protection from the viewpoint of coordinated development. To achieve sustainable development from economic and ecological perspective, policy makers should control the rate of urban expansion and exert more effort on intensive land use, clean energy development and emission reduction.
A zone-based approach to identifying urban land uses using nationally-available data
NASA Astrophysics Data System (ADS)
Falcone, James A.
Accurate identification of urban land use is essential for many applications in environmental study, ecological assessment, and urban planning, among other fields. However, because physical surfaces of land cover types are not necessarily related to their use and economic function, differentiating among thematically-detailed urban land uses (single-family residential, multi-family residential, commercial, industrial, etc.) using remotely-sensed imagery is a challenging task, particularly over large areas. Because the process requires an interpretation of tone/color, size, shape, pattern, and neighborhood association elements within a scene, it has traditionally been accomplished via manual interpretation of aerial photography or high-resolution satellite imagery. Although success has been achieved for localized areas using various automated techniques based on high-spatial or high-spectral resolution data, few detailed (Anderson Level II equivalent or greater) urban land use mapping products have successfully been created via automated means for broad (multi-county or larger) areas, and no such product exists today for the United States. In this study I argue that by employing a zone-based approach it is feasible to map thematically-detailed urban land use classes over large areas using appropriate combinations of non-image based predictor data which are nationally and publicly available. The approach presented here uses U.S. Census block groups as the basic unit of geography, and predicts the percent of each of ten land use types---nine of them urban---for each block group based on a number of data sources, to include census data, nationally-available point locations of features from the USGS Geographic Names Information System, historical land cover, and metrics which characterize spatial pattern, context (e.g. distance to city centers or other features), and measures of spatial autocorrelation. The method was demonstrated over a four-county area surrounding the city of Boston. A generalized version of the method (six land use classes) was also developed and cross-validated among additional geographic settings: Atlanta, Los Angeles, and Providence. The results suggest that even with the thematically-detailed ten-class structure, it is feasible to map most urban land uses with reasonable accuracy at the block group scale, and results improve with class aggregation. When classified by predicted majority land use, 79% of block groups correctly matched the actual majority land use with the ten-class models. Six-class models typically performed well for the geographic area they were developed from, however models had mixed performance when transported to other geographic settings. Contextual variables, which characterized a block group's spatial relationship to city centers, transportation routes, and other amenities, were consistently strong predictors of most land uses, a result which corresponds to classic urban land use theory. The method and metrics derived here provide a prototype for mapping urban land uses from readily-available data over broader geographic areas than is generally practiced today using current image-based solutions.
Xu, Yueqing; McNamara, Paul; Wu, Yanfang; Dong, Yue
2013-10-15
Arable land in China has been decreasing as a result of rapid population growth and economic development as well as urban expansion, especially in developed regions around cities where quality farmland quickly disappears. This paper analyzed changes in arable land utilization during 1993-2008 in the Pinggu district, Beijing, China, developed a multinomial logit (MNL) model to determine spatial driving factors influencing arable land-use change, and simulated arable land transition probabilities. Land-use maps, as well as social-economic and geographical data were used in the study. The results indicated that arable land decreased significantly between 1993 and 2008. Lost arable land shifted into orchard, forestland, settlement, and transportation land. Significant differences existed for arable land transitions among different landform areas. Slope, elevation, population density, urbanization rate, distance to settlements, and distance to roadways were strong drivers influencing arable land transition to other uses. The MNL model was proved effective for predicting transition probabilities in land use from arable land to other land-use types, thus can be used for scenario analysis to develop land-use policies and land-management measures in this metropolitan area. Copyright © 2013 Elsevier Ltd. All rights reserved.
Urban vacant land typology: A tool for managing urban vacant land
Gunwoo Kim; Patrick A. Miller; David J. Nowak
2018-01-01
A typology of urban vacant land was developed, using Roanoke, Virginia, as the study area. A comprehensive literature review, field measurements and observations, including photographs, and quantitative based approach to assessing vacant land forest structure and values (i-Tree Eco sampling) were utilized, along with aerial photo interpretation, and ground-truthing...
NASA Astrophysics Data System (ADS)
Hävermark, Saga; Santos Ferreira, Carla Sofia; Kalantari, Zahra; Di Baldassarre, Giuliano
2016-04-01
Many river basis around the world are rapidly changing together with societal development. Such developments may involve changes in land use, which in turn affect the surrounding environment in various ways. Since the start of industrialisation, the urban areas have extended worldwide. Urbanization can influence hydrological processes by decreasing evapotranspiration, infiltration and groundwater recharge as well as increasing runoff and overland flow. It is therefore of uttermost importance to understand the relationship between land use and hydrology. Although several studies have been investigating the impacts of urbanization on streamflow over the last decades, less is known on how urbanization affects hydrological processes in peri-urban areas, characterized by a complex mosaic of different land uses. This study aimed to model the impact of land use changes, specifically urbanization and commercial forest plantation, on the hydrological responses of the small Ribeira dos Covões peri-urban catchment (6,2 km2) located in central Portugal. The catchment has undergone rapid land use changes between 1958 and 2012 associated with the conversion of agricultural fields (cover area decreased from 48% to 4%) into woodland and urban areas, which increased from 44% to 56% and from 8% to 40%, respectively. For the study, the fully-distributed, physically-based modelling system MIKE SHE was used. The model was designed to examine both how past land use changes might have affected the streamflow and to investigate the impacts on hydrology of possible future scenarios, including a 50 %, 60 % and 70 % urban cover. To this end, a variety of data including daily rainfall since 1958 and forward, daily potential evapotranspiration from 2009 to 2013, monthly temperature averages from 1971 to 2013, land use for the years 1958, 1973, 1979, 1990, 1995, 2002, 2007 and 2012, streamflow from the hydrological years 2008 to 2013, catchment topography and soil types were used. The model was calibrated for the hydrological years 2008 to 2010 and validated for the three following years using streamflow data. The impact of future land use changes was analysed by investigating the impact of the size and location of the urban areas within the catchment. Modelling results are expected to support the decision making process in planning and developing new urban areas.
NASA Astrophysics Data System (ADS)
Deguchi, T.; Rokugawa, S.; Matsushima, J.
2009-04-01
InSAR is an application technique of synthetic aperture radars and is now drawing attention as a methodology capable of measuring subtle surface deformation over a wide area with a high spatial resolution. In this study, the authors applied the method of measuring long-term land subsidence by combining InSAR and time series analysis to Kanto Plains of Japan using 28 images of ENVISAT/ASAR data. In this measuring method, the value of land deformation is set as an unknown parameter and the optimal solution to the land deformation amount is derived by applying a smoothness-constrained inversion algorithm. The vicinity of the Kanto Plain started to subside in the 1910s, and became exposed to extreme land subsidence supposedly in accordance with the reconstruction efforts after the Second World War and the economic development activities. The main causes of the land subsidence include the intake of underground water for the use in industries, agriculture, waterworks, and other fields. In the Kujukuri area, the exploitation of soluble natural gas also counts. The Ministry of Environment reported in its documents created in fiscal 2006 that a total of 214 km2 in Tokyo and the six prefectures around the Plain had undergone a subsidence of 1 cm or more per a year. As a result of long-term land subsidence over approximately five and a half years from 13th January, 2003, to 30th June, 2008, unambiguous land deformation was detected in six areas: (i) Haneda Airport, (ii) Urayasu City, (iii) Kasukabe-Koshigaya, (iv) Southern Kanagawa, (v) Toride-Ryugasaki, and (vi) Kujukuri in Chiba Prefecture. In particular, the results for the Kujukuri area were compared with the leveling data taken around the same area to verify the measuring accuracy. The comparative study revealed that the regression formula between the results obtained by time series analysis and those by the leveling can be expressed as a straight line with a gradient of approximately 1, though including a bias of about 10 mm. Moreover, the correlation coefficient between the two methods demonstrates an extremely high correlation, exceeding 0.85. In conclusion, the spatial geometry of land deformation derived by time series analysis is found as mirroring the precise area of deformation captured by the leveling technique with a high accuracy.
NASA Astrophysics Data System (ADS)
Pereira, Paulo; Misiune, Ieva; Mierauskas, Pranas; Depellegrin, Daniel
2016-04-01
Stakeholders have an important impact on land use planning. Their visions and culture, shape and influence the decision makers and the legislation (Schwilch et al., 2009; Fleskens and Stringer, 2014; Pereira et al., 2016; Subiros et al., 2016). Nowadays, urban sprawl is one the causes of land degradation, causing important, environmental, social and economic problems. This expansion to rural areas is caused mainly by lifestyle changes, cultural views, increase of mobility, house price in city centers, poor air quality, noise, small apartments, unsafe environments, lack of green areas, competition among municipalities, development of transport network and social problems. Urban sprawl is currently an important problem in Lithuania, especially in Vilnius. Vilnius residents are concerned about the impacts of urban sprawl in environmental, social and economic aspects. Nevertheless, this depends very much on the age of and the occupation of the residents (Pereira et al., 2014). However, very little information is available about the vision of stakeholders regarding this position. The objective of this work is to study the stakeholder's perception about urban sprawl impacts on land degradation in Lithuania. A total of 86 stakeholders from different institutions were interviewed and asked to rate from 1 to 5 according to the importance of the question (1=very low; 2=low; 3=medium; 4=high and 5=very high). The questions carried out were. Does urban sprawl have impacts on a) consumption of land and soil, b) loss of soil permeability, c) loss of soil biodiversity, d) loss of best agricultural land, e) increase in the use of water and fertilizers in less productive areas, f) increase in soil erosion in remote areas, and g) loss of natural habitats. These variables were analyzed according to the gender, age, place of residence (urban/countryside), Profession, field of studies, study level and if the participant was a member of a NGO. A general regression was carried out in order to understand if the respondent's characteristics influenced the rates attributed to the questions raised. Regressions were considered significantly different at a p<0.05. The majority of the respondents were males and lives in urban areas. They work mainly on the environmental sector and protected areas, have a master degree, studied environmental and social sciences and are not members of an NGO. The variables that explained significantly the question "consumption of land and soil" were profession, study level and gender. Males working as researchers and hold a Phd diploma valued very much this question. The questions "loss of soil permeability and soil biodiversity" were explained significantly by the respondent's profession and study level. In this case researchers with a PhD rated very high this question. The question "loss of best agricultural land" was explained significantly by the profession and gender of the participants and the question "increase in soil erosion in remote areas" explained significantly only by the profession. Male farmers rated very high the question, "loss of best agricultural land" while engineers and researchers rated very high the second. The last question "loss of natural habitats" was explained significantly by the membership in an NGO. The members of NGO rated very high this question. None of the respondent's characteristics explained significantly the question, " increase in the use of water and fertilizers in less productive areas". Overall, the results show that professional occupation and education level have a high impact on the awareness about the impacts of urban sprawl in land degradation. References Fleskens, L., Stringer, L.C. (2014) Land management and policy responses to mitigate desertification and land degradation. Land Degradation and Development, 25, 1-4. Pereira, P., Mierauskas, P., Novara, A. (2016) Stakeholders perception about fire impact in Lithuanian protected areas. Land Degradation and Development,DOI: 10.1002/ldr.2290 Pereira, P., Monkevicius, A., Siarova, A. (2014) Public perception of environmental, social and economic impacts of urban sprawl in Vilnius. Societal Studies, 6, 259-290. Schwilch, G., Bachmann, F., Liniger, H.P. (2009) Appraising and selecting conservation measures to mitigate desertification and land degradation based on stakeholder participation and best practices. Land Degradation and Development, 20, 308-326. Subiros, J.V., Rodriguez-Carreras, R., Varga, D., Ribas, A., Ubeda, X., Aspero, F., Llausas, A., Outeiro, L. (2016) Stakeholders perceptions of landscape changes in the Mediterranean mointians of the North-Eastern Iberian Peninsula. Land Degradation and Development, DOI: 10.1002/ldr.2337
Potential of tourism and recreational postindustrial city (Radzionków GIS-based case study)
NASA Astrophysics Data System (ADS)
Ślesak, Barbara; Absalon, Damian; Pytel, Sławomir
2014-10-01
The paper presents an analysis of the land structure use in the town Radzionków. The study area, despite of the industrial past, distinguished by a large proportion of green areas: parks, forests, agricultural lands, recreational areas. The study shows how important is the role of shaping the image of the municipality as an interesting tourist, plays right policy and how important local municipal authorities may support use of local tourism resources through appropriate and targeted use of space (Municipal Development Plan).
Water quality of Cisadane River based on watershed segmentation
NASA Astrophysics Data System (ADS)
Effendi, Hefni; Ayu Permatasari, Prita; Muslimah, Sri; Mursalin
2018-05-01
The growth of population and industrialization combined with land development along river cause water pollution and environmental deterioration. Cisadane River is one of the river in Indonesia where urbanization, industrialization, and agricultural are extremely main sources of pollution. Cisadane River is an interesting case for investigating the effect of land use to water quality and comparing water quality in every river segment. The main objectives with this study were to examine if there is a correlation between land use and water quality in Cisadane River and there is a difference in water quality between the upstream section of Cisadane River compared with its downstream section. This study compared water quality with land use condition in each segment of river. Land use classification showed that river segment that has more undeveloped area has better water quality compared to river segment with developed area. in general, BOD and COD values have increased from upstream to downstream. However, BOD and COD values do not show a steady increase in each segment Water quality is closely related to the surrounding land use.Therefore, it can not be concluded that the water quality downstream is worse than in the upstream area.
NASA Astrophysics Data System (ADS)
Liu, Y. B.; Gebremeskel, S.; de Smedt, F.; Hoffmann, L.; Pfister, L.
2006-02-01
A method is presented to evaluate the storm runoff contributions from different land-use class areas within a river basin using the geographical information system-based hydrological model WetSpa. The modelling is based on division of the catchment into a grid mesh. Each cell has a unique response function independent of the functioning of other cells. Summation of the flow responses from the cells with the same land-use type results in the storm runoff contribution from these areas. The model was applied on the Steinsel catchment in the Alzette river basin, Grand Duchy of Luxembourg, with 52 months of meteo-hydrological measurements. The simulation results show that the direct runoff from urban areas is dominant for a flood event compared with runoff from other land-use areas in this catchment, and this tends to increase for small floods and for the dry-season floods, whereas the interflow from forested, pasture and agricultural field areas contributes to recession flow. It is demonstrated that the relative contribution from urban areas decreases with flow coefficient, that cropland relative contribution is nearly constant, and that the relative contribution from grassland and woodland increases with flow coefficient with regard to their percentage of land-use class areas within the study catchment.
The dynamics of human-induced land cover change in miombo ecosystems of southern Africa
NASA Astrophysics Data System (ADS)
Jaiteh, Malanding Sambou
Understanding human-induced land cover change in the miombo require the consistent, geographically-referenced, data on temporal land cover characteristics as well as biophysical and socioeconomic drivers of land use, the major cause of land cover change. The overall goal of this research to examine the applications of high-resolution satellite remote sensing data in studying the dynamics of human-induced land cover change in the miombo. Specific objectives are to: (1) evaluate the applications of computer-assisted classification of Landsat Thematic Mapper (TM) data for land cover mapping in the miombo and (2) analyze spatial and temporal patterns of landscape change locations in the miombo. Stepwise Thematic Classification, STC (a hybrid supervised-unsupervised classification) procedure for classifying Landsat TM data was developed and tested using Landsat TM data. Classification accuracy results were compared to those from supervised and unsupervised classification. The STC provided the highest classification accuracy i.e., 83.9% correspondence between classified and referenced data compared to 44.2% and 34.5% for unsupervised and supervised classification respectively. Improvements in the classification process can be attributed to thematic stratification of the image data into spectrally homogenous (thematic) groups and step-by-step classification of the groups using supervised or unsupervised classification techniques. Supervised classification failed to classify 18% of the scene evidence that training data used did not adequately represent all of the variability in the data. Application of the procedure in drier miombo produced overall classification accuracy of 63%. This is much lower than that of wetter miombo. The results clearly demonstrate that digital classification of Landsat TM can be successfully implemented in the miombo without intensive fieldwork. Spatial characteristics of land cover change in agricultural and forested landscapes in central Malawi were analyzed for the period 1984 to 1995 spatial pattern analysis methods. Shifting cultivation areas, Agriculture in forested landscape, experienced highest rate of woodland cover fragmentation with mean patch size of closed woodland cover decreasing from 20ha to 7.5ha. Permanent bare (cropland and settlement) in intensive agricultural matrix landscapes increased 52% largely through the conversion of fallow areas. Protected National Park area remained fairly unchanged although closed woodland area increased by 4%, mainly from regeneration of open woodland. This study provided evidence that changes in spatial characteristics in the miombo differ with landscape. Land use change (i.e. conversion to cropland) is the primary driving force behind changes in landscape spatial patterns. Also, results revealed that exclusion of intense human use (i.e. cultivation and woodcutting) through regulations and/or fencing increased both closed woodland area (through regeneration of open woodland) and overall connectivity in the landscape. Spatial characteristics of land cover change were analyzed at locations in Malawi (wetter miombo) and Zimbabwe (drier miombo). Results indicate land cover dynamics differ both between and within case study sites. In communal areas in the Kasungu scene, land cover change is dominated by woodland fragmentation to open vegetation. Change in private commercial lands was dominantly expansion of bare (settlement and cropland) areas primarily at the expense of open vegetation (fallow land).
Changing Land Use: The Fens of England. A Case Study in Land Reclamation [And] Student Work Book.
ERIC Educational Resources Information Center
Laws, Kevin
A social studies unit and student workbook explore changes in land use that have occurred in the Fenlands of England since the time it was first inhabited. Fens are lowlying land which is partially or completely covered with water. The English Fens are located on the eastern side of the British Isles and cover a total area of about 2,000 square…
NASA Astrophysics Data System (ADS)
Sarıyılmaz, F. B.; Musaoğlu, N.; Uluğtekin, N.
2017-11-01
The Sazlidere Basin is located on the European side of Istanbul within the borders of Arnavutkoy and Basaksehir districts. The total area of the basin, which is largely located within the province of Arnavutkoy, is approximately 177 km2. The Sazlidere Basin is faced with intense urbanization pressures and land use / cover change due to the Northern Marmara Motorway, 3rd airport and Channel Istanbul Projects, which are planned to be realized in the Arnavutkoy region. Due to the mentioned projects, intense land use /cover changes occur in the basin. In this study, 2000 and 2012 dated LANDSAT images were supervised classified based on CORINE Land Cover first level to determine the land use/cover classes. As a result, four information classes were identified. These classes are water bodies, forest and semi-natural areas, agricultural areas and artificial surfaces. Accuracy analysis of the images were performed following the classification process. The supervised classified images that have the smallest mapping units 0.09 ha and 0.64 ha were generalized to be compatible with the CORINE Land Cover data. The image pixels have been rearranged by using the thematic pixel aggregation method as the smallest mapping unit is 25 ha. These results were compared with CORINE Land Cover 2000 and CORINE Land Cover 2012, which were obtained by digitizing land cover and land use classes on satellite images. It has been determined that the compared results are compatible with each other in terms of quality and quantity.
Effect of historic land cover change on runoff curve number estimation in Iowa
Wehmeyer, Loren L.; Weirich, Frank H.
2010-01-01
Within three decades of European-descended settlers arriving in Iowa, much of the land cover across the state was transformed from prairie and forest to farmland, patches of forest, and urbanized areas. Between 1832 and 1859, the General Land Office surveyed the state of Iowa to aid in the disbursement of land. In 1875, an illustrated atlas of the State of Iowa was published. Using these two data resources for classifying land cover, the hydrologic impact of the land cover change resulting from the first three decades of settlement is presented in terms of the effect on the area-weighted average curve number, a term commonly used to predict runoff from rainstorms. In the four watersheds studied, the area-weighted average curve number increased by a mean of 16.4 from 61.4 to 77.8 with the greatest magnitude of change occurring in the two western Iowa watersheds as opposed to the two more heavily forested eastern Iowa watersheds.
NASA Astrophysics Data System (ADS)
Boori, Mukesh Singh; Choudhary, Komal; Kupriyanov, Alexander; Kovelskiy, Viktor
2015-12-01
This study illustrates the spatio-temporal dynamics of urban growth and land use changes in Samara city, Russia from 1975 to 2015. Landsat satellite imageries of five different time periods from 1975 to 2015 were acquired and quantify the changes with the help of ArcGIS 10.1 Software. By applying classification methods to the satellite images four main types of land use were extracted: water, built-up, forest and grassland. Then, the area coverage for all the land use types at different points in time were measured and coupled with population data. The results demonstrate that, over the entire study period, population was increased from 1146 thousand people to 1244 thousand from 1975 to 1990 but later on first reduce and then increase again, now 1173 thousand population. Built-up area is also change according to population. The present study revealed an increase in built-up by 37.01% from 1975 to 1995, than reduce -88.83% till 2005 and an increase by 39.16% from 2005 to 2015, along with the increase in population, migration from rural areas owing to the economic growth and technological advantages associated with urbanization. Information on urban growth, land use and land cover change study is very useful to local government and urban planners for the betterment of future plans to sustainable development of the city.
7 CFR 600.9 - Major land resource area soil survey offices.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 6 2014-01-01 2014-01-01 false Major land resource area soil survey offices. 600.9... CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE GENERAL ORGANIZATION § 600.9 Major land resource area soil... soil survey production. Major land resource area soil survey offices (MO) provide the technical...
7 CFR 600.9 - Major land resource area soil survey offices.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 6 2010-01-01 2010-01-01 false Major land resource area soil survey offices. 600.9... CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE GENERAL ORGANIZATION § 600.9 Major land resource area soil... soil survey production. Major land resource area soil survey offices (MO) provide the technical...
7 CFR 600.9 - Major land resource area soil survey offices.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 6 2011-01-01 2011-01-01 false Major land resource area soil survey offices. 600.9... CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE GENERAL ORGANIZATION § 600.9 Major land resource area soil... soil survey production. Major land resource area soil survey offices (MO) provide the technical...
7 CFR 600.9 - Major land resource area soil survey offices.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 6 2012-01-01 2012-01-01 false Major land resource area soil survey offices. 600.9... CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE GENERAL ORGANIZATION § 600.9 Major land resource area soil... soil survey production. Major land resource area soil survey offices (MO) provide the technical...
7 CFR 600.9 - Major land resource area soil survey offices.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 6 2013-01-01 2013-01-01 false Major land resource area soil survey offices. 600.9... CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE GENERAL ORGANIZATION § 600.9 Major land resource area soil... soil survey production. Major land resource area soil survey offices (MO) provide the technical...
Zhang, Liping; Zhang, Shiwen; Huang, Yajie; Cao, Meng; Huang, Yuanfang; Zhang, Hongyan
2016-01-01
Understanding abandoned mine land (AML) changes during land reclamation is crucial for reusing damaged land resources and formulating sound ecological restoration policies. This study combines the linear programming (LP) model and the CLUE-S model to simulate land-use dynamics in the Mentougou District (Beijing, China) from 2007 to 2020 under three reclamation scenarios, that is, the planning scenario based on the general land-use plan in study area (scenario 1), maximal comprehensive benefits (scenario 2), and maximal ecosystem service value (scenario 3). Nine landscape-scale graph metrics were then selected to describe the landscape characteristics. The results show that the coupled model presented can simulate the dynamics of AML effectively and the spatially explicit transformations of AML were different. New cultivated land dominates in scenario 1, while construction land and forest land account for major percentages in scenarios 2 and 3, respectively. Scenario 3 has an advantage in most of the selected indices as the patches combined most closely. To conclude, reclaiming AML by transformation into more forest can reduce the variability and maintain the stability of the landscape ecological system in study area. These findings contribute to better mapping AML dynamics and providing policy support for the management of AML. PMID:27023575
Zhang, Liping; Zhang, Shiwen; Huang, Yajie; Cao, Meng; Huang, Yuanfang; Zhang, Hongyan
2016-03-24
Understanding abandoned mine land (AML) changes during land reclamation is crucial for reusing damaged land resources and formulating sound ecological restoration policies. This study combines the linear programming (LP) model and the CLUE-S model to simulate land-use dynamics in the Mentougou District (Beijing, China) from 2007 to 2020 under three reclamation scenarios, that is, the planning scenario based on the general land-use plan in study area (scenario 1), maximal comprehensive benefits (scenario 2), and maximal ecosystem service value (scenario 3). Nine landscape-scale graph metrics were then selected to describe the landscape characteristics. The results show that the coupled model presented can simulate the dynamics of AML effectively and the spatially explicit transformations of AML were different. New cultivated land dominates in scenario 1, while construction land and forest land account for major percentages in scenarios 2 and 3, respectively. Scenario 3 has an advantage in most of the selected indices as the patches combined most closely. To conclude, reclaiming AML by transformation into more forest can reduce the variability and maintain the stability of the landscape ecological system in study area. These findings contribute to better mapping AML dynamics and providing policy support for the management of AML.
NASA Astrophysics Data System (ADS)
Alexakis, Dimitris; Hadjimitsis, Diofantos; Agapiou, Athos; Themistocleous, Kyriacos; Retalis, Adrianos
2011-11-01
The increase of flood inundation occuring in different regions all over the world have enhanced the need for effective flood risk management. As floods frequency is increasing with a steady rate due to ever increasing human activities on physical floodplains there is a respectively increasing of financial destructive impact of floods. A flood can be determined as a mass of water that produces runoff on land that is not normally covered by water. However, earth observation techniques such as satellite remote sensing can contribute toward a more efficient flood risk mapping according to EU Directives of 2007/60. This study strives to highlight the need of digital mapping of urban sprawl in a catchment area in Cyprus and the assessment of its contribution to flood risk. The Yialias river (Nicosia, Cyprus) was selected as case study where devastating flash floods events took place at 2003 and 2009. In order to search the diachronic land cover regime of the study area multi-temporal satellite imagery was processed and analyzed (e.g Landsat TMETM+, Aster). The land cover regime was examined in detail by using sophisticated post-processing classification algorithms such as Maximum Likelihood, Parallelepiped Algorithm, Minimum Distance, Spectral Angle and Isodata. Texture features were calculated using the Grey Level Co-Occurence Matrix. In addition three classification techniques were compared : multispectral classification, texture based classification and a combination of both. The classification products were compared and evaluated for their accuracy. Moreover, a knowledge-rule method is proposed based on spectral, texture and shape features in order to create efficient land use and land cover maps of the study area. Morphometric parameters such as stream frequency, drainage density and elongation ratio were calculated in order to extract the basic watershed characteristics. In terms of the impacts of land use/cover on flooding, GIS and Fragstats tool were used to detect identifying trends, both visually and statistically, resulting from land use changes in a flood prone area such as Yialias by the use of spatial metrics. The results indicated that there is a considerable increase of urban areas cover during the period of the last 30 years. All these denoted that one of the main driving force of the increasing flood risk in catchment areas in Cyprus is generally associated to human activities.
Geology and land use in the western part of the Gulf Coast coal-bearing region
Warwick, Peter D.; Aubourg, C.E.; Hook, R.W.; SanFilipo, John R.
2002-01-01
This map series is a compilation of the outcrop geology in the U.S. Gulf Coast coal region. The maps show the regional geologic setting for primary coal occurrences and detailed geology and historic mining areas.The CD contains ESRI ArcView SHP files of cities, urban areas, historical mines (points and polygons), counties, current mines, 1:100,000 quadrangle outlines of the study area, fossil fuel powerplants, nuclear powerplants, political boundaries, federally managed lands, roads and railroads in the study area, hydrology in the study area (polygons and arcs), geology nomenclature breaks, geological features (faults), and geology. ArcExplorer is included on the CD.
Spatiotemporal analysis of land use and land cover change in the Brazilian Amazon
Li, Guiying; Moran, Emilio; Hetrick, Scott
2013-01-01
This paper provides a comparative analysis of land use and land cover (LULC) changes among three study areas with different biophysical environments in the Brazilian Amazon at multiple scales, from per-pixel, polygon, census sector, to study area. Landsat images acquired in the years of 1990/1991, 1999/2000, and 2008/2010 were used to examine LULC change trajectories with the post-classification comparison approach. A classification system composed of six classes – forest, savanna, other-vegetation (secondary succession and plantations), agro-pasture, impervious surface, and water, was designed for this study. A hierarchical-based classification method was used to classify Landsat images into thematic maps. This research shows different spatiotemporal change patterns, composition and rates among the three study areas and indicates the importance of analyzing LULC change at multiple scales. The LULC change analysis over time for entire study areas provides an overall picture of change trends, but detailed change trajectories and their spatial distributions can be better examined at a per-pixel scale. The LULC change at the polygon scale provides the information of the changes in patch sizes over time, while the LULC change at census sector scale gives new insights on how human-induced activities (e.g., urban expansion, roads, and land use history) affect LULC change patterns and rates. This research indicates the necessity to implement change detection at multiple scales for better understanding the mechanisms of LULC change patterns and rates. PMID:24127130
NASA Astrophysics Data System (ADS)
Dai, Chunxiao; Wang, Songhui; Sun, Dian; Chen, Dong
2007-06-01
The result of land use in coalfield is important to sustainable development in resourceful city. For surface morphology being changed by subsidence, the mining subsidence becomes the main problem to land use with the negative influence of ecological environment, production and steadily develop in coal mining areas. Taking Panyi Coal Mine of Huainan Mining Group Corp as an example, this paper predicted and simulated the mining subsidence in Matlab environment on the basis of the probability integral method. The change of land use types of early term, medium term and long term was analyzed in accordance with the results of mining subsidence prediction with GIS as a spatial data management and spatial analysis tool. The result of analysis showed that 80% area in Panyi Coal Mine be affected by mining subsidence and 52km2 perennial waterlogged area was gradually formed. The farmland ecosystem was gradually turned into wetland ecosystem in most study area. According to the economic and social development and natural conditions of mining area, calculating the ecological environment, production and people's livelihood, this paper supplied the plan for comprehensive utilization of land resource. In this plan, intervention measures be taken during the coal mining and the mining subsidence formation and development, and this method can solve the problems of Land use at the relative low cost.
Landscape-Level Spatial Patterns of West Nile Virus Risk in the Northern Great Plains
Chuang, Ting-Wu; Hockett, Christine W.; Kightlinger, Lon; Wimberly, Michael C.
2012-01-01
Understanding the landscape-level determinants of West Nile virus (WNV) can aid in mapping high-risk areas and enhance disease control and prevention efforts. This study analyzed the spatial patterns of human WNV cases in three areas in South Dakota during 2003–2007 and investigated the influences of land cover, hydrology, soils, irrigation, and elevation by using case–control models. Land cover, hydrology, soils, and elevation all influenced WNV risk, although the main drivers were different in each study area. Risk for WNV was generally higher in areas with rural land cover than in developed areas, and higher close to wetlands or soils with a high ponding frequency. In western South Dakota, WNV risk also decreased with increasing elevation and was higher in forested areas. Our results showed that the spatial patterns of human WNV risk were associated with landscape-level features that likely reflect variability in mosquito ecology, avian host communities, and human activity. PMID:22492161
Ikiel, Cercis; Ustaoglu, Beyza; Dutucu, Ayse Atalay; Kilic, Derya Evrim
2013-02-01
The aim of this study is to research natural land cover change caused by the permanent effects of human activities in Duzce plain and its surroundings, and to determine the current status of the land cover. For this purpose, two Landsat TM images were used in the study for the years 1987 and 2010. These images are analysed by using data image processing techniques in ERDAS Imagine©10.0 and ArcGIS©10.0 software. Land cover change nomenclature is classified according to the Coordination of Information on the Environment Level 2 Classification (1--urban fabric, 2--industrial, commercial and transport units, 3--heterogeneous agricultural areas, 4--forests, and 5--inland wetlands). Furthermore, the image analysis results are confirmed by the field research. According to the results, a decrease of 33.5 % was recorded in forest areas from 24,840.7 to 16,529.0 ha; an increase of 11.2 % was recorded in heterogeneous agricultural areas from 47,702.7 to 53,051.7 ha. Natural vegetation, which is the large part of land cover in the research area, has been changing rapidly because of rapid urbanisation and agricultural activities. As a result, it is concluded that significant changes have occurred on the natural land cover between the years 1987 and 2010 in the Duzce plain and its surroundings.
The managed clearing: An overlooked land-cover type in urbanizing regions?
Madden, Marguerite; Gray, Josh; Meentemeyer, Ross K.
2018-01-01
Urban ecosystem assessments increasingly rely on widely available map products, such as the U.S. Geological Service (USGS) National Land Cover Database (NLCD), and datasets that use generic classification schemes to detect and model large-scale impacts of land-cover change. However, utilizing existing map products or schemes without identifying relevant urban class types such as semi-natural, yet managed land areas that account for differences in ecological functions due to their pervious surfaces may severely constrain assessments. To address this gap, we introduce the managed clearings land-cover type–semi-natural, vegetated land surfaces with varying degrees of management practices–for urbanizing landscapes. We explore the extent to which managed clearings are common and spatially distributed in three rapidly urbanizing areas of the Charlanta megaregion, USA. We visually interpreted and mapped fine-scale land cover with special attention to managed clearings using 2012 U.S. Department of Agriculture (USDA) National Agriculture Imagery Program (NAIP) images within 150 randomly selected 1-km2 blocks in the cities of Atlanta, Charlotte, and Raleigh, and compared our maps with National Land Cover Database (NLCD) data. We estimated the abundance of managed clearings relative to other land use and land cover types, and the proportion of land-cover types in the NLCD that are similar to managed clearings. Our study reveals that managed clearings are the most common land cover type in these cities, covering 28% of the total sampled land area– 6.2% higher than the total area of impervious surfaces. Managed clearings, when combined with forest cover, constitutes 69% of pervious surfaces in the sampled region. We observed variability in area estimates of managed clearings between the NAIP-derived and NLCD data. This suggests using high-resolution remote sensing imagery (e.g., NAIP) instead of modifying NLCD data for improved representation of spatial heterogeneity and mapping of managed clearings in urbanizing landscapes. Our findings also demonstrate the need to more carefully consider managed clearings and their critical ecological functions in landscape- to regional-scale studies of urbanizing ecosystems. PMID:29432442
Urban land use in Natura 2000 surrounding areas in Vilnius Region, Lithuania.
NASA Astrophysics Data System (ADS)
Pereira, Paulo; Misiūnė, Ieva; Depellegrin, Daniel
2015-04-01
Urban development is one of the major causes of land degradation and pressure on protected areas. (Hansen and DeFries, 2007; Salvati and Sabbi, 2011). The urban areas in the fringe of the protected areas are a source of pollutants considered a negative disturbance to the ecosystems services and biodiversity within the protected areas. The distance between urban and protected areas is decreasing and in the future it is estimated that 88% of the world protected areas will be affected by urban growth (McDonald et al., 2008). The surrounding or buffer areas, are lands adjacent to the Natura 2000 territories, which aim to reduce the human influence within the protected areas. Presently there is no common definition of buffer area it is not clear among stakeholders (Van Dasselaar, 2013). The objective of this work is to identify the urban land use in the Natura 2000 areas in Vilnius region, Lithuania. Data from Natura 2000 areas and urban land use (Corine Land Cover 2006) in Vilnius region were collected in the European Environmental Agency website (http://www.eea.europa.eu/). In the surroundings of each Natura 2000 site, we identified the urban land use at the distances of 500, 1000 and 1500 m. The Natura 2000 sites and the urban areas occupied a total of 13.2% and 3.4% of Vilnius region, respectively. However, the urban areas are very dispersed in the territory, especially in the surroundings of Vilnius, which since the end of the XX century is growing (Pereira et al., 2014). This can represent a major threat to Natura 2000 areas ecosystem services quality and biodiversity. Overall, urban areas occupied approximately 50 km2, in the buffer area of 500 m, 95 km2 in buffer area of 1000 m and 131 km2 in the buffer area of 1500 km2. This shows that Natura 2000 surrounding areas in Vilnius region are subjected to a high urban pressure. This is especially evident in the Vilnius city and is a consequence of the uncontrolled urban development. The lack of a clear legislation regarding the land use of the Natura 2000 buffer areas is contributing to the degradation of the services provide by these areas. Acknowledgments RECARE (Preventing and Remediating Degradation of Soils in Europe Through Land Care, FP7-ENV-2013-TWO STAGE), funded by the European Commission, for the COST action ES1306 (Connecting European connectivity research) and COST Action IS1204 Tourism, Wellbeing and Ecosystem Services (TObeWELL) References Dasselaar, I.V. (2013) The impact of a buffer zone. The influence of the introduction of buffer zones surrounding Natura 2000 areas on local actors, the case of het Boetelerveld in the Netherlands. Master Thesis Forest and Nature Conservation, Forest and Nature Conservation Policy group, 69 p. Hansen, A.J. (2007) Ecological mechanisms linking protected areas to surrounding lands. Ecological Applications, 17, 974-978. McDonald, R.I., Kareiva, P., Forman, R.T.T. (2008) The implications of current and future urbanization for global protected areas and biodiversity conservation. Biological Conservation, 141, 1695-1703. Pereira, P., Monkevicius, A., Siarova, A. (2014) Public perception of the Environmental, Social and Economic impacts of Urban Sprawl in Vilnius. Societal Studies, 6, 256-290. Salvati, L., Sabbi, A. (2011) Exploring long-term land cover changes in an urban region of southern of Europe. International Journal of Sustainable Development & World Ecology, 18, 273-282.
Earth land landing alternatives: Lunar transportation system
NASA Technical Reports Server (NTRS)
Meyerson, Robert
1992-01-01
The objectives of this study are as follows: (1) develop a landing option such that it is a viable trade option for future NASA missions; (2) provide NASA programs with solid technical support in the landing systems area; (3) develop the technical staff; and (4) advance the state of landing systems technology to apply to future NASA missions. All results are presented in viewgraph format.
Yang, Limin; Xian, George Z.; Klaver, Jacqueline M.; Deal, Brian
2003-01-01
We developed a Sub-pixel Imperviousness Change Detection (SICD) approach to detect urban land-cover changes using Landsat and high-resolution imagery. The sub-pixel percent imperviousness was mapped for two dates (09 March 1993 and 11 March 2001) over western Georgia using a regression tree algorithm. The accuracy of the predicted imperviousness was reasonable based on a comparison using independent reference data. The average absolute error between predicted and reference data was 16.4 percent for 1993 and 15.3 percent for 2001. The correlation coefficient (r) was 0.73 for 1993 and 0.78 for 2001, respectively. Areas with a significant increase (greater than 20 percent) in impervious surface from 1993 to 2001 were mostly related to known land-cover/land-use changes that occurred in this area, suggesting that the spatial change of an impervious surface is a useful indicator for identifying spatial extent, intensity, and, potentially, type of urban land-cover/land-use changes. Compared to other pixel-based change-detection methods (band differencing, rationing, change vector, post-classification), information on changes in sub-pixel percent imperviousness allow users to quantify and interpret urban land-cover/land-use changes based on their own definition. Such information is considered complementary to products generated using other change-detection methods. In addition, the procedure for mapping imperviousness is objective and repeatable, hence, can be used for monitoring urban land-cover/land-use change over a large geographic area. Potential applications and limitations of the products developed through this study in urban environmental studies are also discussed.
[Analysis of urban forest landscape pattern in Hefei].
Wu, Zemin; Wu, Wenyou; Gao, Jian; Zhang, Shaojie
2003-12-01
Based on the theory and methodology of landscape ecology, the landscape pattern of the study area (17.6 km2) in the downtown of Hefei was analyzed by using the techniques of RS, GPS and GIS. The object was to provide a comprehensive method to study urban forest structure and its function in environmental improvement. The results showed that there were 5 major landscape elements, i.e., building and hard pavement surface, water, road, urban forest, and general green land in the area. The landscape matrix was building and pavement surface, occupied 73.13% of total land. Road was the typical corridor element in the city and occupied 6.89%. Green land occupied 11.44%, in which, urban forest patch occupied 9.18%. There were 408 urban forest patches, with an area of 161.16 hm2. The average area of the patch was 0.396 hm2, and the maximum area was 12 hm2. 48% of urban forest patch was identified as small scale patches with < 500 m2 of area, and only 8.6% of them was larger than 1 hm2. The number of general green land patch was 255, with an area of 39.74 hm2, which accounted for 2.26% of land area, and its average and maximum area was 0.1558 hm2 and 3.86 hm2, respectively. There were 147 water patches, with an area of 149.93 hm2, and occupied 8.54% of land, and the average and maximum area of the patch was 1.02 hm2 and 16 hm2, respectively. In the study area, both of the Shannon-Weiner landscape diversity index and evenness were low, only 0.928 and 0.576, respectively. In addition, the dominance of urban forest patch and general green land was 0.39 showing that the two landscape elements had a certain influence on the environment of the study area. The concept of interior habitat for forest was introduced in this paper, which was employed to make a scale class system of urban forest patch. The threshold area with interior habitat for urban forest patch was 9800 m2, and there was 31.69 hm2 of interior habitat of urban forest in total, which occupied 19.7% of the total area of urban forest patch. This situation was not favorable for providing more habitats to support species diversity. It's suggested that the concept of interior habitat could be employed to identify urban forest patch, and a scale system of small scale patch of urban forest-middle patch-large patch-extra large patch was build in the paper. Based on this system, the ratio of different scales of urban forest patch in the study area should be 2:2:2:3. The authors also suggested that larger pieces (1.5-3.0 hm2) of urban forest patch should be built, and more urban forests should be established in the northeastern part of the city in the future.
Land-use classification map of the greater Denver area, Front Range Urban Corridor, Colorado
Driscoll, L.B.
1975-01-01
The Greater Denver area, in the Front Range Urban Corridor of Colorado, is an area of rapid population growth and expanding land development. At present no overall land-use policy exists for this area, although man individuals and groups are concerned about environmental, economic, and social stresses caused by population pressures. A well-structured land-use policy for the entire Front Range Urban Corridor, in which compatible land uses are taken into account, could lead to overall improvements in land values. A land classification map is the first step toward implementing such a policy.
Butsic, Van; Syphard, Alexandra D.; Keeley, Jon E.; Bar-Massada, Avi
2017-01-01
The purchase of private land for conservation purposes is a common way to prevent the exploitation of sensitive ecological areas. However, private land conservation can also provide other benefits, one of these being natural hazard reduction. Here, we investigated the impacts of private land conservation on fire risk to homes in San Diego County, California. We coupled an econometric land use change model with a model that estimates the probability of house loss due to fire in order to compare fire risk at the county and municipality scale under alternative private land purchasing schemes and over a 20 year time horizon. We found that conservation purchases could reduce fire risk on this landscape, and the amount of risk reduction was related to the targeting approach used to choose which parcels were conserved. Conservation land purchases that targeted parcels designated as high fire hazard resulted in lower fire risk to homes than purchases that targeted low costs or high likelihood to subdivide. This result was driven by (1) preventing home placement in fire prone areas and (2) taking land off the market, and hence increasing development densities in other areas. These results raise the possibility that resource conservation and fire hazard reduction may benefit from combining efforts. With adequate planning, future conservation purchases could have synergistic effects beyond just protecting ecologically sensitive areas.
Reichenbach, P; Busca, C; Mondini, A C; Rossi, M
2014-12-01
The spatial distribution of landslides is influenced by different climatic conditions and environmental settings including topography, morphology, hydrology, lithology, and land use. In this work, we have attempted to evaluate the influence of land use change on landslide susceptibility (LS) for a small study area located in the southern part of the Briga catchment, along the Ionian coast of Sicily (Italy). On October 1, 2009, the area was hit by an intense rainfall event that triggered abundant slope failures and resulted in widespread erosion. After the storm, an inventory map showing the distribution of pre-event and event landslides was prepared for the area. Moreover, two different land use maps were developed: the first was obtained through a semi-automatic classification of digitized aerial photographs acquired in 1954, the second through the combination of supervised classifications of two recent QuickBird images. Exploiting the two land use maps and different land use scenarios, LS zonations were prepared through multivariate statistical analyses. Differences in the susceptibility models were analyzed and quantified to evaluate the effects of land use change on the susceptibility zonation. Susceptibility maps show an increase in the areal percentage and number of slope units classified as unstable related to the increase in bare soils to the detriment of forested areas.
NASA Technical Reports Server (NTRS)
Kidder, Stanley Q.; Hafner, Jan
2001-01-01
The goal of Project ATLANTA is to derive a better scientific understanding of how land cover changes associated with urbanization affect climate and air quality. In this project the role that clouds play in this relationship was studied. Through GOES satellite observations and RAMS modeling of the Atlanta area, we found that in Atlanta (1) clouds are more frequent than in the surrounding rural areas; (2) clouds cool the surface by shading and thus tend to counteract the warming effect of urbanization; (3) clouds reflect sunlight, which might other wise be used to produce ozone; and (4) clouds decrease biogenic emission of ozone precursors, and they probably decrease ozone concentration. We also found that mesoscale modeling of clouds, especially of small, summertime clouds, needs to be improved and that coupled mesoscale and air quality models are needed to completely understand the mediating role that clouds play in the relationship between land use/land cover change and the climate and air quality of Atlanta. It is strongly recommended that more cities be studied to strengthen and extend these results.
NASA Astrophysics Data System (ADS)
Tong, Xiao Xia; Lai Cui, Yuan; Chen, Man Yu; Hu, Bo; Xu, Wen Sheng
2018-05-01
The Er yuan watershed of Er hai district is chosen as the research area, the law of runoff and sediment and non-point source nitrogen and phosphorus discharges under different land uses during 2001 to 2014 are simulated based on SWAT model. Results of simulation indicate that the order of total runoff yield of different land use type from high to low is grassland, paddy fields, dry land. Specifically, the order of surface runoff yield from high to low is paddy fields, dry land, grassland, the order of lateral runoff yield from high to low is paddy fields, dry land, grassland, the order of groundwater runoff yield from high to low is grassland, paddy fields, dry land. The orders of sediment and nitrogen and phosphorus yield per unit area of different land use type are the same, grassland> paddy fields> dry land. It can be seen, nitrogen and phosphorus discharges from paddy fields and dry land are the main sources of agricultural non-point pollution of the irrigated area. Therefore, reasonable field management measures which can decrease the discharge of nitrogen and phosphorus of paddy fields and dry land are the key to agricultural non-point source pollution prevention and control.
A new approach for land degradation and desertification assessment using geospatial techniques
NASA Astrophysics Data System (ADS)
Masoudi, Masoud; Jokar, Parviz; Pradhan, Biswajeet
2018-04-01
Land degradation reduces the production of biomass and vegetation cover for all forms of land use. The lack of specific data related to degradation is a severe limitation for its monitoring. Assessment of the current state of land degradation or desertification is very difficult because this phenomenon includes several complex processes. For that reason, no common agreement has been achieved among the scientific community for its assessment. This study was carried out as an attempt to develop a new approach for land degradation assessment, based on its current state by modifying of Food and Agriculture Organization (FAO)-United Nations Environment Programme (UNEP) index and the normalized difference vegetation index (NDVI) index in Khuzestan province, southwestern Iran. Using the proposed evaluation method it is easy to understand the degree of destruction caused by the pursuit of low costs and in order to save time. Results showed that based on the percent of hazard classes in the current condition of land degradation, the most and least widespread areas of hazard classes are moderate (38.6 %) and no hazard (0.65 %) classes, respectively. Results in the desert component of the study area showed that the severe class is much more widespread than the other hazard classes, which could indicate an environmentally dangerous situation. Statistical results indicated that degradation is highest in deserts and rangeland areas compared to dry cultivated areas and forests. Statistical tests also showed that the average degradation amount in the arid region is higher than in other climates. It is hoped that this study's use of geospatial techniques will be found to be applicable in other regions of the world and can also contribute to better planning and management of land.
Land Ecological Security Evaluation of Guangzhou, China
Xu, Linyu; Yin, Hao; Li, Zhaoxue; Li, Shun
2014-01-01
As the land ecosystem provides the necessary basic material resources for human development, land ecological security (LES) plays an increasingly important role in sustainable development. Given the degradation of land ecological security under rapid urbanization and the urgent LES requirements of urban populations, a comprehensive evaluation method, named Double Land Ecological Security (DLES), has been introduced with the city of Guangzhou, China, as a case study, which evaluates the LES in regional and unit scales for reasonable and specific urban planning. In the evaluation process with this method, we have combined the material security with the spiritual security that is inevitably associated with LES. Some new coefficients of land-security supply/demand distribution and technology contribution for LES evaluation have also been introduced for different spatial scales, including the regional and the unit scales. The results for Guangzhou indicated that, temporally, the LES supply indices were 0.77, 0.84 and 0.77 in 2000, 2006 and 2009 respectively, while LES demand indices for the city increased in 2000, 2006 and 2009 from 0.57 to 0.95, which made the LES level decreased slowly in this period. Spatially, at the regional scale, the urban land ecological security (ULES) level decreased from 0.2 (marginal security) to −0.18 (marginal insecurity) as a whole; in unit scale, areas in the north and in parts of the east were relatively secure and the security area was shrinking with time, but the central and southern areas turned to be marginal insecurity, especially in 2006 and 2009. This study proposes that DLES evaluation should be conducted for targeted and efficient urban planning and management, which can reflect the LES level of study area in general and in detail. PMID:25321873
Land ecological security evaluation of Guangzhou, China.
Xu, Linyu; Yin, Hao; Li, Zhaoxue; Li, Shun
2014-10-15
As the land ecosystem provides the necessary basic material resources for human development, land ecological security (LES) plays an increasingly important role in sustainable development. Given the degradation of land ecological security under rapid urbanization and the urgent LES requirements of urban populations, a comprehensive evaluation method, named Double Land Ecological Security (DLES), has been introduced with the city of Guangzhou, China, as a case study, which evaluates the LES in regional and unit scales for reasonable and specific urban planning. In the evaluation process with this method, we have combined the material security with the spiritual security that is inevitably associated with LES. Some new coefficients of land-security supply/demand distribution and technology contribution for LES evaluation have also been introduced for different spatial scales, including the regional and the unit scales. The results for Guangzhou indicated that, temporally, the LES supply indices were 0.77, 0.84 and 0.77 in 2000, 2006 and 2009 respectively, while LES demand indices for the city increased in 2000, 2006 and 2009 from 0.57 to 0.95, which made the LES level decreased slowly in this period. Spatially, at the regional scale, the urban land ecological security (ULES) level decreased from 0.2 (marginal security) to -0.18 (marginal insecurity) as a whole; in unit scale, areas in the north and in parts of the east were relatively secure and the security area was shrinking with time, but the central and southern areas turned to be marginal insecurity, especially in 2006 and 2009. This study proposes that DLES evaluation should be conducted for targeted and efficient urban planning and management, which can reflect the LES level of study area in general and in detail.
Mateos, A C; Amarillo, A C; Carreras, H A; González, C M
2018-02-01
Particle matter (PM) and its associated compounds are a serious problem for urban air quality and a threat to human health. In the present study, we assessed the intraurban variation of PM, and characterized the human health risk associated to the inhalation of particles measured on PM filters, considering different land use areas in the urban area of Cordoba city (Argentina) and different age groups. To assess the intraurban variation of PM, a biomonitoring network of T. capillaris was established in 15 sampling sites with different land use and the bioaccumulation of Co, Cu, Fe, Mn, Ni, Pb and Zn was quantified. After that, particles were collected by instrumental monitors placed at the most representative sampling sites of each land use category and an inhalation risk was calculated. A remarkable intraurban difference in the heavy metals content measured in the biomonitors was observed, in relation with the sampling site land use. The higher content was detected at industrial areas as well as in sites with intense vehicular traffic. Mean PM 10 levels exceeded the standard suggested by the U.S. EPA in all land use areas, except for the downtown. Hazard Index values were below EPA's safe limit in all land use areas and in the different age groups. In contrast, the carcinogenic risk analysis showed that all urban areas exceeded the acceptable limit (1 × 10 -6 ), while the industrial sampling sites and the elder group presented a carcinogenic risk higher that the unacceptable limit. These findings validate the use of T. capillaris to assess intraurban air quality and also show there is an important intraurban variation in human health risk associated to different land use. Copyright © 2017 Elsevier Inc. All rights reserved.
Assessing Transboundary Wildfire Exposure in the Southwestern United States.
Ager, Alan A; Palaiologou, Palaiologos; R Evers, Cody; Day, Michelle A; G Barros, Ana M
2018-04-25
We assessed transboundary wildfire exposure among federal, state, and private lands and 447 communities in the state of Arizona, southwestern United States. The study quantified the relative magnitude of transboundary (incoming, outgoing) versus nontransboundary (i.e., self-burning) wildfire exposure based on land tenure or community of the simulated ignition and the resulting fire perimeter. We developed and described several new metrics to quantify and map transboundary exposure. We found that incoming transboundary fire accounted for 37% of the total area burned on large parcels of federal and state lands, whereas 63% of the area burned was burned by ignitions within the parcel. However, substantial parcel to parcel variation was observed for all land tenures for all metrics. We found that incoming transboundary fire accounted for 66% of the total area burned within communities versus 34% of the area burned by self-burning ignitions. Of the total area burned within communities, private lands contributed the largest proportion (36.7%), followed by national forests (19.5%), and state lands (15.4%). On average seven land tenures contributed wildfire to individual communities. Annual wildfire exposure to structures was highest for wildfires ignited on state and national forest land, followed by tribal, private, and BLM. We mapped community firesheds, that is, the area where ignitions can spawn fires that can burn into communities, and estimated that they covered 7.7 million ha, or 26% of the state of Arizona. Our methods address gaps in existing wildfire risk assessments, and their implementation can help reduce fragmentation in governance systems and inefficiencies in risk planning. Published 2018. This article is a U.S. government work and is in the public domain in the USA.
NASA Astrophysics Data System (ADS)
Li, Yang Bing; Li, Qiong Yao; Jie Luo, Guang; Bai, Xiao Yong; Wang, Yong Yan; Jie Wang, Shi; Xie, Jing; Yang, Guang Bin
2016-05-01
This paper attempts to explain the theoretical reasons why local farmers have executed land mismanagement measures such as steep slope land cultivation, in order to reveal the mechanisms of karst rocky desertification (KRD, including light KRD, moderate KRD and severe KRD) through typical case studies. Firstly, this paper assumes that the low land capacity is the initial cause of KRD in peak-cluster depression areas. Furthermore, the ecological quality of the peak-cluster depression zone (a combination of clustered karst cones with a common base and depressions between cones) is influenced by the relationship between the area of depressions and the population of residential areas. Therefore, six typical peak-cluster depression areas of Guizhou province were selected to compare the distribution circumstances of cropland, the characteristics of settlements and the formation of KRD with the help of ALOS images in 2010 (with a resolution of 10 m × 10 m). The results show that there is a negative correlation between the percentage of the cultivated land and the percentage of KRD at peak-cluster depressions. The relationship could be concluded by three situations of the process of KRD, which are low, middle and upper carrying capacities of land. Severe KRD is only distributed in peak-cluster depression areas with less flatland, low land capacity and a high population. The harmonization between population pressure and bearing capacity of land will influence the ecological qualities in the peak-cluster depressions. The KRD phenomenon which occurred in six typical peak-cluster depression areas confirms that the hypothesis suggested by this paper is correct, and this result will contribute to understanding the natural mechanisms of KRD and guide the ecological restoration of KRD land.
Degradation in landscape matrix has diverse impacts on diversity in protected areas
Brotons, Lluís; Rajasärkkä, Ari; Tornberg, Risto
2017-01-01
Introduction A main goal of protected areas is to maintain species diversity and the integrity of biological assemblages. Intensifying land use in the matrix surrounding protected areas creates a challenge for biodiversity conservation. Earlier studies have mainly focused on taxonomic diversity within protected areas. However, functional and especially phylogenetic diversities are less studied phenomena, especially with respect to the impacts of the matrix that surrounds protected areas. Phylogenetic diversity refers to the range of evolutionary lineages, the maintenance of which ensures that future evolutionary potential is safeguarded. Functional diversity refers to the range of ecological roles that members of a community perform. For ecosystem functioning and long-term resilience, they are at least as important as taxonomic diversity. Aim We studied how the characteristics of protected areas and land use intensity in the surrounding matrix affect the diversity of bird communities in protected boreal forests. We used line-transect count and land-cover data from 91 forest reserves in Northern Finland, and land-cover data from buffer zones surrounding these reserves. We studied if habitat diversity and productivity inside protected areas, and intensity of forest management in the matrix have consistent effects on taxonomic, functional and phylogenetic diversities, and community specialization. Results We found that habitat diversity and productivity inside protected areas have strong effects on all diversity metrics, but matrix effects were inconsistent. The proportion of old forest in the matrix, reflecting low intensity forest management, had positive effects on community specialization. Interestingly, functional diversity increased with increasing logging intensity in the matrix. Conclusions Our results indicate that boreal forest reserves are not able to maintain their species composition and abundances if embedded in a severely degraded matrix. Our study also highlights the importance of focusing on different aspects of biodiversity. PMID:28950017
NASA Astrophysics Data System (ADS)
Hasaan, Zahra
2016-07-01
Remote sensing is very useful for the production of land use and land cover statistics which can be beneficial to determine the distribution of land uses. Using remote sensing techniques to develop land use classification mapping is a convenient and detailed way to improve the selection of areas designed to agricultural, urban and/or industrial areas of a region. In Islamabad city and surrounding the land use has been changing, every day new developments (urban, industrial, commercial and agricultural) are emerging leading to decrease in vegetation cover. The purpose of this work was to develop the land use of Islamabad and its surrounding area that is an important natural resource. For this work the eCognition Developer 64 computer software was used to develop a land use classification using SPOT 5 image of year 2012. For image processing object-based classification technique was used and important land use features i.e. Vegetation cover, barren land, impervious surface, built up area and water bodies were extracted on the basis of object variation and compared the results with the CDA Master Plan. The great increase was found in built-up area and impervious surface area. On the other hand vegetation cover and barren area followed a declining trend. Accuracy assessment of classification yielded 92% accuracies of the final land cover land use maps. In addition these improved land cover/land use maps which are produced by remote sensing technique of class definition, meet the growing need of legend standardization.
NASA Technical Reports Server (NTRS)
Spann, G. W.; Faust, N. L.
1974-01-01
It is known from several previous investigations that many categories of land-use can be mapped via computer processing of Earth Resources Technology Satellite data. The results are presented of one such experiment using the USGS/NASA land-use classification system. Douglas County, Georgia, was chosen as the test site for this project. It was chosen primarily because of its recent rapid growth and future growth potential. Results of the investigation indicate an overall land-use mapping accuracy of 67% with higher accuracies in rural areas and lower accuracies in urban areas. It is estimated, however, that 95% of the State of Georgia could be mapped by these techniques with an accuracy of 80% to 90%.
Climate change impacts on global agricultural land availability
NASA Astrophysics Data System (ADS)
Zhang, Xiao; Cai, Ximing
2011-01-01
Climate change can affect both crop yield and the land area suitable for agriculture. This study provides a spatially explicit estimate of the impact of climate change on worldwide agricultural land availability, considering uncertainty in climate change projections and ambiguity with regard to land classification. Uncertainty in general circulation model (GCM) projections is addressed using data assembled from thirteen GCMs and two representative emission scenarios (A1B and B1 employ CO2-equivalent greenhouse gas concentrations of 850 and 600 ppmv, respectively; B1 represents a greener economy). Erroneous data and the uncertain nature of land classifications based on multiple indices (i.e. soil properties, land slope, temperature, and humidity) are handled with fuzzy logic modeling. It is found that the total global arable land area is likely to decrease by 0.8-1.7% under scenario A1B and increase by 2.0-4.4% under scenario B1. Regions characterized by relatively high latitudes such as Russia, China and the US may expect an increase of total arable land by 37-67%, 22-36% and 4-17%, respectively, while tropical and sub-tropical regions may suffer different levels of lost arable land. For example, South America may lose 1-21% of its arable land area, Africa 1-18%, Europe 11-17%, and India 2-4%. When considering, in addition, land used for human settlements and natural conservation, the net potential arable land may decrease even further worldwide by the end of the 21st century under both scenarios due to population growth. Regionally, it is likely that both climate change and population growth will cause reductions in arable land in Africa, South America, India and Europe. However, in Russia, China and the US, significant arable land increases may still be possible. Although the magnitudes of the projected changes vary by scenario, the increasing or decreasing trends in arable land area are regionally consistent.
NASA Astrophysics Data System (ADS)
Duncan, P.; Lewarne, M.
2016-06-01
Understanding and identifying the spatial-temporal changes in the natural environment is crucial for monitoring and evaluating conservation efforts, as well as understanding the impact of human activities on natural resources, informing responsible land management, and promoting better decision-making. Conservation areas are often under pressure from expanding farming and related industry, invasive alien vegetation, and an ever-increasing human settlement footprint. This study focuses on detecting changes to the Prince Alfred Hamlet commonage, near Ceres in the Cape Floral Kingdom. It was chosen for its high conservation value and significance as a critical water source area. The study area includes a fast-growing human settlement footprint in a highly productive farming landscape. There are conflicting development needs as well as risks to agricultural production, and both of these threaten the integrity of the ecosystems which supply underlying services to both demands on the land. Using a multi-disciplinary approach and high-resolution satellite imagery, land use and land cover changes can be detected and classified, and the results used to support the conservation of biodiversity and wildlife, and protect our natural resources. The aim of this research is to study the efficacy of using remote sensing and GIS techniques to detect changes to critical conservation areas where disturbances can be understood, and therefore better managed and mitigated before these areas are degraded beyond repair.
Liu, Y S; Wang, J Y; Long, H L
2010-01-01
Rapid urbanization and industrialization in southern Jiangsu Province have consumed a huge amount of arable land. Through comparative analysis of land cover maps derived from TM images in 1990, 2000 and 2006, we identified the trend of arable land loss. It is found that most arable land is lost to urbanization and rural settlements development. Urban settlements, rural settlements, and industrial park-mine-transport land increased, respectively, by 87 997 ha (174.65%), 81 041 ha (104.52%), and 12 692 ha (397.99%) from 1990 to 2006. Most of the source (e.g., change from) land covers are rice paddy fields and dryland. These two covers contributed to newly urbanized areas by 37.12% and 73.52% during 1990-2000, and 46.39% and 38.86% during 2000-2006. However, the loss of arable land is weakly correlated with ecological service value, per capita net income of farmers, but positively with grain yield for some counties. Most areas in the study site have a low arable land depletion rate and a high potential for sustainable development. More attention should be directed at those counties that have a high depletion rate but a low potential for sustainable development. Rural settlements should be controlled and rationalized through legislative measures to achieve harmonious development between urban and rural areas, and sustainable development for rural areas with a minimal impact on the ecoenvironment. 2009 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kaya, S.; Alganci, U.; Sertel, E.; Ustundag, B.
2015-12-01
Throughout the history, agricultural activities have been performed close to urban areas. Main reason behind this phenomenon is the need of fast marketing of the agricultural production to urban residents and financial provision. Thus, using the areas nearby cities for agricultural activities brings out advantage of easy transportation of productions and fast marketing. For decades, heavy migration to cities has directly and negatively affected natural grasslands, forests and agricultural lands. This pressure has caused agricultural lands to be changed into urban areas. Dense urbanization causes increase in impervious surfaces, heat islands and many other problems in addition to destruction of agricultural lands. Considering the negative impacts of urbanization on agricultural lands and natural resources, a periodic monitoring of these changes becomes indisputably important. At this point, satellite images are known to be good data sources for land cover / use change monitoring with their fast data acquisition, large area coverages and temporal resolution properties. Classification of the satellite images provides thematic the land cover / use maps of the earth surface and changes can be determined with GIS based analysis multi-temporal maps. In this study, effects of heavy urbanization over agricultural lands in Istanbul, metropolitan city of Turkey, were investigated with use of multi-temporal Landsat TM satellite images acquired between 1984 and 2011. Images were geometrically registered to each other and classified using supervised maximum likelihood classification algorithm. Resulting thematic maps were exported to GIS environment and destructed agricultural lands by urbanization were determined using spatial analysis.
Creating Protected Areas on Public Lands: Is There Room for Additional Conservation?
Arriagada, Rodrigo A; Echeverria, Cristian M; Moya, Danisa E
2016-01-01
Most evaluations of the effectiveness of PAs have relied on indirect estimates based on comparisons between protected and unprotected areas. Such methods can be biased when protection is not randomly assigned. We add to the growing literature on the impact of PAs by answering the following research questions: What is the impact of Chilean PAs on deforestation which occurred between 1986 and 2011? How do estimates of the impact of PAs vary when using only public land as control units? We show that the characteristics of the areas in which protected and unprotected lands are located differ significantly. To satisfactorily estimate the effects of PAs, we use matching methods to define adequate control groups, but not as in previous research. We construct control groups using separately non-protected private areas and non-protected public lands. We find that PAs avoid deforestation when using unprotected private lands as valid controls, however results show no impact when the control group is based only on unprotected public land. Different land management regimes, and higher levels of enforcement inside public lands may reduce the opportunity to add additional conservation benefits when the national systems for PAs are based on the protection of previously unprotected public lands. Given that not all PAs are established to avoid deforestation, results also admit the potential for future studies to include other outcomes including forest degradation (not just deforestation), biodiversity, wildlife, primary forests (not forests in general), among others.
Ningal, Tine; Hartemink, A E; Bregt, A K
2008-04-01
The relation between human population growth and land use change is much debated. Here we present a case study from Papua New Guinea where the population has increased from 2.3 million in 1975 to 5.2 million in 2000. Since 85% of the population relies on subsistence agriculture, population growth affects agricultural land use. We assessed land use change in the Morobe province (33,933 km2) using topographic maps of 1975 and Landsat TM images of 1990 and 2000. Between 1975 and 2000, agricultural land use increased by 58% and population grew by 99%. Most new agricultural land was taken from primary forest and the forest area decreased from 9.8 ha person(-1) in 1975 to 4.4 ha person(-1) in 2000. Total population change and total land use change were strongly correlated. Most of the agricultural land use change occurred on Inceptisols in areas with high rainfall (>2500 mm year(-1)) on moderate to very steep slopes (10-56%). Agricultural land use changes in logged-over areas were in the vicinity of populated places (villages), and in close proximity to road access. There was considerable variation between the districts but districts with higher population growth also had larger increases in agricultural areas. It is concluded that in the absence of improved farming systems the current trend of increased agriculture with rapid population growth is likely to continue.
Creating Protected Areas on Public Lands: Is There Room for Additional Conservation?
Arriagada, Rodrigo A.; Echeverria, Cristian M.; Moya, Danisa E.
2016-01-01
Most evaluations of the effectiveness of PAs have relied on indirect estimates based on comparisons between protected and unprotected areas. Such methods can be biased when protection is not randomly assigned. We add to the growing literature on the impact of PAs by answering the following research questions: What is the impact of Chilean PAs on deforestation which occurred between 1986 and 2011? How do estimates of the impact of PAs vary when using only public land as control units? We show that the characteristics of the areas in which protected and unprotected lands are located differ significantly. To satisfactorily estimate the effects of PAs, we use matching methods to define adequate control groups, but not as in previous research. We construct control groups using separately non-protected private areas and non-protected public lands. We find that PAs avoid deforestation when using unprotected private lands as valid controls, however results show no impact when the control group is based only on unprotected public land. Different land management regimes, and higher levels of enforcement inside public lands may reduce the opportunity to add additional conservation benefits when the national systems for PAs are based on the protection of previously unprotected public lands. Given that not all PAs are established to avoid deforestation, results also admit the potential for future studies to include other outcomes including forest degradation (not just deforestation), biodiversity, wildlife, primary forests (not forests in general), among others. PMID:26848856
NASA Astrophysics Data System (ADS)
Wang, Hong; Sun, Fubao; Xia, Jun; Liu, Wenbin
2017-04-01
Under the Grain for Green Project in China, vegetation recovery construction has been widely implemented on the Loess Plateau for the purpose of soil and water conservation. Now it is becoming controversial whether the recovery construction involving vegetation, particularly forest, is reducing the streamflow in the rivers of the Yellow River basin. In this study, we chose the Wei River, the largest branch of the Yellow River, with revegetated construction area as the study area. To do that, we apply the widely used Soil and Water Assessment Tool (SWAT) model for the upper and middle reaches of the Wei River basin. The SWAT model was forced with daily observed meteorological forcings (1960-2009) calibrated against daily streamflow for 1960-1969, validated for the period of 1970-1979, and used for analysis for 1980-2009. To investigate the impact of LUCC (land use and land cover change) on the streamflow, we firstly use two observed land use maps from 1980 and 2005 that are based on national land survey statistics merged with satellite observations. We found that the mean streamflow generated by using the 2005 land use map decreased in comparison with that using the 1980 one, with the same meteorological forcings. Of particular interest here is that the streamflow decreased on agricultural land but increased in forest areas. More specifically, the surface runoff, soil flow, and baseflow all decreased on agricultural land, while the soil flow and baseflow of forest areas increased. To investigate that, we then designed five scenarios: (S1) the present land use (1980) and (S2) 10 %, (S3) 20 %, (S4) 40 %, and (S5) 100 % of agricultural land that was converted into mixed forest. We found that the streamflow consistently increased with agricultural land converted into forest by about 7.4 mm per 10 %. Our modeling results suggest that forest recovery construction has a positive impact on both soil flow and baseflow by compensating for reduced surface runoff, which leads to a slight increase in the streamflow in the Wei River with the mixed landscapes on the Loess Plateau that include earth-rock mountain area.
NASA Astrophysics Data System (ADS)
Verachtert, E.; Van Den Eeckhaut, M.; Martínez-Murillo, J. F.; Nadal-Romero, E.; Poesen, J.; Devoldere, S.; Wijnants, N.; Deckers, J.
2013-06-01
This study investigates the role of soil characteristics and land use in the development of soil pipes in the loess belt of Belgium. First, we tested the hypothesis that discontinuities in the soil profile enhance lateral flow and piping by impeding vertical infiltration. We focus on discontinuities in soil characteristics that can vary with soil depth, including texture, saturated hydraulic conductivity, penetration resistance, and bulk density. These characteristics as well as soil biological activity were studied in detail on 12 representative soil profiles for different land use types. Twelve sites were selected in the Flemish Ardennes (Belgium): four pastures with collapsed pipes (CP), four pastures without CP, two sites under arable land without CP and two sites under forest without CP. Secondly, this study aimed at evaluating the interaction of groundwater table positions (through soil augerings) and CP in a larger area, with a focus on pastures. Pasture is the land use where almost all CP in the study area are observed. Therefore, the position of the groundwater table was compared for 15 pastures with CP and 14 pastures without CP, having comparable topographical characteristics in terms of slope gradient and contributing area. Finally, the effect of land use history on the occurrence of pipe collapse was evaluated for a database of 84 parcels with CP and 84 parcels without CP, currently under pasture. As to the first hypothesis, no clear discontinuities for abiotic soil characteristics in soil profiles were observed at the depth where pipes occur, but pastures with CP had significantly more earthworm channels and mole burrows at larger depths (> 120 cm: mean of > 200 earthworm channels per m2) than pastures without CP, arable land or forest (> 120 cm depth, a few or no earthworm channels left). The land use history appeared to be similar for the pastures with and without CP. Combining all results from soil profiles and soil augering indicates that intense biological activity (especially by earthworms and moles), in combination with a sufficiently high groundwater table, favours the development of soil pipes in the study area.
NASA Astrophysics Data System (ADS)
Ager, Alan; Barros, Ana; Day, Michelle; Preisler, Haiganoush; Evers, Cody
2015-04-01
We develop the idea of risk transmission from large wildfires and apply network analyses to understand its importance within the 3.2 million ha Fire-People-Forest study area in central Oregon, US. Historic wildfires within the study and elsewhere in the western US frequently burn over long distances (e.g., 20-50 km) through highly fragmented landscapes with respect to ownership, fuels, management intensity, population density, and ecological conditions. The collective arrangement of fuel loadings in concert with weather and suppression efforts ultimately determines containment and the resulting fire perimeter. While spatial interactions among land parcels in terms of fire spread and intensity have been frequently noted by fire managers, quantifying risk and exposure transmission is not well understood. In this paper we used simulation modeling to quantify wildfire transmission and built a transmission network among and within land owners and communities within the study area. The results suggested that 84% of the predicted area burned within the 25 communities in the study area was from simulated fires that ignited on federal lands. The wildland urban interface surrounding the communities was predicted to burn at a rate of 2 % per year, with 57% of the area burned from fires ignited on federal lands. The node degree for communities indicated that simulated fires originated on about 6 different landowners. Network analyses in general revealed independent variation in transmitted fire among landowners in terms of both node degree (diversity of landowners exchanging fire) and transmitted fire, indicating that both the spatial grain of land ownership and wildfire topology contribute to transmission among land parcels. We discuss how network analyses of wildfire transmission can inform fire management goals for creating fire adapted communities, conserving biodiversity, and resolving competing demands for fire-prone ecosystem services. We also discuss how biophysical fire networks can potentially be coupled with social fire networks to improve wildfire mitigation planning.
Hydrology of coal-lease areas near Durango, Colorado
Brooks, Tom
1985-01-01
The U.S. Bureau of Land Management leases Federal lands and minerals for coal mining near Durango, Colorado. This report addresses the hydrologic suitability of those lands for coal leasing; the report describes the general hydrology of the Durango area and, more specifically, the hydrology of the Stollsteimer Creek study area 32 miles east of the Durango and the Hay Gulch study area, 12 miles southwest of Durango. The most productive aquifers in the Durango study area are Quaternary alluvium and the tertiary Animas Formation. Water wells completed in alluvium typically yield 5 to 20 gallons/min; wells completed is the Animas Formation yield as much as 50 gallons/min. Water quality in these aquifers is variable, but it generally is suitable for domestic use. The coal-bearing Cretaceous Fruitland and Menefee Formations are mined by surface methods at the Chimney Rock Mine in the Stollsteimer Creek study area and by underground methods at the National King Coal Mine in the Hay Gulch study area. Effects of surface mining in the Stollsteimer Creek area are: (1) Dewatering of an alluvial aquifer; and (2) Local degradation of alluvium water quality by spoil-pile effluent. Effects of underground mining in the Hay Gulch area are: (1) Introduction of water with greater dissolved-solids concentrations into the upper Hay Gulch alluvium from mine runoff; (2) Subsidence fracturing which could dewater streams and the alluvial aquifer. (USGS)
Potential future land use threats to California's protected areas
Wilson, Tamara Sue; Sleeter, Benjamin Michael; Davis, Adam Wilkinson
2015-01-01
Increasing pressures from land use coupled with future changes in climate will present unique challenges for California’s protected areas. We assessed the potential for future land use conversion on land surrounding existing protected areas in California’s twelve ecoregions, utilizing annual, spatially explicit (250 m) scenario projections of land use for 2006–2100 based on the Intergovernmental Panel on Climate Change Special Report on Emission Scenarios to examine future changes in development, agriculture, and logging. We calculated a conversion threat index (CTI) for each unprotected pixel, combining land use conversion potential with proximity to protected area boundaries, in order to identify ecoregions and protected areas at greatest potential risk of proximal land conversion. Our results indicate that California’s Coast Range ecoregion had the highest CTI with competition for extractive logging placing the greatest demand on land in close proximity to existing protected areas. For more permanent land use conversions into agriculture and developed uses, our CTI results indicate that protected areas in the Central California Valley and Oak Woodlands are most vulnerable. Overall, the Eastern Cascades, Central California Valley, and Oak Woodlands ecoregions had the lowest areal percent of protected lands and highest conversion threat values. With limited resources and time, rapid, landscape-level analysis of potential land use threats can help quickly identify areas with higher conversion probability of future land use and potential changes to both habitat and potential ecosystem reserves. Given the broad range of future uncertainties, LULC projections are a useful tool allowing land managers to visualize alternative landscape futures, improve planning, and optimize management practices.
NASA Astrophysics Data System (ADS)
Saragih, I. J. A.; Putra, A. W.; Nugraheni, I. R.; Rinaldy, N.; Yonas, B. W.
2017-12-01
Located close to the sea indicates that there are influences of the sea-land breeze circulation on the weather condition in Deli Serdang. The purpose of this study is to simulate sea-land breeze occurrence and its influence on the convective activities in Deli Serdang. The research area covers the area of Deli Serdang Regency and the surrounding ocean region in the coordinates 02°57‧-03°16‧N & 98°33‧-99°27‧E where Kualanamu Meteorological Station is the centre of the research area at coordinate 03°34‧N & 98°44‧E and the elevation about 27MAMSL. The research time is a day with the highest rainfall in the highest peak rainy month. The raw data consist of the Himawari-8 satellite image from BMKG, FNL (Final Analysis) data from http://rda.ucar.edu, and meteorological observation data from Kualanamu Meteorology Station. This study indicates that WRF-ARW can simulate the sea-land breeze occurrence on the coast of Deli Serdang well. The existence of the convective index cover in the convergence area proves the sea-land breeze occurred in the coast of Deli Serdang can form the convergence area as the interacted result with the wind from other directions that support convective activities.
NASA Astrophysics Data System (ADS)
Carisi, Francesca; Domeneghetti, Alessio; Castellarin, Attilio
2017-04-01
Can man-induced or man-accelerated land-subsidence modify significantly riverine flood-hazard in flood-prone areas? We address this question by investigating the possible changes in flood hazard over one of the most prominent cases of anthropogenic land-subsidence in Italy, a 77-km2 area around the city of Ravenna. The subsidence rate in the area, naturally in the order of a few mm/year, increased dramatically after World War II as a consequence of groundwater pumping and natural gas extraction, exceeding 110 mm/year and resulting in cumulative drops larger than 1.5 m in roughly 100 years. The Montone-Ronco and Fiumi Uniti rivers flow in the southern portion of the study area, which is protected from frequent flooding by levees. We simulated the inundation events associated with different potential levee-breaching configurations by using a fully two-dimensional hydrodynamic model constructed on the basis of four different floodplain geometries: the current topography and a reconstruction of ground elevations before anthropogenic land-subsidence, both neglecting man-made infrastructures, and the current and historical topographies completed with a representation of road and railway embankments and main land-reclamation channels. Our results show that flood-hazard changes due to anthropogenic land-subsidence are limited (e.g. significant changes in simulated values of water depth, h, velocity, v, and intensity, i=hṡv, are detected in roughly 1%, 2% and 8% of the flood-prone area, in this order) and overwhelmingly lower than those determined by the construction of road and railway embankments or artificial channel networks (20%, 14% and 48% of the flood-prone area, respectively).
Network analysis of wildfire transmission and implications for risk governance
Ager, Alan A.; Evers, Cody R.; Day, Michelle A.; Preisler, Haiganoush K.; Barros, Ana M. G.; Nielsen-Pincus, Max
2017-01-01
We characterized wildfire transmission and exposure within a matrix of large land tenures (federal, state, and private) surrounding 56 communities within a 3.3 million ha fire prone region of central Oregon US. Wildfire simulation and network analysis were used to quantify the exchange of fire among land tenures and communities and analyze the relative contributions of human versus natural ignitions to wildfire exposure. Among the land tenures examined, the area burned by incoming fires averaged 57% of the total burned area. Community exposure from incoming fires ignited on surrounding land tenures accounted for 67% of the total area burned. The number of land tenures contributing wildfire to individual communities and surrounding wildland urban interface (WUI) varied from 3 to 20. Community firesheds, i.e. the area where ignitions can spawn fires that can burn into the WUI, covered 40% of the landscape, and were 5.5 times larger than the combined area of the community core and WUI. For the major land tenures within the study area, the amount of incoming versus outgoing fire was relatively constant, with some exceptions. The study provides a multi-scale characterization of wildfire networks within a large, mixed tenure and fire prone landscape, and illustrates the connectivity of risk between communities and the surrounding wildlands. We use the findings to discuss how scale mismatches in local wildfire governance result from disconnected planning systems and disparate fire management objectives among the large landowners (federal, state, private) and local communities. Local and regional risk planning processes can adopt our concepts and methods to better define and map the scale of wildfire risk from large fire events and incorporate wildfire network and connectivity concepts into risk assessments. PMID:28257416
Network analysis of wildfire transmission and implications for risk governance.
Ager, Alan A; Evers, Cody R; Day, Michelle A; Preisler, Haiganoush K; Barros, Ana M G; Nielsen-Pincus, Max
2017-01-01
We characterized wildfire transmission and exposure within a matrix of large land tenures (federal, state, and private) surrounding 56 communities within a 3.3 million ha fire prone region of central Oregon US. Wildfire simulation and network analysis were used to quantify the exchange of fire among land tenures and communities and analyze the relative contributions of human versus natural ignitions to wildfire exposure. Among the land tenures examined, the area burned by incoming fires averaged 57% of the total burned area. Community exposure from incoming fires ignited on surrounding land tenures accounted for 67% of the total area burned. The number of land tenures contributing wildfire to individual communities and surrounding wildland urban interface (WUI) varied from 3 to 20. Community firesheds, i.e. the area where ignitions can spawn fires that can burn into the WUI, covered 40% of the landscape, and were 5.5 times larger than the combined area of the community core and WUI. For the major land tenures within the study area, the amount of incoming versus outgoing fire was relatively constant, with some exceptions. The study provides a multi-scale characterization of wildfire networks within a large, mixed tenure and fire prone landscape, and illustrates the connectivity of risk between communities and the surrounding wildlands. We use the findings to discuss how scale mismatches in local wildfire governance result from disconnected planning systems and disparate fire management objectives among the large landowners (federal, state, private) and local communities. Local and regional risk planning processes can adopt our concepts and methods to better define and map the scale of wildfire risk from large fire events and incorporate wildfire network and connectivity concepts into risk assessments.
Optimal Trajectories for the Helicopter in One-Engine-Inoperative Terminal-Area Operations
NASA Technical Reports Server (NTRS)
Zhao, Yiyuan; Chen, Robert T. N.
1996-01-01
This paper presents a summary of a series of recent analytical studies conducted to investigate One-Engine-Inoperative (OEI) optimal control strategies and the associated optimal trajectories for a twin engine helicopter in Category-A terminal-area operations. These studies also examine the associated heliport size requirements and the maximum gross weight capability of the helicopter. Using an eight states, two controls, augmented point-mass model representative of the study helicopter, Continued TakeOff (CTO), Rejected TakeOff (RTO), Balked Landing (BL), and Continued Landing (CL) are investigated for both Vertical-TakeOff-and-Landing (VTOL) and Short-TakeOff-and-Landing (STOL) terminal-area operations. The formulation of the nonlinear optimal control problems with considerations for realistic constraints, solution methods for the two-point boundary-value problem, a new real-time generation method for the optimal OEI trajectories, and the main results of this series of trajectory optimization studies are presented. In particular, a new balanced- weight concept for determining the takeoff decision point for VTOL Category-A operations is proposed, extending the balanced-field length concept used for STOL operations.
Wang, Yongfang; Zhang, Jiquan; Guo, Enliang; Sun, Zhongyi
2015-01-01
Desertification is a typical disaster risk event in which human settlements and living environments are destroyed. Desertification Disaster Risk Assessment can control and prevent the occurrence and development of desertification disasters and reduce their adverse influence on human society. This study presents the methodology and procedure for risk assessment and zoning of desertification disasters in Horqin Sand Land. Based on natural disaster risk theory and the desertification disaster formation mechanism, the Desertification Disaster Risk Index (DDRI) combined hazard, exposure, vulnerability and restorability factors and was developed mainly by using multi-source data and the fuzzy comprehensive evaluation method. The results showed that high risk and middle risk areas account for 28% and 23% of the study area, respectively. They are distributed with an “S” type in the study area. Low risk and very low risk areas account for 21% and 10% of the study area, respectively. They are distributed in the west-central and southwestern parts. Very high risk areas account for 18% of the study area and are distributed in the northeastern parts. The results can be used to know the desertification disaster risk level. It has important theoretical and practical significance to prevention and control of desertification in Horqin Sand Land and even in Northern China. PMID:25654772
Wang, Yongfang; Zhang, Jiquan; Guo, Enliang; Sun, Zhongyi
2015-02-03
Desertification is a typical disaster risk event in which human settlements and living environments are destroyed. Desertification Disaster Risk Assessment can control and prevent the occurrence and development of desertification disasters and reduce their adverse influence on human society. This study presents the methodology and procedure for risk assessment and zoning of desertification disasters in Horqin Sand Land. Based on natural disaster risk theory and the desertification disaster formation mechanism, the Desertification Disaster Risk Index (DDRI) combined hazard, exposure, vulnerability and restorability factors and was developed mainly by using multi-source data and the fuzzy comprehensive evaluation method. The results showed that high risk and middle risk areas account for 28% and 23% of the study area, respectively. They are distributed with an "S" type in the study area. Low risk and very low risk areas account for 21% and 10% of the study area, respectively. They are distributed in the west-central and southwestern parts. Very high risk areas account for 18% of the study area and are distributed in the northeastern parts. The results can be used to know the desertification disaster risk level. It has important theoretical and practical significance to prevention and control of desertification in Horqin Sand Land and even in Northern China.
Ge, Xiaodong; Dong, Kaikai; Luloff, A E; Wang, Luyao; Xiao, Jun; Wang, Shiying; Wang, Qian
2016-01-01
The exact roles of landscape fragmentation on sandy desertification are still not fully understood, especially with the impact of different land use types in spatial dimension. Taking patch size and shape into consideration, this paper selected the Ratio of Patch Size and the Fractal Dimension Index to establish a model that reveals the association between the area of bare sand land and the fragmentation of different land use types adjacent to bare sand land. Results indicated that (1) grass land and arable land contributed the most to landscape fragmentation processes in the regions adjacent to bare sand land during the period 1980 to 2010. Grass land occupied 54 % of the region adjacent to bare sand land in 1980. The Ratio of Patch Size of grass land decreased from 1980 to 2000 and increased after 2000. The Fractal Dimension Index of grass increased during the period 1980 to 1990 and decreased after 1990. Arable land expanded significantly during this period. The Ratio of Patch Size of arable land increased from 1980 to 1990 and decreased since 1990. The Fractal Dimension Index of arable land increased from 1990 to 2000 and decreased after 2000. (2) The Ratio of Patch Size and the Fractal Dimension Index were significantly related to the area of bare sand land. The role of landscape fragmentation was not linear to sandy desertification. There were both positive and negative effects of landscape fragmentation on sandy desertification. In 1980, the Ratio of Patch Size and the Fractal Dimension Index were negatively related to the area of bare sand land, showing that the landscape fragmentation and regularity of patches contributed to the expansion of sandy desertification. In 1990, 2000, and 2010, the Ratio of Patch Size and the Fractal Dimension Index were mostly positively related to the area of bare sand land, showing the landscape fragmentation and regularity of patches contributed to the reversion of sandy desertification in this phase. The absolute values of the coefficients were the highest for grass land in the regression models, so that grass land had the most important influence on sandy desertification.
Solar energy development impacts on land cover change and protected areas
Hernandez, Rebecca R.; Hoffacker, Madison K.; Murphy-Mariscal, Michelle L.; Wu, Grace C.; Allen, Michael F.
2015-01-01
Decisions determining the use of land for energy are of exigent concern as land scarcity, the need for ecosystem services, and demands for energy generation have concomitantly increased globally. Utility-scale solar energy (USSE) [i.e., ≥1 megawatt (MW)] development requires large quantities of space and land; however, studies quantifying the effect of USSE on land cover change and protected areas are limited. We assessed siting impacts of >160 USSE installations by technology type [photovoltaic (PV) vs. concentrating solar power (CSP)], area (in square kilometers), and capacity (in MW) within the global solar hot spot of the state of California (United States). Additionally, we used the Carnegie Energy and Environmental Compatibility model, a multiple criteria model, to quantify each installation according to environmental and technical compatibility. Last, we evaluated installations according to their proximity to protected areas, including inventoried roadless areas, endangered and threatened species habitat, and federally protected areas. We found the plurality of USSE (6,995 MW) in California is sited in shrublands and scrublands, comprising 375 km2 of land cover change. Twenty-eight percent of USSE installations are located in croplands and pastures, comprising 155 km2 of change. Less than 15% of USSE installations are sited in “Compatible” areas. The majority of “Incompatible” USSE power plants are sited far from existing transmission infrastructure, and all USSE installations average at most 7 and 5 km from protected areas, for PV and CSP, respectively. Where energy, food, and conservation goals intersect, environmental compatibility can be achieved when resource opportunities, constraints, and trade-offs are integrated into siting decisions. PMID:26483467
Solar Energy Development Impacts on Land-Cover Change and Protected Areas
NASA Astrophysics Data System (ADS)
Hoffacker, M. K.; Hernandez, R. R.; Murphy-Mariscal, M. L.; Wu, G. C.; Allen, M. F.
2015-12-01
Decisions determining the use of land for energy are of exigent concern as land scarcity, the need for ecosystem services, and demands for energy generation have concomitantly increased globally. Utility-scale solar energy (USSE; i.e., ≥ 1 megawatt [MW]) development requires large quantities of space and land; however, studies quantifying the effect of USSE on land-cover change and protected areas are limited. We assessed siting impacts of >160 USSE installations by technology type (photovoltaic [PV] vs. concentrating solar power [CSP]), area (km2), and capacity (MW) within the global solar hotspot of the state of California (USA). Additionally, we utilized the Carnegie Energy and Environmental Compatibility Model, a multiple criteria model, to quantify each installation according to environmental and technical compatibility. Lastly, we evaluated installations according to their proximity to protected areas, including inventoried roadless areas, endangered and threatened species habitat, and federally protected areas. We found the plurality of USSE (6,995 MW) in California is sited in shrub- and scrublands, comprising 375 km2 of land-cover change. Twenty-eight percent of USSE installations are located in croplands and pastures, comprising 155 km2 of change. Less than 15% of USSE installations are sited in compatible areas. The majority of incompatible USSE power plants are sited far from existing transmission infrastructure and all USSE installations average at most seven and five km from protected areas, for PV and CSP, respectively. Where energy, food, and conservation goals intersect, environmental compatibility can be achieved when resource opportunities, constraints, and trade-offs are integrated into siting decisions.
Solar energy development impacts on land cover change and protected areas.
Hernandez, Rebecca R; Hoffacker, Madison K; Murphy-Mariscal, Michelle L; Wu, Grace C; Allen, Michael F
2015-11-03
Decisions determining the use of land for energy are of exigent concern as land scarcity, the need for ecosystem services, and demands for energy generation have concomitantly increased globally. Utility-scale solar energy (USSE) [i.e., ≥ 1 megawatt (MW)] development requires large quantities of space and land; however, studies quantifying the effect of USSE on land cover change and protected areas are limited. We assessed siting impacts of >160 USSE installations by technology type [photovoltaic (PV) vs. concentrating solar power (CSP)], area (in square kilometers), and capacity (in MW) within the global solar hot spot of the state of California (United States). Additionally, we used the Carnegie Energy and Environmental Compatibility model, a multiple criteria model, to quantify each installation according to environmental and technical compatibility. Last, we evaluated installations according to their proximity to protected areas, including inventoried roadless areas, endangered and threatened species habitat, and federally protected areas. We found the plurality of USSE (6,995 MW) in California is sited in shrublands and scrublands, comprising 375 km(2) of land cover change. Twenty-eight percent of USSE installations are located in croplands and pastures, comprising 155 km(2) of change. Less than 15% of USSE installations are sited in "Compatible" areas. The majority of "Incompatible" USSE power plants are sited far from existing transmission infrastructure, and all USSE installations average at most 7 and 5 km from protected areas, for PV and CSP, respectively. Where energy, food, and conservation goals intersect, environmental compatibility can be achieved when resource opportunities, constraints, and trade-offs are integrated into siting decisions.
NASA Astrophysics Data System (ADS)
Hoang Khanh Linh, N.; Van Chuong, H.
2015-04-01
Urban climate, one of the challenges of human being in 21 century, is known as the results of land use/cover transformation. Its characteristics are distinguished by different varieties of climatic conditions in comparison with those of less built-up areas. The alterations lead to "Urban Heat Island", in which temperature in urban places is higher than surrounding environment. This happens not only in mega cities but also in less urbanized sites. The results determine the change of land use/cover and land surface temperature in Danang city by using multi-temporal Landsat and ASTER data for the period of 1990-2009. Based on the supervised classification method of maximum likelihood algorithm, satellite images in 1990, 2003, 2009 were classified into five classes: water, forest, shrub, agriculture, barren land and built-up area. For accuracy assessment, the error metric tabulations of mapped classes and reference classes were made. The Kappa statistics, derived from error matrices, were over 80% for all of land use maps. An comparison change detection algorithm was made in three intervals, 1990-2003, 2003-2009 and 1990-2009. The results showed that built-up area increased from 8.95% to 17.87% between 1990 and 2009, while agriculture, shrub and barren decreased from 12.98% to 7.53%, 15.72% to 9.89% and 3.88% to 1.77% due to urbanization that resulted from increasing of urban population and economic development, respectively. Land surface temperature (LST) maps were retrieved from thermal infrared bands of Landsat and ASTER data. The result indicated that the temperature in study area increased from 39oC to 41oC for the period of 1990-2009. Our analysis showed that built-up area had the highest LST values, whereas water bodies had the least LST. This study is expected to be useful for decision makers to make an appropriate land use planning which can mitigate the effect to urban climate.
NASA Astrophysics Data System (ADS)
Anh, N. K.; Liou, Y. A.; Ming-Hsu, L.
2016-12-01
Regional land use/land cover (LULC) changes lead to various changes in ecological processes and, in turn, alter regional micro-climate. To understand eco-environmental responses to LULC changes, eco-environmental evaluation is thus required with aims to identify vulnerable regions and influential factors, so that practical measures for environmental protection and management may be proposed. The Thua Thien - Hue Province has been experiencing urbanization at a rapid rate in both population and physical size. The urban land, agricultural land, and aquaculture activities have been invasively into natural space and caused eco-environment deterioration by land desertification, soil erosion, shrinking forest resources,…etc. In this study, an assessment framework that is composed by 11 variables with 9 of them constructed from Landsat time series is proposed to serve as basis to examine eco-environmental vulnerability in the Thua Thien - Hue Province in years 1989, 2003, and 2014. An eco-environmental vulnerability map is assorted into six vulnerability levels consisting of potential, slight, light, medium, heavy, and very heavy vulnerabilities. Result shows that there is an increasing trend in eco-environmental vulnerability in general with expected evolving distributions in heavy and very heavy vulnerability levels, which mainly lying on developed land, bare land, semi bare land, agricultural land, and poor and recovery forests. In contrast, there is a significant decline in potential vulnerability level. The contributing factors of an upward trend in medium, heavy, and very heavy levels include: (i) a large natural forest converted to plantation forest and agriculture land; and (ii) significant expansion of developed land leading to difference in thermal signatures in urban areas as compared with those of the surrounding areas. It is concluded that anthropogenic processes with transformation on LULC has amplified the vulnerability of eco-environment in the study area.
1981-04-01
land occurs in undeveloped areas of the parks systems* Woodland. Land that is primarily used to produce adapted wood crops and to provide tree cover for...Filling & Dumping Area 4 26-2 Contruction Area 30 26-3 Construction Area 2 27-1 Construction Area 4 27-2 Construction Area 40 27-3 Construction Area 5 A...or white pine. The cost of this BMP is approximately $150 per acre. C-61 Wood laiid l iprovteintit. Thh; IIP il volves selectIve thinning of maple
Effects of land use on quality of water in stratified-drift aquifers in Connecticut
Grady, Stephen J.
1994-01-01
Human activities associated with agricultural, residential, commercial, and industrial land uses have affected the quality of water in the four stratified-drift aquifers examined in Connecticut. A study to evaluate quantitatively the effects of human activities, expressed as land use, on regional ground-water quality was initiated in 1984 as part of the U.S. Geological Survey's Toxic Waste-round-Water Contamination Program. Water-quality data were collected from 116 shallow stainless-steel wells installed beneath or immediately downgradient from seven types of land use areas within the Pootatuck, Pomperaug, Farmington, and Hockanum River valleys in Connecticut. Analysis of variance on the ranked concentrations of 21 largely uncensored or slightly censored constituents, and contingency-table analysis of the frequency of detection of 49 moderately to highly censored constituents indicate that 27 water-quality variables differ at the 0.05 level of significance for samples from at least one land use area. For most constituents, concentrations or detection frequencies are lowest in samples from the undeveloped areas, which characterize background water-quality conditions. The effect of agricultural land use on groundwater quality reflects tillage practices; tilled areas affect the water quality to a greater degree than do untilled areas. Twenty percent of the wells in the tilled agricultural areas yielded water with concentrations of nitrate plus nitrite-nitrogen exceeding 10 milligrams per liter. Atrazine detections in one-third of the wells in areas of tilled agricultural land use were significantly more common than in the undeveloped areas. Ground-water quality beneath sewered residential areas is more severely affected by inorganic and organic nonpoint-source contaminants than is water quality beneath unsewered residential areas. Median concentrations or detection frequencies of most physical properties and inorganic constituents of ground water are higher in sewered than in unsewered residential areas. Generally low concentrations (less than 1.0 microgram per liter) of one or more of 17 volatile organic compounds were detected in samples from 62 percent of the wells in the unsewered residential areas. Most of these compounds were detected in less than 10 percent of the ground-water samples from the unsewered residential areas, however, and consequently, their frequency of detections was not significantly different than in samples from other land use areas. The detection of chloroform in ground-water samples from 47 percent of the wells in the sewered residential areas is significantly higher than the frequency of detection of chloroform in samples from the undeveloped, tilled agricultural, and unsewered residential areas. The quality of ground water is adversely affected beneath commercial areas more so than beneath all other land use areas. Median concentrations of sodium (22.5 milligrams per liter), chloride (36 milligrams per liter), and dissolved solids (286 milligrams per liter) are highest in ground-water samples in commercial areas. Detections of tetrachloroethylene, trichloroethylene, and 1,2-transdichloroethylene were significantly more common in ground-water samples from the commercial areas than in samples from one or more of the other land use areas. Tetrachloroethylene was detected in water samples from 50 percent of the observation wells in the commercial areas at concentrations of up to 1,300 micrograms per liter. Trichloroethylene and 1,2-transdichloroethylene were found at concentrations of up to 20 and 55 micrograms per liter, respectively, in samples from more than 40 percent of the wells in the commercial areas. Although industrial areas occupy only a small part of each of the study areas, they have a disproportionately large effect on ground-water quality. One or more of 12 volatile organic compounds were detected in water samples from 91 percent of the observation wells in the industrial areas
Masum, Kazi Mohammad; Mansor, Asyraf; Sah, Shahrul Anuar Mohd; Lim, Hwee San
2017-09-15
Forest ownership is considered as a vital aspect for sustainable management of forest and its associated biodiversity. The Global Forest Resources Assessment 2015 reported that privately owned forest area are increasing on a global scale, but deforestation was found very active in privately owned hill forest areas of Malaysia. Penang State was purposively chosen as it has been experiencing rapid and radical changes due to urban expansion over the last three decades. In this study, analyses of land-use changes were done by PCI Geomatica using Landsat images from 1991 to 2015, future trends of land-use change were assessed using EXCEL forecast function, and its impact on the surrounding environment were conducted by reviewing already published articles on changing environment of the study area. This study revealed an annual deforestation rate of 1.4% in Penang Island since 1991. Trend analysis forecasted a forest area smaller than the current forest reserves by the year 2039. Impact analysis revealed a rapid biodiversity loss with increasing landslides, mudflows, water pollution, flash flood, and health hazard. An immediate ban over hill-land development is crucial for overall environmental safety. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sun, Xiao; Crittenden, John C; Li, Feng; Lu, Zhongming; Dou, Xiaolin
2018-05-01
Urban expansion can lead to land use changes and, hence, threatens the ecosystems. Understanding the effects of urbanization on ecosystem services (ESs) can provide scientific guidance for land use planning and the protection of ESs. We established a framework to assess the spatial distributions of ESs based on land use changes in the Atlanta Metropolitan area (AMA) from 1985 to 2012. A new comprehensive ecosystem service (CES) index was developed to reflect the comprehensive level of ESs. Associated with the influential factors, we simulated the business as usual scenario in 2030. Four alternative scenarios, including more compact growth (MCG), riparian vegetation buffer (RVB), soil conservation (SC), and combined development (CD) scenarios were developed to explore the optimal land use strategies which can enhance the ESs. The results showed that forest and wetland had the greatest decreases, while low and high intensity built-up lands had the greatest increases. The values of CES and most of ESs decreased significantly due to the sprawling expansion of built-up land. The scenario analysis revealed that the CD scenario performs best in CES value, while it performs the worst in food supply. Compared with the RVB and SC scenarios, MCG scenario is a more optimal land use strategy to enhance the ESs without at the expense of food supply. To integrate multiple ESs into land use planning and decision making, corresponding land management policies and ecological engineering measures should be implemented to enhance: (1) the water yield and water purification in urban core counties, (2) the carbon storage, habitat quality, and recreational opportunity in counties around the core area, and (3) the soil conservation and food supply in surrounding suburban counties. The land use strategies and ecological engineering measures in this study can provide references for enhancing the ESs in the AMA and other metropolitan areas. Copyright © 2017 Elsevier B.V. All rights reserved.
Modelling past hydrology of an interfluve area in the Campine region (NE Belgium)
NASA Astrophysics Data System (ADS)
Leterme, Bertrand; Beerten, Koen; Gedeon, Matej; Vandersteen, Katrijn
2015-04-01
This study aims at hydrological model verification of a small lowland interfluve area (18.6 km²) in NE Belgium, for conditions that are different than today. We compare the current state with five reference periods in the past (AD 1500, 1770, 1854, 1909 and 1961) representing important stages of landscape evolution in the study area. Historical information and proxy data are used to derive conceptual model features and boundary conditions specific to each period: topography, surface water geometry (canal, drains and lakes), land use, soils, vegetation and climate. The influence of landscape evolution on the hydrological cycle is assessed using numerical simulations of a coupled unsaturated zone - groundwater model (HYDRUS-MODFLOW). The induced hydrological changes are assessed in terms of groundwater level, recharge, evapotranspiration, and surface water discharge. HYDRUS-MODFLOW coupling allows including important processes such as the groundwater contribution to evapotranspiration. Major land use change occurred between AD 1854 and 1909, with about 41% of the study area being converted from heath to coniferous forest, together with the development of a drainage network. Results show that this led to a significant decrease of groundwater recharge and lowering of the groundwater table. A limitation of the study lies in the comparison of simulated past hydrology with appropriate palaeo-records. Examples are given as how some indicators (groundwater head, swamp zones) can be used to tend to model validation. Quantifying the relative impact of land use and climate changes requires running sensitivity simulations where the models using alternative land use are run with the climate forcing of other periods. A few examples of such sensitivity runs are presented in order to compare the influence of land use and climate change on the study area hydrology.
New GIS approaches to wild land mapping in Europe
Steffen Fritz; Steve Carver; Linda See
2000-01-01
This paper outlines modifications and new approaches to wild land mapping developed specifically for the United Kingdom and European areas. In particular, national level reconnaissance and local level mapping of wild land in the UK and Scotland are presented. A national level study for the UK is undertaken, and a local study focuses on the Cairngorm Mountains in...
76 FR 33352 - Notice of Proposed Withdrawal and Opportunity for Public Meeting; California
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-08
... lands while the BLM evaluates the area for renewable energy development, including geothermal leasing... withdrawal is to protect and preserve geothermal, solar, and wind energy study areas for future renewable... period of 20 years, on behalf of the Bureau of Land Management (BLM), to protect and preserve geothermal...
Remote Sensing Precision Requirements For FIA Estimation
Mark H. Hansen
2001-01-01
In this study the National Land Cover Data (NLCD) available from the Multi-Resolution Land Characteristics Consortium (MRLC) is used for stratification in the estimation of forest area, timberland area, and growing-stock volume from the first year (1999) of annual FIA data collected in Indiana, Iowa, Minnesota, and Missouri. These estimates show that with improvements...
Land-use threats and protected areas: a scenario-based, landscape level approach
Wilson, Tamara S.; Sleeter, Benjamin M.; Sleeter, Rachel R.; Soulard, Christopher E.
2014-01-01
Anthropogenic land use will likely present a greater challenge to biodiversity than climate change this century in the Pacific Northwest, USA. Even if species are equipped with the adaptive capacity to migrate in the face of a changing climate, they will likely encounter a human-dominated landscape as a major dispersal obstacle. Our goal was to identify, at the ecoregion-level, protected areas in close proximity to lands with a higher likelihood of future land-use conversion. Using a state-and-transition simulation model, we modeled spatially explicit (1 km2) land use from 2000 to 2100 under seven alternative land-use and emission scenarios for ecoregions in the Pacific Northwest. We analyzed scenario-based land-use conversion threats from logging, agriculture, and development near existing protected areas. A conversion threat index (CTI) was created to identify ecoregions with highest projected land-use conversion potential within closest proximity to existing protected areas. Our analysis indicated nearly 22% of land area in the Coast Range, over 16% of land area in the Puget Lowland, and nearly 11% of the Cascades had very high CTI values. Broader regional-scale land-use change is projected to impact nearly 40% of the Coast Range, 30% of the Puget Lowland, and 24% of the Cascades (i.e., two highest CTI classes). A landscape level, scenario-based approach to modeling future land use helps identify ecoregions with existing protected areas at greater risk from regional land-use threats and can help prioritize future conservation efforts.
Jiang, Wen-Wei; Guo, Hui-Hui; Mei, Yan-Xia
2012-03-01
By adopting gradient analysis combining with the analysis of urban land use degree, this paper studied the spatial layout characteristics of residential and industrial lands in new Yinzhou Town, and explored the location characters of various urban land use by selecting public green land, public facilities, and road as the location advantage factors. Gradient analysis could effectively connect with the spatial layout of urban land use, and quantitatively depict the spatial character of urban land use. In the new town, there was a new urban spatial center mostly within the radius of 2 km, namely, the urban core area had obvious location advantage in the cross-shaft direction urban development. On the south of Yinzhou Avenue, the urban hinterland would be constructed soon. In the future land use of the new town, the focus would be the reasonable vicissitude of industrial land after the adjustment of industrial structure, the high-efficient intensive use of the commercial land restricted by the compulsive condition of urban core area, and the agricultural land protection in the southeastern urban-rural fringe.
Online Time Series Analysis of Land Products over Asia Monsoon Region via Giovanni
NASA Technical Reports Server (NTRS)
Shen, Suhung; Leptoukh, Gregory G.; Gerasimov, Irina
2011-01-01
Time series analysis is critical to the study of land cover/land use changes and climate. Time series studies at local-to-regional scales require higher spatial resolution, such as 1km or less, data. MODIS land products of 250m to 1km resolution enable such studies. However, such MODIS land data files are distributed in 10ox10o tiles, due to large data volumes. Conducting a time series study requires downloading all tiles that include the study area for the time period of interest, and mosaicking the tiles spatially. This can be an extremely time-consuming process. In support of the Monsoon Asia Integrated Regional Study (MAIRS) program, NASA GES DISC (Goddard Earth Sciences Data and Information Services Center) has processed MODIS land products at 1 km resolution over the Asia monsoon region (0o-60oN, 60o-150oE) with a common data structure and format. The processed data have been integrated into the Giovanni system (Goddard Interactive Online Visualization ANd aNalysis Infrastructure) that enables users to explore, analyze, and download data over an area and time period of interest easily. Currently, the following regional MODIS land products are available in Giovanni: 8-day 1km land surface temperature and active fire, monthly 1km vegetation index, and yearly 0.05o, 500m land cover types. More data will be added in the near future. By combining atmospheric and oceanic data products in the Giovanni system, it is possible to do further analyses of environmental and climate changes associated with the land, ocean, and atmosphere. This presentation demonstrates exploring land products in the Giovanni system with sample case scenarios.
NASA Astrophysics Data System (ADS)
Yılmaz, Erkan
2016-04-01
In this study, the seasonal variation of the surface temperature of Ankara urban area and its enviroment have been analyzed by using Landsat 7 image. The Landsat 7 images of each month from 2007 to 2011 have been used to analyze the annually changes of the surface temperature. The land cover of the research area was defined with supervised classification method on the basis of the satellite image belonging to 2008 July. After determining the surface temperatures from 6-1 bands of satellite images, the monthly mean surface temperatures were calculated for land cover classification for the period between 2007 and 2011. According to the results obtained, the surface temperatures are high in summer and low in winter from the airtemperatures. all satellite images were taken at 10:00 am, it is found that urban areas are cooler than rural areas at 10:00 am. Regarding the land cover classification, the water surfaces are the coolest surfaces during the whole year.The warmest areas are the grasslands and dry farming areas. While the parks are warmer than the urban areas during the winter, during the summer they are cooler than artificial land covers. The urban areas with higher building density are the cooler surfaces after water bodies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zambon, Ilaria, E-mail: ilaria.zambon@unitus.it; Colantoni, Andrea; Carlucci, Margherita
Land Degradation (LD) in socio-environmental systems negatively impacts sustainable development paths. This study proposes a framework to LD evaluation based on indicators of diversification in the spatial distribution of sensitive land. We hypothesize that conditions for spatial heterogeneity in a composite index of land sensitivity are more frequently associated to areas prone to LD than spatial homogeneity. Spatial heterogeneity is supposed to be associated with degraded areas that act as hotspots for future degradation processes. A diachronic analysis (1960–2010) was performed at the Italian agricultural district scale to identify environmental factors associated with spatial heterogeneity in the degree of landmore » sensitivity to degradation based on the Environmentally Sensitive Area Index (ESAI). In 1960, diversification in the level of land sensitivity measured using two common indexes of entropy (Shannon's diversity and Pielou's evenness) increased significantly with the ESAI, indicating a high level of land sensitivity to degradation. In 2010, surface area classified as “critical” to LD was the highest in districts with diversification in the spatial distribution of ESAI values, confirming the hypothesis formulated above. Entropy indexes, based on observed alignment with the concept of LD, constitute a valuable base to inform mitigation strategies against desertification. - Highlights: • Spatial heterogeneity is supposed to be associated with degraded areas. • Entropy indexes can inform mitigation strategies against desertification. • Assessing spatial diversification in the degree of land sensitivity to degradation. • Mediterranean rural areas have an evident diversity in agricultural systems. • A diachronic analysis carried out at the Italian agricultural district scale.« less
NASA Astrophysics Data System (ADS)
Meng, Y.; Cao, Y.; Tian, H.; Han, Z.
2018-04-01
In recent decades, land reclamation activities have been developed rapidly in Chinese coastal regions, especially in Bohai Bay. The land reclamation areas can effectively alleviate the contradiction between land resources shortage and human needs, but some idle lands that left unused after the government making approval the usage of sea areas are also supposed to pay attention to. Due to the particular features of land coverage identification in large regions, traditional monitoring approaches are unable to perfectly meet the needs of effectively and quickly land use classification. In this paper, Gaofen-1 remotely sensed satellite imagery data together with sea area usage ownership data were used to identify the land use classifications and find out the idle land resources. It can be seen from the result that most of the land use types and idle land resources can be identified precisely.
Wilson, Tamara; Sleeter, Benjamin M.; Sherba, Jason T.; Dick Cameron,
2015-01-01
Human land use will increasingly contribute to habitat loss and water shortages in California, given future population projections and associated land-use demand. Understanding how land-use change may impact future water use and where existing protected areas may be threatened by land-use conversion will be important if effective, sustainable management approaches are to be implemented. We used a state-and-transition simulation modeling (STSM) framework to simulate spatially-explicit (1 km2) historical (1992-2010) and future (2011-2060) land-use change for 52 California counties within Mediterranean California ecoregions. Historical land use and land cover (LULC) change estimates were derived from the Farmland Mapping and Monitoring Program dataset and attributed with county-level agricultural water-use data from the California Department of Water Resources. Five future alternative land-use scenarios were developed and modeled using the historical land-use change estimates and land-use projections based on the Intergovernmental Panel on Climate Change's Special Report on Emission Scenarios A2 and B1 scenarios. Spatial land-use transition outputs across scenarios were combined to reveal scenario agreement and a land conversion threat index was developed to evaluate vulnerability of existing protected areas to proximal land conversion. By 2060, highest LULC conversion threats were projected to impact nearly 10,500 km2 of land area within 10 km of a protected area boundary and over 18,000 km2 of land area within essential habitat connectivity areas. Agricultural water use declined across all scenarios perpetuating historical drought-related land use from 2008-2010 and trends of annual cropland conversion into perennial woody crops. STSM is useful in analyzing land-use related impacts on water resource use as well as potential threats to existing protected land. Exploring a range of alternative, yet plausible, LULC change impacts will help to better inform resource management and mitigation strategies.
NASA Astrophysics Data System (ADS)
Ribeiro, F.; Roberts, D. A.; Hess, L. L.; Davis, F. W.; Caylor, K. K.; Nackoney, J.; Antunes Daldegan, G.
2017-12-01
Savannas are heterogeneous landscapes consisting of highly mixed land cover types that lack clear distinct boundaries. The Brazilian Cerrado is a Neotropical savanna considered a biodiversity hotspot for conservation due to its biodiversity richness and rapid transformation of its landscape by crop and pasture activities. The Cerrado is one of the most threatened Brazilian biomes and only 2.2% of its original extent is strictly protected. Accurate mapping and monitoring of its ecosystems and adjacent land use are important to select areas for conservation and to improve our understanding of the dynamics in this biome. Land cover mapping of savannas is difficult due to spectral similarity between land cover types resulting from similar vegetation structure, floristically similar components, generalization of land cover classes, and heterogeneity usually expressed as small patch sizes within the natural landscape. These factors are the major contributor to misclassification and low map accuracies among remote sensing studies in savannas. Specific challenges to map the Cerrado's land cover types are related to the spectral similarity between classes of land use and natural vegetation, such as natural grassland vs. cultivated pasture, and forest ecosystem vs. crops. This study seeks to classify and evaluate the land cover patterns across an area ranked as having extremely high priority for future conservation in the Cerrado. The main objective of this study is to identify the representativeness of each vegetation type across the landscape using high to moderate spatial resolution imagery using an automated scheme. A combination of pixel-based and object-based approaches were tested using RapidEye 3A imagery (5m spatial resolution) to classify the Cerrado's major land cover types. The random forest classifier was used to map the major ecosystems present across the area, and demonstrated to have an effective result with 68% of overall accuracy. Post-classification modification was performed to refine information to the major physiognomic groups of each ecosystem type. In this step, we used segmentation in eCognition, considering the random forest classification as input as well as other environmental layers (e.g. slope, soil types), which improved the overall classification to 75%.
NASA Astrophysics Data System (ADS)
Liu, Mingliang; Tian, Hanqin
2010-09-01
One of the major limitations in assessing the impacts of human activities on global biogeochemical cycles and climate is a shortage of reliable data on historical land cover and land use change (LCLUC). China had extreme discrepancies in estimating contemporary and historical patterns of LCLUC over the last 3 centuries because of its geographical complexity, long history of land use, and limited national surveys. This study aims to characterize the spatial and temporal patterns of China's LCLUC during 1700-2005 by reconstructing historical gridded data sets from high-resolution satellite data and long-term historical survey data. During this 300 year period, the major characteristics of LCLUC in China have been shrinking forest (decreased by 22%) and expanding cropland (increased by 42%) and urban areas (including urban and rural settlements, factories, quarries, mining, and other built-up land). New cropland areas have come almost equally from both forested and nonforested land. This study also revealed that substantial conversion between forest and woodland can be attributed to forest harvest, forest regeneration, and land degradation. During 1980-2005, LCLUC was characterized by shrinking cropland, expanding urban and forest areas, and large decadal variations on a national level. LCLUC in China showed significant spatial variations during different time periods, which were caused by spatial heterogeneity in vegetation, soils, and climate and regional imbalance in economy development. During 1700-2005, forests shrunk rapidly while croplands expanded in the northeast and southwest of China. During 1980-2005, we found a serious loss of cropland and urban sprawl in the eastern plain, north, and southeast regions of China and a large increase in forested area in the southeast and southwest regions. The reconstructed LCLUC data sets from this study could be used to assess the impacts of land use change on biogeochemical cycles, the water cycle, and the regional climate in China. To further eliminate uncertainties in this data set and make reliable projections of LCLUC for the future, we need to improve our understanding of the drivers of LCLUC and work toward developing an advanced, spatially explicit land use model.
Remote sensing of land use/cover changes and its effect on wind erosion potential in southern Iran
Sameni, Abdolmajid; Fallah Shamsi, Seyed Rashid; Bartholomeus, Harm
2016-01-01
Wind erosion is a complex process influenced by different factors. Most of these factors are stable over time, but land use/cover and land management practices are changing gradually. Therefore, this research investigates the impact of changing land use/cover and land management on wind erosion potential in southern Iran. We used remote sensing data (Landsat ETM+ and Landsat 8 imagery of 2004 and 2013) for land use/cover mapping and employed the Iran Research Institute of Forest and Rangeland (IRIFR) method to estimate changes in wind erosion potential. For an optimal mapping, the performance of different classification algorithms and input layers was tested. The amount of changes in wind erosion and land use/cover were quantified using cross-tabulation between the two years. To discriminate land use/cover related to wind erosion, the best results were obtained by combining the original spectral bands with synthetic bands and using Maximum Likelihood classification algorithm (Kappa Coefficient of 0.8 and 0.9 for Landsat ETM+ and Landsat 8, respectively). The IRIFR modelling results indicate that the wind erosion potential has increased over the last decade. The areas with a very high sediment yield potential have increased, whereas the areas with a low, medium, and high sediment yield potential decreased. The area with a very low sediment yield potential have remained constant. When comparing the change in erosion potential with land use/cover change, it is evident that soil erosion potential has increased mostly in accordance with the increase of the area of agricultural practices. The conversion of rangeland to agricultural land was a major land-use change which lead to more agricultural practices and associated soil loss. Moreover, results indicate an increase in sandification in the study area which is also a clear evidence of increasing in soil erosion. PMID:27547511
Zhong, Tai-Yang; Huang, Xian-jin
2006-02-01
The paper analyzed the farm households' decision-making progress of soil & water conservation and its two-stage conceptual model. It also discussed the impacts of rural land market on the farm households' behavior of soil & water conservation. Given that, the article established models for the relations between the land market and soil & water conservation, and the models' parameters were estimated with Heckman's two-stage approach by using the farm household questionnaires in Xingguo, Shangrao and Yujiang counties of Jiangxi province. The paper analyzed the impact o f rural land market on farm household's behavior of soil & water conservation and its regional difference with the result of model estimation. The results show that the perception of soil & water loss and the tax & fee on the farm land have significant influence upon the soil and water conservation from the view of the population; however, because of different social and economic condition, and soil & water loss, there are differences of the influence among the three sample counties. These differences go as follows in detail: In Xingguo County, the rent-in land area and its cost have remarkable effect on the farm households' soil & water conservation behavior; In Yujiang County, the rent-in land area, rent-in cost and rent-out land area remarkably influence the farm households' behavior of soil and water conservation, with the influence of the rent-in land area being greater than Xingguo County; In Shangrao County, only rent-out land area has significant influence on the behaviors of soil & water conservation; In all samples, Xingguo County and Yujiang County samples, the rent-out income has no significant influence on the farm household's decision-making behavior soil and water conservation. Finally, the paper put forward some suggestions on how to bring the soil & water loss under control and use land resource in sustainable ways.
Baloye, David O; Palamuleni, Lobina G
2015-09-29
Growth in the commercialization, mobility and urbanization of human settlements across the globe has greatly exposed world urban population to potentially harmful noise levels. The situation is more disturbing in developing countries like Nigeria, where there are no sacrosanct noise laws and regulations. This study characterized noise pollution levels in Ibadan and Ile-Ife, two urban areas of Southwestern Nigeria that have experienced significant increases in population and land use activities. Eight hundred noise measurements, taken at 20 different positions in the morning, afternoon, and evening of carefully selected weekdays, in each urban area, were used for this study. Findings put the average noise levels in the urban centers at between 53 dB(A) and 89 dB (A), a far cry from the World Health Organization (WHO) permissible limits in all the land use types, with highest noise pollution levels recorded for transportation, commercial, residential and educational land use types. The result of the one-way ANOVA test carried out on the dependent variable noise and fixed factor land use types reveals a statistically significant mean noise levels across the study area (F(3,34) = 15.13, p = 0.000). The study underscores noise pollution monitoring and the urgent need to control urban noise pollution with appropriate and effective policies.
A Comparative Land Use-Based Analysis of Noise Pollution Levels in Selected Urban Centers of Nigeria
Baloye, David O.; Palamuleni, Lobina G.
2015-01-01
Growth in the commercialization, mobility and urbanization of human settlements across the globe has greatly exposed world urban population to potentially harmful noise levels. The situation is more disturbing in developing countries like Nigeria, where there are no sacrosanct noise laws and regulations. This study characterized noise pollution levels in Ibadan and Ile-Ife, two urban areas of Southwestern Nigeria that have experienced significant increases in population and land use activities. Eight hundred noise measurements, taken at 20 different positions in the morning, afternoon, and evening of carefully selected weekdays, in each urban area, were used for this study. Findings put the average noise levels in the urban centers at between 53 dB(A) and 89 dB (A), a far cry from the World Health Organization (WHO) permissible limits in all the land use types, with highest noise pollution levels recorded for transportation, commercial, residential and educational land use types. The result of the one-way ANOVA test carried out on the dependent variable noise and fixed factor land use types reveals a statistically significant mean noise levels across the study area (F(3,34) = 15.13, p = 0.000). The study underscores noise pollution monitoring and the urgent need to control urban noise pollution with appropriate and effective policies. PMID:26426033
Application of multispectral scanner data to the study of an abandoned surface coal mine
NASA Technical Reports Server (NTRS)
Spisz, E. W.
1978-01-01
The utility of aircraft multispectral scanner data for describing the land cover features of an abandoned contour-mined coal mine is considered. The data were obtained with an 11 band multispectral scanner at an altitude of 1.2 kilometers. Supervised, maximum-likelihood statistical classifications of the data were made to establish land-cover classes and also to describe in more detail the barren surface features as they may pertain to the reclamation or restoration of the area. The scanner data for the surface-water areas were studied to establish the variability and range of the spectral signatures. Both day and night thermal images of the area are presented. The results of the study show that a high degree of statistical separation can be obtained from the multispectral scanner data for the various land-cover features.
Spatial and temporal land cover changes in Terminos Lagoon Reserve, Mexico.
Soto-Galera, Ernesto; Piera, Jaume; López, Pilar
2010-06-01
Terminos Lagoon ecosystem is the largest fluvial-lagoon estuarine system in the country and one of the most important reserves of coastal flora and fauna in Mexico. Since the seventies, part of the main infrastructure for country's oil extraction is located in this area. Its high biodiversity has motivated different type of studies including deforestation processes and land use planning. In this work we used satellite image analysis to determine land cover changes in the area from 1974 to 2001. Our results indicate that tropical forest and mangroves presented the most extensive losses in its coverage. In contrast, urban areas and induced grassland increased considerably. In 2001 more than half of the ecosystem area showed changes from its original land cover, and a third part of it was deteriorated. The main causes of deforestation were both the increase in grassland and the growth of urban areas. However, deforestation was attenuated by natural reforestation and plant canopy recovery. We conclude that the introduction of cattle and urban development were the main causes for the land cover changes; however, the oil industry activity located in the ecosystem, has promoted indirectly to urban growth and rancher boom.
NASA Astrophysics Data System (ADS)
Siregar, P. G.; Supriatna, J.; Koestoer, R. H.; Harmantyo, D.
2017-07-01
This study aims to analyse trade-offs among 6 (six) types of dominant land uses to consider Orangutan livelihood and landscape sustainability. The results of this study assists landscape's planners and policy makers for selecting development scenarios as well as policy within the landscape, especially to reduce human and wildlife conflict as impact of development. This study was conducted in Orangutan sub species Pongo pygmeus pygmeus habitat in West Kalimantan, Indonesia. Net present value analysis was applied to identify economic profit of land uses and also perspective of expert judgment was applied to identify suitability of the land uses to Orangutan livelihood. The study shows that palm oil plantation was the dominant land use type in non-forest area category and natural forest is in forest area category within the site. Palm oil contributed highest economic profit (average IDR 11 Million per year) compared to other land use types, and thus the worst land use type for supporting Orangutan conservation; index suitability for Orangutan achieved only 21.8. The development of agroforestry which planted more than 3 valuable economic commodities is used as an alternative in forest buffer area development that can provide better gain for economic and Orangutan conservation with index suitability for Orangutan was 43.5. In achieving sustainability at the landscape level, it needs to consider the sustainability of the umbrella species, such as Orangutan. The existence of the umbrella species would also protect other biodiversity, forest and its environmental services.
Shufen Pan; Guiying Li
2007-01-01
Florida Panhandle region has been experiencing rapid land transformation in the recent decades. To quantify land use and land-cover (LULC) changes and other landscape changes in this area, three counties including Franklin, Liberty and Gulf were taken as a case study and an unsupervised classification approach implemented to Landsat TM images acquired from 1985 to 2005...
Estimating riparian area extent and land use in the Midwest.
Brian J. Palik; Swee May Tang; Quinn. Chavez
2004-01-01
This report quantifies the amount and land use/land cover of riparian area in the seven-State Midwest Region of the continental United States. We estimate that riparian areas cover 8.9 to 13.2 million hectares in the region and that approximately 72 percent of riparian areas support natural or semi-natural land cover.
Unsupervised Framework to Monitor Lake Dynamics
NASA Technical Reports Server (NTRS)
Chen, Xi C. (Inventor); Boriah, Shyam (Inventor); Khandelwal, Ankush (Inventor); Kumar, Vipin (Inventor)
2016-01-01
A method of reducing processing time when assigning geographic areas to land cover labels using satellite sensor values includes a processor receiving a feature value for each pixel in a time series of frames of satellite sensor values, each frame containing multiple pixels and each frame covering a same geographic location. For each sub-area of the geographic location, the sub-area is assigned to one of at least three land cover labels. The processor determines a fraction function for a first sub-area assigned to a first land cover label. The sub-areas that were assigned to the first land cover label are reassigned to one of the second land cover label and the third land cover label based on the fraction functions of the sub-areas.
Wagner, Paul D; Bhallamudi, S Murty; Narasimhan, Balaji; Kantakumar, Lakshmi N; Sudheer, K P; Kumar, Shamita; Schneider, Karl; Fiener, Peter
2016-01-01
Rapid land use and land-cover changes strongly affect water resources. Particularly in regions that experience seasonal water scarcity, land use scenario assessments provide a valuable basis for the evaluation of possible future water shortages. The objective of this study is to dynamically integrate land use model projections with a hydrologic model to analyze potential future impacts of land use change on the water resources of a rapidly developing catchment upstream of Pune, India. For the first time projections from the urban growth and land use change model SLEUTH are employed as a dynamic input to the hydrologic model SWAT. By this means, impacts of land use changes on the water balance components are assessed for the near future (2009-2028) employing four different climate conditions (baseline, IPCC A1B, dry, wet). The land use change modeling results in an increase of urban area by +23.1% at the fringes of Pune and by +12.2% in the upper catchment, whereas agricultural land (-14.0% and -0.3%, respectively) and semi-natural area (-9.1% and -11.9%, respectively) decrease between 2009 and 2028. Under baseline climate conditions, these land use changes induce seasonal changes in the water balance components. Water yield particularly increases at the onset of monsoon (up to +11.0mm per month) due to increased impervious area, whereas evapotranspiration decreases in the dry season (up to -15.1mm per month) as a result of the loss of irrigated agricultural area. As the projections are made for the near future (2009-2028) land use change impacts are similar under IPCC A1B climate conditions. Only if more extreme dry years occur, an exacerbation of the land use change impacts can be expected. Particularly in rapidly changing environments an implementation of both dynamic land use change and climate change seems favorable to assess seasonal and gradual changes in the water balance. Copyright © 2015 Elsevier B.V. All rights reserved.
Fallow land effects on land-atmosphere interactions in California drought
NASA Astrophysics Data System (ADS)
Lu, Y.; Melton, F. S.; Kueppers, L. M.
2015-12-01
The recent drought in California increased the area of fallow land, which is cropland not planted or irrigated per normal agricultural practice. The effects of fallow land on land-atmosphere interactions in drought years are not well studied, but theoretically should alter local energy balance and surface climate relative to normal years, which in turn could affect neighboring cropland. We examined these effects using a regional climate model (Weather Research and Forecasting model) coupled with a dynamic crop growth model (Community Land Model) that has an irrigation scheme to study the effects of fallow land in 2014, an extreme drought year in California. In our study, we used satellite-derived maps of cultivated and fallowed acreage, and defined summer fallow land in 2014 as the reduced percentage of cultivated land for each grid cell relative to the 2011 cultivated area (2011 was the most recent year following a winter with average or above average precipitation). Using a sensitivity experiment that kept large-scale climate boundary conditions constant, we found that fallow land resulted in even dryer and warmer weather that worsened the drought impact. Fallow land increased 2-meter air temperature by 0.1- 4 °C with 0-80% fallow land, mainly due to an increase in nighttime temperature. Fallow land warmed the atmosphere up to 850hpa during the day, and after sunset, the warmed atmosphere emitted downward longwave radiation that prevented the surface from rapidly cooling, and therefore resulted in warmer nights. Fallow land reduced near surface relative humidity by 5-30% and increased vapor pressure deficit by 0.5-2 kPa. These drier conditions increased the irrigation water demand in the nearby cropland: crops required 1-25% more irrigation with 10-80% fallow land within the same 10km grid cell. Our study suggests that fallow land has large impacts on land-atmosphere interactions and increases irrigation requirements in nearby cropland.
Dubrovsky, N.M.; Burow, Karen R.; Gronberg, Jo Ann M.
1995-01-01
From 1992 through 1994, the San Joaquin-Tulare Basins Study team of the USGS National Water Quality Assessment program investigated the occurrence and distribution of water quality con- stituents in shallow groundwater underlying two areas of different agricultural land uses: almond orchards and vineyards. The study was restricted to the alluvial fans of the eastern San Joaquin Valley, the area of most groundwater use in the valley. A geographic information system (GIS) was used to delineate the distribution of the two target land uses, to evaluate ancillary data, and to select candidate wells that fit prescribed criteria. Twenty domestic water supply wells were sampled in each of the two areas. In addition, pairs of observation wells were installed and sampled at five of the sites in each area to evaluate whether the water quality in the domestic wells reflects that of the shallow groundwater underlying the target land use. A preliminary evaluation of the results shows that nitrate concentrations in the shallow groundwater are significantly higher in the almond orchard areas than in the vineyard area (p=0.005). In contrast, concentrations of 1,2-dibromo-3-chloropropane (DBCP) were higher in the vineyard area than in the almond orchard area (p=0.032). The most frequently detected pesticides in groundwater underlying both areas were simazine, atrazine, and desethylatrazine (an atrazine degradation product). These observations are explained, in part, by differences in chemical application and hydrogeologic factors.
Chandler, Richard B; King, David I; Raudales, Raul; Trubey, Richard; Chandler, Carlin; Chávez, Víctor Julio Arce
2013-08-01
Two contrasting strategies have been proposed for conserving biological diversity while meeting the increasing demand for agricultural products: land sparing and land sharing production systems. Land sparing involves increasing yield to reduce the amount of land needed for agriculture, whereas land-sharing agricultural practices incorporate elements of native ecosystems into the production system itself. Although the conservation value of these systems has been extensively debated, empirical studies are lacking. We compared bird communities in shade coffee, a widely practiced land-sharing system in which shade trees are maintained within the coffee plantation, with bird communities in a novel, small-scale, land-sparing coffee-production system (integrated open canopy or IOC coffee) in which farmers obtain higher yields under little or no shade while conserving an area of forest equal to the area under cultivation. Species richness and diversity of forest-dependent birds were higher in the IOC coffee farms than in the shade coffee farms, and community composition was more similar between IOC coffee and primary forest than between shade coffee and primary forest. Our study represents the first empirical comparison of well-defined land sparing and land sharing production systems. Because IOC coffee farms can be established by allowing forest to regenerate on degraded land, widespread adoption of this system could lead to substantial increases in forest cover and carbon sequestration without compromising agricultural yield or threatening the livelihoods of traditional small farmers. However, we studied small farms (<5 ha); thus, our results may not generalize to large-scale land-sharing systems. Furthermore, rather than concluding that land sparing is generally superior to land sharing, we suggest that the optimal approach depends on the crop, local climate, and existing land-use patterns. © 2013 Society for Conservation Biology.
A Coupled Natural-Human Modeling of the Land Loss Probability in the Mississippi River Delta
NASA Astrophysics Data System (ADS)
Cai, H.; Lam, N.; Zou, L.
2017-12-01
The Mississippi River Delta (MRD) is one of the most environmentally threatened areas in the United States. The area has been suffering substantial land loss during the past decades. Land loss in the MRD has been a subject of intense research by many researchers from multiple disciplines, aiming at mitigating the land loss process and its potential damage. A majority of land loss projections were derived solely from the natural processes, such as sea level rise, regional subsidence, and reduced sediment flows. However, sufficient evidence has shown that land loss in the MRD also relates to human-induced factors such as land fragmentation, neighborhood effects, urbanization, energy industrialization, and marine transportation. How to incorporate both natural and human factors into the land loss modeling stays a huge challenge. Using a coupled-natural and human (CNH) approach can help uncover the complex mechanism of land loss in the MRD, and provide more accurate spatiotemporal projection of land loss patterns and probability. This study uses quantitative approaches to investigate the relationships between land loss and a wide range of socio-ecological variables in the MRD. A model of land loss probability based on selected socio-ecological variables and its neighborhood effects will be derived through variogram and regression analyses. Then, we will simulate the land loss probability and patterns under different scenarios such as sea-level rise, changes in storm frequency and strength, and changes in population to evaluate the sustainability of the MRD. The outcome of this study will be a layer of pixels with information on the probability of land-water conversion. Knowledge gained from this study will provide valuable insights into the optimal mitigation strategies of land loss prevention and restoration and help build long-term sustainability in the Mississippi River Delta.
Yakupoglu, Tugrul; Gundogan, Recep; Dindaroglu, Turgay; Kara, Zekeriya
2017-10-29
Land-use change through degrading natural vegetation for agricultural production adversely affects many of soil properties particularly organic carbon content of soils. The native shrub land and grassland of Gaziantep-Adiyaman plateau that is an important pistachio growing eco-region have been cleared to convert into pistachio orchard for the last 50 to 60 years. In this study, the effects of conversion of natural vegetation into agricultural uses on soil erodibility have been investigated. Soil samples were collected from surface of agricultural fields and adjacent natural vegetation areas, and samples were analyzed for some soil erodibility indices such as dispersion ratio (DR), erosion ratio (ER), structural stability index (SSI), Henin's instability index (I s ), and aggregate size distribution after wet sieving (AggSD). According to the statistical evaluation, these two areas were found as different from each other in terms of erosion indices except for I s index (P < 0.001 for DR and ER or P < 0.01 for SSI). In addition, native shrub land and converted land to agriculture were found different in terms of AggSD in all aggregate size groups. As a contrary to expectations, correlation tests showed that there were no any interaction between soil organic carbon and measured erodibility indices in two areas. In addition, significant relationships were determined between measured variables and soil textural fractions as statistical. These obtaining findings were attributed to changing of textural component distribution and initial aggregate size distribution results from land-use change in the study area. Study results were explained about hierarchical aggregate formation mechanism.
NASA Astrophysics Data System (ADS)
Zaitunah, A.; Samsuri; Ahmad, A. G.; Safitri, R. A.
2018-03-01
Watershed is an ecosystem area confined by topography and has function as a catcher, storage, and supplier of water, sediments, pollutants and nutrients in the river system and exit through a single outlet. Various activities around watershed areas of Besitang have changed the land cover and vegetation index (NDVI) that exist in the region. In order to detect changes in land cover and NDVI quickly and accurately, we used remote sensing technology and geographic information systems (GIS). The study aimed to assess changes in land cover and vegetation density (NDVI) between 2005 and 2015, as well as obtaining the density of vegetation (NDVI) on each of the land cover of 2005 and 2015. The research showed the extensive of forest area of 949.65 Ha and a decline of mangrove forest area covering an area of 2,884.06 Ha. The highest vegetation density reduced 39,714.58 Ha, and rather dense increased 24,410.72 Ha between 2005 and 2015. The land cover that have the highest NDVI value range with very dense vegetation density class is the primary dry forest (0.804 to 0.876), followed by secondary dry forest (0.737 to 0.804) for 2015. In 2015 the land cover has NDVI value range the primary dry forest (0.513 to 0.57), then secondary dry forest (0.456 to 0.513) with dense vegetation density class
São Paulo urban heat islands have a higher incidence of dengue than other urban areas.
Araujo, Ricardo Vieira; Albertini, Marcos Roberto; Costa-da-Silva, André Luis; Suesdek, Lincoln; Franceschi, Nathália Cristina Soares; Bastos, Nancy Marçal; Katz, Gizelda; Cardoso, Vivian Ailt; Castro, Bronislawa Ciotek; Capurro, Margareth Lara; Allegro, Vera Lúcia Anacleto Cardoso
2015-01-01
Urban heat islands are characterized by high land surface temperature, low humidity, and poor vegetation, and considered to favor the transmission of the mosquito-borne dengue fever that is transmitted by the Aedes aegypti mosquito. We analyzed the recorded dengue incidence in Sao Paulo city, Brazil, in 2010-2011, in terms of multiple environmental and socioeconomic variables. Geographical information systems, thermal remote sensing images, and census data were used to classify city areas according to land surface temperature, vegetation cover, population density, socioeconomic status, and housing standards. Of the 7415 dengue cases, a majority (93.1%) mapped to areas with land surface temperature >28°C. The dengue incidence rate (cases per 100,000 inhabitants) was low (3.2 cases) in high vegetation cover areas, but high (72.3 cases) in low vegetation cover areas where the land surface temperature was 29±2°C. Interestingly, a multiple cluster analysis phenogram showed more dengue cases clustered in areas of land surface temperature >32°C, than in areas characterized as low socioeconomic zones, high population density areas, or slum-like areas. In laboratory experiments, A. aegypti mosquito larval development, blood feeding, and oviposition associated positively with temperatures of 28-32°C, indicating these temperatures to be favorable for dengue transmission. Thus, among all the variables studied, dengue incidence was most affected by the temperature. Copyright © 2014 Elsevier Editora Ltda. All rights reserved.
Buto, Susan G.; Kenney, Terry A.; Gerner, Steven J.
2010-01-01
Oil and gas resource development in the Upper Colorado River Basin (UCRB) has increased substantially since the year 2000. The UCRB encompasses several significant oil and gas producing areas that have the potential for continued oil and gas resource development. Land disturbance associated with oil and gas resource development is caused by activities related to constructing drill pads to contain drilling and well maintenance equipment and roads to access the drill pad. Land disturbed by oil and gas development has the potential to cause increased erosion, stream degradation, habitat fragmentation and alteration, and increase public use of areas that may be environmentally sensitive. Land disturbance resulting from oil and gas resource development has not been monitored and mapped on a regional scale in the UCRB. However, information on the location and age of oil and gas wells in the UCRB is available. These data combined with geographic data analysis and modeling techniques were used to estimate the total area of disturbed land associated with oil and gas resource development in 1991 and in 2007 in the UCRB. Additional information about anticipated oil and gas development in the UCRB was used to project land disturbance to the year 2025. Results of the analysis indicate that approximately 117,500 acres (183 mi2) of total land disturbance was associated with drill pads and related roads in the UCRB in 1991. The estimated area of disturbed land associated with oil and gas development increased 53 percent to 179,400 acres (280 mi2) in 2007. Projecting oil and gas development through 2025 results in a potential near doubling of the land surface disturbance to approximately 319,300 acres (500 mi2). Estimated land disturbance for 1991 and 2007 were input to a contaminant transport model developed for the UCRB to assess the statistical significance of energy-related land disturbance to contributing dissolved solids to basin streams. The statistical assessment was an observational study based on an existing model and available water-quality monitoring data for the basin. No new data were collected for the analysis. The source coefficient calibrated for the disturbed lands associated with oil and gas development in 2007 was zero, which indicated that estimated land disturbance from oil and gas development is not statistically significant in explaining dissolved solids in UCRB streams. The lack of significance in the contaminant transport modeling framework may be due to the amount of available monitoring data, the spatial distribution of monitoring sites with respect to land disturbance, or the overall quantity of land disturbance associated with oil and gas development basin wide. Finally, dissolved-solids loads derived from natural landscapes may be similar to loads derived from lands disturbed by oil and gas resource development. The model recalibration done for this study confirms calibration results from Kenney and others (2009): the most significant contributor to dissolved solids in the UCRB is irrigated agricultural land, which covers an area substantially larger than the estimated area disturbed by oil and gas development and is subjected to artificially applied water.
Joseph, Shijo; Blackburn, George Alan; Gharai, Biswadip; Sudhakar, S; Thomas, A P; Murthy, M S R
2009-11-01
Tropical forests, which play critical roles in global biogeochemical cycles, radiation budgets and biodiversity, have undergone rapid changes in land cover in the last few decades. This study examines the complex process of land cover change in the biodiversity hotspot of Western Ghats, India, specifically investigating the effects of conservation measures within the Indira Gandhi Wildlife Sanctuary. Current vegetation patterns were mapped using an IRS P6 LISS III image and this was used together with Landsat MSS data from 1973 to map land cover transitions. Two major and divergent trends were observed. A dominant degradational trend can be attributed to agricultural expansion and infrastructure development while a successional trend, resulting from protection of the area, showed the resilience of the system after prolonged disturbances. The sanctuary appears susceptible to continuing disturbances under the current management regime but at lower rates than in surrounding unprotected areas. The study demonstrates that remotely sensed land cover assessments can have important contributions to monitoring land management strategies, understanding processes underpinning land use changes and helping to inform future conservation strategies.
NASA Astrophysics Data System (ADS)
Qaisar, Maha
2016-07-01
Due to the present land use practices and climate variability, drastic shifts in regional climate and land covers are easily seen and their future reduction and gain are too well predicted. Therefore, there is an increasing need for data on land-cover changes at narrow and broad spatial scales. In this study, a remote sensing-based technique for land-cover-change analysis is applied to the lower Sindh areas for the last decade. Landsat satellite products were analyzed on an alternate yearly basis, from 1990 to 2016. Then Land-cover-change magnitudes were measured and mapped for alternate years. Land Surface Temperature (LST) is one of the critical elements in the natural phenomena of surface energy and water balance at local and global extent. However, LST was computed by using Landsat thermal bands via brightness temperature and a vegetation index. Normalized difference vegetation index (NDVI) was interpreted and maps were achieved. LST reflected NDVI patterns with complexity of vegetation patterns. Along with this, Object Based Image Analysis (OBIA) was done for classifying 5 major classes of water, vegetation, urban, marshy lands and barren lands with significant map layouts. Pakistan Meteorological Department provided the climate data in which rainfall, temperature and air temperature are included. Once the LST and OBIA are performed, overlay analysis was done to correlate the results of LST with OBIA and LST with meteorological data to ascertain the changes in land covers due to increasing centigrade of LST. However, satellite derived LST was also correlated with climate data for environmental analysis and to estimate Land Surface Temperature for assessing the inverse impacts of climate variability. This study's results demonstrate the land-cover changes in Lower Areas of Sindh including the Indus Delta mostly involve variations in land-cover conditions due to inter-annual climatic variability and temporary shifts in seasonality. However it is too concluded that transitory alteration of the biophysical characteristics of the surface driven by variations in rainfall is the prevailing progression. Moreover, future work will focus on finer-scale analysis and validations of patterns of changes due to rapid urbanization and population explosion in poverty stricken areas of Sindh which are posing an adverse impact on the land utilization and in turn increasing the land surface temperature and ultimately more stress on the low lying areas of Sindh i.e. Indus Delta will be losing its productivity and capacity to bear biodiversity whether the fauna or flora. Hence, this regional scale problem will become a global concern. Therefore, it is needed to stop the menace in its starting phase to mitigate the problem and to bring minds on this horrendous situation.
Mining Land Subsidence Monitoring Using SENTINEL-1 SAR Data
NASA Astrophysics Data System (ADS)
Yuan, W.; Wang, Q.; Fan, J.; Li, H.
2017-09-01
In this paper, DInSAR technique was used to monitor land subsidence in mining area. The study area was selected in the coal mine area located in Yuanbaoshan District, Chifeng City, and Sentinel-1 data were used to carry out DInSAR techniqu. We analyzed the interferometric results by Sentinel-1 data from December 2015 to May 2016. Through the comparison of the results of DInSAR technique and the location of the mine on the optical images, it is shown that DInSAR technique can be used to effectively monitor the land subsidence caused by underground mining, and it is an effective tool for law enforcement of over-mining.
NASA Astrophysics Data System (ADS)
Coca Castro, Alejandro; Reymondin, Louis; Rebetez, Julien; Fabio Satizabal Mejia, Hector; Perez-Uribe, Andres; Mulligan, Mark; Smith, Thomas; Hyman, Glenn
2017-04-01
Global land use monitoring is important to the the Sustainable Development Goals (SDGs). The latest advances in storage and manipulation of big earth-observation data have been key to developing multiple operational forest monitoring initiatives such as FORMA, Terra-i and Global Forest Change. Although the data provided by these systems are useful for identifying and estimating newly deforested areas (from 2000), they do not provide details about the land use to which these deforested areas are transitioned. This information is critical to understand the biodiversity and ecosystem services impact of deforestation and the resulting impacts on human wellbeing, locally and downstream. With the aim of contributing to current forest monitoring initiatives, this research presents a set of experimental case studies in Latin America which integrate existing land-change information derived from remote sensing image and aerial photography/ground datasets, high-temporal resolution MODIS data, advanced machine learning (i.e deep learning) and big data technologies (i.e. Hadoop and Spark) to assess land-use change trajectories in newly deforested areas in near real time.
NASA Astrophysics Data System (ADS)
Vicente, L. E.; Koga-Vicente, A.; Friedel, M. J.; Zullo, J.; Victoria, D.; Gomes, D.; Bayma, G.
2013-12-01
Agriculture is closely related to land-use/cover changes (LUCC). The increase in demand for ethanol necessitates the expansion of areas occupied by corn and sugar cane. In São Paulo state, the conversion of this land raises concern for impacts on food security, such as the decrease in traditional food crop production areas. We used remote sensing data to train and evaluate future land-cover scenarios using a machine-learning algorithm. The land cover classification procedure was based on Landsat 5 TM images, obtained from the Global Land Survey, covering three time periods over twenty years (1990 - 2010). Landsat images were segmented into homogeneous objects, which represent areas on the ground with similar spatial and spectral characteristics. These objects are related to the distinct land cover types that occur in each municipality. Based on the object shape, texture and spectral characteristics, land use/cover was visually identified, considering the following classes: sugarcane plantations, pasture lands, natural cover, forest plantation, permanent crop, short cycle crop, water bodies and urban areas. Results for the western regions of São Paulo state indicate that sugarcane crop area advanced mostly upon pasture areas with few areas of food crops being replaced by sugarcane.
Fu, Shi-Feng; Zhang, Ping; Jiang, Jin-Long
2012-02-01
Assessment of land resources carrying capacity is the key point of planning environment impact assessment and the main foundation to determine whether the planning could be implemented or not. With the help of the space analysis function of Geographic Information System, and selecting altitude, slope, land use type, distance from resident land, distance from main traffic roads, and distance from environmentally sensitive area as the sensitive factors, a comprehensive assessment on the ecological sensitivity and its spatial distribution in Zhangzhou Merchants Economic and Technological Development Zone, Fujian Province of East China was conducted, and the assessment results were combined with the planning land layout diagram for the ecological suitability analysis. In the Development Zone, 84.0% of resident land, 93.1% of industrial land, 86.0% of traffic land, and 76. 0% of other constructive lands in planning were located in insensitive and gently sensitive areas, and thus, the implement of the land use planning generally had little impact on the ecological environment, and the land resources in the planning area was able to meet the land use demand. The assessment of the population carrying capacity with ecological land as the limiting factor indicated that in considering the highly sensitive area and 60% of the moderately sensitive area as ecological land, the population within the Zone in the planning could reach 240000, and the available land area per capita could be 134.0 m2. Such a planned population scale is appropriate, according to the related standards of constructive land.
NASA Astrophysics Data System (ADS)
KIM, K. M.
2017-12-01
After the mid-1990s, North Korea has gone through a hard time of shortage of food and fuel due to the large scale flood and landslide. This became a vicious circle, which has kept accelerating the deforestation in North Korea. This study aims to analyze the change of deforestation in North Korea using two different seasonal satellite images of Landsat 5-TM and SPOT-5 between 1999 and 2008. The Land cover was classified into 6 categories: forest, cropland, grassland, bare land, built area and water body. And the deforested and degraded forest area was extracted considering forest land boundary and classified into 3 categories: the cultivated, the unstocked forest land and the bare mountain. For the all classification process, unsupervised classification method was used since North Korea is inaccessible area. The results of the study showed that the stocked forest area has decreased 1,379,000 ha compared with those in 1999, whereas the deforested and degraded forest area has increased 1,207,000 ha in 2008. The increase of 880,000 ha in the unstocked forest land was the biggest expansion among 3 categories of the deforested and degraded forest area during 9 yrs. It is resulted from an increase of firewood usage, which is presumably owing to the severe shortage of fuel and food. I look forward for the outcome of this study to being used as baseline data for inter-Korean forest cooperation. Especially, it is expected to serve as important input data for the potential REDD project site selection with results of the 3rd forest monitoring(2018) of North Korea.
Aerial and surface rivers: downwind impacts on water availability from land use changes in Amazonia
NASA Astrophysics Data System (ADS)
Weng, Wei; Luedeke, Matthias K. B.; Zemp, Delphine C.; Lakes, Tobia; Kropp, Juergen P.
2018-02-01
The abundant evapotranspiration provided by the Amazon forests is an important component of the hydrological cycle, both regionally and globally. Since the last century, deforestation and expanding agricultural activities have been changing the ecosystem and its provision of moisture to the atmosphere. However, it remains uncertain how the ongoing land use change will influence rainfall, runoff, and water availability as findings from previous studies differ. Using moisture tracking experiments based on observational data, we provide a spatially detailed analysis recognizing potential teleconnection between source and sink regions of atmospheric moisture. We apply land use scenarios in upwind moisture sources and quantify the corresponding rainfall and runoff changes in downwind moisture sinks. We find spatially varying responses of water regimes to land use changes, which may explain the diverse results from previous studies. Parts of the Peruvian Amazon and western Bolivia are identified as the sink areas most sensitive to land use change in the Amazon and we highlight the current water stress by Amazonian land use change on these areas in terms of the water availability. Furthermore, we also identify the influential source areas where land use change may considerably reduce a given target sink's water reception (from our example of the Ucayali River basin outlet, rainfall by 5-12 % and runoff by 19-50 % according to scenarios). Sensitive sinks and influential sources are therefore suggested as hotspots for achieving sustainable land-water management.
NASA Astrophysics Data System (ADS)
Velmurugan, A.; Bhatt, S.; Dadhwal, V. K.
2006-12-01
Spatial databases of natural resources are very much essential to ensure enhanced productivity by conserving soil and water and to maintain ecological integrity of any region. Integration of various thematic layers prepared from high resolution data and detailed field survey would be preferred for grass root level planning (Panchayat) aimed to realize the potential of production system on a sustained basis. In this study, a detailed spatial data base was created for part of Kasaragod dist., Kerala, India. Detailed soil survey was carried out using cadastral map and registered over high resolution satellite data (IRS LISS-IV) which helped to identify problems and potentials of the area. Nearly 600 ha of land were found to be at higher erosion risk category out of ten soil series identified in the study area. Remote sensing data was used to prepare land use/land cover map and coconut (53%) followed by mixed vegetation type (16%) were found to be dominant. Soil site suitability assessment for major crops of the area was carried out and crossed with present land use to get the mismatch in land use/land utilization type. Alternate land use plan was prepared considering the potentials and problems of various available resources. Decision Support System (DSS) along with user interface is developed to support decision and extract relevant information. As organic carbon is one of the most important indicators of soil fertility C stock in the present and proposed land use was also estimated to understand the environmental significance.
Assessment of land allotment support power industry in Grati, Pasuruan Regency
NASA Astrophysics Data System (ADS)
Muzaqqi, M. A. R.
2017-06-01
The industrial sector is always in need of land for factory as well as other supporting facilities, on the other side of the ability of the environment (support) the uneven terrain of every area in favor of intensive activities such as industry. Land uses that are not adapted to the support power, will cause pollution, damage, disaster and loss that generally uses the environment. The purpose of this research was to assess the resources support neighborhood Grati district associated with the existence of a plan to build an industrial area in accordance with the direction of Grati utilization of space in the spatial plan of the Pasuruan Regency area. In this study of land carrying capacity power comparison capability and land use. The Analysis technique used is the technique of overlay with analysis tools namely software using the software Arcgis 10.1. The parameters of the ability of land-adapted to the characteristics of the land for industry, namely the slope the slope ranges 0-25% on the slope of 25-45% can be developed with industry improvement area contours, and on a slope above 45% not allocated as an industrial area, the type of soil that is not easy slopes, the intensity of the rain of less than 3000 mm, potential landslide and flood-prone lowlands. Each parameter will be provided scoring between 1-5. Score of 1 was given to the condition of land the most harm, and a score of 5 is given for the condition of the land which supports most of the location industry. The result scoring is divided in 5 clases those are bad (5-9), is bad (9.1-13), medium (13.1), good (17,1-9) and good (21.1-25). The need for industrial land, calculated from the vast land of existing industries. Based on research results, obtained the ability to land on the area of research has 3 classes of 5 classes, i.e. good, moderate and bad. The results of the comparison between the broad capabilities and the needs of the farm industry, it can be concluded that the power of the land to support the industry in Grati still has not been exceeded.
The 2011 heat wave in Greater Houston: Effects of land use on temperature.
Zhou, Weihe; Ji, Shuang; Chen, Tsun-Hsuan; Hou, Yi; Zhang, Kai
2014-11-01
Effects of land use on temperatures during severe heat waves have been rarely studied. This paper examines land use-temperature associations during the 2011 heat wave in Greater Houston. We obtained high resolution of satellite-derived land use data from the US National Land Cover Database, and temperature observations at 138 weather stations from Weather Underground, Inc (WU) during the August of 2011, which was the hottest month in Houston since 1889. Land use regression and quantile regression methods were applied to the monthly averages of daily maximum/mean/minimum temperatures and 114 land use-related predictors. Although selected variables vary with temperature metric, distance to the coastline consistently appears among all models. Other variables are generally related to high developed intensity, open water or wetlands. In addition, our quantile regression analysis shows that distance to the coastline and high developed intensity areas have larger impacts on daily average temperatures at higher quantiles, and open water area has greater impacts on daily minimum temperatures at lower quantiles. By utilizing both land use regression and quantile regression on a recent heat wave in one of the largest US metropolitan areas, this paper provides a new perspective on the impacts of land use on temperatures. Our models can provide estimates of heat exposures for epidemiological studies, and our findings can be combined with demographic variables, air conditioning and relevant diseases information to identify 'hot spots' of population vulnerability for public health interventions to reduce heat-related health effects during heat waves. Copyright © 2014 Elsevier Inc. All rights reserved.
Álvarez-Romero, Jorge G; Pressey, Robert L; Ban, Natalie C; Brodie, Jon
2015-01-01
Human-induced changes to river loads of nutrients and sediments pose a significant threat to marine ecosystems. Ongoing land-use change can further increase these loads, and amplify the impacts of land-based threats on vulnerable marine ecosystems. Consequently, there is a need to assess these threats and prioritise actions to mitigate their impacts. A key question regarding prioritisation is whether actions in catchments to maintain coastal-marine water quality can be spatially congruent with actions for other management objectives, such as conserving terrestrial biodiversity. In selected catchments draining into the Gulf of California, Mexico, we employed Land Change Modeller to assess the vulnerability of areas with native vegetation to conversion into crops, pasture, and urban areas. We then used SedNet, a catchment modelling tool, to map the sources and estimate pollutant loads delivered to the Gulf by these catchments. Following these analyses, we used modelled river plumes to identify marine areas likely influenced by land-based pollutants. Finally, we prioritised areas for catchment management based on objectives for conservation of terrestrial biodiversity and objectives for water quality that recognised links between pollutant sources and affected marine areas. Our objectives for coastal-marine water quality were to reduce sediment and nutrient discharges from anthropic areas, and minimise future increases in coastal sedimentation and eutrophication. Our objectives for protection of terrestrial biodiversity covered species of vertebrates. We used Marxan, a conservation planning tool, to prioritise interventions and explore spatial differences in priorities for both objectives. Notable differences in the distributions of land values for terrestrial biodiversity and coastal-marine water quality indicated the likely need for trade-offs between catchment management objectives. However, there were priority areas that contributed to both sets of objectives. Our study demonstrates a practical approach to integrating models of catchments, land-use change, and river plumes with conservation planning software to inform prioritisation of catchment management.
Álvarez-Romero, Jorge G.; Pressey, Robert L.; Ban, Natalie C.; Brodie, Jon
2015-01-01
Human-induced changes to river loads of nutrients and sediments pose a significant threat to marine ecosystems. Ongoing land-use change can further increase these loads, and amplify the impacts of land-based threats on vulnerable marine ecosystems. Consequently, there is a need to assess these threats and prioritise actions to mitigate their impacts. A key question regarding prioritisation is whether actions in catchments to maintain coastal-marine water quality can be spatially congruent with actions for other management objectives, such as conserving terrestrial biodiversity. In selected catchments draining into the Gulf of California, Mexico, we employed Land Change Modeller to assess the vulnerability of areas with native vegetation to conversion into crops, pasture, and urban areas. We then used SedNet, a catchment modelling tool, to map the sources and estimate pollutant loads delivered to the Gulf by these catchments. Following these analyses, we used modelled river plumes to identify marine areas likely influenced by land-based pollutants. Finally, we prioritised areas for catchment management based on objectives for conservation of terrestrial biodiversity and objectives for water quality that recognised links between pollutant sources and affected marine areas. Our objectives for coastal-marine water quality were to reduce sediment and nutrient discharges from anthropic areas, and minimise future increases in coastal sedimentation and eutrophication. Our objectives for protection of terrestrial biodiversity covered species of vertebrates. We used Marxan, a conservation planning tool, to prioritise interventions and explore spatial differences in priorities for both objectives. Notable differences in the distributions of land values for terrestrial biodiversity and coastal-marine water quality indicated the likely need for trade-offs between catchment management objectives. However, there were priority areas that contributed to both sets of objectives. Our study demonstrates a practical approach to integrating models of catchments, land-use change, and river plumes with conservation planning software to inform prioritisation of catchment management. PMID:26714166
NASA Astrophysics Data System (ADS)
Seok, Song Young; Ho, Song Yang; Ho, Lee Jung; Moo Jong, Park
2015-04-01
Due to the increase of impervious layers caused by increased rainfall and urbanization which were brought about by the climate change after the late 1990s, the flood damage in urban watersheds is rising. The recent flood damage is occurring in medium and small stream rather than in large stream. Particularly, in medium stream which pass the cities, sudden flood occurs due to the short concentration of rainfall and urban areas suffer large damage, even though the flood damage is small, since residential areas and social infrastructures are concentrated. In spite of the importance of medium and small stream to pass the cities, there is no certain standard for classification of natural or urban stream and existing studies are mostly focused on the impervious area among the land use characteristics of watersheds. Most of existing river studies are based on the watershed scale, but in most urban watersheds where stream pass, urban areas are concentrated in the confluence, so urban areas only occupy less than 10% of the whole watershed and there is a high uncertainty in the classification of urban areas, based the watershed of stream. This study aims to suggest a classification standard of medium and small stream between local stream and small stream where suffer flood damage. According to the classified medium and small stream, this study analyzed the stream area to the stream width and distance using Arcgis Buffer tool, based on the stream line, not the existing watershed scale. This study then chose urban watersheds by analyzing the river area at certain intervals from the center of the chosen medium and small stream, in different ways. Among the land use characteristics in urban areas, the impervious area was applied to the selection standard of urban watersheds and the characteristics of urban watersheds were presented by calculating the ratio of the stream area to the impervious area using the Buffer tool. Acknowledgement "This research was supported by a grant [NEMA-NH-2011-45] from the Natural Hazard Mitigation Research Group, National Emergency Management Agency of Korea." Keywords: land use, urban watershed, medium and smaill stream, impervious area
Mapping forest types in Worcester County, Maryland, using LANDSAT data
NASA Technical Reports Server (NTRS)
Burtis, J., Jr.; Witt, R. G.
1981-01-01
The feasibility of mapping Level 2 forest cover types for a county-sized area on Maryland's Eastern Shore was demonstrated. A Level 1 land use/land cover classification was carried out for all of Worcester County as well. A June 1978 LANDSAT scene was utilized in a classification which employed two software packages on different computers (IDIMS on an HP 3000 and ASTEP-II on a Univac 1108). A twelve category classification scheme was devised for the study area. Resulting products include black and white line printer maps, final color coded classification maps, digitally enhanced color imagery and tabulated acreage statistics for all land use and land cover types.
Analysis of Environmental Vulnerability in The Landslide Areas (Case Study: Semarang Regency)
NASA Astrophysics Data System (ADS)
Hani'ah; Firdaus, H. S.; Nugraha, A. L.
2017-12-01
The Land conversion can increase the risk of landslide disaster in Semarang Regency caused by human activity. Remote sensing and geographic information system to be used in this study to mapping the landslide areas because satellite image data can represent the object on the earth surface in wide area coverage. Satellite image Landsat 8 is used to mapping land cover that processed by supervised classification method. The parameters to mapping landslide areas are based on land cover, rainfall, slope, geological factors and soil types. Semarang Regency have the minimum value of landslide is 1.6 and the maximum value is 4.3, which is dominated by landslide prone areas about 791.27 km2. The calculation of the environmental vulnerability index in the study area is based on Perka BNPB No. 2/2012. Accumulation score of environmental vulnerability index is moderate value, that means environment condition must be considered, such as vegetation as ground cover and many others aspects. The range of NDVI value shows that density level in conservation areas (0.030 - 0.844) and conservation forest (0.045 - 0.849), which rarely until high density level. The results of this study furthermore can be assessed to reduce disaster risks from landslide as an effort of disaster preventive.
Fierro, Pablo; Bertrán, Carlos; Tapia, Jaime; Hauenstein, Enrique; Peña-Cortés, Fernando; Vergara, Carolina; Cerna, Cindy; Vargas-Chacoff, Luis
2017-12-31
Land-use change is a principal factor affecting riparian vegetation and river biodiversity. In Chile, land-use change has drastically intensified over the last decade, with native forests converted to exotic forest plantations and agricultural land. However, the effects thereof on aquatic ecosystems are not well understood. Closing this knowledge gap first requires understanding how human perturbations affect riparian and stream biota. Identified biological indicators could then be applied to determine the health of fluvial ecosystems. Therefore, this study investigated the effects of land-use change on the health of riparian and aquatic ecosystems by assessing riparian vegetation, water quality, benthic macroinvertebrate assemblages, and functional feeding groups. Twenty-one sites in catchment areas with different land-uses (i.e. pristine forests, native forests, exotic forest plantations, and agricultural land) were selected and sampled during the 2010 to 2012 dry seasons. Riparian vegetation quality was highest in pristine forests. Per the modified Macroinvertebrate Family Biotic Index for Chilean species, the best conditions existed in native forests and the worst in agricultural catchments. Water quality and macroinvertebrate assemblages significantly varied across land-use areas, with forest plantations and agricultural land having high nutrient concentrations, conductivity, suspended solids, and apparent color. Macroinvertebrate assemblage diversity was lowest for agricultural and exotic forest plantation catchments, with notable non-insect representation. Collector-gatherers were the most abundant functional feeding group, suggesting importance independent of land-use. Land-use areas showed no significant differences in functional feeding groups. In conclusion, anthropogenic land-use changes were detectable through riparian quality, water quality, and macroinvertebrate assemblages, but not through functional feeding groups. These data, particularly the riparian vegetation and macroinvertebrate assemblage parameters, could be applied towards the conservation and management of riparian ecosystems through land-use change studies. Copyright © 2017 Elsevier B.V. All rights reserved.
Study of the wide area of a lake with remote sensing
NASA Astrophysics Data System (ADS)
Lazaridou, Maria A.; Karagianni, Aikaterini C.
2016-08-01
Water bodies are particularly important for environment and development issues. Their study requires multiple information. Remote sensing has been proven useful in the above study. This paper concerns the wide area of Lake Orestiada in the region of Western Macedonia in Greece. The area is of particular interest because Lake Orestiada is included in the Natura 2000 network and is surrounded by diverse landcovers as built up areas and agricultural land. Multispectral and thermal Landsat 5 satellite images of two time periods are being used. Their processing is being done by Erdas Imagine software. The general physiognomy of the area and the lake shore are examined after image enhancement techniques and image interpretation. Directions of the study concern geomorphological aspects, land covers, estimation of surface temperature as well as changes through time.
A land use and environmental impact analysis of the Norfolk-Portsmouth SMSA
NASA Technical Reports Server (NTRS)
Mitchel, W. B.; Berlin, G. L.
1973-01-01
The feasibility of using remote sensing techniques for land use and environmental assessment in the Norfolk-Portsmouth area is discussed. Data cover the use of high altitude aircraft and satellite remote sensing data for: (1) identifying various heirarchial levels of land use, (2) monitoring land use changes for repetitive basis, (3) assessing the impact of competing land uses, and (4) identifying areas of potential environmental deterioration. High altitude aircraft photographs (scale 1:120,000) acquired in 1959, 1970, and 1972, plus Earth Resources Technology Satellite (ERTS-1) color composite images acquired in 1972 were used for the land use and environmental assessments. The high altitude aircraft photography, as expected, was successfully used to map Level 1, Level 2, as well as some urban Level 3 land use categories. However, the detail of land use analysis obtainable from the ERTS imagery exceeded the expectations for the U.S. Geological Survey's land use classification scheme. Study results are consistent with the initial investigation which determined Level 1 land use change to be 16.7 square km per year.
Status and interconnections of selected environmental issues in the global coastal zones
Shi, Hua; Singh, Ashbindu
2003-01-01
This study focuses on assessing the state of population distribution, land cover distribution, biodiversity hotspots, and protected areas in global coastal zones. The coastal zone is defined as land within 100 km of the coastline. This study attempts to answer such questions as: how crowded are the coastal zones, what is the pattern of land cover distribution in these areas, how much of these areas are designated as protected areas, what is the state of the biodiversity hotspots, and what are the interconnections between people and coastal environment. This study uses globally consistent and comprehensive geospatial datasets based on remote sensing and other sources. The application of Geographic Information System (GIS) layering methods and consistent datasets has made it possible to identify and quantify selected coastal zones environmental issues and their interconnections. It is expected that such information provide a scientific basis for global coastal zones management and assist in policy formulations at the national and international levels.
Spatial heterogeneity of leaf area index across scales from simulation and remote sensing
NASA Astrophysics Data System (ADS)
Reichenau, Tim G.; Korres, Wolfgang; Montzka, Carsten; Schneider, Karl
2016-04-01
Leaf area index (LAI, single sided leaf area per ground area) influences mass and energy exchange of vegetated surfaces. Therefore LAI is an input variable for many land surface schemes of coupled large scale models, which do not simulate LAI. Since these models typically run on rather coarse resolution grids, LAI is often inferred from coarse resolution remote sensing. However, especially in agriculturally used areas, a grid cell of these products often covers more than a single land-use. In that case, the given LAI does not apply to any single land-use. Therefore, the overall spatial heterogeneity in these datasets differs from that on resolutions high enough to distinguish areas with differing land-use. Detailed process-based plant growth models simulate LAI for separate plant functional types or specific species. However, limited availability of observations causes reduced spatial heterogeneity of model input data (soil, weather, land-use). Since LAI is strongly heterogeneous in space and time and since processes depend on LAI in a nonlinear way, a correct representation of LAI spatial heterogeneity is also desirable on coarse resolutions. The current study assesses this issue by comparing the spatial heterogeneity of LAI from remote sensing (RapidEye) and process-based simulations (DANUBIA simulation system) across scales. Spatial heterogeneity is assessed by analyzing LAI frequency distributions (spatial variability) and semivariograms (spatial structure). Test case is the arable land in the fertile loess plain of the Rur catchment near the Germany-Netherlands border.
The effect of ankle bracing on lower extremity biomechanics during landing: A systematic review.
Mason-Mackay, A R; Whatman, C; Reid, D
2016-07-01
To examine the evidence for effect of ankle bracing on lower-extremity landing biomechanics. Literature review. Systematic search of the literature on EBSCO health databases. Articles critiqued by two reviewers. Ten studies were identified which investigated the effect of ankle bracing on landing biomechanics. Overall results suggest that landing biomechanics are altered with some brace types but studies disagree as to the particular variables affected. There is evidence that ankle bracing may alter lower-extremity landing biomechanics in a manner which predisposes athletes to injury. The focus of studies on specific biomechanical variables rather than biomechanical patterns, analysis of pooled data means in the presence of differing landing styles between participants, variation in landing-tasks investigated in different studies, and lack of studies investigating goal-directed sport-specific landing tasks creates difficulty in interpreting results. These areas require further research. Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Land use determination by remote sensor analysis
NASA Technical Reports Server (NTRS)
Mallon, H. J.; Howard, J. Y.
1971-01-01
A land use analysis of 18 selected census tracts in the Metropolitan Washington area using aerial photography was undertaken. A comparison of the results was made with comparable land use data from the Metropolitan Washington Council of Governments' Parcel File, and the results reported. Summary conclusions and recommendations for the use of photo-derived data in land use studies by COG are made.
Geographical Applications of Remote Sensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weng, Qihao; Zhou, Yuyu; Quattrochi, Dale
2013-02-28
Data and Information derived through Earth observation technology have been extensively used in geographic studies, such as in the areas of natural and human environments, resources, land use and land cover, human-environment interactions, and socioeconomic issues. Land-use and land-cover change (LULCC), affecting biodiversity, climate change, watershed hydrology, and other surface processes, is one of the most important research topics in geography.
Global assessment of rural-urban interface in Portugal related to land cover changes
NASA Astrophysics Data System (ADS)
Tonini, Marj; Parente, Joana; Pereira, Mário G.
2018-06-01
The rural-urban interface (RUI), known as the area where structures and other human developments meet or intermingle with wildland and rural area, is at present a central focus of wildfire policy and its mapping is crucial for wildfire management. In the Mediterranean Basin, humans cause the vast majority of fires and fire risk is particularly high in the proximity of infrastructure and of rural/wildland areas. RUI's extension changes under the pressure of environmental and anthropogenic factors, such as urban growth, fragmentation of rural areas, deforestation and, more in general, land use/land cover change (LULCC). As with other Mediterranean countries, Portugal has experienced significant LULCC in the last decades in response to migration, rural abandonment, ageing of population and trends associated with the high socioeconomic development. In the present study, we analyzed the LULCC occurring in this country in the 1990-2012 period with the main objective of investigating how these changes affected RUI's evolution. Moreover, we performed a qualitative and quantitative characterization of burnt areas within the RUI in relation to the observed changes. Obtained results disclose important LULCC and reveal their spatial distribution, which is far from uniform within the territory. A significant increase in artificial surfaces was registered near the main metropolitan communities of the northwest, littoral-central and southern regions, whilst the abandonment of agricultural land near the inland urban areas led to an increase in uncultivated semi-natural and forest areas. Within agricultural areas, heterogeneous patches suffered the greatest changes and were the main contributors to the increase in urban areas; moreover, this land cover class, together with forests, was highly affected by wildfires in terms of burnt area. Finally, from this analysis and during the investigated period, it appears that RUI increased in Portugal by more than two-thirds, while the total burnt area decreased by one-third; nevertheless, burnt area within RUI doubled, which emphasizes the significance of RUI monitoring for land and fire managers.
Dynamics of aeolian desertification and its driving forces in the Horqin Sandy Land, Northern China.
Duan, Han-chen; Wang, Tao; Xue, Xian; Liu, Shu-lin; Guo, Jian
2014-10-01
Aeolian desertification is one of the most serious environmental and socioeconomic problems in arid, semi-arid, and dry subhumid zones. Understanding desertification processes and causes is important to provide reasonable and effective control measures for preventing desertification. With satellite remote sensing images as data source to assess the temporal and spatial dynamics of desertification from 1975 to 2010 in the Horqin Sandy Land, dynamic changes of aeolian desertification were detected using the human-machine interactive interpretation method. The driving factors of local desertification were analyzed based on natural and socioeconomic data. The results show that aeolian desertified land in the study area covered 30,199 km(2) in 2010, accounting for 24.1% of the study area. The total area of aeolian desertified land obviously expanded from 30,884 km(2) in 1975 to 32,071 km(2) in 1990, and gradually decreased to 30,199 km(2) in 2010; aeolian desertified land represented an increasing trend firstly and then decreased. During the past 35 years, the gravity centers of desertified lands that are classified as extremely severe and severe generally migrated to the northeast, whereas those that are moderate and slight migrated to the northwest. The migration distance of severely desertified land was the largest, which indicated the southern desertified lands were improved during the last few decades. In addition, the climatic variation in the past 35 years has been favorable to desertification in the Horqin Sandy Land. Aeolian desertified land rapidly expanded from 1975 to 1990 under the combined effects of climate changes and unreasonable human activities. After the 1990s, the main driving factors responsible for the decrease in desertification were positive human activities, such as the series of antidesertification and ecological restoration projects.
Land Application of Wastes: An Educational Program. Case Studies Reviewed - Module 14.
ERIC Educational Resources Information Center
Clarkson, W. W.; And Others
This module provides information about 14 existing land application systems. Each case study gives the location and description of the system, volume treated, climate and soil type, cost, land area, and other data. A brief comment about the system is given as well as a more detailed discussion. References are cited which may be used to examine 100…
Trends in landscape and vegetation change and implications for the Santa Cruz Watershed
Villarreal, Miguel; Norman, Laura M.; Webb, Robert H.; Turner, Raymond M.
2013-01-01
Monitoring and characterizing the interactive effects of land use and climate on land surface processes is a primary focus of land change science, and of particular concern in arid Wells Distribution in Shallow Groundwater Areas Pumping Trends Increase Streamflow Extent Declines 27 environments where both landscapes and livelihoods can be impacted by short-term climate variability. Using a multi-observational approach to land-change analysis that included landownership data as a proxy for land-use practices, multitemporal land-cover maps, and repeat photography dating to the late 19th century, we examine changing spatial and temporal distributions of two vegetation types with high conservation value in the southwestern United States: grasslands and riparian vegetation. Our study area is the bi-national Santa Cruz Watershed, a topographically complex watershed that straddles the Sonoran Desert and the Madrean Archipelago Ecoregions. In this presentation we focus on historical changes in vegetation and land use in grasslands and riparian areas of the Madrean Ecoregion (San Raphael Valley, Cienega Creek, Sonoita), and compare changes in these areas to changes in the warmer and drier Sonoran Ecoregion. Analysis of historical photography confirms major 20th century vegetation shifts documented in other research: woody plant encroachment, desertification of grasslands, and changing riparian and xeroriparian vegetation occurred in both ecoregions following human settlement. However, vegetation changes over the past decade appear to be more subtle and some of the past trajectories appear to be reversing; most notable are recent mesquite declines in xeroriparian and upland areas, and changes from shrubland to grassland area in the Madrean ecoregion. Land cover changes were temporally variable, reflecting broad climate changes. The most dynamic cover changes occurred during the period from 1989 to 1999, a period with two intense droughts. The degree of vegetation change driven by climate was related to topographic setting: vegetation declines were greater per unit area in the lower elevation Sonoran ecoregion where temperatures are higher and precipitation lower than in the Madrean. Fine-scale changes within these broad climate patterns were likely the result of land use practices: declines were highest on state lands (grazing) and increases highest on private ranches and some federal lands (active mesquite removal and watershed restoration).
NASA Astrophysics Data System (ADS)
Sisniega, David Prieto; García, Manuel Mora; Menéndez, Susana Fernández; Soriano, Luís Rivas; de Pablo Dávila, Fernando
2018-05-01
The present study analyses the impact of the different categories of land use and types of soils on cloud-to-ground (CG) lightning activity in the region of Asturias (Spain). Thirteen (fifteen) land uses (types of soils) and a range of fourteen years (2000 to 2013) of CG-lightning flash data were considered to complete the study. Some areas that have suffered the strong impact of human activity (urban, mining, and industrial) were associated with the increase of CG-lightning activity. When considering vegetated areas, areas with non-agricultural vegetation, arable land and permanent crops, it was showed a greater CG activity. With reference to the types of soils, Fluvisols, Regosols/Cambic-Arenosols, and Luvisols, these seemed to be associated to the increase of CG-lightning activity. The results found for the region of Asturias are different from those reported by Mora et al. (2015) for the region of Castilla y Leon (Spain).
Bastos, R K X; Calijuri, M L; Bevilacqua, P D; Rios, E N; Dias, E H O; Capelete, B C; Magalhães, T B
2010-01-01
The results of a 20-month period study in Brazil were analyzed to compare horizontal-flow constructed wetlands (CW) and waste stabilization pond (WSP) systems in terms of land area requirements and performance to produce effluent qualities for surface water discharge, and for wastewater use in agriculture and/or aquaculture. Nitrogen, E. coli and helminth eggs were more effectively removed in WSP than in CW. It is indicated that CW and WSP require similar land areas to achieve a bacteriological effluent quality suitable for unrestricted irrigation (10(3) E. coli per 100 mL), but CW would require 2.6 times more land area than ponds to achieve quite relaxed ammonia effluent discharge standards (20 mg NH(3) L(-1)), and, by far, more land than WSP to produce an effluent complying with the WHO helminth guideline for agricultural use (< or =1 egg per litre).
Salvati, Luca; Tombolini, Ilaria; Gemmiti, Roberta; Carlucci, Margherita; Bajocco, Sofia; Perini, Luigi; Ferrara, Agostino; Colantoni, Andrea
2017-01-01
Land quality, a key economic capital supporting local development, is affected by biophysical and anthropogenic factors. Taken as a relevant attribute of economic systems, land quality has shaped the territorial organization of any given region influencing localization of agriculture, industry and settlements. In regions with long-established human-landscape interactions, such as the Mediterranean basin, land quality has determined social disparities and polarization in the use of land, reflecting the action of geographical gradients based on elevation and population density. The present study investigates latent relationships within a large set of indicators profiling local communities and land quality on a fine-grained resolution scale in Italy with the aim to assess the potential impact of land quality on the regional socioeconomic structure. The importance of land quality gradients in the socioeconomic configuration of urban and rural regions was verified analyzing the distribution of 149 socioeconomic and environmental indicators organized in 5 themes and 17 research dimensions. Agriculture, income, education and labour market variables discriminate areas with high land quality from areas with low land quality. While differential land quality in peri-urban areas may reflect conflicts between competing actors, moderate (or low) quality of land in rural districts is associated with depopulation, land abandonment, subsidence agriculture, unemployment and low educational levels. We conclude that the socioeconomic profile of local communities has been influenced by land quality in a different way along urban-rural gradients. Policies integrating environmental and socioeconomic measures are required to consider land quality as a pivotal target for sustainable development. Regional planning will benefit from an in-depth understanding of place-specific relationships between local communities and the environment.
Salvati, Luca; Tombolini, Ilaria; Gemmiti, Roberta; Carlucci, Margherita; Bajocco, Sofia; Perini, Luigi; Ferrara, Agostino
2017-01-01
Land quality, a key economic capital supporting local development, is affected by biophysical and anthropogenic factors. Taken as a relevant attribute of economic systems, land quality has shaped the territorial organization of any given region influencing localization of agriculture, industry and settlements. In regions with long-established human-landscape interactions, such as the Mediterranean basin, land quality has determined social disparities and polarization in the use of land, reflecting the action of geographical gradients based on elevation and population density. The present study investigates latent relationships within a large set of indicators profiling local communities and land quality on a fine-grained resolution scale in Italy with the aim to assess the potential impact of land quality on the regional socioeconomic structure. The importance of land quality gradients in the socioeconomic configuration of urban and rural regions was verified analyzing the distribution of 149 socioeconomic and environmental indicators organized in 5 themes and 17 research dimensions. Agriculture, income, education and labour market variables discriminate areas with high land quality from areas with low land quality. While differential land quality in peri-urban areas may reflect conflicts between competing actors, moderate (or low) quality of land in rural districts is associated with depopulation, land abandonment, subsidence agriculture, unemployment and low educational levels. We conclude that the socioeconomic profile of local communities has been influenced by land quality in a different way along urban-rural gradients. Policies integrating environmental and socioeconomic measures are required to consider land quality as a pivotal target for sustainable development. Regional planning will benefit from an in-depth understanding of place-specific relationships between local communities and the environment. PMID:28574984
NASA Astrophysics Data System (ADS)
Rahaman, S. A.; Aruchamy, S.; Balasubramani, K.; Jegankumar, R.
2017-05-01
Nowadays land use/ land cover in mountain landscape is in critical condition; it leads to high risky and uncertain environments. These areas are facing multiple stresses including degradation of land resources; vagaries of climate and depletion of water resources continuously affect land use practices and livelihoods. To understand the Land use/Land cover (Lu/Lc) changes in a semi-arid mountain landscape, Kallar watershed of Bhavani basin, in southern India has been chosen. Most of the hilly part in the study area covers with forest, plantation, orchards and vegetables and which are highly affected by severe soil erosion, landslide, frequent rainfall failures and associated drought. The foothill regions are mainly utilized for agriculture practices; due to water scarcity and meagre income, the productive agriculture lands are converted into settlement plots and wasteland. Hence, land use/land cover change deduction; a stochastic processed based method is indispensable for future prediction. For identification of land use/land cover, and vegetation changes, Landsat TM, ETM (1995, 2005) and IRS P6- LISS IV (2015) images were used. Through CAMarkov chain analysis, Lu/Lc changes in past three decades (1995, 2005, and 2015) were identified and projected for (2020 and 2025); Normalized Difference Vegetation Index (NDVI) were used to find the vegetation changes. The result shows that, maximum changes occur in the plantation and slight changes found in forest cover in the hilly terrain. In foothill areas, agriculture lands were decreased while wastelands and settlement plots were increased. The outcome of the results helps to farmer and policy makers to draw optimal lands use planning and better management strategies for sustainable development of natural resources.
Surface water change as a significant contributor to global evapotranspiration change
NASA Astrophysics Data System (ADS)
Zhan, S.; Song, C.
2017-12-01
Water comprises a critical component of global/regional hydrological and biogeochemical cycles and is essential to all organisms including humans. In the past several decades, climate change has intensified the hydrological cycle, with significant implications for ecosystem services and feedback to regional and global climate. Evapotranspiration (ET) as a linking mechanism between land surface and atmosphere is central to the water cycle and an excellent indicator of the intensity of water cycle. Knowledge of the temporal changes of ET is crucial for accurately estimating global or regional water budgets and better understanding climate and hydrological interactions. While studies have examined changes in global ET, they were conducted using a constant land and surface water (SW) area. However, as many studies have found that global SW is very dynamic and their surface areas have generally been increasing since the 1980s. The conversion from land to water and vice versa significantly changes the local ET since water bodies evaporate at a rate that can be much higher than that of the land. Here, we quantify the global changes in ET caused by such land-water conversion using remotely-sensed SW area and various ET and potential ET products. New SW and lost SW between circa-1985 and circa-2015 were derived from remote sensing and were used to modify the local ET estimates. We found an increase in ET in all continents as consistent with the net increase in SW area. The increasing SW area lead to a global increase in ET by 30.38 ± 5.28 km3/yr. This is a significant contribution when compared to the 92.95 km3/yr/yr increase in ET between 1982-1997 and 103.43 km3/yr/yr decrease between 1998-2008 by Jung et al., (2010) assuming a constant SW. The results enhance our understanding of the water fluxes between the land and atmosphere and supplement land water budget estimates. We conclude that changes in SW lead to a significant change in global ET that cannot be neglected in global ET trend studies and should also be included in global water budget studies.
Simulation of Land-Cover Change in Taipei Metropolitan Area under Climate Change Impact
NASA Astrophysics Data System (ADS)
Huang, Kuo-Ching; Huang, Thomas C. C.
2014-02-01
Climate change causes environment change and shows up on land covers. Through observing the change of land use, researchers can find out the trend and potential mechanism of the land cover change. Effective adaptation policies can affect pattern of land cover change and may decrease the risks of climate change impacts. By simulating land use dynamics with scenario settings, this paper attempts to explore the relationship between climate change and land-cover change through efficient adaptation polices. It involves spatial statistical model in estimating possibility of land-cover change, cellular automata model in modeling land-cover dynamics, and scenario analysis in response to adaptation polices. The results show that, without any control, the critical eco-areas, such as estuarine areas, will be destroyed and people may move to the vulnerable and important economic development areas. In the other hand, under the limited development condition for adaptation, people migration to peri-urban and critical eco-areas may be deterred.
Flooding Hazard Maps of Different Land Uses in Subsidence Area
NASA Astrophysics Data System (ADS)
Lin, Yongjun; Chang, Hsiangkuan; Tan, Yihchi
2017-04-01
This study aims on flooding hazard maps of different land uses in the subsidence area of southern Taiwan. Those areas are low-lying due to subsidence resulting from over pumping ground water for aquaculture. As a result, the flooding due to storm surges and extreme rainfall are frequent in this area and are expected more frequently in the future. The main land uses there include: residence, fruit trees, and aquaculture. The hazard maps of the three land uses are investigated. The factors affecting hazards of different land uses are listed below. As for residence, flooding depth, duration of flooding, and rising rate of water surface level are factors affecting its degree of hazard. High flooding depth, long duration of flooding, and fast rising rate of water surface make residents harder to evacuate. As for fruit trees, flooding depth and duration of flooding affects its hazard most due to the root hypoxia. As for aquaculture, flooding depth affects its hazard most because the high flooding depth may cause the fish flush out the fishing ponds. An overland flow model is used for simulations of hydraulic parameters for factors such as flooding depth, rising rate of water surface level and duration of flooding. As above-mentioned factors, the hazard maps of different land uses can be made and high hazardous are can also be delineated in the subsidence areas.
Qian, Dawen; Yan, Changzhen; Xing, Zanpin; Xiu, Lina
2017-10-14
The Muli coal mine is the largest open-cast coal mine in the Qinghai-Tibet Plateau, and it consists of two independent mining sites named Juhugeng and Jiangcang. It has received much attention due to the ecological problems caused by rapid expansion in recent years. The objective of this paper was to monitor the mining area and its surrounding land cover over the period 1976-2016 utilizing Landsat images, and the network structure of land cover changes was determined to visualize the relationships and pattern of the mining-induced land cover changes. In addition, the responses of the surrounding landscape pattern were analysed by constructing gradient transects. The results show that the mining area was increasing in size, especially after 2000 (increased by 71.68 km 2 ), and this caused shrinkage of the surrounding lands, including alpine meadow wetland (53.44 km 2 ), alpine meadow (6.28 km 2 ) and water (6.24 km 2 ). The network structure of the mining area revealed the changes in lands surrounding the mining area. The impact of mining development on landscape patterns was mainly distributed within a range of 1-6 km. Alpine meadow wetland was most affected in Juhugeng, while alpine meadow was most affected in Jiangcang. The results of this study provide a reference for the ecological assessment and restoration of the Muli coal mine land.
Extension in a Rhodesian Purchase Land Area.
ERIC Educational Resources Information Center
Bembridge, T. J.
A study is presented which assesses agricultural production in a Purchase Land area over a seven-year period and tries to identify certain socio-psychological and other variables which might be acting as constraints on farming behavior in terms of change. A survey was conducted of the whole population of 198 resident farm families; it included six…
Land claim and loss of tidal flats in the Yangtze Estuary.
Chen, Ying; Dong, Jinwei; Xiao, Xiangming; Zhang, Min; Tian, Bo; Zhou, Yunxuan; Li, Bo; Ma, Zhijun
2016-04-01
Tidal flats play a critical role in supporting biodiversity and in providing ecosystem services but are rapidly disappearing because of human activities. The Yangtze Estuary is one of the world's largest alluvial estuaries and is adjacent to the most developed economic zone in China. Using the Yangtze Estuary as a study region, we developed an automatic algorithm to estimate tidal flat areas based on the Land Surface Water Index and the Normalized Difference Vegetation Index. The total area of tidal flats in the Yangtze Estuary has decreased by 36% over the past three decades, including a 38% reduction in saltmarshes and a 31% reduction in barren mudflats. Meanwhile, land claim has accumulated to 1077 km(2), a value that exceeds the area of the remaining tidal flats. We divided the Yangtze Estuary into Shanghai and Jiangsu areas, which differ in riverine sediment supply and tidal flat management patterns. Although land claim has accelerated in both areas, the decline in tidal flat area has been much greater in Jiangsu than in Shanghai because of abundant supplies of sediment and artificial siltation in the latter area. The results highlight the need for better coastal planning and management based on tidal flat dynamics.
Land claim and loss of tidal flats in the Yangtze Estuary
Chen, Ying; Dong, Jinwei; Xiao, Xiangming; Zhang, Min; Tian, Bo; Zhou, Yunxuan; Li, Bo; Ma, Zhijun
2016-01-01
Tidal flats play a critical role in supporting biodiversity and in providing ecosystem services but are rapidly disappearing because of human activities. The Yangtze Estuary is one of the world’s largest alluvial estuaries and is adjacent to the most developed economic zone in China. Using the Yangtze Estuary as a study region, we developed an automatic algorithm to estimate tidal flat areas based on the Land Surface Water Index and the Normalized Difference Vegetation Index. The total area of tidal flats in the Yangtze Estuary has decreased by 36% over the past three decades, including a 38% reduction in saltmarshes and a 31% reduction in barren mudflats. Meanwhile, land claim has accumulated to 1077 km2, a value that exceeds the area of the remaining tidal flats. We divided the Yangtze Estuary into Shanghai and Jiangsu areas, which differ in riverine sediment supply and tidal flat management patterns. Although land claim has accelerated in both areas, the decline in tidal flat area has been much greater in Jiangsu than in Shanghai because of abundant supplies of sediment and artificial siltation in the latter area. The results highlight the need for better coastal planning and management based on tidal flat dynamics. PMID:27035525
Land claim and loss of tidal flats in the Yangtze Estuary
NASA Astrophysics Data System (ADS)
Chen, Ying; Dong, Jinwei; Xiao, Xiangming; Zhang, Min; Tian, Bo; Zhou, Yunxuan; Li, Bo; Ma, Zhijun
2016-04-01
Tidal flats play a critical role in supporting biodiversity and in providing ecosystem services but are rapidly disappearing because of human activities. The Yangtze Estuary is one of the world’s largest alluvial estuaries and is adjacent to the most developed economic zone in China. Using the Yangtze Estuary as a study region, we developed an automatic algorithm to estimate tidal flat areas based on the Land Surface Water Index and the Normalized Difference Vegetation Index. The total area of tidal flats in the Yangtze Estuary has decreased by 36% over the past three decades, including a 38% reduction in saltmarshes and a 31% reduction in barren mudflats. Meanwhile, land claim has accumulated to 1077 km2, a value that exceeds the area of the remaining tidal flats. We divided the Yangtze Estuary into Shanghai and Jiangsu areas, which differ in riverine sediment supply and tidal flat management patterns. Although land claim has accelerated in both areas, the decline in tidal flat area has been much greater in Jiangsu than in Shanghai because of abundant supplies of sediment and artificial siltation in the latter area. The results highlight the need for better coastal planning and management based on tidal flat dynamics.
2017-08-29
The border between Belize and Guatemala illustrates striking differences in land use practices. In a study of deforestation published in 2016, Chicas and co-authors found that in their study area between 1991 and 2014, on the Guatemalan side of the border forested land declined 32%; in Belize, forested area declined 11%. In part of their study area shown in this image, the difference is more dramatic: near-pristine forest in Belize on the right, and agricultural fields in Guatemala on the left. The image was acquired May 10, 2016, covers an area of 27 by 41 km, and is located at 16.7 degrees north, 89.2 degrees west. https://photojournal.jpl.nasa.gov/catalog/PIA21826
Ensemble simulations to study the impact of land use change of Atlanta to regional climate
NASA Astrophysics Data System (ADS)
Liu, P.; Hu, Y.; Stone, B.; Vargo, J.; Nenes, A.; Russell, A.; Trail, M.; Tsimpidi, A.
2012-12-01
Studies show that urban areas may be the "first responders" to climate change (Rosenzweig et al., 2010). Of particular interest is the potential increased temperatures in urban areas, due to use of structures and surfaces that increase local heating, and how that may impact health, air quality and other environmental factors. In response, interest has grown as to how the modification of land use in urban areas, in order to mitigate the adverse effects of urbanization can serve to reduce local temperatures, and how climate is impacted more regionally. Studies have been conducted to investigate the impact of land use change on local or regional climate by dynamic downscaling using regional climate models (RCMs), the boundary conditions (BCs) and initial conditions (ICs) of which result from coarser-resolution reanalysis data or general circulation models (GCMs). However, few studies have focused on demonstrating whether the land use change in local areas significantly impacts the climate of the larger region of the domain, and the spatial scale of the impact from urban-scale changes. This work investigated the significance of the impact of land use change in the Atlanta city area on different scales, using a range of modeling resolutions, including the contiguous US (with 36km resolution), the southeastern US (with 12km resolution) and the state of Georgia (with 4km resolution). We used WRF version 3.1.1 with and ran continuous from June to August of a simulated year 2050, driven by GISS ModelE with inputs corresponding to RCP4.5. During the simulation, spectral nudging is used in the 36km resolution domain to maintain the climate patterns with scales larger than 2000km. Two-way nesting is also used in order to take into account the feedback of nesting domains across model domains. Two land use cases over the Atlanta city are chosen. For the base case, most of the urban area of Atlanta is covered with forest; while for the second, "impervious" case, all the urban area within 30 miles of the center of Atlanta is replaced with asphalt. This choice is made to maximize the potential effects and scales of impact. To make the two cases different as much as possible, a constant green vegetation fraction of 1.0 is assigned to the forest over the Atlanta; while 0.0 is assigned to the asphalt. To test the significance of the impact of land use change, 5 ensemble members were generated for each land use case using different initial conditions. The results of student's t test found that the impact of land use change in Atlanta city has a very local impact. This finding indicates that using WRF, applied at continental and regional scales, with BCs from the GCM and with spectral nudging, is appropriate. Although our results showed the impact is very local, results may change when meteorological conditions change or the area where land use changes is increased. Therefore, when investigating the land use change relevant issues, similar testing is suggested in order to demonstrate that the domain is large enough so that downscaling by RCMs is an appropriate approach. References: Rosenzweig, C., W. Solecki, S.A. Hammer, and S. Mehrotra, 2010: Cities lead the way in climate-change action. Nature, 467, 909-911, doi:10.1038/467909a
NASA Astrophysics Data System (ADS)
Recatalá Boix, Luis; Zinck, Joseph Alfred
2008-08-01
The Burruyacú district (Tucumán province, Northwest Argentina) has been traditionally an area with rural activities based on the exploitation of the Chaco forest for timber and livestock browsing. Since the 1960s, local institutions started promoting soybean due to favorable land conditions and good market prices. Soybean extension, as from the 1970s, has resulted in important reduction of the Chaco forest and also caused physical soil degradation, especially soil compaction and erosion. A land-use-planning exercise was carried out using the Land-Use Planning and Information System (LUPIS) as a spatial decision support system. LUPIS facilitates the generation of alternative land-use plans by adjusting the relative importance attributed by multiple stakeholders to preference and avoidance policies. The system leads to the allocation of competing land uses to land map units in accordance with their preferred resource requirements, conditional upon the resource base of the area and the stakeholders’ demands. After generating a land use plan for each stakeholder category identified in the study area, including commercial farmers, conservative/conventional farmers, and conservationists, a consensus plan was established to address the land-use conflicts between mechanized agriculture, traditional agriculture and forest conservation, and to mitigate soil degradation caused by extensive dry-farming. Although the planning exercise did not directly involve the stakeholders, the results are sufficiently practical and realistic to suggest that the approach could be extended to the entire Chaco plain region.
Incorporating GIS and remote sensing for census population disaggregation
NASA Astrophysics Data System (ADS)
Wu, Shuo-Sheng'derek'
Census data are the primary source of demographic data for a variety of researches and applications. For confidentiality issues and administrative purposes, census data are usually released to the public by aggregated areal units. In the United States, the smallest census unit is census blocks. Due to data aggregation, users of census data may have problems in visualizing population distribution within census blocks and estimating population counts for areas not coinciding with census block boundaries. The main purpose of this study is to develop methodology for estimating sub-block areal populations and assessing the estimation errors. The City of Austin, Texas was used as a case study area. Based on tax parcel boundaries and parcel attributes derived from ancillary GIS and remote sensing data, detailed urban land use classes were first classified using a per-field approach. After that, statistical models by land use classes were built to infer population density from other predictor variables, including four census demographic statistics (the Hispanic percentage, the married percentage, the unemployment rate, and per capita income) and three physical variables derived from remote sensing images and building footprints vector data (a landscape heterogeneity statistics, a building pattern statistics, and a building volume statistics). In addition to statistical models, deterministic models were proposed to directly infer populations from building volumes and three housing statistics, including the average space per housing unit, the housing unit occupancy rate, and the average household size. After population models were derived or proposed, how well the models predict populations for another set of sample blocks was assessed. The results show that deterministic models were more accurate than statistical models. Further, by simulating the base unit for modeling from aggregating blocks, I assessed how well the deterministic models estimate sub-unit-level populations. I also assessed the aggregation effects and the resealing effects on sub-unit estimates. Lastly, from another set of mixed-land-use sample blocks, a mixed-land-use model was derived and compared with a residential-land-use model. The results of per-field land use classification are satisfactory with a Kappa accuracy statistics of 0.747. Model Assessments by land use show that population estimates for multi-family land use areas have higher errors than those for single-family land use areas, and population estimates for mixed land use areas have higher errors than those for residential land use areas. The assessments of sub-unit estimates using a simulation approach indicate that smaller areas show higher estimation errors, estimation errors do not relate to the base unit size, and resealing improves all levels of sub-unit estimates.
Land use policy and agricultural water management of the previous half of century in Africa
NASA Astrophysics Data System (ADS)
Valipour, Mohammad
2015-12-01
This paper examines land use policy and agricultural water management in Africa from 1962 to 2011. For this purpose, data were gathered from Food and Agriculture Organization of the United Nations (FAO) and the World Bank Group. Using the FAO database, ten indices were selected: permanent crops to cultivated area (%), rural population to total population (%), total economically active population in agriculture to total economically active population (%), human development index, national rainfall index (mm/year), value added to gross domestic product by agriculture (%), irrigation water requirement (mm/year), percentage of total cultivated area drained (%), difference between national rainfall index and irrigation water requirement (mm/year), area equipped for irrigation to cultivated area or land use policy index (%). These indices were analyzed for all 53 countries in the study area and the land use policy index was estimated by two different formulas. The results show that value of relative error is <20 %. In addition, an average index was calculated using various methods to assess countries' conditions for agricultural water management. Ability of irrigation and drainage systems was studied using other eight indices with more limited information. These indices are surface irrigation (%), sprinkler irrigation (%), localized irrigation (%), spate irrigation (%), agricultural water withdrawal (10 km3/year), conservation agriculture area as percentage of cultivated area (%), percentage of area equipped for irrigation salinized (%), and area waterlogged by irrigation (%). Finally, tendency of farmers to use irrigation systems for cultivated crops has been presented. The results show that Africa needs governments' policy to encourage farmers to use irrigation systems and raise cropping intensity for irrigated area.
36 CFR 294.23 - Road construction and reconstruction in Idaho Roadless Areas.
Code of Federal Regulations, 2013 CFR
2013-07-01
... reconstruction in Idaho Roadless Areas. (a) Wild Land Recreation, Special Areas of Historic or Tribal... designated as Wild Land Recreation, Special Areas of Historic or Tribal Significance, or Primitive. However... Wild Land Recreation, Special Area of Historic or Tribal Significance, or Primitive if pursuant to...
36 CFR 294.23 - Road construction and reconstruction in Idaho Roadless Areas.
Code of Federal Regulations, 2014 CFR
2014-07-01
... reconstruction in Idaho Roadless Areas. (a) Wild Land Recreation, Special Areas of Historic or Tribal... designated as Wild Land Recreation, Special Areas of Historic or Tribal Significance, or Primitive. However... Wild Land Recreation, Special Area of Historic or Tribal Significance, or Primitive if pursuant to...
36 CFR 294.23 - Road construction and reconstruction in Idaho Roadless Areas.
Code of Federal Regulations, 2012 CFR
2012-07-01
... reconstruction in Idaho Roadless Areas. (a) Wild Land Recreation, Special Areas of Historic or Tribal... designated as Wild Land Recreation, Special Areas of Historic or Tribal Significance, or Primitive. However... Wild Land Recreation, Special Area of Historic or Tribal Significance, or Primitive if pursuant to...
NASA Astrophysics Data System (ADS)
White, G. J.; Prydatko, V.; Luhmann, E. P.
2001-05-01
Ukraine's history as agro-economic region dates back hundreds of years, being the most productive portion of the "black earth region" for the now defunct Soviet Union. This incredible level of agricultural production brought tremendous changes to the landscape matrix, largely eliminating forests and prairie systems from the southern steppe regions of Ukraine. The age of industrialization has had far less significant impacts to the land use patterns as large farms were operated and managed under Soviet Era cooperatives. The recent, 1992, independence of Ukraine has brought new pressures to the landscape. These pressures are initiated by economic needs of Ukraine seeking to be resolved through increased farm production and rapid land and industrial privatization. This study examines land cover changes between 1977, 1988 and 2000 within a representative region of southern Ukraine and northern Crimea. The region covers prototypical landscapes of the steppe region of agriculture at various scales and crops. The study area also allows an examination of changes along coastal areas in the Azov and Black Seas, specifically barrier systems. Additionally, areas of rapid privatization of industries and introduction of western industries exist within this region. The years selected for documentation were chosen as being one near the height of Soviet autonomy, near separation of the Soviet Union and independence of Ukraine and current times. The study looks at ways of documenting land cover change using satellite imagery with ancillary ground based information. The study evaluates effects of these land cover changes through associated losses of hydrologic characteristics in the landscape such as stream, as well as landform changes especially in coastal barrier systems. These changes are correlated to landscape changes and ecological parameters recorded during this nearly 30 year period. Preliminary conclusions are presented as to alternative land use practices and actions for stabilization of the remaining "natural" landscape and protection of near coastal systems especially barrier systems.
City landscape changes effects on land surface temperature in Bucharest metropolitan area
NASA Astrophysics Data System (ADS)
Savastru, Dan M.; Zoran, Maria A.; Savastru, Roxana S.; Dida, Adrian I.
2017-10-01
This study investigated the influences of city land cover changes and extreme climate events on land surface temperature in relationship with several biophysical variables in Bucharest metropolitan area of Romania through satellite and in-situ monitoring data. Remote sensing data from IKONOS, Landsat TM/ETM+ and time series MODIS Terra/Aqua and NOAA AVHRR sensors have been used to assess urban land cover- temperature interactions over 2000 - 2016 period. Time series Thermal InfraRed (TIR) satellite remote sensing data in synergy with meteorological data (air temperatureAT, precipitations, wind, solar radiation, etc.) were applied mainly for analyzing land surface temperature (LST) pattern and its relationship with surface landscape characteristics, assessing urban heat island (UHI), and relating urban land cover temperatures (LST). The land surface temperature, a key parameter for urban thermal characteristics analysis, was also analyzed in relation with the Normalized Difference Vegetation Index (NDVI) at city level. Results show that in the metropolitan area ratio of impervious surface in Bucharest increased significantly during investigated period, the intensity of urban heat island and heat wave events being most significant. The correlation analyses revealed that, at the pixel-scale, LST and AT possessed a strong positive correlation with percent impervious surfaces and negative correlation with vegetation abundances at metropolitan scale respectively. The NDVI was significantly correlated with precipitation. The spatial average air temperatures in urban test areas rise with the expansion of the urban size.
Detection of Deforestation and Land Conversion in Rondonia, Brazil Using Change Detection Techniques
NASA Technical Reports Server (NTRS)
Guild, Liane S.; Cohen, Warren B,; Kauffman, J. Boone; Peterson, David L. (Technical Monitor)
2001-01-01
Fires associated with tropical deforestation, land conversion, and land use greatly contribute to emissions as well as the depletion of carbon and nutrient pools. The objective of this research was to compare change detection techniques for identifying deforestation and cattle pasture formation during a period of early colonization and agricultural expansion in the vicinity of Jamari, Rond6nia. Multi-date Landsat Thematic Mapper (TM) data between 1984 and 1992 was examined in a 94 370-ha area of active deforestation to map land cover change. The Tasseled Cap (TC) transformation was used to enhance the contrast between forest, cleared areas, and regrowth. TC images were stacked into a composite multi-date TC and used in a principal components (PC) transformation to identify change components. In addition, consecutive TC image pairs were differenced and stacked into a composite multi-date differenced image. A maximum likelihood classification of each image composite was compared for identification of land cover change. The multi-date TC composite classification had the best accuracy of 78.1% (kappa). By 1984, only 5% of the study area had been cleared, but by 1992, 11% of the area had been deforested, primarily for pasture and 7% lost due to hydroelectric dam flooding. Finally, discrimination of pasture versus cultivation was improved due to the ability to detect land under sustained clearing opened to land exhibiting regrowth with infrequent clearing.
Disaster Prevention Coastal Map Production by MMS & C3D
NASA Astrophysics Data System (ADS)
Hatake, Shuhei; Kohori, Yuki; Watanabe, Yasushi
2016-06-01
In March 2011, Eastern Japan suffered serious damage of Tsunami caused by a massive earthquake. In 2012, Ministry of Land, Infrastructure and Transport published "Guideline of setting assumed areas of inundation by Tsunami" to establish the conditions of topography data used for simulation of Tsunami. In this guideline, the elevation data prepared by Geographical Survey Institute of Japan and 2m/5m/10m mesh data of NSDI are adopted for land area, while 500m mesh data of Hydrographic and Oceanographic Department of Japan Coast Guard and sea charts are adopted for water area. These data, however, do not have continuity between land area and water area. Therefore, in order to study the possibility of providing information for coastal disaster prevention, we have developed an efficient method to acquire continuous topography over land and water including tidal zone. Land area data are collected by Mobile Mapping System (MMS) and water area depth data are collected by interferometry echo sounder (C3D), and both data are simultaneously acquired on a same boat. Elaborate point cloud data of 1m or smaller are expected to be used for realistic simulation of Tsunami waves going upstream around shoreline. Tests were made in Tokyo Bay (in 2014) and Osaka Bay (in 2015). The purpose the test in Osaka Bay is to make coastal map for disaster prevention as a countermeasure for predicted Nankai massive earthquake. In addition to Tsunami simulation, the continuous data covering land and marine areas are expected to be used effectively for maintenance and repair of aged port and river facilities, maintenance and investigation of dykes, and ecosystem preservation.
Study and Evaluation of the Alcublas (Valencia, Spain) forest fire of Summer 2012
NASA Astrophysics Data System (ADS)
Mora Sanchez, Francisco; Lopez-Baeza, Ernesto
This work studies and quantifies the forest fire that took place in the province of Valencia, Spain, that particularly affected the municipality of Alcublas. This fire was one of the most intense and catastrophic fires that extended over the Valencian Community. Besides quantifying the area affected by the fire according to a severity index, the analysis was carried out from different viewpoints, namely land use, municipal, and cadastral. The data used were, on the one hand, two images from Landsat 7 Enhanced Thematic Mapper Plus (ETM+) satellite, respectively before and after the fire. On the other hand, we also used CORINE Land Cover 2006 Land Use data, a digital terrain model (DTM), the cadastre or land registration from Alcublas and the Spanish topographic map at scale 1:25000 (MTN25). The method used consisted of different steps: atmospheric correction of the images with the dark-object subtraction technique, topographic correction of the images with a 5 m resolution DTM and the Minnaert method, and the elimination of the Landsat 7 Scan Line Corrector (SLC-off) effect by using the Delaunay triangulation method. Once the images were corrected, we computed the Normalized Burn Ratio (NBR) to highlight and characterise the areas that were burnt by means of a standard severity index. The estimation of the affected area was done through the difference of the images respectively before and after the fire that was also trimmed off to actually obtain the affected area. Once the forest fire was classified, the total affected area was estimated for each severity index and overlaid the Spanish topographic map (1:25000) thus being able to calculate the affected area for each municipality, land use and cadastrial property. The total burnt area was 19910 ha, the most affected municipality -in extension- was Andilla with 4966 ha. But the most significant one was precisely Alcublas with 60,64% of its area burnt. The area burnt for each land use was also estimated according to its severity by using the CORINE Land Cover Map. The most affected uses were transition forest shrubs (matorral) (11313 ha), sclerophyllous matorral (3966 ha) and coniferous forests (2821 ha). Finally, for the Alcublas cadastre, it was checked that the fire devastated all the natural vegetation of the hilly forests around the village but practically did not affect any urban or rural plot.
Comparing Minnesota land cover/use area estimates using NRI and FIA data
Veronica C. Lessard; Mark H. Hansen; Mark D. Nelson
2002-01-01
Areas for land cover/use categories on non-Federal land in Minnesota were estimated from Forest Inventory and Analysis (FIA) data and National Resources Inventory (NRI) data. Six common land cover/use categories were defined, and the NRI and FIA land cover/use categories were assigned to them. Area estimates for these categories were calculated from the FIA and NRI...
MULTI-RESOLUTION LAND CHARACTERISTICS FOR THE MID-ATLANTIC INTEGRATED ASSESMENT (MAIA) STUDY AREA
This data set is a Geographic Information System (GIS) coverage of the land use and land cover for the United States Environmental Protection Agency (USEPA) Mid-Atlantic Integrated Assessment (MAIA) Project region. The coverage was produced using 1988, 1989, 1991,1992, and 1993...
14 CFR 161.403 - Criteria for reevaluation.
Code of Federal Regulations, 2010 CFR
2010-01-01
... target noise level result) over noncompatible land uses, or a change of 17 percent or greater in the noncompatible land uses, within an airport noise study area. For approved restrictions, calculation of change... noise or in noncompatible land uses. An aircraft operator may submit to the FAA reasons why a change...
Identifying Corridors among Large Protected Areas in the United States
Belote, R. Travis; Dietz, Matthew S.; McRae, Brad H.; Theobald, David M.; McClure, Meredith L.; Irwin, G. Hugh; McKinley, Peter S.; Gage, Josh A.; Aplet, Gregory H.
2016-01-01
Conservation scientists emphasize the importance of maintaining a connected network of protected areas to prevent ecosystems and populations from becoming isolated, reduce the risk of extinction, and ultimately sustain biodiversity. Keeping protected areas connected in a network is increasingly recognized as a conservation priority in the current era of rapid climate change. Models that identify suitable linkages between core areas have been used to prioritize potentially important corridors for maintaining functional connectivity. Here, we identify the most “natural” (i.e., least human-modified) corridors between large protected areas in the contiguous Unites States. We aggregated results from multiple connectivity models to develop a composite map of corridors reflecting agreement of models run under different assumptions about how human modification of land may influence connectivity. To identify which land units are most important for sustaining structural connectivity, we used the composite map of corridors to evaluate connectivity priorities in two ways: (1) among land units outside of our pool of large core protected areas and (2) among units administratively protected as Inventoried Roadless (IRAs) or Wilderness Study Areas (WSAs). Corridor values varied substantially among classes of “unprotected” non-core land units, and land units of high connectivity value and priority represent diverse ownerships and existing levels of protections. We provide a ranking of IRAs and WSAs that should be prioritized for additional protection to maintain minimal human modification. Our results provide a coarse-scale assessment of connectivity priorities for maintaining a connected network of protected areas. PMID:27104683
Identifying Corridors among Large Protected Areas in the United States.
Belote, R Travis; Dietz, Matthew S; McRae, Brad H; Theobald, David M; McClure, Meredith L; Irwin, G Hugh; McKinley, Peter S; Gage, Josh A; Aplet, Gregory H
2016-01-01
Conservation scientists emphasize the importance of maintaining a connected network of protected areas to prevent ecosystems and populations from becoming isolated, reduce the risk of extinction, and ultimately sustain biodiversity. Keeping protected areas connected in a network is increasingly recognized as a conservation priority in the current era of rapid climate change. Models that identify suitable linkages between core areas have been used to prioritize potentially important corridors for maintaining functional connectivity. Here, we identify the most "natural" (i.e., least human-modified) corridors between large protected areas in the contiguous Unites States. We aggregated results from multiple connectivity models to develop a composite map of corridors reflecting agreement of models run under different assumptions about how human modification of land may influence connectivity. To identify which land units are most important for sustaining structural connectivity, we used the composite map of corridors to evaluate connectivity priorities in two ways: (1) among land units outside of our pool of large core protected areas and (2) among units administratively protected as Inventoried Roadless (IRAs) or Wilderness Study Areas (WSAs). Corridor values varied substantially among classes of "unprotected" non-core land units, and land units of high connectivity value and priority represent diverse ownerships and existing levels of protections. We provide a ranking of IRAs and WSAs that should be prioritized for additional protection to maintain minimal human modification. Our results provide a coarse-scale assessment of connectivity priorities for maintaining a connected network of protected areas.