An Investigation of the Application of Artificial Neural Networks to Adaptive Optics Imaging Systems
1991-12-01
neural network and the feedforward neural network studied is the single layer perceptron artificial neural network . The recurrent artificial neural network input...features are the wavefront sensor slope outputs and neighboring actuator feedback commands. The feedforward artificial neural network input
How Neural Networks Learn from Experience.
ERIC Educational Resources Information Center
Hinton, Geoffrey E.
1992-01-01
Discusses computational studies of learning in artificial neural networks and findings that may provide insights into the learning abilities of the human brain. Describes efforts to test theories about brain information processing, using artificial neural networks. Vignettes include information concerning how a neural network represents…
2001-10-25
neural network (ANN) has been adopted for the human chromosome classification. It is important to select optimum features for training neural network...Many studies for computer-based chromosome analysis have shown that it is possible to classify chromosomes into 24 subgroups. In addition, artificial
Advances in Artificial Neural Networks - Methodological Development and Application
USDA-ARS?s Scientific Manuscript database
Artificial neural networks as a major soft-computing technology have been extensively studied and applied during the last three decades. Research on backpropagation training algorithms for multilayer perceptron networks has spurred development of other neural network training algorithms for other ne...
Artificial and Bayesian Neural Networks
Korhani Kangi, Azam; Bahrampour, Abbas
2018-02-26
Introduction and purpose: In recent years the use of neural networks without any premises for investigation of prognosis in analyzing survival data has increased. Artificial neural networks (ANN) use small processors with a continuous network to solve problems inspired by the human brain. Bayesian neural networks (BNN) constitute a neural-based approach to modeling and non-linearization of complex issues using special algorithms and statistical methods. Gastric cancer incidence is the first and third ranking for men and women in Iran, respectively. The aim of the present study was to assess the value of an artificial neural network and a Bayesian neural network for modeling and predicting of probability of gastric cancer patient death. Materials and Methods: In this study, we used information on 339 patients aged from 20 to 90 years old with positive gastric cancer, referred to Afzalipoor and Shahid Bahonar Hospitals in Kerman City from 2001 to 2015. The three layers perceptron neural network (ANN) and the Bayesian neural network (BNN) were used for predicting the probability of mortality using the available data. To investigate differences between the models, sensitivity, specificity, accuracy and the area under receiver operating characteristic curves (AUROCs) were generated. Results: In this study, the sensitivity and specificity of the artificial neural network and Bayesian neural network models were 0.882, 0.903 and 0.954, 0.909, respectively. Prediction accuracy and the area under curve ROC for the two models were 0.891, 0.944 and 0.935, 0.961. The age at diagnosis of gastric cancer was most important for predicting survival, followed by tumor grade, morphology, gender, smoking history, opium consumption, receiving chemotherapy, presence of metastasis, tumor stage, receiving radiotherapy, and being resident in a village. Conclusion: The findings of the present study indicated that the Bayesian neural network is preferable to an artificial neural network for predicting survival of gastric cancer patients in Iran. Creative Commons Attribution License
Non-Intrusive Gaze Tracking Using Artificial Neural Networks
1994-01-05
We have developed an artificial neural network based gaze tracking, system which can be customized to individual users. A three layer feed forward...empirical analysis of the performance of a large number of artificial neural network architectures for this task. Suggestions for further explorations...for neurally based gaze trackers are presented, and are related to other similar artificial neural network applications such as autonomous road following.
Mocanu, Decebal Constantin; Mocanu, Elena; Stone, Peter; Nguyen, Phuong H; Gibescu, Madeleine; Liotta, Antonio
2018-06-19
Through the success of deep learning in various domains, artificial neural networks are currently among the most used artificial intelligence methods. Taking inspiration from the network properties of biological neural networks (e.g. sparsity, scale-freeness), we argue that (contrary to general practice) artificial neural networks, too, should not have fully-connected layers. Here we propose sparse evolutionary training of artificial neural networks, an algorithm which evolves an initial sparse topology (Erdős-Rényi random graph) of two consecutive layers of neurons into a scale-free topology, during learning. Our method replaces artificial neural networks fully-connected layers with sparse ones before training, reducing quadratically the number of parameters, with no decrease in accuracy. We demonstrate our claims on restricted Boltzmann machines, multi-layer perceptrons, and convolutional neural networks for unsupervised and supervised learning on 15 datasets. Our approach has the potential to enable artificial neural networks to scale up beyond what is currently possible.
Introduction to Concepts in Artificial Neural Networks
NASA Technical Reports Server (NTRS)
Niebur, Dagmar
1995-01-01
This introduction to artificial neural networks summarizes some basic concepts of computational neuroscience and the resulting models of artificial neurons. The terminology of biological and artificial neurons, biological and machine learning and neural processing is introduced. The concepts of supervised and unsupervised learning are explained with examples from the power system area. Finally, a taxonomy of different types of neurons and different classes of artificial neural networks is presented.
Applications of artificial neural nets in clinical biomechanics.
Schöllhorn, W I
2004-11-01
The purpose of this article is to provide an overview of current applications of artificial neural networks in the area of clinical biomechanics. The body of literature on artificial neural networks grew intractably vast during the last 15 years. Conventional statistical models may present certain limitations that can be overcome by neural networks. Artificial neural networks in general are introduced, some limitations, and some proven benefits are discussed.
NASA Astrophysics Data System (ADS)
Nasruddin; Lestari, M.; Supriyadi; Sholahudin
2018-03-01
The use of hydrogen gas in fuel cell technology has a huge opportunity to be applied in upcoming vehicle technology. One of the most important problems in fuel cell technology is the hydrogen storage. The adsorption of hydrogen in carbon-based materials attracts a lot of attention because of its reliability. This study investigated the adsorption of hydrogen gas in Single-walled Carbon Nano Tubes (SWCNT) with chilarity of (0, 12), (0, 15), and (0, 18) to find the optimum chilarity. Artificial Neural Networks (ANN) can be used to predict the hydrogen storage capacity at different pressure and temperature conditions appropriately, using simulated series of data. The Artificial Neural Network is modeled as a predictor of the hydrogen adsorption capacity which provides solutions to some deficiencies in molecular dynamics (MD) simulations. In a previous study, ANN configurations have been developed for 77k, 233k, and 298k temperatures in hydrogen gas storage. To prepare this prediction, ANN is modeled to find out the configurations that exist in the set of training and validation of specified data selection, the distance between data, and the number of neurons that produce the smallest error. This configuration is needed to make an accurate artificial neural network. The configuration of neural network was then applied to this research. The neural network analysis results show that the best configuration of artificial neural network in hydrogen storage is at 233K temperature i.e. on SWCNT with chilarity of (0.12).
Ladstätter, Felix; Garrosa, Eva; Moreno-Jiménez, Bernardo; Ponsoda, Vicente; Reales Aviles, José Manuel; Dai, Junming
2016-01-01
Artificial neural networks are sophisticated modelling and prediction tools capable of extracting complex, non-linear relationships between predictor (input) and predicted (output) variables. This study explores this capacity by modelling non-linearities in the hardiness-modulated burnout process with a neural network. Specifically, two multi-layer feed-forward artificial neural networks are concatenated in an attempt to model the composite non-linear burnout process. Sensitivity analysis, a Monte Carlo-based global simulation technique, is then utilised to examine the first-order effects of the predictor variables on the burnout sub-dimensions and consequences. Results show that (1) this concatenated artificial neural network approach is feasible to model the burnout process, (2) sensitivity analysis is a prolific method to study the relative importance of predictor variables and (3) the relationships among variables involved in the development of burnout and its consequences are to different degrees non-linear. Many relationships among variables (e.g., stressors and strains) are not linear, yet researchers use linear methods such as Pearson correlation or linear regression to analyse these relationships. Artificial neural network analysis is an innovative method to analyse non-linear relationships and in combination with sensitivity analysis superior to linear methods.
Classification of E-Nose Aroma Data of Four Fruit Types by ABC-Based Neural Network
Adak, M. Fatih; Yumusak, Nejat
2016-01-01
Electronic nose technology is used in many areas, and frequently in the beverage industry for classification and quality-control purposes. In this study, four different aroma data (strawberry, lemon, cherry, and melon) were obtained using a MOSES II electronic nose for the purpose of fruit classification. To improve the performance of the classification, the training phase of the neural network with two hidden layers was optimized using artificial bee colony algorithm (ABC), which is known to be successful in exploration. Test data were given to two different neural networks, each of which were trained separately with backpropagation (BP) and ABC, and average test performances were measured as 60% for the artificial neural network trained with BP and 76.39% for the artificial neural network trained with ABC. Training and test phases were repeated 30 times to obtain these average performance measurements. This level of performance shows that the artificial neural network trained with ABC is successful in classifying aroma data. PMID:26927124
Classification of E-Nose Aroma Data of Four Fruit Types by ABC-Based Neural Network.
Adak, M Fatih; Yumusak, Nejat
2016-02-27
Electronic nose technology is used in many areas, and frequently in the beverage industry for classification and quality-control purposes. In this study, four different aroma data (strawberry, lemon, cherry, and melon) were obtained using a MOSES II electronic nose for the purpose of fruit classification. To improve the performance of the classification, the training phase of the neural network with two hidden layers was optimized using artificial bee colony algorithm (ABC), which is known to be successful in exploration. Test data were given to two different neural networks, each of which were trained separately with backpropagation (BP) and ABC, and average test performances were measured as 60% for the artificial neural network trained with BP and 76.39% for the artificial neural network trained with ABC. Training and test phases were repeated 30 times to obtain these average performance measurements. This level of performance shows that the artificial neural network trained with ABC is successful in classifying aroma data.
Applying artificial neural networks to predict communication risks in the emergency department.
Bagnasco, Annamaria; Siri, Anna; Aleo, Giuseppe; Rocco, Gennaro; Sasso, Loredana
2015-10-01
To describe the utility of artificial neural networks in predicting communication risks. In health care, effective communication reduces the risk of error. Therefore, it is important to identify the predictive factors of effective communication. Non-technical skills are needed to achieve effective communication. This study explores how artificial neural networks can be applied to predict the risk of communication failures in emergency departments. A multicentre observational study. Data were collected between March-May 2011 by observing the communication interactions of 840 nurses with their patients during their routine activities in emergency departments. The tools used for our observation were a questionnaire to collect personal and descriptive data, level of training and experience and Guilbert's observation grid, applying the Situation-Background-Assessment-Recommendation technique to communication in emergency departments. A total of 840 observations were made on the nurses working in the emergency departments. Based on Guilbert's observation grid, the output variables is likely to influence the risk of communication failure were 'terminology'; 'listening'; 'attention' and 'clarity', whereas nurses' personal characteristics were used as input variables in the artificial neural network model. A model based on the multilayer perceptron topology was developed and trained. The receiver operator characteristic analysis confirmed that the artificial neural network model correctly predicted the performance of more than 80% of the communication failures. The application of the artificial neural network model could offer a valid tool to forecast and prevent harmful communication errors in the emergency department. © 2015 John Wiley & Sons Ltd.
Application of artificial neural network for heat transfer in porous cone
NASA Astrophysics Data System (ADS)
Athani, Abdulgaphur; Ahamad, N. Ameer; Badruddin, Irfan Anjum
2018-05-01
Heat transfer in porous medium is one of the classical areas of research that has been active for many decades. The heat transfer in porous medium is generally studied by using numerical methods such as finite element method; finite difference method etc. that solves coupled partial differential equations by converting them into simpler forms. The current work utilizes an alternate method known as artificial neural network that mimics the learning characteristics of neurons. The heat transfer in porous medium fixed in a cone is predicted using backpropagation neural network. The artificial neural network is able to predict this behavior quite accurately.
Artificial Neural Network Metamodels of Stochastic Computer Simulations
1994-08-10
SUBTITLE r 5. FUNDING NUMBERS Artificial Neural Network Metamodels of Stochastic I () Computer Simulations 6. AUTHOR(S) AD- A285 951 Robert Allen...8217!298*1C2 ARTIFICIAL NEURAL NETWORK METAMODELS OF STOCHASTIC COMPUTER SIMULATIONS by Robert Allen Kilmer B.S. in Education Mathematics, Indiana...dedicate this document to the memory of my father, William Ralph Kilmer. mi ABSTRACT Signature ARTIFICIAL NEURAL NETWORK METAMODELS OF STOCHASTIC
NASA Astrophysics Data System (ADS)
Stanke, J.; Trauth, D.; Feuerhack, A.; Klocke, F.
2017-09-01
Die roll is a morphological feature of fine blanked sheared edges. The die roll reduces the functional part of the sheared edge. To compensate for the die roll thicker sheet metal strips and secondary machining must be used. However, in order to avoid this, the influence of various fine blanking process parameters on the die roll has been experimentally and numerically studied, but there is still a lack of knowledge on the effects of some factors and especially factor interactions on the die roll. Recent changes in the field of artificial intelligence motivate the hybrid use of the finite element method and artificial neural networks to account for these non-considered parameters. Therefore, a set of simulations using a validated finite element model of fine blanking is firstly used to train an artificial neural network. Then the artificial neural network is trained with thousands of experimental trials. Thus, the objective of this contribution is to develop an artificial neural network that reliably predicts the die roll. Therefore, in this contribution, the setup of a fully parameterized 2D FE model is presented that will be used for batch training of an artificial neural network. The FE model enables an automatic variation of the edge radii of blank punch and die plate, the counter and blank holder force, the sheet metal thickness and part diameter, V-ring height and position, cutting velocity as well as material parameters covered by the Hensel-Spittel model for 16MnCr5 (1.7131, AISI/SAE 5115). The FE model is validated using experimental trails. The results of this contribution is a FE model suitable to perform 9.623 simulations and to pass the simulated die roll width and height automatically to an artificial neural network.
Psychometric Measurement Models and Artificial Neural Networks
ERIC Educational Resources Information Center
Sese, Albert; Palmer, Alfonso L.; Montano, Juan J.
2004-01-01
The study of measurement models in psychometrics by means of dimensionality reduction techniques such as Principal Components Analysis (PCA) is a very common practice. In recent times, an upsurge of interest in the study of artificial neural networks apt to computing a principal component extraction has been observed. Despite this interest, the…
Feasibility study of robotic neural controllers
NASA Technical Reports Server (NTRS)
Magana, Mario E.
1990-01-01
The results are given of a feasibility study performed to establish if an artificial neural controller could be used to achieve joint space trajectory tracking of a two-link robot manipulator. The study is based on the results obtained by Hecht-Nielsen, who claims that a functional map can be implemented to a desired degree of accuracy with a three layer feedforward artificial neural network. Central to this study is the assumption that the robot model as well as its parameters values are known.
Computer graphics testbed to simulate and test vision systems for space applications
NASA Technical Reports Server (NTRS)
Cheatham, John B.
1991-01-01
Artificial intelligence concepts are applied to robotics. Artificial neural networks, expert systems and laser imaging techniques for autonomous space robots are being studied. A computer graphics laser range finder simulator developed by Wu has been used by Weiland and Norwood to study use of artificial neural networks for path planning and obstacle avoidance. Interest is expressed in applications of CLIPS, NETS, and Fuzzy Control. These applications are applied to robot navigation.
NASA Astrophysics Data System (ADS)
Romano, Renan A.; Pratavieira, Sebastião.; da Silva, Ana P.; Kurachi, Cristina; Guimarães, Francisco E. G.
2017-07-01
This study clearly demonstrates that multispectral confocal microscopy images analyzed by artificial neural networks provides a powerful tool to real-time monitoring photosensitizer uptake, as well as photochemical transformations occurred.
Neural networks to predict exosphere temperature corrections
NASA Astrophysics Data System (ADS)
Choury, Anna; Bruinsma, Sean; Schaeffer, Philippe
2013-10-01
Precise orbit prediction requires a forecast of the atmospheric drag force with a high degree of accuracy. Artificial neural networks are universal approximators derived from artificial intelligence and are widely used for prediction. This paper presents a method of artificial neural networking for prediction of the thermosphere density by forecasting exospheric temperature, which will be used by the semiempirical thermosphere Drag Temperature Model (DTM) currently developed. Artificial neural network has shown to be an effective and robust forecasting model for temperature prediction. The proposed model can be used for any mission from which temperature can be deduced accurately, i.e., it does not require specific training. Although the primary goal of the study was to create a model for 1 day ahead forecast, the proposed architecture has been generalized to 2 and 3 days prediction as well. The impact of artificial neural network predictions has been quantified for the low-orbiting satellite Gravity Field and Steady-State Ocean Circulation Explorer in 2011, and an order of magnitude smaller orbit errors were found when compared with orbits propagated using the thermosphere model DTM2009.
1998-05-01
Coverage Probability with a Random Optimization Procedure: An Artificial Neural Network Approach by Biing T. Guan, George Z. Gertner, and Alan B...Modeling Training Site Vegetation Coverage Probability with a Random Optimizing Procedure: An Artificial Neural Network Approach 6. AUTHOR(S) Biing...coverage based on past coverage. Approach A literature survey was conducted to identify artificial neural network analysis techniques applicable for
Classification of Respiratory Sounds by Using An Artificial Neural Network
2001-10-28
CLASSIFICATION OF RESPIRATORY SOUNDS BY USING AN ARTIFICIAL NEURAL NETWORK M.C. Sezgin, Z. Dokur, T. Ölmez, M. Korürek Department of Electronics and...successfully classified by the GAL network. Keywords-Respiratory Sounds, Classification of Biomedical Signals, Artificial Neural Network . I. INTRODUCTION...process, feature extraction, and classification by the artificial neural network . At first, the RS signal obtained from a real-time measurement equipment is
Semantic Interpretation of An Artificial Neural Network
1995-12-01
ARTIFICIAL NEURAL NETWORK .7,’ THESIS Stanley Dale Kinderknecht Captain, USAF 770 DEAT7ET77,’H IR O C 7... ARTIFICIAL NEURAL NETWORK THESIS Stanley Dale Kinderknecht Captain, USAF AFIT/GCS/ENG/95D-07 Approved for public release; distribution unlimited The views...Government. AFIT/GCS/ENG/95D-07 SEMANTIC INTERPRETATION OF AN ARTIFICIAL NEURAL NETWORK THESIS Presented to the Faculty of the School of Engineering of
Trimaran Resistance Artificial Neural Network
2011-01-01
11th International Conference on Fast Sea Transportation FAST 2011, Honolulu, Hawaii, USA, September 2011 Trimaran Resistance Artificial Neural Network Richard...Trimaran Resistance Artificial Neural Network 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e... Artificial Neural Network and is restricted to the center and side-hull configurations tested. The value in the parametric model is that it is able to
An Artificial Neural Network Controller for Intelligent Transportation Systems Applications
DOT National Transportation Integrated Search
1996-01-01
An Autonomous Intelligent Cruise Control (AICC) has been designed using a feedforward artificial neural network, as an example for utilizing artificial neural networks for nonlinear control problems arising in intelligent transportation systems appli...
Cotton genotypes selection through artificial neural networks.
Júnior, E G Silva; Cardoso, D B O; Reis, M C; Nascimento, A F O; Bortolin, D I; Martins, M R; Sousa, L B
2017-09-27
Breeding programs currently use statistical analysis to assist in the identification of superior genotypes at various stages of a cultivar's development. Differently from these analyses, the computational intelligence approach has been little explored in genetic improvement of cotton. Thus, this study was carried out with the objective of presenting the use of artificial neural networks as auxiliary tools in the improvement of the cotton to improve fiber quality. To demonstrate the applicability of this approach, this research was carried out using the evaluation data of 40 genotypes. In order to classify the genotypes for fiber quality, the artificial neural networks were trained with replicate data of 20 genotypes of cotton evaluated in the harvests of 2013/14 and 2014/15, regarding fiber length, uniformity of length, fiber strength, micronaire index, elongation, short fiber index, maturity index, reflectance degree, and fiber quality index. This quality index was estimated by means of a weighted average on the determined score (1 to 5) of each characteristic of the HVI evaluated, according to its industry standards. The artificial neural networks presented a high capacity of correct classification of the 20 selected genotypes based on the fiber quality index, so that when using fiber length associated with the short fiber index, fiber maturation, and micronaire index, the artificial neural networks presented better results than using only fiber length and previous associations. It was also observed that to submit data of means of new genotypes to the neural networks trained with data of repetition, provides better results of classification of the genotypes. When observing the results obtained in the present study, it was verified that the artificial neural networks present great potential to be used in the different stages of a genetic improvement program of the cotton, aiming at the improvement of the fiber quality of the future cultivars.
1990-12-01
ARTIFICIAL NEURAL NETWORK ANALYSIS OF OPTICAL FIBER INTENSITY PATTERNS THESIS Scott Thomas Captain, USAF AFIT/GE/ENG/90D-62 DTIC...ELECTE ao • JAN08 1991 Approved for public release; distribution unlimited. AFIT/GE/ENG/90D-62 ANGLE OF ARRIVAL DETECTION THROUGH ARTIFICIAL NEURAL NETWORK ANALYSIS... ARTIFICIAL NEURAL NETWORK ANALYSIS OF OPTICAL FIBER INTENSITY PATTERNS L Introduction The optical sensors of United States Air Force reconnaissance
Generalized Adaptive Artificial Neural Networks
NASA Technical Reports Server (NTRS)
Tawel, Raoul
1993-01-01
Mathematical model of supervised learning by artificial neural network provides for simultaneous adjustments of both temperatures of neurons and synaptic weights, and includes feedback as well as feedforward synaptic connections. Extension of mathematical model described in "Adaptive Neurons For Artificial Neural Networks" (NPO-17803). Dynamics of neural network represented in new model by less-restrictive continuous formalism.
ERIC Educational Resources Information Center
Yorek, Nurettin; Ugulu, Ilker
2015-01-01
In this study, artificial neural networks are suggested as a model that can be "trained" to yield qualitative results out of a huge amount of categorical data. It can be said that this is a new approach applied in educational qualitative data analysis. In this direction, a cascade-forward back-propagation neural network (CFBPN) model was…
NASA Technical Reports Server (NTRS)
Berke, Laszlo; Patnaik, Surya N.; Murthy, Pappu L. N.
1993-01-01
The application of artificial neural networks to capture structural design expertise is demonstrated. The principal advantage of a trained neural network is that it requires trivial computational effort to produce an acceptable new design. For the class of problems addressed, the development of a conventional expert system would be extremely difficult. In the present effort, a structural optimization code with multiple nonlinear programming algorithms and an artificial neural network code NETS were used. A set of optimum designs for a ring and two aircraft wings for static and dynamic constraints were generated by using the optimization codes. The optimum design data were processed to obtain input and output pairs, which were used to develop a trained artificial neural network with the code NETS. Optimum designs for new design conditions were predicted by using the trained network. Neural net prediction of optimum designs was found to be satisfactory for most of the output design parameters. However, results from the present study indicate that caution must be exercised to ensure that all design variables are within selected error bounds.
Artificial Neural Network Analysis System
2001-02-27
Contract No. DASG60-00-M-0201 Purchase request no.: Foot in the Door-01 Title Name: Artificial Neural Network Analysis System Company: Atlantic... Artificial Neural Network Analysis System 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Powell, Bruce C 5d. PROJECT NUMBER 5e. TASK NUMBER...34) 27-02-2001 Report Type N/A Dates Covered (from... to) ("DD MON YYYY") 28-10-2000 27-02-2001 Title and Subtitle Artificial Neural Network Analysis
An Evaluation of Artificial Neural Network Modeling for Manpower Analysis
1993-09-01
NAVAL POSTGRADUATE SCHOOL Monterey, California 0- I 1 ’(ft ADV "’r-"A THESIS AN EVALUATION OF ARTIFICIAL NEURAL NETWORK MODELING FOR MANPOWER...AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED September, 1993 4. TITLE AND SUBTITLE An Evaluation Of Artificial Neural Network 5...unlimited. An Evaluation of Artificial Neural Network Modeling for Manpower Analysis by Brian J. Byrne Captain, United States Marine Corps B.S
An Artificial Neural Network Control System for Spacecraft Attitude Stabilization
1990-06-01
NAVAL POSTGRADUATE SCHOOL Monterey, California ’-DTIC 0 ELECT f NMARO 5 191 N S, U, THESIS B . AN ARTIFICIAL NEURAL NETWORK CONTROL SYSTEM FOR...NO. NO. NO ACCESSION NO 11. TITLE (Include Security Classification) AN ARTIFICIAL NEURAL NETWORK CONTROL SYSTEM FOR SPACECRAFT ATTITUDE STABILIZATION...obsolete a U.S. G v pi.. iim n P.. oiice! toog-eo.5s43 i Approved for public release; distribution is unlimited. AN ARTIFICIAL NEURAL NETWORK CONTROL
1987-10-01
include Security Classification) Instrumentation for scientific computing in neural networks, information science, artificial intelligence, and...instrumentation grant to purchase equipment for support of research in neural networks, information science, artificail intellignece , and applied mathematics...in Neural Networks, Information Science, Artificial Intelligence, and Applied Mathematics Contract AFOSR 86-0282 Principal Investigator: Stephen
The use of artificial neural networks in experimental data acquisition and aerodynamic design
NASA Technical Reports Server (NTRS)
Meade, Andrew J., Jr.
1991-01-01
It is proposed that an artificial neural network be used to construct an intelligent data acquisition system. The artificial neural networks (ANN) model has a potential for replacing traditional procedures as well as for use in computational fluid dynamics validation. Potential advantages of the ANN model are listed. As a proof of concept, the author modeled a NACA 0012 airfoil at specific conditions, using the neural network simulator NETS, developed by James Baffes of the NASA Johnson Space Center. The neural network predictions were compared to the actual data. It is concluded that artificial neural networks can provide an elegant and valuable class of mathematical tools for data analysis.
USDA-ARS?s Scientific Manuscript database
Incomplete meteorological data has been a problem in environmental modeling studies. The objective of this work was to develop a technique to reconstruct missing daily precipitation data in the central part of Chesapeake Bay Watershed using regression trees (RT) and artificial neural networks (ANN)....
2011-04-01
experiments was performed using an artificial neural network to try to capture the nonlinearities. The radial Gaussian artificial neural network system...Modeling Blast-Wave Propagation using Artificial Neural Network Methods‖, in International Journal of Advanced Engineering Informatics, Elsevier
NASA Astrophysics Data System (ADS)
Narayanareddy, V. V.; Chandrasekhar, N.; Vasudevan, M.; Muthukumaran, S.; Vasantharaja, P.
2016-02-01
In the present study, artificial neural network modeling has been employed for predicting welding-induced angular distortions in autogenous butt-welded 304L stainless steel plates. The input data for the neural network have been obtained from a series of three-dimensional finite element simulations of TIG welding for a wide range of plate dimensions. Thermo-elasto-plastic analysis was carried out for 304L stainless steel plates during autogenous TIG welding employing double ellipsoidal heat source. The simulated thermal cycles were validated by measuring thermal cycles using thermocouples at predetermined positions, and the simulated distortion values were validated by measuring distortion using vertical height gauge for three cases. There was a good agreement between the model predictions and the measured values. Then, a multilayer feed-forward back propagation neural network has been developed using the numerically simulated data. Artificial neural network model developed in the present study predicted the angular distortion accurately.
ERIC Educational Resources Information Center
Aryadoust, Vahid; Baghaei, Purya
2016-01-01
This study aims to examine the relationship between reading comprehension and lexical and grammatical knowledge among English as a foreign language students by using an Artificial Neural Network (ANN). There were 825 test takers administered both a second-language reading test and a set of psychometrically validated grammar and vocabulary tests.…
Reduced-Order Modeling for Flutter/LCO Using Recurrent Artificial Neural Network
NASA Technical Reports Server (NTRS)
Yao, Weigang; Liou, Meng-Sing
2012-01-01
The present study demonstrates the efficacy of a recurrent artificial neural network to provide a high fidelity time-dependent nonlinear reduced-order model (ROM) for flutter/limit-cycle oscillation (LCO) modeling. An artificial neural network is a relatively straightforward nonlinear method for modeling an input-output relationship from a set of known data, for which we use the radial basis function (RBF) with its parameters determined through a training process. The resulting RBF neural network, however, is only static and is not yet adequate for an application to problems of dynamic nature. The recurrent neural network method [1] is applied to construct a reduced order model resulting from a series of high-fidelity time-dependent data of aero-elastic simulations. Once the RBF neural network ROM is constructed properly, an accurate approximate solution can be obtained at a fraction of the cost of a full-order computation. The method derived during the study has been validated for predicting nonlinear aerodynamic forces in transonic flow and is capable of accurate flutter/LCO simulations. The obtained results indicate that the present recurrent RBF neural network is accurate and efficient for nonlinear aero-elastic system analysis
Tonelli, Paul; Mouret, Jean-Baptiste
2013-01-01
A major goal of bio-inspired artificial intelligence is to design artificial neural networks with abilities that resemble those of animal nervous systems. It is commonly believed that two keys for evolving nature-like artificial neural networks are (1) the developmental process that links genes to nervous systems, which enables the evolution of large, regular neural networks, and (2) synaptic plasticity, which allows neural networks to change during their lifetime. So far, these two topics have been mainly studied separately. The present paper shows that they are actually deeply connected. Using a simple operant conditioning task and a classic evolutionary algorithm, we compare three ways to encode plastic neural networks: a direct encoding, a developmental encoding inspired by computational neuroscience models, and a developmental encoding inspired by morphogen gradients (similar to HyperNEAT). Our results suggest that using a developmental encoding could improve the learning abilities of evolved, plastic neural networks. Complementary experiments reveal that this result is likely the consequence of the bias of developmental encodings towards regular structures: (1) in our experimental setup, encodings that tend to produce more regular networks yield networks with better general learning abilities; (2) whatever the encoding is, networks that are the more regular are statistically those that have the best learning abilities. PMID:24236099
NASA Astrophysics Data System (ADS)
Pchelintseva, Svetlana V.; Runnova, Anastasia E.; Musatov, Vyacheslav Yu.; Hramov, Alexander E.
2017-03-01
In the paper we study the problem of recognition type of the observed object, depending on the generated pattern and the registered EEG data. EEG recorded at the time of displaying cube Necker characterizes appropriate state of brain activity. As an image we use bistable image Necker cube. Subject selects the type of cube and interpret it either as aleft cube or as the right cube. To solve the problem of recognition, we use artificial neural networks. In our paper to create a classifier we have considered a multilayer perceptron. We examine the structure of the artificial neural network and define cubes recognition accuracy.
Sarmanova, Olga E; Burikov, Sergey A; Dolenko, Sergey A; Isaev, Igor V; Laptinskiy, Kirill A; Prabhakar, Neeraj; Karaman, Didem Şen; Rosenholm, Jessica M; Shenderova, Olga A; Dolenko, Tatiana A
2018-04-12
In this study, a new approach to the implementation of optical imaging of fluorescent nanoparticles in a biological medium using artificial neural networks is proposed. The studies were carried out using new synthesized nanocomposites - nanometer graphene oxides, covered by the poly(ethylene imine)-poly(ethylene glycol) copolymer and by the folic acid. We present an example of a successful solution of the problem of monitoring the removal of nanocomposites based on nGO and their components with urine using fluorescent spectroscopy and artificial neural networks. However, the proposed method is applicable for optical imaging of any fluorescent nanoparticles used as theranostic agents in biological tissue. Copyright © 2018. Published by Elsevier Inc.
USDA-ARS?s Scientific Manuscript database
Non-linear regression techniques are used widely to fit weed field emergence patterns to soil microclimatic indices using S-type functions. Artificial neural networks present interesting and alternative features for such modeling purposes. In this work, a univariate hydrothermal-time based Weibull m...
Application of Artificial Neural Network to Optical Fluid Analyzer
NASA Astrophysics Data System (ADS)
Kimura, Makoto; Nishida, Katsuhiko
1994-04-01
A three-layer artificial neural network has been applied to the presentation of optical fluid analyzer (OFA) raw data, and the accuracy of oil fraction determination has been significantly improved compared to previous approaches. To apply the artificial neural network approach to solving a problem, the first step is training to determine the appropriate weight set for calculating the target values. This involves using a series of data sets (each comprising a set of input values and an associated set of output values that the artificial neural network is required to determine) to tune artificial neural network weighting parameters so that the output of the neural network to the given set of input values is as close as possible to the required output. The physical model used to generate the series of learning data sets was the effective flow stream model, developed for OFA data presentation. The effectiveness of the training was verified by reprocessing the same input data as were used to determine the weighting parameters and then by comparing the results of the artificial neural network to the expected output values. The standard deviation of the expected and obtained values was approximately 10% (two sigma).
Hartman, Jessica H.; Cothren, Steven D.; Park, Sun-Ha; Yun, Chul-Ho; Darsey, Jerry A.; Miller, Grover P.
2013-01-01
Cytochromes P450 (CYP for isoforms) play a central role in biological processes especially metabolism of chiral molecules; thus, development of computational methods to predict parameters for chiral reactions is important for advancing this field. In this study, we identified the most optimal artificial neural networks using conformation-independent chirality codes to predict CYP2C19 catalytic parameters for enantioselective reactions. Optimization of the neural networks required identifying the most suitable representation of structure among a diverse array of training substrates, normalizing distribution of the corresponding catalytic parameters (kcat, Km, and kcat/Km), and determining the best topology for networks to make predictions. Among different structural descriptors, the use of partial atomic charges according to the CHelpG scheme and inclusion of hydrogens yielded the most optimal artificial neural networks. Their training also required resolution of poorly distributed output catalytic parameters using a Box-Cox transformation. End point leave-one-out cross correlations of the best neural networks revealed that predictions for individual catalytic parameters (kcat and Km) were more consistent with experimental values than those for catalytic efficiency (kcat/Km). Lastly, neural networks predicted correctly enantioselectivity and comparable catalytic parameters measured in this study for previously uncharacterized CYP2C19 substrates, R- and S-propranolol. Taken together, these seminal computational studies for CYP2C19 are the first to predict all catalytic parameters for enantioselective reactions using artificial neural networks and thus provide a foundation for expanding the prediction of cytochrome P450 reactions to chiral drugs, pollutants, and other biologically active compounds. PMID:23673224
An Expert System for Processing Uncorrelated Satellite Tracks
1992-12-17
earthworms with much intellect e\\en though they routinely carry out this same function. One definition given artificial intelligence is "the study of mental...Networks: Benchmarking Studies ," Proceedings from the IEEE International Conference on Neural Networkv. pp. 64-65, 1988. 229 Lyddane, R., "Small...reverse if necessary and rdenqtl_ by block number, Field Group Subgroup Artificial Intelligence, Expert Systems, Neural Networks. Orbital Mechanics
Artificial Neural Networks: an overview and their use in the analysis of the AMPHORA-3 dataset.
Buscema, Paolo Massimo; Massini, Giulia; Maurelli, Guido
2014-10-01
The Artificial Adaptive Systems (AAS) are theories with which generative algebras are able to create artificial models simulating natural phenomenon. Artificial Neural Networks (ANNs) are the more diffused and best-known learning system models in the AAS. This article describes an overview of ANNs, noting its advantages and limitations for analyzing dynamic, complex, non-linear, multidimensional processes. An example of a specific ANN application to alcohol consumption in Spain, as part of the EU AMPHORA-3 project, during 1961-2006 is presented. Study's limitations are noted and future needed research using ANN methodologies are suggested.
Patterns recognition of electric brain activity using artificial neural networks
NASA Astrophysics Data System (ADS)
Musatov, V. Yu.; Pchelintseva, S. V.; Runnova, A. E.; Hramov, A. E.
2017-04-01
An approach for the recognition of various cognitive processes in the brain activity in the perception of ambiguous images. On the basis of developed theoretical background and the experimental data, we propose a new classification of oscillating patterns in the human EEG by using an artificial neural network approach. After learning of the artificial neural network reliably identified cube recognition processes, for example, left-handed or right-oriented Necker cube with different intensity of their edges, construct an artificial neural network based on Perceptron architecture and demonstrate its effectiveness in the pattern recognition of the EEG in the experimental.
International experience on the use of artificial neural networks in gastroenterology.
Grossi, E; Mancini, A; Buscema, M
2007-03-01
In this paper, we reconsider the scientific background for the use of artificial intelligence tools in medicine. A review of some recent significant papers shows that artificial neural networks, the more advanced and effective artificial intelligence technique, can improve the classification accuracy and survival prediction of a number of gastrointestinal diseases. We discuss the 'added value' the use of artificial neural networks-based tools can bring in the field of gastroenterology, both at research and clinical application level, when compared with traditional statistical or clinical-pathological methods.
Functional approximation using artificial neural networks in structural mechanics
NASA Technical Reports Server (NTRS)
Alam, Javed; Berke, Laszlo
1993-01-01
The artificial neural networks (ANN) methodology is an outgrowth of research in artificial intelligence. In this study, the feed-forward network model that was proposed by Rumelhart, Hinton, and Williams was applied to the mapping of functions that are encountered in structural mechanics problems. Several different network configurations were chosen to train the available data for problems in materials characterization and structural analysis of plates and shells. By using the recall process, the accuracy of these trained networks was assessed.
USDA-ARS?s Scientific Manuscript database
An artificial Radial Basis Function (RBF) neural network model was developed for the prediction of mass transfer of the phospholipids from canola meal in supercritical CO2 fluid. The RBF kind of artificial neural networks (ANN) with orthogonal least squares (OLS) learning algorithm were used for mod...
Quantum neural networks: Current status and prospects for development
NASA Astrophysics Data System (ADS)
Altaisky, M. V.; Kaputkina, N. E.; Krylov, V. A.
2014-11-01
The idea of quantum artificial neural networks, first formulated in [34], unites the artificial neural network concept with the quantum computation paradigm. Quantum artificial neural networks were first systematically considered in the PhD thesis by T. Menneer (1998). Based on the works of Menneer and Narayanan [42, 43], Kouda, Matsui, and Nishimura [35, 36], Altaisky [2, 68], Zhou [67], and others, quantum-inspired learning algorithms for neural networks were developed, and are now used in various training programs and computer games [29, 30]. The first practically realizable scaled hardware-implemented model of the quantum artificial neural network is obtained by D-Wave Systems, Inc. [33]. It is a quantum Hopfield network implemented on the basis of superconducting quantum interference devices (SQUIDs). In this work we analyze possibilities and underlying principles of an alternative way to implement quantum neural networks on the basis of quantum dots. A possibility of using quantum neural network algorithms in automated control systems, associative memory devices, and in modeling biological and social networks is examined.
Plant Growth Models Using Artificial Neural Networks
NASA Technical Reports Server (NTRS)
Bubenheim, David
1997-01-01
In this paper, we descrive our motivation and approach to devloping models and the neural network architecture. Initial use of the artificial neural network for modeling the single plant process of transpiration is presented.
Artificial Neural Network for the Prediction of Chromosomal Abnormalities in Azoospermic Males.
Akinsal, Emre Can; Haznedar, Bulent; Baydilli, Numan; Kalinli, Adem; Ozturk, Ahmet; Ekmekçioğlu, Oğuz
2018-02-04
To evaluate whether an artifical neural network helps to diagnose any chromosomal abnormalities in azoospermic males. The data of azoospermic males attending to a tertiary academic referral center were evaluated retrospectively. Height, total testicular volume, follicle stimulating hormone, luteinising hormone, total testosterone and ejaculate volume of the patients were used for the analyses. In artificial neural network, the data of 310 azoospermics were used as the education and 115 as the test set. Logistic regression analyses and discriminant analyses were performed for statistical analyses. The tests were re-analysed with a neural network. Both logistic regression analyses and artificial neural network predicted the presence or absence of chromosomal abnormalities with more than 95% accuracy. The use of artificial neural network model has yielded satisfactory results in terms of distinguishing patients whether they have any chromosomal abnormality or not.
Applications of artificial neural nets in structural mechanics
NASA Technical Reports Server (NTRS)
Berke, Laszlo; Hajela, Prabhat
1990-01-01
A brief introduction to the fundamental of Neural Nets is given, followed by two applications in structural optimization. In the first case, the feasibility of simulating with neural nets the many structural analyses performed during optimization iterations was studied. In the second case, the concept of using neural nets to capture design expertise was studied.
Applications of artificial neural nets in structural mechanics
NASA Technical Reports Server (NTRS)
Berke, L.; Hajela, P.
1992-01-01
A brief introduction to the fundamental of Neural Nets is given, followed by two applications in structural optimization. In the first case, the feasibility of simulating with neural nets the many structural analyses performed during optimization iterations was studied. In the second case, the concept of using neural nets to capture design expertise was studied.
Devices and circuits for nanoelectronic implementation of artificial neural networks
NASA Astrophysics Data System (ADS)
Turel, Ozgur
Biological neural networks perform complicated information processing tasks at speeds better than conventional computers based on conventional algorithms. This has inspired researchers to look into the way these networks function, and propose artificial networks that mimic their behavior. Unfortunately, most artificial neural networks, either software or hardware, do not provide either the speed or the complexity of a human brain. Nanoelectronics, with high density and low power dissipation that it provides, may be used in developing more efficient artificial neural networks. This work consists of two major contributions in this direction. First is the proposal of the CMOL concept, hybrid CMOS-molecular hardware [1-8]. CMOL may circumvent most of the problems in posed by molecular devices, such as low yield, vet provide high active device density, ˜1012/cm 2. The second contribution is CrossNets, artificial neural networks that are based on CMOL. We showed that CrossNets, with their fault tolerance, exceptional speed (˜ 4 to 6 orders of magnitude faster than biological neural networks) can perform any task any artificial neural network can perform. Moreover, there is a hope that if their integration scale is increased to that of human cerebral cortex (˜ 1010 neurons and ˜ 1014 synapses), they may be capable of performing more advanced tasks.
Use of artificial neural networks to identify the origin of green macroalgae
NASA Astrophysics Data System (ADS)
Żbikowski, Radosław
2011-08-01
This study demonstrates application of artificial neural networks (ANNs) for identifying the origin of green macroalgae ( Enteromorpha sp. and Cladophora sp.) according to their concentrations of Cd, Cu, Ni, Zn, Mn, Pb, Na, Ca, K and Mg. Earlier studies confirmed that algae can be used for biomonitoring surveys of metal contaminants in coastal areas of the Southern Baltic. The same data sets were classified with the use of different structures of radial basis function (RBF) and multilayer perceptron (MLP) networks. The selected networks were able to classify the samples according to their geographical origin, i.e. Southern Baltic, Gulf of Gdańsk and Vistula Lagoon. Additionally in the case of macroalgae from the Gulf of Gdańsk, the networks enabled the discrimination of samples according to areas of contrasting levels of pollution. Hence this study shows that artificial neural networks can be a valuable tool in biomonitoring studies.
NASA Technical Reports Server (NTRS)
Toomarian, N.; Kirkham, Harold
1994-01-01
This report investigates the application of artificial neural networks to the problem of power system stability. The field of artificial intelligence, expert systems, and neural networks is reviewed. Power system operation is discussed with emphasis on stability considerations. Real-time system control has only recently been considered as applicable to stability, using conventional control methods. The report considers the use of artificial neural networks to improve the stability of the power system. The networks are considered as adjuncts and as replacements for existing controllers. The optimal kind of network to use as an adjunct to a generator exciter is discussed.
NASA JSC neural network survey results
NASA Technical Reports Server (NTRS)
Greenwood, Dan
1987-01-01
A survey of Artificial Neural Systems in support of NASA's (Johnson Space Center) Automatic Perception for Mission Planning and Flight Control Research Program was conducted. Several of the world's leading researchers contributed papers containing their most recent results on artificial neural systems. These papers were broken into categories and descriptive accounts of the results make up a large part of this report. Also included is material on sources of information on artificial neural systems such as books, technical reports, software tools, etc.
ERIC Educational Resources Information Center
Gonzalez, Julie M. Byers; DesJardins, Stephen L.
This paper examines how predictive modeling can be used to study application behavior. A relatively new technique, artificial neural networks (ANNs), was applied to help predict which students were likely to get into a large Research I university. Data were obtained from a university in Iowa. Two cohorts were used, each containing approximately…
Nature vs Nurture: Effects of Learning on Evolution
NASA Astrophysics Data System (ADS)
Nagrani, Nagina
In the field of Evolutionary Robotics, the design, development and application of artificial neural networks as controllers have derived their inspiration from biology. Biologists and artificial intelligence researchers are trying to understand the effects of neural network learning during the lifetime of the individuals on evolution of these individuals by qualitative and quantitative analyses. The conclusion of these analyses can help develop optimized artificial neural networks to perform any given task. The purpose of this thesis is to study the effects of learning on evolution. This has been done by applying Temporal Difference Reinforcement Learning methods to the evolution of Artificial Neural Tissue controller. The controller has been assigned the task to collect resources in a designated area in a simulated environment. The performance of the individuals is measured by the amount of resources collected. A comparison has been made between the results obtained by incorporating learning in evolution and evolution alone. The effects of learning parameters: learning rate, training period, discount rate, and policy on evolution have also been studied. It was observed that learning delays the performance of the evolving individuals over the generations. However, the non zero learning rate throughout the evolution process signifies natural selection preferring individuals possessing plasticity.
Performance of an artificial neural network for vertical root fracture detection: an ex vivo study.
Kositbowornchai, Suwadee; Plermkamon, Supattra; Tangkosol, Tawan
2013-04-01
To develop an artificial neural network for vertical root fracture detection. A probabilistic neural network design was used to clarify whether a tooth root was sound or had a vertical root fracture. Two hundred images (50 sound and 150 vertical root fractures) derived from digital radiography--used to train and test the artificial neural network--were divided into three groups according to the number of training and test data sets: 80/120,105/95 and 130/70, respectively. Either training or tested data were evaluated using grey-scale data per line passing through the root. These data were normalized to reduce the grey-scale variance and fed as input data of the neural network. The variance of function in recognition data was calculated between 0 and 1 to select the best performance of neural network. The performance of the neural network was evaluated using a diagnostic test. After testing data under several variances of function, we found the highest sensitivity (98%), specificity (90.5%) and accuracy (95.7%) occurred in Group three, for which the variance of function in recognition data was between 0.025 and 0.005. The neural network designed in this study has sufficient sensitivity, specificity and accuracy to be a model for vertical root fracture detection. © 2012 John Wiley & Sons A/S.
NASA Technical Reports Server (NTRS)
Broderick, Ron
1997-01-01
The ultimate goal of this report was to integrate the powerful tools of artificial intelligence into the traditional process of software development. To maintain the US aerospace competitive advantage, traditional aerospace and software engineers need to more easily incorporate the technology of artificial intelligence into the advanced aerospace systems being designed today. The future goal was to transition artificial intelligence from an emerging technology to a standard technology that is considered early in the life cycle process to develop state-of-the-art aircraft automation systems. This report addressed the future goal in two ways. First, it provided a matrix that identified typical aircraft automation applications conducive to various artificial intelligence methods. The purpose of this matrix was to provide top-level guidance to managers contemplating the possible use of artificial intelligence in the development of aircraft automation. Second, the report provided a methodology to formally evaluate neural networks as part of the traditional process of software development. The matrix was developed by organizing the discipline of artificial intelligence into the following six methods: logical, object representation-based, distributed, uncertainty management, temporal and neurocomputing. Next, a study of existing aircraft automation applications that have been conducive to artificial intelligence implementation resulted in the following five categories: pilot-vehicle interface, system status and diagnosis, situation assessment, automatic flight planning, and aircraft flight control. The resulting matrix provided management guidance to understand artificial intelligence as it applied to aircraft automation. The approach taken to develop a methodology to formally evaluate neural networks as part of the software engineering life cycle was to start with the existing software quality assurance standards and to change these standards to include neural network development. The changes were to include evaluation tools that can be applied to neural networks at each phase of the software engineering life cycle. The result was a formal evaluation approach to increase the product quality of systems that use neural networks for their implementation.
NASA Technical Reports Server (NTRS)
Barnden, John; Srinivas, Kankanahalli
1990-01-01
Symbol manipulation as used in traditional Artificial Intelligence has been criticized by neural net researchers for being excessively inflexible and sequential. On the other hand, the application of neural net techniques to the types of high-level cognitive processing studied in traditional artificial intelligence presents major problems as well. A promising way out of this impasse is to build neural net models that accomplish massively parallel case-based reasoning. Case-based reasoning, which has received much attention recently, is essentially the same as analogy-based reasoning, and avoids many of the problems leveled at traditional artificial intelligence. Further problems are avoided by doing many strands of case-based reasoning in parallel, and by implementing the whole system as a neural net. In addition, such a system provides an approach to some aspects of the problems of noise, uncertainty and novelty in reasoning systems. The current neural net system (Conposit), which performs standard rule-based reasoning, is being modified into a massively parallel case-based reasoning version.
Optimum Design of Aerospace Structural Components Using Neural Networks
NASA Technical Reports Server (NTRS)
Berke, L.; Patnaik, S. N.; Murthy, P. L. N.
1993-01-01
The application of artificial neural networks to capture structural design expertise is demonstrated. The principal advantage of a trained neural network is that it requires a trivial computational effort to produce an acceptable new design. For the class of problems addressed, the development of a conventional expert system would be extremely difficult. In the present effort, a structural optimization code with multiple nonlinear programming algorithms and an artificial neural network code NETS were used. A set of optimum designs for a ring and two aircraft wings for static and dynamic constraints were generated using the optimization codes. The optimum design data were processed to obtain input and output pairs, which were used to develop a trained artificial neural network using the code NETS. Optimum designs for new design conditions were predicted using the trained network. Neural net prediction of optimum designs was found to be satisfactory for the majority of the output design parameters. However, results from the present study indicate that caution must be exercised to ensure that all design variables are within selected error bounds.
Reliability analysis of C-130 turboprop engine components using artificial neural network
NASA Astrophysics Data System (ADS)
Qattan, Nizar A.
In this study, we predict the failure rate of Lockheed C-130 Engine Turbine. More than thirty years of local operational field data were used for failure rate prediction and validation. The Weibull regression model and the Artificial Neural Network model including (feed-forward back-propagation, radial basis neural network, and multilayer perceptron neural network model); will be utilized to perform this study. For this purpose, the thesis will be divided into five major parts. First part deals with Weibull regression model to predict the turbine general failure rate, and the rate of failures that require overhaul maintenance. The second part will cover the Artificial Neural Network (ANN) model utilizing the feed-forward back-propagation algorithm as a learning rule. The MATLAB package will be used in order to build and design a code to simulate the given data, the inputs to the neural network are the independent variables, the output is the general failure rate of the turbine, and the failures which required overhaul maintenance. In the third part we predict the general failure rate of the turbine and the failures which require overhaul maintenance, using radial basis neural network model on MATLAB tool box. In the fourth part we compare the predictions of the feed-forward back-propagation model, with that of Weibull regression model, and radial basis neural network model. The results show that the failure rate predicted by the feed-forward back-propagation artificial neural network model is closer in agreement with radial basis neural network model compared with the actual field-data, than the failure rate predicted by the Weibull model. By the end of the study, we forecast the general failure rate of the Lockheed C-130 Engine Turbine, the failures which required overhaul maintenance and six categorical failures using multilayer perceptron neural network (MLP) model on DTREG commercial software. The results also give an insight into the reliability of the engine turbine under actual operating conditions, which can be used by aircraft operators for assessing system and component failures and customizing the maintenance programs recommended by the manufacturer.
Automation of Some Operations of a Wind Tunnel Using Artificial Neural Networks
NASA Technical Reports Server (NTRS)
Decker, Arthur J.; Buggele, Alvin E.
1996-01-01
Artificial neural networks were used successfully to sequence operations in a small, recently modernized, supersonic wind tunnel at NASA-Lewis Research Center. The neural nets generated correct estimates of shadowgraph patterns, pressure sensor readings and mach numbers for conditions occurring shortly after startup and extending to fully developed flow. Artificial neural networks were trained and tested for estimating: sensor readings from shadowgraph patterns, shadowgraph patterns from shadowgraph patterns and sensor readings from sensor readings. The 3.81 by 10 in. (0.0968 by 0.254 m) tunnel was operated with its mach 2.0 nozzle, and shadowgraph was recorded near the nozzle exit. These results support the thesis that artificial neural networks can be combined with current workstation technology to automate wind tunnel operations.
Artificial astrocytes improve neural network performance.
Porto-Pazos, Ana B; Veiguela, Noha; Mesejo, Pablo; Navarrete, Marta; Alvarellos, Alberto; Ibáñez, Oscar; Pazos, Alejandro; Araque, Alfonso
2011-04-19
Compelling evidence indicates the existence of bidirectional communication between astrocytes and neurons. Astrocytes, a type of glial cells classically considered to be passive supportive cells, have been recently demonstrated to be actively involved in the processing and regulation of synaptic information, suggesting that brain function arises from the activity of neuron-glia networks. However, the actual impact of astrocytes in neural network function is largely unknown and its application in artificial intelligence remains untested. We have investigated the consequences of including artificial astrocytes, which present the biologically defined properties involved in astrocyte-neuron communication, on artificial neural network performance. Using connectionist systems and evolutionary algorithms, we have compared the performance of artificial neural networks (NN) and artificial neuron-glia networks (NGN) to solve classification problems. We show that the degree of success of NGN is superior to NN. Analysis of performances of NN with different number of neurons or different architectures indicate that the effects of NGN cannot be accounted for an increased number of network elements, but rather they are specifically due to astrocytes. Furthermore, the relative efficacy of NGN vs. NN increases as the complexity of the network increases. These results indicate that artificial astrocytes improve neural network performance, and established the concept of Artificial Neuron-Glia Networks, which represents a novel concept in Artificial Intelligence with implications in computational science as well as in the understanding of brain function.
Artificial Astrocytes Improve Neural Network Performance
Porto-Pazos, Ana B.; Veiguela, Noha; Mesejo, Pablo; Navarrete, Marta; Alvarellos, Alberto; Ibáñez, Oscar; Pazos, Alejandro; Araque, Alfonso
2011-01-01
Compelling evidence indicates the existence of bidirectional communication between astrocytes and neurons. Astrocytes, a type of glial cells classically considered to be passive supportive cells, have been recently demonstrated to be actively involved in the processing and regulation of synaptic information, suggesting that brain function arises from the activity of neuron-glia networks. However, the actual impact of astrocytes in neural network function is largely unknown and its application in artificial intelligence remains untested. We have investigated the consequences of including artificial astrocytes, which present the biologically defined properties involved in astrocyte-neuron communication, on artificial neural network performance. Using connectionist systems and evolutionary algorithms, we have compared the performance of artificial neural networks (NN) and artificial neuron-glia networks (NGN) to solve classification problems. We show that the degree of success of NGN is superior to NN. Analysis of performances of NN with different number of neurons or different architectures indicate that the effects of NGN cannot be accounted for an increased number of network elements, but rather they are specifically due to astrocytes. Furthermore, the relative efficacy of NGN vs. NN increases as the complexity of the network increases. These results indicate that artificial astrocytes improve neural network performance, and established the concept of Artificial Neuron-Glia Networks, which represents a novel concept in Artificial Intelligence with implications in computational science as well as in the understanding of brain function. PMID:21526157
Agharezaei, Laleh; Agharezaei, Zhila; Nemati, Ali; Bahaadinbeigy, Kambiz; Keynia, Farshid; Baneshi, Mohammad Reza; Iranpour, Abedin; Agharezaei, Moslem
2016-01-01
Background: Venous thromboembolism is a common cause of mortality among hospitalized patients and yet it is preventable through detecting the precipitating factors and a prompt diagnosis by specialists. The present study has been carried out in order to assist specialists in the diagnosis and prediction of the risk level of pulmonary embolism in patients, by means of artificial neural network. Method: A number of 31 risk factors have been used in this study in order to evaluate the conditions of 294 patients hospitalized in 3 educational hospitals affiliated with Kerman University of Medical Sciences. Two types of artificial neural networks, namely Feed-Forward Back Propagation and Elman Back Propagation, were compared in this study. Results: Through an optimized artificial neural network model, an accuracy and risk level index of 93.23 percent was achieved and, subsequently, the results have been compared with those obtained from the perfusion scan of the patients. 86.61 percent of high risk patients diagnosed through perfusion scan diagnostic method were also diagnosed correctly through the method proposed in the present study. Conclusions: The results of this study can be a good resource for physicians, medical assistants, and healthcare staff to diagnose high risk patients more precisely and prevent the mortalities. Additionally, expenses and other unnecessary diagnostic methods such as perfusion scans can be efficiently reduced. PMID:28077893
Agharezaei, Laleh; Agharezaei, Zhila; Nemati, Ali; Bahaadinbeigy, Kambiz; Keynia, Farshid; Baneshi, Mohammad Reza; Iranpour, Abedin; Agharezaei, Moslem
2016-10-01
Venous thromboembolism is a common cause of mortality among hospitalized patients and yet it is preventable through detecting the precipitating factors and a prompt diagnosis by specialists. The present study has been carried out in order to assist specialists in the diagnosis and prediction of the risk level of pulmonary embolism in patients, by means of artificial neural network. A number of 31 risk factors have been used in this study in order to evaluate the conditions of 294 patients hospitalized in 3 educational hospitals affiliated with Kerman University of Medical Sciences. Two types of artificial neural networks, namely Feed-Forward Back Propagation and Elman Back Propagation, were compared in this study. Through an optimized artificial neural network model, an accuracy and risk level index of 93.23 percent was achieved and, subsequently, the results have been compared with those obtained from the perfusion scan of the patients. 86.61 percent of high risk patients diagnosed through perfusion scan diagnostic method were also diagnosed correctly through the method proposed in the present study. The results of this study can be a good resource for physicians, medical assistants, and healthcare staff to diagnose high risk patients more precisely and prevent the mortalities. Additionally, expenses and other unnecessary diagnostic methods such as perfusion scans can be efficiently reduced.
The purpose of this study was to develop a method of classifying cancers to specific diagnostic categories based on their gene expression signatures using artificial neural networks (ANNs). We trained the ANNs using the small, round blue-cell tumors (SRBCTs) as a model. These cancers belong to four distinct diagnostic categories and often present diagnostic dilemmas in
ERIC Educational Resources Information Center
Kayri, Murat
2015-01-01
The objective of this study is twofold: (1) to investigate the factors that affect the success of university students by employing two artificial neural network methods (i.e., multilayer perceptron [MLP] and radial basis function [RBF]); and (2) to compare the effects of these methods on educational data in terms of predictive ability. The…
ERIC Educational Resources Information Center
Chen, Chau-Kuang
2010-01-01
Artificial Neural Network (ANN) and Support Vector Machine (SVM) approaches have been on the cutting edge of science and technology for pattern recognition and data classification. In the ANN model, classification accuracy can be achieved by using the feed-forward of inputs, back-propagation of errors, and the adjustment of connection weights. In…
ERIC Educational Resources Information Center
Yang, Yang; Hu, Jun; Lv, Yingchun; Zhang, Mu
2013-01-01
As the tourism industry has gradually become the strategic mainstay industry of the national economy, the scope of the tourism discipline has developed rigorously. This paper makes a predictive study on the development of the scope of Guangdong provincial tourism discipline based on the artificial neural network BP model in order to find out how…
Application of artificial intelligence to the management of urological cancer.
Abbod, Maysam F; Catto, James W F; Linkens, Derek A; Hamdy, Freddie C
2007-10-01
Artificial intelligence techniques, such as artificial neural networks, Bayesian belief networks and neuro-fuzzy modeling systems, are complex mathematical models based on the human neuronal structure and thinking. Such tools are capable of generating data driven models of biological systems without making assumptions based on statistical distributions. A large amount of study has been reported of the use of artificial intelligence in urology. We reviewed the basic concepts behind artificial intelligence techniques and explored the applications of this new dynamic technology in various aspects of urological cancer management. A detailed and systematic review of the literature was performed using the MEDLINE and Inspec databases to discover reports using artificial intelligence in urological cancer. The characteristics of machine learning and their implementation were described and reports of artificial intelligence use in urological cancer were reviewed. While most researchers in this field were found to focus on artificial neural networks to improve the diagnosis, staging and prognostic prediction of urological cancers, some groups are exploring other techniques, such as expert systems and neuro-fuzzy modeling systems. Compared to traditional regression statistics artificial intelligence methods appear to be accurate and more explorative for analyzing large data cohorts. Furthermore, they allow individualized prediction of disease behavior. Each artificial intelligence method has characteristics that make it suitable for different tasks. The lack of transparency of artificial neural networks hinders global scientific community acceptance of this method but this can be overcome by neuro-fuzzy modeling systems.
NASA Astrophysics Data System (ADS)
Kim, Kyungmin; Harry, Ian W.; Hodge, Kari A.; Kim, Young-Min; Lee, Chang-Hwan; Lee, Hyun Kyu; Oh, John J.; Oh, Sang Hoon; Son, Edwin J.
2015-12-01
We apply a machine learning algorithm, the artificial neural network, to the search for gravitational-wave signals associated with short gamma-ray bursts (GRBs). The multi-dimensional samples consisting of data corresponding to the statistical and physical quantities from the coherent search pipeline are fed into the artificial neural network to distinguish simulated gravitational-wave signals from background noise artifacts. Our result shows that the data classification efficiency at a fixed false alarm probability (FAP) is improved by the artificial neural network in comparison to the conventional detection statistic. Specifically, the distance at 50% detection probability at a fixed false positive rate is increased about 8%-14% for the considered waveform models. We also evaluate a few seconds of the gravitational-wave data segment using the trained networks and obtain the FAP. We suggest that the artificial neural network can be a complementary method to the conventional detection statistic for identifying gravitational-wave signals related to the short GRBs.
Application of artificial neural networks to composite ply micromechanics
NASA Technical Reports Server (NTRS)
Brown, D. A.; Murthy, P. L. N.; Berke, L.
1991-01-01
Artificial neural networks can provide improved computational efficiency relative to existing methods when an algorithmic description of functional relationships is either totally unavailable or is complex in nature. For complex calculations, significant reductions in elapsed computation time are possible. The primary goal is to demonstrate the applicability of artificial neural networks to composite material characterization. As a test case, a neural network was trained to accurately predict composite hygral, thermal, and mechanical properties when provided with basic information concerning the environment, constituent materials, and component ratios used in the creation of the composite. A brief introduction on neural networks is provided along with a description of the project itself.
Calibration of a shock wave position sensor using artificial neural networks
NASA Technical Reports Server (NTRS)
Decker, Arthur J.; Weiland, Kenneth E.
1993-01-01
This report discusses the calibration of a shock wave position sensor. The position sensor works by using artificial neural networks to map cropped CCD frames of the shadows of the shock wave into the value of the shock wave position. This project was done as a tutorial demonstration of method and feasibility. It used a laboratory shadowgraph, nozzle, and commercial neural network package. The results were quite good, indicating that artificial neural networks can be used efficiently to automate the semi-quantitative applications of flow visualization.
1990-11-30
Simonotto Universita’ di Genova Learning from Natural Selection in an Artificial Environment ...................................................... 1...11-92 Ethem Alpaydin Swiss Federal Institute of Technology Framework for Distributed Artificial Neural System Simulation...11-129 David Y. Fong Lockheed Missiles and Space Co. and Christopher Tocci Raytheon Co. Simulation of Artificial Neural
NASA Astrophysics Data System (ADS)
Musatov, V. Yu.; Runnova, A. E.; Andreev, A. V.; Zhuravlev, M. O.
2018-04-01
In the present paper, the possibility of classification by artificial neural networks of a certain architecture of ambiguous images is investigated using the example of the Necker cube from the experimentally obtained EEG recording data of several operators. The possibilities of artificial neural network classification of ambiguous images are investigated in the different frequency ranges of EEG recording signals.
Modular, Hierarchical Learning By Artificial Neural Networks
NASA Technical Reports Server (NTRS)
Baldi, Pierre F.; Toomarian, Nikzad
1996-01-01
Modular and hierarchical approach to supervised learning by artificial neural networks leads to neural networks more structured than neural networks in which all neurons fully interconnected. These networks utilize general feedforward flow of information and sparse recurrent connections to achieve dynamical effects. The modular organization, sparsity of modular units and connections, and fact that learning is much more circumscribed are all attractive features for designing neural-network hardware. Learning streamlined by imitating some aspects of biological neural networks.
Modeling of bromate formation by ozonation of surface waters in drinking water treatment.
Legube, Bernard; Parinet, Bernard; Gelinet, Karine; Berne, Florence; Croue, Jean-Philippe
2004-04-01
The main objective of this paper is to try to develop statistically and chemically rational models for bromate formation by ozonation of clarified surface waters. The results presented here show that bromate formation by ozonation of natural waters in drinking water treatment is directly proportional to the "Ct" value ("Ctau" in this study). Moreover, this proportionality strongly depends on many parameters: increasing of pH, temperature and bromide level leading to an increase of bromate formation; ammonia and dissolved organic carbon concentrations causing a reverse effect. Taking into account limitation of theoretical modeling, we proposed to predict bromate formation by stochastic simulations (multi-linear regression and artificial neural networks methods) from 40 experiments (BrO(3)(-) vs. "Ctau") carried out with three sand filtered waters sampled on three different waterworks. With seven selected variables we used a simple architecture of neural networks, optimized by "neural connection" of SPSS Inc./Recognition Inc. The bromate modeling by artificial neural networks gives better result than multi-linear regression. The artificial neural networks model allowed us classifying variables by decreasing order of influence (for the studied cases in our variables scale): "Ctau", [N-NH(4)(+)], [Br(-)], pH, temperature, DOC, alkalinity.
Gong, Yin-Xi; He, Cheng; Yan, Fei; Feng, Zhong-Ke; Cao, Meng-Lei; Gao, Yuan; Miao, Jie; Zhao, Jin-Long
2013-10-01
Multispectral remote sensing data containing rich site information are not fully used by the classic site quality evaluation system, as it merely adopts artificial ground survey data. In order to establish a more effective site quality evaluation system, a neural network model which combined remote sensing spectra factors with site factors and site index relations was established and used to study the sublot site quality evaluation in the Wangyedian Forest Farm in Inner Mongolia Province, Chifeng City. Based on the improved back propagation artificial neural network (BPANN), this model combined multispectral remote sensing data with sublot survey data, and took larch as example, Through training data set sensitivity analysis weak or irrelevant factor was excluded, the size of neural network was simplified, and the efficiency of network training was improved. This optimal site index prediction model had an accuracy up to 95.36%, which was 9.83% higher than that of the neural network model based on classic sublot survey data, and this shows that using multi-spectral remote sensing and small class survey data to determine the status of larch index prediction model has the highest predictive accuracy. The results fully indicate the effectiveness and superiority of this method.
NASA Technical Reports Server (NTRS)
Jules, Kenol; Lin, Paul P.
2002-01-01
This paper reviews some of the recent applications of artificial neural networks taken from various works performed by the authors over the last four years at the NASA Glenn Research Center. This paper focuses mainly on two areas. First, artificial neural networks application in design and optimization of aircraft/engine propulsion systems to shorten the overall design cycle. Out of that specific application, a generic design tool was developed, which can be used for most design optimization process. Second, artificial neural networks application in monitoring the microgravity quality onboard the International Space Station, using on-board accelerometers for data acquisition. These two different applications are reviewed in this paper to show the broad applicability of artificial intelligence in various disciplines. The intent of this paper is not to give in-depth details of these two applications, but to show the need to combine different artificial intelligence techniques or algorithms in order to design an optimized or versatile system.
Gurunathan, Baskar; Sahadevan, Renganathan
2012-07-01
Optimization of culture conditions for L-asparaginase production by submerged fermentation of Aspergillus terreus MTCC 1782 was studied using a 3-level central composite design of response surface methodology and artificial neural network linked genetic algorithm. The artificial neural network linked genetic algorithm was found to be more efficient than response surface methodology. The experimental L-asparaginase activity of 43.29 IU/ml was obtained at the optimum culture conditions of temperature 35 degrees C, initial pH 6.3, inoculum size 1% (v/v), agitation rate 140 rpm, and incubation time 58.5 h of the artificial neural network linked genetic algorithm, which was close to the predicted activity of 44.38 IU/ml. Characteristics of L-asparaginase production by A. terreus MTCC 1782 were studied in a 3 L bench-scale bioreactor.
Li, Yongcheng; Sun, Rong; Zhang, Bin; Wang, Yuechao; Li, Hongyi
2015-01-01
Neural networks are considered the origin of intelligence in organisms. In this paper, a new design of an intelligent system merging biological intelligence with artificial intelligence was created. It was based on a neural controller bidirectionally connected to an actual mobile robot to implement a novel vehicle. Two types of experimental preparations were utilized as the neural controller including 'random' and '4Q' (cultured neurons artificially divided into four interconnected parts) neural network. Compared to the random cultures, the '4Q' cultures presented absolutely different activities, and the robot controlled by the '4Q' network presented better capabilities in search tasks. Our results showed that neural cultures could be successfully employed to control an artificial agent; the robot performed better and better with the stimulus because of the short-term plasticity. A new framework is provided to investigate the bidirectional biological-artificial interface and develop new strategies for a future intelligent system using these simplified model systems.
Zhang, Bin; Wang, Yuechao; Li, Hongyi
2015-01-01
Neural networks are considered the origin of intelligence in organisms. In this paper, a new design of an intelligent system merging biological intelligence with artificial intelligence was created. It was based on a neural controller bidirectionally connected to an actual mobile robot to implement a novel vehicle. Two types of experimental preparations were utilized as the neural controller including ‘random’ and ‘4Q’ (cultured neurons artificially divided into four interconnected parts) neural network. Compared to the random cultures, the ‘4Q’ cultures presented absolutely different activities, and the robot controlled by the ‘4Q’ network presented better capabilities in search tasks. Our results showed that neural cultures could be successfully employed to control an artificial agent; the robot performed better and better with the stimulus because of the short-term plasticity. A new framework is provided to investigate the bidirectional biological-artificial interface and develop new strategies for a future intelligent system using these simplified model systems. PMID:25992579
Tejera, Eduardo; Jose Areias, Maria; Rodrigues, Ana; Ramõa, Ana; Manuel Nieto-Villar, Jose; Rebelo, Irene
2011-09-01
A model construction for classification of women with normal, hypertensive and preeclamptic pregnancy in different gestational ages using maternal heart rate variability (HRV) indexes. In the present work, we applied the artificial neural network for the classification problem, using the signal composed by the time intervals between consecutive RR peaks (RR) (n = 568) obtained from ECG records. Beside the HRV indexes, we also considered other factors like maternal history and blood pressure measurements. The obtained result reveals sensitivity for preeclampsia around 80% that increases for hypertensive and normal pregnancy groups. On the other hand, specificity is around 85-90%. These results indicate that the combination of HRV indexes with artificial neural networks (ANN) could be helpful for pregnancy study and characterization.
Incidents Prediction in Road Junctions Using Artificial Neural Networks
NASA Astrophysics Data System (ADS)
Hajji, Tarik; Alami Hassani, Aicha; Ouazzani Jamil, Mohammed
2018-05-01
The implementation of an incident detection system (IDS) is an indispensable operation in the analysis of the road traffics. However the IDS may, in no case, represent an alternative to the classical monitoring system controlled by the human eye. The aim of this work is to increase detection and prediction probability of incidents in camera-monitored areas. Knowing that, these areas are monitored by multiple cameras and few supervisors. Our solution is to use Artificial Neural Networks (ANN) to analyze moving objects trajectories on captured images. We first propose a modelling of the trajectories and their characteristics, after we develop a learning database for valid and invalid trajectories, and then we carry out a comparative study to find the artificial neural network architecture that maximizes the rate of valid and invalid trajectories recognition.
NASA Technical Reports Server (NTRS)
Geller, Harold A.; Norris, Eugene; Warnock, Archibald, III
1991-01-01
Neural networks trained using mass spectra data from the National Institute of Standards and Technology (NIST) are studied. The investigations also included sample data from the gas chromatograph mass spectrometer (GCMS) instrument aboard the Viking Lander, obtained from the National Space Science Data Center. The work performed to data and the preliminary results from the training and testing of neural networks are described. These preliminary results are presented for the purpose of determining the viability of applying artificial neural networks in discriminating mass spectra samples from remote instrumentation such as the Mars Rover Sample Return Mission and the Cassini Probe.
Embodied artificial agents for understanding human social cognition.
Wykowska, Agnieszka; Chaminade, Thierry; Cheng, Gordon
2016-05-05
In this paper, we propose that experimental protocols involving artificial agents, in particular the embodied humanoid robots, provide insightful information regarding social cognitive mechanisms in the human brain. Using artificial agents allows for manipulation and control of various parameters of behaviour, appearance and expressiveness in one of the interaction partners (the artificial agent), and for examining effect of these parameters on the other interaction partner (the human). At the same time, using artificial agents means introducing the presence of artificial, yet human-like, systems into the human social sphere. This allows for testing in a controlled, but ecologically valid, manner human fundamental mechanisms of social cognition both at the behavioural and at the neural level. This paper will review existing literature that reports studies in which artificial embodied agents have been used to study social cognition and will address the question of whether various mechanisms of social cognition (ranging from lower- to higher-order cognitive processes) are evoked by artificial agents to the same extent as by natural agents, humans in particular. Increasing the understanding of how behavioural and neural mechanisms of social cognition respond to artificial anthropomorphic agents provides empirical answers to the conundrum 'What is a social agent?' © 2016 The Authors.
Artificial Neural Networks and Instructional Technology.
ERIC Educational Resources Information Center
Carlson, Patricia A.
1991-01-01
Artificial neural networks (ANN), part of artificial intelligence, are discussed. Such networks are fed sample cases (training sets), learn how to recognize patterns in the sample data, and use this experience in handling new cases. Two cognitive roles for ANNs (intelligent filters and spreading, associative memories) are examined. Prototypes…
NASA Astrophysics Data System (ADS)
Valizadeh, Maryam; Sohrabi, Mahmoud Reza
2018-03-01
In the present study, artificial neural networks (ANNs) and support vector regression (SVR) as intelligent methods coupled with UV spectroscopy for simultaneous quantitative determination of Dorzolamide (DOR) and Timolol (TIM) in eye drop. Several synthetic mixtures were analyzed for validating the proposed methods. At first, neural network time series, which one type of network from the artificial neural network was employed and its efficiency was evaluated. Afterwards, the radial basis network was applied as another neural network. Results showed that the performance of this method is suitable for predicting. Finally, support vector regression was proposed to construct the Zilomole prediction model. Also, root mean square error (RMSE) and mean recovery (%) were calculated for SVR method. Moreover, the proposed methods were compared to the high-performance liquid chromatography (HPLC) as a reference method. One way analysis of variance (ANOVA) test at the 95% confidence level applied to the comparison results of suggested and reference methods that there were no significant differences between them. Also, the effect of interferences was investigated in spike solutions.
Artificial neural networks applied to forecasting time series.
Montaño Moreno, Juan J; Palmer Pol, Alfonso; Muñoz Gracia, Pilar
2011-04-01
This study offers a description and comparison of the main models of Artificial Neural Networks (ANN) which have proved to be useful in time series forecasting, and also a standard procedure for the practical application of ANN in this type of task. The Multilayer Perceptron (MLP), Radial Base Function (RBF), Generalized Regression Neural Network (GRNN), and Recurrent Neural Network (RNN) models are analyzed. With this aim in mind, we use a time series made up of 244 time points. A comparative study establishes that the error made by the four neural network models analyzed is less than 10%. In accordance with the interpretation criteria of this performance, it can be concluded that the neural network models show a close fit regarding their forecasting capacity. The model with the best performance is the RBF, followed by the RNN and MLP. The GRNN model is the one with the worst performance. Finally, we analyze the advantages and limitations of ANN, the possible solutions to these limitations, and provide an orientation towards future research.
2006-08-01
Nikolas Avouris. Evaluation of classifiers for an uneven class distribution problem. Applied Artificial Intellegence , pages 1-24, 2006. Draft manuscript...data by a hybrid artificial neural network so we may evaluate the classification capabilities of the baseline GRLVQ and our improved GRLVQI. Chapter 4...performance of GRLVQ(I), we compare the results against a baseline classification of the 23-class problem with a hybrid artificial neural network (ANN
Artificial Neural Networks: A New Approach to Predicting Application Behavior.
ERIC Educational Resources Information Center
Gonzalez, Julie M. Byers; DesJardins, Stephen L.
2002-01-01
Applied the technique of artificial neural networks to predict which students were likely to apply to one research university. Compared the results to the traditional analysis tool, logistic regression modeling. Found that the addition of artificial intelligence models was a useful new tool for predicting student application behavior. (EV)
Does Artificial Neural Network Support Connectivism's Assumptions?
ERIC Educational Resources Information Center
AlDahdouh, Alaa A.
2017-01-01
Connectivism was presented as a learning theory for the digital age and connectivists claim that recent developments in Artificial Intelligence (AI) and, more specifically, Artificial Neural Network (ANN) support their assumptions of knowledge connectivity. Yet, very little has been done to investigate this brave allegation. Does the advancement…
Electrical load forecasting with artificial neural networks Demand-side management optimization with Matlab -58491. D. Palchak, S. Suryanarayanan, and D. Zimmerle. "An Artificial Neural Network in Short-Term
Inversion of quasi-3D DC resistivity imaging data using artificial neural networks
NASA Astrophysics Data System (ADS)
Neyamadpour, Ahmad; Wan Abdullah, W. A. T.; Taib, Samsudin
2010-02-01
The objective of this paper is to investigate the applicability of artificial neural networks in inverting quasi-3D DC resistivity imaging data. An electrical resistivity imaging survey was carried out along seven parallel lines using a dipole-dipole array to confirm the validation of the results of an inversion using an artificial neural network technique. The model used to produce synthetic data to train the artificial neural network was a homogeneous medium of 100Ωm resistivity with an embedded anomalous body of 1000Ωm resistivity. The network was trained using 21 datasets (comprising 12159 data points) and tested on another 11 synthetic datasets (comprising 6369 data points) and on real field data. Another 24 test datasets (comprising 13896 data points) consisting of different resistivities for the background and the anomalous bodies were used in order to test the interpolation and extrapolation of network properties. Different learning paradigms were tried in the training process of the neural network, with the resilient propagation paradigm being the most efficient. The number of nodes, hidden layers, and efficient values for learning rate and momentum coefficient have been studied. Although a significant correlation between results of the neural network and the conventional robust inversion technique was found, the ANN results show more details of the subsurface structure, and the RMS misfits for the results of the neural network are less than seen with conventional methods. The interpreted results show that the trained network was able to invert quasi-3D electrical resistivity imaging data obtained by dipole-dipole configuration both rapidly and accurately.
Architecture and biological applications of artificial neural networks: a tuberculosis perspective.
Darsey, Jerry A; Griffin, William O; Joginipelli, Sravanthi; Melapu, Venkata Kiran
2015-01-01
Advancement of science and technology has prompted researchers to develop new intelligent systems that can solve a variety of problems such as pattern recognition, prediction, and optimization. The ability of the human brain to learn in a fashion that tolerates noise and error has attracted many researchers and provided the starting point for the development of artificial neural networks: the intelligent systems. Intelligent systems can acclimatize to the environment or data and can maximize the chances of success or improve the efficiency of a search. Due to massive parallelism with large numbers of interconnected processers and their ability to learn from the data, neural networks can solve a variety of challenging computational problems. Neural networks have the ability to derive meaning from complicated and imprecise data; they are used in detecting patterns, and trends that are too complex for humans, or other computer systems. Solutions to the toughest problems will not be found through one narrow specialization; therefore we need to combine interdisciplinary approaches to discover the solutions to a variety of problems. Many researchers in different disciplines such as medicine, bioinformatics, molecular biology, and pharmacology have successfully applied artificial neural networks. This chapter helps the reader in understanding the basics of artificial neural networks, their applications, and methodology; it also outlines the network learning process and architecture. We present a brief outline of the application of neural networks to medical diagnosis, drug discovery, gene identification, and protein structure prediction. We conclude with a summary of the results from our study on tuberculosis data using neural networks, in diagnosing active tuberculosis, and predicting chronic vs. infiltrative forms of tuberculosis.
Xi, Jun; Xue, Yujing; Xu, Yinxiang; Shen, Yuhong
2013-11-01
In this study, the ultrahigh pressure extraction of green tea polyphenols was modeled and optimized by a three-layer artificial neural network. A feed-forward neural network trained with an error back-propagation algorithm was used to evaluate the effects of pressure, liquid/solid ratio and ethanol concentration on the total phenolic content of green tea extracts. The neural network coupled with genetic algorithms was also used to optimize the conditions needed to obtain the highest yield of tea polyphenols. The obtained optimal architecture of artificial neural network model involved a feed-forward neural network with three input neurons, one hidden layer with eight neurons and one output layer including single neuron. The trained network gave the minimum value in the MSE of 0.03 and the maximum value in the R(2) of 0.9571, which implied a good agreement between the predicted value and the actual value, and confirmed a good generalization of the network. Based on the combination of neural network and genetic algorithms, the optimum extraction conditions for the highest yield of green tea polyphenols were determined as follows: 498.8 MPa for pressure, 20.8 mL/g for liquid/solid ratio and 53.6% for ethanol concentration. The total phenolic content of the actual measurement under the optimum predicated extraction conditions was 582.4 ± 0.63 mg/g DW, which was well matched with the predicted value (597.2mg/g DW). This suggests that the artificial neural network model described in this work is an efficient quantitative tool to predict the extraction efficiency of green tea polyphenols. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
1993-09-01
frequency, which when used as an input to an artificial neural network will aide in the detection of location and severity of machinery faults...Research is presented where the union of an artificial neural network , utilizing the highly successful backpropagation paradigm, and the pseudo wigner
ERIC Educational Resources Information Center
Everson, Howard T.; And Others
This paper explores the feasibility of neural computing methods such as artificial neural networks (ANNs) and abductory induction mechanisms (AIM) for use in educational measurement. ANNs and AIMS methods are contrasted with more traditional statistical techniques, such as multiple regression and discriminant function analyses, for making…
Signal acquisition and analysis for cortical control of neuroprosthetics.
Tillery, Stephen I Helms; Taylor, Dawn M
2004-12-01
Work in cortically controlled neuroprosthetic systems has concentrated on decoding natural behaviors from neural activity, with the idea that if the behavior could be fully decoded it could be duplicated using an artificial system. Initial estimates from this approach suggested that a high-fidelity signal comprised of many hundreds of neurons would be required to control a neuroprosthetic system successfully. However, recent studies are showing hints that these systems can be controlled effectively using only a few tens of neurons. Attempting to decode the pre-existing relationship between neural activity and natural behavior is not nearly as important as choosing a decoding scheme that can be more readily deployed and trained to generate the desired actions of the artificial system. These artificial systems need not resemble or behave similarly to any natural biological system. Effective matching of discrete and continuous neural command signals to appropriately configured device functions will enable effective control of both natural and abstract artificial systems using compatible thought processes.
Jang, Hong-Seok; Xing, Shuli; Lee, Malrey; Lee, Young-Keun; So, Seung-Young
2016-05-01
In this study, an artificial neural networks study was carried out to predict the quantity of radon of Granulated Blast Furnace Slag (GBFS) cement mortar. A data set of a laboratory work, in which a total of 3 mortars were produced, was utilized in the Artificial Neural Networks (ANNs) study. The mortar mixture parameters were three different GBFS ratios (0%, 20%, 40%). Measurement radon of moist cured specimens was measured at 3, 10, 30, 100, 365 days by sensing technology for continuous monitoring of indoor air quality (IAQ). ANN model is constructed, trained and tested using these data. The data used in the ANN model are arranged in a format of two input parameters that cover the cement, GBFS and age of samples and, an output parameter which is concentrations of radon emission of mortar. The results showed that ANN can be an alternative approach for the predicting the radon concentration of GBFS mortar using mortar ingredients as input parameters.
NASA Astrophysics Data System (ADS)
Putra, J. C. P.; Safrilah
2017-06-01
Artificial neural network approaches are useful to solve many complicated problems. It solves a number of problems in various areas such as engineering, medicine, business, manufacturing, etc. This paper presents an application of artificial neural network to predict a runway capacity at Juanda International Airport. An artificial neural network model of backpropagation and multi-layer perceptron is adopted to this research to learning process of runway capacity at Juanda International Airport. The results indicate that the training data is successfully recognizing the certain pattern of runway use at Juanda International Airport. Whereas, testing data indicate vice versa. Finally, it can be concluded that the approach of uniformity data and network architecture is the critical part to determine the accuracy of prediction results.
Huang, Daizheng; Wu, Zhihui
2017-01-01
Accurately predicting the trend of outpatient visits by mathematical modeling can help policy makers manage hospitals effectively, reasonably organize schedules for human resources and finances, and appropriately distribute hospital material resources. In this study, a hybrid method based on empirical mode decomposition and back-propagation artificial neural networks optimized by particle swarm optimization is developed to forecast outpatient visits on the basis of monthly numbers. The data outpatient visits are retrieved from January 2005 to December 2013 and first obtained as the original time series. Second, the original time series is decomposed into a finite and often small number of intrinsic mode functions by the empirical mode decomposition technique. Third, a three-layer back-propagation artificial neural network is constructed to forecast each intrinsic mode functions. To improve network performance and avoid falling into a local minimum, particle swarm optimization is employed to optimize the weights and thresholds of back-propagation artificial neural networks. Finally, the superposition of forecasting results of the intrinsic mode functions is regarded as the ultimate forecasting value. Simulation indicates that the proposed method attains a better performance index than the other four methods. PMID:28222194
Huang, Daizheng; Wu, Zhihui
2017-01-01
Accurately predicting the trend of outpatient visits by mathematical modeling can help policy makers manage hospitals effectively, reasonably organize schedules for human resources and finances, and appropriately distribute hospital material resources. In this study, a hybrid method based on empirical mode decomposition and back-propagation artificial neural networks optimized by particle swarm optimization is developed to forecast outpatient visits on the basis of monthly numbers. The data outpatient visits are retrieved from January 2005 to December 2013 and first obtained as the original time series. Second, the original time series is decomposed into a finite and often small number of intrinsic mode functions by the empirical mode decomposition technique. Third, a three-layer back-propagation artificial neural network is constructed to forecast each intrinsic mode functions. To improve network performance and avoid falling into a local minimum, particle swarm optimization is employed to optimize the weights and thresholds of back-propagation artificial neural networks. Finally, the superposition of forecasting results of the intrinsic mode functions is regarded as the ultimate forecasting value. Simulation indicates that the proposed method attains a better performance index than the other four methods.
NASA Astrophysics Data System (ADS)
Yilmaz, Isik; Keskin, Inan; Marschalko, Marian; Bednarik, Martin
2010-05-01
This study compares the GIS based collapse susceptibility mapping methods such as; conditional probability (CP), logistic regression (LR) and artificial neural networks (ANN) applied in gypsum rock masses in Sivas basin (Turkey). Digital Elevation Model (DEM) was first constructed using GIS software. Collapse-related factors, directly or indirectly related to the causes of collapse occurrence, such as distance from faults, slope angle and aspect, topographical elevation, distance from drainage, topographic wetness index- TWI, stream power index- SPI, Normalized Difference Vegetation Index (NDVI) by means of vegetation cover, distance from roads and settlements were used in the collapse susceptibility analyses. In the last stage of the analyses, collapse susceptibility maps were produced from CP, LR and ANN models, and they were then compared by means of their validations. Area Under Curve (AUC) values obtained from all three methodologies showed that the map obtained from ANN model looks like more accurate than the other models, and the results also showed that the artificial neural networks is a usefull tool in preparation of collapse susceptibility map and highly compatible with GIS operating features. Key words: Collapse; doline; susceptibility map; gypsum; GIS; conditional probability; logistic regression; artificial neural networks.
Penco, Silvana; Buscema, Massimo; Patrosso, Maria Cristina; Marocchi, Alessandro; Grossi, Enzo
2008-05-30
Few genetic factors predisposing to the sporadic form of amyotrophic lateral sclerosis (ALS) have been identified, but the pathology itself seems to be a true multifactorial disease in which complex interactions between environmental and genetic susceptibility factors take place. The purpose of this study was to approach genetic data with an innovative statistical method such as artificial neural networks to identify a possible genetic background predisposing to the disease. A DNA multiarray panel was applied to genotype more than 60 polymorphisms within 35 genes selected from pathways of lipid and homocysteine metabolism, regulation of blood pressure, coagulation, inflammation, cellular adhesion and matrix integrity, in 54 sporadic ALS patients and 208 controls. Advanced intelligent systems based on novel coupling of artificial neural networks and evolutionary algorithms have been applied. The results obtained have been compared with those derived from the use of standard neural networks and classical statistical analysis Advanced intelligent systems based on novel coupling of artificial neural networks and evolutionary algorithms have been applied. The results obtained have been compared with those derived from the use of standard neural networks and classical statistical analysis. An unexpected discovery of a strong genetic background in sporadic ALS using a DNA multiarray panel and analytical processing of the data with advanced artificial neural networks was found. The predictive accuracy obtained with Linear Discriminant Analysis and Standard Artificial Neural Networks ranged from 70% to 79% (average 75.31%) and from 69.1 to 86.2% (average 76.6%) respectively. The corresponding value obtained with Advanced Intelligent Systems reached an average of 96.0% (range 94.4 to 97.6%). This latter approach allowed the identification of seven genetic variants essential to differentiate cases from controls: apolipoprotein E arg158cys; hepatic lipase -480 C/T; endothelial nitric oxide synthase 690 C/T and glu298asp; vitamin K-dependent coagulation factor seven arg353glu, glycoprotein Ia/IIa 873 G/A and E-selectin ser128arg. This study provides an alternative and reliable method to approach complex diseases. Indeed, the application of a novel artificial intelligence-based method offers a new insight into genetic markers of sporadic ALS pointing out the existence of a strong genetic background.
Mueller, Ulrich; Grobman, K H.
2003-04-01
Artificial life provides important theoretical and methodological tools for the investigation of Piaget's developmental theory. This new method uses artificial neural networks to simulate living phenomena in a computer. A recent study by Parisi and Schlesinger suggests that artificial life might reinvigorate the Piagetian framework. We contrast artificial life with traditional cognitivist approaches, discuss the role of innateness in development, and examine the relation between physiological and psychological explanations of intelligent behaviour.
Giannopulu, Irini
2013-11-01
This review addresses the central role played by multimodal interactions in neurocognitive development. We first analyzed our studies of multimodal verbal and nonverbal cognition and emotional interactions within neuronal, that is, natural environments in typically developing children. We then tried to relate them to the topic of creating artificial environments using mobile toy robots to neurorehabilitate severely autistic children. By doing so, both neural/natural and artificial environments are considered as the basis of neuronal organization and reorganization. The common thread underlying the thinking behind this approach revolves around the brain's intrinsic properties: neuroplasticity and the fact that the brain is neurodynamic. In our approach, neural organization and reorganization using natural or artificial environments aspires to bring computational perspectives into cognitive developmental neuroscience.
Machine learning topological states
NASA Astrophysics Data System (ADS)
Deng, Dong-Ling; Li, Xiaopeng; Das Sarma, S.
2017-11-01
Artificial neural networks and machine learning have now reached a new era after several decades of improvement where applications are to explode in many fields of science, industry, and technology. Here, we use artificial neural networks to study an intriguing phenomenon in quantum physics—the topological phases of matter. We find that certain topological states, either symmetry-protected or with intrinsic topological order, can be represented with classical artificial neural networks. This is demonstrated by using three concrete spin systems, the one-dimensional (1D) symmetry-protected topological cluster state and the 2D and 3D toric code states with intrinsic topological orders. For all three cases, we show rigorously that the topological ground states can be represented by short-range neural networks in an exact and efficient fashion—the required number of hidden neurons is as small as the number of physical spins and the number of parameters scales only linearly with the system size. For the 2D toric-code model, we find that the proposed short-range neural networks can describe the excited states with Abelian anyons and their nontrivial mutual statistics as well. In addition, by using reinforcement learning we show that neural networks are capable of finding the topological ground states of nonintegrable Hamiltonians with strong interactions and studying their topological phase transitions. Our results demonstrate explicitly the exceptional power of neural networks in describing topological quantum states, and at the same time provide valuable guidance to machine learning of topological phases in generic lattice models.
Artificial neural network in cosmic landscape
NASA Astrophysics Data System (ADS)
Liu, Junyu
2017-12-01
In this paper we propose that artificial neural network, the basis of machine learning, is useful to generate the inflationary landscape from a cosmological point of view. Traditional numerical simulations of a global cosmic landscape typically need an exponential complexity when the number of fields is large. However, a basic application of artificial neural network could solve the problem based on the universal approximation theorem of the multilayer perceptron. A toy model in inflation with multiple light fields is investigated numerically as an example of such an application.
A critical review on the applications of artificial neural networks in winemaking technology.
Moldes, O A; Mejuto, J C; Rial-Otero, R; Simal-Gandara, J
2017-09-02
Since their development in 1943, artificial neural networks were extended into applications in many fields. Last twenty years have brought their introduction into winery, where they were applied following four basic purposes: authenticity assurance systems, electronic sensory devices, production optimization methods, and artificial vision in image treatment tools, with successful and promising results. This work reviews the most significant approaches for neural networks in winemaking technologies with the aim of producing a clear and useful review document.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, J.R.; Netrologic, Inc., San Diego, CA)
1988-01-01
Topics presented include integrating neural networks and expert systems, neural networks and signal processing, machine learning, cognition and avionics applications, artificial intelligence and man-machine interface issues, real time expert systems, artificial intelligence, and engineering applications. Also considered are advanced problem solving techniques, combinational optimization for scheduling and resource control, data fusion/sensor fusion, back propagation with momentum, shared weights and recurrency, automatic target recognition, cybernetics, optical neural networks.
NASA Astrophysics Data System (ADS)
Maddah, Heydar; Ghasemi, Nahid
2017-12-01
In this study, heat transfer efficiency of water and iron oxide nanofluid in a double pipe heat exchanger equipped with a typical twisted tape is experimentally investigated and impacts of the concentration of nanofluid and twisted tape on the heat transfer efficiency are also studied. Experiments were conducted under the laminar and turbulent flow for Reynolds numbers in the range of 1000 to 6000 and the concentration of nanofluid was 0.01, 0.02 and 0.03 wt%. In order to model and predict the heat transfer efficiency, an artificial neural network was used. The temperature of the hot fluid (nanofluid), the temperature of the cold fluid (water), mass flow rate of hot fluid (nanofluid), mass flow rate of cold fluid (water), the concentration of nanofluid and twist ratio are input data in artificial neural network and heat transfer is output or target. Heat transfer efficiency in the presence of 0.03 wt% nanofluid increases by 30% while using both the 0.03 wt% nanofluid and twisted tape with twist ratio 2 increases the heat transfer efficiency by 60%. Implementation of various structures of neural network with different number of neurons in the middle layer showed that 1-10-6 arrangement with the correlation coefficient 0.99181 and normal root mean square error 0.001621 is suggested as a desirable arrangement. The above structure has been successful in predicting 72% to 97%of variation in heat transfer efficiency characteristics based on the independent variables changes. In total, comparing the predicted results in this study with other studies and also the statistical measures shows the efficiency of artificial neural network.
Usage of the back-propagation method for alphabet recognition
NASA Astrophysics Data System (ADS)
Shaila Sree, R. N.; Eswaran, Kumar; Sundararajan, N.
1999-03-01
Artificial Neural Networks play a pivotal role in the branch of Artificial Intelligence. They can be trained efficiently for a variety of tasks using different methods, of which the Back Propagation method is one among them. The paper studies the choosing of various design parameters of a neural network for the Back Propagation method. The study shows that when these parameters are properly assigned, the training task of the net is greatly simplified. The character recognition problem has been chosen as a test case for this study. A sample space of different handwritten characters of the English alphabet was gathered. A Neural net is finally designed taking many the design aspects into consideration and trained for different styles of writing. Experimental results are reported and discussed. It has been found that an appropriate choice of the design parameters of the neural net for the Back Propagation method reduces the training time and improves the performance of the net.
Neural Networks for Rapid Design and Analysis
NASA Technical Reports Server (NTRS)
Sparks, Dean W., Jr.; Maghami, Peiman G.
1998-01-01
Artificial neural networks have been employed for rapid and efficient dynamics and control analysis of flexible systems. Specifically, feedforward neural networks are designed to approximate nonlinear dynamic components over prescribed input ranges, and are used in simulations as a means to speed up the overall time response analysis process. To capture the recursive nature of dynamic components with artificial neural networks, recurrent networks, which use state feedback with the appropriate number of time delays, as inputs to the networks, are employed. Once properly trained, neural networks can give very good approximations to nonlinear dynamic components, and by their judicious use in simulations, allow the analyst the potential to speed up the analysis process considerably. To illustrate this potential speed up, an existing simulation model of a spacecraft reaction wheel system is executed, first conventionally, and then with an artificial neural network in place.
Porosity Estimation By Artificial Neural Networks Inversion . Application to Algerian South Field
NASA Astrophysics Data System (ADS)
Eladj, Said; Aliouane, Leila; Ouadfeul, Sid-Ali
2017-04-01
One of the main geophysicist's current challenge is the discovery and the study of stratigraphic traps, this last is a difficult task and requires a very fine analysis of the seismic data. The seismic data inversion allows obtaining lithological and stratigraphic information for the reservoir characterization . However, when solving the inverse problem we encounter difficult problems such as: Non-existence and non-uniqueness of the solution add to this the instability of the processing algorithm. Therefore, uncertainties in the data and the non-linearity of the relationship between the data and the parameters must be taken seriously. In this case, the artificial intelligence techniques such as Artificial Neural Networks(ANN) is used to resolve this ambiguity, this can be done by integrating different physical properties data which requires a supervised learning methods. In this work, we invert the acoustic impedance 3D seismic cube using the colored inversion method, then, the introduction of the acoustic impedance volume resulting from the first step as an input of based model inversion method allows to calculate the Porosity volume using the Multilayer Perceptron Artificial Neural Network. Application to an Algerian South hydrocarbon field clearly demonstrate the power of the proposed processing technique to predict the porosity for seismic data, obtained results can be used for reserves estimation, permeability prediction, recovery factor and reservoir monitoring. Keywords: Artificial Neural Networks, inversion, non-uniqueness , nonlinear, 3D porosity volume, reservoir characterization .
Reconstruction of magnetic configurations in W7-X using artificial neural networks
NASA Astrophysics Data System (ADS)
Böckenhoff, Daniel; Blatzheim, Marko; Hölbe, Hauke; Niemann, Holger; Pisano, Fabio; Labahn, Roger; Pedersen, Thomas Sunn; The W7-X Team
2018-05-01
It is demonstrated that artificial neural networks can be used to accurately and efficiently predict details of the magnetic topology at the plasma edge of the Wendelstein 7-X stellarator, based on simulated as well as measured heat load patterns onto plasma-facing components observed with infrared cameras. The connection between heat load patterns and the magnetic topology is a challenging regression problem, but one that suits artificial neural networks well. The use of a neural network makes it feasible to analyze and control the plasma exhaust in real-time, an important goal for Wendelstein 7-X, and for magnetic confinement fusion research in general.
Vickram, A S; Kamini, A Rao; Das, Raja; Pathy, M Ramesh; Parameswari, R; Archana, K; Sridharan, T B
2016-08-01
Seminal fluid is the secretion from many glands comprised of several organic and inorganic compounds including free amino acids, proteins, fructose, glucosidase, zinc, and other scavenging elements like Mg(2+), Ca(2+), K(+), and Na(+). Therefore, in the view of development of novel approaches and proper diagnosis to male infertility, overall understanding of the biochemical and molecular composition and its role in regulation of sperm quality is highly desirable. Perhaps this can be achieved through artificial intelligence. This study was aimed to elucidate and predict various biochemical markers present in human seminal plasma with three different neural network models. A total of 177 semen samples were collected for this research (both fertile and infertile samples) and immediately processed to prepare a semen analysis report, based on the protocol of the World Health Organization (WHO [2010]). The semen samples were then categorized into oligoasthenospermia (n=35), asthenospermia (n=35), azoospermia (n=22), normospermia (n=34), oligospermia (n=34), and control (n=17). The major biochemical parameters like total protein content, fructose, glucosidase, and zinc content were elucidated by standard protocols. All the biochemical markers were predicted by using three different artificial neural network (ANN) models with semen parameters as inputs. Of the three models, the back propagation neural network model (BPNN) yielded the best results with mean absolute error 0.025, -0.080, 0.166, and -0.057 for protein, fructose, glucosidase, and zinc, respectively. This suggests that BPNN can be used to predict biochemical parameters for the proper diagnosis of male infertility in assisted reproductive technology (ART) centres. AAS: absorption spectroscopy; AI: artificial intelligence; ANN: artificial neural networks; ART: assisted reproductive technology; BPNN: back propagation neural network model; DT: decision tress; MLP: multilayer perceptron; PESA: percutaneous epididymal sperm spiration; RBFN: radical basis function network; SRNN: simple recurrent neural network; SVM: support vector machines; TSE: testicular sperm extraction; WHO: World Health Organization.
ERIC Educational Resources Information Center
Carson, Andrew D.; Bizot, Elizabeth B.; Hendershot, Peggy E.; Barton, Margaret G.; Garvin, Mary K.; Kraemer, Barbara
1999-01-01
Career recommendations were made based on aptitude scores of 335 high school freshmen. Artificial neural networks were used to map recommendations to 12 occupational clusters. Overall accuracy of neural networks (.80) approached that of discriminant function analysis (.84). The two methods had different strengths and weaknesses. (SK)
Doubly stochastic Poisson processes in artificial neural learning.
Card, H C
1998-01-01
This paper investigates neuron activation statistics in artificial neural networks employing stochastic arithmetic. It is shown that a doubly stochastic Poisson process is an appropriate model for the signals in these circuits.
Artificial intelligence: Deep neural reasoning
NASA Astrophysics Data System (ADS)
Jaeger, Herbert
2016-10-01
The human brain can solve highly abstract reasoning problems using a neural network that is entirely physical. The underlying mechanisms are only partially understood, but an artificial network provides valuable insight. See Article p.471
Prediction of U-Mo dispersion nuclear fuels with Al-Si alloy using artificial neural network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Susmikanti, Mike, E-mail: mike@batan.go.id; Sulistyo, Jos, E-mail: soj@batan.go.id
2014-09-30
Dispersion nuclear fuels, consisting of U-Mo particles dispersed in an Al-Si matrix, are being developed as fuel for research reactors. The equilibrium relationship for a mixture component can be expressed in the phase diagram. It is important to analyze whether a mixture component is in equilibrium phase or another phase. The purpose of this research it is needed to built the model of the phase diagram, so the mixture component is in the stable or melting condition. Artificial neural network (ANN) is a modeling tool for processes involving multivariable non-linear relationships. The objective of the present work is to developmore » code based on artificial neural network models of system equilibrium relationship of U-Mo in Al-Si matrix. This model can be used for prediction of type of resulting mixture, and whether the point is on the equilibrium phase or in another phase region. The equilibrium model data for prediction and modeling generated from experimentally data. The artificial neural network with resilient backpropagation method was chosen to predict the dispersion of nuclear fuels U-Mo in Al-Si matrix. This developed code was built with some function in MATLAB. For simulations using ANN, the Levenberg-Marquardt method was also used for optimization. The artificial neural network is able to predict the equilibrium phase or in the phase region. The develop code based on artificial neural network models was built, for analyze equilibrium relationship of U-Mo in Al-Si matrix.« less
Yeşilkanat, Cafer Mert; Kobya, Yaşar; Taşkın, Halim; Çevik, Uğur
2017-09-01
The aim of this study was to determine spatial risk dispersion of ambient gamma dose rate (AGDR) by using both artificial neural network (ANN) and fuzzy logic (FL) methods, compare the performances of methods, make dose estimations for intermediate stations with no previous measurements and create dose rate risk maps of the study area. In order to determine the dose distribution by using artificial neural networks, two main networks and five different network structures were used; feed forward ANN; Multi-layer perceptron (MLP), Radial basis functional neural network (RBFNN), Quantile regression neural network (QRNN) and recurrent ANN; Jordan networks (JN), Elman networks (EN). In the evaluation of estimation performance obtained for the test data, all models appear to give similar results. According to the cross-validation results obtained for explaining AGDR distribution, Pearson's r coefficients were calculated as 0.94, 0.91, 0.89, 0.91, 0.91 and 0.92 and RMSE values were calculated as 34.78, 43.28, 63.92, 44.86, 46.77 and 37.92 for MLP, RBFNN, QRNN, JN, EN and FL, respectively. In addition, spatial risk maps showing distributions of AGDR of the study area were created by all models and results were compared with geological, topological and soil structure. Copyright © 2017 Elsevier Ltd. All rights reserved.
Estimation of sleep stages by an artificial neural network employing EEG, EMG and EOG.
Tagluk, M Emin; Sezgin, Necmettin; Akin, Mehmet
2010-08-01
Analysis and classification of sleep stages is essential in sleep research. In this particular study, an alternative system which estimates sleep stages of human being through a multi-layer neural network (NN) that simultaneously employs EEG, EMG and EOG. The data were recorded through polisomnography device for 7 h for each subject. These collective variant data were first grouped by an expert physician and the software of polisomnography, and then used for training and testing the proposed Artificial Neural Network (ANN). A good scoring was attained through the trained ANN, so it may be put into use in clinics where lacks of specialist physicians.
Intelligent Noninvasive Diagnosis of Aneuploidy: Raw Values and Highly Imbalanced Dataset.
Neocleous, Andreas C; Nicolaides, Kypros H; Schizas, Christos N
2017-09-01
The objective of this paper is to introduce a noninvasive diagnosis procedure for aneuploidy and to minimize the social and financial cost of prenatal diagnosis tests that are performed for fetal aneuploidies in an early stage of pregnancy. We propose a method by using artificial neural networks trained with data from singleton pregnancy cases, while undergoing first trimester screening. Three different datasets 1 with a total of 122 362 euploid and 967 aneuploid cases were used in this study. The data for each case contained markers collected from the mother and the fetus. This study, unlike previous studies published by the authors for a similar problem differs in three basic principles: 1) the training of the artificial neural networks is done by using the markers' values in their raw form (unprocessed), 2) a balanced training dataset is created and used by selecting only a representative number of euploids for the training phase, and 3) emphasis is given to the financials and suggest hierarchy and necessity of the available tests. The proposed artificial neural networks models were optimized in the sense of reaching a minimum false positive rate and at the same time securing a 100% detection rate for Trisomy 21. These systems correctly identify other aneuploidies (Trisomies 13&18, Turner, and Triploid syndromes) at a detection rate greater than 80%. In conclusion, we demonstrate that artificial neural network systems can contribute in providing noninvasive, effective early screening for fetal aneuploidies with results that compare favorably to other existing methods.
The image recognition based on neural network and Bayesian decision
NASA Astrophysics Data System (ADS)
Wang, Chugege
2018-04-01
The artificial neural network began in 1940, which is an important part of artificial intelligence. At present, it has become a hot topic in the fields of neuroscience, computer science, brain science, mathematics, and psychology. Thomas Bayes firstly reported the Bayesian theory in 1763. After the development in the twentieth century, it has been widespread in all areas of statistics. In recent years, due to the solution of the problem of high-dimensional integral calculation, Bayesian Statistics has been improved theoretically, which solved many problems that cannot be solved by classical statistics and is also applied to the interdisciplinary fields. In this paper, the related concepts and principles of the artificial neural network are introduced. It also summarizes the basic content and principle of Bayesian Statistics, and combines the artificial neural network technology and Bayesian decision theory and implement them in all aspects of image recognition, such as enhanced face detection method based on neural network and Bayesian decision, as well as the image classification based on the Bayesian decision. It can be seen that the combination of artificial intelligence and statistical algorithms has always been the hot research topic.
Cho, Kyung Jin; Müller, Jacobus H; Erasmus, Pieter J; DeJour, David; Scheffer, Cornie
2014-01-01
Segmentation and computer assisted design tools have the potential to test the validity of simulated surgical procedures, e.g., trochleoplasty. A repeatable measurement method for three dimensional femur models that enables quantification of knee parameters of the distal femur is presented. Fifteen healthy knees are analysed using the method to provide a training set for an artificial neural network. The aim is to use this artificial neural network for the prediction of parameter values that describe the shape of a normal trochlear groove geometry. This is achieved by feeding the artificial neural network with the unaffected parameters of a dysplastic knee. Four dysplastic knees (Type A through D) are virtually redesigned by way of morphing the groove geometries based on the suggested shape from the artificial neural network. Each of the four resulting shapes is analysed and compared to its initial dysplastic shape in terms of three anteroposterior dimensions: lateral, central and medial. For the four knees the trochlear depth is increased, the ventral trochlear prominence reduced and the sulcus angle corrected to within published normal ranges. The results show a lateral facet elevation inadequate, with a sulcus deepening or a depression trochleoplasty more beneficial to correct trochlear dysplasia.
Artificial neural network prediction of aircraft aeroelastic behavior
NASA Astrophysics Data System (ADS)
Pesonen, Urpo Juhani
An Artificial Neural Network that predicts aeroelastic behavior of aircraft is presented. The neural net was designed to predict the shape of a flexible wing in static flight conditions using results from a structural analysis and an aerodynamic analysis performed with traditional computational tools. To generate reliable training and testing data for the network, an aeroelastic analysis code using these tools as components was designed and validated. To demonstrate the advantages and reliability of Artificial Neural Networks, a network was also designed and trained to predict airfoil maximum lift at low Reynolds numbers where wind tunnel data was used for the training. Finally, a neural net was designed and trained to predict the static aeroelastic behavior of a wing without the need to iterate between the structural and aerodynamic solvers.
Hierarchical Process Control of Chemical Vapor Infiltration.
1995-05-31
convergence artificial neural network and used it to discover improved regions of the CVI processing parameter space; also, the Technology Assessment...identify in situ process sensors of considerable promise and as artificial neural network training pairs.
ERIC Educational Resources Information Center
Bahadir, Elif
2016-01-01
The purpose of this study is to examine a neural network based approach to predict achievement in graduate education for Elementary Mathematics prospective teachers. With the help of this study, it can be possible to make an effective prediction regarding the students' achievement in graduate education with Artificial Neural Networks (ANN). Two…
2000-10-01
Purpose: To combine clinical, serum, pathologic and computer derived information into an artificial neural network to develop/validate a model to...Development of an artificial neural network (year 02). Prospective validation of this model (projected year 03). All models will be tested and
1999-10-01
THE PURPOSE OF THIS REPORT IS TO COMBINE CLINICAL, SERUM, PATHOLOGICAL AND COMPUTER DERIVED INFORMATION INTO AN ARTIFICIAL NEURAL NETWORK TO DEVELOP...01). Development of a artificial neural network model (year 02). Prospective validation of this model (projected year 03). All models will be tested
A comparison of polynomial approximations and artificial neural nets as response surfaces
NASA Technical Reports Server (NTRS)
Carpenter, William C.; Barthelemy, Jean-Francois M.
1992-01-01
Artificial neural nets and polynomial approximations were used to develop response surfaces for several test problems. Based on the number of functional evaluations required to build the approximations and the number of undetermined parameters associated with the approximations, the performance of the two types of approximations was found to be comparable. A rule of thumb is developed for determining the number of nodes to be used on a hidden layer of an artificial neural net, and the number of designs needed to train an approximation is discussed.
Maharlou, Hamidreza; Niakan Kalhori, Sharareh R; Shahbazi, Shahrbanoo; Ravangard, Ramin
2018-04-01
Accurate prediction of patients' length of stay is highly important. This study compared the performance of artificial neural network and adaptive neuro-fuzzy system algorithms to predict patients' length of stay in intensive care units (ICU) after cardiac surgery. A cross-sectional, analytical, and applied study was conducted. The required data were collected from 311 cardiac patients admitted to intensive care units after surgery at three hospitals of Shiraz, Iran, through a non-random convenience sampling method during the second quarter of 2016. Following the initial processing of influential factors, models were created and evaluated. The results showed that the adaptive neuro-fuzzy algorithm (with mean squared error [MSE] = 7 and R = 0.88) resulted in the creation of a more precise model than the artificial neural network (with MSE = 21 and R = 0.60). The adaptive neuro-fuzzy algorithm produces a more accurate model as it applies both the capabilities of a neural network architecture and experts' knowledge as a hybrid algorithm. It identifies nonlinear components, yielding remarkable results for prediction the length of stay, which is a useful calculation output to support ICU management, enabling higher quality of administration and cost reduction.
Nunes, Matheus Henrique
2016-01-01
Tree stem form in native tropical forests is very irregular, posing a challenge to establishing taper equations that can accurately predict the diameter at any height along the stem and subsequently merchantable volume. Artificial intelligence approaches can be useful techniques in minimizing estimation errors within complex variations of vegetation. We evaluated the performance of Random Forest® regression tree and Artificial Neural Network procedures in modelling stem taper. Diameters and volume outside bark were compared to a traditional taper-based equation across a tropical Brazilian savanna, a seasonal semi-deciduous forest and a rainforest. Neural network models were found to be more accurate than the traditional taper equation. Random forest showed trends in the residuals from the diameter prediction and provided the least precise and accurate estimations for all forest types. This study provides insights into the superiority of a neural network, which provided advantages regarding the handling of local effects. PMID:27187074
Nunes, Matheus Henrique; Görgens, Eric Bastos
2016-01-01
Tree stem form in native tropical forests is very irregular, posing a challenge to establishing taper equations that can accurately predict the diameter at any height along the stem and subsequently merchantable volume. Artificial intelligence approaches can be useful techniques in minimizing estimation errors within complex variations of vegetation. We evaluated the performance of Random Forest® regression tree and Artificial Neural Network procedures in modelling stem taper. Diameters and volume outside bark were compared to a traditional taper-based equation across a tropical Brazilian savanna, a seasonal semi-deciduous forest and a rainforest. Neural network models were found to be more accurate than the traditional taper equation. Random forest showed trends in the residuals from the diameter prediction and provided the least precise and accurate estimations for all forest types. This study provides insights into the superiority of a neural network, which provided advantages regarding the handling of local effects.
Kriegeskorte, Nikolaus
2015-11-24
Recent advances in neural network modeling have enabled major strides in computer vision and other artificial intelligence applications. Human-level visual recognition abilities are coming within reach of artificial systems. Artificial neural networks are inspired by the brain, and their computations could be implemented in biological neurons. Convolutional feedforward networks, which now dominate computer vision, take further inspiration from the architecture of the primate visual hierarchy. However, the current models are designed with engineering goals, not to model brain computations. Nevertheless, initial studies comparing internal representations between these models and primate brains find surprisingly similar representational spaces. With human-level performance no longer out of reach, we are entering an exciting new era, in which we will be able to build biologically faithful feedforward and recurrent computational models of how biological brains perform high-level feats of intelligence, including vision.
Jahidin, A H; Megat Ali, M S A; Taib, M N; Tahir, N Md; Yassin, I M; Lias, S
2014-04-01
This paper elaborates on the novel intelligence assessment method using the brainwave sub-band power ratio features. The study focuses only on the left hemisphere brainwave in its relaxed state. Distinct intelligence quotient groups have been established earlier from the score of the Raven Progressive Matrices. Sub-band power ratios are calculated from energy spectral density of theta, alpha and beta frequency bands. Synthetic data have been generated to increase dataset from 50 to 120. The features are used as input to the artificial neural network. Subsequently, the brain behaviour model has been developed using an artificial neural network that is trained with optimized learning rate, momentum constant and hidden nodes. Findings indicate that the distinct intelligence quotient groups can be classified from the brainwave sub-band power ratios with 100% training and 88.89% testing accuracies. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Nondestructive pavement evaluation using ILLI-PAVE based artificial neural network models.
DOT National Transportation Integrated Search
2008-09-01
The overall objective in this research project is to develop advanced pavement structural analysis models for more accurate solutions with fast computation schemes. Soft computing and modeling approaches, specifically the Artificial Neural Network (A...
Using chaotic artificial neural networks to model memory in the brain
NASA Astrophysics Data System (ADS)
Aram, Zainab; Jafari, Sajad; Ma, Jun; Sprott, Julien C.; Zendehrouh, Sareh; Pham, Viet-Thanh
2017-03-01
In the current study, a novel model for human memory is proposed based on the chaotic dynamics of artificial neural networks. This new model explains a biological fact about memory which is not yet explained by any other model: There are theories that the brain normally works in a chaotic mode, while during attention it shows ordered behavior. This model uses the periodic windows observed in a previously proposed model for the brain to store and then recollect the information.
Standard representation and unified stability analysis for dynamic artificial neural network models.
Kim, Kwang-Ki K; Patrón, Ernesto Ríos; Braatz, Richard D
2018-02-01
An overview is provided of dynamic artificial neural network models (DANNs) for nonlinear dynamical system identification and control problems, and convex stability conditions are proposed that are less conservative than past results. The three most popular classes of dynamic artificial neural network models are described, with their mathematical representations and architectures followed by transformations based on their block diagrams that are convenient for stability and performance analyses. Classes of nonlinear dynamical systems that are universally approximated by such models are characterized, which include rigorous upper bounds on the approximation errors. A unified framework and linear matrix inequality-based stability conditions are described for different classes of dynamic artificial neural network models that take additional information into account such as local slope restrictions and whether the nonlinearities within the DANNs are odd. A theoretical example shows reduced conservatism obtained by the conditions. Copyright © 2017. Published by Elsevier Ltd.
Artificial neural networks in evaluation and optimization of modified release solid dosage forms.
Ibrić, Svetlana; Djuriš, Jelena; Parojčić, Jelena; Djurić, Zorica
2012-10-18
Implementation of the Quality by Design (QbD) approach in pharmaceutical development has compelled researchers in the pharmaceutical industry to employ Design of Experiments (DoE) as a statistical tool, in product development. Among all DoE techniques, response surface methodology (RSM) is the one most frequently used. Progress of computer science has had an impact on pharmaceutical development as well. Simultaneous with the implementation of statistical methods, machine learning tools took an important place in drug formulation. Twenty years ago, the first papers describing application of artificial neural networks in optimization of modified release products appeared. Since then, a lot of work has been done towards implementation of new techniques, especially Artificial Neural Networks (ANN) in modeling of production, drug release and drug stability of modified release solid dosage forms. The aim of this paper is to review artificial neural networks in evaluation and optimization of modified release solid dosage forms.
Artificial Neural Networks in Evaluation and Optimization of Modified Release Solid Dosage Forms
Ibrić, Svetlana; Djuriš, Jelena; Parojčić, Jelena; Djurić, Zorica
2012-01-01
Implementation of the Quality by Design (QbD) approach in pharmaceutical development has compelled researchers in the pharmaceutical industry to employ Design of Experiments (DoE) as a statistical tool, in product development. Among all DoE techniques, response surface methodology (RSM) is the one most frequently used. Progress of computer science has had an impact on pharmaceutical development as well. Simultaneous with the implementation of statistical methods, machine learning tools took an important place in drug formulation. Twenty years ago, the first papers describing application of artificial neural networks in optimization of modified release products appeared. Since then, a lot of work has been done towards implementation of new techniques, especially Artificial Neural Networks (ANN) in modeling of production, drug release and drug stability of modified release solid dosage forms. The aim of this paper is to review artificial neural networks in evaluation and optimization of modified release solid dosage forms. PMID:24300369
NASA Astrophysics Data System (ADS)
Ghaderi, A. H.; Darooneh, A. H.
The behavior of nonlinear systems can be analyzed by artificial neural networks. Air temperature change is one example of the nonlinear systems. In this work, a new neural network method is proposed for forecasting maximum air temperature in two cities. In this method, the regular graph concept is used to construct some partially connected neural networks that have regular structures. The learning results of fully connected ANN and networks with proposed method are compared. In some case, the proposed method has the better result than conventional ANN. After specifying the best network, the effect of input pattern numbers on the prediction is studied and the results show that the increase of input patterns has a direct effect on the prediction accuracy.
Baghapour, Mohammad Ali; Fadaei Nobandegani, Amir; Talebbeydokhti, Nasser; Bagherzadeh, Somayeh; Nadiri, Ata Allah; Gharekhani, Maryam; Chitsazan, Nima
2016-01-01
Extensive human activities and unplanned land uses have put groundwater resources of Shiraz plain at a high risk of nitrate pollution, causing several environmental and human health issues. To address these issues, water resources managers utilize groundwater vulnerability assessment and determination of protection. This study aimed to prepare the vulnerability maps of Shiraz aquifer by using Composite DRASTIC index, Nitrate Vulnerability index, and artificial neural network and also to compare their efficiency. The parameters of the indexes that were employed in this study are: depth to water table, net recharge, aquifer media, soil media, topography, impact of the vadose zone, hydraulic conductivity, and land use. These parameters were rated, weighted, and integrated using GIS, and then, used to develop the risk maps of Shiraz aquifer. The results indicated that the southeastern part of the aquifer was at the highest potential risk. Given the distribution of groundwater nitrate concentrations from the wells in the underlying aquifer, the artificial neural network model offered greater accuracy compared to the other two indexes. The study concluded that the artificial neural network model is an effective model to improve the DRASTIC index and provides a confident estimate of the pollution risk. As intensive agricultural activities are the dominant land use and water table is shallow in the vulnerable zones, optimized irrigation techniques and a lower rate of fertilizers are suggested. The findings of our study could be used as a scientific basis in future for sustainable groundwater management in Shiraz plain.
Computational properties of networks of synchronous groups of spiking neurons.
Dayhoff, Judith E
2007-09-01
We demonstrate a model in which synchronously firing ensembles of neurons are networked to produce computational results. Each ensemble is a group of biological integrate-and-fire spiking neurons, with probabilistic interconnections between groups. An analogy is drawn in which each individual processing unit of an artificial neural network corresponds to a neuronal group in a biological model. The activation value of a unit in the artificial neural network corresponds to the fraction of active neurons, synchronously firing, in a biological neuronal group. Weights of the artificial neural network correspond to the product of the interconnection density between groups, the group size of the presynaptic group, and the postsynaptic potential heights in the synchronous group model. All three of these parameters can modulate connection strengths between neuronal groups in the synchronous group models. We give an example of nonlinear classification (XOR) and a function approximation example in which the capability of the artificial neural network can be captured by a neural network model with biological integrate-and-fire neurons configured as a network of synchronously firing ensembles of such neurons. We point out that the general function approximation capability proven for feedforward artificial neural networks appears to be approximated by networks of neuronal groups that fire in synchrony, where the groups comprise integrate-and-fire neurons. We discuss the advantages of this type of model for biological systems, its possible learning mechanisms, and the associated timing relationships.
Alvarellos-González, Alberto; Pazos, Alejandro; Porto-Pazos, Ana B.
2012-01-01
The importance of astrocytes, one part of the glial system, for information processing in the brain has recently been demonstrated. Regarding information processing in multilayer connectionist systems, it has been shown that systems which include artificial neurons and astrocytes (Artificial Neuron-Glia Networks) have well-known advantages over identical systems including only artificial neurons. Since the actual impact of astrocytes in neural network function is unknown, we have investigated, using computational models, different astrocyte-neuron interactions for information processing; different neuron-glia algorithms have been implemented for training and validation of multilayer Artificial Neuron-Glia Networks oriented toward classification problem resolution. The results of the tests performed suggest that all the algorithms modelling astrocyte-induced synaptic potentiation improved artificial neural network performance, but their efficacy depended on the complexity of the problem. PMID:22649480
Alvarellos-González, Alberto; Pazos, Alejandro; Porto-Pazos, Ana B
2012-01-01
The importance of astrocytes, one part of the glial system, for information processing in the brain has recently been demonstrated. Regarding information processing in multilayer connectionist systems, it has been shown that systems which include artificial neurons and astrocytes (Artificial Neuron-Glia Networks) have well-known advantages over identical systems including only artificial neurons. Since the actual impact of astrocytes in neural network function is unknown, we have investigated, using computational models, different astrocyte-neuron interactions for information processing; different neuron-glia algorithms have been implemented for training and validation of multilayer Artificial Neuron-Glia Networks oriented toward classification problem resolution. The results of the tests performed suggest that all the algorithms modelling astrocyte-induced synaptic potentiation improved artificial neural network performance, but their efficacy depended on the complexity of the problem.
NASA Technical Reports Server (NTRS)
Hepner, George F.; Logan, Thomas; Ritter, Niles; Bryant, Nevin
1990-01-01
Recent research has shown an artificial neural network (ANN) to be capable of pattern recognition and the classification of image data. This paper examines the potential for the application of neural network computing to satellite image processing. A second objective is to provide a preliminary comparison and ANN classification. An artificial neural network can be trained to do land-cover classification of satellite imagery using selected sites representative of each class in a manner similar to conventional supervised classification. One of the major problems associated with recognition and classifications of pattern from remotely sensed data is the time and cost of developing a set of training sites. This reseach compares the use of an ANN back propagation classification procedure with a conventional supervised maximum likelihood classification procedure using a minimal training set. When using a minimal training set, the neural network is able to provide a land-cover classification superior to the classification derived from the conventional classification procedure. This research is the foundation for developing application parameters for further prototyping of software and hardware implementations for artificial neural networks in satellite image and geographic information processing.
Noorizadeh, Hadi; Farmany, Abbas; Narimani, Hojat; Noorizadeh, Mehrab
2013-05-01
A quantitative structure-retention relationship (QSRR) study based on an artificial neural network (ANN) was carried out for the prediction of the ultra-performance liquid chromatography-Time-of-Flight mass spectrometry (UPLC-TOF-MS) retention time (RT) of a set of 52 pharmaceuticals and drugs of abuse in hair. The genetic algorithm was used as a variable selection tool. A partial least squares (PLS) method was used to select the best descriptors which were used as input neurons in neural network model. For choosing the best predictive model from among comparable models, square correlation coefficient R(2) for the whole set calculated based on leave-group-out predicted values of the training set and model-derived predicted values for the test set compounds is suggested to be a good criterion. Finally, to improve the results, structure-retention relationships were followed by a non-linear approach using artificial neural networks and consequently better results were obtained. This also demonstrates the advantages of ANN. Copyright © 2011 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Tselentis, G.-A.; Sokos, E.
2012-01-01
In this paper we suggest the use of diffusion-neural-networks, (neural networks with intrinsic fuzzy logic abilities) to assess the relationship between isoseismal area and earthquake magnitude for the region of Greece. It is of particular importance to study historical earthquakes for which we often have macroseismic information in the form of isoseisms but it is statistically incomplete to assess magnitudes from an isoseismal area or to train conventional artificial neural networks for magnitude estimation. Fuzzy relationships are developed and used to train a feed forward neural network with a back propagation algorithm to obtain the final relationships. Seismic intensity data from 24 earthquakes in Greece have been used. Special attention is being paid to the incompleteness and contradictory patterns in scanty historical earthquake records. The results show that the proposed processing model is very effective, better than applying classical artificial neural networks since the magnitude macroseismic intensity target function has a strong nonlinearity and in most cases the macroseismic datasets are very small.
Artificial neural networks as a useful tool to predict the risk level of Betula pollen in the air
NASA Astrophysics Data System (ADS)
Castellano-Méndez, M.; Aira, M. J.; Iglesias, I.; Jato, V.; González-Manteiga, W.
2005-05-01
An increasing percentage of the European population suffers from allergies to pollen. The study of the evolution of air pollen concentration supplies prior knowledge of the levels of pollen in the air, which can be useful for the prevention and treatment of allergic symptoms, and the management of medical resources. The symptoms of Betula pollinosis can be associated with certain levels of pollen in the air. The aim of this study was to predict the risk of the concentration of pollen exceeding a given level, using previous pollen and meteorological information, by applying neural network techniques. Neural networks are a widespread statistical tool useful for the study of problems associated with complex or poorly understood phenomena. The binary response variable associated with each level requires a careful selection of the neural network and the error function associated with the learning algorithm used during the training phase. The performance of the neural network with the validation set showed that the risk of the pollen level exceeding a certain threshold can be successfully forecasted using artificial neural networks. This prediction tool may be implemented to create an automatic system that forecasts the risk of suffering allergic symptoms.
Predictive control of intersegmental tarsal movements in an insect.
Costalago-Meruelo, Alicia; Simpson, David M; Veres, Sandor M; Newland, Philip L
2017-08-01
In many animals intersegmental reflexes are important for postural and movement control but are still poorly undesrtood. Mathematical methods can be used to model the responses to stimulation, and thus go beyond a simple description of responses to specific inputs. Here we analyse an intersegmental reflex of the foot (tarsus) of the locust hind leg, which raises the tarsus when the tibia is flexed and depresses it when the tibia is extended. A novel method is described to measure and quantify the intersegmental responses of the tarsus to a stimulus to the femoro-tibial chordotonal organ. An Artificial Neural Network, the Time Delay Neural Network, was applied to understand the properties and dynamics of the reflex responses. The aim of this study was twofold: first to develop an accurate method to record and analyse the movement of an appendage and second, to apply methods to model the responses using Artificial Neural Networks. The results show that Artificial Neural Networks provide accurate predictions of tarsal movement when trained with an average reflex response to Gaussian White Noise stimulation compared to linear models. Furthermore, the Artificial Neural Network model can predict the individual responses of each animal and responses to others inputs such as a sinusoid. A detailed understanding of such a reflex response could be included in the design of orthoses or functional electrical stimulation treatments to improve walking in patients with neurological disorders as well as the bio/inspired design of robots.
ERIC Educational Resources Information Center
Morgan-Short, Kara; Deng, ZhiZhou; Brill-Schuetz, Katherine A.; Faretta- Stutenberg, Mandy; Wong, Patrick C. M.; Wong, Francis C. K.
2015-01-01
The current study aims to make an initial neuroimaging contribution to central implicit-explicit issues in second language (L2) acquisition by considering how implicit and explicit contexts mediate the neural representation of L2. Focusing on implicit contexts, the study employs a longitudinal design to examine the neural representation of L2…
Bayro-Corrochano, Eduardo; Vazquez-Santacruz, Eduardo; Moya-Sanchez, Eduardo; Castillo-Munis, Efrain
2016-10-01
This paper presents the design of radial basis function geometric bioinspired networks and their applications. Until now, the design of neural networks has been inspired by the biological models of neural networks but mostly using vector calculus and linear algebra. However, these designs have never shown the role of geometric computing. The question is how biological neural networks handle complex geometric representations involving Lie group operations like rotations. Even though the actual artificial neural networks are biologically inspired, they are just models which cannot reproduce a plausible biological process. Until now researchers have not shown how, using these models, one can incorporate them into the processing of geometric computing. Here, for the first time in the artificial neural networks domain, we address this issue by designing a kind of geometric RBF using the geometric algebra framework. As a result, using our artificial networks, we show how geometric computing can be carried out by the artificial neural networks. Such geometric neural networks have a great potential in robot vision. This is the most important aspect of this contribution to propose artificial geometric neural networks for challenging tasks in perception and action. In our experimental analysis, we show the applicability of our geometric designs, and present interesting experiments using 2-D data of real images and 3-D screw axis data. In general, our models should be used to process different types of inputs, such as visual cues, touch (texture, elasticity, temperature), taste, and sound. One important task of a perception-action system is to fuse a variety of cues coming from the environment and relate them via a sensor-motor manifold with motor modules to carry out diverse reasoned actions.
Introduction to Neural Networks.
1992-03-01
parallel processing of information that can greatly reduce the time required to perform operations which are needed in pattern recognition. Neural network, Artificial neural network , Neural net, ANN.
Are artificial neural networks black boxes?
Benitez, J M; Castro, J L; Requena, I
1997-01-01
Artificial neural networks are efficient computing models which have shown their strengths in solving hard problems in artificial intelligence. They have also been shown to be universal approximators. Notwithstanding, one of the major criticisms is their being black boxes, since no satisfactory explanation of their behavior has been offered. In this paper, we provide such an interpretation of neural networks so that they will no longer be seen as black boxes. This is stated after establishing the equality between a certain class of neural nets and fuzzy rule-based systems. This interpretation is built with fuzzy rules using a new fuzzy logic operator which is defined after introducing the concept of f-duality. In addition, this interpretation offers an automated knowledge acquisition procedure.
A review of evidence of health benefit from artificial neural networks in medical intervention.
Lisboa, P J G
2002-01-01
The purpose of this review is to assess the evidence of healthcare benefits involving the application of artificial neural networks to the clinical functions of diagnosis, prognosis and survival analysis, in the medical domains of oncology, critical care and cardiovascular medicine. The primary source of publications is PUBMED listings under Randomised Controlled Trials and Clinical Trials. The rĵle of neural networks is introduced within the context of advances in medical decision support arising from parallel developments in statistics and artificial intelligence. This is followed by a survey of published Randomised Controlled Trials and Clinical Trials, leading to recommendations for good practice in the design and evaluation of neural networks for use in medical intervention.
Nanophotonic particle simulation and inverse design using artificial neural networks.
Peurifoy, John; Shen, Yichen; Jing, Li; Yang, Yi; Cano-Renteria, Fidel; DeLacy, Brendan G; Joannopoulos, John D; Tegmark, Max; Soljačić, Marin
2018-06-01
We propose a method to use artificial neural networks to approximate light scattering by multilayer nanoparticles. We find that the network needs to be trained on only a small sampling of the data to approximate the simulation to high precision. Once the neural network is trained, it can simulate such optical processes orders of magnitude faster than conventional simulations. Furthermore, the trained neural network can be used to solve nanophotonic inverse design problems by using back propagation, where the gradient is analytical, not numerical.
Application of Artificial Neural Networks in the Heart Electrical Axis Position Conclusion Modeling
NASA Astrophysics Data System (ADS)
Bakanovskaya, L. N.
2016-08-01
The article touches upon building of a heart electrical axis position conclusion model using an artificial neural network. The input signals of the neural network are the values of deflections Q, R and S; and the output signal is the value of the heart electrical axis position. Training of the network is carried out by the error propagation method. The test results allow concluding that the created neural network makes a conclusion with a high degree of accuracy.
Analysis Resilient Algorithm on Artificial Neural Network Backpropagation
NASA Astrophysics Data System (ADS)
Saputra, Widodo; Tulus; Zarlis, Muhammad; Widia Sembiring, Rahmat; Hartama, Dedy
2017-12-01
Prediction required by decision makers to anticipate future planning. Artificial Neural Network (ANN) Backpropagation is one of method. This method however still has weakness, for long training time. This is a reason to improve a method to accelerate the training. One of Artificial Neural Network (ANN) Backpropagation method is a resilient method. Resilient method of changing weights and bias network with direct adaptation process of weighting based on local gradient information from every learning iteration. Predicting data result of Istanbul Stock Exchange training getting better. Mean Square Error (MSE) value is getting smaller and increasing accuracy.
NASA Astrophysics Data System (ADS)
Wang, J.; Shi, M.; Zheng, P.; Xue, Sh.; Peng, R.
2018-03-01
Laser-induced breakdown spectroscopy has been applied for the quantitative analysis of Ca, Mg, and K in the roots of Angelica pubescens Maxim. f. biserrata Shan et Yuan used in traditional Chinese medicine. Ca II 317.993 nm, Mg I 517.268 nm, and K I 769.896 nm spectral lines have been chosen to set up calibration models for the analysis using the external standard and artificial neural network methods. The linear correlation coefficients of the predicted concentrations versus the standard concentrations of six samples determined by the artificial neural network method are 0.9896, 0.9945, and 0.9911 for Ca, Mg, and K, respectively, which are better than for the external standard method. The artificial neural network method also gives better performance comparing with the external standard method for the average and maximum relative errors, average relative standard deviations, and most maximum relative standard deviations of the predicted concentrations of Ca, Mg, and K in the six samples. Finally, it is proved that the artificial neural network method gives better performance compared to the external standard method for the quantitative analysis of Ca, Mg, and K in the roots of Angelica pubescens.
NASA Astrophysics Data System (ADS)
Shastri, Niket; Pathak, Kamlesh
2018-05-01
The water vapor content in atmosphere plays very important role in climate. In this paper the application of GPS signal in meteorology is discussed, which is useful technique that is used to estimate the perceptible water vapor of atmosphere. In this paper various algorithms like artificial neural network, support vector machine and multiple linear regression are use to predict perceptible water vapor. The comparative studies in terms of root mean square error and mean absolute errors are also carried out for all the algorithms.
Săftoiu, Adrian; Vilmann, Peter; Gorunescu, Florin; Janssen, Jan; Hocke, Michael; Larsen, Michael; Iglesias-Garcia, Julio; Arcidiacono, Paolo; Will, Uwe; Giovannini, Marc; Dietrich, Cristoph F; Havre, Roald; Gheorghe, Cristian; McKay, Colin; Gheonea, Dan Ionuţ; Ciurea, Tudorel
2012-01-01
By using strain assessment, real-time endoscopic ultrasound (EUS) elastography provides additional information about a lesion's characteristics in the pancreas. We assessed the accuracy of real-time EUS elastography in focal pancreatic lesions using computer-aided diagnosis by artificial neural network analysis. We performed a prospective, blinded, multicentric study at of 258 patients (774 recordings from EUS elastography) who were diagnosed with chronic pancreatitis (n = 47) or pancreatic adenocarcinoma (n = 211) from 13 tertiary academic medical centers in Europe (the European EUS Elastography Multicentric Study Group). We used postprocessing software analysis to compute individual frames of elastography movies recorded by retrieving hue histogram data from a dynamic sequence of EUS elastography into a numeric matrix. The data then were analyzed in an extended neural network analysis, to automatically differentiate benign from malignant patterns. The neural computing approach had 91.14% training accuracy (95% confidence interval [CI], 89.87%-92.42%) and 84.27% testing accuracy (95% CI, 83.09%-85.44%). These results were obtained using the 10-fold cross-validation technique. The statistical analysis of the classification process showed a sensitivity of 87.59%, a specificity of 82.94%, a positive predictive value of 96.25%, and a negative predictive value of 57.22%. Moreover, the corresponding area under the receiver operating characteristic curve was 0.94 (95% CI, 0.91%-0.97%), which was significantly higher than the values obtained by simple mean hue histogram analysis, for which the area under the receiver operating characteristic was 0.85. Use of the artificial intelligence methodology via artificial neural networks supports the medical decision process, providing fast and accurate diagnoses. Copyright © 2012 AGA Institute. Published by Elsevier Inc. All rights reserved.
Analysis of Artificial Neural Network in Erosion Modeling: A Case Study of Serang Watershed
NASA Astrophysics Data System (ADS)
Arif, N.; Danoedoro, P.; Hartono
2017-12-01
Erosion modeling is an important measuring tool for both land users and decision makers to evaluate land cultivation and thus it is necessary to have a model to represent the actual reality. Erosion models are a complex model because of uncertainty data with different sources and processing procedures. Artificial neural networks can be relied on for complex and non-linear data processing such as erosion data. The main difficulty in artificial neural network training is the determination of the value of each network input parameters, i.e. hidden layer, momentum, learning rate, momentum, and RMS. This study tested the capability of artificial neural network application in the prediction of erosion risk with some input parameters through multiple simulations to get good classification results. The model was implemented in Serang Watershed, Kulonprogo, Yogyakarta which is one of the critical potential watersheds in Indonesia. The simulation results showed the number of iterations that gave a significant effect on the accuracy compared to other parameters. A small number of iterations can produce good accuracy if the combination of other parameters was right. In this case, one hidden layer was sufficient to produce good accuracy. The highest training accuracy achieved in this study was 99.32%, occurred in ANN 14 simulation with combination of network input parameters of 1 HL; LR 0.01; M 0.5; RMS 0.0001, and the number of iterations of 15000. The ANN training accuracy was not influenced by the number of channels, namely input dataset (erosion factors) as well as data dimensions, rather it was determined by changes in network parameters.
Ziada, A M; Lisle, T C; Snow, P B; Levine, R F; Miller, G; Crawford, E D
2001-04-15
The advent of advanced computing techniques has provided the opportunity to analyze clinical data using artificial intelligence techniques. This study was designed to determine whether a neural network could be developed using preoperative prognostic indicators to predict the pathologic stage and time of biochemical failure for patients who undergo radical prostatectomy. The preoperative information included TNM stage, prostate size, prostate specific antigen (PSA) level, biopsy results (Gleason score and percentage of positive biopsy), as well as patient age. All 309 patients underwent radical prostatectomy at the University of Colorado Health Sciences Center. The data from all patients were used to train a multilayer perceptron artificial neural network. The failure rate was defined as a rise in the PSA level > 0.2 ng/mL. The biochemical failure rate in the data base used was 14.2%. Univariate and multivariate analyses were performed to validate the results. The neural network statistics for the validation set showed a sensitivity and specificity of 79% and 81%, respectively, for the prediction of pathologic stage with an overall accuracy of 80% compared with an overall accuracy of 67% using the multivariate regression analysis. The sensitivity and specificity for the prediction of failure were 67% and 85%, respectively, demonstrating a high confidence in predicting failure. The overall accuracy rates for the artificial neural network and the multivariate analysis were similar. Neural networks can offer a convenient vehicle for clinicians to assess the preoperative risk of disease progression for patients who are about to undergo radical prostatectomy. Continued investigation of this approach with larger data sets seems warranted. Copyright 2001 American Cancer Society.
Automatic Exposure Control Device for Digital Mammography
2001-08-01
developing innovative approaches for controlling DM exposures. These approaches entail using the digital detector and an artificial neural network to...of interest that determine the exposure parameters for the fully exposed image; and (2) to use an artificial neural network to select exposure
Cost-Aware Design of a Discrimination Strategy for Unexploded Ordnance Cleanup
2011-02-25
Acronyms ANN: Artificial Neural Network AUC: Area Under the Curve BRAC: Base Realignment And Closure DLRT: Distance Likelihood Ratio Test EER...Discriminative Aggregate Nonparametric [25] Artificial Neural Network ANN Discriminative Aggregate Parametric [33] 11 Results and Discussion Task #1
Artificial Neural Networks for Modeling Knowing and Learning in Science.
ERIC Educational Resources Information Center
Roth, Wolff-Michael
2000-01-01
Advocates artificial neural networks as models for cognition and development. Provides an example of how such models work in the context of a well-known Piagetian developmental task and school science activity: balance beam problems. (Contains 59 references.) (Author/WRM)
Automatic Exposure Control Device for Digital Mammography
2004-08-01
developing innovative approaches for controlling DM exposures. These approaches entail using the digital detector and an artificial neural network to...of interest that determine the exposure parameters for the fully exposed image; and (2) to use an artificial neural network to select exposure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neocleous, C.C.; Esat, I.I.; Schizas, C.N.
The creativity phase is identified as an integral part of the design phase. The characteristics of creative persons which are relevant to designing artificial neural networks manifesting aspects of creativity, are identified. Based on these identifications, a general framework of artificial neural network characteristics to implement such a goal are proposed.
NASA Astrophysics Data System (ADS)
Mlynarczuk, Mariusz; Skiba, Marta
2017-06-01
The correct and consistent identification of the petrographic properties of coal is an important issue for researchers in the fields of mining and geology. As part of the study described in this paper, investigations concerning the application of artificial intelligence methods for the identification of the aforementioned characteristics were carried out. The methods in question were used to identify the maceral groups of coal, i.e. vitrinite, inertinite, and liptinite. Additionally, an attempt was made to identify some non-organic minerals. The analyses were performed using pattern recognition techniques (NN, kNN), as well as artificial neural network techniques (a multilayer perceptron - MLP). The classification process was carried out using microscopy images of polished sections of coals. A multidimensional feature space was defined, which made it possible to classify the discussed structures automatically, based on the methods of pattern recognition and algorithms of the artificial neural networks. Also, from the study we assessed the impact of the parameters for which the applied methods proved effective upon the final outcome of the classification procedure. The result of the analyses was a high percentage (over 97%) of correct classifications of maceral groups and mineral components. The paper discusses also an attempt to analyze particular macerals of the inertinite group. It was demonstrated that using artificial neural networks to this end makes it possible to classify the macerals properly in over 91% of cases. Thus, it was proved that artificial intelligence methods can be successfully applied for the identification of selected petrographic features of coal.
Bolanča, Tomislav; Marinović, Slavica; Ukić, Sime; Jukić, Ante; Rukavina, Vinko
2012-06-01
This paper describes development of artificial neural network models which can be used to correlate and predict diesel fuel properties from several FTIR-ATR absorbances and Raman intensities as input variables. Multilayer feed forward and radial basis function neural networks have been used to rapid and simultaneous prediction of cetane number, cetane index, density, viscosity, distillation temperatures at 10% (T10), 50% (T50) and 90% (T90) recovery, contents of total aromatics and polycyclic aromatic hydrocarbons of commercial diesel fuels. In this study two-phase training procedures for multilayer feed forward networks were applied. While first phase training algorithm was constantly the back propagation one, two second phase training algorithms were varied and compared, namely: conjugate gradient and quasi Newton. In case of radial basis function network, radial layer was trained using K-means radial assignment algorithm and three different radial spread algorithms: explicit, isotropic and K-nearest neighbour. The number of hidden layer neurons and experimental data points used for the training set have been optimized for both neural networks in order to insure good predictive ability by reducing unnecessary experimental work. This work shows that developed artificial neural network models can determine main properties of diesel fuels simultaneously based on a single and fast IR or Raman measurement.
Securing Digital Images Integrity using Artificial Neural Networks
NASA Astrophysics Data System (ADS)
Hajji, Tarik; Itahriouan, Zakaria; Ouazzani Jamil, Mohammed
2018-05-01
Digital image signature is a technique used to protect the image integrity. The application of this technique can serve several areas of imaging applied to smart cities. The objective of this work is to propose two methods to protect digital image integrity. We present a description of two approaches using artificial neural networks (ANN) to digitally sign an image. The first one is “Direct Signature without learning” and the second is “Direct Signature with learning”. This paper presents the theory of proposed approaches and an experimental study to test their effectiveness.
NASA Technical Reports Server (NTRS)
Buch, A. M.; Narain, A.; Pandey, P. C.
1994-01-01
The simulation of runoff from a Himalayan Glacier basin using an Artificial Neural Network (ANN) is presented. The performance of the ANN model is found to be superior to the Energy Balance Model and the Multiple Regression model. The RMS Error is used as the figure of merit for judging the performance of the three models, and the RMS Error for the ANN model is the latest of the three models. The ANN is faster in learning and exhibits excellent system generalization characteristics.
Risk prediction model: Statistical and artificial neural network approach
NASA Astrophysics Data System (ADS)
Paiman, Nuur Azreen; Hariri, Azian; Masood, Ibrahim
2017-04-01
Prediction models are increasingly gaining popularity and had been used in numerous areas of studies to complement and fulfilled clinical reasoning and decision making nowadays. The adoption of such models assist physician's decision making, individual's behavior, and consequently improve individual outcomes and the cost-effectiveness of care. The objective of this paper is to reviewed articles related to risk prediction model in order to understand the suitable approach, development and the validation process of risk prediction model. A qualitative review of the aims, methods and significant main outcomes of the nineteen published articles that developed risk prediction models from numerous fields were done. This paper also reviewed on how researchers develop and validate the risk prediction models based on statistical and artificial neural network approach. From the review done, some methodological recommendation in developing and validating the prediction model were highlighted. According to studies that had been done, artificial neural network approached in developing the prediction model were more accurate compared to statistical approach. However currently, only limited published literature discussed on which approach is more accurate for risk prediction model development.
Pappu, J Sharon Mano; Gummadi, Sathyanarayana N
2016-11-01
This study examines the use of unstructured kinetic model and artificial neural networks as predictive tools for xylitol production by Debaryomyces nepalensis NCYC 3413 in bioreactor. An unstructured kinetic model was proposed in order to assess the influence of pH (4, 5 and 6), temperature (25°C, 30°C and 35°C) and volumetric oxygen transfer coefficient kLa (0.14h(-1), 0.28h(-1) and 0.56h(-1)) on growth and xylitol production. A feed-forward back-propagation artificial neural network (ANN) has been developed to investigate the effect of process condition on xylitol production. ANN configuration of 6-10-3 layers was selected and trained with 339 experimental data points from bioreactor studies. Results showed that simulation and prediction accuracy of ANN was apparently higher when compared to unstructured mechanistic model under varying operational conditions. ANN was found to be an efficient data-driven tool to predict the optimal harvest time in xylitol production. Copyright © 2016 Elsevier Ltd. All rights reserved.
Self Improving Methods for Materials and Process Design
1998-08-31
using inductive coupling techniques. The first phase of the work focuses on developing an artificial neural network learning for function approximation...developing an artificial neural network learning algorithm for time-series prediction. The third phase of the work focuses on model selection. We have
Back propagation artificial neural network for community Alzheimer's disease screening in China.
Tang, Jun; Wu, Lei; Huang, Helang; Feng, Jiang; Yuan, Yefeng; Zhou, Yueping; Huang, Peng; Xu, Yan; Yu, Chao
2013-01-25
Alzheimer's disease patients diagnosed with the Chinese Classification of Mental Disorders diagnostic criteria were selected from the community through on-site sampling. Levels of macro and trace elements were measured in blood samples using an atomic absorption method, and neurotransmitters were measured using a radioimmunoassay method. SPSS 13.0 was used to establish a database, and a back propagation artificial neural network for Alzheimer's disease prediction was simulated using Clementine 12.0 software. With scores of activities of daily living, creatinine, 5-hydroxytryptamine, age, dopamine and aluminum as input variables, the results revealed that the area under the curve in our back propagation artificial neural network was 0.929 (95% confidence interval: 0.868-0.968), sensitivity was 90.00%, specificity was 95.00%, and accuracy was 92.50%. The findings indicated that the results of back propagation artificial neural network established based on the above six variables were satisfactory for screening and diagnosis of Alzheimer's disease in patients selected from the community.
Back propagation artificial neural network for community Alzheimer's disease screening in China★
Tang, Jun; Wu, Lei; Huang, Helang; Feng, Jiang; Yuan, Yefeng; Zhou, Yueping; Huang, Peng; Xu, Yan; Yu, Chao
2013-01-01
Alzheimer's disease patients diagnosed with the Chinese Classification of Mental Disorders diagnostic criteria were selected from the community through on-site sampling. Levels of macro and trace elements were measured in blood samples using an atomic absorption method, and neurotransmitters were measured using a radioimmunoassay method. SPSS 13.0 was used to establish a database, and a back propagation artificial neural network for Alzheimer's disease prediction was simulated using Clementine 12.0 software. With scores of activities of daily living, creatinine, 5-hydroxytryptamine, age, dopamine and aluminum as input variables, the results revealed that the area under the curve in our back propagation artificial neural network was 0.929 (95% confidence interval: 0.868–0.968), sensitivity was 90.00%, specificity was 95.00%, and accuracy was 92.50%. The findings indicated that the results of back propagation artificial neural network established based on the above six variables were satisfactory for screening and diagnosis of Alzheimer's disease in patients selected from the community. PMID:25206598
Liu, Yung-Chiang; Lee, I-Chi; Lei, Kin Fong
2018-02-14
An in vitro model mimicking the in vivo environment of the brain must be developed to study neural communication and regeneration and to obtain an understanding of cellular and molecular responses. In this work, a multilayered neural network was successfully constructed on a biochip by guiding and promoting neural stem/progenitor cell differentiation and network formation. The biochip consisted of 3 × 3 arrays of cultured wells connected with channels. Neurospheroids were cultured on polyelectrolyte multilayer (PEM) films in the culture wells. Neurite outgrowth and neural differentiation were guided and promoted by the micropatterns and the PEM films. After 5 days in culture, a 3 × 3 neural network was constructed on the biochip. The function and the connections of the network were evaluated by immunocytochemistry and impedance measurements. Neurons were generated and produced functional and recyclable synaptic vesicles. Moreover, the electrical connections of the neural network were confirmed by measuring the impedance across the neurospheroids. The current work facilitates the development of an artificial brain on a chip for investigations of electrical stimulations and recordings of multilayered neural communication and regeneration.
Neuromorphic Computing for Very Large Test and Evaluation Data Analysis
2014-05-01
analysis and utilization of newly available hardware- based artificial neural network chips. These two aspects of the program are complementary. The...neuromorphic architectures research focused on long term disruptive technologies with high risk but revolutionary potential. The hardware- based neural...today. Overall, hardware- based neural processing research allows us to study the fundamental system and architectural issues relevant for employing
NASA Technical Reports Server (NTRS)
Leong, Harrison Monfook
1988-01-01
General formulae for mapping optimization problems into systems of ordinary differential equations associated with artificial neural networks are presented. A comparison is made to optimization using gradient-search methods. The performance measure is the settling time from an initial state to a target state. A simple analytical example illustrates a situation where dynamical systems representing artificial neural network methods would settle faster than those representing gradient-search. Settling time was investigated for a more complicated optimization problem using computer simulations. The problem was a simplified version of a problem in medical imaging: determining loci of cerebral activity from electromagnetic measurements at the scalp. The simulations showed that gradient based systems typically settled 50 to 100 times faster than systems based on current neural network optimization methods.
NASA Astrophysics Data System (ADS)
Li, Hong; Ding, Xue
2017-03-01
This paper combines wavelet analysis and wavelet transform theory with artificial neural network, through the pretreatment on point feature attributes before in intrusion detection, to make them suitable for improvement of wavelet neural network. The whole intrusion classification model gets the better adaptability, self-learning ability, greatly enhances the wavelet neural network for solving the problem of field detection invasion, reduces storage space, contributes to improve the performance of the constructed neural network, and reduces the training time. Finally the results of the KDDCup99 data set simulation experiment shows that, this method reduces the complexity of constructing wavelet neural network, but also ensures the accuracy of the intrusion classification.
Nanophotonic particle simulation and inverse design using artificial neural networks
Peurifoy, John; Shen, Yichen; Jing, Li; Cano-Renteria, Fidel; DeLacy, Brendan G.; Joannopoulos, John D.; Tegmark, Max
2018-01-01
We propose a method to use artificial neural networks to approximate light scattering by multilayer nanoparticles. We find that the network needs to be trained on only a small sampling of the data to approximate the simulation to high precision. Once the neural network is trained, it can simulate such optical processes orders of magnitude faster than conventional simulations. Furthermore, the trained neural network can be used to solve nanophotonic inverse design problems by using back propagation, where the gradient is analytical, not numerical. PMID:29868640
NASA Astrophysics Data System (ADS)
Prasetyo, T.; Amar, S.; Arendra, A.; Zam Zami, M. K.
2018-01-01
This study develops an on-line detection system to predict the wear of DCMT070204 tool tip during the cutting process of the workpiece. The machine used in this research is CNC ProTurn 9000 to cut ST42 steel cylinder. The audio signal has been captured using the microphone placed in the tool post and recorded in Matlab. The signal is recorded at the sampling rate of 44.1 kHz, and the sampling size of 1024. The recorded signal is 110 data derived from the audio signal while cutting using a normal chisel and a worn chisel. And then perform signal feature extraction in the frequency domain using Fast Fourier Transform. Feature selection is done based on correlation analysis. And tool wear classification was performed using artificial neural networks with 33 input features selected. This artificial neural network is trained with back propagation method. Classification performance testing yields an accuracy of 74%.
The application of data mining techniques to oral cancer prognosis.
Tseng, Wan-Ting; Chiang, Wei-Fan; Liu, Shyun-Yeu; Roan, Jinsheng; Lin, Chun-Nan
2015-05-01
This study adopted an integrated procedure that combines the clustering and classification features of data mining technology to determine the differences between the symptoms shown in past cases where patients died from or survived oral cancer. Two data mining tools, namely decision tree and artificial neural network, were used to analyze the historical cases of oral cancer, and their performance was compared with that of logistic regression, the popular statistical analysis tool. Both decision tree and artificial neural network models showed superiority to the traditional statistical model. However, as to clinician, the trees created by the decision tree models are relatively easier to interpret compared to that of the artificial neural network models. Cluster analysis also discovers that those stage 4 patients whose also possess the following four characteristics are having an extremely low survival rate: pN is N2b, level of RLNM is level I-III, AJCC-T is T4, and cells mutate situation (G) is moderate.
Artificial neural network modeling of dissolved oxygen in reservoir.
Chen, Wei-Bo; Liu, Wen-Cheng
2014-02-01
The water quality of reservoirs is one of the key factors in the operation and water quality management of reservoirs. Dissolved oxygen (DO) in water column is essential for microorganisms and a significant indicator of the state of aquatic ecosystems. In this study, two artificial neural network (ANN) models including back propagation neural network (BPNN) and adaptive neural-based fuzzy inference system (ANFIS) approaches and multilinear regression (MLR) model were developed to estimate the DO concentration in the Feitsui Reservoir of northern Taiwan. The input variables of the neural network are determined as water temperature, pH, conductivity, turbidity, suspended solids, total hardness, total alkalinity, and ammonium nitrogen. The performance of the ANN models and MLR model was assessed through the mean absolute error, root mean square error, and correlation coefficient computed from the measured and model-simulated DO values. The results reveal that ANN estimation performances were superior to those of MLR. Comparing to the BPNN and ANFIS models through the performance criteria, the ANFIS model is better than the BPNN model for predicting the DO values. Study results show that the neural network particularly using ANFIS model is able to predict the DO concentrations with reasonable accuracy, suggesting that the neural network is a valuable tool for reservoir management in Taiwan.
Arbabi, Vahid; Pouran, Behdad; Campoli, Gianni; Weinans, Harrie; Zadpoor, Amir A
2016-03-21
One of the most widely used techniques to determine the mechanical properties of cartilage is based on indentation tests and interpretation of the obtained force-time or displacement-time data. In the current computational approaches, one needs to simulate the indentation test with finite element models and use an optimization algorithm to estimate the mechanical properties of cartilage. The modeling procedure is cumbersome, and the simulations need to be repeated for every new experiment. For the first time, we propose a method for fast and accurate estimation of the mechanical and physical properties of cartilage as a poroelastic material with the aid of artificial neural networks. In our study, we used finite element models to simulate the indentation for poroelastic materials with wide combinations of mechanical and physical properties. The obtained force-time curves are then divided into three parts: the first two parts of the data is used for training and validation of an artificial neural network, while the third part is used for testing the trained network. The trained neural network receives the force-time curves as the input and provides the properties of cartilage as the output. We observed that the trained network could accurately predict the properties of cartilage within the range of properties for which it was trained. The mechanical and physical properties of cartilage could therefore be estimated very fast, since no additional finite element modeling is required once the neural network is trained. The robustness of the trained artificial neural network in determining the properties of cartilage based on noisy force-time data was assessed by introducing noise to the simulated force-time data. We found that the training procedure could be optimized so as to maximize the robustness of the neural network against noisy force-time data. Copyright © 2016 Elsevier Ltd. All rights reserved.
A novel application of artificial neural network for wind speed estimation
NASA Astrophysics Data System (ADS)
Fang, Da; Wang, Jianzhou
2017-05-01
Providing accurate multi-steps wind speed estimation models has increasing significance, because of the important technical and economic impacts of wind speed on power grid security and environment benefits. In this study, the combined strategies for wind speed forecasting are proposed based on an intelligent data processing system using artificial neural network (ANN). Generalized regression neural network and Elman neural network are employed to form two hybrid models. The approach employs one of ANN to model the samples achieving data denoising and assimilation and apply the other to predict wind speed using the pre-processed samples. The proposed method is demonstrated in terms of the predicting improvements of the hybrid models compared with single ANN and the typical forecasting method. To give sufficient cases for the study, four observation sites with monthly average wind speed of four given years in Western China were used to test the models. Multiple evaluation methods demonstrated that the proposed method provides a promising alternative technique in monthly average wind speed estimation.
Neural Pattern Similarity in the Left IFG and Fusiform Is Associated with Novel Word Learning
Qu, Jing; Qian, Liu; Chen, Chuansheng; Xue, Gui; Li, Huiling; Xie, Peng; Mei, Leilei
2017-01-01
Previous studies have revealed that greater neural pattern similarity across repetitions is associated with better subsequent memory. In this study, we used an artificial language training paradigm and representational similarity analysis to examine whether neural pattern similarity across repetitions before training was associated with post-training behavioral performance. Twenty-four native Chinese speakers were trained to learn a logographic artificial language for 12 days and behavioral performance was recorded using the word naming and picture naming tasks. Participants were scanned while performing a passive viewing task before training, after 4-day training and after 12-day training. Results showed that pattern similarity in the left pars opercularis (PO) and fusiform gyrus (FG) before training was negatively associated with reaction time (RT) in both word naming and picture naming tasks after training. These results suggest that neural pattern similarity is an effective neurofunctional predictor of novel word learning in addition to word memory. PMID:28878640
Zenooz, Alireza Moosavi; Ashtiani, Farzin Zokaee; Ranjbar, Reza; Nikbakht, Fatemeh; Bolouri, Oberon
2017-07-03
Biodiesel production from microalgae feedstock should be performed after growth and harvesting of the cells, and the most feasible method for harvesting and dewatering of microalgae is flocculation. Flocculation modeling can be used for evaluation and prediction of its performance under different affective parameters. However, the modeling of flocculation in microalgae is not simple and has not performed yet, under all experimental conditions, mostly due to different behaviors of microalgae cells during the process under different flocculation conditions. In the current study, the modeling of microalgae flocculation is studied with different neural network architectures. Microalgae species, Chlorella sp., was flocculated with ferric chloride under different conditions and then the experimental data modeled using artificial neural network. Neural network architectures of multilayer perceptron (MLP) and radial basis function architectures, failed to predict the targets successfully, though, modeling was effective with ensemble architecture of MLP networks. Comparison between the performances of the ensemble and each individual network explains the ability of the ensemble architecture in microalgae flocculation modeling.
NASA Astrophysics Data System (ADS)
Çebi, A.; Akdoğan, E.; Celen, A.; Dalkilic, A. S.
2017-02-01
An artificial neural network (ANN) model of friction factor in smooth and microfin tubes under heating, cooling and isothermal conditions was developed in this study. Data used in ANN was taken from a vertically positioned heat exchanger experimental setup. Multi-layered feed-forward neural network with backpropagation algorithm, radial basis function networks and hybrid PSO-neural network algorithm were applied to the database. Inputs were the ratio of cross sectional flow area to hydraulic diameter, experimental condition number depending on isothermal, heating, or cooling conditions and mass flow rate while the friction factor was the output of the constructed system. It was observed that such neural network based system could effectively predict the friction factor values of the flows regardless of their tube types. A dependency analysis to determine the strongest parameter that affected the network and database was also performed and tube geometry was found to be the strongest parameter of all as a result of analysis.
Modelling and Predicting Backstroke Start Performance Using Non-Linear and Linear Models.
de Jesus, Karla; Ayala, Helon V H; de Jesus, Kelly; Coelho, Leandro Dos S; Medeiros, Alexandre I A; Abraldes, José A; Vaz, Mário A P; Fernandes, Ricardo J; Vilas-Boas, João Paulo
2018-03-01
Our aim was to compare non-linear and linear mathematical model responses for backstroke start performance prediction. Ten swimmers randomly completed eight 15 m backstroke starts with feet over the wedge, four with hands on the highest horizontal and four on the vertical handgrip. Swimmers were videotaped using a dual media camera set-up, with the starts being performed over an instrumented block with four force plates. Artificial neural networks were applied to predict 5 m start time using kinematic and kinetic variables and to determine the accuracy of the mean absolute percentage error. Artificial neural networks predicted start time more robustly than the linear model with respect to changing training to the validation dataset for the vertical handgrip (3.95 ± 1.67 vs. 5.92 ± 3.27%). Artificial neural networks obtained a smaller mean absolute percentage error than the linear model in the horizontal (0.43 ± 0.19 vs. 0.98 ± 0.19%) and vertical handgrip (0.45 ± 0.19 vs. 1.38 ± 0.30%) using all input data. The best artificial neural network validation revealed a smaller mean absolute error than the linear model for the horizontal (0.007 vs. 0.04 s) and vertical handgrip (0.01 vs. 0.03 s). Artificial neural networks should be used for backstroke 5 m start time prediction due to the quite small differences among the elite level performances.
Parsaeian, M; Mohammad, K; Mahmoudi, M; Zeraati, H
2012-01-01
Background: The purpose of this investigation was to compare empirically predictive ability of an artificial neural network with a logistic regression in prediction of low back pain. Methods: Data from the second national health survey were considered in this investigation. This data includes the information of low back pain and its associated risk factors among Iranian people aged 15 years and older. Artificial neural network and logistic regression models were developed using a set of 17294 data and they were validated in a test set of 17295 data. Hosmer and Lemeshow recommendation for model selection was used in fitting the logistic regression. A three-layer perceptron with 9 inputs, 3 hidden and 1 output neurons was employed. The efficiency of two models was compared by receiver operating characteristic analysis, root mean square and -2 Loglikelihood criteria. Results: The area under the ROC curve (SE), root mean square and -2Loglikelihood of the logistic regression was 0.752 (0.004), 0.3832 and 14769.2, respectively. The area under the ROC curve (SE), root mean square and -2Loglikelihood of the artificial neural network was 0.754 (0.004), 0.3770 and 14757.6, respectively. Conclusions: Based on these three criteria, artificial neural network would give better performance than logistic regression. Although, the difference is statistically significant, it does not seem to be clinically significant. PMID:23113198
Parsaeian, M; Mohammad, K; Mahmoudi, M; Zeraati, H
2012-01-01
The purpose of this investigation was to compare empirically predictive ability of an artificial neural network with a logistic regression in prediction of low back pain. Data from the second national health survey were considered in this investigation. This data includes the information of low back pain and its associated risk factors among Iranian people aged 15 years and older. Artificial neural network and logistic regression models were developed using a set of 17294 data and they were validated in a test set of 17295 data. Hosmer and Lemeshow recommendation for model selection was used in fitting the logistic regression. A three-layer perceptron with 9 inputs, 3 hidden and 1 output neurons was employed. The efficiency of two models was compared by receiver operating characteristic analysis, root mean square and -2 Loglikelihood criteria. The area under the ROC curve (SE), root mean square and -2Loglikelihood of the logistic regression was 0.752 (0.004), 0.3832 and 14769.2, respectively. The area under the ROC curve (SE), root mean square and -2Loglikelihood of the artificial neural network was 0.754 (0.004), 0.3770 and 14757.6, respectively. Based on these three criteria, artificial neural network would give better performance than logistic regression. Although, the difference is statistically significant, it does not seem to be clinically significant.
NASA Astrophysics Data System (ADS)
Chattopadhyay, Surajit; Bandyopadhyay, Goutami
2007-01-01
Present study deals with the mean monthly total ozone time series over Arosa, Switzerland. The study period is 1932-1971. First of all, the total ozone time series has been identified as a complex system and then Artificial Neural Networks models in the form of Multilayer Perceptron with back propagation learning have been developed. The models are Single-hidden-layer and Two-hidden-layer Perceptrons with sigmoid activation function. After sequential learning with learning rate 0.9 the peak total ozone period (February-May) concentrations of mean monthly total ozone have been predicted by the two neural net models. After training and validation, both of the models are found skillful. But, Two-hidden-layer Perceptron is found to be more adroit in predicting the mean monthly total ozone concentrations over the aforesaid period.
2018-01-01
Researches in Artificial Intelligence (AI) have achieved many important breakthroughs, especially in recent years. In some cases, AI learns alone from scratch and performs human tasks faster and better than humans. With the recent advances in AI, it is natural to wonder whether Artificial Neural Networks will be used to successfully create or break cryptographic algorithms. Bibliographic review shows the main approach to this problem have been addressed throughout complex Neural Networks, but without understanding or proving the security of the generated model. This paper presents an analysis of the security of cryptographic algorithms generated by a new technique called Adversarial Neural Cryptography (ANC). Using the proposed network, we show limitations and directions to improve the current approach of ANC. Training the proposed Artificial Neural Network with the improved model of ANC, we show that artificially intelligent agents can learn the unbreakable One-Time Pad (OTP) algorithm, without human knowledge, to communicate securely through an insecure communication channel. This paper shows in which conditions an AI agent can learn a secure encryption scheme. However, it also shows that, without a stronger adversary, it is more likely to obtain an insecure one. PMID:29695066
Coutinho, Murilo; de Oliveira Albuquerque, Robson; Borges, Fábio; García Villalba, Luis Javier; Kim, Tai-Hoon
2018-04-24
Researches in Artificial Intelligence (AI) have achieved many important breakthroughs, especially in recent years. In some cases, AI learns alone from scratch and performs human tasks faster and better than humans. With the recent advances in AI, it is natural to wonder whether Artificial Neural Networks will be used to successfully create or break cryptographic algorithms. Bibliographic review shows the main approach to this problem have been addressed throughout complex Neural Networks, but without understanding or proving the security of the generated model. This paper presents an analysis of the security of cryptographic algorithms generated by a new technique called Adversarial Neural Cryptography (ANC). Using the proposed network, we show limitations and directions to improve the current approach of ANC. Training the proposed Artificial Neural Network with the improved model of ANC, we show that artificially intelligent agents can learn the unbreakable One-Time Pad (OTP) algorithm, without human knowledge, to communicate securely through an insecure communication channel. This paper shows in which conditions an AI agent can learn a secure encryption scheme. However, it also shows that, without a stronger adversary, it is more likely to obtain an insecure one.
NASA Astrophysics Data System (ADS)
Fukuda, Hiroshi; Odagaki, Masato; Hiwaki, Osamu
Motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) over the primary motor cortex (M1) vary in their amplitude from trial to trial. To investigate the functions of motor cortex by TMS, it is necessary to confirm the causal relationship between stimulated sites and variable MEPs. We created artificial neural networks to classify sets of variable MEP signals and finger forces into the corresponding stimulated sites. We conducted TMS at three different positions over M1 and measured MEPs of hand and forearm muscles and forces of the index finger in four subjects. We estimated the sites within motor cortex stimulated by TMS based on cortical columnar structure and nerve excitation properties. Finally, we tried to classify the various MEPs and finger forces into three groups using artificial neural networks. MEPs and finger forces varied from trial to trial, even if the stimulating coil was fixed on the subject's head. Our proposed neural network was able to identify the MEPs and finger forces with the corresponding stimulated sites in M1. We proposed the artificial neural networks to confirm the TMS-stimulated sites using various MEPs and evoked finger forces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ortiz-Rodriguez, J. M.; Reyes Alfaro, A.; Reyes Haro, A.
In this work a neutron spectrum unfolding code, based on artificial intelligence technology is presented. The code called ''Neutron Spectrometry and Dosimetry with Artificial Neural Networks and two Bonner spheres'', (NSDann2BS), was designed in a graphical user interface under the LabVIEW programming environment. The main features of this code are to use an embedded artificial neural network architecture optimized with the ''Robust design of artificial neural networks methodology'' and to use two Bonner spheres as the only piece of information. In order to build the code here presented, once the net topology was optimized and properly trained, knowledge stored atmore » synaptic weights was extracted and using a graphical framework build on the LabVIEW programming environment, the NSDann2BS code was designed. This code is friendly, intuitive and easy to use for the end user. The code is freely available upon request to authors. To demonstrate the use of the neural net embedded in the NSDann2BS code, the rate counts of {sup 252}Cf, {sup 241}AmBe and {sup 239}PuBe neutron sources measured with a Bonner spheres system.« less
NASA Astrophysics Data System (ADS)
Ortiz-Rodríguez, J. M.; Reyes Alfaro, A.; Reyes Haro, A.; Solís Sánches, L. O.; Miranda, R. Castañeda; Cervantes Viramontes, J. M.; Vega-Carrillo, H. R.
2013-07-01
In this work a neutron spectrum unfolding code, based on artificial intelligence technology is presented. The code called "Neutron Spectrometry and Dosimetry with Artificial Neural Networks and two Bonner spheres", (NSDann2BS), was designed in a graphical user interface under the LabVIEW programming environment. The main features of this code are to use an embedded artificial neural network architecture optimized with the "Robust design of artificial neural networks methodology" and to use two Bonner spheres as the only piece of information. In order to build the code here presented, once the net topology was optimized and properly trained, knowledge stored at synaptic weights was extracted and using a graphical framework build on the LabVIEW programming environment, the NSDann2BS code was designed. This code is friendly, intuitive and easy to use for the end user. The code is freely available upon request to authors. To demonstrate the use of the neural net embedded in the NSDann2BS code, the rate counts of 252Cf, 241AmBe and 239PuBe neutron sources measured with a Bonner spheres system.
Li, Zhong; Liu, Ming-de; Ji, Shou-xiang
2016-03-01
The Fourier Transform Infrared Spectroscopy (FTIR) is established to find the geographic origins of Chinese wolfberry quickly. In the paper, the 45 samples of Chinese wolfberry from different places of Qinghai Province are to be surveyed by FTIR. The original data matrix of FTIR is pretreated with common preprocessing and wavelet transform. Compared with common windows shifting smoothing preprocessing, standard normal variation correction and multiplicative scatter correction, wavelet transform is an effective spectrum data preprocessing method. Before establishing model through the artificial neural networks, the spectra variables are compressed by means of the wavelet transformation so as to enhance the training speed of the artificial neural networks, and at the same time the related parameters of the artificial neural networks model are also discussed in detail. The survey shows even if the infrared spectroscopy data is compressed to 1/8 of its original data, the spectral information and analytical accuracy are not deteriorated. The compressed spectra variables are used for modeling parameters of the backpropagation artificial neural network (BP-ANN) model and the geographic origins of Chinese wolfberry are used for parameters of export. Three layers of neural network model are built to predict the 10 unknown samples by using the MATLAB neural network toolbox design error back propagation network. The number of hidden layer neurons is 5, and the number of output layer neuron is 1. The transfer function of hidden layer is tansig, while the transfer function of output layer is purelin. Network training function is trainl and the learning function of weights and thresholds is learngdm. net. trainParam. epochs=1 000, while net. trainParam. goal = 0.001. The recognition rate of 100% is to be achieved. It can be concluded that the method is quite suitable for the quick discrimination of producing areas of Chinese wolfberry. The infrared spectral analysis technology combined with the artificial neural networks is proved to be a reliable and new method for the identification of the original place of Traditional Chinese Medicine.
NASA Astrophysics Data System (ADS)
Srimani, P. K.; Parimala, Y. G.
2011-12-01
A unique approach has been developed to study patterns in ragas of Carnatic Classical music based on artificial neural networks. Ragas in Carnatic music which have found their roots in the Vedic period, have grown on a Scientific foundation over thousands of years. However owing to its vastness and complexities it has always been a challenge for scientists and musicologists to give an all encompassing perspective both qualitatively and quantitatively. Cognition, comprehension and perception of ragas in Indian classical music have always been the subject of intensive research, highly intriguing and many facets of these are hitherto not unravelled. This paper is an attempt to view the melakartha ragas with a cognitive perspective using artificial neural network based approach which has given raise to very interesting results. The 72 ragas of the melakartha system were defined through the combination of frequencies occurring in each of them. The data sets were trained using several neural networks. 100% accurate pattern recognition and classification was obtained using linear regression, TLRN, MLP and RBF networks. Performance of the different network topologies, by varying various network parameters, were compared. Linear regression was found to be the best performing network.
NASA Astrophysics Data System (ADS)
Raj, A. Stanley; Srinivas, Y.; Oliver, D. Hudson; Muthuraj, D.
2014-03-01
The non-linear apparent resistivity problem in the subsurface study of the earth takes into account the model parameters in terms of resistivity and thickness of individual subsurface layers using the trained synthetic data by means of Artificial Neural Networks (ANN). Here we used a single layer feed-forward neural network with fast back propagation learning algorithm. So on proper training of back propagation networks it tends to give the resistivity and thickness of the subsurface layer model of the field resistivity data with reference to the synthetic data trained in the appropriate network. During training, the weights and biases of the network are iteratively adjusted to make network performance function level more efficient. On adequate training, errors are minimized and the best result is obtained using the artificial neural networks. The network is trained with more number of VES data and this trained network is demonstrated by the field data. The accuracy of inversion depends upon the number of data trained. In this novel and specially designed algorithm, the interpretation of the vertical electrical sounding has been done successfully with the more accurate layer model.
Landslide Susceptibility Index Determination Using Aritificial Neural Network
NASA Astrophysics Data System (ADS)
Kawabata, D.; Bandibas, J.; Urai, M.
2004-12-01
The occurrence of landslide is the result of the interaction of complex and diverse environmental factors. The geomorphic features, rock types and geologic structure are especially important base factors of the landslide occurrence. Generating landslide susceptibility index by defining the relationship between landslide occurrence and that base factors using conventional mathematical and statistical methods is very difficult and inaccurate. This study focuses on generating landslide susceptibility index using artificial neural networks in Southern Japanese Alps. The training data are geomorphic (e.g. altitude, slope and aspect) and geologic parameters (e.g. rock type, distance from geologic boundary and geologic dip-strike angle) and landslides. Artificial neural network structure and training scheme are formulated to generate the index. Data from areas with and without landslide occurrences are used to train the network. The network is trained to output 1 when the input data are from areas with landslides and 0 when no landslide occurred. The trained network generates an output ranging from 0 to 1 reflecting the possibility of landslide occurrence based on the inputted data. Output values nearer to 1 means higher possibility of landslide occurrence. The artificial neural network model is incorporated into the GIS software to generate a landslide susceptibility map.
Lele, Ramachandra Dattatraya; Joshi, Mukund; Chowdhary, Abhay
2014-01-01
The preliminary study presented within this paper shows a comparative study of various texture features extracted from liver ultrasonic images by employing Multilayer Perceptron (MLP), a type of artificial neural network, to study the presence of disease conditions. An ultrasound (US) image shows echo-texture patterns, which defines the organ characteristics. Ultrasound images of liver disease conditions such as “fatty liver,” “cirrhosis,” and “hepatomegaly” produce distinctive echo patterns. However, various ultrasound imaging artifacts and speckle noise make these echo-texture patterns difficult to identify and often hard to distinguish visually. Here, based on the extracted features from the ultrasonic images, we employed an artificial neural network for the diagnosis of disease conditions in liver and finding of the best classifier that distinguishes between abnormal and normal conditions of the liver. Comparison of the overall performance of all the feature classifiers concluded that “mixed feature set” is the best feature set. It showed an excellent rate of accuracy for the training data set. The gray level run length matrix (GLRLM) feature shows better results when the network was tested against unknown data. PMID:25332717
Clinical Assistant Diagnosis for Electronic Medical Record Based on Convolutional Neural Network.
Yang, Zhongliang; Huang, Yongfeng; Jiang, Yiran; Sun, Yuxi; Zhang, Yu-Jin; Luo, Pengcheng
2018-04-20
Automatically extracting useful information from electronic medical records along with conducting disease diagnoses is a promising task for both clinical decision support(CDS) and neural language processing(NLP). Most of the existing systems are based on artificially constructed knowledge bases, and then auxiliary diagnosis is done by rule matching. In this study, we present a clinical intelligent decision approach based on Convolutional Neural Networks(CNN), which can automatically extract high-level semantic information of electronic medical records and then perform automatic diagnosis without artificial construction of rules or knowledge bases. We use collected 18,590 copies of the real-world clinical electronic medical records to train and test the proposed model. Experimental results show that the proposed model can achieve 98.67% accuracy and 96.02% recall, which strongly supports that using convolutional neural network to automatically learn high-level semantic features of electronic medical records and then conduct assist diagnosis is feasible and effective.
Feng, Lei; Zhu, Susu; Lin, Fucheng; Su, Zhenzhu; Yuan, Kangpei; Zhao, Yiying; He, Yong; Zhang, Chu
2018-06-15
Mildew damage is a major reason for chestnut poor quality and yield loss. In this study, a near-infrared hyperspectral imaging system in the 874⁻1734 nm spectral range was applied to detect the mildew damage to chestnuts caused by blue mold. Principal component analysis (PCA) scored images were firstly employed to qualitatively and intuitively distinguish moldy chestnuts from healthy chestnuts. Spectral data were extracted from the hyperspectral images. A successive projections algorithm (SPA) was used to select 12 optimal wavelengths. Artificial neural networks, including back propagation neural network (BPNN), evolutionary neural network (ENN), extreme learning machine (ELM), general regression neural network (GRNN) and radial basis neural network (RBNN) were used to build models using the full spectra and optimal wavelengths to distinguish moldy chestnuts. BPNN and ENN models using full spectra and optimal wavelengths obtained satisfactory performances, with classification accuracies all surpassing 99%. The results indicate the potential for the rapid and non-destructive detection of moldy chestnuts by hyperspectral imaging, which would help to develop online detection system for healthy and blue mold infected chestnuts.
NASA Astrophysics Data System (ADS)
Yilmaz, Işık
2009-06-01
The purpose of this study is to compare the landslide susceptibility mapping methods of frequency ratio (FR), logistic regression and artificial neural networks (ANN) applied in the Kat County (Tokat—Turkey). Digital elevation model (DEM) was first constructed using GIS software. Landslide-related factors such as geology, faults, drainage system, topographical elevation, slope angle, slope aspect, topographic wetness index (TWI) and stream power index (SPI) were used in the landslide susceptibility analyses. Landslide susceptibility maps were produced from the frequency ratio, logistic regression and neural networks models, and they were then compared by means of their validations. The higher accuracies of the susceptibility maps for all three models were obtained from the comparison of the landslide susceptibility maps with the known landslide locations. However, respective area under curve (AUC) values of 0.826, 0.842 and 0.852 for frequency ratio, logistic regression and artificial neural networks showed that the map obtained from ANN model is more accurate than the other models, accuracies of all models can be evaluated relatively similar. The results obtained in this study also showed that the frequency ratio model can be used as a simple tool in assessment of landslide susceptibility when a sufficient number of data were obtained. Input process, calculations and output process are very simple and can be readily understood in the frequency ratio model, however logistic regression and neural networks require the conversion of data to ASCII or other formats. Moreover, it is also very hard to process the large amount of data in the statistical package.
Introducing Artificial Neural Networks through a Spreadsheet Model
ERIC Educational Resources Information Center
Rienzo, Thomas F.; Athappilly, Kuriakose K.
2012-01-01
Business students taking data mining classes are often introduced to artificial neural networks (ANN) through point and click navigation exercises in application software. Even if correct outcomes are obtained, students frequently do not obtain a thorough understanding of ANN processes. This spreadsheet model was created to illuminate the roles of…
Artificial-neural-network-based failure detection and isolation
NASA Astrophysics Data System (ADS)
Sadok, Mokhtar; Gharsalli, Imed; Alouani, Ali T.
1998-03-01
This paper presents the design of a systematic failure detection and isolation system that uses the concept of failure sensitive variables (FSV) and artificial neural networks (ANN). The proposed approach was applied to tube leak detection in a utility boiler system. Results of the experimental testing are presented in the paper.
Artificial Neural Networks in Policy Research: A Current Assessment.
ERIC Educational Resources Information Center
Woelfel, Joseph
1993-01-01
Suggests that artificial neural networks (ANNs) exhibit properties that promise usefulness for policy researchers. Notes that ANNs have found extensive use in areas once reserved for multivariate statistical programs such as regression and multiple classification analysis and are developing an extensive community of advocates for processing text…
1999-05-05
processing and artificial neural network (ANN) technology. The detector will classify incipient faults based on real-tine vibration data taken from the...provided the vibration data necessary to develop and test the feasibility of en artificial neural network for fault classification. This research
Discovery Learning in Autonomous Agents Using Genetic Algorithms
1993-12-01
Meyer and Wilson (47). 65. Roitblat , H. L., et al. "Biomimetic Sonar Processing: Prom Dolphin Echoloc-Ation to Artificial Neural Networks." In Meyer and...34 In Meyer and Wilson (47). 65. Roitblat , H. L., et al. "Biomimetic Sonar Processing: From Dolphin Echolocation to Artificial Neural Networks." In
NASA Technical Reports Server (NTRS)
Ali, Moonis; Whitehead, Bruce; Gupta, Uday K.; Ferber, Harry
1995-01-01
This paper describes an expert system which is designed to perform automatic data analysis, identify anomalous events and determine the characteristic features of these events. We have employed both artificial intelligence and neural net approaches in the design of this expert system.
Investigation on trophic state index by artificial neural networks (case study: Dez Dam of Iran)
NASA Astrophysics Data System (ADS)
Saghi, H.; Karimi, L.; Javid, A. H.
2015-06-01
Dam construction and surface runoff control is one of the most common approaches for water-needs supply of human societies. However, the increasing development of social activities and hence the subsequent increase in environmental pollutants leads to deterioration of water quality in dam reservoirs and eutrophication process could be intensified. So, the water quality of reservoirs is now one of the key factors in operation and water quality management of reservoirs. Hence, maintaining the quality of the stored water and identification and examination of changes along time has been a constant concern of humans that involves the water authorities. Traditionally, empirical trophic state indices of dam reservoirs often defined based on changes in concentration of effective factors (nutrients) and its consequences (increase in chlorophyll a), have been used as an efficient tool in the definition of dam reservoirs quality. In recent years, modeling techniques such as artificial neural networks have enhanced the prediction capability and the accuracy of these studies. In this study, artificial neural networks have been applied to analyze eutrophication process in the Dez Dam reservoir in Iran. In this paper, feed forward neural network with one input layer, one hidden layer and one output layer was applied using MATLAB neural network toolbox for trophic state index (TSI) analysis in the Dez Dam reservoir. The input data of this network are effective parameters in the eutrophication: nitrogen cycle parameters and phosphorous cycle parameters and parameters that will be changed by eutrophication: Chl a, SD, DO and the output data is TSI. Based on the results from estimation of modified Carlson trophic state index, Dez Dam reservoir is considered to be eutrophic in the early July to mid-November and would be mesotrophic with decrease in temperature. Therefore, a decrease in water quality of the dam reservoir during the warm seasons is expectable. The results indicated that artificial neural network (ANN) is a suitable tool for quality modeling of reservoir of dam and increment and decrement of nutrients in trend of eutrophication. Therefore, ANN is a suitable tool for quality modeling of reservoir of dam.
Estimation of urban runoff and water quality using remote sensing and artificial intelligence.
Ha, S R; Park, S Y; Park, D H
2003-01-01
Water quality and quantity of runoff are strongly dependent on the landuse and landcover (LULC) criteria. In this study, we developed a more improved parameter estimation procedure for the environmental model using remote sensing (RS) and artificial intelligence (AI) techniques. Landsat TM multi-band (7bands) and Korea Multi-Purpose Satellite (KOMPSAT) panchromatic data were selected for input data processing. We employed two kinds of artificial intelligence techniques, RBF-NN (radial-basis-function neural network) and ANN (artificial neural network), to classify LULC of the study area. A bootstrap resampling method, a statistical technique, was employed to generate the confidence intervals and distribution of the unit load. SWMM was used to simulate the urban runoff and water quality and applied to the study watershed. The condition of urban flow and non-point contaminations was simulated with rainfall-runoff and measured water quality data. The estimated total runoff, peak time, and pollutant generation varied considerably according to the classification accuracy and percentile unit load applied. The proposed procedure would efficiently be applied to water quality and runoff simulation in a rapidly changing urban area.
Simulation of short-term electric load using an artificial neural network
NASA Astrophysics Data System (ADS)
Ivanin, O. A.
2018-01-01
While solving the task of optimizing operation modes and equipment composition of small energy complexes or other tasks connected with energy planning, it is necessary to have data on energy loads of a consumer. Usually, there is a problem with obtaining real load charts and detailed information about the consumer, because a method of load-charts simulation on the basis of minimal information should be developed. The analysis of work devoted to short-term loads prediction allows choosing artificial neural networks as a most suitable mathematical instrument for solving this problem. The article provides an overview of applied short-term load simulation methods; it describes the advantages of artificial neural networks and offers a neural network structure for electric loads of residential buildings simulation. The results of modeling loads with proposed method and the estimation of its error are presented.
On Design and Implementation of Neural-Machine Interface for Artificial Legs
Zhang, Xiaorong; Liu, Yuhong; Zhang, Fan; Ren, Jin; Sun, Yan (Lindsay); Yang, Qing
2011-01-01
The quality of life of leg amputees can be improved dramatically by using a cyber physical system (CPS) that controls artificial legs based on neural signals representing amputees’ intended movements. The key to the CPS is the neural-machine interface (NMI) that senses electromyographic (EMG) signals to make control decisions. This paper presents a design and implementation of a novel NMI using an embedded computer system to collect neural signals from a physical system - a leg amputee, provide adequate computational capability to interpret such signals, and make decisions to identify user’s intent for prostheses control in real time. A new deciphering algorithm, composed of an EMG pattern classifier and a post-processing scheme, was developed to identify the user’s intended lower limb movements. To deal with environmental uncertainty, a trust management mechanism was designed to handle unexpected sensor failures and signal disturbances. Integrating the neural deciphering algorithm with the trust management mechanism resulted in a highly accurate and reliable software system for neural control of artificial legs. The software was then embedded in a newly designed hardware platform based on an embedded microcontroller and a graphic processing unit (GPU) to form a complete NMI for real time testing. Real time experiments on a leg amputee subject and an able-bodied subject have been carried out to test the control accuracy of the new NMI. Our extensive experiments have shown promising results on both subjects, paving the way for clinical feasibility of neural controlled artificial legs. PMID:22389637
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sikora, R.; Chady, T.; Baniukiewicz, P.
2010-02-22
Nondestructive testing and evaluation are under continuous development. Currently researches are concentrated on three main topics: advancement of existing methods, introduction of novel methods and development of artificial intelligent systems for automatic defect recognition (ADR). Automatic defect classification algorithm comprises of two main tasks: creating a defect database and preparing a defect classifier. Here, the database was built using defect features that describe all geometrical and texture properties of the defect. Almost twenty carefully selected features calculated for flaws extracted from real radiograms were used. The radiograms were obtained from shipbuilding industry and they were verified by qualified operator. Twomore » weld defect's classifiers based on artificial neural networks were proposed and compared. First model consisted of one neural network model, where each output neuron corresponded to different defect group. The second model contained five neural networks. Each neural network had one neuron on output and was responsible for detection of defects from one group. In order to evaluate the effectiveness of the neural networks classifiers, the mean square errors were calculated for test radiograms and compared.« less
NASA Astrophysics Data System (ADS)
Sikora, R.; Chady, T.; Baniukiewicz, P.; Caryk, M.; Piekarczyk, B.
2010-02-01
Nondestructive testing and evaluation are under continuous development. Currently researches are concentrated on three main topics: advancement of existing methods, introduction of novel methods and development of artificial intelligent systems for automatic defect recognition (ADR). Automatic defect classification algorithm comprises of two main tasks: creating a defect database and preparing a defect classifier. Here, the database was built using defect features that describe all geometrical and texture properties of the defect. Almost twenty carefully selected features calculated for flaws extracted from real radiograms were used. The radiograms were obtained from shipbuilding industry and they were verified by qualified operator. Two weld defect's classifiers based on artificial neural networks were proposed and compared. First model consisted of one neural network model, where each output neuron corresponded to different defect group. The second model contained five neural networks. Each neural network had one neuron on output and was responsible for detection of defects from one group. In order to evaluate the effectiveness of the neural networks classifiers, the mean square errors were calculated for test radiograms and compared.
Re-Evaluation of the AASHTO-Flexible Pavement Design Equation with Neural Network Modeling
Tiğdemir, Mesut
2014-01-01
Here we establish that equivalent single-axle loads values can be estimated using artificial neural networks without the complex design equality of American Association of State Highway and Transportation Officials (AASHTO). More importantly, we find that the neural network model gives the coefficients to be able to obtain the actual load values using the AASHTO design values. Thus, those design traffic values that might result in deterioration can be better calculated using the neural networks model than with the AASHTO design equation. The artificial neural network method is used for this purpose. The existing AASHTO flexible pavement design equation does not currently predict the pavement performance of the strategic highway research program (Long Term Pavement Performance studies) test sections very accurately, and typically over-estimates the number of equivalent single axle loads needed to cause a measured loss of the present serviceability index. Here we aimed to demonstrate that the proposed neural network model can more accurately represent the loads values data, compared against the performance of the AASHTO formula. It is concluded that the neural network may be an appropriate tool for the development of databased-nonparametric models of pavement performance. PMID:25397962
Re-evaluation of the AASHTO-flexible pavement design equation with neural network modeling.
Tiğdemir, Mesut
2014-01-01
Here we establish that equivalent single-axle loads values can be estimated using artificial neural networks without the complex design equality of American Association of State Highway and Transportation Officials (AASHTO). More importantly, we find that the neural network model gives the coefficients to be able to obtain the actual load values using the AASHTO design values. Thus, those design traffic values that might result in deterioration can be better calculated using the neural networks model than with the AASHTO design equation. The artificial neural network method is used for this purpose. The existing AASHTO flexible pavement design equation does not currently predict the pavement performance of the strategic highway research program (Long Term Pavement Performance studies) test sections very accurately, and typically over-estimates the number of equivalent single axle loads needed to cause a measured loss of the present serviceability index. Here we aimed to demonstrate that the proposed neural network model can more accurately represent the loads values data, compared against the performance of the AASHTO formula. It is concluded that the neural network may be an appropriate tool for the development of databased-nonparametric models of pavement performance.
Predicting the Emplacement of Improvised Explosive Devices: An Innovative Solution
ERIC Educational Resources Information Center
Lerner, Warren D.
2013-01-01
In this quantitative correlational study, simulated data were employed to examine artificial-intelligence techniques or, more specifically, artificial neural networks, as they relate to the location prediction of improvised explosive devices (IEDs). An ANN model was developed to predict IED placement, based upon terrain features and objects…
Artificial neural networks for processing fluorescence spectroscopy data in skin cancer diagnostics
NASA Astrophysics Data System (ADS)
Lenhardt, L.; Zeković, I.; Dramićanin, T.; Dramićanin, M. D.
2013-11-01
Over the years various optical spectroscopic techniques have been widely used as diagnostic tools in the discrimination of many types of malignant diseases. Recently, synchronous fluorescent spectroscopy (SFS) coupled with chemometrics has been applied in cancer diagnostics. The SFS method involves simultaneous scanning of both emission and excitation wavelengths while keeping the interval of wavelengths (constant-wavelength mode) or frequencies (constant-energy mode) between them constant. This method is fast, relatively inexpensive, sensitive and non-invasive. Total synchronous fluorescence spectra of normal skin, nevus and melanoma samples were used as input for training of artificial neural networks. Two different types of artificial neural networks were trained, the self-organizing map and the feed-forward neural network. Histopathology results of investigated skin samples were used as the gold standard for network output. Based on the obtained classification success rate of neural networks, we concluded that both networks provided high sensitivity with classification errors between 2 and 4%.
Estimating tree bole volume using artificial neural network models for four species in Turkey.
Ozçelik, Ramazan; Diamantopoulou, Maria J; Brooks, John R; Wiant, Harry V
2010-01-01
Tree bole volumes of 89 Scots pine (Pinus sylvestris L.), 96 Brutian pine (Pinus brutia Ten.), 107 Cilicica fir (Abies cilicica Carr.) and 67 Cedar of Lebanon (Cedrus libani A. Rich.) trees were estimated using Artificial Neural Network (ANN) models. Neural networks offer a number of advantages including the ability to implicitly detect complex nonlinear relationships between input and output variables, which is very helpful in tree volume modeling. Two different neural network architectures were used and produced the Back propagation (BPANN) and the Cascade Correlation (CCANN) Artificial Neural Network models. In addition, tree bole volume estimates were compared to other established tree bole volume estimation techniques including the centroid method, taper equations, and existing standard volume tables. An overview of the features of ANNs and traditional methods is presented and the advantages and limitations of each one of them are discussed. For validation purposes, actual volumes were determined by aggregating the volumes of measured short sections (average 1 meter) of the tree bole using Smalian's formula. The results reported in this research suggest that the selected cascade correlation artificial neural network (CCANN) models are reliable for estimating the tree bole volume of the four examined tree species since they gave unbiased results and were superior to almost all methods in terms of error (%) expressed as the mean of the percentage errors. 2009 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chattopadhyay, Surajit; Chattopadhyay, Goutami
2012-10-01
In the work discussed in this paper we considered total ozone time series over Kolkata (22°34'10.92″N, 88°22'10.92″E), an urban area in eastern India. Using cloud cover, average temperature, and rainfall as the predictors, we developed an artificial neural network, in the form of a multilayer perceptron with sigmoid non-linearity, for prediction of monthly total ozone concentrations from values of the predictors in previous months. We also estimated total ozone from values of the predictors in the same month. Before development of the neural network model we removed multicollinearity by means of principal component analysis. On the basis of the variables extracted by principal component analysis, we developed three artificial neural network models. By rigorous statistical assessment it was found that cloud cover and rainfall can act as good predictors for monthly total ozone when they are considered as the set of input variables for the neural network model constructed in the form of a multilayer perceptron. In general, the artificial neural network has good potential for predicting and estimating monthly total ozone on the basis of the meteorological predictors. It was further observed that during pre-monsoon and winter seasons, the proposed models perform better than during and after the monsoon.
SpikingLab: modelling agents controlled by Spiking Neural Networks in Netlogo.
Jimenez-Romero, Cristian; Johnson, Jeffrey
2017-01-01
The scientific interest attracted by Spiking Neural Networks (SNN) has lead to the development of tools for the simulation and study of neuronal dynamics ranging from phenomenological models to the more sophisticated and biologically accurate Hodgkin-and-Huxley-based and multi-compartmental models. However, despite the multiple features offered by neural modelling tools, their integration with environments for the simulation of robots and agents can be challenging and time consuming. The implementation of artificial neural circuits to control robots generally involves the following tasks: (1) understanding the simulation tools, (2) creating the neural circuit in the neural simulator, (3) linking the simulated neural circuit with the environment of the agent and (4) programming the appropriate interface in the robot or agent to use the neural controller. The accomplishment of the above-mentioned tasks can be challenging, especially for undergraduate students or novice researchers. This paper presents an alternative tool which facilitates the simulation of simple SNN circuits using the multi-agent simulation and the programming environment Netlogo (educational software that simplifies the study and experimentation of complex systems). The engine proposed and implemented in Netlogo for the simulation of a functional model of SNN is a simplification of integrate and fire (I&F) models. The characteristics of the engine (including neuronal dynamics, STDP learning and synaptic delay) are demonstrated through the implementation of an agent representing an artificial insect controlled by a simple neural circuit. The setup of the experiment and its outcomes are described in this work.
NASA Astrophysics Data System (ADS)
Torghabeh, A. A.; Tousi, A. M.
2007-08-01
This paper presents Fuzzy Logic and Neural Networks approach to Gas Turbine Fuel schedules. Modeling of non-linear system using feed forward artificial Neural Networks using data generated by a simulated gas turbine program is introduced. Two artificial Neural Networks are used , depicting the non-linear relationship between gas generator speed and fuel flow, and turbine inlet temperature and fuel flow respectively . Off-line fast simulations are used for engine controller design for turbojet engine based on repeated simulation. The Mamdani and Sugeno models are used to expression the Fuzzy system . The linguistic Fuzzy rules and membership functions are presents and a Fuzzy controller will be proposed to provide an Open-Loop control for the gas turbine engine during acceleration and deceleration . MATLAB Simulink was used to apply the Fuzzy Logic and Neural Networks analysis. Both systems were able to approximate functions characterizing the acceleration and deceleration schedules . Surge and Flame-out avoidance during acceleration and deceleration phases are then checked . Turbine Inlet Temperature also checked and controls by Neural Networks controller. This Fuzzy Logic and Neural Network Controllers output results are validated and evaluated by GSP software . The validation results are used to evaluate the generalization ability of these artificial Neural Networks and Fuzzy Logic controllers.
Science of the science, drug discovery and artificial neural networks.
Patel, Jigneshkumar
2013-03-01
Drug discovery process many times encounters complex problems, which may be difficult to solve by human intelligence. Artificial Neural Networks (ANNs) are one of the Artificial Intelligence (AI) technologies used for solving such complex problems. ANNs are widely used for primary virtual screening of compounds, quantitative structure activity relationship studies, receptor modeling, formulation development, pharmacokinetics and in all other processes involving complex mathematical modeling. Despite having such advanced technologies and enough understanding of biological systems, drug discovery is still a lengthy, expensive, difficult and inefficient process with low rate of new successful therapeutic discovery. In this paper, author has discussed the drug discovery science and ANN from very basic angle, which may be helpful to understand the application of ANN for drug discovery to improve efficiency.
Shao, Q; Rowe, R C; York, P
2007-06-01
This study has investigated an artificial intelligence technology - model trees - as a modelling tool applied to an immediate release tablet formulation database. The modelling performance was compared with artificial neural networks that have been well established and widely applied in the pharmaceutical product formulation fields. The predictability of generated models was validated on unseen data and judged by correlation coefficient R(2). Output from the model tree analyses produced multivariate linear equations which predicted tablet tensile strength, disintegration time, and drug dissolution profiles of similar quality to neural network models. However, additional and valuable knowledge hidden in the formulation database was extracted from these equations. It is concluded that, as a transparent technology, model trees are useful tools to formulators.
A neural network approach to burst detection.
Mounce, S R; Day, A J; Wood, A S; Khan, A; Widdop, P D; Machell, J
2002-01-01
This paper describes how hydraulic and water quality data from a distribution network may be used to provide a more efficient leakage management capability for the water industry. The research presented concerns the application of artificial neural networks to the issue of detection and location of leakage in treated water distribution systems. An architecture for an Artificial Neural Network (ANN) based system is outlined. The neural network uses time series data produced by sensors to directly construct an empirical model for predication and classification of leaks. Results are presented using data from an experimental site in Yorkshire Water's Keighley distribution system.
Neural manufacturing: a novel concept for processing modeling, monitoring, and control
NASA Astrophysics Data System (ADS)
Fu, Chi Y.; Petrich, Loren; Law, Benjamin
1995-09-01
Semiconductor fabrication lines have become extremely costly, and achieving a good return from such a high capital investment requires efficient utilization of these expensive facilities. It is highly desirable to shorten processing development time, increase fabrication yield, enhance flexibility, improve quality, and minimize downtime. We propose that these ends can be achieved by applying recent advances in the areas of artificial neural networks, fuzzy logic, machine learning, and genetic algorithms. We use the term neural manufacturing to describe such applications. This paper describes our use of artificial neural networks to improve the monitoring and control of semiconductor process.
Application of Artificial Neural Networks to the Design of Turbomachinery Airfoils
NASA Technical Reports Server (NTRS)
Rai, Man Mohan; Madavan, Nateri
1997-01-01
Artificial neural networks are widely used in engineering applications, such as control, pattern recognition, plant modeling and condition monitoring to name just a few. In this seminar we will explore the possibility of applying neural networks to aerodynamic design, in particular, the design of turbomachinery airfoils. The principle idea behind this effort is to represent the design space using a neural network (within some parameter limits), and then to employ an optimization procedure to search this space for a solution that exhibits optimal performance characteristics. Results obtained for design problems in two spatial dimensions will be presented.
[Artificial neural networks for decision making in urologic oncology].
Remzi, M; Djavan, B
2007-06-01
This chapter presents a detailed introduction regarding Artificial Neural Networks (ANNs) and their contribution to modern Urologic Oncology. It includes a description of ANNs methodology and points out the differences between Artifical Intelligence and traditional statistic models in terms of usefulness for patients and clinicians, and its advantages over current statistical analysis.
ERIC Educational Resources Information Center
Briggs, Derek C.; Circi, Ruhan
2017-01-01
Artificial Neural Networks (ANNs) have been proposed as a promising approach for the classification of students into different levels of a psychological attribute hierarchy. Unfortunately, because such classifications typically rely upon internally produced item response patterns that have not been externally validated, the instability of ANN…
2016-07-13
to a computer via Bluetooth . Respiration is captured as a breathing waveform signal using a capacitive pressure sensor, sampled at 18 Hz. The...dropouts in the Bluetooth signal and artifacts caused by body movement. Workload models. Four artificial neural network models were created using
Predicting Item Difficulty in a Reading Comprehension Test with an Artificial Neural Network.
ERIC Educational Resources Information Center
Perkins, Kyle; And Others
1995-01-01
This article reports the results of using a three-layer back propagation artificial neural network to predict item difficulty in a reading comprehension test. Three classes of variables were examined: text structure, propositional analysis, and cognitive demand. Results demonstrate that the networks can consistently predict item difficulty. (JL)
ERIC Educational Resources Information Center
Cui, Ying; Gierl, Mark; Guo, Qi
2016-01-01
The purpose of the current investigation was to describe how the artificial neural networks (ANNs) can be used to interpret student performance on cognitive diagnostic assessments (CDAs) and evaluate the performances of ANNs using simulation results. CDAs are designed to measure student performance on problem-solving tasks and provide useful…
NASA Astrophysics Data System (ADS)
Mathivanan, N. Rajesh; Mouli, Chandra
2012-12-01
In this work, a new methodology based on artificial neural networks (ANN) has been developed to study the low-velocity impact characteristics of woven glass epoxy laminates of EP3 grade. To train and test the networks, multiple impact cases have been generated using statistical analysis of variance (ANOVA). Experimental tests were performed using an instrumented falling-weight impact-testing machine. Different impact velocities and impact energies on different thicknesses of laminates were considered as the input parameters of the ANN model. This model is a feed-forward back-propagation neural network. Using the input/output data of the experiments, the model was trained and tested. Further, the effects of the low-velocity impact response of the laminates at different energy levels were investigated by studying the cause-effect relationship among the influential factors using response surface methodology. The most significant parameter is determined from the other input variables through ANOVA.
NASA Astrophysics Data System (ADS)
El Mountassir, M.; Yaacoubi, S.; Dahmene, F.
2015-07-01
Intelligent feature extraction and advanced signal processing techniques are necessary for a better interpretation of ultrasonic guided waves signals either in structural health monitoring (SHM) or in nondestructive testing (NDT). Such signals are characterized by at least multi-modal and dispersive components. In addition, in SHM, these signals are closely vulnerable to environmental and operational conditions (EOCs), and can be severely affected. In this paper we investigate the use of Artificial Neural Network (ANN) to overcome these effects and to provide a reliable damage detection method with a minimal of false indications. An experimental case of study (full scale pipe) is presented. Damages sizes have been increased and their shapes modified in different steps. Various parameters such as the number of inputs and the number of hidden neurons were studied to find the optimal configuration of the neural network.
NASA Astrophysics Data System (ADS)
Laidi, Maamar; Hanini, Salah; Rezrazi, Ahmed; Yaiche, Mohamed Redha; El Hadj, Abdallah Abdallah; Chellali, Farouk
2017-04-01
In this study, a backpropagation artificial neural network (BP-ANN) model is used as an alternative approach to predict solar radiation on tilted surfaces (SRT) using a number of variables involved in physical process. These variables are namely the latitude of the site, mean temperature and relative humidity, Linke turbidity factor and Angstrom coefficient, extraterrestrial solar radiation, solar radiation data measured on horizontal surfaces (SRH), and solar zenith angle. Experimental solar radiation data from 13 stations spread all over Algeria around the year (2004) were used for training/validation and testing the artificial neural networks (ANNs), and one station was used to make the interpolation of the designed ANN. The ANN model was trained, validated, and tested using 60, 20, and 20 % of all data, respectively. The configuration 8-35-1 (8 inputs, 35 hidden, and 1 output neurons) presented an excellent agreement between the prediction and the experimental data during the test stage with determination coefficient of 0.99 and root meat squared error of 5.75 Wh/m2, considering a three-layer feedforward backpropagation neural network with Levenberg-Marquardt training algorithm, a hyperbolic tangent sigmoid and linear transfer function at the hidden and the output layer, respectively. This novel model could be used by researchers or scientists to design high-efficiency solar devices that are usually tilted at an optimum angle to increase the solar incident on the surface.
Modelling and Predicting Backstroke Start Performance Using Non-Linear and Linear Models
de Jesus, Karla; Ayala, Helon V. H.; de Jesus, Kelly; Coelho, Leandro dos S.; Medeiros, Alexandre I.A.; Abraldes, José A.; Vaz, Mário A.P.; Fernandes, Ricardo J.; Vilas-Boas, João Paulo
2018-01-01
Abstract Our aim was to compare non-linear and linear mathematical model responses for backstroke start performance prediction. Ten swimmers randomly completed eight 15 m backstroke starts with feet over the wedge, four with hands on the highest horizontal and four on the vertical handgrip. Swimmers were videotaped using a dual media camera set-up, with the starts being performed over an instrumented block with four force plates. Artificial neural networks were applied to predict 5 m start time using kinematic and kinetic variables and to determine the accuracy of the mean absolute percentage error. Artificial neural networks predicted start time more robustly than the linear model with respect to changing training to the validation dataset for the vertical handgrip (3.95 ± 1.67 vs. 5.92 ± 3.27%). Artificial neural networks obtained a smaller mean absolute percentage error than the linear model in the horizontal (0.43 ± 0.19 vs. 0.98 ± 0.19%) and vertical handgrip (0.45 ± 0.19 vs. 1.38 ± 0.30%) using all input data. The best artificial neural network validation revealed a smaller mean absolute error than the linear model for the horizontal (0.007 vs. 0.04 s) and vertical handgrip (0.01 vs. 0.03 s). Artificial neural networks should be used for backstroke 5 m start time prediction due to the quite small differences among the elite level performances. PMID:29599857
Hsieh, Chung-Ho; Lu, Ruey-Hwa; Lee, Nai-Hsin; Chiu, Wen-Ta; Hsu, Min-Huei; Li, Yu-Chuan Jack
2011-01-01
Diagnosing acute appendicitis clinically is still difficult. We developed random forests, support vector machines, and artificial neural network models to diagnose acute appendicitis. Between January 2006 and December 2008, patients who had a consultation session with surgeons for suspected acute appendicitis were enrolled. Seventy-five percent of the data set was used to construct models including random forest, support vector machines, artificial neural networks, and logistic regression. Twenty-five percent of the data set was withheld to evaluate model performance. The area under the receiver operating characteristic curve (AUC) was used to evaluate performance, which was compared with that of the Alvarado score. Data from a total of 180 patients were collected, 135 used for training and 45 for testing. The mean age of patients was 39.4 years (range, 16-85). Final diagnosis revealed 115 patients with and 65 without appendicitis. The AUC of random forest, support vector machines, artificial neural networks, logistic regression, and Alvarado was 0.98, 0.96, 0.91, 0.87, and 0.77, respectively. The sensitivity, specificity, positive, and negative predictive values of random forest were 94%, 100%, 100%, and 87%, respectively. Random forest performed better than artificial neural networks, logistic regression, and Alvarado. We demonstrated that random forest can predict acute appendicitis with good accuracy and, deployed appropriately, can be an effective tool in clinical decision making. Copyright © 2011 Mosby, Inc. All rights reserved.
1989-12-01
Ohio ’aPw iorlipuab muo i 0I2, AFIT/GE/ENG/89D-10 CLASSIFICATION OF ACOUSTO - OPTIC CORRELATION SIGNATURES OF SPREAD SPECTRUM SIGNALS USING ARTIFICIAL...ENG/89D- 10 CLASSIFICATION OF ACOUSTO - OPTIC CORRELATION SIGNATURES OF SPREAD SPECTRUM SIGNALS USING ARTIFICIAL NEURAL NETWORKS THESIS John W. DeBerry...Captain, USAF AFIT/GE/ENG/89D- 10 Approved for public release; distribution unlimited. AFIT/GE/ENG/89D-10 CLASSIFICATION OF ACOUSTO - OPTIC CORRELATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ortiz-Rodriguez, J. M.; Reyes Alfaro, A.; Reyes Haro, A.
In this work the performance of two neutron spectrum unfolding codes based on iterative procedures and artificial neural networks is evaluated. The first one code based on traditional iterative procedures and called Neutron spectrometry and dosimetry from the Universidad Autonoma de Zacatecas (NSDUAZ) use the SPUNIT iterative algorithm and was designed to unfold neutron spectrum and calculate 15 dosimetric quantities and 7 IAEA survey meters. The main feature of this code is the automated selection of the initial guess spectrum trough a compendium of neutron spectrum compiled by the IAEA. The second one code known as Neutron spectrometry and dosimetrymore » with artificial neural networks (NDSann) is a code designed using neural nets technology. The artificial intelligence approach of neural net does not solve mathematical equations. By using the knowledge stored at synaptic weights on a neural net properly trained, the code is capable to unfold neutron spectrum and to simultaneously calculate 15 dosimetric quantities, needing as entrance data, only the rate counts measured with a Bonner spheres system. Similarities of both NSDUAZ and NSDann codes are: they follow the same easy and intuitive user's philosophy and were designed in a graphical interface under the LabVIEW programming environment. Both codes unfold the neutron spectrum expressed in 60 energy bins, calculate 15 dosimetric quantities and generate a full report in HTML format. Differences of these codes are: NSDUAZ code was designed using classical iterative approaches and needs an initial guess spectrum in order to initiate the iterative procedure. In NSDUAZ, a programming routine was designed to calculate 7 IAEA instrument survey meters using the fluence-dose conversion coefficients. NSDann code use artificial neural networks for solving the ill-conditioned equation system of neutron spectrometry problem through synaptic weights of a properly trained neural network. Contrary to iterative procedures, in neural net approach it is possible to reduce the rate counts used to unfold the neutron spectrum. To evaluate these codes a computer tool called Neutron Spectrometry and dosimetry computer tool was designed. The results obtained with this package are showed. The codes here mentioned are freely available upon request to the authors.« less
NASA Astrophysics Data System (ADS)
Ortiz-Rodríguez, J. M.; Reyes Alfaro, A.; Reyes Haro, A.; Solís Sánches, L. O.; Miranda, R. Castañeda; Cervantes Viramontes, J. M.; Vega-Carrillo, H. R.
2013-07-01
In this work the performance of two neutron spectrum unfolding codes based on iterative procedures and artificial neural networks is evaluated. The first one code based on traditional iterative procedures and called Neutron spectrometry and dosimetry from the Universidad Autonoma de Zacatecas (NSDUAZ) use the SPUNIT iterative algorithm and was designed to unfold neutron spectrum and calculate 15 dosimetric quantities and 7 IAEA survey meters. The main feature of this code is the automated selection of the initial guess spectrum trough a compendium of neutron spectrum compiled by the IAEA. The second one code known as Neutron spectrometry and dosimetry with artificial neural networks (NDSann) is a code designed using neural nets technology. The artificial intelligence approach of neural net does not solve mathematical equations. By using the knowledge stored at synaptic weights on a neural net properly trained, the code is capable to unfold neutron spectrum and to simultaneously calculate 15 dosimetric quantities, needing as entrance data, only the rate counts measured with a Bonner spheres system. Similarities of both NSDUAZ and NSDann codes are: they follow the same easy and intuitive user's philosophy and were designed in a graphical interface under the LabVIEW programming environment. Both codes unfold the neutron spectrum expressed in 60 energy bins, calculate 15 dosimetric quantities and generate a full report in HTML format. Differences of these codes are: NSDUAZ code was designed using classical iterative approaches and needs an initial guess spectrum in order to initiate the iterative procedure. In NSDUAZ, a programming routine was designed to calculate 7 IAEA instrument survey meters using the fluence-dose conversion coefficients. NSDann code use artificial neural networks for solving the ill-conditioned equation system of neutron spectrometry problem through synaptic weights of a properly trained neural network. Contrary to iterative procedures, in neural net approach it is possible to reduce the rate counts used to unfold the neutron spectrum. To evaluate these codes a computer tool called Neutron Spectrometry and dosimetry computer tool was designed. The results obtained with this package are showed. The codes here mentioned are freely available upon request to the authors.
The use of artificial neural networks to predict the muscle behavior
NASA Astrophysics Data System (ADS)
Kutilek, Patrik; Viteckova, Slavka; Svoboda, Zdenĕk; Smrcka, Pavel
2013-09-01
The aim of this article is to introduce methods of prediction of muscle behavior of the lower extremities based on artificial neural networks, which can be used for medical purposes. Our work focuses on predicting muscletendon forces and moments during human gait with the use of angle-time diagram. A group of healthy children and children with cerebral palsy were measured using a Vicon MoCap system. The kinematic data was recorded and the OpenSim software system was used to identify the joint angles, muscle-tendon forces and joint muscle moment, which are presented graphically with time diagrams. The musculus gastrocnemius medialis that is often studied in the context of cerebral palsy have been chosen to study the method of prediction. The diagrams of mean muscle-tendon force and mean moment are plotted and the data about the force-time and moment-time dependencies are used for training neural networks. The new way of prediction of muscle-tendon forces and moments based on neural networks was tested. Neural networks predicted the muscle forces and moments of healthy children and children with cerebral palsy. The designed method of prediction by neural networks could help to identify the difference between muscle behavior of healthy subjects and diseased subjects.
Prediction of Human Intestinal Absorption of Compounds Using Artificial Intelligence Techniques.
Kumar, Rajnish; Sharma, Anju; Siddiqui, Mohammed Haris; Tiwari, Rajesh Kumar
2017-01-01
Information about Pharmacokinetics of compounds is an essential component of drug design and development. Modeling the pharmacokinetic properties require identification of the factors effecting absorption, distribution, metabolism and excretion of compounds. There have been continuous attempts in the prediction of intestinal absorption of compounds using various Artificial intelligence methods in the effort to reduce the attrition rate of drug candidates entering to preclinical and clinical trials. Currently, there are large numbers of individual predictive models available for absorption using machine learning approaches. Six Artificial intelligence methods namely, Support vector machine, k- nearest neighbor, Probabilistic neural network, Artificial neural network, Partial least square and Linear discriminant analysis were used for prediction of absorption of compounds. Prediction accuracy of Support vector machine, k- nearest neighbor, Probabilistic neural network, Artificial neural network, Partial least square and Linear discriminant analysis for prediction of intestinal absorption of compounds was found to be 91.54%, 88.33%, 84.30%, 86.51%, 79.07% and 80.08% respectively. Comparative analysis of all the six prediction models suggested that Support vector machine with Radial basis function based kernel is comparatively better for binary classification of compounds using human intestinal absorption and may be useful at preliminary stages of drug design and development. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
NASA Astrophysics Data System (ADS)
Prezioso, M.; Merrikh-Bayat, F.; Chakrabarti, B.; Strukov, D.
2016-02-01
Artificial neural networks have been receiving increasing attention due to their superior performance in many information processing tasks. Typically, scaling up the size of the network results in better performance and richer functionality. However, large neural networks are challenging to implement in software and customized hardware are generally required for their practical implementations. In this work, we will discuss our group's recent efforts on the development of such custom hardware circuits, based on hybrid CMOS/memristor circuits, in particular of CMOL variety. We will start by reviewing the basics of memristive devices and of CMOL circuits. We will then discuss our recent progress towards demonstration of hybrid circuits, focusing on the experimental and theoretical results for artificial neural networks based on crossbarintegrated metal oxide memristors. We will conclude presentation with the discussion of the remaining challenges and the most pressing research needs.
NASA Astrophysics Data System (ADS)
Barkhatov, N. A.; Revunov, S. E.; Vorobjev, V. G.; Yagodkina, O. I.
2018-03-01
The cause-and-effect relations of the dynamics of high-latitude geomagnetic activity (in terms of the AL index) and the type of the magnetic cloud of the solar wind are studied with the use of artificial neural networks. A recurrent neural network model has been created based on the search for the optimal physically coupled input and output parameters characterizing the action of a plasma flux belonging to a certain magnetic cloud type on the magnetosphere. It has been shown that, with IMF components as input parameters of neural networks with allowance for a 90-min prehistory, it is possible to retrieve the AL sequence with an accuracy to 80%. The successful retrieval of the AL dynamics by the used data indicates the presence of a close nonlinear connection of the AL index with cloud parameters. The created neural network models can be applied with high efficiency to retrieve the AL index, both in periods of isolated magnetospheric substorms and in periods of the interaction between the Earth's magnetosphere and magnetic clouds of different types. The developed model of AL index retrieval can be used to detect magnetic clouds.
NASA Astrophysics Data System (ADS)
Kusumoputro, Benyamin; Rostiviani, Linda; Saptawijaya, Ari
2000-07-01
Artificial odor recognition system is developed in order to mimic the human sensory test in cosmetics, parfum and beverage industries. The developed system however, lacks of ability to recognize the unknown type of odor. To improve the system's capability, a hybrid neural system with a supervised learning paradigm is developed and used as a pattern classifier. In this paper, the performance of the hybrid neural system is investigated, together with that of FALVQ neural system.
Kim, Junkyeong; Lee, Chaggil; Park, Seunghee
2017-06-07
Concrete is one of the most common materials used to construct a variety of civil infrastructures. However, since concrete might be susceptible to brittle fracture, it is essential to confirm the strength of concrete at the early-age stage of the curing process to prevent unexpected collapse. To address this issue, this study proposes a novel method to estimate the early-age strength of concrete, by integrating an artificial neural network algorithm with a dynamic response measurement of the concrete material. The dynamic response signals of the concrete, including both electromechanical impedances and guided ultrasonic waves, are obtained from an embedded piezoelectric sensor module. The cross-correlation coefficient of the electromechanical impedance signals and the amplitude of the guided ultrasonic wave signals are selected to quantify the variation in dynamic responses according to the strength of the concrete. Furthermore, an artificial neural network algorithm is used to verify a relationship between the variation in dynamic response signals and concrete strength. The results of an experimental study confirm that the proposed approach can be effectively applied to estimate the strength of concrete material from the early-age stage of the curing process.
NASA Astrophysics Data System (ADS)
Wanto, Anjar; Zarlis, Muhammad; Sawaluddin; Hartama, Dedy
2017-12-01
Backpropagation is a good artificial neural network algorithm used to predict, one of which is to predict the rate of Consumer Price Index (CPI) based on the foodstuff sector. While conjugate gradient fletcher reeves is a suitable optimization method when juxtaposed with backpropagation method, because this method can shorten iteration without reducing the quality of training and testing result. Consumer Price Index (CPI) data that will be predicted to come from the Central Statistics Agency (BPS) Pematangsiantar. The results of this study will be expected to contribute to the government in making policies to improve economic growth. In this study, the data obtained will be processed by conducting training and testing with artificial neural network backpropagation by using parameter learning rate 0,01 and target error minimum that is 0.001-0,09. The training network is built with binary and bipolar sigmoid activation functions. After the results with backpropagation are obtained, it will then be optimized using the conjugate gradient fletcher reeves method by conducting the same training and testing based on 5 predefined network architectures. The result, the method used can increase the speed and accuracy result.
Artificial neural network based particle size prediction of polymeric nanoparticles.
Youshia, John; Ali, Mohamed Ehab; Lamprecht, Alf
2017-10-01
Particle size of nanoparticles and the respective polydispersity are key factors influencing their biopharmaceutical behavior in a large variety of therapeutic applications. Predicting these attributes would skip many preliminary studies usually required to optimize formulations. The aim was to build a mathematical model capable of predicting the particle size of polymeric nanoparticles produced by a pharmaceutical polymer of choice. Polymer properties controlling the particle size were identified as molecular weight, hydrophobicity and surface activity, and were quantified by measuring polymer viscosity, contact angle and interfacial tension, respectively. A model was built using artificial neural network including these properties as input with particle size and polydispersity index as output. The established model successfully predicted particle size of nanoparticles covering a range of 70-400nm prepared from other polymers. The percentage bias for particle prediction was 2%, 4% and 6%, for the training, validation and testing data, respectively. Polymer surface activity was found to have the highest impact on the particle size followed by viscosity and finally hydrophobicity. Results of this study successfully highlighted polymer properties affecting particle size and confirmed the usefulness of artificial neural networks in predicting the particle size and polydispersity of polymeric nanoparticles. Copyright © 2017 Elsevier B.V. All rights reserved.
Kim, Junkyeong; Lee, Chaggil; Park, Seunghee
2017-01-01
Concrete is one of the most common materials used to construct a variety of civil infrastructures. However, since concrete might be susceptible to brittle fracture, it is essential to confirm the strength of concrete at the early-age stage of the curing process to prevent unexpected collapse. To address this issue, this study proposes a novel method to estimate the early-age strength of concrete, by integrating an artificial neural network algorithm with a dynamic response measurement of the concrete material. The dynamic response signals of the concrete, including both electromechanical impedances and guided ultrasonic waves, are obtained from an embedded piezoelectric sensor module. The cross-correlation coefficient of the electromechanical impedance signals and the amplitude of the guided ultrasonic wave signals are selected to quantify the variation in dynamic responses according to the strength of the concrete. Furthermore, an artificial neural network algorithm is used to verify a relationship between the variation in dynamic response signals and concrete strength. The results of an experimental study confirm that the proposed approach can be effectively applied to estimate the strength of concrete material from the early-age stage of the curing process. PMID:28590456
In-vivo determination of chewing patterns using FBG and artificial neural networks
NASA Astrophysics Data System (ADS)
Pegorini, Vinicius; Zen Karam, Leandro; Rocha Pitta, Christiano S.; Ribeiro, Richardson; Simioni Assmann, Tangriani; Cardozo da Silva, Jean Carlos; Bertotti, Fábio L.; Kalinowski, Hypolito J.; Cardoso, Rafael
2015-09-01
This paper reports the process of pattern classification of the chewing process of ruminants. We propose a simplified signal processing scheme for optical fiber Bragg grating (FBG) sensors based on machine learning techniques. The FBG sensors measure the biomechanical forces during jaw movements and an artificial neural network is responsible for the classification of the associated chewing pattern. In this study, three patterns associated to dietary supplement, hay and ryegrass were considered. Additionally, two other important events for ingestive behavior studies were monitored, rumination and idle period. Experimental results show that the proposed approach for pattern classification has been capable of differentiating the materials involved in the chewing process with a small classification error.
NASA Astrophysics Data System (ADS)
Suárez Araujo, C. P.
2000-05-01
We present in this work a theoretical and conceptual study and some reflections on a fundamental aspect concerning with the structure and brain function: the Cellular Communication. The main interests of our study are the signal transmission mechanisms and the neuronal mechanisms responsible to learning. We propose the consideration of a new kind of communication mechanisms, different to the synaptic transmission, "Diffusion or Volume Transmission." This new alternative is based on a diffusing messenger as nitric oxide (NO). Our study aims towards the design of a conceptual framework, which covers implications of NO in the artificial neural networks (ANNs), both in neural architecture and learning processing. This conceptual frame might be able to provide possible biological support for many aspects of ANNs and to generate new concepts to improve the structure and operation of them. Some of these new concepts are The Fast Diffusion Neural Propagation (FDNP), the Diffuse Neighborhood (DNB), (1), the Diffusive Hybrid Neuromodulation (DHN), the Virtual Weights. Finally we will propose a new mathematical formulation for the Hebb learning law, taking into account the NO effect. Along the same lines, we will reflect on the possibility of a new formal framework for learning processes in ANNs, which consist of slow and fast learning concerning with co-operation between the classical neurotransmission and FDNP. We will develop this work from a computational neuroscience point of view, proposing a global study framework of diffusion messenger NO (GSFNO), using a hybrid natural/artificial approach. Finally it is important to note that we can consider this paper the first paper of a set of scientific work on nitric oxide (NO) and artificial neural networks (ANNs): NO and ANNs Series. We can say that this paper has a character of search and query on both subjects their implications and co-existence.
Kaveh, Mohammad; Chayjan, Reza Amiri
2014-01-01
Drying of terebinth fruit was conducted to provide microbiological stability, reduce product deterioration due to chemical reactions, facilitate storage and lower transportation costs. Because terebinth fruit is susceptible to heat, the selection of a suitable drying technology is a challenging task. Artificial neural networks (ANNs) are used as a nonlinear mapping structures for modelling and prediction of some physical and drying properties of terebinth fruit. Drying characteristics of terebinth fruit with an initial moisture content of 1.16 (d.b.) was studied in an infrared fluidized bed dryer. Different levels of air temperatures (40, 55 and 70°C), air velocities (0.93, 1.76 and 2.6 m/s) and infrared (IR) radiation powers (500, 1000 and 1500 W) were applied. In the present study, the application of Artificial Neural Network (ANN) for predicting the drying moisture diffusivity, energy consumption, shrinkage, drying rate and moisture ratio (output parameter for ANN modelling) was investigated. Air temperature, air velocity, IR radiation and drying time were considered as input parameters. The results revealed that to predict drying rate and moisture ratio a network with the TANSIG-LOGSIG-TANSIG transfer function and Levenberg-Marquardt (LM) training algorithm made the most accurate predictions for the terebinth fruit drying. The best results for ANN at predications were R2 = 0.9678 for drying rate, R2 = 0.9945 for moisture ratio, R2 = 0.9857 for moisture diffusivity and R2 = 0.9893 for energy consumption. Results indicated that artificial neural network can be used as an alternative approach for modelling and predicting of terebinth fruit drying parameters with high correlation. Also ANN can be used in optimization of the process.
Zhang, Fan; Liu, Ming; Harper, Stephen; Lee, Michael; Huang, He
2014-07-22
To enable intuitive operation of powered artificial legs, an interface between user and prosthesis that can recognize the user's movement intent is desired. A novel neural-machine interface (NMI) based on neuromuscular-mechanical fusion developed in our previous study has demonstrated a great potential to accurately identify the intended movement of transfemoral amputees. However, this interface has not yet been integrated with a powered prosthetic leg for true neural control. This study aimed to report (1) a flexible platform to implement and optimize neural control of powered lower limb prosthesis and (2) an experimental setup and protocol to evaluate neural prosthesis control on patients with lower limb amputations. First a platform based on a PC and a visual programming environment were developed to implement the prosthesis control algorithms, including NMI training algorithm, NMI online testing algorithm, and intrinsic control algorithm. To demonstrate the function of this platform, in this study the NMI based on neuromuscular-mechanical fusion was hierarchically integrated with intrinsic control of a prototypical transfemoral prosthesis. One patient with a unilateral transfemoral amputation was recruited to evaluate our implemented neural controller when performing activities, such as standing, level-ground walking, ramp ascent, and ramp descent continuously in the laboratory. A novel experimental setup and protocol were developed in order to test the new prosthesis control safely and efficiently. The presented proof-of-concept platform and experimental setup and protocol could aid the future development and application of neurally-controlled powered artificial legs.
Analogue spin-orbit torque device for artificial-neural-network-based associative memory operation
NASA Astrophysics Data System (ADS)
Borders, William A.; Akima, Hisanao; Fukami, Shunsuke; Moriya, Satoshi; Kurihara, Shouta; Horio, Yoshihiko; Sato, Shigeo; Ohno, Hideo
2017-01-01
We demonstrate associative memory operations reminiscent of the brain using nonvolatile spintronics devices. Antiferromagnet-ferromagnet bilayer-based Hall devices, which show analogue-like spin-orbit torque switching under zero magnetic fields and behave as artificial synapses, are used. An artificial neural network is used to associate memorized patterns from their noisy versions. We develop a network consisting of a field-programmable gate array and 36 spin-orbit torque devices. An effect of learning on associative memory operations is successfully confirmed for several 3 × 3-block patterns. A discussion on the present approach for realizing spintronics-based artificial intelligence is given.
Recurrent Artificial Neural Networks and Finite State Natural Language Processing.
ERIC Educational Resources Information Center
Moisl, Hermann
It is argued that pessimistic assessments of the adequacy of artificial neural networks (ANNs) for natural language processing (NLP) on the grounds that they have a finite state architecture are unjustified, and that their adequacy in this regard is an empirical issue. First, arguments that counter standard objections to finite state NLP on the…
ERIC Educational Resources Information Center
Nikelshpur, Dmitry O.
2014-01-01
Similar to mammalian brains, Artificial Neural Networks (ANN) are universal approximators, capable of yielding near-optimal solutions to a wide assortment of problems. ANNs are used in many fields including medicine, internet security, engineering, retail, robotics, warfare, intelligence control, and finance. "ANNs have a tendency to get…
USDA-ARS?s Scientific Manuscript database
The use of Fourier Transform-Infrared Spectroscopy (FT-IR) in conjunction with Artificial Neural Network software, NeuroDeveloper™ was examined for the rapid identification and classification of Listeria species and serotyping of Listeria monocytogenes. A spectral library was created for 245 strains...
ERIC Educational Resources Information Center
Sunal, Cynthia Szymanski; Karr, Charles L.; Sunal, Dennis W.
2003-01-01
Students' conceptions of three major artificial intelligence concepts used in the modeling of systems in science, fuzzy logic, neural networks, and genetic algorithms were investigated before and after a higher education science course. Students initially explored their prior ideas related to the three concepts through active tasks. Then,…
ERIC Educational Resources Information Center
Metz, Dale Evan; And Others
1992-01-01
A preliminary scheme for estimating the speech intelligibility of hearing-impaired speakers from acoustic parameters, using a computerized artificial neural network to process mathematically the acoustic input variables, is outlined. Tests with 60 hearing-impaired speakers found the scheme to be highly accurate in identifying speakers separated by…
ERIC Educational Resources Information Center
Anderson, Joan L.
2006-01-01
Data from graduate student applications at a large Western university were used to determine which factors were the best predictors of success in graduate school, as defined by cumulative graduate grade point average. Two statistical models were employed and compared: artificial neural networking and simultaneous multiple regression. Both models…
Detection of different states of sleep in the rodents by the means of artificial neural networks
NASA Astrophysics Data System (ADS)
Musatov, Viacheslav; Dykin, Viacheslav; Pitsik, Elena; Pisarchik, Alexander
2018-04-01
This paper considers the possibility of classification of electroencephalogram (EEG) and electromyogram (EMG) signals corresponding to different phases of sleep and wakefulness of mice by the means of artificial neural networks. A feed-forward artificial neural network based on multilayer perceptron was created and trained on the data of one of the rodents. The trained network was used to read and classify the EEG and EMG data corresponding to different phases of sleep and wakefulness of the same mouse and other mouse. The results show a good recognition quality of all phases for the rodent on which the training was conducted (80-99%) and acceptable recognition quality for the data collected from the same mouse after a stroke.
Maleki, Ehsan; Babashah, Hossein; Koohi, Somayyeh; Kavehvash, Zahra
2017-07-01
This paper presents an optical processing approach for exploring a large number of genome sequences. Specifically, we propose an optical correlator for global alignment and an extended moiré matching technique for local analysis of spatially coded DNA, whose output is fed to a novel three-dimensional artificial neural network for local DNA alignment. All-optical implementation of the proposed 3D artificial neural network is developed and its accuracy is verified in Zemax. Thanks to its parallel processing capability, the proposed structure performs local alignment of 4 million sequences of 150 base pairs in a few seconds, which is much faster than its electrical counterparts, such as the basic local alignment search tool.
Applications of artificial neural networks in medical science.
Patel, Jigneshkumar L; Goyal, Ramesh K
2007-09-01
Computer technology has been advanced tremendously and the interest has been increased for the potential use of 'Artificial Intelligence (AI)' in medicine and biological research. One of the most interesting and extensively studied branches of AI is the 'Artificial Neural Networks (ANNs)'. Basically, ANNs are the mathematical algorithms, generated by computers. ANNs learn from standard data and capture the knowledge contained in the data. Trained ANNs approach the functionality of small biological neural cluster in a very fundamental manner. They are the digitized model of biological brain and can detect complex nonlinear relationships between dependent as well as independent variables in a data where human brain may fail to detect. Nowadays, ANNs are widely used for medical applications in various disciplines of medicine especially in cardiology. ANNs have been extensively applied in diagnosis, electronic signal analysis, medical image analysis and radiology. ANNs have been used by many authors for modeling in medicine and clinical research. Applications of ANNs are increasing in pharmacoepidemiology and medical data mining. In this paper, authors have summarized various applications of ANNs in medical science.
Golmohammadi, Hassan
2009-11-30
A quantitative structure-property relationship (QSPR) study was performed to develop models those relate the structure of 141 organic compounds to their octanol-water partition coefficients (log P(o/w)). A genetic algorithm was applied as a variable selection tool. Modeling of log P(o/w) of these compounds as a function of theoretically derived descriptors was established by multiple linear regression (MLR), partial least squares (PLS), and artificial neural network (ANN). The best selected descriptors that appear in the models are: atomic charge weighted partial positively charged surface area (PPSA-3), fractional atomic charge weighted partial positive surface area (FPSA-3), minimum atomic partial charge (Qmin), molecular volume (MV), total dipole moment of molecule (mu), maximum antibonding contribution of a molecule orbital in the molecule (MAC), and maximum free valency of a C atom in the molecule (MFV). The result obtained showed the ability of developed artificial neural network to prediction of partition coefficients of organic compounds. Also, the results revealed the superiority of ANN over the MLR and PLS models. Copyright 2009 Wiley Periodicals, Inc.
Visual NNet: An Educational ANN's Simulation Environment Reusing Matlab Neural Networks Toolbox
ERIC Educational Resources Information Center
Garcia-Roselló, Emilio; González-Dacosta, Jacinto; Lado, Maria J.; Méndez, Arturo J.; Garcia Pérez-Schofield, Baltasar; Ferrer, Fátima
2011-01-01
Artificial Neural Networks (ANN's) are nowadays a common subject in different curricula of graduate and postgraduate studies. Due to the complex algorithms involved and the dynamic nature of ANN's, simulation software has been commonly used to teach this subject. This software has usually been developed specifically for learning purposes, because…
Shakiba, Mohammad; Parson, Nick; Chen, X-Grant
2016-06-30
The hot deformation behavior of Al-0.12Fe-0.1Si alloys with varied amounts of Cu (0.002-0.31 wt %) was investigated by uniaxial compression tests conducted at different temperatures (400 °C-550 °C) and strain rates (0.01-10 s -1 ). The results demonstrated that flow stress decreased with increasing deformation temperature and decreasing strain rate, while flow stress increased with increasing Cu content for all deformation conditions studied due to the solute drag effect. Based on the experimental data, an artificial neural network (ANN) model was developed to study the relationship between chemical composition, deformation variables and high-temperature flow behavior. A three-layer feed-forward back-propagation artificial neural network with 20 neurons in a hidden layer was established in this study. The input parameters were Cu content, temperature, strain rate and strain, while the flow stress was the output. The performance of the proposed model was evaluated using the K-fold cross-validation method. The results showed excellent generalization capability of the developed model. Sensitivity analysis indicated that the strain rate is the most important parameter, while the Cu content exhibited a modest but significant influence on the flow stress.
Shakiba, Mohammad; Parson, Nick; Chen, X.-Grant
2016-01-01
The hot deformation behavior of Al-0.12Fe-0.1Si alloys with varied amounts of Cu (0.002–0.31 wt %) was investigated by uniaxial compression tests conducted at different temperatures (400 °C–550 °C) and strain rates (0.01–10 s−1). The results demonstrated that flow stress decreased with increasing deformation temperature and decreasing strain rate, while flow stress increased with increasing Cu content for all deformation conditions studied due to the solute drag effect. Based on the experimental data, an artificial neural network (ANN) model was developed to study the relationship between chemical composition, deformation variables and high-temperature flow behavior. A three-layer feed-forward back-propagation artificial neural network with 20 neurons in a hidden layer was established in this study. The input parameters were Cu content, temperature, strain rate and strain, while the flow stress was the output. The performance of the proposed model was evaluated using the K-fold cross-validation method. The results showed excellent generalization capability of the developed model. Sensitivity analysis indicated that the strain rate is the most important parameter, while the Cu content exhibited a modest but significant influence on the flow stress. PMID:28773658
Liao, Pei-Hung; Hsu, Pei-Ti; Chu, William; Chu, Woei-Chyn
2015-06-01
This study applied artificial intelligence to help nurses address problems and receive instructions through information technology. Nurses make diagnoses according to professional knowledge, clinical experience, and even instinct. Without comprehensive knowledge and thinking, diagnostic accuracy can be compromised and decisions may be delayed. We used a back-propagation neural network and other tools for data mining and statistical analysis. We further compared the prediction accuracy of the previous methods with an adaptive-network-based fuzzy inference system and the back-propagation neural network, identifying differences in the questions and in nurse satisfaction levels before and after using the nursing information system. This study investigated the use of artificial intelligence to generate nursing diagnoses. The percentage of agreement between diagnoses suggested by the information system and those made by nurses was as much as 87 percent. When patients are hospitalized, we can calculate the probability of various nursing diagnoses based on certain characteristics. © The Author(s) 2013.
Image object recognition based on the Zernike moment and neural networks
NASA Astrophysics Data System (ADS)
Wan, Jianwei; Wang, Ling; Huang, Fukan; Zhou, Liangzhu
1998-03-01
This paper first give a comprehensive discussion about the concept of artificial neural network its research methods and the relations with information processing. On the basis of such a discussion, we expound the mathematical similarity of artificial neural network and information processing. Then, the paper presents a new method of image recognition based on invariant features and neural network by using image Zernike transform. The method not only has the invariant properties for rotation, shift and scale of image object, but also has good fault tolerance and robustness. Meanwhile, it is also compared with statistical classifier and invariant moments recognition method.
NASA Astrophysics Data System (ADS)
Gregorio, Massimo De
In this paper we present an intelligent active video surveillance system currently adopted in two different application domains: railway tunnels and outdoor storage areas. The system takes advantages of the integration of Artificial Neural Networks (ANN) and symbolic Artificial Intelligence (AI). This hybrid system is formed by virtual neural sensors (implemented as WiSARD-like systems) and BDI agents. The coupling of virtual neural sensors with symbolic reasoning for interpreting their outputs, makes this approach both very light from a computational and hardware point of view, and rather robust in performances. The system works on different scenarios and in difficult light conditions.
An intercomparison of artificial intelligence approaches for polar scene identification
NASA Technical Reports Server (NTRS)
Tovinkere, V. R.; Penaloza, M.; Logar, A.; Lee, J.; Weger, R. C.; Berendes, T. A.; Welch, R. M.
1993-01-01
The following six different artificial-intelligence (AI) approaches to polar scene identification are examined: (1) a feed forward back propagation neural network, (2) a probabilistic neural network, (3) a hybrid neural network, (4) a 'don't care' feed forward perception model, (5) a 'don't care' feed forward back propagation neural network, and (6) a fuzzy logic based expert system. The ten classes into which six AVHRR local-coverage arctic scenes were classified were: water, solid sea ice, broken sea ice, snow-covered mountains, land, stratus over ice, stratus over water, cirrus over water, cumulus over water, and multilayer cloudiness. It was found that 'don't care' back propagation neural network produced the highest accuracies. This approach has also low CPU requirement.
Gramatikov, Boris I
2017-04-27
Reliable detection of central fixation and eye alignment is essential in the diagnosis of amblyopia ("lazy eye"), which can lead to blindness. Our lab has developed and reported earlier a pediatric vision screener that performs scanning of the retina around the fovea and analyzes changes in the polarization state of light as the scan progresses. Depending on the direction of gaze and the instrument design, the screener produces several signal frequencies that can be utilized in the detection of central fixation. The objective of this study was to compare artificial neural networks with classical statistical methods, with respect to their ability to detect central fixation reliably. A classical feedforward, pattern recognition, two-layer neural network architecture was used, consisting of one hidden layer and one output layer. The network has four inputs, representing normalized spectral powers at four signal frequencies generated during retinal birefringence scanning. The hidden layer contains four neurons. The output suggests presence or absence of central fixation. Backpropagation was used to train the network, using the gradient descent algorithm and the cross-entropy error as the performance function. The network was trained, validated and tested on a set of controlled calibration data obtained from 600 measurements from ten eyes in a previous study, and was additionally tested on a clinical set of 78 eyes, independently diagnosed by an ophthalmologist. In the first part of this study, a neural network was designed around the calibration set. With a proper architecture and training, the network provided performance that was comparable to classical statistical methods, allowing perfect separation between the central and paracentral fixation data, with both the sensitivity and the specificity of the instrument being 100%. In the second part of the study, the neural network was applied to the clinical data. It allowed reliable separation between normal subjects and affected subjects, its accuracy again matching that of the statistical methods. With a proper choice of a neural network architecture and a good, uncontaminated training data set, the artificial neural network can be an efficient classification tool for detecting central fixation based on retinal birefringence scanning.
Artificial intelligence in medicine.
Ramesh, A. N.; Kambhampati, C.; Monson, J. R. T.; Drew, P. J.
2004-01-01
INTRODUCTION: Artificial intelligence is a branch of computer science capable of analysing complex medical data. Their potential to exploit meaningful relationship with in a data set can be used in the diagnosis, treatment and predicting outcome in many clinical scenarios. METHODS: Medline and internet searches were carried out using the keywords 'artificial intelligence' and 'neural networks (computer)'. Further references were obtained by cross-referencing from key articles. An overview of different artificial intelligent techniques is presented in this paper along with the review of important clinical applications. RESULTS: The proficiency of artificial intelligent techniques has been explored in almost every field of medicine. Artificial neural network was the most commonly used analytical tool whilst other artificial intelligent techniques such as fuzzy expert systems, evolutionary computation and hybrid intelligent systems have all been used in different clinical settings. DISCUSSION: Artificial intelligence techniques have the potential to be applied in almost every field of medicine. There is need for further clinical trials which are appropriately designed before these emergent techniques find application in the real clinical setting. PMID:15333167
Artificial intelligence in medicine.
Ramesh, A N; Kambhampati, C; Monson, J R T; Drew, P J
2004-09-01
Artificial intelligence is a branch of computer science capable of analysing complex medical data. Their potential to exploit meaningful relationship with in a data set can be used in the diagnosis, treatment and predicting outcome in many clinical scenarios. Medline and internet searches were carried out using the keywords 'artificial intelligence' and 'neural networks (computer)'. Further references were obtained by cross-referencing from key articles. An overview of different artificial intelligent techniques is presented in this paper along with the review of important clinical applications. The proficiency of artificial intelligent techniques has been explored in almost every field of medicine. Artificial neural network was the most commonly used analytical tool whilst other artificial intelligent techniques such as fuzzy expert systems, evolutionary computation and hybrid intelligent systems have all been used in different clinical settings. Artificial intelligence techniques have the potential to be applied in almost every field of medicine. There is need for further clinical trials which are appropriately designed before these emergent techniques find application in the real clinical setting.
Approaching neuropsychological tasks through adaptive neurorobots
NASA Astrophysics Data System (ADS)
Gigliotta, Onofrio; Bartolomeo, Paolo; Miglino, Orazio
2015-04-01
Neuropsychological phenomena have been modelized mainly, by the mainstream approach, by attempting to reproduce their neural substrate whereas sensory-motor contingencies have attracted less attention. In this work, we introduce a simulator based on the evolutionary robotics platform Evorobot* in order to setting up in silico neuropsychological tasks. Moreover, in this study we trained artificial embodied neurorobotic agents equipped with a pan/tilt camera, provided with different neural and motor capabilities, to solve a well-known neuropsychological test: the cancellation task in which an individual is asked to cancel target stimuli surrounded by distractors. Results showed that embodied agents provided with additional motor capabilities (a zooming/attentional actuator) outperformed simple pan/tilt agents, even those equipped with more complex neural controllers and that the zooming ability is exploited to correctly categorising presented stimuli. We conclude that since the sole neural computational power cannot explain the (artificial) cognition which emerged throughout the adaptive process, such kind of modelling approach can be fruitful in neuropsychological modelling where the importance of having a body is often neglected.
Khan, Waseem S; Hamadneh, Nawaf N; Khan, Waqar A
2017-01-01
In this study, multilayer perception neural network (MLPNN) was employed to predict thermal conductivity of PVP electrospun nanocomposite fibers with multiwalled carbon nanotubes (MWCNTs) and Nickel Zinc ferrites [(Ni0.6Zn0.4) Fe2O4]. This is the second attempt on the application of MLPNN with prey predator algorithm for the prediction of thermal conductivity of PVP electrospun nanocomposite fibers. The prey predator algorithm was used to train the neural networks to find the best models. The best models have the minimal of sum squared error between the experimental testing data and the corresponding models results. The minimal error was found to be 0.0028 for MWCNTs model and 0.00199 for Ni-Zn ferrites model. The predicted artificial neural networks (ANNs) responses were analyzed statistically using z-test, correlation coefficient, and the error functions for both inclusions. The predicted ANN responses for PVP electrospun nanocomposite fibers were compared with the experimental data and were found in good agreement.
Cognon Neural Model Software Verification and Hardware Implementation Design
NASA Astrophysics Data System (ADS)
Haro Negre, Pau
Little is known yet about how the brain can recognize arbitrary sensory patterns within milliseconds using neural spikes to communicate information between neurons. In a typical brain there are several layers of neurons, with each neuron axon connecting to ˜104 synapses of neurons in an adjacent layer. The information necessary for cognition is contained in theses synapses, which strengthen during the learning phase in response to newly presented spike patterns. Continuing on the model proposed in "Models for Neural Spike Computation and Cognition" by David H. Staelin and Carl H. Staelin, this study seeks to understand cognition from an information theoretic perspective and develop potential models for artificial implementation of cognition based on neuronal models. To do so we focus on the mathematical properties and limitations of spike-based cognition consistent with existing neurological observations. We validate the cognon model through software simulation and develop concepts for an optical hardware implementation of a network of artificial neural cognons.
Classification of Weed Species Using Artificial Neural Networks Based on Color Leaf Texture Feature
NASA Astrophysics Data System (ADS)
Li, Zhichen; An, Qiu; Ji, Changying
The potential impact of herbicide utilization compel people to use new method of weed control. Selective herbicide application is optimal method to reduce herbicide usage while maintain weed control. The key of selective herbicide is how to discriminate weed exactly. The HIS color co-occurrence method (CCM) texture analysis techniques was used to extract four texture parameters: Angular second moment (ASM), Entropy(E), Inertia quadrature (IQ), and Inverse difference moment or local homogeneity (IDM).The weed species selected for studying were Arthraxon hispidus, Digitaria sanguinalis, Petunia, Cyperus, Alternanthera Philoxeroides and Corchoropsis psilocarpa. The software of neuroshell2 was used for designing the structure of the neural network, training and test the data. It was found that the 8-40-1 artificial neural network provided the best classification performance and was capable of classification accuracies of 78%.
Predicting pressure drop in venturi scrubbers with artificial neural networks.
Nasseh, S; Mohebbi, A; Jeirani, Z; Sarrafi, A
2007-05-08
In this study a new approach based on artificial neural networks (ANNs) has been used to predict pressure drop in venturi scrubbers. The main parameters affecting the pressure drop are mainly the gas velocity in the throat of venturi scrubber (V(g)(th)), liquid to gas flow rate ratio (L/G), and axial distance of the venturi scrubber (z). Three sets of experimental data from five different venturi scrubbers have been applied to design three independent ANNs. Comparing the results of these ANNs and the calculated results from available models shows that the results of ANNs have a better agreement with experimental data.
Artificial neural networks modelling the prednisolone nanoprecipitation in microfluidic reactors.
Ali, Hany S M; Blagden, Nicholas; York, Peter; Amani, Amir; Brook, Toni
2009-06-28
This study employs artificial neural networks (ANNs) to create a model to identify relationships between variables affecting drug nanoprecipitation using microfluidic reactors. The input variables examined were saturation levels of prednisolone, solvent and antisolvent flow rates, microreactor inlet angles and internal diameters, while particle size was the single output. ANNs software was used to analyse a set of data obtained by random selection of the variables. The developed model was then assessed using a separate set of validation data and provided good agreement with the observed results. The antisolvent flow rate was found to have the dominant role on determining final particle size.
Gan, Ruijing; Chen, Xiaojun; Yan, Yu; Huang, Daizheng
2015-01-01
Accurate incidence forecasting of infectious disease provides potentially valuable insights in its own right. It is critical for early prevention and may contribute to health services management and syndrome surveillance. This study investigates the use of a hybrid algorithm combining grey model (GM) and back propagation artificial neural networks (BP-ANN) to forecast hepatitis B in China based on the yearly numbers of hepatitis B and to evaluate the method's feasibility. The results showed that the proposal method has advantages over GM (1, 1) and GM (2, 1) in all the evaluation indexes.
Aliabadi, Mohsen; Farhadian, Maryam; Darvishi, Ebrahim
2015-08-01
Prediction of hearing loss in noisy workplaces is considered to be an important aspect of hearing conservation program. Artificial intelligence, as a new approach, can be used to predict the complex phenomenon such as hearing loss. Using artificial neural networks, this study aims to present an empirical model for the prediction of the hearing loss threshold among noise-exposed workers. Two hundred and ten workers employed in a steel factory were chosen, and their occupational exposure histories were collected. To determine the hearing loss threshold, the audiometric test was carried out using a calibrated audiometer. The personal noise exposure was also measured using a noise dosimeter in the workstations of workers. Finally, data obtained five variables, which can influence the hearing loss, were used for the development of the prediction model. Multilayer feed-forward neural networks with different structures were developed using MATLAB software. Neural network structures had one hidden layer with the number of neurons being approximately between 5 and 15 neurons. The best developed neural networks with one hidden layer and ten neurons could accurately predict the hearing loss threshold with RMSE = 2.6 dB and R(2) = 0.89. The results also confirmed that neural networks could provide more accurate predictions than multiple regressions. Since occupational hearing loss is frequently non-curable, results of accurate prediction can be used by occupational health experts to modify and improve noise exposure conditions.
Predicting Item Difficulty in a Reading Comprehension Test with an Artificial Neural Network.
ERIC Educational Resources Information Center
Perkins, Kyle; And Others
This paper reports the results of using a three-layer backpropagation artificial neural network to predict item difficulty in a reading comprehension test. Two network structures were developed, one with and one without a sigmoid function in the output processing unit. The data set, which consisted of a table of coded test items and corresponding…
ERIC Educational Resources Information Center
Boger, Zvi; Kuflik, Tsvi; Shoval, Peretz; Shapira, Bracha
2001-01-01
Discussion of information filtering (IF) and information retrieval focuses on the use of an artificial neural network (ANN) as an alternative method for both IF and term selection and compares its effectiveness to that of traditional methods. Results show that the ANN relevance prediction out-performs the prediction of an IF system. (Author/LRW)
Milewski, Robert; Jamiołkowski, Jacek; Milewska Anna, Justyna; Domitrz, Jan; Szamatowicz, Jacek; Wołczyński, Sławomir
2009-12-01
Prognosis of pregnancy for patients treated with IVF ICSI/ET methods, using artificial neural networks. Retrospective study of 1007 cycles of infertility treatment of 899 patients of Department of Reproduction and Gynecological Endocrinology in Bialystok. The subjects were treated with IVF ICSI/ET method from August 2005 to September 2008. Classifying artificial neural network is described in the paper Architecture of the network is three-layered perceptron consisting of 45 neurons in the input layer 14 neurons in the hidden layer and a single output neuron. The source data for the network are 36 variables. 24 of them are nominal variables and the rest are quantitative variables. Among non-pregnancy cases only 59 prognosis of the network were incorrect. The results of treatment were correctly forecast in 68.5% of cases. The pregnancy was accurately confirmed in 49.1% of cases and lack of pregnancy in 86.5% of cases. Treatment of infertility with the use of in vitro fertilization methods continues to have too low efficiency per one treatment cycle. To improve this indicator it is necessary to find dependencies, which describe the model of IVF treatment. The application of advanced methods of bioinformatics allows to predict the result of the treatment more effectively With the help of artificial neural networks, we are able to forecast the failure of the treatment using IFV ICSI/ET procedure with almost 90% probability of certainty These possibilities can be used to predict negative cases.
Ceylan, Murat; Ceylan, Rahime; Ozbay, Yüksel; Kara, Sadik
2008-09-01
In biomedical signal classification, due to the huge amount of data, to compress the biomedical waveform data is vital. This paper presents two different structures formed using feature extraction algorithms to decrease size of feature set in training and test data. The proposed structures, named as wavelet transform-complex-valued artificial neural network (WT-CVANN) and complex wavelet transform-complex-valued artificial neural network (CWT-CVANN), use real and complex discrete wavelet transform for feature extraction. The aim of using wavelet transform is to compress data and to reduce training time of network without decreasing accuracy rate. In this study, the presented structures were applied to the problem of classification in carotid arterial Doppler ultrasound signals. Carotid arterial Doppler ultrasound signals were acquired from left carotid arteries of 38 patients and 40 healthy volunteers. The patient group included 22 males and 16 females with an established diagnosis of the early phase of atherosclerosis through coronary or aortofemoropopliteal (lower extremity) angiographies (mean age, 59 years; range, 48-72 years). Healthy volunteers were young non-smokers who seem to not bear any risk of atherosclerosis, including 28 males and 12 females (mean age, 23 years; range, 19-27 years). Sensitivity, specificity and average detection rate were calculated for comparison, after training and test phases of all structures finished. These parameters have demonstrated that training times of CVANN and real-valued artificial neural network (RVANN) were reduced using feature extraction algorithms without decreasing accuracy rate in accordance to our aim.
Generalized in vitro-in vivo relationship (IVIVR) model based on artificial neural networks
Mendyk, Aleksander; Tuszyński, Paweł K; Polak, Sebastian; Jachowicz, Renata
2013-01-01
Background The aim of this study was to develop a generalized in vitro-in vivo relationship (IVIVR) model based on in vitro dissolution profiles together with quantitative and qualitative composition of dosage formulations as covariates. Such a model would be of substantial aid in the early stages of development of a pharmaceutical formulation, when no in vivo results are yet available and it is impossible to create a classical in vitro-in vivo correlation (IVIVC)/IVIVR. Methods Chemoinformatics software was used to compute the molecular descriptors of drug substances (ie, active pharmaceutical ingredients) and excipients. The data were collected from the literature. Artificial neural networks were used as the modeling tool. The training process was carried out using the 10-fold cross-validation technique. Results The database contained 93 formulations with 307 inputs initially, and was later limited to 28 in a course of sensitivity analysis. The four best models were introduced into the artificial neural network ensemble. Complete in vivo profiles were predicted accurately for 37.6% of the formulations. Conclusion It has been shown that artificial neural networks can be an effective predictive tool for constructing IVIVR in an integrated generalized model for various formulations. Because IVIVC/IVIVR is classically conducted for 2–4 formulations and with a single active pharmaceutical ingredient, the approach described here is unique in that it incorporates various active pharmaceutical ingredients and dosage forms into a single model. Thus, preliminary IVIVC/IVIVR can be available without in vivo data, which is impossible using current IVIVC/IVIVR procedures. PMID:23569360
NASA Astrophysics Data System (ADS)
Qi, Yong; Lei, Kai; Zhang, Lizeqing; Xing, Ximing; Gou, Wenyue
2018-06-01
This paper introduced the development of a self-serving medical data assisted diagnosis software of cervical cancer on the basis of artificial neural network (SVN, FNN, KNN). The system is developed based on the idea of self-service platform, supported by the application and innovation of neural network algorithm in medical data identification. Furthermore, it combined the advanced methods in various fields to effectively solve the complicated and inaccurate problem of cervical canceration data in the traditional manual treatment.
Catto, James W F; Linkens, Derek A; Abbod, Maysam F; Chen, Minyou; Burton, Julian L; Feeley, Kenneth M; Hamdy, Freddie C
2003-09-15
New techniques for the prediction of tumor behavior are needed, because statistical analysis has a poor accuracy and is not applicable to the individual. Artificial intelligence (AI) may provide these suitable methods. Whereas artificial neural networks (ANN), the best-studied form of AI, have been used successfully, its hidden networks remain an obstacle to its acceptance. Neuro-fuzzy modeling (NFM), another AI method, has a transparent functional layer and is without many of the drawbacks of ANN. We have compared the predictive accuracies of NFM, ANN, and traditional statistical methods, for the behavior of bladder cancer. Experimental molecular biomarkers, including p53 and the mismatch repair proteins, and conventional clinicopathological data were studied in a cohort of 109 patients with bladder cancer. For all three of the methods, models were produced to predict the presence and timing of a tumor relapse. Both methods of AI predicted relapse with an accuracy ranging from 88% to 95%. This was superior to statistical methods (71-77%; P < 0.0006). NFM appeared better than ANN at predicting the timing of relapse (P = 0.073). The use of AI can accurately predict cancer behavior. NFM has a similar or superior predictive accuracy to ANN. However, unlike the impenetrable "black-box" of a neural network, the rules of NFM are transparent, enabling validation from clinical knowledge and the manipulation of input variables to allow exploratory predictions. This technique could be used widely in a variety of areas of medicine.
Application of artificial neural networks to chemostratigraphy
NASA Astrophysics Data System (ADS)
Malmgren, BjöRn A.; Nordlund, Ulf
1996-08-01
Artificial neural networks, a branch of artificial intelligence, are computer systems formed by a number of simple, highly interconnected processing units that have the ability to learn a set of target vectors from a set of associated input signals. Neural networks learn by self-adjusting a set of parameters, using some pertinent algorithm to minimize the error between the desired output and network output. We explore the potential of this approach in solving a problem involving classification of geochemical data. The data, taken from the literature, are derived from four late Quaternary zones of volcanic ash of basaltic and rhyolithic origin from the Norwegian Sea. These ash layers span the oxygen isotope zones 1, 5, 7, and 11, respectively (last 420,000 years). The data consist of nine geochemical variables (oxides) determined in each of 183 samples. We employed a three-layer back propagation neural network to assess its efficiency to optimally differentiate samples from the four ash zones on the basis of their geochemical composition. For comparison, three statistical pattern recognition techniques, linear discriminant analysis, the k-nearest neighbor (k-NN) technique, and SIMCA (soft independent modeling of class analogy), were applied to the same data. All of these showed considerably higher error rates than the artificial neural network, indicating that the back propagation network was indeed more powerful in correctly classifying the ash particles to the appropriate zone on the basis of their geochemical composition.
Manning, Timmy; Sleator, Roy D; Walsh, Paul
2014-01-01
Artificial neural networks (ANNs) are a class of powerful machine learning models for classification and function approximation which have analogs in nature. An ANN learns to map stimuli to responses through repeated evaluation of exemplars of the mapping. This learning approach results in networks which are recognized for their noise tolerance and ability to generalize meaningful responses for novel stimuli. It is these properties of ANNs which make them appealing for applications to bioinformatics problems where interpretation of data may not always be obvious, and where the domain knowledge required for deductive techniques is incomplete or can cause a combinatorial explosion of rules. In this paper, we provide an introduction to artificial neural network theory and review some interesting recent applications to bioinformatics problems.
Pan, Hongye; Zhang, Qing; Cui, Keke; Chen, Guoquan; Liu, Xuesong; Wang, Longhu
2017-05-01
The extraction of linarin from Flos chrysanthemi indici by ethanol was investigated. Two modeling techniques, response surface methodology and artificial neural network, were adopted to optimize the process parameters, such as, ethanol concentration, extraction period, extraction frequency, and solvent to material ratio. We showed that both methods provided good predictions, but artificial neural network provided a better and more accurate result. The optimum process parameters include, ethanol concentration of 74%, extraction period of 2 h, extraction three times, solvent to material ratio of 12 mL/g. The experiment yield of linarin was 90.5% that deviated less than 1.6% from that obtained by predicted result. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
An Examination of Application of Artificial Neural Network in Cognitive Radios
NASA Astrophysics Data System (ADS)
Bello Salau, H.; Onwuka, E. N.; Aibinu, A. M.
2013-12-01
Recent advancement in software radio technology has led to the development of smart device known as cognitive radio. This type of radio fuses powerful techniques taken from artificial intelligence, game theory, wideband/multiple antenna techniques, information theory and statistical signal processing to create an outstanding dynamic behavior. This cognitive radio is utilized in achieving diverse set of applications such as spectrum sensing, radio parameter adaptation and signal classification. This paper contributes by reviewing different cognitive radio implementation that uses artificial intelligence such as the hidden markov models, metaheuristic algorithm and artificial neural networks (ANNs). Furthermore, different areas of application of ANNs and their performance metrics based approach are also examined.
NASA Astrophysics Data System (ADS)
Kim, Kwang Hyeon; Lee, Suk; Shim, Jang Bo; Chang, Kyung Hwan; Yang, Dae Sik; Yoon, Won Sup; Park, Young Je; Kim, Chul Yong; Cao, Yuan Jie
2017-08-01
The aim of this study is an integrated research for text-based data mining and toxicity prediction modeling system for clinical decision support system based on big data in radiation oncology as a preliminary research. The structured and unstructured data were prepared by treatment plans and the unstructured data were extracted by dose-volume data image pattern recognition of prostate cancer for research articles crawling through the internet. We modeled an artificial neural network to build a predictor model system for toxicity prediction of organs at risk. We used a text-based data mining approach to build the artificial neural network model for bladder and rectum complication predictions. The pattern recognition method was used to mine the unstructured toxicity data for dose-volume at the detection accuracy of 97.9%. The confusion matrix and training model of the neural network were achieved with 50 modeled plans (n = 50) for validation. The toxicity level was analyzed and the risk factors for 25% bladder, 50% bladder, 20% rectum, and 50% rectum were calculated by the artificial neural network algorithm. As a result, 32 plans could cause complication but 18 plans were designed as non-complication among 50 modeled plans. We integrated data mining and a toxicity modeling method for toxicity prediction using prostate cancer cases. It is shown that a preprocessing analysis using text-based data mining and prediction modeling can be expanded to personalized patient treatment decision support based on big data.
Economic development evaluation based on science and patents
NASA Astrophysics Data System (ADS)
Jokanović, Bojana; Lalic, Bojan; Milovančević, Miloš; Simeunović, Nenad; Marković, Dusan
2017-09-01
Economic development could be achieved through many factors. Science and technology factors could influence economic development drastically. Therefore the main aim in this study was to apply computational intelligence methodology, artificial neural network approach, for economic development estimation based on different science and technology factors. Since economic analyzing could be very challenging task because of high nonlinearity, in this study was applied computational intelligence methodology, artificial neural network approach, to estimate the economic development based on different science and technology factors. As economic development measure, gross domestic product (GDP) was used. As the science and technology factors, patents in different field were used. It was found that the patents in electrical engineering field have the highest influence on the economic development or the GDP.
ERIC Educational Resources Information Center
Treurniet, William
A study applied artificial neural networks, trained with the back-propagation learning algorithm, to modelling phonemes extracted from the DARPA TIMIT multi-speaker, continuous speech data base. A number of proposed network architectures were applied to the phoneme classification task, ranging from the simple feedforward multilayer network to more…
Antanasijević, Davor; Pocajt, Viktor; Povrenović, Dragan; Perić-Grujić, Aleksandra; Ristić, Mirjana
2013-12-01
The aims of this study are to create an artificial neural network (ANN) model using non-specific water quality parameters and to examine the accuracy of three different ANN architectures: General Regression Neural Network (GRNN), Backpropagation Neural Network (BPNN) and Recurrent Neural Network (RNN), for prediction of dissolved oxygen (DO) concentration in the Danube River. The neural network model has been developed using measured data collected from the Bezdan monitoring station on the Danube River. The input variables used for the ANN model are water flow, temperature, pH and electrical conductivity. The model was trained and validated using available data from 2004 to 2008 and tested using the data from 2009. The order of performance for the created architectures based on their comparison with the test data is RNN > GRNN > BPNN. The ANN results are compared with multiple linear regression (MLR) model using multiple statistical indicators. The comparison of the RNN model with the MLR model indicates that the RNN model performs much better, since all predictions of the RNN model for the test data were within the error of less than ± 10 %. In case of the MLR, only 55 % of predictions were within the error of less than ± 10 %. The developed RNN model can be used as a tool for the prediction of DO in river waters.
NASA Astrophysics Data System (ADS)
Górna, K.; Jaśkowski, B. M.; Okoń, P.; Czechlowski, M.; Koszela, K.; Zaborowicz, M.; Idziaszek, P.
2017-07-01
The aim of the paper is to shown the neural image analysis as a method useful for identifying the development stage of the domestic bovine corpus luteum on digital USG (UltraSonoGraphy) images. Corpus luteum (CL) is a transient endocrine gland that develops after ovulation from the follicle secretory cells. The aim of CL is the production of progesterone, which regulates many reproductive functions. In the presented studies, identification of the corpus luteum was carried out on the basis of information contained in ultrasound digital images. Development stage of the corpus luteum was considered in two aspects: just before and middle of domination phase and luteolysis and degradation phase. Prior to the classification, the ultrasound images have been processed using a GLCM (Gray Level Co-occurence Matrix). To generate a classification model, a Neural Networks module implemented in the STATISTICA was used. Five representative parameters describing the ultrasound image were used as learner variables. On the output of the artificial neural network was generated information about the development stage of the corpus luteum. Results of this study indicate that neural image analysis combined with GLCM texture analysis may be a useful tool for identifying the bovine corpus luteum in the context of its development phase. Best-generated artificial neural network model was the structure of MLP (Multi Layer Perceptron) 5:5-17-1:1.
The application of hybrid artificial intelligence systems for forecasting
NASA Astrophysics Data System (ADS)
Lees, Brian; Corchado, Juan
1999-03-01
The results to date are presented from an ongoing investigation, in which the aim is to combine the strengths of different artificial intelligence methods into a single problem solving system. The premise underlying this research is that a system which embodies several cooperating problem solving methods will be capable of achieving better performance than if only a single method were employed. The work has so far concentrated on the combination of case-based reasoning and artificial neural networks. The relative merits of artificial neural networks and case-based reasoning problem solving paradigms, and their combination are discussed. The integration of these two AI problem solving methods in a hybrid systems architecture, such that the neural network provides support for learning from past experience in the case-based reasoning cycle, is then presented. The approach has been applied to the task of forecasting the variation of physical parameters of the ocean. Results obtained so far from tests carried out in the dynamic oceanic environment are presented.
Pandey, Mayank; Pandey, Ashutosh Kumar; Mishra, Ashutosh; Tripathi, B D
2015-09-01
Present study deals with the river Ganga water quality and its impact on metal speciation in its sediments. Concentration of physico-chemical parameters was highest in summer season followed by winter and lowest in rainy season. Metal speciation study in river sediments revealed that exchangeable, reducible and oxidizable fractions were dominant in all the studied metals (Cr, Ni, Cu, Zn, Cd, Pb) except Mn and Fe. High pollution load index (1.64-3.89) recommends urgent need of mitigation measures. Self-organizing Map-Artificial Neural Network (SOM-ANN) was applied to the data set for the prediction of major point sources of pollution in the river Ganga. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Radziszewski, Kacper
2017-10-01
The following paper presents the results of the research in the field of the machine learning, investigating the scope of application of the artificial neural networks algorithms as a tool in architectural design. The computational experiment was held using the backward propagation of errors method of training the artificial neural network, which was trained based on the geometry of the details of the Roman Corinthian order capital. During the experiment, as an input training data set, five local geometry parameters combined has given the best results: Theta, Pi, Rho in spherical coordinate system based on the capital volume centroid, followed by Z value of the Cartesian coordinate system and a distance from vertical planes created based on the capital symmetry. Additionally during the experiment, artificial neural network hidden layers optimal count and structure was found, giving results of the error below 0.2% for the mentioned before input parameters. Once successfully trained artificial network, was able to mimic the details composition on any other geometry type given. Despite of calculating the transformed geometry locally and separately for each of the thousands of surface points, system could create visually attractive and diverse, complex patterns. Designed tool, based on the supervised learning method of machine learning, gives possibility of generating new architectural forms- free of the designer’s imagination bounds. Implementing the infinitely broad computational methods of machine learning, or Artificial Intelligence in general, not only could accelerate and simplify the design process, but give an opportunity to explore never seen before, unpredictable forms or everyday architectural practice solutions.
Neural networks for aircraft control
NASA Technical Reports Server (NTRS)
Linse, Dennis
1990-01-01
Current research in Artificial Neural Networks indicates that networks offer some potential advantages in adaptation and fault tolerance. This research is directed at determining the possible applicability of neural networks to aircraft control. The first application will be to aircraft trim. Neural network node characteristics, network topology and operation, neural network learning and example histories using neighboring optimal control with a neural net are discussed.
Large memory capacity in chaotic artificial neural networks: a view of the anti-integrable limit.
Lin, Wei; Chen, Guanrong
2009-08-01
In the literature, it was reported that the chaotic artificial neural network model with sinusoidal activation functions possesses a large memory capacity as well as a remarkable ability of retrieving the stored patterns, better than the conventional chaotic model with only monotonic activation functions such as sigmoidal functions. This paper, from the viewpoint of the anti-integrable limit, elucidates the mechanism inducing the superiority of the model with periodic activation functions that includes sinusoidal functions. Particularly, by virtue of the anti-integrable limit technique, this paper shows that any finite-dimensional neural network model with periodic activation functions and properly selected parameters has much more abundant chaotic dynamics that truly determine the model's memory capacity and pattern-retrieval ability. To some extent, this paper mathematically and numerically demonstrates that an appropriate choice of the activation functions and control scheme can lead to a large memory capacity and better pattern-retrieval ability of the artificial neural network models.
Mao, Y T; Chen, Z M; Xu, L
2017-08-07
Objective: The present study was carried out to explore the tone production ability of the Mandarin-speaking children with cochlear implants (CI) by using an artificial neural network model and to examine the potential contributing factors underlining their tone production performance. The results of this study might provide useful guidelines for post-operative rehabilitation processes of pediatric CI users. Methods: Two hundred and seventy-eight prelingually deafened children who received unilateral CI participated in this study. As controls, 170 similarly-aged children with normal hearing (NH) were recruited. A total of 36 Chinese monosyllabic words were selected as the tone production targets. Vocal production samples were recorded and the fundamental frequency (F0) contour of each syllable was extracted using an auto-correlation algorithm followed by manual correction. An artificial neural network was created in MATLAB to classify the tone production. The relationships between tone production and several demographic factors were evaluated. Results: Pediatric CI users produced Mandarin tones much less accurately than did the NH children (58.8% vs. 91.5% correct). Tremendous variability in tone production performance existed among the CI children. Tones 2 and 3 were produced less accurately than tones 1 and 4 for both groups. For the CI group, all tones when in error tended to be judged as tone 1. The tone production accuracy was negatively correlated with age at implantation and positively correlated with CI use duration with correlation coefficients ( r ) of -0.215 ( P =0.003) and 0.203 ( P =0.005), respectively. Age was one of the determinants of tonal ability for NH children. Conclusions: For children with severe to profound hearing loss, early implantation and persistent use of CI are beneficial to their tone production development. Artificial neural network is a convenient and reliable assessment tool for the development of tonal ability of hearing-impaired children who are in the rehabilitation processes that focus on speech and language expression.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kubic, William Louis; Jenkins, Rhodri W.; Moore, Cameron M.
Chemical pathways for converting biomass into fuels produce compounds for which key physical and chemical property data are unavailable. We developed an artificial neural network based group contribution method for estimating cetane and octane numbers that captures the complex dependence of fuel properties of pure compounds on chemical structure and is statistically superior to current methods.
Kubic, William Louis; Jenkins, Rhodri W.; Moore, Cameron M.; ...
2017-09-28
Chemical pathways for converting biomass into fuels produce compounds for which key physical and chemical property data are unavailable. We developed an artificial neural network based group contribution method for estimating cetane and octane numbers that captures the complex dependence of fuel properties of pure compounds on chemical structure and is statistically superior to current methods.
2011-07-01
supervised learning process is compared to that of Artificial Neural Network ( ANNs ), fuzzy logic rule set, and Bayesian network approaches...of both fuzzy logic systems and Artificial Neural Networks ( ANNs ). Like fuzzy logic systems, the CINet technique allows the use of human- intuitive...fuzzy rule systems [3] CINets also maintain features common to both fuzzy systems and ANNs . The technique can be be shown to possess the property
Daniel J. Leduc; Thomas G. Matney; Keith L. Belli; V. Clark Baldwin
2001-01-01
Artificial neural networks (NN) are becoming a popular estimation tool. Because they require no assumptions about the form of a fitting function, they can free the modeler from reliance on parametric approximating functions that may or may not satisfactorily fit the observed data. To date there have been few applications in forestry science, but as better NN software...
Hemmateenejad, Bahram; Akhond, Morteza; Miri, Ramin; Shamsipur, Mojtaba
2003-01-01
A QSAR algorithm, principal component-genetic algorithm-artificial neural network (PC-GA-ANN), has been applied to a set of newly synthesized calcium channel blockers, which are of special interest because of their role in cardiac diseases. A data set of 124 1,4-dihydropyridines bearing different ester substituents at the C-3 and C-5 positions of the dihydropyridine ring and nitroimidazolyl, phenylimidazolyl, and methylsulfonylimidazolyl groups at the C-4 position with known Ca(2+) channel binding affinities was employed in this study. Ten different sets of descriptors (837 descriptors) were calculated for each molecule. The principal component analysis was used to compress the descriptor groups into principal components. The most significant descriptors of each set were selected and used as input for the ANN. The genetic algorithm (GA) was used for the selection of the best set of extracted principal components. A feed forward artificial neural network with a back-propagation of error algorithm was used to process the nonlinear relationship between the selected principal components and biological activity of the dihydropyridines. A comparison between PC-GA-ANN and routine PC-ANN shows that the first model yields better prediction ability.
Artificial Neural Network Approach in Laboratory Test Reporting: Learning Algorithms.
Demirci, Ferhat; Akan, Pinar; Kume, Tuncay; Sisman, Ali Riza; Erbayraktar, Zubeyde; Sevinc, Suleyman
2016-08-01
In the field of laboratory medicine, minimizing errors and establishing standardization is only possible by predefined processes. The aim of this study was to build an experimental decision algorithm model open to improvement that would efficiently and rapidly evaluate the results of biochemical tests with critical values by evaluating multiple factors concurrently. The experimental model was built by Weka software (Weka, Waikato, New Zealand) based on the artificial neural network method. Data were received from Dokuz Eylül University Central Laboratory. "Training sets" were developed for our experimental model to teach the evaluation criteria. After training the system, "test sets" developed for different conditions were used to statistically assess the validity of the model. After developing the decision algorithm with three iterations of training, no result was verified that was refused by the laboratory specialist. The sensitivity of the model was 91% and specificity was 100%. The estimated κ score was 0.950. This is the first study based on an artificial neural network to build an experimental assessment and decision algorithm model. By integrating our trained algorithm model into a laboratory information system, it may be possible to reduce employees' workload without compromising patient safety. © American Society for Clinical Pathology, 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Decade Review (1999-2009): Artificial Intelligence Techniques in Student Modeling
NASA Astrophysics Data System (ADS)
Drigas, Athanasios S.; Argyri, Katerina; Vrettaros, John
Artificial Intelligence applications in educational field are getting more and more popular during the last decade (1999-2009) and that is why much relevant research has been conducted. In this paper, we present the most interesting attempts to apply artificial intelligence methods such as fuzzy logic, neural networks, genetic programming and hybrid approaches such as neuro - fuzzy systems and genetic programming neural networks (GPNN) in student modeling. This latest research trend is a part of every Intelligent Tutoring System and aims at generating and updating a student model in order to modify learning content to fit individual needs or to provide reliable assessment and feedback to student's answers. In this paper, we make a brief presentation of methods used to point out their qualities and then we attempt a navigation to the most representative studies sought in the decade of our interest after classifying them according to the principal aim they attempted to serve.
Classification of images acquired with colposcopy using artificial neural networks.
Simões, Priscyla W; Izumi, Narjara B; Casagrande, Ramon S; Venson, Ramon; Veronezi, Carlos D; Moretti, Gustavo P; da Rocha, Edroaldo L; Cechinel, Cristian; Ceretta, Luciane B; Comunello, Eros; Martins, Paulo J; Casagrande, Rogério A; Snoeyer, Maria L; Manenti, Sandra A
2014-01-01
To explore the advantages of using artificial neural networks (ANNs) to recognize patterns in colposcopy to classify images in colposcopy. Transversal, descriptive, and analytical study of a quantitative approach with an emphasis on diagnosis. The training test e validation set was composed of images collected from patients who underwent colposcopy. These images were provided by a gynecology clinic located in the city of Criciúma (Brazil). The image database (n = 170) was divided; 48 images were used for the training process, 58 images were used for the tests, and 64 images were used for the validation. A hybrid neural network based on Kohonen self-organizing maps and multilayer perceptron (MLP) networks was used. After 126 cycles, the validation was performed. The best results reached an accuracy of 72.15%, a sensibility of 69.78%, and a specificity of 68%. Although the preliminary results still exhibit an average efficiency, the present approach is an innovative and promising technique that should be deeply explored in the context of the present study.
Multi-Layer Artificial Neural Networks Based MPPT-Pitch Angle Control of a Tidal Stream Generator
Bouallègue, Soufiene; Garrido, Aitor J.; Haggège, Joseph
2018-01-01
Artificial intelligence technologies are widely investigated as a promising technique for tackling complex and ill-defined problems. In this context, artificial neural networks methodology has been considered as an effective tool to handle renewable energy systems. Thereby, the use of Tidal Stream Generator (TSG) systems aim to provide clean and reliable electrical power. However, the power captured from tidal currents is highly disturbed due to the swell effect and the periodicity of the tidal current phenomenon. In order to improve the quality of the generated power, this paper focuses on the power smoothing control. For this purpose, a novel Artificial Neural Network (ANN) is investigated and implemented to provide the proper rotational speed reference and the blade pitch angle. The ANN supervisor adequately switches the system in variable speed and power limitation modes. In order to recover the maximum power from the tides, a rotational speed control is applied to the rotor side converter following the Maximum Power Point Tracking (MPPT) generated from the ANN block. In case of strong tidal currents, a pitch angle control is set based on the ANN approach to keep the system operating within safe limits. Two study cases were performed to test the performance of the output power. Simulation results demonstrate that the implemented control strategies achieve a smoothed generated power in the case of swell disturbances. PMID:29695127
Multi-Layer Artificial Neural Networks Based MPPT-Pitch Angle Control of a Tidal Stream Generator.
Ghefiri, Khaoula; Bouallègue, Soufiene; Garrido, Izaskun; Garrido, Aitor J; Haggège, Joseph
2018-04-24
Artificial intelligence technologies are widely investigated as a promising technique for tackling complex and ill-defined problems. In this context, artificial neural networks methodology has been considered as an effective tool to handle renewable energy systems. Thereby, the use of Tidal Stream Generator (TSG) systems aim to provide clean and reliable electrical power. However, the power captured from tidal currents is highly disturbed due to the swell effect and the periodicity of the tidal current phenomenon. In order to improve the quality of the generated power, this paper focuses on the power smoothing control. For this purpose, a novel Artificial Neural Network (ANN) is investigated and implemented to provide the proper rotational speed reference and the blade pitch angle. The ANN supervisor adequately switches the system in variable speed and power limitation modes. In order to recover the maximum power from the tides, a rotational speed control is applied to the rotor side converter following the Maximum Power Point Tracking (MPPT) generated from the ANN block. In case of strong tidal currents, a pitch angle control is set based on the ANN approach to keep the system operating within safe limits. Two study cases were performed to test the performance of the output power. Simulation results demonstrate that the implemented control strategies achieve a smoothed generated power in the case of swell disturbances.
An Introduction to Neural Networks for Hearing Aid Noise Recognition.
ERIC Educational Resources Information Center
Kim, Jun W.; Tyler, Richard S.
1995-01-01
This article introduces the use of multilayered artificial neural networks in hearing aid noise recognition. It reviews basic principles of neural networks, and offers an example of an application in which a neural network is used to identify the presence or absence of noise in speech. The ability of neural networks to "learn" the…
Creative-Dynamics Approach To Neural Intelligence
NASA Technical Reports Server (NTRS)
Zak, Michail A.
1992-01-01
Paper discusses approach to mathematical modeling of artificial neural networks exhibiting complicated behaviors reminiscent of creativity and intelligence of biological neural networks. Neural network treated as non-Lipschitzian dynamical system - as described in "Non-Lipschitzian Dynamics For Modeling Neural Networks" (NPO-17814). System serves as tool for modeling of temporal-pattern memories and recognition of complicated spatial patterns.
Taheri, Mahboobeh; Mohebbi, Ali
2008-08-30
In this study, a new approach for the auto-design of neural networks, based on a genetic algorithm (GA), has been used to predict collection efficiency in venturi scrubbers. The experimental input data, including particle diameter, throat gas velocity, liquid to gas flow rate ratio, throat hydraulic diameter, pressure drop across the venturi scrubber and collection efficiency as an output, have been used to create a GA-artificial neural network (ANN) model. The testing results from the model are in good agreement with the experimental data. Comparison of the results of the GA optimized ANN model with the results from the trial-and-error calibrated ANN model indicates that the GA-ANN model is more efficient. Finally, the effects of operating parameters such as liquid to gas flow rate ratio, throat gas velocity, and particle diameter on collection efficiency were determined.
Classification of cardiac patient states using artificial neural networks
Kannathal, N; Acharya, U Rajendra; Lim, Choo Min; Sadasivan, PK; Krishnan, SM
2003-01-01
Electrocardiogram (ECG) is a nonstationary signal; therefore, the disease indicators may occur at random in the time scale. This may require the patient be kept under observation for long intervals in the intensive care unit of hospitals for accurate diagnosis. The present study examined the classification of the states of patients with certain diseases in the intensive care unit using their ECG and an Artificial Neural Networks (ANN) classification system. The states were classified into normal, abnormal and life threatening. Seven significant features extracted from the ECG were fed as input parameters to the ANN for classification. Three neural network techniques, namely, back propagation, self-organizing maps and radial basis functions, were used for classification of the patient states. The ANN classifier in this case was observed to be correct in approximately 99% of the test cases. This result was further improved by taking 13 features of the ECG as input for the ANN classifier. PMID:19649222
Fault Tolerant Characteristics of Artificial Neural Network Electronic Hardware
NASA Technical Reports Server (NTRS)
Zee, Frank
1995-01-01
The fault tolerant characteristics of analog-VLSI artificial neural network (with 32 neurons and 532 synapses) chips are studied by exposing them to high energy electrons, high energy protons, and gamma ionizing radiations under biased and unbiased conditions. The biased chips became nonfunctional after receiving a cumulative dose of less than 20 krads, while the unbiased chips only started to show degradation with a cumulative dose of over 100 krads. As the total radiation dose increased, all the components demonstrated graceful degradation. The analog sigmoidal function of the neuron became steeper (increase in gain), current leakage from the synapses progressively shifted the sigmoidal curve, and the digital memory of the synapses and the memory addressing circuits began to gradually fail. From these radiation experiments, we can learn how to modify certain designs of the neural network electronic hardware without using radiation-hardening techniques to increase its reliability and fault tolerance.
Neural network based control of Doubly Fed Induction Generator in wind power generation
NASA Astrophysics Data System (ADS)
Barbade, Swati A.; Kasliwal, Prabha
2012-07-01
To complement the other types of pollution-free generation wind energy is a viable option. Previously wind turbines were operated at constant speed. The evolution of technology related to wind systems industry leaded to the development of a generation of variable speed wind turbines that present many advantages compared to the fixed speed wind turbines. In this paper the phasor model of DFIG is used. This paper presents a study of a doubly fed induction generator driven by a wind turbine connected to the grid, and controlled by artificial neural network ANN controller. The behaviour of the system is shown with PI control, and then as controlled by ANN. The effectiveness of the artificial neural network controller is compared to that of a PI controller. The SIMULINK/MATLAB simulation for Doubly Fed Induction Generator and corresponding results and waveforms are displayed.
An Artificial Neural Network Evaluation of Tuberculosis Using Genetic and Physiological Patient Data
NASA Astrophysics Data System (ADS)
Griffin, William O.; Hanna, Josh; Razorilova, Svetlana; Kitaev, Mikhael; Alisherov, Avtandiil; Darsey, Jerry A.; Tarasenko, Olga
2010-04-01
When doctors see more cases of patients with tell-tale symptoms of a disease, it is hoped that they will be able to recognize an infection administer treatment appropriately, thereby speeding up recovery for sick patients. We hope that our studies can aid in the detection of tuberculosis by using a computer model called an artificial neural network. Our model looks at patients with and without tuberculosis (TB). The data that the neural network examined came from the following: patient' age, gender, place, of birth, blood type, Rhesus (Rh) factor, and genes of the human Leukocyte Antigens (HLA) system (9q34.1) present in the Major Histocompatibility Complex. With availability in genetic data and good research, we hope to give them an advantage in the detection of tuberculosis. We try to mimic the doctor's experience with a computer test, which will learn from patient data the factors that contribute to TB.
Integrating Artificial Immune, Neural and Endrocine Systems in Autonomous Sailing Robots
2010-09-24
system - Development of an adaptive hormone system capable of changing operation and control of the neural network depending on changing enviromental ...and control of the neural network depending on changing enviromental conditions • First basic design of the MOOP and a simple neural-endocrine based
Modelling fuel cell performance using artificial intelligence
NASA Astrophysics Data System (ADS)
Ogaji, S. O. T.; Singh, R.; Pilidis, P.; Diacakis, M.
Over the last few years, fuel cell technology has been increasing promisingly its share in the generation of stationary power. Numerous pilot projects are operating worldwide, continuously increasing the amount of operating hours either as stand-alone devices or as part of gas turbine combined cycles. An essential tool for the adequate and dynamic analysis of such systems is a software model that enables the user to assess a large number of alternative options in the least possible time. On the other hand, the sphere of application of artificial neural networks has widened covering such endeavours of life such as medicine, finance and unsurprisingly engineering (diagnostics of faults in machines). Artificial neural networks have been described as diagrammatic representation of a mathematical equation that receives values (inputs) and gives out results (outputs). Artificial neural networks systems have the capacity to recognise and associate patterns and because of their inherent design features, they can be applied to linear and non-linear problem domains. In this paper, the performance of the fuel cell is modelled using artificial neural networks. The inputs to the network are variables that are critical to the performance of the fuel cell while the outputs are the result of changes in any one or all of the fuel cell design variables, on its performance. Critical parameters for the cell include the geometrical configuration as well as the operating conditions. For the neural network, various network design parameters such as the network size, training algorithm, activation functions and their causes on the effectiveness of the performance modelling are discussed. Results from the analysis as well as the limitations of the approach are presented and discussed.
[Simulation of lung motions using an artificial neural network].
Laurent, R; Henriet, J; Salomon, M; Sauget, M; Nguyen, F; Gschwind, R; Makovicka, L
2011-04-01
A way to improve the accuracy of lung radiotherapy for a patient is to get a better understanding of its lung motion. Indeed, thanks to this knowledge it becomes possible to follow the displacements of the clinical target volume (CTV) induced by the lung breathing. This paper presents a feasibility study of an original method to simulate the positions of points in patient's lung at all breathing phases. This method, based on an artificial neural network, allowed learning the lung motion on real cases and then to simulate it for new patients for which only the beginning and the end breathing data are known. The neural network learning set is made up of more than 600 points. These points, shared out on three patients and gathered on a specific lung area, were plotted by a MD. The first results are promising: an average accuracy of 1mm is obtained for a spatial resolution of 1 × 1 × 2.5mm(3). We have demonstrated that it is possible to simulate lung motion with accuracy using an artificial neural network. As future work we plan to improve the accuracy of our method with the addition of new patient data and a coverage of the whole lungs. Copyright © 2010 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.
A neutron spectrum unfolding computer code based on artificial neural networks
NASA Astrophysics Data System (ADS)
Ortiz-Rodríguez, J. M.; Reyes Alfaro, A.; Reyes Haro, A.; Cervantes Viramontes, J. M.; Vega-Carrillo, H. R.
2014-02-01
The Bonner Spheres Spectrometer consists of a thermal neutron sensor placed at the center of a number of moderating polyethylene spheres of different diameters. From the measured readings, information can be derived about the spectrum of the neutron field where measurements were made. Disadvantages of the Bonner system are the weight associated with each sphere and the need to sequentially irradiate the spheres, requiring long exposure periods. Provided a well-established response matrix and adequate irradiation conditions, the most delicate part of neutron spectrometry, is the unfolding process. The derivation of the spectral information is not simple because the unknown is not given directly as a result of the measurements. The drawbacks associated with traditional unfolding procedures have motivated the need of complementary approaches. Novel methods based on Artificial Intelligence, mainly Artificial Neural Networks, have been widely investigated. In this work, a neutron spectrum unfolding code based on neural nets technology is presented. This code is called Neutron Spectrometry and Dosimetry with Artificial Neural networks unfolding code that was designed in a graphical interface. The core of the code is an embedded neural network architecture previously optimized using the robust design of artificial neural networks methodology. The main features of the code are: easy to use, friendly and intuitive to the user. This code was designed for a Bonner Sphere System based on a 6LiI(Eu) neutron detector and a response matrix expressed in 60 energy bins taken from an International Atomic Energy Agency compilation. The main feature of the code is that as entrance data, for unfolding the neutron spectrum, only seven rate counts measured with seven Bonner spheres are required; simultaneously the code calculates 15 dosimetric quantities as well as the total flux for radiation protection purposes. This code generates a full report with all information of the unfolding in the HTML format. NSDann unfolding code is freely available, upon request to the authors.
1995-11-01
network - based AFS concepts. Neural networks can addition of vanes in each engine exhaust for thrust provide...parameter estimation programs 19-11 8.6 Neural Network Based Methods unknown parameters of the postulated state space model Artificial neural network ...Forward Neural Network the network that the applicability of the recurrent neural and ii) Recurrent Neural Network [117-119]. network to
Linear and nonlinear ARMA model parameter estimation using an artificial neural network
NASA Technical Reports Server (NTRS)
Chon, K. H.; Cohen, R. J.
1997-01-01
This paper addresses parametric system identification of linear and nonlinear dynamic systems by analysis of the input and output signals. Specifically, we investigate the relationship between estimation of the system using a feedforward neural network model and estimation of the system by use of linear and nonlinear autoregressive moving-average (ARMA) models. By utilizing a neural network model incorporating a polynomial activation function, we show the equivalence of the artificial neural network to the linear and nonlinear ARMA models. We compare the parameterization of the estimated system using the neural network and ARMA approaches by utilizing data generated by means of computer simulations. Specifically, we show that the parameters of a simulated ARMA system can be obtained from the neural network analysis of the simulated data or by conventional least squares ARMA analysis. The feasibility of applying neural networks with polynomial activation functions to the analysis of experimental data is explored by application to measurements of heart rate (HR) and instantaneous lung volume (ILV) fluctuations.
Modeling of Carbon Mortar Color Expression Using Artificial Neural Network.
Jang, Hong-Seok; Kim, Ju-Hee; Shuli, Xing; So, Seung-Young
2018-09-01
Colored concrete uses pigments and white Portland cement (WPC) to perform decorative functions together with structural function. Pigments are used in permanent coloring of concrete with colors different from the natural color of the cement or the aggregates with mixing WPC. In this study, an artificial neural networks study was carried out to predict the color evaluation of black mortar using pigment and carbon black. A data set of a laboratory work, in which a total of 9 mortars were produced, was utilized in the Artificial Neural Networks (ANNs) study. The mortar mixture parameters were nine different pigment and carbon black ratios. Each mortar was measured at ten locations on the surface and averaged. Color can be evaluated by measurements of tristimulus values L* , a* and b* , represented in the chromatic space CIELAB. The L* value is a measure of luminosity (0 darkness), from completely opaque (0) to completely transparent (100); a* is a measure of redness (-a* greenness) and b* of yellowness (-b* blueness). ANN model is constructed, trained and tested using these data. The data used in the ANN model are arranged in a format of three input parameters that cover the pigment, carbon black and WPC and, an output parameter which is the color parameters of the black colored mortar. The results showed that ANN can be an alternative approach for the predicting the color parameters using mortar ingredients as input parameters.
A Red-Light Running Prevention System Based on Artificial Neural Network and Vehicle Trajectory Data
Li, Pengfei; Li, Yan; Guo, Xiucheng
2014-01-01
The high frequency of red-light running and complex driving behaviors at the yellow onset at intersections cannot be explained solely by the dilemma zone and vehicle kinematics. In this paper, the author presented a red-light running prevention system which was based on artificial neural networks (ANNs) to approximate the complex driver behaviors during yellow and all-red clearance and serve as the basis of an innovative red-light running prevention system. The artificial neural network and vehicle trajectory are applied to identify the potential red-light runners. The ANN training time was also acceptable and its predicting accurate rate was over 80%. Lastly, a prototype red-light running prevention system with the trained ANN model was described. This new system can be directly retrofitted into the existing traffic signal systems. PMID:25435870
Modeling the thermotaxis behavior of C.elegans based on the artificial neural network.
Li, Mingxu; Deng, Xin; Wang, Jin; Chen, Qiaosong; Tang, Yun
2016-07-03
ASBTRACT This research aims at modeling the thermotaxis behavior of C.elegans which is a kind of nematode with full clarified neuronal connections. Firstly, this work establishes the motion model which can perform the undulatory locomotion with turning behavior. Secondly, the thermotaxis behavior is modeled by nonlinear functions and the nonlinear functions are learned by artificial neural network. Once the artificial neural networks have been well trained, they can perform the desired thermotaxis behavior. Last, several testing simulations are carried out to verify the effectiveness of the model for thermotaxis behavior. This work also analyzes the different performances of the model under different environments. The testing results reveal the essence of the thermotaxis of C.elegans to some extent, and theoretically support the research on the navigation of the crawling robots.
Li, Pengfei; Li, Yan; Guo, Xiucheng
2014-01-01
The high frequency of red-light running and complex driving behaviors at the yellow onset at intersections cannot be explained solely by the dilemma zone and vehicle kinematics. In this paper, the author presented a red-light running prevention system which was based on artificial neural networks (ANNs) to approximate the complex driver behaviors during yellow and all-red clearance and serve as the basis of an innovative red-light running prevention system. The artificial neural network and vehicle trajectory are applied to identify the potential red-light runners. The ANN training time was also acceptable and its predicting accurate rate was over 80%. Lastly, a prototype red-light running prevention system with the trained ANN model was described. This new system can be directly retrofitted into the existing traffic signal systems.
NASA Astrophysics Data System (ADS)
Afrand, Masoud; Hemmat Esfe, Mohammad; Abedini, Ehsan; Teimouri, Hamid
2017-03-01
The current paper first presents an empirical correlation based on experimental results for estimating thermal conductivity enhancement of MgO-water nanofluid using curve fitting method. Then, artificial neural networks (ANNs) with various numbers of neurons have been assessed by considering temperature and MgO volume fraction as the inputs variables and thermal conductivity enhancement as the output variable to select the most appropriate and optimized network. Results indicated that the network with 7 neurons had minimum error. Eventually, the output of artificial neural network was compared with the results of the proposed empirical correlation and those of the experiments. Comparisons revealed that ANN modeling was more accurate than curve-fitting method in the predicting the thermal conductivity enhancement of the nanofluid.
Forecasting the portuguese stock market time series by using artificial neural networks
NASA Astrophysics Data System (ADS)
Isfan, Monica; Menezes, Rui; Mendes, Diana A.
2010-04-01
In this paper, we show that neural networks can be used to uncover the non-linearity that exists in the financial data. First, we follow a traditional approach by analysing the deterministic/stochastic characteristics of the Portuguese stock market data and some typical features are studied, like the Hurst exponents, among others. We also simulate a BDS test to investigate nonlinearities and the results are as expected: the financial time series do not exhibit linear dependence. Secondly, we trained four types of neural networks for the stock markets and used the models to make forecasts. The artificial neural networks were obtained using a three-layer feed-forward topology and the back-propagation learning algorithm. The quite large number of parameters that must be selected to develop a neural network forecasting model involves some trial and as a consequence the error is not small enough. In order to improve this we use a nonlinear optimization algorithm to minimize the error. Finally, the output of the 4 models is quite similar, leading to a qualitative forecast that we compare with the results of the application of k-nearest-neighbor for the same time series.
Hannula, Manne; Huttunen, Kerttu; Koskelo, Jukka; Laitinen, Tomi; Leino, Tuomo
2008-01-01
In this study, the performances of artificial neural network (ANN) analysis and multilinear regression (MLR) model-based estimation of heart rate were compared in an evaluation of individual cognitive workload. The data comprised electrocardiography (ECG) measurements and an evaluation of cognitive load that induces psychophysiological stress (PPS), collected from 14 interceptor fighter pilots during complex simulated F/A-18 Hornet air battles. In our data, the mean absolute error of the ANN estimate was 11.4 as a visual analog scale score, being 13-23% better than the mean absolute error of the MLR model in the estimation of cognitive workload.
A neuro-collision avoidance strategy for robot manipulators
NASA Technical Reports Server (NTRS)
Onema, Joel P.; Maclaunchlan, Robert A.
1992-01-01
The area of collision avoidance and path planning in robotics has received much attention in the research community. Our study centers on a combination of an artificial neural network paradigm with a motion planning strategy that insures safe motion of the Articulated Two-Link Arm with Scissor Hand System relative to an object. Whenever an obstacle is encountered, the arm attempts to slide along the obstacle surface, thereby avoiding collision by means of the local tangent strategy and its artificial neural network implementation. This combination compensates the inverse kinematics of a robot manipulator. Simulation results indicate that a neuro-collision avoidance strategy can be achieved by means of a learning local tangent method.
Azarkhish, Iman; Raoufy, Mohammad Reza; Gharibzadeh, Shahriar
2012-06-01
Iron deficiency anemia (IDA) is the most common nutritional deficiency worldwide. Measuring serum iron is time consuming, expensive and not available in most hospitals. In this study, based on four accessible laboratory data (MCV, MCH, MCHC, Hb/RBC), we developed an artificial neural network (ANN) and an adaptive neuro-fuzzy inference system (ANFIS) to diagnose the IDA and to predict serum iron level. Our results represent that the neural network analysis is superior to ANFIS and logistic regression models in diagnosing IDA. Moreover, the results show that the ANN is likely to provide an accurate test for predicting serum iron levels with high accuracy and acceptable precision.
Lennernäs, B; Edgren, M; Nilsson, S
1999-01-01
The purpose of this study was to evaluate the precision of a sensor and to ascertain the maximum distance between the sensor and the magnet, in a magnetic positioning system for external beam radiotherapy using a trained artificial intelligence neural network for position determination. Magnetic positioning for radiotherapy, previously described by Lennernäs and Nilsson, is a functional technique, but it is time consuming. The sensors are large and the distance between the sensor and the magnetic implant is limited to short distances. This paper presents a new technique for positioning, using an artificial intelligence neural network, which was trained to position the magnetic implant with at least 0.5 mm resolution in X and Y dimensions. The possibility of using the system for determination in the Z dimension, that is the distance between the magnet and the sensor, was also investigated. After training, this system positioned the magnet with a mean error of maximum 0.15 mm in all dimensions and up to 13 mm from the sensor. Of 400 test positions, 8 determinations had an error larger than 0.5 mm, maximum 0.55 mm. A position was determined in approximately 0.01 s.
Activity classification using realistic data from wearable sensors.
Pärkkä, Juha; Ermes, Miikka; Korpipää, Panu; Mäntyjärvi, Jani; Peltola, Johannes; Korhonen, Ilkka
2006-01-01
Automatic classification of everyday activities can be used for promotion of health-enhancing physical activities and a healthier lifestyle. In this paper, methods used for classification of everyday activities like walking, running, and cycling are described. The aim of the study was to find out how to recognize activities, which sensors are useful and what kind of signal processing and classification is required. A large and realistic data library of sensor data was collected. Sixteen test persons took part in the data collection, resulting in approximately 31 h of annotated, 35-channel data recorded in an everyday environment. The test persons carried a set of wearable sensors while performing several activities during the 2-h measurement session. Classification results of three classifiers are shown: custom decision tree, automatically generated decision tree, and artificial neural network. The classification accuracies using leave-one-subject-out cross validation range from 58 to 97% for custom decision tree classifier, from 56 to 97% for automatically generated decision tree, and from 22 to 96% for artificial neural network. Total classification accuracy is 82 % for custom decision tree classifier, 86% for automatically generated decision tree, and 82% for artificial neural network.
Taheri-Garavand, Amin; Karimi, Fatemeh; Karimi, Mahmoud; Lotfi, Valiullah; Khoobbakht, Golmohammad
2018-06-01
The aim of the study is to fit models for predicting surfaces using the response surface methodology and the artificial neural network to optimize for obtaining the maximum acceptability using desirability functions methodology in a hot air drying process of banana slices. The drying air temperature, air velocity, and drying time were chosen as independent factors and moisture content, drying rate, energy efficiency, and exergy efficiency were dependent variables or responses in the mentioned drying process. A rotatable central composite design as an adequate method was used to develop models for the responses in the response surface methodology. Moreover, isoresponse contour plots were useful to predict the results by performing only a limited set of experiments. The optimum operating conditions obtained from the artificial neural network models were moisture content 0.14 g/g, drying rate 1.03 g water/g h, energy efficiency 0.61, and exergy efficiency 0.91, when the air temperature, air velocity, and drying time values were equal to -0.42 (74.2 ℃), 1.00 (1.50 m/s), and -0.17 (2.50 h) in the coded units, respectively.
Network traffic anomaly prediction using Artificial Neural Network
NASA Astrophysics Data System (ADS)
Ciptaningtyas, Hening Titi; Fatichah, Chastine; Sabila, Altea
2017-03-01
As the excessive increase of internet usage, the malicious software (malware) has also increase significantly. Malware is software developed by hacker for illegal purpose(s), such as stealing data and identity, causing computer damage, or denying service to other user[1]. Malware which attack computer or server often triggers network traffic anomaly phenomena. Based on Sophos's report[2], Indonesia is the riskiest country of malware attack and it also has high network traffic anomaly. This research uses Artificial Neural Network (ANN) to predict network traffic anomaly based on malware attack in Indonesia which is recorded by Id-SIRTII/CC (Indonesia Security Incident Response Team on Internet Infrastructure/Coordination Center). The case study is the highest malware attack (SQL injection) which has happened in three consecutive years: 2012, 2013, and 2014[4]. The data series is preprocessed first, then the network traffic anomaly is predicted using Artificial Neural Network and using two weight update algorithms: Gradient Descent and Momentum. Error of prediction is calculated using Mean Squared Error (MSE) [7]. The experimental result shows that MSE for SQL Injection is 0.03856. So, this approach can be used to predict network traffic anomaly.
Encoding of natural and artificial stimuli in the auditory midbrain
NASA Astrophysics Data System (ADS)
Lyzwa, Dominika
How complex acoustic stimuli are encoded in the main center of convergence in the auditory midbrain is not clear. Here, the representation of neural spiking responses to natural and artificial sounds across this subcortical structure is investigated based on neurophysiological recordings from the mammalian midbrain. Neural and stimulus correlations of neuronal pairs are analyzed with respect to the neurons' distance, and responses to different natural communication sounds are discriminated. A model which includes linear and nonlinear neural response properties of this nucleus is presented and employed to predict temporal spiking responses to new sounds. Supported by BMBF Grant 01GQ0811.
Forecasting the daily electricity consumption in the Moscow region using artificial neural networks
NASA Astrophysics Data System (ADS)
Ivanov, V. V.; Kryanev, A. V.; Osetrov, E. S.
2017-07-01
In [1] we demonstrated the possibility in principle for short-term forecasting of daily volumes of passenger traffic in the Moscow metro with the help of artificial neural networks. During training and predicting, a set of the factors that affect the daily passenger traffic in the subway is passed to the input of the neural network. One of these factors is the daily power consumption in the Moscow region. Therefore, to predict the volume of the passenger traffic in the subway, we must first to solve the problem of forecasting the daily energy consumption in the Moscow region.
NASA Astrophysics Data System (ADS)
Caldwell, A.; Cossavella, F.; Majorovits, B.; Palioselitis, D.; Volynets, O.
2015-07-01
A pulse-shape discrimination method based on artificial neural networks was applied to pulses simulated for different background, signal and signal-like interactions inside a germanium detector. The simulated pulses were used to investigate variations of efficiencies as a function of used training set. It is verified that neural networks are well-suited to identify background pulses in true-coaxial high-purity germanium detectors. The systematic uncertainty on the signal recognition efficiency derived using signal-like evaluation samples from calibration measurements is estimated to be 5 %. This uncertainty is due to differences between signal and calibration samples.
A New Artificial Neural Network Approach in Solving Inverse Kinematics of Robotic Arm (Denso VP6242)
Dülger, L. Canan; Kapucu, Sadettin
2016-01-01
This paper presents a novel inverse kinematics solution for robotic arm based on artificial neural network (ANN) architecture. The motion of robotic arm is controlled by the kinematics of ANN. A new artificial neural network approach for inverse kinematics is proposed. The novelty of the proposed ANN is the inclusion of the feedback of current joint angles configuration of robotic arm as well as the desired position and orientation in the input pattern of neural network, while the traditional ANN has only the desired position and orientation of the end effector in the input pattern of neural network. In this paper, a six DOF Denso robotic arm with a gripper is controlled by ANN. The comprehensive experimental results proved the applicability and the efficiency of the proposed approach in robotic motion control. The inclusion of current configuration of joint angles in ANN significantly increased the accuracy of ANN estimation of the joint angles output. The new controller design has advantages over the existing techniques for minimizing the position error in unconventional tasks and increasing the accuracy of ANN in estimation of robot's joint angles. PMID:27610129
Almusawi, Ahmed R J; Dülger, L Canan; Kapucu, Sadettin
2016-01-01
This paper presents a novel inverse kinematics solution for robotic arm based on artificial neural network (ANN) architecture. The motion of robotic arm is controlled by the kinematics of ANN. A new artificial neural network approach for inverse kinematics is proposed. The novelty of the proposed ANN is the inclusion of the feedback of current joint angles configuration of robotic arm as well as the desired position and orientation in the input pattern of neural network, while the traditional ANN has only the desired position and orientation of the end effector in the input pattern of neural network. In this paper, a six DOF Denso robotic arm with a gripper is controlled by ANN. The comprehensive experimental results proved the applicability and the efficiency of the proposed approach in robotic motion control. The inclusion of current configuration of joint angles in ANN significantly increased the accuracy of ANN estimation of the joint angles output. The new controller design has advantages over the existing techniques for minimizing the position error in unconventional tasks and increasing the accuracy of ANN in estimation of robot's joint angles.
Li, Yongcheng; Sun, Rong; Wang, Yuechao; Li, Hongyi; Zheng, Xiongfei
2016-01-01
We propose the architecture of a novel robot system merging biological and artificial intelligence based on a neural controller connected to an external agent. We initially built a framework that connected the dissociated neural network to a mobile robot system to implement a realistic vehicle. The mobile robot system characterized by a camera and two-wheeled robot was designed to execute the target-searching task. We modified a software architecture and developed a home-made stimulation generator to build a bi-directional connection between the biological and the artificial components via simple binomial coding/decoding schemes. In this paper, we utilized a specific hierarchical dissociated neural network for the first time as the neural controller. Based on our work, neural cultures were successfully employed to control an artificial agent resulting in high performance. Surprisingly, under the tetanus stimulus training, the robot performed better and better with the increasement of training cycle because of the short-term plasticity of neural network (a kind of reinforced learning). Comparing to the work previously reported, we adopted an effective experimental proposal (i.e. increasing the training cycle) to make sure of the occurrence of the short-term plasticity, and preliminarily demonstrated that the improvement of the robot's performance could be caused independently by the plasticity development of dissociated neural network. This new framework may provide some possible solutions for the learning abilities of intelligent robots by the engineering application of the plasticity processing of neural networks, also for the development of theoretical inspiration for the next generation neuro-prostheses on the basis of the bi-directional exchange of information within the hierarchical neural networks.
Wang, Yuechao; Li, Hongyi; Zheng, Xiongfei
2016-01-01
We propose the architecture of a novel robot system merging biological and artificial intelligence based on a neural controller connected to an external agent. We initially built a framework that connected the dissociated neural network to a mobile robot system to implement a realistic vehicle. The mobile robot system characterized by a camera and two-wheeled robot was designed to execute the target-searching task. We modified a software architecture and developed a home-made stimulation generator to build a bi-directional connection between the biological and the artificial components via simple binomial coding/decoding schemes. In this paper, we utilized a specific hierarchical dissociated neural network for the first time as the neural controller. Based on our work, neural cultures were successfully employed to control an artificial agent resulting in high performance. Surprisingly, under the tetanus stimulus training, the robot performed better and better with the increasement of training cycle because of the short-term plasticity of neural network (a kind of reinforced learning). Comparing to the work previously reported, we adopted an effective experimental proposal (i.e. increasing the training cycle) to make sure of the occurrence of the short-term plasticity, and preliminarily demonstrated that the improvement of the robot’s performance could be caused independently by the plasticity development of dissociated neural network. This new framework may provide some possible solutions for the learning abilities of intelligent robots by the engineering application of the plasticity processing of neural networks, also for the development of theoretical inspiration for the next generation neuro-prostheses on the basis of the bi-directional exchange of information within the hierarchical neural networks. PMID:27806074
Sengupta, Abhronil; Shim, Yong; Roy, Kaushik
2016-12-01
Non-Boolean computing based on emerging post-CMOS technologies can potentially pave the way for low-power neural computing platforms. However, existing work on such emerging neuromorphic architectures have either focused on solely mimicking the neuron, or the synapse functionality. While memristive devices have been proposed to emulate biological synapses, spintronic devices have proved to be efficient at performing the thresholding operation of the neuron at ultra-low currents. In this work, we propose an All-Spin Artificial Neural Network where a single spintronic device acts as the basic building block of the system. The device offers a direct mapping to synapse and neuron functionalities in the brain while inter-layer network communication is accomplished via CMOS transistors. To the best of our knowledge, this is the first demonstration of a neural architecture where a single nanoelectronic device is able to mimic both neurons and synapses. The ultra-low voltage operation of low resistance magneto-metallic neurons enables the low-voltage operation of the array of spintronic synapses, thereby leading to ultra-low power neural architectures. Device-level simulations, calibrated to experimental results, was used to drive the circuit and system level simulations of the neural network for a standard pattern recognition problem. Simulation studies indicate energy savings by ∼ 100× in comparison to a corresponding digital/analog CMOS neuron implementation.
Applying Neural Networks in Optical Communication Systems: Possible Pitfalls
NASA Astrophysics Data System (ADS)
Eriksson, Tobias A.; Bulow, Henning; Leven, Andreas
2017-12-01
We investigate the risk of overestimating the performance gain when applying neural network based receivers in systems with pseudo random bit sequences or with limited memory depths, resulting in repeated short patterns. We show that with such sequences, a large artificial gain can be obtained which comes from pattern prediction rather than predicting or compensating the studied channel/phenomena.
2017-10-01
AU/ACSC/MORALES/AY17 AIR COMMAND AND STAFF COLLEGE DISTANCE LEARNING AIR UNIVERSITY DATA MAYHEM VERSUS NIMBLE INFORMATION : TRANSFORMING...HECTIC IMAGERY INTELLIGENCE DATA INTO ACTIONABLE INFORMATION USING ARTIFICIAL NEURAL NETWORKS by Luis A. Morales, Major, USAF A Research...finding solutions to compliment and supplement human analysts’ capacity, so intelligence and information can reach operators and end-users at the
Li, Mingzhong; Xue, Jianquan; Li, Yanchao; Tang, Shukai
2014-01-01
Considering the influence of particle shape and the rheological properties of fluid, two artificial intelligence methods (Artificial Neural Network and Support Vector Machine) were used to predict the wall factor which is widely introduced to deduce the net hydrodynamic drag force of confining boundaries on settling particles. 513 data points were culled from the experimental data of previous studies, which were divided into training set and test set. Particles with various shapes were divided into three kinds: sphere, cylinder, and rectangular prism; feature parameters of each kind of particle were extracted; prediction models of sphere and cylinder using artificial neural network were established. Due to the little number of rectangular prism sample, support vector machine was used to predict the wall factor, which is more suitable for addressing the problem of small samples. The characteristic dimension was presented to describe the shape and size of the diverse particles and a comprehensive prediction model of particles with arbitrary shapes was established to cover all types of conditions. Comparisons were conducted between the predicted values and the experimental results. PMID:24772024
Li, Mingzhong; Zhang, Guodong; Xue, Jianquan; Li, Yanchao; Tang, Shukai
2014-01-01
Considering the influence of particle shape and the rheological properties of fluid, two artificial intelligence methods (Artificial Neural Network and Support Vector Machine) were used to predict the wall factor which is widely introduced to deduce the net hydrodynamic drag force of confining boundaries on settling particles. 513 data points were culled from the experimental data of previous studies, which were divided into training set and test set. Particles with various shapes were divided into three kinds: sphere, cylinder, and rectangular prism; feature parameters of each kind of particle were extracted; prediction models of sphere and cylinder using artificial neural network were established. Due to the little number of rectangular prism sample, support vector machine was used to predict the wall factor, which is more suitable for addressing the problem of small samples. The characteristic dimension was presented to describe the shape and size of the diverse particles and a comprehensive prediction model of particles with arbitrary shapes was established to cover all types of conditions. Comparisons were conducted between the predicted values and the experimental results.
Chen, Jian; Chen, Jie; Ding, Hong-Yan; Pan, Qin-Shi; Hong, Wan-Dong; Xu, Gang; Yu, Fang-You; Wang, Yu-Min
2015-01-01
The statistical methods to analyze and predict the related dangerous factors of deep fungal infection in lung cancer patients were several, such as logic regression analysis, meta-analysis, multivariate Cox proportional hazards model analysis, retrospective analysis, and so on, but the results are inconsistent. A total of 696 patients with lung cancer were enrolled. The factors were compared employing Student's t-test or the Mann-Whitney test or the Chi-square test and variables that were significantly related to the presence of deep fungal infection selected as candidates for input into the final artificial neural network analysis (ANN) model. The receiver operating characteristic (ROC) and area under curve (AUC) were used to evaluate the performance of the artificial neural network (ANN) model and logistic regression (LR) model. The prevalence of deep fungal infection from lung cancer in this entire study population was 32.04%(223/696), deep fungal infections occur in sputum specimens 44.05% (200/454). The ratio of candida albicans was 86.99% (194/223) in the total fungi. It was demonstrated that older (≥65 years), use of antibiotics, low serum albumin concentrations (≤37.18 g /L), radiotherapy, surgery, low hemoglobin hyperlipidemia (≤93.67 g /L), long time of hospitalization (≥14 days) were apt to deep fungal infection and the ANN model consisted of the seven factors. The AUC of ANN model (0.829±0.019) was higher than that of LR model (0.756±0.021). The artificial neural network model with variables consisting of age, use of antibiotics, serum albumin concentrations, received radiotherapy, received surgery, hemoglobin, time of hospitalization should be useful for predicting the deep fungal infection in lung cancer.
Eloqayli, Haytham; Al-Yousef, Ali; Jaradat, Raid
2018-02-15
Despite the high prevalence of chronic neck pain, there is limited consensus about the primary etiology, risk factors, diagnostic criteria and therapeutic outcome. Here, we aimed to determine if Ferritin and Vitamin D are modifiable risk factors with chronic neck pain using slandered statistics and artificial intelligence neural network (ANN). Fifty-four patients with chronic neck pain treated between February 2016 and August 2016 in King Abdullah University Hospital and 54 patients age matched controls undergoing outpatient or minor procedures were enrolled. Patients and control demographic parameters, height, weight and single measurement of serum vitamin D, Vitamin B12, ferritin, calcium, phosphorus, zinc were obtained. An ANN prediction model was developed. The statistical analysis reveals that patients with chronic neck pain have significantly lower serum Vitamin D and Ferritin (p-value <.05). 90% of patients with chronic neck pain were females. Multilayer Feed Forward Neural Network with Back Propagation(MFFNN) prediction model were developed and designed based on vitamin D and ferritin as input variables and CNP as output. The ANN model output results show that, 92 out of 108 samples were correctly classified with 85% classification accuracy. Although Iron and vitamin D deficiency cannot be isolated as the sole risk factors of chronic neck pain, they should be considered as two modifiable risk. The high prevalence of chronic neck pain, hypovitaminosis D and low ferritin amongst women is of concern. Bioinformatics predictions with artificial neural network can be of future benefit in classification and prediction models for chronic neck pain. We hope this initial work will encourage a future larger cohort study addressing vitamin D and iron correction as modifiable factors and the application of artificial intelligence models in clinical practice.
Efficient Digital Implementation of The Sigmoidal Function For Artificial Neural Network
NASA Astrophysics Data System (ADS)
Pratap, Rana; Subadra, M.
2011-10-01
An efficient piecewise linear approximation of a nonlinear function (PLAN) is proposed. This uses simulink environment design to perform a direct transformation from X to Y, where X is the input and Y is the approximated sigmoidal output. This PLAN is then used within the outputs of an artificial neural network to perform the nonlinear approximation. In This paper, is proposed a method to implement in FPGA (Field Programmable Gate Array) circuits different approximation of the sigmoid function.. The major benefit of the proposed method resides in the possibility to design neural networks by means of predefined block systems created in System Generator environment and the possibility to create a higher level design tools used to implement neural networks in logical circuits.
Early driver fatigue detection from electroencephalography signals using artificial neural networks.
King, L M; Nguyen, H T; Lal, S K L
2006-01-01
This paper describes a driver fatigue detection system using an artificial neural network (ANN). Using electroencephalogram (EEG) data sampled from 20 professional truck drivers and 35 non professional drivers, the time domain data are processed into alpha, beta, delta and theta bands and then presented to the neural network to detect the onset of driver fatigue. The neural network uses a training optimization technique called the magnified gradient function (MGF). This technique reduces the time required for training by modifying the standard back propagation (SBP) algorithm. The MGF is shown to classify professional driver fatigue with 81.49% accuracy (80.53% sensitivity, 82.44% specificity) and non-professional driver fatigue with 83.06% accuracy (84.04% sensitivity and 82.08% specificity).
Neural and Neural Gray-Box Modeling for Entry Temperature Prediction in a Hot Strip Mill
NASA Astrophysics Data System (ADS)
Barrios, José Angel; Torres-Alvarado, Miguel; Cavazos, Alberto; Leduc, Luis
2011-10-01
In hot strip mills, initial controller set points have to be calculated before the steel bar enters the mill. Calculations rely on the good knowledge of rolling variables. Measurements are available only after the bar has entered the mill, and therefore they have to be estimated. Estimation of process variables, particularly that of temperature, is of crucial importance for the bar front section to fulfill quality requirements, and the same must be performed in the shortest possible time to preserve heat. Currently, temperature estimation is performed by physical modeling; however, it is highly affected by measurement uncertainties, variations in the incoming bar conditions, and final product changes. In order to overcome these problems, artificial intelligence techniques such as artificial neural networks and fuzzy logic have been proposed. In this article, neural network-based systems, including neural-based Gray-Box models, are applied to estimate scale breaker entry temperature, given its importance, and their performance is compared to that of the physical model used in plant. Several neural systems and several neural-based Gray-Box models are designed and tested with real data. Taking advantage of the flexibility of neural networks for input incorporation, several factors which are believed to have influence on the process are also tested. The systems proposed in this study were proven to have better performance indexes and hence better prediction capabilities than the physical models currently used in plant.
NASA Technical Reports Server (NTRS)
Baram, Yoram
1992-01-01
Report presents analysis of nested neural networks, consisting of interconnected subnetworks. Analysis based on simplified mathematical models more appropriate for artificial electronic neural networks, partly applicable to biological neural networks. Nested structure allows for retrieval of individual subpatterns. Requires fewer wires and connection devices than fully connected networks, and allows for local reconstruction of damaged subnetworks without rewiring entire network.
Neural network models of categorical perception.
Damper, R I; Harnad, S R
2000-05-01
Studies of the categorical perception (CP) of sensory continua have a long and rich history in psychophysics. In 1977, Macmillan, Kaplan, and Creelman introduced the use of signal detection theory to CP studies. Anderson and colleagues simultaneously proposed the first neural model for CP, yet this line of research has been less well explored. In this paper, we assess the ability of neural-network models of CP to predict the psychophysical performance of real observers with speech sounds and artificial/novel stimuli. We show that a variety of neural mechanisms are capable of generating the characteristics of CP. Hence, CP may not be a special model of perception but an emergent property of any sufficiently powerful general learning system.
Proposed health state awareness of helicopter blades using an artificial neural network strategy
NASA Astrophysics Data System (ADS)
Lee, Andrew; Habtour, Ed; Gadsden, S. A.
2016-05-01
Structural health prognostics and diagnosis strategies can be classified as either model or signal-based. Artificial neural network strategies are popular signal-based techniques. This paper proposes the use of helicopter blades in order to study the sensitivity of an artificial neural network to structural fatigue. The experimental setup consists of a scale aluminum helicopter blade exposed to transverse vibratory excitation at the hub using single axis electrodynamic shaker. The intent of this study is to optimize an algorithm for processing high-dimensional data while retaining important information content in an effort to select input features and weights, as well as health parameters, for training a neural network. Data from accelerometers and piezoelectric transducers is collected from a known system designated as healthy. Structural damage will be introduced to different blades, which they will be designated as unhealthy. A variety of different tests will be performed to track the evolution and severity of the damage. A number of damage detection and diagnosis strategies will be implemented. A preliminary experiment was performed on aluminum cantilever beams providing a simpler model for implementation and proof of concept. Future work will look at utilizing the detection information as part of a hierarchical control system in order to mitigate structural damage and fatigue. The proposed approach may eliminate massive data storage on board of an aircraft through retaining relevant information only. The control system can then employ the relevant information to intelligently reconfigure adaptive maneuvers to avoid harmful regimes, thus, extending the life of the aircraft.
Barmpalexis, Panagiotis; Grypioti, Agni; Eleftheriadis, Georgios K; Fatouros, Dimitris G
2018-02-01
In the present study, liquisolid formulations were developed for improving dissolution profile of aprepitant (APT) in a solid dosage form. Experimental studies were complemented with artificial neural networks and genetic programming. Specifically, the type and concentration of liquid vehicle was evaluated through saturation-solubility studies, while the effect of the amount of viscosity increasing agent (HPMC), the type of wetting (Soluplus® vs. PVP) and solubilizing (Poloxamer®407 vs. Kolliphor®ELP) agents, and the ratio of solid coating (microcrystalline cellulose) to carrier (colloidal silicon dioxide) were evaluated based on in vitro drug release studies. The optimum liquisolid formulation exhibited improved dissolution characteristics compared to the marketed product Emend®. X-ray diffraction (XRD), scanning electron microscopy (SEM) and a novel method combining particle size analysis by dynamic light scattering (DLS) and HPLC, revealed that the increase in dissolution rate of APT in the optimum liquisolid formulation was due to the formation of stable APT nanocrystals. Differential scanning calorimetry (DSC) and attenuated total reflection FTIR spectroscopy (ATR-FTIR) revealed the presence of intermolecular interactions between APT and liquisolid formulation excipients. Multilinear regression analysis (MLR), artificial neural networks (ANNs), and genetic programming (GP) were used to correlate several formulation variables with dissolution profile parameters (Y 15min and Y 30min ) using a full factorial experimental design. Results showed increased correlation efficacy for ANNs and GP (RMSE of 0.151 and 0.273, respectively) compared to MLR (RMSE = 0.413).
NASA Astrophysics Data System (ADS)
Rosen, Charles; Siegel, Edward Carl-Ludwig; Feynman, Richard; Wunderman, Irwin; Smith, Adolph; Marinov, Vesco; Goldman, Jacob; Brine, Sergey; Poge, Larry; Schmidt, Erich; Young, Frederic; Goates-Bulmer, William-Steven; Lewis-Tsurakov-Altshuler, Thomas-Valerie-Genot; Ibm/Exxon Collaboration; Google/Uw Collaboration; Microsoft/Amazon Collaboration; Oracle/Sun Collaboration; Ostp/Dod/Dia/Nsa/W.-F./Boa/Ubs/Ub Collaboration
2013-03-01
Belew[Finding Out About, Cambridge(2000)] and separately full-decade pre-Page/Brin/Google FIRST Siegel-Rosen(Machine-Intelligence/Atherton)-Feynman-Smith-Marinov(Guzik Enterprises/Exxon-Enterprises/A.-I./Santa Clara)-Wunderman(H.-P.) [IBM Conf. on Computers and Mathematics, Stanford(1986); APS Mtgs.(1980s): Palo Alto/Santa Clara/San Francisco/...(1980s) MRS Spring-Mtgs.(1980s): Palo Alto/San Jose/San Francisco/...(1980-1992) FIRST quantum-computing via Bose-Einstein quantum-statistics(BEQS) Bose-Einstein CONDENSATION (BEC) in artificial-intelligence(A-I) artificial neural-networks(A-N-N) and biological neural-networks(B-N-N) and Siegel[J. Noncrystalline-Solids 40, 453(1980); Symp. on Fractals..., MRS Fall-Mtg., Boston(1989)-5-papers; Symp. on Scaling..., (1990); Symp. on Transport in Geometric-Constraint (1990)
Artificial neural network predictions of lengths of stay on a post-coronary care unit.
Mobley, B A; Leasure, R; Davidson, L
1995-01-01
To create and validate a model that predicts length of hospital unit stay. Ex post facto. Seventy-four independent admission variables in 15 general categories were utilized to predict possible stays of 1 to 20 days. Laboratory. Records of patients discharged from a post-coronary care unit in early 1993. An artificial neural network was trained on 629 records and tested on an additional 127 records of patients. The absolute disparity between the actual lengths of stays in the test records and the predictions of the network averaged 1.4 days per record, and the actual length of stay was predicted within 1 day 72% of the time. The artificial neural network demonstrated the capacity to utilize common patient admission characteristics to predict lengths of stay. This technology shows promise in aiding timely initiation of treatment and effective resource planning and cost control.
Vehicle Signal Analysis Using Artificial Neural Networks for a Bridge Weigh-in-Motion System
Kim, Sungkon; Lee, Jungwhee; Park, Min-Seok; Jo, Byung-Wan
2009-01-01
This paper describes the procedures for development of signal analysis algorithms using artificial neural networks for Bridge Weigh-in-Motion (B-WIM) systems. Through the analysis procedure, the extraction of information concerning heavy traffic vehicles such as weight, speed, and number of axles from the time domain strain data of the B-WIM system was attempted. As one of the several possible pattern recognition techniques, an Artificial Neural Network (ANN) was employed since it could effectively include dynamic effects and bridge-vehicle interactions. A number of vehicle traveling experiments with sufficient load cases were executed on two different types of bridges, a simply supported pre-stressed concrete girder bridge and a cable-stayed bridge. Different types of WIM systems such as high-speed WIM or low-speed WIM were also utilized during the experiments for cross-checking and to validate the performance of the developed algorithms. PMID:22408487
Vehicle Signal Analysis Using Artificial Neural Networks for a Bridge Weigh-in-Motion System.
Kim, Sungkon; Lee, Jungwhee; Park, Min-Seok; Jo, Byung-Wan
2009-01-01
This paper describes the procedures for development of signal analysis algorithms using artificial neural networks for Bridge Weigh-in-Motion (B-WIM) systems. Through the analysis procedure, the extraction of information concerning heavy traffic vehicles such as weight, speed, and number of axles from the time domain strain data of the B-WIM system was attempted. As one of the several possible pattern recognition techniques, an Artificial Neural Network (ANN) was employed since it could effectively include dynamic effects and bridge-vehicle interactions. A number of vehicle traveling experiments with sufficient load cases were executed on two different types of bridges, a simply supported pre-stressed concrete girder bridge and a cable-stayed bridge. Different types of WIM systems such as high-speed WIM or low-speed WIM were also utilized during the experiments for cross-checking and to validate the performance of the developed algorithms.
Development of programmable artificial neural networks
NASA Technical Reports Server (NTRS)
Meade, Andrew J.
1993-01-01
Conventionally programmed digital computers can process numbers with great speed and precision, but do not easily recognize patterns or imprecise or contradictory data. Instead of being programmed in the conventional sense, artificial neural networks are capable of self-learning through exposure to repeated examples. However, the training of an ANN can be a time consuming and unpredictable process. A general method is being developed to mate the adaptability of the ANN with the speed and precision of the digital computer. This method was successful in building feedforward networks that can approximate functions and their partial derivatives from examples in a single iteration. The general method also allows the formation of feedforward networks that can approximate the solution to nonlinear ordinary and partial differential equations to desired accuracy without the need of examples. It is believed that continued research will produce artificial neural networks that can be used with confidence in practical scientific computing and engineering applications.
NASA Astrophysics Data System (ADS)
Vafaei, Masoud; Afrand, Masoud; Sina, Nima; Kalbasi, Rasool; Sourani, Forough; Teimouri, Hamid
2017-01-01
In this paper, the thermal conductivity ratio of MgO-MWCNTs/EG hybrid nanofluids has been predicted by an optimal artificial neural network at solid volume fractions of 0.05%, 0.1%, 0.15%, 0.2%, 0.4% and 0.6% in the temperature range of 25-50 °C. In this way, at the first, thirty six experimental data was presented to determine the thermal conductivity ratio of the hybrid nanofluid. Then, four optimal artificial neural networks with 6, 8, 10 and 12 neurons in hidden layer were designed to predict the thermal conductivity ratio of the nanofluid. The comparison between four optimal ANN results and experimental showed that the ANN with 12 neurons in hidden layer was the best model. Moreover, the results obtained from the best ANN indicated the maximum deviation margin of 0.8%.
Ialongo, Cristiano; Pieri, Massimo; Bernardini, Sergio
2017-02-01
Diluting a sample to obtain a measure within the analytical range is a common task in clinical laboratories. However, for urgent samples, it can cause delays in test reporting, which can put patients' safety at risk. The aim of this work is to show a simple artificial neural network that can be used to make it unnecessary to predilute a sample using the information available through the laboratory information system. Particularly, the Multilayer Perceptron neural network built on a data set of 16,106 cardiac troponin I test records produced a correct inference rate of 100% for samples not requiring predilution and 86.2% for those requiring predilution. With respect to the inference reliability, the most relevant inputs were the presence of a cardiac event or surgery and the result of the previous assay. Therefore, such an artificial neural network can be easily implemented into a total automation framework to sensibly reduce the turnaround time of critical orders delayed by the operation required to retrieve, dilute, and retest the sample.
NASA Astrophysics Data System (ADS)
Zhou, Wanmeng; Wang, Hua; Tang, Guojin; Guo, Shuai
2016-09-01
The time-consuming experimental method for handling qualities assessment cannot meet the increasing fast design requirements for the manned space flight. As a tool for the aircraft handling qualities research, the model-predictive-control structured inverse simulation (MPC-IS) has potential applications in the aerospace field to guide the astronauts' operations and evaluate the handling qualities more effectively. Therefore, this paper establishes MPC-IS for the manual-controlled rendezvous and docking (RVD) and proposes a novel artificial neural network inverse simulation system (ANN-IS) to further decrease the computational cost. The novel system was obtained by replacing the inverse model of MPC-IS with the artificial neural network. The optimal neural network was trained by the genetic Levenberg-Marquardt algorithm, and finally determined by the Levenberg-Marquardt algorithm. In order to validate MPC-IS and ANN-IS, the manual-controlled RVD experiments on the simulator were carried out. The comparisons between simulation results and experimental data demonstrated the validity of two systems and the high computational efficiency of ANN-IS.
[Algorithms of artificial neural networks--practical application in medical science].
Stefaniak, Bogusław; Cholewiński, Witold; Tarkowska, Anna
2005-12-01
Artificial Neural Networks (ANN) may be a tool alternative and complementary to typical statistical analysis. However, in spite of many computer applications of various ANN algorithms ready for use, artificial intelligence is relatively rarely applied to data processing. This paper presents practical aspects of scientific application of ANN in medicine using widely available algorithms. Several main steps of analysis with ANN were discussed starting from material selection and dividing it into groups, to the quality assessment of obtained results at the end. The most frequent, typical reasons for errors as well as the comparison of ANN method to the modeling by regression analysis were also described.
Neural network architectures to analyze OPAD data
NASA Technical Reports Server (NTRS)
Whitaker, Kevin W.
1992-01-01
A prototype Optical Plume Anomaly Detection (OPAD) system is now installed on the space shuttle main engine (SSME) Technology Test Bed (TTB) at MSFC. The OPAD system requirements dictate the need for fast, efficient data processing techniques. To address this need of the OPAD system, a study was conducted into how artificial neural networks could be used to assist in the analysis of plume spectral data.
Forecasting SPEI and SPI Drought Indices Using the Integrated Artificial Neural Networks
Maca, Petr; Pech, Pavel
2016-01-01
The presented paper compares forecast of drought indices based on two different models of artificial neural networks. The first model is based on feedforward multilayer perceptron, sANN, and the second one is the integrated neural network model, hANN. The analyzed drought indices are the standardized precipitation index (SPI) and the standardized precipitation evaporation index (SPEI) and were derived for the period of 1948–2002 on two US catchments. The meteorological and hydrological data were obtained from MOPEX experiment. The training of both neural network models was made by the adaptive version of differential evolution, JADE. The comparison of models was based on six model performance measures. The results of drought indices forecast, explained by the values of four model performance indices, show that the integrated neural network model was superior to the feedforward multilayer perceptron with one hidden layer of neurons. PMID:26880875
Forecasting SPEI and SPI Drought Indices Using the Integrated Artificial Neural Networks.
Maca, Petr; Pech, Pavel
2016-01-01
The presented paper compares forecast of drought indices based on two different models of artificial neural networks. The first model is based on feedforward multilayer perceptron, sANN, and the second one is the integrated neural network model, hANN. The analyzed drought indices are the standardized precipitation index (SPI) and the standardized precipitation evaporation index (SPEI) and were derived for the period of 1948-2002 on two US catchments. The meteorological and hydrological data were obtained from MOPEX experiment. The training of both neural network models was made by the adaptive version of differential evolution, JADE. The comparison of models was based on six model performance measures. The results of drought indices forecast, explained by the values of four model performance indices, show that the integrated neural network model was superior to the feedforward multilayer perceptron with one hidden layer of neurons.
Predicting Time-to-Relapse in Breast Cancer Using Neural Networks
1997-12-01
CODE 17. SECURITY CLASSIFICATION OF REPORT Unclassified 118. SECURITY CLASSIFICATION OF THIS PAGE Unclassified 19. SECURITY CLASSIFICATION OF...Lowell WE, and Davis GL. A neural network that predicts psychiatric length of stay. MD Computing 10:87-92, 1993. Ebell MH. Artificial neural netowrks
Multilingual vocal emotion recognition and classification using back propagation neural network
NASA Astrophysics Data System (ADS)
Kayal, Apoorva J.; Nirmal, Jagannath
2016-03-01
This work implements classification of different emotions in different languages using Artificial Neural Networks (ANN). Mel Frequency Cepstral Coefficients (MFCC) and Short Term Energy (STE) have been considered for creation of feature set. An emotional speech corpus consisting of 30 acted utterances per emotion has been developed. The emotions portrayed in this work are Anger, Joy and Neutral in each of English, Marathi and Hindi languages. Different configurations of Artificial Neural Networks have been employed for classification purposes. The performance of the classifiers has been evaluated by False Negative Rate (FNR), False Positive Rate (FPR), True Positive Rate (TPR) and True Negative Rate (TNR).
Livermore Big Artificial Neural Network Toolkit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Essen, Brian Van; Jacobs, Sam; Kim, Hyojin
2016-07-01
LBANN is a toolkit that is designed to train artificial neural networks efficiently on high performance computing architectures. It is optimized to take advantages of key High Performance Computing features to accelerate neural network training. Specifically it is optimized for low-latency, high bandwidth interconnects, node-local NVRAM, node-local GPU accelerators, and high bandwidth parallel file systems. It is built on top of the open source Elemental distributed-memory dense and spars-direct linear algebra and optimization library that is released under the BSD license. The algorithms contained within LBANN are drawn from the academic literature and implemented to work within a distributed-memory framework.
Neural coding using telegraphic switching of magnetic tunnel junction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suh, Dong Ik; Bae, Gi Yoon; Oh, Heong Sik
2015-05-07
In this work, we present a synaptic transmission representing neural coding with spike trains by using a magnetic tunnel junction (MTJ). Telegraphic switching generates an artificial neural signal with both the applied magnetic field and the spin-transfer torque that act as conflicting inputs for modulating the number of spikes in spike trains. The spiking probability is observed to be weighted with modulation between 27.6% and 99.8% by varying the amplitude of the voltage input or the external magnetic field. With a combination of the reverse coding scheme and the synaptic characteristic of MTJ, an artificial function for the synaptic transmissionmore » is achieved.« less
Bidirectional neural interface: Closed-loop feedback control for hybrid neural systems.
Chou, Zane; Lim, Jeffrey; Brown, Sophie; Keller, Melissa; Bugbee, Joseph; Broccard, Frédéric D; Khraiche, Massoud L; Silva, Gabriel A; Cauwenberghs, Gert
2015-01-01
Closed-loop neural prostheses enable bidirectional communication between the biological and artificial components of a hybrid system. However, a major challenge in this field is the limited understanding of how these components, the two separate neural networks, interact with each other. In this paper, we propose an in vitro model of a closed-loop system that allows for easy experimental testing and modification of both biological and artificial network parameters. The interface closes the system loop in real time by stimulating each network based on recorded activity of the other network, within preset parameters. As a proof of concept we demonstrate that the bidirectional interface is able to establish and control network properties, such as synchrony, in a hybrid system of two neural networks more significantly more effectively than the same system without the interface or with unidirectional alternatives. This success holds promise for the application of closed-loop systems in neural prostheses, brain-machine interfaces, and drug testing.
Artificial neural network intelligent method for prediction
NASA Astrophysics Data System (ADS)
Trifonov, Roumen; Yoshinov, Radoslav; Pavlova, Galya; Tsochev, Georgi
2017-09-01
Accounting and financial classification and prediction problems are high challenge and researchers use different methods to solve them. Methods and instruments for short time prediction of financial operations using artificial neural network are considered. The methods, used for prediction of financial data as well as the developed forecasting system with neural network are described in the paper. The architecture of a neural network used four different technical indicators, which are based on the raw data and the current day of the week is presented. The network developed is used for forecasting movement of stock prices one day ahead and consists of an input layer, one hidden layer and an output layer. The training method is algorithm with back propagation of the error. The main advantage of the developed system is self-determination of the optimal topology of neural network, due to which it becomes flexible and more precise The proposed system with neural network is universal and can be applied to various financial instruments using only basic technical indicators as input data.
Unfolding the neutron spectrum of a NE213 scintillator using artificial neural networks.
Sharghi Ido, A; Bonyadi, M R; Etaati, G R; Shahriari, M
2009-10-01
Artificial neural networks technology has been applied to unfold the neutron spectra from the pulse height distribution measured with NE213 liquid scintillator. Here, both the single and multi-layer perceptron neural network models have been implemented to unfold the neutron spectrum from an Am-Be neutron source. The activation function and the connectivity of the neurons have been investigated and the results have been analyzed in terms of the network's performance. The simulation results show that the neural network that utilizes the Satlins transfer function has the best performance. In addition, omitting the bias connection of the neurons improve the performance of the network. Also, the SCINFUL code is used for generating the response functions in the training phase of the process. Finally, the results of the neural network simulation have been compared with those of the FORIST unfolding code for both (241)Am-Be and (252)Cf neutron sources. The results of neural network are in good agreement with FORIST code.
Neural networks within multi-core optic fibers
Cohen, Eyal; Malka, Dror; Shemer, Amir; Shahmoon, Asaf; Zalevsky, Zeev; London, Michael
2016-01-01
Hardware implementation of artificial neural networks facilitates real-time parallel processing of massive data sets. Optical neural networks offer low-volume 3D connectivity together with large bandwidth and minimal heat production in contrast to electronic implementation. Here, we present a conceptual design for in-fiber optical neural networks. Neurons and synapses are realized as individual silica cores in a multi-core fiber. Optical signals are transferred transversely between cores by means of optical coupling. Pump driven amplification in erbium-doped cores mimics synaptic interactions. We simulated three-layered feed-forward neural networks and explored their capabilities. Simulations suggest that networks can differentiate between given inputs depending on specific configurations of amplification; this implies classification and learning capabilities. Finally, we tested experimentally our basic neuronal elements using fibers, couplers, and amplifiers, and demonstrated that this configuration implements a neuron-like function. Therefore, devices similar to our proposed multi-core fiber could potentially serve as building blocks for future large-scale small-volume optical artificial neural networks. PMID:27383911
Neural networks within multi-core optic fibers.
Cohen, Eyal; Malka, Dror; Shemer, Amir; Shahmoon, Asaf; Zalevsky, Zeev; London, Michael
2016-07-07
Hardware implementation of artificial neural networks facilitates real-time parallel processing of massive data sets. Optical neural networks offer low-volume 3D connectivity together with large bandwidth and minimal heat production in contrast to electronic implementation. Here, we present a conceptual design for in-fiber optical neural networks. Neurons and synapses are realized as individual silica cores in a multi-core fiber. Optical signals are transferred transversely between cores by means of optical coupling. Pump driven amplification in erbium-doped cores mimics synaptic interactions. We simulated three-layered feed-forward neural networks and explored their capabilities. Simulations suggest that networks can differentiate between given inputs depending on specific configurations of amplification; this implies classification and learning capabilities. Finally, we tested experimentally our basic neuronal elements using fibers, couplers, and amplifiers, and demonstrated that this configuration implements a neuron-like function. Therefore, devices similar to our proposed multi-core fiber could potentially serve as building blocks for future large-scale small-volume optical artificial neural networks.
Delay dynamics of neuromorphic optoelectronic nanoscale resonators: Perspectives and applications
NASA Astrophysics Data System (ADS)
Romeira, Bruno; Figueiredo, José M. L.; Javaloyes, Julien
2017-11-01
With the recent exponential growth of applications using artificial intelligence (AI), the development of efficient and ultrafast brain-like (neuromorphic) systems is crucial for future information and communication technologies. While the implementation of AI systems using computer algorithms of neural networks is emerging rapidly, scientists are just taking the very first steps in the development of the hardware elements of an artificial brain, specifically neuromorphic microchips. In this review article, we present the current state of the art of neuromorphic photonic circuits based on solid-state optoelectronic oscillators formed by nanoscale double barrier quantum well resonant tunneling diodes. We address, both experimentally and theoretically, the key dynamic properties of recently developed artificial solid-state neuron microchips with delayed perturbations and describe their role in the study of neural activity and regenerative memory. This review covers our recent research work on excitable and delay dynamic characteristics of both single and autaptic (delayed) artificial neurons including all-or-none response, spike-based data encoding, storage, signal regeneration and signal healing. Furthermore, the neural responses of these neuromorphic microchips display all the signatures of extended spatio-temporal localized structures (LSs) of light, which are reviewed here in detail. By taking advantage of the dissipative nature of LSs, we demonstrate potential applications in optical data reconfiguration and clock and timing at high-speeds and with short transients. The results reviewed in this article are a key enabler for the development of high-performance optoelectronic devices in future high-speed brain-inspired optical memories and neuromorphic computing.
Delay dynamics of neuromorphic optoelectronic nanoscale resonators: Perspectives and applications.
Romeira, Bruno; Figueiredo, José M L; Javaloyes, Julien
2017-11-01
With the recent exponential growth of applications using artificial intelligence (AI), the development of efficient and ultrafast brain-like (neuromorphic) systems is crucial for future information and communication technologies. While the implementation of AI systems using computer algorithms of neural networks is emerging rapidly, scientists are just taking the very first steps in the development of the hardware elements of an artificial brain, specifically neuromorphic microchips. In this review article, we present the current state of the art of neuromorphic photonic circuits based on solid-state optoelectronic oscillators formed by nanoscale double barrier quantum well resonant tunneling diodes. We address, both experimentally and theoretically, the key dynamic properties of recently developed artificial solid-state neuron microchips with delayed perturbations and describe their role in the study of neural activity and regenerative memory. This review covers our recent research work on excitable and delay dynamic characteristics of both single and autaptic (delayed) artificial neurons including all-or-none response, spike-based data encoding, storage, signal regeneration and signal healing. Furthermore, the neural responses of these neuromorphic microchips display all the signatures of extended spatio-temporal localized structures (LSs) of light, which are reviewed here in detail. By taking advantage of the dissipative nature of LSs, we demonstrate potential applications in optical data reconfiguration and clock and timing at high-speeds and with short transients. The results reviewed in this article are a key enabler for the development of high-performance optoelectronic devices in future high-speed brain-inspired optical memories and neuromorphic computing.
Efficient and self-adaptive in-situ learning in multilayer memristor neural networks.
Li, Can; Belkin, Daniel; Li, Yunning; Yan, Peng; Hu, Miao; Ge, Ning; Jiang, Hao; Montgomery, Eric; Lin, Peng; Wang, Zhongrui; Song, Wenhao; Strachan, John Paul; Barnell, Mark; Wu, Qing; Williams, R Stanley; Yang, J Joshua; Xia, Qiangfei
2018-06-19
Memristors with tunable resistance states are emerging building blocks of artificial neural networks. However, in situ learning on a large-scale multiple-layer memristor network has yet to be demonstrated because of challenges in device property engineering and circuit integration. Here we monolithically integrate hafnium oxide-based memristors with a foundry-made transistor array into a multiple-layer neural network. We experimentally demonstrate in situ learning capability and achieve competitive classification accuracy on a standard machine learning dataset, which further confirms that the training algorithm allows the network to adapt to hardware imperfections. Our simulation using the experimental parameters suggests that a larger network would further increase the classification accuracy. The memristor neural network is a promising hardware platform for artificial intelligence with high speed-energy efficiency.
Multiprocessor Neural Network in Healthcare.
Godó, Zoltán Attila; Kiss, Gábor; Kocsis, Dénes
2015-01-01
A possible way of creating a multiprocessor artificial neural network is by the use of microcontrollers. The RISC processors' high performance and the large number of I/O ports mean they are greatly suitable for creating such a system. During our research, we wanted to see if it is possible to efficiently create interaction between the artifical neural network and the natural nervous system. To achieve as much analogy to the living nervous system as possible, we created a frequency-modulated analog connection between the units. Our system is connected to the living nervous system through 128 microelectrodes. Two-way communication is provided through A/D transformation, which is even capable of testing psychopharmacons. The microcontroller-based analog artificial neural network can play a great role in medical singal processing, such as ECG, EEG etc.
Chiral topological phases from artificial neural networks
NASA Astrophysics Data System (ADS)
Kaubruegger, Raphael; Pastori, Lorenzo; Budich, Jan Carl
2018-05-01
Motivated by recent progress in applying techniques from the field of artificial neural networks (ANNs) to quantum many-body physics, we investigate to what extent the flexibility of ANNs can be used to efficiently study systems that host chiral topological phases such as fractional quantum Hall (FQH) phases. With benchmark examples, we demonstrate that training ANNs of restricted Boltzmann machine type in the framework of variational Monte Carlo can numerically solve FQH problems to good approximation. Furthermore, we show by explicit construction how n -body correlations can be kept at an exact level with ANN wave functions exhibiting polynomial scaling with power n in system size. Using this construction, we analytically represent the paradigmatic Laughlin wave function as an ANN state.
Artificial Intelligence in Astronomy
NASA Astrophysics Data System (ADS)
Devinney, E. J.; Prša, A.; Guinan, E. F.; Degeorge, M.
2010-12-01
From the perspective (and bias) as Eclipsing Binary researchers, we give a brief overview of the development of Artificial Intelligence (AI) applications, describe major application areas of AI in astronomy, and illustrate the power of an AI approach in an application developed under the EBAI (Eclipsing Binaries via Artificial Intelligence) project, which employs Artificial Neural Network technology for estimating light curve solution parameters of eclipsing binary systems.
Mohammadi, Seyed-Farzad; Sabbaghi, Mostafa; Z-Mehrjardi, Hadi; Hashemi, Hassan; Alizadeh, Somayeh; Majdi, Mercede; Taee, Farough
2012-03-01
To apply artificial intelligence models to predict the occurrence of posterior capsule opacification (PCO) after phacoemulsification. Farabi Eye Hospital, Tehran, Iran. Clinical-based cross-sectional study. The posterior capsule status of eyes operated on for age-related cataract and the need for laser capsulotomy were determined. After a literature review, data polishing, and expert consultation, 10 input variables were selected. The QUEST algorithm was used to develop a decision tree. Three back-propagation artificial neural networks were constructed with 4, 20, and 40 neurons in 2 hidden layers and trained with the same transfer functions (log-sigmoid and linear transfer) and training protocol with randomly selected eyes. They were then tested on the remaining eyes and the networks compared for their performance. Performance indices were used to compare resultant models with the results of logistic regression analysis. The models were trained using 282 randomly selected eyes and then tested using 70 eyes. Laser capsulotomy for clinically significant PCO was indicated or had been performed 2 years postoperatively in 40 eyes. A sample decision tree was produced with accuracy of 50% (likelihood ratio 0.8). The best artificial neural network, which showed 87% accuracy and a positive likelihood ratio of 8, was achieved with 40 neurons. The area under the receiver-operating-characteristic curve was 0.71. In comparison, logistic regression reached accuracy of 80%; however, the likelihood ratio was not measurable because the sensitivity was zero. A prototype artificial neural network was developed that predicted posterior capsule status (requiring capsulotomy) with reasonable accuracy. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2012 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhu, Xiaoliang; Du, Li; Liu, Bendong; Zhe, Jiang
2016-06-01
We present a method based on an electrochemical sensor array and a back propagation artificial neural network for detection and quantification of four properties of lubrication oil, namely water (0, 500 ppm, 1000 ppm), total acid number (TAN) (13.1, 13.7, 14.4, 15.6 mg KOH g-1), soot (0, 1%, 2%, 3%) and sulfur content (1.3%, 1.37%, 1.44%, 1.51%). The sensor array, consisting of four micromachined electrochemical sensors, detects the four properties with overlapping sensitivities. A total set of 36 oil samples containing mixtures of water, soot, and sulfuric acid with different concentrations were prepared for testing. The sensor array’s responses were then divided to three sets: training sets (80% data), validation sets (10%) and testing sets (10%). Several back propagation artificial neural network architectures were trained with the training and validation sets; one architecture with four input neurons, 50 and 5 neurons in the first and second hidden layer, and four neurons in the output layer was selected. The selected neural network was then tested using the four sets of testing data (10%). Test results demonstrated that the developed artificial neural network is able to quantitatively determine the four lubrication properties (water, TAN, soot, and sulfur content) with a maximum prediction error of 18.8%, 6.0%, 6.7%, and 5.4%, respectively, indicting a good match between the target and predicted values. With the developed network, the sensor array could be potentially used for online lubricant oil condition monitoring.
Hypothalamic melanin concentrating hormone neurons communicate the nutrient value of sugar
Domingos, Ana I; Sordillo, Aylesse; Dietrich, Marcelo O; Liu, Zhong-Wu; Tellez, Luis A; Vaynshteyn, Jake; Ferreira, Jozelia G; Ekstrand, Mats I; Horvath, Tamas L; de Araujo, Ivan E; Friedman, Jeffrey M
2013-01-01
Sugars that contain glucose, such as sucrose, are generally preferred to artificial sweeteners owing to their post-ingestive rewarding effect, which elevates striatal dopamine (DA) release. While the post-ingestive rewarding effect, which artificial sweeteners do not have, signals the nutrient value of sugar and influences food preference, the neural circuitry that mediates the rewarding effect of glucose is unknown. In this study, we show that optogenetic activation of melanin-concentrating hormone (MCH) neurons during intake of the artificial sweetener sucralose increases striatal dopamine levels and inverts the normal preference for sucrose vs sucralose. Conversely, animals with ablation of MCH neurons no longer prefer sucrose to sucralose and show reduced striatal DA release upon sucrose ingestion. We further show that MCH neurons project to reward areas and are required for the post-ingestive rewarding effect of sucrose in sweet-blind Trpm5−/− mice. These studies identify an essential component of the neural pathways linking nutrient sensing and food reward. DOI: http://dx.doi.org/10.7554/eLife.01462.001 PMID:24381247
Artificial neural network cardiopulmonary modeling and diagnosis
Kangas, L.J.; Keller, P.E.
1997-10-28
The present invention is a method of diagnosing a cardiopulmonary condition in an individual by comparing data from a progressive multi-stage test for the individual to a non-linear multi-variate model, preferably a recurrent artificial neural network having sensor fusion. The present invention relies on a cardiovascular model developed from physiological measurements of an individual. Any differences between the modeled parameters and the parameters of an individual at a given time are used for diagnosis. 12 figs.
Artificial neural network cardiopulmonary modeling and diagnosis
Kangas, Lars J.; Keller, Paul E.
1997-01-01
The present invention is a method of diagnosing a cardiopulmonary condition in an individual by comparing data from a progressive multi-stage test for the individual to a non-linear multi-variate model, preferably a recurrent artificial neural network having sensor fusion. The present invention relies on a cardiovascular model developed from physiological measurements of an individual. Any differences between the modeled parameters and the parameters of an individual at a given time are used for diagnosis.
Artificial neural networks applied to quantitative elemental analysis of organic material using PIXE
NASA Astrophysics Data System (ADS)
Correa, R.; Chesta, M. A.; Morales, J. R.; Dinator, M. I.; Requena, I.; Vila, I.
2006-08-01
An artificial neural network (ANN) has been trained with real-sample PIXE (particle X-ray induced emission) spectra of organic substances. Following the training stage ANN was applied to a subset of similar samples thus obtaining the elemental concentrations in muscle, liver and gills of Cyprinus carpio. Concentrations obtained with the ANN method are in full agreement with results from one standard analytical procedure, showing the high potentiality of ANN in PIXE quantitative analyses.
Zlotnik, Alexander; Alfaro, Miguel Cuchí; Pérez, María Carmen Pérez; Gallardo-Antolín, Ascensión; Martínez, Juan Manuel Montero
2016-05-01
The usage of decision support tools in emergency departments, based on predictive models, capable of estimating the probability of admission for patients in the emergency department may give nursing staff the possibility of allocating resources in advance. We present a methodology for developing and building one such system for a large specialized care hospital using a logistic regression and an artificial neural network model using nine routinely collected variables available right at the end of the triage process.A database of 255.668 triaged nonobstetric emergency department presentations from the Ramon y Cajal University Hospital of Madrid, from January 2011 to December 2012, was used to develop and test the models, with 66% of the data used for derivation and 34% for validation, with an ordered nonrandom partition. On the validation dataset areas under the receiver operating characteristic curve were 0.8568 (95% confidence interval, 0.8508-0.8583) for the logistic regression model and 0.8575 (95% confidence interval, 0.8540-0. 8610) for the artificial neural network model. χ Values for Hosmer-Lemeshow fixed "deciles of risk" were 65.32 for the logistic regression model and 17.28 for the artificial neural network model. A nomogram was generated upon the logistic regression model and an automated software decision support system with a Web interface was built based on the artificial neural network model.
Takahashi, Maria Beatriz; Leme, Jaci; Caricati, Celso Pereira; Tonso, Aldo; Fernández Núñez, Eutimio Gustavo; Rocha, José Celso
2015-06-01
Currently, mammalian cells are the most utilized hosts for biopharmaceutical production. The culture media for these cell lines include commonly in their composition a pH indicator. Spectroscopic techniques are used for biopharmaceutical process monitoring, among them, UV-Vis spectroscopy has found scarce applications. This work aimed to define artificial neural networks architecture and fit its parameters to predict some nutrients and metabolites, as well as viable cell concentration based on UV-Vis spectral data of mammalian cell bioprocess using phenol red in culture medium. The BHK-21 cell line was used as a mammalian cell model. Off-line spectra of supernatant samples taken from batches performed at different dissolved oxygen concentrations in two bioreactor configurations and with two pH control strategies were used to define two artificial neural networks. According to absolute errors, glutamine (0.13 ± 0.14 mM), glutamate (0.02 ± 0.02 mM), glucose (1.11 ± 1.70 mM), lactate (0.84 ± 0.68 mM) and viable cell concentrations (1.89 10(5) ± 1.90 10(5) cell/mL) were suitably predicted. The prediction error averages for monitored variables were lower than those previously reported using different spectroscopic techniques in combination with partial least squares or artificial neural network. The present work allows for UV-VIS sensor development, and decreases cost related to nutrients and metabolite quantifications.
An Investigation on the Role of Spike Latency in an Artificial Olfactory System
Martinelli, Eugenio; Polese, Davide; Dini, Francesca; Paolesse, Roberto; Filippini, Daniel; Lundström, Ingemar; Di Natale, Corrado
2011-01-01
Experimental studies have shown that the reactions to external stimuli may appear only few hundreds of milliseconds after the physical interaction of the stimulus with the proper receptor. This behavior suggests that neurons transmit the largest meaningful part of their signal in the first spikes, and than that the spike latency is a good descriptor of the information content in biological neural networks. In this paper this property has been investigated in an artificial sensorial system where a single layer of spiking neurons is trained with the data generated by an artificial olfactory platform based on a large array of chemical sensors. The capability to discriminate between distinct chemicals and mixtures of them was studied with spiking neural networks endowed with and without lateral inhibitions and considering as output feature of the network both the spikes latency and the average firing rate. Results show that the average firing rate of the output spikes sequences shows the best separation among the experienced vapors, however the latency code is able in a shorter time to correctly discriminate all the tested volatile compounds. This behavior is qualitatively similar to those recently found in natural olfaction, and noteworthy it provides practical suggestions to tail the measurement conditions of artificial olfactory systems defining for each specific case a proper measurement time. PMID:22194721
NASA Astrophysics Data System (ADS)
Cárdenas, Jhon; Orjuela-Cañón, Alvaro D.; Cerquera, Alexander; Ravelo, Antonio
2017-11-01
Different studies have used Transfer Entropy (TE) and Granger Causality (GC) computation to quantify interconnection between physiological systems. These methods have disadvantages in parametrization and availability in analytic formulas to evaluate the significance of the results. Other inconvenience is related with the assumptions in the distribution of the models generated from the data. In this document, the authors present a way to measure the causality that connect the Central Nervous System (CNS) and the Cardiac System (CS) in people diagnosed with obstructive sleep apnea syndrome (OSA) before and during treatment with continuous positive air pressure (CPAP). For this purpose, artificial neural networks were used to obtain models for GC computation, based on time series of normalized powers calculated from electrocardiography (EKG) and electroencephalography (EEG) signals recorded in polysomnography (PSG) studies.
Retrieving Tract Variables From Acoustics: A Comparison of Different Machine Learning Strategies.
Mitra, Vikramjit; Nam, Hosung; Espy-Wilson, Carol Y; Saltzman, Elliot; Goldstein, Louis
2010-09-13
Many different studies have claimed that articulatory information can be used to improve the performance of automatic speech recognition systems. Unfortunately, such articulatory information is not readily available in typical speaker-listener situations. Consequently, such information has to be estimated from the acoustic signal in a process which is usually termed "speech-inversion." This study aims to propose and compare various machine learning strategies for speech inversion: Trajectory mixture density networks (TMDNs), feedforward artificial neural networks (FF-ANN), support vector regression (SVR), autoregressive artificial neural network (AR-ANN), and distal supervised learning (DSL). Further, using a database generated by the Haskins Laboratories speech production model, we test the claim that information regarding constrictions produced by the distinct organs of the vocal tract (vocal tract variables) is superior to flesh-point information (articulatory pellet trajectories) for the inversion process.
Baladrón, Carlos; Aguiar, Javier M; Calavia, Lorena; Carro, Belén; Sánchez-Esguevillas, Antonio; Hernández, Luis
2012-01-01
This paper presents a proposal for an Artificial Neural Network (ANN)-based architecture for completion and prediction of data retrieved by underwater sensors. Due to the specific conditions under which these sensors operate, it is not uncommon for them to fail, and maintenance operations are difficult and costly. Therefore, completion and prediction of the missing data can greatly improve the quality of the underwater datasets. A performance study using real data is presented to validate the approach, concluding that the proposed architecture is able to provide very low errors. The numbers show as well that the solution is especially suitable for cases where large portions of data are missing, while in situations where the missing values are isolated the improvement over other simple interpolation methods is limited.
NASA Astrophysics Data System (ADS)
Ratnam, T. C.; Ghosh, D. P.; Negash, B. M.
2018-05-01
Conventional reservoir modeling employs variograms to predict the spatial distribution of petrophysical properties. This study aims to improve property distribution by incorporating elastic wave properties. In this study, elastic wave properties obtained from seismic inversion are used as input for an artificial neural network to predict neutron porosity in between well locations. The method employed in this study is supervised learning based on available well logs. This method converts every seismic trace into a pseudo-well log, hence reducing the uncertainty between well locations. By incorporating the seismic response, the reliance on geostatistical methods such as variograms for the distribution of petrophysical properties is reduced drastically. The results of the artificial neural network show good correlation with the neutron porosity log which gives confidence for spatial prediction in areas where well logs are not available.
An alternative approach based on artificial neural networks to study controlled drug release.
Reis, Marcus A A; Sinisterra, Rubén D; Belchior, Jadson C
2004-02-01
An alternative methodology based on artificial neural networks is proposed to be a complementary tool to other conventional methods to study controlled drug release. Two systems are used to test the approach; namely, hydrocortisone in a biodegradable matrix and rhodium (II) butyrate complexes in a bioceramic matrix. Two well-established mathematical models are used to simulate different release profiles as a function of fundamental properties; namely, diffusion coefficient (D), saturation solubility (C(s)), drug loading (A), and the height of the device (h). The models were tested, and the results show that these fundamental properties can be predicted after learning the experimental or model data for controlled drug release systems. The neural network results obtained after the learning stage can be considered to quantitatively predict ideal experimental conditions. Overall, the proposed methodology was shown to be efficient for ideal experiments, with a relative average error of <1% in both tests. This approach can be useful for the experimental analysis to simulate and design efficient controlled drug-release systems. Copyright 2004 Wiley-Liss, Inc. and the American Pharmacists Association
D Coordinate Transformation Using Artificial Neural Networks
NASA Astrophysics Data System (ADS)
Konakoglu, B.; Cakır, L.; Gökalp, E.
2016-10-01
Two coordinate systems used in Turkey, namely the ED50 (European Datum 1950) and ITRF96 (International Terrestrial Reference Frame 1996) coordinate systems. In most cases, it is necessary to conduct transformation from one coordinate system to another. The artificial neural network (ANN) is a new method for coordinate transformation. One of the biggest advantages of the ANN is that it can determine the relationship between two coordinate systems without a mathematical model. The aim of this study was to investigate the performances of three different ANN models (Feed Forward Back Propagation (FFBP), Cascade Forward Back Propagation (CFBP) and Radial Basis Function Neural Network (RBFNN)) with regard to 2D coordinate transformation. To do this, three data sets were used for the same study area, the city of Trabzon. The coordinates of data sets were measured in the ED50 and ITRF96 coordinate systems by using RTK-GPS technique. Performance of each transformation method was investigated by using the coordinate differences between the known and estimated coordinates. The results showed that the ANN algorithms can be used for 2D coordinate transformation in cases where optimum model parameters are selected.
NASA Astrophysics Data System (ADS)
Singh, U. K.; Tiwari, R. K.; Singh, S. B.
2005-02-01
This paper deals with the application of artificial neural networks (ANN) technique for the study of a case history using 1-D inversion of vertical electrical resistivity sounding (VES) data from the Puga valley, Kashmir, India. The study area is important for its rich geothermal resources as well as from the tectonic point of view as it is located near the collision boundary of the Indo-Asian crustal plates. In order to understand the resistivity structure and layer thicknesses, we used here three-layer feedforward neural networks to model and predict measured VES data. Three algorithms, e.g. back-propagation (BP), adaptive back-propagation (ABP) and Levenberg-Marquardt algorithm (LMA) were applied to the synthetic as well as real VES field data and efficiency of supervised training network are compared. Analyses suggest that LMA is computationally faster and give results, which are comparatively more accurate and consistent than BP and ABP. The results obtained using the ANN inversions are remarkably correlated with the available borehole litho-logs. The feasibility study suggests that ANN methods offer an excellent complementary tool for the direct detection of layered resistivity structure.
Ferrante, Simona; Pedrocchi, Alessandra; Iannò, Marco; De Momi, Elena; Ferrarin, Maurizio; Ferrigno, Giancarlo
2004-01-01
This study falls within the ambit of research on functional electrical stimulation for the design of rehabilitation training for spinal cord injured patients. In this context, a crucial issue is the control of the stimulation parameters in order to optimize the patterns of muscle activation and to increase the duration of the exercises. An adaptive control system (NEURADAPT) based on artificial neural networks (ANNs) was developed to control the knee joint in accordance with desired trajectories by stimulating quadriceps muscles. This strategy includes an inverse neural model of the stimulated limb in the feedforward line and a neural network trained on-line in the feedback loop. NEURADAPT was compared with a linear closed-loop proportional integrative derivative (PID) controller and with a model-based neural controller (NEUROPID). Experiments on two subjects (one healthy and one paraplegic) show the good performance of NEURADAPT, which is able to reduce the time lag introduced by the PID controller. In addition, control systems based on ANN techniques do not require complicated calibration procedures at the beginning of each experimental session. After the initial learning phase, the ANN, thanks to its generalization capacity, is able to cope with a certain range of variability of skeletal muscle properties.
Applying Gradient Descent in Convolutional Neural Networks
NASA Astrophysics Data System (ADS)
Cui, Nan
2018-04-01
With the development of the integrated circuit and computer science, people become caring more about solving practical issues via information technologies. Along with that, a new subject called Artificial Intelligent (AI) comes up. One popular research interest of AI is about recognition algorithm. In this paper, one of the most common algorithms, Convolutional Neural Networks (CNNs) will be introduced, for image recognition. Understanding its theory and structure is of great significance for every scholar who is interested in this field. Convolution Neural Network is an artificial neural network which combines the mathematical method of convolution and neural network. The hieratical structure of CNN provides it reliable computer speed and reasonable error rate. The most significant characteristics of CNNs are feature extraction, weight sharing and dimension reduction. Meanwhile, combining with the Back Propagation (BP) mechanism and the Gradient Descent (GD) method, CNNs has the ability to self-study and in-depth learning. Basically, BP provides an opportunity for backwardfeedback for enhancing reliability and GD is used for self-training process. This paper mainly discusses the CNN and the related BP and GD algorithms, including the basic structure and function of CNN, details of each layer, the principles and features of BP and GD, and some examples in practice with a summary in the end.
Electrical and Optical Activation of Mesoscale Neural Circuits with Implications for Coding.
Millard, Daniel C; Whitmire, Clarissa J; Gollnick, Clare A; Rozell, Christopher J; Stanley, Garrett B
2015-11-25
Artificial activation of neural circuitry through electrical microstimulation and optogenetic techniques is important for both scientific discovery of circuit function and for engineered approaches to alleviate various disorders of the nervous system. However, evidence suggests that neural activity generated by artificial stimuli differs dramatically from normal circuit function, in terms of both the local neuronal population activity at the site of activation and the propagation to downstream brain structures. The precise nature of these differences and the implications for information processing remain unknown. Here, we used voltage-sensitive dye imaging of primary somatosensory cortex in the anesthetized rat in response to deflections of the facial vibrissae and electrical or optogenetic stimulation of thalamic neurons that project directly to the somatosensory cortex. Although the different inputs produced responses that were similar in terms of the average cortical activation, the variability of the cortical response was strikingly different for artificial versus sensory inputs. Furthermore, electrical microstimulation resulted in highly unnatural spatial activation of cortex, whereas optical input resulted in spatial cortical activation that was similar to that induced by sensory inputs. A thalamocortical network model suggested that observed differences could be explained by differences in the way in which artificial and natural inputs modulate the magnitude and synchrony of population activity. Finally, the variability structure in the response for each case strongly influenced the optimal inputs for driving the pathway from the perspective of an ideal observer of cortical activation when considered in the context of information transmission. Artificial activation of neural circuitry through electrical microstimulation and optogenetic techniques is important for both scientific discovery and clinical translation. However, neural activity generated by these artificial means differs dramatically from normal circuit function, both locally and in the propagation to downstream brain structures. The precise nature of these differences and the implications for information processing remain unknown. The significance of this work is in quantifying the differences, elucidating likely mechanisms underlying the differences, and determining the implications for information processing. Copyright © 2015 the authors 0270-6474/15/3515702-14$15.00/0.
Barroso, L M A; Teodoro, P E; Nascimento, M; Torres, F E; Nascimento, A C C; Azevedo, C F; Teixeira, F R F
2016-11-03
Cowpea (Vigna unguiculata) is grown in three Brazilian regions: the Midwest, North, and Northeast, and is consumed by people on low incomes. It is important to investigate the genotype x environment (GE) interaction to provide accurate recommendations for farmers. The aim of this study was to identify cowpea genotypes with high adaptability and phenotypic stability for growing in the Brazilian Cerrado, and to compare the use of artificial neural networks with the Eberhart and Russell (1966) method. Six trials with upright cowpea genotypes were conducted in 2005 and 2006 in the States of Mato Grosso do Sul and Mato Grosso. The data were subjected to adaptability and stability analysis by the Eberhart and Russell (1966) method and artificial neural networks. The genotypes MNC99-537F-4 and EVX91-2E-2 provided grain yields above the overall environment means, and exhibited high stability according to both methods. Genotype IT93K-93-10 was the most suitable for unfavorable environments. There was a high correlation between the results of both methods in terms of classifying the genotypes by their adaptability and stability. Therefore, this new approach would be effective in quantifying the GE interaction in upright cowpea breeding programs.
Investigation of rat exploratory behavior via evolving artificial neural networks.
Costa, Ariadne de Andrade; Tinós, Renato
2016-09-01
Neuroevolution comprises the use of evolutionary computation to define the architecture and/or to train artificial neural networks (ANNs). This strategy has been employed to investigate the behavior of rats in the elevated plus-maze, which is a widely used tool for studying anxiety in mice and rats. Here we propose a neuroevolutionary model, in which both the weights and the architecture of artificial neural networks (our virtual rats) are evolved by a genetic algorithm. This model is an improvement of a previous model that involves the evolution of just the weights of the ANN by the genetic algorithm. In order to compare both models, we analyzed traditional measures of anxiety behavior, like the time spent and the number of entries in both open and closed arms of the maze. When compared to real rat data, our findings suggest that the results from the model introduced here are statistically better than those from other models in the literature. In this way, the neuroevolution of architecture is clearly important for the development of the virtual rats. Moreover, this technique allowed the comprehension of the importance of different sensory units and different number of hidden neurons (performing as memory) in the ANNs (virtual rats). Copyright © 2016 Elsevier B.V. All rights reserved.
Kim, Seongjung; Kim, Jongman; Ahn, Soonjae; Kim, Youngho
2018-04-18
Deaf people use sign or finger languages for communication, but these methods of communication are very specialized. For this reason, the deaf can suffer from social inequalities and financial losses due to their communication restrictions. In this study, we developed a finger language recognition algorithm based on an ensemble artificial neural network (E-ANN) using an armband system with 8-channel electromyography (EMG) sensors. The developed algorithm was composed of signal acquisition, filtering, segmentation, feature extraction and an E-ANN based classifier that was evaluated with the Korean finger language (14 consonants, 17 vowels and 7 numbers) in 17 subjects. E-ANN was categorized according to the number of classifiers (1 to 10) and size of training data (50 to 1500). The accuracy of the E-ANN-based classifier was obtained by 5-fold cross validation and compared with an artificial neural network (ANN)-based classifier. As the number of classifiers (1 to 8) and size of training data (50 to 300) increased, the average accuracy of the E-ANN-based classifier increased and the standard deviation decreased. The optimal E-ANN was composed with eight classifiers and 300 size of training data, and the accuracy of the E-ANN was significantly higher than that of the general ANN.
Design of Power System Architectures for Small Spacecraft Systems
NASA Technical Reports Server (NTRS)
Momoh, James A.; Subramonian, Rama; Dias, Lakshman G.
1996-01-01
The objective of this research is to perform a trade study on several candidate power system architectures for small spacecrafts to be used in NASA's new millennium program. Three initial candidate architectures have been proposed by NASA and two other candidate architectures have been proposed by Howard University. Howard University is currently conducting the necessary analysis, synthesis, and simulation needed to perform the trade studies and arrive at the optimal power system architecture. Statistical, sensitivity and tolerant studies has been performed on the systems. It is concluded from present studies that certain components such as the series regulators, buck-boost converters and power converters can be minimized while retaining the desired functionality of the overall architecture. This in conjunction with battery scalability studies and system efficiency studies have enabled us to develop more economic architectures. Future studies will include artificial neural networks and fuzzy logic to analyze the performance of the systems. Fault simulation studies and fault diagnosis studies using EMTP and artificial neural networks will also be conducted.
Delnavaz, M; Ayati, B; Ganjidoust, H
2010-07-15
In this study, the results of 1-year efficiency forecasting using artificial neural networks (ANN) models of a moving bed biofilm reactor (MBBR) for a toxic and hard biodegradable aniline removal were investigated. The reactor was operated in an aerobic batch and continuous condition with 50% by volume which was filled with light expanded clay aggregate (LECA) as carrier. Efficiency evaluation of the reactors was obtained at different retention time (RT) of 8, 24, 48 and 72 h with an influent COD from 100 to 4000 mg/L. Exploratory data analysis was used to detect relationships between the data and dependent evaluated one. The appropriate architecture of the neural network models was determined using several steps of training and testing of the models. The ANN-based models were found to provide an efficient and a robust tool in predicting MBBR performance for treating aromatic amine compounds. 2010 Elsevier B.V. All rights reserved.
Macrocell path loss prediction using artificial intelligence techniques
NASA Astrophysics Data System (ADS)
Usman, Abraham U.; Okereke, Okpo U.; Omizegba, Elijah E.
2014-04-01
The prediction of propagation loss is a practical non-linear function approximation problem which linear regression or auto-regression models are limited in their ability to handle. However, some computational Intelligence techniques such as artificial neural networks (ANNs) and adaptive neuro-fuzzy inference systems (ANFISs) have been shown to have great ability to handle non-linear function approximation and prediction problems. In this study, the multiple layer perceptron neural network (MLP-NN), radial basis function neural network (RBF-NN) and an ANFIS network were trained using actual signal strength measurement taken at certain suburban areas of Bauchi metropolis, Nigeria. The trained networks were then used to predict propagation losses at the stated areas under differing conditions. The predictions were compared with the prediction accuracy of the popular Hata model. It was observed that ANFIS model gave a better fit in all cases having higher R2 values in each case and on average is more robust than MLP and RBF models as it generalises better to a different data.
Neural networks and fault probability evaluation for diagnosis issues.
Kourd, Yahia; Lefebvre, Dimitri; Guersi, Noureddine
2014-01-01
This paper presents a new FDI technique for fault detection and isolation in unknown nonlinear systems. The objective of the research is to construct and analyze residuals by means of artificial intelligence and probabilistic methods. Artificial neural networks are first used for modeling issues. Neural networks models are designed for learning the fault-free and the faulty behaviors of the considered systems. Once the residuals generated, an evaluation using probabilistic criteria is applied to them to determine what is the most likely fault among a set of candidate faults. The study also includes a comparison between the contributions of these tools and their limitations, particularly through the establishment of quantitative indicators to assess their performance. According to the computation of a confidence factor, the proposed method is suitable to evaluate the reliability of the FDI decision. The approach is applied to detect and isolate 19 fault candidates in the DAMADICS benchmark. The results obtained with the proposed scheme are compared with the results obtained according to a usual thresholding method.
Asfahani, J; Ahmad, Z; Ghani, B Abdul
2018-07-01
An approach based on self organizing map (SOM) artificial neural networks is proposed herewith oriented towards interpreting nuclear and electrical well logging data. The well logging measurements of Kodana well in Southern Syria have been interpreted by applying the proposed approach. Lithological cross-section model of the basaltic environment has been derived and four different kinds of basalt have been consequently distinguished. The four basalts are hard massive basalt, hard basalt, pyroclastic basalt and the alteration basalt products- clay. The results obtained by SOM artificial neural networks are in a good agreement with the previous published results obtained by other different techniques. The SOM approach is practiced successfully in the case study of the Kodana well logging data, and can be therefore recommended as a suitable and effective approach for handling huge well logging data with higher number of variables required for lithological discrimination purposes. Copyright © 2018 Elsevier Ltd. All rights reserved.
AN ARTIFICIAL NEURAL NETWORK EVALUATION OF TUBERCULOSIS USING GENETIC AND PHYSIOLOGICAL PATIENT DATA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffin, William O.; Darsey, Jerry A.; Hanna, Josh
When doctors see more cases of patients with tell-tale symptoms of a disease, it is hoped that they will be able to recognize an infection administer treatment appropriately, thereby speeding up recovery for sick patients. We hope that our studies can aid in the detection of tuberculosis by using a computer model called an artificial neural network. Our model looks at patients with and without tuberculosis (TB). The data that the neural network examined came from the following: patient' age, gender, place, of birth, blood type, Rhesus (Rh) factor, and genes of the human Leukocyte Antigens (HLA) system (9q34.1) presentmore » in the Major Histocompatibility Complex. With availability in genetic data and good research, we hope to give them an advantage in the detection of tuberculosis. We try to mimic the doctor's experience with a computer test, which will learn from patient data the factors that contribute to TB.« less
Vibration control of building structures using self-organizing and self-learning neural networks
NASA Astrophysics Data System (ADS)
Madan, Alok
2005-11-01
Past research in artificial intelligence establishes that artificial neural networks (ANN) are effective and efficient computational processors for performing a variety of tasks including pattern recognition, classification, associative recall, combinatorial problem solving, adaptive control, multi-sensor data fusion, noise filtering and data compression, modelling and forecasting. The paper presents a potentially feasible approach for training ANN in active control of earthquake-induced vibrations in building structures without the aid of teacher signals (i.e. target control forces). A counter-propagation neural network is trained to output the control forces that are required to reduce the structural vibrations in the absence of any feedback on the correctness of the output control forces (i.e. without any information on the errors in output activations of the network). The present study shows that, in principle, the counter-propagation network (CPN) can learn from the control environment to compute the required control forces without the supervision of a teacher (unsupervised learning). Simulated case studies are presented to demonstrate the feasibility of implementing the unsupervised learning approach in ANN for effective vibration control of structures under the influence of earthquake ground motions. The proposed learning methodology obviates the need for developing a mathematical model of structural dynamics or training a separate neural network to emulate the structural response for implementation in practice.
Adaptive Neurons For Artificial Neural Networks
NASA Technical Reports Server (NTRS)
Tawel, Raoul
1990-01-01
Training time decreases dramatically. In improved mathematical model of neural-network processor, temperature of neurons (in addition to connection strengths, also called weights, of synapses) varied during supervised-learning phase of operation according to mathematical formalism and not heuristic rule. Evidence that biological neural networks also process information at neuronal level.
Xing, Jida; Chen, Jie
2015-06-23
In therapeutic ultrasound applications, accurate ultrasound output intensities are crucial because the physiological effects of therapeutic ultrasound are very sensitive to the intensity and duration of these applications. Although radiation force balance is a benchmark technique for measuring ultrasound intensity and power, it is costly, difficult to operate, and compromised by noise vibration. To overcome these limitations, the development of a low-cost, easy to operate, and vibration-resistant alternative device is necessary for rapid ultrasound intensity measurement. Therefore, we proposed and validated a novel two-layer thermoacoustic sensor using an artificial neural network technique to accurately measure low ultrasound intensities between 30 and 120 mW/cm2. The first layer of the sensor design is a cylindrical absorber made of plexiglass, followed by a second layer composed of polyurethane rubber with a high attenuation coefficient to absorb extra ultrasound energy. The sensor determined ultrasound intensities according to a temperature elevation induced by heat converted from incident acoustic energy. Compared with our previous one-layer sensor design, the new two-layer sensor enhanced the ultrasound absorption efficiency to provide more rapid and reliable measurements. Using a three-dimensional model in the K-wave toolbox, our simulation of the ultrasound propagation process demonstrated that the two-layer design is more efficient than the single layer design. We also integrated an artificial neural network algorithm to compensate for the large measurement offset. After obtaining multiple parameters of the sensor characteristics through calibration, the artificial neural network is built to correct temperature drifts and increase the reliability of our thermoacoustic measurements through iterative training about ten seconds. The performance of the artificial neural network method was validated through a series of experiments. Compared to our previous design, the new design reduced sensing time from 20 s to 12 s, and the sensor's average error from 3.97 mW/cm2 to 1.31 mW/cm2 respectively.
Xing, Jida; Chen, Jie
2015-01-01
In therapeutic ultrasound applications, accurate ultrasound output intensities are crucial because the physiological effects of therapeutic ultrasound are very sensitive to the intensity and duration of these applications. Although radiation force balance is a benchmark technique for measuring ultrasound intensity and power, it is costly, difficult to operate, and compromised by noise vibration. To overcome these limitations, the development of a low-cost, easy to operate, and vibration-resistant alternative device is necessary for rapid ultrasound intensity measurement. Therefore, we proposed and validated a novel two-layer thermoacoustic sensor using an artificial neural network technique to accurately measure low ultrasound intensities between 30 and 120 mW/cm2. The first layer of the sensor design is a cylindrical absorber made of plexiglass, followed by a second layer composed of polyurethane rubber with a high attenuation coefficient to absorb extra ultrasound energy. The sensor determined ultrasound intensities according to a temperature elevation induced by heat converted from incident acoustic energy. Compared with our previous one-layer sensor design, the new two-layer sensor enhanced the ultrasound absorption efficiency to provide more rapid and reliable measurements. Using a three-dimensional model in the K-wave toolbox, our simulation of the ultrasound propagation process demonstrated that the two-layer design is more efficient than the single layer design. We also integrated an artificial neural network algorithm to compensate for the large measurement offset. After obtaining multiple parameters of the sensor characteristics through calibration, the artificial neural network is built to correct temperature drifts and increase the reliability of our thermoacoustic measurements through iterative training about ten seconds. The performance of the artificial neural network method was validated through a series of experiments. Compared to our previous design, the new design reduced sensing time from 20 s to 12 s, and the sensor’s average error from 3.97 mW/cm2 to 1.31 mW/cm2 respectively. PMID:26110412
Cascade Back-Propagation Learning in Neural Networks
NASA Technical Reports Server (NTRS)
Duong, Tuan A.
2003-01-01
The cascade back-propagation (CBP) algorithm is the basis of a conceptual design for accelerating learning in artificial neural networks. The neural networks would be implemented as analog very-large-scale integrated (VLSI) circuits, and circuits to implement the CBP algorithm would be fabricated on the same VLSI circuit chips with the neural networks. Heretofore, artificial neural networks have learned slowly because it has been necessary to train them via software, for lack of a good on-chip learning technique. The CBP algorithm is an on-chip technique that provides for continuous learning in real time. Artificial neural networks are trained by example: A network is presented with training inputs for which the correct outputs are known, and the algorithm strives to adjust the weights of synaptic connections in the network to make the actual outputs approach the correct outputs. The input data are generally divided into three parts. Two of the parts, called the "training" and "cross-validation" sets, respectively, must be such that the corresponding input/output pairs are known. During training, the cross-validation set enables verification of the status of the input-to-output transformation learned by the network to avoid over-learning. The third part of the data, termed the "test" set, consists of the inputs that are required to be transformed into outputs; this set may or may not include the training set and/or the cross-validation set. Proposed neural-network circuitry for on-chip learning would be divided into two distinct networks; one for training and one for validation. Both networks would share the same synaptic weights.
Dietzel, Matthias; Baltzer, Pascal A T; Dietzel, Andreas; Zoubi, Ramy; Gröschel, Tobias; Burmeister, Hartmut P; Bogdan, Martin; Kaiser, Werner A
2012-07-01
Differential diagnosis of lesions in MR-Mammography (MRM) remains a complex task. The aim of this MRM study was to design and to test robustness of Artificial Neural Network architectures to predict malignancy using a large clinical database. For this IRB-approved investigation standardized protocols and study design were applied (T1w-FLASH; 0.1 mmol/kgBW Gd-DTPA; T2w-TSE; histological verification after MRM). All lesions were evaluated by two experienced (>500 MRM) radiologists in consensus. In every lesion, 18 previously published descriptors were assessed and documented in the database. An Artificial Neural Network (ANN) was developed to process this database (The-MathWorks/Inc., feed-forward-architecture/resilient back-propagation-algorithm). All 18 descriptors were set as input variables, whereas histological results (malignant vs. benign) was defined as classification variable. Initially, the ANN was optimized in terms of "Training Epochs" (TE), "Hidden Layers" (HL), "Learning Rate" (LR) and "Neurons" (N). Robustness of the ANN was addressed by repeated evaluation cycles (n: 9) with receiver operating characteristics (ROC) analysis of the results applying 4-fold Cross Validation. The best network architecture was identified comparing the corresponding Area under the ROC curve (AUC). Histopathology revealed 436 benign and 648 malignant lesions. Enhancing the level of complexity could not increase diagnostic accuracy of the network (P: n.s.). The optimized ANN architecture (TE: 20, HL: 1, N: 5, LR: 1.2) was accurate (mean-AUC 0.888; P: <0.001) and robust (CI: 0.885-0.892; range: 0.880-0.898). The optimized neural network showed robust performance and high diagnostic accuracy for prediction of malignancy on unknown data. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Mandal, Uttam; Gowda, Veeran; Ghosh, Animesh; Bose, Anirbandeep; Bhaumik, Uttam; Chatterjee, Bappaditya; Pal, Tapan Kumar
2008-02-01
The aim of the present study was to apply the simultaneous optimization method incorporating Artificial Neural Network (ANN) using Multi-layer Perceptron (MLP) model to the development of a metformin HCl 500 mg sustained release matrix tablets with an optimized in vitro release profile. The amounts of HPMC K15M and PVP K30 at three levels (-1, 0, +1) for each were selected as casual factors. In vitro dissolution time profiles at four different sampling times (1 h, 2 h, 4 h and 8 h) were chosen as output variables. 13 kinds of metformin matrix tablets were prepared according to a 2(3) factorial design (central composite) with five extra center points, and their dissolution tests were performed. Commercially available STATISTICA Neural Network software (Stat Soft, Inc., Tulsa, OK, U.S.A.) was used throughout the study. The training process of MLP was completed until a satisfactory value of root square mean (RSM) for the test data was obtained using feed forward back propagation method. The root mean square value for the trained network was 0.000097, which indicated that the optimal MLP model was reached. The optimal tablet formulation based on some predetermined release criteria predicted by MLP was 336 mg of HPMC K15M and 130 mg of PVP K30. Calculated difference (f(1) 2.19) and similarity (f(2) 89.79) factors indicated that there was no difference between predicted and experimentally observed drug release profiles for the optimal formulation. This work illustrates the potential for an artificial neural network with MLP, to assist in development of sustained release dosage forms.
Ion track based tunable device as humidity sensor: a neural network approach
NASA Astrophysics Data System (ADS)
Sharma, Mamta; Sharma, Anuradha; Bhattacherjee, Vandana
2013-01-01
Artificial Neural Network (ANN) has been applied in statistical model development, adaptive control system, pattern recognition in data mining, and decision making under uncertainty. The nonlinear dependence of any sensor output on the input physical variable has been the motivation for many researchers to attempt unconventional modeling techniques such as neural networks and other machine learning approaches. Artificial neural network (ANN) is a computational tool inspired by the network of neurons in biological nervous system. It is a network consisting of arrays of artificial neurons linked together with different weights of connection. The states of the neurons as well as the weights of connections among them evolve according to certain learning rules.. In the present work we focus on the category of sensors which respond to electrical property changes such as impedance or capacitance. Recently, sensor materials have been embedded in etched tracks due to their nanometric dimensions and high aspect ratio which give high surface area available for exposure to sensing material. Various materials can be used for this purpose to probe physical (light intensity, temperature etc.), chemical (humidity, ammonia gas, alcohol etc.) or biological (germs, hormones etc.) parameters. The present work involves the application of TEMPOS structures as humidity sensors. The sample to be studied was prepared using the polymer electrolyte (PEO/NH4ClO4) with CdS nano-particles dispersed in the polymer electrolyte. In the present research we have attempted to correlate the combined effects of voltage and frequency on impedance of humidity sensors using a neural network model and results have indicated that the mean absolute error of the ANN Model for the training data was 3.95% while for the validation data it was 4.65%. The corresponding values for the LR model were 8.28% and 8.35% respectively. It was also demonstrated the percentage improvement of the ANN Model with respect to the linear regression model. This demonstrates the suitability of neural networks to perform such modeling.
NASA Astrophysics Data System (ADS)
Saha, Dipendu
2009-02-01
The feasibility of drastically reducing the contactor size in mass transfer processes utilizing centrifugal field has generated a lot of interest in rotating packed bed (Higee). Various investigators have proposed correlations to predict mass transfer coefficients in Higee, but, none of the correlations was more than 20-30% accurate. In this work, artificial neural network (ANN) is employed for predicting mass transfer coefficient data. Results show that ANN provides better estimation of mass transfer coefficient with accuracy 5-15%.
Effect of design selection on response surface performance
NASA Technical Reports Server (NTRS)
Carpenter, William C.
1993-01-01
Artificial neural nets and polynomial approximations were used to develop response surfaces for several test problems. Based on the number of functional evaluations required to build the approximations and the number of undetermined parameters associated with the approximations, the performance of the two types of approximations was found to be comparable. A rule of thumb is developed for determining the number of nodes to be used on a hidden layer of an artificial neural net and the number of designs needed to train an approximation is discussed.
NASA Astrophysics Data System (ADS)
Tseng, Chih-Hsiung; Cheng, Sheng-Tzong; Wang, Yi-Hsien; Peng, Jin-Tang
2008-05-01
This investigation integrates a novel hybrid asymmetric volatility approach into an Artificial Neural Networks option-pricing model to upgrade the forecasting ability of the price of derivative securities. The use of the new hybrid asymmetric volatility method can simultaneously decrease the stochastic and nonlinearity of the error term sequence, and capture the asymmetric volatility. Therefore, analytical results of the ANNS option-pricing model reveal that Grey-EGARCH volatility provides greater predictability than other volatility approaches.
Schwaibold, M; Schöchlin, J; Bolz, A
2002-01-01
For classification tasks in biosignal processing, several strategies and algorithms can be used. Knowledge-based systems allow prior knowledge about the decision process to be integrated, both by the developer and by self-learning capabilities. For the classification stages in a sleep stage detection framework, three inference strategies were compared regarding their specific strengths: a classical signal processing approach, artificial neural networks and neuro-fuzzy systems. Methodological aspects were assessed to attain optimum performance and maximum transparency for the user. Due to their effective and robust learning behavior, artificial neural networks could be recommended for pattern recognition, while neuro-fuzzy systems performed best for the processing of contextual information.
NASA Technical Reports Server (NTRS)
Decker, A. J.; Fite, E. B.; Thorp, S. A.; Mehmed, O.
1998-01-01
The responses of artificial neural networks to experimental and model-generated inputs are compared for detection of damage in twisted fan blades using electronic holography. The training-set inputs, for this work, are experimentally generated characteristic patterns of the vibrating blades. The outputs are damage-flag indicators or second derivatives of the sensitivity-vector-projected displacement vectors from a finite element model. Artificial neural networks have been trained in the past with computational-model-generated training sets. This approach avoids the difficult inverse calculations traditionally used to compare interference fringes with the models. But the high modeling standards are hard to achieve, even with fan-blade finite-element models.
NASA Technical Reports Server (NTRS)
Decker, A. J.; Fite, E. B.; Thorp, S. A.; Mehmed, O.
1998-01-01
The responses of artificial neural networks to experimental and model-generated inputs are compared for detection of damage in twisted fan blades using electronic holography. The training-set inputs, for this work, are experimentally generated characteristic patterns of the vibrating blades. The outputs are damage-flag indicators or second derivatives of the sensitivity-vector-projected displacement vectors from a finite element model. Artificial neural networks have been trained in the past with computational-model- generated training sets. This approach avoids the difficult inverse calculations traditionally used to compare interference fringes with the models. But the high modeling standards are hard to achieve, even with fan-blade finite-element models.
NASA Astrophysics Data System (ADS)
Ndaw, Joseph D.; Faye, Andre; Maïga, Amadou S.
2017-05-01
Artificial neural networks (ANN)-based models are efficient ways of source localisation. However very large training sets are needed to precisely estimate two-dimensional Direction of arrival (2D-DOA) with ANN models. In this paper we present a fast artificial neural network approach for 2D-DOA estimation with reduced training sets sizes. We exploit the symmetry properties of Uniform Circular Arrays (UCA) to build two different datasets for elevation and azimuth angles. Linear Vector Quantisation (LVQ) neural networks are then sequentially trained on each dataset to separately estimate elevation and azimuth angles. A multilevel training process is applied to further reduce the training sets sizes.
Dawson, Michael R W; Dupuis, Brian; Spetch, Marcia L; Kelly, Debbie M
2009-08-01
The matching law (Herrnstein 1961) states that response rates become proportional to reinforcement rates; this is related to the empirical phenomenon called probability matching (Vulkan 2000). Here, we show that a simple artificial neural network generates responses consistent with probability matching. This behavior was then used to create an operant procedure for network learning. We use the multiarmed bandit (Gittins 1989), a classic problem of choice behavior, to illustrate that operant training balances exploiting the bandit arm expected to pay off most frequently with exploring other arms. Perceptrons provide a medium for relating results from neural networks, genetic algorithms, animal learning, contingency theory, reinforcement learning, and theories of choice.
A Novel Higher Order Artificial Neural Networks
NASA Astrophysics Data System (ADS)
Xu, Shuxiang
2010-05-01
In this paper a new Higher Order Neural Network (HONN) model is introduced and applied in several data mining tasks. Data Mining extracts hidden patterns and valuable information from large databases. A hyperbolic tangent function is used as the neuron activation function for the new HONN model. Experiments are conducted to demonstrate the advantages and disadvantages of the new HONN model, when compared with several conventional Artificial Neural Network (ANN) models: Feedforward ANN with the sigmoid activation function; Feedforward ANN with the hyperbolic tangent activation function; and Radial Basis Function (RBF) ANN with the Gaussian activation function. The experimental results seem to suggest that the new HONN holds higher generalization capability as well as abilities in handling missing data.
High solar activity predictions through an artificial neural network
NASA Astrophysics Data System (ADS)
Orozco-Del-Castillo, M. G.; Ortiz-Alemán, J. C.; Couder-Castañeda, C.; Hernández-Gómez, J. J.; Solís-Santomé, A.
The effects of high-energy particles coming from the Sun on human health as well as in the integrity of outer space electronics make the prediction of periods of high solar activity (HSA) a task of significant importance. Since periodicities in solar indexes have been identified, long-term predictions can be achieved. In this paper, we present a method based on an artificial neural network to find a pattern in some harmonics which represent such periodicities. We used data from 1973 to 2010 to train the neural network, and different historical data for its validation. We also used the neural network along with a statistical analysis of its performance with known data to predict periods of HSA with different confidence intervals according to the three-sigma rule associated with solar cycles 24-26, which we found to occur before 2040.
Neural network wavelet technology: A frontier of automation
NASA Technical Reports Server (NTRS)
Szu, Harold
1994-01-01
Neural networks are an outgrowth of interdisciplinary studies concerning the brain. These studies are guiding the field of Artificial Intelligence towards the, so-called, 6th Generation Computer. Enormous amounts of resources have been poured into R/D. Wavelet Transforms (WT) have replaced Fourier Transforms (FT) in Wideband Transient (WT) cases since the discovery of WT in 1985. The list of successful applications includes the following: earthquake prediction; radar identification; speech recognition; stock market forecasting; FBI finger print image compression; and telecommunication ISDN-data compression.
Neural net target-tracking system using structured laser patterns
NASA Astrophysics Data System (ADS)
Cho, Jae-Wan; Lee, Yong-Bum; Lee, Nam-Ho; Park, Soon-Yong; Lee, Jongmin; Choi, Gapchu; Baek, Sunghyun; Park, Dong-Sun
1996-06-01
In this paper, we describe a robot endeffector tracking system using sensory information from recently-announced structured pattern laser diodes, which can generate images with several different types of structured pattern. The neural network approach is employed to recognize the robot endeffector covering the situation of three types of motion: translation, scaling and rotation. Features for the neural network to detect the position of the endeffector are extracted from the preprocessed images. Artificial neural networks are used to store models and to match with unknown input features recognizing the position of the robot endeffector. Since a minimal number of samples are used for different directions of the robot endeffector in the system, an artificial neural network with the generalization capability can be utilized for unknown input features. A feedforward neural network with the generalization capability can be utilized for unknown input features. A feedforward neural network trained with the back propagation learning is used to detect the position of the robot endeffector. Another feedforward neural network module is used to estimate the motion from a sequence of images and to control movements of the robot endeffector. COmbining the tow neural networks for recognizing the robot endeffector and estimating the motion with the preprocessing stage, the whole system keeps tracking of the robot endeffector effectively.
Kuo, R J; Wu, P; Wang, C P
2002-09-01
Sales forecasting plays a very prominent role in business strategy. Numerous investigations addressing this problem have generally employed statistical methods, such as regression or autoregressive and moving average (ARMA). However, sales forecasting is very complicated owing to influence by internal and external environments. Recently, artificial neural networks (ANNs) have also been applied in sales forecasting since their promising performances in the areas of control and pattern recognition. However, further improvement is still necessary since unique circumstances, e.g. promotion, cause a sudden change in the sales pattern. Thus, this study utilizes a proposed fuzzy neural network (FNN), which is able to eliminate the unimportant weights, for the sake of learning fuzzy IF-THEN rules obtained from the marketing experts with respect to promotion. The result from FNN is further integrated with the time series data through an ANN. Both the simulated and real-world problem results show that FNN with weight elimination can have lower training error compared with the regular FNN. Besides, real-world problem results also indicate that the proposed estimation system outperforms the conventional statistical method and single ANN in accuracy.
Pandey, Daya Shankar; Das, Saptarshi; Pan, Indranil; Leahy, James J; Kwapinski, Witold
2016-12-01
In this paper, multi-layer feed forward neural networks are used to predict the lower heating value of gas (LHV), lower heating value of gasification products including tars and entrained char (LHV p ) and syngas yield during gasification of municipal solid waste (MSW) during gasification in a fluidized bed reactor. These artificial neural networks (ANNs) with different architectures are trained using the Levenberg-Marquardt (LM) back-propagation algorithm and a cross validation is also performed to ensure that the results generalise to other unseen datasets. A rigorous study is carried out on optimally choosing the number of hidden layers, number of neurons in the hidden layer and activation function in a network using multiple Monte Carlo runs. Nine input and three output parameters are used to train and test various neural network architectures in both multiple output and single output prediction paradigms using the available experimental datasets. The model selection procedure is carried out to ascertain the best network architecture in terms of predictive accuracy. The simulation results show that the ANN based methodology is a viable alternative which can be used to predict the performance of a fluidized bed gasifier. Copyright © 2016 Elsevier Ltd. All rights reserved.
Maran, E; Novic, M; Barbieri, P; Zupan, J
2004-01-01
The present study focuses on fish antibiotics which are an important group of pharmaceuticals used in fish farming to treat infections and, until recently, most of them have been exposed to the environment with very little attention. Information about the environmental behaviour and the description of the environmental fate of medical substances are difficult or expensive to obtain. The experimental information in terms of properties is reported when available, in other cases, it is estimated by standard tools as those provided by the United States Environmental Protection Agency EPISuite software and by custom quantitative structure-activity relationship (QSAR) applications. In this study, a QSAR screening of 15 fish antibiotics and 132 xenobiotic molecules was performed with two aims: (i) to develop a model for the estimation of octanol--water partition coefficient (logP) and (ii) to estimate the relative binding affinity to oestrogen receptor (log RBA) using a model constructed on the activities of 132 xenobiotic compounds. The custom models are based on constitutional, topological, electrostatic and quantum chemical descriptors computed by the CODESSA software. Kohonen neural networks (self organising maps) were used to study similarity between the considered chemicals while counter-propagation artificial neural networks were used to estimate the properties.
NASA Astrophysics Data System (ADS)
Moghim, S.; Hsu, K.; Bras, R. L.
2013-12-01
General Circulation Models (GCMs) are used to predict circulation and energy transfers between the atmosphere and the land. It is known that these models produce biased results that will have impact on their uses. This work proposes a new method for bias correction: the equidistant cumulative distribution function-artificial neural network (EDCDFANN) procedure. The method uses artificial neural networks (ANNs) as a surrogate model to estimate bias-corrected temperature, given an identification of the system derived from GCM models output variables. A two-layer feed forward neural network is trained with observations during a historical period and then the adjusted network can be used to predict bias-corrected temperature for future periods. To capture the extreme values this method is combined with the equidistant CDF matching method (EDCDF, Li et al. 2010). The proposed method is tested with the Community Climate System Model (CCSM3) outputs using air and skin temperature, specific humidity, shortwave and longwave radiation as inputs to the ANN. This method decreases the mean square error and increases the spatial correlation between the modeled temperature and the observed one. The results indicate the EDCDFANN has potential to remove the biases of the model outputs.
Artificial neural network detects human uncertainty
NASA Astrophysics Data System (ADS)
Hramov, Alexander E.; Frolov, Nikita S.; Maksimenko, Vladimir A.; Makarov, Vladimir V.; Koronovskii, Alexey A.; Garcia-Prieto, Juan; Antón-Toro, Luis Fernando; Maestú, Fernando; Pisarchik, Alexander N.
2018-03-01
Artificial neural networks (ANNs) are known to be a powerful tool for data analysis. They are used in social science, robotics, and neurophysiology for solving tasks of classification, forecasting, pattern recognition, etc. In neuroscience, ANNs allow the recognition of specific forms of brain activity from multichannel EEG or MEG data. This makes the ANN an efficient computational core for brain-machine systems. However, despite significant achievements of artificial intelligence in recognition and classification of well-reproducible patterns of neural activity, the use of ANNs for recognition and classification of patterns in neural networks still requires additional attention, especially in ambiguous situations. According to this, in this research, we demonstrate the efficiency of application of the ANN for classification of human MEG trials corresponding to the perception of bistable visual stimuli with different degrees of ambiguity. We show that along with classification of brain states associated with multistable image interpretations, in the case of significant ambiguity, the ANN can detect an uncertain state when the observer doubts about the image interpretation. With the obtained results, we describe the possible application of ANNs for detection of bistable brain activity associated with difficulties in the decision-making process.
NASA Astrophysics Data System (ADS)
Li, Zhaokun; Zhao, Xiaohui
2017-02-01
The sensor-less adaptive optics (AO) is one of the most promising methods to compensate strong wave front disturbance in free space optics communication (FSO). The back propagation (BP) artificial neural network is applied for the sensor-less AO system to design a distortion correction scheme in this study. This method only needs one or a few online measurements to correct the wave front distortion compared with other model-based approaches, by which the real-time capacity of the system is enhanced and the Strehl Ratio (SR) is largely improved. Necessary comparisons in numerical simulation with other model-based and model-free correction methods proposed in Refs. [6,8,9,10] are given to show the validity and advantage of the proposed method.
NASA Astrophysics Data System (ADS)
Juszczyk, Michał
2018-04-01
This paper reports some results of the studies on the use of artificial intelligence tools for the purposes of cost estimation based on building information models. A problem of the cost estimates based on the building information models on a macro level supported by the ensembles of artificial neural networks is concisely discussed. In the course of the research a regression model has been built for the purposes of cost estimation of buildings' floor structural frames, as higher level elements. Building information models are supposed to serve as a repository of data used for the purposes of cost estimation. The core of the model is the ensemble of neural networks. The developed model allows the prediction of cost estimates with satisfactory accuracy.
Ortho Image and DTM Generation with Intelligent Methods
NASA Astrophysics Data System (ADS)
Bagheri, H.; Sadeghian, S.
2013-10-01
Nowadays the artificial intelligent algorithms has considered in GIS and remote sensing. Genetic algorithm and artificial neural network are two intelligent methods that are used for optimizing of image processing programs such as edge extraction and etc. these algorithms are very useful for solving of complex program. In this paper, the ability and application of genetic algorithm and artificial neural network in geospatial production process like geometric modelling of satellite images for ortho photo generation and height interpolation in raster Digital Terrain Model production process is discussed. In first, the geometric potential of Ikonos-2 and Worldview-2 with rational functions, 2D & 3D polynomials were tested. Also comprehensive experiments have been carried out to evaluate the viability of the genetic algorithm for optimization of rational function, 2D & 3D polynomials. Considering the quality of Ground Control Points, the accuracy (RMSE) with genetic algorithm and 3D polynomials method for Ikonos-2 Geo image was 0.508 pixel sizes and the accuracy (RMSE) with GA algorithm and rational function method for Worldview-2 image was 0.930 pixel sizes. For more another optimization artificial intelligent methods, neural networks were used. With the use of perceptron network in Worldview-2 image, a result of 0.84 pixel sizes with 4 neurons in middle layer was gained. The final conclusion was that with artificial intelligent algorithms it is possible to optimize the existing models and have better results than usual ones. Finally the artificial intelligence methods, like genetic algorithms as well as neural networks, were examined on sample data for optimizing interpolation and for generating Digital Terrain Models. The results then were compared with existing conventional methods and it appeared that these methods have a high capacity in heights interpolation and that using these networks for interpolating and optimizing the weighting methods based on inverse distance leads to a high accurate estimation of heights.
de Gennaro, Gianluigi; Trizio, Livia; Di Gilio, Alessia; Pey, Jorge; Pérez, Noemi; Cusack, Michael; Alastuey, Andrés; Querol, Xavier
2013-10-01
An artificial neural network (ANN) was developed and tested to forecast PM10 daily concentration in two contrasted environments in NE Spain, a regional background site (Montseny), and an urban background site (Barcelona-CSIC), which was highly influenced by vehicular emissions. In order to predict 24-h average PM10 concentrations, the artificial neural network previously developed by Caselli et al. (2009) was improved by using hourly PM concentrations and deterministic factors such as a Saharan dust alert. In particular, the model input data for prediction were the hourly PM10 concentrations 1-day in advance, local meteorological data and information about air masses origin. The forecasted performance indexes for both sites were calculated and they showed better results for the regional background site in Montseny (R(2)=0.86, SI=0.75) than for urban site in Barcelona (R(2)=0.73, SI=0.58), influenced by local and sometimes unexpected sources. Moreover, a sensitivity analysis conducted to understand the importance of the different variables included among the input data, showed that local meteorology and air masses origin are key factors in the model forecasts. This result explains the reason for the improvement of ANN's forecasting performance at the Montseny site with respect to the Barcelona site. Moreover, the artificial neural network developed in this work could prove useful to predict PM10 concentrations, especially, at regional background sites such as those on the Mediterranean Basin which are primarily affected by long-range transports. Hence, the artificial neural network presented here could be a powerful tool for obtaining real time information on air quality status and could aid stakeholders in their development of cost-effective control strategies. © 2013 Elsevier B.V. All rights reserved.
Artificial neural networks for stiffness estimation in magnetic resonance elastography.
Murphy, Matthew C; Manduca, Armando; Trzasko, Joshua D; Glaser, Kevin J; Huston, John; Ehman, Richard L
2018-07-01
To investigate the feasibility of using artificial neural networks to estimate stiffness from MR elastography (MRE) data. Artificial neural networks were fit using model-based training patterns to estimate stiffness from images of displacement using a patch size of ∼1 cm in each dimension. These neural network inversions (NNIs) were then evaluated in a set of simulation experiments designed to investigate the effects of wave interference and noise on NNI accuracy. NNI was also tested in vivo, comparing NNI results against currently used methods. In 4 simulation experiments, NNI performed as well or better than direct inversion (DI) for predicting the known stiffness of the data. Summary NNI results were also shown to be significantly correlated with DI results in the liver (R 2 = 0.974) and in the brain (R 2 = 0.915), and also correlated with established biological effects including fibrosis stage in the liver and age in the brain. Finally, repeatability error was lower in the brain using NNI compared to DI, and voxel-wise modeling using NNI stiffness maps detected larger effects than using DI maps with similar levels of smoothing. Artificial neural networks represent a new approach to inversion of MRE data. Summary results from NNI and DI are highly correlated and both are capable of detecting biologically relevant signals. Preliminary evidence suggests that NNI stiffness estimates may be more resistant to noise than an algebraic DI approach. Taken together, these results merit future investigation into NNIs to improve the estimation of stiffness in small regions. Magn Reson Med 80:351-360, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Hineno, Akiyo; Oyanagi, Kiyomitsu; Nakamura, Akinori; Shimojima, Yoshio; Yoshida, Kunihiro; Ikeda, Shu-Ichi
2016-01-01
We report lower urinary tract dysfunction and neuropathological findings of the neural circuits controlling micturition in the patients with familial amyotrophic lateral sclerosis having L106V mutation in the SOD1 gene. Ten of 20 patients showed lower urinary tract dysfunction and 5 patients developed within 1 year after the onset of weakness. In 8 patients with an artificial respirator, 6 patients showed lower urinary tract dysfunction. Lower urinary tract dysfunction and respiratory failure requiring an artificial respirator occurred simultaneously in 3 patients. Neuronal loss and gliosis were observed in the neural circuits controlling micturition, such as frontal lobe, thalamus, hypothalamus, striatum, periaqueductal gray, ascending spinal tract, lateral corticospinal tract, intermediolateral nucleus and Onufrowicz' nucleus. Lower urinary tract dysfunction, especially storage symptoms, developed about 1 year after the onset of weakness, and the dysfunction occurred simultaneously with artificial respirator use in the patients.
Numerical solution of differential equations by artificial neural networks
NASA Technical Reports Server (NTRS)
Meade, Andrew J., Jr.
1995-01-01
Conventionally programmed digital computers can process numbers with great speed and precision, but do not easily recognize patterns or imprecise or contradictory data. Instead of being programmed in the conventional sense, artificial neural networks (ANN's) are capable of self-learning through exposure to repeated examples. However, the training of an ANN can be a time consuming and unpredictable process. A general method is being developed by the author to mate the adaptability of the ANN with the speed and precision of the digital computer. This method has been successful in building feedforward networks that can approximate functions and their partial derivatives from examples in a single iteration. The general method also allows the formation of feedforward networks that can approximate the solution to nonlinear ordinary and partial differential equations to desired accuracy without the need of examples. It is believed that continued research will produce artificial neural networks that can be used with confidence in practical scientific computing and engineering applications.
River flow modeling using artificial neural networks in Kapuas river, West Kalimantan, Indonesia
NASA Astrophysics Data System (ADS)
Herawati, Henny; Suripin, Suharyanto
2017-11-01
Kapuas River is located in the province of West Kalimantan. Kapuas river length is 1,086 km and river basin areas about 100,000 Km2. The availability of river flow data in the Long River and very wide catchments are difficult to obtain, while river flow data are essential for planning waterworks. To predict the water flow in the catchment area requires a lot of hydrology coefficient, so it is very difficult to predict and obtain results that closer to the real conditions. This paper demonstrates that artificial neural network (ANN) could be used to predict the water flow. The ANN technique can be used to predict the incidence of water discharge that occurs in the Kapuas River based on rainfall and evaporation data. With the data available to do training on the artificial neural network model is obtained mean square error (MSE) 0.00007. The river flow predictions could be carried out after the training. The results showed differences in water discharge measurement and prediction of about 4%.
A Hybrid Neural Network and Feature Extraction Technique for Target Recognition.
target features are extracted, the extracted data being evaluated in an artificial neural network to identify a target at a location within the image scene from which the different viewing angles extend.
Neural Networks for the Beginner.
ERIC Educational Resources Information Center
Snyder, Robin M.
Motivated by the brain, neural networks are a right-brained approach to artificial intelligence that is used to recognize patterns based on previous training. In practice, one would not program an expert system to recognize a pattern and one would not train a neural network to make decisions from rules; but one could combine the best features of…
A Survey of Neural Network Publications.
ERIC Educational Resources Information Center
Vijayaraman, Bindiganavale S.; Osyk, Barbara
This paper is a survey of publications on artificial neural networks published in business journals for the period ending July 1996. Its purpose is to identify and analyze trends in neural network research during that period. This paper shows which topics have been heavily researched, when these topics were researched, and how that research has…
Identifying apple surface defects using principal components analysis and artifical neural networks
USDA-ARS?s Scientific Manuscript database
Artificial neural networks and principal components were used to detect surface defects on apples in near-infrared images. Neural networks were trained and tested on sets of principal components derived from columns of pixels from images of apples acquired at two wavelengths (740 nm and 950 nm). I...
Pruning artificial neural networks using neural complexity measures.
Jorgensen, Thomas D; Haynes, Barry P; Norlund, Charlotte C F
2008-10-01
This paper describes a new method for pruning artificial neural networks, using a measure of the neural complexity of the neural network. This measure is used to determine the connections that should be pruned. The measure computes the information-theoretic complexity of a neural network, which is similar to, yet different from previous research on pruning. The method proposed here shows how overly large and complex networks can be reduced in size, whilst retaining learnt behaviour and fitness. The technique proposed here helps to discover a network topology that matches the complexity of the problem it is meant to solve. This novel pruning technique is tested in a robot control domain, simulating a racecar. It is shown, that the proposed pruning method is a significant improvement over the most commonly used pruning method Magnitude Based Pruning. Furthermore, some of the pruned networks prove to be faster learners than the benchmark network that they originate from. This means that this pruning method can also help to unleash hidden potential in a network, because the learning time decreases substantially for a pruned a network, due to the reduction of dimensionality of the network.
Forecasting PM10 in metropolitan areas: Efficacy of neural networks.
Fernando, H J S; Mammarella, M C; Grandoni, G; Fedele, P; Di Marco, R; Dimitrova, R; Hyde, P
2012-04-01
Deterministic photochemical air quality models are commonly used for regulatory management and planning of urban airsheds. These models are complex, computer intensive, and hence are prohibitively expensive for routine air quality predictions. Stochastic methods are becoming increasingly popular as an alternative, which relegate decision making to artificial intelligence based on Neural Networks that are made of artificial neurons or 'nodes' capable of 'learning through training' via historic data. A Neural Network was used to predict particulate matter concentration at a regulatory monitoring site in Phoenix, Arizona; its development, efficacy as a predictive tool and performance vis-à-vis a commonly used regulatory photochemical model are described in this paper. It is concluded that Neural Networks are much easier, quicker and economical to implement without compromising the accuracy of predictions. Neural Networks can be used to develop rapid air quality warning systems based on a network of automated monitoring stations. Copyright © 2011 Elsevier Ltd. All rights reserved.
Jamil, Majid; Sharma, Sanjeev Kumar; Singh, Rajveer
2015-01-01
This paper focuses on the detection and classification of the faults on electrical power transmission line using artificial neural networks. The three phase currents and voltages of one end are taken as inputs in the proposed scheme. The feed forward neural network along with back propagation algorithm has been employed for detection and classification of the fault for analysis of each of the three phases involved in the process. A detailed analysis with varying number of hidden layers has been performed to validate the choice of the neural network. The simulation results concluded that the present method based on the neural network is efficient in detecting and classifying the faults on transmission lines with satisfactory performances. The different faults are simulated with different parameters to check the versatility of the method. The proposed method can be extended to the Distribution network of the Power System. The various simulations and analysis of signals is done in the MATLAB(®) environment.
Application of ANNs approach for wave-like and heat-like equations
NASA Astrophysics Data System (ADS)
Jafarian, Ahmad; Baleanu, Dumitru
2017-12-01
Artificial neural networks are data processing systems which originate from human brain tissue studies. The remarkable abilities of these networks help us to derive desired results from complicated raw data. In this study, we intend to duplicate an efficient iterative method to the numerical solution of two famous partial differential equations, namely the wave-like and heat-like problems. It should be noted that many physical phenomena such as coupling currents in a flat multi-strand two-layer super conducting cable, non-homogeneous elastic waves in soils and earthquake stresses, are described by initial-boundary value wave and heat partial differential equations with variable coefficients. To the numerical solution of these equations, a combination of the power series method and artificial neural networks approach, is used to seek an appropriate bivariate polynomial solution of the mentioned initial-boundary value problem. Finally, several computer simulations confirmed the theoretical results and demonstrating applicability of the method.
Myint, Kyaw Z.; Xie, Xiang-Qun
2015-01-01
This chapter focuses on the fingerprint-based artificial neural networks QSAR (FANN-QSAR) approach to predict biological activities of structurally diverse compounds. Three types of fingerprints, namely ECFP6, FP2, and MACCS, were used as inputs to train the FANN-QSAR models. The results were benchmarked against known 2D and 3D QSAR methods, and the derived models were used to predict cannabinoid (CB) ligand binding activities as a case study. In addition, the FANN-QSAR model was used as a virtual screening tool to search a large NCI compound database for lead cannabinoid compounds. We discovered several compounds with good CB2 binding affinities ranging from 6.70 nM to 3.75 μM. The studies proved that the FANN-QSAR method is a useful approach to predict bioactivities or properties of ligands and to find novel lead compounds for drug discovery research. PMID:25502380
Neural network application for thermal image recognition of low-resolution objects
NASA Astrophysics Data System (ADS)
Fang, Yi-Chin; Wu, Bo-Wen
2007-02-01
In the ever-changing situation on a battle field, accurate recognition of a distant object is critical to a commander's decision-making and the general public's safety. Efficiently distinguishing between an enemy's armoured vehicles and ordinary civilian houses under all weather conditions has become an important research topic. This study presents a system for recognizing an armoured vehicle by distinguishing marks and contours. The characteristics of 12 different shapes and 12 characters are used to explore thermal image recognition under the circumstance of long distance and low resolution. Although the recognition capability of human eyes is superior to that of artificial intelligence under normal conditions, it tends to deteriorate substantially under long-distance and low-resolution scenarios. This study presents an effective method for choosing features and processing images. The artificial neural network technique is applied to further improve the probability of accurate recognition well beyond the limit of the recognition capability of human eyes.
Li, Qiongge; Chan, Maria F
2017-01-01
Over half of cancer patients receive radiotherapy (RT) as partial or full cancer treatment. Daily quality assurance (QA) of RT in cancer treatment closely monitors the performance of the medical linear accelerator (Linac) and is critical for continuous improvement of patient safety and quality of care. Cumulative longitudinal QA measurements are valuable for understanding the behavior of the Linac and allow physicists to identify trends in the output and take preventive actions. In this study, artificial neural networks (ANNs) and autoregressive moving average (ARMA) time-series prediction modeling techniques were both applied to 5-year daily Linac QA data. Verification tests and other evaluations were then performed for all models. Preliminary results showed that ANN time-series predictive modeling has more advantages over ARMA techniques for accurate and effective applicability in the dosimetry and QA field. © 2016 New York Academy of Sciences.
Isik, Nimet
2016-04-01
Multi-element electrostatic aperture lens systems are widely used to control electron or charged particle beams in many scientific instruments. By means of applied voltages, these lens systems can be operated for different purposes. In this context, numerous methods have been performed to calculate focal properties of these lenses. In this study, an artificial neural network (ANN) classification method is utilized to determine the focused/unfocused charged particle beam in the image point as a function of lens voltages for multi-element electrostatic aperture lenses. A data set for training and testing of ANN is taken from the SIMION 8.1 simulation program, which is a well known and proven accuracy program in charged particle optics. Mean squared error results of this study indicate that the ANN classification method provides notable performance characteristics for electrostatic aperture zoom lenses.
NASA Astrophysics Data System (ADS)
Singh, S.; Jaishi, H. P.; Tiwari, R. P.; Tiwari, R. C.
2017-07-01
This paper reports the analysis of soil radon data recorded in the seismic zone-V, located in the northeastern part of India (latitude 23.73N, longitude 92.73E). Continuous measurements of soil-gas emission along Chite fault in Mizoram (India) were carried out with the replacement of solid-state nuclear track detectors at weekly interval. The present study was done for the period from March 2013 to May 2015 using LR-115 Type II detectors, manufactured by Kodak Pathe, France. In order to reduce the influence of meteorological parameters, statistical analysis tools such as multiple linear regression and artificial neural network have been used. Decrease in radon concentration was recorded prior to some earthquakes that occurred during the observation period. Some false anomalies were also recorded which may be attributed to the ongoing crustal deformation which was not major enough to produce an earthquake.
Venkateswarulu, T C; Prabhakar, K Vidya; Kumar, R Bharath; Krupanidhi, S
2017-07-01
Modeling and optimization were performed to enhance production of lactase through submerged fermentation by Bacillus subtilis VUVD001 using artificial neural networks (ANN) and response surface methodology (RSM). The effect of process parameters namely temperature (°C), pH, and incubation time (h) and their combinational interactions on production was studied in shake flask culture by Box-Behnken design. The model was validated by conducting an experiment at optimized process variables which gave the maximum lactase activity of 91.32 U/ml. Compared to traditional activity, 3.48-folds improved production was obtained after RSM optimization. This study clearly shows that both RSM and ANN models provided desired predictions. However, compared with RSM (R 2 = 0.9496), the ANN model (R 2 = 0.99456) gave a better prediction for the production of lactase.
NASA Astrophysics Data System (ADS)
Cranganu, Constantin
2007-10-01
Many sedimentary basins throughout the world exhibit areas with abnormal pore-fluid pressures (higher or lower than normal or hydrostatic pressure). Predicting pore pressure and other parameters (depth, extension, magnitude, etc.) in such areas are challenging tasks. The compressional acoustic (sonic) log (DT) is often used as a predictor because it responds to changes in porosity or compaction produced by abnormal pore-fluid pressures. Unfortunately, the sonic log is not commonly recorded in most oil and/or gas wells. We propose using an artificial neural network to synthesize sonic logs by identifying the mathematical dependency between DT and the commonly available logs, such as normalized gamma ray (GR) and deep resistivity logs (REID). The artificial neural network process can be divided into three steps: (1) Supervised training of the neural network; (2) confirmation and validation of the model by blind-testing the results in wells that contain both the predictor (GR, REID) and the target values (DT) used in the supervised training; and 3) applying the predictive model to all wells containing the required predictor data and verifying the accuracy of the synthetic DT data by comparing the back-predicted synthetic predictor curves (GRNN, REIDNN) to the recorded predictor curves used in training (GR, REID). Artificial neural networks offer significant advantages over traditional deterministic methods. They do not require a precise mathematical model equation that describes the dependency between the predictor values and the target values and, unlike linear regression techniques, neural network methods do not overpredict mean values and thereby preserve original data variability. One of their most important advantages is that their predictions can be validated and confirmed through back-prediction of the input data. This procedure was applied to predict the presence of overpressured zones in the Anadarko Basin, Oklahoma. The results are promising and encouraging.
Przednowek, Krzysztof; Iskra, Janusz; Wiktorowicz, Krzysztof; Krzeszowski, Tomasz; Maszczyk, Adam
2017-12-01
This paper presents a novel approach to planning training loads in hurdling using artificial neural networks. The neural models performed the task of generating loads for athletes' training for the 400 meters hurdles. All the models were calculated based on the training data of 21 Polish National Team hurdlers, aged 22.25 ± 1.96, competing between 1989 and 2012. The analysis included 144 training plans that represented different stages in the annual training cycle. The main contribution of this paper is to develop neural models for planning training loads for the entire career of a typical hurdler. In the models, 29 variables were used, where four characterized the runner and 25 described the training process. Two artificial neural networks were used: a multi-layer perceptron and a network with radial basis functions. To assess the quality of the models, the leave-one-out cross-validation method was used in which the Normalized Root Mean Squared Error was calculated. The analysis shows that the method generating the smallest error was the radial basis function network with nine neurons in the hidden layer. Most of the calculated training loads demonstrated a non-linear relationship across the entire competitive period. The resulting model can be used as a tool to assist a coach in planning training loads during a selected training period.
Iskra, Janusz; Wiktorowicz, Krzysztof; Krzeszowski, Tomasz; Maszczyk, Adam
2017-01-01
Abstract This paper presents a novel approach to planning training loads in hurdling using artificial neural networks. The neural models performed the task of generating loads for athletes’ training for the 400 meters hurdles. All the models were calculated based on the training data of 21 Polish National Team hurdlers, aged 22.25 ± 1.96, competing between 1989 and 2012. The analysis included 144 training plans that represented different stages in the annual training cycle. The main contribution of this paper is to develop neural models for planning training loads for the entire career of a typical hurdler. In the models, 29 variables were used, where four characterized the runner and 25 described the training process. Two artificial neural networks were used: a multi-layer perceptron and a network with radial basis functions. To assess the quality of the models, the leave-one-out cross-validation method was used in which the Normalized Root Mean Squared Error was calculated. The analysis shows that the method generating the smallest error was the radial basis function network with nine neurons in the hidden layer. Most of the calculated training loads demonstrated a non-linear relationship across the entire competitive period. The resulting model can be used as a tool to assist a coach in planning training loads during a selected training period. PMID:29339998
Third Conference on Artificial Intelligence for Space Applications, part 2
NASA Technical Reports Server (NTRS)
Denton, Judith S. (Compiler); Freeman, Michael S. (Compiler); Vereen, Mary (Compiler)
1988-01-01
Topics relative to the application of artificial intelligence to space operations are discussed. New technologies for space station automation, design data capture, computer vision, neural nets, automatic programming, and real time applications are discussed.
Knöpfel, Thomas; Leech, Robert
2018-01-01
Local perturbations within complex dynamical systems can trigger cascade-like events that spread across significant portions of the system. Cascades of this type have been observed across a broad range of scales in the brain. Studies of these cascades, known as neuronal avalanches, usually report the statistics of large numbers of avalanches, without probing the characteristic patterns produced by the avalanches themselves. This is partly due to limitations in the extent or spatiotemporal resolution of commonly used neuroimaging techniques. In this study, we overcome these limitations by using optical voltage (genetically encoded voltage indicators) imaging. This allows us to record cortical activity in vivo across an entire cortical hemisphere, at both high spatial (~30um) and temporal (~20ms) resolution in mice that are either in an anesthetized or awake state. We then use artificial neural networks to identify the characteristic patterns created by neuronal avalanches in our data. The avalanches in the anesthetized cortex are most accurately classified by an artificial neural network architecture that simultaneously connects spatial and temporal information. This is in contrast with the awake cortex, in which avalanches are most accurately classified by an architecture that treats spatial and temporal information separately, due to the increased levels of spatiotemporal complexity. This is in keeping with reports of higher levels of spatiotemporal complexity in the awake brain coinciding with features of a dynamical system operating close to criticality. PMID:29795654
Gonzalez, J; Marchand-Geneste, N; Giraudel, J L; Shimada, T
2012-01-01
To obtain chemical clues on the process of bioactivation by cytochromes P450 1A1 and 1B1, some QSAR studies were carried out based on cellular experiments of the metabolic activation of polycyclic aromatic hydrocarbons and heterocyclic aromatic compounds by those enzymes. Firstly, the 3D structures of cytochromes 1A1 and 1B1 were built using homology modelling with a cytochrome 1A2 template. Using these structures, 32 ligands including heterocyclic aromatic compounds, polycyclic aromatic hydrocarbons and corresponding diols, were docked with LigandFit and CDOCKER algorithms. Binding mode analysis highlighted the importance of hydrophobic interactions and the hydrogen bonding network between cytochrome amino acids and docked molecules. Finally, for each enzyme, multilinear regression and artificial neural network QSAR models were developed and compared. These statistical models highlighted the importance of electronic, structural and energetic descriptors in metabolic activation process, and could be used for virtual screening of ligand databases. In the case of P450 1A1, the best model was obtained with artificial neural network analysis and gave an r (2) of 0.66 and an external prediction [Formula: see text] of 0.73. Concerning P450 1B1, artificial neural network analysis gave a much more robust model, associated with an r (2) value of 0.73 and an external prediction [Formula: see text] of 0.59.
Li, Xiaohong; Zhang, Yuyan
2018-01-01
The ultraviolet spectrophotometric method is often used for determining the content of glycyrrhizic acid from Chinese herbal medicine Glycyrrhiza glabra. Based on the traditional single variable approach, four extraction parameters of ammonia concentration, ethanol concentration, circumfluence time, and liquid-solid ratio are adopted as the independent extraction variables. In the present work, central composite design of four factors and five levels is applied to design the extraction experiments. Subsequently, the prediction models of response surface methodology, artificial neural networks, and genetic algorithm-artificial neural networks are developed to analyze the obtained experimental data, while the genetic algorithm is utilized to find the optimal extraction parameters for the above well-established models. It is found that the optimization of extraction technology is presented as ammonia concentration 0.595%, ethanol concentration 58.45%, return time 2.5 h, and liquid-solid ratio 11.065 : 1. Under these conditions, the model predictive value is 381.24 mg, the experimental average value is 376.46 mg, and the expectation discrepancy is 4.78 mg. For the first time, a comparative study of these three approaches is conducted for the evaluation and optimization of the effects of the extraction independent variables. Furthermore, it is demonstrated that the combinational method of genetic algorithm and artificial neural networks provides a more reliable and more accurate strategy for design and optimization of glycyrrhizic acid extraction from Glycyrrhiza glabra. PMID:29887907
Estimation of effective connectivity using multi-layer perceptron artificial neural network.
Talebi, Nasibeh; Nasrabadi, Ali Motie; Mohammad-Rezazadeh, Iman
2018-02-01
Studies on interactions between brain regions estimate effective connectivity, (usually) based on the causality inferences made on the basis of temporal precedence. In this study, the causal relationship is modeled by a multi-layer perceptron feed-forward artificial neural network, because of the ANN's ability to generate appropriate input-output mapping and to learn from training examples without the need of detailed knowledge of the underlying system. At any time instant, the past samples of data are placed in the network input, and the subsequent values are predicted at its output. To estimate the strength of interactions, the measure of " Causality coefficient " is defined based on the network structure, the connecting weights and the parameters of hidden layer activation function. Simulation analysis demonstrates that the method, called "CREANN" (Causal Relationship Estimation by Artificial Neural Network), can estimate time-invariant and time-varying effective connectivity in terms of MVAR coefficients. The method shows robustness with respect to noise level of data. Furthermore, the estimations are not significantly influenced by the model order (considered time-lag), and the different initial conditions (initial random weights and parameters of the network). CREANN is also applied to EEG data collected during a memory recognition task. The results implicate that it can show changes in the information flow between brain regions, involving in the episodic memory retrieval process. These convincing results emphasize that CREANN can be used as an appropriate method to estimate the causal relationship among brain signals.
Yu, Li; Jin, Weifeng; Li, Xiaohong; Zhang, Yuyan
2018-01-01
The ultraviolet spectrophotometric method is often used for determining the content of glycyrrhizic acid from Chinese herbal medicine Glycyrrhiza glabra . Based on the traditional single variable approach, four extraction parameters of ammonia concentration, ethanol concentration, circumfluence time, and liquid-solid ratio are adopted as the independent extraction variables. In the present work, central composite design of four factors and five levels is applied to design the extraction experiments. Subsequently, the prediction models of response surface methodology, artificial neural networks, and genetic algorithm-artificial neural networks are developed to analyze the obtained experimental data, while the genetic algorithm is utilized to find the optimal extraction parameters for the above well-established models. It is found that the optimization of extraction technology is presented as ammonia concentration 0.595%, ethanol concentration 58.45%, return time 2.5 h, and liquid-solid ratio 11.065 : 1. Under these conditions, the model predictive value is 381.24 mg, the experimental average value is 376.46 mg, and the expectation discrepancy is 4.78 mg. For the first time, a comparative study of these three approaches is conducted for the evaluation and optimization of the effects of the extraction independent variables. Furthermore, it is demonstrated that the combinational method of genetic algorithm and artificial neural networks provides a more reliable and more accurate strategy for design and optimization of glycyrrhizic acid extraction from Glycyrrhiza glabra .
NASA Astrophysics Data System (ADS)
Dumedah, Gift; Walker, Jeffrey P.; Chik, Li
2014-07-01
Soil moisture information is critically important for water management operations including flood forecasting, drought monitoring, and groundwater recharge estimation. While an accurate and continuous record of soil moisture is required for these applications, the available soil moisture data, in practice, is typically fraught with missing values. There are a wide range of methods available to infilling hydrologic variables, but a thorough inter-comparison between statistical methods and artificial neural networks has not been made. This study examines 5 statistical methods including monthly averages, weighted Pearson correlation coefficient, a method based on temporal stability of soil moisture, and a weighted merging of the three methods, together with a method based on the concept of rough sets. Additionally, 9 artificial neural networks are examined, broadly categorized into feedforward, dynamic, and radial basis networks. These 14 infilling methods were used to estimate missing soil moisture records and subsequently validated against known values for 13 soil moisture monitoring stations for three different soil layer depths in the Yanco region in southeast Australia. The evaluation results show that the top three highest performing methods are the nonlinear autoregressive neural network, rough sets method, and monthly replacement. A high estimation accuracy (root mean square error (RMSE) of about 0.03 m/m) was found in the nonlinear autoregressive network, due to its regression based dynamic network which allows feedback connections through discrete-time estimation. An equally high accuracy (0.05 m/m RMSE) in the rough sets procedure illustrates the important role of temporal persistence of soil moisture, with the capability to account for different soil moisture conditions.
Hirshorn, Elizabeth A.; Fiez, Julie A.
2017-01-01
Reading and writing are cultural inventions that have become vital skills to master in modern society. Unfortunately, writing systems are not equally learnable and many individuals struggle to become proficient readers. Languages and their writing systems often have co-varying characteristics, due to both psycholinguistic and socio-cultural forces. This makes it difficult to determine the source of cross-linguistic differences in reading and writing. Nonetheless, it is important to make progress on this issue: a more precise understanding of the factors that affect reading disparities should improve reading instruction theory and practice, and the diagnosis and treatment of reading disorders. In this review, we consider the value of artificial orthographies as a tool for unpacking the factors that create cognitive and neural differences in reading acquisition and skill. We do so by focusing on one dimension that differs among writing systems: grain size. Grain size, or the unit of spoken language that is mapped onto a visual graph, is thought to affect learning, but its impact is still not well understood. We review relevant literature about cross-linguistic writing system differences, the benefits of using artificial orthographies as a research tool, and our recent work with an artificial alphasyllabic writing system for English. We conclude that artificial orthographies can be used to elucidate cross-linguistic principles that affect reading and writing. PMID:28280288
Forecasting the prognosis of choroidal melanoma with an artificial neural network.
Kaiserman, Igor; Rosner, Mordechai; Pe'er, Jacob
2005-09-01
To develop an artificial neural network (ANN) that will forecast the 5-year mortality from choroidal melanoma. Retrospective, comparative, observational cohort study. One hundred fifty-three eyes of 153 consecutive patients with choroidal melanoma (age, 58.4+/-14.6 years) who were treated with ruthenium 106 brachytherapy between 1988 and 1998 at the Department of Ophthalmology, Hadassah University Hospital, Jerusalem, Israel. Patients were observed clinically and ultrasonographically (A- and B-mode standardized ultrasonography). Metastatic screening included liver function tests and liver imaging. Backpropagation ANNs composed of 3 or 4 layers of neurons with various types of transfer functions and training protocols were assessed for their ability to predict the 5-year mortality. The ANNs were trained on 77 randomly selected patients and tested on a different set of 76 patients. Artificial neural networks were compared based on their sensitivity, specificity, forecasting accuracy, area under the receiver operating curves, and likelihood ratios (LRs). The best ANN was compared with the results of logistic regression and the performance of an ocular oncologist. The ability of the ANNs to forecast the 5-year mortality from choroidal melanoma. Thirty-one patients died during the follow-up period of metastatic choroidal melanoma. The best ANN (one hidden layer of 16 neurons) had 84% forecasting accuracy and an LR of 31.5. The number of hidden neurons significantly influenced the ANNs' performance (P<0.001). The performance of the ANNs was not significantly influenced by the training protocol, the number of hidden layers, or the type of transfer function. In comparison, logistic regression reached 86% forecasting accuracy, with a very low LR (0.8), whereas the human expert forecasting ability was <70% (LR, 1.85). Artificial neural networks can be used for forecasting the prognosis of choroidal melanoma and may support decision-making in treating this malignancy.
NASA Technical Reports Server (NTRS)
Lure, Y. M. Fleming; Grody, Norman C.; Chiou, Y. S. Peter; Yeh, H. Y. Michael
1993-01-01
A data fusion system with artificial neural networks (ANN) is used for fast and accurate classification of five earth surface conditions and surface changes, based on seven SSMI multichannel microwave satellite measurements. The measurements include brightness temperatures at 19, 22, 37, and 85 GHz at both H and V polarizations (only V at 22 GHz). The seven channel measurements are processed through a convolution computation such that all measurements are located at same grid. Five surface classes including non-scattering surface, precipitation over land, over ocean, snow, and desert are identified from ground-truth observations. The system processes sensory data in three consecutive phases: (1) pre-processing to extract feature vectors and enhance separability among detected classes; (2) preliminary classification of Earth surface patterns using two separate and parallely acting classifiers: back-propagation neural network and binary decision tree classifiers; and (3) data fusion of results from preliminary classifiers to obtain the optimal performance in overall classification. Both the binary decision tree classifier and the fusion processing centers are implemented by neural network architectures. The fusion system configuration is a hierarchical neural network architecture, in which each functional neural net will handle different processing phases in a pipelined fashion. There is a total of around 13,500 samples for this analysis, of which 4 percent are used as the training set and 96 percent as the testing set. After training, this classification system is able to bring up the detection accuracy to 94 percent compared with 88 percent for back-propagation artificial neural networks and 80 percent for binary decision tree classifiers. The neural network data fusion classification is currently under progress to be integrated in an image processing system at NOAA and to be implemented in a prototype of a massively parallel and dynamically reconfigurable Modular Neural Ring (MNR).
Autonomous Inter-Task Transfer in Reinforcement Learning Domains
2008-08-01
Twentieth International Joint Conference on Artificial Intelli - gence, 2007. 304 Fumihide Tanaka and Masayuki Yamamura. Multitask reinforcement learning...Functions . . . . . . . . . . . . . . . . . . . . . . 17 2.2.3 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . 18 2.2.4 Instance-based...tures [Laird et al., 1986, Choi et al., 2007]. However, TL for RL tasks has only recently been gaining attention in the artificial intelligence
Güntürkün, Rüştü
2010-08-01
In this study, Elman recurrent neural networks have been defined by using conjugate gradient algorithm in order to determine the depth of anesthesia in the continuation stage of the anesthesia and to estimate the amount of medicine to be applied at that moment. The feed forward neural networks are also used for comparison. The conjugate gradient algorithm is compared with back propagation (BP) for training of the neural Networks. The applied artificial neural network is composed of three layers, namely the input layer, the hidden layer and the output layer. The nonlinear activation function sigmoid (sigmoid function) has been used in the hidden layer and the output layer. EEG data has been recorded with Nihon Kohden 9200 brand 22-channel EEG device. The international 8-channel bipolar 10-20 montage system (8 TB-b system) has been used in assembling the recording electrodes. EEG data have been recorded by being sampled once in every 2 milliseconds. The artificial neural network has been designed so as to have 60 neurons in the input layer, 30 neurons in the hidden layer and 1 neuron in the output layer. The values of the power spectral density (PSD) of 10-second EEG segments which correspond to the 1-50 Hz frequency range; the ratio of the total power of PSD values of the EEG segment at that moment in the same range to the total of PSD values of EEG segment taken prior to the anesthesia.
Jones, Iwan; Novikova, Liudmila N; Novikov, Lev N; Renardy, Monika; Ullrich, Andreas; Wiberg, Mikael; Carlsson, Leif; Kingham, Paul J
2018-04-01
Surgical intervention is the current gold standard treatment following peripheral nerve injury. However, this approach has limitations, and full recovery of both motor and sensory modalities often remains incomplete. The development of artificial nerve grafts that either complement or replace current surgical procedures is therefore of paramount importance. An essential component of artificial grafts is biodegradable conduits and transplanted cells that provide trophic support during the regenerative process. Neural crest cells are promising support cell candidates because they are the parent population to many peripheral nervous system lineages. In this study, neural crest cells were differentiated from human embryonic stem cells. The differentiated cells exhibited typical stellate morphology and protein expression signatures that were comparable with native neural crest. Conditioned media harvested from the differentiated cells contained a range of biologically active trophic factors and was able to stimulate in vitro neurite outgrowth. Differentiated neural crest cells were seeded into a biodegradable nerve conduit, and their regeneration potential was assessed in a rat sciatic nerve injury model. A robust regeneration front was observed across the entire width of the conduit seeded with the differentiated neural crest cells. Moreover, the up-regulation of several regeneration-related genes was observed within the dorsal root ganglion and spinal cord segments harvested from transplanted animals. Our results demonstrate that the differentiated neural crest cells are biologically active and provide trophic support to stimulate peripheral nerve regeneration. Differentiated neural crest cells are therefore promising supporting cell candidates to aid in peripheral nerve repair. © 2018 The Authors. Journal of Tissue Engineering and Regenerative Medicine published by John Wiley & Sons, Ltd.
Adaptive artificial neural network for autonomous robot control
NASA Technical Reports Server (NTRS)
Arras, Michael K.; Protzel, Peter W.; Palumbo, Daniel L.
1992-01-01
The topics are presented in viewgraph form and include: neural network controller for robot arm positioning with visual feedback; initial training of the arm; automatic recovery from cumulative fault scenarios; and error reduction by iterative fine movements.
A Composite Model of Wound Segmentation Based on Traditional Methods and Deep Neural Networks
Wang, Changjian; Liu, Xiaohui; Jin, Shiyao
2018-01-01
Wound segmentation plays an important supporting role in the wound observation and wound healing. Current methods of image segmentation include those based on traditional process of image and those based on deep neural networks. The traditional methods use the artificial image features to complete the task without large amounts of labeled data. Meanwhile, the methods based on deep neural networks can extract the image features effectively without the artificial design, but lots of training data are required. Combined with the advantages of them, this paper presents a composite model of wound segmentation. The model uses the skin with wound detection algorithm we designed in the paper to highlight image features. Then, the preprocessed images are segmented by deep neural networks. And semantic corrections are applied to the segmentation results at last. The model shows a good performance in our experiment. PMID:29955227
Deep learning with coherent nanophotonic circuits
NASA Astrophysics Data System (ADS)
Shen, Yichen; Harris, Nicholas C.; Skirlo, Scott; Prabhu, Mihika; Baehr-Jones, Tom; Hochberg, Michael; Sun, Xin; Zhao, Shijie; Larochelle, Hugo; Englund, Dirk; Soljačić, Marin
2017-07-01
Artificial neural networks are computational network models inspired by signal processing in the brain. These models have dramatically improved performance for many machine-learning tasks, including speech and image recognition. However, today's computing hardware is inefficient at implementing neural networks, in large part because much of it was designed for von Neumann computing schemes. Significant effort has been made towards developing electronic architectures tuned to implement artificial neural networks that exhibit improved computational speed and accuracy. Here, we propose a new architecture for a fully optical neural network that, in principle, could offer an enhancement in computational speed and power efficiency over state-of-the-art electronics for conventional inference tasks. We experimentally demonstrate the essential part of the concept using a programmable nanophotonic processor featuring a cascaded array of 56 programmable Mach-Zehnder interferometers in a silicon photonic integrated circuit and show its utility for vowel recognition.
NASA Astrophysics Data System (ADS)
Sharma, Gaurav; Friedenberg, David A.; Annetta, Nicholas; Glenn, Bradley; Bockbrader, Marcie; Majstorovic, Connor; Domas, Stephanie; Mysiw, W. Jerry; Rezai, Ali; Bouton, Chad
2016-09-01
Neuroprosthetic technology has been used to restore cortical control of discrete (non-rhythmic) hand movements in a paralyzed person. However, cortical control of rhythmic movements which originate in the brain but are coordinated by Central Pattern Generator (CPG) neural networks in the spinal cord has not been demonstrated previously. Here we show a demonstration of an artificial neural bypass technology that decodes cortical activity and emulates spinal cord CPG function allowing volitional rhythmic hand movement. The technology uses a combination of signals recorded from the brain, machine-learning algorithms to decode the signals, a numerical model of CPG network, and a neuromuscular electrical stimulation system to evoke rhythmic movements. Using the neural bypass, a quadriplegic participant was able to initiate, sustain, and switch between rhythmic and discrete finger movements, using his thoughts alone. These results have implications in advancing neuroprosthetic technology to restore complex movements in people living with paralysis.