ERIC Educational Resources Information Center
Martin, Bobby Ray
This study was designed and conducted to determine the effect of one semester of study of one of the Blue, Green or Yellow Versions of Biological Sciences Curriculum Study (BSCS) biology on the scientific attitude of tenth-grade public shchool biology students. Twelve biology teachers participated in the study by administering the Scientific…
Biological effects of anthropogenic contaminants in the San Francisco Estuary
Thompson, B.; Adelsbach, T.; Brown, C.; Hunt, J.; Kuwabara, J.; Neale, J.; Ohlendorf, H.; Schwarzbach, S.; Spies, R.; Taberski, K.
2007-01-01
Concentrations of many anthropogenic contaminants in the San Francisco Estuary exist at levels that have been associated with biological effects elsewhere, so there is a potential for them to cause biological effects in the Estuary. The purpose of this paper is to summarize information about biological effects on the Estuary's plankton, benthos, fish, birds, and mammals, gathered since the early 1990s, focusing on key accomplishments. These studies have been conducted at all levels of biological organization (sub-cellular through communities), but have included only a small fraction of the organisms and contaminants of concern in the region. The studies summarized provide a body of evidence that some contaminants are causing biological impacts in some biological resources in the Estuary. However, no general patterns of effects were apparent in space and time, and no single contaminant was consistently related to effects among the biota considered. These conclusions reflect the difficulty in demonstrating biological effects due specifically to contamination because there is a wide range of sensitivity to contaminants among the Estuary's many organisms. Additionally, the spatial and temporal distribution of contamination in the Estuary is highly variable, and levels of contamination covary with other environmental factors, such as freshwater inflow or sediment-type. Federal and State regulatory agencies desire to develop biological criteria to protect the Estuary's biological resources. Future studies of biological effects in San Francisco Estuary should focus on the development of meaningful indicators of biological effects, and on key organism and contaminants of concern in long-term, multifaceted studies that include laboratory and field experiments to determine cause and effect to adequately inform management and regulatory decisions. ?? 2006 Elsevier Inc. All rights reserved.
Biostack: A study of the biological effects on HZE galactic cosmic radiation
NASA Technical Reports Server (NTRS)
Buecker, H.
1975-01-01
The Biostack experiment designed to study the effect of individual heavy nucleii of the cosmic radiation environment upon biological systems during actual space flight is described. In each Biostack, several thousand biological objects were hit by an HZE particle. The response of the biological objects was studied. Results are discussed in terms of sensitivity to the hit.
A Study of the Comparative Effectiveness of Zoology Prerequisites at Slippery Rock State College.
ERIC Educational Resources Information Center
Morrison, William Sechler
This study compared the effectiveness of three sequences of prerequisite courses required before taking zoology. Sequence 1 prerequisite courses consisted of general biology and human biology; Sequence 2 consisted of general biology; and Sequence 3 required cell biology. Zoology students in the spring of 1972 were pretest and a posttest. The mean…
ERIC Educational Resources Information Center
Gutierrez, Arnel F.
2014-01-01
The complex concepts and vocabulary of biology classes discourage many students. In this study, a pretest-posttest model was used to test the effectiveness of an educational card game in reinforcing biological concepts in comparison with traditional teaching methods. The subjects of this study were two biology classes at Bulacan State…
Dean E. Pearson; Ragan M. Callaway
2005-01-01
Classical biological control of weeds currently operates under the assumption that biological control agents are safe (i.e., low risk) if they do not directly attack nontarget species. However, recent studies indicate that even highly host-specific biological control agents can impact nontarget species through indirect effects. This finding has profound...
Non-target effects of an introduced biological control agent on deer mouse ecology
Dean E. Pearson; Kevin S. McKelvey; Leonard F. Ruggiero
2000-01-01
Release of exotic insects as biological control agents is a common approach to controlling exotic plants. Though controversy has ensued regarding the deleterious direct effects of biological control agents to non-target species, few have examined the indirect effects of a "well-behaved" biological control agent on native fauna. We studied a grassland in west-...
A critical component in the design of the Chemical Effects in Biological Systems (CEBS) Knowledgebase is a strategy to capture toxicogenomics study protocols and the toxicity endpoint data (clinical pathology and histopathology). A Study is generally an experiment carried out du...
Teaching Biology Field Courses in the Wake of Environmental Disasters.
ERIC Educational Resources Information Center
Baca, Bart J.
1982-01-01
A biology field course organized to study the effects of the June 1979 Mexican oil spill on the marine biology of the shores of south Texas and Mexico is described, demonstrating how to effectively couple a biology classroom course with a natural or human caused environmental disaster. (Author/DC)
What Makes Biology Learning Difficult and Effective: Students' Views
ERIC Educational Resources Information Center
Cimer, Atilla
2012-01-01
The present study aims to determine the biological topics that students have difficulties learning, the reasons why secondary school students have difficulties in learning biology, and ways to improve the effectiveness of students' biology learning. For these purposes, a self-administered questionnaire including three open-ended questions was…
ERIC Educational Resources Information Center
Garrett, Gordon Ronald
The purposes of this study are (1) to determine whether college students who have taken Biological Sciences Curriculum Study (BSCS) High School Biology attain significantly different grades in college biology courses at the University of Missouri than do college students who have taken a non-BSCS high school biology course, and (2) to determine if…
Biel, Rachel; Brame, Cynthia J.
2016-01-01
Online courses are a large and growing part of the undergraduate education landscape, but many biology instructors are skeptical about the effectiveness of online instruction. We reviewed studies comparing the effectiveness of online and face-to-face (F2F) undergraduate biology courses. Five studies compared student performance in multiple course sections at community colleges, while eight were smaller scale and compared student performance in particular biology courses at a variety of types of institutions. Of the larger-scale studies, two found that students in F2F sections outperformed students in online sections, and three found no significant difference; it should be noted, however, that these studies reported little information about course design. Of the eight smaller scale studies, six found no significant difference in student performance between the F2F and online sections, while two found that the online sections outperformed the F2F sections. In alignment with general findings about online teaching and learning, these results suggest that well-designed online biology courses can be effective at promoting student learning. Three recommendations for effective online instruction in biology are given: the inclusion of an online orientation to acclimate students to the online classroom; student-instructor and student-student interactions facilitated through synchronous and asynchronous communication; and elements that prompt student reflection and self-assessment. We conclude that well-designed online biology courses can be as effective as their traditional counterparts, but that more research is needed to elucidate specific course elements and structures that can maximize online students’ learning of key biology skills and concepts. PMID:28101268
Biel, Rachel; Brame, Cynthia J
2016-12-01
Online courses are a large and growing part of the undergraduate education landscape, but many biology instructors are skeptical about the effectiveness of online instruction. We reviewed studies comparing the effectiveness of online and face-to-face (F2F) undergraduate biology courses. Five studies compared student performance in multiple course sections at community colleges, while eight were smaller scale and compared student performance in particular biology courses at a variety of types of institutions. Of the larger-scale studies, two found that students in F2F sections outperformed students in online sections, and three found no significant difference; it should be noted, however, that these studies reported little information about course design. Of the eight smaller scale studies, six found no significant difference in student performance between the F2F and online sections, while two found that the online sections outperformed the F2F sections. In alignment with general findings about online teaching and learning, these results suggest that well-designed online biology courses can be effective at promoting student learning. Three recommendations for effective online instruction in biology are given: the inclusion of an online orientation to acclimate students to the online classroom; student-instructor and student-student interactions facilitated through synchronous and asynchronous communication; and elements that prompt student reflection and self-assessment. We conclude that well-designed online biology courses can be as effective as their traditional counterparts, but that more research is needed to elucidate specific course elements and structures that can maximize online students' learning of key biology skills and concepts.
Gender Inequality in Biology Classes in China and Its Effects on Students' Short-Term Outcomes
ERIC Educational Resources Information Center
Liu, Ning; Neuhaus, Birgit
2014-01-01
This study investigated gender inequality in biology lessons and analysed the effects of the observed inequality on students' short-term knowledge achievement, situational interest and students' evaluation of teaching (SET). Twenty-two biology teachers and 803 7th-grade students from rural and urban classrooms in China participated in the study.…
ERIC Educational Resources Information Center
Rifai, A. Hind; And Others
1992-01-01
Describes age-related changes in central nervous system pertinent to biology of suicide. Reviews postmortem biological studies of brains of suicides and suicide attempters. As suicide attempts in elderly are characterized by violence, discusses biological studies of impulsive violence. Describes data on effect of degenerative diseases on serotonin…
ERIC Educational Resources Information Center
Murphy, Glenn Wayne
The relative effectiveness of "content-centered" and "process-centered" biology laboratory courses in a freshman general biology course was investigated by administering the Nelson Biology Test, Science Attitude Scale, EPS II (a problem solving test), and an Interest Inventory at the beginning and end of the one quarter course. Course examination…
The potential roles of biological soil crusts in dryland hydrologic cycles
Belnap, J.
2006-01-01
Biological soil crusts (BSCs) are the dominant living cover in many drylands of the world. They possess many features that can influence different aspects of local hydrologic cycles, including soil porosity, absorptivity, roughness, aggregate stability, texture, pore formation, and water retention. The influence of biological soil crusts on these factors depends on their internal and external structure, which varies with climate, soil, and disturbance history. This paper presents the different types of biological soil crusts, discusses how crust type likely influences various aspects of the hydrologic cycle, and reviews what is known and not known about the influence of biological crusts on sediment production and water infiltration versus runoff in various drylands around the world. Most studies examining the effect of biological soil crusts on local hydrology are done by comparing undisturbed sites with those recently disturbed by the researchers. Unfortunately, this greatly complicates interpretation of the results. Applied disturbances alter many soil features such as soil texture, roughness, aggregate stability, physical crusting, porosity, and bulk density in ways that would not necessarily be the same if crusts were not naturally present. Combined, these studies show little agreement on how biological crusts affect water infiltration or runoff. However, when studies are separated by biological crust type and utilize naturally occurring differences among these types, results indicate that biological crusts in hyperarid regions reduce infiltration and increase runoff, have mixed effects in and regions, and increase infiltration and reduce runoff in semiarid cool and cold drylands. However, more studies are needed before broad generalizations can be made on how biological crusts affect infiltration and runoff. We especially need studies that control for sub-surface soil features such as bulk density, micro- and macropores, and biological crust structure. Unlike the mixed effects of biological crusts on infiltration and runoff among regions, almost all studies show that biological crusts reduce sediment production, regardless of crust or dryland type.
The potential roles of biological soil crusts in dryland hydrologic cycles
NASA Astrophysics Data System (ADS)
Belnap, Jayne
2006-10-01
Biological soil crusts (BSCs) are the dominant living cover in many drylands of the world. They possess many features that can influence different aspects of local hydrologic cycles, including soil porosity, absorptivity, roughness, aggregate stability, texture, pore formation, and water retention. The influence of biological soil crusts on these factors depends on their internal and external structure, which varies with climate, soil, and disturbance history. This paper presents the different types of biological soil crusts, discusses how crust type likely influences various aspects of the hydrologic cycle, and reviews what is known and not known about the influence of biological crusts on sediment production and water infiltration versus runoff in various drylands around the world. Most studies examining the effect of biological soil crusts on local hydrology are done by comparing undisturbed sites with those recently disturbed by the researchers. Unfortunately, this greatly complicates interpretation of the results. Applied disturbances alter many soil features such as soil texture, roughness, aggregate stability, physical crusting, porosity, and bulk density in ways that would not necessarily be the same if crusts were not naturally present. Combined, these studies show little agreement on how biological crusts affect water infiltration or runoff. However, when studies are separated by biological crust type and utilize naturally occurring differences among these types, results indicate that biological crusts in hyperarid regions reduce infiltration and increase runoff, have mixed effects in arid regions, and increase infiltration and reduce runoff in semiarid cool and cold drylands. However, more studies are needed before broad generalizations can be made on how biological crusts affect infiltration and runoff. We especially need studies that control for sub-surface soil features such as bulk density, micro- and macropores, and biological crust structure. Unlike the mixed effects of biological crusts on infiltration and runoff among regions, almost all studies show that biological crusts reduce sediment production, regardless of crust or dryland type.
Vetvicka, Vaclav; Vetvickova, Jana
2016-12-01
Thymus species are popular spices and contain volatile oils as main chemical constituents. Recently, plant-derived essential oils are gaining significant attention due to their significant biological activities. Seven different thymus-derived essential oils were compared in our study. First, we focused on their chemical composition, which was followed up by testing their effects on phagocytosis, cytokine production, chemotaxis, edema inhibition, and liver protection. We found limited biological activities among tested oils, with no correlation between composition and biological effects. Similarly, no oils were effective in every reaction. Based on our data, the tested biological use of these essential oils is questionable.
Grifoni, D; Zipoli, G; Sabatini, F; Messeri, G; Bacci, L
2013-12-01
Action spectrum (AS) describes the relative effectiveness of ultraviolet (UV) radiation in producing biological effects and allows spectral UV irradiance to be weighted in order to compute biologically effective UV radiation (UVBE). The aim of this research was to study the seasonal and latitudinal distribution over Europe of daily UVBE doses responsible for various biological effects on humans and plants. Clear sky UV radiation spectra were computed at 30-min time intervals for the first day of each month of the year for Rome, Potsdam and Trondheim using a radiative transfer model fed with climatological data. Spectral data were weighted using AS for erythema, vitamin D synthesis, cataract and photokeratitis for humans, while the generalised plant damage and the plant damage AS were used for plants. The daily UVBE doses for the above-mentioned biological processes were computed and are analysed in this study. The patterns of variation due to season (for each location) and latitude (for each date) resulted as being specific for each adopted AS. The biological implications of these results are briefly discussed highlighting the importance of a specific UVBE climatology for each biological process.
Joshi, Kumud; Hassan, Sherif S; Ramaraj, Pandurangan
2017-01-01
Dehydroepiandrosterone (DHEA) is a weak androgen and had been shown to have anti-cancer, anti-adipogenic and anti-inflammatory effects on mouse and other rodent models, but not on humans, suggesting a systemic level difference between mouse and human. Our previous study on DHEA biological functions involving a variety of cell lines, suggested that the functional differences between mouse and human existed even at the cellular level. Hence, using mouse and human melanoma cell models, in-vitro effects of DHEA on cell growth, mechanism of cell death and mechanism of DHEA action were studied. Results indicated a differential biological effects of DHEA between mouse and human melanoma cell lines. These in-vitro studies also suggested that the differential biological effects observed between these two cell lines could be due to the difference in the way DHEA was processed or metabolized inside the cell.
ERIC Educational Resources Information Center
Hand, Brian; Hohenshell, Liesl; Prain, Vaughan
2007-01-01
This paper reports on a study that examined the cumulative effects on students' learning of science, and perceptions of the role of writing in learning, when the students engaged in multiple writing tasks with planning strategy support. The study was conducted with Year 10 biology students who completed two consecutive units on Cells and Molecular…
Endotoxin contamination: a key element in the interpretation of nanosafety studies.
Li, Yang; Boraschi, Diana
2016-02-01
The study of toxicity and potential risks of engineered nanoparticles is of particular importance in nanomedicine. Endotoxin, a common contaminant of bacterial origin, has biological effects that can mask the true biological effects of nanoparticles, if its presence is overlooked. In this review, we report the features of nanoparticle contamination by endotoxin, and the different biological effects of endotoxin-contaminated nanoparticles. We will describe different methods for endotoxin detection applied to nanoparticles, and discuss their pros and cons. Eventually, we describe various methods for eliminating endotoxin contamination in nanoparticles. Although there is no universal technique for efficiently removing endotoxin from nanoparticles, specific solutions can be found case by case, which can allow us to perform nanosafety studies in biologically relevant conditions.
Gutierrez, Arnel F.
2014-01-01
The complex concepts and vocabulary of biology classes discourage many students. In this study, a pretest–posttest model was used to test the effectiveness of an educational card game in reinforcing biological concepts in comparison with traditional teaching methods. The subjects of this study were two biology classes at Bulacan State University–Sarmiento Campus. Both classes received conventional instruction; however, the experimental group's instruction was supplemented with the card game, while the control group's instruction was reinforced with traditional exercises and assignments. The score increases from pretest to posttest showed that both methods effectively reinforced biological concepts, but a t test showed that the card game is more effective than traditional teaching methods. Additionally, students from the experimental group evaluated the card game using five criteria: goals, design, organization, playability, and usefulness. The students rated the material very satisfactory. PMID:24591506
Gutierrez, Arnel F
2014-01-01
The complex concepts and vocabulary of biology classes discourage many students. In this study, a pretest-posttest model was used to test the effectiveness of an educational card game in reinforcing biological concepts in comparison with traditional teaching methods. The subjects of this study were two biology classes at Bulacan State University-Sarmiento Campus. Both classes received conventional instruction; however, the experimental group's instruction was supplemented with the card game, while the control group's instruction was reinforced with traditional exercises and assignments. The score increases from pretest to posttest showed that both methods effectively reinforced biological concepts, but a t test showed that the card game is more effective than traditional teaching methods. Additionally, students from the experimental group evaluated the card game using five criteria: goals, design, organization, playability, and usefulness. The students rated the material very satisfactory.
Innovative Biological Water Treatment for the Removal of Elevated Ammonia
The objective of this work was to demonstrate the effectiveness of an innovative and simple biological water treatment approach for removing 3.3 mg N/L ammonia and iron from water using a pilot study conducted at a utility in Iowa. Biological water treatment can be an effective a...
ERIC Educational Resources Information Center
Förtsch, Christian; Werner, Sonja; von Kotzebue, Lena; Neuhaus, Birgit J.
2016-01-01
This study examined the effects of teachers' biology-specific dimensions of professional knowledge--pedagogical content knowledge (PCK) and content knowledge (CK)--and cognitively activating biology instruction, as a feature of instructional quality, on students' learning. The sample comprised 39 German secondary school teachers whose lessons on…
The Effects of Explicit Visual Cues in Reading Biological Diagrams
ERIC Educational Resources Information Center
Ge, Yun-Ping; Unsworth, Len; Wang, Kuo-Hua
2017-01-01
Drawing on cognitive theories, this study intends to investigate the effects of explicit visual cues which have been proposed as a critical factor in facilitating understanding of biological images. Three diagrams from Taiwanese textbooks with implicit visual cues, involving the concepts of biological classification systems, fish taxonomy, and…
The Effect of Gender on the Achievement of Students in Biology Using the Jigsaw Method
ERIC Educational Resources Information Center
Amedu, Odagboyi Isaiah
2015-01-01
This paper examined the effect of gender on the achievement of students in biology using the jigsaw method. The sample was made up of 87 students in SS1 in a secondary school. The study utilized an intact class because the study took place in a normal school term. There were 39 males and 49 females. The Biology Achievement Test (BAT) was…
Mallick, Pankajini; Taneja, Guncha; Moorthy, Bhagavatula; Ghose, Romi
2017-06-01
Drug-metabolizing enzymes (DMEs) are primarily down-regulated during infectious and inflammatory diseases, leading to disruption in the metabolism of small molecule drugs (smds), which are increasingly being prescribed therapeutically in combination with biologics for a number of chronic diseases. The biologics may exert pro- or anti-inflammatory effect, which may in turn affect the expression/activity of DMEs. Thus, patients with infectious/inflammatory diseases undergoing biologic/smd treatment can have complex changes in DMEs due to combined effects of the disease and treatment. Areas covered: We will discuss clinical biologics-SMD interaction and regulation of DMEs during infection and inflammatory diseases. Mechanistic studies will be discussed and consequences on biologic-small molecule combination therapy on disease outcome due to changes in drug metabolism will be highlighted. Expert opinion: The involvement of immunomodulatory mediators in biologic-SMDs is well known. Regulatory guidelines recommend appropriate in vitro or in vivo assessments for possible interactions. The role of cytokines in biologic-SMDs has been documented. However, the mechanisms of drug-drug interactions is much more complex, and is probably multi-factorial. Studies aimed at understanding the mechanism by which biologics effect the DMEs during inflammation/infection are clinically important.
An Experimental Study of a BSCS-Style Laboratory Approach for University General Biology.
ERIC Educational Resources Information Center
Leonard, William H.
1983-01-01
A Biological Sciences Curriculum Study (BSCS) inquiry approach for university general biology laboratory was tested against a well-established commercial program judged to be highly directive. The BSCS was found to be more effective in learning biology laboratory concepts than the commercial program as measured by a laboratory concepts test.…
Pappas, Dimitrios A; Kremer, Joel M; Reed, George; Greenberg, Jeffrey D; Curtis, Jeffrey R
2014-04-01
Comparative effectiveness research has recently attracted considerable attention. The Comparative Effectiveness Registry to study Therapies for Arthritis and Inflammatory Conditions (CERTAIN) is an ongoing prospective cohort study of adult patients with Rheumatoid Arthritis (RA). CERTAIN uses the existing Consortium of Rheumatology Researchers of North America (CORRONA) network of participating private and academic sites in order to recruit patients fulfilling the 1987 ACR criteria that have at least moderate disease activity. Patients starting or switching biologic agents either anti-TNF therapy or a non anti-TNF biologic are eligible for enrollment, depending on the treatment selected by their physician. Enrollment is expected to be completed by March of 2014, and 2711 patients will participate in the study. As of October 7th 2013, 2234 patients have been enrolled. Patient visits and laboratory blood work are mandated every three months for one year. Safety data is collected through one year and beyond. The primary comparative effectiveness endpoint is attainment of low RA disease activity at one year among patients who have been exposed to at least one prior TNF-α inhibitor agent prior to enrollment. Multiple secondary effectiveness and safety endpoints will be addressed by investigating the entire population enrolled (naïve and biologic experienced). The unique design features of CERTAIN will inform comparative effectiveness and safety questions for choosing biologic agents for the management of RA.
Effectiveness and safety of tofacitinib in rheumatoid arthritis: a cohort study.
Machado, Marina Amaral de Ávila; Moura, Cristiano Soares de; Guerra, Steve Ferreira; Curtis, Jeffrey R; Abrahamowicz, Michal; Bernatsky, Sasha
2018-03-23
Tofacitinib is the first oral Janus kinase inhibitor approved for the treatment of rheumatoid arthritis (RA). We compared the effectiveness and safety of tofacitinib, disease-modifying antirheumatic drugs (DMARDs), tumor necrosis factor inhibitors (TNFi), and non-TNF biologics in patients with RA previously treated with methotrexate. We used MarketScan® databases (2011-2014) to study methotrexate-exposed patients with RA who were newly prescribed tofacitinib, DMARDs other than methotrexate, and biologics. The date of first prescription was defined as the cohort entry. The therapy was considered effective if all of the following criteria from a claims-based algorithm were achieved at the first year of follow-up: high adherence, no biologic or tofacitinib switch or addition, no DMARD switch or addition, no increase in dose or frequency of index drug, no more than one glucocorticoid joint injection, and no new/increased oral glucocorticoid dose. The safety outcome was serious infections requiring hospitalization. Non-TNF biologics comprised the reference group. We included 21,832 patients with RA, including 0.8% treated with tofacitinib, 24.7% treated with other DMARDs, 61.2% who had started therapy with TNFi, and 13.3% treated with non-TNF biologics. The rates of therapy effectiveness were 15.4% for tofacitinib, 11.1% for DMARDs, 18.6% for TNFi, and 19.8% for non-TNF biologics. In adjusted analyses, tofacitinib and non-TNF biologics appeared to have similar effectiveness rates, whereas DMARD initiators were less effective than non-TNF biologics. We could not clearly establish if tofacitinib was associated with a higher rate of serious infections. In patients with RA previously treated with methotrexate, our comparisons of tofacitinib with non-TNF biologics, though not definitive, did not demonstrate differences with respect to hospitalized infections or effectiveness.
[Side effects of biologic therapies in psoriasis].
Altenburg, A; Augustin, M; Zouboulis, C C
2018-04-01
The introduction of biologics has revolutionized the treatment of moderate to severe plaque psoriasis. Due to the continuous expansion of biological therapies for psoriasis, it is particularly important to acknowledge efficacy and safety of the compounds not only in clinical trials but also in long-term registry-based observational studies. Typical side effects and significant risks of antipsoriatic biologic therapies considering psoriatic control groups are presented. A selective literature search was conducted in PubMed and long-term safety studies of the psoriasis registries PsoBest, PSOLAR and BADBIR were evaluated. To assess the long-term safety of biologics, the evaluation of the course of large patient cohorts in long-term registries is of particular medical importance. Newer biologic drugs seem to exhibit a better safety profile than older ones.
A Study Assessing the Potential of Negative Effects in Interdisciplinary Math-Biology Instruction
ERIC Educational Resources Information Center
Madlung, Andreas; Bremer, Martina; Himelblau, Edward; Tullis, Alexa
2011-01-01
There is increasing enthusiasm for teaching approaches that combine mathematics and biology. The call for integrating more quantitative work in biology education has led to new teaching tools that improve quantitative skills. Little is known, however, about whether increasing interdisciplinary work can lead to adverse effects, such as the…
Biology Division progress report for period of October 1, 1988--September 30, 1989
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-02-01
The Biology Division of the Oak Ridge National Laboratory is one component of the Department of Energy's intramural program in life sciences. With respect to experimental biology, the congressionally mandated mission of this Office is to study adverse health effects of energy production and utilization. Within this stated broad mission, common themes among the research programs of the Biology Division are interactions of animals, cells, and molecules with their respective environments. Investigations focus on genetic and somatic effects of radiation and chemicals. Goals include identification and quantification of these effects, elucidation of pathways by which the effects are expressed, assessmentmore » of risks associated with radiation and chemical exposures, and establishment of strategies for extrapolation of risk data from animals to humans. Concurrent basic studies in genetics, biochemistry, molecular biology, and cell biology illuminate normal life processes as prerequisites to comprehending mutagenic and carcinogenic effects of environmental agents. This Progress Report is intended to provide both broad perspectives of the Division's research programs and synopses of recent achievements. Readers are invited to contact individual principal investigators for more detailed information, including reprints of publications. 120 refs.« less
Laurent, Olivier; Gomolka, Maria; Haylock, Richard; Blanchardon, Eric; Giussani, Augusto; Atkinson, Will; Baatout, Sarah; Bingham, Derek; Cardis, Elisabeth; Hall, Janet; Tomasek, Ladislav; Ancelet, Sophie; Badie, Christophe; Bethel, Gary; Bertho, Jean-Marc; Bouet, Ségolène; Bull, Richard; Challeton-de Vathaire, Cécile; Cockerill, Rupert; Davesne, Estelle; Ebrahimian, Teni; Engels, Hilde; Gillies, Michael; Grellier, James; Grison, Stephane; Gueguen, Yann; Hornhardt, Sabine; Ibanez, Chrystelle; Kabacik, Sylwia; Kotik, Lukas; Kreuzer, Michaela; Lebacq, Anne Laure; Marsh, James; Nosske, Dietmar; O'Hagan, Jackie; Pernot, Eileen; Puncher, Matthew; Rage, Estelle; Riddell, Tony; Roy, Laurence; Samson, Eric; Souidi, Maamar; Turner, Michelle C; Zhivin, Sergey; Laurier, Dominique
2016-06-01
The potential health impacts of chronic exposures to uranium, as they occur in occupational settings, are not well characterized. Most epidemiological studies have been limited by small sample sizes, and a lack of harmonization of methods used to quantify radiation doses resulting from uranium exposure. Experimental studies have shown that uranium has biological effects, but their implications for human health are not clear. New studies that would combine the strengths of large, well-designed epidemiological datasets with those of state-of-the-art biological methods would help improve the characterization of the biological and health effects of occupational uranium exposure. The aim of the European Commission concerted action CURE (Concerted Uranium Research in Europe) was to develop protocols for such a future collaborative research project, in which dosimetry, epidemiology and biology would be integrated to better characterize the effects of occupational uranium exposure. These protocols were developed from existing European cohorts of workers exposed to uranium together with expertise in epidemiology, biology and dosimetry of CURE partner institutions. The preparatory work of CURE should allow a large scale collaborative project to be launched, in order to better characterize the effects of uranium exposure and more generally of alpha particles and low doses of ionizing radiation.
ERIC Educational Resources Information Center
Marsteller, Robert B.; Bodzin, Alec M.
2015-01-01
An online curriculum about biological evolution was designed to promote increased student content knowledge and evidentiary reasoning. A feasibility study was conducted with 77 rural high school biology students who learned with the online biological evolution unit. Data sources included the Biological Evolution Assessment Measure (BEAM), an…
[Comparison study between biological vision and computer vision].
Liu, W; Yuan, X G; Yang, C X; Liu, Z Q; Wang, R
2001-08-01
The development and bearing of biology vision in structure and mechanism were discussed, especially on the aspects including anatomical structure of biological vision, tentative classification of reception field, parallel processing of visual information, feedback and conformity effect of visual cortical, and so on. The new advance in the field was introduced through the study of the morphology of biological vision. Besides, comparison between biological vision and computer vision was made, and their similarities and differences were pointed out.
Biological risk factors for suicidal behaviors: a meta-analysis
Chang, B P; Franklin, J C; Ribeiro, J D; Fox, K R; Bentley, K H; Kleiman, E M; Nock, M K
2016-01-01
Prior studies have proposed a wide range of potential biological risk factors for future suicidal behaviors. Although strong evidence exists for biological correlates of suicidal behaviors, it remains unclear if these correlates are also risk factors for suicidal behaviors. We performed a meta-analysis to integrate the existing literature on biological risk factors for suicidal behaviors and to determine their statistical significance. We conducted a systematic search of PubMed, PsycInfo and Google Scholar for studies that used a biological factor to predict either suicide attempt or death by suicide. Inclusion criteria included studies with at least one longitudinal analysis using a biological factor to predict either of these outcomes in any population through 2015. From an initial screen of 2541 studies we identified 94 cases. Random effects models were used for both meta-analyses and meta-regression. The combined effect of biological factors produced statistically significant but relatively weak prediction of suicide attempts (weighted mean odds ratio (wOR)=1.41; CI: 1.09–1.81) and suicide death (wOR=1.28; CI: 1.13–1.45). After accounting for publication bias, prediction was nonsignificant for both suicide attempts and suicide death. Only two factors remained significant after accounting for publication bias—cytokines (wOR=2.87; CI: 1.40–5.93) and low levels of fish oil nutrients (wOR=1.09; CI: 1.01–1.19). Our meta-analysis revealed that currently known biological factors are weak predictors of future suicidal behaviors. This conclusion should be interpreted within the context of the limitations of the existing literature, including long follow-up intervals and a lack of tests of interactions with other risk factors. Future studies addressing these limitations may more effectively test for potential biological risk factors. PMID:27622931
USDA-ARS?s Scientific Manuscript database
Biological control remains an effective option for managing large-scale weed problems in natural areas. The predation or parasitism of biological control agents by other species present in the introduced range (biotic resistance) is well studied and is often cited as the cause for a lack of establis...
Effects of Subject-Matter Knowledge in the Teaching of Biology and Physics.
ERIC Educational Resources Information Center
Hashweh, Maher Z.
An analysis of science teacher's knowledge of specific biology and physics topics and the effects of this knowledge on their planning for instruction and on simulated teaching are discussed in this report. Six experienced secondary school teachers participated in the study. Each teacher's knowledge of a biology topic and a physics topic was…
2014-01-01
Background Comparative effectiveness research has recently attracted considerable attention. The Comparative Effectiveness Registry to study Therapies for Arthritis and Inflammatory Conditions (CERTAIN) is an ongoing prospective cohort study of adult patients with Rheumatoid Arthritis (RA). Methods/Design CERTAIN uses the existing Consortium of Rheumatology Researchers of North America (CORRONA) network of participating private and academic sites in order to recruit patients fulfilling the 1987 ACR criteria that have at least moderate disease activity. Patients starting or switching biologic agents either anti-TNF therapy or a non anti-TNF biologic are eligible for enrollment, depending on the treatment selected by their physician. Enrollment is expected to be completed by March of 2014, and 2711 patients will participate in the study. As of October 7th 2013, 2234 patients have been enrolled. Patient visits and laboratory blood work are mandated every three months for one year. Safety data is collected through one year and beyond. The primary comparative effectiveness endpoint is attainment of low RA disease activity at one year among patients who have been exposed to at least one prior TNF-α inhibitor agent prior to enrollment. Multiple secondary effectiveness and safety endpoints will be addressed by investigating the entire population enrolled (naïve and biologic experienced). Discussion The unique design features of CERTAIN will inform comparative effectiveness and safety questions for choosing biologic agents for the management of RA. PMID:24690143
The Effectiveness of a Case Study-Based First-Year Biology Class at a Black Women's College
ERIC Educational Resources Information Center
Pai, Aditi; Benning, Tracy; Woods, Natasha; McGinnis, Gene; Chu, Joanne; Netherton, Josh; Bauerle, Cynthia
2010-01-01
The authors used a case study-based approach in the introductory biology course at Spelman College. The course taught to entering freshmen was divided into three modules--ecology, evolution, and biodiversity, each designed around a case study. They noted that (1) case study teaching was dramatically more effective than the traditional lecture…
Endocrine Disrupting Substances (EDSs) may have certain biological effects including delayed effects, multigenerational effects, and non-monotonic dose response relationships (NMDRs) that require careful consideration when determining environmental hazards. The case studies evalu...
Effects of saltcedar invasion and biological control on small mammals
USDA-ARS?s Scientific Manuscript database
Effects of invasive saltcedars (Tamarix spp.) on bird populations and communities have received considerable interest, but impacts on other vertebrate taxa have received less attention. Moreover, only one published study examined effects on vertebrates of biological control efforts directed at saltc...
Endocrine Disrupting Substances (EDSs) may have certain biological effects including delayed effects, multigenerational effects, and non-monotonic dose response relationships (NMDRs) that require careful consideration when determining environmental hazards. The case studies evalu...
Selenistasis: Epistatic Effects of Selenium on Cardiovascular Phenotype
Joseph, Jacob; Loscalzo, Joseph
2013-01-01
Although selenium metabolism is intricately linked to cardiovascular biology and function, and deficiency of selenium is associated with cardiac pathology, utilization of selenium in the prevention and treatment of cardiovascular disease remains an elusive goal. From a reductionist standpoint, the major function of selenium in vivo is antioxidant defense via its incorporation as selenocysteine into enzyme families such as glutathione peroxidases and thioredoxin reductases. In addition, selenium compounds are heterogeneous and have complex metabolic fates resulting in effects that are not entirely dependent on selenoprotein expression. This complex biology of selenium in vivo may underlie the fact that beneficial effects of selenium supplementation demonstrated in preclinical studies using models of oxidant stress-induced cardiovascular dysfunction, such as ischemia-reperfusion injury and myocardial infarction, have not been consistently observed in clinical trials. In fact, recent studies have yielded data that suggest that unselective supplementation of selenium may, indeed, be harmful. Interesting biologic actions of selenium are its simultaneous effects on redox balance and methylation status, a combination that may influence gene expression. These combined actions may explain some of the biphasic effects seen with low and high doses of selenium, the potentially harmful effects seen in normal individuals, and the beneficial effects noted in preclinical studies of disease. Given the complexity of selenium biology, systems biology approaches may be necessary to reach the goal of optimization of selenium status to promote health and prevent disease. PMID:23434902
ERIC Educational Resources Information Center
Nicholi, Armand M., Jr.
1984-01-01
Knowledge about cocaine's effect on the human mind and body is limited and not clearly documented. This article discusses various biological and psychological effects of the drug based on clinical and laboratory studies of man. (Author/DF)
ERIC Educational Resources Information Center
Muraya, Daniel Ngaru; Kimamo, Githui
2011-01-01
Performance in Biology at secondary school level in Kenya remains poor and one reason is the teaching approach adopted by teachers with teacher-centered approaches being pre-dominant. This study sought to determine the effect of cooperative learning approach on mean achievement scores in Biology of secondary school students.…
The Effects of 3D Computer Simulation on Biology Students' Achievement and Memory Retention
ERIC Educational Resources Information Center
Elangovan, Tavasuria; Ismail, Zurida
2014-01-01
A quasi experimental study was conducted for six weeks to determine the effectiveness of two different 3D computer simulation based teaching methods, that is, realistic simulation and non-realistic simulation on Form Four Biology students' achievement and memory retention in Perak, Malaysia. A sample of 136 Form Four Biology students in Perak,…
ERIC Educational Resources Information Center
Moody, John Charles
Assessed were the effects of linear and modified linear programed materials on the achievement of slow learners in tenth grade Biological Sciences Curriculum Study (BSCS) Special Materials biology. Two hundred and six students were randomly placed into four programed materials formats: linear programed materials, modified linear program with…
ERIC Educational Resources Information Center
Bramwell-Lalor, Sharon; Rainford, Marcia
2014-01-01
This paper reports on teachers' use of concept mapping as an alternative assessment strategy in advanced level biology classes and its effects on students' cognitive skills on selected biology concepts. Using a mixed methods approach, the study employed a pre-test/post-test quasi-experimental design involving 156 students and 8 teachers from…
NASA Technical Reports Server (NTRS)
Swenberg, Charles E. (Editor); Horneck, Gerda (Editor); Stassinopoulos, E. G. (Editor)
1993-01-01
Since there is an increasing interest in establishing lunar bases and exploring Mars by manned missions, it is important to develop appropriate risk estimates and radiation protection guidelines. The biological effects and physics of solar and galactic cosmic radiation are examined with respect to the following: the radiation environment of interplanetary space, the biological responses to radiation in space, and the risk estimates for deep space missions. There is a need for a long-term program where ground-based studies can be augmented by flight experiments and an international standardization with respect to data collection, protocol comparison, and formulation of guidelines for future missions.
ERIC Educational Resources Information Center
Corkin, Danya M.; Horn, Catherine; Pattison, Donna
2017-01-01
This study examined differences in students' classroom motivational climate perceptions and motivational beliefs between those enrolled in undergraduate Biology courses that implemented an innovative, active learning intervention and those enrolled in traditional Biology courses (control group). This study also sought to determine whether…
ERIC Educational Resources Information Center
Zeidan, Afif
2010-01-01
The aims of the study were to investigate (a) the relationship between the attitudes toward biology and perceptions of the biology learning environment among grade 11 students in Tulkarm District, Palestine and (b) the effect of gender and residence of these students on their attitudes toward biology and on their perceptions of the biology…
ERIC Educational Resources Information Center
Yapici, I. Ümit
2016-01-01
The aim of this study was to examine the effect of Blended Cooperative Learning Environment (BCLE) in biology teaching on students' classroom community sense, their academic achievement and on their levels of satisfaction. In the study, quantitative and qualitative research methods were used together. The study was carried out with 30 students in…
21 CFR 601.91 - Approval based on evidence of effectiveness from studies in animals.
Code of Federal Regulations, 2013 CFR
2013-04-01
... HEALTH AND HUMAN SERVICES (CONTINUED) BIOLOGICS LICENSING Approval of Biological Products When Human Efficacy Studies Are Not Ethical or Feasible § 601.91 Approval based on evidence of effectiveness from... reasonably likely to produce clinical benefit in humans. In assessing the sufficiency of animal data, the...
21 CFR 601.91 - Approval based on evidence of effectiveness from studies in animals.
Code of Federal Regulations, 2014 CFR
2014-04-01
... HEALTH AND HUMAN SERVICES (CONTINUED) BIOLOGICS LICENSING Approval of Biological Products When Human Efficacy Studies Are Not Ethical or Feasible § 601.91 Approval based on evidence of effectiveness from... reasonably likely to produce clinical benefit in humans. In assessing the sufficiency of animal data, the...
21 CFR 601.91 - Approval based on evidence of effectiveness from studies in animals.
Code of Federal Regulations, 2012 CFR
2012-04-01
... HEALTH AND HUMAN SERVICES (CONTINUED) BIOLOGICS LICENSING Approval of Biological Products When Human Efficacy Studies Are Not Ethical or Feasible § 601.91 Approval based on evidence of effectiveness from... reasonably likely to produce clinical benefit in humans. In assessing the sufficiency of animal data, the...
ERIC Educational Resources Information Center
Hoskins, Tyler D.; Gantz, J. D.; Chaffee, Blake R.; Arlinghaus, Kel; Wiebler, James; Hughes, Michael; Fernandes, Joyce J.
2017-01-01
Institutions have developed diverse approaches that vary in effectiveness and cost to improve student performance in introductory science, technology, engineering, and mathematics courses. We developed a low-cost, graduate student-led, metacognition-based study skills course taught in conjunction with the introductory biology series at Miami…
NASA Technical Reports Server (NTRS)
Newsom, B. D.
1978-01-01
A programmatic research plan for a three year study is presented to generate knowledge on effects of the continuous wave 2.45 GHz microwave power transmission that the Solar Power Satellite might have on biological and ecological elements, within and around the rectenna receiving site.
NASA Technical Reports Server (NTRS)
Curtis, Stanley B.
1993-01-01
The possible health risks posed by Galactic cosmic rays, especially the possible heightened cancer risk, are examined. The results of the Biostack studies of the biological effects of high-energy cosmic rays are discussed. The biological mechanisms involved in possible harm due to cosmic rays are considered.
Biological Effects of Space Radiation and Development of Effective Countermeasures
Kennedy, Ann R.
2014-01-01
As part of a program to assess the adverse biological effects expected from astronaut exposure to space radiation, numerous different biological effects relating to astronaut health have been evaluated. There has been major focus recently on the assessment of risks related to exposure to solar particle event (SPE) radiation. The effects related to various types of space radiation exposure that have been evaluated are: gene expression changes (primarily associated with programmed cell death and extracellular matrix (ECM) remodeling), oxidative stress, gastrointestinal tract bacterial translocation and immune system activation, peripheral hematopoietic cell counts, emesis, blood coagulation, skin, behavior/fatigue (including social exploration, submaximal exercise treadmill and spontaneous locomotor activity), heart functions, alterations in biological endpoints related to astronaut vision problems (lumbar puncture/intracranial pressure, ocular ultrasound and histopathology studies), and survival, as well as long-term effects such as cancer and cataract development. A number of different countermeasures have been identified that can potentially mitigate or prevent the adverse biological effects resulting from exposure to space radiation. PMID:25258703
Biological effects of space radiation and development of effective countermeasures
NASA Astrophysics Data System (ADS)
Kennedy, Ann R.
2014-04-01
As part of a program to assess the adverse biological effects expected from astronauts' exposure to space radiation, numerous different biological effects relating to astronauts' health have been evaluated. There has been major focus recently on the assessment of risks related to exposure to solar particle event (SPE) radiation. The effects related to various types of space radiation exposure that have been evaluated are: gene expression changes (primarily associated with programmed cell death and extracellular matrix (ECM) remodeling), oxidative stress, gastrointestinal tract bacterial translocation and immune system activation, peripheral hematopoietic cell counts, emesis, blood coagulation, skin, behavior/fatigue (including social exploration, submaximal exercise treadmill and spontaneous locomotor activity), heart functions, alterations in biological endpoints related to astronauts' vision problems (lumbar puncture/intracranial pressure, ocular ultrasound and histopathology studies), and survival, as well as long-term effects such as cancer and cataract development. A number of different countermeasures have been identified that can potentially mitigate or prevent the adverse biological effects resulting from exposure to space radiation.
Tissue regeneration with photobiomodulation
NASA Astrophysics Data System (ADS)
Tang, Elieza G.; Arany, Praveen R.
2013-03-01
Low level light therapy (LLLT) has been widely reported to reduce pain and inflammation and enhance wound healing and tissue regeneration in various settings. LLLT has been noted to have both stimulatory and inhibitory biological effects and these effects have been termed Photobiomodulation (PBM). Several elegant studies have shown the key role of Cytochrome C oxidase and ROS in initiating this process. The downstream biological responses remain to be clearly elucidated. Our work has demonstrated activation of an endogenous latent growth factor complex, TGF-β1, as one of the major biological events in PBM. TGF-β1 has critical roles in various biological processes especially in inflammation, immune responses, wound healing and stem cell biology. This paper overviews some of the studies demonstrating the efficacy of PBM in promoting tissue regeneration.
NASA Astrophysics Data System (ADS)
Isaka, Katsuo
The biological effects of extremely low frequency electric fields on animals are reviewed with emphasis on studies of the nervous system, behavior, endocrinology, and blood chemistry. First, this paper provides a histrical overview of studies on the electric field effects initiated in Russia and the United States mainly regarding electric utility workers in high voltage substations and transmission lines. Then, the possible mechanisms of electric field effects are explained using the functions of surface electric fields and induced currents in biological objects. The real mechanisms have not yet been identified. The thresholds of electric field perception levels for rats, baboons, and humans are introduced and compared. The experimental results concerning the depression of melatonin secretion in rats exposed to electric fields are described.
Effectiveness of Biologic Factors in Shoulder Disorders
Giotis, Dimitrios; Aryaei, Ashkan; Vasilakakos, Theofanis; Paschos, Nikolaos K.
2017-01-01
Background: Shoulder pathology can cause significant pain, discomfort, and loss of function that all interfere with activities of daily living and may lead to poor quality of life. Primary osteoarthritis and rotator cuff diseases with its sequalae are the main culprits. Management of shoulder disorders using biological factors gained an increasing interest over the last years. This interest reveals the need of effective treatments for shoulder degenerative disorders, and highlights the importance of a comprehensive and detailed understanding of the rapidly increasing knowledge in the field. Methods: This study will describe most of the available biology-based strategies that have been recently developed, focusing on their effectiveness in animal and clinical studies. Results: Data from in vitro work will also be briefly presented; in order to further elucidate newly acquired knowledge regarding mechanisms of tissue degeneration and repair that would probably drive translational work in the next decade. The role of platelet rich-plasma, growth factors, stem cells and other alternative treatments will be described in an evidence-based approach, in an attempt to provide guidelines for their clinical application. Finally, certain challenges that biologic treatments face today will be described as an initiative for future strategies. Conclusion: The application of different growth factors and mesenchymal stem cells appears as promising approaches for enhancing biologic repair. However, data from clinical studies are still limited, and future studies need to improve understanding of the repair process in cellular and molecular level and evaluate the effectiveness of biologic factors in the management of shoulder disorders. PMID:28400884
Effect of different professions' clothing on children's height perception.
Rashidi, Mahmoud; Keshtkaran, Katayoun; Zabihidan, Sahar; Hosseinchari, Masoud; Pazhoohi, Farid
2012-11-01
Height is a biological factor that can affect how others perceive and behave toward an individual. Height is a biological factor that can affect how others perceive and behave toward an individual. Clothing, as a non-biological factor, can affect these perceptions of height. In this study weClothing, as a non-biological factor, can affect these perceptions of height. In this study we investigated the effect of different professions' clothing on children's perceptions of height. One investigated the effect of different professions' clothing on children's perceptions of height. One hundred and eighty primary school students participated in this study and estimated the height of an actor in the clothing of four different professions which differed in terms of prestige. The results of study showed that the difference between the perceived and actual height was larger when participants estimated the height of socially esteemed professions. Also there was no difference between girls' and boys' estimation of different professions' height. The implications of these findings are discussed.
The Effect of Knowledge Linking Levels in Biology Lessons upon Students' Knowledge Structure
ERIC Educational Resources Information Center
Wadouh, Julia; Liu, Ning; Sandmann, Angela; Neuhaus, Birgit J.
2014-01-01
Knowledge structure is an important aspect for defining students' competency in biology learning, but how knowledge structure is influenced by the teaching process in naturalistic biology classroom settings has scarcely been empirically investigated. In this study, 49 biology lessons in the teaching unit "blood and circulatory system" in…
Biological Technologies for Life Beyond Low Earth Orbit (BT4LBLEO): Study Introductions and Synopsis
NASA Technical Reports Server (NTRS)
Hines, John W.
2011-01-01
The study will address the following mission concerns: -Extended human presence in the environments of deep space as well as the Moon and Mars will require a solid biological understanding of the integrated effects of diminished gravity, enhanced radiation, and transit- and destination-specific variables from the sub-cellular to the whole organism level. -Biological and associated technologies for biological and robotic precursor missions to realize future objectives for space colonization. -Surfaces, gravity levels, radiation environments, and atmospheres of these nearest neighbors are radically different in chemical and geological make-up from those on our home planet, and all of these contributory effects must be considered.
Gorodetsky, B N; Kalyada, T V; Petrov, S V
2015-01-01
This article covers topics of creating special medical technical laboratory for medial and biologic studies concerning influence of potent high-frequency elecromagnetic radiation on various biologic objects. The authors gave example of such laboratory, described its construction features, purpose and main characteristics of the included devices.
Ryu, Ji Hyeon; Kang, Dawon
2017-06-01
Garlic (Allium sativum) has been used as a medicinal food since ancient times. However, some people are reluctant to ingest raw garlic due to its unpleasant odor and taste. Therefore, many types of garlic preparations have been developed to reduce these attributes without losing biological functions. Aged black garlic (ABG) is a garlic preparation with a sweet and sour taste and no strong odor. It has recently been introduced to Asian markets as a functional food. Extensive in vitro and in vivo studies have demonstrated that ABG has a variety of biological functions such as antioxidant, anti-inflammatory, anti-cancer, anti-obesity, anti-diabetic, anti-allergic, cardioprotective, and hepatoprotective effects. Recent studies have compared the biological activity and function of ABG to those of raw garlic. ABG shows lower anti-inflammatory, anti-coagulation, immunomodulatory, and anti-allergic effects compared to raw garlic. This paper reviews the physicochemical properties, biological activity, health benefits, adverse effects, and general limitations of ABG.
ERIC Educational Resources Information Center
Toyama, Noriko
2016-01-01
The present study examined Japanese children's and adults' awareness of the effects of psychological taste experiences on biological processes such as growth and illness. Studies 1 and 2 showed the following: (1) preschoolers tended to assume that good-tasting experiences would make one grow taller and gain more weight, while adults seldom…
Effects of Computer Animation Instructional Package on Students' Achievement in Practical Biology
ERIC Educational Resources Information Center
Hamzat, Abdulrasaq; Bello, Ganiyu; Abimbola, Isaac Olakanmi
2017-01-01
This study examined the effects of computer animation instructional package on secondary school students' achievement in practical biology in Ilorin, Nigeria. The study adopted a pre-test, post-test, control group, non-randomised and nonequivalent quasi-experimental design, with a 2x2x3 factorial design. Two intact classes from two secondary…
Schunck, Thérèse; Bieth, François; Pinguet, Sylvain; Delmote, Philippe
2016-01-01
Systems emitting ultra-wideband high power microwave (HP/UWB) pulses are developed for military and civilian applications. HP/UWB pulses typically have durations on the order of nanoseconds, rise times of picoseconds and amplitudes around 100 kV m(-1). This article reviews current research on biological effects from HP/UWB exposure. The different references were classified according to endpoints (cardiovascular system, central nervous system, behavior, genotoxicity, teratology …). The article also reviews the aspects of mechanisms of interactions and tissue damage as well as the numerical work that has been done for studying HP/UWB pulse propagation and pulse energy deposition inside biological tissues. The mechanisms proposed are the molecular conformation change, the modification of chemical reaction rates, membrane excitation and breakdown and direct electrical forces on cells or cell constituents, and the energy deposition. As regards the penetration of biological matter and the deposited energy, mainly computations were published. They have shown that the EM field inside the biological matter is strongly modified compared to the incident EM field and that the energy absorption for HP/UWB pulses occurs in the same way as for continuous waves. However, the energy carried by a HP/UWB pulse is very low and the deposited energy is low. The number of published studies dealing with the biological effects is small and only a few pointed out slight effects. It should be further noted that the animal populations used in the studies were not always large, the statistical analyses not always relevant and the teams involved in this research rather limited in number.
Goeree, Ron; Chiva-Razavi, Sima; Gunda, Praveen; Graham, Christopher N; Miles, LaStella; Nikoglou, Efthalia; Jugl, Steffen M; Gladman, Dafna D
2018-02-01
The study evaluates the cost-effectiveness of secukinumab, a fully human monoclonal antibody that selectively neutralizes interleukin (IL)-17A, vs currently licensed biologic treatments in patients with active psoriatic arthritis (PsA) from a Canadian healthcare system perspective. A decision analytic semi-Markov model evaluated the cost-effectiveness of secukinumab 150 mg and 300 mg compared to subcutaneous biologics adalimumab, certolizumab pegol, etanercept, golimumab, and ustekinumab, and intravenous biologics infliximab and infliximab biosimilar in biologic-naive and biologic-experienced patients over a lifetime horizon. The response to treatments was evaluated after 12 weeks by PsA Response Criteria (PsARC) response rates. Non-responders or patients discontinuing initial-line of biologic treatment were allowed to switch to subsequent-line biologics. Model input parameters (Psoriasis Area Severity Index [PASI], Health Assessment Questionnaire [HAQ], withdrawal rates, costs, and resource use) were collected from clinical trials, published literature, and other Canadian sources. Benefits were expressed as quality-adjusted life years (QALYs). An annual discount rate of 5% was applied to costs and benefits. The robustness of the study findings were evaluated via sensitivity analyses. Biologic-naive patients treated with secukinumab achieved the highest number of QALYs (8.54) at the lowest cost (CAD 925,387) over a lifetime horizon vs all comparators. Secukinumab dominated all treatments, except for infliximab and its biosimilar, which achieved minimally more QALYs (8.58). However, infliximab and its biosimilar incurred more costs than secukinumab (infliximab: CAD 1,015,437; infliximab biosimilar: CAD 941,004), resulting in higher cost-effectiveness estimates relative to secukinumab. In the biologic-experienced population, secukinumab dominated all treatments as it generated more QALYs (8.89) at lower costs (CAD 954,692). Deterministic sensitivity analyses indicated the results were most sensitive to variation in PsARC response rates, change in HAQ, and utility values in both populations. Secukinumab is either dominant or cost-effective vs all licensed biologics for the treatment of active PsA in biologic-naive and biologic-experienced populations in Canada.
Biological monitoring to determine worker dose in a butadiene processing plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bechtold, W.E.; Hayes, R.B.
1995-12-01
Butadiene (BD) is a reactive gas used extensively in the rubber industry and is also found in combustion products. Although BD is genotoxic and acts as an animal carcinogen, the evidence for carcinogenicity in humans is limited. Extrapolation from animal studies on BD carcinogenicity to risk in humans has been controversial because of uncertainties regarding relative biologic exposure and related effects in humans vs. experimental animals. To reduce this uncertainty, a study was designed to characterize exposure to BD at a polymer production facility and to relate this exposure to mutational and cytogenetic effects. Biological monitoring was used to bettermore » assess the internal dose of BD received by the workers. Measurement of 1,2-dihydroxy-4-(N-acetylcysteinyl) butane (M1) in urine served as the biomarker in this study. M1 has been shown to correlate with area monitoring in previous studies. Most studies that relate exposure to a toxic chemical with its biological effects rely on exposure concentration as the dose metric; however, exposure concentration may or may not reflect the actual internal dose of the chemical.« less
Bone effects of biologic drugs in rheumatoid arthritis.
Corrado, Addolorata; Neve, Anna; Maruotti, Nicola; Cantatore, Francesco Paolo
2013-01-01
Biologic agents used in the treatment of rheumatoid arthritis (RA) are able to reduce both disease activity and radiographic progression of joint disease. These drugs are directed against several proinflammatory cytokines (TNF α , IL-6, and IL-1) which are involved both in the pathogenesis of chronic inflammation and progression of joint structural damage and in systemic and local bone loss typically observed in RA. However, the role of biologic drugs in preventing bone loss in clinical practice has not yet clearly assessed. Many clinical studies showed a trend to a positive effect of biologic agents in preventing systemic bone loss observed in RA. Although the suppression of inflammation is the main goal in the treatment of RA and the anti-inflammatory effects of biologic drugs exert a positive effect on bone metabolism, the exact relationship between the prevention of bone loss and control of inflammation has not been clearly established, and if the available biologic drugs against TNF α , IL-1, and IL-6 can exert their effect on systemic and local bone loss also through a direct mechanism on bone cell metabolism is still to be clearly defined.
Aerospace Medicine and Biology: A Continuing Bibliography. Supplement 483
NASA Technical Reports Server (NTRS)
1999-01-01
Aerospace Medicine and Biology concentrates on the biological, physiological, psychological, and environmental effects to which humans are subjected during and following simulated or actual flight in the Earth's atmosphere or in interplanetary space. References describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention. Applied research receives the most emphasis, but references to fundamental studies and theoretical principles related to experimental development also qualify for inclusion.
Behavior of nanoceria in biologically-relevant environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Amit; Das, Soumen; Munusamy, Prabhakaran
2014-09-08
Cerium oxide nanoparticles (CNPs) have gained a considerable attention in biological research due to their anti-oxidant like behaviour and regenerative nature. The current literature on CNPs reports many successful attempts on harnessing the beneficial therapeutic properties in biology. However studies have also shown toxicity effect with some types of CNPs. This review discusses issues associated with the behaviours of CNPs in biological systems and identifies key knowledge gaps. We explore how salient physicochemical properties (size, surface chemistry, surface stabilizers) contribute to the potential positive and negative aspects of nanoceria in biological systems. Based on variations of results reported in themore » literature, important issues need to be addressed. Are we really studying the same particles with slight variations in size and physicochemical properties or do the particles being examined have fundamentally different behaviours? Are the variations observed in the result of differences in the initial properties of the particles or the results of downstream effects that emerge as the particles are prepared for specific studies and they interact with biological or other environmental moieties? How should particles be appropriately prepared for relevant environmental/toxicology/safety studies? It is useful to recognize that nanoparticles encompass some of the same complexities and variability associated with biological components« less
Invited Review Article: Current State of Research on Biological Effects of Terahertz Radiation
NASA Astrophysics Data System (ADS)
Wilmink, Gerald J.; Grundt, Jessica E.
2011-10-01
Terahertz (THz) imaging and sensing technologies are increasingly being used in a host of medical, military, and security applications. For example, THz systems are now being tested at international airports for security screening purposes, at major medical centers for cancer and burn diagnosis, and at border patrol checkpoints for identification of concealed explosives, drugs, and weapons. Recent advances in THz applications have stimulated renewed interest regarding the biological effects associated with this frequency range. Biological effects studies are a valuable type of basic science research because they serve to enhance our fundamental understanding of the mechanisms that govern THz interactions with biological systems. Such studies are also important because they often times lay the foundation for the development of future applications. In addition, from a practical standpoint, THz biological effects research is also necessary for accurate health hazard evaluation, the development of empirically-based safety standards, and for the safe use of THz systems. Given the importance and timeliness of THz bioeffects data, the purpose of this review is twofold. First, to provide readers with a common reference, which contains the necessary background concepts in biophysics and THz technology, that are required to both conduct and evaluate THz biological research. Second, to provide a critical review of the scientific literature.
Can a Multimedia Tool Help Students' Learning Performance in Complex Biology Subjects?
ERIC Educational Resources Information Center
Koseoglu, Pinar; Efendioglu, Akin
2015-01-01
The aim of the present study was to determine the effects of multimedia-based biology teaching (Mbio) and teacher-centered biology (TCbio) instruction approaches on learners' biology achievements, as well as their views towards learning approaches. During the research process, an experimental design with two groups, TCbio (n = 22) and Mbio (n =…
ERIC Educational Resources Information Center
McCall, Megan O'Neill
2017-01-01
This study examined the effects of cooperative testing versus traditional or individual testing and the impacts on academic achievement, motivation toward science, and study time for 9th grade biology students. Research questions centered on weekly quizzes given in a flipped classroom format for a period of 13 weeks. The study used a mixed methods…
Economic impact profiling of CBRN events: focusing on biological incidents.
Cavallini, Simona; Bisogni, Fabio; Mastroianni, Marco
2014-12-01
Chemical, biological, radiological and nuclear (CBRN) incidents, both caused accidentally by human error or natural/technological events and determined intentionally as criminal/malicious/terroristic acts, have consequences that could be differently characterized. In the last years many efforts to analyze the economic impact of terrorist threat have been carried out, while researches specifically concerning CBRN events have not been extensively undertaken. This paper in particular aims at proposing a methodological approach for studying macro-level economic impact profiles of biological incidents caused by weaponized and non-weaponized materials. The suggested approach investigates the economic consequences of biological incidents according to two main dimensions: type of large-scale effect and persistence of effect. Biological incident economic impacts are analyzed taking into account the persistence of effect during time as short-term impact (i.e. immediately after the incident), medium-term impact (i.e. by a month) and long-term impact (i.e. by years). The costs due to preventive countermeasure against biological threats (e.g. prevention, protection and preparedness expenses) are not taken into account. To this purpose, information on the key features of past biological incidents can be used as case studies to try to build impact profiles taking into account the proposed two main dimensions. Consequence management and effect mitigation of CBRN emergencies and disasters may benefit from an ex ante definition of the impact profiling related to this kind of incidents. The final goal of this paper is to define an approach to organize information on possible biological events according to their impact profile for supporting more effective and efficient first responders' prompt actions and policy makers' strategic decisions after the event occurrence.
Howard, Kerry A; Griffiths, Kathleen M; McKetin, Rebecca; Ma, Jennifer
2018-05-01
There is disagreement in the literature as to whether biological attribution increases or decreases stigma. This study investigated the effect of an online biological intervention on stigma and help-seeking intentions for depression among adolescents. A three-arm, pre-post test, double-blind randomised controlled trial (RCT) was used to compare the effects of a biological and a psychosocial intervention delivered online. Participants comprised secondary school students (N = 327) aged 16-19 years. Outcome measures included anticipated self-stigma for depression (primary), personal stigma, help-seeking intention for depression, and biological and psychosocial attribution. Neither the biological nor the psychosocial educational intervention significantly reduced anticipated self-stigma or personal stigma for depression relative to the control. However, a small increase in help-seeking intention for depression relative to the control was found for the biological educational condition. The study was undertaken over a single session and it is unknown whether the intervention effect on help-seeking intentions was sustained or would translate into help-seeking behaviour. A brief online biological education intervention did not alter stigma, but did promote a small increase in help-seeking intentions for depression among adolescents. This type of intervention may be a practical means for facilitating help-seeking among adolescents with current or future depression treatment needs.
NASA Astrophysics Data System (ADS)
Sun, M.; Yu, P. F.; Fu, J. X.; Ji, X. Q.; Jiang, T.
2017-08-01
The optimal process parameters and conditions for the treatment of slaughterhouse wastewater by coagulation sedimentation-AF - biological contact oxidation process were studied to solve the problem of high concentration organic wastewater treatment in the production of small and medium sized slaughter plants. The suitable water temperature and the optimum reaction time are determined by the experiment of precipitation to study the effect of filtration rate and reflux ratio on COD and SS in anaerobic biological filter and the effect of biofilm thickness and gas water ratio on NH3-N and COD in biological contact oxidation tank, and results show that the optimum temperature is 16-24°C, reaction time is 20 min in coagulating sedimentation, the optimum filtration rate is 0.6 m/h, and the optimum reflux ratio is 300% in anaerobic biological filter reactor. The most suitable biological film thickness range of 1.8-2.2 mm and the most suitable gas water ratio is 12:1-14:1 in biological contact oxidation pool. In the coupling process of continuous operation for 80 days, the average effluent’s mass concentrations of COD, TP and TN were 15.57 mg/L, 40 mg/L and 0.63 mg/L, the average removal rates were 98.93%, 86.10%, 88.95%, respectively. The coupling process has stable operation effect and good effluent quality, and is suitable for the industrial application.
Baradaran, Samaneh; Maleknasr, Niaz; Setayeshi, Saeed; Akbari, Mohammad Esmaeil
2014-01-01
Alpha particle irradiation from radon progeny is one of the major natural sources of effective dose in the public population. Oncogenic transformation is a biological effectiveness of radon progeny alpha particle hits. The biological effects which has caused by exposure to radon, were the main result of a complex series of physical, chemical, biological and physiological interactions. The cellular and molecular mechanisms for radon-induced carcinogenesis have not been clear yet. Various biological models, including cultured cells and animals, have been found useful for studying the carcinogenesis effects of radon progeny alpha particles. In this paper, sugars cape cellular automata have been presented for computational study of complex biological effect of radon progeny alpha particles in lung bronchial airways. The model has included mechanism of DNA damage, which has been induced alpha particles hits, and then formation of transformation in the lung cells. Biomarkers were an objective measure or evaluation of normal or abnormal biological processes. In the model, the metabolism rate of infected cell has been induced alpha particles traversals, as a biomarker, has been followed to reach oncogenic transformation. The model results have successfully validated in comparison with "in vitro oncogenic transformation data" for C3H 10T1/2 cells. This model has provided an opportunity to study the cellular and molecular changes, at the various stages in radiation carcinogenesis, involving human cells. It has become well known that simulation could be used to investigate complex biomedical systems, in situations where traditional methodologies were difficult or too costly to employ.
USDA-ARS?s Scientific Manuscript database
Marking biological control agents facilitates studies of dispersal and predation. This study examines the effect of a biological solvent, dimethyl sulfoxide (DMSO), on retention of immunoglobulin G (IgG) protein solutions applied to Diorhabda carinulata (Desbrochers) (Coleoptera: Chrysomelidae) eit...
Saadatian-Elahi, Mitra; Aaby, Peter; Shann, Frank; Netea, Mihai G; Levy, Ofer; Louis, Jacques; Picot, Valentina; Greenberg, Michael; Warren, William
2016-07-25
The heterologous or non-specific effects (NSEs) of vaccines, at times defined as "off-target effects" suggest that they can affect the immune response to organisms other than their pathogen-specific intended purpose. These NSEs have been the subject of clinical, immunological and epidemiological studies and are increasingly recognized as an important biological process by a growing group of immunologists and epidemiologists. Much remain to be learned about the extent and underlying mechanisms for these effects. The conference "Off-target effects of vaccination" held in Annecy-France (June 8-10 2015) intended to take a holistic approach drawing from the fields of immunology, systems biology, epidemiology, bioinformatics, public health and regulatory science to address fundamental questions of immunological mechanisms, as well as translational questions about vaccines NSEs. NSE observations were examined using case-studies on live attenuated vaccines and non-live vaccines followed by discussion of studies of possible biological mechanisms. Some possible pathways forward in the study of vaccines NSE were identified and discussed by the expert group. Copyright © 2016.
NASA Astrophysics Data System (ADS)
McGregor Petgrave, Dahlia M.
Many teachers are not adequately prepared to help urban students who have trouble understanding conceptual ideas in biology because these students have little connection to the natural world. This study explored potential professional development strategies to help urban biology teachers use concept maps effectively with various topics in the biology curriculum. A grounded theory approach was used to develop a substantive professional development model for urban biology teachers. Qualitative data were collected through 16 semi-structured interviews of professional developers experienced in working with concept maps in the urban context. An anonymous online survey was used to collect quantitative data from 56 professional developers and teachers to support the qualitative data. The participants were from New York City, recruited through the NY Biology-Chemistry Professional Development Mentor Network and the NY Biology Teachers' Association. According to the participants, map construction, classroom applications, lesson planning, action research, follow-up workshops, and the creation of learning communities are the most effective professional development strategies. The interviewees also proposed English language learning strategies such as picture maps, native word maps, and content reading materials with underlined words. This study contributes to social change by providing a professional development model to use in planning workshops for urban teachers. Urban teachers improve their own conceptual understanding of biology while learning how to implement concept mapping strategies in the classroom. Students whose teachers are better prepared to teach biology in a conceptual manner have the potential of growing into more scientifically literate citizens.
Lelli, Filippo; Nuhoho, Solomon; Lee, Xin Ying; Xu, Weiwei
2016-01-01
Background Although many clinical trials have been conducted in treatments of Crohn’s disease (CD), whether the trial results were representative of daily practice needs to be supported by studies conducted in real-world settings. Aim This study aims to identify how CD is treated and what are the clinical effectiveness and safety of the pharmaceutical therapies of CD in real-world settings. Methods A systematic literature review was conducted based on Medline®, Embase®, and Cochrane. All publications were assessed for title/abstract and full-text according to a predefined study protocol. Data were extracted and reported. Results A total of 1,998 publications were identified. Fifty studies including six publications reporting treatment pattern and 44 studies reporting clinical effectiveness and safety of pharmaceutical therapies in CD management in Europe were included. 5-Aminosalicylic acid and corticosteroids were reported to be used among 14%–74% of CD patients. Immunomodulators were used by 14%–25% and 29%–31% of CD patients as an initial and follow-up treatment, respectively. Biological therapies were used by 25%–33% of CD patients. A trend toward an increasing use of immunomodulators and biological therapies in Europe has been reported in recent years. Approximately 50% of patients achieved remission on immunomodulator or biologic treatment, although a relapse rate of up to 23% has been reported. Conclusion There is a trend of treatment shift to immunomodulators and biologics in CD management. Clinical effectiveness of immunomodulators and biologics has been demonstrated, though with a lack of sustainability of the effectiveness. PMID:27785086
Lelli, Filippo; Nuhoho, Solomon; Lee, Xin Ying; Xu, Weiwei
2016-01-01
Although many clinical trials have been conducted in treatments of Crohn's disease (CD), whether the trial results were representative of daily practice needs to be supported by studies conducted in real-world settings. This study aims to identify how CD is treated and what are the clinical effectiveness and safety of the pharmaceutical therapies of CD in real-world settings. A systematic literature review was conducted based on Medline ® , Embase ® , and Cochrane. All publications were assessed for title/abstract and full-text according to a predefined study protocol. Data were extracted and reported. A total of 1,998 publications were identified. Fifty studies including six publications reporting treatment pattern and 44 studies reporting clinical effectiveness and safety of pharmaceutical therapies in CD management in Europe were included. 5-Aminosalicylic acid and corticosteroids were reported to be used among 14%-74% of CD patients. Immunomodulators were used by 14%-25% and 29%-31% of CD patients as an initial and follow-up treatment, respectively. Biological therapies were used by 25%-33% of CD patients. A trend toward an increasing use of immunomodulators and biological therapies in Europe has been reported in recent years. Approximately 50% of patients achieved remission on immunomodulator or biologic treatment, although a relapse rate of up to 23% has been reported. There is a trend of treatment shift to immunomodulators and biologics in CD management. Clinical effectiveness of immunomodulators and biologics has been demonstrated, though with a lack of sustainability of the effectiveness.
Julie Beckstead; Susan E. Meyer; Carol K. Augsperger
2008-01-01
Invasion biology has focused on the direct effects of plant invasion and has generally overlooked indirect interactions. Here we link theories of invasion biology and herbivory to explore an indirect effect of one invading species on associational herbivory (the effect of neighboring plants on herbivory) of native species. We studied a Great Basin shadscale (...
The Effect of the Use of Smart Board in the Biology Class on the Academic Achievement of Student
ERIC Educational Resources Information Center
Onder, Recep; Aydin, Halil
2016-01-01
The objective of this study is to reveal the effect of the use of smart board in the biology class at the tenth grade of the secondary education on the academic achievements of students. The study used the quasi-experimental model with pre-test and post-test control groups and semi-structured interviews were made with the students. The study group…
ERIC Educational Resources Information Center
Ebuoh, Casmir N.; Ezeudu, S. A.
2015-01-01
The study investigated the effects of scoring by section, use of independent scorers and conventional patterns on scorer reliability in Biology essay tests. It was revealed from literature review that conventional pattern of scoring all items at a time in essay tests had been criticized for not being reliable. The study was true experimental study…
ERIC Educational Resources Information Center
Rabgay, Tshewang
2018-01-01
The study investigated the effect of using cooperative learning method on tenth grade students' learning achievement in biology and their attitude towards the subject in a Higher Secondary School in Bhutan. The study used a mixed method approach. The quantitative component included an experimental design where cooperative learning was the…
The Effectiveness of a Virtual Field Trip (VFT) Module in Learning Biology
ERIC Educational Resources Information Center
Haris, Norbaizura; Osman, Kamisah
2015-01-01
Virtual Field Trip is a computer aided module of science developed to study the Colonisation and Succession in Mangrove Swamps, as an alternative to the real field trip in Form for Biology. This study is to identify the effectiveness of the Virtual Field Trip (VFT) module towards the level of achievement in the formative test for this topic. This…
ERIC Educational Resources Information Center
Okoye, Nnamdi S.; Okechukwu, Rose N.
2010-01-01
The study examined the effect of concept-mapping and problem-solving teaching strategies on achievement in biology among Nigerian secondary school students. The method used for the study was a quasi-experimental pre-test treatment design. One hundred and thirteen senior secondary three (S.S. 111) students randomly selected from three mixed…
Use of radiation protraction to escalate biologically effective dose to the treatment target
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuperman, V. Y.; Spradlin, G. S.; Department of Mathematics, Embry-Riddle University, Daytona Beach, Florida 32114
2011-12-15
Purpose: The aim of this study is to evaluate how simultaneously increasing fraction time and dose per fraction affect biologically effective dose for the target (BED{sub tar}) while biologically effective dose for the normal tissue (BED{sub nt}) is fixed. Methods: In this investigation, BED{sub tar} and BED{sub nt} were studied by assuming mono-exponential repair of sublethal damage with tissue dependent repair half-time. Results: Our results demonstrate that under certain conditions simultaneously increasing fraction time and dose per fraction result in increased BED{sub tar} while BED{sub nt} is fixed. The dependence of biologically effective dose on fraction time is influenced bymore » the dose rate. In this investigation we analytically determined time-varying dose rate R-tilde which minimizes BED. Changes in BED with fraction time were compared for constant dose rate and for R-tilde. Conclusions: A number of recent experimental and theoretical studies have demonstrated that slow delivery of radiation (known as radiation protraction) leads to reduced therapeutic effect because of increased repair of sublethal damage. In contrast, our analysis shows that under certain conditions simultaneously increasing fraction time and dose per fraction are radiobiologically advantageous.« less
Peculiarities of biological action of hadrons of space radiation.
Akoev, I G; Yurov, S S
1975-01-01
Biological investigations in space enable one to make a significant contribution on high-energy hadrons to biological effects under the influence of factors of space flights. Physical and molecular principles of the action of high-energy hadrons are analysed. Genetic and somatic hadron effects produced by the secondary radiation from 70 GeV protons have been studied experimentally. The high biological effectiveness of hadrons, great variability in biological effects, and specifically of their action, are associated with strong interactions of high-energy hadrons. These are the probability of nuclear interaction with any atom nucleus, generation of a great number of secondary particles (among them, probably, highly effective multicharged and heavy nuclei, antiprotons, pi(-)-mesons), and the spatial distribution of secondary particles as a narrow cone with extremely high density of particles in its first part. The secondary radiation generated by high- and superhigh-energy hadrons upon their interaction with the spaceship is likely to be the greatest hazard of radiation to the crew during space flights.
Conceptual Framework for the Chemical Effects in Biological Systems (CEBS) T oxicogenomics Knowledge Base
Abstract
Toxicogenomics studies how the genome is involved in responses to environmental stressors or toxicants. It combines genetics, genome-scale mRNA expressio...
NASA Astrophysics Data System (ADS)
Wang, Anqi; Wang, Yan; Sun, Changjiao; Wang, Chunxin; Cui, Bo; Zhao, Xiang; Zeng, Zhanghua; Yao, Junwei; Yang, Dongsheng; Liu, Guoqiang; Cui, Haixin
2018-01-01
Nano-delivery systems for the active ingredients of pesticides can improve the utilization rates of pesticides and prolong their control effects. This is due to the nanocarrier envelope and controlled release function. However, particles containing active ingredients in controlled release pesticide formulations are generally large and have wide size distributions. There have been limited studies about the effect of particle size on the controlled release properties and biological activities of pesticide delivery systems. In the current study, avermectin (Av) nano-delivery systems were constructed with different particle sizes and their performances were evaluated. The Av release rate in the nano-delivery system could be effectively controlled by changing the particle size. The biological activity increased with decreasing particle size. These results suggest that Av nano-delivery systems can significantly improve the controllable release, photostability, and biological activity, which will improve efficiency and reduce pesticide residues.
Biologics in pediatric psoriasis - efficacy and safety.
Dogra, Sunil; Mahajan, Rahul
2018-01-01
Childhood psoriasis is a special situation that is a management challenge for the treating dermatologist. As is the situation with traditional systemic agents, which are commonly used in managing severe psoriasis in children, the biologics are being increasingly used in the recalcitrant disease despite limited data on long term safety. Areas covered: We performed an extensive literature search to collect evidence-based data on the use of biologics in pediatric psoriasis. The relevant literature published from 2000 to September 2017 was obtained from PubMed, using the MeSH words 'biologics', 'biologic response modifiers' and 'treatment of pediatric/childhood psoriasis'. All clinical trials, randomized double-blind or single-blind controlled trials, open-label studies, retrospective studies, reviews, case reports and letters concerning the use of biologics in pediatric psoriasis were screened. Articles covering the use of biologics in pediatric psoriasis were screened and reference lists in the selected articles were scrutinized to identify other relevant articles that had not been found in the initial search. Articles without relevant information about biologics in general (e.g. its mechanism of action, pharmacokinetics and adverse effects) and its use in psoriasis in particular were excluded. We screened 427 articles and finally selected 41 relevant articles. Expert opinion: The available literature on the use of biologics such as anti-tumor necrosis factor (TNF)-α agents, and anti-IL-12/23 agents like ustekinumab suggests that these are effective and safe in managing severe pediatric psoriasis although there is an urgent need to generate more safety data. Dermatologists must be careful about the potential adverse effects of the biologics before administering them to children with psoriasis. It is likely that with rapidly evolving scenario of biologics in psoriasis, these will prove to be very useful molecules particularly in managing severe and recalcitrant psoriasis in pediatric age group.
ERIC Educational Resources Information Center
Wixson, Eldwin Atwell, Jr.
Mathematical approaches to teaching cell structure and physiology and the probability aspects of genetics were used in each of two types of biology courses: one using the Biological Sciences Curriculum Study (BSCS) Yellow version and the other using Otto and Towle's "Modern Biology." Tests of lateral and vertical mathematics transfer, biology…
A BSCS-Style Laboratory Approach for University General Biology.
ERIC Educational Resources Information Center
Leonard, William H.
1982-01-01
Compared effectiveness of a Biological Sciences Curriculum Study (BSCS)-style laboratory program in a university general biology course against a popular traditionally oriented program. Although learning gains for both groups were significant, students using the BSCS-style investigations scored significantly higher on a posttest of laboratory…
Extrafloral nectar in an apple ecosystem to enhance biological control
USDA-ARS?s Scientific Manuscript database
A common goal of conservation biological control is to enhance biodiversity to increase abundance and effectiveness of predators and parasitoids. Although many studies report an increase in abundance of natural enemies, it has been difficult to document increases in rates of biological control. To...
NASA Astrophysics Data System (ADS)
Odalen, M.; Nycander, J.; Oliver, K. I. C.; Nilsson, J.; Brodeau, L.; Ridgwell, A.
2016-02-01
During glacials, atmospheric CO2 is significantly lowered; the decrease is about 1/3 or 90 ppm during the last four glacial cycles. Since the ocean reservoir of carbon, and hence the ocean capacity for storing carbon, is substantially larger than the atmospheric and terrestrial counterparts, it is likely that this lowering was caused by ocean processes, drawing the CO2 into the deep ocean. The Southern Ocean circulation and biological efficiency are widely accepted as having played an important part in this CO2 drawdown. However, the relative effects of different processes contributing to this oceanic uptake have not yet been well constrained. In this work, we focus on better constraining two of these processes; 1) the effect of increased efficiency of the biological carbon uptake, and 2) the effect of changes in global mean ocean temperature on the abiotic ocean-atmosphere CO2 equilibrium. By performing ensemble runs using an Earth System Model of Intermediate Complexity (EMIC) we examine the changes in atmospheric pCO2 achieved by 100% nutrient utilization efficiency of biology. The simulations display different ocean circulation patterns and hence different global ocean mean temperatures. By restoring the atmospheric pCO2 to a target value during the spin-up phase, the total carbon content differs between each of the ensemble members. The difference is due to circulation having direct effects on biology, but also on global ocean mean temperature, changing the solubility of CO2. This study reveals the relative importance of of the processes 1 and 2 (mentioned above) for atmospheric pCO2 in a changed climate. The results of this study also show that a difference in carbon content after spin-up can have a significant effect on the drawdown potential of a maximised biological efficiency. Thus, the choice of spin-up characteristics in a model study of climate change CO2 dynamics may significantly affect the outcome of the study.
1978-10-17
alter the immunological capability/virulence ratio of influenza virus ; gross and microscopic descriptions of lesions, their natural history, and...with Viruses 4 Chapter 4 Studies on Normal Animals 6 Chapter 5 Tumor-Related Laser Radiation Studies and Potential for Carcinogenesis 17 Chapter 6...affect the immunological capability/virulence ratio of influenza virus in order to explore facilitation of vaccine production; 5) extensive gross and
ERIC Educational Resources Information Center
Heideman, Paul D.; Flores, K. Adryan; Sevier, Lu M.; Trouton, Kelsey E.
2017-01-01
Drawing by learners can be an effective way to develop memory and generate visual models for higher-order skills in biology, but students are often reluctant to adopt drawing as a study method. We designed a nonclassroom intervention that instructed introductory biology college students in a drawing method, minute sketches in folded lists (MSFL),…
ERIC Educational Resources Information Center
Agboghoroma, Tim E.; Oyovwi, E. O.
2015-01-01
This study evaluated the effect of students' academic achievement on identified difficult concepts or topics in Senior Secondary School Biology in Delta State, Nigeria. The study was quasi-experimental and the design was a 2X2 factorial non-randomized pretest-posttest control group design. The sample was drawn from intact classes from four…
Research and development program, fiscal year 1966
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1964-04-01
The biomedical program of the Laboratory of Nuclear Medicine and Radiation Biology for FY 1966 is conducted within the scope of the following categories: Somatic Effects of Radiation; Combating Detrimental Effects of Radiation; Molecular and Cellular Level Studies; Environmental Radiation Studies; Radiological and Health Physics and Instrumentation; Chemical Toxicity; Cancer Research; and Selected Beneficial Applications. The overall objectives of the Laboratory within these areas of the Biology and Medicine program may be summarized as follows: (1) investigation of the effects of ionizing radiation on living organisms and systems of biological significance; (2) investigation of the dynamic aspects of physiological andmore » biochemical processes in man, animals and plants and how these processes are modified by radiation and related pathological states; (3) the assessment and study of the immediate and long term consequences of the operation or detonation of nuclear devices on the fauna, and flora in man's environment and on man; (4) the development of methods of minimizing or preventing the detrimental effects of ionizing radiation; (5) research in, and development of, beneficial uses of ionizing radiation and radioactive substances in medicine and biology; (6) research in the development of new and more efficient radiation detection devices; (7) research, including field studies, as mutually agreed upon by the Commission and the University, in connection with the conduct of weapon tests and biomedical and civil effects experiments at such tests conducted at continental and overseas test sites; and (8) the conduct of training and educational activities in the biological and medical aspects of radiation and related fields.« less
Piccinetti, Chiara Carla; De Leo, Alfredo; Cosoli, Gloria; Scalise, Lorenzo; Randazzo, Basilio; Cerri, Graziano; Olivotto, Ike
2018-06-15
The augmented exposure of both environment and human being to electromagnetic waves and the concomitant lack of an unequivocal knowledge about biological consequences of these radiations, raised public interest on electromagnetic pollution. In this context, the present study aims to evaluate the biological effects on zebrafish (ZF) embryos of 100 MHz radiofrequency electromagnetic field (RF-EMF) exposure through a multidisciplinary protocol. Because of the shared synteny between human and ZF genomes that validated its use in biomedical research, toxicology and developmental biology studies, ZF was here selected as experimental model and a measurement protocol and biological analyses have been set up to clearly discriminate between RF-EMF biological and thermal effects. The results showed that a 100 MHz EMF was able to affect ZF embryonic development, from 24 to 72 h post fertilization (hpf) in all the analyzed pathways. Particularly, at the 48 hpf stage, a reduced growth, an increased transcription of oxidative stress genes, the onset of apoptotic/autophagic processes and a modification in cholesterol metabolism were detected. ZF embryos faced stress induced by EMF radiation by triggering detoxification mechanisms and at 72 hpf they partially recovered from stress reaching the hatching time in a comparable way respect to the control group. Data here obtained showed unequivocally the in vivo effects of RF-EMF on an animal model, excluding thermal outcomes and thus represents the starting point for more comprehensive studies on dose response effects of electromagnetic fields radiations consequences. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Antonelli, Michele; Donelli, Davide
2018-06-01
Balneotherapy and spa therapy are well-known practices, even though limited evidence has been produced about their biological effects. This systematic review primarily aims at assessing if balneotherapy, mud/peloid therapy, and spa therapy may influence cortisol levels. Secondarily, it aims at understanding if these interventions may improve stress resilience. PubMed/Medline, Embase, and Cochrane Library were searched for relevant articles in English or Italian about studies involving healthy and sub-healthy subjects or patients with a diagnosed disease about effects of balneotherapy, mud/peloid therapy, and spa therapy on serum and salivary cortisol levels. Fifteen studies involving 684 subjects were included. Five studies investigated biological effects of balneotherapy alone. Two of them reported significant changes of cortisol levels in healthy participants. The other three studies reported no significant variations in patients with rheumatic conditions. No studies investigated biological effects of mud/peloid therapy alone. Ten studies investigated biological effects of spa therapy with or without included mud/peloid therapy, and in all but two studies, significant variations of cortisol levels were reported. Our main findings suggest that balneotherapy may have the potential to influence cortisol levels in healthy subjects, in such a way as to improve stress resilience. Spa therapy with or without included mud/peloid therapy demonstrated the same potential to influence cortisol levels also in sub-healthy subjects and in patients with a diagnosed disease. Therefore, balneotherapy and spa therapy may be considered as useful interventions for the management of stress conditions. Further investigation is needed because of limited available data.
Antonelli, Michele; Donelli, Davide
2018-02-18
Balneotherapy and spa therapy are well-known practices, even though limited evidence has been produced about their biological effects. This systematic review primarily aims at assessing if balneotherapy, mud/peloid therapy, and spa therapy may influence cortisol levels. Secondarily, it aims at understanding if these interventions may improve stress resilience. PubMed/Medline, Embase, and Cochrane Library were searched for relevant articles in English or Italian about studies involving healthy and sub-healthy subjects or patients with a diagnosed disease about effects of balneotherapy, mud/peloid therapy, and spa therapy on serum and salivary cortisol levels. Fifteen studies involving 684 subjects were included. Five studies investigated biological effects of balneotherapy alone. Two of them reported significant changes of cortisol levels in healthy participants. The other three studies reported no significant variations in patients with rheumatic conditions. No studies investigated biological effects of mud/peloid therapy alone. Ten studies investigated biological effects of spa therapy with or without included mud/peloid therapy, and in all but two studies, significant variations of cortisol levels were reported. Our main findings suggest that balneotherapy may have the potential to influence cortisol levels in healthy subjects, in such a way as to improve stress resilience. Spa therapy with or without included mud/peloid therapy demonstrated the same potential to influence cortisol levels also in sub-healthy subjects and in patients with a diagnosed disease. Therefore, balneotherapy and spa therapy may be considered as useful interventions for the management of stress conditions. Further investigation is needed because of limited available data.
NASA Astrophysics Data System (ADS)
Antonelli, Michele; Donelli, Davide
2018-02-01
Balneotherapy and spa therapy are well-known practices, even though limited evidence has been produced about their biological effects. This systematic review primarily aims at assessing if balneotherapy, mud/peloid therapy, and spa therapy may influence cortisol levels. Secondarily, it aims at understanding if these interventions may improve stress resilience. PubMed/Medline, Embase, and Cochrane Library were searched for relevant articles in English or Italian about studies involving healthy and sub-healthy subjects or patients with a diagnosed disease about effects of balneotherapy, mud/peloid therapy, and spa therapy on serum and salivary cortisol levels. Fifteen studies involving 684 subjects were included. Five studies investigated biological effects of balneotherapy alone. Two of them reported significant changes of cortisol levels in healthy participants. The other three studies reported no significant variations in patients with rheumatic conditions. No studies investigated biological effects of mud/peloid therapy alone. Ten studies investigated biological effects of spa therapy with or without included mud/peloid therapy, and in all but two studies, significant variations of cortisol levels were reported. Our main findings suggest that balneotherapy may have the potential to influence cortisol levels in healthy subjects, in such a way as to improve stress resilience. Spa therapy with or without included mud/peloid therapy demonstrated the same potential to influence cortisol levels also in sub-healthy subjects and in patients with a diagnosed disease. Therefore, balneotherapy and spa therapy may be considered as useful interventions for the management of stress conditions. Further investigation is needed because of limited available data.
Biologicals and small molecules in psoriasis: A systematic review of economic evaluations
Kromer, Christian; Celis, Daniel; Sonntag, Diana
2018-01-01
Biological therapy for moderate-to-severe psoriasis is highly effective but cost-intensive. This systematic review aimed at analyzing evidence on the cost-effectiveness of biological treatment of moderate-to-severe psoriasis. A literature search was conducted until 30/06/2017 in PubMed, Cochrane Library, LILACS, and EconLit. The quality of identified studies was assessed with the checklist by the Centre for Reviews and Dissemination guidance. Out of 482 records, 53 publications were eligible for inclusion. Half of the studies met between 20 and 25 of the quality checklist items, displaying moderate quality. Due to heterogeneity of studies, a qualitative synthesis was conducted. Cost ranges per outcome were enormous across different studies due to diversity in assumptions and model design. Pairwise comparisons of biologicals revealed conflicting results. Overall, adalimumab appeared to be most cost-effective (100% of all aggregated pairwise comparisons), followed by ustekinumab (66.7%), and infliximab (60%). However, in study conclusions most recent publications favored secukinumab and apremilast (75% and 60% of the studies investigating these medications). Accepted willingness-to-pay thresholds varied between 30,000 and 50,000 USD/Quality-Adjusted Life Year (QALY). Three-quarters of studies were financially supported, and in 90% of those, results were consistent with the funder’s interest. Economic evaluation of biologicals is crucial for responsible allocation of health care resources. In addition to summarizing the actual evidence this review highlights gaps and needs for future research. PMID:29298315
Predictive modeling of nanomaterial exposure effects in biological systems
Liu, Xiong; Tang, Kaizhi; Harper, Stacey; Harper, Bryan; Steevens, Jeffery A; Xu, Roger
2013-01-01
Background Predictive modeling of the biological effects of nanomaterials is critical for industry and policymakers to assess the potential hazards resulting from the application of engineered nanomaterials. Methods We generated an experimental dataset on the toxic effects experienced by embryonic zebrafish due to exposure to nanomaterials. Several nanomaterials were studied, such as metal nanoparticles, dendrimer, metal oxide, and polymeric materials. The embryonic zebrafish metric (EZ Metric) was used as a screening-level measurement representative of adverse effects. Using the dataset, we developed a data mining approach to model the toxic endpoints and the overall biological impact of nanomaterials. Data mining techniques, such as numerical prediction, can assist analysts in developing risk assessment models for nanomaterials. Results We found several important attributes that contribute to the 24 hours post-fertilization (hpf) mortality, such as dosage concentration, shell composition, and surface charge. These findings concur with previous studies on nanomaterial toxicity using embryonic zebrafish. We conducted case studies on modeling the overall effect/impact of nanomaterials and the specific toxic endpoints such as mortality, delayed development, and morphological malformations. The results show that we can achieve high prediction accuracy for certain biological effects, such as 24 hpf mortality, 120 hpf mortality, and 120 hpf heart malformation. The results also show that the weighting scheme for individual biological effects has a significant influence on modeling the overall impact of nanomaterials. Sample prediction models can be found at http://neiminer.i-a-i.com/nei_models. Conclusion The EZ Metric-based data mining approach has been shown to have predictive power. The results provide valuable insights into the modeling and understanding of nanomaterial exposure effects. PMID:24098077
Nanoparticle Toxicity Mechanisms: Oxidative Stress and Inflammation
NASA Astrophysics Data System (ADS)
L'Azou, Béatrice; Marano, Francelyne
Toxicology plays a key role in understanding the potentially harmful biological effects of nanoparticles, since epidemiological studies are still difficult to implement given the lack of data concerning exposure. For this reason, in 2005, Günter Oberdörster coined the term `nanotoxicology' to specify the emerging discipline that dealt with ultrafine particles (UFP). It involves in vivo or in vitro studies under controlled conditions to establish the dose-response relationship, so difficult to expose by epidemiological studies. It also aims to determine the thresholds below which biological effects are no longer observed. It is concerned with the role played by properties specific to nanoparticles in the biological response: size, surface reactivity, chemical composition, solubility, etc.
Tuition vs. Intuition: Effects of Instruction on Naive Theories of Evolution
ERIC Educational Resources Information Center
Shtulman, Andrew; Calabi, Prassede
2013-01-01
Recent research suggests that a major obstacle to evolution understanding is an essentialist view of the biological world. The present study investigated the effects of formal biology instruction on such misconceptions. Participants (N = 291) completed an assessment of their understanding of six aspects of evolution (variation, inheritance,…
Is there a Biological Basis for Therapeutic Applications of Millimetre Waves and THz Waves?
NASA Astrophysics Data System (ADS)
Mattsson, Mats-Olof; Zeni, Olga; Simkó, Myrtill
2018-03-01
Millimetre wave (MMW) and THz wave (THz) applications are already employed in certain industrial and medical environments for non-destructive quality control, and medical imaging, diagnosis, and therapy, respectively. The aim of the present study is to investigate if published experimental studies (in vivo and in vitro) provide evidence for "non-thermal" biological effects of MMW and THz. Such effects would occur in absence of tissue heating and associated damage and are the ones that can be exploited for therapeutic medical use. The investigated studies provide some evidence for both MMW and THz that can influence biological systems in a manner that is not obviously driven by tissue heating. However, the number of relevant studies is very limited which severely limits the drawing of any far-reaching conclusions. Furthermore, the studies have not addressed specific interaction mechanisms and do not provide hints for future mechanistic studies. Also, the studies do not indicate any specific importance regarding power density levels, frequencies, or exposure duration. It is also unclear if any specific biological endpoints are especially sensitive. Any therapeutic potential of MMW or THz has to be evaluated based on future high-quality studies dealing with physical, bio-physical, and biological aspects that have specific health-related perspectives in mind.
Is Ground Cover Vegetation an Effective Biological Control Enhancement Strategy against Olive Pests?
Paredes, Daniel; Cayuela, Luis; Gurr, Geoff M.; Campos, Mercedes
2015-01-01
Ground cover vegetation is often added or allowed to generate to promote conservation biological control, especially in perennial crops. Nevertheless, there is inconsistent evidence of its effectiveness, with studies reporting positive, nil or negative effects on pest control. This might arise from differences between studies at the local scale (e.g. orchard management and land use history), the landscape context (e.g. presence of patches of natural or semi-natural vegetation near the focal orchard), or regional factors, particularly climate in the year of the study. Here we present the findings from a long-term regional monitoring program conducted on four pest species (Bactrocera oleae, Prays oleae, Euphyllura olivina, Saissetia oleae) in 2,528 olive groves in Andalusia (Spain) from 2006 to 2012. Generalized linear mixed effect models were used to analyze the effect of ground cover on different response variables related to pest abundance, while accounting for variability at the local, landscape and regional scales. There were small and inconsistent effects of ground cover on the abundance of pests whilst local, landscape and regional variability explained a large proportion of the variability in pest response variables. This highlights the importance of local and landscape-related variables in biological control and the potential effects that might emerge from their interaction with practices, such as groundcover vegetation, implemented to promote natural enemy activity. The study points to perennial vegetation close to the focal crop as a promising alternative strategy for conservation biological control that should receive more attention. PMID:25646778
Rohr, Jason R.; Salice, Christopher J.; Nisbet, Roger M.
2016-01-01
Ecological risk assessment (ERA) is the process used to evaluate the safety of manufactured chemicals to the environment. Here we review the pros and cons of ERA across levels of biological organization, including suborganismal (e.g. biomarkers), individual, population, community, ecosystem, and landscapes levels. Our review revealed that level of biological organization is often related negatively with ease at assessing cause-effect relationships, ease of high-throughput screening of large numbers of chemicals (it is especially easier for suborganismal endpoints), and uncertainty of the ERA because low levels of biological organization tend to have a large distance between their measurement (what is quantified) and assessment endpoints (what is to be protected). In contrast, level of biological organization is often related positively with sensitivity to important negative and positive feedbacks and context dependencies within biological systems, and ease at capturing recovery from adverse contaminant effects. Some endpoints did not show obvious trends across levels of biological organization, such as the use of vertebrate animals in chemical testing and ease at screening large numbers of species, and other factors lacked sufficient data across levels of biological organization, such as repeatability, variability, cost per study, and cost per species of effects assessment, the latter of which might be a more defensible way to compare costs of ERAs than cost per study. To compensate for weaknesses of ERA at any particular level of biological organization, we also review mathematical modeling approaches commonly used to extrapolate effects across levels of organization. Finally, we provide recommendations for next generation ERA, submitting that if there is an ideal level of biological organization to conduct ERA, it will only emerge if ERA is approached simultaneously from the bottom of biological organization up as well as from the top down, all while employing mathematical modeling approaches where possible to enhance ERA. Because top-down ERA is unconventional, we also offer some suggestions for how it might be implemented efficaciously. We hope this review helps researchers in the field of ERA fill key information gaps and helps risk assessors identify the best levels of biological organization to conduct ERAs with differing goals. PMID:27340745
The utility of a composite biological endpoint in HIV/STI prevention trials.
Hartwell, Tyler D; Pequegnat, Willo; Moore, Janet L; Parker, Corette B; Strader, Lisa C; Green, Annette M; Quinn, Thomas C; Wasserheit, Judith N; Klausner, Jeffrey D
2013-11-01
A human immunodeficiency virus (HIV) as a biological endpoint in HIV prevention trials may not be feasible, so investigators have used surrogate biological outcomes. In a multisite trial, the epidemiology of STIs may be different across sites and preclude using one STI as the outcome. This study explored using a composite STI outcome to address that problem. The combined biological endpoint was the incidence of any of six new STIs (chlamydia, gonorrhea, trichomonas (women only), syphilis, herpes simplex virus type 2 infection and HIV) during a 24-month follow up period. We investigated how a composite STI outcome would perform compared to single and dual STI outcomes under various conditions. We simulated outcomes for four populations that represented a wide range of sex and age distributions, and STI prevalences. The simulations demonstrated that a combined biologic outcome was superior to single and dual STI outcomes in assessing intervention effects in 82 % of the cases. A composite biological outcome was effective in detecting intervention effects and might allow more investigations to incorporate multiple biological outcomes in the assessment of behavioral intervention trials for HIV prevention.
BIOLOGICAL SCIENCES CURRICULUM STUDY NEWSLETTER.
ERIC Educational Resources Information Center
MAYER, WILLIAM V.; AND OTHERS
RESEARCH STUDIES CONCERNED WITH THE APPROPRIATENESS AND EFFECTIVE UTILIZATION OF BIOLOGICAL SCIENCE CURRICULUM STUDY (BSCS) MATERIALS ARE DESCRIBED IN THIS NEWSLETTER. BSCS TESTS WERE ANALYZED AND RELATED TO OTHER TESTING INSTRUMENTS USED IN CONNECTION WITH THE BSCS PROGRAMS. DATA COLLECTED FOR THE ESTABLISHMENT OF TEST NORMS WERE ALSO USED IN A…
Experimental concept for examination of biological effects of magnetic field concealed by gravity.
Yamashita, M; Tomita-Yokotani, K; Hashimoto, H; Takai, M; Tsushima, M; Nakamura, T
2004-01-01
Space is not only a place to study biological effects of gravity, but also provides unique opportunities to examine other environmental factors, where the biological actions are masked by gravity on the ground. Even the earth's magnetic field is steadily acting on living systems, and is known to influence many biological processes. A systematic survey and assessment of its action are difficult to conduct in the presence of dominant factors, such as gravity. Investigation of responses of biological systems against the combined environment of zero-gravity and zero-magnetic field might establish the baseline for the analysis of biological effects of magnetic factors. We propose, in this paper, an experimental concept in this context, together with a practical approach of the experiments, both in orbit and on the ground, with a thin magnetic shielding film. Plant epicotyl growth was taken as an exemplar index to evaluate technical and scientific feasibility of the proposed system concept. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.
Radiobiological effects of heavy ions and protons. [on cells of mammals, bacteria and viruses
NASA Technical Reports Server (NTRS)
Ryzhov, N. I.; Vorozhtsova, S. V.; Krasavin, Y. A.; Mashinskaya, T. Y.; Savchenko, N. Y.; Fedorov, B. S.; Khlaponina, V. F.; Shelegedin, V. N.; Gut, L.; Sabo, L.
1974-01-01
Radiobiological effects of heavy ions and protons are studied on cells of mammals, bacteria, viruses and DNA of bacteria. Results show that the dose effect dependence bears an exponential character; the reduction of RBE as LET of particle increases reflects the different character of microdistribution of absorbed energy in biological objects with different levels of biological organization.
ERIC Educational Resources Information Center
Kariuki, Patrick; Paulson, Ronda
The purpose of this study was to examine the effectiveness of computer-animated dissection techniques versus the effectiveness of traditional dissection techniques as related to student achievement. The sample used was 104 general biology students from a small, rural high school in Northeast Tennessee. Random selection was used to separate the…
The First Time Ever I Saw Your Feet: Inversion Effect in Newborns' Sensitivity to Biological Motion
ERIC Educational Resources Information Center
Bardi, Lara; Regolin, Lucia; Simion, Francesca
2014-01-01
Inversion effect in biological motion perception has been recently attributed to an innate sensitivity of the visual system to the gravity-dependent dynamic of the motion. However, the specific cues that determine the inversion effect in naïve subjects were never investigated. In the present study, we have assessed the contribution of the local…
Spencer, N; Logan, S
2002-01-01
Parental height is frequently treated as a biological variable in studies of birth weight and childhood growth. Elimination of social variables from multivariate models including parental height as a biological variable leads researchers to conclude that social factors have no independent effect on the outcome. This paper challenges the treatment of parental height as a biological variable, drawing on extensive evidence for the determination of adult height through a complex interaction of genetic and social factors. The paper firstly seeks to establish the importance of social factors in the determination of height. The methodological problems associated with treatment of parental height as a purely biological variable are then discussed, illustrated by data from published studies and by analysis of data from the 1958 National Childhood Development Study (NCDS). The paper concludes that a framework for studying pathways to pregnancy and childhood outcomes needs to take account of the complexity of the relation between genetic and social factors and be able to account for the effects of multiple risk factors acting cumulatively across time and across generations. Illustrations of these approaches are given using NCDS data. PMID:12193422
Truong, Lisa; Ouedraogo, Gladys; Pham, LyLy; Clouzeau, Jacques; Loisel-Joubert, Sophie; Blanchet, Delphine; Noçairi, Hicham; Setzer, Woodrow; Judson, Richard; Grulke, Chris; Mansouri, Kamel; Martin, Matthew
2018-02-01
In an effort to address a major challenge in chemical safety assessment, alternative approaches for characterizing systemic effect levels, a predictive model was developed. Systemic effect levels were curated from ToxRefDB, HESS-DB and COSMOS-DB from numerous study types totaling 4379 in vivo studies for 1247 chemicals. Observed systemic effects in mammalian models are a complex function of chemical dynamics, kinetics, and inter- and intra-individual variability. To address this complex problem, systemic effect levels were modeled at the study-level by leveraging study covariates (e.g., study type, strain, administration route) in addition to multiple descriptor sets, including chemical (ToxPrint, PaDEL, and Physchem), biological (ToxCast), and kinetic descriptors. Using random forest modeling with cross-validation and external validation procedures, study-level covariates alone accounted for approximately 15% of the variance reducing the root mean squared error (RMSE) from 0.96 log 10 to 0.85 log 10 mg/kg/day, providing a baseline performance metric (lower expectation of model performance). A consensus model developed using a combination of study-level covariates, chemical, biological, and kinetic descriptors explained a total of 43% of the variance with an RMSE of 0.69 log 10 mg/kg/day. A benchmark model (upper expectation of model performance) was also developed with an RMSE of 0.5 log 10 mg/kg/day by incorporating study-level covariates and the mean effect level per chemical. To achieve a representative chemical-level prediction, the minimum study-level predicted and observed effect level per chemical were compared reducing the RMSE from 1.0 to 0.73 log 10 mg/kg/day, equivalent to 87% of predictions falling within an order-of-magnitude of the observed value. Although biological descriptors did not improve model performance, the final model was enriched for biological descriptors that indicated xenobiotic metabolism gene expression, oxidative stress, and cytotoxicity, demonstrating the importance of accounting for kinetics and non-specific bioactivity in predicting systemic effect levels. Herein, we generated an externally predictive model of systemic effect levels for use as a safety assessment tool and have generated forward predictions for over 30,000 chemicals.
Brigham, Mark E.; Choy, Steven J.; Moore, Jeremy N.; Banda, Jo A.; Gefell, Daniel J.; Minarik, Thomas A.
2017-01-01
The Laurentian Great Lakes contain one fifth of the world’s surface freshwater and have been impacted by human activity since the Industrial Revolution. In addition to legacy contaminants, nitrification and invasive species, this aquatic ecosystem is also the recipient of Contaminants of Emerging Concern (CECs) with poorly understood biological consequences. In the current study, we documented the presence, concentrations, and biological effects of CECs across 27 field sites in six Great Lakes tributaries by examining over 2250 resident and caged sunfish (Lepomis ssp.) for a variety of morphological and physiological endpoints and related these results to CEC occurrence. CEC were ubiquitous across studies sites and their presence and concentrations in water and sediment were highest in effluent dominated rivers and downstream of municipal wastewater treatment plant discharges. However, even putative upstream reference sites were not free of CEC presence and fish at these sites exhibited biological effects consistent with CEC exposure. Only the Fox River exhibited consistent adverse biological effects, including increased relative liver size, greater prominence of hepatocyte vacuoles and increased plasma glucose concentrations. Canonical Redundancy Analysis revealed consistent patterns of biological consequences of CEC exposure across all six tributaries. Increasing plasma glucose concentrations, likely as a result of pollutant-induced metabolic stress, were associated with increased relative liver size and greater prominence of hepatocyte vacuoles. These indicators of pollutant exposure were inversely correlated with indicators of reproductive potential including smaller gonad size and less mature gametes. The current study highlights the need for greater integration of chemical and biological studies and suggests that CECs in the Laurentian Great Lakes Basin may adversely affect the reproductive potential of exposed fish populations. PMID:28953953
Thomas, Linnea M; Jorgenson, Zachary G; Brigham, Mark E; Choy, Steven J; Moore, Jeremy N; Banda, Jo A; Gefell, Daniel J; Minarik, Thomas A; Schoenfuss, Heiko L
2017-01-01
The Laurentian Great Lakes contain one fifth of the world's surface freshwater and have been impacted by human activity since the Industrial Revolution. In addition to legacy contaminants, nitrification and invasive species, this aquatic ecosystem is also the recipient of Contaminants of Emerging Concern (CECs) with poorly understood biological consequences. In the current study, we documented the presence, concentrations, and biological effects of CECs across 27 field sites in six Great Lakes tributaries by examining over 2250 resident and caged sunfish (Lepomis ssp.) for a variety of morphological and physiological endpoints and related these results to CEC occurrence. CEC were ubiquitous across studies sites and their presence and concentrations in water and sediment were highest in effluent dominated rivers and downstream of municipal wastewater treatment plant discharges. However, even putative upstream reference sites were not free of CEC presence and fish at these sites exhibited biological effects consistent with CEC exposure. Only the Fox River exhibited consistent adverse biological effects, including increased relative liver size, greater prominence of hepatocyte vacuoles and increased plasma glucose concentrations. Canonical Redundancy Analysis revealed consistent patterns of biological consequences of CEC exposure across all six tributaries. Increasing plasma glucose concentrations, likely as a result of pollutant-induced metabolic stress, were associated with increased relative liver size and greater prominence of hepatocyte vacuoles. These indicators of pollutant exposure were inversely correlated with indicators of reproductive potential including smaller gonad size and less mature gametes. The current study highlights the need for greater integration of chemical and biological studies and suggests that CECs in the Laurentian Great Lakes Basin may adversely affect the reproductive potential of exposed fish populations.
Thomas, Linnea M.; Jorgenson, Zachary G.; Brigham, Mark E.; Choy, Steven J.; Moore, Jeremy N.; Banda, Jo A.; Gefell, D.J.; Minarik, Thomas A.; Schoenfuss, Heiko L.
2017-01-01
The Laurentian Great Lakes contain one fifth of the world’s surface freshwater and have been impacted by human activity since the Industrial Revolution. In addition to legacy contaminants, nitrification and invasive species, this aquatic ecosystem is also the recipient of Contaminants of Emerging Concern (CECs) with poorly understood biological consequences. In the current study, we documented the presence, concentrations, and biological effects of CECs across 27 field sites in six Great Lakes tributaries by examining over 2250 resident and caged sunfish (Lepomis ssp.) for a variety of morphological and physiological endpoints and related these results to CEC occurrence. CEC were ubiquitous across studies sites and their presence and concentrations in water and sediment were highest in effluent dominated rivers and downstream of municipal wastewater treatment plant discharges. However, even putative upstream reference sites were not free of CEC presence and fish at these sites exhibited biological effects consistent with CEC exposure. Only the Fox River exhibited consistent adverse biological effects, including increased relative liver size, greater prominence of hepatocyte vacuoles and increased plasma glucose concentrations. Canonical Redundancy Analysis revealed consistent patterns of biological consequences of CEC exposure across all six tributaries. Increasing plasma glucose concentrations, likely as a result of pollutant-induced metabolic stress, were associated with increased relative liver size and greater prominence of hepatocyte vacuoles. These indicators of pollutant exposure were inversely correlated with indicators of reproductive potential including smaller gonad size and less mature gametes. The current study highlights the need for greater integration of chemical and biological studies and suggests that CECs in the Laurentian Great Lakes Basin may adversely affect the reproductive potential of exposed fish populations.
Biologically optimized helium ion plans: calculation approach and its in vitro validation
NASA Astrophysics Data System (ADS)
Mairani, A.; Dokic, I.; Magro, G.; Tessonnier, T.; Kamp, F.; Carlson, D. J.; Ciocca, M.; Cerutti, F.; Sala, P. R.; Ferrari, A.; Böhlen, T. T.; Jäkel, O.; Parodi, K.; Debus, J.; Abdollahi, A.; Haberer, T.
2016-06-01
Treatment planning studies on the biological effect of raster-scanned helium ion beams should be performed, together with their experimental verification, before their clinical application at the Heidelberg Ion Beam Therapy Center (HIT). For this purpose, we introduce a novel calculation approach based on integrating data-driven biological models in our Monte Carlo treatment planning (MCTP) tool. Dealing with a mixed radiation field, the biological effect of the primary 4He ion beams, of the secondary 3He and 4He (Z = 2) fragments and of the produced protons, deuterons and tritons (Z = 1) has to be taken into account. A spread-out Bragg peak (SOBP) in water, representative of a clinically-relevant scenario, has been biologically optimized with the MCTP and then delivered at HIT. Predictions of cell survival and RBE for a tumor cell line, characterized by {{(α /β )}\\text{ph}}=5.4 Gy, have been successfully compared against measured clonogenic survival data. The mean absolute survival variation ({μΔ \\text{S}} ) between model predictions and experimental data was 5.3% ± 0.9%. A sensitivity study, i.e. quantifying the variation of the estimations for the studied plan as a function of the applied phenomenological modelling approach, has been performed. The feasibility of a simpler biological modelling based on dose-averaged LET (linear energy transfer) has been tested. Moreover, comparisons with biophysical models such as the local effect model (LEM) and the repair-misrepair-fixation (RMF) model were performed. {μΔ \\text{S}} values for the LEM and the RMF model were, respectively, 4.5% ± 0.8% and 5.8% ± 1.1%. The satisfactorily agreement found in this work for the studied SOBP, representative of clinically-relevant scenario, suggests that the introduced approach could be applied for an accurate estimation of the biological effect for helium ion radiotherapy.
The Role of Non-Targeted Effects as Mediators in the Biological Effects of Proton Irradiation
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Dicello, John F.
2006-01-01
In recent years, the hypothesis that non-DNA targets are primary initiators and mediators of the biological effects of ionizing radiation, such as proton beams and heavy ions, has gained much interest. These phenomena have been denoted as non-targeted or bystander effects to distinguish them from the more traditionally studied model that focuses on direct damage to DNA causing chromosomal rearrangements and mutations as causative of most biological endpoints such as cell killing, tissue damage, and cancer. We review cellular and extra-cellular structures and signal transduction pathways that have been implemented in these recent studies. Non-targeted effects of interest include oxidative damage to the cytoplasm and mitochondria, disruption of the extra-cellular matrix, and modification of cytokine signaling including TGF-beta, and gap junction communication. We present an introduction to these targets and pathways, and contrast there role with DNA damage pathways.
New Findings on Biological Actions and Clinical Applications of Royal Jelly: A Review.
Khazaei, Mozafar; Ansarian, Atefe; Ghanbari, Elham
2017-10-13
Royal jelly (RJ) is a natural bee product with great potential for use in medicine. The chemical composition of RJ indicates the presence of various bioactive substances including 10-hydroxydecanoic acid and 24-methylenecholesterol. In addition, a number of biological and pharmacological activities of RJ have been documented. The aim of this study was to review the biological and medical effects of RJ. The search was conducted in articles from electronic and scientific literature databases such as Pub Med, Science Direct, Scopus, Medline, and ISI Web of Science published from 1990 to 2017 using keywords of pharmacological, biological, and clinical effects and royal jelly. Data were chosen after the primary survey of all abstracts and selected full articles. Comparison among related data was done by the authors. Literature has shown that RJ possesses many beneficial effects on biological systems. For example, the therapeutic uses of RJ have been reported in several diseases such as hypercholesterolemia, diabetes, hypertension, and cancers. It was also found to possess neurotrophic, hypotensive, immunomodulatory, antimicrobial, antioxidant, antidiabetic, antihypercholesterolemic, antitumor, and anti-inflammatory effects. Owing to the broad spectrum of biological effects and valuable clinical trials, evaluating the beneficial pharmaceutical effects of RJ in animal and human models seems to be important.
Case Study Teaching Method Improves Student Performance and Perceptions of Learning Gains†
Bonney, Kevin M.
2015-01-01
Following years of widespread use in business and medical education, the case study teaching method is becoming an increasingly common teaching strategy in science education. However, the current body of research provides limited evidence that the use of published case studies effectively promotes the fulfillment of specific learning objectives integral to many biology courses. This study tested the hypothesis that case studies are more effective than classroom discussions and textbook reading at promoting learning of key biological concepts, development of written and oral communication skills, and comprehension of the relevance of biological concepts to everyday life. This study also tested the hypothesis that case studies produced by the instructor of a course are more effective at promoting learning than those produced by unaffiliated instructors. Additionally, performance on quantitative learning assessments and student perceptions of learning gains were analyzed to determine whether reported perceptions of learning gains accurately reflect academic performance. The results reported here suggest that case studies, regardless of the source, are significantly more effective than other methods of content delivery at increasing performance on examination questions related to chemical bonds, osmosis and diffusion, mitosis and meiosis, and DNA structure and replication. This finding was positively correlated to increased student perceptions of learning gains associated with oral and written communication skills and the ability to recognize connections between biological concepts and other aspects of life. Based on these findings, case studies should be considered as a preferred method for teaching about a variety of concepts in science courses. PMID:25949753
Case study teaching method improves student performance and perceptions of learning gains.
Bonney, Kevin M
2015-05-01
Following years of widespread use in business and medical education, the case study teaching method is becoming an increasingly common teaching strategy in science education. However, the current body of research provides limited evidence that the use of published case studies effectively promotes the fulfillment of specific learning objectives integral to many biology courses. This study tested the hypothesis that case studies are more effective than classroom discussions and textbook reading at promoting learning of key biological concepts, development of written and oral communication skills, and comprehension of the relevance of biological concepts to everyday life. This study also tested the hypothesis that case studies produced by the instructor of a course are more effective at promoting learning than those produced by unaffiliated instructors. Additionally, performance on quantitative learning assessments and student perceptions of learning gains were analyzed to determine whether reported perceptions of learning gains accurately reflect academic performance. The results reported here suggest that case studies, regardless of the source, are significantly more effective than other methods of content delivery at increasing performance on examination questions related to chemical bonds, osmosis and diffusion, mitosis and meiosis, and DNA structure and replication. This finding was positively correlated to increased student perceptions of learning gains associated with oral and written communication skills and the ability to recognize connections between biological concepts and other aspects of life. Based on these findings, case studies should be considered as a preferred method for teaching about a variety of concepts in science courses.
NASA Astrophysics Data System (ADS)
Förtsch, Christian; Werner, Sonja; von Kotzebue, Lena; Neuhaus, Birgit J.
2016-11-01
This study examined the effects of teachers' biology-specific dimensions of professional knowledge - pedagogical content knowledge (PCK) and content knowledge (CK) - and cognitively activating biology instruction, as a feature of instructional quality, on students' learning. The sample comprised 39 German secondary school teachers whose lessons on the topic neurobiology were videotaped twice. Teachers' instruction was coded with regard to cognitive activation using a rating manual. Multilevel path analysis results showed a positive significant effect of cognitive activation on students' learning and an indirect effect of teachers' PCK on students' learning mediated through cognitive activation. These findings highlight the importance of PCK in preservice biology teachers' education. Items of the rating manual may be used to provide exemplars of concrete teaching situations during university seminars for preservice teacher education or professional development initiatives for in-service teachers.
A glimpse on biological activities of tellurium compounds.
Cunha, Rodrigo L O R; Gouvea, Iuri E; Juliano, Luiz
2009-09-01
Tellurium is a rare element which has been regarded as a toxic, non-essential trace element and its biological role is not clearly established to date. Besides of that, the biological effects of elemental tellurium and some of its inorganic and organic derivatives have been studied, leading to a set of interesting and promising applications. As an example, it can be highlighted the uses of alkali-metal tellurites and tellurates in microbiology, the antioxidant effects of organotellurides and diorganoditellurides and the immunomodulatory effects of the non-toxic inorganic tellurane, named AS-101, and the plethora of its uses. Inasmuch, the nascent applications of organic telluranes (organotelluranes) as protease inhibitors and its applications in disease models are the most recent contribution to the scenario of the biological effects and applications of tellurium and its compounds discussed in this manuscript.
Mammalian synthetic biology for studying the cell
Mathur, Melina; Xiang, Joy S.
2017-01-01
Synthetic biology is advancing the design of genetic devices that enable the study of cellular and molecular biology in mammalian cells. These genetic devices use diverse regulatory mechanisms to both examine cellular processes and achieve precise and dynamic control of cellular phenotype. Synthetic biology tools provide novel functionality to complement the examination of natural cell systems, including engineered molecules with specific activities and model systems that mimic complex regulatory processes. Continued development of quantitative standards and computational tools will expand capacities to probe cellular mechanisms with genetic devices to achieve a more comprehensive understanding of the cell. In this study, we review synthetic biology tools that are being applied to effectively investigate diverse cellular processes, regulatory networks, and multicellular interactions. We also discuss current challenges and future developments in the field that may transform the types of investigation possible in cell biology. PMID:27932576
Aerospace Medicine and Biology: A Continuing Bibliography With Indexes
NASA Technical Reports Server (NTRS)
1997-01-01
This issue of Aerospace Medicine and Biology, A Continuing Bibliography with Indexes NASA SP-7O11 lists reports, articles, and other documents recently announced in the NASA STI Database. In its subject coverage, Aerospace Medicine and Biology concentrates on the biological, physiological, psychological, and environmental effects to which humans are subjected during and following simulated or actual flight in the Earth's atmosphere or in interplanetary space. References describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention. Applied research receives the most emphasis, but references to fundamental studies and theoretical principles related to experimental development also qualify for inclusion.
Aerospace Medicine and Biology: A continuing bibliography with indexes, supplement 187
NASA Technical Reports Server (NTRS)
1978-01-01
This supplement to Aerospace Medicine and Biology lists 247 reports, articles and other documents announced during November 1978 in Scientific and Technical Aerospace Reports (STAR) or in International Aerospace Abstracts (IAA). In its subject coverage, Aerospace Medicine and Biology concentrates on the biological, physiological, psychological, and environmental effects to which man is subjected during and following simulated or actual flight in the earth's atmosphere or in interplanetary space. References describing similar effects of biological organisms of lower order are also included. Emphasis is placed on applied research, but reference to fundamental studies and theoretical principles related to experimental development also qualify for inclusion. Each entry in the bibliography consists of a bibliographic citation accompanied in most cases by an abstract.
Aerospace Medicine and Biology: A Continuing Bibliography. Supplement 475
NASA Technical Reports Server (NTRS)
1998-01-01
This supplemental issue of Aerospace Medicine and Biology, A Continuing Bibliography with Indexes lists reports, articles, and other documents recently announced in the NASA STI Database. In its subject coverage, Aerospace Medicine and Biology concentrates on the biological, physiological, psychological, and environmental effects to which humans are subjected during and following simulated or actual flight in the Earth's atmosphere or in interplanetary space. References describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention. Applied research receives the most emphasis, but references to fundamental studies and theoretical principles related to experimental development also qualify for inclusion.
Krasin, Matthew J.; Constine, Louis S.; Friedman, Debra; Marks, Lawrence B.
2010-01-01
Radiation related effects in children and adults limit the delivery of effective radiation doses and result in long-term morbidity affecting function and quality of life. Improvements in our understanding of the etiology and biology of these effects, including the influence of clinical variables, dosimetric factors, and the underlying biologic processes has made treatment safer and more efficacious. However, the approach to studying and understanding these effects differs between children and adults. By using the pulmonary and skeletal organ systems as examples, comparisons are made across the age spectrum for radiation related effects including pneumonitis, pulmonary fibrosis, osteonecrosis and fracture. Methods for dosimetric analysis, incorporation of imaging and biology as well a length of follow-up are compared, contrasted and discussed for both organ systems in children and adults. Better understanding of each age specific approach and how it differs may improve our ability to study late effects of radiation across the ages PMID:19959028
NASA Astrophysics Data System (ADS)
Alsuhaim, Hamad S.; Vojisavljevic, Vuk; Pirogova, E.
2013-12-01
Recently, microwave radiation, a type/subset of non-ionizing electromagnetic radiation (EMR) has been widely used in industry, medicine, as well as food technology and mobile communication. Use of mobile phones is rapidly growing. Four years from now, 5.1 billion people will be mobile phone users around the globe - almost 1 billion more mobile users than the 4.3 billion people worldwide using them now. Consequently, exposure to weak radiofrequency/microwave radiation generated by these devices is markedly increasing. Accordingly, public concern about potential hazards on human health is mounting [1]. Thermal effects of radiofrequency/microwave radiation are very well-known and extensively studied. Of particular interest are non-thermal effects of microwave exposures on biological systems. Nonthermal effects are described as changes in cellular metabolism caused by both resonance absorption and induced EMR and are often accompanied by a specific biological response. Non-thermal biological effects are measurable changes in biological systems that may or may not be associated with adverse health effects. In this study we studied non-thermal effects of low power microwave exposures on kinetics of L-lactate dehydrogenase enzyme and growth rate of yeast Saccharomyces Cerevisiae strains type II. The selected model systems were continuously exposed to microwave radiation at the frequency of 968MHz and power of 10dBm using the designed and constructed (custom made) Transverse Electro-Magnetic (TEM) cell [2]. The findings reveal that microwave radiation at 968MHz and power of 10dBm inhibits L-lactate dehydrogenase enzyme activity by 26% and increases significantly (15%) the proliferation rate of yeast cells.
Biological patterns: Novel indicators for pharmacological assays
NASA Technical Reports Server (NTRS)
Johnson, Jacqueline U.
1991-01-01
Variable gravity testing using the KC-135 demonstrated clearly that biological pattern formation was definitely shown to result from gravity alone, and not from oxygen gradients in solution. Motile pattern formation of spermatozoa are driven by alternate mechanisms, and apparently not affected by short-term changes in gravity. The chemical effects found appear to be secondary to the primary effect of gravity. Cryopreservation may be the remedy to the problem of 'spare' or 'standing order' biological samples for testing of space lab investigations, but further studies are necessary.
NASA Technical Reports Server (NTRS)
Stutte, Gary W.; Roberts, Michael
2012-01-01
SyNRGE (Symbiotic Nodulation in a Reduced Gravity Environment) was a sortie mission on STS-135 in the Biological Research in Canisters (BRIC) hardware to study the effect of microgravity on a plant-microbe symbiosis resulting in biological nitrogen fixation. Medicago truncatula, a model species for th legume family, was inoculated with its bacterial symbiont, Sinorhizobium meliloti, to observe early biomolecular events associated with infection and nodulation in Petri Dish Fixation Units (PDFU's).
Umemura, Masayuki; Itoh, Akio; Ando, Yuichi; Yamada, Kiyofumi; Wakiya, Yoshifumi; Nabeshima, Toshitaka
2015-08-01
In Japan, biological safety cabinets are commonly used by medical staff to prepare antineoplastic agents. At the Division of Chemotherapy for Outpatients, Nagoya University Hospital, a class II B2 biological safety cabinet is used. The temperature inside this biological safety cabinet decreases in winter. In this study, we investigated the effect of low outside air temperature on the biological safety cabinet temperature, time required to admix antineoplastic agents, and accuracy of epirubicin weight measurement. Studies were conducted from 1 January to 31 March 2008 (winter). The outside air temperature near the biological safety cabinet intake nozzle was compared with the biological safety cabinet temperature. The correlation between the outside air temperature and the biological safety cabinet temperature, time for cyclophosphamide and gemcitabine solubilization, and accuracy of epirubicin weight measurement were investigated at low and high biological safety cabinet temperatures. The biological safety cabinet temperature correlated with the outside air temperature of 5-20℃ (p < 0.0001). Compared to cyclophosphamide and gemcitabine solubilization in the biological safety cabinet at 25℃, solubilization at 10℃ was significantly delayed (p < 0.01 and p < 0.0001, respectively). Measurement of epirubicin weight by using a syringe lacked accuracy because of epirubicin's high viscosity at low temperatures (p < 0.01). These results suggest that the biological safety cabinet temperature decreases when cool winter air is drawn into the biological safety cabinet, affecting the solubilization of antineoplastic agents. We suggest that a decrease in biological safety cabinet temperature may increase the time required to admix antineoplastic agents, thereby increasing the time for which outpatients must wait for chemotherapy. © The Author(s) 2014.
A Study Assessing the Potential of Negative Effects in Interdisciplinary Math–Biology Instruction
Madlung, Andreas; Bremer, Martina; Himelblau, Edward; Tullis, Alexa
2011-01-01
There is increasing enthusiasm for teaching approaches that combine mathematics and biology. The call for integrating more quantitative work in biology education has led to new teaching tools that improve quantitative skills. Little is known, however, about whether increasing interdisciplinary work can lead to adverse effects, such as the development of broader but shallower skills or the possibility that math anxiety causes some students to disengage in the classroom, or, paradoxically, to focus so much on the mathematics that they lose sight of its application for the biological concepts in the center of the unit at hand. We have developed and assessed an integrative learning module and found disciplinary learning gains to be equally strong in first-year students who actively engaged in embedded quantitative calculations as in those students who were merely presented with quantitative data in the context of interpreting biological and biostatistical results. When presented to advanced biology students, our quantitative learning tool increased test performance significantly. We conclude from our study that the addition of mathematical calculations to the first year and advanced biology curricula did not hinder overall student learning, and may increase disciplinary learning and data interpretation skills in advanced students. PMID:21364099
Coley, John D; Arenson, Melanie; Xu, Yian; Tanner, Kimberly D
2017-02-01
A large body of cognitive research has shown that people intuitively and effortlessly reason about the biological world in complex and systematic ways. We addressed two questions about the nature of intuitive biological reasoning: How does intuitive biological thinking change during adolescence and early adulthood? How does increasing biology education influence intuitive biological thinking? To do so, we developed a battery of measures to systematically test three components of intuitive biological thought: anthropocentric thinking, teleological thinking and essentialist thinking, and tested 8th graders and university students (both biology majors, and non-biology majors). Results reveal clear evidence of persistent intuitive reasoning among all populations studied, consistent but surprisingly small differences between 8th graders and college students on measures of intuitive biological thought, and consistent but again surprisingly small influence of increasing biology education on intuitive biological reasoning. Results speak to the persistence of intuitive reasoning, the importance of taking intuitive knowledge into account in science classrooms, and the necessity of interdisciplinary research to advance biology education. Further studies are necessary to investigate how cultural context and continued acquisition of expertise impact intuitive biology thinking. Copyright © 2016 Elsevier Inc. All rights reserved.
Do biological-based strategies hold promise to biofouling control in MBRs?
Malaeb, Lilian; Le-Clech, Pierre; Vrouwenvelder, Johannes S; Ayoub, George M; Saikaly, Pascal E
2013-10-01
Biofouling in membrane bioreactors (MBRs) remains a primary challenge for their wider application, despite the growing acceptance of MBRs worldwide. Research studies on membrane fouling are extensive in the literature, with more than 200 publications on MBR fouling in the last 3 years; yet, improvements in practice on biofouling control and management have been remarkably slow. Commonly applied cleaning methods are only partially effective and membrane replacement often becomes frequent. The reason for the slow advancement in successful control of biofouling is largely attributed to the complex interactions of involved biological compounds and the lack of representative-for-practice experimental approaches to evaluate potential effective control strategies. Biofouling is driven by microorganisms and their associated extra-cellular polymeric substances (EPS) and microbial products. Microorganisms and their products convene together to form matrices that are commonly treated as a black box in conventional control approaches. Biological-based antifouling strategies seem to be a promising constituent of an effective integrated control approach since they target the essence of biofouling problems. However, biological-based strategies are in their developmental phase and several questions should be addressed to set a roadmap for translating existing and new information into sustainable and effective control techniques. This paper investigates membrane biofouling in MBRs from the microbiological perspective to evaluate the potential of biological-based strategies in offering viable control alternatives. Limitations of available control methods highlight the importance of an integrated anti-fouling approach including biological strategies. Successful development of these strategies requires detailed characterization of microorganisms and EPS through the proper selection of analytical tools and assembly of results. Existing microbiological/EPS studies reveal a number of implications as well as knowledge gaps, warranting future targeted research. Systematic and representative microbiological studies, complementary utilization of molecular and biofilm characterization tools, standardized experimental methods and validation of successful biological-based antifouling strategies for MBR applications are needed. Specifically, in addition, linking these studies to relevant operational conditions in MBRs is an essential step to ultimately develop a better understanding and more effective and directed control strategy for biofouling. Copyright © 2013 Elsevier Ltd. All rights reserved.
Indirect effects of host-specific biological control agents
Dean E. Pearson; Ragan M. Callaway
2003-01-01
Biological control is a crucial tool in the battle against biological invasions, but biocontrol agents can have a deleterious impact on native species. Recognition of risks associated with host shifting has increased the emphasis on host specificity of biocontrol agents for invasive weeds. However, recent studies indicate host-specific biocontrol agents can...
A Best-Practice Model for Academic Advising of University Biology Majors
ERIC Educational Resources Information Center
Heekin, Jonathan Ralph Calvin
2013-01-01
Biology faculty at an East Coast university believed their undergraduate students were not being well served by the existing academic advising program. The purpose of this mixed methods project study was to evaluate the effectiveness of the academic advising model in a biology department. Guided by system-based organizational theory, a learning…
ERIC Educational Resources Information Center
Lin, Wan-Ju
This study reports on the improvement of a teacher researcher's teaching practice by adopting a constructivist teaching approach. Four biology units on the nervous system, human circulatory system, evolution, and vertebrate classification were selected to illustrate a model of biology teaching. Data were drawn from student responses to…
Effects of cover crops on soil quality: Selected chemical and biological parameters
USDA-ARS?s Scientific Manuscript database
Cover crops may improve soil physical, chemical, and biological properties and thus help improve land productivity. The objective of this study was to evaluate short-term changes (6, 9, and 12 weeks) in soil chemical and biological properties as influenced by cover crops for two different soils and...
Carlini, Alessandro; Actis-Grosso, Rossana; Stucchi, Natale; Pozzo, Thierry
2012-01-01
Our daily experience shows that the CNS is a highly efficient machine to predict the effect of actions into the future; are we so efficient also in reconstructing the past of an action? Previous studies demonstrated we are more effective in extrapolating the final position of a stimulus moving according to biological kinematic laws. Here we address the complementary question: are we more effective in extrapolating the starting position (SP) of a motion following a biological velocity profile? We presented a dot moving upward and corresponding to vertical arm movements that were masked in the first part of the trajectory. The stimulus could either move according to biological or non-biological kinematic laws of motion. Results show a better efficacy in reconstructing the SP of a natural motion: participants demonstrate to reconstruct coherently only the SP of the biological condition. When the motion violates the biological kinematic law, responses are scattered and show a tendency toward larger errors. Instead, in a control experiment where the full motions were displayed, no-difference between biological and non-biological motions is found. Results are discussed in light of potential mechanisms involved in visual inference. We propose that as soon as the target appears the cortical motor area would generate an internal representation of reaching movement. When the visual input and the stored kinematic template match, the SP is traced back on the basis of this memory template, making more effective the SP reconstruction. PMID:22712012
Biological conceptions of race and the motivation to cross racial boundaries.
Williams, Melissa J; Eberhardt, Jennifer L
2008-06-01
The present studies demonstrate that conceiving of racial group membership as biologically determined increases acceptance of racial inequities (Studies 1 and 2) and cools interest in interacting with racial outgroup members (Studies 3-5). These effects were generally independent of racial prejudice. It is argued that when race is cast as a biological marker of individuals, people perceive racial outgroup members as unrelated to the self and therefore unworthy of attention and affiliation. Biological conceptions of race therefore provide justification for a racially inequitable status quo and for the continued social marginalization of historically disadvantaged groups. (PsycINFO Database Record (c) 2008 APA, all rights reserved).
Aerospace Medicine and Biology: A Continuing Bibliography with Indexes. Supplement 492
NASA Technical Reports Server (NTRS)
1999-01-01
This report lists reports, articles and other documents recently announced in the NASA STI Database. In its subject coverage, Aerospace Medicine and Biology concentrates on the biological, physiological, psychological, and environmental effects to which humans are subjected during and following simulated or actual flight in the Earth's atmosphere or in interplanetary space. References describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention. Applied research receives the most emphasis, but references to fundamental studies and theoretical principles related to experimental development also qualify for inclusion.
Industrial and Biological Analogies Used Creatively by Business Professionals
ERIC Educational Resources Information Center
Kennedy, Emily B.; Miller, Derek J.; Niewiarowski, Peter H.
2018-01-01
The objective of this study was to test the effect of far-field industrial (i.e., man-made) versus biological analogies on creativity of business professionals from two organizations engaged in the idea generation phase of new product development. Psychological effects, as reflected in language use, were measured via computerized text analysis of…
Effects of Developed Electronic Instructional Medium on Students' Achievement in Biology
ERIC Educational Resources Information Center
Chinna, Nsofor Caroline; Dada, Momoh Gabriel
2013-01-01
The study investigated the effects of developed electronic instructional medium (video DVD instructional package) on students' achievement in Biology. It was guided by two research questions and two hypotheses, using a quasi-experimental, pretest-postest control group design. The sample comprised of 180 senior secondary, year two students from six…
ERIC Educational Resources Information Center
Johnson, Wendy; McGue, Matt; Iacono, William G.
2007-01-01
SES has long interested researchers investigating school achievement. Its effects are often addressed by studying predictors of achievement in economically disadvantaged samples living primarily in biological families, confounding genetic and environmental influences. Little is known about SES's purely environmental effects. We measured them in…
ERIC Educational Resources Information Center
Yang, Kai-Ti; Wang, Tzu-Hua; Chiu, Mei-Hung
2015-01-01
This research investigates the effectiveness of integrating Interactive Whiteboard (IWB) into the junior high school biology teaching. This research adopts a quasi-experimental design and divides the participating students into the conventional ICT-integrated learning environment and IWB-integrated learning environment. Before teaching, students…
NASA space biology accomplishments, 1983-84
NASA Technical Reports Server (NTRS)
Halstead, T. W.; Dutcher, F. R.; Pleasant, L. G.
1984-01-01
Approximately 42 project summaries from NASA's Space Biology Program are presented. Emphasis is placed on gravitational effects on plant and animal life. The identification of gravity perception; the effects of weightlessness on genetic integrity, cellular differentiation, reproduction, development, growth, maturation, and senescence; and how gravity affects and controls physiology, morphology, and behavior of organisms are studied.
USDA-ARS?s Scientific Manuscript database
Despite growing evidence that habitat manipulation can alter predators’ impact on target prey consumption, few studies have directly examined the effect of habitat context on conservation biological control in the field. Because of contradictory evidence in the literature for the outcome of habita...
Use of Biologics in Private Practice: Nine Years of Lessons and Learning.
Correa-Selm, Lilia M; Alamgir, Mahin; Rao, Babar K
2017-03-01
Over a decade ago, the FDA approved biologics for psoriasis, which changed how the disease is treated and, in most cases, has a significant positive impact on the lives of patients. Side effects primarily identified during the investigational and research phase led to the development of specific guidelines for treatment. The treatment guidelines have been amended to incorporate better understandings of side-effects over the years that the disease has been treated. In this study, we focused on a chart review that included assessing the current guidelines and their alignment with modern patient management and the recent side effects presented. This life-cycle evaluation included over 100 patients, management of their treatment, laboratory abnormalities, criteria for choosing or changing to a different biologic, and the effects of the treatments management throughout the years. The review identified some recommended changes in the application and treatment of psoriasis with biologics. To further evidence our findings, we hope to expand this study to a larger scale with more patients.
J Drugs Dermatol. 2017;16(3):215-217.
.Harvey, Ben P; Gwynn-Jones, Dylan; Moore, Pippa J
2013-01-01
Ocean acidification and warming are considered two of the greatest threats to marine biodiversity, yet the combined effect of these stressors on marine organisms remains largely unclear. Using a meta-analytical approach, we assessed the biological responses of marine organisms to the effects of ocean acidification and warming in isolation and combination. As expected biological responses varied across taxonomic groups, life-history stages, and trophic levels, but importantly, combining stressors generally exhibited a stronger biological (either positive or negative) effect. Using a subset of orthogonal studies, we show that four of five of the biological responses measured (calcification, photosynthesis, reproduction, and survival, but not growth) interacted synergistically when warming and acidification were combined. The observed synergisms between interacting stressors suggest that care must be made in making inferences from single-stressor studies. Our findings clearly have implications for the development of adaptive management strategies particularly given that the frequency of stressors interacting in marine systems will be likely to intensify in the future. There is now an urgent need to move toward more robust, holistic, and ecologically realistic climate change experiments that incorporate interactions. Without them accurate predictions about the likely deleterious impacts to marine biodiversity and ecosystem functioning over the next century will not be possible. PMID:23610641
Harvey, Ben P; Gwynn-Jones, Dylan; Moore, Pippa J
2013-04-01
Ocean acidification and warming are considered two of the greatest threats to marine biodiversity, yet the combined effect of these stressors on marine organisms remains largely unclear. Using a meta-analytical approach, we assessed the biological responses of marine organisms to the effects of ocean acidification and warming in isolation and combination. As expected biological responses varied across taxonomic groups, life-history stages, and trophic levels, but importantly, combining stressors generally exhibited a stronger biological (either positive or negative) effect. Using a subset of orthogonal studies, we show that four of five of the biological responses measured (calcification, photosynthesis, reproduction, and survival, but not growth) interacted synergistically when warming and acidification were combined. The observed synergisms between interacting stressors suggest that care must be made in making inferences from single-stressor studies. Our findings clearly have implications for the development of adaptive management strategies particularly given that the frequency of stressors interacting in marine systems will be likely to intensify in the future. There is now an urgent need to move toward more robust, holistic, and ecologically realistic climate change experiments that incorporate interactions. Without them accurate predictions about the likely deleterious impacts to marine biodiversity and ecosystem functioning over the next century will not be possible.
Wang, Fang; Yu, Jia Ming; Yang, De Qi; Gao, Qian; Hua, Hui; Liu, Yang
2017-02-01
To show the distribution of facial exposure to non-melanoma biologically effective UV irradiance changes by rotation angles. This study selected the cheek, nose, and forehead as representative facial sites for UV irradiance measurements, which were performed using a rotating manikin and a spectroradiometer. The measured UV irradiance was weighted using action spectra to calculate the biologically effective UV irradiances that cause non-melanoma (UVBEnon-mel) skin cancer. The biologically effective UV radiant exposure (HBEnon-mel) was calculated by summing the UVBEnon-mel data collected over the exposure period. This study revealed the following: (1) the maximum cheek, nose and forehead exposure UVA and UVB irradiance times and solar elevation angles (SEA) differed from those of the ambient UV irradiance and were influenced by the rotation angles; (2) the UV irradiance exposure increased in the following order: cheek < nose < forehead; (3) the distribution of UVBEnon-mel irradiance differed from that of unweighted UV radiation (UVR) and was influenced by the rotation angles and exposure times; and (4) the maximum percentage decreases in the UVBEnon-mel radiant exposure for the cheek, nose and forehead from 0°to 180°were 48.41%, 69.48% and 71.71%, respectively. Rotation angles relative to the sun influence the face's exposure to non-melanoma biologically effective UV. Copyright © 2017 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.
Stanton, Julie Dangremond; Neider, Xyanthe N.; Gallegos, Isaura J.; Clark, Nicole C.
2015-01-01
Strong metacognition skills are associated with learning outcomes and student performance. Metacognition includes metacognitive knowledge—our awareness of our thinking—and metacognitive regulation—how we control our thinking to facilitate learning. In this study, we targeted metacognitive regulation by guiding students through self-evaluation assignments following the first and second exams in a large introductory biology course (n = 245). We coded these assignments for evidence of three key metacognitive-regulation skills: monitoring, evaluating, and planning. We found that nearly all students were willing to take a different approach to studying but showed varying abilities to monitor, evaluate, and plan their learning strategies. Although many students were able to outline a study plan for the second exam that could effectively address issues they identified in preparing for the first exam, only half reported that they followed their plans. Our data suggest that prompting students to use metacognitive-regulation skills is effective for some students, but others need help with metacognitive knowledge to execute the learning strategies they select. Using these results, we propose a continuum of metacognitive regulation in introductory biology students. By refining this model through further study, we aim to more effectively target metacognitive development in undergraduate biology students. PMID:25976651
Stanton, Julie Dangremond; Neider, Xyanthe N; Gallegos, Isaura J; Clark, Nicole C
2015-01-01
Strong metacognition skills are associated with learning outcomes and student performance. Metacognition includes metacognitive knowledge-our awareness of our thinking-and metacognitive regulation-how we control our thinking to facilitate learning. In this study, we targeted metacognitive regulation by guiding students through self-evaluation assignments following the first and second exams in a large introductory biology course (n = 245). We coded these assignments for evidence of three key metacognitive-regulation skills: monitoring, evaluating, and planning. We found that nearly all students were willing to take a different approach to studying but showed varying abilities to monitor, evaluate, and plan their learning strategies. Although many students were able to outline a study plan for the second exam that could effectively address issues they identified in preparing for the first exam, only half reported that they followed their plans. Our data suggest that prompting students to use metacognitive-regulation skills is effective for some students, but others need help with metacognitive knowledge to execute the learning strategies they select. Using these results, we propose a continuum of metacognitive regulation in introductory biology students. By refining this model through further study, we aim to more effectively target metacognitive development in undergraduate biology students. © 2015 J. D. Stanton et al. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
[Study of microorganism sterilization by instant microwave and electromagnetic pulse].
Lu, Zhiyuan; Shi, Pinpin; Zhu, Manzuo; Sun, Wenquan; Ding, Hua; Hou, Jianqiang
2008-08-01
The sterilization effects of constant electromagnetic wave and instant pulse on foods and traditional Chinese medical pills are introduced in this paper. From the velum's voltage variation caused by the outward electric filed,the dielectric properties of membranaceous ion and the pass rate of the membranaceous ion, we could analyze the biological heating effect and the biological non-heating effect. The sterilization effect of constant electromagnetic wave is based on the biological heating effect, while the instant electromagnetic pulse is based on the biological non-heating effect. With the applied electronic field, the voltage of membrane could increase, which results in the gates of K+ open, and the flowing out of K+. And the variation of the membranaceous voltage makes the gates of Ca2+ open. The Ca2+ of large consistency could come into the cell by the gradient of voltage. It could induce the death of the cells. The greater the variation of membranaceous voltage becomes, the higher will be the death rate of the cells.
NASA Astrophysics Data System (ADS)
Qi, Bin; Guo, Linli; Zhang, Zhixian
2016-07-01
Space life science and life support engineering are prominent problems in manned deep space exploration mission. Some typical problems are discussed in this paper, including long-term life support problem, physiological effect and defense of varying extraterrestrial environment. The causes of these problems are developed for these problems. To solve these problems, research on space life science and space medical-engineering should be conducted. In the aspect of space life science, the study of space gravity biology should focus on character of physiological effect in long term zero gravity, co-regulation of physiological systems, impact on stem cells in space, etc. The study of space radiation biology should focus on target effect and non-target effect of radiation, carcinogenicity of radiation, spread of radiation damage in life system, etc. The study of basic biology of space life support system should focus on theoretical basis and simulating mode of constructing the life support system, filtration and combination of species, regulation and optimization method of life support system, etc. In the aspect of space medical-engineering, the study of bio-regenerative life support technology should focus on plants cultivation technology, animal-protein production technology, waste treatment technology, etc. The study of varying gravity defense technology should focus on biological and medical measures to defend varying gravity effect, generation and evaluation of artificial gravity, etc. The study of extraterrestrial environment defense technology should focus on risk evaluation of radiation, monitoring and defending of radiation, compound prevention and removal technology of dust, etc. At last, a case of manned lunar base is analyzed, in which the effective schemes of life support system, defense of varying gravity, defense of extraterrestrial environment are advanced respectively. The points in this paper can be used as references for intensive study on key technologies.
Guéguen, Yann; Roy, Laurence; Hornhardt, Sabine; Badie, Christophe; Hall, Janet; Baatout, Sarah; Pernot, Eileen; Tomasek, Ladislav; Laurent, Olivier; Ebrahimian, Teni; Ibanez, Chrystelle; Grison, Stephane; Kabacik, Sylwia; Laurier, Dominique; Gomolka, Maria
2017-01-01
Despite substantial experimental and epidemiological research, there is limited knowledge of the uranium-induce health effects after chronic low-dose exposures in humans. Biological markers can objectively characterize pathological processes or environmental responses to uranium and confounding agents. The integration of such biological markers into a molecular epidemiological study would be a useful approach to improve and refine estimations of uranium-induced health risks. To initiate such a study, Concerted Uranium Research in Europe (CURE) was established, and involves biologists, epidemiologists and dosimetrists. The aims of the biological work package of CURE were: 1. To identify biomarkers and biological specimens relevant to uranium exposure; 2. To define standard operating procedures (SOPs); and 3. To set up a common protocol (logistic, questionnaire, ethical aspects) to perform a large-scale molecular epidemiologic study in uranium-exposed cohorts. An intensive literature review was performed and led to the identification of biomarkers related to: 1. retention organs (lungs, kidneys and bone); 2. other systems/organs with suspected effects (cardiovascular system, central nervous system and lympho-hematopoietic system); 3. target molecules (DNA damage, genomic instability); and 4. high-throughput methods for the identification of new biomarkers. To obtain high-quality biological materials, SOPs were established for the sampling and storage of different biospecimens. A questionnaire was developed to assess potential confounding factors. The proposed strategy can be adapted to other internal exposures and should improve the characterization of the biological and health effects that are relevant for risk assessment.
Schroeder, Anthony L.; Martinovic-Weigelt, Dalma; Ankley, Gerald T.; Lee, Kathy E.; Garcia-Reyero, Natalia; Perkins, Edward J.; Schoenfuss, Heiko L.; Villeneuve, Daniel L.
2017-01-01
Evaluating potential adverse effects of complex chemical mixtures in the environment is challenging. One way to address that challenge is through more integrated analysis of chemical monitoring and biological effects data. In the present study, water samples from five locations near two municipal wastewater treatment plants in the St. Croix River basin, on the border of MN and WI, USA, were analyzed for 127 organic contaminants. Known chemical-gene interactions were used to develop site-specific knowledge assembly models (KAMs) and formulate hypotheses concerning possible biological effects associated with chemicals detected in water samples from each location. Additionally, hepatic gene expression data were collected for fathead minnows (Pimephales promelas) exposed in situ, for 12 d, at each location. Expression data from oligonucleotide microarrays were analyzed to identify functional annotation terms enriched among the differentially-expressed probes. The general nature of many of the terms made hypothesis formulation on the basis of the transcriptome-level response alone difficult. However, integrated analysis of the transcriptome data in the context of the site-specific KAMs allowed for evaluation of the likelihood of specific chemicals contributing to observed biological responses. Thirteen chemicals (atrazine, carbamazepine, metformin, thiabendazole, diazepam, cholesterol, p-cresol, phenytoin, omeprazole, ethyromycin, 17β-estradiol, cimetidine, and estrone), for which there was statistically significant concordance between occurrence at a site and expected biological response as represented in the KAM, were identified. While not definitive, the approach provides a line of evidence for evaluating potential cause-effect relationships between components of a complex mixture of contaminants and biological effects data, which can inform subsequent monitoring and investigation.
Schroeder, Anthony L; Martinović-Weigelt, Dalma; Ankley, Gerald T; Lee, Kathy E; Garcia-Reyero, Natalia; Perkins, Edward J; Schoenfuss, Heiko L; Villeneuve, Daniel L
2017-02-01
Evaluating potential adverse effects of complex chemical mixtures in the environment is challenging. One way to address that challenge is through more integrated analysis of chemical monitoring and biological effects data. In the present study, water samples from five locations near two municipal wastewater treatment plants in the St. Croix River basin, on the border of MN and WI, USA, were analyzed for 127 organic contaminants. Known chemical-gene interactions were used to develop site-specific knowledge assembly models (KAMs) and formulate hypotheses concerning possible biological effects associated with chemicals detected in water samples from each location. Additionally, hepatic gene expression data were collected for fathead minnows (Pimephales promelas) exposed in situ, for 12 d, at each location. Expression data from oligonucleotide microarrays were analyzed to identify functional annotation terms enriched among the differentially-expressed probes. The general nature of many of the terms made hypothesis formulation on the basis of the transcriptome-level response alone difficult. However, integrated analysis of the transcriptome data in the context of the site-specific KAMs allowed for evaluation of the likelihood of specific chemicals contributing to observed biological responses. Thirteen chemicals (atrazine, carbamazepine, metformin, thiabendazole, diazepam, cholesterol, p-cresol, phenytoin, omeprazole, ethyromycin, 17β-estradiol, cimetidine, and estrone), for which there was statistically significant concordance between occurrence at a site and expected biological response as represented in the KAM, were identified. While not definitive, the approach provides a line of evidence for evaluating potential cause-effect relationships between components of a complex mixture of contaminants and biological effects data, which can inform subsequent monitoring and investigation. Published by Elsevier Ltd.
Donaldson, K; Addison, J; Miller, B G; Cullen, R T; Davis, J M
1994-01-01
We used a special-purpose glass microfiber sample, Johns-Manville Code 100/475, to study the effects of various acid and alkali treatments on biological activity as assessed by inflammation in the mouse peritoneal cavity, the leaching of Si, and the phase contrast optical microscopy (PCOM) fiber number. We used mild and medium treatments with oxalic acid and Tris buffer and harsh treatment with concentrated HCl and NaOH. Mild oxalic acid and Tris treatment for 2 weeks had no effect on any of the end-points, but prolonging the mild oxalic acid treatment time to 2 months reduced the biological activity and the fiber number. Medium oxalic acid treatment reduced the biological activity and the fiber number and caused a loss of Si. Medium Tris alkali treatment reduced the PCOM-countable fibers and the biological activity but did not cause a substantial loss of Si. Harsh treatment with strong HCl did not affect the fiber number or cause leaching but the biological activity was reduced; strong NaOH reduced the fiber number and biological activity, and caused marked leaching of Si. The medium oxalic acid conditions (pH 1.4) were more acid than those found in lung cells but produced the same effects (reduction in fiber number and biological activity) as the more physiological mild treatment (pH 4.0), when prolonged. This study suggests that medium oxalic acid treatment can be used as a short-term assay to compare loss of Si, reduction in fiber number, and change in biological activity of vitreous fibers.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7882922
More insights into the pharmacological effects of artemisinin.
Zyad, Abdelmajid; Tilaoui, Mounir; Jaafari, Abdeslam; Oukerrou, Moulay Ali; Mouse, Hassan Ait
2018-02-01
Artemisinin is one of the most widely prescribed drugs against malaria and has recently received increased attention because of its other potential biological effects. The aim of this review is to summarize recent discoveries of the pharmaceutical effects of artemisinin in basic science along with its mechanistic action, as well as the intriguing results of recent clinical studies, with a focus on its antitumor activity. Scientific evidence indicates that artemisinin exerts its biological activity by generating reactive oxygen species that damage the DNA, mitochondrial depolarization, and cell death. In the present article review, scientific evidence suggests that artemisinin is a potential therapeutic agent for various diseases. Thus, this review is expected to encourage interested scientists to conduct further preclinical and clinical studies to evaluate these biological activities. Copyright © 2017 John Wiley & Sons, Ltd.
Racing of the biological pacemaker.
Yu, Han-Gang
2009-01-01
Over the past decade, rapid progress in the molecular studies of cardiac ion channels and stem cells biology has led to efforts to create a biological pacemaker to supplement the widely-used electronic pacemaker. We will review the main concepts of cardiac pacemaker activities in different heart regions and the approaches to design a working biological pacemaker. We will focus on how to use the gene- and cell-based approaches to meet the requirements of a working biological pacemaker. Possible future development and precautions for creation of an effective biological pacemaker superior to the electronic counterpart are also discussed along with recent patents.
Mammalian synthetic biology for studying the cell.
Mathur, Melina; Xiang, Joy S; Smolke, Christina D
2017-01-02
Synthetic biology is advancing the design of genetic devices that enable the study of cellular and molecular biology in mammalian cells. These genetic devices use diverse regulatory mechanisms to both examine cellular processes and achieve precise and dynamic control of cellular phenotype. Synthetic biology tools provide novel functionality to complement the examination of natural cell systems, including engineered molecules with specific activities and model systems that mimic complex regulatory processes. Continued development of quantitative standards and computational tools will expand capacities to probe cellular mechanisms with genetic devices to achieve a more comprehensive understanding of the cell. In this study, we review synthetic biology tools that are being applied to effectively investigate diverse cellular processes, regulatory networks, and multicellular interactions. We also discuss current challenges and future developments in the field that may transform the types of investigation possible in cell biology. © 2017 Mathur et al.
New measurements for hadrontherapy and space radiation: biology
NASA Technical Reports Server (NTRS)
Blakely, E. A.
2001-01-01
The dual goals of optimizing clinical efficacy of hadrontherapy and determining radiation risk estimates for space research have intersected to a common focus for investigation of the biological effects of charged particles. This paper briefly highlights recent international progress at accelerator facilities engaged in both biological and clinical studies of the effects of particle beams, primarily protons, carbon and iron ions. Basic mechanisms of molecular, cellular and tissue responses continue under investigation for radiations with a range of ionization densities. Late normal tissue effects, including the risk of cancer in particular, are of importance for both research fields. International cooperation has enhanced the rate of progress as evidenced by recent publications. Specific areas of biomedical research related to the biological radiotoxicity of critical organs (especially the central nervous system), individual radiosensitivities to radiation carcinogenesis, and the analysis of effects in mixed radiation fields still require more research. Recommendations for addressing these issues are made.
Feretti, D; Ceretti, E; De Donno, A; Moretti, M; Carducci, A; Bonetta, S; Marrese, M R; Bonetti, A; Covolo, L; Bagordo, F; Villarini, M; Verani, M; Schilirò, T; Limina, R M; Grassi, T; Monarca, S; Casini, B; Carraro, E; Zani, C; Mazzoleni, G; Levaggi, R; Gelatti, U
2014-09-16
Genotoxic biomarkers have been studied largely in adult population, but few studies so far have investigated them in children exposed to air pollution. Children are a high-risk group as regards the health effects of air pollution and some studies suggest that early exposure during childhood can play an important role in the development of chronic diseases in adulthood. The objective of the project is to evaluate the associations between the concentration of urban air pollutants and biomarkers of early biological effect in children, and to propose a model for estimating the global risk of early biological effects due to air pollutants and other factors in children. Two biomarkers of early biological effects, DNA damage by the comet assay and the micronuclei (MN) test, will be investigated in oral mucosa cells of 6-8-year-old children. Concurrently, some toxic airborne pollutants (polycyclic aromatic hydrocarbon (PAH) and nitro-PAH) and in vitro air mutagenicity and toxicity in ultra-fine air particulates (PM0.5) will be evaluated. Furthermore, demographic and socioeconomic variables, other sources of exposures to air pollutants and lifestyle variables will be assessed by a structured questionnaire. The associations between sociodemographic, environmental and other exposure variables and biomarkers of early biological effect using univariate and multivariate models will be analysed. A tentative model for calculating the global absolute risk of having early biological effects caused by air pollution and other variables will be proposed. The project has been approved by the Ethics Committees of the local Health Authorities. The results will be communicated to local Public Health Agencies, for supporting educational programmes and health policy strategies. LIFE+2012 Environment Policy and Governance. LIFE12 ENV/IT/000614. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
A novel database of bio-effects from non-ionizing radiation.
Leach, Victor; Weller, Steven; Redmayne, Mary
2018-06-06
A significant amount of electromagnetic field/electromagnetic radiation (EMF/EMR) research is available that examines biological and disease associated endpoints. The quantity, variety and changing parameters in the available research can be challenging when undertaking a literature review, meta-analysis, preparing a study design, building reference lists or comparing findings between relevant scientific papers. The Oceania Radiofrequency Scientific Advisory Association (ORSAA) has created a comprehensive, non-biased, multi-categorized, searchable database of papers on non-ionizing EMF/EMR to help address these challenges. It is regularly added to, freely accessible online and designed to allow data to be easily retrieved, sorted and analyzed. This paper demonstrates the content and search flexibility of the ORSAA database. Demonstration searches are presented by Effect/No Effect; frequency-band/s; in vitro; in vivo; biological effects; study type; and funding source. As of the 15th September 2017, the clear majority of 2653 papers captured in the database examine outcomes in the 300 MHz-3 GHz range. There are 3 times more biological "Effect" than "No Effect" papers; nearly a third of papers provide no funding statement; industry-funded studies more often than not find "No Effect", while institutional funding commonly reveal "Effects". Country of origin where the study is conducted/funded also appears to have a dramatic influence on the likely result outcome.
NASA Astrophysics Data System (ADS)
Liu, Jinghua; Qi, Zeming; Huang, Qing; Wei, Xiaoli; Ke, Zhigang; Fang, Yusheng; Tian, Yangchao; Yu, Zengliang
2013-01-01
Energetic particles exist ubiquitously and cause varied biological effects such as DNA strand breaks, lipid peroxidation, protein modification, cell apoptosis or death. An emerging biotechnology based on ion-beam technique has been developed to serve as an effective tool for mutation breeding of crops and microbes. In order to improve the effectiveness of ion-beam biotechnology for mutation breeding, it is indispensible to gain a better understanding of the mechanism of the interactions between the energetic ions and biological systems which is still elusive. A new trend is to conduct more comprehensive research which is based on micro-scaled observation of the changes of the cellular structures and compositions under the interactions. For this purpose, advanced synchrotron FTIR (s-FTIR) microscopy was employed to monitor the cellular changes of single fungal hyphae under irradiation of α-particles from 241Am. Intracellular contents of ROS, MDA, GSSG/GSH and activities of CAT and SOD were measured via biochemical assay. Ion-irradiation on Rhizopus oryzae causes localized vacuolation, autolysis of cell wall and membrane, lipid peroxidation, DNA damage and conformational changes of proteins, which have been clearly revealed by the s-FTIR microspectroscopy. The different changes of cell viability, SOD and CAT activities can be explained by the ROS-involved chemical reactions. Evidently, the elevated level of ROS in hyphal cells upon irradiation plays the key role in the caused biological effect. This study demonstrates that s-FTIR microspectroscopy is an effective tool to study the damage of fungal hyphae caused by ionizing radiation and it facilitates the exploit of the mechanism for the interactions between the energetic ions and biological systems.
Aerospace medicine and biology: A continuing bibliography with indexes, supplement 107, October 1972
NASA Technical Reports Server (NTRS)
1972-01-01
This Supplement of Aerospace Medicine and Biology lists 353 reports, articles, and other documents announced during September 1972 in Scientific and Technical Aerospace Reports or in International Aerospace Abstracts. In its subject coverage, Aerospace Medicine and Biology concentrates on the biological, physiological, psychological, and environmental effects to which man is subjected during and following simulated or actual flight in the earth's atmosphere or in interplanetary space. References describing similar effects of biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention. In general, emphasis is placed on applied research, but references to fundamental studies and theoretical principles related to experimental development also qualify for inclusion.
NASA Astrophysics Data System (ADS)
Chojniak, Joanna; Biedroń, Izabela; Mendrek, Barbara; Płaza, Grażyna
2017-11-01
Bionanotechnology has emerged up as integration between biotechnology and nanotechnology for developing biosynthetic and environmental-friendly technology for synthesis of nanomaterials. Different types of nanomaterials like copper, zinc, titanium, magnesium, gold, and silver have applied in the various industries but silver nanoparticles have proved to be most effective against bacteria, viruses and eukaryotic microorganisms. The antimicrobial property of silver nanoparticles are widely known. Due to strong antibacterial property silver nanoparticles are used, e.g. in clothing, food industry, sunscreens, cosmetics and many household and environmental appliances. The aim of the study was to compare the effect of silver nanoparticles (AgNPs) synthesized biologically and chemically on the biofilm formation. The biofilm was formed by the bacteria isolated from the water supply network. The commonly used crystal violet assay (CV) was applied for biofilm analysis. In this study effect of biologically synthesized Ag-NPs on the biofilm formation was evaluated.
Hu, Shuyang; Ouyang, Qing; Cheng, Qingbao; Wang, Jinghan; Feng, Feiling; Qiao, Liang; Gan, Wei; Shi, Yang; Wu, Demin; Jiang, Xiaoqing
2018-04-01
Cholangiocarcinoma (CCA) is an aggressive malignant tumor and the prognosis of patients with advanced stage disease remains poor. Therefore, the identification of novel treatment agents for CCA is required. In the present study, the biological effects of the diabetes therapeutic agent, phenformin, in CCA cell lines was investigated. Cell Counting Kit‑8 cell viability, cellular clone formation and subcutaneous tumor formation assays were performed, which revealed that phenformin inhibited CCA cell proliferation and growth both in vitro and in vivo. In addition, phenformin induced CCA cell apoptosis and autophagy. Phenformin partly activated the liver kinase B1 (LKB1)/5' AMP‑activated protein kinase signaling pathway to exert its biological effects on CCA cell lines, as demonstrated by knockdown of LKB1, which reversed these effects. In conclusion, the present study demonstrated the biological effects of phenformin in CCA and suggested that phenformin may be a potential novel agent for CCA treatment.
Academic Beliefs and Behaviors in On-Campus and Online General Education Biology Classes
ERIC Educational Resources Information Center
Noll, Christopher B.
2015-01-01
This study examined the effect of course delivery mode on academic help-seeking beliefs and behaviors, academic self-efficacy, and the levels of individual interest in biology of students in an entry-level General Education biology course. This intersection of online education, science courses, and academic success factors merits attention because…
Student Perceived and Determined Knowledge of Biology Concepts in an Upper-Level Biology Course
ERIC Educational Resources Information Center
Ziegler, Brittany; Montplaisir, Lisa
2014-01-01
Students who lack metacognitive skills can struggle with the learning process. To be effective learners, students should recognize what they know and what they do not know. This study examines the relationship between students' perception of their knowledge and determined knowledge in an upper-level biology course utilizing a pre/posttest…
Water Pollution: Monitoring the Source.
ERIC Educational Resources Information Center
Wilkes, James W.
1980-01-01
Described is an advanced biology class project involving study of the effects of organic pollution on an aquatic ecosystem from an sewage treatment plant overflow to evaluate the chemical quality and biological activity of the river water. (DS)
Distribution and Biological Effects of Nanoparticles in the Reproductive System.
Liu, Ying; Li, Hongxia; Xiao, Kai
2016-01-01
Nanoparticles have shown great potential in biomedical applications such as imaging probes and drug delivery. However, the increasing use of nanoparticles has raised concerns about their adverse effects on human health and environment. Reproductive tissues and gametes represent highly delicate biological systems with the essential function of transmitting genetic information to the offspring, which is highly sensitive to environmental toxicants. This review aims to summarzie the penetration of physiological barriers (blood-testis barrier and placental barrier), distribution and biological effects of nanoparticles in the reproductive system, which is essential to control the beneficial effects of nanoparticles applications and to avoid their adverse effects on the reproductive system. We referred to a large number of relevant peer-reviewed research articles about the reproductive toxicity of nanoparticles. The comprehensive information was summarized into two parts: physiological barrier penetration and biological effects of nanoparticles in male or female reproductive system; distribution and metabolism of nanoparticles in the reproductive system. The representative examples were also presented in four tables. The in vitro and in vivo studies imply that some nanoparticles are able to cross the blood-testis barrier or placental barrier, and their penetration depends on the physicochemical characteristics of nanoparticles (e.g., composition, shape, particle size and surface coating). The toxicity assays indicate that nanoparticles might induce adverse physiological effects and impede fertility or embryogenesis. The barrier penetration, adverse physiological effects, distribution and metabolism are closely related to physicochemical characteristics of nanoparticles. Further systematic and mechanistic studies using well-characterized nanoparticles, relevant administration routes, and doses relevant to the expected exposure level are required to improve our understanding of biological effects of nanoparticles on the reproductive system.
Timber harvesting can result in adverse physical, chemical and biological alterations to soil. The objective of this study was to examine the effects of site disturbance to determine the extent and duration of possible harvesting impacts on soil chemical and biological propertie...
Anxiety Symptoms in African American Youth: The Role of Puberty and Biological Sex
ERIC Educational Resources Information Center
Carter, Rona
2015-01-01
This study examined the effects of pubertal status, pubertal timing (actual and perceived), and youth biological sex on symptom dimensions of anxiety (i.e., social, separation, harm avoidance, physical) in African Americans (n = 252; ages 8-12). For girls, results indicated that pubertal status and timing (actual) exerted similar effects for some…
Variation in developmental time affects mating success and Allee effects
Christelle Robinet; Andrew Liebhold; David Gray
2007-01-01
A fundamental question in biological conservation and invasion biology is why do some populations go extinct? Allee effects, notably those caused by mate location failure, are potentially key factors leading to the extinction of sparse populations. Several previous studies have focused on the inability of males and females to locate each other in space when populations...
ERIC Educational Resources Information Center
Franks, Sabrina B.; Mata, Francesca C.; Wofford, Erin; Briggs, Adam M.; LeBlanc, Linda A.; Carr, James E.; Lazarte, Alejandro A.
2013-01-01
Behavioral parent training has proven effective in improving the skill performance of foster caregivers and biological parents of dependent children during role-play assessments. To date, however, no studies have examined the impact of behavioral parenting skills training on child placement outcomes. We conducted a quasi-experimental archival…
ERIC Educational Resources Information Center
Kara, Yilmaz; Yesilyurt, Selami
2007-01-01
The purpose of this study was to investigate the effects of tutorial and edutainment software programs related to "genetic concepts" topic on student achievements, misconceptions and attitudes. An experimental research design including the genetic concepts achievement test (GAT), the genetic concept test (GCT) and biology attitude scale…
NASA Astrophysics Data System (ADS)
Lang, Sarah Adrienne
Using a sequential, explanatory mixed methods design, this dissertation study compared students who persist in the biology major (persisters) with students who leave the biology major (switchers) in terms of how their pre-college experiences, college biology experiences, and biology performance figured into their choice of biology and their persistence in or departure from the biology major. This study combined (1) quantitative comparisons of biology persisters and switchers via a questionnaire developed for the study and survival analysis of a larger population of biology freshmen with (2) qualitative comparison of biology switchers and persisters via semi-structured life story interviews and homogenous focus groups. 319 students (207 persisters and 112 switchers) participated in the questionnaire and 36 students (20 persisters and 16 switchers) participated in life story and focus group interviews. All participants were undergraduates who entered The University of Texas at Austin as biology freshmen in the fall semesters of 2000 through 2004. Findings of this study suggest: (1) Regardless of eventual major, biology students enter college with generally the same suite of experiences, sources of personal encouragement, and reasons for choosing the biology major; (2) Despite the fact that they have also had poor experiences in the major, biology persisters do not actively decide to stay in the biology major; they simply do not leave; (3) Based upon survival analysis, biology students are most at-risk of leaving the biology major during the first two years of college and if they are African-American or Latino, women, or seeking a Bachelor of Arts degree (rather than a Bachelor of Science); (4) Biology switchers do not leave biology due to preference for other disciplines; they leave due to difficulties or dissatisfaction with aspects of the biology major, including their courses, faculty, and peers; (5) Biology performance has a differential effect on persistence in the biology major, depending on how well students perform in comparison to other courses or other students.
NASA Technical Reports Server (NTRS)
1981-01-01
The effects of large impacts on the environment are discussed and include thermal effects, atmospheric effects, changes in ocean temperatures, and geomagnetic anomalies. Biological factors such as extinction and increases in mutation development were investigated. Geological anomalies studied include stratigraphic gaps, extinction of entire boundary layers from the geological record, and geochemical oddities. Evidence was examined for impact cratering throughout the world.
An Empirical Study Investigating Interdisciplinary Teaching of Biology and Physical Education
ERIC Educational Resources Information Center
Spintzyk, Katharina; Strehlke, Friederike; Ohlberger, Stephanie; Gröben, Bernd; Wegner, Claas
2016-01-01
This paper deals with an empirical study examining the effectiveness of interdisciplinary teaching in biology and physical education (PE) regarding the students' growth in knowledge. The study was conducted with 141 German sixth form students. In groups, they were taught three hours a week for a period of six weeks. In order to compare the…
Nikanov, A N; Markova, O L; Frolova, N M; Kulikova, K S
2013-01-01
Studies on the assessment of the effect of treatment-and-preventive drinks, i.e. "Leovit" dietary kissels, and "Zosterin-Ultra" biologically active food additive, on copper, nickel and cobalt ion concentrations in urine and on lead blood concentrations in workers employed at the "Kola Mining Company" limited liability joint-stock company and exposed to long-term metal aerosol effects, were carried out. Dependence of ion concentrations of these metals in biological media on exposure duration was reported. The study findings reveal the advisability of use of the above-mentioned food additives, having detoxication properties, while carrying out preventive measures among workers exposed to heavy metals.
Persistence of spilled oil on shores and its effects on biota
Irvine, G.V.; ,
2000-01-01
Over two million tonnes of oil are estimated to enter the world's oceans every year. A small percentage, but still a large volume, of this oil strands onshore, where its persistence is governed primarily by the action of physical forces. In some cases, biota influence the persistence of stranded oil or the rate of its weathering. Oil's deleterious effects on biota are frequently related to the persistence and degree of weathering of the oil, with long-lasting effects in low-energy environments such as salt marshes and coastal mangroves, or in higher-energy environments where oil is sequestered. However, an oil spill can have disproportionately large biological effects when it affects key species or processes (e.g., structurally important species, predators, prey, recruitment, or succession). In these cases, the continuing presence of oil is not always a prerequisite for continuing biological effects. There are relatively few long-term studies of the effects of oil spills; data from these suggest that oil can persist for decades in some environments or situations, and that biological effects can be equally persistent. Broad-based, integrated studies have been the most revealing in terms of the importance of direct and indirect effects, spillover effects between different parts of the environment, and continuing linkages between residual oil and biologic effects. Clean-up and treatment techniques applied to spilled or stranded oil can also have significant, long-lasting effects and need to be carefully evaluated prior to use.
Rogue taxa phenomenon: a biological companion to simulation analysis
Westover, Kristi M.; Rusinko, Joseph P.; Hoin, Jon; Neal, Matthew
2013-01-01
To provide a baseline biological comparison to simulation study predictions about the frequency of rogue taxa effects, we evaluated the frequency of a rogue taxa effect using viral data sets which differed in diversity. Using a quartet-tree framework, we measured the frequency of a rogue taxa effect in three data sets of increasing genetic variability (within viral serotype, between viral serotype, and between viral family) to test whether the rogue taxa was correlated with the mean sequence diversity of the respective data sets. We found a slight increase in the percentage of rogues as nucleotide diversity increased. Even though the number of rogues increased with diversity, the distribution of the types of rogues (friendly, crazy, or evil) did not depend on the diversity and in the case of the order-level data set the net rogue effect was slightly positive. This study, assessing frequency of the rogue taxa effect using biological data, indicated that simulation studies may over-predict the prevalence of the rogue taxa effect. Further investigations are necessary to understand which types of data sets are susceptible to a negative rogue effect and thus merit the removal of taxa from large phylogenetic reconstructions. PMID:23707704
Rogue taxa phenomenon: a biological companion to simulation analysis.
Westover, Kristi M; Rusinko, Joseph P; Hoin, Jon; Neal, Matthew
2013-10-01
To provide a baseline biological comparison to simulation study predictions about the frequency of rogue taxa effects, we evaluated the frequency of a rogue taxa effect using viral data sets which differed in diversity. Using a quartet-tree framework, we measured the frequency of a rogue taxa effect in three data sets of increasing genetic variability (within viral serotype, between viral serotype, and between viral family) to test whether the rogue taxa was correlated with the mean sequence diversity of the respective data sets. We found a slight increase in the percentage of rogues as nucleotide diversity increased. Even though the number of rogues increased with diversity, the distribution of the types of rogues (friendly, crazy, or evil) did not depend on the diversity and in the case of the order-level data set the net rogue effect was slightly positive. This study, assessing frequency of the rogue taxa effect using biological data, indicated that simulation studies may over-predict the prevalence of the rogue taxa effect. Further investigations are necessary to understand which types of data sets are susceptible to a negative rogue effect and thus merit the removal of taxa from large phylogenetic reconstructions. Copyright © 2013 Elsevier Inc. All rights reserved.
The Biological Activities of Oleocanthal from a Molecular Perspective.
Pang, Kok-Lun; Chin, Kok-Yong
2018-05-06
Oleocanthal is a minor constituent of olive oil with strong anti-inflammatory activities. Since the pathogenesis of many chronic diseases involves inflammatory and oxidative components, oleocanthal is a promising agent to prevent these conditions. This review aimed to summarise the current beneficial health effects of oleocanthal and the molecular basis of its biological actions. The anti-inflammatory, antioxidative, antimicrobial, anticancer and neuroprotective activities of oleocanthal have been examined by previous studies. Of these, studies on the anticancer effects have been the most extensive. Oleocanthal was reported to suppress melanoma, breast, liver, and colon cancer cells. Neurological studies focused on the effects of oleocanthal against Alzheimer’s disease. Oleocanthal improved clearance of the amyloid beta protein from neurons and reduced the inflammation of astrocytes. Despite the positive results, validation of the biological effects of oleocanthal in animal disease models is limited and should be emphasized in the future. As a conclusion, oleocanthal may act together with other bioactive compounds in olive oil to achieve its therapeutic potential. The use of oleocanthal alone as a single therapeutic measure awaits validation from future studies.
The Biological Activities of Oleocanthal from a Molecular Perspective
Pang, Kok-Lun; Chin, Kok-Yong
2018-01-01
Oleocanthal is a minor constituent of olive oil with strong anti-inflammatory activities. Since the pathogenesis of many chronic diseases involves inflammatory and oxidative components, oleocanthal is a promising agent to prevent these conditions. This review aimed to summarise the current beneficial health effects of oleocanthal and the molecular basis of its biological actions. The anti-inflammatory, antioxidative, antimicrobial, anticancer and neuroprotective activities of oleocanthal have been examined by previous studies. Of these, studies on the anticancer effects have been the most extensive. Oleocanthal was reported to suppress melanoma, breast, liver, and colon cancer cells. Neurological studies focused on the effects of oleocanthal against Alzheimer’s disease. Oleocanthal improved clearance of the amyloid beta protein from neurons and reduced the inflammation of astrocytes. Despite the positive results, validation of the biological effects of oleocanthal in animal disease models is limited and should be emphasized in the future. As a conclusion, oleocanthal may act together with other bioactive compounds in olive oil to achieve its therapeutic potential. The use of oleocanthal alone as a single therapeutic measure awaits validation from future studies. PMID:29734791
Across the Great Divide: The Effects of Technology in Secondary Biology Classrooms
NASA Astrophysics Data System (ADS)
Worley, Johnny Howard, II
This study investigates the relationship between technology use and student achievement in public high school across North Carolina. The purpose of this study was to determine whether a digital divide (differences in technology utilization based on student demographics of race/ethnicity, gender, socioeconomic status, and municipality) exists among schools and whether those differences relate to student achievement in high school biology classrooms. The study uses North Carolina end-of-course (EOC) data for biology to analyze student demographic data and assessment results from the 2010-2011 school year from the North Carolina Department of Public Instruction. The data analyses use descriptive and factorial univariate statistics to determine the existence of digital divides and their effects on biology achievement. Analysis of these data described patterns of technology use to determine whether potential variances resulted in a digital divide. Specific technology uses were identified in the data and then their impact on biology achievement scores within various demographic groups was examined. Research findings revealed statistically significant variations of use within different population groups. Despite being statistically significant, the relevance of the association in the variations was minimal at best -- based on the effect scale established by Cohen (1988). Additional factorial univariate analyses were employed to determine potential relationships between technology use and student achievement. The data revealed that technology use did not influence the variation of student achievement scale scores as much as race/ethnicity and socioeconomic status. White students outperformed Hispanic students by an average of three scale score points and Black students by an average of six scale score points. Technology use alone averaged less than a one point difference in mean scale scores, and only when interacting with race, gender, and/or SES did the mean difference increase. However, this increase within the context of the biology scale score range was negligible. This study contributes to the existing body of research on the effects of technology use on student achievement and its influence within various student demographic groups and municipalities. The study also provides additional research information for effective technology utilization, implementation, and instruction in educational environments.
Aerospace Medicine and Biology: A Continuing Bibliography With Indexes. Supplement 486
NASA Technical Reports Server (NTRS)
1999-01-01
In its subject coverage, Aerospace Medicine and Biology concentrates on the biological, physiological, psychological, and environmental effects to which humans are subjected during and following simulated or actual flight in the Earth's atmosphere or in interplanetary space. References describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention. Applied research receives the most emphasis, but references to fundamental studies and theoretical principles related to experimental development also qualify for inclusion. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract.
Biological Activities of Stilbenoids.
Akinwumi, Bolanle C; Bordun, Kimberly-Ann M; Anderson, Hope D
2018-03-09
Stilbenoids are a group of naturally occurring phenolic compounds found in various plant species. They share a common backbone structure known as stilbene, but differ in the nature and position of substituents. Stilbenoids are classified as phytoalexins, which are antimicrobial compounds produced de novo in plants to protect against fungal infection and toxins. In this review, the biological effects of stilbenoids such as resveratrol, pterostilbene, gnetol and piceatannol are discussed. Stilbenoids exert various biological activities ranging from cardioprotection, neuroprotection, anti-diabetic properties, depigmentation, anti-inflammation, cancer prevention and treatment. The results presented cover a myriad of models, from cell culture to animal studies as well as clinical human trials. Although positive results were obtained in most cell culture and animal studies, further human studies are needed to substantiate beneficial effects of stilbenoids. Resveratrol remains the most widely studied stilbenoid. However, there is limited information regarding the potential of less common stilbenoids. Therefore, further research is warranted to evaluate the salutary effects of various stilbenoids.
Biological Activities of Stilbenoids
Bordun, Kimberly-Ann M.
2018-01-01
Stilbenoids are a group of naturally occurring phenolic compounds found in various plant species. They share a common backbone structure known as stilbene, but differ in the nature and position of substituents. Stilbenoids are classified as phytoalexins, which are antimicrobial compounds produced de novo in plants to protect against fungal infection and toxins. In this review, the biological effects of stilbenoids such as resveratrol, pterostilbene, gnetol and piceatannol are discussed. Stilbenoids exert various biological activities ranging from cardioprotection, neuroprotection, anti-diabetic properties, depigmentation, anti-inflammation, cancer prevention and treatment. The results presented cover a myriad of models, from cell culture to animal studies as well as clinical human trials. Although positive results were obtained in most cell culture and animal studies, further human studies are needed to substantiate beneficial effects of stilbenoids. Resveratrol remains the most widely studied stilbenoid. However, there is limited information regarding the potential of less common stilbenoids. Therefore, further research is warranted to evaluate the salutary effects of various stilbenoids. PMID:29522491
Aerospace Medicine and Biology: A continuing bibliography with indexes, supplement 237
NASA Technical Reports Server (NTRS)
1982-01-01
A bibliography is given on the biological, physiological, psychological, and environmental effects to which man is subjected during and following simulated or actual flight in the Earth's atmosphere or in interplanetary space. References describing similar effects of biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention. In general, emphasis is placed on applied research, but references to fundamental studies and theoretical principles related to experimental development also qualify for inclusion.
Aerospace Medicine and Biology: A continuing bibliography with indexes, supplement 139
NASA Technical Reports Server (NTRS)
1975-01-01
The biological, physiological, psychological, and environmental effects to which man is subjected during and following simulated or actual flight in the earth's atmosphere or in interplanetary space are referenced. Similar effects on biological organisms of lower order are also included. Related topics such as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors are discussed. Applied research is emphasized, but references to fundamental studies and theoretical principles related to experimental development are also included. A total of 242 reports, articles, and other documents are listed.
Biological Effects of Ionizing Radiation
DOE R&D Accomplishments Database
Ingram, M.; Mason, W. B.; Whipple, G. H.; Howland, J. W.
1952-04-07
This report presents a review of present knowledge and concepts of the biological effects of ionizing radiations. Among the topics discussed are the physical and chemical effects of ionizing radiation on biological systems, morphological and physiological changes observed in biological systems subjected to ionizing radiations, physiological changes in the intact animal, latent changes following exposure of biological systems to ionizing radiations, factors influencing the biological response to ionizing radiation, relative effects of various ionizing radiations, and biological dosimetry.
Biological age and sex-related declines in physical activity during adolescence.
Cairney, John; Veldhuizen, Scott; Kwan, Matthew; Hay, John; Faught, Brent E
2014-04-01
Sex differences in the rate of decline in physical activity (PA) are most pronounced during adolescence. However, once boys and girls are aligned on biological age, sex differences in the patterns of PA become attenuated. The aim of this study was to test whether biological maturation can account for sex differences in participation in PA over time from late childhood to early adolescence. A prospective cohort of children (N = 2100; 1064 boys) was followed from ages 11 to 14 yr, with repeated assessments of PA and anthropometry. Self-reported participation in organized and free play activities was used to track participation in PA. Biological age was measured using an estimate of years to attainment of peak height velocity. Mixed-effects models were used to test whether controlling for biological age attenuates the effect of chronological age and sex on PA. As expected, the rate of decline in participation in PA was greater for girls than for boys (B = -1.18, P < 0.01). In multivariable analyses, adjusting for biological age completely attenuated the effect of sex and chronological age for participation in free play activities, but not for participation in organized play. Overall, biological age was a stronger predictor of participation than chronological age. The effect of biological age on sex by chronological age differences may be specific to certain types of PA participation. Given the importance of maturation to participation in activity, it is suggested that public health strategies target biological not chronological age to prevent declines in PA during adolescence particularly when promoting habitual or lifestyle activity.
NASA Astrophysics Data System (ADS)
Cerna, Cesario Z.; Elam, David P.; Echchgadda, Ibtissam; Sloan, Mark A.; Wilmink, Gerald J.
2014-03-01
Terahertz (THz) imaging and sensing technologies are increasingly being used at international airports for security screening purposes and at major medical centers for cancer and burn diagnosis. The emergence of new THz applications has directly resulted in an increased interest regarding the biological effects associated with this frequency range. Knowledge of THz biological effects is also desired for the safe use of THz systems, identification of health hazards, and development of empirically-based safety standards. In this study, we developed a state-of-the-art exposure chamber that allowed for highly controlled and reproducible studies of THz biological effects. This innovative system incorporated an industry grade cell incubator system that permitted a highly controlled exposure environment, where temperatures could be maintained at 37 °C +/- 0.1 °C, carbon dioxide (CO2) levels at 5% +/- 0.1%, and relative humidity (RH) levels at 95% +/- 1%. To maximize the THz power transmitted to the cell culture region inside the humid incubator, a secondary custom micro-chamber was fabricated and incorporated into the system. This micro-chamber shields the THz beam from the incubator environment and could be nitrogen-purged to eliminate water absorption effects. Additionally, a microscope that allowed for real-time visualization of the live cells before, during, and after THz exposure was integrated into the exposure system.
Cell phone radiation exposure on brain and associated biological systems.
Kesari, Kavindra Kumar; Siddiqui, Mohd Haris; Meena, Ramovatar; Verma, H N; Kumar, Shivendra
2013-03-01
Wireless technologies are ubiquitous today and the mobile phones are one of the prodigious output of this technology. Although the familiarization and dependency of mobile phones is growing at an alarming pace, the biological effects due to the exposure of radiations have become a subject of intense debate. The present evidence on mobile phone radiation exposure is based on scientific research and public policy initiative to give an overview of what is known of biological effects that occur at radiofrequency (RF)/ electromagnetic fields (EMFs) exposure. The conflict in conclusions is mainly because of difficulty in controlling the affecting parameters. Biological effects are dependent not only on the distance and size of the object (with respect to the object) but also on the environmental parameters. Health endpoints reported to be associated with RF include childhood leukemia, brain tumors, genotoxic effects, neurological effects and neurodegenerative diseases, immune system deregulation, allergic and inflammatory responses, infertility and some cardiovascular effects. Most of the reports conclude a reasonable suspicion of mobile phone risk that exists based on clear evidence of bio-effects which with prolonged exposures may reasonably be presumed to result in health impacts. The present study summarizes the public issue based on mobile phone radiation exposure and their biological effects. This review concludes that the regular and long term use of microwave devices (mobile phone, microwave oven) at domestic level can have negative impact upon biological system especially on brain. It also suggests that increased reactive oxygen species (ROS) play an important role by enhancing the effect of microwave radiations which may cause neurodegenerative diseases.
Doctoral conceptual thresholds in cellular and molecular biology
NASA Astrophysics Data System (ADS)
Feldon, David F.; Rates, Christopher; Sun, Chongning
2017-12-01
In the biological sciences, very little is known about the mechanisms by which doctoral students acquire the skills they need to become independent scientists. In the postsecondary biology education literature, identification of specific skills and effective methods for helping students to acquire them are limited to undergraduate education. To establish a foundation from which to investigate the developmental trajectory of biologists' research skills, it is necessary to identify those skills which are integral to doctoral study and distinct from skills acquired earlier in students' educational pathways. In this context, the current study engages the framework of threshold concepts to identify candidate skills that are both obstacles and significant opportunities for developing proficiency in conducting research. Such threshold concepts are typically characterised as transformative, integrative, irreversible, and challenging. The results from interviews and focus groups with current and former doctoral students in cellular and molecular biology suggest two such threshold concepts relevant to their subfield: the first is an ability to effectively engage primary research literature from the biological sciences in a way that is critical without dismissing the value of its contributions. The second is the ability to conceptualise appropriate control conditions necessary to design and interpret the results of experiments in an efficient and effective manner for research in the biological sciences as a discipline. Implications for prioritising and sequencing graduate training experiences are discussed on the basis of the identified thresholds.
Thermodynamics of Biological Processes
Garcia, Hernan G.; Kondev, Jane; Orme, Nigel; Theriot, Julie A.; Phillips, Rob
2012-01-01
There is a long and rich tradition of using ideas from both equilibrium thermodynamics and its microscopic partner theory of equilibrium statistical mechanics. In this chapter, we provide some background on the origins of the seemingly unreasonable effectiveness of ideas from both thermodynamics and statistical mechanics in biology. After making a description of these foundational issues, we turn to a series of case studies primarily focused on binding that are intended to illustrate the broad biological reach of equilibrium thinking in biology. These case studies include ligand-gated ion channels, thermodynamic models of transcription, and recent applications to the problem of bacterial chemotaxis. As part of the description of these case studies, we explore a number of different uses of the famed Monod–Wyman–Changeux (MWC) model as a generic tool for providing a mathematical characterization of two-state systems. These case studies should provide a template for tailoring equilibrium ideas to other problems of biological interest. PMID:21333788
Ecotoxicity of nanosized TiO2. Review of in vivo data.
Menard, Anja; Drobne, Damjana; Jemec, Anita
2011-03-01
This report presents an exhaustive literature review of data on the effect of nanoparticulate TiO(2) on algae, higher plants, aquatic and terrestrial invertebrates and freshwater fish. The aim, to identify the biologically important characteristics of the nanoparticles that have most biological significance, was unsuccessful, no discernable correlation between primary particle size and toxic effect being apparent. Secondary particle size and particle surface area may be relevant to biological potential of nanoparticles, but insufficient confirmatory data exist. The nanotoxicity data from thirteen studies fail to reveal the characteristics actually responsible for their biological reactivity because reported nanotoxicity studies rarely carry information on the physicochemical characteristics of the nanoparticles tested. A number of practical measures are suggested which should support the generation of reliable QSAR models and so overcome this data inadequacy. Copyright © 2010 Elsevier Ltd. All rights reserved.
Maleki, Arash; Meese, Halea; Sahawneh, Haitham; Foster, C Stephen
2016-07-01
Uveitis is the third most common cause of blindness in developed countries. Considering the systemic and local complications of long-term corticosteroid therapy and the intolerance due to side effects and ineffectiveness of conventional chemotherapy, use of biologic response modifiers is a reasonable alternative in the treatment of non-infectious uveitis and persistent uveitic macular edema. The majority of the evidence presented here comes from open uncontrolled analyses. Based on these studies, tumor necrosis factor alpha inhibitors, especially infliximab and adalimumab, have been shown to be effective in the treatment of non-infectious uveitis in numerous studies. More research is necessary, particularly multi-center randomized clinical trials, to address the choice of biologic response modifier agent and the length of treatment as we employ biologic response modifiers in different types of uveitis and persistent uveitic macular edema.
Human psychopharmacology of N,N-dimethyltryptamine.
Strassman, R J
1996-01-01
We generated dose-response data for the endogenous and ultra-short-acting hallucinogen, N,N-dimethyltryptamine (DMT), in a cohort of experienced hallucinogen users, measuring multiple biological and psychological outcome measures. Subjective responses were quantified with a new rating scale, the HRS, which provided better resolution of dose effects than did the biological variables. A tolerance study then was performed, in which volunteers received four closely spaced hallucinogenic doses of DMT. Subjective responses demonstrated no tolerance, while biological measures were inconsistently reduced over the course of the sessions. Thus, DMT remains unique among classic hallucinogens in its inability to induce tolerance to its psychological effects. To assess the role of the 5-HT1A site in mediating DMT's effects, a pindolol pre-treatment study was performed. Pindolol significantly increased psychological responses to DMT, suggesting a buffering effect of 5-HT1A agonism on 5-HT2-mediated psychedelic effects. These data are opposite to those described in lower animal models of hallucinogens' mechanisms of action.
NASA Technical Reports Server (NTRS)
Nagaoka, Shunji
1993-01-01
NASDA is now participating in a series of flight experiments on Spacelab missions. The first experiment was carried out on the first International Microgravity Laboratory Mission (IML-1) January 1992, and the second experiment will be conducted on the Spacelab-J Mission, First Materials Processing Test (FMPT). The equipment or Radiation Monitoring Container Devices (RMCD) includes passive dosimeter systems and biological specimens. The experiments using this hardware are designed by NASDA to measure and investigate the radiation levels inside spacecraft like space shuttle and to look at the basic effects of the space environment from the aspect of radiation biology. The data gathered will be analyzed to understand the details of biological effects as well as the physical nature of space radiation registered in the sensitive Solid-State Track Detectors (SSTD).
The phantom leaf effect: a replication, part 1.
Hubacher, John
2015-02-01
To replicate the phantom leaf effect and demonstrate a possible means to directly observe properties of the biological field. Thirty percent to 60% of plant leaves were amputated, and the remaining leaf sections were photographed with corona discharge imaging. All leaves were cut before placement on film. A total of 137 leaves were used. Plant leaves of 14 different species. Ninety-six phantom leaf specimens were successfully obtained; 41 specimens did not yield the phantom leaf effect. A normally undetected phantom "structure," possibly evidence of the biological field, can persist in the area of an amputated leaf section, and corona discharge can occur from this invisible structure. This protocol may suggest a testable method to study properties of conductivity and other parameters through direct observation of the complete biological field in plant leaves, with broad implications for biology and physics.
NASA Astrophysics Data System (ADS)
Partin, Matthew L.
The problem addressed in this study stems from three crises currently faced by post-secondary science educators in the United States: relatively low scientific literacy among students entering college, the need for more students to pursue science related careers, and poor attitudes among students toward studying science. In this dissertation the following questions are addressed: Is there a relationship between students' perceptions of their learning environment and course performance, and what roles do motivation and attitudes play in mediating that relationship? This study also examines the effects of gender and ethnicity on motivation, attitudes, and course performance. The purpose of this study is to test a path model describing the mediating effects of motivation and attitudes on constructivist learning environments and course performance. The following study considers contemporary understanding of teaching and learning as well as motivation and attitudes to suggest a direction for future reform efforts and to guide post-secondary science education instructors and leaders in the design of constructivist learning environments for undergraduate nonmajor biology courses. This study concludes that, although the classroom learning environment has a small direct effect on course performance, there is a moderate total effect on self-efficacy and intrinsic goal orientation. The classroom learning environment also had a moderate indirect effect on attitudes toward biology. Furthermore, attitudes have a moderate direct effect on course performance and self-efficacy has a strong direct effect on both course performance and attitudes toward biology. Self-efficacy seems to be particularly important; however, each of these constructs is important in its own right and instructors in higher education should strive to enhance each of them among their students. If students are to learn using constructivist methods they need the proper motivation and positive attitudes to encourage them to prepare for class and to participate in class activities. Faculty may be viewed as students of pedagogy and leaders should model best practices and provide support for reform-based motivation-minded introductory biology courses. By enhancing attitudes and motivation of both faculty and students, the recommendations from this study may be a step forward in addressing some of the critical problems faced by leaders and educators in postsecondary science.
Nuclear imaging of iodine uptake in mouse tissues
NASA Astrophysics Data System (ADS)
Hammond, W. T.; Bradley, E. L.; Qian, J.; Majewski, S.
2005-04-01
We have designed and employed a compact gamma camera based on pixellated scintillators and position-sensitive photomultipliers to obtain in vivo images in mice of biological substances tagged with 125-I. Biomedical imaging studies make use of radioactive isotopes of iodine. In these applications, protection of the thyroid from the effects of the radioactive material can be important. We have studied in vivo the effectiveness in mice of pre-administration of KI in various concentrations to evaluate both the biologically effective doses for thyroid protection and the potential for use in general sodium iodide symporter studies. These findings have important implications for both intentional and accidental exposure to radioiodine.
Holko, Przemysław; Kawalec, Paweł; Pilc, Andrzej
2018-04-17
The aim was to evaluate the cost-effectiveness of Crohn's disease (CD) treatment with vedolizumab and ustekinumab after failure of therapy with tumor necrosis factor-α antagonists (anti-TNFs). The Markov model incorporated the lifetime horizon, synthesis-based estimates of biologics' efficacy in relation to anti-TNF exposure, and administration of biologics reflecting clinical practice (e.g., sequence of biologics, retreatment, 12-month treatment). The utilities, non-medical costs and indirect costs were derived from a study of 200 adult patients with CD, while the healthcare costs were from a study of 1393 adults with CD who used biologics in Poland. The quality-adjusted life years (QALYs) and costs (the societal perspective) were discounted with the annual rates of 3.5 and 5%, respectively. The addition of vedolizumab (ustekinumab) to the sequence of available anti-TNFs (after first-line infliximab or after second-line adalimumab) led to a gain of 0.364 (0.349) QALYs at an additional cost of €5600.24 (€6593.82). The incremental cost-effectiveness ratios (ICERs) were €15,369 [95% confidence interval (CI) 7496-61,354] and €18,878 (95% CI 9213-85,045) per QALY gained with vedolizumab and ustekinumab, respectively. Sensitivity analyses revealed a high impact on the ICERs of the relapse rate after discontinuation of biologic treatment. The highest value of vedolizumab/ustekinumab was estimated after the failure of therapies with both anti-TNFs. CD treatment with ustekinumab or vedolizumab after failure of anti-TNF therapy appears to be cost-effective at a threshold of €31,500. The replacement of the second-line anti-TNF with ustekinumab/vedolizumab and the course of the disease after discontinuation of biologics are influential drivers of the cost-effectiveness.
Clayton, J.L.; King, J.D.
1987-01-01
GC-MS analyses were performed on core samples collected from a shale outcrop of the Permian Phosphoria Formation in Utah, U.S.A., to study effects of weathering on selected biological marker and aromatic (phenanthrene) hydrocarbon compounds. Among the biological markers, the most important weathering effects are a decrease in the 20S 20R diastereomer ratio of the C29 steranes and loss of low molecular weight triaromatic steroids. A decrease in the C19 through C22 tricylcic terpanes occurs relative to the total C19-C26 tricyclic fraction. Pronounced loss of methyl-substituted phenanthrenes occurs relative to phenanthrene. No major effect on the overall distribution of pentacyclic terpanes is evident. ?? 1987.
Finckh, Axel; Bansback, Nick; Marra, Carlo A; Anis, Aslam H; Michaud, Kaleb; Lubin, Stanley; White, Marc; Sizto, Sonia; Liang, Matthew H
2009-11-03
Long-term control or remission of rheumatoid arthritis (RA) may be possible with very early treatment. However, no optimal first therapeutic strategy has been determined. To assess the potential cost-effectiveness of major therapeutic strategies for very early RA. Decision analytic model with probabilistic sensitivity analyses. Published data, the National Data Bank for Rheumatic Diseases, and actual 2007 hospital costs. U.S. adults with very early RA (symptom duration
Polf, Jerimy C.; Bronk, Lawrence F.; Driessen, Wouter H. P.; Arap, Wadih; Pasqualini, Renata; Gillin, Michael
2011-01-01
The development and use of sensitizing agents to improve the effectiveness of radiotherapy have long been sought to improve our ability to treat cancer. In this letter, we have studied the relative biological effectiveness of proton beam radiotherapy on prostate tumor cells with and without internalized gold nanoparticles. The effectiveness of proton radiotherapy for the killing of prostate tumor cells was increased by approximately 15%–20% for those cells containing internalized gold nanoparticles. PMID:21915155
Implications of Climate Change for State Bioassessment ...
This draft report uses biological data collected by four states in wadeable rivers and streams to examine the components of state and tribal bioassessment and biomonitoring programs that may be vulnerable to climate change. The study investigates the potential to identify biological response signals to climate change within existing bioassessment data sets; analyzes how biological responses can be categorized and interpreted; and assesses how they may influence decision-making processes. The analyses suggest that several biological indicators may be used to detect climate change effects and such indicators can be used by state bioassessment programs to document changes at high-quality reference sites. The study investigates the potential to identify biological response signals to climate change within existing bioassessment data sets; analyzes how biological responses can be categorized and interpreted; and assesses how they may influence decision-making processes.
Aerospace Medicine and Biology: A Continuing Bibliography. Supplement 476
NASA Technical Reports Server (NTRS)
1998-01-01
This supplemental issue of Aerospace Medicine and Biology, A Continuing Bibliography with Indexes (NASA/SP-1998-7011) lists reports, articles, and other documents recently announced in the NASA STI Database. In its subject coverage, Aerospace Medicine and Biology concentrates on the biological, physiological, psychological, and environmental effects to which humans are subjected during and following simulated or actual flight in the Earth's atmosphere or in interplanetary space. References describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention. Applied research receives the most emphasis, but references to fundamental studies and theoretical principles related to experimental development also qualify for inclusion. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract.
Technology Rich Biology Labs: Effects of Misconceptions.
ERIC Educational Resources Information Center
Kuech, Robert; Zogg, Gregory; Zeeman, Stephan; Johnson, Mark
This paper describes a study conducted on the lab sections of the general biology course for non-science majors at the University of New England, and reports findings of student misconceptions about photosynthesis and the mass/carbon uptake during plant growth. The current study placed high technology analytic tools in the hands of introductory…
Flipped Instruction in a High School Science Classroom
ERIC Educational Resources Information Center
Leo, Jonathan; Puzio, Kelly
2016-01-01
This paper reports on a quasi-experimental study examining the effectiveness of flipped instruction in a 9th grade biology classroom. This study included four sections of freshmen-level biology taught by the first author at a private secondary school in the Pacific Northwest. Using a block randomized design, two sections were flipped and two…
Curtis, Jeffrey R; Schabert, Vernon F; Yeaw, Jason; Korn, Jonathan R; Quach, Caroleen; Harrison, David J; Yun, Huifeng; Joseph, George J; Collier, David
2014-08-01
To estimate biologic cost per effectively treated patient with rheumatoid arthritis (RA) using a claims-based algorithm for effectiveness. Patients with RA aged 18-63 years in the IMS PharMetrics Plus database were categorized as effectively treated if they met all six criteria: (1) a medication possession ratio ≥80% (subcutaneous) or at least as many infusions as specified in US labeling (intravenous); (2) no biologic dose increase; (3) no biologic switch; (4) no new non-biologic disease-modifying anti-rheumatic drug; (5) no new or increased oral glucocorticoid; and (6) ≤1 glucocorticoid injection. Biologic cost per effectively treated patient was defined as total cost of the index biologic (drug plus intravenous administration) divided by the number of patients categorized by the algorithm as effectively treated. Similar methods were used for the index biologic in the second year and for a second biologic after a switch. Rates that the index biologic was categorized as effective in the first year were 31.0% etanercept (2243/7247), 28.6% adalimumab (1426/4991), 28.6% abatacept (332/1160), 27.2% golimumab (71/261), and 20.2% infliximab (474/2352). Mean biologic cost per effectively treated patient, per the algorithm, was $50,141 etanercept, $53,386 golimumab, $56,942 adalimumab, $73,516 abatacept, and $114,089 infliximab. Biologic cost per effectively treated patient, using this algorithm, was lower for patients who continued the index biologic in the second year and higher after switching. When a claims-based algorithm was applied to a large commercial claims database, etanercept was categorized as the most effective and had the lowest estimated 1-year biologic cost per effectively treated patient. This proxy for effectiveness from claims databases was validated against a clinical effectiveness scale, but analyses of the second year or the year after a biologic switch were not included in the validation. Costs of other medications were not included in cost calculations.
ERIC Educational Resources Information Center
Keraro, Fred Nyabuti; Wachanga, Samuel W.; Orora, William
2007-01-01
This study investigated the effects of using the cooperative concept mapping (CCM) teaching approach on secondary school students' motivation in biology. A non equivalent control group design under the quasi-experimental research was used in which a random sample of four co-educational secondary schools was used. The four schools were randomly…
ERIC Educational Resources Information Center
Douglass, Claudia B.
The primary purpose of the reported study was to identify a possible interaction between the cognitive style of the students and the instructional sequence of the materials and their combined effect on achievement. The subjects were 627 biology students from six midwestern high schools. The students were ranked and classified as field-dependent…
The Effectiveness of the New 9th Grade Biology Curriculum on Students' Environmental Awareness
ERIC Educational Resources Information Center
Cetin, Gulcan; Nisanci, Seda Hilal
2010-01-01
The aim of this study was to examine the effectiveness of a new 9th grade biology curriculum on students' environmental awareness. Participants included 91 ninth grade students in a high school in Balikesir during the spring semester of the 2008-2009 academic years. Two classrooms, including 22 and 24 students respectively, were randomly assigned…
ERIC Educational Resources Information Center
Çetin, Gülcan; Ertepinar, Hamide; Geban, Ömer
2015-01-01
The purpose of this study is to investigate the effects of the conceptual change text based instruction on ninth grade students' understanding of ecological concepts, and attitudes toward biology and environment. Participants were 82 ninth grade students in a public high school in the Northwestern Turkey. A treatment was employed over a five-week…
ERIC Educational Resources Information Center
Manoj, T. I.; Devanathan, S.
2010-01-01
This research study is the report of an experiment conducted to find out the effects of web based inquiry science environment on cognitive outcomes in Biological science in correlation to Emotional intelligence. Web based inquiry science environment (WISE) provides a platform for creating inquiry-based science projects for students to work…
USDA-ARS?s Scientific Manuscript database
Biological invasions have far reaching effects on native plant and arthropod communities. This study evaluated the effect of natural enemies on eggs of the exotic invasive stink bug Halyomorpha halys (Stål) in experimental plots comprising species pairs of 16 ornamental trees and shrub genera from e...
Lycopene metabolism and its biological significance12345
2012-01-01
The beneficial effects of a high intake of tomatoes and tomato products on the risk of certain chronic diseases have been presented in many epidemiologic studies, with the suggestion that lycopene (a major carotenoid in tomatoes) is a micronutrient with important health benefits. Within the past few years, we have gained greater knowledge of the metabolism of lycopene and the biological effects of lycopene derivatives. In particular, the characterization and study of β-carotene 9′,10′-oxygenase has shown that this enzyme can catalyze the excentric cleavage of both provitamin and non–provitamin A carotenoids to form apo-10′-carotenoids, including apo-10′-lycopenoids from lycopene. This raised an important question of whether the effect of lycopene on various cellular functions and signaling pathways is a result of the direct actions of intact lycopene or its derivatives. Several reports, including our own, support the notion that the biological activities of lycopene can be mediated by apo-10′-lycopenoids. More research is clearly needed to identify and characterize additional lycopene metabolites and their biological activities, which will potentially provide invaluable insights into the mechanisms underlying the effects of lycopene in humans. PMID:23053559
NASA Astrophysics Data System (ADS)
Ikehata, Masateru; Iwasaka, Masakazu; Miyakoshi, Junji; Ueno, Shoogo; Koana, Takao
2003-05-01
Effects of magnetic fields (MFs) on biological systems are usually investigated using biological indices such as gene expression profiles. However, to precisely evaluate the biological effects of MF, the effects of intense MFs on systematic material transport processes including experimental environment must be seriously taken into consideration. In this study, a culture of the budding yeast, Saccharomyces cerevisiae, was used as a model for an in vitro biological test system. After exposure to 5 T static vertical MF, we found a difference in the sedimentation pattern of cells depending on the location of the dish in the magnet bore. Sedimented cells were localized in the center of the dish when they were placed in the lower part of the magnet bore while the sedimentation of the cells was uniform in dishes placed in the upper part of the bore because of the diamagnetic force. Genome wide gene expression profile of the yeast cells after exposure to 5 T static MF for 2 h suggested that the MF did not affect the expression level of any gene in yeast cells although the sedimentation pattern was altered. In addition, exposure to 10 T for 1 h and 5 T for 24 h also did not affect the gene expression. On the other hand, a slight change in expressions of several genes which are related to respiration was observed by exposure to a 14 T static MF for 24 h. The necessity of estimating the indirect effects of MFs on a study of its biological effect of MF in vitro will be discussed.
Taylor, Sandra L; Ruhaak, L Renee; Kelly, Karen; Weiss, Robert H; Kim, Kyoungmi
2017-03-01
With expanded access to, and decreased costs of, mass spectrometry, investigators are collecting and analyzing multiple biological matrices from the same subject such as serum, plasma, tissue and urine to enhance biomarker discoveries, understanding of disease processes and identification of therapeutic targets. Commonly, each biological matrix is analyzed separately, but multivariate methods such as MANOVAs that combine information from multiple biological matrices are potentially more powerful. However, mass spectrometric data typically contain large amounts of missing values, and imputation is often used to create complete data sets for analysis. The effects of imputation on multiple biological matrix analyses have not been studied. We investigated the effects of seven imputation methods (half minimum substitution, mean substitution, k-nearest neighbors, local least squares regression, Bayesian principal components analysis, singular value decomposition and random forest), on the within-subject correlation of compounds between biological matrices and its consequences on MANOVA results. Through analysis of three real omics data sets and simulation studies, we found the amount of missing data and imputation method to substantially change the between-matrix correlation structure. The magnitude of the correlations was generally reduced in imputed data sets, and this effect increased with the amount of missing data. Significant results from MANOVA testing also were substantially affected. In particular, the number of false positives increased with the level of missing data for all imputation methods. No one imputation method was universally the best, but the simple substitution methods (Half Minimum and Mean) consistently performed poorly. © The Author 2016. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Our Hidden Past: Biology, Part 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Ray; Russell, Liane; Mazur, Peter
In their new home at "The Mouse House" at Y-12, researchers from ORNL's Biology Division conducted studies that led to standards such as dose rate effects that form the basis for current international standards for radiation exposure in humans.
NASA Technical Reports Server (NTRS)
Hochstein, L. I.; Kvenvolden, K. A.; Philpott, D. E.
1974-01-01
The loss of biological, organic geochemical, and morphological science information that may occur should a Mars surface sample be sterilized prior to return to earth is examined. Results of experimental studies are summarized.
Biomorphodynamics: Physical-biological feedbacks that shape landscapes
Murray, A.B.; Knaapen, M.A.F.; Tal, M.; Kirwan, M.L.
2008-01-01
Plants and animals affect morphological evolution in many environments. The term "ecogeomorphology" describes studies that address such effects. In this opinion article we use the term "biomorphodynamics" to characterize a subset of ecogeomorphologic studies: those that investigate not only the effects of organisms on physical processes and morphology but also how the biological processes depend on morphology and physical forcing. The two-way coupling precipitates feedbacks, leading to interesting modes of behavior, much like the coupling between flow/sediment transport and morphology leads to rich morphodynamic behaviors. Select examples illustrate how even the basic aspects of some systems cannot be understood without considering biomorphodynamic coupling. Prominent examples include the dynamic interactions between vegetation and flow/sediment transport that can determine river channel patterns and the multifaceted biomorphodynamic feedbacks shaping tidal marshes and channel networks. These examples suggest that the effects of morphology and physical processes on biology tend to operate over the timescale of the evolution of the morphological pattern. Thus, in field studies, which represent a snapshot in the pattern evolution, these effects are often not as obvious as the effects of biology on physical processes. However, numerical modeling indicates that the influences on biology from physical processes can play a key role in shaping landscapes and that even local and temporary vegetation disturbances can steer large-scale, long-term landscape evolution. The prevalence of biomorphodynamic research is burgeoning in recent years, driven by societal need and a confluence of complex systems-inspired modeling approaches in ecology and geomorphology. To make fundamental progress in understanding the dynamics of many landscapes, our community needs to increasingly learn to look for two-way, biomorphodynamic feedbacks and to collect new types of data to support the modeling of such emergent interactions. Copyright 2008 by the American Geophysical Union.
The biological effects and possible modes of action of nanosilver.
Völker, Carolin; Oetken, Matthias; Oehlmann, Jörg
2013-01-01
Novel physicochemical and biological properties have led to a versatile spectrum of applications for nanosized silver particles. Silver nanoparticles are applied primarily for their antimicrobial effects, and may variety of commercially available products have emerged. To better predict and prevent possible environmental impacts from silver nanoparticles that are derived from increasing production volumes and environmental release, more data on the biological effects are needed on appropriate model organisms. We examined the literature that addressed the adverse effects of silver nanoparticles on different levels of biological integration, including in vitro and in vivo test systems. Results of in vitro studies indicate a dose-dependent programmed cell death included by oxidative stress as main possible pathway of toxicity. Furthermore, silver nanoparticles may affect cellular enzymes by interference with free thiol groups and mimicry of endogenous ions. Similar mechanisms may apply for antibacterial effects produced by nonasilver. These effects are primary from the interference nanosilver has with bacterial cell membranes. Few in vivo studies have been performed to evaluated the toxic mode of action of nanosilver or to provide evidence for oxidative stress as an important mechanism of nanosilver toxicity. Organisms that are most acutely sensitive to nanosilver toxicity are the freshwater filter-freeding organisms. Both in vitro and in vivo studies have demonstrated tha silver ions released from nanoparticle surface contribute to the toxicity, and, indeed, some findings indicated a unique nanoparticles effect. For an adequate evaluation of the environmental impact of nanosilver, greater emphasis should be placed on combining mechanistic investigations that are performed in vitro, with results obtained in in vivo test systems. Future in vivo test system studies should emphasize long-term exposure scenarios. Moreover, the dietary uptake of silver nanoparticles and the potential to bioaccumulate through the food web should be examined in detail.
Record, Sydne; Strecker, Angela; Tuanmu, Mao-Ning; Beaudrot, Lydia; Zarnetske, Phoebe; Belmaker, Jonathan; Gerstner, Beth
2018-01-01
There is ample evidence that biotic factors, such as biotic interactions and dispersal capacity, can affect species distributions and influence species' responses to climate change. However, little is known about how these factors affect predictions from species distribution models (SDMs) with respect to spatial grain and extent of the models. Understanding how spatial scale influences the effects of biological processes in SDMs is important because SDMs are one of the primary tools used by conservation biologists to assess biodiversity impacts of climate change. We systematically reviewed SDM studies published from 2003-2015 using ISI Web of Science searches to: (1) determine the current state and key knowledge gaps of SDMs that incorporate biotic interactions and dispersal; and (2) understand how choice of spatial scale may alter the influence of biological processes on SDM predictions. We used linear mixed effects models to examine how predictions from SDMs changed in response to the effects of spatial scale, dispersal, and biotic interactions. There were important biases in studies including an emphasis on terrestrial ecosystems in northern latitudes and little representation of aquatic ecosystems. Our results suggest that neither spatial extent nor grain influence projected climate-induced changes in species ranges when SDMs include dispersal or biotic interactions. We identified several knowledge gaps and suggest that SDM studies forecasting the effects of climate change should: 1) address broader ranges of taxa and locations; and 1) report the grain size, extent, and results with and without biological complexity. The spatial scale of analysis in SDMs did not affect estimates of projected range shifts with dispersal and biotic interactions. However, the lack of reporting on results with and without biological complexity precluded many studies from our analysis.
ITALICS: an algorithm for normalization and DNA copy number calling for Affymetrix SNP arrays.
Rigaill, Guillem; Hupé, Philippe; Almeida, Anna; La Rosa, Philippe; Meyniel, Jean-Philippe; Decraene, Charles; Barillot, Emmanuel
2008-03-15
Affymetrix SNP arrays can be used to determine the DNA copy number measurement of 11 000-500 000 SNPs along the genome. Their high density facilitates the precise localization of genomic alterations and makes them a powerful tool for studies of cancers and copy number polymorphism. Like other microarray technologies it is influenced by non-relevant sources of variation, requiring correction. Moreover, the amplitude of variation induced by non-relevant effects is similar or greater than the biologically relevant effect (i.e. true copy number), making it difficult to estimate non-relevant effects accurately without including the biologically relevant effect. We addressed this problem by developing ITALICS, a normalization method that estimates both biological and non-relevant effects in an alternate, iterative manner, accurately eliminating irrelevant effects. We compared our normalization method with other existing and available methods, and found that ITALICS outperformed these methods for several in-house datasets and one public dataset. These results were validated biologically by quantitative PCR. The R package ITALICS (ITerative and Alternative normaLIzation and Copy number calling for affymetrix Snp arrays) has been submitted to Bioconductor.
Plant seeds in biological research in space
NASA Technical Reports Server (NTRS)
Miller, A. T.
1982-01-01
Data of 15 years of space flight and laboratory tests of plant seeds of 20 species, mainly on the combined and separate effects of launch vibration, ionizing radiation and weightlessness, are surveyed. It is concluded that plants do not show a pronounced response to space flight factors. Conditions of return to Earth, the number of heavy cosmic ray particles striking biological targets and effects of change in magnetic an electromagnetic fields have been little studied, and that more study of growing plants in space is needed.
Propagation of barn owls in captivity
Maestrelli, J.R.
1973-01-01
Some aspects of the biology and life history of native birds often are more readily obtained in captivity than in the field. This is particularly true in evaluating the effects of pesticides or other pollutants on birds, because establishing cause-and-effect relationships requires experimental studies. Few wild species have been bred in captivity with sufficient success to permit the large-scale studies that are needed. This paper reports successful efforts to breed Barn Owls (Tyto alba prolinicola) in captivity and presents biological data concerning reproduction.
Carrots, tomatoes and cocoa: Research on dietary antioxidants in Düsseldorf.
Stahl, Wilhelm
2016-04-01
Dietary antioxidants, their biological effects and underlying mechanisms of action are key topics of research at the Institute of Biochemistry and Molecular Biology I at the Heinrich-Heine University in Düsseldorf where Helmut Sies is active now since more than 35 years. In the present article his research activity on carotenoids is summarized including studies on their bioavailability, antioxidant properties, cellular signaling and dermatological effects. Additionally, comparable studies on cocoa polyphenols are described. Copyright © 2015 Elsevier Inc. All rights reserved.
Effects of Attentional Focus on Emotional Responding to a Biological Challenge in Panic Disorder
1996-08-26
Panic .5 1.4. Biological Challenges 6 1.4.1. Carbon dioxide 6 1.4.2. Sodium Lactate 7 1.4.3. Yohimbine 7 1.4.4. Caffeine 8 1.4.5. Hyperventilation 8...biological challenges (e.g., carbon dioxide, caffeine , lactate infusion) have been used to provoke somatic symptoms that are similar to those reported during...challenges utilized in the study of panic disorder. Examples of biological challenge agents include carbon dioxide, sodium lactate, yohimbine, caffeine
Pereno, V; Aron, M; Vince, O; Mannaris, C; Seth, A; de Saint Victor, M; Lajoinie, G; Versluis, M; Coussios, C; Carugo, D; Stride, E
2018-05-01
The study of the effects of ultrasound-induced acoustic cavitation on biological structures is an active field in biomedical research. Of particular interest for therapeutic applications is the ability of oscillating microbubbles to promote both cellular and tissue membrane permeabilisation and to improve the distribution of therapeutic agents in tissue through extravasation and convective transport. The mechanisms that underpin the interaction between cavitating agents and tissues are, however, still poorly understood. One challenge is the practical difficulty involved in performing optical microscopy and acoustic emissions monitoring simultaneously in a biologically compatible environment. Here we present and characterise a microfluidic layered acoustic resonator ( μ LAR) developed for simultaneous ultrasound exposure, acoustic emissions monitoring, and microscopy of biological samples. The μ LAR facilitates in vitro ultrasound experiments in which measurements of microbubble dynamics, microstreaming velocity fields, acoustic emissions, and cell-microbubble interactions can be performed simultaneously. The device and analyses presented provide a means of performing mechanistic in vitro studies that may benefit the design of predictable and effective cavitation-based ultrasound treatments.
Sadeghi, Neda; Nayak, Amritha; Walker, Lindsay; Okan Irfanoglu, M; Albert, Paul S; Pierpaoli, Carlo
2015-04-01
Metrics derived from the diffusion tensor, such as fractional anisotropy (FA) and mean diffusivity (MD) have been used in many studies of postnatal brain development. A common finding of previous studies is that these tensor-derived measures vary widely even in healthy populations. This variability can be due to inherent inter-individual biological differences as well as experimental noise. Moreover, when comparing different studies, additional variability can be introduced by different acquisition protocols. In this study we examined scans of 61 individuals (aged 4-22 years) from the NIH MRI study of normal brain development. Two scans were collected with different protocols (low and high resolution). Our goal was to separate the contributions of biological variability and experimental noise to the overall measured variance, as well as to assess potential systematic effects related to the use of different protocols. We analyzed FA and MD in seventeen regions of interest. We found that biological variability for both FA and MD varies widely across brain regions; biological variability is highest for FA in the lateral part of the splenium and body of the corpus callosum along with the cingulum and the superior longitudinal fasciculus, and for MD in the optic radiations and the lateral part of the splenium. These regions with high inter-individual biological variability are the most likely candidates for assessing genetic and environmental effects in the developing brain. With respect to protocol-related effects, the lower resolution acquisition resulted in higher MD and lower FA values for the majority of regions compared with the higher resolution protocol. However, the majority of the regions did not show any age-protocol interaction, indicating similar trajectories were obtained irrespective of the protocol used. Published by Elsevier Inc.
Effects of radio frequency identification-related radiation on in vitro biologics.
Uysal, Ismail; Hohberger, Clive; Rasmussen, R Scott; Ulrich, David A; Emond, Jean-Pierre; Gutierrez, Alfonso
2012-01-01
The recent developments on the use of e-pedigree to identify the chain of custody of drugs suggests the use of advanced track and trace technologies such as two-dimensional barcodes and radio frequency identification (RFID) tags. RFID technology is used mainly for valuable commodities such as pharmaceutical products while incorporating additional functionalities like monitoring environmental variables to ensure product safety and quality. In its guidance for the use of RFID technologies for drugs (Compliance Policy Guide Section 400.210), the Food and Drug Administration outlined multiple parameters that would apply to any study or application using RFID. However, drugs approved under a Biologics License Application or protein drugs covered by a New Drug Application were excluded mainly due to concerns about the effects of radio frequency radiation (thermal and/or non-thermal) on biologics. Even though the thermal effects of radio frequency on biologics are relatively well understood, there are few studies in the literature about the non-thermal effects of radio frequency with regards to the protein structure integrity. In this paper, we analyze the non-thermal effects of radio frequency radiation by exposing a wide variety of biologics including biopharmaceuticals with vaccines, hormones, and immunoglobulins, as well as cellular blood products such as red blood cells and whole blood-derived platelets as well as fresh frozen plasma. In order to represent the majority of the frequency spectrum used in RFID applications, five different frequencies (13.56 MHz, 433 MHz, 868 MHz, 915 MHz, and 2.4 GHz) are used to account for the most commonly used international frequency bands for RFID. With the help of specialized radio frequency signal-generating hardware, magnetic and electromagnetic fields are created around the exposed products with power levels greater than Federal Communications Commission-regulated limits. The in vitro test results on more than 100 biopharmaceutical products from eight major pharmaceutical companies as well, as different blood products, show no non-thermal effect by radio frequency radiation. Forthcoming requirements, such as the California Board of Pharmacy Track and Trace initiative regarding the use of e-pedigree to identify the chain of custody of drugs, suggest the use of advanced track and trace technologies such as two-dimensional barcodes and radio frequency identification (RFID) tags. When used for pharmaceuticals, RFID technology can support additional functionalities like monitoring temperature to ensure product safety. In its guidance for the use of RFID technologies for drugs, the Food and Drug Administration outlined multiple parameters that would apply to pilot studies using RFID while excluding drugs approved under a Biologics License Application or protein drugs covered by a New Drug Application due to concerns about the effects of radio frequency radiation on biologics. Even though the effects of radio frequency on biologics due to temperature changes are relatively well understood, there are few studies in the literature about other effects of radio frequency that can occur without a noticeable change in temperature. In this paper, we expose a wide variety of biologics including biopharmaceuticals to radio frequency radiation at different frequencies, as well as cellular blood products and plasma to high frequency radiation. The in vitro test results show no detectable effect due to radio frequency radiation.
Systematic review of drug administration costs and implications for biopharmaceutical manufacturing.
Tetteh, Ebenezer; Morris, Stephen
2013-10-01
The acquisition costs of biologic drugs are often considered to be relatively high compared with those of nonbiologics. However, the total costs of delivering these drugs also depend on the cost of administration. Ignoring drug administration costs may distort resource allocation decisions because these affect cost effectiveness. The objectives of this systematic review were to develop a framework of drug administration costs that considers both the costs of physical administration and the associated proximal costs; and, as a case example, to use this framework to evaluate administration costs for biologics within the UK National Health Service (NHS). We reviewed literature that reported estimates of administration costs for biologics within the UK NHS to identify how these costs were quantified and to examine how differences in dosage forms and regimens influenced administration costs. The literature reviewed were identified by searching the Centre for Review and Dissemination Databases (DARE, NHS EED and HTA); EMBASE (The Excerpta Medica Database); MEDLINE (using the OVID interface); Econlit (EBSCO); Tufts Medical Center Cost Effectiveness Analysis (CEA) Registry; and Google Scholar. We identified 4,344 potentially relevant studies, of which 43 studies were selected for this systematic review. We extracted estimates of the administration costs of biologics from these studies. We found evidence of variation in the way that administration costs were measured, and that this affected the magnitude of costs reported, which could then influence cost effectiveness. Our findings suggested that manufacturers of biologic medicines should pay attention to formulation issues and their impact on administration costs, because these affect the total costs of healthcare delivery and cost effectiveness.
Severe and acute complications of biologics in psoriasis.
Oussedik, Elias; Patel, Nupur U; Cash, Devin R; Gupta, Angela S; Feldman, Steven R
2017-12-01
Biologic therapies have revolutionized the approach to immune-mediated diseases such as psoriasis. Due to their favorable safety profiles and excellent efficacy, biologic agents are considered the gold standard for moderate-to-severe psoriasis. The aim of this paper is to saliently review the severe and acute complications of the Food and Drug Administration (FDA) approved biologic agents for psoriasis. Reviewed agents include tumor necrosis factor alpha inhibitors (etanercept, infliximab, and adalimumab), interleukin 12/23 inhibitors (ustekinumab), and interleukin 17 (IL-17) inhibitors (secukinumab and ixekizumab). While malignancies, serious infections, and major adverse cardiovascular events have been reported, their association with biologic therapy are not hypothesized as causal. However, IL-17 inhibitors appear to cause exacerbations and new cases of inflammatory bowel disease. While more long-term studies are warranted in understanding the biologic's long-term side effect profile, short-term studies have confirmed that the biologics are some of the safest treatment options for psoriasis. Nevertheless, certain populations yield higher risk to acute complications with the biologics than others - physicians must use their judgement and vigilance when monitoring and treating patients undergoing therapy with biological agents.
Mandolesi, Laura; Polverino, Arianna; Montuori, Simone; Foti, Francesca; Ferraioli, Giampaolo; Sorrentino, Pierpaolo; Sorrentino, Giuseppe
2018-01-01
Much evidence shows that physical exercise (PE) is a strong gene modulator that induces structural and functional changes in the brain, determining enormous benefit on both cognitive functioning and wellbeing. PE is also a protective factor for neurodegeneration. However, it is unclear if such protection is granted through modifications to the biological mechanisms underlying neurodegeneration or through better compensation against attacks. This concise review addresses the biological and psychological positive effects of PE describing the results obtained on brain plasticity and epigenetic mechanisms in animal and human studies, in order to clarify how to maximize the positive effects of PE while avoiding negative consequences, as in the case of exercise addiction. PMID:29755380
The biological effects of sex hormones on rabbit articular chondrocytes from different genders.
Chang, Shwu Jen; Kuo, Shyh Ming; Lin, Yen Ting; Yang, Shan-Wei
2014-01-01
The aim of this study was to investigate the biological effects of sex hormones (17β-estradiol and testosterone) on rabbit articular chondrocytes from different genders. We cultured primary rabbit articular chondrocytes from both genders with varying concentration of sex hormones. We evaluate cell proliferation and biochemical functions by MTT and GAG assay. The chondrocyte function and phenotypes were analyzed by mRNA level using RT-PCR. Immunocytochemical staining was also used to evaluate the generation of collagen-II. This study demonstrated that 17β-estradiol had greater positive regulation on the biological function and gene expressions of articular chondrocytes than testosterone, with the optimal concentrations of 10(-6) and 10(-7) M, particularly for female chondrocytes.
Liukkonen, Mika; Nygård, Clas-Håkan; Laukkanen, Raija
2017-12-01
It has been suggested that engaging technology can empower individuals to be more proactive about their health and reduce their health risks. The aim of the present intervention was to study the effects of technology-aided testing and feedback on physical activity and biological age of employees in a middle-sized enterprise. In all, 121 employees (mean age 42 ± 10 years) participated in the 12-month three-arm cluster randomized trial. The fitness measurement process (Body Age) determined the participants' biological age in years. Physical activity was measured with the International Physical Activity Questionnaire Short Form. Physical activity did not change during the intervention. Biological age (better fitness) improved in all groups statistically significantly ( p < 0.001), but with no interaction effects. The mean changes (years) in the groups were -2.20 for the controls, -2.83 for the group receiving their biological age and feedback, and -2.31 for the group receiving their biological age, feedback, and a training computer. Technology-aided testing with feedback does not seem to change the amount of physical activity but may enhance physical fitness measured by biological age.
Brownell, Sara E.; Kloser, Matthew J.; Fukami, Tadashi; Shavelson, Richard J.
2013-01-01
The shift from cookbook to authentic research-based lab courses in undergraduate biology necessitates the need for evaluation and assessment of these novel courses. Although the biology education community has made progress in this area, it is important that we interpret the effectiveness of these courses with caution and remain mindful of inherent limitations to our study designs that may impact internal and external validity. The specific context of a research study can have a dramatic impact on the conclusions. We present a case study of our own three-year investigation of the impact of a research-based introductory lab course, highlighting how volunteer students, a lack of a comparison group, and small sample sizes can be limitations of a study design that can affect the interpretation of the effectiveness of a course. PMID:24358380
Brownell, Sara E; Kloser, Matthew J; Fukami, Tadashi; Shavelson, Richard J
2013-01-01
The shift from cookbook to authentic research-based lab courses in undergraduate biology necessitates the need for evaluation and assessment of these novel courses. Although the biology education community has made progress in this area, it is important that we interpret the effectiveness of these courses with caution and remain mindful of inherent limitations to our study designs that may impact internal and external validity. The specific context of a research study can have a dramatic impact on the conclusions. We present a case study of our own three-year investigation of the impact of a research-based introductory lab course, highlighting how volunteer students, a lack of a comparison group, and small sample sizes can be limitations of a study design that can affect the interpretation of the effectiveness of a course.
ERIC Educational Resources Information Center
Infanti, Lynn M.
2012-01-01
This investigation evaluated the effects of the use of the pedagogical tool "Evo in the News" on the attitudes toward and knowledge of biological evolution in a sample of undergraduate non-major biology students at a large, private research university. In addition, this study looked at the initial attitudes of the students and their…
ERIC Educational Resources Information Center
Wang, Tzu-Hua; Wang, Wei-Lung; Wang, Kuo-Hua; Huang, Hsih-Chieh
2004-01-01
This research aims to develop a Metacognition strategy for Web-Based Instruction (WBI) to stimulate reflective questions in biology learning to run Frontpage Feedback System (FFS) embedded in web pages, and thus to evaluate the influence of this internet-teaching style on biology learning among freshmen. According to the questionnaire survey, we…
[Cycloferon biological activity characteristics].
Utkina, T M; Potekhina, L P; Kartashova, O L; Vasilchenko, A S
2014-01-01
Study the effect of cycloferon in experimental and clinical conditions on persistence properties of aurococci as well as features of their morpho-functional reaction by atomic force microscopy. The study was carried out in 12 Staphylococcus aureus clones isolated from mucous membrane of nose anterior part of a resident carrier. The effect of cycloferon in vivo was evaluated in 26 resident staphylococci carriers under the control of anti-carnosine activity of staphylococci. Anti-carnosine activity was determined by O.V. Bukharin et al. (1999), biofilm formation -by G.A. O'Toole et al. (2000). Staphylococci treated with cycloferon were studied by atomic force microscopy in contact mode using scanning probe SMM-2000 microscope. The decrease of persistence properties of staphylococci under the effect of cycloferon in vitro and in vivo may be examined as one of the mechanisms of biological activity of the preparation. A significant increase of S. aureus surface roughness and changes in their morphology under the effect of cycloferon allow stating the disorder of barrier functions in the aurococci cell wall. The data obtained expand the understanding of cycloferon biological activity mechanisms.
NASA Astrophysics Data System (ADS)
Griesel, Patricia
2000-10-01
Science content area literacy, particularly literacy development in college level biology, is the focus of this study. The study investigates the actions and activities of an instructor and six students over the course of 16 weeks. The study is in response to interest in the literate practices in science classes (NSES, 1996) and to the call for contextual studies that facilitate the learning of science (Borasi & Siegel, 1999; Moje, 1996; Nist & Holschuh, 1996; Prentiss, 1998). A collaborative study between the biology teacher and the researcher, this study investigates the practices believed to be effective for the development of biology literacy. Data sources, in the qualitative bounded case study (Bogdin & Biklin, 1982; Glaser & Strauss, 1967; Miles & Huberman, 1994), include: field notes of classroom observations, in-depth interviews (Seidman, 1992), class surveys, and literate artifacts. The data were coded and analyzed using a constant comparative method (Glaser & Strauss, 1967). The six students reveal similarities and differences regarding the actions, patterns, practices and use of materials and their beliefs about effective practice in the development of biology literacy. The results indicate that a variety of actions and activities are needed to facilitate the development of biology literacy. The common themes to develop from the students' data about effective teacher actions are the following: (a) involves and engages students in inquiry learning through group projects, hands-on, and group discussions; (b) relates examples, experiences, and stories; (c) exhibits expertise; (d) encourages a relaxed classroom atmosphere; (e) facilitates and coaches students; and (f) credits creativity. Further, students report their teacher to be an expert, in terms of science knowledge and literate practices, and that her expertise contributes to their understanding of biology literacy. The teachers' data reveals three themes embedded in her classroom actions: science as a language, science as a social activity, and science as an experiential activity. The researcher's role in the study suggests that other researchers may benefit from a similar collaborative effort where the teacher and researcher learn from each other and from their students while supporting content literacy development. Content literacy practice from a constructivist paradigm (Anders & Guzzetti, 1996; Staver, 1998) has merit beyond high school and powerful implications for practice at the college level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Ming W.; Stewart, Scott G.; Sobolev, Alexandre N.
The trans-epoxysuccinyl amide group as a biologically active moiety in cysteine protease inhibitors such as loxistatin acid E64c has been used as a benchmark system for theoretical studies of environmental effects on the electron density of small active ingredients in relation to their biological activity. Here, the synthesis and the electronic properties of the smallest possible active site model compound are reported to close the gap between the unknown experimental electron density of trans-epoxysuccinyl amides and the well-known function of related drugs. Intramolecular substituent effects are separated from intermolecular crystal packing effects on the electron density, which allows us tomore » predict the conditions under which an experimental electron density investigation on trans-epoxysuccinyl amides will be possible. In this context, the special importance of the carboxylic acid function in the model compound for both crystal packing and biological activity is revealed through the novel tool of model energy analysis.« less
NASA Astrophysics Data System (ADS)
Nawaz, Haq; Hanif, Muhammad Asif; Ayub, Muhammad Adnan; Ishtiaq, Faiqa; Kanwal, Nazish; Rashid, Nosheen; Saleem, Muhammad; Ahmad, Mushtaq
2017-10-01
The present study is performed to evaluate the effect of different concentrations of Cu as fertilizer on the chemical composition of basil essential oil and its biological activity including antioxidant and antifungal activities by employing Raman spectroscopy. Moreover, the effect of Cu is also determined on the vegetative growth and essential oil yield. Both, antifungal and antioxidant activities were found to be maximum with essential oils obtained at 0.04 mg/l concentration of Cu fertilizer. The results of the GC-MS and Raman spectroscopy have revealed that the linalool and estragole are found to be as a major chemical compound in basil essential oil. The Raman spectral changes associated with these biological components lead to the conclusion that estragole seems to have dominating effect in the biological activities of the basil essential oil as compared to linalool although the latter is observed in greater concentration.
[BIOLOGICAL ACTIVITY OF ANTIMICROBIAL PEPTIDES FROM CHICKENS THROMBOCYTES].
Sycheva, M V; Vasilchenko, A S; Rogozhin, E A; Pashkova, T M; Popova, L P; Kartashova, O L
2016-01-01
Isolation and study of biological activity of antimicrobial peptides from chickens thrombocytes. Peptides from chickens thrombocytes, obtained by reverse-phase high-performance liquid chromatography method with stepped and linear gradients of concentration increase of the organic solvent were used in the study. Their antimicrobial activity was determined by microtitration method in broth; mechanism of biological effect--by using fluorescent spectroscopy method with DNA-tropic dyes. Individual fractions of peptides were isolated from chickens thrombocytes, that possess antimicrobial activity against Staphylococcus aureus P209 and Escherichia coli K12. A disruption of integrity of barrier structures of microorganisms under the effect of thrombocyte antimicrobial peptides and predominance of cells with damaged membrane in the population of E. coli was established. The data obtained on antimicrobial activity and mechanism of bactericidal effect of the peptide fractions from chickens thrombocytes isolated for the first time expand the understanding of functional properties of chickens thrombocytes and open a perspective for their further study with the aim of use as antimicrobial means.
Biomedical experiments. Part A: Biostack experiment
NASA Technical Reports Server (NTRS)
Buecker, H.; Horneck, G.; Reinholz, E.; Scheuermann, W.; Ruether, W.; Graul, E. H.; Planel, H.; Soleilhavoup, J. P.; Cuer, P.; Kaiser, R.
1972-01-01
The biostack experiment is described which was designed to study the biologic effects of individual heavy nuclei of galactic cosmic radiation during space flight outside the magnetosphere of the earth. Specifically, the biostack experiment was designed to promote research on the effects of high energy/high Z particles of galactic cosmic radiation on a broad spectrum of biologic systems, from the molecular to the highly organized and developed forms of life. The experiment was considered unique and scientifically meritorious because of its potential yield of information - currently unavailable on earth - on the interaction of biologic systems with the heavy particles of galactic cosmic radiation.
A comparison of teacher and principal perception of an outstanding biology teacher
NASA Astrophysics Data System (ADS)
Searles, William E.; Ng, Raymond W. M.
The purpose of this study was to ascertain the level of agreement or disagreement between principals and teachers when using established criteria to measure the effectiveness of a biology teacher. To obtain information regarding their perceptions of an outstanding biology teacher, twenty-two principals and forty-one biology teachers were chosen randomly from English-speaking high schools within a 50 km radius of metropolitan Montreal, Quebec, Canada. The measuring instrument was a modified version of Dieter's questionnaire that evolved from his doctoral study of the National Association of Biology Teachers-Outstanding Biology Teacher Award Program. The data collected from the two populations were tested using one-way ANOVA (analysis of variance) or by applying normal approximation. Results indicated that both the principals and teachers agree on the relative importance of most criteria, particularly those related to the teacher's classroom behavior and academic background in biology. From such results, it was possible to construct one stereotype of the outstanding biology teacher. A number of recommendations were made from the results of the study, which were directed to the (a) teachers and their professional organization, (b) principals and the school boards, (c) teacher training institutions, and (d) researchers in teacher evaluation.
Investigation of biological effects of some Mannich Bases containing Bis-1,2,4- Triazole.
Parlak, A E; Celik, S; Karatepe, M; Turkoglu, S; Alayunt, N O; Dastan, S D; Ulas, M; Sandal, S; Tekin, S; Koparir, M
2016-06-30
In this study, the effects of Mannich bases containing bis-1,2,4-triazole on the levels of in vivo malondialdehyde (MDA) and antioxidant vitamins (A, E, C) were examined in serum, livers and kidneys of rats. DA and vitamin (A, E, C) levels were determined by high performance liquid chromatography (HPLC). Antioxidant effect was investigated by determining the MDA levels in Saccharomyces cerevisiae cells as in vitro. Furthermore, the antitumor effects of compounds were investigated against MCF-7 human breast cancer cells. Interrelations of results among control and compound groups were evaluated using SPSS statistical software package. As a result, some of the compounds showed effective biological activity when compared to control conditions. The test compounds used in this study may be effective for utilization in the selection and design of model compounds for further studies.
Morgunov, Igor G; Karpukhina, Olga V; Kamzolova, Svetlana V; Samoilenko, Vladimir A; Inozemtsev, Anatoly N
2018-01-02
The effect of biologically active form (threo-Ds-) of isocitric acid (ICA) on oxidative stress was studied using the infusorian Paramecium caudatum stressed by hydrogen peroxide and salts of some heavy metals (Cu, Pb, Zn, and Cd). ICA at concentrations between 0.5 and 10 mM favorably influenced the infusorian cells with oxidative stress induced by the toxicants studied. The maximal antioxidant effect of ICA was observed at its concentration 10 mM irrespective of the toxicant used (either H 2 O 2 or heavy metal ions). ICA was found to be a more active antioxidant than ascorbic acid. Biologically active pharmaceutically pure threo-Ds-ICA was produced through cultivation of the yeast Yarrowia lipolytica and isolated from the culture liquid in the form of crystalline monopotassium salt with a purity of 99.9%.
Rearing Environmental Influences on Religiousness: An Investigation of Adolescent Adoptees.
Koenig, Laura B; McGue, Matt; Iacono, William G
2009-10-01
Religiousness is widely considered to be a culturally transmitted trait. However, twin studies suggest that religiousness is genetically influenced in adulthood, although largely environmentally influenced in childhood/adolescence. We examined genetic and environmental influences on a self-report measure of religiousness in a sample consisting of 284 adoptive families (two adopted adolescent siblings and their rearing parents); 208 biological families (two full biological adolescent siblings and their parents); and 124 mixed families (one adopted and one biological adolescent sibling and their parents). A sibling-family model was fit to the data to estimate genetic, shared environmental, and nonshared environmental effects on religiousness, as well as cultural transmission and assortative mating effects. Religiousness showed little evidence of heritability and large environmental effects, which did not vary significantly by gender. This finding is consistent with the results of twin studies of religiousness in adolescent and preadolescent samples.
Rearing Environmental Influences on Religiousness: An Investigation of Adolescent Adoptees
Koenig, Laura B.; McGue, Matt; Iacono, William G.
2009-01-01
Religiousness is widely considered to be a culturally transmitted trait. However, twin studies suggest that religiousness is genetically influenced in adulthood, although largely environmentally influenced in childhood/adolescence. We examined genetic and environmental influences on a self-report measure of religiousness in a sample consisting of 284 adoptive families (two adopted adolescent siblings and their rearing parents); 208 biological families (two full biological adolescent siblings and their parents); and 124 mixed families (one adopted and one biological adolescent sibling and their parents). A sibling-family model was fit to the data to estimate genetic, shared environmental, and nonshared environmental effects on religiousness, as well as cultural transmission and assortative mating effects. Religiousness showed little evidence of heritability and large environmental effects, which did not vary significantly by gender. This finding is consistent with the results of twin studies of religiousness in adolescent and preadolescent samples. PMID:20161346
Armagan, Berkan; Sari, Alper; Erden, Abdulsamet; Kilic, Levent; Erdat, Efe Cem; Kilickap, Saadettin; Kiraz, Sedat; Bilgen, Sule Apras; Karadag, Omer; Akdogan, Ali; Ertenli, Ihsan; Kalyoncu, Umut
2018-03-01
The objective of this study was to assess the frequency of comorbidities and multimorbidities in rheumatoid arthritis (RA) patients under biologic therapy and their effects on biological disease modifying antirheumatic drugs (DMARDs) choice, timing, and response.Hacettepe University Biologic Registry (HUR-BIO) is single center biological DMARD registry. Cardiovascular, infectious, cancer, and other comorbidities were recorded with face to face interviews. Multimorbidity is defined as >1 comorbidity. Disease duration, initial date of biological DMARDs, initial and overall biological DMARD choice were recorded. Disease activity score-28 (DAS-28) responses were compared to comorbidity presence and multimorbidity.Total of 998 RA patients were enrolled into the study. The mean age was 53.1 (12.5) and mean disease duration (standard deviation [SD]) was 11.7 (7.5) years. At least 1 comorbidity was detected in 689 (69.1%) patients, 375 (37.9%) patients had multimorbidity. Patients had mean 1.36 ± 1.32 comorbidity. The median durations of first biological DMARDs prescription were 60 (3-552) months after RA diagnosis. For multimorbidity patients, the median first biological prescription duration was longer than the duration for patients without multimorbidity (72 [3-552] vs 60 [3-396] months, P < .001). The physicians prescribe tumor necrosis factor inhibitor (TNFi) biological drugs less frequently than other biological DMARDs in patients with at least 1 comorbidity (66.2% vs 74.5%, P = .007) or multimorbidity (34.6% vs 43.5%, P = .006). Patients with comorbidities and multimorbidity achieved DAS-28 remission less frequently than patients without comorbidity (31.6% vs 42.6%, P = .012 and 27.2% vs 39.7%, P = .001, respectively).In real life, physicians may postpone to prescribe biological DMARDs and less frequently choose TNFi biological drugs in patients with multimorbidity. Furthermore, comorbidity may have a negative effect on the treatment response.
Armagan, Berkan; Sari, Alper; Erden, Abdulsamet; Kilic, Levent; Erdat, Efe Cem; Kilickap, Saadettin; Kiraz, Sedat; Bilgen, Sule Apras; Karadag, Omer; Akdogan, Ali; Ertenli, Ihsan; Kalyoncu, Umut
2018-01-01
Abstract The objective of this study was to assess the frequency of comorbidities and multimorbidities in rheumatoid arthritis (RA) patients under biologic therapy and their effects on biological disease modifying antirheumatic drugs (DMARDs) choice, timing, and response. Hacettepe University Biologic Registry (HUR-BIO) is single center biological DMARD registry. Cardiovascular, infectious, cancer, and other comorbidities were recorded with face to face interviews. Multimorbidity is defined as >1 comorbidity. Disease duration, initial date of biological DMARDs, initial and overall biological DMARD choice were recorded. Disease activity score-28 (DAS-28) responses were compared to comorbidity presence and multimorbidity. Total of 998 RA patients were enrolled into the study. The mean age was 53.1 (12.5) and mean disease duration (standard deviation [SD]) was 11.7 (7.5) years. At least 1 comorbidity was detected in 689 (69.1%) patients, 375 (37.9%) patients had multimorbidity. Patients had mean 1.36 ± 1.32 comorbidity. The median durations of first biological DMARDs prescription were 60 (3–552) months after RA diagnosis. For multimorbidity patients, the median first biological prescription duration was longer than the duration for patients without multimorbidity (72 [3–552] vs 60 [3–396] months, P < .001). The physicians prescribe tumor necrosis factor inhibitor (TNFi) biological drugs less frequently than other biological DMARDs in patients with at least 1 comorbidity (66.2% vs 74.5%, P = .007) or multimorbidity (34.6% vs 43.5%, P = .006). Patients with comorbidities and multimorbidity achieved DAS-28 remission less frequently than patients without comorbidity (31.6% vs 42.6%, P = .012 and 27.2% vs 39.7%, P = .001, respectively). In real life, physicians may postpone to prescribe biological DMARDs and less frequently choose TNFi biological drugs in patients with multimorbidity. Furthermore, comorbidity may have a negative effect on the treatment response. PMID:29595700
Oncogenic transformation in C3H10T1/2 cells by low-energy neutrons.
Miller, R C; Marino, S A; Napoli, J; Shah, H; Hall, E J; Geard, C R; Brenner, D J
2000-03-01
Occupational exposure to neutrons typically includes significant doses of low-energy neutrons, with energies below 100 keV. In addition, the normal-tissue dose from boron neutron capture therapy will largely be from low-energy neutrons. Microdosimetric theory predicts decreasing biological effectiveness for neutrons with energies below about 350 keV compared with that for higher-energy neutrons; based on such considerations, and limited biological data, the current radiation weighting factor (quality factor) for neutrons with energies from 10 keV to 100 keV is less than that for higher-energy neutrons. By contrast, some reports have suggested that the biological effectiveness of low-energy neutrons is similar to that of fast neutrons. The purpose of the current work is to assess the relative biological effectiveness of low-energy neutrons for an endpoint of relevance to carcinogenesis: in vitro oncogenic transformation. Oncogenic transformation induction frequencies were determined for C3H10T1/2 cells exposed to two low-energy neutron beams, respectively, with dose-averaged energies of 40 and 70 keV, and the results were compared with those for higher-energy neutrons and X-rays. These results for oncogenic transformation provide evidence for a significant decrease in biological effectiveness for 40 keV neutrons compared with 350 keV neutrons. The 70 keV neutrons were intermediate in effectiveness between the 70 and 350 keV beams. A decrease in biological effectiveness for low-energy neutrons is in agreement with most (but not all) earlier biological studies, as well as microdosimetric considerations. The results for oncogenic transformation were consistent with the currently recommended decreased values for low-energy neutron radiation weighting factors compared with fast neutrons.
Heideman, Paul D; Flores, K Adryan; Sevier, Lu M; Trouton, Kelsey E
2017-01-01
Drawing by learners can be an effective way to develop memory and generate visual models for higher-order skills in biology, but students are often reluctant to adopt drawing as a study method. We designed a nonclassroom intervention that instructed introductory biology college students in a drawing method, minute sketches in folded lists (MSFL), and allowed them to self-assess their recall and problem solving, first in a simple recall task involving non-European alphabets and later using unfamiliar biology content. In two preliminary ex situ experiments, students had greater recall on the simple learning task, non-European alphabets with associated phonetic sounds, using MSFL in comparison with a preferred method, visual review (VR). In the intervention, students studying using MSFL and VR had ∼50-80% greater recall of content studied with MSFL and, in a subset of trials, better performance on problem-solving tasks on biology content. Eight months after beginning the intervention, participants had shifted self-reported use of drawing from 2% to 20% of study time. For a small subset of participants, MSFL had become a preferred study method, and 70% of participants reported continued use of MSFL. This brief, low-cost intervention resulted in enduring changes in study behavior. © 2017 P. D. Heideman et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
ERIC Educational Resources Information Center
Andaya, Gillian; Hrabak, Victoria D.; Reyes, Sarah T.; Diaz, Rafael E.; McDonald, Kelly K.
2017-01-01
A postexam review activity was implemented in an introductory biology course to help students learn from their mistakes and strengthen reasoning and self-regulatory skills. The goal of this study was to design and test a strategy to measure the effectiveness of the postexam review using student performance and attitudinal measures. We evaluated…
ERIC Educational Resources Information Center
Burns, Joseph C.; Okey, James R.
This study investigated the effects of analogy-based and conventional lecture-based instructional strategies on the achievement of four classes of high school biology students (N=123). Prior to treatment, students were assessed for cognitive ability and prior knowledge of the analogy vehicle. The analogy-based treatment consisted of teacher…
NMR spectroscopy of Group 13 metal ions: biologically relevant aspects.
André, J P; Mäcke, H R
2003-12-01
In spite of the fact that Group 13 metal ions (Al(3+), Ga(3+), In(3+) and Tl(+/3+)) show no main biological role, they are NMR-active nuclides which can be used in magnetic resonance spectroscopy of biologically relevant systems. The fact that these metal ions are quadrupolar (with the exception of thallium) means that they are particularly sensitive to ligand type and coordination geometry. The line width of the NMR signals of their complexes shows a strong dependence on the symmetry of coordination, which constitutes an effective tool in the elucidation of structures. Here we report published NMR studies of this family of elements, applied to systems of biological importance. Special emphasis is given to binding studies of these cations to biological molecules, such as proteins, and to chelating agents of radiopharmaceutical interest. The possibility of in vivo NMR studies is also stressed, with extension to (27)Al-based MRI (magnetic resonance imaging) experiments.
ERIC Educational Resources Information Center
Yaki, Akawo Angwal; Babagana, Mohammed
2016-01-01
The paper examined the effects of a Technological Instructional Package (TIP) on secondary school students' performance in biology. The study adopted a pre-test, post-test experimental control group design. The sample size of the study was 80 students from Minna metropolis, Niger state, Nigeria; the samples were randomly assigned into treatment…
ERIC Educational Resources Information Center
Ellsbury, Susan H.; And Others
Student library assistants and undergraduate and graduate students from agricultural and biological engineering, biological sciences, and entomology participated in a study to determine the effectiveness of instructional materials adapted to specific science disciplines for developing practical skills in the use of library resources. All students…
Using Photographs as Case Studies to Promote Active Learning in Biology
ERIC Educational Resources Information Center
Krauss, David A.; Salame, Issa I.; Goodwyn, Lauren N.
2010-01-01
If a picture is worth a thousand words, think about how long it takes your students to read a thousand words. Case studies are effective and stimulating ways to teach a variety of subjects, including the biological sciences. In learning the details of a particular case, students develop skills in both deductive and inductive reasoning, hypothesis…
A Systematic Review of the Cost-Effectiveness of Biologics for Ulcerative Colitis.
Stawowczyk, Ewa; Kawalec, Paweł
2018-04-01
Ulcerative colitis (UC) is a chronic autoimmune inflammation of the colon. The condition significantly decreases quality of life and generates a substantial economic burden for healthcare payers, patients and the society in which they live. Some patients require chronic pharmacotherapy, and access to novel biologic drugs might be crucial for long-term remission. The analyses of cost-effectiveness for biologic drugs are necessary to assess their efficiency and provide the best available drugs to patients. Our aim was to collect and assess the quality of economic analyses carried out for biologic agents used in the treatment of UC, as well as to summarize evidence on the drivers of cost-effectiveness and evaluate the transferability and generalizability of conclusions. A systematic database review was conducted using MEDLINE (via PubMed), EMBASE, Cost-Effectiveness Analysis Registry and CRD0. Both authors independently reviewed the identified articles to determine their eligibility for final review. Hand searching of references in collected papers was also performed to find any relevant articles. The reporting quality of economic analyses included was evaluated by two reviewers using the International Society of Pharmacoeconomics and Outcomes Research (ISPOR) Consolidated Health Economic Evaluation Reporting Standards (CHEERS) statement checklist. We reviewed the sensitivity analyses in cost-effectiveness analyses to identify the variables that may have changed the conclusions of the study. Key drivers of cost-effectiveness were selected by identifying uncertain parameters that caused the highest change of the results of the analyses compared with base-case results. Of the 576 identified records, 87 were excluded as duplicates and 16 studies were included in the final review; evaluations for Canada, the UK and Poland were mostly performed. The majority of the evaluations revealed were performed for infliximab (approximately 75% of total volume); however, some assessments were also performed for adalimumab (50%) and golimumab (31%). Only three analyses were conducted for vedolizumab, whereas no relevant studies were found for etrolizumab and tofacitinib. The reporting quality of the included economic analyses was assessed as high, with an average score of 21 points per 24 maximum possible (range 14-23 points according to the ISPOR CHEERS statement checklist). In the case of most analyses, quality-adjusted life-years were used as a clinical outcome, and endpoints such as remission, response and mucosal healing were less common. The higher clinical effectiveness (based on response rates) of biological treatment over non-biological treatments was presented in revealed analyses. The incremental cost-utility ratios for biologics, compared with standard care, varied significantly between the studies and ranged from US$36,309 to US$456,979. The lowest value was obtained for infliximab and the highest for the treatment scheme including infliximab 5 mg/kg and infliximab 10 mg/kg + adalimumab. The change of utility weights and clinical parameters had the most significant influence on the results of the analysis; the variable related to surgery was the least sensitive. Limited data on the cost-effectiveness of UC therapy were identified. In the majority of studies, the lack of cost-effectiveness was revealed for biologics, which was associated with their high costs. Clinical outcomes are transferable to other countries and could be generalized; however, cost inputs are country-specific and therefore limit the transferability and generalizability of conclusions. The key drivers and variables that showed the greatest effect on the analysis results were utility weights and clinical parameters.
NASA Astrophysics Data System (ADS)
Zimmermann, R.; Dittmar, G.; Kanashova, T.; Buters, J.; Öder, S.; Paur, H. R.; Mülhopt, S.; Dilger, M.; Weiss, C.; Harndorf, H.; Stengel, B.; Hirvonen, M. R.; Jokiniemi, J.; Hiller, K.; Sapcariu, S.; Sippula, O.; Streibel, T.; Karg, E.; Weggler, B.; Schnelle-Kreis, J.; Lintelmann, J.; Sklorz, M.; Orasche, J.; Müller, L.; Passig, J.; Gröger, T.; BéruBé, K.; Krebs, T.
2016-12-01
Combustion emissions cause health effects. The HICE-Aerosol and Health project team studies the physicochemical properties as well as biological and toxicological effects on lung cells of combustion particle emissions. The chemical composition and physical parameters thoroughly characterized. Human lung cells are exposed to the diluted combustion exhaust fumes at the air-liquid interface (ALI), allowing a realistic lung-cell exposure by simulation of the lung situation. After exposure, cellular responses of the exposed lung cells are studied by multi-omics molecular biological analyses on transcriptomic, proteomic and metabolomic level. Emissions of wood combustion (log wood, pellet heater), ship diesel engines and car gasoline engines are addressed. Special field deployable ALI-exposition systems in a mobile S2-biological laboratory were set up and applied. Human alveolar epithelial cells (A549, BEAS2B and primary cells) as well as murine macrophages were ALI-exposed to diluted emissions. The cellular effects were then comprehensively characterized (viability, cyto-toxicology, multi-omics effects monitoring) and put in context with the chemical and physical aerosol data. The following order of overall cellular response-strength was observed: A relatively mild cellular effect is observed for the diluted wood combustion emissions. Interestingly the effects-strength for log-wood and pellet burner emissions are similar, although PM-concentrations are much higher for the log-wood heater. Similar mild biological effects are observed for the gasoline car emissions. The ship diesel engine emissions induced the most intense biological responses. A surprising result in this context is, that heavy fuel oil (HFO)-emissions showed lower biological effect strengths than the supposedly cleaner diesel fuel emissions (DF). The HFO-emission contain high concentrations of known toxicants (transition metals, polycyclic aromatics). This result was recently confirmed by experiments with murine RAW macrophages. Detailed analyses of the activated cellular response pathways, such as pro-inflammatory responses, xenobiotic metabolism, phagocytosis and oxidative stress were performed. The data is suggesting a large difference in relative toxicity for different combustion sources.
Chien, Shih-Hsiang; Dzombak, David A.; Vidic, Radisav D.
2013-01-01
Abstract Recent studies have shown that treated municipal wastewater can be a reliable cooling water alternative to fresh water. However, elevated nutrient concentration and microbial population in wastewater lead to aggressive biological proliferation in the cooling system. Three chlorine-based biocides were evaluated for the control of biological growth in cooling systems using tertiary treated wastewater as makeup, based on their biocidal efficiency and cost-effectiveness. Optimal chemical regimens for achieving successful biological growth control were elucidated based on batch-, bench-, and pilot-scale experiments. Biocide usage and biological activity in planktonic and sessile phases were carefully monitored to understand biological growth potential and biocidal efficiency of the three disinfectants in this particular environment. Water parameters, such as temperature, cycles of concentration, and ammonia concentration in recirculating water, critically affected the biocide performance in recirculating cooling systems. Bench-scale recirculating tests were shown to adequately predict the biocide residual required for a pilot-scale cooling system. Optimal residuals needed for proper biological growth control were 1, 2–3, and 0.5–1 mg/L as Cl2 for NaOCl, preformed NH2Cl, and ClO2, respectively. Pilot-scale tests also revealed that Legionella pneumophila was absent from these cooling systems when using the disinfectants evaluated in this study. Cost analysis showed that NaOCl is the most cost-effective for controlling biological growth in power plant recirculating cooling systems using tertiary-treated wastewater as makeup. PMID:23781129
Chien, Shih-Hsiang; Dzombak, David A; Vidic, Radisav D
2013-06-01
Recent studies have shown that treated municipal wastewater can be a reliable cooling water alternative to fresh water. However, elevated nutrient concentration and microbial population in wastewater lead to aggressive biological proliferation in the cooling system. Three chlorine-based biocides were evaluated for the control of biological growth in cooling systems using tertiary treated wastewater as makeup, based on their biocidal efficiency and cost-effectiveness. Optimal chemical regimens for achieving successful biological growth control were elucidated based on batch-, bench-, and pilot-scale experiments. Biocide usage and biological activity in planktonic and sessile phases were carefully monitored to understand biological growth potential and biocidal efficiency of the three disinfectants in this particular environment. Water parameters, such as temperature, cycles of concentration, and ammonia concentration in recirculating water, critically affected the biocide performance in recirculating cooling systems. Bench-scale recirculating tests were shown to adequately predict the biocide residual required for a pilot-scale cooling system. Optimal residuals needed for proper biological growth control were 1, 2-3, and 0.5-1 mg/L as Cl 2 for NaOCl, preformed NH 2 Cl, and ClO 2 , respectively. Pilot-scale tests also revealed that Legionella pneumophila was absent from these cooling systems when using the disinfectants evaluated in this study. Cost analysis showed that NaOCl is the most cost-effective for controlling biological growth in power plant recirculating cooling systems using tertiary-treated wastewater as makeup.
Aerospace Medicine and Biology: A Continuing Bibliography with Indexes. Supplement 490
NASA Technical Reports Server (NTRS)
1999-01-01
This supplemental issue of Aerospace Medicine and Biology, A Continuing Bibliography with Indexes (NASA/SP-1999-7011) lists reports, articles, and other documents recently announced in the NASA STI Database. In its subject coverage, Aerospace Medicine and Biology concentrates on the biological, physiological, psychological, and environmental effects to which humans are subjected during and following simulated or actual flight in the Earth's atmosphere or in interplanetary space. References describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention. Applied research receives the most emphasis, but references to fundamental studies and theoretical principles related to experimental development also qualify for inclusion. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. Two indexes-subject and author are included after the abstract section.
Aerospace Medicine and Biology: A Continuing Bibliography with Indexes. Supplement 498
NASA Technical Reports Server (NTRS)
2000-01-01
This supplemental issue of Aerospace Medicine and Biology, A Continuing Bibliography with Indexes (NASA/SP-1999-7011) lists reports, articles, and other documents recently announced in the NASA STI Database. In its subject coverage, Aerospace Medicine and Biology concentrates on the biological, physiological, psychological, and environmental effects to which humans are subjected during and following simulated or actual flight in the Earth's atmosphere or in interplanetary space. References describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention. Applied research receives the most emphasis, but references to fundamental studies and theoretical principles related to experimental development also qualify for inclusion. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract.
Aerospace Medicine and Biology: A Continuing Bibliography with Indexes. Supplement 487
NASA Technical Reports Server (NTRS)
1999-01-01
This supplemental issue of Aerospace Medicine and Biology, A Continuing Bibliography with Indexes (NASA/SP-1999-7011) lists reports, articles, and other documents recently announced in the NASA STI Database. In its subject coverage, Aerospace Medicine and Biology concentrates on the biological, physiological, psychological, and environmental effects to which humans are subjected during and following simulated or actual flight in the Earth's atmosphere or in interplanetary space. References describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention. Applied research receives the most emphasis, but references to fundamental studies and theoretical principles related to experimental development also qualify for inclusion. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. Two indexes-subject and author are included after the abstract section.
Aerospace Medicine and Biology: A Continuing Bibliography with Indexes. Supplement 482
NASA Technical Reports Server (NTRS)
1999-01-01
This supplemental issue of Aerospace Medicine and Biology, A Continuing Bibliography with Indexes (NASA/SP-1999-7011) lists reports, articles, and other documents recently announced in the NASA STI Database. In its subject coverage, Aerospace Medicine and Biology concentrates on the biological, physiological, psychological, and environmental effects to which humans are subjected during and following simulated or actual flight in the Earth's atmosphere or in interplanetary space. References describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention. Applied research receives the most emphasis, but references to fundamental studies and theoretical principles related to experimental development also qualify for inclusion. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract.
Aerospace Medicine and Biology: A Continuing Bibliography With Indexes. Supplement 502
NASA Technical Reports Server (NTRS)
2000-01-01
This supplemental issue of Aerospace Medicine and Biology, A Continuing Bibliography with Indexes (NASA/SP-2000-7011) lists reports, articles, and other documents recently announced in the NASA STI Database. In its subject coverage, Aerospace Medicine and Biology concentrates on the biological, physiological, psychological, and environmental effects to which humans are subjected during and following simulated or actual flight in the Earth's atmosphere or in interplanetary space. References describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention. Applied research receives the most emphasis, but references to fundamental studies and theoretical principles related to experimental development also qualify for inclusion. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. Two indexes-subject and author are included after the abstract section.
Aerospace Medicine and Biology: A continuing bibliography with indexes, supplement 143
NASA Technical Reports Server (NTRS)
1975-01-01
This supplement to Aerospace Medicine and Biology (NASA SP-7011) lists 251 reports, articles and other documents announced during June 1975 in Scientific and Technical Aerospace Reports (STAR) or in International Aerospace Abstracts (IAA). The first issue of the bibliography was published in July 1964; since that time, monthly supplements have been issued. In its subject coverage, Aerospace Medicine and Biology concentrates on the biological, physiological, and environmental effects to which man is subjected during and following simulated or actual flight in the earth's atmosphere or in interplanetary space. References describing similar effects of biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention. In general, emphasis is placed on applied research, but references to fundamental studies and theoretical principles related to experimental development also qualify for inclusion.
Aerospace Medicine and Biology: A Continuing Bibliography with Indexes. Supplement 489
NASA Technical Reports Server (NTRS)
1999-01-01
This supplemental issue of Aerospace Medicine and Biology, A Continuing Bibliography with Indexes (NASA/SP-1999-7011) lists reports, articles, and other documents recently announced in the NASA STI Database. In its subject coverage, Aerospace Medicine and Biology concentrates on the biological, physiological, psychological, and environmental effects to which humans are subjected during and following simulated or actual flight in the Earth's atmosphere or in interplanetary space. References describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention. Applied research receives the most emphasis, but references to fundamental studies and theoretical principles related to experimental development also qualify for inclusion. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract.
Aerospace Medicine and Biology: A Continuing Bibliography with Indexes. Supplement 477
NASA Technical Reports Server (NTRS)
1998-01-01
This supplemental issue of Aerospace Medicine and Biology, A Continuing Bibliography with Indexes (NASA/SP-1998-7011) lists reports, articles, and other documents recently announced in the NASA STI Database. In its subject coverage, Aerospace Medicine and Biology concentrates on the biological, physiological, psychological, and environmental effects to which humans are subjected during and following simulated or actual flight in the Earth's atmosphere or in interplanetary space. References describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention. Applied research receives the most emphasis, but references to fundamental studies and theoretical principles related to experimental development also qualify for inclusion. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract.
Aerospace Medicine and Biology: A Continuing Bibliography with Indexes. Supplement 478
NASA Technical Reports Server (NTRS)
1998-01-01
This supplemental issue of Aerospace Medicine and Biology, A Continuing Bibliography with Indexes (NASA/SP-1998-7011) lists reports, articles, and other documents recently announced in the NASA STI Database. In its subject coverage, Aerospace Medicine and Biology concentrates on the biological, physiological, psychological, and environmental effects to which humans are subjected during and following simulated or actual flight in the Earth's atmosphere or in interplanetary space. References describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention. Applied research receives the most emphasis, but references to fundamental studies and theoretical principles related to experimental development also qualify for inclusion. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract.
Aerospace Medicine and Biology: A Continuing Bibliography with Indexes. Supplement 504
NASA Technical Reports Server (NTRS)
2000-01-01
This supplemental issue of Aerospace Medicine and Biology, A Continuing Bibliography with Indexes (NASA/SP-2000-7011) lists reports, articles, and other documents recently announced in the NASA STI Database. In its subject coverage, Aerospace Medicine and Biology concentrates on the biological, physiological, psychological, and environmental effects to which humans are subjected during and following simulated or actual flight in the Earth's atmosphere or in interplanetary space. References describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention. Applied research receives the most emphasis, but references to fundamental studies and theoretical principles related to experimental development also qualify for inclusion. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. Two indexes- subject and author are included after the abstract section.
NASA Astrophysics Data System (ADS)
Li, Y. F.; Li, Z. W.; Jia, Y. H.; Zhang, K.
2016-08-01
Mugetan sandy land is an inland desertification area of about 2,065 km2 in the northeastern Qinghai-Tibet Plateau. In the ecological restoration region of the Mugetan sandy land, different crusts have formed under the action of vegetation in three types of sandy soil (i.e. semi-fixed sand dune, fixed sand dune and ancient fixed aeolian sandy soil). The surface sand particle distribution, mineral component and vegetation composition of moving sand dunes and three types of sandy soil were studied in 2010-2014 to analyze the biological crust formation properties in the Mugetan sandy land and the effects of artificial vegetation. Results from this study revealed that artificial vegetation increases the clay content and encourages the development of biological curst. The fine particles (i.e. clay and humus) of the surface layer of the sand dunes increased more than 15% ten years after the artificial vegetation planting, and further increased up to 20% after one hundred years. The interaction of clay, humus, and other fine particles formed the soil aggregate structure. Meanwhile, under the vegetation effect from the microbes, algae, and moss, the sand particles stuck together and a biological crust formed. The interconnection of the partial crusts caused the sand dunes to gradually be fixed as a whole. Maintaining the integrity of the biological crust plays a vital role in fixing the sand under the crust. The precipitation and temperature conditions in the Mugetan sandy land could satisfy the demand of biological crust formation and development. If rational vegetation measures are adopted in the region with moving sand dunes, the lichen-moss-algae biological curst will form after ten years, but it still takes more time for the sand dunes to reach the nutrient enrichment state. If the biological curst is partly broken due to human activities, reasonable closure and restoration measures can shorten the restoration time of the biological crust.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Costa, Pedro M.; Fadeel, Bengt, E-mail: Bengt.Fade
Engineered nanomaterials are being developed for a variety of technological applications. However, the increasing use of nanomaterials in society has led to concerns about their potential adverse effects on human health and the environment. During the first decade of nanotoxicological research, the realization has emerged that effective risk assessment of the multitudes of new nanomaterials would benefit from a comprehensive understanding of their toxicological mechanisms, which is difficult to achieve with traditional, low-throughput, single end-point oriented approaches. Therefore, systems biology approaches are being progressively applied within the nano(eco)toxicological sciences. This novel paradigm implies that the study of biological systems shouldmore » be integrative resulting in quantitative and predictive models of nanomaterial behaviour in a biological system. To this end, global ‘omics’ approaches with which to assess changes in genes, proteins, metabolites, etc. are deployed allowing for computational modelling of the biological effects of nanomaterials. Here, we highlight omics and systems biology studies in nanotoxicology, aiming towards the implementation of a systems nanotoxicology and mechanism-based risk assessment of nanomaterials. - Highlights: • Systems nanotoxicology is a multi-disciplinary approach to quantitative modelling. • Transcriptomics, proteomics and metabolomics remain the most common methods. • Global “omics” techniques should be coupled to computational modelling approaches. • The discovery of nano-specific toxicity pathways and biomarkers is a prioritized goal. • Overall, experimental nanosafety research must endeavour reproducibility and relevance.« less
Patient care in a biological safety level-4 (BSL-4) environment.
Marklund, LeRoy A
2003-06-01
The greatest threats to America's public health include accidental importation of deadly diseases by international travelers and the release of biologic weapons by our adversaries. The greatest failure is unpreparedness because international travel and dispersion of biologic agents by our enemies are inevitable. An effective medical defense program is the recommended deterrent against these threats. The United States has a federal response plan in place that includes patient care and patient transport by using the highest level of biologic containment: BSL-4. The DoD has the capability to provide intensive care for victims infected with highly infectious yet unknown biologic agents in an environment that protects the caregiver while allowing scientists to study the characteristics of these new agents and assess the effectiveness of treatment. Army critical care nurses are vital in the biologic medical defense against unidentified infectious diseases, accidental occupational exposures, or intentional dispersion of weaponized biologic agents. Research that carefully advances healthcare using BSL-4 technology addresses the challenges of the human element of BSL-4 containment patient care, and BSL-4 patient transport enhances our nation's ability to address the emerging biologic threats we confront in the future.
Mangiferin Modulation of Metabolism and Metabolic Syndrome
Fomenko, Ekaterina Vladimirovna; Chi, Yuling
2016-01-01
The recent emergence of a worldwide epidemic of metabolic disorders, such as obesity and diabetes, demands effective strategy to develop nutraceuticals or pharmaceuticals to halt this trend. Natural products have long been and continue to be an attractive source of nutritional and pharmacological therapeutics. One such natural product is mangiferin (MGF), the predominant constituent of extracts of the mango plant Mangifera indica L. Reports on biological and pharmacological effects of MGF increased exponentially in recent years. MGF has documented antioxidant and anti-inflammatory effects. Recent studies indicate that it modulates multiple biological processes involved in metabolism of carbohydrates and lipids. MGF has been shown to improve metabolic abnormalities and disorders in animal models and humans. This review focuses on the recently reported biological and pharmacological effects of MGF on metabolism and metabolic disorders. PMID:27534809
Assessing biological effects from highway-runoff constituents
Buckler, Denny R.; Granato, Gregory E.
1999-01-01
Increased emphasis on evaluation of nonpoint-source pollution has intensified the need for techniques that can be used to discern the toxicological effects of complex chemical mixtures. In response, the use of biological assessment techniques is receiving increased regulatory emphasis. When applied with documented habitat assessment and chemical analysis, these techniques can increase our understanding of the influence of environmental contaminants on the biological integrity and ecological function of aquatic communities.The contaminants of greatest potential concern in highway runoff are those that arise from highway construction, maintenance, and use. The major contaminants of interest are deicers; nutrients; metals; petroleum-related organic compounds, such as polycyclic aromatic hydrocarbons (PAHs), benzene, toluene, ethylbenzene, and xylene (BTEX), and methyl tert -butyl ether (MTBE); sediment washed off the road surface; and agricultural chemicals used in highway maintenance. Hundreds, if not thousands, of biological endpoints (measurable responses of living organisms) may be either directly or associatively affected by contaminant exposure. Measurable effects can occur throughout ecosystem processes across the wide range of biological complexity, ranging from responses at the biochemical level to the community level. The challenge to the environmental scientist is to develop an understanding of the relationship of effects at various levels of biological organization in order to determine whether a causal relationship exists between chemical exposure and substantial ecological impairment. This report provides a brief history of the evolution of biological assessment techniques, a description of the major classes of contaminants that are of particular interest in highway runoff, an overview of representative biological assessment techniques, and a discussion of data-quality considerations. Published reports with a focus on the effects of highway runoff on the local ecosystem were reviewed to provide information on (1) the suitability of the existing data for a quantitative national synthesis, (2) the methods available to study the effects of highway runoff on local ecosystems, and (3) the potential for adverse effects on the roadside environment and receiving waters. Although many biological studies have been done, the use of different methods and a general lack of sufficient documentation precludes a quantitative national synthesis on the basis of the existing data. The Federal Highway Administration, the U.S. Environmental Protection Agency, the U.S. Geological Survey, the Intergovernmental Task Force on Monitoring Water Quality, and the National Resources Conservation Service all have developed and documented methods for assessing the effects of contaminants on ecosystems in receiving waters. These published methods can be used to formulate a set of protocols to provide consistent information from highway-runoff studies. Review of the literature indicates (qualitatively) that highway runoff (even from highways with high traffic volume) may not usually be acutely toxic. Tissue analysis and community assessments, however, indicate effects from highway- runoff sediments near discharge points (even from sites near highways with relatively low traffic volumes). At many sites, elevated concentrations of highway-runoff constituents were measured in tissues of species associated with aquatic sediments. Community assessments also indicate decreases in the diversity and productivity of aquatic ecosystems at some sites receiving highway runoff. These results are not definitive, however, and depend on many site-specific criteria that were not sufficiently documented in most of the studies reviewed.
NASA Astrophysics Data System (ADS)
Cardarelli, Gene A.
The primary goal in radiation oncology is to deliver lethal radiation doses to tumors, while minimizing dose to normal tissue. IMRT has the capability to increase the dose to the targets and decrease the dose to normal tissue, increasing local control, decrease toxicity and allow for effective dose escalation. This advanced technology does present complex dose distributions that are not easily verified. Furthermore, the dose inhomogeneity caused by non-uniform dose distributions seen in IMRT treatments has caused the development of biological models attempting to characterize the dose-volume effect in the response of organized tissues to radiation. Dosimetry of small fields can be quite challenging when measuring dose distributions for high-energy X-ray beams used in IMRT. The proper modeling of these small field distributions is essential in reproducing accurate dose for IMRT. This evaluation was conducted to quantify the effects of small field dosimetry on IMRT plan dose distributions and the effects on four biological model parameters. The four biological models evaluated were: (1) the generalized Equivalent Uniform Dose (gEUD), (2) the Tumor Control Probability (TCP), (3) the Normal Tissue Complication Probability (NTCP) and (4) the Probability of uncomplicated Tumor Control (P+). These models are used to estimate local control, survival, complications and uncomplicated tumor control. This investigation compares three distinct small field dose algorithms. Dose algorithms were created using film, small ion chamber, and a combination of ion chamber measurements and small field fitting parameters. Due to the nature of uncertainties in small field dosimetry and the dependence of biological models on dose volume information, this examination quantifies the effects of small field dosimetry techniques on radiobiological models and recommends pathways to reduce the errors in using these models to evaluate IMRT dose distributions. This study demonstrates the importance of valid physical dose modeling prior to the use of biological modeling. The success of using biological function data, such as hypoxia, in clinical IMRT planning will greatly benefit from the results of this study.
NASA Astrophysics Data System (ADS)
Maurer, Matthew J.
Science literacy has been at the heart of current reform efforts in science education. The focus on developing essential skills needed for individual ability to be literate in science has been at the forefront of most K--12 science curricula. Reform efforts have begun to stretch into the postsecondary arena as well, with an ever increasing dialogue regarding the need for attention to science literacy by college students, especially non-science majors. This study set out to investigate how the use of self-regulatory interventions (specifically, goal setting, concept mapping, and reflective writing) affected student biology self-efficacy and biological literacy. This study employed a qualitative research design, analyzing three case studies. Participants in the study received ten self-regulatory interventions as a set of portfolio assignments. Portfolio work was qualitatively analyzed and coded for self-efficacy, as well as evidence of biological literacy. A biology self-efficacy survey was administered pre- and post- to provide a means of self-efficacy data triangulation. Literacy data was supported via a biological literacy rubric, constructed specifically for this study. Results indicated that mastery experiences were the source of biology self-efficacy. Self-efficacy for specific tasks increased over time, and changes in self-efficacy were corroborated by the self-efficacy survey. Students were found to express biological literacy at nominal, functional, or conceptual levels depending on the specific task. This was supported by data from the biological literacy rubric scores. Final conclusions and implications for the study indicated the need for further research with more samples of students in similar and different contexts. Given the fact that the literature in this area is sparse, the results obtained here have only begun to delve into this area of research. Generalization to other biology courses or contexts outside of the one presented in this study was cautioned until future studies can be conducted.
Biomarkers of nanomaterial exposure and effect: current status
NASA Astrophysics Data System (ADS)
Iavicoli, Ivo; Leso, Veruscka; Manno, Maurizio; Schulte, Paul A.
2014-03-01
Recent advances in nanotechnology have induced a widespread production and application of nanomaterials. As a consequence, an increasing number of workers are expected to undergo exposure to these xenobiotics, while the possible hazards to their health remain not being completely understood. In this context, biological monitoring may play a key role not only to identify potential hazards from and to evaluate occupational exposure to nanomaterials, but also to detect their early biological effects to better assess and manage risks of exposure in respect of the health of workers. Therefore, the aim of this review is to provide a critical evaluation of potential biomarkers of nanomaterial exposure and effect investigated in human and animal studies. Concerning exposure biomarkers, internal dose of metallic or metal oxide nanoparticle exposure may be assessed measuring the elemental metallic content in blood or urine or other biological materials, whereas specific molecules may be carefully evaluated in target tissues as possible biomarkers of biologically effective dose. Oxidative stress biomarkers, such as 8-hydroxy-deoxy-guanosine, genotoxicity biomarkers, and inflammatory response indicators may also be useful, although not specific, as biomarkers of nanomaterial early adverse health effects. Finally, potential biomarkers from "omic" technologies appear to be quite innovative and greatly relevant, although mechanistic, ethical, and practical issues should all be resolved before their routine application in occupational settings could be implemented. Although all these findings are interesting, they point out the need for further research to identify and possibly validate sensitive and specific biomarkers of exposure and effect, suitable for future use in occupational biomonitoring programs. A valuable contribution may derive from the studies investigating the biological behavior of nanomaterials and the factors influencing their toxicokinetics and reactivity. In this context, the application of the most recent advances in analytical chemistry and biochemistry to the biological monitoring of nanomaterial exposure may be also useful to detect and define patterns and mechanisms of early nanospecific biochemical alterations.
IMPROVING MEASURES OF BIOLOGIC EFFECT: MEASURING EFFECTS IN HUMAN MALES
Animal toxicology studies have demonstrated spermatogenesis and sperm quality effects after exposure to several drinking water disinfection byproducts (DBPs), including DCA, BDCM, chloral hydrate and DBA. Population-based field studies to identify human male reproductive risks o...
Taking the conservation biology perspective to secondary school classrooms.
Wyner, Yael; Desalle, Rob
2010-06-01
The influence of conservation biology can be enhanced greatly if it reaches beyond undergraduate biology to students at the middle and high school levels. If a conservation perspective were taught in secondary schools, students who are not interested in biology could be influenced to pursue careers or live lifestyles that would reduce the negative impact of humans on the world. We use what we call the ecology-disrupted approach to transform the topics of conservation biology research into environmental-issue and ecology topics, the major themes of secondary school courses in environmental science. In this model, students learn about the importance and complexity of normal ecological processes by studying what goes wrong when people disrupt them (environmental issues). Many studies published in Conservation Biology are related in some way to the ecological principles being taught in secondary schools. Describing research in conservation biology in the language of ecology curricula in secondary schools can help bring these science stories to the classroom and give them a context in which they can be understood by students. Without this context in the curriculum, a science story can devolve into just another environmental issue that has no immediate effect on the daily lives of students. Nevertheless, if the research is placed in the context of larger ecological processes that are being taught, students can gain a better understanding of ecology and a better understanding of their effect on the world.
A Unifying Review of Bioassay-Guided Fractionation, Effect-Directed Analysis and Related Techniques
Weller, Michael G.
2012-01-01
The success of modern methods in analytical chemistry sometimes obscures the problem that the ever increasing amount of analytical data does not necessarily give more insight of practical relevance. As alternative approaches, toxicity- and bioactivity-based assays can deliver valuable information about biological effects of complex materials in humans, other species or even ecosystems. However, the observed effects often cannot be clearly assigned to specific chemical compounds. In these cases, the establishment of an unambiguous cause-effect relationship is not possible. Effect-directed analysis tries to interconnect instrumental analytical techniques with a biological/biochemical entity, which identifies or isolates substances of biological relevance. Successful application has been demonstrated in many fields, either as proof-of-principle studies or even for complex samples. This review discusses the different approaches, advantages and limitations and finally shows some practical examples. The broad emergence of effect-directed analytical concepts might lead to a true paradigm shift in analytical chemistry, away from ever growing lists of chemical compounds. The connection of biological effects with the identification and quantification of molecular entities leads to relevant answers to many real life questions. PMID:23012539
Curtis, Jeffrey R; Schabert, Vernon F; Harrison, David J; Yeaw, Jason; Korn, Jonathan R; Quach, Caroleen; Yun, Huifeng; Joseph, George J; Collier, David H
2014-07-01
The aim of this analysis was to implement a claims-based algorithm to estimate biologic cost per effectively treated patient for biologics approved for moderate to severe rheumatoid arthritis (RA). This retrospective analysis included commercially insured adults (aged 18-63 years) with RA in a commercial database, who initiated biologic treatment with abatacept, adalimumab, etanercept, golimumab, or infliximab between 2007 and 2010. The algorithm defined effectiveness as having all of the following: high adherence, no biologic dose increase, no biologic switching, no new nonbiologic disease-modifying antirheumatic drug, no increased or new oral glucocorticoid use, and no more than 1 glucocorticoid injection. For each biologic, cost per effectively treated patient was defined as total drug and administration costs (from allowed amounts on claims), divided by the number of patients categorized as effectively treated. Of 15,351 patients, 12,018 (78.3%) were women, and the mean (SD) age was 49.7 (9.6) years. The algorithm categorized treatment as effective in the first year for 30% (1899/6374) of etanercept, 30% (1396/4661) of adalimumab, 20% (560/2765) of infliximab, 27% (361/1338) of abatacept, and 29% (62/213) of golimumab treated patients. The 1-year biologic cost per effectively treated patient, as defined by the algorithm, was nominally lower for subcutaneously injected biologics than for infused biologics. The 1-year biologic cost per effectively treated patient, as defined by the algorithm, was lowest for etanercept ($49,952), followed by golimumab ($50,189), adalimumab ($52,858), abatacept ($71,866), and infliximab ($104,333). Algorithm-defined effectiveness was similar for biologics other than infliximab. The 1-year biologic cost per effectively treated patient, as defined by the algorithm, was nominally lower for subcutaneously injected biologics than for infused biologics. Copyright © 2014 Elsevier HS Journals, Inc. All rights reserved.
Seeman, Teresa E; Gruenewald, Tara L; Cohen, Sheldon; Williams, David R; Matthews, Karen A
2014-05-01
Analyses test the hypothesis that aspects of social relationships (quantity of ties, social support and social strain) are associated with differences in levels of biological risk across multiple major physiological regulatory systems and consequently overall multi-systems risk (i.e., allostatic load [AL]). Data are from the Coronary Artery Risk Development in Young Adults (CARDIA) study--a bi-ethnic, prospective, multi-center epidemiological study, initiated in 1985-1986 to track the development of cardiovascular risk in young adulthood (N=5115). At the year 15 follow-up when participants were between 32 and 45 years of age, additional social and biological data were collected; biological data used to assess AL were collected at the Oakland, CA and Chicago, IL sites (N=844). Social strains were most strongly and positively related to overall AL (Cohen's d=.79 for highest vs. lowest quartile), and to each of its component biological subsystems, independent of social ties and support as well as sociodemographics and health behaviors. Social ties and emotional support were also negatively related to AL (Cohen's d=.33 and d=.44 for lowest vs. highest quartiles of ties and support, respectively) though controls for social strains reduced these associations to non-significance. Social support and social strain were more strongly related to overall AL than to any of its component subscales while social ties were less strongly related to AL and to its component subscales. There was no evidence that effects differed by sex, age or ethnicity. Findings focus attention on the particularly strong relationship between social strains and profiles of biological risk and support the cumulative impact of social factors on biological risks, showing larger effects for cumulative AL than for any of the individual biological systems. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ebersviller, S.; Lichtveld, K.; Sexton, K. G.; Zavala, J.; Lin, Y-H.; Jaspers, I.; Jeffries, H. E.
2013-01-01
This is the first of a three-part study designed to demonstrate dynamic entanglements among gaseous organic compounds (VOC), particulate matter (PM), and their subsequent potential biological effects. We study these entanglements in increasingly complex VOC and PM mixtures in urban-like conditions in a large outdoor chamber. To the traditional chemical and physical characterizations of gas and PM, we added new measurements of gas-only- and PM-only-biological effects, using cultured human lung cells as model indicators. These biological effects are assessed here as increases in cellular damage or expressed irritation (i.e., cellular toxic effects) from cells exposed to chamber air relative to cells exposed to clean air. The exposure systems permit gas-only- or PM-only-exposures from the same air stream containing both gases and PM in equilibria, i.e., there are no extractive operations prior to cell exposure. Our simple experiments in this part of the study were designed to eliminate many competing atmospheric processes to reduce ambiguity in our results. Simple volatile and semi-volatile organic gases that have inherent cellular toxic properties were tested individually for biological effect in the dark (at constant humidity). Airborne mixtures were then created with each compound and PM that has no inherent cellular toxic properties for another cellular exposure. Acrolein and p-tolualdehyde were used as model VOCs and mineral oil aerosol (MOA) was selected as a surrogate for organic-containing PM. MOA is appropriately complex in composition to represent ambient PM, and it exhibits no inherent cellular toxic effects and thus did not contribute any biological detrimental effects on its own. Chemical measurements, combined with the responses of our biological exposures, clearly demonstrate that gas-phase pollutants can modify the composition of PM (and its resulting detrimental effects on lung cells) – even if the gas-phase pollutants are not considered likely to partition to the condensed phase: the VOC-modified-PM showed significantly more damage and inflammation to lung cells than did the original PM. Because gases and PM are transported and deposited differently within the atmosphere and the lungs, these results have significant consequences. For example, current US policies for research and regulation of PM do not recognize this “effect modification” phenomena (NAS, 2004). These results present an unambiguous demonstration that – even in these simple mixtures – physical and thermal interactions alone can cause a modification of the distribution of species among the phases of airborne pollution mixtures and can result in a non-toxic phase becoming toxic due to atmospheric thermal processes only. Subsequent work extends the simple results reported here to systems with photochemical transformations of complex urban mixtures and to systems with diesel exhaust produced by different fuels. PMID:23457430
Monitoring occupational exposure to cancer chemotherapy drugs
NASA Technical Reports Server (NTRS)
Baker, E. S.; Connor, T. H.
1996-01-01
Reports of the health effects of handling cytotoxic drugs and compliance with guidelines for handling these agents are briefly reviewed, and studies using analytical and biological methods of detecting exposure are evaluated. There is little conclusive evidence of detrimental health effects from occupational exposure to cytotoxic drugs. Work practices have improved since the issuance of guidelines for handling these drugs, but compliance with the recommended practices is still inadequate. Of 64 reports published since 1979 on studies of workers' exposure to these drugs, 53 involved studies of changes in cellular or molecular endpoints (biological markers) and 12 described chemical analyses of drugs or their metabolites in urine (2 involved both, and 2 reported the same study). The primary biological markers used were urine mutagenicity, sister chromatid exchange, and chromosomal aberrations; other studies involved formation of micronuclei and measurements of urinary thioethers. The studies had small sample sizes, and the methods were qualitative, nonspecific, subject to many confounders, and possibly not sensitive enough to detect most occupational exposures. Since none of the currently available biological and analytical methods is sufficiently reliable or reproducible for routine monitoring of exposure in the workplace, further studies using these methods are not recommended; efforts should focus instead on wide-spread implementation of improved practices for handling cytotoxic drugs.
Heideman, Paul D.; Flores, K. Adryan; Sevier, Lu M.; Trouton, Kelsey E.
2017-01-01
Drawing by learners can be an effective way to develop memory and generate visual models for higher-order skills in biology, but students are often reluctant to adopt drawing as a study method. We designed a nonclassroom intervention that instructed introductory biology college students in a drawing method, minute sketches in folded lists (MSFL), and allowed them to self-assess their recall and problem solving, first in a simple recall task involving non-European alphabets and later using unfamiliar biology content. In two preliminary ex situ experiments, students had greater recall on the simple learning task, non-European alphabets with associated phonetic sounds, using MSFL in comparison with a preferred method, visual review (VR). In the intervention, students studying using MSFL and VR had ∼50–80% greater recall of content studied with MSFL and, in a subset of trials, better performance on problem-solving tasks on biology content. Eight months after beginning the intervention, participants had shifted self-reported use of drawing from 2% to 20% of study time. For a small subset of participants, MSFL had become a preferred study method, and 70% of participants reported continued use of MSFL. This brief, low-cost intervention resulted in enduring changes in study behavior. PMID:28495932
Cost and effectiveness of biologics for rheumatoid arthritis in a commercially insured population.
Curtis, Jeffrey R; Chastek, Benjamin; Becker, Laura; Quach, Caroleen; Harrison, David J; Yun, Huifeng; Joseph, George J; Collier, David H
2015-04-01
Administrative claims contain detailed medication, diagnosis, and procedure data, but the lack of clinical outcomes for rheumatoid arthritis (RA) historically has limited their use in comparative effectiveness research. A claims-based algorithm was developed and validated to estimate effectiveness for RA from data for adherence, dosing, and treatment modifications. To implement the claims-based algorithm in a U.S. managed care database to estimate biologic cost per effectively treated patient. The cohort included patients with RA aged 18-63 years in the Optum Research Database who initiated biologic treatment between January 2007 and December 2010 and were continuously enrolled 6 months before through 12 months after the first claim for the biologic (the index date). Patients were categorized as effectively treated by the claims-based algorithm if they met all of the following 6 criteria in the 12-month post-index period: (1) a medication possession ratio ≥ 80% for subcutaneous biologics, or at least as many infusions as specified in U.S. labeling for intravenous biologics; (2) no increase in biologic dose; (3) no switch in biologics; (4) no new nonbiologic disease-modifying antirheumatic drug; (5) no new or increased oral glucocorticoid treatment; and (6) no more than 1 glucocorticoid injection. Drug costs (all biologics) and administration costs (intravenous biologics) were obtained from allowed amounts on claims. Biologic cost per effectively treated patient was defined as total 1-year biologic cost divided by the number of patients categorized by the algorithm as effectively treated with that index biologic. Sensitivity analysis was conducted to examine the total health care costs per effectively treated patient during the first year of biologic therapy. A total of 5,474 individuals were included in the analysis. The index biologic was categorized as effective by the algorithm for 28.9% of patients overall, including 30.6% for subcutaneous biologics and 22.1% for intravenous biologics. The index biologic was categorized as effective in the first year for 32.7% of etanercept (794/2,425), 32.3% of golimumab (40/124), 30.2% of abatacept (89/295), 27.7% of adalimumab (514/1,857), and 19.0% of infliximab (147/773) patients. Mean 1-year biologic cost per effectively treated patient, as defined in the algorithm, was lowest for etanercept ($43,935), followed by golimumab ($49,589), adalimumab ($52,752), abatacept ($62,300), and infliximab ($101,402). The rank order in the sensitivity analysis was the same, except for golimumab and etanercept. Using a claims-based algorithm in a large commercial claims database, etanercept was the most effective and had the lowest biologic cost per effectively treated patient with RA.
Omics Advances in Ecotoxicology.
Zhang, Xiaowei; Xia, Pu; Wang, Pingping; Yang, Jianghu; Baird, Donald J
2018-04-03
Toxic substances in the environment generate adverse effects at all levels of biological organization from the molecular level to community and ecosystem. Given this complexity, it is not surprising that ecotoxicologists have struggled to address the full consequences of toxic substance release at ecosystem level, due to the limits of observational and experimental tools to reveal the changes in deep structure at different levels of organization. -Omics technologies, consisting of genomics and ecogenomics, have the power to reveal, in unprecedented detail, the cellular processes of an individual or biodiversity of a community in response to environmental change with high sample/observation throughput. This represents a historic opportunity to transform the way we study toxic substances in ecosystems, through direct linkage of ecological effects with the systems biology of organisms. Three recent examples of -omics advance in the assessment of toxic substances are explored here: (1) the use of functional genomics in the discovery of novel molecular mechanisms of toxicity of chemicals in the environment; (2) the development of laboratory pipelines of dose-dependent, reduced transcriptomics to support high-throughput chemical testing at the biological pathway level; and (3) the use of eDNA metabarcoding approaches for assessing chemical effects on biological communities in mesocosm experiments and through direct observation in field monitoring. -Omics advances in ecotoxicological studies not only generate new knowledge regarding mechanisms of toxicity and environmental effect, improving the relevance and immediacy of laboratory toxicological assessment, but can provide a wholly new paradigm for ecotoxicology by linking ecological models to mechanism-based, systems biology approaches.
Lopes, Kamila Soares; Campos, Gabriel Avohay Alves; Camargo, Luana Cristina; de Souza, Adolfo Carlos Barros; Ibituruna, Beatriz Vasconcelos; Magalhães, Ana Carolina Martins; da Rocha, Lucas Ferreira; Garcia, Alessa Bembom; Rodrigues, Mosar Correa; Ribeiro, Dagon Manoel; Costa, Michelle Cruz; López, Manuel Humberto Mera; Nolli, Luciana Marangni; Zamudio-Zuniga, Fernando; Possani, Lourival Domingos; Schwartz, Elisabeth Ferroni; Mortari, Márcia Renata
2017-09-01
Chatergellus communis is a wasp species endemic to the neotropical region and its venom constituents have never been described. In this study, two peptides from C. communis venom, denominated Communis and Communis-AAAA, were chemically and biologically characterized. In respect to the chemical characterization, the following amino acid sequences and molecular masses were identified: Communis: Ile-Asn-Trp-Lys-Ala-Ile-Leu-Gly-Lys-Ile-Gly-Lys-COOH (1340.9Da) Communis-AAAA: Ile-Asn-Trp-Lys-Ala-Ile-Leu-Gly-Lys-Ile-Gly-Lys-Ala-Ala-Ala-Ala-Val-Xle-NH 2 (1836.3Da). Furthermore, their biological effects were compared, accounting for the differences in structural characteristics between the two peptides. To this end, three biological assays were performed in order to evaluate the hyperalgesic, edematogenic and hemolytic effects of these molecules. Communis-AAAA, unlike Communis, showed a potent hemolytic activity with EC 50 =142.6μM. Moreover, the highest dose of Communis-AAAA (2nmol/animal) induced hyperalgesia in mice. On the other hand, Communis (10nmol/animal) was able to induce edema but did not present hemolytic or hyperalgesic activity. Although both peptides have similarities in linear structures, we demonstrated the distinct biological effects of Communis and Communis-AAAA. This is the first study with Chartegellus communis venom, and both Communis and Communis-AAAA are unpublished peptides. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Handa, Takayuki; Hirai, Toshiro; Izumi, Natsumi; Eto, Shun-ichi; Tsunoda, Shin-ichi; Nagano, Kazuya; Higashisaka, Kazuma; Yoshioka, Yasuo; Tsutsumi, Yasuo
2017-03-01
Many of the beneficial and toxic biological effects of nanoparticles have been shown to have a negative correlation with particle size. However, few studies have demonstrated biological effects that only occur at specific nanoparticle sizes. Further elucidation of the size-specific biological effects of nanoparticles may reveal not only unknown toxicities, but also novel benefits of nanoparticles. We used surface-unmodified silica particles with a wide range of diameters and narrow size intervals between the diameters (10, 30, 50, 70, 100, 300, and 1000 nm) to investigate the relationship between particle size and acute toxicity after intravenous administration in mice. Negative correlations between particle size and thrombocytopenia, liver damage, and lethal toxicity were observed. However, a specific size-effect was observed for the severity of hypothermia, where silica nanoparticles with a diameter of 50 nm induced the most severe hypothermia. Further investigation revealed that this hypothermia was mediated not by histamine, but by platelet-activating factor, and it was independent of the thrombocytopenia and the liver damage. In addition, macrophages/Kupffer cells and platelets, but not neutrophils, play a critical role in the hypothermia. The present results reveal that silica nanoparticles have particle size-specific toxicity in mice, suggesting that other types of nanoparticles may also have biological effects that only manifest at specific particle sizes. Further study of the size-specific effects of nanoparticles is essential for safer and more effective nanomedicines.
[Biological effects of non-ionizing electromagnetic radiation].
Fedorowski, A; Steciwko, A
1998-01-01
Since the mid 1970's, when Adey discovered that extremely-low-frequency electromagnetic field (ELF EMF) may affect the calcium ions efflux from various cells, bioeffects of non-ionizing radiation (NIR) have become the subject of growing interest and numerous research projects. At present, the fact that NIR exerts both stimulatory and inhibitory effects on different physiological cellular parameters is rather unquestionable. At the same time, some epidemiological studies suggest that exposure to EMF is potentially harmful even if its intensity is very low. It has been proved that thermal factors are not responsible for these effects, therefore nowadays, they are called 'non-thermal effects'. Our paper deals with three different aspects of biological effects of non-ionizing radiation, bioelectromagnetism, electromagnetobiology and electromagnetic bioinformation. Firstly, we describe how EMF and photons can be produced within a living cell, how biological cycles are controlled, and what are the features of endogenous electromagnetic radiation. Secondly, we discuss various facets of external EMF interactions with living matter, focusing on extremely-low-frequencies, radio- and microwaves. Possible mechanisms of these interactions are also mentioned. Finally, we present a short overview of current theories which explain how electromagnetic couplings may control an open and dissipative structure, namely the living organism. The theory of electromagnetic bioinformation seems to explain how different physiological processes are triggered and controlled, as well as how long-range interactions may possibly occur within the complex biological system. The review points out that the presented research data must be assessed very carefully since its evaluation is crucial to set the proper limits of EMF exposure, both occupational and environmental. The study of biological effects of non-ioinizing radiation may also contribute to the development of new diagnostic and therapeutic methods.
Effects of high-voltage transmission lines on honeybees
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenberg, B.; Bindokas, V.P.; Gauger, J.R.
When shielded and exposed colonies were placed at incremental distances at a right angle from a 760-kV transmission line different thresholds for biologic effects were obtained. Hive exposures were controlled (E-field: 7, 5.5, 4.1, 1.8, and 0.65 to 0.85 kV/m) by variable height current collectors; shielded hives under the line behave normally. Exposure to 7 kV/m can produce the following sequence of events: (1) increased motor activity and transient hive temperature increase; (2) abnormal propolization; (3) retarded hive weight gain; (4) excess queen cell production with queen loss; (5) reduction of sealed brood area; and (6) poor winter survival. Nomore » biological effects were detected below 4.1 kV/m, thus the ''biological effects corridor'' is limited to approximately 23 m beyond a ground projection of each outer phase wire. Hive architecture enhances E-fields and creates shock hazards for bees. Intra-hive E-fields (15 to 100+ kV/m) were measured with a displacement current sensor and fiber optic telemetry link. Step-potential-induced currents up to 0.5 uA were measured with a bee model in hives at 7 kV/m. To investigate further the role of shock versus electric field exposure the study was continued to develop hive entrance extensions (porches), which produce controlled bee exposure to E-field or shock, and to test the feasibility of using these porches in such a study. Biological effects (e.g., abnormal propolization, retarded hive weight, queen loss) found in colonies with total-hive exposure were produced by entrance-only exposure of adult bees. We now have an exposure system in which E-field and shock can be separately controlled to reproduce the biological effects. 10 refs.« less
Metabolomics: Definitions and Significance in Systems Biology.
Klassen, Aline; Faccio, Andréa Tedesco; Canuto, Gisele André Baptista; da Cruz, Pedro Luis Rocha; Ribeiro, Henrique Caracho; Tavares, Marina Franco Maggi; Sussulini, Alessandra
2017-01-01
Nowadays, there is a growing interest in deeply understanding biological mechanisms not only at the molecular level (biological components) but also the effects of an ongoing biological process in the organism as a whole (biological functionality), as established by the concept of systems biology. Within this context, metabolomics is one of the most powerful bioanalytical strategies that allow obtaining a picture of the metabolites of an organism in the course of a biological process, being considered as a phenotyping tool. Briefly, metabolomics approach consists in identifying and determining the set of metabolites (or specific metabolites) in biological samples (tissues, cells, fluids, or organisms) under normal conditions in comparison with altered states promoted by disease, drug treatment, dietary intervention, or environmental modulation. The aim of this chapter is to review the fundamentals and definitions used in the metabolomics field, as well as to emphasize its importance in systems biology and clinical studies.
[Biologic therapy in idiopathic inflammatory myopathy].
Selva-O'Callaghan, Albert; Ramos Casals, Manel; Grau Junyent, Josep M
2014-09-15
The aim of this article is to study the evidence-based knowledge related to the use of biological therapies in patients diagnosed with idiopathic inflammatory myopathy (dermatomyositis, polymyositis and inclusion body myositis). In this review the leading published studies related to the use of biological therapy in patients with myositis are analysed; mainly those with high methodological standards, that means randomized and controlled studies. Methodological drawbacks due to the rarity and heterogeneity of these complex diseases are also addressed. Up to now is not possible to ascertain the biologics as a recommended therapy in patients with myositis, at least based in the current evidence-based knowledge, although it can not be neglected as a therapeutic option in some clinical situations, taking into account the scarce of effective treatments in those patients, especially in refractory myositis. Future studies probably will help to better define the role of biological therapies in patients with idiopathic inflammatory myopathy. Copyright © 2013 Elsevier España, S.L.U. All rights reserved.
ERIC Educational Resources Information Center
Li, Suxia; Wu, Haizhen; Zhao, Jian; Ou, Ling; Zhang, Yuanxing
2010-01-01
In an effort to achieve high success in knowledge and technique acquisition as a whole, a biochemistry and molecular biology experiment was established for high-grade biotechnology specialty students after they had studied essential theory and received proper technique training. The experiment was based on cloning and expression of alkaline…
Petri, Anne-Kathrin; Schmiedchen, Kristina; Stunder, Dominik; Dechent, Dagmar; Kraus, Thomas; Bailey, William H; Driessen, Sarah
2017-04-17
High-voltage direct current (HVDC) lines are the technology of choice for the transport of large amounts of energy over long distances. The operation of these lines produces static electric fields (EF), but the data reviewed in previous assessments were not sufficient to assess the need for any environmental limit. The aim of this systematic review was to update the current state of research and to evaluate biological effects of static EF. Using the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analyses) recommendations, we collected and evaluated experimental and epidemiological studies examining biological effects of exposure to static EF in humans (n = 8) and vertebrates (n = 40). There is good evidence that humans and animals are able to perceive the presence of static EF at sufficiently high levels. Hair movements caused by electrostatic forces may play a major role in this perception. A large number of studies reported responses of animals (e.g., altered metabolic, immunologic or developmental parameters) to a broad range of static EF strengths as well, but these responses are likely secondary physiological responses to sensory stimulation. Furthermore, the quality of many of the studies reporting physiological responses is poor, which raises concerns about confounding. The weight of the evidence from the literature reviewed did not indicate that static EF have adverse biological effects in humans or animals. The evidence strongly supported the role of superficial sensory stimulation of hair and skin as the basis for perception of the field, as well as reported indirect behavioral and physiological responses. Physical considerations also preclude any direct effect of static EF on internal physiology, and reports that some physiological processes are affected in minor ways may be explained by other factors. While this literature does not support a level of concern about biological effects of exposure to static EF, the conditions that affect thresholds for human detection and possible annoyance at suprathreshold levels should be investigated.
Cost Sharing, Family Health Care Burden, and the Use of Specialty Drugs for Rheumatoid Arthritis
Karaca-Mandic, Pinar; Joyce, Geoffrey F; Goldman, Dana P; Laouri, Marianne
2010-01-01
Objectives To examine the impact of benefit generosity and household health care financial burden on the demand for specialty drugs in the treatment of rheumatoid arthritis (RA). Data Sources/Study Setting Enrollment, claims, and benefit design information for 35 large private employers during 2000–2005. Study Design We estimated multivariate models of the effects of benefit generosity and household financial burden on initiation and continuation of biologic therapies. Data Extraction Methods We defined initiation of biologic therapy as first-time use of etanercept, adalimumab, or infliximab, and we constructed an index of plan generosity based on coverage of biologic therapies in each plan. We estimated the household's burden by summing up the annual out-of-pocket (OOP) expenses of other family members. Principal Findings Benefit generosity affected both the likelihood of initiating a biologic and continuing drug therapy, although the effects were stronger for initiation. Initiation of a biologic was lower in households where other family members incurred high OOP expenses. Conclusions The use of biologic therapy for RA is sensitive to benefit generosity and household financial burden. The increasing use of coinsurance rates for specialty drugs (as under Medicare Part D) raises concern about adverse health consequences. PMID:20831715
Vickers, Adrian D; Ainsworth, Claire; Mody, Reema; Bergman, Annika; Ling, Caroline S; Medjedovic, Jasmina; Smyth, Michael
2016-01-01
Biological therapies are increasingly used to treat ulcerative colitis (UC). To compare the efficacy of biologics in adults with moderately-to-severely active UC, stratified by prior exposure to anti-tumour necrosis factor (anti-TNF) therapy. A systematic literature review was undertaken to identify studies of biologics approved for UC. Network meta-analysis was conducted for endpoints at induction and maintenance. Seven studies were included in the meta-analysis of induction treatment for anti-TNF therapy-naïve patients. All biologics were more effective than placebo in inducing clinical response, clinical remission, and mucosal healing. Infliximab demonstrated a statistically significant improvement over adalimumab in clinical response (odds ratio [OR] [95% credible interval (CrI)]: 2.19 [1.35-3.55]), clinical remission (OR [95% CrI]: 2.81 [1.49-5.49]), and mucosal healing (OR [95% CrI]: 2.23 [1.21-4.14]); there were no other significant differences between biologics for induction efficacy. Five studies were included in the meta-analysis of maintenance treatment, two studies rerandomised responder patients at end of induction, and three followed the same patients 'straight through'. To account for design differences, the number of responders at end of induction was assumed to be equivalent to the number rerandomised. Vedolizumab showed significantly different durable clinical response from comparators (OR [95% CrI] infliximab 3.18 [1.14-9.20], golimumab 2.33 [1.04-5.41], and adalimumab 3.96 [1.67-9.84]). In anti-TNF therapy-experienced patients, only vedolizumab and adalimumab could be compared. At induction, no significant differences in efficacy were seen. During maintenance, vedolizumab showed significantly improved rates of mucosal healing versus adalimumab (OR [95% CrI]: 6.72 [1.36-41.0]). This study expands the understanding of comparative efficacies of biologic treatments for UC, encompassing outcomes and populations not previously studied. All biologic treatments were effective for UC during induction. Vedolizumab demonstrated possible clinical benefits in the maintenance setting versus all comparators, irrespective of prior anti-TNF exposure and after adjusting for differences in study design.
Flouri, E
2008-03-01
Studies on fathering and child mental health are now increasingly looking for specificity in children's psychological adjustment, indicating whether the impact of fathering is diagnostically specific or non-specific. Data from 435 fathers of secondary school-aged children in Britain were used to explore the association between resident biological fathers', non-resident biological fathers' and stepfathers' involvement and children's total difficulties, prosocial behaviour, emotional symptoms, conduct problems, hyperactivity and peer problems (all measured with the Strengths and Difficulties Questionnaire) in adolescence. After controlling for child-, father- and family-related factors, fathers' involvement was negatively associated with children's total difficulties and hyperactivity, was positively associated with children's prosocial behaviour, and was unrelated with children's emotional symptoms, conduct problems and peer problems. There was no non-resident biological father effect. Compared with resident biological fathers, stepfathers reported more total difficulties, conduct problems and hyperactivity in their children even after adjusting for involvement. Whether this reflects stepfathers' low tolerance levels or biological fathers' complacency, as sociobiologists would argue, or whether this is due to pre-existing predispositions of children in families which separate and restructure, to the effects of these multiple family changes or to the high exposure of children in restructured families to parental risk factors, is, given the data available and the study design, unclear. However, this study showed that, compared with their peers in biological father families, adolescents in stepfather families are perceived to be at higher risk of behaviour problems, and that father involvement is related to specific aspects of child adjustment.
NASA Astrophysics Data System (ADS)
Kunin, Anatoly A.; Erina, Stanislava V.; Kashuba, Victor A.; Pankova, Svetlana N.; Stepanov, Nicolay N.; Kazmina, Svetlana G.; Dergunova, Elvira I.; Buerger, F.; Herdt, Alexander; Podolskaya, Elana E.; Shumilovitch, Bogdan R.; Ippolitov, Yu. A.; Tchernov, V. I.
1997-12-01
Nowadays low-power therapy is one of the leading trends in a combined treatment of the oral cavity and lips diseases. The present paper sums up the results of the investigation into the biological effects caused by low-power laser light (LPLL) during its interaction with hard and soft tissues of the oral cavity and lips. A research on the effect of LPLL upon the remineralization processes in the hard dental tissues in the stage in the stage of an initial caries was carried out in 150 patients. The biological effects caused by an interaction of LPLL with the parodontium tissues in the process of treatment of medium degree disease of the parodontium were studied in 140 patients; the effects of the above mentioned character which generated in lips tissues during treatment of a post-radiation chilitis were analyzed in 32 patients. Immunological, biochemical histochemical, morphological, stomatoscopic, bacteriological and other methods were employed while studying the bioeffects caused by LPLL in the parodontium, lips tissues and hard tissues of the tooth.
Episodic acidification of small streams in the northeastern united states: episodic response project
Wigington, P.J.; Baker, J.P.; DeWalle, David R.; Kretser, W.A.; Murdoch, Peter S.; Simonin, H.A.; Van Sickle, J.; Mcdowell, M.K.; Peck, D.V.; Barchet, W.R.
1996-01-01
The Episodic Response Project (ERP) was an interdisciplinary study designed to address uncertainties about the occurrence, nature, and biological effects of episodic acidification of streams in the northeastern United States. The ERP research consisted of intensive studies of the chemistry and biological effects of episodes in 13 streams draining forested watersheds in the three study regions: the Northern Appalachian region of Pennsylvania and the Catskill and Adirondack Mountains of New York. Wet deposition was measured in each of the three study regions. Using automated instruments and samplers, discharge and chemistry of each stream was monitored intensively from fall 1988 through spring 1990. Biological studies focused on brook trout and native forage fish. Experimental approaches included in situ bioassays, radio transmitter studies of fish movement, and fish population studies. This paper provides an overview of the ERP, describes the methodology used in hydrologic and water chemistry components of the study, and summarizes the characteristics of the study sites, including the climatic and deposition conditions during the ERP and the general chemical characteristics of the study streams.
Pathophysiologic mechanisms of biomedical nanomaterials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Liming, E-mail: wangliming@ihep.ac.cn; Chen, Chunying, E-mail: chenchy@nanoctr.cn
Nanomaterials (NMs) have been widespread used in biomedical fields, daily consuming, and even food industry. It is crucial to understand the safety and biomedical efficacy of NMs. In this review, we summarized the recent progress about the physiological and pathological effects of NMs from several levels: protein-nano interface, NM-subcellular structures, and cell–cell interaction. We focused on the detailed information of nano-bio interaction, especially about protein adsorption, intracellular trafficking, biological barriers, and signaling pathways as well as the associated mechanism mediated by nanomaterials. We also introduced related analytical methods that are meaningful and helpful for biomedical effect studies in the future.more » We believe that knowledge about pathophysiologic effects of NMs is not only significant for rational design of medical NMs but also helps predict their safety and further improve their applications in the future. - Highlights: • Rapid protein adsorption onto nanomaterials that affects biomedical effects • Nanomaterials and their interaction with biological membrane, intracellular trafficking and specific cellular effects • Nanomaterials and their interaction with biological barriers • The signaling pathways mediated by nanomaterials and related biomedical effects • Novel techniques for studying translocation and biomedical effects of NMs.« less
Estimation of Biological Effects of Tritium.
Umata, Toshiyuki
2017-01-01
Nuclear fusion technology is expected to create new energy in the future. However, nuclear fusion requires a large amount of tritium as a fuel, leading to concern about the exposure of radiation workers to tritium beta radiation. Furthermore, countermeasures for tritium-polluted water produced in decommissioning of the reactor at Fukushima Daiichi Nuclear Power Station may potentially cause health problems in radiation workers. Although, internal exposure to tritium at a low dose/low dose rate can be assumed, biological effect of tritium exposure is not negligible, because tritiated water (HTO) intake to the body via the mouth/inhalation/skin would lead to homogeneous distribution throughout the whole body. Furthermore, organically-bound tritium (OBT) stays in the body as parts of the molecules that comprise living organisms resulting in long-term exposure, and the chemical form of tritium should be considered. To evaluate the biological effect of tritium, the effect should be compared with that of other radiation types. Many studies have examined the relative biological effectiveness (RBE) of tritium. Hence, we report the RBE, which was obtained with radiation carcinogenesis classified as a stochastic effect, and serves as a reference for cancer risk. We also introduce the outline of the tritium experiment and the principle of a recently developed animal experimental system using transgenic mouse to detect the biological influence of radiation exposure at a low dose/low dose rate.
IMPROVING MEASURES OF BIOLOGIC EFFECT: MEASURING EFFECTS IN HUMAN MALES.
Animal toxicology studies have demonstrated spermatogenesis and sperm quality effects after exposure to DCA, BDCM, chloral hydrate and DBA. Population-based field studies to identify human male reproductive risks of DBPs require preliminary work to develop specific epidemiologi...
Biological performance of Liquidambar orientalis Mill. heartwood
Evren Terzi; S. Nami Kartal; Claudia Marcela Ibáñez; Coþkun Köse; Rachel Arango; Carol A. Clausen; Frederick Green III
2012-01-01
New approaches for wood protection based on green technologies have increased interest in using heartwood portions of certain wood species for the effects (toxic and antioxidant properties, chelate formation, hydrophobicity) of extractives located in heartwood. This study evaluated the biological performance of heartwood of Liquidambar orientalis...
Scaffolding for Argumentation in Hypothetical and Theoretical Biology Concepts
ERIC Educational Resources Information Center
Weng, Wan-Yun; Lin, Yu-Ren; She, Hsiao-Ching
2017-01-01
The present study investigated the effects of online argumentation scaffolding on students' argumentation involving hypothetical and theoretical biological concepts. Two types of scaffolding were developed in order to improve student argumentation: continuous scaffolding and withdraw scaffolding. A quasi-experimental design was used with four…
Advances in the biological effects of terahertz wave radiation.
Zhao, Li; Hao, Yan-Hui; Peng, Rui-Yun
2014-01-01
The terahertz (THz) band lies between microwave and infrared rays in wavelength and consists of non-ionizing radiation. Both domestic and foreign research institutions, including the army, have attached considerable importance to the research and development of THz technology because this radiation exhibits both photon-like and electron-like properties, which grant it considerable application value and potential. With the rapid development of THz technology and related applications, studies of the biological effects of THz radiation have become a major focus in the field of life sciences. Research in this field has only just begun, both at home and abroad. In this paper, research progress with respect to THz radiation, including its biological effects, mechanisms and methods of protection, will be reviewed.
Ogden, Michael W.; Marano, Kristin M.; Jones, Bobbette A.; Morgan, Walter T.; Stiles, Mitchell F.
2015-01-01
Abstract A randomized, multi-center study of adult cigarette smokers switched to tobacco-heating cigarettes, snus or ultra-low machine yield tobacco-burning cigarettes (50/group) for 24 weeks was conducted. Evaluation of biomarkers of biological effect (e.g. inflammation, lipids, hypercoaguable state) indicated that the majority of consistent and statistically significant improvements over time within each group were observed in markers of inflammation. Consistent and statistically significant differences in pairwise comparisons between product groups were not observed. These findings are relevant to the understanding of biomarkers of biological effect related to cigarette smoking as well as the risk continuum across various tobacco products (ClinicalTrials.gov Identifier: NCT02061917). PMID:26525962
Cell biology experiments conducted in space
NASA Technical Reports Server (NTRS)
Taylor, G. R.
1977-01-01
A review of cell biology experiments conducted during the first two decades of space flight is provided. References are tabulated for work done with six types of living test system: isolated viruses, bacteriophage-host, bacteria, yeasts and filamentous fungi, protozoans, and small groups of cells (such as hamster cell tissue and fertilized frog eggs). The general results of studies involving the survival of cells in space, the effect of space flight on growing cultures, the biological effects of multicharged high-energy particles, and the effects of space flight on the genetic apparatus of microorganisms are summarized. It is concluded that cell systems remain sufficiently stable during space flight to permit experimentation with models requiring a fixed cell line during the space shuttle era.
False positives in Biolog EcoPlates™ and MT2 MicroPlates™ caused by calcium.
Pierce, Melissa L; Ward, J Evan; Dobbs, Fred C
2014-02-01
Biolog MicroPlates(TM) (e.g. EcoPlate(TM), MT2 MicroPlate(TM), GN MicroPlate(TM)) are useful tools for characterizing microbial communities, providing community-level physiological profiles to terrestrial and aquatic ecologists. The more recently designed Biolog EcoPlates have been used frequently in aquatic ecology with success. This study, however, reveals one major problem when using EcoPlates to evaluate samples within an estuarine or seawater matrix. At concentrations greater than 100 parts per million, the cation calcium begins to interfere with the microplate chemistry, causing false positive readings. Experiments, in which multiple treatments of natural and artificial seawater were tested, as well as calcium-addition experiments, demonstrate that calcium inhibits complete dissolution of the minimal growth medium in wells. Future studies involving Biolog EcoPlates and MicroPlates should take this effect into account, and the dilution of samples is strongly recommended to diminish the "calcium effect." Copyright © 2013 Elsevier B.V. All rights reserved.
National Biological Service Research Supports Watershed Planning
Snyder, Craig D.
1996-01-01
The National Biological Service's Leetown Science Center is investigating how human impacts on watershed, riparian, and in-stream habitats affect fish communities. The research will provide the basis for a Ridge and Valley model that will allow resource managers to accurately predict and effectively mitigate human impacts on water quality. The study takes place in the Opequon Creek drainage basin of West Virginia. A fourth-order tributary of the Potomac, the basin falls within the Ridge and Valley. The study will identify biological components sensitive to land use patterns and the condition of the riparian zone; the effect of stream size, location, and other characteristics on fish communities; the extent to which remote sensing can reliable measure the riparian zone; and the relationship between the rate of landscape change and the structure of fish communities.
NASA Astrophysics Data System (ADS)
Labate, Luca; Andreassi, Maria Grazia; Baffigi, Federica; Basta, Giuseppina; Bizzarri, Ranieri; Borghini, Andrea; Candiano, Giuliana C.; Casarino, Carlo; Cresci, Monica; Di Martino, Fabio; Fulgentini, Lorenzo; Ghetti, Francesco; Gilardi, Maria Carla; Giulietti, Antonio; Köster, Petra; Lenci, Francesco; Levato, Tadzio; Oishi, Yuji; Russo, Giorgio; Sgarbossa, Antonella; Traino, Claudio; Gizzi, Leonida A.
2013-05-01
Laser-driven electron accelerators based on the Laser Wakefield Acceleration process has entered a mature phase to be considered as alternative devices to conventional radiofrequency linear accelerators used in medical applications. Before entering the medical practice, however, deep studies of the radiobiological effects of such short bunches as the ones produced by laser-driven accelerators have to be performed. Here we report on the setup, characterization and first test of a small-scale laser accelerator for radiobiology experiments. A brief description of the experimental setup will be given at first, followed by an overview of the electron bunch characterization, in particular in terms of dose delivered to the samples. Finally, the first results from the irradiation of biological samples will be briefly discussed.
ERIC Educational Resources Information Center
Simpson, Ronald Dale
The objectives of this study were (1) to assess the effects of teacher science support, as measured by the Science Support Scale (Tri-S scale), on student science support and (2) to gain normative data on the Science Support Scale as an instrument for use with high school students. Twenty-four 10th grade biology teachers were given the Tri-S scale…
Kristopher J. Abell; Jian J. Duan; Leah Bauer; Jonathan P. Lelito; Roy G. Van Driesche
2012-01-01
Parasitoids have recently been introduced from Asia to aid in biological control in the United States of the invasive, highly damaging, emerald ash borer, Agrilus planipennis. Three introduced parasitoids have established and field biological studies are underway to improve our understanding of niche partitioning among them. Here we report one such...
Aerospace Medicine and Biology: A Continuing Bibliography with Indexes. Supplement 488
NASA Technical Reports Server (NTRS)
1999-01-01
This report lists reports, articles and other documents recently announced in the NASA STI Database. In its subject coverage, Aerospace Medicine and Biology concentrates on the biological, physiological, psychological, and environmental effects to which humans are subjected during and following simulated or actual flight in the Earth's atmosphere or in interplanetary space. References describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention. Applied research receives the most emphasis, but references to fundamental studies and theoretical principles related to experimental development also qualify for inclusion. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract.
Systems biology approaches to evaluate arsenic toxicity and carcinogenicity: an overview.
Bhattacharjee, Pritha; Chatterjee, Debmita; Singh, Keshav K; Giri, Ashok K
2013-08-01
Long term exposure to arsenic, either through groundwater, food stuff or occupational sources, results in a plethora of dermatological and non-dermatological health effects including multi-organ cancer and early mortality. Several epidemiological studies, across the globe have reported arsenic-induced health effects and cancerous outcomes; but the prevalence of such diseases varies depending on environmental factors (geographical location, exposure level), and genetic makeup (and variants thereof); which is further modulated by several other factors like ethnicity, age-sex, smoking status, diet, etc. It is also interesting to note that, chronic arsenic exposure to a similar extent, even among the same family members, result in wide inter-individual variations. To understand the adverse effect of this toxic metabolite on biological system (cellular targets), and to unravel the underlying molecular basis (at the level of transcript, proteome, or metabolite), a holistic, systems biology approach was taken. Due to the paradoxical nature and unavailability of any suitable animal model system; the literature review is primarily based on cell line and population based studies. Thus, here we present a comprehensive review on the systems biology approaches to explore the underlying mechanism of arsenic-induced carcinogenicity, along with our own observations and an overview of mitigation strategies and their effectiveness till date. Copyright © 2013 Elsevier GmbH. All rights reserved.
Landing in the future: Biological experiments on Earth and in space orbit
NASA Astrophysics Data System (ADS)
Pokrovskiy, A.
1980-09-01
The development of an Earth biosatellite to duplicate the parameters of pressure, temperature, humidity and others in a space environment onboard Cosmos-1129 is discussed. Effects of a space environment on fruit flies, dogs, laboratory rats in procreation, behavior, stress, biorhythm, body composition, gravitation preference, and cell cultures are examined. The space environment for agricultural products is also studied. The effects of heavy nuclei of galactic space radiation on biological objects inside and outside the satellite is studied, and methods of electrostatic protection are developed.
Landing in the future: Biological experiments on Earth and in space orbit
NASA Technical Reports Server (NTRS)
Pokrovskiy, A.
1980-01-01
The development of an Earth biosatellite to duplicate the parameters of pressure, temperature, humidity and others in a space environment onboard Cosmos-1129 is discussed. Effects of a space environment on fruit flies, dogs, laboratory rats in procreation, behavior, stress, biorhythm, body composition, gravitation preference, and cell cultures are examined. The space environment for agricultural products is also studied. The effects of heavy nuclei of galactic space radiation on biological objects inside and outside the satellite is studied, and methods of electrostatic protection are developed.
NASA Astrophysics Data System (ADS)
Tommasino, F.
2016-03-01
This review will summarize results obtained in the recent years applying the Local Effect Model (LEM) approach to the study of basic radiobiological aspects, as for instance DNA damage induction and repair, and charged particle track structure. The promising results obtained using different experimental techniques and looking at different biological end points, support the relevance of the LEM approach for the description of radiation effects induced by both low- and high-LET radiation. Furthermore, they suggest that nowadays the appropriate combination of experimental and modelling tools can lead to advances in the understanding of several open issues in the field of radiation biology.
Feigl, Viktória; Ujaczki, Éva; Vaszita, Emese; Molnár, Mónika
2017-10-01
Red mud can be applied as soil ameliorant to acidic, sandy and micronutrient deficient soils. There are still knowledge gaps regarding the effects of red mud on the soil microbial community. The Biolog EcoPlate technique is a promising tool for community level physiological profiling. This study presents a detailed evaluation of Biolog EcoPlate data from two case studies. In experiment "A" red mud from Ajka (Hungary) was mixed into acidic sandy soil in soil microcosms at 5-50 w/w%. In experiement "B" red mud soil mixture was mixed into low quality subsoil in a field experiment at 5-50 w/w%. According to average well color development, substrate average well color development and substrate richness 5-20% red mud increased the microbial activity of the acidic sandy soil over the short term, but the effect did not last for 10months. Shannon diversity index showed that red mud at up to 20% did not change microbial diversity over the short term, but the diversity decreased by the 10th month. 30-50% red mud had deteriorating effect on the soil microflora. 5-20% red mud soil mixture in the low quality subsoil had a long lasting enhancing effect on the microbial community based on all Biolog EcoPlate parameters. However, 50% red mud soil mixture caused a decrease in diversity and substrate richness. With the Biolog EcoPlate we were able to monitor the changes of the microbial community in red mud affected soils and to assess the amount of red mud and red mud soil mixture applicable for soil treatment in these cases. Copyright © 2017 Elsevier B.V. All rights reserved.
An epigenome-wide association study meta-analysis of educational attainment.
Karlsson Linnér, R; Marioni, R E; Rietveld, C A; Simpkin, A J; Davies, N M; Watanabe, K; Armstrong, N J; Auro, K; Baumbach, C; Bonder, M J; Buchwald, J; Fiorito, G; Ismail, K; Iurato, S; Joensuu, A; Karell, P; Kasela, S; Lahti, J; McRae, A F; Mandaviya, P R; Seppälä, I; Wang, Y; Baglietto, L; Binder, E B; Harris, S E; Hodge, A M; Horvath, S; Hurme, M; Johannesson, M; Latvala, A; Mather, K A; Medland, S E; Metspalu, A; Milani, L; Milne, R L; Pattie, A; Pedersen, N L; Peters, A; Polidoro, S; Räikkönen, K; Severi, G; Starr, J M; Stolk, L; Waldenberger, M; Eriksson, J G; Esko, T; Franke, L; Gieger, C; Giles, G G; Hägg, S; Jousilahti, P; Kaprio, J; Kähönen, M; Lehtimäki, T; Martin, N G; van Meurs, J B C; Ollikainen, M; Perola, M; Posthuma, D; Raitakari, O T; Sachdev, P S; Taskesen, E; Uitterlinden, A G; Vineis, P; Wijmenga, C; Wright, M J; Relton, C; Davey Smith, G; Deary, I J; Koellinger, P D; Benjamin, D J
2017-12-01
The epigenome is associated with biological factors, such as disease status, and environmental factors, such as smoking, alcohol consumption and body mass index. Although there is a widespread perception that environmental influences on the epigenome are pervasive and profound, there has been little evidence to date in humans with respect to environmental factors that are biologically distal. Here we provide evidence on the associations between epigenetic modifications-in our case, CpG methylation-and educational attainment (EA), a biologically distal environmental factor that is arguably among the most important life-shaping experiences for individuals. Specifically, we report the results of an epigenome-wide association study meta-analysis of EA based on data from 27 cohort studies with a total of 10 767 individuals. We find nine CpG probes significantly associated with EA. However, robustness analyses show that all nine probes have previously been found to be associated with smoking. Only two associations remain when we perform a sensitivity analysis in the subset of never-smokers, and these two probes are known to be strongly associated with maternal smoking during pregnancy, and thus their association with EA could be due to correlation between EA and maternal smoking. Moreover, the effect sizes of the associations with EA are far smaller than the known associations with the biologically proximal environmental factors alcohol consumption, body mass index, smoking and maternal smoking during pregnancy. Follow-up analyses that combine the effects of many probes also point to small methylation associations with EA that are highly correlated with the combined effects of smoking. If our findings regarding EA can be generalized to other biologically distal environmental factors, then they cast doubt on the hypothesis that such factors have large effects on the epigenome.
ERIC Educational Resources Information Center
Mumuni, Abosede Anthonia Olufemi; Dike, John Worlu; Uzoma-Nwogu, Azibaolanari
2017-01-01
This study investigated the effects of teaching trajectories on students' understanding of difficult concepts in Biology. Two research questions and two null hypotheses guided the study which was carried out in Obio/Akpor Local Government Area of Rivers State. Two public coeducational schools out of thirteen drawn through purposive sampling…
Using Team-Based Learning to Teach Grade 7 Biology: Student Satisfaction and Improved Performance
ERIC Educational Resources Information Center
Jarjoura, Christiane; Tayeh, Paula Abou; Zgheib, Nathalie K.
2015-01-01
Team-based learning (TBL) is an innovative form of collaborative learning. The purpose of this study was to evaluate TBL's effect on the performance and satisfaction of grade 7 students in biology in a private school in Lebanon, as well as teachers' willingness to implement this new methodology. An exploratory study was performed whereby two…
Interest in STEM is contagious for students in biology, chemistry, and physics classes
Hazari, Zahra; Potvin, Geoff; Cribbs, Jennifer D.; Godwin, Allison; Scott, Tyler D.; Klotz, Leidy
2017-01-01
We report on a study of the effect of peers’ interest in high school biology, chemistry, and physics classes on students’ STEM (science, technology, engineering, and mathematics)–related career intentions and course achievement. We define an interest quorum as a science class where students perceive a high level of interest for the subject matter from their classmates. We hypothesized that students who experience such an interest quorum are more likely to choose STEM careers. Using data from a national survey study of students‘ experiences in high school science, we compared the effect of five levels of peer interest reported in biology, chemistry, and physics courses on students‘ STEM career intentions. The results support our hypothesis, showing a strong, positive effect of an interest quorum even after controlling for differences between students that pose competing hypotheses such as previous STEM career interest, academic achievement, family support for mathematics and science, and gender. Smaller positive effects of interest quorums were observed for course performance in some cases, with no detrimental effects observed across the study. Last, significant effects persisted even after controlling for differences in teaching quality. This work emphasizes the likely importance of interest quorums for creating classroom environments that increase students’ intentions toward STEM careers while enhancing or maintaining course performance. PMID:28808678
Interest in STEM is contagious for students in biology, chemistry, and physics classes.
Hazari, Zahra; Potvin, Geoff; Cribbs, Jennifer D; Godwin, Allison; Scott, Tyler D; Klotz, Leidy
2017-08-01
We report on a study of the effect of peers' interest in high school biology, chemistry, and physics classes on students' STEM (science, technology, engineering, and mathematics)-related career intentions and course achievement. We define an interest quorum as a science class where students perceive a high level of interest for the subject matter from their classmates. We hypothesized that students who experience such an interest quorum are more likely to choose STEM careers. Using data from a national survey study of students' experiences in high school science, we compared the effect of five levels of peer interest reported in biology, chemistry, and physics courses on students' STEM career intentions. The results support our hypothesis, showing a strong, positive effect of an interest quorum even after controlling for differences between students that pose competing hypotheses such as previous STEM career interest, academic achievement, family support for mathematics and science, and gender. Smaller positive effects of interest quorums were observed for course performance in some cases, with no detrimental effects observed across the study. Last, significant effects persisted even after controlling for differences in teaching quality. This work emphasizes the likely importance of interest quorums for creating classroom environments that increase students' intentions toward STEM careers while enhancing or maintaining course performance.
Ribeiro, E S; Gomes, G; Greco, L F; Cerri, R L A; Vieira-Neto, A; Monteiro, P L J; Lima, F S; Bisinotto, R S; Thatcher, W W; Santos, J E P
2016-03-01
The objective of this series of studies was to investigate the effects of inflammatory diseases occurring before breeding on the developmental biology and reproductive responses in dairy cows. Data from 5 studies were used to investigate different questions associating health status before breeding and reproductive responses. Health information for all studies was composed of the incidence of retained fetal membranes, metritis, mastitis, lameness, and respiratory and digestive problems from parturition until the day of breeding. Retained placenta and metritis were grouped as uterine disease (UTD). Mastitis, lameness, digestive and respiratory problems were grouped as nonuterine diseases (NUTD). Study 1 evaluated the effect of disease before artificial insemination (AI), anovulation before synchronization of the estrous cycle, and low body condition score at AI on pregnancy per AI, as well as their potential interactions or additive effects. Study 2 investigated the effect of site of inflammation (UTD vs. NUTD) and time of occurrence relative to preantral or antral stages of ovulatory follicle development, and the effect of UTD and NUTD on fertility responses of cows bred by AI or by embryo transfer. Study 3 evaluated the effect of disease on fertilization and embryonic development to the morula stage. Study 4 evaluated the effect of disease on preimplantation conceptus development as well as secretion of IFN-τ and transcriptome. Study 5 investigated the effect of diseases before AI on the transcript expression of interferon-stimulated genes in peripheral blood leukocytes during peri-implantation stages of conceptus development after first AI postpartum. Altogether, these studies demonstrated that inflammatory disease before breeding reduced fertilization of oocytes and development to morula, and impaired early conceptus development to elongation stages and secretion of IFN-τ in the uterine lumen. Diseases caused inflammation-like changes in transcriptome of conceptus cells, increased risk of pregnancy loss, and reduced pregnancy or calving per breeding. Moreover, the effects on reproduction were independent of cyclic status before synchronization of the estrous cycle and body condition score at breeding, which all had additive negative effects on fertility of dairy cows. Occurrence of disease at preantral or at antral stages of ovulatory follicle development had similar detrimental effects on pregnancy results. The carryover effects of diseases on developmental biology might last longer than 4 mo. Reduced oocyte competence is a likely reason for carryover effects of diseases on developmental biology, but impaired uterine environment was also shown to be involved. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Savran, Ahmet; Zengin, Gokhan; Aktumsek, Abdurrahman; Mocan, Andrei; Glamoćlija, Jasmina; Ćirić, Ana; Soković, Marina
2016-07-13
The present study outlines a chemical characterization and further effects beneficial to health of edible Rumex scutatus and Pseudosempervivum sempervivum, in addition to presenting the antioxidant, enzyme inhibitory effects and antimicrobial properties of different extracts. The phenolic compounds composition of the extracts was assessed by RP-HPLC-DAD, outlining benzoic acid and rutin as major constituents in P. sempervivum and rutin and hesperidin in R. scutatus. Moreover, further biological effects were tested on key enzymes involved in diabetes mellitus, Alzheimer's disease and skin melanogenesis revealing an important tyrosinase inhibitory effect of Pseudosempervivum water extract. Moreover, both species possessed antimicrobial properties towards bacteria and fungi relevant to public health. Accordingly, we find that R. scutatus and P. sempervivum can be considered as novel functional foods because they are rich sources of biologically active compounds that provide health benefits.
Eghlidospour, M.; Mortazavi, S. M. J.; Yousefi, F.; Mortazavi, S. A. R.
2015-01-01
Mobile phone use and wireless communication technology have grown explosively over the past decades. This rapid growth has caused widespread global concern about the potential detrimental effects of this technology on human health. Stem cells generate specialized cell types of the tissue in which they reside through normal differentiation pathways. Considering the undeniable importance of stem cells in modern medicine, numerous studies have been performed on the effects of ionizing and non-ionizing radiation on cellular processes such as: proliferation, differentiation, cell cycle and DNA repair processes. We have conducted extensive studies on beneficial (stimulatory) or detrimental biological effects of exposure to different sources of electromagnetic fields such as mobile phones, mobile phone base stations, mobile phone jammers, radar systems, magnetic resonance imaging (MRI) systems and dentistry cavitrons over the past years. In this article, recent studies on the biological effects of non-ionizing electromagnetic radiation in the range of radiofrequency (RF) on some important features of stem cells such as their proliferation and differentiation are reviewed. Studies reviewed in this paper indicate that the stimulatory or inhibitory effects of RF radiation on the proliferation and differentiation of stem cells depend on various factors such as the biological systems, experiment conditions, the frequency and intensity of RF and the duration of exposure. PMID:26396965
Eghlidospour, M; Mortazavi, S M J; Yousefi, F; Mortazavi, S A R
2015-09-01
Mobile phone use and wireless communication technology have grown explosively over the past decades. This rapid growth has caused widespread global concern about the potential detrimental effects of this technology on human health. Stem cells generate specialized cell types of the tissue in which they reside through normal differentiation pathways. Considering the undeniable importance of stem cells in modern medicine, numerous studies have been performed on the effects of ionizing and non-ionizing radiation on cellular processes such as: proliferation, differentiation, cell cycle and DNA repair processes. We have conducted extensive studies on beneficial (stimulatory) or detrimental biological effects of exposure to different sources of electromagnetic fields such as mobile phones, mobile phone base stations, mobile phone jammers, radar systems, magnetic resonance imaging (MRI) systems and dentistry cavitrons over the past years. In this article, recent studies on the biological effects of non-ionizing electromagnetic radiation in the range of radiofrequency (RF) on some important features of stem cells such as their proliferation and differentiation are reviewed. Studies reviewed in this paper indicate that the stimulatory or inhibitory effects of RF radiation on the proliferation and differentiation of stem cells depend on various factors such as the biological systems, experiment conditions, the frequency and intensity of RF and the duration of exposure.
Systems biology of human atherosclerosis.
Shalhoub, Joseph; Sikkel, Markus B; Davies, Kerry J; Vorkas, Panagiotis A; Want, Elizabeth J; Davies, Alun H
2014-01-01
Systems biology describes a holistic and integrative approach to understand physiology and pathology. The "omic" disciplines include genomics, transcriptomics, proteomics, and metabolic profiling (metabonomics and metabolomics). By adopting a stance, which is opposing (yet complimentary) to conventional research techniques, systems biology offers an overview by assessing the "net" biological effect imposed by a disease or nondisease state. There are a number of different organizational levels to be understood, from DNA to protein, metabolites, cells, organs and organisms, even beyond this to an organism's context. Systems biology relies on the existence of "nodes" and "edges." Nodes are the constituent part of the system being studied (eg, proteins in the proteome), while the edges are the way these constituents interact. In future, it will be increasingly important to collaborate, collating data from multiple studies to improve data sets, making them freely available and undertaking integrative analyses.
Cost-effectiveness of biological treatment sequences for fistulising Crohn’s disease across Europe
Baji, Petra; Gulácsi, László; Brodszky, Valentin; Végh, Zsuzsanna; Danese, Silvio; Irving, Peter M; Peyrin-Biroulet, Laurent; Schreiber, Stefan; Rencz, Fanni; Lakatos, Péter L; Péntek, Márta
2017-01-01
Background In clinical practice, treatment sequences of biologicals are applied for active fistulising Crohn’s disease, however underlying health economic analyses are lacking. Objective The purpose of this study was to analyse the cost-effectiveness of different biological sequences including infliximab, biosimilar-infliximab, adalimumab and vedolizumab in nine European countries. Methods A Markov model was developed to compare treatment sequences of one, two and three biologicals from the payer’s perspective on a five-year time horizon. Data on effectiveness and health state utilities were obtained from the literature. Country-specific costs were considered. Calculations were performed with both official list prices and estimated real prices of biologicals. Results Biosimilar-infliximab is the most cost-effective treatment against standard care across the countries (with list prices: €34684–€72551/quality adjusted life year; with estimated real prices: €24364–€56086/quality adjusted life year). The most cost-effective two-agent sequence, except for Germany, is the biosimilar-infliximab–adalimumab therapy compared with single biosimilar-infliximab (with list prices: €58533–€133831/quality adjusted life year; with estimated prices: €45513–€105875/quality adjusted life year). The cost-effectiveness of the biosimilar-infliximab–adalimumab–vedolizumab three-agent sequence compared wit biosimilar-infliximab –adalimumab is €87214–€152901/quality adjusted life year. Conclusions The suggested first-choice biological treatment is biosimilar-infliximab. In case of treatment failure, switching to adalimumab then to vedolizumab provides meaningful additional health gains but at increased costs. Inter-country differences in cost-effectiveness are remarkable due to significant differences in costs. PMID:29511561
[Membrane-bound cytokine and feedforward regulation].
Wu, Ke-Fu; Zheng, Guo-Guang; Ma, Xiao-Tong; Song, Yu-Hua
2013-10-01
Feedback and feedforward widely exist in life system, both of them are the basic processes of control system. While the concept of feedback has been widely used in life science, feedforward regulation was systematically studied in neurophysiology, awaiting further evidence and mechanism in molecular biology and cell biology. The authors put forward a hypothesis about the feedforward regulation of membrane bound macrophage colony stimulation factor (mM-CSF) on the basis of their previous work. This hypothesis might provide a new direction for the study on the biological effects of mM-CSF on leukemia and solid tumors, and contribute to the study on other membrane bound cytokines.
Aerospace medicine and biology: A continuing bibliography with indexes (supplement 366)
NASA Technical Reports Server (NTRS)
1992-01-01
This bibliography lists 248 reports, articles, and other documents introduced into the NASA Scientific and Technical Information System during Aug. 1992. Subject coverage concentrates on the biological, physiological, psychological, and environmental effects to which humans are subjected during and following simulated or actual flight in the Earth's atmosphere or in interplanetary space. References describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention. Applied research receives the most emphasis, but references to fundamental studies and theoretical principles related to experimental development also qualify for inclusion.
ASPECTS OF BASIC REPRODUCTIVE BIOLOGY AND ENDOCRINOLOGY IN THE FATHEAD MINNOW (PIMEPHALES PROMELAS)
The fathead minnow has been proposed as a model species for assessing the adverse effects of endocrine-disrupting chemicals (EDCs) on reproduction and development. The purpose of these studies was to develop baseline reproductive biology and endocrinology data for this species to...
Applying broadband spectra to assess biological control of saltcedar in West Texas
USDA-ARS?s Scientific Manuscript database
In Texas, natural resource managers, government officials, and scientists need effective means for monitoring biological control of saltcedar (Tamarix spp.) with the saltcedar leaf beetle (Diorhadba spp.). This study was conducted to evaluate broadband spectra within visible, red-edge, and near-inf...
ERIC Educational Resources Information Center
Wilder, Anna; Brinkerhoff, Jonathan
2007-01-01
This study assessed the effectiveness of computer-based biomolecular visualization activities on the development of high school biology students' representational competence as a means of understanding and visualizing protein structure/function relationships. Also assessed were students' attitudes toward these activities. Sixty-nine students…
Li, Jin; Zheng, Le; Uchiyama, Akihiko; Bin, Lianghua; Mauro, Theodora M; Elias, Peter M; Pawelczyk, Tadeusz; Sakowicz-Burkiewicz, Monika; Trzeciak, Magdalena; Leung, Donald Y M; Morasso, Maria I; Yu, Peng
2018-06-13
A large volume of biological data is being generated for studying mechanisms of various biological processes. These precious data enable large-scale computational analyses to gain biological insights. However, it remains a challenge to mine the data efficiently for knowledge discovery. The heterogeneity of these data makes it difficult to consistently integrate them, slowing down the process of biological discovery. We introduce a data processing paradigm to identify key factors in biological processes via systematic collection of gene expression datasets, primary analysis of data, and evaluation of consistent signals. To demonstrate its effectiveness, our paradigm was applied to epidermal development and identified many genes that play a potential role in this process. Besides the known epidermal development genes, a substantial proportion of the identified genes are still not supported by gain- or loss-of-function studies, yielding many novel genes for future studies. Among them, we selected a top gene for loss-of-function experimental validation and confirmed its function in epidermal differentiation, proving the ability of this paradigm to identify new factors in biological processes. In addition, this paradigm revealed many key genes in cold-induced thermogenesis using data from cold-challenged tissues, demonstrating its generalizability. This paradigm can lead to fruitful results for studying molecular mechanisms in an era of explosive accumulation of publicly available biological data.
Spedding, Simon
2014-04-11
Efficacy of Vitamin D supplements in depression is controversial, awaiting further literature analysis. Biological flaws in primary studies is a possible reason meta-analyses of Vitamin D have failed to demonstrate efficacy. This systematic review and meta-analysis of Vitamin D and depression compared studies with and without biological flaws. The systematic review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The literature search was undertaken through four databases for randomized controlled trials (RCTs). Studies were critically appraised for methodological quality and biological flaws, in relation to the hypothesis and study design. Meta-analyses were performed for studies according to the presence of biological flaws. The 15 RCTs identified provide a more comprehensive evidence-base than previous systematic reviews; methodological quality of studies was generally good and methodology was diverse. A meta-analysis of all studies without flaws demonstrated a statistically significant improvement in depression with Vitamin D supplements (+0.78 CI +0.24, +1.27). Studies with biological flaws were mainly inconclusive, with the meta-analysis demonstrating a statistically significant worsening in depression by taking Vitamin D supplements (-1.1 CI -0.7, -1.5). Vitamin D supplementation (≥800 I.U. daily) was somewhat favorable in the management of depression in studies that demonstrate a change in vitamin levels, and the effect size was comparable to that of anti-depressant medication.
Systematic Review of Biological Modulation of Healing in Anterior Cruciate Ligament Reconstruction
Fu, Sai-Chuen; Cheuk, Yau-Chuk; Yung, Shu-Hang; Rolf, Christer Gustav; Chan, Kai-Ming
2014-01-01
Background: Whether biological modulation is effective to promote healing in anterior cruciate ligament (ACL) reconstruction remains unclear. Purpose: To perform a systematic review of both clinical and experimental evidence of preclinical animal studies on biological modulation to promote healing in ACL reconstruction. Study Design: Systematic review; Level of evidence, 2. Methods: A systematic search was performed using the PubMed, Ovid, and Scopus search engines. Inclusion criteria were clinical and animal studies involving subjects with ACL injury with the use of biological modulation to promote healing outcomes. Methodological quality of clinical studies was evaluated using the Critical Appraisal Skill Programme (CASP) appraisal tool, and animal studies were evaluated by a scoring system based on a published checklist of good animal studies. Results: Ten clinical studies and 50 animal studies were included. Twenty-five included studies were regarded as good quality, with a methodological score ≥5. These studies suggested that transforming growth factor–beta (TGF-β), mesenchymal stem cells, osteogenic factors, and modalities that reduce local inflammation may be beneficial to promote graft healing in ACL reconstruction. Conclusion: This systematic review suggests that biological modulation is able to promote healing on top of surgical treatment for ACL injuries. This treatment strategy chiefly works through promotion of healing at the tunnel-graft interface, but the integrity of the intra-articular midsubstance of the graft would be another target for biological modulation. PMID:26535311
NASA Astrophysics Data System (ADS)
Ewing, Tracy S.
The present study examined young children's understanding of respiration and oxygen as a source of vital energy underlying physical activity. Specifically, the purpose of the study was to explore whether a coherent biological theory, characterized by an understanding that bodily parts (heart and lungs) and processes (oxygen in respiration) as part of a biological system, can be taught as a foundational concept to reason about physical activity. The effects of a biology-based intervention curriculum designed to teach preschool children about bodily functions as a part of the respiratory system, the role of oxygen as a vital substance and how physical activity acts an energy source were examined. Participants were recruited from three private preschool classrooms (two treatment; 1 control) in Southern California and included a total of 48 four-year-old children (30 treatment; 18 control). Findings from this study suggested that young children could be taught relevant biological concepts about the role of oxygen in respiratory processes. Children who received biology-based intervention curriculum made significant gains in their understanding of the biology of respiration, identification of physical and sedentary activities. In addition these children demonstrated that coherence of conceptual knowledge was correlated with improved accuracy at activity identification and reasoning about the inner workings of the body contributing to endurance. Findings from this study provided evidence to support the benefits of providing age appropriate but complex coherent biological instruction to children in early childhood settings.
NASA Astrophysics Data System (ADS)
Loehr, John Francis
The issue of student preparation for college study in science has been an ongoing concern for both college-bound students and educators of various levels. This study uses a national sample of college students enrolled in introductory biology courses to address the relationship between high school biology preparation and subsequent introductory college biology performance. Multi-Level Modeling was used to investigate the relationship between students' high school science and mathematics experiences and college biology performance. This analysis controls for student demographic and educational background factors along with factors associated with the college or university attended. The results indicated that high school course-taking and science instructional experiences have the largest impact on student achievement in the first introductory college biology course. In particular, enrollment in courses, such as high school Calculus and Advanced Placement (AP) Biology, along with biology course content that focuses on developing a deep understanding of the topics is found to be positively associated with student achievement in introductory college biology. On the other hand, experiencing high numbers of laboratory activities, demonstrations, and independent projects along with higher levels of laboratory freedom are associated with negative achievement. These findings are relevant to high school biology teachers, college students, their parents, and educators looking beyond the goal of high school graduation.
NASA Astrophysics Data System (ADS)
Kreps, Jennifer Susan
2005-11-01
Instructional stories can be an effective way to teach science concepts. However, research has not examined the extent to which stories are being used, and how they are received. More research on the use of story in biology classes may lead to more conscious use of story by instructors, which may lead to a better understanding of biological concepts by students. The purpose of this study was to examine how instructors and students use stories in university introductory biology courses, and the degree to which these stories are perceived to be effective. To examine this phenomenon, a nationwide instructor survey, a university-wide student survey, and multiple case studies were used. Two case studies included observation of lectures, interviews with (36) students, and interviews with instructors (4) over two semesters of an organismal biology course. Instructor survey participants (N = 78) were gathered by posting email invitations, and student survey participants (N = 260) were volunteers from introductory biology courses at a middle-sized university. Several types of stories were observed, including personal experience stories, historical anecdotes, and "you" stories. Students reported increased affective learning when stories were told, and remembered mostly humorous stories. In the instructor survey, no significant differences emerged between genders, type of biology taught, or communicator style and instructional story frequency. However, reports of personal experience story frequency did increase significantly (p < .01) with teaching experience, until 26 years of teaching, when it declined. The student survey uncovered no significant differences in story use by gender or ethnicity, although non-science majors reported that their instructors used stories significantly more frequently (p < .01) than did science majors. Simultaneous-entry multiple regression analyses indicated that there was a significant positive relationship between story use and cognitive and affective learning for all groups of students. Story use was a significant predictor of perceived learning loss for non-science majors, but not for science majors. The researcher suggests that stories can be an effective tool to teach biology, particularly if the instructor is aware of her audience and uses stories primarily to help students understand how concepts are related to "real life."
Systems biology approaches to understand the effects of nutrition and promote health.
Badimon, Lina; Vilahur, Gemma; Padro, Teresa
2017-01-01
Within the last years the implementation of systems biology in nutritional research has emerged as a powerful tool to understand the mechanisms by which dietary components promote health and prevent disease as well as to identify the biologically active molecules involved in such effects. Systems biology, by combining several '-omics' disciplines (mainly genomics/transcriptomics, proteomics and metabolomics), creates large data sets that upon computational integration provide in silico predictive networks that allow a more extensive analysis of the individual response to a nutritional intervention and provide a more global comprehensive understanding of how diet may influence health and disease. Numerous studies have demonstrated that diet and particularly bioactive food components play a pivotal role in helping to counteract environmental-related oxidative damage. Oxidative stress is considered to be strongly implicated in ageing and the pathophysiology of numerous diseases including neurodegenerative disease, cancers, metabolic disorders and cardiovascular diseases. In the following review we will provide insights into the role of systems biology in nutritional research and focus on transcriptomic, proteomic and metabolomics studies that have demonstrated the ability of functional foods and their bioactive components to fight against oxidative damage and contribute to health benefits. © 2016 The British Pharmacological Society.
Loranskaia, T I; Kabanova, I N; Klykova, E V
2002-01-01
For 21 patients with a functional dyspepsia the influencing biologically active additives to nutrition "Pekcecom" on dynamics of clinical symptoms and parameters gastroduodenal motility under the data gastroduodenoscintigraphy was studied. The usage of biologically active additives during 4 weeks was accompanied by deboosting of accelerated gastric emptying for want of statistically significant influencing on a normal and delayed gastric emptying and parameters of duodenal transit.
Division of Biological and Medical Research annual technical report 1982
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenthal, M.W.
1983-05-01
This report summarizes research during 1982 in the Division of Biological and Medical Research, Argonne National Laboratory. Studies in Carcinogenesis address mechanisms of chemical and radiation carcinogenesis including the processes of tumor initiation and promotion. The studies employ rat liver and mouse skin models as well as human rodent cell culture systems. The use of liposomes for metal mobilization is also explored. Low Level Radiation studies include delineation of the hematopoietic and other responses of dogs to continuous low level gamma irradiation, comparison of lifetime effects in mice of low level neutron and gamma irradiation, and study of the geneticmore » effects of high LET radiation. Molecular Biology research develops two-dimensional electrophoresis systems for diagnosis and detection of cancer and other diseases. Fundamental structural and biophysical investigations of immunoglobulins and other key proteins are included, as are studies of cell growth, and of molecular and cellular effects of solar uv light. Research in Toxicology uses cellular, physiological, whole animal, and chronobiological end points and chemical separations to elucidate mechanisms and evaluate hazards of coal conversion by-products, actinides, and toxic metals. The final sections cover support facilities, educational activities, seminars, staff talks, staff, and funding agencies.« less
Biological determinants of depression following bereavement.
Assareh, Amelia A; Sharpley, Christopher F; McFarlane, James R; Sachdev, Perminder S
2015-02-01
There is considerable variability among people in their response to bereavement. While most people adapt well to bereavement, some develop exaggerated and/or pathological responses and may meet criteria for a major depressive episode. Many studies have investigated the effect of psychosocial factors on bereavement outcome but biological factors have not received much attention, hence the focus of this paper. The biological factors studied to date in relation to bereavement outcomes include genetic polymorphisms, neuroendocrine factors, and immunologic/inflammatory markers. In addition, animal studies have shown the alterations of brain neurotransmitters as well as changes in the plasma levels of the neurotrophic growth factors under the influence of peer loss. Recent studies have also investigated the biological basis of stress resilience, and have found a few genetic polymorphisms and potential biomarkers as protective factors in the face of adversity. Longitudinal studies that include data collection prior to, and also after, bereavement and which chart both biological and psychological measures are needed to develop profiles for the prediction of response to bereavement and personalised interventions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Lebowitz, Matthew S; Pyun, John J; Ahn, Woo-kyoung
2014-04-01
Biological explanations of psychopathology can reduce the extent to which people with mental disorders are blamed for their symptoms but can also yield prognostic pessimism--the belief that psychiatric conditions are relatively immutable. However, few studies have examined whether these effects occur among persons who actually have psychiatric symptoms. This study sought to address this question. Adults living in the United States (N=351) were recruited online in January and February 2012 and assessed for symptoms of generalized anxiety disorder. The participants were randomly assigned to two groups: a biological condition, in which participants (N=176) were provided a description of generalized anxiety disorder and a biological explanation of the etiology of the disorder, and a control condition, in which participants (N=175) were provided the same description without any explanation of etiology. Dependent measures of treatability, duration of symptoms, and responsibility for symptoms were used to gauge beliefs regarding the prognosis and personal responsibility of a typical person with generalized anxiety disorder. Among participants with and without symptoms of generalized anxiety disorder, the biological condition was associated with decreased ascriptions of personal responsibility for anxiety (p=.02) and expectations of increased duration of symptoms of generalized anxiety disorder (p=.01). This finding has important social and clinical implications, especially because biological conceptualizations of psychopathology are increasingly prevalent. By causing prognostic pessimism about generalized anxiety disorder, including among those with symptoms of the disorder, biological explanations could negatively affect treatment seeking and outcomes. Efforts to dispel the link between biological explanations and prognostic pessimism are needed.
NASA Astrophysics Data System (ADS)
Bramwell-Lalor, Sharon; Rainford, Marcia
2014-03-01
This paper reports on teachers' use of concept mapping as an alternative assessment strategy in advanced level biology classes and its effects on students' cognitive skills on selected biology concepts. Using a mixed methods approach, the study employed a pre-test/post-test quasi-experimental design involving 156 students and 8 teachers from intact classes. A researcher-constructed Biology Cognitive Skills Test was used to collect the quantitative data. Qualitative data were collected through interviews and students' personal documents. The data showed that the participants utilized concept mapping in various ways and they described positive experiences while being engaged in its use. The main challenge cited by teachers was the limited time available for more consistent use. The results showed that the use of concept mapping in advanced level biology can lead to learning gains that exceed those achieved in classes where mainly traditional methods are used. The students in the concept mapping experimental groups performed significantly better than their peers in the control group on both the lower-order (F(1) = 21.508; p < .001) and higher-order (F(1) = 42.842, p < .001) cognitive items of the biology test. A mean effect size of .56 was calculated representing the contribution of treatment to the students' performance on the test items.
Khan, Mohammad Zain; Sim, Yei Lin; Lin, Yang Jian; Lai, Ka Man
2013-01-01
The feasibility of reusing hand-washing grey water contaminated with antibacterial hand-washing liquid for irrigation purposes in an urban farm is explored in this case study. Experiments are carried out to investigate if the quality of this grey water allows for its reuse in agriculture as per the guidelines established by the World Health Organization (WHO). However, there is no guideline to test the biological effect of grey water prior to agricultural use. It is plausible that the antibacterial property of the grey water can harm the soil microbial system and plants when applied to land, even if all other water quality parameters satisfy the WHO limit. We use algae (Chlorella vulgaris) and indigenous soil bacteria as initial plant and soil bacteria indicators, respectively, to test the potential inhibition of the water on plants and soil bacteria. Results show that the chemical oxygen demand (COD) of the grey water is 10% higher than the WHO permissible level, while all other water quality parameters are within the limits after four days of our experimental period. An inhibitory effect is observed in all of the biological tests. However, the inhibitory effect on algae and soil bacteria is not observed after the four-day period. The case study demonstrates a new approach for testing the biological effect of grey water, which can be used in conjunction with the WHO guideline, and provides data for this urban farm to set up a future water treatment system for grey-water reuse in irrigation.
2013-01-01
This study introduces a newly isolated, genetically tractable bacterium (Pseudogulbenkiania sp. strain MAI-1) and explores the extent to which its nitrate-dependent iron-oxidation activity is directly biologically catalyzed. Specifically, we focused on the role of iron chelating ligands in promoting chemical oxidation of Fe(II) by nitrite under anoxic conditions. Strong organic ligands such as nitrilotriacetate and citrate can substantially enhance chemical oxidation of Fe(II) by nitrite at circumneutral pH. We show that strain MAI-1 exhibits unambiguous biological Fe(II) oxidation despite a significant contribution (∼30–35%) from ligand-enhanced chemical oxidation. Our work with the model denitrifying strain Paracoccus denitrificans further shows that ligand-enhanced chemical oxidation of Fe(II) by microbially produced nitrite can be an important general side effect of biological denitrification. Our assessment of reaction rates derived from literature reports of anaerobic Fe(II) oxidation, both chemical and biological, highlights the potential competition and likely co-occurrence of chemical Fe(II) oxidation (mediated by microbial production of nitrite) and truly biological Fe(II) oxidation. PMID:23402562
Luz, Leonardo G O; Seabra, André; Padez, Cristina; Duarte, João P; Rebelo-Gonçalves, Ricardo; Valente-Dos-Santos, João; Luz, Tatiana D D; Carmo, Bruno C M; Coelho-E-Silva, Manuel
2016-09-01
The present study aimed to: 1) examine the association of biological maturation effect on children's performance at a motor coordination battery and 2) to assess whether the association between biological maturation and scores obtained in motor coordination tests is mediated by some anthropometric measurement. The convenience sample consisted of 73 male children aged 8 years old. Anthropometric data considered the height, body mass, sitting height, waist circumference, body mass index, fat mass and fat-free mass estimates. Biological maturation was assessed by the percentage of the predicted mature stature. Motor coordination was tested by the Körperkoordinationstest für Kinder. A partial correlation between anthropometric measurements, z-score of maturation and the motor coordination tests were performed, controlling for chronological age. Finally, causal mediation analysis was performed. Height, body mass, waist circumference and fat mass showed a slight to moderate inverse correlation with motor coordination. Biological maturation was significantly associated with the balance test with backward walking (r=-0.34). Total mediation of the waist circumference was identified in the association between biological maturation and balance test with backward walking (77%). We identified an association between biological maturation and KTK test performance in male children and also verified that there is mediation of waist circumference. It is recommended that studies be carried out with female individuals and at other age ranges. Copyright © 2016 Sociedade de Pediatria de São Paulo. Publicado por Elsevier Editora Ltda. All rights reserved.
Promoting Inquiry-Based Teaching in Laboratory Courses: Are We Meeting the Grade?
Butler, Amy; Burke da Silva, Karen
2014-01-01
Over the past decade, repeated calls have been made to incorporate more active teaching and learning in undergraduate biology courses. The emphasis on inquiry-based teaching is especially important in laboratory courses, as these are the courses in which students are applying the process of science. To determine the current state of research on inquiry-based teaching in undergraduate biology laboratory courses, we reviewed the recent published literature on inquiry-based exercises. The majority of studies in our data set were in the subdisciplines of biochemistry, cell biology, developmental biology, genetics, and molecular biology. In addition, most exercises were guided inquiry, rather than open ended or research based. Almost 75% of the studies included assessment data, with two-thirds of these studies including multiple types of assessment data. However, few exercises were assessed in multiple courses or at multiple institutions. Furthermore, assessments were rarely based on published instruments. Although the results of the studies in our data set show a positive effect of inquiry-based teaching in biology laboratory courses on student learning gains, research that uses the same instrument across a range of courses and institutions is needed to determine whether these results can be generalized. PMID:25185228
Workshop on perinatal exposure to dioxin-like compounds. VI. Role of biomarkers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hooper, K.; Clark, C.G.
1995-03-01
Studies of perinatal exposures to dioxin-like compounds (DLCs), coplanar polycyclic halogenated aromatics whose prototype is 2,3,7,8-tetra-chlorodibenzo-p-dioxin (TCDD), have employed a variety of outcome measures to investigate effects on the reproductive/developmental, endocrine, immune, and neurobehavioral systems. The effects include infertility, growth retardation, fetal loss, changed sexual differentiation, reduced cognitive/motor function, dermatologic and other ectodermal effects, and decreased immune response. Significant biomarkers have included sperm count; CD4/CD8 ratio; and levels of testosterone, T4, and clopamine. Using specific dioxin or PCB congeners, these and other markers were used to investigate the mechanisms of the observed effects. The DLCs, which include some PCB congeners,more » are characterized by high-affinity binding to the Ah receptor; most biological effects are thought to be mediated by the ligand-Ah receptor complex. Other PCB congeners have low affinity for the Ah receptor, and operate by non-Ah receptor mechanisms. The biologic activity of a PCB mixture is the sum of the agonist and antagonist activities of the different constituents in the mixture. Animal studies with specific PCB congeners can help to clarify these activities. With similar approaches, biologic markers of effect can be developed and applied in epidemiologic studies to monitor for, and predict, adverse effects in humans. 52 refs., 2 figs., 1 tab.« less
Method for photo-altering a biological system to improve biological effect
Hill, Richard A.; Doiron, Daniel R.; Crean, David H.
2000-08-01
Photodynamic therapy is a new adjunctive therapy for filtration surgery that does not use chemotherapy agents or radiation, but uses pharmacologically-active sensitizing compounds to produce a titratable, localized, transient, post operative avascular conjunctiva. A photosensitizing agent in a biological system is selectively activated by delivering the photosensitive agent to the biological system and laser activating only a spatially selected portion of the delivered photosensitive agent. The activated portion of the photosensitive agent reacts with the biological system to obtain a predetermined biological effect. As a result, an improved spatial disposition and effectuation of the biological effect by the photosensitive agent in the biological system is achieved.
NASA Astrophysics Data System (ADS)
Himschoot, Agnes Rose
The purpose of this mixed method case study was to examine the effects of methods of instruction on students' perception of relevance in higher education non-biology majors' courses. Nearly ninety percent of all students in a liberal arts college are required to take a general biology course. It is proposed that for many of those students, this is the last science course they will take for life. General biology courses are suspected of discouraging student interest in biology with large enrollment, didactic instruction, covering a huge amount of content in one semester, and are charged with promoting student disengagement with biology by the end of the course. Previous research has been aimed at increasing student motivation and interest in biology as measured by surveys and test results. Various methods of instruction have been tested and show evidence of improved learning gains. This study focused on students' perception of relevance of biology content to everyday life and the methods of instruction that increase it. A quantitative survey was administered to assess perception of relevance pre and post instruction over three topics typically taught in a general biology course. A second quantitative survey of student experiences during instruction was administered to identify methods of instruction used in the course lecture and lab. While perception of relevance dropped in the study, qualitative focus groups provided insight into the surprising results by identifying topics that are more relevant than the ones chosen for the study, conveying the affects of the instructor's personal and instructional skills on student engagement, explanation of how active engagement during instruction promotes understanding of relevance, the roll of laboratory in promoting students' understanding of relevance as well as identifying external factors that affect student engagement. The study also investigated the extent to which gender affected changes in students' perception of relevance. The results of this study will inform instructors' pedagogical and logistical choices in the design and implementation of higher education biology courses for non-biology majors. Recommendations for future research will include refining the study to train instructors in methods of instruction that promote student engagement as well as to identify biology topics that are more relevant to students enrolled in non-major biology courses.
Milk inhibits the biological activity of ricin
USDA-ARS?s Scientific Manuscript database
Ricin is a highly toxic protein produced by the castor plant Ricinus communis. The toxin is relatively easy to isolate and can be used as a biological weapon. There is great interest in identifying effective inhibitors for ricin. In this study, we demonstrated by three independent assays that compon...
Effects-based monitoring and surveillance is increasingly being utilized in conjunction with chemical monitoring to determine potential biological activity associated with environmental contaminants. Supervised approaches targeting specific chemical activity or molecular pathways...
This draft report uses biological data collected by four states in wadeable rivers and streams to examine the components of state and tribal bioassessment and biomonitoring programs that may be vulnerable to climate change. The study investigates the potential to identify biologi...
Integrating Computer Interfaced Videodisc Systems in Introductory College Biology.
ERIC Educational Resources Information Center
Ebert-Zawasky, Kathleen; Abegg, Gerald L.
This study was designed as a systematic investigation of the feasibility and effectiveness of student authored videodisc presentations in a non-major introductory level college biology course. Students (n=66) used a quick-learn authoring system, the Macintosh computer, and videodisc player with color monitor. Results included: (1) students managed…
Promoting Systems Thinking through Biology Lessons
ERIC Educational Resources Information Center
Riess, Werner; Mischo, Christoph
2010-01-01
This study's goal was to analyze various teaching approaches within the context of natural science lessons, especially in biology. The main focus of the paper lies on the effectiveness of different teaching methods in promoting systems thinking in the field of Education for Sustainable Development. The following methods were incorporated into the…
A Promising Parenting Intervention in Foster Care
ERIC Educational Resources Information Center
Linares, L. Oriana; Montalto, Daniela; Li, MinMin; Oza, Vikash S.
2006-01-01
The purpose of this study was to evaluate the effectiveness of a 2-component intervention for biological and foster parent (pairs) to improve parenting practices, co-parenting, and child externalizing problems. Participants were biological and foster parents (N = 128) of primarily neglected children (ages 3 to 10 years) placed in regular foster…
The Kosmos-1129 biosatellite. [experiments in biological effects of space flight
NASA Technical Reports Server (NTRS)
Nikitin, S. A.
1980-01-01
A number of experiments, designed by participating specialists from several countries, are described. The experiments included studies in biorhythm, stress, body parts, behavior, ontogenesis, and gravitational preference. The biological subjects of the experiments were retrieved immediately after the landing of the satellite and examined in a field laboratory.
Using Artificial Nests to Study Nest Predation in Birds
ERIC Educational Resources Information Center
Belthoff, James R.
2005-01-01
A simple and effective field exercise that demonstrates factors affecting predation on bird nests is described. With instructor guidance, students in high school biology or college-level biology, ecology, animal behavior, wildlife management or ornithology laboratory courses can collaborate to design field experiments related to nest depredation.
Aerospace Medicine and Biology: A Continuing Bibliography with Indexes, Supplement 194
NASA Technical Reports Server (NTRS)
1979-01-01
Articles on the biological, physiological, psychological, and environmental effects to which man is subjected to during and following simulated or actual flight in the earth's atmosphere or in interplanetary space are presented. The emphasis is on applied research more than fundamental studies or theoretical principles.
A critical step in estimating the ecological effects of a toxicant is extrapolating organism-level response data across higher levels of biological organization. In the present study, the organism-to-population link is made for the mysid, Americamysis bahia, exposed to a range of...
The Role of Feature Type and Causal Status in 4-5-Year-Old Children's Biological Categorizations
ERIC Educational Resources Information Center
Meunier, Benjamin; Cordier, Francoise
2009-01-01
The present study investigated the role of the causal status of features and feature type in biological categorizations by young children. Study 1 showed that 5-year-olds are more strongly influenced by causal features than effect features; 4-year-olds exhibit no such tendency. There therefore appears to be a conceptual change between the ages of…
On the mechanism of adhesion in biological systems
NASA Astrophysics Data System (ADS)
Persson, B. N. J.
2003-04-01
I study adhesion relevant to biological systems, e.g., flies, crickets and lizards, where the adhesive microstructures consist of arrays of thin fibers. The effective elastic modulus of the fiber arrays can be very small which is of fundamental importance for adhesion on smooth and rough substrates. I study how the adhesion depend on the substrate roughness amplitude and apply the theoretical results to lizards.
Widom, Julia R.; Dhakal, Soma; Heinicke, Laurie A.; Walter, Nils G.
2015-01-01
Toxicology is the highly interdisciplinary field studying the adverse effects of chemicals on living organisms. It requires sensitive tools to detect such effects. After their initial implementation during the 1990s, single-molecule fluorescence detection tools were quickly recognized for their potential to contribute greatly to many different areas of scientific inquiry. In the intervening time, technical advances in the field have generated ever-improving spatial and temporal resolution, and have enabled the application of single-molecule fluorescence to increasingly complex systems, such as live cells. In this review, we give an overview of the optical components necessary to implement the most common versions of single-molecule fluorescence detection. We then discuss current applications to enzymology and structural studies, systems biology, and nanotechnology, presenting the technical considerations that are unique to each area of study, along with noteworthy recent results. We also highlight future directions that have the potential to revolutionize these areas of study by further exploiting the capabilities of single-molecule fluorescence microscopy. PMID:25212907
Copertaro, A; Bracci, M; Amati, Monica; Mocchegiani, E; Barbaresi, Mariella; Copertaro, Benedetta; Santarelli, Lory
2010-01-01
Healthcare workers may be exposed to a variety of biological hazards. Although many studies have shown that some immunological alterations were related to work stress and sleep disorders, few studies investigated effects of shiftwork on the immunological system. The aim of the study was to compare the immune status of a group of nurses on shiftwork with that of nurses working only day shifts. A total of 138 nurses were evaluated at baseline and after a year of follow-up, via tests for perceived stress, daytime sleepiness, number of lymphocytes and subpopulation of CD3+, CD4+, CD8+-CD57+, CD19+ and CD56+, cytotoxic activity and lympho-prolferative response of NK cells, serum concentrations of IL-1beta, IL-6, INFgamma and TNFalpha. No significant alterations of any of the studied parameters were found both at baseline and after a year of follow-up. The biological hazards for nurses do not seem to be increased by shiftwork.
Trofimova, E S; Zykova, M V; Ligacheva, A A; Sherstoboev, E Yu; Zhdanov, V V; Belousov, M V; Yusubov, M S; Krivoshchekov, S V; Danilets, M G; Dygai, A M
2016-09-01
A screening study of biological activity of native humic acids isolated from peat was performed; several physical and chemical parameters of their structures were studied by UV- and infrared spectroscopy. Spectroscopy yielded similar shape of light absorption curves of humic acids of different origin, which can reflect similarity of general structural principles of these substances. Alkaline humic acids have more developed system of polyconjugation, while molecular structures of pyrophosphate humic acids were characterized by higher aromaticity and condensation indexes. Biological activity of the studied humic acids was assessed by NO-stimulating capacity during their culturing with murine peritoneal macrophages in a wide concentration range. It was shown that due to dose-dependent enhancement of NO production humic acids can change the functional state of macrophages towards development of pro-inflammatory properties. These changes were associated with high activity of humic acids isolated by pyrophosphate extraction, which allows considering effects of isolation method on biological activity.
Weidner, Adam M; Housley, Molly; Murphy, M Paul; Levine, Harry
2011-06-15
Synthetic soluble Aβ oligomers are often used as a surrogate for biologic material in a number of model systems. We compared the activity of Aβ oligomers (synthetic and cell culture media derived) on the human SH-SY5Y neuroblastoma and C2C12 mouse myoblast cell lines in a novel, modified MTT assay. Separating oligomers from monomeric peptide by size exclusion chromatography produced effects at peptide concentrations approaching physiologic levels (10-100 nM). Purified oligomers, but not monomers or fibrils, elicited an increase of a detergent-insoluble form of MTT formazan within 2h as opposed to a control toxin (H(2)O(2)). This effect was comparable for biological and synthetic peptide in both cell types. Monomeric Aβ attenuated the effect of soluble oligomers. This study suggests that the activities of biological and synthetic oligomers are indistinguishable during early stages of Aβ oligomer-cell interaction. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Theuretzbacher, Franz; Blomqvist, Johanna; Lizasoain, Javier; Klietz, Lena; Potthast, Antje; Horn, Svein Jarle; Nilsen, Paal J; Gronauer, Andreas; Passoth, Volkmar; Bauer, Alexander
2015-10-01
Ethanol and biogas are energy carriers that could contribute to a future energy system independent of fossil fuels. Straw is a favorable bioenergy substrate as it does not compete with food or feed production. As straw is very resistant to microbial degradation, it requires a pretreatment to insure efficient conversion to ethanol and/or methane. This study investigates the effect of combining biological pretreatment and steam explosion on ethanol and methane yields in order to improve the coupled generation process. Results show that the temperature of the steam explosion pretreatment has a particularly strong effect on possible ethanol yields, whereas combination with the biological pretreatment showed no difference in overall energy yield. The highest overall energy output was found to be 10.86 MJ kg VS(-1) using a combined biological and steam explosion pretreatment at a temperature of 200°C. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effect of non-crop vegetation types on conservation biological control of pests in olive groves
Cayuela, Luis; Gurr, Geoff M.; Campos, Mercedes
2013-01-01
Conservation biological control (CBC) is an environmentally sound potential alternative to the use of chemical insecticides. It involves modifications of the environment to promote natural enemy activity on pests. Despite many CBC studies increasing abundance of natural enemies, there are far fewer demonstrations of reduced pest density and very little work has been conducted in olive crops. In this study we investigated the effects of four forms of non-crop vegetation on the abundance of two important pests: the olive psyllid (Euphyllura olivina) and the olive moth (Prays oleae). Areas of herbaceous vegetation and areas of woody vegetation near olive crops, and smaller patches of woody vegetation within olive groves, decreased pest abundance in the crop. Inter-row ground covers that are known to increase the abundance of some predators and parasitoids had no effect on the pests, possibly as a result of lack of synchrony between pests and natural enemies, lack of specificity or intra-guild predation. This study identifies examples of the right types of diversity for use in conservation biological control in olive production systems. PMID:23904994
Marvin, Hans J P; Bouzembrak, Yamine; Janssen, Esmée M; van der Zande, Meike; Murphy, Finbarr; Sheehan, Barry; Mullins, Martin; Bouwmeester, Hans
2017-02-01
In this study, a Bayesian Network (BN) was developed for the prediction of the hazard potential and biological effects with the focus on metal- and metal-oxide nanomaterials to support human health risk assessment. The developed BN captures the (inter) relationships between the exposure route, the nanomaterials physicochemical properties and the ultimate biological effects in a holistic manner and was based on international expert consultation and the scientific literature (e.g., in vitro/in vivo data). The BN was validated with independent data extracted from published studies and the accuracy of the prediction of the nanomaterials hazard potential was 72% and for the biological effect 71%, respectively. The application of the BN is shown with scenario studies for TiO 2 , SiO 2 , Ag, CeO 2 , ZnO nanomaterials. It is demonstrated that the BN may be used by different stakeholders at several stages in the risk assessment to predict certain properties of a nanomaterials of which little information is available or to prioritize nanomaterials for further screening.
Experimental study of biological effects of leads and aluminum following oral administration.
Krasovskiĭ, G N; Vasukovich, L Y; Chariev, O G
1979-01-01
A wide spectrum of the biological effects of lead and aluminum ions is noted during short-term and long-term oral administration to laboratory animals. The general toxic and gonadotoxic effects of these metals during a short-term experiment appeared to be identical, and the correlation of these effects was preserved during chronic experiments. Lead (0.03 mg/l.) and aluminum (0.5 mg/l.) concentrations in water may be dangerous to the health of the population, and hygienic standards are recommended for inclusion in the standard for drinking water quality. PMID:446457
Lunar biological effects and the magnetosphere.
Bevington, Michael
2015-12-01
The debate about how far the Moon causes biological effects has continued for two millennia. Pliny the Elder argued for lunar power "penetrating all things", including plants, fish, animals and humans. He also linked the Moon with tides, confirmed mathematically by Newton. A review of modern studies of biological effects, especially from plants and animals, confirms the pervasive nature of this lunar force. However calculations from physics and other arguments refute the supposed mechanisms of gravity and light. Recent space exploration allows a new approach with evidence of electromagnetic fields associated with the Earth's magnetotail at full moon during the night, and similar, but more limited, effects from the Moon's wake on the magnetosphere at new moon during the day. The disturbance of the magnetotail is perhaps shown by measurements of electric fields of up to 16V/m compared with the usual <1V/m, suggesting the possibility of weak biological effects on some sensitive organisms. Similar intensities found in sferics, geomagnetic storms, aurora disturbance, sensations of a 'presence' and pre-seismic electromagnetic radiation are known to affect animals and 10-20% of the human population. There is now evidence for mechanisms such as calcium flux, melatonin disruption, magnetite and cryptochromes. Both environmental and receptor variations explain confounding factors and inconsistencies in the evidence. Electromagnetic effects might also account for some evolutionary changes. Further research on lunar biological effects, such as acute myocardial infarction, could help the development of strategies to reduce adverse effects for people sensitive to geomagnetic disturbance. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Biologically Inspired Technology Using Electroactive Polymers (EAP)
NASA Technical Reports Server (NTRS)
Bar-Cohen, Yoseph
2006-01-01
Evolution allowed nature to introduce highly effective biological mechanisms that are incredible inspiration for innovation. Humans have always made efforts to imitate nature's inventions and we are increasingly making advances that it becomes significantly easier to imitate, copy, and adapt biological methods, processes and systems. This brought us to the ability to create technology that is far beyond the simple mimicking of nature. Having better tools to understand and to implement nature's principles we are now equipped like never before to be inspired by nature and to employ our tools in far superior ways. Effectively, by bio-inspiration we can have a better view and value of nature capability while studying its models to learn what can be extracted, copied or adapted. Using electroactive polymers (EAP) as artificial muscles is adding an important element to the development of biologically inspired technologies.
Zebrafish for the Study of the Biological Effects of Nicotine
Klee, Eric W.; Schneider, Henning; Hurt, Richard D.; Ekker, Stephen C.
2011-01-01
Introduction: Zebrafish are emerging as a powerful animal model for studying the molecular and physiological effects of nicotine exposure. The zebrafish have many advantageous physical characteristics, including small size, high fecundity rates, and externally developing transparent embryos. When combined with a battery of molecular–genetic tools and behavioral assays, these attributes enable studies to be conducted that are not practical using traditional animal models. Methods: We reviewed the literature on the application of the zebrafish model as a preclinical model to study the biological effects of nicotine exposure. Results: The identified studies used zebrafish to examine the effects of nicotine exposure on early development, addiction, anxiety, and learning. The methods used included green fluorescent protein–labeled proteins to track in vivo nicotine-altered neuron development, nicotine-conditioned place preference, and locomotive sensitization linked with high-throughput molecular and genetic screens and behavioral models of learning and stress response to nicotine. Data are presented on the complete homology of all known human neural nicotinic acetylcholine receptors in zebrafish and on the biological similarity of human and zebrafish dopaminergic signaling. Conclusions: Tobacco dependence remains a major health problem worldwide. Further understanding of the molecular effects of nicotine exposure and genetic contributions to dependence may lead to improvement in patient treatment strategies. While there are limitations to the use of zebrafish as a preclinical model, it should provide a valuable tool to complement existing model systems. The reviewed studies demonstrate the enormous opportunity zebrafish have to advance the science of nicotine and tobacco research. PMID:21385906
NASA Astrophysics Data System (ADS)
Zimmermann, R.; Dittmar, G.; Kanashova, T.; Buters, J.; Öder, S.; Paur, H. R.; Mülhopt, S.; Dilger, M.; Weiss, C.; Harndorf, H.; Stengel, B.; Hirvonen, M. R.; Jokiniemi, J.; Hiller, K.; Sapcariu, S.; Sippula, O.; Streibel, T.; Karg, E.; Weggler, B.; Schnelle-Kreis, J.; Lintelmann, J.; Sklorz, M.; Orasche, J.; Müller, L.; Passig, J.; Gröger, T.; Jalava, P. I.; Happo, M.; Uski, O.
2016-12-01
A novel approach to evaluate the health effects of anthropogenic combustion emissions is the detailed comparison of comprehensive physicochemical data on the combustion aerosol properties with the biological response of aerosol-exposed lung cells. In this context the "HICE-Aerosol and Health" project consortium studies the properties as well as the biological and toxicological effects on lung cells induced by different combustion aerosol emissions (e.g. ship diesel exhaust, wood combustion effluents or automobile aerosol). Human alveolar epithelial cells (e.g. A549 cells) as well as murine macrophages were exposed to diluted emissions, using field deployable ALI-exposition systems in a mobile S2-biological laboratory. This allows a realistic lung-cell exposure by simulation of the lung situation. The cellular effects were then comprehensively characterized (cytotoxicology, transcriptomics, proteomics etc.) effects monitoring and put in context with the chemical and physical aerosol data. Emissions of wood combustion, a ship engine as well as diesel and gasoline engines were investigated. Furthermore for some experiments the atmospheric aging of the emission was simulated in a flow tube reactor using UV-light and ozone. Briefly the following order of cellular response-strength was observed: A relatively mild cellular effect is observed for the diluted wood combustion emissions, regardless if log-wood and pellet burner emissions are investigated. Similarly mild biological effects are observed for gasoline car emissions. The ship diesel engine emissions and construction machine diesel engine induced much more intense biological responses. A surprising result in this context is, that heavy fuel oil (HFO)-emissions show lower biological effect strengths than the supposedly cleaner diesel fuel emissions (DF). The HFO-emissions contain high concentrations of known toxicants (metals, polycyclic aromatics). This result was confirmed by experiments with murine macrophages. Detailed analyses suggest a large difference in relative toxicity for different combustion sources. Recently the cell experiments were successively evaluated and verified by animal exposure tests. This is important to develop a reliable animal-test free-monitoring method for aerosol-induced health effects.
NASA Astrophysics Data System (ADS)
Zimmermann, R.; Dittmar, G.; Kanashova, T.; Buters, J.; Öder, S.; Paur, H. R.; Mülhopt, S.; Dilger, M.; Weiss, C.; Harndorf, H.; Stengel, B.; Hirvonen, M. R.; Jokiniemi, J.; Hiller, K.; Sapcariu, S.; Sippula, O.; Streibel, T.; Karg, E.; Weggler, B.; Schnelle-Kreis, J.; Lintelmann, J.; Sklorz, M.; Orasche, J.; Müller, L.; Passig, J.; Gröger, T.; Jalava, P. I.; Happo, M.; Uski, O.
2017-12-01
A novel approach to evaluate the health effects of anthropogenic combustion emissions is the detailed comparison of comprehensive physicochemical data on the combustion aerosol properties with the biological response of aerosol-exposed lung cells. In this context the "HICE-Aerosol and Health" project consortium studies the properties as well as the biological and toxicological effects on lung cells induced by different combustion aerosol emissions (e.g. ship diesel exhaust, wood combustion effluents or automobile aerosol). Human alveolar epithelial cells (e.g. A549 cells) as well as murine macrophages were exposed to diluted emissions, using field deployable ALI-exposition systems in a mobile S2-biological laboratory. This allows a realistic lung-cell exposure by simulation of the lung situation. The cellular effects were then comprehensively characterized (cytotoxicology, transcriptomics, proteomics etc.) effects monitoring and put in context with the chemical and physical aerosol data. Emissions of wood combustion, a ship engine as well as diesel and gasoline engines were investigated. Furthermore for some experiments the atmospheric aging of the emission was simulated in a flow tube reactor using UV-light and ozone. Briefly the following order of cellular response-strength was observed: A relatively mild cellular effect is observed for the diluted wood combustion emissions, regardless if log-wood and pellet burner emissions are investigated. Similarly mild biological effects are observed for gasoline car emissions. The ship diesel engine emissions and construction machine diesel engine induced much more intense biological responses. A surprising result in this context is, that heavy fuel oil (HFO)-emissions show lower biological effect strengths than the supposedly cleaner diesel fuel emissions (DF). The HFO-emissions contain high concentrations of known toxicants (metals, polycyclic aromatics). This result was confirmed by experiments with murine macrophages. Detailed analyses suggest a large difference in relative toxicity for different combustion sources. Recently the cell experiments were successively evaluated and verified by animal exposure tests. This is important to develop a reliable animal-test free-monitoring method for aerosol-induced health effects.
Babkina, V V; Chernova, G V; Allenova, E A; Endebera, O P; Naumkina, E N
2013-01-01
Biological effects of exposure to red light (lambda = 660 +/- 10 nm) on the viability and morphophysiological characteristics of Drosophila melanogaster have been studied. The ability of this physical agent to modify these features is shown. The degree of expression and impact of biological effects depend on the dose, functional and genetic status of the organism. The study of the life expectancy of the exposed to EHF and white light D. melanogaster has revealed that expression of the features depends on the radiation doses, genotype, sex, the nature of the position of wings and lighting conditions. It has been found that the dark mode (24 h-night) is more favorable than the artificial lighting. Individuals with the left wing at the top are more sensitive to the external factors.
Salameh, Pascale; Farah, Rita; Hallit, Souheil; Zeidan, Rouba Karen; Chahine, Mirna N; Asmar, Roland; Hosseini, Hassan
2018-02-20
Stroke is a disease related to high mortality and morbidity, particularly in developing countries. Some studies have linked self-reported indoor and outdoor pollution to stroke and mini-stroke, while some others showed no association. Our objective was to assess this association in Lebanon, a Middle Eastern developing country. A national cross-sectional study was conducted all over Lebanon. In addition to self-reported items of pollution exposure, we assessed potential predictors of stroke and mini-stroke, including sociodemographic characteristics, self-reported health information, and biological measurements. Moreover, we assessed dose-effect relationship of pollution items in relation with stroke. Self-reported indoor pollution exposure was associated with stroke and mini-stroke, with or without taking biological values into account. Moreover, we found a dose-effect relationship of exposure with risk of disease, but this effect did not reach statistical significance after adjustment for sociodemographics and biological characteristics. No association was found for any outdoor pollution item. Although additional studies would be necessary to confirm these findings, sensitizing the population about the effect of pollution on chronic diseases, working on reducing pollution, and improving air quality should be implemented to decrease the burden of the disease on the population and health system.
Howell, Roger W.; Goddu, S. Murty; Narra, Venkat R.; Fisher, Darrell R.; Schenter, Robert E.; Rao, Dandamudi V.
2012-01-01
The biological effects of radionuclides that emit α particles are of considerable interest in view of their potential for therapy and their presence in the environment. The present work is a continuation of our ongoing effort to study the radiotoxicity of α-particle emitters in vivo using the survival of murine testicular sperm heads as the biological end point. Specifically, the relative biological effectiveness (RBE) of very low-energy α particles (3.2 MeV) emitted by 148Gd is investigated and determined to be 7.4 ± 2.4 when compared to the effects of acute external 120 kVp X rays. This datum, in conjunction with our earlier results for 210Po and 212Pb in equilibrium with its daughters, is used to revise and extend the range of validity of our previous RBE–energy relationship for α particles emitted by tissue-incorporated radionuclides. The new empirical relationship is given by RBEα = 9.14 − 0.510 Eα, where 3 < Eα < 9 MeV. The validity of this empirical relationship is tested by determining the RBE of the prolific α-particle emitter 223Ra (in equilibrium with its daughters) experimentally in the same biological model and comparing the value obtained experimentally with the predicted value. The resulting RBE values are 5.4 ± 0.9 and 5.6, respectively. This close agreement strongly supports the adequacy of the empirical RBE-Eα relationship to predict the biological effects of α-particle emitters in Vivo. PMID:9052681
Kohrt, Brandon A.; Jordans, Mark J.D.; Koirala, Suraj; Worthman, Carol M.
2017-01-01
The anthropological study of human biology, health, and child development provides a model with potential to address the gap in population-wide mental health interventions. Four key concepts from human biology can inform public mental health interventions: life history theory and tradeoffs, redundancy and plurality of pathways, cascades and multiplier effects in biological systems, and proximate feedback systems. A public mental health intervention for former child soldiers in Nepal is used to illustrate the role of these concepts in intervention design and evaluation. Future directions and recommendations for applying human biology theory in pursuit of public mental health interventions are discussed. PMID:25380194
Kohrt, Brandon A; Jordans, Mark J D; Koirala, Suraj; Worthman, Carol M
2015-01-01
The anthropological study of human biology, health, and child development provides a model with potential to address the gap in population-wide mental health interventions. Four key concepts from human biology can inform public mental health interventions: life history theory and tradeoffs, redundancy and plurality of pathways, cascades and multiplier effects in biological systems, and proximate feedback systems. A public mental health intervention for former child soldiers in Nepal is used to illustrate the role of these concepts in intervention design and evaluation. Future directions and recommendations for applying human biology theory in pursuit of public mental health interventions are discussed. © 2014 Wiley Periodicals, Inc.
Use of mesocosm data to predict effects in aquatic ecosystems: Limits to interpretation: Chapter 16
La Point, Thomas W.; Fairchild, James F.; Graney, Robert L.; Kennedy, James H.; Rodgers, John H.
1993-01-01
Aquatic mesocosm studies are being used to refute a presumption of risk derived from laboratory toxicity tests conducted under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA). Mesocosm studies incorporate many biological, chemical and physical characteristics of natural ecosystems. Hence, they serve as realistic surrogates of natural ecosystems and allow tests of pesticide effect at the population, community, and ecosystem level. We discuss two factors, ecosystem trophic status and organism life history, which influence the results derived from aquatic mesocosm studies. Trophic status influences the fat and effects of chemicals which strongly sorb or biologically degrade, yet may not be as important in the fate and effects of more water soluble chemicals. Life history traits of organisms and the intensity, frequency, and duration of the pesticide disturbance also determine the mesocosm response pattern.
Pretreatment of macroalgae for volatile fatty acid production.
Pham, Thi Nhan; Um, Youngsoon; Yoon, Hyon Hee
2013-10-01
In this study, a novel method was proposed for the biological pretreatment of macroalgae (Laminaria japonica, Pachymeniopsis elliptica, and Enteromorpha crinita) for production of volatile fatty acid (VFA) by anaerobic fermentation. The amount of VFA produced from 40 g/L of L. japonica increased from 8.3 g/L (control) to 15.6 g/L when it was biologically pretreated with Vibrio harveyi. The biological treatment of L. japonica with Vibrio spp. was most effective likely due to the alginate lyase activity of Vibrio spp. However, a considerable effect was also observed after biological pretreatment of P. elliptica and E. crinita, which are red and green algae, respectively. Alkaline pretreatment of 40 g/L of L. japonica with 0.5 N NaOH resulted in an increase of VFA production to 12.2 g/L. These results indicate that VFA production from macroalgae can be significantly enhanced using the proposed biological pretreatments. Copyright © 2013 Elsevier Ltd. All rights reserved.
Aerospace Medicine and Biology: A Continuing Bibliography with Indexes. Supplement 485
NASA Technical Reports Server (NTRS)
1999-01-01
This supplemental issue of Aerospace Medicine and Biology, A Continuing Bibliography with Indexes (NASA/SP-1999-7011) lists reports, articles, and other documents recently announced in the NASA STI Database. In its subject coverage, Aerospace Medicine and Biology concentrates on the biological, physiological, psychological, and environmental effects to which humans are subjected during and following simulated or actual flight in the Earth's atmosphere or in interplanetary space. References describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention. Applied research receives the most emphasis, but references to fundamental studies and theoretical principles related to experimental development also qualify for inclusion. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. The NASA CASI price code table, addresses of organizations, and document availability information are included before the abstract section. Two indexes-subject and author are included after the abstract section.
Aerospace Medicine and Biology: A Continuing Bibliography With Indexes. Supplement 506
NASA Technical Reports Server (NTRS)
2000-01-01
This supplemental issue of Aerospace Medicine and Biology, A Continuing Bibliography with Indexes (NASA/SP#2000-7011) lists reports, articles, and other documents recently announced in the NASA STI Database. In its subject coverage, Aerospace Medicine and Biology concentrates on the biological, physiological, psychological, and environmental effects to which humans are subjected during and following simulated or actual flight in the Earth's atmosphere or in interplanetary space. References describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention. Applied research receives the most emphasis, but references to fundamental studies and theoretical principles related to experimental development also qualify for inclusion. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. The NASA CASI price code table, addresses of organizations, and document availability information are included before the abstract section. Two indexes- subject and author are included after the abstract section.
Aerospace Medicine and Biology: A Continuing Bibliography with Indexes. Supplement 494
NASA Technical Reports Server (NTRS)
1999-01-01
This supplemental issue of Aerospace Medicine and Biology, A Continuing Bibliography with Indexes lists reports, articles, and other documents recently announced in the NASA STI Database. In its subject coverage, Aerospace Medicine and Biology concentrates on the biological, physiological, psychological, and environmental effects to which humans are subjected during and following simulated or actual flight in the Earth's atmosphere or in interplanetary space. References describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention. Applied research receives the most emphasis, but references to fundamental studies and theoretical principles related to experimental development also qualify for inclusion. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. The NASA CASI price code table, addresses of organizations, and document availability information are included before the abstract section. Two indexes--subject and author are included after the abstract section.
Aerospace Medicine and Biology: A Continuing Bibliography with Indexes. Supplement 496
NASA Technical Reports Server (NTRS)
2000-01-01
This supplemental issue of Aerospace Medicine and Biology, A Continuing Bibliography with Indexes (NASA/SP#2000-7011) lists reports, articles, and other documents recently announced in the NASA STI Database. In its subject coverage, Aerospace Medicine and Biology concentrates on the biological, physiological, psychological, and environmental effects to which humans are subjected during and following simulated or actual flight in the Earth#s atmosphere or in interplanetary space. References describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention. Applied research receives the most emphasis, but references to fundamental studies and theoretical principles related to experimental development also qualify for inclusion. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. The NASA CASI price code table, addresses of organizations, and document availability information are included before the abstract section. Two indexes#subject and author are included after the abstract section.
Aerospace Medicine and Biology: A Continuing Bibliography With Indexes. Supplement 499
NASA Technical Reports Server (NTRS)
2000-01-01
This supplemental issue of Aerospace Medicine and Biology, A Continuing Bibliography with Indexes (NASA/SP#1999-7011) lists reports, articles, and other documents recently announced in the NASA STI Database. In its subject coverage, Aerospace Medicine and Biology concentrates on the biological, physiological, psychological, and environmental effects to which humans are subjected during and following simulated or actual flight in the Earth#s atmosphere or in interplanetary space. References describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention. Applied research receives the most emphasis, but references to fundamental studies and theoretical principles related to experimental development also qualify for inclusion. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. The NASA CASI price code table, addresses of organizations, and document availability information are included before the abstract section. Two indexes-subject and author are included after the abstract section.
Two years comparative studies on biological effects of environmental UV radiation
NASA Astrophysics Data System (ADS)
Grof, P.; Ronto, Gyorgyi; Gaspar, S.; Berces, A.; Szabo, Laszlo D.
1994-07-01
A method has been developed for determination of the biologically effective UV dose based on T7 phage as biosensor. In field experiments clockwork driven telescope has been used for determining doses from direct and global (direct plus diffuse) solar radiation. On fine summer days at mid-latitude this arrangement allowed the following comparisons: measured doses from direct and global radiation obtained at the same time and measuring site reflecting the biological importance of diffuse radiation; direct and global radiation obtained at the same time and measuring site reflecting the biological importance of diffuse radiation; direct and global doses obtained at the same time on different measuring sites (downtown, suburb, outside the town) reflecting the differences caused by air quality; direct and global doses obtained on the same measuring place, in summertime of two different years reflecting the importance of the long-term measurements for estimating the biological risk caused by increased UV-B radiation; measured data and model calculations.
Effects of Phylogenetic Tree Style on Student Comprehension
NASA Astrophysics Data System (ADS)
Dees, Jonathan Andrew
Phylogenetic trees are powerful tools of evolutionary biology that have become prominent across the life sciences. Consequently, learning to interpret and reason from phylogenetic trees is now an essential component of biology education. However, students often struggle to understand these diagrams, even after explicit instruction. One factor that has been observed to affect student understanding of phylogenetic trees is style (i.e., diagonal or bracket). The goal of this dissertation research was to systematically explore effects of style on student interpretations and construction of phylogenetic trees in the context of an introductory biology course. Before instruction, students were significantly more accurate with bracket phylogenetic trees for a variety of interpretation and construction tasks. Explicit instruction that balanced the use of diagonal and bracket phylogenetic trees mitigated some, but not all, style effects. After instruction, students were significantly more accurate for interpretation tasks involving taxa relatedness and construction exercises when using the bracket style. Based on this dissertation research and prior studies on style effects, I advocate for introductory biology instructors to use only the bracket style. Future research should examine causes of style effects and variables other than style to inform the development of research-based instruction that best supports student understanding of phylogenetic trees.
Rao, Chinthalapally V.; Pal, Sanya; Mohammed, Altaf; Farooqui, Mudassir; Doescher, Mark P.; Asch, Adam S.; Yamada, Hiroshi Y.
2017-01-01
Through contaminated diet, water, and other forms of environmental exposure, arsenic affects human health. There are many U.S. and worldwide “hot spots” where the arsenic level in public water exceeds the maximum exposure limit. The biological effects of chronic arsenic exposure include generation of reactive oxygen species (ROS), leading to oxidative stress and DNA damage, epigenetic DNA modification, induction of genomic instability, and inflammation and immunomodulation, all of which can initiate carcinogenesis. High arsenic exposure is epidemiologically associated with skin, lung, bladder, liver, kidney and pancreatic cancer, and cardiovascular, neuronal, and other diseases. This review briefly summarizes the biological effects of arsenic exposure and epidemiological cancer studies worldwide, and provides an overview for emerging rodent-based studies of reagents that can ameliorate the effects of arsenic exposure in vivo. These reagents may be translated to human populations for disease prevention. We propose the importance of developing a biomarker-based precision prevention approach for the health issues associated with arsenic exposure that affects millions of people worldwide. PMID:28915699
Cellular and Molecular Actions of Methylene Blue in the Nervous System
Oz, Murat; Lorke, Dietrich E.; Hasan, Mohammed; Petroianu, George A.
2010-01-01
Methylene Blue (MB), following its introduction to biology in the 19th century by Ehrlich, has found uses in various areas of medicine and biology. At present, MB is the first line of treatment in methemoglobinemias, is used frequently in the treatment of ifosfamide-induced encephalopathy, and is routinely employed as a diagnostic tool in surgical procedures. Furthermore, recent studies suggest that MB has beneficial effects in Alzheimer's disease and memory improvement. Although the modulation of the cGMP pathway is considered the most significant effect of MB, mediating its pharmacological actions, recent studies indicate that it has multiple cellular and molecular targets. In the majority of cases, biological effects and clinical applications of MB are dictated by its unique physicochemical properties including its planar structure, redox chemistry, ionic charges, and light spectrum characteristics. In this review article, these physicochemical features and the actions of MB on multiple cellular and molecular targets are discussed with regard to their relevance to the nervous system. PMID:19760660
[Human reproduction and environmental risk factors].
Petrelli, G; Mantovani, A; Menditto, A
1999-01-01
Environmental pollution is a great cause of concern, in particular, growing attention is being paid to the potential of many chemicals to affect the reproductive system in humans. The key role of prevention and control of reproductive hazards is recognized world-wide. Many chemicals have been shown to impair fertility and/or prenatal and perinatal development in experimental studies. However, a sufficient evidence of an effect on human reproduction is available for some compounds only. The use of biological markers may improve the assessment of exposure to chemicals, contribute to identify mechanisms of action and put into evidence early, reversible, biological effects. Valid biological markers are also needed in epidemiological studies: without reliable data on the level of current and past exposures it is difficult to establish a causal relationship between a pollutant and the occurrence of adverse health effects. A multidisciplinary approach to risk assessment is required. Priorities for interdisciplinary research on environmental chemicals and reproduction include the identification of susceptible population subgroups and risk assessment of exposure to multiple chemicals.
Donnell, Deborah J; Baeten, Jared M; Hong, Ting; Lingappa, Jairam R; Mujugira, Andrew; Nakku-Joloba, Edith; Bangsberg, David; Celum, Connie
2013-02-01
Clinic-based pill counts of unused study medication are frequently used to measure adherence in HIV-1 prevention trials. Monthly pill count adherence data from the Partners in Prevention HSV/HIV Transmission Study, a double-blind, placebo controlled trial of twice-daily acyclovir suppression of herpes simplex virus type 2 (HSV-2) in HIV-1 infected persons was used to compare changes between 3,381 placebo and active arm participants in two objective biologic measures of acyclovir's drug activity: reduction in plasma HIV-1 RNA and HSV-2 genital ulcer disease (GUD). Higher acyclovir pill count adherence was associated with greater reductions in plasma HIV-1 RNA and GUD, indicating pill count data is strongly correlated with biological effects of adherence. However, when calculated adherence exceeded 102 % (i.e., fewer pills returned than expected) and when pill counts were missing because bottles were not returned, plasma HIV-1 RNA and GUD effects were diminished, likely indicating periods of non-adherence.
Richards, Stephanie L; Lord, Cynthia C; Pesko, Kendra N; Tabachnick, Walter J
2010-07-01
Interactions between environmental and biological factors affect the vector competence of Culex pipiens quinquefasciatus for West Nile virus. Three age cohorts from two Cx. p. quinquefasciatus colonies were fed blood containing a low- or high-virus dose, and each group was held at two different extrinsic incubation temperatures (EIT) for 13 days. The colonies differed in the way that they responded to the effects of the environment on vector competence. The effects of mosquito age on aspects of vector competence were dependent on the EIT and dose, and they changed depending on the colony. Complex interactions must be considered in laboratory studies of vector competence, because the extent of the genetic and environmental variation controlling vector competence in nature is largely unknown. Differences in the environmental (EIT and dose) and biological (mosquito age and colony) effects from previous studies of Cx. p. quinquefasciatus vector competence for St. Louis encephalitis virus are discussed.
Biological conditions in streams of Johnson County, Kansas, and nearby Missouri, 2003 and 2004
Poulton, Barry C.; Rasmussen, Teresa J.; Lee, Casey J.
2007-01-01
Johnson County is one of the fastest growing and most populated counties in Kansas. Urban development affects streams by altering stream hydrology, geomorphology, water chemistry, and habitat, which then can lead to adverse effects on fish and macroinvertebrate communities. In addition, increasing sources of contaminants in urbanizing streams results in public-health concerns associated with exposure to and consumption of contaminated water. Biological assessments, or surveys of organisms living in aquatic environments, are crucial components of water-quality programs because they provide an indication of how well water bodies support aquatic life. This fact sheet describes current biological conditions of Johnson County streams and characterizes stream biology relative to urban development. Biological conditions were evaluated by collecting macroinvertebrate samples from 15 stream sites in Johnson County, Kansas, in 2003 and 2004 (fig. 1). Data from seven additional sites, collected as part of a separate study with similar objectives in Kansas and Missouri (Wilkison and others, 2005), were evaluated to provide a more comprehensive assessment of watersheds that cross State boundaries. Land-use and water- and streambed-sediment-quality data also were used to evaluate factors that may affect macroinvertebrate communities. Metrics are indices used to measure, or evaluate, macroinvertebrate response to various factors such as human disturbance. Multimetric scores, which integrated 10 different metrics that measure various aspects of macroinvertebrate communities, including organism diversity, composition, tolerance, and feeding characteristics, were used to evaluate and compare biological health of Johnson County streams. This information is useful to city and county officials for defining current biological conditions, evaluating conditions relative to State biological criteria, evaluating effects of urbanization, developing effective water-quality management plans, and documenting changes in biological conditions and water quality.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-24
...] Effectiveness Indications Statements in Veterinary Biologics Labeling; Notice of Public Meeting and Request for... this notice to inform producers and users of veterinary biological products, as well as other...) concerning effectiveness indications statements in veterinary biologics labeling. We are also making the...
It’s More Than Stamp Collecting: How Genome Sequencing Can Unify Biological Research
Richards, Stephen
2015-01-01
The availability of reference genome sequences, especially the human reference, has revolutionized the study of biology. However, whilst the genomes of some species have been fully sequenced, a wide range of biological problems still cannot be effectively studied for lack of genome sequence information. Here, I identify neglected areas of biology and describe how both targeted species sequencing and more broad taxonomic surveys of the tree of life can address important biological questions. I enumerate the significant benefits that would accrue from sequencing a broader range of taxa, as well as discuss the technical advances in sequencing and assembly methods that would allow for wide-ranging application of whole-genome analysis. Finally, I suggest that in addition to “Big Science” survey initiatives to sequence the tree of life, a modified infrastructure-funding paradigm would better support reference genome sequence generation for research communities most in need. PMID:26003218
It's more than stamp collecting: how genome sequencing can unify biological research.
Richards, Stephen
2015-07-01
The availability of reference genome sequences, especially the human reference, has revolutionized the study of biology. However, while the genomes of some species have been fully sequenced, a wide range of biological problems still cannot be effectively studied for lack of genome sequence information. Here, I identify neglected areas of biology and describe how both targeted species sequencing and more broad taxonomic surveys of the tree of life can address important biological questions. I enumerate the significant benefits that would accrue from sequencing a broader range of taxa, as well as discuss the technical advances in sequencing and assembly methods that would allow for wide-ranging application of whole-genome analysis. Finally, I suggest that in addition to 'big science' survey initiatives to sequence the tree of life, a modified infrastructure-funding paradigm would better support reference genome sequence generation for research communities most in need. Copyright © 2015 Elsevier Ltd. All rights reserved.
Macro- and microscale fluid flow systems for endothelial cell biology.
Young, Edmond W K; Simmons, Craig A
2010-01-21
Recent advances in microfluidics have brought forth new tools for studying flow-induced effects on mammalian cells, with important applications in cardiovascular, bone and cancer biology. The plethora of microscale systems developed to date demonstrate the flexibility of microfluidic designs, and showcase advantages of the microscale that are simply not available at the macroscale. However, the majority of these systems will likely not achieve widespread use in the biological laboratory due to their complexity and lack of user-friendliness. To gain widespread acceptance in the biological research community, microfluidics engineers must understand the needs of cell biologists, while biologists must be made aware of available technology. This review provides a critical evaluation of cell culture flow (CCF) systems used to study the effects of mechanical forces on endothelial cells (ECs) in vitro. To help understand the need for various designs of CCF systems, we first briefly summarize main properties of ECs and their native environments. Basic principles of various macro- and microscale systems are described and evaluated. New opportunities are uncovered for developing technologies that have potential to both improve efficiency of experimentation as well as answer important biological questions that otherwise cannot be tackled with existing systems. Finally, we discuss some of the unresolved issues related to microfluidic cell culture, suggest possible avenues of investigation that could resolve these issues, and provide an outlook for the future of microfluidics in biological research.
NASA Astrophysics Data System (ADS)
Ainsworth, E. J.; Jose, J. G.; Barker, M. E.; Alpen, E. L.
1980-07-01
Risks associated with extended habitation in a space environment, particularly hazards to space workers that might result from exposure to high energy heavy ion particles (HZE), were studied. Biological effects of HZE were investigated in mice to assess their potential adverse health hazards. The potential effects of HZE particles on the crystalline lens of the eye and the carcinogenic effects and blood vessel (vascular) damage from radiation were evaluated by a risk assessment. Animal experiments to evaluate dose response relationships for tumor induction/promotion and for vascular injury were introduced. Cataract productions and preliminary results on cacinogenic and vascular effects are presented for perspective.
NASA Technical Reports Server (NTRS)
Ainsworth, E. J.; Jose, J. G.; Barker, M. E.; Alpen, E. L.
1980-01-01
Risks associated with extended habitation in a space environment, particularly hazards to space workers that might result from exposure to high energy heavy ion particles (HZE), were studied. Biological effects of HZE were investigated in mice to assess their potential adverse health hazards. The potential effects of HZE particles on the crystalline lens of the eye and the carcinogenic effects and blood vessel (vascular) damage from radiation were evaluated by a risk assessment. Animal experiments to evaluate dose response relationships for tumor induction/promotion and for vascular injury were introduced. Cataract productions and preliminary results on cacinogenic and vascular effects are presented for perspective.
Biological age as a useful index to predict seventeen-year survival and mortality in Koreans.
Yoo, Jinho; Kim, Yangseok; Cho, Eo Rin; Jee, Sun Ha
2017-01-05
Many studies have been conducted to quantitatively estimate biological age using measurable biomarkers. Biological age should function as a valid proxy for aging, which is closely related with future work ability, frailty, physical fitness, and/or mortality. A validation study using cohort data found biological age to be a superior index for disease-related mortality than chronological age. The purpose of this study is to demonstrate the validity of biological age as a useful index to predict a person's risk of death in the future. The data consists of 13,106 cases of death from 557,940 Koreans at 20-93 years old, surveyed from 1994 to 2011. Biological ages were computed using 15 biomarkers measured in general health check-ups using an algorithm based on principal component analysis. The influence of biological age on future mortality was analyzed using Cox proportional hazards regression considering gender, chronological age, and event type. In the living subjects, the average biological age was almost the same as the average chronological age. In the deceased, the biological age was larger than the chronological age: largest increment of biological age over chronological age was observed when their baseline chronological age was within 50-59 years. The death rate significantly increased as biological age became larger than chronological age (linear trend test, p value < 0.0001). The largest hazard ratio was observed in subjects whose baseline chronological age was within 50-59 years when the cause was death from non-cancerous diseases (HR = 1.30, 95% confidence intervals = 1.26 - 1.34). The survival probability, over the 17 year term of the study, was significantly decreased in the people whose biological age was larger than chronological age (log rank test, p value < 0.001). Biological age could be used to predict future risk of death, and its effect size varied according to gender, chronological age, and cause of death.
Ecotoxicology of mercury in fish and wildlife: Recent advances
Scheuhammer, Anton M.; Basu, Niladri; Evers, David C.; Heinz, Gary H.; Sandheinrich, Mark B.; Bank, Michael S.; edited by Bank, Michael S.; Bank, Michael S.
2012-01-01
A number of recent studies have documented subtle, yet potentially important effects of mercury on behavior, neurochemistry, and endocrine function in fish and wildlife at currently realistic levels of environmental exposure. Current levels of environmental methylmercury exposure are sufficient to cause significant biological impairment, both in individuals and in whole populations, in some ecosystems. Future toxicological studies on fish and wildlife will focus on linking biomarkers of methylmercury exposure and associated oxidative stress to effects on reproduction and population change; determining the genetic basis for mercury-related neurotoxic and other biological changes; determining the genetic basis for species differences in sensitivity to methylmercury; and linking toxic effects of methylmercury in individual animals to population-level changes.
Flipped Instruction in a High School Science Classroom
NASA Astrophysics Data System (ADS)
Leo, Jonathan; Puzio, Kelly
2016-10-01
This paper reports on a quasi-experimental study examining the effectiveness of flipped instruction in a 9th grade biology classroom. This study included four sections of freshmen-level biology taught by the first author at a private secondary school in the Pacific Northwest. Using a block randomized design, two sections were flipped and two remained traditional. The quiz and posttest data were adjusted for pretest differences using ANCOVA. The results suggest that flipped instruction had a positive effect student achievement, with effect sizes ranging from +0.16 to +0.44. In addition, some students reported that they preferred watching video lectures outside of class and appreciated more active approaches to learning.
NASA Astrophysics Data System (ADS)
Harvey, Robert Christopher
The purpose of this study was to determine the effects of two conceptually based instructional strategies on science achievement and attitudes of community college biological science students. The sample consisted of 277 students enrolled in General Biology 1, Microbiology, and Human Anatomy and Physiology 1. Control students were comprised of intact classes from the 2005 Spring semester; treatment students from the 2005 Fall semester were randomly assigned to one of two groups within each course: written narrative (WN) and illustration (IL). WN students prepared in-class written narratives related to cell theory and metabolism, which were taught in all three courses. IL students prepared in-class illustrations of the same concepts. Control students received traditional lecture/lab during the entire class period and neither wrote in-class descriptions nor prepared in-class illustrations of the targeted concepts. All groups were equivalent on age, gender, ethnicity, GPA, and number of college credits earned and were blinded to the study. All interventions occurred in class and no group received more attention or time to complete assignments. A multivariate analysis of covariance (MANCOVA) via multiple regression was the primary statistical strategy used to test the study's hypotheses. The model was valid and statistically significant. Independent follow-up univariate analyses relative to each dependent measure found that no research factor had a significant effect on attitude, but that course-teacher, group membership, and student academic characteristics had a significant effect (p < .05) on achievement: (1) Biology students scored significantly lower in achievement than A&P students; (2) Microbiology students scored significantly higher in achievement than Biology students; (3) Written Narrative students scored significantly higher in achievement than Control students; and (4) GPA had a significant effect on achievement. In addition, given p < .08: (1) Microbiology students averaged lower in achievement than A&P students; (2) Illustration students averaged higher in achievement than Control students; and (3) Written Narrative students averaged higher in achievement than Illustration students. Findings suggest that science achievement can be enhanced via student-generated illustrations and written narratives, these interventions had no effect on attitudes toward science, and the interventions benefited A&P students more than Microbiology and Biology students.
BIOLOGICAL AND MEDICAL RESEARCH DIVISION SEMIANNUAL REPORT FOR JANUARY THROUGH JUNE 1958
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1958-09-01
The hemolysin system in gamma-irradiated rabbits was used in a study of the qualitative as well as the quantitative characteristics of the radiosensitivity of antibody production. Applications of IBM equipment in the analysis of biological data are discussed. Cytological features are described which were obscrved in buckwheat grown in carton dioxide containing carbon14. Electron microscopic observations are described which were made on the ovotestis of a pulmonate snail and on ciliate nuclear phenomena in Tetrahymena. Results are reported from a study of the comparative carcinogenicity of radium-226, strontium-90, and calcium-45 in mice. Results of tracer studies on metabolism in culturesmore » of Escherichia coli indicate that in growing cultures of bacterias intracellular protein degradation and nucleic acid degradation do not occur and that under normal conditions cell death rarely occurs. Data on the heterologous growth of mouse ascites tumor in the rat are summarized. Observations on radiation injuries in chick embryos following exposure to cobalt-60 gamma radiation suggest two distinct modes of radiation injury. Findings are discussed. Progress is reported in the following studies: investigations of the heat-stable factor necessary for inhibition of catalase; the enzymatic decomposition of S- adenosylmethionine and methylthioadenosine; protein synthesis in the pancreas; the response of various mouse strains and hybrids to daily dosages of cobalt-60 gamma radiation; the effects of heavy water on kidneys and liver of rats; the effect of x radiation on the intracellular distribution of cytochrome oxidase in the rat thymus; the dependence of acute and subacute radiosensitivity on age in mice; the rate of recovery from radiation injury~; the effect of fractionation of dose on biological effects of fission neutrons; the relative biological cffectiveness of fission neutrons and cobalt-60 gamma radiation evaluated by 15 different biological tests on a widely varying group of plants and animals; the life-shortening effect of whole-body exposure to ionizing radiation in mice; the effectiveness of new chelating agents in the treatment of plutonium poisoning; the effects of radiotoxic levels of gamma-emitting isotopes on distribution and retention patterns established by tracer methods; the effects of ultraviolet radiation on amoebae; tracer studies on the life cycle of leukocytes; the dynamics of the release of histamine from tissue mast cells; the effect of repeated paracentesis on the growth of Ehrlich ascites tumor cells in mice; the effects of deuterium oxicie in drinking water on pregnancy and on viability of newbom mice; the radioactivity of grass grown on thorium-bearing sand; and tracer studies on the metabolism of proteins, fatty acidss and cholesterol. (For preceding period see ANL-5841.) (C.H.)« less
Lapenta, Olivia M; Minati, Ludovico; Fregni, Felipe; Boggio, Paulo S
2013-01-01
Motor system neural networks are activated during movement imagery, observation and execution, with a neural signature characterized by suppression of the Mu rhythm. In order to investigate the origin of this neurophysiological marker, we tested whether transcranial direct current stimulation (tDCS) modifies Mu rhythm oscillations during tasks involving observation and imagery of biological and non-biological movements. We applied tDCS (anodal, cathodal, and sham) in 21 male participants (mean age 23.8 ± 3.06), over the left M1 with a current of 2 mA for 20 min. Following this, we recorded the EEG at C3, C4, and Cz and surrounding C3 and C4 electrodes. Analyses of C3 and C4 showed significant effects for biological vs. non-biological movement (p = 0.005), and differential hemisphere effects according to the type of stimulation (p = 0.04) and type of movement (p = 0.02). Analyses of surrounding electrodes revealed significant interaction effects considering type of stimulation and imagery or observation of biological or non-biological movement (p = 0.03). The main findings of this study were (1) Mu desynchronization during biological movement of the hand region in the contralateral hemisphere after sham tDCS; (2) polarity-dependent modulation effects of tDCS on the Mu rhythm, i.e., anodal tDCS led to Mu synchronization while cathodal tDCS led to Mu desynchronization during movement observation and imagery (3) specific focal and opposite inter-hemispheric effects, i.e., contrary effects for the surrounding electrodes during imagery condition and also for inter-hemispheric electrodes (C3 vs. C4). These findings provide insights into the cortical oscillations during movement observation and imagery. Furthermore, it shows that tDCS can be highly focal when guided by a behavioral task.
Rammsayer, Thomas H; Borter, Natalie; Troche, Stefan J
2017-02-01
The present study was designed to systematically investigate the functional relationships among biological sex; masculine and feminine gender-role characteristics; and sociosexual behavior, attitude toward, and desire for uncommitted casual sex as three facets of sociosexual orientation. For this purpose, facets of sociosexuality were assessed by the Revised Sociosexual Orientation Inventory (SOI-R) and masculine and feminine gender-role characteristics were assessed by a revised German version of the Bem Sex-Role Inventory in 499 male and 958 female heterosexual young adults. Confirmatory factor analysis (CFA) and structural equation modeling (SEM) revealed differential mediating effects of masculine and feminine gender-role characteristics on the relationship between biological sex and the three facets of sociosexual orientation. Sociosexual behavior was shown to be primarily controlled by an individual's level of masculine gender-role characteristics irrespective of biological sex. Sociosexual desire was identified as being a sole function of biological sex with no indication for any effect of masculine or feminine gender-role characteristics, while sociosexual attitude was influenced by biological sex as well as by masculine and feminine gender-role characteristics to about the same extent.
Cancer Systems Biology: a peak into the future of patient care?
Werner, Henrica M. J.; Mills, Gordon B.; Ram, Prahlad T.
2015-01-01
Traditionally, scientific research has focused on studying individual events, such as single mutations, gene function or the effect of the manipulation of one protein on a biological phenotype. A range of technologies, combined with the ability to develop robust and predictive mathematical models, is beginning to provide information that will enable a holistic view of how the genomic and epigenetic aberrations in cancer cells can alter the homeostasis of signalling networks within these cells, between cancer cells and the local microenvironment, at the organ and organism level. This systems biology process needs to be integrated with an iterative approach wherein hypotheses and predictions that arise from modelling are refined and constrained by experimental evaluation. Systems biology approaches will be vital for developing and implementing effective strategies to deliver personalized cancer therapy. Specifically, these approaches will be important to select those patients most likely to benefit from targeted therapies as well as for the development and implementation of rational combinatorial therapies. Systems biology can help to increase therapy efficacy or bypass the emergence of resistance, thus converting the current (often short term) effects of targeted therapies into durable responses, ultimately to improve quality of life and provide a cure. PMID:24492837
Evaluation of the effects of a plasma activated medium on cancer cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohades, S.; Laroussi, M., E-mail: mlarouss@odu.edu; Sears, J.
2015-12-15
The interaction of low temperature plasma with liquids is a relevant topic of study to the field of plasma medicine. This is because cells and tissues are normally surrounded or covered by biological fluids. Therefore, the chemistry induced by the plasma in the aqueous state becomes crucial and usually dictates the biological outcomes. This process became even more important after the discovery that plasma activated media can be useful in killing various cancer cell lines. Here, we report on the measurements of concentrations of hydrogen peroxide, a species known to have strong biological effects, produced by application of plasma tomore » a minimum essential culture medium. The activated medium is then used to treat SCaBER cancer cells. Results indicate that the plasma activated medium can kill the cancer cells in a dose dependent manner, retain its killing effect for several hours, and is as effective as apoptosis inducing drugs.« less
Biomolecular Deuteration for Neutron Structural Biology and Dynamics.
Haertlein, Michael; Moulin, Martine; Devos, Juliette M; Laux, Valerie; Dunne, Orla; Forsyth, V Trevor
2016-01-01
Neutron scattering studies provide important information in structural biology that is not accessible using other approaches. The uniqueness of the technique, and its complementarity with X-ray scattering, is greatest when full use is made of deuterium labeling. The ability to produce tailor-made deuterium-labeled biological macromolecules allows neutron studies involving solution scattering, crystallography, reflection, and dynamics to be optimized in a manner that has major impact on the scope, quality, and throughput of work in these areas. Deuteration facilities have now been developed at many neutron centres throughout the world; these are having a crucial effect on neutron studies in the life sciences and on biologically related studies in soft matter. This chapter describes methods that have been developed for the efficient production of deuterium-labeled samples for a wide range of neutron scattering applications. Examples are given that illustrate the use of these samples for each of the main techniques. Perspectives for biological deuterium labeling are discussed in relation to developments at current facilities and those that are planned in the future. © 2016 Elsevier Inc. All rights reserved.
1997-10-01
This report discusses the results of a bench scale study conducted to evaluate the potential inhibitory effects of untreated AFFF wastewater to the...untreated AFFF wastewater to the nitrification process of the Virginia Initiative Plant biological nutrient removal system. Under this testing, bench...scale reactors simulating the nitrification process were loaded at various AFFF concentrations and the influence on the process performance was
Reisz, Julie A.; Bansal, Nidhi; Qian, Jiang; Zhao, Weiling
2014-01-01
Abstract Significance: The detrimental effects of ionizing radiation (IR) involve a highly orchestrated series of events that are amplified by endogenous signaling and culminating in oxidative damage to DNA, lipids, proteins, and many metabolites. Despite the global impact of IR, the molecular mechanisms underlying tissue damage reveal that many biomolecules are chemoselectively modified by IR. Recent Advances: The development of high-throughput “omics” technologies for mapping DNA and protein modifications have revolutionized the study of IR effects on biological systems. Studies in cells, tissues, and biological fluids are used to identify molecular features or biomarkers of IR exposure and response and the molecular mechanisms that regulate their expression or synthesis. Critical Issues: In this review, chemical mechanisms are described for IR-induced modifications of biomolecules along with methods for their detection. Included with the detection methods are crucial experimental considerations and caveats for their use. Additional factors critical to the cellular response to radiation, including alterations in protein expression, metabolomics, and epigenetic factors, are also discussed. Future Directions: Throughout the review, the synergy of combined “omics” technologies such as genomics and epigenomics, proteomics, and metabolomics is highlighted. These are anticipated to lead to new hypotheses to understand IR effects on biological systems and improve IR-based therapies. Antioxid. Redox Signal. 21: 260–292. PMID:24382094
OWL reasoning framework over big biological knowledge network.
Chen, Huajun; Chen, Xi; Gu, Peiqin; Wu, Zhaohui; Yu, Tong
2014-01-01
Recently, huge amounts of data are generated in the domain of biology. Embedded with domain knowledge from different disciplines, the isolated biological resources are implicitly connected. Thus it has shaped a big network of versatile biological knowledge. Faced with such massive, disparate, and interlinked biological data, providing an efficient way to model, integrate, and analyze the big biological network becomes a challenge. In this paper, we present a general OWL (web ontology language) reasoning framework to study the implicit relationships among biological entities. A comprehensive biological ontology across traditional Chinese medicine (TCM) and western medicine (WM) is used to create a conceptual model for the biological network. Then corresponding biological data is integrated into a biological knowledge network as the data model. Based on the conceptual model and data model, a scalable OWL reasoning method is utilized to infer the potential associations between biological entities from the biological network. In our experiment, we focus on the association discovery between TCM and WM. The derived associations are quite useful for biologists to promote the development of novel drugs and TCM modernization. The experimental results show that the system achieves high efficiency, accuracy, scalability, and effectivity.
OWL Reasoning Framework over Big Biological Knowledge Network
Chen, Huajun; Chen, Xi; Gu, Peiqin; Wu, Zhaohui; Yu, Tong
2014-01-01
Recently, huge amounts of data are generated in the domain of biology. Embedded with domain knowledge from different disciplines, the isolated biological resources are implicitly connected. Thus it has shaped a big network of versatile biological knowledge. Faced with such massive, disparate, and interlinked biological data, providing an efficient way to model, integrate, and analyze the big biological network becomes a challenge. In this paper, we present a general OWL (web ontology language) reasoning framework to study the implicit relationships among biological entities. A comprehensive biological ontology across traditional Chinese medicine (TCM) and western medicine (WM) is used to create a conceptual model for the biological network. Then corresponding biological data is integrated into a biological knowledge network as the data model. Based on the conceptual model and data model, a scalable OWL reasoning method is utilized to infer the potential associations between biological entities from the biological network. In our experiment, we focus on the association discovery between TCM and WM. The derived associations are quite useful for biologists to promote the development of novel drugs and TCM modernization. The experimental results show that the system achieves high efficiency, accuracy, scalability, and effectivity. PMID:24877076
Spencer, C H; Rouster-Stevens, K; Gewanter, H; Syverson, G; Modica, R; Schmidt, K; Emery, H; Wallace, C; Grevich, S; Nanda, K; Zhao, Y D; Shenoi, S; Tarvin, S; Hong, S; Lindsley, C; Weiss, J E; Passo, M; Ede, K; Brown, A; Ardalan, K; Bernal, W; Stoll, M L; Lang, B; Carrasco, R; Agaiar, C; Feller, L; Bukulmez, H; Vehe, R; Kim, H; Schmeling, H; Gerstbacher, D; Hoeltzel, M; Eberhard, B; Sundel, R; Kim, S; Huber, A M; Patwardhan, A
2017-06-13
The prognosis of children with juvenile dermatomyositis (JDM) has improved remarkably since the 1960's with the use of corticosteroid and immunosuppressive therapy. Yet there remain a minority of children who have refractory disease. Since 2003 the sporadic use of biologics (genetically-engineered proteins that usually are derived from human genes) for inflammatory myositis has been reported. In 2011-2016 we investigated our collective experience of biologics in JDM through the Childhood Arthritis and Rheumatology Research Alliance (CARRA). The JDM biologic study group developed a survey on the CARRA member experience using biologics for Juvenile DM utilizing Delphi consensus methods in 2011-2012. The survey was completed online by the CARRA members interested in JDM in 2012. A second survey was similarly developed that provided more opportunity to describe their experiences with biologics in JDM in detail and was completed by CARRA members in Feb 2013. During three CARRA meetings in 2013-2015, nominal group techniques were used for achieving consensus on the current choices of biologic drugs. A final survey was performed at the 2016 CARRA meeting. One hundred and five of a potential 231 pediatric rheumatologists (42%) responded to the first survey in 2012. Thirty-five of 90 had never used a biologic for Juvenile DM at that time. Fifty-five of 91 (denominators vary) had used biologics for JDM in their practice with 32%, 5%, and 4% using rituximab, etanercept, and infliximab, respectively, and 17% having used more than one of the three drugs. Ten percent used a biologic as monotherapy, 19% a biologic in combination with methotrexate (mtx), 52% a biologic in combination with mtx and corticosteroids, 42% a combination of a biologic, mtx, corticosteroids (steroids), and an immunosuppressive drug, and 43% a combination of a biologic, IVIG and mtx. The results of the second survey supported these findings in considerably more detail with multiple combinations of drugs used with biologics and supported the use of rituximab, abatacept, anti-TNFα drugs, and tocilizumab in that order. One hundred percent recommended that CARRA continue studying biologics for JDM. The CARRA meeting survey in 2016 again supported the study and use of these four biologic drug groups. Our CARRA JDM biologic work group developed and performed three surveys demonstrating that pediatric rheumatologists in North America have been using multiple biologics for refractory JDM in numerous scenarios from 2011 to 2016. These survey results and our consensus meetings determined our choice of four biologic therapies (rituximab, abatacept, tocilizumab and anti-TNFα drugs) to consider for refractory JDM treatment when indicated and to evaluate for comparative effectiveness and safety in the future. Significance and Innovations This is the first report that provides a substantial clinical experience of a large group of pediatric rheumatologists with biologics for refractory JDM over five years. This experience with biologic therapies for refractory JDM may aid pediatric rheumatologists in the current treatment of these children and form a basis for further clinical research into the comparative effectiveness and safety of biologics for refractory JDM.
Energy dissipation in slipping biological pumps.
Kjelstrup, Signe; Rubi, J Miguel; Bedeaux, Dick
2005-12-07
We describe active transport in slipping biological pumps, using mesoscopic nonequilibrium thermodynamics. The pump operation is characterised by its stochastic nature and energy dissipation. We show how heating as well as cooling effects can be associated with pump operation. We use as an example the well studied active transport of Ca2+ across a biological membrane by means of its ATPase, and use published data to find values for the transport coefficients of the pump under various conditions. Most of the transport coefficients of the pump, including those that relate ATP hydrolysis or synthesis to thermal effects, are estimated. This can give a quantitative description of thermogenesis. We show by calculation that all of these coupling coefficients are significant.
Aerospace medicine and biology: A continuing bibliography with indexes (supplement 368)
NASA Technical Reports Server (NTRS)
1992-01-01
This bibliography lists 305 reports, articles, and other documents introduced into the NASA Scientific and Technical Information System during Sep. 1992. The subject coverage concentrates on the biological, physiological, psychological, and environmental effects to which humans are subjected during and following simulated or actual flight in the Earth's atmosphere or in interplanetary space. References describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention. Applied research receives the most emphasis, but references to fundamental studies and theoretical principles related to experimental development also qualify for inclusion.
NASA Astrophysics Data System (ADS)
BouJaoude, Saouma; Asghar, Anila; Wiles, Jason R.; Jaber, Lama; Sarieddine, Diana; Alters, Brian
2011-05-01
This study investigated three questions: (1) What are Lebanese secondary school (Grade 9-12) biology teachers' and university biology professors' positions regarding biological evolution?, (2) How do participants' religious affiliations relate to their positions about evolutionary science?, and (3) What are participants' positions regarding evolution education? Participants were 20 secondary school biology teachers and seven university biology professors. Seventy percent of the teachers and 60% of the professors were Muslim. Data came from semi-structured interviews with participants. Results showed that nine (Christian or Muslim Druze) teachers accepted the theory, five (four Muslim) rejected it because it contradicted religious beliefs, and three (Muslim) reinterpreted it because evolution did not include humans. Teachers who rejected or reinterpreted the evolutionary theory said that it should not be taught (three), evolution and creationism should be given equal time (two), or students should be allowed to take their own stand. Two professors indicated that they taught evolution explicitly and five said that they integrated it in other biology content. One Muslim professor said that she stressed 'the role of God in creation during instruction on evolution'. It seems that years of studying and teaching biology have not had a transformative effect on how a number of teachers and professors think about evolution.
Models to study gravitational biology of Mammalian reproduction
NASA Technical Reports Server (NTRS)
Tou, Janet; Ronca, April; Grindeland, Richard; Wade, Charles
2002-01-01
Mammalian reproduction evolved within Earth's 1-g gravitational field. As we move closer to the reality of space habitation, there is growing scientific interest in how different gravitational states influence reproduction in mammals. Habitation of space and extended spaceflight missions require prolonged exposure to decreased gravity (hypogravity, i.e., weightlessness). Lift-off and re-entry of the spacecraft are associated with exposure to increased gravity (hypergravity). Existing data suggest that spaceflight is associated with a constellation of changes in reproductive physiology and function. However, limited spaceflight opportunities and confounding effects of various nongravitational factors associated with spaceflight (i.e., radiation, stress) have led to the development of ground-based models for studying the effects of altered gravity on biological systems. Human bed rest and rodent hindlimb unloading paradigms are used to study exposure to hypogravity. Centrifugation is used to study hypergravity. Here, we review the results of spaceflight and ground-based models of altered gravity on reproductive physiology. Studies utilizing ground-based models that simulate hyper- and hypogravity have produced reproductive results similar to those obtained from spaceflight and are contributing new information on biological responses across the gravity continuum, thereby confirming the appropriateness of these models for studying reproductive responses to altered gravity and the underlying mechanisms of these responses. Together, these unique tools are yielding new insights into the gravitational biology of reproduction in mammals.
Geospatial Technology Applications and Infrastructure in the Biological Resources Division
D'Erchia, Frank; Getter, James; D'Erchia, Terry D.; Root, Ralph; Stitt, Susan; White, Barbara
1998-01-01
Executive Summary -- Automated spatial processing technology such as geographic information systems (GIS), telemetry, and satellite-based remote sensing are some of the more recent developments in the long history of geographic inquiry. For millennia, humankind has endeavored to map the Earth's surface and identify spatial relationships. But the precision with which we can locate geographic features has increased exponentially with satellite positioning systems. Remote sensing, GIS, thematic mapping, telemetry, and satellite positioning systems such as the Global Positioning System (GPS) are tools that greatly enhance the quality and rapidity of analysis of biological resources. These technologies allow researchers, planners, and managers to more quickly and accurately determine appropriate strategies and actions. Researchers and managers can view information from new and varying perspectives using GIS and remote sensing, and GPS receivers allow the researcher or manager to identify the exact location of interest. These geospatial technologies support the mission of the U.S. Geological Survey (USGS) Biological Resources Division (BRD) and the Strategic Science Plan (BRD 1996) by providing a cost-effective and efficient method for collection, analysis, and display of information. The BRD mission is 'to work with others to provide the scientific understanding and technologies needed to support the sound management and conservation of our Nation's biological resources.' A major responsibility of the BRD is to develop and employ advanced technologies needed to synthesize, analyze, and disseminate biological and ecological information. As the Strategic Science Plan (BRD 1996) states, 'fulfilling this mission depends on effectively balancing the immediate need for information to guide management of biological resources with the need for technical assistance and long-range, strategic information to understand and predict emerging patterns and trends in ecological systems.' Information sharing plays a key role in nearly everything BRD does. The Strategic Science Plan discusses the need to (1) develop tools and standards for information transfer, (2) disseminate information, and (3) facilitate effective use of information. This effort centers around the National Biological Information Infrastructure (NBII) and the National Spatial Data Infrastructure (NSDI), components of the National Information Infrastructure. The NBII and NSDI are distributed electronic networks of biological and geographical data and information, as well as tools to help users around the world easily find and retrieve the biological and geographical data and information they need. The BRD is responsible for developing scientifically and statistically reliable methods and protocols to assess the status and trends of the Nation's biological resources. Scientists also conduct important inventory and monitoring studies to maintain baseline information on these same resources. Research on those species for which the Department of the Interior (DOI) has trust responsibilities (including endangered species and migratory species) involves laboratory and field studies of individual animals and the environments in which they live. Researchboth tactical and strategicis conducted at the BRD's 17 science centers and 81 field stations, 54 Cooperative Fish and Wildlife Research Units in 40 states, and at 11 former Cooperative Park Study Units. Studies encompass fish, birds, mammals, and plants, as well as their ecosystems and the surrounding landscape. Biological Resources Division researchers use a variety of scientific tools in their endeavors to understand the causes of biological and ecological trends. Research results are used by managers to predict environmental changes and to help them take appropriate measures to manage resources effectively. The BRD Geospatial Technology Program facilitates the collection, analysis, and dissemination of data and informat
Singh, Sunil; Gupta, Rashi; Kumari, Madhu; Sharma, Shilpi
2015-08-01
Intensive agriculture has resulted in an indiscriminate use of pesticides, which demands in-depth analysis of their impact on indigenous rhizospheric microbial community structure and function. Hence, the objective of the present work was to study the impact of two chemical pesticides (chlorpyrifos and cypermethrin) and one biological pesticide (azadirachtin) at two dosages on the microbial community structure using cultivation-dependent approach and on rhizospheric bacterial communities involved in nitrogen cycle in Vigna radiata rhizosphere through cultivation-independent technique of real-time PCR. Cultivation-dependent study highlighted the adverse effects of both chemical pesticide and biopesticide on rhizospheric bacterial and fungal communities at different plant growth stages. Also, an adverse effect on number of genes and transcripts of nifH (nitrogen fixation); amoA (nitrification); and narG, nirK, and nirS (denitrification) was observed. The results from the present study highlighted two points, firstly that nontarget effects of pesticides are significantly detrimental to soil microflora, and despite being of biological origin, azadirachtin exerted negative impact on rhizospheric microbial community of V. radiata behaving similar to chemical pesticides. Hence, such nontarget effects of chemical pesticide and biopesticide in plants' rhizosphere, which bring out the larger picture in terms of their ecotoxicological effect, demand a proper risk assessment before application of pesticides as agricultural amendments.
Bardin, Marc; Ajouz, Sakhr; Comby, Morgane; Lopez-Ferber, Miguel; Graillot, Benoît; Siegwart, Myriam; Nicot, Philippe C.
2015-01-01
The durability of a control method for plant protection is defined as the persistence of its efficacy in space and time. It depends on (i) the selection pressure exerted by it on populations of plant pathogens and (ii) on the capacity of these pathogens to adapt to the control method. Erosion of effectiveness of conventional plant protection methods has been widely studied in the past. For example, apparition of resistance to chemical pesticides in plant pathogens or pests has been extensively documented. The durability of biological control has often been assumed to be higher than that of chemical control. Results concerning pest management in agricultural systems have shown that this assumption may not always be justified. Resistance of various pests to one or several toxins of Bacillus thuringiensis and apparition of resistance of the codling moth Cydia pomonella to the C. pomonella granulovirus have, for example, been described. In contrast with the situation for pests, the durability of biological control of plant diseases has hardly been studied and no scientific reports proving the loss of efficiency of biological control agents against plant pathogens in practice has been published so far. Knowledge concerning the possible erosion of effectiveness of biological control is essential to ensure a durable efficacy of biological control agents on target plant pathogens. This knowledge will result in identifying risk factors that can foster the selection of strains of plant pathogens resistant to biological control agents. It will also result in identifying types of biological control agents with lower risk of efficacy loss, i.e., modes of action of biological control agents that does not favor the selection of resistant isolates in natural populations of plant pathogens. An analysis of the scientific literature was then conducted to assess the potential for plant pathogens to become resistant to biological control agents. PMID:26284088
Spedding, Simon
2014-01-01
Efficacy of Vitamin D supplements in depression is controversial, awaiting further literature analysis. Biological flaws in primary studies is a possible reason meta-analyses of Vitamin D have failed to demonstrate efficacy. This systematic review and meta-analysis of Vitamin D and depression compared studies with and without biological flaws. The systematic review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The literature search was undertaken through four databases for randomized controlled trials (RCTs). Studies were critically appraised for methodological quality and biological flaws, in relation to the hypothesis and study design. Meta-analyses were performed for studies according to the presence of biological flaws. The 15 RCTs identified provide a more comprehensive evidence-base than previous systematic reviews; methodological quality of studies was generally good and methodology was diverse. A meta-analysis of all studies without flaws demonstrated a statistically significant improvement in depression with Vitamin D supplements (+0.78 CI +0.24, +1.27). Studies with biological flaws were mainly inconclusive, with the meta-analysis demonstrating a statistically significant worsening in depression by taking Vitamin D supplements (−1.1 CI −0.7, −1.5). Vitamin D supplementation (≥800 I.U. daily) was somewhat favorable in the management of depression in studies that demonstrate a change in vitamin levels, and the effect size was comparable to that of anti-depressant medication. PMID:24732019
Scherer, Gerhard
2018-04-01
The health risk of tobacco smoking can best be avoided or reduced by not taking up or quitting the habit. The use of new and innovative tobacco (NTPs, e.g. electronic cigarettes) can either be an aid for smoking cessation or, for those who are not able or willing to quit, an alternative for smoking conventional tobacco products. Before the use of an NTP can be regarded as an effective approach in tobacco harm reduction (THR), the implicated risk has to be evaluated by suitable toxicological methods such as the analysis of the chemical composition as well as assessment of detrimental effects in animal and in vitro studies. In human (clinical) studies, the NTP-related exposure to toxicants and early biological effects can be assessed by the determination of suitable biomarkers. In this review, the suitability of established and newly developed biomarkers of biological effect (BOBEs) for the indicated purpose is evaluated according to five criteria, including the association to diseases, reported difference in BOBE levels between smokers and non-smokers, dose-response relationships, reversibility and kinetics after smoking cessation. Furthermore, the effect size and the resulting sample size required in clinical studies were estimated and considered in the BOBE evaluation process. It is concluded that the rating process presented is useful for selecting BOBEs suitable for risk evaluation of NTPs in clinical and other human studies. Copyright © 2018 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Meunier, Benjamin; Cordier, Francoise
2008-01-01
The present study here investigated the role of the causal status of features and feature type in biological categorizations by young children. Study 1 showed that 5-year-olds are more strongly influenced by causal features than effect features. 4-year-olds exhibit no such tendency. There, therefore, appears to be a conceptual change between the…
ERIC Educational Resources Information Center
Zaitchik, Deborah; Iqbal, Yeshim; Carey, Susan
2014-01-01
There is substantial variance in the age at which children construct and deploy their first explicit theory of biology. This study tests the hypothesis that this variance is due, at least in part, to individual differences in their executive function (EF) abilities. A group of 79 boys and girls aged 5-7 years (with a mean age of 6½ years) were…
NASA Astrophysics Data System (ADS)
Kelly, Cynthia
This study examined the impact of different types of text on student achievement in elementary school science. Gender was also examined to see if the type of text passage read had any differential effect on boys' and girls' achievement. This study was a pretest/posttest/retention test design. Eighty-four fourth grade students from a public charter elementary school in South Florida were randomly assigned a passage from a physical science textbook, a physical science nonfiction trade book, a physical science fiction trade book, a biological science textbook or a biological science nonfiction trade book. Results in the physical science content area revealed that students in the textbook passage group had higher posttest and retention test results than students in the nonfiction and fiction trade book passage groups. There was no difference on the posttest results of students in the biological science textbook and nonfiction trade book passage groups. Students in the biological science textbook passage group had higher retention results than students in the biological science nonfiction passage group. Gender results in the physical science content area revealed that boys had a higher retention score than girls in the fiction trade book passage group. There were no gender achievement differences as a result of the text passage read in the biological science content area. It was concluded that no definitive answer as to the efficacy of textbooks versus trade books was possible based upon results of the study. Recommendations for future research include examining the effects of different types of texts in conjunction with other authentic teaching methods.
Roy, Raktim; Shilpa, P Phani; Bagh, Sangram
2016-09-01
Bacteria are important organisms for space missions due to their increased pathogenesis in microgravity that poses risks to the health of astronauts and for projected synthetic biology applications at the space station. We understand little about the effect, at the molecular systems level, of microgravity on bacteria, despite their significant incidence. In this study, we proposed a systems biology pipeline and performed an analysis on published gene expression data sets from multiple seminal studies on Pseudomonas aeruginosa and Salmonella enterica serovar Typhimurium under spaceflight and simulated microgravity conditions. By applying gene set enrichment analysis on the global gene expression data, we directly identified a large number of new, statistically significant cellular and metabolic pathways involved in response to microgravity. Alteration of metabolic pathways in microgravity has rarely been reported before, whereas in this analysis metabolic pathways are prevalent. Several of those pathways were found to be common across studies and species, indicating a common cellular response in microgravity. We clustered genes based on their expression patterns using consensus non-negative matrix factorization. The genes from different mathematically stable clusters showed protein-protein association networks with distinct biological functions, suggesting the plausible functional or regulatory network motifs in response to microgravity. The newly identified pathways and networks showed connection with increased survival of pathogens within macrophages, virulence, and antibiotic resistance in microgravity. Our work establishes a systems biology pipeline and provides an integrated insight into the effect of microgravity at the molecular systems level. Systems biology-Microgravity-Pathways and networks-Bacteria. Astrobiology 16, 677-689.
Vickers, Adrian D.; Ainsworth, Claire; Mody, Reema; Bergman, Annika; Ling, Caroline S.; Medjedovic, Jasmina; Smyth, Michael
2016-01-01
Background Biological therapies are increasingly used to treat ulcerative colitis (UC). Aim To compare the efficacy of biologics in adults with moderately-to-severely active UC, stratified by prior exposure to anti-tumour necrosis factor (anti-TNF) therapy. Methods A systematic literature review was undertaken to identify studies of biologics approved for UC. Network meta-analysis was conducted for endpoints at induction and maintenance. Results Seven studies were included in the meta-analysis of induction treatment for anti-TNF therapy-naïve patients. All biologics were more effective than placebo in inducing clinical response, clinical remission, and mucosal healing. Infliximab demonstrated a statistically significant improvement over adalimumab in clinical response (odds ratio [OR] [95% credible interval (CrI)]: 2.19 [1.35–3.55]), clinical remission (OR [95% CrI]: 2.81 [1.49–5.49]), and mucosal healing (OR [95% CrI]: 2.23 [1.21–4.14]); there were no other significant differences between biologics for induction efficacy. Five studies were included in the meta-analysis of maintenance treatment, two studies rerandomised responder patients at end of induction, and three followed the same patients ‘straight through’. To account for design differences, the number of responders at end of induction was assumed to be equivalent to the number rerandomised. Vedolizumab showed significantly different durable clinical response from comparators (OR [95% CrI] infliximab 3.18 [1.14–9.20], golimumab 2.33 [1.04–5.41], and adalimumab 3.96 [1.67–9.84]). In anti-TNF therapy-experienced patients, only vedolizumab and adalimumab could be compared. At induction, no significant differences in efficacy were seen. During maintenance, vedolizumab showed significantly improved rates of mucosal healing versus adalimumab (OR [95% CrI]: 6.72 [1.36–41.0]). Conclusions This study expands the understanding of comparative efficacies of biologic treatments for UC, encompassing outcomes and populations not previously studied. All biologic treatments were effective for UC during induction. Vedolizumab demonstrated possible clinical benefits in the maintenance setting versus all comparators, irrespective of prior anti-TNF exposure and after adjusting for differences in study design. PMID:27776175
Marital quality and health: A meta-analytic review
Robles, Theodore F.; Slatcher, Richard B.; Trombello, Joseph M.; McGinn, Meghan M.
2013-01-01
This meta-analysis reviewed 126 published empirical articles over the past 50 years describing associations between marital relationship quality and physical health in over 72,000 individuals. Health outcomes included clinical endpoints (objective assessments of function, disease severity, and mortality; subjective health assessments) and surrogate endpoints (biological markers that substitute for clinical endpoints, such as blood pressure). Biological mediators included cardiovascular reactivity and hypothalamic-pituitary-adrenal axis activity. Greater marital quality was related to better health, with mean effect sizes from r = .07 to .21, including lower risk of mortality, r = .11, and lower cardiovascular reactivity during marital conflict, r = −.13, but not daily cortisol slopes or cortisol reactivity during conflict. The small effect sizes were similar in magnitude to previously found associations between health behaviors (e.g., diet) and health outcomes. Effect sizes for a small subset of clinical outcomes were susceptible to publication bias. In some studies, effect sizes remained significant after accounting for confounds such as age and socioeconomic status. Studies with a higher proportion of women in the sample demonstrated larger effect sizes, but we found little evidence for gender differences in studies that explicitly tested gender moderation, with the exception of surrogate endpoint studies. Our conclusions are limited by small numbers of studies for specific health outcomes, unexplained heterogeneity, and designs that limit causal inferences. These findings highlight the need to explicitly test affective, health behavior, and biological mechanisms in future research, and focus on moderating factors that may alter the relationship between marital quality and health. PMID:23527470
Biology and Beyond: Domain Specificity in a Broader Developmental Context
ERIC Educational Resources Information Center
Keil, Frank C.
2007-01-01
The assumption of domain specificity has been invaluable to the study of the emergence of biological thought in young children. Yet, domains of thought must be understood within a broader context that explains how those domains relate to the surrounding cultures, to different kinds of cognitive constraints, to framing effects, to abilities to…
ERIC Educational Resources Information Center
Ha, Minsu; Nehm, Ross H.; Urban-Lurain, Mark; Merrill, John E.
2011-01-01
Our study explored the prospects and limitations of using machine-learning software to score introductory biology students' written explanations of evolutionary change. We investigated three research questions: 1) Do scoring models built using student responses at one university function effectively at another university? 2) How many human-scored…
ERIC Educational Resources Information Center
Vebrianto, Rian; Rery, Radjawaly Usman; Osman, Kamisah
2016-01-01
This research was conducted to investigate the effectiveness of BIOMIND portal in enhancing students' 21st century skills and overcoming their misconceptions in Biology subject. 118 Indonesian high school students were involved in this quasi-experimental study. The experimental group underwent learning experiences using BIOMIND portal whereas the…
Chemical combination effects predict connectivity in biological systems
Lehár, Joseph; Zimmermann, Grant R; Krueger, Andrew S; Molnar, Raymond A; Ledell, Jebediah T; Heilbut, Adrian M; Short, Glenn F; Giusti, Leanne C; Nolan, Garry P; Magid, Omar A; Lee, Margaret S; Borisy, Alexis A; Stockwell, Brent R; Keith, Curtis T
2007-01-01
Efforts to construct therapeutically useful models of biological systems require large and diverse sets of data on functional connections between their components. Here we show that cellular responses to combinations of chemicals reveal how their biological targets are connected. Simulations of pathways with pairs of inhibitors at varying doses predict distinct response surface shapes that are reproduced in a yeast experiment, with further support from a larger screen using human tumour cells. The response morphology yields detailed connectivity constraints between nearby targets, and synergy profiles across many combinations show relatedness between targets in the whole network. Constraints from chemical combinations complement genetic studies, because they probe different cellular components and can be applied to disease models that are not amenable to mutagenesis. Chemical probes also offer increased flexibility, as they can be continuously dosed, temporally controlled, and readily combined. After extending this initial study to cover a wider range of combination effects and pathway topologies, chemical combinations may be used to refine network models or to identify novel targets. This response surface methodology may even apply to non-biological systems where responses to targeted perturbations can be measured. PMID:17332758
Rux, Erika M.; Flaspohler, John A.
2007-01-01
Contemporary undergraduates in the biological sciences have unprecedented access to scientific information. Although many of these students may be savvy technologists, studies from the field of library and information science consistently show that undergraduates often struggle to locate, evaluate, and use high-quality, reputable sources of information. This study demonstrates the efficacy and pedagogical value of a collaborative teaching approach designed to enhance information literacy competencies among undergraduate biology majors who must write a formal scientific research paper. We rely on the triangulation of assessment data to determine the effectiveness of a substantial research paper project completed by students enrolled in an upper-level biology course. After enhancing library-based instruction, adding an annotated bibliography requirement, and using multiple assessment techniques, we show fundamental improvements in students' library research abilities. Ultimately, these improvements make it possible for students to more independently and effectively complete this challenging science-based writing assignment. We document critical information literacy advances in several key areas: student source-type use, annotated bibliography enhancement, plagiarism reduction, as well as student and faculty/librarian satisfaction. PMID:18056306
Alleyne-Green, Binta; Grinnell-Davis, Claudette; Clark, Trenette T; Quinn, Camille R; Cryer-Coupet, Qiana R
2016-03-01
This study explored the relationship between the involvement of biological fathers and the sexual risk behaviors and dating violence/victimization and/or perpetration of adolescent girls. The data used in this cross-sectional analysis were drawn from the second wave of the public release of the National Longitudinal Study of Adolescent Health. Only adolescents who reported their biological sex as female, reported a history of being sexually active, and reported having a romantic partner in the previous 18 months were selected (N = 879). This study focused on overall positive sexual behaviors and use of contraception. Structural equation modeling (SEM) was used to best utilize capacity for dealing with latent variables and to test for possible mediation effects. The analysis demonstrated main effects of dating violence and father involvement on sexual behaviors. The more dating violence an adolescent girl experiences, the less likely she is to engage in healthy sexual behaviors. Likewise, the more involvement the biological father has in a woman's life, the more likely she is to engage in positive sexual behaviors. Perceived father involvement was associated with risky sexual behaviors among sexually experienced adolescent girls. Dating violence was directly associated with risky sexual behaviors among sexually experienced adolescent girls, particularly non-White girls. Future studies should use longitudinal models and test theoretically and empirically guided potential mediators. Future studies should also consider father figures such as step-fathers and grandfathers in addition to biological fathers, as having a father figure may be a stronger predictor of adolescent sexual behaviors than having a biological connection. © The Author(s) 2014.
Kuroda, Takeshi; Tanabe, Naohito; Nozawa, Yukiko; Sato, Hiroe; Nakatsue, Takeshi; Kobayashi, Daisuke; Wada, Yoko; Saeki, Takako; Nakano, Masaaki; Narita, Ichiei
Objective Our objective was to examine the safety and effects of therapy with biologics on the prognosis of rheumatoid arthritis (RA) patients with reactive amyloid A (AA) amyloidosis on hemodialysis (HD). Methods Twenty-eight patients with an established diagnosis of reactive AA amyloidosis participated in the study. The survival was calculated from the date of HD initiation until the time of death, or up to end of June 2015 for the patients who were still alive. HD initiation was according to the program of HD initiation for systemic amyloidosis patients associated with RA. Results Ten patients had been treated with biologics before HD initiation for a mean of 28.2 months (biologic group), while 18 had not (non-biologic group). HD was initiated in patients with similar characteristics except for the tender joint count, swollen joint count, and disease activity score (DAS)28-C-reactive protein (CRP). History of biologics showed that etanercept was frequently used for 8 patients as the first biologic. There was no significant difference in the mortality rate according to a Kaplan-Meier analysis (p=0.939) and or associated risk of death in an age-adjusted Cox proportional hazards model (p=0.758) between both groups. Infections were significantly more frequent causes of death in the biologic group than in the non-biologic group (p=0.021). However, treatment with biologics improved the DAS28-CRP score (p=0.004). Conclusion Under the limited conditions of AA amyloidosis treated with HD, the use of biologics might affect infection and thus may not improve the prognosis. Strict infection control is necessary for the use of biologics with HD to improve the prognosis.
Kuroda, Takeshi; Tanabe, Naohito; Nozawa, Yukiko; Sato, Hiroe; Nakatsue, Takeshi; Kobayashi, Daisuke; Wada, Yoko; Saeki, Takako; Nakano, Masaaki; Narita, Ichiei
2016-01-01
Objective Our objective was to examine the safety and effects of therapy with biologics on the prognosis of rheumatoid arthritis (RA) patients with reactive amyloid A (AA) amyloidosis on hemodialysis (HD). Methods Twenty-eight patients with an established diagnosis of reactive AA amyloidosis participated in the study. The survival was calculated from the date of HD initiation until the time of death, or up to end of June 2015 for the patients who were still alive. HD initiation was according to the program of HD initiation for systemic amyloidosis patients associated with RA. Results Ten patients had been treated with biologics before HD initiation for a mean of 28.2 months (biologic group), while 18 had not (non-biologic group). HD was initiated in patients with similar characteristics except for the tender joint count, swollen joint count, and disease activity score (DAS)28-C-reactive protein (CRP). History of biologics showed that etanercept was frequently used for 8 patients as the first biologic. There was no significant difference in the mortality rate according to a Kaplan-Meier analysis (p=0.939) and or associated risk of death in an age-adjusted Cox proportional hazards model (p=0.758) between both groups. Infections were significantly more frequent causes of death in the biologic group than in the non-biologic group (p=0.021). However, treatment with biologics improved the DAS28-CRP score (p=0.004). Conclusion Under the limited conditions of AA amyloidosis treated with HD, the use of biologics might affect infection and thus may not improve the prognosis. Strict infection control is necessary for the use of biologics with HD to improve the prognosis. PMID:27725536
Martinez, Bibiana; Dailey, Francis; Almario, Christopher V; Keller, Michelle S; Desai, Mansee; Dupuy, Taylor; Mosadeghi, Sasan; Whitman, Cynthia; Lasch, Karen; Ursos, Lyann; Spiegel, Brennan M R
2017-07-01
Few studies have examined inflammatory bowel disease (IBD) patients' knowledge and understanding of biologic therapies outside traditional surveys. Here, we used social media data to examine IBD patients' understanding of the risks and benefits associated with biologic therapies and how this affects decision-making. We collected posts from Twitter and e-forum discussions from >3000 social media sites posted between June 27, 2012 and June 27, 2015. Guided by natural language processing, we identified posts with specific IBD keywords that discussed the risks and/or benefits of biologics. We then manually coded the resulting posts and performed qualitative analysis using ATLAS.ti software. A hierarchical coding structure was developed based on the keyword list and relevant themes were identified through manual coding. We examined 1598 IBD-related posts, of which 452 (28.3%) centered on the risks and/or benefits of biologics. There were 5 main themes: negative experiences and concerns with biologics (n = 247; 54.6%), decision-making surrounding biologic use (n = 169; 37.4%), positive experiences with biologics (n = 168; 37.2%), information seeking from peers (n = 125; 27.7%), and cost (n = 38; 8.4%). Posts describing negative experiences primarily commented on side effects from biologics, concerns about potential side effects and increased cancer risk, and pregnancy safety concerns. Posts on decision-making focused on nonbiologic treatment options, hesitation to initiate biologics, and concerns about changing or discontinuing regimens. Social media reveals a wide range of themes governing patients' experience and choice with IBD biologics. The complexity of navigating their risk-benefit profiles suggests merit in creating online tailored decision tools to support IBD patients' decision-making with biologic therapies.
Participation in a coteaching classroom and students' end-of-course test scores
NASA Astrophysics Data System (ADS)
Debro, Ava
General education students consistently perform poorly on standardized science tests. Coteaching is an instructional strategy that improves the achievement of students with disabilities, but very little research exists that examines the effect of coteaching classrooms on the performance of general education students. The purpose of this study was to examine the effect of coteaching classrooms on the performance of general education students. The constructivist theoretical framework provided the foundation for this research. The research question examined the effect that coteaching classrooms had on the performance of general education biology students. In this experimental design utilizing a posttest-only control group, coteaching instructional strategy was the treatment, and student performance was measured using the scores obtained from the biology end-of-course test. Data for this study was analyzed using an independent t-test. The results of this study revealed that there was not a statistically significant difference in student performance on the biology end-of-course test between treatment and control groups. More than half of the general education biology students enrolled in coteaching classrooms failed the end-of-course test. Researchers may use this study as a catalyst to examine other instructional practices that may improve student performance in science courses. The results of this study may be used to persuade coteachers of the importance of attending frequent professional development opportunities that examine a variety of coteaching instructional strategies. Improving the performance of general education students in science may improve standardized test scores, afford more students the opportunity to attend college, and ensure that students are able to compete on a global level.
Müller, Christian; Schillert, Arne; Röthemeier, Caroline; Trégouët, David-Alexandre; Proust, Carole; Binder, Harald; Pfeiffer, Norbert; Beutel, Manfred; Lackner, Karl J.; Schnabel, Renate B.; Tiret, Laurence; Wild, Philipp S.; Blankenberg, Stefan
2016-01-01
Technical variation plays an important role in microarray-based gene expression studies, and batch effects explain a large proportion of this noise. It is therefore mandatory to eliminate technical variation while maintaining biological variability. Several strategies have been proposed for the removal of batch effects, although they have not been evaluated in large-scale longitudinal gene expression data. In this study, we aimed at identifying a suitable method for batch effect removal in a large study of microarray-based longitudinal gene expression. Monocytic gene expression was measured in 1092 participants of the Gutenberg Health Study at baseline and 5-year follow up. Replicates of selected samples were measured at both time points to identify technical variability. Deming regression, Passing-Bablok regression, linear mixed models, non-linear models as well as ReplicateRUV and ComBat were applied to eliminate batch effects between replicates. In a second step, quantile normalization prior to batch effect correction was performed for each method. Technical variation between batches was evaluated by principal component analysis. Associations between body mass index and transcriptomes were calculated before and after batch removal. Results from association analyses were compared to evaluate maintenance of biological variability. Quantile normalization, separately performed in each batch, combined with ComBat successfully reduced batch effects and maintained biological variability. ReplicateRUV performed perfectly in the replicate data subset of the study, but failed when applied to all samples. All other methods did not substantially reduce batch effects in the replicate data subset. Quantile normalization plus ComBat appears to be a valuable approach for batch correction in longitudinal gene expression data. PMID:27272489
A study on the effects of relativistic heavy charged particles on the cellular microenvironment
NASA Astrophysics Data System (ADS)
Costes, Sylvain Vincent
This study was done under the National Aeronautics Space Administration (NASA) effort to assess the effect of cosmic radiation on astronauts during a 3 year mission to Mars. Carcinogenesis is known to be induced more efficiently by cosmic radiation. Our attention was turned towards one of the most efficient cosmic particles in inducing cancer, relativistic Fe, and focused in assessing its effect on the cellular microenvironment (ECM). Previous observations on mammary glands were showing irregularities in the immunoreactivity of the ECM protein laminin one hour after whole body irradiation with 1GeV/amu Fe ions for a dose of 0.8 Gy. This effect was not observed after 5 Gy γ-rays exposure. The rapidity of such a change suggested that the effect might be due to a physical event specific to relativistic charged particles (HZE), rather than a biological event. Our study showed that this effect is actually a complex and rapid response of the microenvironment to highly ionizing radiation. It involves a fast disruption of the basement membrane of the ECM induced by the highly localized ionization and reactive oxygen formation around the track of the Fe ion. This disruption triggers further chemical and biological responses involved in the remodeling of the laminin network in the basement membrane. A metalloproteinase is suspected to be the intermediate protease affecting laminin. The HZE effect on the microenvironment was seen in both mouse mammary glands and skin, but the laminin isoforms sensitive to Fe ions were different for each organ, with a clear disruption of laminin-1 network in skin and of laminin-5 in mammary glands. In addition, the laminin receptor integrins seem to be involved in this mechanism, but its contribution is unclear at this point. Finally, such studies suggest a shift from the concept of relative biological effectiveness (RBE) used in classical radiation biology since the effect is only seen with HZE at viable whole body doses. In addition, this study shows that the use of an RBE for a microscopic biological endpoint, such as the disruption of the basement membrane, is irrelevant considering the complexity of such mechanism that is unique for very similar targets (i.e. basement membrane from the mammary glands versus skin of the same mouse). In conclusion, our studies show that HZE-irradiation elicits distinct microenvironment changes when compared to sparsely ionizing radiation. Laminin is an important mediator of epithelial integrity and serves as a barrier to invasive growth. A hallmark of cancer is the ability to destroy and traverse the basement membrane. Radiation induced changes in basement membrane integrity might thus promote neoplastic progression.
Albertson, L K; Allen, D C
2015-05-01
An increasing number of studies have emphasized the need to bridge the disciplines of ecology and geomorphology. A large number of case studies show that organisms can affect erosion, but a comprehensive understanding of biological impacts on sediment transport conditions is still lacking. We use meta-analysis to synthesize published data to quantify the effects of the abundance, body size, and behavior of organisms on erosion in streams. We also explore the influence of current velocity, discharge, and sediment grain size on the strength of biotic effects on erosion. We found that species that both increase erosion (destabilizers) and decrease erosion (stabilizers) can alter incipient sediment motion, sediment suspension, and sediment deposition above control conditions in which the organisms were not present. When abundance was directly manipulated, these biotic effects were consistently stronger in the higher abundance treatment, increasing effect sizes by 66%. Per capita effect size and per capita biomass were also consistently positively correlated. Fish and crustaceans were the most studied organisms, but aquatic insects increased the effect size by 550 x compared to other types of organisms after accounting for biomass. In streams with lower discharge and smaller grain sizes, we consistently found stronger biotic effects. Taken collectively, these findings provide synthetic evidence that biology can affect physical processes in streams, and these effects can be mediated by hydraulic energy. We suggest that future studies focus on understudied organisms, such as biofilms, conducting experiments under realistic field conditions, and developing hypotheses for the effect of biology on erosion and velocity currents in the context of restoration to better understand the forces that mediate physical disturbances in stream ecosystems.
Psychological Stress and Mitochondria: A Systematic Review.
Picard, Martin; McEwen, Bruce S
Mitochondria are multifunctional life-sustaining organelles that represent a potential intersection point between psychosocial experiences and biological stress responses. This article provides a systematic review of the effects of psychological stress on mitochondrial structure and function. A systematic review of the literature investigating the effects of psychological stress on mitochondrial function was conducted. The review focused on experimentally controlled studies allowing us to draw causal inference about the effect of induced psychological stress on mitochondria. A total of 23 studies met the inclusion criteria. All studies involved male laboratory animals, and most demonstrated that acute and chronic stressors influenced specific facets of mitochondrial function, particularly within the brain. Nineteen studies showed significant adverse effects of psychological stress on mitochondria and four found increases in function or size after stress. In humans, only six observational studies were available, none with experimental designs, and most only measured biological markers that do not directly reflect mitochondrial function, such as mitochondrial DNA copy number. Overall, evidence supports the notion that acute and chronic stressors influence various aspects of mitochondrial biology, and that chronic stress exposure can lead to molecular and functional recalibrations among mitochondria. Limitations of current animal and human studies are discussed. Maladaptive mitochondrial changes that characterize this subcellular state of stress are termed mitochondrial allostatic load. Prospective studies with sensitive measures of specific mitochondrial outcomes will be needed to establish the link between psychosocial stressors, emotional states, the resulting neuroendocrine and immune processes, and mitochondrial energetics relevant to mind-body research in humans.
Biological Research in Support of Project MILES.
1981-07-01
E S BEATRICE UNCLASSIFIED LAIR - 9 6 N too INSTITUTE REPORT NO. 96’ 0 BIOLOGICAL RESEARCH IN SUPPORT OF PROJECT MILES DA Via . LUND, aS BRUCE E...ACCESSION NO. 3’ R ENTS CATALOG NUMBER LAIR Drp-Nr96 _ _ _ _ _ _ S5T, F EnI r~,.. VERED Biological Research in Support of Project MILES )n. Anual .je 7...experiments at other agencies did not confirm the LAIR observation of retinal clouding. The ocular effects were studied of lasers operating at infrared
Biological activity of Stevia rebaudiana Bertoni and their relationship to health.
Ruiz-Ruiz, Jorge Carlos; Moguel-Ordoñez, Yolanda Beatriz; Segura-Campos, Maira Rubi
2017-08-13
The leaves of Stevia rebaudiana Bertoni has nutrients and phytochemicals, which make it an adequate source for the extraction and production of functional food ingredients. Preclinical and clinical studies suggest therapeutic and pharmacological applications for stevia and their extracts because they are not toxic and exhibit several biological activities. This review presents the biological activity of Stevia rebaudiana Bertoni and their relationship to antidiabetic, anticariogenic, antioxidant, hypotensive, antihypertensive, antimicrobial, anti-inflammatory and antitumor activities. Consumption and adverse effects were also reviewed.
BioMaPS: A Roadmap for Success
Fister, K. Renee
2010-01-01
The manuscript outlines the impact that our National Science Foundation Interdisciplinary Training for Undergraduates in Biological and Mathematical Sciences program, BioMaPS, has had on the students and faculty at Murray State University. This interdisciplinary program teams mathematics and biology undergraduate students with mathematics and biology faculty and has produced research insights and curriculum developments at the intersection of these two disciplines. The goals, structure, achievements, and curriculum initiatives are described in relation to the effects they have had to enhance the study of biomathematics. PMID:20810948
The office is supporting the continued funding of National Academy of Sciences Study to update our understanding of the effects of low-level radiation. In particular, this study, entitled the Biological Effects of Ionizing Radiation VII, will draw upon the most recent data avail...
Vilar, Santiago; Hripcsak, George
2017-07-01
Explosion of the availability of big data sources along with the development in computational methods provides a useful framework to study drugs' actions, such as interactions with pharmacological targets and off-targets. Databases related to protein interactions, adverse effects and genomic profiles are available to be used for the construction of computational models. In this article, we focus on the description of biological profiles for drugs that can be used as a system to compare similarity and create methods to predict and analyze drugs' actions. We highlight profiles constructed with different biological data, such as target-protein interactions, gene expression measurements, adverse effects and disease profiles. We focus on the discovery of new targets or pathways for drugs already in the pharmaceutical market, also called drug repurposing, in the interaction with off-targets responsible for adverse reactions and in drug-drug interaction analysis. The current and future applications, strengths and challenges facing all these methods are also discussed. Biological profiles or signatures are an important source of data generation to deeply analyze biological actions with important implications in drug-related studies. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Rapp, Jennifer L.; Reilly, Pamela A.
2017-11-14
BackgroundThe U.S. Geological Survey (USGS), in cooperation with the Virginia Department of Environmental Quality (DEQ), reviewed a previously compiled set of linear regression models to assess their utility in defining the response of the aquatic biological community to streamflow depletion.As part of the 2012 Virginia Healthy Watersheds Initiative (HWI) study conducted by Tetra Tech, Inc., for the U.S. Environmental Protection Agency (EPA) and Virginia DEQ, a database with computed values of 72 hydrologic metrics, or indicators of hydrologic alteration (IHA), 37 fish metrics, and 64 benthic invertebrate metrics was compiled and quality assured. Hydrologic alteration was represented by simulation of streamflow record for a pre-water-withdrawal condition (baseline) without dams or developed land, compared to the simulated recent-flow condition (2008 withdrawal simulation) including dams and altered landscape to calculate a percent alteration of flow. Biological samples representing the existing populations represent a range of alteration in the biological community today.For this study, all 72 IHA metrics, which included more than 7,272 linear regression models, were considered. This extensive dataset provided the opportunity for hypothesis testing and prioritization of flow-ecology relations that have the potential to explain the effect(s) of hydrologic alteration on biological metrics in Virginia streams.
Mao, Jie; Liu, Shujun; Ai, Min; Wang, Zhuo; Wang, Duowei; Li, Xianjing; Hu, Kaiyong; Gao, Xinghua; Yang, Yong
2017-03-20
Melittin is the main effective component of bee venom and has extensive biological functions; however, serious side effects have restricted its clinical application. Preclinical and clinical studies showed that the main adverse events were allergic reaction and pain at the administration site. To decrease the toxicity, we prepared melittin nano-liposomes by encapsulating melittin with poloxamer 188 and explored the inhibitory activities on liver cancer together with biological safety. Here, we showed that melittin nano-liposomes significantly inhibited the survival of hepatocellular carcinoma (HCC) cells in vitro and prominently suppressed the growth of subcutaneous and orthotopic HCC transplantation tumors in vivo. It was important that it induced less inflammation and allergy in mice compared with melittin. Overall, melittin nano-liposomes would have a better application in HCC therapy due to its significant anti-tumor activity and better biological safety.
Papageorgiou, Iraklis; Abberton, Thomas; Fuller, Martin; Tipper, Joanne L.; Fisher, John; Ingham, Eileen
2014-01-01
Medical interventions for the treatment of spinal disc degeneration include total disc replacement and fusion devices. There are, however, concerns regarding the generation of wear particles by these devices, the majority of which are in the nanometre sized range with the potential to cause adverse biological effects in the surrounding tissues. The aims of this study were to develop an organ culture model of the porcine dura mater and to investigate the biological effects of CoCr nanoparticles in this model. A range of histological techniques were used to analyse the structure of the tissue in the organ culture. The biological effects of the CoCr wear particles and the subsequent structural changes were assessed using tissue viability assays, cytokine assays, histology, immunohistochemistry, and TEM imaging. The physiological structure of the dura mater remained unchanged during the seven days of in vitro culture. There was no significant loss of cell viability. After exposure of the organ culture to CoCr nanoparticles, there was significant loosening of the epithelial layer, as well as the underlying collagen matrix. TEM imaging confirmed these structural alterations. These structural alterations were attributed to the production of MMP-1, -3, -9, -13, and TIMP-1. ELISA analysis revealed that there was significant release of cytokines including IL-8, IL-6, TNF-α, ECP and also the matrix protein, tenascin-C. This study suggested that CoCr nanoparticles did not cause cytotoxicity in the dura mater but they caused significant alterations to its structural integrity that could lead to significant secondary effects due to nanoparticle penetration, such as inflammation to the local neural tissue. PMID:28344233
Bolton, P E; Rollins, L A; Brazill-Boast, J; Kim, K-W; Burke, T; Griffith, S C
2017-01-01
In socially monogamous species, individuals can use extra-pair paternity and offspring sex allocation as adaptive strategies to ameliorate costs of genetic incompatibility with their partner. Previous studies on domesticated Gouldian finches (Erythrura gouldiae) demonstrated a genetic incompatibility between head colour morphs, the effects of which are more severe in female offspring. Domesticated females use differential sex allocation, and extra-pair paternity with males of compatible head colour, to reduce fitness costs associated with incompatibility in mixed-morph pairings. However, laboratory studies are an oversimplification of the complex ecological factors experienced in the wild and may only reflect the biology of a domesticated species. This study aimed to examine the patterns of parentage and sex ratio bias with respect to colour pairing combinations in a wild population of the Gouldian finch. We utilized a novel PCR assay that allowed us to genotype the morph of offspring before the morph phenotype develops and to explore bias in morph paternity and selection at the nest. Contrary to previous findings in the laboratory, we found no effect of pairing combinations on patterns of extra-pair paternity, offspring sex ratio or selection on morphs in nestlings. In the wild, the effect of morph incompatibility is likely much smaller, or absent, than was observed in the domesticated birds. Furthermore, the previously studied domesticated population is genetically differentiated from the wild population, consistent with the effects of domestication. It is possible that the domestication process fostered the emergence (or enhancement) of incompatibility between colour morphs previously demonstrated in the laboratory. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.
A decontamination study of simulated chemical and biological agents
NASA Astrophysics Data System (ADS)
Uhm, Han S.; Lee, Han Y.; Hong, Yong C.; Shin, Dong H.; Park, Yun H.; Hong, Yi F.; Lee, Chong K.
2007-07-01
A comprehensive decontamination scheme of the chemical and biological agents, including airborne agents and surface contaminating agents, is presented. When a chemical and biological attack occurs, it is critical to decontaminate facilities or equipments to an acceptable level in a very short time. The plasma flame presented here may provide a rapid and effective elimination of toxic substances in the interior air in isolated spaces. As an example, a reaction chamber, with the dimensions of a 22cm diameter and 30cm length, purifies air with an airflow rate of 5000l/min contaminated with toluene, the simulated chemical agent, and soot from a diesel engine, the simulated aerosol for biological agents. Although the airborne agents in an isolated space are eliminated to an acceptable level by the plasma flame, the decontamination of the chemical and biological agents cannot be completed without cleaning surfaces of the facilities. A simulated sterilization study of micro-organisms was carried out using the electrolyzed ozone water. The electrolyzed ozone water very effectively kills endospores of Bacillus atrophaeus (ATCC 9372) within 3min. The electrolyzed ozone water also kills the vegetative micro-organisms, fungi, and virus. The electrolyzed ozone water, after the decontamination process, disintegrates into ordinary water and oxygen without any trace of harmful materials to the environment.
Wojnarowicz, Pola; Ogunlaja, Olumuyiwa O; Xia, Chen; Parker, Wayne J; Helbing, Caren C
2013-12-03
Improved endocrine disrupting compound (EDC) removal is desirable in municipal wastewater treatment plants (MWWTPs) although increased removal does not always translate into reduced biological activity. Suitable methods for determining reduction in biological activity of effluents are needed. In order to determine which MWWTPs are the most effective at removing EDC activities, we operated three configurations of pilot sized biological reactors (conventional activated sludge, CAS; nitrifying activated sludge, NAS; and biological nutrient removal, BNR) receiving the same influent under simulated winter and summer conditions. As frogs are model organisms for the study of thyroid hormone (TH) action, we used the North American species Rana catesbeiana in a cultured tadpole tailfin (C-fin) assay to compare the effluents. TH-responsive (thyroid hormone receptors alpha (thra) and beta (thrb)) and stress-responsive (superoxide dismutase, catalase, and heat shock protein 30) mRNA transcript levels were examined. Effluents infrequently perturbed stress-responsive transcript abundance but thra/thrb levels were significantly altered. In winter conditions, CAS caused frequent TH perturbations while BNR caused none. In summer conditions, however, BNR caused substantial TH perturbations while CAS caused few. Our findings contrast other studies of seasonal variations of EDC removal and accentuate the importance of utilizing appropriate biological readouts for assessing EDC activities.
The influence of rearing order on personality development within two adoption cohorts.
Beer, J M; Horn, J M
2000-08-01
There is an extensive literature on the relationship between birth order and psychological traits, but no previous study has investigated the influence of ordinal position on personality development within adoptive siblings. Such a design is important because it effectively separates the effects of biological birth order and rearing order. Here we report data from two adoption cohorts in which subjects were biological first-borns reared in various ordinal positions. Data were analyzed with reference to Sulloway's (1996) evolutionarily based sibling rivalry theory of birth order effects. Between- and within-family analyses indicated that rearing order's influence on personality was very weak. The only clear difference was for conscientiousness, on which first-reared siblings scored higher. We draw possible implications for Sulloway's theory and speculate upon an alternative, prenatal biological process that may produce birth order differences.
Ujváry, István; Hanuš, Lumír
2016-01-01
Abstract Cannabidiol (CBD), the main nonpsychoactive constituent of Cannabis sativa, has shown a wide range of therapeutically promising pharmacological effects either as a sole drug or in combination with other drugs in adjunctive therapy. However, the targets involved in the therapeutic effects of CBD appear to be elusive. Furthermore, scarce information is available on the biological activity of its human metabolites which, when formed in pharmacologically relevant concentration, might contribute to or even account for the observed therapeutic effects. The present overview summarizes our current knowledge on the pharmacokinetics and metabolic fate of CBD in humans, reviews studies on the biological activity of CBD metabolites either in vitro or in vivo, and discusses relevant drug–drug interactions. To facilitate further research in the area, the reported syntheses of CBD metabolites are also catalogued. PMID:28861484
Ujváry, István; Hanuš, Lumír
2016-01-01
Cannabidiol (CBD), the main nonpsychoactive constituent of Cannabis sativa , has shown a wide range of therapeutically promising pharmacological effects either as a sole drug or in combination with other drugs in adjunctive therapy. However, the targets involved in the therapeutic effects of CBD appear to be elusive. Furthermore, scarce information is available on the biological activity of its human metabolites which, when formed in pharmacologically relevant concentration, might contribute to or even account for the observed therapeutic effects. The present overview summarizes our current knowledge on the pharmacokinetics and metabolic fate of CBD in humans, reviews studies on the biological activity of CBD metabolites either in vitro or in vivo , and discusses relevant drug-drug interactions. To facilitate further research in the area, the reported syntheses of CBD metabolites are also catalogued.
Hanhan, O; Orhon, D; Krauth, Kh; Günder, B
2005-01-01
In this study the effect of retention time and rotation speed in the denitrification process in two full-scale rotating biological contactors (RBC) which were operated parallel and fed with municipal wastewater is evaluated. Each rotating biological contactor was covered to prevent oxygen input. The discs were 40% submerged. On the axle of one of the rotating biological contactors lamellas were placed (RBC1). During the experiments the nitrate removal performance of the rotating biological contactor with lamellas was observed to be less than the other (RBC2) since the lamellas caused oxygen diffusion through their movement. The highest nitrate removal observed was 2.06 g/m2.d achieved by a contact time of 28.84 minutes and a recycle flow of 1 l/s. The rotation speed during this set had the constant value of 0.8 min(-1). Nitrate removal efficiency on RBC1 was decreasing with increasing rotation speed. On the rotating biological contactor without lamellas no effect on denitrification could be determined within a speed range from 0.67 to 2.1 min-1. If operated in proper conditions denitrification on RBC is a very suitable alternative for nitrogen removal that can easily fulfil the nutrient limitations in coastal areas due to the rotating biological contactors economical benefits and uncomplicated handling.
NASA Astrophysics Data System (ADS)
Vernós, I.; Carratalá, M.; González-Jurado, J.; Valverde, J. R.; Calleja, M.; Domingo, A.; Vinós, J.; Cervera, M.; Marco, R.
Gravity and radiation are undoubtedly the two major environmental factors altered in space. Gravity is a weak force, which creates a permanent potential field acting on the mass of biological systems and their cellular components, strongly reduced in space flights. Developmental systems, particularly at very early stages, provide the larger cellular compartments known, where the effects of alterations in the size of the gravity vector on living organisms can be more effectively tested. The insects, one of the more highly evolved classes of animals in which early development occurs in a syncytial embryo, are systems particularly well suited to test these effects and the specific developmental mechanisms affected. Furthermore, they share some basic features such as small size, short life cycles, relatively high radio-resistance, etc. and show a diversity of developmental strategies and tempos advantageous in experiments of this type in space. Drosophila melanogaster, the current biological paradigm to study development, with so much genetic and evolutionary background available, is clearly the reference organism for these studies. The current evidence on the effects of the physical parameters altered in space flights on insect development indicate a surprising correlation between effects seen on the fast developing and relatively small Drosophila embryo and the more slowly developing and large Carausius morosus system. In relation to the issue of the importance of developmental and environmental constraints in biological evolution, still the missing link in current evolutionary thinking, insects and space facilities for long-term experiments could provide useful experimental settings where to critically assess how development and evolution may be interconnected. Finally, it has to be pointed out that since there are experimental data indicating a possible synergism between microgravity and space radiation, possible effects of space radiation should be taken into account in the planning and evaluation of experiments designed to test the potential role of microgravity on biological development and evolution.
Vernós, I; Carratalá, M; González-Jurado, J; Valverde, J R; Calleja, M; Domingo, A; Vinós, J; Cervera, M; Marco, R
1989-01-01
Gravity and radiation are undoubtedly the two major environmental factors altered in space. Gravity is a weak force, which creates a permanent potential field acting on the mass of biological systems and their cellular components, strongly reduced in space flights. Developmental systems, particularly at very early stages, provide the larger cellular compartments known, where the effects of alterations in the size of the gravity vector on living organisms can be more effectively tested. The insects, one of the more highly evolved classes of animals in which early development occurs in a syncytial embryo, are systems particularly well suited to test these effects and the specific developmental mechanisms affected. Furthermore, they share some basic features such as small size, short life cycles, relatively high radio-resistance, etc. and show a diversity of developmental strategies and tempos advantageous in experiments of this type in space. Drosophila melanogaster, the current biological paradigm to study development, with so much genetic and evolutionary background available, is clearly the reference organism for these studies. The current evidence on the effects of the physical parameters altered in space flights on insect development indicate a surprising correlation between effects seen on the fast developing and relatively small Drosophila embryo and the more slowly developing and large Carausius morosus system. In relation to the issue of the importance of developmental and environmental constraints in biological evolution, still the missing link in current evolutionary thinking, insects and space facilities for long-term experiments could provide useful experimental settings where to critically assess how development and evolution may be interconnected. Finally, it has to be pointed out that since there are experimental data indicating a possible synergism between microgravity and space radiation, possible effects of space radiation should be taken into account in the planning and evaluation of experiments designed to test the potential role of microgravity on biological developmental and evolution.
Sorensen, Mary A; Parker, David R; Trumble, John T
2009-02-01
Hydroponic greenhouse studies were used to investigate the effect of four anthropogenic pollutants (perchlorate (ClO4(-)), selenium (Se), manganese (Mn), and hexavalent chromium (Cr (VI))) on the biological control agent Diorhabda elongata Brullé. Contaminant concentrations were quantified for experimental Tamarix ramosissima Ledab. plants and D. elongata beetles. Growth of larvae was significantly reduced by Se contamination, but was not affected by the presence of perchlorate, Mn, or Cr (VI). All of the contaminants were transferred from plants to D. elongata beetles. Only Cr (VI) was accumulated at greater levels in beetles than in their food. Because T. ramosissima grows in disturbed areas, acquires salts readily, and utilizes groundwater, this plant is likely to accumulate anthropogenic pollutants in contaminated areas. This study is one of the first to investigate the potential of an anthropogenic pollutant to influence a weed biological control system.
NASA Astrophysics Data System (ADS)
Kara, Yılmaz; Yeşilyurt, Selami
2008-02-01
The purpose of this study was to investigate the effects of tutorial and edutainment design of instructional software programs related to the "cell division" topic on student achievements, misconceptions and attitudes. An experimental research design including the cell division achievement test (CAT), the cell division concept test (CCT) and biology attitude scale (BAS) was applied at the beginning and at the end of the research. After the treatment, general achievement in CAT increased in favor of experimental groups. Instructional software programs also had the positive effect to the awareness of students' understandings to the general functions of mitosis and meiosis. However, the current study revealed that there were still some misconceptions in the experimental groups even after the treatment. It was also noticed that only using edutainment software program significantly changed students' attitudes towards biology.
Microgravity research in plant biological systems: Realizing the potential of molecular biology
NASA Technical Reports Server (NTRS)
Lewis, Norman G.; Ryan, Clarence A.
1993-01-01
The sole all-pervasive feature of the environment that has helped shape, through evolution, all life on Earth is gravity. The near weightlessness of the Space Station Freedom space environment allows gravitational effects to be essentially uncoupled, thus providing an unprecedented opportunity to manipulate, systematically dissect, study, and exploit the role of gravity in the growth and development of all life forms. New and exciting opportunities are now available to utilize molecular biological and biochemical approaches to study the effects of microgravity on living organisms. By careful experimentation, we can determine how gravity perception occurs, how the resulting signals are produced and transduced, and how or if tissue-specific differences in gene expression occur. Microgravity research can provide unique new approaches to further our basic understanding of development and metabolic processes of cells and organisms, and to further the application of this new knowledge for the betterment of humankind.