Sample records for study blood flow

  1. Cell-cell interaction in blood flow in patients with coronary heart disease (in vitro study)

    NASA Astrophysics Data System (ADS)

    Malinova, Lidia I.; Simonenko, Georgy V.; Denisova, Tatyana P.; Tuchin, Valery V.

    2007-02-01

    Blood cell-cell and cell-vessel wall interactions are one of the key patterns in blood and vascular pathophysiology. We have chosen the method of reconstruction of pulsative blood flow in vitro in the experimental set. Blood flow structure was studied by PC integrated video camera with following slide by slide analysis. Studied flow was of constant volumetric blood flow velocity (1 ml/h). Diameter of tube in use was comparable with coronary arteries diameter. Glucose solution and unfractured heparin were used as the nonspecial irritants of studied flow. Erythrocytes space structure in flow differs in all groups of patients in our study (men with stable angina pectoris (SAP), myocardial infarction (MI) and practically healthy men (PHM). Intensity of erythrocytes aggregate formation was maximal in patients with SAP, but time of their "construction/deconstruction" at glucose injection was minimal. Phenomena of primary clotting formation in patients with SAP of high function class was reconstructed under experimental conditions. Heparin injection (10 000 ED) increased linear blood flow velocity both in patients with SAP, MI and PHP but modulated the cell profile in the flow. Received data correspond with results of animal model studies and noninvasive blood flow studies in human. Results of our study reveal differences in blood flow structure in patients with coronary heart disease and PHP under irritating conditions as the possible framework of metabolic model of coronary blood flow destabilization.

  2. Investigation of the blood behaviour and vascular diseases by using mathematical physic principles

    NASA Astrophysics Data System (ADS)

    Yardimci, Ahmet; Simsek, Buket

    2017-07-01

    In this paper we prepare a short survey for using of mathematical physic principles in blood flow and vascular diseases researches. The study of the behavior of blood flow in the blood vessels provides understanding on connection between flow and the development of dieseases such as atherosclerosis, thrombosis, aneurysms etc. and how the flow dynamics is changed under these conditions. Blood flow phenomena are often too complex that it would be possible to describe them entirely analytically, although simple models, such as Poiseuille model, can still provide some insight into blood flow. Blood is not an "ideal fluid" and energy is lost as flowing blood overcomes resistance. Resistance to blood flow is a function of viscosity, vessel radius, and vessel length. So, mathematical Physic principles are useful tools for blood flow research studies. Blood flow is a function of pressure gradient and resistance and resistance to flow can be estimates using Poiseuille's law. Reynold's number can be used to determine whether flow is laminar or turbulent.

  3. Noxious heat and scratching decrease histamine-induced itch and skin blood flow.

    PubMed

    Yosipovitch, Gil; Fast, Katharine; Bernhard, Jeffrey D

    2005-12-01

    The aim of this study was to assess the effect of thermal stimuli or distal scratching on skin blood flow and histamine-induced itch in healthy volunteers. Twenty-one healthy volunteers participated in the study. Baseline measurements of skin blood flow were obtained on the flexor aspect of the forearm. These measurements were compared with skin blood flow after various stimuli: heating the skin, cooling the skin, noxious cold 2 degrees C, noxious heat 49 degrees C, and scratching via a brush with controlled pressure. Afterwards histamine iontophoresis was performed and skin blood flow and itch intensity were measured immediately after the above-mentioned stimuli. Scratching reduced mean histamine-induced skin blood flow and itch intensity. Noxious heat pain increased basal skin blood flow but reduced histamine-induced maximal skin blood flow and itch intensity. Cold pain and cooling reduced itch intensity, but neither affected histamine-induced skin blood flow. Sub-noxious warming the skin did not affect the skin blood flow or itch intensity. These findings suggest that heat pain and scratching may inhibit itch through a neurogenic mechanism that also affects skin blood flow.

  4. Some potential blood flow experiments for space

    NASA Technical Reports Server (NTRS)

    Cokelet, G. R.; Meiselman, H. J.; Goldsmith, H. L.

    1979-01-01

    Blood is a colloidal suspension of cells, predominantly erythrocytes, (red cells) in an aqueous solution called plasma. Because the red cells are more dense than the plasma, and because they tend to aggregate, erythrocyte sedimentation can be significant when the shear stresses in flowing blood are small. This behavior, coupled with equipment restrictions, has prevented certain definitive fluid mechanical studies from being performed with blood in ground-based experiments. Among such experiments, which could be satisfactorily performed in a microgravity environment, are the following: (1) studies of blood flow in small tubes, to obtain pressure-flow rate relationships, to determine if increased red cell aggregation can be an aid to blood circulation, and to determine vessel entrance lengths, and (2) studies of blood flow through vessel junctions (bifurcations), to obtain information on cell distribution in downstream vessels of (arterial) bifurcations, and to test flow models of stratified convergent blood flows downstream from (venous) bifurcations.

  5. Optical measurement of blood flow in exercising skeletal muscle: a pilot study

    NASA Astrophysics Data System (ADS)

    Wang, Detian; Baker, Wesley B.; Parthasarathy, Ashwin B.; Zhu, Liguo; Li, Zeren; Yodh, Arjun G.

    2017-07-01

    Blood flow monitoring during rhythm exercising is very important for sports medicine and muscle dieases. Diffuse correlation spectroscopy(DCS) is a relative new invasive way to monitor blood flow but suffering from muscle fiber motion. In this study we focus on how to remove exercise driven artifacts and obtain accurate estimates of the increase in blood flow from exercise. Using a novel fast software correlator, we measured blood flow in forearm flexor muscles of N=2 healthy adults during handgrip exercise, at a sampling rate of 20 Hz. Combining the blood flow and acceleration data, we resolved the motion artifact in the DCS signal induced by muscle fiber motion, and isolated the blood flow component of the signal from the motion artifact. The results show that muscle fiber motion strongly affects the DCS signal, and if not accounted for, will result in an overestimate of blood flow more than 1000%. Our measurements indicate rapid dilation of arterioles following exercise onset, which enabled blood flow to increase to a plateau of 200% in 10s. The blood flow also rapidly recovered to baseline following exercise in 10s. Finally, preliminary results on the dependence of blood flow from exercise intensity changes will be discussed.

  6. The effects of recirculation flows on mass transfer from the arterial wall to flowing blood.

    PubMed

    Zhang, Zhiguo; Deng, Xiaoyan; Fan, Yubo; Guidoin, Robert

    2008-01-01

    Using a sudden tubular expansion as a model of an arterial stenosis, the effect of disturbed flow on mass transfer from the arterial wall to flowing blood was studied theoretically and tested experimentally by measuring the dissolution rate of benzoic acid disks forming the outer tube of a sudden tubular expansion. The study revealed that mass transfer from vessel wall to flowing fluid in regions of disturbed flow is independent of wall shear rates. The rate of mass transfer is significantly higher in regions of disturbed flow with a local maximum around the reattachment point where the wall shear rate is zero. The experimental study also revealed that the rate of mass transfer from the vessel wall to a flowing fluid is much higher in the presence of microspheres (as models of blood cells) in the flowing fluid and under the condition of pulsatile flow than in steady flow. These results imply that flow disturbance may enhance the transport of biochemicals and macromolecules, such as plasma proteins and lipoproteins synthesized within the blood vessel wall, from the blood vessel wall to flowing blood.

  7. Evaluating anesthetic protocols for functional blood flow imaging in the rat eye

    NASA Astrophysics Data System (ADS)

    Moult, Eric M.; Choi, WooJhon; Boas, David A.; Baumann, Bernhard; Clermont, Allen C.; Feener, Edward P.; Fujimoto, James G.

    2017-01-01

    The purpose of this study is to evaluate the suitability of five different anesthetic protocols (isoflurane, isoflurane-xylazine, pentobarbital, ketamine-xylazine, and ketamine-xylazine-vecuronium) for functional blood flow imaging in the rat eye. Total retinal blood flow was measured at a series of time points using an ultrahigh-speed Doppler OCT system. Additionally, each anesthetic protocol was qualitatively evaluated according to the following criteria: (1) time-stability of blood flow, (2) overall rate of blood flow, (3) ocular immobilization, and (4) simplicity. We observed that different anesthetic protocols produced markedly different blood flows. Different anesthetic protocols also varied with respect to the four evaluated criteria. These findings suggest that the choice of anesthetic protocol should be carefully considered when designing and interpreting functional blood flow studies in the rat eye.

  8. Reduction of myocardial blood flow reserve in idiopathic dilated cardiomyopathy without overt heart failure and its relation with functional indices: an echo-Doppler and positron emission tomography study.

    PubMed

    Morales, Maria-Aurora; Neglia, Danilo; L'Abbate, Antonio

    2008-08-01

    Myocardial blood flow during pharmacological vasodilatation is depressed in patients with idiopathic dilated cardiomyopathy even the in absence of overt heart failure; the extent of myocardial blood flow abnormalities is not predictable by left ventricular ejection fraction (LVEF) and diastolic dimensions. To assess whether myocardial blood flow impairment in idiopathic dilated cardiomyopathy without overt heart failure can be related to Doppler-derived dP/dt and to echocardiographically determined left ventricular end systolic stress - which is linked to myocardial blood flow reserve in advanced disease. Twenty-six patients, New York Heart Association Class I-II, (LVEF 37.4 +/- 1.4%, left ventricular diastolic dimensions 62.6 +/- 0.9 mm) underwent resting/dipyridamole [13N]NH3 flow positron emission tomography and an ultrasonic study. Regional myocardial blood flow values (ml/min per g) were computed from positron emission tomography data in 13 left ventricular (LV) myocardial regions and averaged to provide mean myocardial blood flow and myocardial blood flow reserve, defined as dipyridamole/resting mean myocardial blood flow ratio. Resting myocardial blood flow was 0.686 +/- 0.045, dipyridamole myocardial blood flow 1.39 +/- 0.15 and myocardial blood flow reserve 2.12 +/- 0.2, lower than in controls (P < 0.01). The ratio dP/dt was directly related to dipyridamole myocardial blood flow and myocardial blood flow reserve (r = 0.552 and 0.703, P < 0.005 and P < 0.0001); no relation was found between myocardial blood flow and LVEF left ventricular diastolic dimensions, and left ventricular end systolic stress. In idiopathic dilated cardiomyopathy patients without overt heart failure, the extent of myocardial blood flow reserve impairment is related to dP/dt but not to more classical indices of left ventricular function.

  9. Relation of retinal blood flow and retinal oxygen extraction during stimulation with diffuse luminance flicker

    PubMed Central

    Palkovits, Stefan; Lasta, Michael; Told, Reinhard; Schmidl, Doreen; Werkmeister, René; Cherecheanu, Alina Popa; Garhöfer, Gerhard; Schmetterer, Leopold

    2015-01-01

    Cerebral and retinal blood flow are dependent on local neuronal activity. Several studies quantified the increase in cerebral blood flow and oxygen consumption during activity. In the present study we investigated the relation between changes in retinal blood flow and oxygen extraction during stimulation with diffuse luminance flicker and the influence of breathing gas mixtures with different fractions of O2 (FiO2; 100% 15% and 12%). Twenty-four healthy subjects were included. Retinal blood flow was studied by combining measurement of vessel diameters using the Dynamic Vessel Analyser with measurements of blood velocity using laser Doppler velocimetry. Oxygen saturation was measured using spectroscopic reflectometry and oxygen extraction was calculated. Flicker stimulation increased retinal blood flow (57.7 ± 17.8%) and oxygen extraction (34.6 ± 24.1%; p < 0.001 each). During 100% oxygen breathing the response of retinal blood flow and oxygen extraction was increased (p < 0.01 each). By contrast, breathing gas mixtures with 12% and 15% FiO2 did not alter flicker–induced retinal haemodynamic changes. The present study indicates that at a comparable increase in blood flow the increase in oxygen extraction in the retina is larger than in the brain. During systemic hyperoxia the blood flow and oxygen extraction responses to neural stimulation are augmented. The underlying mechanism is unknown. PMID:26672758

  10. Ischemia may be the primary cause of the neurologic deficits in classic migraine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skyhoj Olsen, T.; Friberg, L.; Lassen, N.A.

    1987-02-01

    This study investigates whether the cerebral blood flow reduction occurring in attacks of classic migraine is sufficient to cause neurologic deficits. Regional cerebral blood flow measured with the xenon 133 intracarotid injection technique was analyzed in 11 patients in whom a low-flow area developed during attacks of classic migraine. When measured with this technique, regional cerebral blood flow in focal low-flow areas will be overestimated because of the effect of scattered radiation (Compton scatter) on the recordings. In this study, this effect was particularly taken into account when evaluating the degree of blood flow reduction. During attacks of classic migraine,more » cerebral blood flow reductions averaging 52% were observed focally in the 11 patients. Cerebral blood flow levels known to be insufficient for normal cortical function (less than 16 to 23 mL/100 g/min) were measured in seven patients during the attacks. This was probably also the case in the remaining four patients, but the effect of scattered radiation made a reliable evaluation of blood flow impossible. It is concluded that the blood flow reduction that occurs during attacks of classic migraine is sufficient to cause ischemia and neurologic deficits. Hence, this study suggests a vascular origin of the prodromal neurologic deficits that may accompany attacks of classic migraine.« less

  11. Eppur Si Muove: The Dynamic Nature of Physiological Control of Renal Blood Flow by the Renal Sympathetic Nerves

    PubMed Central

    Schiller, Alicia M.; Pellegrino, Peter Ricci; Zucker, Irving H.

    2016-01-01

    Tubuloglomerular feedback and the myogenic response are widely appreciated as important regulators of renal blood flow, but the role of the sympathetic nervous system in physiological renal blood flow control remains controversial. Where classic studies using static measures of renal blood flow failed, dynamic approaches have succeeded in demonstrating sympathetic control of renal blood flow under normal physiological conditions. This review focuses on transfer function analysis of renal pressure-flow, which leverages the physical relationship between blood pressure and flow to assess the underlying vascular control mechanisms. Studies using this approach indicate that the renal nerves are important in the rapid regulation of the renal vasculature. Animals with intact renal innervation show a sympathetic signature in the frequency range associated with sympathetic vasomotion that is eliminated by renal denervation. In conscious rabbits, this sympathetic signature exerts vasoconstrictive, baroreflex control of renal vascular conductance, matching well with the rhythmic, baroreflex-influenced control of renal sympathetic nerve activity and complementing findings from other studies employing dynamic approaches to study renal sympathetic vascular control. In this light, classic studies reporting that nerve stimulation and renal denervation do not affect static measures of renal blood flow provide evidence for the strength of renal autoregulation rather than evidence against physiological renal sympathetic control of renal blood flow. Thus, alongside tubuloglomerular feedback and the myogenic response, renal sympathetic outflow should be considered an important physiological regulator of renal blood flow. Clinically, renal sympathetic vasomotion may be important for solving the problems facing the field of therapeutic renal denervation. PMID:27514571

  12. Eppur Si Muove: The dynamic nature of physiological control of renal blood flow by the renal sympathetic nerves.

    PubMed

    Schiller, Alicia M; Pellegrino, Peter Ricci; Zucker, Irving H

    2017-05-01

    Tubuloglomerular feedback and the myogenic response are widely appreciated as important regulators of renal blood flow, but the role of the sympathetic nervous system in physiological renal blood flow control remains controversial. Where classic studies using static measures of renal blood flow failed, dynamic approaches have succeeded in demonstrating sympathetic control of renal blood flow under normal physiological conditions. This review focuses on transfer function analysis of renal pressure-flow, which leverages the physical relationship between blood pressure and flow to assess the underlying vascular control mechanisms. Studies using this approach indicate that the renal nerves are important in the rapid regulation of the renal vasculature. Animals with intact renal innervation show a sympathetic signature in the frequency range associated with sympathetic vasomotion that is eliminated by renal denervation. In conscious rabbits, this sympathetic signature exerts vasoconstrictive, baroreflex control of renal vascular conductance, matching well with the rhythmic, baroreflex-influenced control of renal sympathetic nerve activity and complementing findings from other studies employing dynamic approaches to study renal sympathetic vascular control. In this light, classic studies reporting that nerve stimulation and renal denervation do not affect static measures of renal blood flow provide evidence for the strength of renal autoregulation rather than evidence against physiological renal sympathetic control of renal blood flow. Thus, alongside tubuloglomerular feedback and the myogenic response, renal sympathetic outflow should be considered an important physiological regulator of renal blood flow. Clinically, renal sympathetic vasomotion may be important for solving the problems facing the field of therapeutic renal denervation. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Doppler ultrasonography and single-fiber laser Doppler flowmetry for measurement of hind limb blood flow in anesthetized horses.

    PubMed

    Raisis, A L; Young, L E; Taylor, P M; Walsh, K P; Lekeux, P

    2000-03-01

    To use Doppler ultrasonography and single-fiber laser Doppler flowmetry (LDF) to evaluate blood flow in the dependent and nondependent hind limbs of anesthetized horses and to evaluate changes in femoral arterial blood flow and microvascular skeletal muscle perfusion in response to administration of phenylephrine hydrochloride or dobutamine hydrochloride. 6 healthy adult horses. Horses were anesthetized and positioned in left lateral recumbency. Doppler ultrasonography was used to measure velocity and volumetric flow in the femoral vessels. Single-fiber LDF was used to measure relative microvascular perfusion at a single site in the semimembranosus muscles. Phenylephrine or dobutamine was then administered to decrease or increase femoral arterial blood flow, and changes in blood flow and microvascular perfusion were recorded. Administration of phenylephrine resulted in significant decreases in femoral arterial and venous blood flows and cardiac output and significant increases in mean aortic blood pressure, systemic vascular resistance, and PCV. Administration of dobutamine resulted in significant increases in femoral arterial blood flow, mean aortic blood pressure, and PCV. Significant changes in microvascular perfusion were not detected. Results suggest that Doppler ultrasonography and single-fiber LDF can be used to study blood flows in the hind limbs of anesthetized horses. However, further studies are required to determine why changes in femoral arterial blood flows were not associated with changes in microvascular perfusion.

  14. Longitudinal optical monitoring of blood flow in breast tumors during neoadjuvant chemotherapy

    NASA Astrophysics Data System (ADS)

    Cochran, J. M.; Chung, S. H.; Leproux, A.; Baker, W. B.; Busch, D. R.; DeMichele, A. M.; Tchou, J.; Tromberg, B. J.; Yodh, A. G.

    2017-06-01

    We measure tissue blood flow markers in breast tumors during neoadjuvant chemotherapy and investigate their correlation to pathologic complete response in a pilot longitudinal patient study (n  =  4). Tumor blood flow is quantified optically by diffuse correlation spectroscopy (DCS), and tissue optical properties, blood oxygen saturation, and total hemoglobin concentration are derived from concurrent diffuse optical spectroscopic imaging (DOSI). The study represents the first longitudinal DCS measurement of neoadjuvant chemotherapy in humans over the entire course of treatment; it therefore offers a first correlation between DCS flow indices and pathologic complete response. The use of absolute optical properties measured by DOSI facilitates significant improvement of DCS blood flow calculation, which typically assumes optical properties based on literature values. Additionally, the combination of the DCS blood flow index and the tissue oxygen saturation from DOSI permits investigation of tissue oxygen metabolism. Pilot results from four patients suggest that lower blood flow in the lesion-bearing breast is correlated with pathologic complete response. Both absolute lesion blood flow and lesion flow relative to the contralateral breast exhibit potential for characterization of pathological response. This initial demonstration of the combined optical approach for chemotherapy monitoring provides incentive for more comprehensive studies in the future and can help power those investigations.

  15. Influence of exercise induced hyperlactatemia on retinal blood flow during normo- and hyperglycemia.

    PubMed

    Garhöfer, Gerhard; Kopf, Andreas; Polska, Elzbieta; Malec, Magdalena; Dorner, Guido T; Wolzt, Michael; Schmetterer, Leopold

    2004-05-01

    Short term hyperglycemia has previously been shown to induce a blood flow increase in the retina. The mechanism behind this effect is poorly understood. We set out to investigate whether exercise-induced hyperlactatemia may alter the response of retinal blood flow to hyperglycemia. We performed a randomized, controlled two-way cross over study comprising 12 healthy subjects, performed a 6-minutes period of dynamic exercise during an euglcaemic or hyperglycaemic insulin clamp. Retinal blood flow was assessed by combined vessel size measurement with the Zeiss retinal vessel analyzer and measurement of red blood cell velocities using bi-directional laser Doppler velocimetry. Retinal and systemic hemodynamic parameters were measured before, immediately after and 10 and 20 minutes after isometric exercise. On the euglycemic study day retinal blood flow increased after dynamic exercise. The maximum increase in retinal blood flow was observed 10 minutes after the end of exercise when lactate plasma concentration peaked. Hyperglycemia increased retinal blood flow under basal conditions, but had no incremental effect during exercise induced hyperlactatemia. Our results indicate that both lactate and glucose induce an increase in retinal blood flow in healthy humans. This may indicate a common pathway between glucose and lactate induced blood flow changes in the human retina.

  16. A novel method to measure regional muscle blood flow continuously using NIRS kinetics information

    PubMed Central

    Nioka, Shoko; Kime, Ryotaro; Sunar, Ulas; Im, Joohee; Izzetoglu, Meltem; Zhang, Jun; Alacam, Burak; Chance, Britton

    2006-01-01

    Background This article introduces a novel method to continuously monitor regional muscle blood flow by using Near Infrared Spectroscopy (NIRS). We demonstrate the feasibility of the new method in two ways: (1) by applying this new method of determining blood flow to experimental NIRS data during exercise and ischemia; and, (2) by simulating muscle oxygenation and blood flow values using these newly developed equations during recovery from exercise and ischemia. Methods Deoxy (Hb) and oxyhemoglobin (HbO2), located in the blood ofthe skeletal muscle, carry two internal relationships between blood flow and oxygen consumption. One is a mass transfer principle and the other describes a relationship between oxygen consumption and Hb kinetics in a two-compartment model. To monitor blood flow continuously, we transfer these two relationships into two equations and calculate the blood flow with the differential information of HbO2 and Hb. In addition, these equations are used to simulate the relationship between blood flow and reoxygenation kinetics after cuff ischemia and a light exercise. Nine healthy subjects volunteered for the cuff ischemia, light arm exercise and arm exercise with cuff ischemia for the experimental study. Results Analysis of experimental data of both cuff ischemia and light exercise using the new equations show greater blood flow (four to six times more than resting values) during recovery, agreeing with previous findings. Further, the simulation and experimental studies of cuff ischemia and light exercise agree with each other. Conclusion We demonstrate the accuracy of this new method by showing that the blood flow obtained from the method agrees with previous data as well as with simulated data. We conclude that this novel continuous blood flow monitoring method can provide blood flow information non-invasively with NIRS. PMID:16704736

  17. Effects of hypoxia on cochlear blood flow in mice evaluated using Doppler optical microangiography.

    PubMed

    Dziennis, Suzan; Reif, Roberto; Zhi, Zhongwei; Nuttall, Alfred L; Wang, Ruikang K

    2012-10-01

    Reduced cochlear blood flow (CoBF) is a main contributor to hearing loss. Studying CoBF has remained a challenge due to the lack of available tools. Doppler optical microangiography (DOMAG), a method to quantify single-vessel absolute blood flow, and laser Doppler flowmetry (LDF), a method for measuring the relative blood flow within a large volume of tissue, were used for determining the changes in CoBF due to systemic hypoxia in mice. DOMAG determined the change in blood flow in the apical turn (AT) with single-vessel resolution, while LDF averaged the change in the blood flow within a large volume of the cochlea (hemisphere with ∼1 to 1.5 mm radius). Hypoxia was induced by decreasing the concentration of oxygen-inspired gas, so that the oxygen saturation was reduced from >95% to ∼80%. DOMAG determined that during hypoxia the blood flow in two areas of the AT near and far from the helicotrema were increased and decreased, respectively. The LDF detected a decrease in blood flow within a larger volume of the cochlea (several turns averaged together). Therefore, the use of DOMAG as a tool for studying cochlear blood flow due to its ability to determine absolute flow values with single-vessel resolution was proposed.

  18. Effects of hypoxia on cochlear blood flow in mice evaluated using Doppler optical microangiography

    NASA Astrophysics Data System (ADS)

    Dziennis, Suzan; Reif, Roberto; Zhi, Zhongwei; Nuttall, Alfred L.; Wang, Ruikang K.

    2012-10-01

    Reduced cochlear blood flow (CoBF) is a main contributor to hearing loss. Studying CoBF has remained a challenge due to the lack of available tools. Doppler optical microangiography (DOMAG), a method to quantify single-vessel absolute blood flow, and laser Doppler flowmetry (LDF), a method for measuring the relative blood flow within a large volume of tissue, were used for determining the changes in CoBF due to systemic hypoxia in mice. DOMAG determined the change in blood flow in the apical turn (AT) with single-vessel resolution, while LDF averaged the change in the blood flow within a large volume of the cochlea (hemisphere with ˜1 to 1.5 mm radius). Hypoxia was induced by decreasing the concentration of oxygen-inspired gas, so that the oxygen saturation was reduced from >95% to ˜80%. DOMAG determined that during hypoxia the blood flow in two areas of the AT near and far from the helicotrema were increased and decreased, respectively. The LDF detected a decrease in blood flow within a larger volume of the cochlea (several turns averaged together). Therefore, the use of DOMAG as a tool for studying cochlear blood flow due to its ability to determine absolute flow values with single-vessel resolution was proposed.

  19. Sodium nitroprusside increases human skeletal muscle blood flow, but does not change flow distribution or glucose uptake.

    PubMed

    Pitkanen, O P; Laine, H; Kemppainen, J; Eronen, E; Alanen, A; Raitakari, M; Kirvela, O; Ruotsalainen, U; Knuuti, J; Koivisto, V A; Nuutila, P

    1999-12-15

    1. The role of blood flow as a determinant of skeletal muscle glucose uptake is at present controversial and results of previous studies are confounded by possible direct effects of vasoactive agents on glucose uptake. Since increase in muscle blood flow can be due to increased flow velocity or recruitment of new capillaries, or both, it would be ideal to determine whether the vasoactive agent affects flow distribution or only increases the mean flow. 2. In the present study blood flow, flow distribution and glucose uptake were measured simultaneously in both legs of 10 healthy men (aged 29 +/- 1 years, body mass index 24 +/- 1 kg m-2) using positron emission tomography (PET) combined with [15O]H2O and [18F]fluoro-2-deoxy-D-glucose (FDG). The role of blood flow in muscle glucose uptake was studied by increasing blood flow in one leg with sodium nitroprusside (SNP) and measuring glucose uptake simultaneously in both legs during euglycaemic hyperinsulinaemia (insulin infusion 6 pmol kg-1 min-1). 3. SNP infusion increased skeletal muscle blood flow by 86 % (P < 0.01), but skeletal muscle flow distribution and insulin-stimulated glucose uptake (61.4 +/- 7. 5 vs. 67.0 +/- 7.5 micromol kg-1 min-1, control vs. SNP infused leg, not significant), as well as flow distribution between different tissues of the femoral region, remained unchanged. The effect of SNP infusion on blood flow and distribution were unchanged during infusion of physiological levels of insulin (duration, 150 min). 4. Despite a significant increase in mean blood flow induced by an intra-arterial infusion of SNP, glucose uptake and flow distribution remained unchanged in resting muscles of healthy subjects. These findings suggest that SNP, an endothelium-independent vasodilator, increases non-nutritive, but not nutritive flow or capillary recruitment.

  20. The influence of gravity on regional lung blood flow in humans: SPECT in the upright and head-down posture.

    PubMed

    Ax, M; Sanchez-Crespo, A; Lindahl, S G E; Mure, M; Petersson, J

    2017-06-01

    Previous studies in humans have shown that gravity has little influence on the distribution of lung blood flow while changing posture from supine to prone. This study aimed to evaluate the maximal influence of posture by comparison of regional lung blood flow in the upright and head-down posture in 8 healthy volunteers, using a tilt table. Regional lung blood flow was marked by intravenous injection of macroaggregates of human albumin labeled with 99m Tc or 113m In, in the upright and head-down posture, respectively, during tidal breathing. Both radiotracers remain fixed in the lung after administration. The distribution of radioactivity was mapped using quantitative single photon emission computed tomography (SPECT) corrected for attenuation and scatter. All images were obtained supine during tidal breathing. A shift from upright to the head-down posture caused a clear redistribution of blood flow from basal to apical regions. We conclude that posture plays a role for the distribution of lung blood flow in upright humans, and that the influence of posture, and thereby gravity, is much greater in the upright and head-down posture than in horizontal postures. However, the results of the study demonstrate that lung structure is the main determinant of regional blood flow and gravity is a secondary contributor to the distribution of lung blood flow in the upright and head-down positions. NEW & NOTEWORTHY Using a dual-isotope quantitative SPECT method, we demonstrated that although a shift in posture redistributes blood flow in the direction of gravity, the results are also consistent with lung structure being a greater determinant of regional blood flow than gravity. To our knowledge, this is the first study to use modern imaging methods to quantify the shift in regional lung blood flow in humans at a change between the upright and head-down postures. Copyright © 2017 the American Physiological Society.

  1. Self-separation of blood plasma from whole blood during the capillary flow in microchannel

    NASA Astrophysics Data System (ADS)

    Nunna, Bharath Babu; Zhuang, Shiqiang; Lee, Eon Soo

    2017-11-01

    Self-separation of blood plasma from whole blood in microchannels is of great importance due to the enormous range of applications in healthcare and diagnostics. Blood is a multiphase complex fluid, composed of cells suspended in blood plasma. RBCs are the suspended particles whose shape changes during the flow of blood. The primary constituents of blood are erythrocytes or red blood cells (RBCs), leukocytes or white blood cells (WBCs), thrombocytes or platelets and blood plasma. The existence of RBCs in blood makes the blood a non-Newtonian fluid. The current study of separation of blood plasma from whole blood during self-driven flows in a single microchannel without bifurcation, by enhancing the capillary effects. The change in the capillary effect results in a change in contact angle which directly influences the capillary flow. The flow velocity directly influences the net force acting on the RBCs and influence the separation process. The experiments are performed on the PDMS microchannels with different contact angles by altering the surface characteristics using plasma treatment. The change in the separation length is studied during the capillary flow of blood in microchannel. Bharath Babu Nunna is a researcher in mechanical engineering and implementing the novel and innovative technologies in the biomedical devices to enhance the sensitivity of the disease diagnosis.

  2. Blood flow and blood cell interactions and migration in microvessels

    NASA Astrophysics Data System (ADS)

    Fedosov, Dmitry; Fornleitner, Julia; Gompper, Gerhard

    2011-11-01

    Blood flow in microcirculation plays a fundamental role in a wide range of physiological processes and pathologies in the organism. To understand and, if necessary, manipulate the course of these processes it is essential to investigate blood flow under realistic conditions including deformability of blood cells, their interactions, and behavior in the complex microvascular network which is characteristic for the microcirculation. We employ the Dissipative Particle Dynamics method to model blood as a suspension of deformable cells represented by a viscoelastic spring-network which incorporates appropriate mechanical and rheological cell-membrane properties. Blood flow is investigated in idealized geometries. In particular, migration of blood cells and their distribution in blood flow are studied with respect to various conditions such as hematocrit, flow rate, red blood cell aggregation. Physical mechanisms which govern cell migration in microcirculation and, in particular, margination of white blood cells towards the vessel wall, will be discussed. In addition, we characterize blood flow dynamics and quantify hemodynamic resistance. D.F. acknowledges the Humboldt Foundation for financial support.

  3. [The value of the thermocouple in the measurement of the gastric mucosal blood-flow. The influence of the occlusion of the celiac artery and prostaglandin E1 on the gastric mucosal blood flow. An experimental study in animals (author's transl)].

    PubMed

    Koch, H; Demling, L

    1976-02-27

    The study has been carried out to ensure the positive evidence of the measurement of the gastric mucosal blood-flow with the aid of the thermocouple (heat-clearance technique). The experiments have shown that the suction pressure of 600 mm mercury column which was used to fix the Thermocouple to the mucosa was indispensable in order to assess the blood-flow in the entire depth of the mucosa. Changes in the mucosal blood-flow are measuured at the same rate in all quadrants of the gastric corpus. The measuring of the blood-flow of a well circumscribed area of the mucosa is therefore representative for the entire corpus. Vasopressin led to a significant reduction of the gastric mucosal blood-flow measured with heat-clearance as well aminopyrine-clearance. There was a linear correlation between the results of both methods. Vasopressin selectively reduces the blood-flow of the gastric mucosa but not of the submucosa, the muscular layer and the serosa. Therefore it seems to be probable that changes in mucosal blood-flow selectively can be measured with the aid of the thermocouple. After previous stimulation with pentagastrin neither mucosal blood-flow nor acid secretion of the stomach were influenced by the occlusion of the celiac artery by 25 %. The occlusion of the celiac artery by 50 % reduced significantly the pentagastrin-stimulated gastric mucosal blood-flow whereas the acid secretion was not influenced. Prostaglandin E1 at a dose rate of 2 mug/kg-h increased significantly arterial and mucosal blood-flow as well as acid secretion of the stomach. In comparison PGE1 administered at a dose rate of 4 mug/kg-h reduced significantly gastric mucosal blood-flow and gastric secretion. PGE1 at a dose rate of 8 mug/kg-h did not produce any significant changes in blood-flow and secretion. The results suggested that the changes of gastric secretion observed with PGE1 were the consequence of primary changes in the gastric mucosal blood-flow.

  4. Skin cooling on contact with cold materials: the effect of blood flow during short-term exposures.

    PubMed

    Jay, Ollie; Havenith, George

    2004-03-01

    This study investigates the effect of blood flow upon the short-term (<180 s) skin contact cooling response in order to ascertain whether sufferers of circulatory disorders, such as the vasospastic disorder Raynaud's disease, are at a greater risk of cold injury than people with a normal rate of blood flow. Eight female volunteers participated, touching blocks of stainless steel and nylon with a finger contact force of 2.9 N at a surface temperature of -5 degrees C under occluded and vasodilated conditions. Contact temperature (Tc) of the finger pad was measured over time using a T-type thermocouple. Forearm blood flow was measured using strain gauge plethysmography. Contact cooling responses were analysed by fitting a modified Newtonian cooling curve. A significant difference was found between the starting skin temperatures for the two blood flow conditions (P<0.001). However, no effect of blood flow was found upon any of the derived cooling curve parameters characterizing the skin cooling response (P>0.05). It is hypothesized that the finger contact force used (2.9 N) and the resultant pressure upon the tissue of the contact finger pad restricted the blood supply to the contact area under both blood flow conditions; therefore, no effect of blood flow was found upon the parameters describing the contact cooling response. Whilst the findings of this study are sufficient to draw a conclusion for those in a working environment, i.e. contact forces below 2.9 N will seldom be encountered, a further study will be required to ascertain conclusively whether blood flow does affect the contact cooling response at a finger contact force low enough to allow unrestricted blood flow to the finger pad. Further protocol improvements are also recommended.

  5. Effect of flow rate and temperature on transmembrane blood pressure drop in an extracorporeal artificial lung.

    PubMed

    Park, M; Costa, E L V; Maciel, A T; Barbosa, E V S; Hirota, A S; Schettino, G de P; Azevedo, L C P

    2014-11-01

    Transmembrane pressure drop reflects the resistance of an artificial lung system to blood transit. Decreased resistance (low transmembrane pressure drop) enhances blood flow through the oxygenator, thereby, enhancing gas exchange efficiency. This study is part of a previous one where we observed the behaviour and the modulation of blood pressure drop during the passage of blood through artificial lung membranes. Before and after the induction of multi-organ dysfunction, the animals were instrumented and analysed for venous-venous extracorporeal membrane oxygenation, using a pre-defined sequence of blood flows. Blood flow and revolutions per minute (RPM) of the centrifugal pump varied in a linear fashion. At a blood flow of 5.5 L/min, pre- and post-pump blood pressures reached -120 and 450 mmHg, respectively. Transmembrane pressures showed a significant spread, particularly at blood flows above 2 L/min; over the entire range of blood flow rates, there was a positive association of pressure drop with blood flow (0.005 mmHg/mL/minute of blood flow) and a negative association of pressure drop with temperature (-4.828 mmHg/(°Celsius). These associations were similar when blood flows of below and above 2000 mL/minute were examined. During its passage through the extracorporeal system, blood is exposed to pressure variations from -120 to 450 mmHg. At high blood flows (above 2 L/min), the drop in transmembrane pressure becomes unpredictable and highly variable. Over the entire range of blood flows investigated (0-5500 mL/min), the drop in transmembrane pressure was positively associated with blood flow and negatively associated with body temperature. © The Author(s) 2014.

  6. Relationship among visual field, blood flow, and neural structure measurements in glaucoma.

    PubMed

    Hwang, John C; Konduru, Ranjith; Zhang, Xinbo; Tan, Ou; Francis, Brian A; Varma, Rohit; Sehi, Mitra; Greenfield, David S; Sadda, Srinivas R; Huang, David

    2012-05-17

    To determine the relationship among visual field, neural structural, and blood flow measurements in glaucoma. Case-control study. Forty-seven eyes of 42 patients with perimetric glaucoma were age-matched with 27 normal eyes of 27 patients. All patients underwent Doppler Fourier-domain optical coherence tomography to measure retinal blood flow and standard glaucoma evaluation with visual field testing and quantitative structural imaging. Linear regression analysis was performed to analyze the relationship among visual field, blood flow, and structure, after all variables were converted to logarithmic decibel scale. Retinal blood flow was reduced in glaucoma eyes compared to normal eyes (P < 0.001). Visual field loss was correlated with both reduced retinal blood flow and structural loss of rim area and retinal nerve fiber layer (RNFL). There was no correlation or paradoxical correlation between blood flow and structure. Multivariate regression analysis revealed that reduced blood flow and structural loss are independent predictors of visual field loss. Each dB decrease in blood flow was associated with at least 1.62 dB loss in mean deviation (P ≤ 0.001), whereas each dB decrease in rim area and RNFL was associated with 1.15 dB and 2.56 dB loss in mean deviation, respectively (P ≤ 0.03). There is a close link between reduced retinal blood flow and visual field loss in glaucoma that is largely independent of structural loss. Further studies are needed to elucidate the causes of the vascular dysfunction and potential avenues for therapeutic intervention. Blood flow measurement may be useful as an independent assessment of glaucoma severity.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waldemar, G.; Vorstrup, S.; Andersen, A.R.

    The effect of the angiotensin-converting enzyme (ACE) inhibitor captopril on regional cerebral blood flow (rCBF) was studied in 12 patients within 5 days after their first acute stroke. rCBF was studied by xenon-133 inhalation and single-photon emission computed tomography (SPECT) scan before and 1 h after oral administration of 25 mg captopril. No increase in rCBF was observed in any of the 12 patients included in the study. In only one patient was there a slight redistribution of blood flow in favor of the low-flow area, but the absolute flow value did not increase. Captopril did not cause any significantmore » change in mean hemispheric blood flow, mean arterial blood pressure (MAP), or end-expiratory CO2 fraction (FECO2). The assumption that ACE inhibition might increase cerebral blood flow in the periinfarct zone and preserve some still viable brain tissue could not be verified in the present study.« less

  8. Role of NO in choroidal blood flow regulation during isometric exercise in healthy humans.

    PubMed

    Luksch, Alexandra; Polska, Elzbieta; Imhof, Andrea; Schering, Joanne; Fuchsjäger-Mayrl, Gabriele; Wolzt, Michael; Schmetterer, Leopold

    2003-02-01

    Nitric oxide (NO) is an important regulator of basal choroidal blood flow. Animal experiments indicate that NO is also involved in choroidal blood flow regulation during changes in ocular perfusion pressure and inhibition of NO synthase (NOS) has been reported to shift choroidal pressure-flow curves to the right. The hypothesis for the study was that inhibition of NOS may influence choroidal blood flow during isometric exercise. To test this hypothesis, a randomized, double-masked, placebo-controlled, three-way crossover study was performed in 12 healthy male volunteers. Subjects received on different study days intravenous infusions of N(G)-monomethyl-L-arginine (L-NMMA), phenylephrine, or placebo. During these infusion periods, subjects were asked to squat for 6 minutes. Choroidal blood flow was assessed with laser Doppler flowmetry, and ocular perfusion pressure (OPP) was calculated from mean arterial pressure and intraocular pressure. L-NMMA and phenylephrine increased resting OPP by 10% and 13%, respectively, but only L-NMMA reduced resting choroidal blood flow (-17%, P < 0.001). The relative increase in OPP during isometric exercise was comparable with all drugs administered. Isometric exercise increased choroidal blood flow during administration of placebo and phenylephrine, but not during administration of L-NMMA (P < 0.001 vs. placebo). These data indicate that NO plays an important role in the regulation of choroidal blood flow during isometric exercise.

  9. Blood flow/pump rotation ratio as an artificial lung performance monitoring tool during extracorporeal respiratory support using centrifugal pumps.

    PubMed

    Park, Marcelo; Mendes, Pedro Vitale; Hirota, Adriana Sayuri; dos Santos, Edzangela Vasconcelos; Costa, Eduardo Leite Vieira; Azevedo, Luciano Cesar Pontes

    2015-01-01

    To analyze the correlations of the blood flow/pump rotation ratio and the transmembrane pressure, CO2 and O2 transfer during the extracorporeal respiratory support. Five animals were instrumented and submitted to extracorporeal membrane oxygenation in a five-step protocol, including abdominal sepsis and lung injury. This study showed that blood flow/pump rotations ratio variations are dependent on extracorporeal membrane oxygenation blood flow in a positive logarithmic fashion. Blood flow/pump rotation ratio variations are negatively associated with transmembrane pressure (R2 = 0.5 for blood flow = 1500mL/minute and R2 = 0.4 for blood flow = 3500mL/minute, both with p < 0.001) and positively associated with CO2 transfer variations (R2 = 0.2 for sweep gas flow ≤ 6L/minute, p < 0.001, and R2 = 0.1 for sweep gas flow > 6L/minute, p = 0.006), and the blood flow/pump rotation ratio is not associated with O2 transfer variations (R2 = 0.01 for blood flow = 1500mL/minute, p = 0.19, and R2 = - 0.01 for blood flow = 3500 mL/minute, p = 0.46). Blood flow/pump rotation ratio variation is negatively associated with transmembrane pressure and positively associated with CO2 transfer in this animal model. According to the clinical situation, a decrease in the blood flow/pump rotation ratio can indicate artificial lung dysfunction without the occurrence of hypoxemia.

  10. The feasibility of measuring renal blood flow using transesophageal echocardiography in patients undergoing cardiac surgery.

    PubMed

    Yang, Ping-Liang; Wong, David T; Dai, Shuang-Bo; Song, Hai-Bo; Ye, Ling; Liu, Jin; Liu, Bin

    2009-05-01

    There is no reliable method to monitor renal blood flow intraoperatively. In this study, we evaluated the feasibility and reproducibility of left renal blood flow measurements using transesophageal echocardiography during cardiac surgery. In this prospective noninterventional study, left renal blood flow was measured with transesophageal echocardiography during three time points (pre-, intra-, and postcardiopulmonary bypass) in 60 patients undergoing cardiac surgery. Sonograms from 6 subjects were interpreted by 2 blinded independent assessors at the time of acquisition and 6 mo later. Interobserver and intraobserver reproducibility were quantified by calculating variability and intraclass correlation coefficients. Patients with Doppler angles of >30 degrees (20 of 60 subjects) were eliminated from renal blood flow measurements. Left renal blood flow was successfully measured and analyzed in 36 of 60 (60%) subjects. Both interobserver and intraobserver variability were <10%. Interobserver and intraobserver reproducibility in left renal blood flow measurements were good to excellent (intraclass correlation coefficients 0.604-0.999). Left renal arterial luminal diameter for the pre, intra, and postcardiopulmonary bypass phases, ranged from 3.8 to 4.1 mm, renal arterial velocity from 25 to 35 cm/s, and left renal blood flow from 192 to 299 mL/min. In patients undergoing cardiac surgery, it was feasible in 60% of the subjects to measure left renal blood flow using intraoperative transesophageal echocardiography. The interobserver and intraobserver reproducibility of renal blood flow measurements was good to excellent.

  11. Unsteady Blood Flow with Nanoparticles Through Stenosed Arteries in the Presence of Periodic Body Acceleration

    NASA Astrophysics Data System (ADS)

    Fatin Jamil, Dzuliana; Roslan, Rozaini; Abdulhameed, Mohammed; Che-Him, Norziha; Sufahani, Suliadi; Mohamad, Mahathir; Ghazali Kamardan, Muhamad

    2018-04-01

    The effects of nanoparticles such as Fe 3O4,TiO2, and Cu on blood flow inside a stenosed artery are studied. In this study, blood was modelled as non-Newtonian Bingham plastic fluid subjected to periodic body acceleration and slip velocity. The flow governing equations were solved analytically by using the perturbation method. By using the numerical approaches, the physiological parameters were analyzed, and the blood flow velocity distributions were generated graphically and discussed. From the flow results, the flow speed increases as slip velocity increases and decreases as the values of yield stress increases.

  12. Gingival blood flow measurement with a non-contact laser flowmeter.

    PubMed

    Matsuki, M; Xu, Y B; Nagasawa, T

    2001-07-01

    A non-contact laser flowmeter was used to measure the changing of the gingival blood flow. Five university students with healthy oral condition were selected in this study. The blood flow measurement on the extensor digitorum (above the head of third metacarpal), with the changing of distance and angle between the probe and the tissue was used as a pre-study experiment. Blood flow rate was determined in the labial gingiva (2 mm above the cervical line) of upper central incisor using a stent fixing the probe at a 3-mm distance from the tissue. A basal level of gingival blood flow was taken two times each day for 5 days. The effects of water of different temperatures on the gingival blood flow are discussed. With the changing of distance, the blood flow rate became smaller, but there was no significant effect from the angle. The reproducibility was acceptable through the 5-day measurement. After stimulating with warm and body temperature water, the blood flow first increased significantly and then went back to the basal line (faster with the body temperature water). With cold water, different reactions between the subjects were observed.

  13. Non-invasive pulmonary blood flow analysis and blood pressure mapping derived from 4D flow MRI

    NASA Astrophysics Data System (ADS)

    Delles, Michael; Rengier, Fabian; Azad, Yoo-Jin; Bodenstedt, Sebastian; von Tengg-Kobligk, Hendrik; Ley, Sebastian; Unterhinninghofen, Roland; Kauczor, Hans-Ulrich; Dillmann, Rüdiger

    2015-03-01

    In diagnostics and therapy control of cardiovascular diseases, detailed knowledge about the patient-specific behavior of blood flow and pressure can be essential. The only method capable of measuring complete time-resolved three-dimensional vector fields of the blood flow velocities is velocity-encoded magnetic resonance imaging (MRI), often denoted as 4D flow MRI. Furthermore, relative pressure maps can be computed from this data source, as presented by different groups in recent years. Hence, analysis of blood flow and pressure using 4D flow MRI can be a valuable technique in management of cardiovascular diseases. In order to perform these tasks, all necessary steps in the corresponding process chain can be carried out in our in-house developed software framework MEDIFRAME. In this article, we apply MEDIFRAME for a study of hemodynamics in the pulmonary arteries of five healthy volunteers. The study included measuring vector fields of blood flow velocities by phase-contrast MRI and subsequently computing relative blood pressure maps. We visualized blood flow by streamline depictions and computed characteristic values for the left and the right pulmonary artery (LPA and RPA). In all volunteers, we observed a lower amount of blood flow in the LPA compared to the RPA. Furthermore, we visualized blood pressure maps using volume rendering and generated graphs of pressure differences between the LPA, the RPA and the main pulmonary artery. In most volunteers, blood pressure was increased near to the bifurcation and in the proximal LPA, leading to higher average pressure values in the LPA compared to the RPA.

  14. Methods for determination of optic nerve blood flow.

    PubMed Central

    Glazer, L. C.

    1988-01-01

    A variety of studies have been conducted over the past two decades to determine if decreased optic nerve blood flow has a role in the etiology of glaucomatous nerve damage. Five basic methods have been employed in examining blood flow. Invasive studies, utilizing electrodes placed in the optic nerve head, represent one of the first attempts to measure blood flow. More recently, the methodologies have included axoplasmic flow analysis, microspheres, radioactive tracers such as iodoantipyrine, and laser doppler measurements. The results of these studies are inconclusive and frequently contradictory. When the studies are grouped by methodology, only the iodoantipyrine data are consistent. While each of the experimental techniques has limitations, iodoantipyrine appears to have better resolution than either invasive studies or microspheres. PMID:3284212

  15. Blood flow structure in patients with coronary heart disease

    NASA Astrophysics Data System (ADS)

    Malinova, Lidia I.; Simonenko, Georgy V.; Denisova, Tatyana P.; Tuchin, Valery V.

    2007-05-01

    Blood flow structure was studied by PC integrated video camera with following slide by slide analysis. Volumetric blood flow velocity was supporting on constant level (1 ml/h). Silicone tube of diameter comparable with coronary arteries diameter was used as vessel model. Cell-cell interactions were studied under glucose and anticoagulants influence. Increased adhesiveness of blood cells to tube walls was revealed in patient with coronary heart disease (CHD) compare to practically healthy persons (PHP). In patients with stable angina pectoris of high functional class and patients with AMI shear stress resistant erythrocyte aggregates were predominating in blood flow structure up to microclots formation. Clotting and erythrocytes aggregation increase as response to glucose solution injection, sharply defined in patients with CHD. Heparin injection (10 000 ED) increased linear blood flow velocity both in patients with CHD and PHP. After compare our results with other author's data we can consider that method used in our study is sensible enough to investigate blood flow structure violations in patients with CHD and PHP. Several differences of cell-cell interaction in flow under glucose and anticoagulant influence were found out in patients with CHD and PHP.

  16. Effects of endothelium-derived nitric oxide on skin and digital blood flow in humans.

    PubMed

    Coffman, J D

    1994-12-01

    The effects of NG-monomethyl-L-arginine (L-NMMA) on total finger and forearm, and dorsal finger and forearm skin, blood flows were studied in the basal state and during reflex sympathetic vasoconstriction in normal subjects. Total flows were measured by venous occlusion plethysmography and skin flows by laser-Doppler flowmetry (LDF). L-NMMA in doses of 2, 4, and 8 microM/min given by constant infusion via a brachial artery catheter significantly decreased finger blood flow, forearm blood flow, and vascular conductances. At 8 microM/min, total finger blood flow decreased 38.4% and forearm blood flow decreased 24.8%. Dorsal finger and forearm skin LDF were also significantly decreased (25 and 37% at 8 microM/min). Body cooling significantly decreased finger blood flow (73.6%), vascular conductance, and finger LDF (59.7%). L-NMMA had no effect on total finger blood flow or dorsal finger LDF during body cooling. Nitric oxide or related compounds contribute to the basal dilator tone of the dorsal finger and forearm skin but not during reflex sympathetic vasoconstriction.

  17. Blood flow/pump rotation ratio as an artificial lung performance monitoring tool during extracorporeal respiratory support using centrifugal pumps

    PubMed Central

    Park, Marcelo; Mendes, Pedro Vitale; Hirota, Adriana Sayuri; dos Santos, Edzangela Vasconcelos; Costa, Eduardo Leite Vieira; Azevedo, Luciano Cesar Pontes

    2015-01-01

    Objective To analyze the correlations of the blood flow/pump rotation ratio and the transmembrane pressure, CO2 and O2 transfer during the extracorporeal respiratory support. Methods Five animals were instrumented and submitted to extracorporeal membrane oxygenation in a five-step protocol, including abdominal sepsis and lung injury. Results This study showed that blood flow/pump rotations ratio variations are dependent on extracorporeal membrane oxygenation blood flow in a positive logarithmic fashion. Blood flow/pump rotation ratio variations are negatively associated with transmembrane pressure (R2 = 0.5 for blood flow = 1500mL/minute and R2 = 0.4 for blood flow = 3500mL/minute, both with p < 0.001) and positively associated with CO2 transfer variations (R2 = 0.2 for sweep gas flow ≤ 6L/minute, p < 0.001, and R2 = 0.1 for sweep gas flow > 6L/minute, p = 0.006), and the blood flow/pump rotation ratio is not associated with O2 transfer variations (R2 = 0.01 for blood flow = 1500mL/minute, p = 0.19, and R2 = - 0.01 for blood flow = 3500 mL/minute, p = 0.46). Conclusion Blood flow/pump rotation ratio variation is negatively associated with transmembrane pressure and positively associated with CO2 transfer in this animal model. According to the clinical situation, a decrease in the blood flow/pump rotation ratio can indicate artificial lung dysfunction without the occurrence of hypoxemia. PMID:26340159

  18. Post-exercise blood flow restriction attenuates hyperemia similarly in males and females.

    PubMed

    Dankel, Scott J; Mouser, J Grant; Jessee, Matthew B; Mattocks, Kevin T; Buckner, Samuel L; Loenneke, Jeremy P

    2017-08-01

    Our laboratory recently demonstrated that post-exercise blood flow restriction attenuated muscle hypertrophy only in females, which we hypothesized may be due to alterations in post-exercise blood flow. The aim of this study is to test our previous hypothesis that sex differences in blood flow would exist when employing the same protocol. Twenty-two untrained individuals (12 females; 10 males) performed two exercise sessions, each involving one set of elbow flexion exercise to volitional failure on the right arm. The experimental condition had blood flow restriction applied for a 3 min post-exercise period, whereas the control condition did not. Blood flow was measured using an ultrasound at the brachial artery and was taken 1 and 4 min post-exercise. This corresponded to 1 min post inflation and 1 min post deflation in the experimental condition. There were no differences in the alterations in blood flow between the control and experimental conditions when examined across sex. Increases in blood flow [mean (standard deviation)] were as follows: males 1 min [control 764 (577) %; experimental 113 (108) %], males 4 min [control 346 (313) %; experimental 449 (371) %], females 1 min [control 558 (367) %; experimental 87 (105) %], and females 4 min [control 191 (183) %; experimental 328 (223) %]. It does not appear that the sex-specific attenuation of muscle hypertrophy we observed previously can be attributed to different alterations in post-exercise blood flow. Future studies may wish to replicate our previous training study, or examine alternative mechanisms which may be sex specific.

  19. Validation of diffuse correlation spectroscopy sensitivity to nicotinamide-induced blood flow elevation in the murine hindlimb using the fluorescent microsphere technique

    NASA Astrophysics Data System (ADS)

    Proctor, Ashley R.; Ramirez, Gabriel A.; Han, Songfeng; Liu, Ziping; Bubel, Tracy M.; Choe, Regine

    2018-03-01

    Nicotinamide has been shown to affect blood flow in both tumor and normal tissues, including skeletal muscle. Intraperitoneal injection of nicotinamide was used as a simple intervention to test the sensitivity of noninvasive diffuse correlation spectroscopy (DCS) to changes in blood flow in the murine left quadriceps femoris skeletal muscle. DCS was then compared with the gold-standard fluorescent microsphere (FM) technique for validation. The nicotinamide dose-response experiment showed that relative blood flow measured by DCS increased following treatment with 500- and 1000-mg / kg nicotinamide. The DCS and FM technique comparison showed that blood flow index measured by DCS was correlated with FM counts quantified by image analysis. The results of this study show that DCS is sensitive to nicotinamide-induced blood flow elevation in the murine left quadriceps femoris. Additionally, the results of the comparison were consistent with similar studies in higher-order animal models, suggesting that mouse models can be effectively employed to investigate the utility of DCS for various blood flow measurement applications.

  20. Numerical investigation of flow parameters for solid rigid spheroidal particle in a pulsatile pipe flow

    NASA Astrophysics Data System (ADS)

    Varghese, Joffin; Jayakumar, J. S.

    2017-09-01

    Quantifying, forecasting and analysing the displacement rates of suspended particles are essential while discussing about blood flow analysis. Because blood is one of the major organs in the body, which enables transport phenomena, comprising of numerous blood cells. In order to model the blood flow, a flow domain was created and numerically simulated. Flow field velocity in the stream is solved utilizing Finite Volume Method utilizing FVM unstructured solver. In pulsatile flow, the effect of parameters such as average Reynolds number, tube radius, particle size and Womersley number are taken into account. In this study spheroidal particle trajectory in axial direction is simulated at different values of pulsating frequency including 1.2 Hz, 3.33 Hz and 4.00 Hz and various densities including 1005 kg/m3 and 1025 kg/m3 for the flow domain. The analysis accomplishes the interaction study of blood constituents for different flow situations which have applications in diagnosis and treatment of cardio vascular related diseases.

  1. Increased hippocampal blood volume and normal blood flow in schizophrenia

    PubMed Central

    Talati, Pratik; Rane, Swati; Skinner, Jack; Gore, John; Heckers, Stephan

    2015-01-01

    Neuroimaging studies have provided compelling evidence for abnormal hippocampal activity in schizophrenia. Most studies made inferences about baseline hippocampal activity using a single hemodynamic parameter (e.g., blood volume or blood flow). Here we studied several hemodynamic measures in the same cohort to test the hypothesis of increased hippocampal activity in schizophrenia. We used dynamic susceptibility contrast- (DSC-) magnetic resonance imaging to assess blood volume, blood flow, and mean transit time in the hippocampus of 15 patients with chronic schizophrenia and 15 healthy controls. Left and right hippocampal measurements were combined for absolute measures of cerebral blood volume (CBV), blood flow (CBF), and mean transit time (MTT). We found significantly increased hippocampal CBV, but normal CBF and MTT, in schizophrenia. The uncoupling of CBV and CBF could be due to several factors, including antipsychotic medication, loss of cerebral perfusion pressure, or angiogenesis. Further studies need to incorporate several complementary imaging modalities to better characterize hippocampal dysfunction in schizophrenia. PMID:25896442

  2. Non-invasive determination of instantaneous brachial blood flow using the oscillometric method.

    PubMed

    Liu, Shing-Hong; Wang, Jia-Jung; Cheng, Da-Chuan

    2009-08-01

    The oscillometric method has been widely used to measure arterial systolic and diastolic blood pressures, but its potential for arterial blood flow measurements still remains to be explored. The aim of this study was to non-invasively determine arterial blood flow using an oscillometric blood flow measurement system. The system consists of a pneumatic elastic cuff, an air-pumping motor, a releaser valve, a pressure transducer, and an airflow meter. To build a non-linear cuff model, we measured airflow pumped into the pneumatic cuff and cuff pressure using an airflow meter and pressure transducer during the inflation period, respectively. During the deflation period, only the pressure transducer was used to record cuff pressure. Based on the cuff model, the oscillometric blood flow waveform was obtained by integrating the oscillometric pressure waveform. We compared arterial blood flow derived from the maximum amplitude of the oscillometric blood flow waveform with Doppler-measured blood flow calculated with the diameters and blood velocities of the brachial arteries in 32 subjects who underwent diagnostic evaluations for peripheral arterial embolism. A linear correlation coefficient of r = 0.716 was found between the oscillometry- and Doppler-based blood flow measurements in the 32 subjects. These results suggest that blood flow passing through the brachial artery can be quantified non-invasively using the oscillometric approach after appropriate calibration.

  3. Thermography-based blood flow imaging in human skin of the hands and feet: a spectral filtering approach.

    PubMed

    Sagaidachnyi, A A; Fomin, A V; Usanov, D A; Skripal, A V

    2017-02-01

    The determination of the relationship between skin blood flow and skin temperature dynamics is the main problem in thermography-based blood flow imaging. Oscillations in skin blood flow are the source of thermal waves propagating from micro-vessels toward the skin's surface, as assumed in this study. This hypothesis allows us to use equations for the attenuation and dispersion of thermal waves for converting the temperature signal into the blood flow signal, and vice versa. We developed a spectral filtering approach (SFA), which is a new technique for thermography-based blood flow imaging. In contrast to other processing techniques, the SFA implies calculations in the spectral domain rather than in the time domain. Therefore, it eliminates the need to solve differential equations. The developed technique was verified within 0.005-0.1 Hz, including the endothelial, neurogenic and myogenic frequency bands of blood flow oscillations. The algorithm for an inverse conversion of the blood flow signal into the skin temperature signal is addressed. The examples of blood flow imaging of hands during cuff occlusion and feet during heating of the back are illustrated. The processing of infrared (IR) thermograms using the SFA allowed us to restore the blood flow signals and achieve correlations of about 0.8 with a waveform of a photoplethysmographic signal. The prospective applications of the thermography-based blood flow imaging technique include non-contact monitoring of the blood supply during engraftment of skin flaps and burns healing, as well the use of contact temperature sensors to monitor low-frequency oscillations of peripheral blood flow.

  4. Modern Diagnostic Techniques for the Assessment of Ocular Blood Flow in Myopia: Current State of Knowledge.

    PubMed

    Grudzińska, Ewa; Modrzejewska, Monika

    2018-01-01

    Myopia is the most common refractive error and the subject of interest of various studies assessing ocular blood flow. Increasing refractive error and axial elongation of the eye result in the stretching and thinning of the scleral, choroid, and retinal tissues and the decrease in retinal vessel diameter, disturbing ocular blood flow. Local and systemic factors known to change ocular blood flow include glaucoma, medications and fluctuations in intraocular pressure, and metabolic parameters. Techniques and tools assessing ocular blood flow include, among others, laser Doppler flowmetry (LDF), retinal function imager (RFI), laser speckle contrast imaging (LSCI), magnetic resonance imaging (MRI), optical coherence tomography angiography (OCTA), pulsatile ocular blood flowmeter (POBF), fundus pulsation amplitude (FPA), colour Doppler imaging (CDI), and Doppler optical coherence tomography (DOCT). Many researchers consistently reported lower blood flow parameters in myopic eyes regardless of the used diagnostic method. It is unclear whether this is a primary change that causes secondary thinning of ocular tissues or quite the opposite; that is, the mechanical stretching of the eye wall reduces its thickness and causes a secondary lower demand of tissues for oxygen. This paper presents a review of studies assessing ocular blood flow in myopes.

  5. Circadian changes in uterine artery and ovarian stromal blood flow after pituitary down-regulation.

    PubMed

    Chan, Carina C W; Ng, Ernest H Y; Tang, Oi-Shan; Ho, Pak-Chung

    2005-09-01

    To investigate changes in the uterine artery and ovarian stromal blood flow in relation to the time of the day after pituitary down-regulation during in vitro fertilization treatment. Thirteen women were recruited. The uterine artery blood flow was studied using pulsed color Doppler ultrasonography and the ovarian stromal blood flow was measured using three-dimensional power Doppler ultrasonography. Ultrasound scan examinations and blood pressure measurements were performed in the morning and evening. The diastolic and the mean arterial pressures were significantly higher in the evening. An increase in the uterine artery pulsatility index and resistance index in the evening was observed. The ovarian vascularization index, vascularization flow index, and right ovarian flow index were significantly lower in the evening. Despite the small sample size, we have demonstrated the presence of a diurnal change in uterine artery and ovarian stromal blood flow after pituitary down-regulation. Such changes may be related to the systemic change in the sympathetic system and hence vascular resistance. Future study regarding ovarian stromal blood flow should take into account the effect of the time of the day on the readings in order to avoid misleading interpretation of data.

  6. A pilot study of change in cerebral activity during personality rating by questionnaire and personal computer.

    PubMed

    Sato, Emi; Matsuda, Kouhei

    2018-06-11

    The purpose of this study was to examine cerebral blood flow in the frontal cortex area during personality self-rating tasks. Our two hypotheses were (1) cerebral blood flow varies based on personality rating condition and (2) cerebral blood flow varies based on the personality traits. This experiment measured cerebral blood flow under 3 personal computer rating conditions and 2 questionnaire conditions. Comparing the rating conditions, the results of the t-test indicated that cerebral blood flow was higher in the questionnaire condition than it was in the personal computer condition. With respect to the Big Five, the result of the correlation coefficient, that is, cerebral blood flow during a personality rating task, changed according to the trait for agreeableness. The results of the analysis of the 5-cluster on individual differences indicated that certain personality traits were related to the factors that increased or decreased cerebral blood flow. An analysis of variance indicated that openness to experience and Behavioural Activation System-drive was significant given that participants with high intellectual curiosity were motivated in this experiment, thus, their cerebral blood flow may have increased. The significance of this experiment was that by employing certain performance measures we could examine differences in physical changes based on personality traits. © 2018 International Union of Psychological Science.

  7. [Microcirculatory blood and lymph flow examination in eyelid skin by laser Doppler flowmetry].

    PubMed

    Safonova, T N; Kintyukhina, N P; Sidorov, V V; Gladkova, O V; Reyn, E S

    to study normal blood and lymph microcirculation of the upper and lower eyelids in different age groups. The study included 108 volunteers (216 eyes) aged from 20 to 80 years with no signs of changes in anterior segment structures, who were grouped by age ranges (20-30 years, 31-40 years, 41-50 years, 51-60 years, 61-70 years, and 71-80 years) into 6 groups equal in gender and quantitative composition. In all volunteers, microcirculation of the upper and lower eyelids was examined by laser Doppler flowmetry (LDF) ('LASMA MC-1' peripheral blood and lymph flow analyzer and 'LASMA MC' laser diagnostic complex, LASMA LLC). The average perfusion changes in blood and lymph flow as well as blood and lymph flow oscillations were analyzed. Blood and lymph flow in the microvasculature of the upper and lower eyelids is variable and depends on neither the age, nor gender of the test subject. On LDF-gram, every increase in amplitude of blood flow corresponds to a decrease in that of lymph flow. The non-invasive method of LDF expands our diagnostic capabilities as it enables assessment of not only blood, but also lymph flow. The data obtained can serve as a starting point for exploring microcirculation in different age groups in the presence of different pathological processes.

  8. Brain blood flow and blood pressure during hypoxia in the epaulette shark Hemiscyllium ocellatum, a hypoxia-tolerant elasmobranch.

    PubMed

    Söderström, V; Renshaw, G M; Nilsson, G E

    1999-04-01

    The key to surviving hypoxia is to protect the brain from energy depletion. The epaulette shark (Hemiscyllium ocellatum) is an elasmobranch able to resist energy depletion and to survive hypoxia. Using epi-illumination microscopy in vivo to observe cerebral blood flow velocity on the brain surface, we show that cerebral blood flow in the epaulette shark is unaffected by 2 h of severe hypoxia (0.35 mg O2 l-1 in the respiratory water, 24 C). Thus, the epaulette shark differs from other hypoxia- and anoxia-tolerant species studied: there is no adenosine-mediated increase in cerebral blood flow such as that occurring in freshwater turtles and cyprinid fish. However, blood pressure showed a 50 % decrease in the epaulette shark during hypoxia, indicating that a compensatory cerebral vasodilatation occurs to maintain cerebral blood flow. We observed an increase in cerebral blood flow velocity when superfusing the normoxic brain with adenosine (making sharks the oldest vertebrate group in which this mechanism has been found). The adenosine-induced increase in cerebral blood flow velocity was reduced by the adenosine receptor antagonist aminophylline. Aminophylline had no effect upon the maintenance of cerebral blood flow during hypoxia, however, indicating that adenosine is not involved in maintaining cerebral blood flow in the epaulette shark during hypoxic hypotension.

  9. Glucose-dependent blood flow dynamics in murine pancreatic islets in vivo

    PubMed Central

    Nyman, Lara R.; Ford, Eric

    2010-01-01

    Pancreatic islets are highly vascularized and arranged so that regions containing β-cells are distinct from those containing other cell types. Although islet blood flow has been studied extensively, little is known about the dynamics of islet blood flow during hypoglycemia or hyperglycemia. To investigate changes in islet blood flow as a function of blood glucose level, we clamped blood glucose sequentially at hyperglycemic (∼300 mg/dl or 16.8 mM) and hypoglycemic (∼50 mg/dl or 2.8 mM) levels while simultaneously imaging intraislet blood flow in mouse models that express green fluorescent protein in the β-cells or yellow fluorescent protein in the α-cells. Using line scanning confocal microscopy, in vivo blood flow was assayed after intravenous injection of fluorescent dextran or sulforhodamine-labeled red blood cells. Regardless of the sequence of hypoglycemia and hyperglycemia, islet blood flow is faster during hyperglycemia, and apparent blood volume is greater during hyperglycemia than during hypoglycemia. However, there is no change in the order of perfusion of different islet endocrine cell types in hypoglycemia compared with hyperglycemia, with the islet core of β-cells usually perfused first. In contrast to the results in islets, there was no significant difference in flow rate in the exocrine pancreas during hyperglycemia compared with hypoglycemia. These results indicate that glucose differentially regulates blood flow in the pancreatic islet vasculature independently of blood flow in the rest of the pancreas. PMID:20071562

  10. Positron emission tomography detects greater blood flow and less blood flow heterogeneity in the exercising skeletal muscles of old compared with young men during fatiguing contractions

    PubMed Central

    Rudroff, Thorsten; Weissman, Jessica A; Bucci, Marco; Seppänen, Marko; Kaskinoro, Kimmo; Heinonen, Ilkka; Kalliokoski, Kari K

    2014-01-01

    The purpose of this study was to investigate blood flow and its heterogeneity within and among the knee muscles in five young (26 ± 6 years) and five old (77 ± 6 years) healthy men with similar levels of physical activity while they performed two types of submaximal fatiguing isometric contraction that required either force or position control. Positron emission tomography (PET) and [15O]-H2O were used to determine blood flow at 2 min (beginning) and 12 min (end) after the start of the tasks. Young and old men had similar maximal forces and endurance times for the fatiguing tasks. Although muscle volumes were lower in the older subjects, total muscle blood flow was similar in both groups (young men: 25.8 ± 12.6 ml min−1; old men: 25.1 ± 15.4 ml min−1; age main effect, P = 0.77) as blood flow per unit mass of muscle in the exercising knee extensors was greater in the older (12.5 ± 6.2 ml min−1 (100 g)−1) than the younger (8.6 ± 3.6 ml min−1 (100 g)−1) men (age main effect, P = 0.001). Further, blood flow heterogeneity in the exercising knee extensors was significantly lower in the older (56 ± 27%) than the younger (67 ± 34%) men. Together, these data show that although skeletal muscles are smaller in older subjects, based on the intact neural drive to the muscle and the greater, less heterogeneous blood flow per gram of muscle, old fit muscle achieves adequate exercise hyperaemia. Key points The results of previous studies that attempted to demonstrate the effects of ageing on skeletal muscle blood flow are controversial because these studies used indirect assessments of skeletal muscle blood flow obtained via whole limb blood flow measurements that provide no information on the distribution of blood flow within particular muscles. We used positron emission tomography to measure blood flow per gram of muscle in old and young men with similar levels of physical activity. Resting muscle blood flow was similar in both groups and exercising muscle blood flow was greater and less heterogeneous in the older men. Old and young men achieved similar maximal voluntary contraction forces and endurance times during two types of fatiguing isometric task. These findings indicate that physically active old men have intact neural drive to the muscle and achieve adequate exercise hyperaemia despite the age-induced decrease in their muscle volume. PMID:24247981

  11. Effect of hindlimb unweighting on tissue blood flow in the rat

    NASA Technical Reports Server (NTRS)

    Mcdonald, K. S.; Delp, M. D.; Fitts, R. H.

    1992-01-01

    This study characterized distribution of blood flow in the rat during hindlimb unweighting (HU), and post-HU standing and exercise. The relationship between reduced hindlimb blood flow and the previously observed elevation in anaerobic metabolism observed with contractile activity in the atrophied soleus muscle was examined (Witzmann et al., 1992). Blood flow was measured during unweighting, normal standing, and running on a treadmill (15 m/min), after 15 days of HU or cage control. For another group blood flow was measured during preexercise treadmill standing and treadmill running. During unweighting, PE standing, and running no difference in soleus blood flow was observed between groups. Muscles composed mainly of fast twitch glycolytic fibers received greater blood flow during chronic unweighting. With exercise blood flow to visceral organs was reduced in control animals, a similar change was not seen in 15 day HU rats. These changes suggest a reduction in the ability of the sympathetic nervous system to distribute cardiac output after chronic HU. A reduction in blood flow to the soleus during exercise was not observed after HU and so does not explain the increased dependence of the atrophied soleus on anerobic energy production during contractile activity.

  12. Studies of the haemodynamic effects of creatine phosphate in man.

    PubMed Central

    Hurlow, R A; Aukland, A; Hardman, J; Whittington, J R

    1982-01-01

    1 The haemodynamic effects of intravenous creatine phosphate 1000 mg have been studied. 2 During the first 60 min following drug administration heart rate and blood pressure did not change but cardiac output fell significantly by approximately 18%. Calculated total peripheral resistance showed a corresponding significant rise, the maximum increase being approximately 24%. All these changes were beginning to diminish within 90 min after the injection. 3 Total limb blood flow measured in both arm and leg (using venous occlusion strain-gauge plethysmography) showed no appreciable changes following injection of creatine phosphate. 4 There was a progressive reduction in leg muscle blood flow (Xe133 clearance method) following injection which was statistically significant with respect to the initial level and reached a minimum (46% reduction) 50 min after the injection. 5 Skin blood flow, estimated by infra-red photoplethysmography, showed changes complementary to those seen with muscle flow. There was a progressive and significant rise to a peak (73% increase) 30 min after the injection. 6 No adverse reactions to the injections were noted. 7 Reduced cardiac output in the absence of altered total limb blood flow presumably reflects a reduction in visceral blood flow, which was not measured in this study. Within the limbs, creatine phosphate appears to result in a redistribution of blood flow from muscle to skin. Thus, these preliminary results suggest that intravenous creatine phosphate could be clinically useful in situations where short term improvement in skin blood flow would be advantageous and that further controlled studies would be justified. PMID:7093109

  13. Retinal blood flow detection in diabetic patients by Doppler Fourier domain optical coherence tomography◊

    PubMed Central

    Wang, Yimin; Fawzi, Amani; Tan, Ou; Gil-Flamer, John; Huang, David

    2010-01-01

    We present human retinal blood flow investigation for diabetic patients using Doppler Fourier domain optical coherence tomography (FD-OCT). The scanning pattern consisted of two concentric circles around the optic nerve head. The blood flow in one patient with diabetes and no retinpathy and another patient with treated proliferative diabetic retinopathy were measured. The patient without retinopathy showed a total blood flow value at the lower level of the normal range. The flow distribution between superior and inferior retina was balanced. The patient with diabetic retinopathy had a flow value lower than the normal people. Our study shows that Doppler FD-OCT can be used to evaluate the total retinal blood flow in patients with retinal diseases. PMID:19259246

  14. Measurement of bronchial blood flow in the sheep by video dilution technique.

    PubMed Central

    Link, D P; Parsons, G H; Lantz, B M; Gunther, R A; Green, J F; Cross, C E

    1985-01-01

    Bronchial blood flow was determined in five adult anaesthetised sheep by the video dilution technique. This is a new fluoroscopic technique for measuring blood flow that requires only arterial catheterisation. Catheters were placed into the broncho-oesophageal artery and ascending aorta from the femoral arteries for contrast injections and subsequent videotape recording. The technique yields bronchial blood flow as a percentage of cardiac output. The average bronchial artery blood flow was 0.6% (SD 0.20%) of cardiac output. In one sheep histamine (90 micrograms) injected directly into the bronchial artery increased bronchial blood flow by a factor of 6 and histamine (90 micrograms) plus methacholine (4.5 micrograms) augmented flow by a factor of 7.5 while leaving cardiac output unchanged. This study confirms the high degree of reactivity of the bronchial circulation and demonstrates the feasibility of using the video dilution technique to investigate the determinants of total bronchial artery blood flow in a stable animal model avoiding thoracotomy. Images PMID:3883564

  15. Effects of L-glutamine supplementation on maternal and fetal hemodynamics in gestating ewes exposed to alcohol

    PubMed Central

    Sawant, Onkar B.; Ramadoss, Jayanth; Hankins, Gary D.; Wu, Guoyao

    2014-01-01

    Not much is known about effects of gestational alcohol exposure on maternal and fetal cardiovascular adaptations. This study determined whether maternal binge alcohol exposure and L-glutamine supplementation could affect maternal-fetal hemodynamics and fetal regional brain blood flow during the brain growth spurt period. Pregnant sheep were randomly assigned to one of four groups: saline control, alcohol (1.75–2.5 g/kg body weight), glutamine (100 mg/kg body weight) or alcohol + glutamine. A chronic weekend binge drinking paradigm between gestational days (GD) 99 and 115 was utilized. Fetuses were surgically instrumented on GD 117 ± 1 and studied on GD 120 ± 1. Binge alcohol exposure caused maternal acidemia, hypercapnea, and hypoxemia. Fetuses were acidemic and hypercapnic, but not hypoxemic. Alcohol exposure increased fetal mean arterial pressure, whereas fetal heart rate was unaltered. Alcohol exposure resulted in ~40 % reduction in maternal uterine artery blood flow. Labeled microsphere analyses showed that alcohol induced >2-fold increases in fetal whole brain blood flow. The elevation in fetal brain blood flow was region-specific, particularly affecting the developing cerebellum, brain stem, and olfactory bulb. Maternal L-glutamine supplementation attenuated alcohol-induced maternal hypercapnea, fetal acidemia and increases in fetal brain blood flow. L-Glutamine supplementation did not affect uterine blood flow. Collectively, alcohol exposure alters maternal and fetal acid–base balance, decreases uterine blood flow, and alters fetal regional brain blood flow. Importantly, L-glutamine supplementation mitigates alcohol-induced acid–base imbalances and alterations in fetal regional brain blood flow. Further studies are warranted to elucidate mechanisms responsible for alcohol-induced programming of maternal uterine artery and fetal circulation adaptations in pregnancy. PMID:24810329

  16. Effects of L-glutamine supplementation on maternal and fetal hemodynamics in gestating ewes exposed to alcohol.

    PubMed

    Sawant, Onkar B; Ramadoss, Jayanth; Hankins, Gary D; Wu, Guoyao; Washburn, Shannon E

    2014-08-01

    Not much is known about effects of gestational alcohol exposure on maternal and fetal cardiovascular adaptations. This study determined whether maternal binge alcohol exposure and L-glutamine supplementation could affect maternal-fetal hemodynamics and fetal regional brain blood flow during the brain growth spurt period. Pregnant sheep were randomly assigned to one of four groups: saline control, alcohol (1.75-2.5 g/kg body weight), glutamine (100 mg/kg body weight) or alcohol + glutamine. A chronic weekend binge drinking paradigm between gestational days (GD) 99 and 115 was utilized. Fetuses were surgically instrumented on GD 117 ± 1 and studied on GD 120 ± 1. Binge alcohol exposure caused maternal acidemia, hypercapnea, and hypoxemia. Fetuses were acidemic and hypercapnic, but not hypoxemic. Alcohol exposure increased fetal mean arterial pressure, whereas fetal heart rate was unaltered. Alcohol exposure resulted in ~40 % reduction in maternal uterine artery blood flow. Labeled microsphere analyses showed that alcohol induced >2-fold increases in fetal whole brain blood flow. The elevation in fetal brain blood flow was region-specific, particularly affecting the developing cerebellum, brain stem, and olfactory bulb. Maternal L-glutamine supplementation attenuated alcohol-induced maternal hypercapnea, fetal acidemia and increases in fetal brain blood flow. L-Glutamine supplementation did not affect uterine blood flow. Collectively, alcohol exposure alters maternal and fetal acid-base balance, decreases uterine blood flow, and alters fetal regional brain blood flow. Importantly, L-glutamine supplementation mitigates alcohol-induced acid-base imbalances and alterations in fetal regional brain blood flow. Further studies are warranted to elucidate mechanisms responsible for alcohol-induced programming of maternal uterine artery and fetal circulation adaptations in pregnancy.

  17. Renal blood flow measurement with contrast-enhanced harmonic ultrasonography: evaluation of dopamine-induced changes in renal cortical perfusion in humans.

    PubMed

    Kishimoto, N; Mori, Y; Nishiue, T; Shibasaki, Y; Iba, O; Nose, A; Uchiyama-Tanaka, Y; Masaki, H; Matsubara, H; Iwasaka, T

    2003-06-01

    An accessible non-invasive method for evaluating renal regional blood flow in real time is highly desirable in the clinical setting. Recent progress in ultrasonography with microbubble contrast has allowed quantification of regional blood flow in animal models. Goal ofthis study was to establish a convenient contrast--enhanced harmonic ultrasonography (CEHU) method for evaluating renal cortical blood flow in humans. We carried out intermittent second harmonic imaging in 9 healthy volunteers. Pulse interval was progressively decreased from 4 s - 0.2 s during continuous venous infusion of the microbubble contrast agent. Pulse interval versus CEHU-derived acoustic intensity plots provided microbubble velocity (MV) and fractional vascular volume (FVV) during renal cortical perfusion in humans. Low-dose dopamine infusion (2 microg/min/kg) resulted in a significant increase in MV which correlated well with the increase in total renal blood flow (RBF) determined by a conventional study of p-aminohippurate clearance (C(PAH)) (r = 0.956, p < 0.0001). Although FVV was not significantly increased, alterations in CEHU-derived renal cortical blood flow calculated by the products of MV and FVV were also correlated with alterations in total RBF (r = 0.969, p < 0.0001). Thus, low-dose dopamine infusion increases renal cortical blood flow observed in CEHU, mainly by increasing MV. The present study shows that renal cortical blood flow in humans can be measured non-invasively by CEHU and that CEHU can be used for quantitatively evaluating changes induced by a therapeutic agent such as dopamine in flow velocity and in FVV.

  18. MUSCLE METABOLISM WITH BLOOD FLOW RESTRICTION IN CHRONIC FATIGUE SYNDROME

    PubMed Central

    McCully, Kevin K.; Smith, Sinclair; Rajaei, Sheeva; Leigh, John S.; Natelson, Benjamin H.

    2009-01-01

    The purpose of this study was to determine if chronic fatigue syndrome (CFS) is associated with reduced blood flow and muscle oxidative metabolism. Patients with CFS according to CDC criteria (n=19) were compared to normal sedentary subjects (n = 11). Muscle blood flow was measured in the femoral artery with Doppler ultrasound after exercise. Muscle metabolism was measured in the medial gastrocnemius muscle using 31P magnetic resonance spectroscopy (MRS). Muscle oxygen saturation and blood volume were measured using near-infrared spectroscopy. CFS and controls were not different in hyperemic blood flow or phosphocreatine recovery rate. Cuff pressures of 50,60,70,80,and 90 mmHg were used to partially restrict blood flow during recovery. All pressures reduced blood flow and oxidative metabolism, with 90 mmHg reducing blood flow by 46% and oxidative metabolism by 30.7% in CFS patients. Hyperemic blood flow during partial cuff occlusion was significantly reduced in CFS patients (P < 0.01), and recovery of oxygen saturation was slower (P < 0.05). No differences were seen in the amount of reduction in metabolism with partially reduced blood flow. In conclusion, CFS patients showed evidence of reduced hyperemic flow and reduced oxygen delivery, but no evidence that this impaired muscle metabolism. Thus, CFS patients might have altered control of blood flow, but this is unlikely to influence muscle metabolism. Further, abnormalities in muscle metabolism do not appear to be responsible for the CFS symptoms. PMID:14578362

  19. Uterine artery blood flow, fetal hypoxia and fetal growth

    PubMed Central

    Browne, Vaughn A.; Julian, Colleen G.; Toledo-Jaldin, Lillian; Cioffi-Ragan, Darleen; Vargas, Enrique; Moore, Lorna G.

    2015-01-01

    Evolutionary trade-offs required for bipedalism and brain expansion influence the pregnancy rise in uterine artery (UtA) blood flow and, in turn, reproductive success. We consider the importance of UtA blood flow by reviewing its determinants and presenting data from 191 normotensive (normal, n = 125) or hypertensive (preeclampsia (PE) or gestational hypertension (GH), n = 29) Andean residents of very high (4100–4300 m) or low altitude (400 m, n = 37). Prior studies show that UtA blood flow is reduced in pregnancies with intrauterine growth restriction (IUGR) but whether the IUGR is due to resultant fetal hypoxia is unclear. We found higher UtA blood flow and Doppler indices of fetal hypoxia in normotensive women at high versus low altitude but similar fetal growth. UtA blood flow was markedly lower in early-onset PE versus normal high-altitude women, and their fetuses more hypoxic as indicated by lower fetal heart rate, Doppler indices and greater IUGR. We concluded that, despite greater fetal hypoxia, fetal growth was well defended by higher UtA blood flows in normal Andeans at high altitude but when compounded by lower UtA blood flow in early-onset PE, exaggerated fetal hypoxia caused the fetus to respond by decreasing cardiac output and redistributing blood flow to help maintain brain development at the expense of growth elsewhere. We speculate that UtA blood flow is not only an important supply line but also a trigger for stimulating the metabolic and other processes regulating feto-placental metabolism and growth. Studies using the natural laboratory of high altitude are valuable for identifying the physiological and genetic mechanisms involved in human reproductive success. PMID:25602072

  20. Effects of respiratory muscle work on respiratory and locomotor blood flow during exercise.

    PubMed

    Dominelli, Paolo B; Archiza, Bruno; Ramsook, Andrew H; Mitchell, Reid A; Peters, Carli M; Molgat-Seon, Yannick; Henderson, William R; Koehle, Michael S; Boushel, Robert; Sheel, A William

    2017-11-01

    What is the central question of this study? Does manipulation of the work of breathing during high-intensity exercise alter respiratory and locomotor muscle blood flow? What is the main finding and its importance? We found that when the work of breathing was reduced during exercise, respiratory muscle blood flow decreased, while locomotor muscle blood flow increased. Conversely, when the work of breathing was increased, respiratory muscle blood flow increased, while locomotor muscle blood flow decreased. Our findings support the theory of a competitive relationship between locomotor and respiratory muscles during intense exercise. Manipulation of the work of breathing (WOB) during near-maximal exercise influences leg blood flow, but the effects on respiratory muscle blood flow are equivocal. We sought to assess leg and respiratory muscle blood flow simultaneously during intense exercise while manipulating WOB. Our hypotheses were as follows: (i) increasing the WOB would increase respiratory muscle blood flow and decrease leg blood flow; and (ii) decreasing the WOB would decrease respiratory muscle blood flow and increase leg blood flow. Eight healthy subjects (n = 5 men, n = 3 women) performed a maximal cycle test (day 1) and a series of constant-load exercise trials at 90% of peak work rate (day 2). On day 2, WOB was assessed with oesophageal balloon catheters and was increased (via resistors), decreased (via proportional assist ventilation) or unchanged (control) during the trials. Blood flow was assessed using near-infrared spectroscopy optodes placed over quadriceps and the sternocleidomastoid muscles, coupled with a venous Indocyanine Green dye injection. Changes in WOB were significantly and positively related to changes in respiratory muscle blood flow (r = 0.73), whereby increasing the WOB increased blood flow. Conversely, changes in WOB were significantly and inversely related to changes in locomotor blood flow (r = 0.57), whereby decreasing the WOB increased locomotor blood flow. Oxygen uptake was not different during the control and resistor trials (3.8 ± 0.9 versus 3.7 ± 0.8 l min -1 , P > 0.05), but was lower on the proportional assist ventilator trial (3.4 ± 0.7 l min -1 , P < 0.05) compared with control. Our findings support the concept that respiratory muscle work significantly influences the distribution of blood flow to both respiratory and locomotor muscles. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.

  1. Mammary blood flow regulation in the nursing rabbit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katz, M.; Creasy, R.K.

    Cardiac output and mammary blood flow distribution prior to and after suckling were studied in 10 nursing rabbits by means of radionuclide-labeled microspheres. Suckling was followed by a 5.8% rise in cardiac output and a 20.4% rise in mammary blood flow. Determinations of intraglandular blood flow distribution have shown that there was a 43% increase in blood flow to the glands suckled from as compared to a 22.7% rise to the contralateral untouched glands and a 4.9% rise in the remainder of untouched glands. The conclusion is that a local mechanism may be involved in the regulation of mammary bloodmore » flow in the nursing rabbit.« less

  2. Skeletal muscle contractions uncoupled from gravitational loading directly increase cortical bone blood flow rates in vivo.

    PubMed

    Caulkins, Carrie; Ebramzadeh, Edward; Winet, Howard

    2009-05-01

    The direct and indirect effects of muscle contraction on bone microcirculation and fluid flow are neither well documented nor explained. However, skeletal muscle contractions may affect the acquisition and maintenance of bone via stimulation of bone circulatory and interstitial fluid flow parameters. The purposes of this study were to assess the effects of transcutaneous electrical neuromuscular stimulation (TENS)-induced muscle contractions on cortical bone blood flow and bone mineral content, and to demonstrate that alterations in blood flow could occur independently of mechanical loading and systemic circulatory mechanisms. Bone chamber implants were used in a rabbit model to observe real-time blood flow rates and TENS-induced muscle contractions. Video recording of fluorescent microspheres injected into the blood circulation was used to calculate changes in cortical blood flow rates. TENS-induced repetitive muscle contractions uncoupled from mechanical loading instantaneously increased cortical microcirculatory flow, directly increased bone blood flow rates by 130%, and significantly increased bone mineral content over 7 weeks. Heart rates and blood pressure did not significantly increase due to TENS treatment. Our findings suggest that muscle contraction therapies have potential clinical applications for improving blood flow to cortical bone in the appendicular skeleton. Copyright 2008 Orthopaedic Research Society

  3. [Antegrade diastolic blood flow and classic reflux in varicose dilatation of the intersaphenous vein].

    PubMed

    Shaidakov, E V; Rosukhovsky, D A; Grigoryan, A G; Bulatov, V L; Ilyukhin, E A

    2016-01-01

    In the intersaphenous vein (ISV) there may take place the so-called "antegrade" or "paradoxical" reflux. This type of blood flow is revealed in a series of patients during muscular diastole and is a link of the pathogenesis of varicose disease, but has, as distinct from the "classical" reflux, an antegrade direction. An incompetent saphenopopliteal junction (SPJ) is a source of the antegrade diastolic blood flow (ADBF) through the ISV. Descriptions of possible variants of impaired blood flow through the ISV are fragmentary and their interpretations are controversial. Prevalence and pathogenesis of these disorders impairments have not yet been studied. A cross-sectional study: over 4 years three centres examined a total of 1,413 patients diagnosed with class C2-C6 varicose veins according the CEAP classification. All patients underwent ultrasound duplex scanning of lower limb veins. The ADBF was determined as a unidirectional antegrade blood flow with the duration of not more than 0.5 second, observed after the crus was relived of compression (in the diastole). Of the patients included into the study who had no varicose veins on the contralateral extremity with the ISV being spotted we sequentially selected 40 subjects including them into the Study Group for the analysis of blood flow and the diameter of the ISV in health. Impairments of blood flow in the ISV were revealed in 61 (4.8%) of 1,265 extremities included into the study: the "classical" reflux in 9 (14.8%) limbs, ADBF was revealed in 37 (60.7%) limbs, a combination of the "classical" blood flow and ADBF - in 15 (24.6%) limbs. Hence, the patients were subdivided into three groups. Studying the nature of blood flow through the ISV in the control group on 40 lower limbs revealed no blood flow disorders. The mean ISV diameter amounted to 1.68 mm (ME=1 mm). The ISV diameter was considerably higher in all studied groups as compared with the control one (p<0.0001). The diameter of the ISV in its proximal portion averagely amounted to 4.48 mm (SD 1.337 mm, SE 0.171 mm). The diameter in the distal portion amounted to 5.39 mm (SD 1.725 mm, SE 0.221 mm).

  4. Effect of Hindlimb Unweighting on Tissue Blood Flow in the Rat

    NASA Technical Reports Server (NTRS)

    McDonald, K. S.; Delp, M. D.; Fitts, R. H.

    1992-01-01

    The purpose of this study was to characterize the distribution of blood flow in the rat during hindlimb unweighting (HU) and post-HU standing and exercise and examine whether the previously reported elevation in anaerobic metabolism observed with contractile activity in the atrophied soleus muscle was caused by a reduced hindlimb blood flow. After either 15 days of HU or cage control, blood flow was measured with radioactive microspheres during unweighting, normal standing, and running on a treadmill (15 m/min). In another group of control and experimental animals, blood flow was measured during preexercise (PE) treadmill standing and treadmill running (15 m/min). Soleus muscle blood flow was not different between groups during unweighting, PE standing, and running at 15 m/min. Chronic unweighting resulted in the tendency for greater blood flow to muscles composed of predominantly fast-twitch glycolytic fibers. With exercise, blood flow to visceral organs was reduced compared with PE values in the control rats, whereas flow to visceral organs in 15-day HU animals was unaltered by exercise. These higher flows to the viscera and to muscles composed of predominantly fast-twitch glycolytic fibers suggest an apparent reduction in the ability of the sympathetic nervous system to distribute cardiac output after chronic HU. In conclusion, because 15 days of HU did not affect blood flow to the soleus during exercise, the increased dependence of the atrophied soleus on anerobic energy production during contractile activity cannot be explained by a reduced muscle blood flow.

  5. Effects of Aortic Irregularities on the Blood Flow

    NASA Astrophysics Data System (ADS)

    Gutmark-Little, Iris; Prahl-Wittberg, Lisa; van Wyk, Stevin; Mihaescu, Mihai; Fuchs, Laszlo; Backeljauw, Philippe; Gutmark, Ephraim

    2013-11-01

    Cardiovascular defects characterized by geometrical anomalies of the aorta and its effect on the blood flow are investigated. The flow characteristics change with the aorta geometry and the rheological properties of the blood. Flow characteristics such as wall shear stress often play an important role in the development of vascular disease. In the present study, blood is considered to be non-Newtonian and is modeled using the Quemada model, an empirical model that is valid for different red blood cell loading. Three patient-specific aortic geometries are studied using Large Eddy Simulations (LES). The three geometries represent malformations that are typical in patients populations having a genetic disorder called Turner syndrome. The results show a highly complex flow with regions of recirculation that are enhanced in two of the three aortas. Moreover, blood flow is diverted, due to the malformations, from the descending aorta to the three side branches of the arch. The geometry having an elongated transverse aorta has larger areas of strong oscillatory wall shear stress.

  6. Whole-Body Vibration and Blood Flow and Muscle Oxygenation: A Meta-Analysis

    PubMed Central

    Games, Kenneth E.; Sefton, JoEllen M.; Wilson, Alan E.

    2015-01-01

    Context: The use and popularity of whole-body vibration (WBV) has increased in recent years, but there is a lack of consensus in the literature about the effectiveness of the treatment. Objective: To quantitatively examine the effects of WBV on muscle oxygenation and peripheral blood flow in healthy adults. Data Sources: We searched Web of Science and PubMed databases and reference lists from relevant articles using the key terms whole body vibration, whole-body vibration, WBV, blood flow, peripheral blood flow, oxygenation, muscle oxygenation, circulation, circulatory, near infrared spectroscopy, NIRS, and power Doppler. Key terms were searched using single word and combination searches. No date range was specified. Study Selection: Criteria for inclusion were (1) use of a commercially available WBV device, (2) a human research model, (3) a pre-WBV condition and at least 1 WBV experimental condition, and (4) reporting of unstandardized means and standard deviations of muscle oxygenation or peripheral blood flow. Data Extraction: Means, standard deviations, and sample sizes were extracted from the text, tables, and figures of included studies. A total of 35 and 90 data points were extracted for the muscle-oxygenation and blood-flow meta-analyses, respectively. Data for each meta-analysis were combined and analyzed using meta-analysis software. Weighted, random-effects meta-analyses using the Hedges g metric were completed for muscle oxygenation and blood flow. We then conducted follow-up analyses using the moderator variables of vibration type, vibration time, vibration frequency, measurement location, and sample type. Data Synthesis: We found 18 potential articles. Further examination yielded 10 studies meeting the inclusion criteria. Whole-body vibration was shown to positively influence peripheral blood flow. Additionally, the moderators of vibration type and frequency altered the influence of WBV on blood flow. Overall, WBV did not alter muscle oxygenation; however, when the measurement site was considered, muscle oxygenation increased or decreased depending on the location. Conclusions: Acute bouts of WBV increase peripheral blood flow but do not alter skeletal muscle oxygenation. Vibration type appears to be the most important factor influencing both muscle oxygenation and peripheral blood flow. PMID:25974682

  7. Stochastic simulation of human pulmonary blood flow and transit time frequency distribution based on anatomic and elasticity data.

    PubMed

    Huang, Wei; Shi, Jun; Yen, R T

    2012-12-01

    The objective of our study was to develop a computing program for computing the transit time frequency distributions of red blood cell in human pulmonary circulation, based on our anatomic and elasticity data of blood vessels in human lung. A stochastic simulation model was introduced to simulate blood flow in human pulmonary circulation. In the stochastic simulation model, the connectivity data of pulmonary blood vessels in human lung was converted into a probability matrix. Based on this model, the transit time of red blood cell in human pulmonary circulation and the output blood pressure were studied. Additionally, the stochastic simulation model can be used to predict the changes of blood flow in human pulmonary circulation with the advantage of the lower computing cost and the higher flexibility. In conclusion, a stochastic simulation approach was introduced to simulate the blood flow in the hierarchical structure of a pulmonary circulation system, and to calculate the transit time distributions and the blood pressure outputs.

  8. Effects of anesthesia on the cerebral capillary blood flow in young and old mice

    NASA Astrophysics Data System (ADS)

    Moeini, Mohammad; Tabatabaei, Maryam S.; Bélanger, Samuel; Avti, Pramod; Castonguay, Alexandre; Pouliot, Philippe; Lesage, Frédéric

    2015-03-01

    Despite recent findings on the possible role of age-related cerebral microvasculature changes in cognition decline, previous studies of capillary blood flow in aging (using animal models) are scarce and limited to anesthetized conditions. Since anesthesia can have different effects in young and old animals, it may introduce a confounding effect in aging studies. The present study aimed to eliminate the potential confound introduced by anesthesia by measuring capillary blood flow parameters in both awake conditions and under isoflurane anesthesia. We used 2-photon laser scanning fluorescence microscopy to measure capillary diameter, red blood cell velocity and flux, hematocrit and capillary volumetric flow in individual capillaries in the barrel cortex of 6- and 24-month old C57Bl/6 mice. It was observed that microvascular properties are significantly affected by anesthesia leading to different trends in capillary blood flow parameters with aging when measured under awake or anesthetized conditions. The findings in this study suggest taking extra care in interpreting aging studies from anesthetized animals.

  9. Myocardial Blood Flow Distribution during Ischemia-Induced Coronary Vasodilation in the Unanesthetized Dog

    PubMed Central

    Bache, Robert J.; Cobb, Frederick R.; Greenfield, Joseph C.

    1974-01-01

    This study was designed to determine whether coronary vasodilation distal to a flow-limiting coronary artery stenosis could result in redistribution of myocardial blood flow to produce subendocardial underperfusion. Studies were performed in 10 awake dogs chronically prepared with electromagnetic flow-meters and hydraulic occluders on the left circumflex coronary artery. Regional myocardial blood flow was measured using radionuclide-labeled microspheres, 7-10 μm in diameter, injected into the left atrium. A 5-s coronary artery occlusion was followed by reactive hyperemia with excess inflow of arterial blood effecting 375±20% repayment of the blood flow debt incurred during occlusion. When, after a 5-s occlusion, the occluder was only partially released to hold arterial inflow to the preocclusion level for 20 s before complete release, the delayed reactive hyperemia was augmented (mean blood flow repayment = 610±45%, P < 0.01). This augmentation of the reactive hyperemia suggested that ischemia was continuing during the interval of coronary vasodilation when coronary inflow was at the preocclusion level. Measurements of regional myocardial blood flow demonstrated that endocardial flow slightly exceeded epicardial flow during control conditions. When arterial inflow was limited to the preocclusion rate during vasodilation after a 5-s total coronary artery occlusion, however, flow to the subepicardial myocardium was increased at the expense of underperfusion of the subendocardial myocardium. Thus, in the presence of a flow-limiting proximal coronary artery stenosis, ischemia-induced coronary vasodilation resulted in redistribution of myocardial blood flow with production of subendocardial ischemia in the presence of a net volume of arterial inflow which, if properly distributed, would have been adequate to prevent myocardial ischemia. Images PMID:4279928

  10. Elevated Skin Blood Flow Influences Near Infrared Spectroscopy Measurements During Supine Rest

    NASA Technical Reports Server (NTRS)

    Lee, Stuart M. C.; Clarke, Mark S. F.

    2004-01-01

    Near infrared spectroscopy is a non-invasive technique that allows determination of tissue oxygenation/blood flow based on spectrophotometric quantitation of oxy- and deoxyhemoglobin present within a tissue. This technique has gained acceptance as a means of detecting and quantifying changes in tissue blood flow due to physiological perturbation, such as that which is elicited in skeletal muscle during exercise. Since the NIRS technique requires light to penetrate the skin and subcutaneous fat in order to reach the muscle of interest, changes in skin blood flow may alter the NIRS signal in a fashion unrelated to blood flow in the muscle of interest. The aim of this study was to determine the contribution of skin blood flow to the NIRS signal obtained from resting vastus lateralis muscle of the thigh.

  11. Mathematical model of carotid artery for stent placement

    NASA Astrophysics Data System (ADS)

    Rahman, Tengku Husna Tengku Abdul; Din, Ummul Khair Salma; Ahmad, Rokiah @ Rozita

    2016-11-01

    The carotid artery stenting is one of the methods used to reduce the effect of artherosclerosis which caused by the thickening of the artery wall. In most of the studies, the measure of wall elasticity, shear stress and the blood pressure through the blood flow were considered. The aim of this study is to determine the position to place the stent inside the carotid artery. A mathematical model is reconstructed to determine the suitable location of the stent in the carotid artery. Throughout the study, differences in fluid flow between a normal carotid artery wall and stenosed carotid artery wall are investigated. Since the existence of the stenosis provides a resistance in the flow, it is important to identify the right position to place the stent. The stent will be placed in the position where stenosis exists to ease the blood to flow normally. Later after the stent placement, the blood flow normally through the blood vessel.

  12. Magnetic field effect on blood flow of Casson fluid in axisymmetric cylindrical tube: A fractional model

    NASA Astrophysics Data System (ADS)

    Ali, Farhad; Sheikh, Nadeem Ahmad; Khan, Ilyas; Saqib, Muhammad

    2017-02-01

    The effects of magnetohydrodynamics on the blood flow when blood is represented as a Casson fluid, along with magnetic particles in a horizontal cylinder is studied. The flow is due to an oscillating pressure gradient. The Laplace and finite Hankel transforms are used to obtain the closed form solutions of the fractional partial differential equations. Effects of various parameters on the flow of both blood and magnetic particles are shown graphically. The analysis shows that, the model with fractional order derivatives bring a remarkable changes as compared to the ordinary model. The study highlights that applied magnetic field reduces the velocities of both the blood and magnetic particles.

  13. Effects of chewing rate and reactive hyperemia on blood flow in denture-supporting mucosa during simulated chewing.

    PubMed

    Ogino, Takamichi; Ueda, Takayuki; Ogami, Koichiro; Koike, Takashi; Sakurai, Kaoru

    2017-01-01

    We examined how chewing rate and the extent of reactive hyperemia affect the blood flow in denture-supporting mucosa during chewing. The left palatal mucosa was loaded under conditions of simulated chewing or simulated clenching for 30s, and the blood flow during loading was recorded. We compared the relative blood flow during loading under conditions that recreated different chewing rates by combining duration of chewing cycle (DCC) and occlusal time (OT): fast chewing group, typical chewing group, slow chewing group and clenching group. The relationship between relative blood flow during simulated chewing and the extent of reactive hyperemia was also analyzed. When comparing the different chewing rate, the relative blood flow was highest in fast chewing rate, followed by typical chewing rate and slow chewing rate. Accordingly, we suggest that fast chewing increases the blood flow more than typical chewing or slow chewing. There was a significant correlation between the amount of blood flow during simulated chewing and the extent of reactive hyperemia. Within the limitations of this study, we concluded that slow chewing induced less blood flow than typical or fast chewing in denture-supporting mucosa and that people with less reactive hyperemia had less blood flow in denture-supporting mucosa during chewing. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  14. Abnormal resting state corticolimbic blood flow in depressed unmedicated patients with major depression: a (15)O-H(2)O PET study.

    PubMed

    Monkul, E Serap; Silva, Leandro A P; Narayana, Shalini; Peluso, Marco A M; Zamarripa, Frank; Nery, Fabiano G; Najt, Pablo; Li, John; Lancaster, Jack L; Fox, Peter T; Lafer, Beny; Soares, Jair C

    2012-02-01

    We investigated the differences in the resting state corticolimbic blood flow between 20 unmedicated depressed patients and 21 healthy comparisons. Resting state cerebral blood flow (CBF) was measured with H(2)(15)O PET. Anatomical MRI scans were performed on an Elscint 1.9 T Prestige system for PET-MRI coregistration. Significant changes in cerebral blood flow indicating neural activity were detected using an ROI-free image subtraction strategy. In addition, the resting blood flow in patients was correlated with the severity of depression as measured by HAM-D scores. Depressed patients showed decreases in blood flow in right anterior cingulate (Brodmann areas 24 and 32) and increased blood flow in left and right posterior cingulate (Brodmann areas 23, 29, 30), left parahippocampal gyrus (Brodmann area 36), and right caudate compared with healthy volunteers. The severity of depression was inversely correlated with the left middle and inferior frontal gyri (Brodmann areas 9 and 47) and right medial frontal gyrus (Brodmann area 10) and right anterior cingulate (Brodmann areas 24, 32) blood flow, and directly correlated with the right thalamus blood flow. These findings support previous reports of abnormalities in the resting state blood flow in the limbic-frontal structures in depressed patients compared to healthy volunteers. Copyright © 2011 Wiley Periodicals, Inc.

  15. Dynamics of the blood flow in the curved artery with the rolling massage

    NASA Astrophysics Data System (ADS)

    Yi, H. H.; Wu, X. H.; Yao, Y. L.

    2011-10-01

    Arterial wall shear stress and flow velocity are important factors in the development of some arterial diseases. Here, we aim to investigate the dynamic effect of the rolling massage on the property of the blood flow in the curved artery. The distributions of flow velocity and shear stress for the blood flow are computed by the lattice Boltzmann method, and the dynamic factors under different rolling techniques are studied numerically. The study is helpful to understand the mechanism of the massage and develop the massage techniques.

  16. Arteriovenous oscillations of the redox potential: Is the redox state influencing blood flow?

    PubMed

    Poznanski, Jaroslaw; Szczesny, Pawel; Pawlinski, Bartosz; Mazurek, Tomasz; Zielenkiewicz, Piotr; Gajewski, Zdzislaw; Paczek, Leszek

    2017-09-01

    Studies on the regulation of human blood flow revealed several modes of oscillations with frequencies ranging from 0.005 to 1 Hz. Several mechanisms were proposed that might influence these oscillations, such as the activity of vascular endothelium, the neurogenic activity of vessel wall, the intrinsic activity of vascular smooth muscle, respiration, and heartbeat. These studies relied typically on non-invasive techniques, for example, laser Doppler flowmetry. Oscillations of biochemical markers were rarely coupled to blood flow. The redox potential difference between the artery and the vein was measured by platinum electrodes placed in the parallel homonymous femoral artery and the femoral vein of ventilated anesthetized pigs. Continuous measurement at 5 Hz sampling rate using a digital nanovoltmeter revealed fluctuating signals with three basic modes of oscillations: ∼ 1, ∼ 0.1 and ∼ 0.01 Hz. These signals clearly overlap with reported modes of oscillations in blood flow, suggesting coupling of the redox potential and blood flow. The amplitude of the oscillations associated with heart action was significantly smaller than for the other two modes, despite the fact that heart action has the greatest influence on blood flow. This finding suggests that redox potential in blood might be not a derivative but either a mediator or an effector of the blood flow control system.

  17. Effect of sumatriptan on cerebral blood flow in the baboon model.

    PubMed

    Oliver, D W; Dormehl, I C; Hugo, N

    1994-08-01

    Changes in cerebral blood flow are implicated to be important in the pathophysiology of migraine. Furthermore, serotonin (5-HT) is known to be the most important substance in the etiology of migraine. Sumatriptan (CAS 103628-46-2), a 5-HTID receptor agonist was recently introduced in the treatment of migraine. In the present study a baboon model was used to investigate the changes in cerebral blood flow due to anaesthesia and pharmacological interventions using 99mTc-labelled hexamethylpropylene amine oxime (99mTc-HMPAO) and single photon emission computed tomography (SPECT). The effect of sumatriptan on cerebral blood flow was investigated after 10 min and again after 23 min, with the animal under anaesthesia, i.e. induction with ketamine and maintenance on thiopental. Sumatriptan did not alter the cerebral blood flow during the 10 min procedure. However, sumatriptan reversed the increased cerebral blood flow due to the prolonged anaesthesia (23 min), lowering the cerebral blood flow by more than 20%. No significant changes in the biochemical parameters (blood pressure, heart rate, pO2 and pCO2) were observed. These results also suggest that sumatriptan reverses the increased cerebral blood flow most likely via 5-HTID receptor stimulation.

  18. Blood warming, pump heating and haemolysis in low-flow extracorporeal life support; an in vitro study using freshly donated human blood.

    PubMed

    Kusters, R W J; Simons, A P; Lancé, M D; Ganushchak, Y M; Bekers, O; Weerwind, P W

    2017-01-01

    Low-flow extracorporeal life support can be used for cardiopulmonary support of paediatric and neonatal patients and is also emerging as a therapy for patients suffering from exacerbation of chronic obstructive pulmonary disease. However, pump heating and haemolysis have proven to negatively affect the system and outcome. This in vitro study aimed at gaining insight into blood warming, pump heating and haemolysis related to the performance of a new low-flow centrifugal pump. Pump performance in the 400-1,500 ml/min flow range was modulated using small-sized dual-lumen catheters and freshly donated human blood. Measurements included plasma free haemoglobin, blood temperature, pump speed, pump pressure, blood flow and thermographic imaging. Blood warming (ΔT max =0.5°C) had no relationship with pump performance or haemolysis (R 2 max =0.05). Pump performance-related parameters revealed no relevant relationships with haemolysis (R 2 max =0.36). Thermography showed no relevant heat zones in the pump (T max =36°C). Concerning blood warming, pump heating and haemolysis, we deem the centrifugal pump applicable for low-flow extracorporeal circulation.

  19. Modeling malaria infected cells in microcirculation

    NASA Astrophysics Data System (ADS)

    Raffiee, Amir Hossein; Dabiri, Sadegh; Motavalizadeh Ardekani, Arezoo

    2016-11-01

    Plasmodim (P.) falciparum is one of the deadliest types of malaria species that invades healthy red blood cells (RBC) in human blood flow. This parasite develops through 48-hour intra-RBC process leading to significant morphological and mechanical (e.g., stiffening) changes in RBC membrane. These changes have remarkable effects on blood circulation such as increase in flow resistance and obstruction in microcirculation. In this work a computational framework is developed to model RBC suspension in blood flow using front-tracking technique. The present study focuses on blood flow behavior under normal and infected circumstances and predicts changes in blood rheology for different levels of parasitemia and hematocrit. This model allows better understanding of blood flow circulation up to a single cell level and provides us with realistic and deep insight into hematologic diseases such as malaria.

  20. Assessment of turbulent viscous stress using ICOSA 4D Flow MRI for prediction of hemodynamic blood damage

    NASA Astrophysics Data System (ADS)

    Ha, Hojin; Lantz, Jonas; Haraldsson, Henrik; Casas, Belen; Ziegler, Magnus; Karlsson, Matts; Saloner, David; Dyverfeldt, Petter; Ebbers, Tino

    2016-12-01

    Flow-induced blood damage plays an important role in determining the hemodynamic impact of abnormal blood flow, but quantifying of these effects, which are dominated by shear stresses in highly fluctuating turbulent flow, has not been feasible. This study evaluated the novel application of turbulence tensor measurements using simulated 4D Flow MRI data with six-directional velocity encoding for assessing hemodynamic stresses and corresponding blood damage index (BDI) in stenotic turbulent blood flow. The results showed that 4D Flow MRI underestimates the maximum principal shear stress of laminar viscous stress (PLVS), and overestimates the maximum principal shear stress of Reynolds stress (PRSS) with increasing voxel size. PLVS and PRSS were also overestimated by about 1.2 and 4.6 times at medium signal to noise ratio (SNR) = 20. In contrast, the square sum of the turbulent viscous shear stress (TVSS), which is used for blood damage index (BDI) estimation, was not severely affected by SNR and voxel size. The square sum of TVSS and the BDI at SNR >20 were underestimated by less than 1% and 10%, respectively. In conclusion, this study demonstrated the feasibility of 4D Flow MRI based quantification of TVSS and BDI which are closely linked to blood damage.

  1. Quantitative Assessment of Foot Blood Flow by Using Dynamic Volume Perfusion CT Technique: A Feasibility Study.

    PubMed

    Hur, Saebeom; Jae, Hwan Jun; Jang, Yeonggul; Min, Seung-Kee; Min, Sang-Il; Lee, Dong Yeon; Seo, Sang Gyo; Kim, Hyo-Cheol; Chung, Jin Wook; Kim, Kwang Gi; Park, Eun-Ah; Lee, Whal

    2016-04-01

    To demonstrate the feasibility of foot blood flow measurement by using dynamic volume perfusion computed tomographic (CT) technique with the upslope method in an animal experiment and a human study. The human study was approved by the institutional review board, and written informed consent was obtained from all patients. The animal study was approved by the research animal care and use committee. A perfusion CT experiment was first performed by using rabbits. A color-coded perfusion map was reconstructed by using in-house perfusion analysis software based on the upslope method, and the measured blood flow on the map was compared with the reference standard microsphere method by using correlation analysis. A total of 17 perfusion CT sessions were then performed (a) once in five human patients and (b) twice (before and after endovascular revascularization) in six human patients. Perfusion maps of blood flow were reconstructed and analyzed. The Wilcoxon signed rank test was used to prove significant differences in blood flow before and after treatment. The animal experiment demonstrated a strong correlation (R(2) = 0.965) in blood flow between perfusion CT and the microsphere method. Perfusion maps were obtained successfully in 16 human clinical sessions (94%) with the use of 32 mL of contrast medium and an effective radiation dose of 0.31 mSv (k factor for the ankle, 0.0002). The plantar dermis showed the highest blood flow among all anatomic structures of the foot, including muscle, subcutaneous tissue, tendon, and bone. After a successful revascularization procedure, the blood flow of the plantar dermis increased by 153% (P = .031). The interpretations of the color-coded perfusion map correlated well with the clinical and angiographic findings. Perfusion CT could be used to measure foot blood flow in both animals and humans. It can be a useful modality for the diagnosis of peripheral arterial disease by providing quantitative information on foot perfusion status.

  2. Numerical Modeling of Interstitial Fluid Flow Coupled with Blood Flow through a Remodeled Solid Tumor Microvascular Network

    PubMed Central

    Soltani, M.; Chen, P.

    2013-01-01

    Modeling of interstitial fluid flow involves processes such as fluid diffusion, convective transport in extracellular matrix, and extravasation from blood vessels. To date, majority of microvascular flow modeling has been done at different levels and scales mostly on simple tumor shapes with their capillaries. However, with our proposed numerical model, more complex and realistic tumor shapes and capillary networks can be studied. Both blood flow through a capillary network, which is induced by a solid tumor, and fluid flow in tumor’s surrounding tissue are formulated. First, governing equations of angiogenesis are implemented to specify the different domains for the network and interstitium. Then, governing equations for flow modeling are introduced for different domains. The conservation laws for mass and momentum (including continuity equation, Darcy’s law for tissue, and simplified Navier–Stokes equation for blood flow through capillaries) are used for simulating interstitial and intravascular flows and Starling’s law is used for closing this system of equations and coupling the intravascular and extravascular flows. This is the first study of flow modeling in solid tumors to naturalistically couple intravascular and extravascular flow through a network. This network is generated by sprouting angiogenesis and consisting of one parent vessel connected to the network while taking into account the non-continuous behavior of blood, adaptability of capillary diameter to hemodynamics and metabolic stimuli, non-Newtonian blood flow, and phase separation of blood flow in capillary bifurcation. The incorporation of the outlined components beyond the previous models provides a more realistic prediction of interstitial fluid flow pattern in solid tumors and surrounding tissues. Results predict higher interstitial pressure, almost two times, for realistic model compared to the simplified model. PMID:23840579

  3. Microvascular Branching as a Determinant of Blood Flow by Intravital Particle Imaging Velocimetry

    NASA Technical Reports Server (NTRS)

    Parsons-Wingerter, Patricia; McKay, Terri L.; Vickerman, Mary B.; Wernet, Mark P.; Myers, Jerry G.; Radhakrishnan, Krishnan

    2007-01-01

    The effects of microvascular branching on blood flow were investigated in vivo by microscopic particle imaging velocimetry (micro-PIV). We use micro-PIV to measure blood flow by tracking red blood cells (RBC) as the moving particles. Velocity flow fields, including flow pulsatility, were analyzed for the first four branching orders of capillaries, postcapillary venules and small veins of the microvascular network within the developing avian yolksac at embryonic day 5 (E5). Increasing volumetric flowrates were obtained from parabolic laminar flow profiles as a function of increasing vessel diameter and branching order. Maximum flow velocities increased approximately twenty-fold as the function of increasing vessel diameter and branching order compared to flow velocities of 100 - 150 micron/sec in the capillaries. Results from our study will be useful for the increased understanding of blood flow within anastomotic, heterogeneous microvascular networks.

  4. Influence of Dai-kenchu-to (DKT) on human portal blood flow.

    PubMed

    Ogasawara, Takashi; Morine, Yuji; Ikemoto, Tetsuya; Imura, Satoru; Fujii, Masahiko; Soejima, Yuji; Shimada, Mitsuo

    2008-01-01

    Dai-kenchu-to (DKT) is known as an herbal medicine used for postoperative ileus. However, no report exists about the effect of DKT on portal blood flow. The aim of this study is to clarify the influence of DKT on portal blood flow. To healthy volunteers (Healthy; n = 6), cirrhotic patients (Cirrhosis; n = 7) and liver-transplant patients (LTx; n = 3), DKT (2.5g) with 100mL of warm water was orally administrated in the DKT group, and only warm water was administrated in the control group. The portal blood flow rate (M-VEL: cm/sec.) and portal blood flow (Flow volume: mL/min.) was measured each time after administration using an ultrasonic Doppler method. Furthermore, the arterial blood pressure and heart rate was measured at the same time points. In the DKT group, a significant increase of M-VEL (120%) and flow volume (150%) 30 minutes after administration was observed in both Healthy and Cirrhosis in comparison with the control group. In LTx, there was also a significant increase of flow volume (128%) 30 minutes after administration. However, there was no change in average blood pressure and heart rate in all groups. DKT increases portal blood flow in early phase after oral administration without any significant changes in the blood pressure and heart rate.

  5. Cerebral blood flow in patients with congestive heart failure treated with captopril.

    PubMed

    Paulson, O B; Jarden, J O; Godtfredsen, J; Vorstrup, S

    1984-05-31

    The effect of captopril on cerebral blood flow was studied in five patients with severe congestive heart failure and in five control subjects. Cerebral blood flow was measured by inhalation of 133xenon and registration of its uptake and washout from the brain by single photon emission computer tomography. In addition, cerebral (internal jugular) venous oxygen tension was determined in the controls. The measurements were made before and 15, 60, and 180 minutes after a single oral dose of captopril (6.25 mg in patients with congestive heart failure and 25 mg in controls). Despite a marked decrease in blood pressure, cerebral blood flow increased slightly in the patients with severe congestive heart failure. When a correction was applied to take account of a change in arterial carbon dioxide tension, however, cerebral blood flow was unchanged after captopril administration even in patients with the greatest decrease in blood pressure, in whom a decrease in cerebral blood flow might have been expected. In the controls, blood pressure was little affected by captopril, whereas a slight, but not statistically significant, decrease in cerebral blood flow was observed. The cerebral venous oxygen tension decreased concomitantly.

  6. Flow rate calibration to determine cell-derived microparticles and homogeneity of blood components.

    PubMed

    Noulsri, Egarit; Lerdwana, Surada; Kittisares, Kulvara; Palasuwan, Attakorn; Palasuwan, Duangdao

    2017-08-01

    Cell-derived microparticles (MPs) are currently of great interest to screening transfusion donors and blood components. However, the current approach to counting MPs is not affordable for routine laboratory use due to its high cost. The current study aimed to investigate the potential use of flow-rate calibration for counting MPs in whole blood, packed red blood cells (PRBCs), and platelet concentrates (PCs). The accuracy of flow-rate calibration was investigated by comparing the platelet counts of an automated counter and a flow-rate calibrator. The concentration of MPs and their origins in whole blood (n=100), PRBCs (n=100), and PCs (n=92) were determined using a FACSCalibur. The MPs' fold-changes were calculated to assess the homogeneity of the blood components. Comparing the platelet counts conducted by automated counting and flow-rate calibration showed an r 2 of 0.6 (y=0.69x+97,620). The CVs of the within-run and between-run variations of flow-rate calibration were 8.2% and 12.1%, respectively. The Bland-Altman plot showed a mean bias of -31,142platelets/μl. MP enumeration revealed both the difference in MP levels and their origins in whole blood, PRBCs, and PCs. Screening the blood components demonstrated high heterogeneity of the MP levels in PCs when compared to whole blood and PRBCs. The results of the present study suggest the accuracy and precision of flow-rate calibration for enumerating MPs. This flow-rate approach is affordable for assessing the homogeneity of MPs in blood components in routine laboratory practice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Blood flow measurement of human skeletal muscle during various exercise intensity using diffuse correlation spectroscopy (DCS)

    NASA Astrophysics Data System (ADS)

    Murakami, Yuya; Ono, Yumie; Ichinose, Masashi

    2017-02-01

    We studied blood flow dynamics of active skeletal muscle using diffuse correlation spectroscopy (DCS), an emerging optical modality that is suitable for noninvasive quantification of microcirculation level in deep tissue. Seven healthy subjects conducted 0.5 Hz dynamic handgrip exercise for 3 minutes at intensities of 10, 20, 30, and 50 % of maximal voluntary contraction (MVC). DCS could detect the time-dependent increase of the blood flow response of the forearm muscle for continuous exercises, and the increase ratios of the mean blood flow through the exercise periods showed good correlation with the exercise intensities. We also compared blood flow responses detected from DCS with two different photon sampling rates and found that an appropriate photon sampling rates should be selected to follow the wide-ranged increase in the muscle blood flow with dynamic exercise. Our results demonstrate the possibility for utilizing DCS in a field of sports medicine to noninvasively evaluate the dynamics of blood flow in the active muscles.

  8. Calculation of the diameter of the central retinal artery from noninvasive measurements in humans.

    PubMed

    Dorner, Guido T; Polska, Elzbieta; Garhöfer, Gerhard; Zawinka, Claudia; Frank, Barbara; Schmetterer, Leopold

    2002-12-01

    The aim of the present study was to calculate the diameter of the central retinal artery from results as obtained with non-invasive techniques in healthy young subjects. Twenty-four healthy male subjects participated in this study. Total retinal blood flow was calculated from combined bi-directional laser Doppler velocimetry and measurement of retinal venous diameters using the Zeiss retinal vessel analyzer. Using these techniques red blood cell velocity and vessel diameters of all visible veins entering the optic nerve head were measured and total retinal blood flow was calculated. Blood flow velocity in the central retinal artery was measured with color Doppler imaging. Form these outcome parameters the diameter of the central retinal artery was calculated for each subject individually. In the present study cohort the mean retinal blood flow was 38.1 +/- 9.1 microl/min and the mean flow velocity in the central retinal artery was 6.3 +/- 1.2 cm/s. From these data we calculated a mean diameter of the central retinal artery of 163 +/- 17 microm. Our results are in good agreement with data obtained from in vitro studies. The data of the present study also indicate that one needs to be careful to interpret velocity data from the central retinal artery in terms of retinal blood flow.

  9. Blood in the gastric lumen increases splanchnic blood flow and portal pressure in portal-hypertensive rats.

    PubMed

    Chen, L; Groszmann, R J

    1996-10-01

    In portal-hypertensive humans, portal blood flow and pressure increase after a meal. These hemodynamic changes may increase variceal rupture risk. The aim of this study was to determine whether blood in the stomach lumen increases splanchnic flow and portal pressure (PP) in portal-hypertensive rats. superior mesenteric artery flow and PP were measured in conscious, unrestrained, fasted partial portal vein-ligated rats with chronically implanted Doppler flow probes or portal vein catheters before and after gavage with heparinized, warmed blood from donor rats, air, standard meal, or empty tube. Percentage of changes in flow and pressure from baseline were significantly greater after gavage with blood (an increase of 22.6% +/- 3.5% and an increase of 16.4% +/- 3.1%, respectively) than empty tube (an increase of 3.4% +/- 0.6% and a decrease of 5.4% +/- 3.5%, respectively) (P < 0.005). Percentage of changes in flow and pressure were slightly but insignificantly greater after gavage with air vs. empty tube (P < 0.005). In portal-hypertensive rats, blood in the stomach lumen significantly increases splanchnic blood flow and PP. Splanchnic hyperemia from absorption of blood's calories probably contributes to these hemodynamic changes. In patients with variceal hemorrhage, blood in the stomach may increase the risk of persistent variceal bleeding or rebleeding.

  10. Effect of prolonged hypokinesia on tissue blood flow

    NASA Technical Reports Server (NTRS)

    Levites, Z. P.; Fedotova, V. F.

    1979-01-01

    The influence of hypokinesia on the blood flow in the tissues of rabbits was studied. Motor activity of animals was restricted during 90 days and blood flow recorded through resorption rate of NaI-131. Perfusion of tissues under the influence of hypokinesia was found to be reduced.

  11. Methods for the determination of skeletal muscle blood flow: development, strengths and limitations.

    PubMed

    Gliemann, Lasse; Mortensen, Stefan P; Hellsten, Ylva

    2018-06-01

    Since the first measurements of limb blood flow at rest and during nerve stimulation were conducted in the late 1800s, a number of methods have been developed for the determination of limb and skeletal muscle blood flow in humans. The methods, which have been applied in the study of aspects such as blood flow regulation, oxygen uptake and metabolism, differ in terms of strengths and degree of limitations but most have advantages for specific settings. The purpose of this review is to describe the origin and the basic principles of the methods, important aspects and requirements of the procedures. One of the earliest methods, venous occlusion plethysmography, is a noninvasive method which still is extensively used and which provides similar values as other more direct blood flow methods such as ultrasound Doppler. The constant infusion thermodilution method remains the most appropriate for the determination of blood flow during maximal exercise. For resting blood flow and light-to-moderate exercise, the non-invasive ultrasound Doppler methodology, if handled by a skilled operator, is recommendable. Positron emission tomography with radiolabeled water is an advanced method which requires highly sophisticated equipment and allows for the determination of muscle-specific blood flow, regional blood flows and estimate of blood flow heterogeneity within a muscle. Finally, the contrast-enhanced ultrasound method holds promise for assessment of muscle-specific blood flow, but the interpretation of the data obtained remains uncertain. Currently lacking is high-resolution methods for continuous visualization and monitoring of the skeletal muscle microcirculation in humans.

  12. Retinal blood flow in type 1 diabetic patients with no or mild diabetic retinopathy during euglycemic clamp.

    PubMed

    Pemp, Berthold; Polska, Elzbieta; Garhofer, Gerhard; Bayerle-Eder, Michaela; Kautzky-Willer, Alexandra; Schmetterer, Leopold

    2010-09-01

    To compare total retinal blood flow in diabetic patients with no or mild nonproliferative diabetic retinopathy and healthy control subjects and to investigate in patients whether there is a difference between retinal blood flow before morning insulin and under normoglycemic conditions using a glucose clamp. Twenty patients with type 1 diabetes with no or mild diabetic retinopathy were included in this open parallel-group study, and 20 healthy age- and sex-matched subjects were included as control subjects. Retinal blood flow was assessed by combining velocity measurements using laser Doppler velocimetry and diameter measurements using a commercially available dynamic vessel analyzer. Measurements were performed before and during a euglycemic clamp. Total retinal blood flow was higher in diabetic patients (53 +/- 16 microl/min) than in healthy subjects (43 +/- 16 microl/min; P = 0.034 between groups). When plasma glucose in diabetic patients was reduced from 9.3 +/- 1.7 to 5.3 +/- 0.5 mmol/l (P < 0.001) retinal blood flow decreased to 49 +/- 15 microl/min (P = 0.0003 vs. baseline). Total retinal blood flow during the glucose clamp was not significantly different from blood flow in normal control subjects (P = 0.161). Type 1 diabetic patients with no or only mild diabetic retinopathy have increased retinal blood flow before their morning insulin dosage. Blood flow is reduced toward normal during euglycemic conditions. Retinal blood flow may fluctuate significantly with fluctuating plasma glucose levels, which may contribute to the microvascular changes seen in diabetic retinopathy.

  13. Analysis of blood flow in the long posterior ciliary artery of the cat.

    PubMed

    Koss, M C

    1999-03-01

    Experiments were undertaken to use a new technique for direct on-line measurement of blood flow in the long posterior ciliary artery (LPCA) in cats and to evaluate possible physiological mechanisms controlling blood flow in the vascular beds perfused by this artery. Blood flow in the temporal LPCA was measured on a continuous basis using ultrasonic flowmetry in anesthetized cats. Effects of acute sectioning of the sympathetic nerve and changes in LPCA and cerebral blood flows in response to altered levels of inspired CO2 and O2 were tested in some animals. In others, the presence of vascular autoregulatory mechanisms in response to stepwise elevations of intraocular pressure was studied. Blood flow in the temporal LPCA averaged 0.58+/-0.03 ml/min in 45 cats anesthetized with pentobarbital. Basal LPCA blood flow was not altered by acute sectioning of the sympathetic nerve or by changes in low levels of inspired CO2 and O2, although 10% CO2 caused a modest increase. Stepwise elevations of intraocular pressure resulted in comparable stepwise decreases of LPCA blood flow, with perfusion pressure declining in a linear manner throughout the perfusion-pressure range. Ultrasonic flowmetry seems to be a useful tool for continuous on-line measurement of LPCA blood flow in the cat eye. Blood flow to vascular beds perfused by this artery does not seem to be under sympathetic neural control and is refractory to modest alterations of blood gas levels of CO2 and O2. Blood vessels perfused by the LPCA show no clear autoregulatory mechanisms.

  14. Effect of intra-aortic balloon pump on coronary blood flow during different balloon cycles support: A computer study.

    PubMed

    Aye, Thin Pa Pa; Htet, Zwe Lin; Singhavilai, Thamvarit; Naiyanetr, Phornphop

    2015-01-01

    Intra-aortic balloon pump (IABP) has been used in clinical treatment as a mechanical circulatory support device for patients with heart failure. A computer model is used to study the effect on coronary blood flow (CBF) with different balloon cycles under both normal and pathological conditions. The model of cardiovascular and IABP is developed by using MATLAB SIMULINK. The effect on coronary blood flow has been studied under both normal and pathological conditions using different balloon cycles (balloon off; 1:4; 1:2; 1:1). A pathological heart is implemented by reducing the left ventricular contractility. The result of this study shows that the rate of balloon cycles is related to the level of coronary blood flow.

  15. In vivo lateral blood flow velocity measurement using speckle size estimation.

    PubMed

    Xu, Tiantian; Hozan, Mohsen; Bashford, Gregory R

    2014-05-01

    In previous studies, we proposed blood measurement using speckle size estimation, which estimates the lateral component of blood flow within a single image frame based on the observation that the speckle pattern corresponding to blood reflectors (typically red blood cells) stretches (i.e., is "smeared") if blood flow is in the same direction as the electronically controlled transducer line selection in a 2-D image. In this observational study, the clinical viability of ultrasound blood flow velocity measurement using speckle size estimation was investigated and compared with that of conventional spectral Doppler of carotid artery blood flow data collected from human patients in vivo. Ten patients (six male, four female) were recruited. Right carotid artery blood flow data were collected in an interleaved fashion (alternating Doppler and B-mode A-lines) with an Antares Ultrasound Imaging System and transferred to a PC via the Axius Ultrasound Research Interface. The scanning velocity was 77 cm/s, and a 4-s interval of flow data were collected from each subject to cover three to five complete cardiac cycles. Conventional spectral Doppler data were collected simultaneously to compare with estimates made by speckle size estimation. The results indicate that the peak systolic velocities measured with the two methods are comparable (within ±10%) if the scan velocity is greater than or equal to the flow velocity. When scan velocity is slower than peak systolic velocity, the speckle stretch method asymptotes to the scan velocity. Thus, the speckle stretch method is able to accurately measure pure lateral flow, which conventional Doppler cannot do. In addition, an initial comparison of the speckle size estimation and color Doppler methods with respect to computational complexity and data acquisition time indicated potential time savings in blood flow velocity estimation using speckle size estimation. Further studies are needed for calculation of the speckle stretch method across a field of view and combination with an appropriate axial flow estimator. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  16. Changes in cochlear blood flow in mice due to loud sound exposure measured with Doppler optical microangiography and laser Doppler flowmetry.

    PubMed

    Reif, Roberto; Zhi, Zhongwei; Dziennis, Suzan; Nuttall, Alfred L; Wang, Ruikang K

    2013-10-01

    In this work we determined the contributions of loud sound exposure (LSE) on cochlear blood flow (CoBF) in an in vivo anesthetized mouse model. A broadband noise system (20 kHz bandwidth) with an intensity of 119 dB SPL, was used for a period of one hour to produce a loud sound stimulus. Two techniques were used to study the changes in blood flow, a Doppler optical microangiography (DOMAG) system; which can measure the blood flow within individual cochlear vessels, and a laser Doppler flowmetry (LDF) system; which averages the blood flow within a volume (a hemisphere of ~1.5 mm radius) of tissue. Both systems determined that the blood flow within the cochlea is reduced due to the LSE stimulation.

  17. The effect of partial portal decompression on portal blood flow and effective hepatic blood flow in man: a prospective study.

    PubMed

    Rosemurgy, A S; McAllister, E W; Godellas, C V; Goode, S E; Albrink, M H; Fabri, P J

    1995-12-01

    With the advent of transjugular intrahepatic porta-systemic stent shunt and the wider application of the surgically placed small diameter prosthetic H-graft portacaval shunt (HGPCS), partial portal decompression in the treatment of portal hypertension has received increased attention. The clinical results supporting the use of partial portal decompression are its low incidence of variceal rehemorrhage due to decreased portal pressures and its low rate of hepatic failure, possibly due to maintenance of blood flow to the liver. Surprisingly, nothing is known about changes in portal hemodynamics and effective hepatic blood flow following partial portal decompression. To prospectively evaluate changes in portal hemodynamics and effective hepatic blood flow brought about by partial portal decompression, the following were determined in seven patients undergoing HGPCS: intraoperative pre- and postshunt portal vein pressures and portal vein-inferior vena cava pressure gradients, intraoperative pre- and postshunt portal vein flow, and pre- and postoperative effective hepatic blood flow. With HGPCS, portal vein pressures and portal vein-inferior vena cava pressure gradients decreased significantly, although portal pressures remained above normal. In contrast to the significant decreases in portal pressures, portal vein blood flow and effective hepatic blood flow do not decrease significantly. Changes in portal vein pressures and portal vein-inferior vena cava pressure gradients are great when compared to changes in portal vein flow and effective hepatic blood flow. Reduction of portal hypertension with concomitant maintenance of hepatic blood flow may explain why hepatic dysfunction is avoided following partial portal decompression.

  18. Sex-dependent alterations in resting-state cerebral blood flow, amplitude of low-frequency fluctuations and their coupling relationship in schizophrenia.

    PubMed

    Ma, Xiaomei; Wang, Di; Zhou, Yujing; Zhuo, Chuanjun; Qin, Wen; Zhu, Jiajia; Yu, Chunshui

    2016-04-01

    We aimed to investigate sex-dependent alterations in resting-state relative cerebral blood flow, amplitude of low-frequency fluctuations and relative cerebral blood flow-amplitude of low-frequency fluctuations coupling in patients with schizophrenia. Resting-state functional magnetic resonance imaging and three-dimensional pseudo-continuous arterial spin labeling imaging were performed to obtain resting-state amplitude of low-frequency fluctuations and relative cerebral blood flow in 95 schizophrenia patients and 99 healthy controls. Sex differences in relative cerebral blood flow and amplitude of low-frequency fluctuations were compared in both groups. Diagnostic group differences in relative cerebral blood flow, amplitude of low-frequency fluctuations and relative cerebral blood flow-amplitude of low-frequency fluctuations coupling were compared in male and female subjects, respectively. In both healthy controls and schizophrenia patients, the males had higher relative cerebral blood flow in anterior brain regions and lower relative cerebral blood flow in posterior brain regions than did the females. Compared with multiple regions exhibiting sex differences in relative cerebral blood flow, only the left middle frontal gyrus had a significant sex difference in amplitude of low-frequency fluctuations. In the females, schizophrenia patients exhibited increased relative cerebral blood flow and amplitude of low-frequency fluctuations in the basal ganglia, thalamus and hippocampus and reduced relative cerebral blood flow and amplitude of low-frequency fluctuations in the frontal, parietal and occipital regions compared with those of healthy controls. However, there were fewer brain regions with diagnostic group differences in the males than in the females. Brain regions with diagnostic group differences in relative cerebral blood flow and amplitude of low-frequency fluctuations only partially overlapped. Only the female patients exhibited increased relative cerebral blood flow-amplitude of low-frequency fluctuations couplings compared with those of healthy females. The alterations in the relative cerebral blood flow and amplitude of low-frequency fluctuations in schizophrenia are sex-specific, which should be considered in future neuroimaging studies. The relative cerebral blood flow and amplitude of low-frequency fluctuations have different sensitivity in detecting changes in neuronal activity in schizophrenia and can provide complementary information. © The Royal Australian and New Zealand College of Psychiatrists 2015.

  19. Skin and muscle components of forearm blood flow in directly heated resting man.

    NASA Technical Reports Server (NTRS)

    Detry, J.-M. R.; Brengelmann, G. L.; Rowell, L. B.; Wyss, C.

    1972-01-01

    Changes in forearm muscle blood flow (FMBF) during direct whole-body heating were measured in 17 normal subjects using three different methods. We conclude that FMBF is not increased by direct whole-body heating. Since renal and splanchnic blood flow fall 30% under these conditions, maximal total skin blood flow in 12 previously studied subjects can be estimated from the rise in cardiac output to be 7.6 L/min (3.0-11.1 L/min).

  20. Noninvasive quantification of myocardial blood flow in humans. A direct comparison of the [13N]ammonia and the [15O]water techniques.

    PubMed

    Nitzsche, E U; Choi, Y; Czernin, J; Hoh, C K; Huang, S C; Schelbert, H R

    1996-06-01

    [13N]Ammonia has been validated in dog studies as a myocardial blood flow tracer. Estimates of myocardial blood flow by [13N]ammonia were highly linearly correlated to those by the microsphere and blood sample techniques. However, estimates of myocardial blood flow with [13N]ammonia in humans have not yet been compared with those by an independent technique. This study therefore tested the hypothesis that the [13N]ammonia positron emission tomographic technique in humans gives estimates of myocardial blood flow comparable to those obtained with the [15O]water technique. A total of 30 pairs of positron emission tomographic flow measurements were performed in 30 healthy volunteers; 15 volunteers were studied at rest and 15 during adenosine-induced hypermia. Estimates of average and of regional myocardial blood flow by the [13N]ammonia and the [15O]water approaches correlated well (y = 0.02 + 1.02x, r = .99, P < .001 SEE = 0.023 for average and y = 0.06 + 1.00x, r = .97, P < .001, SEE = 0.025 for regional values) over a flow range of 0.45 to 4.74 mL.min-1.g-1. At rest, mean myocardial blood flow was 0.64 +/- 0.09 mL.min-1.g-1 for [13N]ammonia and 0.66 +/- 0.12 mL.min-1.g-1 for [15O]water (P = NS). For adenosine-induced hyperemia, mean myocardial blood flow was 2.63 +/- 0.75 mL.min-1.g-1 for [13N]ammonia and 2.73 +/- 0.77 mL.min-1.g-1 for [15O]water (P = NS). The coefficient of variation as an index of the observed heterogeneity of myocardial blood flow averaged, for [13N]ammonia, 9 +/- 4% at rest and 12 +/- 7% during stress and, for [15O]water, 14 +/- 11% at rest and 16 +/- 9% during stress. The coefficients of variation for [15O]water were significantly higher than those for [13N]ammonia (P = .004 at rest and P = .03 during stress). The two approaches yield comparable estimates of myocardial blood flow in humans, which supports the validity of the [13N]ammonia method in human myocardium previously shown only in animals. However, the [15O]water approach reveals a greater heterogeneity (presumably method-related), which might limit the accuracy of sectorial myocardial blood flow estimates in humans.

  1. Regulation of human retinal blood flow by endothelin-1.

    PubMed

    Polak, Kaija; Luksch, Alexandra; Frank, Barbara; Jandrasits, Kerstin; Polska, Elzbieta; Schmetterer, Leopold

    2003-05-01

    There is evidence from in vitro and animal studies that endothelin is a major regulator of retinal blood flow. We set out to characterize the role of the endothelin-system in the blood flow control of the human retina. Two studies in healthy subjects were performed. The study design was randomized, placebo-controlled, double-masked, balanced, two-way crossover in protocol A and three way-way crossover in protocol B. In protocol A 18 healthy male subjects received intravenous endothelin-1 (ET-1) in a dose of 2.5 ng kg (-1)min(-1) for 30 min or placebo on two different study days and retinal vessel diameters were measured. In protocol B 12 healthy male subjects received ET-1 in stepwise increasing doses of 0, 1.25, 2.5 and 5 ng kg (-1)min(-1) (each infusion step over 20 min) in co-infusion with the specific ET(A)-receptor antagonist BQ123 (60 microg min (-1)) or placebo or BQ123 alone investigating retinal vessel diameters, retinal blood velocity and retinal blood flow. Measurements of retinal vessel size were done with the Zeiss retinal vessel analyzer. Measurements of blood velocities were done with bi-directional laser Doppler velocimetry. From these measurements retinal blood flow was calculated. In protocol A exogenous ET-1 tended to decrease retinal arterial diameter, but this effect was not significant versus placebo. No effect on retinal venous diameter was seen. In protocol B retinal venous blood velocity and retinal blood flow was significantly reduced after administration of exogenous ET-1. These effects were significantly blunted when BQ-123 was co-administered. By contrast, BQ-123 alone had no effect on retinal hemodynamic parameters. Concluding, BQ123 antagonizes the effects of exogenously administered ET-1 on retinal blood flow in healthy subjects. In addition, the results of the present study are compatible with the hypothesis that ET-1 exerts its vasoconstrictor effects in the retina mainly on the microvessels.

  2. Segmental Blood Flow and Hemodynamic State of Lymphedematous and Nonlymphedematous Arms

    PubMed Central

    Montgomery, Leslie D.; Dietrich, Mary S.; Armer, Jane M.; Stewart, B. R.

    2011-01-01

    Abstract Background Findings regarding the influence hemodynamic factors, such as increased arterial blood flow or venous abnormalities, on breast cancer treatment-related lymphedema are mixed. The purpose of this study was to compare segmental arterial blood flow, venous blood return, and blood volumes between breast cancer survivors with treatment-related lymphedema and healthy normal individuals without lymphedema. Methods and Results A Tetrapolar High Resolution Impedance Monitor and Cardiotachometer were used to compare segmental arterial blood flow, venous blood return, and blood volumes between breast cancer survivors with treatment-related lymphedema and healthy normal volunteers. Average arterial blood flow in lymphedema-affected arms was higher than that in arms of healthy normal volunteers or in contralateral nonlymphedema affected arms. Time of venous outflow period of blood flow pulse was lower in lymphedema-affected arms than in healthy normal or lymphedema nonaffected arms. Amplitude of the venous component of blood flow pulse signal was lower in lymphedema-affected arms than in healthy or lymphedema nonaffected arms. Index of venular tone was also lower in lymphedema-affected arms than healthy or lymphedema nonaffected arms. Conclusions Both arterial and venous components may be altered in the lymphedema-affected arms when compared to healthy normal arms and contralateral arms in the breast cancer survivors. PMID:21417765

  3. The acute effects of lower limb intermittent negative pressure on foot macro- and microcirculation in patients with peripheral arterial disease.

    PubMed

    Sundby, Øyvind Heiberg; Høiseth, Lars Øivind; Mathiesen, Iacob; Weedon-Fekjær, Harald; Sundhagen, Jon O; Hisdal, Jonny

    2017-01-01

    Intermittent negative pressure (INP) applied to the lower leg and foot increases foot perfusion in healthy volunteers. The aim of the present study was to describe the effects of INP to the lower leg and foot on foot macro- and microcirculation in patients with lower extremity peripheral arterial disease (PAD). In this experimental study, we analyzed foot circulation during INP in 20 patients [median (range): 75 (63-84yrs)] with PAD. One leg was placed inside an air-tight vacuum chamber connected to an INP-generator. During application of INP (alternating 10s of -40mmHg/7s of atmospheric pressure), we continuously recorded blood flow velocity in a distal foot artery (ultrasound Doppler), skin blood flow on the pulp of the first toes (laser Doppler), heart rate (ECG), and systemic blood pressure (Finometer). After a 5-min baseline sequence (no pressure), a 10-min INP sequence was applied, followed by 5-min post-INP (no pressure). To compare and quantify blood flow fluctuations between sequences, we calculated cumulative up-and-down fluctuations in arterial blood flow velocity per minute. Onset of INP induced an increase in arterial flow velocity and skin blood flow. Peak blood flow velocity was reached 3s after the onset of negative pressure, and increased 46% [(95% CI 36-57), P<0.001] above baseline. Peak skin blood flow was reached 2s after the onset of negative pressure, and increased 89% (95% CI 48-130), P<0.001) above baseline. Cumulative fluctuations per minute were significantly higher during INP-sequences compared to baseline [21 (95% CI 12-30)cm/s/min to 41 (95% CI 32-51)cm/s/min, P<0.001]. Mean INP blood flow velocity increased significantly ~12% above mean baseline blood flow velocity [(6.7 (95% CI 5.2-8.3)cm/s to 7.5 (95% CI 5.9-9.1)cm/s, P = 0.03)]. INP increases foot macro- and microcirculatory flow pulsatility in patients with PAD. Additionally, application of INP resulted in increased mean arterial blood flow velocity.

  4. The acute effects of lower limb intermittent negative pressure on foot macro- and microcirculation in patients with peripheral arterial disease

    PubMed Central

    Høiseth, Lars Øivind; Mathiesen, Iacob; Weedon-Fekjær, Harald; Sundhagen, Jon O.; Hisdal, Jonny

    2017-01-01

    Background Intermittent negative pressure (INP) applied to the lower leg and foot increases foot perfusion in healthy volunteers. The aim of the present study was to describe the effects of INP to the lower leg and foot on foot macro- and microcirculation in patients with lower extremity peripheral arterial disease (PAD). Methods In this experimental study, we analyzed foot circulation during INP in 20 patients [median (range): 75 (63-84yrs)] with PAD. One leg was placed inside an air-tight vacuum chamber connected to an INP-generator. During application of INP (alternating 10s of -40mmHg/7s of atmospheric pressure), we continuously recorded blood flow velocity in a distal foot artery (ultrasound Doppler), skin blood flow on the pulp of the first toes (laser Doppler), heart rate (ECG), and systemic blood pressure (Finometer). After a 5-min baseline sequence (no pressure), a 10-min INP sequence was applied, followed by 5-min post-INP (no pressure). To compare and quantify blood flow fluctuations between sequences, we calculated cumulative up-and-down fluctuations in arterial blood flow velocity per minute. Results Onset of INP induced an increase in arterial flow velocity and skin blood flow. Peak blood flow velocity was reached 3s after the onset of negative pressure, and increased 46% [(95% CI 36–57), P<0.001] above baseline. Peak skin blood flow was reached 2s after the onset of negative pressure, and increased 89% (95% CI 48–130), P<0.001) above baseline. Cumulative fluctuations per minute were significantly higher during INP-sequences compared to baseline [21 (95% CI 12–30)cm/s/min to 41 (95% CI 32–51)cm/s/min, P<0.001]. Mean INP blood flow velocity increased significantly ~12% above mean baseline blood flow velocity [(6.7 (95% CI 5.2–8.3)cm/s to 7.5 (95% CI 5.9–9.1)cm/s, P = 0.03)]. Conclusion INP increases foot macro- and microcirculatory flow pulsatility in patients with PAD. Additionally, application of INP resulted in increased mean arterial blood flow velocity. PMID:28591174

  5. Changes in scalp and cortical blood flow during hyperventilation measured with diffusing-wave spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Jun; Ninck, Markus; Gisler, Thomas

    2009-07-01

    Changes in scalp and cortical blood flow induced by voluntary hyperventilation are investigated by near-infrared diffusing-wave spectroscopy. The temporal intensity autocorrelation function g(2) (τ) of multiply scattered light is recorded from the forehead of subjects during hyperventilation. Blood flow within the sampled tissue volume is estimated by the mean decay rate of g(2) (τ) . Data measured from six subjects show that the pattern of the hemodynamic response during 50 s hyperventilation is rather complicated: within the first 10 s, in three subjects an initial increase in blood flow is observed; from 10 s to 20 s, the mean blood flow is smaller than its baseline value for all six subjects; for the duration from 20 s to 30 s, the blood flow increases again. However, after 30 s the change is not consistent across subjects. Further study on one of these subjects by using two receivers probing the blood flow in the cortex and in the superficial layers simultaneously, reveals that during hyperventilation, the direction of change in blood flow within the scalp is opposite to the one in the brain. This helps to understand the complicated hemodynamic response observed in our measurements.

  6. Effect of renal denervation on dynamic autoregulation of renal blood flow.

    PubMed

    DiBona, Gerald F; Sawin, Linda L

    2004-06-01

    Vasoconstrictor intensities of renal sympathetic nerve stimulation elevate the renal arterial pressure threshold for steady-state stepwise autoregulation of renal blood flow. This study examined the tonic effect of basal renal sympathetic nerve activity on dynamic autoregulation of renal blood flow in rats with normal (Sprague-Dawley and Wistar-Kyoto) and increased levels of renal sympathetic nerve activity (congestive heart failure and spontaneously hypertensive rats). Steady-state values of arterial pressure and renal blood flow before and after acute renal denervation were subjected to transfer function analysis. Renal denervation increased basal renal blood flow in congestive heart failure (+35 +/- 3%) and spontaneously hypertensive rats (+21 +/- 3%) but not in Sprague-Dawley and Wistar-Kyoto rats. Renal denervation significantly decreased transfer function gain (i.e., improved autoregulation of renal blood flow) and increased coherence only in spontaneously hypertensive rats. Thus vasoconstrictor intensities of renal sympathetic nerve activity impaired the dynamic autoregulatory adjustments of the renal vasculature to oscillations in arterial pressure. Renal denervation increased renal blood flow variability in spontaneously hypertensive rats and congestive heart failure rats. The contribution of vasoconstrictor intensities of basal renal sympathetic nerve activity to limiting renal blood flow variability may be important in the stabilization of glomerular filtration rate.

  7. Cerebral blood flow changes during sodium-lactate-induced panic attacks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, R.S.; Devous, M.D. Sr.; Rush, A.J.

    1988-04-01

    Dynamic single-photon emission computed axial tomography (CAT) with inhaled xenon-133 was used to measure regional cerebral blood flow in 10 drug-free patients with DSM-III-diagnosed panic disorder and in five normal control subjects. All subjects underwent regional cerebral blood flow studies while at rest or during normal saline infusion and during sodium lactate infusion. Six of the 10 patients and none of the control subjects experienced lactate-induced panic attacks. Lactate infusion markedly raised hemispheric blood flow levels in both control subjects and patients who did not panic. Patients who did panic experienced either a minimal increase or a decrease in hemisphericmore » blood flow.« less

  8. Laser Doppler anemometer signal processing for blood flow velocity measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borozdova, M A; Fedosov, I V; Tuchin, V V

    A new method for analysing the signal in a laser Doppler anemometer based on the differential scheme is proposed, which provides the flow velocity measurement in strongly scattering liquids, particularly, blood. A laser Doppler anemometer intended for measuring the absolute blood flow velocity in animal and human near-surface arterioles and venules is developed. The laser Doppler anemometer signal structure is experimentally studied for measuring the flow velocity in optically inhomogeneous media, such as blood and suspensions of scattering particles. The results of measuring the whole and diluted blood flow velocity in channels with a rectangular cross section are presented. (lasermore » applications and other topics in quantum electronics)« less

  9. Biofluid mechanics--an interdisciplinary research area of the future.

    PubMed

    Liepsch, Dieter

    2006-01-01

    Biofluid mechanics is a complex field that focuses on blood flow and the circulation. Clinical applications include bypass and anastomosis surgery, and the development of artificial heart valves and vessels, stents, vein and dialysis shunts. Biofluid mechanics is also involved in diagnostic and therapeutic measures, including CT and MRI, and ultrasound. The study of biofluid mechanics involves measuring blood flow, pressure, pulse wave, velocity distribution, the elasticity of the vessel wall, the flow behavior of blood to minimize complications in vessel,- neuro-, and heart surgery. Biofluid mechanics influence the lungs and circulatory system, the blood flow and micro-circulation; lymph flow, and artificial organs. Flow studies in arterial models can be done without invasive techniques on patients or animals. The results of fluid mechanic studies have shown that in the addition to basic biology, an understanding of the forces and movement on the cells is essential. Because biofluid mechanics allows for the detection of the smallest flow changes, it has an enormous potential for future cell research. Some of these will be discussed.

  10. Preserved arterial flow secures hepatic oxygenation during haemorrhage in the pig

    PubMed Central

    Rasmussen, Allan; Skak, Claus; Kristensen, Michael; Ott, Peter; Kirkegaard, Preben; Secher, Niels H

    1999-01-01

    This study examined the extent of liver perfusion and its oxygenation during progressive haemorrhage. We examined hepatic arterial flow and hepatic oxygenation following the reduced portal flow during haemorrhage in 18 pigs. The hepatic surface oxygenation was assessed by near-infrared spectroscopy and the hepatic metabolism of oxygen, lactate and catecholamines determined the adequacy of the hepatic flow. Stepwise haemorrhage until circulatory collapse resulted in proportional reductions in cardiac output and in arterial, central venous and pulmonary wedge pressures. While heart rate increased, pulmonary arterial pressure remained stable. In addition, renal blood flow decreased, renal vascular resistance increased and there was elevated noradrenaline spill-over. Further, renal surface oxygenation was lowered from the onset of haemorrhage. Similarly, the portal blood flow was reduced in response to haemorrhage, and, as for the renal flow, the reduced splanchnic blood flow was associated with an elevated noradrenaline spill-over. In contrast, hepatic arterial blood flow was only slightly reduced by haemorrhage, and surface oxygenation did not change. The hepatic oxygen uptake was maintained until the blood loss represented more than 30 % of the estimated blood volume. At 30 % reduced blood volume, hepatic catecholamine uptake was reduced, and the lactate uptake approached zero. Subsequent reduction of cardiac output and portal blood flow elicited a selective dilatation of the hepatic arterial vascular bed. Due to this dilatation liver blood flow and hepatic cell oxygenation and metabolism were preserved prior to circulatory collapse. PMID:10087351

  11. Prediction of blood pressure and blood flow in stenosed renal arteries using CFD

    NASA Astrophysics Data System (ADS)

    Jhunjhunwala, Pooja; Padole, P. M.; Thombre, S. B.; Sane, Atul

    2018-04-01

    In the present work an attempt is made to develop a diagnostive tool for renal artery stenosis (RAS) which is inexpensive and in-vitro. To analyse the effects of increase in the degree of severity of stenosis on hypertension and blood flow, haemodynamic parameters are studied by performing numerical simulations. A total of 16 stenosed models with varying degree of stenosis severity from 0-97.11% are assessed numerically. Blood is modelled as a shear-thinning, non-Newtonian fluid using the Carreau model. Computational Fluid Dynamics (CFD) analysis is carried out to compute the values of flow parameters like maximum velocity and maximum pressure attained by blood due to stenosis under pulsatile flow. These values are further used to compute the increase in blood pressure and decrease in available blood flow to kidney. The computed available blood flow and secondary hypertension for varying extent of stenosis are mapped by curve fitting technique using MATLAB and a mathematical model is developed. Based on these mathematical models, a quantification tool is developed for tentative prediction of probable availability of blood flow to the kidney and severity of stenosis if secondary hypertension is known.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paulson, O.B.; Jarden, J.O.; Godtfredsen, J.

    The effect of captopril on cerebral blood flow was studied in five patients with severe congestive heart failure and in five control subjects. Cerebral blood flow was measured by inhalation of /sup 133/xenon and registration of its uptake and washout from the brain by single photon emission computer tomography. In addition, cerebral (internal jugular) venous oxygen tension was determined in the controls. The measurements were made before and 15, 60, and 180 minutes after a single oral dose of captopril (6.25 mg in patients with congestive heart failure and 25 mg in controls). Despite a marked decrease in blood pressure,more » cerebral blood flow increased slightly in the patients with severe congestive heart failure. When a correction was applied to take account of a change in arterial carbon dioxide tension, however, cerebral blood flow was unchanged after captopril administration even in patients with the greatest decrease in blood pressure, in whom a decrease in cerebral blood flow might have been expected. In the controls, blood pressure was little affected by captopril, whereas a slight, but not statistically significant, decrease in cerebral blood flow was observed. The cerebral venous oxygen tension decreased concomitantly.« less

  13. Ocular Blood Flow in Rabbits under Deep Anesthesia: A Real-Time Measurement Technique and Its Application in Characterizing Retinal Ischemia.

    PubMed

    Bhatti, Mehwish Saba; Tang, Tong Boon; Chen, Hui Cheng

    2018-04-09

    In this study, we reported a new technique based on laser speckle flowgraphy to record the ocular blood flow in rabbits under deep anesthesia, and proposed parameters to characterize retinal ischemia. We applied the proposed technique to study the correlation of blood flow between the eyes of normal non-anesthetized animals, and to characterize the occlusion of the internal carotid artery (ICA) and external carotid artery (ECA). We established a correlation in blood flow between the eyes of non-anesthetized animals, and derived two new parameters, namely, the laterality index and vascular perfusion estimate (VPE). Our experimental results from 16 eyes (of 13 New Zealand white rabbits) showed a reduction in ocular blood flow with a significant decrease in the VPE after the occlusion of the ECA (p < 0.001). A low/minimal effect on blood flow was observed with the occlusion of the ICA. In conclusion, we demonstrated a means for the real-time measurement of the ocular blood flow in rabbits under deep anesthesia by using laser speckle flowgraphy and the VPE as an indicator of successful occlusion. The proposed technique might be applicable in quantifying the efficacy of new drugs and interventions for the treatment of retinal ischemia.

  14. Cerebral blood flow changes in response to elevated intracranial pressure in rabbits and bluefish: a comparative study.

    PubMed

    Beiner, J M; Olgivy, C S; DuBois, A B

    1997-03-01

    In mammals, the cerebrovascular response to increases in intracranial pressure may take the form of the Cushing response, which includes increased mean systemic arterial pressure, bradycardia and diminished respirations. The mechanism, effect and value of these responses are debated. Using laser-Doppler flowmetry to measure cerebral blood flow, we analyzed the cardiovascular responses to intracranial pressure raised by epidural infusion of mock cerebrospinal fluid in the bluefish and in the rabbit, and compare the results. A decline in cerebral blood flow preceding a rise in mean systemic arterial pressure was observed in both species. Unlike bluefish, rabbits exhibit a threshold of intracranial pressure below which cerebral blood flow was maintained and no cardiovascular changes were observed. The difference in response between the two species was due to the presence of an active autoregulatory system in the cerebral tissue of rabbits and its absence in bluefish. For both species studied, the stimulus for the Cushing response seems to be a decrement in cerebral blood flow. The resulting increase in the mean systemic arterial pressure restores cerebral blood flow to levels approaching controls.

  15. Local cooling reduces skin ischemia under surface pressure in rats: an assessment by wavelet analysis of laser Doppler blood flow oscillations.

    PubMed

    Jan, Yih-Kuen; Lee, Bernard; Liao, Fuyuan; Foreman, Robert D

    2012-10-01

    The objectives of this study were to investigate the effects of local cooling on skin blood flow response to prolonged surface pressure and to identify associated physiological controls mediating these responses using the wavelet analysis of blood flow oscillations in rats. Twelve Sprague-Dawley rats were randomly assigned to three protocols, including pressure with local cooling (Δt = -10 °C), pressure with local heating (Δt = 10 °C) and pressure without temperature changes. Pressure of 700 mmHg was applied to the right trochanter area of rats for 3 h. Skin blood flow was measured using laser Doppler flowmetry. The 3 h loading period was divided into non-overlapping 30 min epochs for the analysis of the changes of skin blood flow oscillations using wavelet spectral analysis. The wavelet amplitudes and powers of three frequencies (metabolic, neurogenic and myogenic) of skin blood flow oscillations were calculated. The results showed that after an initial loading period of 30 min, skin blood flow continually decreased under the conditions of pressure with heating and of pressure without temperature changes, but maintained stable under the condition of pressure with cooling. Wavelet analysis revealed that stable skin blood flow under pressure with cooling was attributed to changes in the metabolic and myogenic frequencies. This study demonstrates that local cooling may be useful for reducing ischemia of weight-bearing soft tissues that prevents pressure ulcers.

  16. Local cooling reduces skin ischemia under surface pressure in rats: an assessment by wavelet analysis of laser Doppler blood flow oscillations

    PubMed Central

    Jan, Yih-Kuen; Lee, Bernard; Liao, Fuyuan; Foreman, Robert D.

    2012-01-01

    The objectives of this study were to investigate the effects of local cooling on skin blood flow response to prolonged surface pressure and to identify associated physiological controls mediating these responses using wavelet analysis of blood flow oscillations in rats. Twelve Sprague Dawley rats were randomly assigned into three protocols, including pressure with local cooling (Δt= −10°C), pressure with local heating (Δt= 10°C), and pressure without temperature changes. Pressure of 700 mmHg was applied to the right trochanter area of rats for 3 hours. Skin blood flow was measured using laser Doppler flowmetry. The 3-hour loading period was divided into non-overlapping 30 min epochs for analysis of the changes of skin blood flow oscillations using wavelet spectral analysis. The wavelet amplitudes and powers of three frequencies (metabolic, neurogenic and myogenic) of skin blood flow oscillations were calculated. The results showed that after an initial loading period of 30 min, skin blood flow continually decreased in the conditions of pressure with heating and of pressure without temperature changes, but maintained stable in the condition of pressure with cooling. Wavelet analysis revealed that stable skin blood flow under pressure with cooling was attributed to changes in the metabolic and myogenic frequencies. This study demonstrates that local cooling may be useful for reducing ischemia of weight-bearing soft tissues that prevents pressure ulcers. PMID:23010955

  17. Relationship between regional myocardial blood flow and thallium-201 distribution in the presence of coronary artery stenosis and dipyridamole-induced vasodilation.

    PubMed Central

    Mays, A E; Cobb, F R

    1984-01-01

    This study assesses the relationship between the distribution of thallium-201 and myocardial blood flow during coronary vasodilation induced by intravenous dipyridamole in canine models of partial and complete coronary artery stenosis. 10 dogs were chronically instrumented with catheters in the left atrium and aorta and with a balloon occluder and electromagnetic flow probe on the proximal left circumflex coronary artery. Regional myocardial blood flow was measured during control conditions with radioisotope-labeled microspheres, and the phasic reactive hyperemic response to a 20-s transient occlusion was then recorded. Dipyridamole was then infused intravenously until phasic coronary blood flow increased to match peak hyperemic values. The left circumflex coronary artery was either partially occluded to reduce phasic blood flow to control values (group 1) or it was completely occluded (group 2), and thallium-201 and a second microsphere label were injected. 5 min later, the animals were sacrificed, the left ventricle was sectioned into 1-2-g samples, and thallium-201 activity and regional myocardial blood flow were measured. Curvilinear regression analyses between thallium-201 localization and myocardial blood flow during dipyridamole infusion demonstrated a slightly better fit to a second- as compared with a first-order model, indicating a slight roll-off of thallium activity as myocardial blood flow increases. During the dipyridamole infusion, the increases in phasic blood flow, the distributions of regional myocardial blood flow, and the relationships between thallium-201 localization and regional blood flow were comparable to values previously observed in exercising dogs with similar occlusions. These data provide basic validation that supports the use of intravenous dipyridamole and thallium-201 as an alternative to exercise stress and thallium-201 for evaluating the effects of coronary occlusive lesions on the distribution of regional myocardial blood flow. PMID:6715540

  18. The Impact of a Topical Sexual Enhancement Cream on the Female Sexual Response and Its Relationship to Clitoral Blood Flow.

    PubMed

    Pelekanos, Michael; Stofman, Guy M; Niren, Neil

    2016-12-13

    The aim of this investigation was to determine, through two Investigational Review Board (IRB)-approved studies, if a new topical vasodilating cream (NTVC; Life Science Enhancement Corporation, Pittsburgh PA) could improve female sexual response. Study I subjectively evaluated sexual female response as accessed by a modification of the Female Intervention Efficacy Index (FIEI). FIEI was developed at the University of California as an immediate outcome measure of medical intervention to treat female sexual dysfunction.1 In Study II, 10 randomly selected positive responders from Study I were subsequently analyzed objectively with clitoral plethysmography in order to determine the effect of the NTVC and placebo on blood flow.2 RESULTS: In the subjective Study I (81 patients ranging in age from 18 to 63), a positive response trend for the NTVC was demonstrated compared to the placebo. In the objective Study II, 10 randomly selected patients who responded positive in Study I were objectively evaluated for response of increased blood flow in the clitoris after application of both the NTVC and placebo. The clitoral blood flow was shown to have increased with statistical significance for the NTVC in all 10 patients compared to the placebo, with the NTVC exhibiting an average 69% increase in clitoral blood flow. The female sexual response is complex. In the subjective Study I, the NTVC demonstrated positive trends for enhanced lubrication, genital sensation, intercourse, and overall sexual experience. In the objective Study II, 10 of the positive subjective responders from Study I were randomly selected to evaluate their response to the NTVC compared to the placebo. This was done via Doppler plethysmography (DP). All 10 patients demonstrated a statistically significant response rate for increase in clitoral blood flow using the NTVC compared to the placebo, with an average blood flow increase of 69%. This portion of the investigation demonstrates a significant positive end organ response to the NTVC. The positive subjective trends combined with the significant and substantial increase in clitoral blood flow may result in enhanced female sexual satisfaction.

  19. Effects of pomegranate extract on blood flow and running time to exhaustion.

    PubMed

    Trexler, Eric T; Smith-Ryan, Abbie E; Melvin, Malia N; Roelofs, Erica J; Wingfield, Hailee L

    2014-09-01

    Recent research has shown that dietary nitrate has favorable effects on blood flow and exercise performance. The purpose of this randomized, double-blind, placebo-controlled crossover study was to investigate the acute effects of pomegranate extract on blood flow, vessel diameter, and exercise performance in active individuals. Nineteen men and women (mean ± SD: age, 22.2 ± 2.2 years; height, 174.8 ± 10.7 cm; body mass, 71.9 ± 13.5 kg) were randomly assigned to a placebo (PL) or pomegranate extract (PE) group. Participants performed a maximal oxygen consumption treadmill test to determine peak velocity (PV). Participants returned after 24-48 h and ingested either PL or PE. Brachial artery blood flow was assessed using ultrasound at baseline and 30 min post-ingestion (30minPI). Three treadmill runs to exhaustion were performed at 90%, 100%, and 110% PV. Blood flow was assessed immediately after each exercise bout and 30 min postexercise (30minPEx). After a 7-10 day washout, participants repeated the same procedures, ingesting the opposite supplement. Separate repeated measures ANOVAs were performed for blood flow, vessel diameter, and time to exhaustion (TTE). Blood flow was significantly augmented (p = 0.033) 30minPI with PE in comparison with PL. Vessel diameter was significantly larger (p = 0.036) 30minPEx with PE. Ingestion of PE was found to significantly augment TTE at 90% (p = 0.009) and 100% PV (p = 0.027). Acute ingestion of PE 30 min before exercise may enhance vessel diameter and blood flow and delay fatigue during exercise. Results of the current study indicate that PE is ergogenic for intermittent running, eliciting beneficial effects on blood flow.

  20. Urine flow is a novel hemodynamic monitoring tool for the detection of hypovolemia.

    PubMed

    Shamir, Micha Y; Kaplan, Leonid; Marans, Rachel S; Willner, Dafna; Klein, Yoram

    2011-03-01

    Noticeable changes in vital signs indicating hypovolemia occur only after 15% of the blood volume is lost. More sensitive variables (e.g., cardiac output, systolic pressure variation and its Δdown component) are invasive and difficult to obtain in the early phase of bleeding. Lately, a new technology for continuous optical measurements of minute-to-minute urine flow rates has become available. We performed a preliminary evaluation to determine whether urine flow can act as an early and sensitive warning of hypovolemia. Eleven patients (ASA physical status I-II) undergoing posterior spine fusion surgery were studied prospectively. Study variables included heart rate, blood pressure (systolic and diastolic), systolic pressure variation and Δdown, minute urinary flow, hemoglobin, blood and urinary sodium, and creatinine in the blood and urine. Urine flow rate was measured using URINFO 2000™ (FlowSense Medical, Misgav, Israel). After recording baseline variables, 10 mL/kg of the patient's blood was shed and a second set of variables was recorded. Subsequently, hypovolemia was reversed by infusing colloid solution (hetastarch 6%) followed by recording a third set of variables. These 3 observations were then compared. An average of 614 ± 143 mL (mean ± SD) of blood was shed. During phlebotomy, the mean urine flow rate decreased from 5.7 ± 8 mL/min to 1.07 ± 2.5 mL/min. Systolic blood pressure and hemoglobin also decreased. Δdown increased. After rehydration, urine flow, blood pressure, and Δdown values returned to baseline. The hemoglobin concentration decreased whereas other variables did not change significantly. Urine flow rate is a dynamic variable that seems to be a reliable indicator of changes in blood volume. These results justify further investigation.

  1. Retinal Blood Flow in Type 1 Diabetic Patients With No or Mild Diabetic Retinopathy During Euglycemic Clamp

    PubMed Central

    Pemp, Berthold; Polska, Elżbieta; Garhofer, Gerhard; Bayerle-Eder, Michaela; Kautzky-Willer, Alexandra; Schmetterer, Leopold

    2010-01-01

    OBJECTIVE To compare total retinal blood flow in diabetic patients with no or mild nonproliferative diabetic retinopathy and healthy control subjects and to investigate in patients whether there is a difference between retinal blood flow before morning insulin and under normoglycemic conditions using a glucose clamp. RESEARCH DESIGN AND METHODS Twenty patients with type 1 diabetes with no or mild diabetic retinopathy were included in this open parallel-group study, and 20 healthy age- and sex-matched subjects were included as control subjects. Retinal blood flow was assessed by combining velocity measurements using laser Doppler velocimetry and diameter measurements using a commercially available dynamic vessel analyzer. Measurements were performed before and during a euglycemic clamp. RESULTS Total retinal blood flow was higher in diabetic patients (53 ± 16 μl/min) than in healthy subjects (43 ± 16 μl/min; P = 0.034 between groups). When plasma glucose in diabetic patients was reduced from 9.3 ± 1.7 to 5.3 ± 0.5 mmol/l (P < 0.001) retinal blood flow decreased to 49 ± 15 μl/min (P = 0.0003 vs. baseline). Total retinal blood flow during the glucose clamp was not significantly different from blood flow in normal control subjects (P = 0.161). CONCLUSIONS Type 1 diabetic patients with no or only mild diabetic retinopathy have increased retinal blood flow before their morning insulin dosage. Blood flow is reduced toward normal during euglycemic conditions. Retinal blood flow may fluctuate significantly with fluctuating plasma glucose levels, which may contribute to the microvascular changes seen in diabetic retinopathy. PMID:20585003

  2. Effect of gravitational and inertial forces on vertical distribution of pulmonary blood flow

    NASA Technical Reports Server (NTRS)

    Chevalier, P. A.; Reed, J. H., Jr.; Vandenberg, R. A.; Wood, E. H.

    1978-01-01

    Vertical distribution of pulmonary blood flow (VDPBF) was studied, using radioactive microsphere emboli, in dogs without thoracotomy in the right decubitus position during exposure to lateral accelerations of 1, 2, 4, and 6 G. At all levels of force environment studied, an inverse linear relationship was observed between vertical height in the thorax and pulmonary blood flow (ml/min/ml lung tissue) with a decrease in flow to the most dependent region of the lung despite large increases in intravascular pressures at this site. Changes in blood flow were smallest at the mid-lung level, the hydrostatic 'balance point' for vascular and pleural pressures. These force environment-dependent changes in VDPBF are not readily explainable by the Starling resistor analog. Gravity-dependent regional differences in pleural and associated interstitial pressures, plus possible changes in vascular tone resulting from inadequate aeration of blood in the most dependent regions of the lung, probably also affect VDPBF.

  3. Blood flow patterns during incremental and steady-state aerobic exercise.

    PubMed

    Coovert, Daniel; Evans, LeVisa D; Jarrett, Steven; Lima, Carla; Lima, Natalia; Gurovich, Alvaro N

    2017-05-30

    Endothelial shear stress (ESS) is a physiological stimulus for vascular homeostasis, highly dependent on blood flow patterns. Exercise-induced ESS might be beneficial on vascular health. However, it is unclear what type of ESS aerobic exercise (AX) produces. The aims of this study are to characterize exercise-induced blood flow patterns during incremental and steady-state AX. We expect blood flow pattern during exercise will be intensity-dependent and bidirectional. Six college-aged students (2 males and 4 females) were recruited to perform 2 exercise tests on cycleergometer. First, an 8-12-min incremental test (Test 1) where oxygen uptake (VO2), heart rate (HR), blood pressure (BP), and blood lactate (La) were measured at rest and after each 2-min step. Then, at least 48-hr. after the first test, a 3-step steady state exercise test (Test 2) was performed measuring VO2, HR, BP, and La. The three steps were performed at the following exercise intensities according to La: 0-2 mmol/L, 2-4 mmol/L, and 4-6 mmol/L. During both tests, blood flow patterns were determined by high-definition ultrasound and Doppler on the brachial artery. These measurements allowed to determine blood flow velocities and directions during exercise. On Test 1 VO2, HR, BP, La, and antegrade blood flow velocity significantly increased in an intensity-dependent manner (repeated measures ANOVA, p<0.05). Retrograde blood flow velocity did not significantly change during Test 1. On Test 2 all the previous variables significantly increased in an intensity-dependent manner (repeated measures ANOVA, p<0.05). These results support the hypothesis that exercise induced ESS might be increased in an intensity-dependent way and blood flow patterns during incremental and steady-state exercises include both antegrade and retrograde blood flows.

  4. Variation of velocity profile according to blood viscosity in a microfluidic channel

    NASA Astrophysics Data System (ADS)

    Yeom, Eunseop; Kang, Yang Jun; Lee, Sang-Joon

    2014-11-01

    The shear-thinning effect of blood flows is known to change blood viscosity. Since blood viscosity and motion of red blood cells (RBCs) are closely related, hemorheological variations have a strong influence on hemodynamic characteristics. Therefore, understanding on the relationship between the hemorheological and hemodynamic properties is importance for getting more detailed information on blood circulation in microvessels. In this study, the blood viscosity and velocity profiles in a microfluidic channel were systematically investigated. Rat blood was delivered in the microfluidic device which can measure blood viscosity by monitoring the flow-switching phenomenon. Velocity profiles of blood flows in the microchannel were measured by using a micro-particle image velocimetry (PIV) technique. Shape of velocity profiles measured at different flow rates was quantified by using a curve-fitting equation. It was observed that the shape of velocity profiles is highly correlated with blood viscosity. The study on the relation between blood viscosity and velocity profile would be helpful to understand the roles of hemorheological and hemodynamic properties in cardiovascular diseases. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIP) (No. 2008-0061991).

  5. Dynamic Effect of Rolling Massage on Blood Flow

    NASA Astrophysics Data System (ADS)

    Chen, Yan-Yan; Yi, Hou-Hui; Li, Hua-Bing; Fang, Hai-Ping

    2009-02-01

    The Chinese traditional medical massage has been used as a natural therapy to eliminate some diseases. Here, the effect of the rolling massage frequency to the blood flow in the blood vessels under the rolling massage manipulation is studied by the lattice Boltzmann simulation. The simulation results show that when the frequency is smaller than or comparable to the pulsatile frequency of the blood flow, the effect on the blood flux by the rolling massage is small. On the contrast, if the frequency is twice or more times of the pulsatile frequency of the blood flow, the blood flux is greatly enhanced and increases linearly with respect to the frequency. Similar behavior has also been observed on the shear stress on the blood vessel walls. The result is helpful for understanding that the rolling massage has the function of promoting the blood circulation and removing the blood stasis.

  6. Local blood flow in peripheral nerves and their ganglia: Resurrecting key ideas around its measurement and significance.

    PubMed

    Zochodne, Douglas W

    2018-06-01

    Over 3 decades ago, seminal work by Phillip Low and colleagues established exquisite physiology around the measurement of nerve blood flow (NBF). Although not widely explored recently, its connection to the clinic has awaited human methodology. While human studies have not achieved a convincing level of rigour, newer imaging technologies are offering early information. The peripheral nerve trunk has parallel blood flow compartments that include epineurial flow dominated by arteriovenous shunts and downstream endoneurial blood flow (EBF). NBF and EBF have lower values than central nervous system blood flow, lack autoregulation yet have sympathetic and peptidergic neurovascular control. Contrary to expectation, injury to nerves is often associated with rises in NBF rather than ischemia, a finding of biological interest corroborated by human studies. Despite its potential importance, quantitative human measurements of EBF and NBF are not yet available. However, with development, careful NBF analysis may present new insights into nerve disorders. Muscle Nerve 57: 884-895, 2018. © 2017 Wiley Periodicals, Inc.

  7. Lattice Boltzmann method for simulating the viscous flow in large distensible blood vessels

    NASA Astrophysics Data System (ADS)

    Fang, Haiping; Wang, Zuowei; Lin, Zhifang; Liu, Muren

    2002-05-01

    A lattice Boltzmann method for simulating the viscous flow in large distensible blood vessels is presented by introducing a boundary condition for elastic and moving boundaries. The mass conservation for the boundary condition is tested in detail. The viscous flow in elastic vessels is simulated with a pressure-radius relationship similar to that of the pulmonary blood vessels. The numerical results for steady flow agree with the analytical prediction to very high accuracy, and the simulation results for pulsatile flow are comparable with those of the aortic flows observed experimentally. The model is expected to find many applications for studying blood flows in large distensible arteries, especially in those suffering from atherosclerosis, stenosis, aneurysm, etc.

  8. Whole-body vibration and blood flow and muscle oxygenation: a meta-analysis.

    PubMed

    Games, Kenneth E; Sefton, JoEllen M; Wilson, Alan E

    2015-05-01

    The use and popularity of whole-body vibration (WBV) has increased in recent years, but there is a lack of consensus in the literature about the effectiveness of the treatment. To quantitatively examine the effects of WBV on muscle oxygenation and peripheral blood flow in healthy adults. We searched Web of Science and PubMed databases and reference lists from relevant articles using the key terms whole body vibration, whole-body vibration, WBV, blood flow, peripheral blood flow, oxygenation, muscle oxygenation, circulation, circulatory, near infrared spectroscopy, NIRS, and power Doppler. Key terms were searched using single word and combination searches. No date range was specified. Criteria for inclusion were (1) use of a commercially available WBV device, (2) a human research model, (3) a pre-WBV condition and at least 1 WBV experimental condition, and (4) reporting of unstandardized means and standard deviations of muscle oxygenation or peripheral blood flow. Means, standard deviations, and sample sizes were extracted from the text, tables, and figures of included studies. A total of 35 and 90 data points were extracted for the muscle-oxygenation and blood-flow meta-analyses, respectively. Data for each meta-analysis were combined and analyzed using meta-analysis software. Weighted, random-effects meta-analyses using the Hedges g metric were completed for muscle oxygenation and blood flow. We then conducted follow-up analyses using the moderator variables of vibration type, vibration time, vibration frequency, measurement location, and sample type. We found 18 potential articles. Further examination yielded 10 studies meeting the inclusion criteria. Whole-body vibration was shown to positively influence peripheral blood flow. Additionally, the moderators of vibration type and frequency altered the influence of WBV on blood flow. Overall, WBV did not alter muscle oxygenation; however, when the measurement site was considered, muscle oxygenation increased or decreased depending on the location. Acute bouts of WBV increase peripheral blood flow but do not alter skeletal muscle oxygenation. Vibration type appears to be the most important factor influencing both muscle oxygenation and peripheral blood flow.

  9. Microstructured Thin Film Nitinol for a Neurovascular Flow-Diverter

    PubMed Central

    Chen, Yanfei; Howe, Connor; Lee, Yongkuk; Cheon, Seongsik; Yeo, Woon-Hong; Chun, Youngjae

    2016-01-01

    A cerebral aneurysm occurs as a result of a weakened blood vessel, which allows blood to flow into a sac or a ballooned section. Recent advancement shows that a new device, ‘flow-diverter’, can divert blood flow away from the aneurysm sac. People found that a flow-diverter based on thin film nitinol (TFN), works very effectively, however there are no studies proving the mechanical safety in irregular, curved blood vessels. Here, we study the mechanical behaviors and structural safety of a novel microstructured TFN membrane through the computational and experimental studies, which establish the fundamental aspects of stretching and bending mechanics of the structure. The result shows a hyper-elastic behavior of the TFN with a negligible strain change up to 180° in bending and over 500% in radial stretching, which is ideal in the use in neurovascular curved arteries. The simulation determines the optimal joint locations between the TFN and stent frame. In vitro experimental test qualitatively demonstrates the mechanical flexibility of the flow-diverter with multi-modal bending. In vivo micro X-ray and histopathology study demonstrate that the TFN can be conformally deployed in the curved blood vessel of a swine model without any significant complications or abnormalities. PMID:27009500

  10. Microstructured Thin Film Nitinol for a Neurovascular Flow-Diverter

    NASA Astrophysics Data System (ADS)

    Chen, Yanfei; Howe, Connor; Lee, Yongkuk; Cheon, Seongsik; Yeo, Woon-Hong; Chun, Youngjae

    2016-03-01

    A cerebral aneurysm occurs as a result of a weakened blood vessel, which allows blood to flow into a sac or a ballooned section. Recent advancement shows that a new device, ‘flow-diverter’, can divert blood flow away from the aneurysm sac. People found that a flow-diverter based on thin film nitinol (TFN), works very effectively, however there are no studies proving the mechanical safety in irregular, curved blood vessels. Here, we study the mechanical behaviors and structural safety of a novel microstructured TFN membrane through the computational and experimental studies, which establish the fundamental aspects of stretching and bending mechanics of the structure. The result shows a hyper-elastic behavior of the TFN with a negligible strain change up to 180° in bending and over 500% in radial stretching, which is ideal in the use in neurovascular curved arteries. The simulation determines the optimal joint locations between the TFN and stent frame. In vitro experimental test qualitatively demonstrates the mechanical flexibility of the flow-diverter with multi-modal bending. In vivo micro X-ray and histopathology study demonstrate that the TFN can be conformally deployed in the curved blood vessel of a swine model without any significant complications or abnormalities.

  11. Spiral blood flow in aorta-renal bifurcation models.

    PubMed

    Javadzadegan, Ashkan; Simmons, Anne; Barber, Tracie

    2016-01-01

    The presence of a spiral arterial blood flow pattern in humans has been widely accepted. It is believed that this spiral component of the blood flow alters arterial haemodynamics in both positive and negative ways. The purpose of this study was to determine the effect of spiral flow on haemodynamic changes in aorta-renal bifurcations. In this regard, a computational fluid dynamics analysis of pulsatile blood flow was performed in two idealised models of aorta-renal bifurcations with and without flow diverter. The results show that the spirality effect causes a substantial variation in blood velocity distribution, while causing only slight changes in fluid shear stress patterns. The dominant observed effect of spiral flow is on turbulent kinetic energy and flow recirculation zones. As spiral flow intensity increases, the rate of turbulent kinetic energy production decreases, reducing the region of potential damage to red blood cells and endothelial cells. Furthermore, the recirculation zones which form on the cranial sides of the aorta and renal artery shrink in size in the presence of spirality effect; this may lower the rate of atherosclerosis development and progression in the aorta-renal bifurcation. These results indicate that the spiral nature of blood flow has atheroprotective effects in renal arteries and should be taken into consideration in analyses of the aorta and renal arteries.

  12. The effects of probe placement on measured flow velocity in transcranial Doppler ultrasound imaging in-vitro and in-vivo experiments

    NASA Astrophysics Data System (ADS)

    de Jong, Daan L. K.; Meel-van den Abeelen, Aisha S. S.; Lagro, Joep; Claassen, Jurgen A. H. R.; Slump, Cornelis H.

    2014-03-01

    The measurement of the blood flow in the middle cerebral artery (MCA) using transcranial Doppler ultrasound (US) imaging is clinically relevant for the study of cerebral autoregulation. Especially in the aging population, impairement of the autoregulation may coincide or relate to loss of perfusion and consequently loss of brain function. The cerebral autoregulation can be assessed by relating the blood pressure to the blood flow in the brain. Doppler US is a widely used, non-invasive method to measure the blood flow in the MCA. However, Doppler flow imaging is known to produce results that are dependent of the operator. The angle of the probe insonation with respect to the centerline of the blood vessel is a well known factor for output variability. In patients also the skull must be traversed and the MCA must be detected, influencing the US signal intensity. In this contribution we report two studies. We describe first an in-vitro setup to study the Doppler flow in a situation where the ground truth is known. Secondly, we report on a study with healthy volunteers where the effects of small probe displacements on the flow velocity signals are investigated. For the latter purpose, a special probe holder was designed to control the experiment.

  13. Comparison of non-invasive MRI measurements of cerebral blood flow in a large multisite cohort.

    PubMed

    Dolui, Sudipto; Wang, Ze; Wang, Danny Jj; Mattay, Raghav; Finkel, Mack; Elliott, Mark; Desiderio, Lisa; Inglis, Ben; Mueller, Bryon; Stafford, Randall B; Launer, Lenore J; Jacobs, David R; Bryan, R Nick; Detre, John A

    2016-07-01

    Arterial spin labeling and phase contrast magnetic resonance imaging provide independent non-invasive methods for measuring cerebral blood flow. We compared global cerebral blood flow measurements obtained using pseudo-continuous arterial spin labeling and phase contrast in 436 middle-aged subjects acquired at two sites in the NHLBI CARDIA multisite study. Cerebral blood flow measured by phase contrast (CBFPC: 55.76 ± 12.05 ml/100 g/min) was systematically higher (p < 0.001) and more variable than cerebral blood flow measured by pseudo-continuous arterial spin labeling (CBFPCASL: 47.70 ± 9.75). The correlation between global cerebral blood flow values obtained from the two modalities was 0.59 (p < 0.001), explaining less than half of the observed variance in cerebral blood flow estimates. Well-established correlations of global cerebral blood flow with age and sex were similarly observed in both CBFPCASL and CBFPC CBFPC also demonstrated statistically significant site differences, whereas no such differences were observed in CBFPCASL No consistent velocity-dependent effects on pseudo-continuous arterial spin labeling were observed, suggesting that pseudo-continuous labeling efficiency does not vary substantially across typical adult carotid and vertebral velocities, as has previously been suggested. Although CBFPCASL and CBFPC values show substantial similarity across the entire cohort, these data do not support calibration of CBFPCASL using CBFPC in individual subjects. The wide-ranging cerebral blood flow values obtained by both methods suggest that cerebral blood flow values are highly variable in the general population. © The Author(s) 2016.

  14. Can transmyocardial CO2 laser channels supply nutritive blood flow into adjacent myocardium?

    NASA Astrophysics Data System (ADS)

    Kohmoto, Takushi; Fisher, Peter E.; DeRosa, Carolyn; Smith, Craig R.; Burkhoff, Daniel

    1996-05-01

    Clinical reports of transmyocardial laser revascularization (TMLR) suggest that this procedure is effective in relieving angina. However, experimental evidence of nutritive blood flow through the TMLR channels is not available. The purpose of this study was to test whether blood could flow through the TMLR channels created with the carbon-dioxide laser.

  15. Observations on autoregulation in skeletal muscle - The effects of arterial hypoxia

    NASA Technical Reports Server (NTRS)

    Pohost, G. M.; Newell, J. B.; Hamlin, N. P.; Powell, W. J., Jr.

    1976-01-01

    An experimental study was carried out on 25 mongrel dogs of both sexes to re-evaluate autoregulation of blood flow in skeletal muscle, with particular reference to the steady-state resistance and transient response in muscle blood flow following a square wave increase in arterial perfusion pressure and to the examination of the effect of arterial hypoxia on this transient response. The data emphasize the importance of considering the transient changes in blood flow in evaluating the autoregulatory response in skeletal muscle. For quantification purposes, a parameter termed alpha is introduced which represents the ratio between the increase in blood flow from baseline to peak and the return of blood flow from the peak to the new steady-state. Such a quantification of the transient response in flow with step increases in perfusion pressure demonstrates substantial transient responses under conditions of normal oxygenation and progressive attenuation of flow transients with increasing hypoxia.

  16. Increased blood flow and vasculature in solar lentigo.

    PubMed

    Hasegawa, Kiyotaka; Fujiwara, Rumiko; Sato, Kiyoshi; Park, Ji-Youn; Kim, Sang Jin; Kim, Misun; Kang, Hee Young

    2016-10-01

    Solar lentigo (SL) is a hallmark of ultraviolet (UV)-induced photoaged skin and growing evidence implicates blood vessels in UV-associated pigmentation. In this study, we investigated whether the vasculatures are modified in SL. Twenty-five women with facial SL were enrolled and colorimetric and blood flow studies were performed. There was a significant increase in erythema which was associated with increased blood flow in the lesional skin compared with perilesional normal skin. Immunohistochemical studies with 24 facial SL biopsies consistently revealed a significant increase in vessel density accompanied by increased levels of vascular endothelial growth factor expression. CD68 immunoreactivity was significantly higher in lesional skin suggesting increased macrophage infiltration in SL. In conclusion, SL is characterized by increased blood flow and vasculature. These findings suggest the possible influence of the characteristics of vasculature on development of SL. © 2016 Japanese Dermatological Association.

  17. Noninvasive blood-flow meter using a curved cannula with zero compensation for an axial flow blood pump.

    PubMed

    Kosaka, Ryo; Fukuda, Kyohei; Nishida, Masahiro; Maruyama, Osamu; Yamane, Takashi

    2013-01-01

    In order to monitor the condition of a patient using a left ventricular assist system (LVAS), blood flow should be measured. However, the reliable determination of blood-flow rate has not been established. The purpose of the present study is to develop a noninvasive blood-flow meter using a curved cannula with zero compensation for an axial flow blood pump. The flow meter uses the centrifugal force generated by the flow rate in the curved cannula. Two strain gauges served as sensors. The first gauges were attached to the curved area to measure static pressure and centrifugal force, and the second gauges were attached to straight area to measure static pressure. The flow rate was determined by the differences in output from the two gauges. The zero compensation was constructed based on the consideration that the flow rate could be estimated during the initial driving condition and the ventricular suction condition without using the flow meter. A mock circulation loop was constructed in order to evaluate the measurement performance of the developed flow meter with zero compensation. As a result, the zero compensation worked effectively for the initial calibration and the zero-drift of the measured flow rate. We confirmed that the developed flow meter using a curved cannula with zero compensation was able to accurately measure the flow rate continuously and noninvasively.

  18. Ultrasonic Doppler measurement of renal artery blood flow

    NASA Technical Reports Server (NTRS)

    Freund, W. R.; Beaver, W. L.; Meindl, J. D.

    1976-01-01

    Studies were made of (1) blood flow redistribution during lower body negative pressure (LBNP), (2) the profile of blood flow across the mitral annulus of the heart (both perpendicular and parallel to the commissures), (3) testing and evaluation of a number of pulsed Doppler systems, (4) acute calibration of perivascular Doppler transducers, (5) redesign of the mitral flow transducers to improve reliability and ease of construction, and (6) a frequency offset generator designed for use in distinguishing forward and reverse components of blood flow by producing frequencies above and below the offset frequency. Finally methodology was developed and initial results were obtained from a computer analysis of time-varying Doppler spectra.

  19. Dialyzer clearances and mass transfer-area coefficients for small solutes at low dialysate flow rates.

    PubMed

    Leypoldt, John K; Kamerath, Craig D; Gilson, Janice F; Friederichs, Goetz

    2006-01-01

    New daily hemodialysis therapies operate at low dialysate flow rates to minimize dialysate volume requirements; however, the dependence of dialyzer clearances and mass transfer-area coefficients for small solutes on dialysate flow rate under these conditions have not been studied extensively. We evaluated in vitro dialyzer clearances for urea and creatinine at dialysate flow rates of 40, 80, 120, 160, and 200 ml/min and ultrafiltration flow rates of 0, 1, and 2 l/h, using a dialyzer containing PUREMA membranes (NxStage Medical, Lawrence, MA). Clearances were measured directly across the dialyzer by perfusing bovine blood with added urea and creatinine single pass through the dialyzer at a nominal blood flow rate of 400 ml/min. Limited, additional studies were performed with the use of dialyzers containing PUREMA membranes at a blood flow rate of 200 ml/min and also with the use of other dialyzers containing polysulfone membranes (Optiflux 160NR, FMC-NA, Ogden, UT) and dialyzers containing Synphan membranes (NxStage Medical). For dialyzers containing PUREMA membranes, urea and creatinine clearances increased (p < 0.001) with increasing dialysate and ultrafiltration flow rates but were not different at blood flow rates of 200 and 400 ml/min. Dialysate saturation, defined as dialysate outlet concentration divided by blood water inlet concentration, for urea and creatinine was independent of blood and ultrafiltration flow rate but varied inversely (p < 0.001) with dialysate flow rate. Mass transfer-area coefficients for urea and creatinine were independent of blood and ultrafiltration flow rate but decreased (p < 0.001) with decreasing dialysate flow rate. Calculated mass transfer-area coefficients at low dialysate flow rates for all dialyzers tested were substantially lower than those reported by the manufacturers under conventional conditions. We conclude that dialyzers require specific characterization under relevant conditions if they are used in novel daily hemodialysis therapies at low dialysate flow rate.

  20. Carotid blood flow changes with behavioral states in the late gestation llama fetus in utero.

    PubMed

    Blanco, C E; Giussani, D A; Riquelme, R A; Hanson, M A; Llanos, A J

    1997-12-19

    This study tested the hypothesis that in the llama fetus changes in cerebral blood flow are closely associated with changes in cerebral oxidative metabolism such as occur during transitions between electrocortical states. For the first time reported in any species, instantaneous changes in common carotid blood flow, employed as a continuous index of cerebrovascular perfusion, were related to instantaneous changes in electrocortical activity. Three late gestation fetal llamas were surgically prepared under general anesthesia with vascular catheters, a tracheal and amniotic catheter, and with electrodes implanted to monitor the fetal electrocorticogram (ECoG). In addition, Transonic flow probes were placed around a common carotid artery and a femoral artery. At least 4 days after surgery fetal arterial blood, amniotic and tracheal pressures, carotid and femoral blood flows and the fetal ECoG were recorded continuously. Our results suggest a close association between increases in common carotid blood flow and low voltage ECoG in the llama fetus. Close coupling between instantaneous changes in carotid blood flow and electrocortical states together with the lack of an increase in brain blood flow without increased cerebral oxygen extraction during hypoxemia in the llama fetus supports a fall in cerebral oxidative metabolism in this species during hypoxemic episodes.

  1. Mechanical performance comparison between RotaFlow and CentriMag centrifugal blood pumps in an adult ECLS model.

    PubMed

    Yulong Guan; Xiaowei Su; McCoach, Robert; Kunselman, Allen; El-Banayosy, Aly; Undar, Akif

    2010-03-01

    Centrifugal blood pumps have been widely adopted in conventional adult cardiopulmonary bypass and circulatory assist procedures. Different brands of centrifugal blood pumps incorporate distinct designs which affect pump performance. In this adult extracorporeal life support (ECLS) model, the performances of two brands of centrifugal blood pump (RotaFlow blood pump and CentriMag blood pump) were compared. The simulated adult ECLS circuit used in this study included a centrifugal blood pump, Quadrox D membrane oxygenator and Sorin adult ECLS tubing package. A Sorin Cardiovascular(R) VVR(R) 4000i venous reservoir (Sorin S.p.A., Milan, Italy) with a Hoffman clamp served as a pseudo-patient. The circuit was primed with 900ml heparinized human packed red blood cells and 300ml lactated Ringer's solution (total volume 1200 ml, corrected hematocrit 40%). Trials were conducted at normothermia (36 degrees C). Performance, including circuit pressure and flow rate, was measured for every setting analyzed. The shut-off pressure of the RotaFlow was higher than the CentriMag at all measurement points given the same rotation speed (p < 0.0001). The shut-off pressure differential between the two centrifugal blood pumps was significant and increased given higher rotation speeds (p < 0.0001). The RotaFlow blood pump has higher maximal flow rate (9.08 +/- 0.01L/min) compared with the CentriMag blood pump (8.37 +/- 0.02L/min) (p < 0.0001). The blood flow rate differential between the two pumps when measured at the same revolutions per minute (RPM) ranged from 1.64L/min to 1.73L/min. The results obtained in this experiment demonstrate that the RotaFlow has a higher shut-off pressure (less retrograde flow) and maximal blood flow rate than the CentriMag blood pump. Findings support the conclusion that the RotaFlow disposable pump head has a better mechanical performance than the CentriMag. In addition, the RotaFlow disposable pump is 20-30 times less expensive than the CentriMag.

  2. Shy-Drager syndrome. Effect of fludrocortisone and L-threo-3,4-dihydroxyphenylserine on the blood pressure and regional cerebral blood flow.

    PubMed Central

    Matsubara, S; Sawa, Y; Yokoji, H; Takamori, M

    1990-01-01

    In nine cases of Shy-Drager syndrome, the changes in blood pressure and cerebral blood flow on sitting up from a supine position were studied. The influence of fludrocortisone, a synthetic mineralocorticoid, and L-threo-3,4-dihydroxyphenylserine (DOPS), a precursor of norepinephrine, on these changes was examined. On sitting up, the regional cerebral blood flow (rCBF) measured by Xe133 inhalation showed a tendency to decrease. Fludrocortisone reduced the fall of the mean blood pressure significantly. DOPS reduced the fall of both the diastolic blood pressure and rCBF significantly. PMID:2283531

  3. A microfluidic device for simultaneous measurement of viscosity and flow rate of blood in a complex fluidic network

    PubMed Central

    Jun Kang, Yang; Yeom, Eunseop; Lee, Sang-Joon

    2013-01-01

    Blood viscosity has been considered as one of important biophysical parameters for effectively monitoring variations in physiological and pathological conditions of circulatory disorders. Standard previous methods make it difficult to evaluate variations of blood viscosity under cardiopulmonary bypass procedures or hemodialysis. In this study, we proposed a unique microfluidic device for simultaneously measuring viscosity and flow rate of whole blood circulating in a complex fluidic network including a rat, a reservoir, a pinch valve, and a peristaltic pump. To demonstrate the proposed method, a twin-shaped microfluidic device, which is composed of two half-circular chambers, two side channels with multiple indicating channels, and one bridge channel, was carefully designed. Based on the microfluidic device, three sequential flow controls were applied to identify viscosity and flow rate of blood, with label-free and sensorless detection. The half-circular chamber was employed to achieve mechanical membrane compliance for flow stabilization in the microfluidic device. To quantify the effect of flow stabilization on flow fluctuations, a formula of pulsation index (PI) was analytically derived using a discrete fluidic circuit model. Using the PI formula, the time constant contributed by the half-circular chamber is estimated to be 8 s. Furthermore, flow fluctuations resulting from the peristaltic pumps are completely removed, especially under periodic flow conditions within short periods (T < 10 s). For performance demonstrations, the proposed method was applied to evaluate blood viscosity with respect to varying flow rate conditions [(a) known blood flow rate via a syringe pump, (b) unknown blood flow rate via a peristaltic pump]. As a result, the flow rate and viscosity of blood can be simultaneously measured with satisfactory accuracy. In addition, the proposed method was successfully applied to identify the viscosity of rat blood, which circulates in a complex fluidic network. These observations confirm that the proposed method can be used for simultaneous measurement of viscosity and flow rate of whole blood circulating in the complex fluid network, with sensorless and label-free detection. Furthermore, the proposed method will be used in evaluating variations in the viscosity of human blood during cardiopulmonary bypass procedures or hemodialysis. PMID:24404074

  4. A microfluidic device for simultaneous measurement of viscosity and flow rate of blood in a complex fluidic network.

    PubMed

    Jun Kang, Yang; Yeom, Eunseop; Lee, Sang-Joon

    2013-01-01

    Blood viscosity has been considered as one of important biophysical parameters for effectively monitoring variations in physiological and pathological conditions of circulatory disorders. Standard previous methods make it difficult to evaluate variations of blood viscosity under cardiopulmonary bypass procedures or hemodialysis. In this study, we proposed a unique microfluidic device for simultaneously measuring viscosity and flow rate of whole blood circulating in a complex fluidic network including a rat, a reservoir, a pinch valve, and a peristaltic pump. To demonstrate the proposed method, a twin-shaped microfluidic device, which is composed of two half-circular chambers, two side channels with multiple indicating channels, and one bridge channel, was carefully designed. Based on the microfluidic device, three sequential flow controls were applied to identify viscosity and flow rate of blood, with label-free and sensorless detection. The half-circular chamber was employed to achieve mechanical membrane compliance for flow stabilization in the microfluidic device. To quantify the effect of flow stabilization on flow fluctuations, a formula of pulsation index (PI) was analytically derived using a discrete fluidic circuit model. Using the PI formula, the time constant contributed by the half-circular chamber is estimated to be 8 s. Furthermore, flow fluctuations resulting from the peristaltic pumps are completely removed, especially under periodic flow conditions within short periods (T < 10 s). For performance demonstrations, the proposed method was applied to evaluate blood viscosity with respect to varying flow rate conditions [(a) known blood flow rate via a syringe pump, (b) unknown blood flow rate via a peristaltic pump]. As a result, the flow rate and viscosity of blood can be simultaneously measured with satisfactory accuracy. In addition, the proposed method was successfully applied to identify the viscosity of rat blood, which circulates in a complex fluidic network. These observations confirm that the proposed method can be used for simultaneous measurement of viscosity and flow rate of whole blood circulating in the complex fluid network, with sensorless and label-free detection. Furthermore, the proposed method will be used in evaluating variations in the viscosity of human blood during cardiopulmonary bypass procedures or hemodialysis.

  5. A numerical study of blood flow using mixture theory

    PubMed Central

    Wu, Wei-Tao; Aubry, Nadine; Massoudi, Mehrdad; Kim, Jeongho; Antaki, James F.

    2014-01-01

    In this paper, we consider the two dimensional flow of blood in a rectangular microfluidic channel. We use Mixture Theory to treat this problem as a two-component system: One component is the red blood cells (RBCs) modeled as a generalized Reiner–Rivlin type fluid, which considers the effects of volume fraction (hematocrit) and influence of shear rate upon viscosity. The other component, plasma, is assumed to behave as a linear viscous fluid. A CFD solver based on OpenFOAM® was developed and employed to simulate a specific problem, namely blood flow in a two dimensional micro-channel, is studied. Finally to better understand this two-component flow system and the effects of the different parameters, the equations are made dimensionless and a parametric study is performed. PMID:24791016

  6. A numerical study of blood flow using mixture theory.

    PubMed

    Wu, Wei-Tao; Aubry, Nadine; Massoudi, Mehrdad; Kim, Jeongho; Antaki, James F

    2014-03-01

    In this paper, we consider the two dimensional flow of blood in a rectangular microfluidic channel. We use Mixture Theory to treat this problem as a two-component system: One component is the red blood cells (RBCs) modeled as a generalized Reiner-Rivlin type fluid, which considers the effects of volume fraction (hematocrit) and influence of shear rate upon viscosity. The other component, plasma, is assumed to behave as a linear viscous fluid. A CFD solver based on OpenFOAM ® was developed and employed to simulate a specific problem, namely blood flow in a two dimensional micro-channel, is studied. Finally to better understand this two-component flow system and the effects of the different parameters, the equations are made dimensionless and a parametric study is performed.

  7. [Hemodynamic phenomena in retrobulhar and eyeball vessels].

    PubMed

    Modrzejewska, Monika

    2011-01-01

    The purpose of this review was to evaluate factors connected with blood flow and indices regulating vascular diameter and some parameters influencing retrobulbar circulation such as type of vascular resistance, anatomical structure of vascular wall and vessel lumen. Neurogenic and angiogenic factors, rheological blood composition, presence of anatomical and pathological obstructions on blood flow pathway as well as degree of development of collateral circulation pathways--have influence on the volume and blood flow velocity in eyeball. There were discussed bulbar circulation hemodynamics, emphasizing the importance of perfusion pressure. The role of risk factors was underlined for pathological lesions in vessels supplying blood to eyeball and in ophthalmic artery (OA) and its collaterals, in central retinal artery (CRA) as well as posterior ciliary arteries (PCAs), and in venous system carrying away blood from eye. IN CONCLUSION--the results of many studies of retrobulbar blood flow in different types of ophthalmic diseases of the vascular etiopathogenesis indicate that registry of the mean values of blood flow parameters and vascular resistance indices parallel to measurement of blood flow spectrum in OA, CRA, PCAs arteries, might contribute much information to explain or to evaluate nature of pathological changes in retinal and choroidal circulation.

  8. Studies of the Processing of Single Words Using Positron Tomographic Measures of Cerebral Blood Flow Change.

    DTIC Science & Technology

    1987-01-01

    BLOOD FLOW CHANGE Steven E. Petersen, Peter T. Fox, Michael I. Posner, Marcus Raichle McDonnell Center for Studies of Higher Brain Function...Single Words Using Positron Emission Tomographic Measurements of Cerebral Blood Flow Change *= ’I PERSONAL AUTHOR(S) * Petersen, Steven E. 13a. TYPE OF...CHANGE Steven E. Petersen, Peter T. Fox, Michael I. Posner, Marcus E. Raichle INTRODUCTION Language is an essential characteristic of the human

  9. Study of microvascular non-Newtonian blood flow modulated by electroosmosis.

    PubMed

    Tripathi, Dharmendra; Yadav, Ashu; Anwar Bég, O; Kumar, Rakesh

    2018-05-01

    An analytical study of microvascular non-Newtonian blood flow is conducted incorporating the electro-osmosis phenomenon. Blood is considered as a Bingham rheological aqueous ionic solution. An externally applied static axial electrical field is imposed on the system. The Poisson-Boltzmann equation for electrical potential distribution is implemented to accommodate the electrical double layer in the microvascular regime. With long wavelength, lubrication and Debye-Hückel approximations, the boundary value problem is rendered non-dimensional. Analytical solutions are derived for the axial velocity, volumetric flow rate, pressure gradient, volumetric flow rate, averaged volumetric flow rate along one time period, pressure rise along one wavelength and stream function. A plug swidth is featured in the solutions. Via symbolic software (Mathematica), graphical plots are generated for the influence of Bingham plug flow width parameter, electrical Debye length and Helmholtz-Smoluchowski velocity (maximum electro-osmotic velocity) on the key hydrodynamic variables. This study reveals that blood flow rate accelerates with decreasing the plug width (i.e. viscoplastic nature of fluids) and also with increasing the Debye length parameter. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Preliminary Mathematical Model for Jet Fuel Exacerbated Noise-Induced Hearing Loss

    DTIC Science & Technology

    2013-01-01

    and blood vessel damage (stria vascularis) with reductions in cochlear blood flow , which in turn mediates further damage as a result of reductions in...2006. The role of oxidative stress in noise-induced hearing loss. Ear Hear. 27:1-19. Hillerdal, M. 1987. Cochlear blood flow in the rat. A...OF TABLES Table 1. Bodyweight and combined cochlea weight and fractions from F344 rat kinetic study ....7 Table 2. Blood flow values for rat

  11. Computational analysis of the effectiveness of blood flushing with saline injection from an intravascular diagnostic catheter

    PubMed Central

    Ghata, Narugopal; Aldredge, Ralph C.; Bec, Julien; Marcu, Laura

    2015-01-01

    SUMMARY Optical techniques including fluorescence lifetime spectroscopy have demonstrated potential as a tool for study and diagnosis of arterial vessel pathologies. However, their application in the intravascular diagnostic procedures has been hampered by the presence of blood hemoglobin that affects the light delivery to and the collection from the vessel wall. We report a computational fluid dynamics model that allows for the optimization of blood flushing parameters in a manner that minimizes the amount of saline needed to clear the optical field of view and reduces any adverse effects caused by the external saline jet. A 3D turbulence (k−ω) model was employed for Eulerian–Eulerian two-phase flow to simulate the flow inside and around a side-viewing fiber-optic catheter. Current analysis demonstrates the effects of various parameters including infusion and blood flow rates, vessel diameters, and pulsatile nature of blood flow on the flow structure around the catheter tip. The results from this study can be utilized in determining the optimal flushing rate for given vessel diameter, blood flow rate, and maximum wall shear stress that the vessel wall can sustain and subsequently in optimizing the design parameters of optical-based intravascular catheters. PMID:24953876

  12. Calibration of diffuse correlation spectroscopy blood flow index with venous-occlusion diffuse optical spectroscopy in skeletal muscle

    PubMed Central

    Li, Zhe; Baker, Wesley B.; Parthasarathy, Ashwin B.; Ko, Tiffany S.; Wang, Detian; Schenkel, Steven; Durduran, Turgut; Li, Gang; Yodh, Arjun G.

    2015-01-01

    Abstract. We investigate and assess the utility of a simple scheme for continuous absolute blood flow monitoring based on diffuse correlation spectroscopy (DCS). The scheme calibrates DCS using venous-occlusion diffuse optical spectroscopy (VO-DOS) measurements of arm muscle tissue at a single time-point. A calibration coefficient (γ) for the arm is determined, permitting conversion of DCS blood flow indices to absolute blood flow units, and a study of healthy adults (N=10) is carried out to ascertain the variability of γ. The average DCS calibration coefficient for the right (i.e., dominant) arm was γ=(1.24±0.15)×108 (mL·100  mL−1·min−1)/(cm2/s). However, variability can be significant and is apparent in our site-to-site and day-to-day repeated measurements. The peak hyperemic blood flow overshoot relative to baseline resting flow was also studied following arm-cuff ischemia; excellent agreement between VO-DOS and DCS was found (R2=0.95, slope=0.94±0.07, mean difference=−0.10±0.45). Finally, we show that incorporation of subject-specific absolute optical properties significantly improves blood flow calibration accuracy. PMID:26720870

  13. Effect of diastolic flow patterns on the function of the left ventricle

    NASA Astrophysics Data System (ADS)

    Seo, Jung Hee; Mittal, Rajat

    2013-11-01

    Direct numerical simulations are used to study the effect of intraventricular flow patterns on the pumping efficiency and the blood mixing and transport characteristics of the left ventricle. The simulations employ a geometric model of the left ventricle which is derived from contrast computed tomography. A variety of diastolic flow conditions are generated for a fixed ejection fraction in order to delineate the effect of flow patterns on ventricular performance. The simulations indicate that the effect of intraventricular blood flow pattern on the pumping power is physiologically insignificant. However, diastolic flow patterns have a noticeable effect on the blood mixing as well as the residence time of blood cells in the ventricle. The implications of these findings on ventricular function are discussed.

  14. Simultaneous imaging of blood flow dynamics and vascular remodelling during development.

    PubMed

    Ghaffari, Siavash; Leask, Richard L; Jones, Elizabeth A V

    2015-12-01

    Normal vascular development requires blood flow. Time-lapse imaging techniques have revolutionised our understanding of developmental biology, but measuring changes in blood flow dynamics has met with limited success. Ultrasound biomicroscopy and optical coherence tomography can concurrently image vascular structure and blood flow velocity, but these techniques lack the resolution to accurately calculate fluid forces such as shear stress. This is important because hemodynamic forces are biologically active and induce changes in the expression of genes important for vascular development. Regional variations in shear stress, rather than the overall level, control processes such as vessel enlargement and regression during vascular remodelling. We present a technique to concurrently visualise vascular remodelling and blood flow dynamics. We use an avian embryonic model and inject an endothelial-specific dye and fluorescent microspheres. The motion of the microspheres is captured with a high-speed camera and the velocity of the blood flow in and out of the region of interest is quantified by micro-particle image velocitymetry (µPIV). The vessel geometry and flow are used to numerically solve the flow physics with computational fluid dynamics (CFD). Using this technique, we can analyse changes in shear stress, pressure drops and blood flow velocities over a period of 10 to 16 h. We apply this to study the relationship between shear stress and chronic changes in vessel diameter during embryonic development, both in normal development and after TGFβ stimulation. This technique allows us to study the interaction of biomolecular and biomechanical signals during vascular remodelling using an in vivo developmental model. © 2015. Published by The Company of Biologists Ltd.

  15. Choroidal microcirculation in patients with rotary cardiac assist device.

    PubMed

    Polska, Elzbieta; Schima, Heinrich; Wieselthaler, Georg; Schmetterer, Leopold

    2007-06-01

    In recent years, fully implanted rotary blood pumps have been used for long-term cardiac assist in patients with end-stage heart failure. With these pumps, the pulsatility of arterial blood flow and arterial pressure pulse is considerably reduced. Effects on end-organ perfusion, particularly microcirculation, have been assessed. The ocular choroid offers a unique opportunity to study the pulsatile component of blood flow by measurement of fundus pulsation amplitude (FPA) as well as the microcirculation by laser Doppler flowmetry. Both techniques were applied in three male patients with rotary pumps (MicroMed DeBakey VAD), in whom pump velocity was adjusted to four levels of flow between individual minimal need and maximal support. In addition, blood flow velocities in the ophthalmic artery (peak, end-diastolic and mean flow velocity--PSV, EDV and MFV, respectively) were measured using color Doppler imaging. Systolic blood pressure increased by 6 to 22 mm Hg with increasing support. At maximal support FPA was reduced by -60% to -52% as compared with minimal pump support. Blood flow in the choroidal microvasculature, however, did not show relevant changes. A reduction in PSV (-31%, range -47% to -21%) and a pronounced rise in EDV (+93%, range +28% to +147%) was observed, whereas MFV was independent of pump flow. Our data indicate that mean choroidal blood flow is maintained when pump support is varied within therapeutic values, whereas the ratio of pulsatile to non-pulsatile choroidal flow changes. This study shows that, in patients with ventricular assist devices, a normal perfusion rate in the ocular microcirculation is maintained over a wide range of support conditions.

  16. Dynamics of blood flow in a microfluidic ladder network

    NASA Astrophysics Data System (ADS)

    Maddala, Jeevan; Zilberman-Rudenko, Jevgenia; McCarty, Owen

    The dynamics of a complex mixture of cells and proteins, such as blood, in perturbed shear flow remains ill-defined. Microfluidics is a promising technology for improving the understanding of blood flow under complex conditions of shear; as found in stent implants and in tortuous blood vessels. We model the fluid dynamics of blood flow in a microfluidic ladder network with dimensions mimicking venules. Interaction of blood cells was modeled using multiagent framework, where cells of different diameters were treated as spheres. This model served as the basis for predicting transition regions, collision pathways, re-circulation zones and residence times of cells dependent on their diameters and device architecture. Based on these insights from the model, we were able to predict the clot formation configurations at various locations in the device. These predictions were supported by the experiments using whole blood. To facilitate platelet aggregation, the devices were coated with fibrillar collagen and tissue factor. Blood was perfused through the microfluidic device for 9 min at a physiologically relevant venous shear rate of 600 s-1. Using fluorescent microscopy, we observed flow transitions near the channel intersections and at the areas of blood flow obstruction, which promoted larger thrombus formation. This study of integrating model predictions with experimental design, aids in defining the dynamics of blood flow in microvasculature and in development of novel biomedical devices.

  17. Genetic and flow anomalies in congenital heart disease.

    PubMed

    Rugonyi, Sandra

    2016-01-01

    Congenital heart defects are the most common malformations in humans, affecting approximately 1% of newborn babies. While genetic causes of congenital heart disease have been studied, only less than 20% of human cases are clearly linked to genetic anomalies. The cause for the majority of the cases remains unknown. Heart formation is a finely orchestrated developmental process and slight disruptions of it can lead to severe malformations. Dysregulation of developmental processes leading to heart malformations are caused by genetic anomalies but also environmental factors including blood flow. Intra-cardiac blood flow dynamics plays a significant role regulating heart development and perturbations of blood flow lead to congenital heart defects in animal models. Defects that result from hemodynamic alterations, however, recapitulate those observed in human babies, even those due to genetic anomalies and toxic teratogen exposure. Because important cardiac developmental events, such as valve formation and septation, occur under blood flow conditions while the heart is pumping, blood flow regulation of cardiac formation might be a critical factor determining cardiac phenotype. The contribution of flow to cardiac phenotype, however, is frequently ignored. More research is needed to determine how blood flow influences cardiac development and the extent to which flow may determine cardiac phenotype.

  18. A feasability study of color flow doppler vectorization for automated blood flow monitoring.

    PubMed

    Schorer, R; Badoual, A; Bastide, B; Vandebrouck, A; Licker, M; Sage, D

    2017-12-01

    An ongoing issue in vascular medicine is the measure of the blood flow. Catheterization remains the gold standard measurement method, although non-invasive techniques are an area of intense research. We hereby present a computational method for real-time measurement of the blood flow from color flow Doppler data, with a focus on simplicity and monitoring instead of diagnostics. We then analyze the performance of a proof-of-principle software implementation. We imagined a geometrical model geared towards blood flow computation from a color flow Doppler signal, and we developed a software implementation requiring only a standard diagnostic ultrasound device. Detection performance was evaluated by computing flow and its determinants (flow speed, vessel area, and ultrasound beam angle of incidence) on purposely designed synthetic and phantom-based arterial flow simulations. Flow was appropriately detected in all cases. Errors on synthetic images ranged from nonexistent to substantial depending on experimental conditions. Mean errors on measurements from our phantom flow simulation ranged from 1.2 to 40.2% for angle estimation, and from 3.2 to 25.3% for real-time flow estimation. This study is a proof of concept showing that accurate measurement can be done from automated color flow Doppler signal extraction, providing the industry the opportunity for further optimization using raw ultrasound data.

  19. Non-Newtonian effects of blood flow on hemodynamics in distal vascular graft anastomoses.

    PubMed

    Chen, Jie; Lu, Xi-Yun; Wang, Wen

    2006-01-01

    Non-Newtonian fluid flow in a stenosed coronary bypass is investigated numerically using the Carreau-Yasuda model for the shear thinning behavior of the blood. End-to-side coronary bypass anastomosis is considered in a simplified model geometry where the host coronary artery has a 75% severity stenosis. Different locations of the bypass graft to the stenosis and different flow rates in the graft and in the host artery are studied. Particular attention is given to the non-Newtonian effect of the blood on the primary and secondary flow patterns in the host coronary artery and the wall shear stress (WSS) distribution there. Interaction between the jet flow from the stenosed artery and the flow from the graft is simulated by solving the three-dimensional Navier-Stokes equation coupled with the non-Newtonian constitutive model. Results for the non-Newtonian flow, the Newtonian flow and the rescaled Newtonian flow are presented. Significant differences in axial velocity profiles, secondary flow streamlines and WSS between the non-Newtonian and Newtonian fluid flows are revealed. However, reasonable agreement between the non-Newtonian and the rescaled Newtonian flows is found. Results from this study support the view that the residual flow in a partially occluded coronary artery interacts with flow in the bypass graft and may have significant hemodynamic effects in the host vessel downstream of the graft. Non-Newtonian property of the blood alters the flow pattern and WSS distribution and is an important factor to be considered in simulating hemodynamic effects of blood flow in arterial bypass grafts.

  20. Computational study for the effects of coil configuration on blood flow characteristics in coil-embolized cerebral aneurysm.

    PubMed

    Otani, Tomohiro; Ii, Satoshi; Shigematsu, Tomoyoshi; Fujinaka, Toshiyuki; Hirata, Masayuki; Ozaki, Tomohiko; Wada, Shigeo

    2017-05-01

    Coil embolization of cerebral aneurysms with inhomogeneous coil distribution leads to an incomplete occlusion of the aneurysm. However, the effects of this factor on the blood flow characteristics are still not fully understood. This study investigates the effects of coil configuration on the blood flow characteristics in a coil-embolized aneurysm using computational fluid dynamics (CFD) simulation. The blood flow analysis in the aneurysm with coil embolization was performed using a coil deployment (CD) model, in which the coil configuration was constructed using a physics-based simulation of the CD. In the CFD results, total flow momentum and kinetic energy in the aneurysm gradually decayed with increasing coil packing density (PD), regardless of the coil configuration attributed to deployment conditions. However, the total shear rate in the aneurysm was relatively high and the strength of the local shear flow varied based on the differences in coil configuration, even at adequate PDs used in clinical practice (20-25 %). Because the sufficient shear rate reduction is a well-known factor in the blood clot formation occluding the aneurysm inside, the present study gives useful insight into the effects of coil configuration on the treatment efficiency of coil embolization.

  1. Echocardiographic Assessment of the Alterations in Pulmonary Blood Flow Associated with Ketamine and Etomidate Administration in Children with Tetralogy of Fallot.

    PubMed

    Jha, Ajay K; Gharde, Parag; Chauhan, Sandeep; Kiran, Usha; Malhotra Kapoor, Poonam

    2016-02-01

    Despite widespread uses of ketamine, the clinical studies determining its effect on pulmonary blood flow in children with tetralogy of Fallot (TOF) are lacking. Furthermore, the quantification of pulmonary blood flow is not possible in these patients, because pulmonary artery catheter is contraindicated. Therefore, the purpose of this study was to evaluate the changes in pulmonary blood flow by intra-operative transesophageal echocardiography after ketamine or etomidate administration in children with TOF. Eleven children each in the two clinical variants of TOF (group A-moderate to severe cyanosis; group B-mild to minimal cyanosis) undergoing intracardiac repair were prospectively studied after endotracheal intubation. A single bolus dose of ketamine (2 mg/kg) and etomidate (0.3 mg/kg) was administered in a random order after 15 minute interval. Hemodynamic, arterial blood gas, and echocardiographic measurements were obtained at 7 consecutive times (T) points (baseline, 1, 2, 4, 6, 8, and 15 minutes after drug administration). Ketamine produced a significant reduction in VTI-T (velocity time integrals total of left upper pulmonary vein), RVOT-PG (right ventricular outflow tract peak gradient), and MG (mean gradient) in group A while those in group B had a significant increase in VTI-T, RVOT-PG, and RVOT-MG at time (T1, T2, T4, and T6; P = 0.00). This divergent behavior, however, was not observed with etomidate. Etomidate does not change pulmonary blood flow. However, ketamine produces divergent effects; it increases pulmonary blood flow in children with minimal cyanosis and decreases pulmonary blood flow in children with moderate to severe cyanosis. © 2015, Wiley Periodicals, Inc.

  2. Hemodynamics of physiological blood flow in the aorta with nonlinear anisotropic heart valve

    NASA Astrophysics Data System (ADS)

    Sotiropoulos, Fotis; Gilmanov, Anvar; Stolarski, Henryk

    2016-11-01

    The hemodynamic blood flow in cardiovascular system is one of the most important factor, which causing several vascular diseases. We developed a new Curvilinear Immersed Boundary - Finite Element - Fluid Structure Interaction (CURVIB-FE-FSI) method to analyze hemodynamic of pulsatile blood flow in a real aorta with nonlinear anisotropic aortic valve at physiological conditions. Hyperelastic material model, which is more realistic for describing heart valve have been incorporated in the CURVIB-FE-FSI code to simulate interaction of aortic heart valve with pulsatile blood flow. Comparative studies of hemodynamics for linear and nonlinear models of heart valve show drastic differences in blood flow patterns and hence differences of stresses causing impact at leaflets and aortic wall. This work is supported by the Lillehei Heart Institute at the University of Minnesota.

  3. Structural, functional and blood perfusion changes in the rat retina associated with elevated intraocular pressure, measured simultaneously with a combined OCT+ERG system

    PubMed Central

    Tan, Bingyao; MacLellan, Benjamin; Mason, Erik

    2018-01-01

    Acute elevation of intraocular pressure (IOP) to ischemic and non-ischemic levels can cause temporary or permanent changes in the retinal morphology, function and blood flow/blood perfusion. Previously, such changes in the retina were assessed separately with different methods in clinical studies and animal models. In this study, we used a combined OCT+ ERG system in combination with Doppler OCT and OCT angiography (OCTA) imaging protocols, in order to evaluate simultaneously and correlate changes in the retinal morphology, the retinal functional response to visual stimulation, and the retinal blood flow/blood perfusion, associated with IOP elevation to ischemic and non-ischemic levels in rats. Results from this study suggest that the inner retina responds faster to IOP elevation to levels greater than 30 mmHg with significant reduction of the total retinal blood flow (TRBF), decrease of the capillaries’ perfusion and reduction of the ON bipolar cells contribution to the ERG traces. Furthermore, this study showed that ischemic levels of IOP elevation cause an additional significant decrease in the ERG photoreceptor response in the posterior retina. Thirty minutes after IOP normalization, retinal morphology, blood flow and blood perfusion recovered to baseline values, while retinal function did not recover completely. PMID:29509807

  4. Effect of blood viscosity on oxygen transport in residual stenosed artery following angioplasty.

    PubMed

    Kwon, Ohwon; Krishnamoorthy, Mahesh; Cho, Young I; Sankovic, John M; Banerjee, Rupak K

    2008-02-01

    The effect of blood viscosity on oxygen transport in a stenosed coronary artery during the postangioplasty scenario is studied. In addition to incorporating varying blood viscosity using different hematocrit (Hct) concentrations, oxygen consumption by the avascular wall and its supply from vasa vasorum, nonlinear oxygen binding capacity of the hemoglobin, and basal to hyperemic flow rate changes are included in the calculation of oxygen transport in both the lumen and the avascular wall. The results of this study show that oxygen transport in the postangioplasty residual stenosed artery is affected by non-Newtonian shear-thinning property of the blood viscosity having variable Hct concentration. As Hct increases from 25% to 65%, the diminished recirculation zone for the increased Hct causes the commencement of pO(2) decrease to shift radially outward by approximately 20% from the center of the artery for the basal flow, but by approximately 10% for the hyperemic flow at the end of the diverging section. Oxygen concentration increases from a minimum value at the core of the recirculation zone to over 90 mm Hg before the lumen-wall interface at the diverging section for the hyperemic flow, which is attributed to increased shear rate and thinner lumen boundary layer for the hyperemic flow, and below 90 mm Hg for the basal flow. As Hct increases from 25% to 65%, the average of pO(2,min) beyond the diverging section drops by approximately 25% for the basal flow, whereas it increases by approximately 15% for the hyperemic flow. Thus, current results with the moderate stenosed artery indicate that reducing Hct might be favorable in terms of increasing O(2) flux and pO(2,min), in the medial region of the wall for the basal flow, while higher Hct is advantageous for the hyperemic flow beyond the diverging section. The results of this study not only provide significant details of oxygen transport under varying pathophysiologic blood conditions such as unusually high blood viscosity and flow rate, but might also be extended to offer implications for drug therapy related to blood-thinning medication and for blood transfusion and hemorrhage.

  5. Computational Hemodynamic Analysis for the Diagnosis of Atherosclerotic Changes in Intracranial Aneurysms: A Proof-of-Concept Study Using 3 Cases Harboring Atherosclerotic and Nonatherosclerotic Aneurysms Simultaneously

    PubMed Central

    Endo, Hidenori; Niizuma, Kuniyasu; Endo, Toshiki; Funamoto, Kenichi; Ohta, Makoto; Tominaga, Teiji

    2016-01-01

    This was a proof-of-concept computational fluid dynamics (CFD) study designed to identify atherosclerotic changes in intracranial aneurysms. We selected 3 patients with multiple unruptured aneurysms including at least one with atherosclerotic changes and investigated whether an image-based CFD study could provide useful information for discriminating the atherosclerotic aneurysms. Patient-specific geometries were constructed from three-dimensional data obtained using rotational angiography. Transient simulations were conducted under patient-specific inlet flow rates measured by phase-contrast magnetic resonance velocimetry. In the postanalyses, we calculated time-averaged wall shear stress (WSS), oscillatory shear index, and relative residence time (RRT). The volume of blood flow entering aneurysms through the neck and the mean velocity of blood flow inside aneurysms were examined. We applied the age-of-fluid method to quantitatively assess the residence of blood inside aneurysms. Atherosclerotic changes coincided with regions exposed to disturbed blood flow, as indicated by low WSS and long RRT. Blood entered aneurysms in phase with inlet flow rates. The mean velocities of blood inside atherosclerotic aneurysms were lower than those inside nonatherosclerotic aneurysms. Blood in atherosclerotic aneurysms was older than that in nonatherosclerotic aneurysms, especially near the wall. This proof-of-concept study demonstrated that CFD analysis provided detailed information on the exchange and residence of blood that is useful for the diagnosis of atherosclerotic changes in intracranial aneurysms. PMID:27703491

  6. Thermographic venous blood flow characterization with external cooling stimulation

    NASA Astrophysics Data System (ADS)

    Saxena, Ashish; Ng, E. Y. K.; Raman, Vignesh

    2018-05-01

    Experimental characterization of blood flow in a human forearm is done with the application of continuous external cooling based active thermography method. Qualitative and quantitative detection of the blood vessel in a thermal image is done, along with the evaluation of blood vessel diameter, blood flow direction, and velocity in the target blood vessel. Subtraction based image manipulation is performed to enhance the feature contrast of the thermal image acquired after the removal of external cooling. To demonstrate the effect of occlusion diseases (obstruction), an external cuff based occlusion is applied after the removal of cooling and its effect on the skin rewarming is studied. Using external cooling, a transit time method based blood flow velocity estimation is done. From the results obtained, it is evident that an external cooling based active thermography method can be used to develop a diagnosis tool for superficial blood vessel diseases.

  7. Renal sympathetic denervation increases renal blood volume per cardiac cycle: a serial magnetic resonance imaging study in resistant hypertension.

    PubMed

    Delacroix, Sinny; Chokka, Ramesh G; Nelson, Adam J; Wong, Dennis T; Sidharta, Samuel; Pederson, Stephen M; Rajwani, Adil; Nimmo, Joanne; Teo, Karen S; Worthley, Stephen G

    2017-01-01

    Preclinical studies have demonstrated improvements in renal blood flow after renal sympathetic denervation (RSDN); however, such effects are yet to be confirmed in patients with resistant hypertension. Herein, we assessed the effects of RSDN on renal artery blood flow and diameter at multiple time points post-RSDN. Patients (n=11) with systolic blood pressures ≥160 mmHg despite taking three or more antihypertensive medications at maximum tolerated dose were recruited into this single-center, prospective, non-blinded study. Magnetic resonance imaging indices included renal blood flow and renal artery diameters at baseline, 1 month and 6 months. In addition to significant decreases in blood pressures ( p <0.0001), total volume of blood flow per cardiac cycle increased by 20% from 6.9±2 mL at baseline to 8.4±2 mL ( p =0.003) at 1 month and to 8.0±2 mL ( p =0.04) 6 months post-procedure, with no changes in the renal blood flow. There was a significant decrease in renal artery diameters from 7±2 mm at baseline to 6±1 mm ( p =0.03) at 1 month post-procedure. This decrease was associated with increases in maximum velocity of blood flow from 73±20 cm/s at baseline to 78±19 cm/s at 1 month post-procedure. Notably, both parameters reverted to 7±2 mm and 72±18 cm/s, respectively, 6 months after procedure. RSDN improves renal physiology as evidenced by significant improvements in total volume of blood flow per cardiac cycle. Additionally, for the first time, we identified a transient decrease in renal artery diameters immediately after procedure potentially caused by edema and inflammation that reverted to baseline values 6 months post-procedure.

  8. Cimetidine and hepatic blood flow in polytrauma patients.

    PubMed

    Ivatury, R R; Khan, M B; Nallathambi, M; Davis, K; Stahl, W M

    1985-05-01

    Recent reports suggest that cimetidine acutely reduces liver blood flow in normal healthy subjects. To determine whether this finding is applicable to critically ill patients, we studied nine polytrauma patients admitted to a surgical ICU. All patients were being monitored with pulmonary artery catheters; all were stable with normal liver function. Liver blood flow was estimated by indocyanine green clearance, before and after administration of a single dose of 600 mg cimetidine. Hemodynamic variables were measured at the same times. Cimetidine did not significantly alter either hepatic blood flow or cardiovascular status in these critically ill patients.

  9. [Effects of xenon anesthesia on cerebral blood flow in neurosurgical patients without intracranial hypertension].

    PubMed

    Rylova, A V; Beliaev, A Iu; Lubnin, A Iu

    2013-01-01

    Among anesthetic agents used in neurosurgery xenon appears to be the most advantageous. It preserves arterial blood pressure, assures rapid recovery and neuroprotection. But the data is lacking on xenon effect upon cerebral blood flow under anesthetic conditions. We measured flow velocity in middle cerebral artery in neurosurgical patients without intracranial hypertension during closed circuit xenon anesthesia comparing propofol and xenon effect in the same patients. In our study xenon didn't seem to induce clinically relevant changes in cerebral blood flow and preserved cerebral vascular reactivity thus proving its safety in patients without intracranial hypertension.

  10. Dynamic change of collateral flow varying with distribution of regional blood flow in acute ischemic rat cortex

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Luo, Weihua; Zhou, Fangyuan; Li, Pengcheng; Luo, Qingming

    2012-12-01

    Cerebral blood flow (CBF) is critical for the maintenance of cerebral function by guaranteed constant oxygen and glucose supply to brain. Collateral channels (CCs) are recruited to provide alternatives to CBF to ischemic regions once the primary vessel is occluded during ischemic stroke. However, the knowledge of the relationship between dynamic evolution of collateral flow and the distribution of regional blood flow remains limited. In this study, laser speckle imaging was used to assess dynamic changes of CCs and regional blood flow in a rat cortex with permanent middle cerebral artery occlusion (MCAo). We found that CCs immediately provided blood flow to ischemic territories after MCAo. More importantly, there were three kinds of dynamic changes of CCs during acute stroke: persistent CC, impermanent CC, and transient CC, respectively, related to different distributions of regional blood flow. Although there was the possible occurrence of peri-infarct depolarization (PID) during ischemia, there was no obvious significance about the onset time and duration of CCs between rats with and without PID. These results suggest that the initial arising of CCs does not ensure their persistence, and that collateral flow could be varied with distribution of regional blood flow in acute ischemic stroke, which may facilitate the understanding of collateral recruitment and promote the development of collateral therapeutics in the future.

  11. Dynamic change of collateral flow varying with distribution of regional blood flow in acute ischemic rat cortex.

    PubMed

    Wang, Zhen; Luo, Weihua; Zhou, Fangyuan; Li, Pengcheng; Luo, Qingming

    2012-12-01

    Cerebral blood flow (CBF) is critical for the maintenance of cerebral function by guaranteed constant oxygen and glucose supply to brain. Collateral channels (CCs) are recruited to provide alternatives to CBF to ischemic regions once the primary vessel is occluded during ischemic stroke. However, the knowledge of the relationship between dynamic evolution of collateral flow and the distribution of regional blood flow remains limited. In this study, laser speckle imaging was used to assess dynamic changes of CCs and regional blood flow in a rat cortex with permanent middle cerebral artery occlusion (MCAo). We found that CCs immediately provided blood flow to ischemic territories after MCAo. More importantly, there were three kinds of dynamic changes of CCs during acute stroke: persistent CC, impermanent CC, and transient CC, respectively, related to different distributions of regional blood flow. Although there was the possible occurrence of peri-infarct depolarization (PID) during ischemia, there was no obvious significance about the onset time and duration of CCs between rats with and without PID. These results suggest that the initial arising of CCs does not ensure their persistence, and that collateral flow could be varied with distribution of regional blood flow in acute ischemic stroke, which may facilitate the understanding of collateral recruitment and promote the development of collateral therapeutics in the future.

  12. Nitric oxide in the nucleus raphe magnus modulates cutaneous blood flow in rats during hypothermia.

    PubMed

    Arami, Masoumeh Kourosh; Zade, Javad Mirnajafi; Komaki, Alireza; Amiri, Mahmood; Mehrpooya, Sara; Jahanshahi, Ali; Jamei, Behnam

    2015-10-01

    Nucleus Raphe Magnus (NRM) that is involved in the regulation of body temperature contains nitric oxide (NO) synthase. Considering the effect of NO on skin blood flow control, in this study, we assessed its thermoregulatory role within the raphe magnus. To this end, tail blood flow of male Wistar rats was measured by laser doppler following the induction of hypothermia. Intra-NRM injection of SNP (exogenous NO donor, 0.1- 0.2 μl, 0.2 nM) increased the blood flow. Similarly, unilateral microinjection of glutamate (0.1- 0.2 μl, 2.3 nM) into the nucleus increased the blood flow. This effect of L-glutamate was reduced by prior intra NRM administration of NO synthase inhibitor N(G)-methyl-L-arginine or N(G)-nitro-L-arginine methyl ester (L-NAME, 0.1 µl, 100 nM). It is concluded that NO modulates the thermoregulatory response of NRM to hypothermia and may interact with excitatory amino acids in central skin blood flow regulation.

  13. Hippophae rhamnoides L. and dexpanthenol-bepanthene on blood flow after experimental skin burns in rats using 133Xe clearance technique.

    PubMed

    Seven, Bedri; Varoglu, Erhan; Aktas, Omer; Sahin, Ali; Gumustekin, Kenan; Dane, Senol; Suleyman, Halis

    2009-01-01

    The aim of the present experimental study was to determine and compare the effect of Hippophae rhamnoides L. extract (HRe-1) and of dexpanthenol on the blood flow of a wound region, in rats using xenon-133 ((133)Xe) clearance technique. Burn wounds were made on both thighs of rats and, HRe-1 and dexpanthenol were applied topically on the wound region only in the right thigh for a period of 8 days. The effect of HRe-1 and of dexpanthenol on blood flow of the wound region was assessed before and after their topical application by using the (133)Xe clearance technique. HRe-1 increased significantly blood flow of the wound region (P<0.05). Dexpanthenol showed a smaller increase in blood flow. In conclusion, our results in rats suggest that HRe-1 increases blood flow of the wound area and can be used for the treatment of skin wound healing, preferably than dexpanthenol.

  14. Bone Blood Flow During Simulated Microgravity: Physiological and Molecular Mechanisms

    NASA Technical Reports Server (NTRS)

    Bloomfield, Susan A.

    1999-01-01

    Blood flow to bone has been shown to affect bone mass and presumably bone strength. Preliminary data indicate that blood flow to the rat femur decreases after 14 days of simulated microgravity, using hindlimb suspension (HLS). If adult rats subjected to HLS are given dobutamine, a synthetic catecholamine which can cause peripheral vasodilation and increased blood flow, the loss of cortical bone area usually observed is prevented. Further, mechanisms exist at the molecular level to link changes in bone blood flow to changes in bone cell activity, particularly for vasoactive agents like nitric oxide (NO). The decreases in fluid shear stress created by fluid flow associated with the shifts of plasma volume during microgravity may result in alterations in expression of vasoactive agents such as NO, producing important functional effects on bone cells. The primary aim of this project is to characterize changes in 1) bone blood flow, 2) indices of bone mass, geometry, and strength, and 3) changes in gene expression for modulators of nitric oxide activity (e.g., nitric oxide synthase) and other candidate genes involved in signal transduction of mechanical loading after 3, 7, 14, 21, and 28 days of HLS in the adult rat. Using a rat of at least 5 months of age avoids inadvertently studying effects of simulated microgravity on growing, rather than adult, bone. Utilizing the results of these studies, we will then define how altered blood flow contributes to changes in bone with simulated microgravity by administering a vasodilatory agent (which increases blood flow to tissues) during hindlimb suspension. In all studies, responses in the unloaded hindlimb bones (tibial shaft, femoral neck) will be compared with those in the weightbearing humeral shaft and the non-weightbearing calvarium (skull) from the same animal. Bone volumetric mineral density and geometry will be quantified by peripheral quantitative CT; structural and material properties of the long bones will be determined by 3-point bending (tibia, humerus) or compression (femoral neck) testing to failure. A unique aspect of these studies will be defining the time course of changes in gene expression in bone cell populations with unloading, accomplished with Northern blots, in situ hybridization, and immunohistochemistry. These studies have high relevance for concurrent protocols being proposed by investigators on NSBRI Cardiovascular and Muscle teams, with blood flow data available on a number of tissues other than bone. Further, dobutamine and other Beta-agonists have been tested as countermeasures for altered muscle and cardiovascular function. Results of the intervention tested in our studies have potential relevance for a number of systemic changes seen with prolonged spaceflight.

  15. Endometrial blood flow measured by xenon 133 clearance in women with normal menstrual cycles and dysfunctional uterine bleeding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fraser, I.S.; McCarron, G.; Hutton, B.

    Endometrial blood flow was measured through the menstrual cycle in nonpregnant women (28 studies of 17 women with normal menstrual cycles and 32 studies of 20 women with dysfunctional uterine bleeding) with use of a clearance technique in which 100 to 400 microCi of the gamma-emitting isotope, xenon 133 in saline solution was instilled into the uterine cavity. The mean (+/- SEM) endometrial blood flow in normal cycles was 27.7 +/- 2.6 ml/100 gm/min, with a significant elevation in the middle to late follicular phase, followed by a substantial fall and a secondary slow luteal phase rise that was maintainedmore » until the onset of menstruation. There was a significant correlation between plasma estradiol levels and endometrial blood flow in the follicular but not the luteal phase. Blood flow patterns in women with ovulatory dysfunctional bleeding were similar to normal, except for a significantly lower middle follicular rate. Women with anovulatory dysfunctional bleeding exhibited exceedingly variable flow rates.« less

  16. Microfluidic measurement for blood flow and platelet adhesion around a stenotic channel: Effects of tile size on the detection of platelet adhesion in a correlation map

    PubMed Central

    Jung, Sung Yong; Yeom, Eunseop

    2017-01-01

    Platelet aggregation affects the surrounding blood flow and usually occurs where a blood vessel is narrowed as a result of atherosclerosis. The relationship between blood flow and platelet aggregation is not yet fully understood. This study proposes a microfluidic method to measure the velocity and platelet aggregation simultaneously by combining the micro-particle image velocimetry technique and a correlation mapping method. The blood flow and platelet adhesion procedure in a stenotic micro-channel with 90% severity were observed for a relatively long period of 4 min. In order to investigate the effect of tile size on the detection of platelet adhesion, 2D correlation coefficients were evaluated with binary images obtained by manual labeling and the correlation mapping method with different sizes of the square tile ranging from 3 to 50 pixels. The maximum 2D correlation coefficient occurred with the optimum tile size of 5 × 5 pixels. Since the blood flow and platelet aggregation are mutually influenced by each other, blood flow and platelet adhesion were continuously varied. When there was no platelet adhesion (t = 0 min), typical blood flow is observed. The blood flow passes through the whole channel smoothly, and jet-like flow occurs in the post-stenosis region. However, the flow pattern changes when platelet adhesion starts at the stenosis apex and after the stenosis. These adhesions induce narrow high velocity regions to become wider over a range of area from upstream to downstream of the stenosis. Separated jet-like flows with two high velocity regions are also created. The changes in flow patterns may alter the patterns of platelet adhesion. As the area of the plate adhesion increases, the platelets plug the micro-channel and there is only a small amount of blood flow, finally. The microfluidic method could provide new insights for better understanding of the interactions between platelet aggregation and blood flow in various physiological conditions. PMID:28798854

  17. Microfluidic measurement for blood flow and platelet adhesion around a stenotic channel: Effects of tile size on the detection of platelet adhesion in a correlation map.

    PubMed

    Jung, Sung Yong; Yeom, Eunseop

    2017-03-01

    Platelet aggregation affects the surrounding blood flow and usually occurs where a blood vessel is narrowed as a result of atherosclerosis. The relationship between blood flow and platelet aggregation is not yet fully understood. This study proposes a microfluidic method to measure the velocity and platelet aggregation simultaneously by combining the micro-particle image velocimetry technique and a correlation mapping method. The blood flow and platelet adhesion procedure in a stenotic micro-channel with 90% severity were observed for a relatively long period of 4 min. In order to investigate the effect of tile size on the detection of platelet adhesion, 2D correlation coefficients were evaluated with binary images obtained by manual labeling and the correlation mapping method with different sizes of the square tile ranging from 3 to 50 pixels. The maximum 2D correlation coefficient occurred with the optimum tile size of 5 × 5 pixels. Since the blood flow and platelet aggregation are mutually influenced by each other, blood flow and platelet adhesion were continuously varied. When there was no platelet adhesion (t = 0 min), typical blood flow is observed. The blood flow passes through the whole channel smoothly, and jet-like flow occurs in the post-stenosis region. However, the flow pattern changes when platelet adhesion starts at the stenosis apex and after the stenosis. These adhesions induce narrow high velocity regions to become wider over a range of area from upstream to downstream of the stenosis. Separated jet-like flows with two high velocity regions are also created. The changes in flow patterns may alter the patterns of platelet adhesion. As the area of the plate adhesion increases, the platelets plug the micro-channel and there is only a small amount of blood flow, finally. The microfluidic method could provide new insights for better understanding of the interactions between platelet aggregation and blood flow in various physiological conditions.

  18. Evaluation of blood flow in human exercising muscle by diffuse correlation spectroscopy: a phantom model study

    NASA Astrophysics Data System (ADS)

    Nakabayashi, Mikie; Ono, Yumie; Ichinose, Masashi

    2018-02-01

    Diffuse correlation spectroscopy (DCS) has a potential to noninvasively and quantitatively measure the blood flow in the exercising muscle that could contribute to the fields of sports physiology and medicine. However, the blood flow index (BFI) measured from skin surface by DCS reflects hemodynamic signals from both superficial tissue and muscle layer. Thus, an appropriate calibration technology is required to quantify the absolute blood flow in the muscle layer. We therefore fabricated a realistic two-layer phantom model consisted of a static silicon layer imitating superficial tissue and a dynamic flow layer imitating the muscle blood flow and investigated the relationship between the simulated blood flow rate in the muscle layer and the BFI measured from the surface of the phantom. The absorption coefficient and the reduced scattering coefficient of the forearm were measured from 25 healthy young adults using a time-resolved nearinfrared spectroscopy. The depths of the superficial and muscle layers of forearm were also determined by ultrasound tomography images from 25 healthy young adults. The phantoms were fabricated to satisfy these optical coefficients and anatomical constraints. The simulated blood flow rate were set from 0 mL/ min to 68.7 mL/ min in ten steps, which is considered to cover a physiological range of mean blood flow of the forearm between per 100g of muscle tissue at rest to heavy dynamic handgrip exercise. We found a proportional relationship between the flow rates and BFIs with significant correlation coefficient of R = 0.986. Our results suggest that the absolute exercising muscle blood flow could be estimated by DCS with optimal calibration using phantom models.

  19. Cerebral glucose deficiency versus oxygen deficiency in neonatal encephalopathy.

    PubMed

    Rudolph, A M

    2018-04-24

    Hypoxic-ischemic encephalopathy (HIE) in newborn infants is generally considered to result from decreased arterial oxygen content or cerebral blood flow. Cerebral injury similar to that of HIE has been noted with hypoglycemia. Studies in fetal lambs have shown that ventilation with 3% oxygen did not change cerebral blood flow, but ventilation with 100% oxygen resulted in marked reduction in cerebral blood flow, glucose delivery and glucose consumption. Blood glucose concentration falls markedly after birth; this, associated with the fall in cerebral blood flow, greatly reduces glucose supply to the brain. In preterm infants, blood glucose levels tend to be very low. Also persistent patency of the ductus arteriosus may reduce cerebral flow in diastole, thus exaggerating the decrease in glucose supply. I propose that glycopenic-ischemic encephalopathy is a more appropriate term for the cerebral insult. We should consider more aggressive management of the low blood glucose concentrations in the neonate, and particularly in preterm infants. Administration of high levels of oxygen in inspired air should be avoided to reduce the enhancement of cerebral vasoconstriction and decreased flow that normally occurs after birth.

  20. Effects of hyper +Gz acceleration on cardiovascular function, visual evoked potentials and cerebral blood flow in anesthetized rats.

    PubMed

    Matsunami, K; Satake, H; Konishi, T

    1998-07-01

    Sustained hyper-gravity acceleration, particularly along the long axis of the body of animals or man (Gz), produces significant mal-effects on subjects, and hence it has been well studied, The most common syndromes of Gz application were cardio-vascular de-conditioning, and black-out, red-out, and loss of consciousness, which finally lead subjects into death. However, in most previous studies, the duration of applied Gz was rather short. In the present experiments, we can use longer duration of 1000 seconds. In addition, recent technological innovation make it possible to record directly local cerebral blood flow at a target cortical area with a Laser Doppler flow meter. We used this innovated method to measure local cerebral blood flow of rats in relation to visual evoked potentials (VEPs) under hyper-Gz acceleration. Also we recorded cardio-vascular parameters like heart rate from ECG, systolic and diastolic blood pressure and correlated them with cerebral blood flow and VEPs.

  1. Microprobes For Blood Flow Measurements In Tissue And Small Vessels

    NASA Astrophysics Data System (ADS)

    Oberg, P. A.; Salerud, E. G.

    1988-04-01

    Laser Doppler flowmetry is a method for the continuous and non-invasive recording of tissue blood flow. The method has already proved to be advantageous in a number of clinical as well as theoretical medical disciplines. In dermatology, plastic- and gastrointestinal surgery laser Doppler measurements have substantially contributed to increase knowledge of microvascular perfusion. In experimental medicine, the method has been used in the study of a great variety of microvascular problems. Spontaneous rhythmical variations, spatial and temporal fluctuations in human skin blood flow are mentioned as examples of problem areas in which new knowledge has been generated. The method has facilitated further investigations of the nature of spongeous bone blood flow, testis and kidney cortex blood flow. Recently we have showed that a variant of the laser Doppler method principle, using a single optical fiber, can be advantageous in deep tissue measurements. With this method laser light is transmitted bidirectionally in a single fiber. The tissue trauma which affects blood flow can be minimized by introducing small diameter fibers (0.1-0.5 mm). A special set-up utilizing the same basic principle has been used for the recording of blood flow in small vessels.

  2. A non-invasive method to produce pressure ulcers of varying severity in a spinal cord-injured rat model.

    PubMed

    Ahmed, A K; Goodwin, C R; Sarabia-Estrada, R; Lay, F; Ansari, A M; Steenbergen, C; Pang, C; Cohen, R; Born, L J; Matsangos, A E; Ng, C; Marti, G P; Abu-Bonsrah, N; Phillips, N A; Suk, I; Sciubba, D M; Harmon, J W

    2016-12-01

    Experimental study. The objective of this study was to establish a non-invasive model to produce pressure ulcers of varying severity in animals with spinal cord injury (SCI). The study was conducted at the Johns Hopkins Hospital in Baltimore, Maryland, USA. A mid-thoracic (T7-T9) left hemisection was performed on Sprague-Dawley rats. At 7 days post SCI, rats received varying degrees of pressure on the left posterior thigh region. Laser Doppler Flowmetry was used to record blood flow. Animals were killed 12 days after SCI. A cardiac puncture was performed for blood chemistry, and full-thickness tissue was harvested for histology. Doppler blood flow after SCI prior to pressure application was 237.808±16.175 PFUs at day 7. Following pressure application, there was a statistically significant decrease in blood flow in all pressure-applied groups in comparison with controls with a mean perfusion of 118.361±18.223 (P<0.001). White blood cell counts and creatine kinase for each group were statistically significant from the control group (P=0.0107 and P=0.0028, respectively). We have created a novel animal model of pressure ulcer formation in the setting of a SCI. Histological analysis revealed different stages of injury corresponding to the amount of pressure the animals were exposed to with decreased blood flow immediately after the insult along with a subsequent marked increase in blood flow the next day, conducive to an ischemia-reperfusion injury (IRI) and a possible inflammatory response following tissue injury. Following ischemia and hypoxia secondary to microcirculation impairment, free radicals generate lipid peroxidation, leading to ischemic tissue damage. Future studies should be aimed at measuring free radicals during this period of increased blood flow, following tissue ischemia.

  3. A modeling study on the influence of blood flow regulation on skin temperature pulsations

    NASA Astrophysics Data System (ADS)

    Tang, Yanliang; Mizeva, Irina; He, Ying

    2017-04-01

    Nowadays together with known optic techniques of microcirculation blood flow monitoring, skin temperature measurements are developed as well. In this paper, a simple one-dimensional bioheat transfer model was developed to analyse the heat wave transport in biological tissue, where an arteriole vessel with pulsatile blood is located. The simulated results show that the skin temperature oscillation amplitudes attenuate with the increase of blood flow oscillation frequency which gives the same tendency as that in the experiments. The parameter analyses further show that the amplitude of oscillation is also influenced by oscillation amplitude of blood and effective thermal conductivity. When oscillation amplitude of blood flow and effective thermal conductivity increase, the amplitude of skin temperature oscillation increases nonlinearly. Variation of effective thermal convective influence to the time delay of the thermal wave on the skin surface and distort it. Combination of two measurement techniques: one for estimation blood flow oscillations in the microvessels and other to the skin temperature measurement can produce additional information about the skin properties.

  4. Evaluation of the Effects of Acupuncture on Blood Flow in Humans with Ultrasound Color Doppler Imaging

    PubMed Central

    Takayama, Shin; Watanabe, Masashi; Kusuyama, Hiroko; Nagase, Satoru; Seki, Takashi; Nakazawa, Toru; Yaegashi, Nobuo

    2012-01-01

    Color Doppler imaging (CDI) can be used to noninvasively create images of human blood vessels and quantitatively evaluate blood flow in real-time. The purpose of this study was to assess the effects of acupuncture on the blood flow of the peripheral, mesenteric, and retrobulbar arteries by CDI. Statistical significance was defined as P values less than 0.05. Blood flow in the radial and brachial arteries was significantly lower during needle stimulation on LR3 than before in healthy volunteers, but was significantly higher after needle stimulation than before. LR3 stimulation also resulted in a significant decrease in the vascular resistance of the short posterior ciliary artery and no significant change of blood flow through the superior mesenteric artery (SMA) during acupuncture. In contrast, ST36 stimulation resulted in a significant increase in blood flow through the SMA and no significant change in the vascular resistance of the retrobulbar arteries. Additionally, acupuncture at previously determined acupoints in patients with open-angle glaucoma led to a significant reduction in the vascular resistance of the central retinal artery and short posterior ciliary artery. Our results suggest that acupuncture can affect blood flow of the peripheral, mesenteric, and retrobulbar arteries, and CDI can be useful to evaluate hemodynamic changes by acupuncture. PMID:22778772

  5. Measurement of renal blood flow by phase-contrast magnetic resonance imaging during septic acute kidney injury: a pilot investigation.

    PubMed

    Prowle, John R; Molan, Maurice P; Hornsey, Emma; Bellomo, Rinaldo

    2012-06-01

    In septic patients, decreased renal perfusion is considered to play a major role in the pathogenesis of acute kidney injury. However, the accurate measurement of renal blood flow in such patients is problematic and invasive. We sought to overcome such obstacles by measuring renal blood flow in septic patients with acute kidney injury using cine phase-contrast magnetic resonance imaging. Pilot observational study. University-affiliated general adult intensive care unit. Ten adult patients with established septic acute kidney injury and 11 normal volunteers. Cine phase-contrast magnetic resonance imaging measurement of renal blood flow and cardiac output. The median age of the study patients was 62.5 yrs and eight were male. At the time of magnetic resonance imaging, eight patients were mechanically ventilated, nine were on continuous hemofiltration, and five required vasopressors. Cine phase-contrast magnetic resonance imaging examinations were carried out without complication. Median renal blood flow was 482 mL/min (range 335-1137) in septic acute kidney injury and 1260 mL/min (range 791-1750) in healthy controls (p = .003). Renal blood flow indexed to body surface area was 244 mL/min/m2 (range 165-662) in septic acute kidney injury and 525 mL/min/m2 (range 438-869) in controls (p = .004). In patients with septic acute kidney injury, median cardiac index was 3.5 L/min/m2 (range 1.6-8.7), and median renal fraction of cardiac output was only 7.1% (range 4.4-10.8). There was no rank correlation between renal blood flow index and creatinine clearance in patients with septic acute kidney injury (r = .26, p = .45). Cine phase-contrast magnetic resonance imaging can be used to noninvasively and safely assess renal perfusion during critical illness in man. Near-simultaneous accurate measurement of cardiac output enables organ blood flow to be assessed in the context of the global circulation. Renal blood flow seems consistently reduced as a fraction of cardiac output in established septic acute kidney injury. Cine phase-contrast magnetic resonance imaging may be a valuable tool to further investigate renal blood flow and the effects of therapies on renal blood flow in critical illness.

  6. Measurements Of Coronary Mean Transit Time And Myocardial Tissue Blood Flow By Deconvolution Of Intravasal Tracer Dilution Curves

    NASA Astrophysics Data System (ADS)

    Korb, H.; Hoeft, A.; Hellige, G.

    1984-10-01

    Previous studies have shown that intramyocardial blood volume does not vary to a major extent even during extreme variation of hemodynamics and coronary vascular tone. Based on a constant intramyocardial blood volume it is therefore possible to calculate tissue blood flow from the mean transit time of an intravascular tracer. The purpose of this study was to develop a clinically applicable method for measurement of coronary blood flow. The new method was based on indocyanine green, a dye which is bound to albumin and intravasally detectable by means of a fiberoptic catheter device. One fiberoptic catheter was placed in the aortic root and another in the coronary sinus. After central venous dye injection the resulting arterial and coronary venous dye dilution curves were processed on-line by a micro-computer. The mean transit time as well as myocardial blood flow were calculated from the step response function of the deconvoluted arterial and coronary venous signals. Reference flow was determined with an extracorporeal electromagnetic flowprobe within a coronary sinus bypass system. 38 steady states with coronary blood flow ranging from 49 - 333 ml/min*100g were analysed in 5 dogs. Mean transit times varied from 2.9 to 16.6 sec. An average intracoronary blood volume of 13.9 -7 1.8 m1/100g was calculated. The correlation between flow determined by the dye dilution technique and flow measured with the reference method was 0.98. According to these results determination of coronary blood flow with a double fiberoptic system and indocyanine green should be possible even under clinical conditions. Furthermore, the arterial and coronary venous oxygen saturation can be monitored continuously by the fiberoptic catheters. Therefore, additional information about the performance of the heart such as myocardial oxygen consumption and myocardial efficiency is available with the same equipment.

  7. Supplementation of corn dried distillers' grains plus solubles to gestating beef cows fed low-quality forage:II. Impacts on uterine blood flow, circulating estradiol-17beta and progesterone, and hepatic steriod metabolizing

    USDA-ARS?s Scientific Manuscript database

    Improving uterine blood flow in nutrient restricted cows is vital to prevent under development of the fetus leading to decreased production characteristics of the offspring. This study examined uterine blood flow, steroid concentrations, and the activity of steroid metabolizing enzymes in pregnant b...

  8. The blood flow in the periodontal ligament regulated by the sympathetic and sensory nerves in the cat.

    PubMed

    Karita, K; Izumi, H; Tabata, T; Kuriwada, S; Sasano, T; Sanjo, D

    1989-01-01

    This study was carried out to investigate the nervous control of the blood flow in the periodontal ligament measured by laser Doppler flowmeter. Ten adult cats were anesthetized with pentobarbital sodium (initial dose of 30 mg/kg, i.v. and maintenance dose of 5 mg/kg, i.v.). After enucleating the left eye ball, the superior alveolar nerve was exposed. The bone overlying the labial aspect of the left maxillary canine tooth root was pared away until a transparent layer of bone was left covering the periodontal ligament. A laser light from a probe of the flowmeter fixed at the tooth was beamed through the thinned bone. Three different patterns of responses were observed following the electrical stimulation of the distal end of the cut superior alveolar nerve: an increasing, a decreasing and a biphasic change of blood flow. The application of capsaicin onto the superior alveolar nerve reduced the response of blood flow increase but had no effect on the response of blood flow decrease. On the other hand, the response of blood flow decrease was completely inhibited by the pretreatment with phentolamine while the response of blood flow increase was not affected. The present results suggest that blood flow in the periodontal ligament of cats is controlled by sympathetic alpha-adrenergic fibers for vasoconstriction and by sensory fibers for vasodilation.

  9. Influence of cold water immersion on limb and cutaneous blood flow at rest.

    PubMed

    Gregson, Warren; Black, Mark A; Jones, Helen; Milson, Jordon; Morton, James; Dawson, Brian; Atkinson, Greg; Green, Daniel J

    2011-06-01

    Cold water immersion reduces exercise-induced muscle damage. Benefits may partly arise from a decline in limb blood flow; however, no study has comprehensively investigated the influence of different degrees of cooling undertaken via cold water immersion on limb blood flow responses. To determine the influence of cold (8°C) and cool (22°C) water immersion on lower limb and cutaneous blood flow. Controlled laboratory study. Nine men were placed in a semireclined position and lowered into 8°C or 22°C water to the iliac crest for two 5-minute periods interspersed with 2 minutes of nonimmersion. Rectal and thigh skin temperature, deep and superficial muscle temperature, heart rate, mean arterial pressure, thigh cutaneous blood velocity (laser Doppler), and superficial femoral artery blood flow (duplex ultrasound) were measured during immersion and for 30 minutes after immersion. Indices of vascular conductance were calculated (flux and blood flow/mean arterial pressure). Reductions in rectal temperature (8°C, 0.2° ± 0.1°C; 22°C, 0.1° ± 0.1°C) and thigh skin temperature (8°C, 6.2° ± 0.5°C; 22°C, 3.2° ± 0.2°C) were greater in 8°C water than in 22°C (P < .01). Femoral artery conductance was reduced to a similar extent immediately after immersion (~30%) and 30 minutes after immersion (~40%) under both conditions (P < .01). In contrast, there was less thigh cutaneous vasoconstriction during and after immersion in 8°C water compared with 22°C (P = .01). These data suggest that immersion at both temperatures resulted in similar whole limb blood flow but, paradoxically, more blood was distributed to the skin in the colder water. This suggests that colder temperatures may be associated with reduced muscle blood flow, which could provide an explanation for the benefits of cold water immersion in alleviating exercise-induced muscle damage in sports and athletic contexts. Colder water temperatures may be more effective in the treatment of exercise-induced muscle damage and injury rehabilitation because of greater reductions in muscle blood flow.

  10. Local scattering property scales flow speed estimation in laser speckle contrast imaging

    NASA Astrophysics Data System (ADS)

    Miao, Peng; Chao, Zhen; Feng, Shihan; Yu, Hang; Ji, Yuanyuan; Li, Nan; Thakor, Nitish V.

    2015-07-01

    Laser speckle contrast imaging (LSCI) has been widely used in in vivo blood flow imaging. However, the effect of local scattering property (scattering coefficient µ s ) on blood flow speed estimation has not been well investigated. In this study, such an effect was quantified and involved in relation between speckle autocorrelation time τ c and flow speed v based on simulation flow experiments. For in vivo blood flow imaging, an improved estimation strategy was developed to eliminate the estimation bias due to the inhomogeneous distribution of the scattering property. Compared to traditional LSCI, a new estimation method significantly suppressed the imaging noise and improves the imaging contrast of vasculatures. Furthermore, the new method successfully captured the blood flow changes and vascular constriction patterns in rats’ cerebral cortex from normothermia to mild and moderate hypothermia.

  11. Real time monitoring of rat liver energy state during ischemia.

    PubMed

    Barbiro, E; Zurovsky, Y; Mayevsky, A

    1998-11-01

    Hepatic failure is one of the major problems developed during the posttransplantation period. A possible cause of hepatic failure is the prolonged ischemia induced during the implantation procedure. Hepatic ischemia leads to a reduction in oxygen supply, ATP level decline, liver metabolism impairment, and finally organ failure. The purpose of this study was to estimate the functional state of the liver by monitoring liver blood flow and the mitochondrial NADH redox state simultaneously and continuously during in situ liver ischemia followed by reperfusion. Measurements were performed using the multiprobe developed in our laboratory consisting of fibers for the measurement of relative liver blood flow (laser Doppler flowmetry) and mitochondrial redox state (NADH fluorescence). The experimental procedure included the temporary interruption of blood flow to the liver using three types of ischemia, hepatic artery occlusion, portal vein occlusion, and simultaneous occlusion of hepatic artery and portal vein, followed by a reperfusion period. These preliminary experiments showed a significant decrease in liver blood flow, following the three types of liver ischemia, and a significant increase in NADH levels. The probe used in this study incorporates the advantage of monitoring NADH and liver blood flow simultaneously and continuously from the same area on the surface of the liver. Since each of these two parameters is not calibrated in absolute units, the simultaneous monitoring decreases possible artifacts. Also, it will allow us to determine of the coupling between tissue blood flow and oxidative phosphorylation. It is believed that the measurements of respiratory chain dysfunction might predict organ viability in clinical organ transplantation situations. Using this probe may also help to decrease the variability in liver blood flow monitoring since liver blood flow monitoring is supported simultaneously with the mitochondrial redox state, which supplies the information on liver metabolic and functional state. Copyright 1998 Academic Press.

  12. Blood Flow Changes in Subsynovial Connective Tissue on Contrast-Enhanced Ultrasonography in Patients With Carpal Tunnel Syndrome Before and After Surgical Decompression.

    PubMed

    Motomiya, Makoto; Funakoshi, Tadanao; Ishizaka, Kinya; Nishida, Mutsumi; Matsui, Yuichiro; Iwasaki, Norimasa

    2017-11-24

    Although qualitative alteration of the subsynovial connective tissue in the carpal tunnel is considered to be one of the most important factors in the pathophysiologic mechanisms of carpal tunnel syndrome (CTS), little information is available about the microcirculation in the subsynovial connective tissue in patients with CTS. The aims of this study were to use contrast-enhanced ultrasonography (US) to evaluate blood flow in the subsynovial connective tissue proximal to the carpal tunnel in patients with CTS before and after carpal tunnel release. The study included 15 volunteers and 12 patients with CTS. The blood flow in the subsynovial connective tissue and the median nerve was evaluated preoperatively and at 1, 2, and 3 months postoperatively using contrast-enhanced US. The blood flow in the subsynovial connective tissue was higher in the patients with CTS than in the volunteers. In the patients with CTS, there was a significant correlation between the blood flow in the subsynovial connective tissue and the median nerve (P = .01). The blood flow in both the subsynovial connective tissue and the median nerve increased markedly after carpal tunnel release. Our results suggest that increased blood flow in the subsynovial connective tissue may play a role in the alteration of the microcirculation within the median nerve related to the pathophysiologic mechanisms of CTS. The increase in the blood flow in the subsynovial connective tissue during the early postoperative period may contribute to the changes in intraneural circulation, and these changes may lead to neural recovery. © 2017 by the American Institute of Ultrasound in Medicine.

  13. Blood Flow through an Open-Celled Foam

    NASA Astrophysics Data System (ADS)

    Ortega, Jason; Maitland, Duncan

    2011-11-01

    The Hazen-Dupuit-Darcy (HDD) equation is commonly used in engineering applications to model the pressure gradient of flow through a porous media. One major advantage of this equation is that it simplifies the complex geometric details of the porous media into two coefficients: the permeability, K, and form factor, C. However through this simplification, the flow details within the porous media are no longer accessible, making it difficult to study the phenomena that contribute to changes in K and C due to clotting of blood flow. To obtain a more detailed understanding of blood flow through a porous media, a direct assessment of the complex interstitial geometry and flow is required. In this study, we solve the Navier-Stokes equations for Newtonian and non-Newtonian blood flow through an open-celled foam geometry obtained from a micro-CT scan. The nominal strut size of the foam sample is of O(10e-5) m and the corresponding Reynolds number based upon this length ranges up to O(10). Fitting the pressure gradient vs. Darcy velocity data with the HDD equation demonstrates that both viscous and inertial forces play an important role in the flow through the foam at these Reynolds numbers. Recirculation zones are observed to form in the wake of the pore struts, producing regions of flow characterized by both low shear rates and long fluid residence times, factors of which have been shown in previous studies to promote blood clotting.

  14. Numerical study of magnetohydrodynamic pulsatile flow of Sutterby fluid through an inclined overlapping arterial stenosis in the presence of periodic body acceleration

    NASA Astrophysics Data System (ADS)

    Abbas, Z.; Shabbir, M. S.; Ali, N.

    2018-06-01

    In the present theoretical investigation, we have numerically simulated the problem of blood flow through an overlapping stenosed arterial blood vessel under the action of externally applied body acceleration and the periodic pressure gradient. The rheology of blood is characterized by the Sutterby fluid model. The blood is considered as an electrically conducting fluid. A steady uniform magnetic field is applied in the radial direction of the blood vessel. The governing nonlinear partial differential equations of the present flow together with prescribed boundary conditions are solved by employing explicit finite difference scheme. Results concerning the temporal distribution of velocity, flow rate, shear stress and resistance to the flow are displayed through graphs. The effects of various emerging parameters on the flow variables are analyzed and discussed in detail. The analysis reveals that the applied magnetic field and periodic body acceleration have considerable effects on the flow field.

  15. A Two-Dimensional Numerical Investigation of Transport of Malaria-Infected Red Blood Cells in Stenotic Microchannels

    PubMed Central

    Tao, Yong; Rongin, Uwitije; Xing, Zhongwen

    2016-01-01

    The malaria-infected red blood cells experience a significant decrease in cell deformability and increase in cell membrane adhesion. Blood hemodynamics in microvessels is significantly affected by the alteration of the mechanical property as well as the aggregation of parasitized red blood cells. In this study, we aim to numerically study the connection between cell-level mechanobiological properties of human red blood cells and related malaria disease state by investigating the transport of multiple red blood cell aggregates passing through microchannels with symmetric stenosis. Effects of stenosis magnitude, aggregation strength, and cell deformability on cell rheology and flow characteristics were studied by a two-dimensional model using the fictitious domain-immersed boundary method. The results indicated that the motion and dissociation of red blood cell aggregates were influenced by these factors and the flow resistance increases with the increase of aggregating strength and cell stiffness. Further, the roughness of the velocity profile was enhanced by cell aggregation, which considerably affected the blood flow characteristics. The study may assist us in understanding cellular-level mechanisms in disease development. PMID:28105411

  16. Estimation of blood flow heterogeneity in human skeletal muscle using intravascular tracer data: importance for modeling transcapillary exchange.

    PubMed

    Vicini, P; Bonadonna, R C; Lehtovirta, M; Groop, L C; Cobelli, C

    1998-01-01

    Distributed models of blood-tissue exchange are widely used to measure kinetic events of various solutes from multiple tracer dilution experiments. Their use requires, however, a careful description of blood flow heterogeneity along the capillary bed. Since they have mostly been applied in animal studies, direct measurement of the heterogeneity distribution was possible, e.g., with the invasive microsphere method. Here we apply distributed modeling to a dual tracer experiment in humans, performed using an intravascular (indocyanine green dye, subject to distribution along the vascular tree and confined to the capillary bed) and an extracellular ([3H]-D-mannitol, tracing passive transcapillary transfer across the capillary membrane in the interstitial fluid) tracer. The goal is to measure relevant parameters of transcapillary exchange in human skeletal muscle. We show that assuming an accurate description of blood flow heterogeneity is crucial for modeling, and in particular that assuming for skeletal muscle the well-studied cardiac muscle blood flow heterogeneity is inappropriate. The same reason prevents the use of the common method of estimating the input function of the distributed model via deconvolution, which assumes a known blood flow heterogeneity, either defined from literature or measured, when possible. We present a novel approach for the estimation of blood flow heterogeneity in each individual from the intravascular tracer data. When this newly estimated blood flow heterogeneity is used, a more satisfactory model fit is obtained and it is possible to reliably measure parameters of capillary membrane permeability-surface product and interstitial fluid volume describing transcapillary transfer in vivo.

  17. Relative Renal Blood Flow Measurements With Rb-82 and a Hybrid Gamma Camera Using a Pig Model

    NASA Astrophysics Data System (ADS)

    Pretorius, P. H.; Fung, L. C. T.; Schell, C. P.; King, M. A.

    2005-02-01

    We have successfully demonstrated with chronically implanted blood flow probes in a pig model that renal uptake of Rb-82 is indeed sensitive to acute renal blood flow changes. Two flow probes were placed around the left and right renal arteries in a surgical procedure nine weeks before the first Rb-82 measurements. Together with the flow probes, a flow restrictor was implanted around the left renal artery. Single bolus infusions of 6 mCi Rb-82 were used to study the uptake in the kidneys approximately 7 minutes apart in hybrid-image limited-angle acquisitions (stationary camera heads posterior and anterior of the pig) while changing the flow to the left kidney between acquisitions. The acquired data were reconstructed into 7.5-s frames using a maximum likelihood (ML) list-mode reconstruction algorithm exploiting timing signals inserted into the list every 0.25 s. Reconstructed data were orientated to coronal views before regions of interest (ROIs) were drawn over both kidneys with a separate background region for each. The data represented are noisy due to the reconstructed 7.5-s frames, and the total imaging time of 5 min (or 4 Rb-82 half-lives). We were able to show a steady decline in uptake of Rb-82 in the left kidney that correlates with the reduction in renal blood flow. The reduced blood flow to the left kidney affects the Rb-82 uptake to the right kidney slightly, while blood flow decreased up to 33%. Comparing the baseline renal blood flow of the left kidney obtained before and after the intervention indicates that some ischemia persists after blood flow was restored. Attenuation compensation better described the contour of the kidney but only scales the time activity curve without changing its shape.

  18. Label-free in vivo optical micro-angiography imaging of cerebral capillary blood flow within meninges and cortex in mice with the skull left intact

    NASA Astrophysics Data System (ADS)

    Jia, Yali; Wang, Ruikang K.

    2011-03-01

    Abnormal microcirculation within meninges is common in many neurological diseases. There is a need for an imaging method that is capable of visualizing functional meningeal microcirculations alone, preferably decoupled from the cortical blood flow. Optical microangiography (OMAG) is a recently developed label-free imaging method capable of producing 3D images of dynamic blood perfusion within micro-circulatory tissue beds at an imaging depth up to ~2 mm, with an unprecedented imaging sensitivity to the blood flow at ~4 μm/s. In this study, we demonstrate the utility of ultra-high sensitive OMAG in imaging the detailed blood flow distributions, at a capillary level resolution, within meninges and cortex in mice with the cranium left intact. The results indicate that OMAG can be a valuable tool for the study of meningeal circulations.

  19. Numerical investigations of the unsteady blood flow in the end-to-side arteriovenous fistula for hemodialysis.

    PubMed

    Jodko, Daniel; Obidowski, Damian; Reorowicz, Piotr; Jóźwik, Krzysztof

    2016-01-01

    The aim of this study was to investigate the blood flow in the end-to-side arteriovenous (a-v) fistula, taking into account its pulsating nature and the patient-specific geometry of blood vessels. Computational Fluid Dynamics (CFD) methods were used for this analysis. DICOM images of the fistula, obtained from the angio-computed tomography, were a source of the data applied to develop a 3D geometrical model of the fistula. The model was meshed, then the ANSYS CFX v. 15.0 code was used to perform simulations of the flow in the vessels under analysis. Mesh independence tests were conducted. The non-Newtonian rheological model of blood and the Shear Stress Transport model of turbulence were employed. Blood vessel walls were assumed to be rigid. Flow patterns, velocity fields, the volume flow rate, the wall shear stress (WSS) propagation on particular blood vessel walls were shown versus time. The maximal value of the blood velocity was identified in the anastomosis - the place where the artery is connected to the vein. The flow rate was calculated for all veins receiving blood. The blood flow in the geometrically complicated a-v fistula was simulated. The values and oscillations of the WSS are the largest in the anastomosis, much lower in the artery and the lowest in the cephalic vein. A strong influence of the mesh on the results concerning the maximal and area-averaged WSS was shown. The relation between simulations of the pulsating and stationary flow under time-averaged flow conditions was presented.

  20. Blood flow of the right and left submandibular gland during unilateral carotid artery occlusion in rat: role of nitric oxide.

    PubMed

    Vág, J; Hably, C; Fazekas, A; Bartha, J

    1999-01-01

    The aim of the present study was to investigate the effect of unilateral carotid artery occlusion on the blood flow of submandibular gland in anesthetized rats and identify the role of nitric oxide (NO) in blood flow changes after the artery occlusion. L-NAME (N omega-nitro-L-arginine-methyl-ester; 10 mg/kg/day, per os) dissolved in tap water was used to block nitric oxide synthase. Glandular blood flow was measured using Sapirstein's indicator (86Rb) distribution technique. In the control animals the blood flow of left (ligated side) submandibular gland was lower than in the right (unligated side) one (right: 76.4+/-15.4 ml/min/100 g, 64.1+/-13.4 ml/min/100 g, p<0.01). The blood flow of submandibular glands decreased in NOS blocked group versus control. The vascular resistance after L-NAME treatment was elevated (control: 11+/-2.3 R/kg, L-NAME: 17.5+/-4.1 R/kg, p<0.001). In L-NAME group the difference between blood flow value of the left and right submandibular gland was significantly lower than in the control group (control: -16%, NAME: -8%, p<0.01). The maintenance of the blood flow in the left submandibular gland during ligation of the left common carotid artery could be due to the good vascular anastomotic system at these regions and adaptation of the submandibular vessels to the decreased perfusion pressure. Nitric oxide may have a role in the regulation of blood flow tinder this condition.

  1. Ultrasound evaluation of valsartan therapy for renal cortical perfusion.

    PubMed

    Kishimoto, Noriko; Mori, Yasukiyo; Nishiue, Takashi; Nose, Atsuko; Kijima, Yasuaki; Tokoro, Toshiko; Yamahara, Hideki; Okigaki, Mitsuhiko; Kosaki, Atsushi; Iwasaka, Toshiji

    2004-05-01

    An increase in renal blood flow with a concomitant decrease in filtration fraction at the onset of angiotensin II receptor blocker treatment has been shown to predict a long-term renoprotective effect. However, no studies are available regarding angiotensin receptor blocker-induced changes in renal cortical perfusion observed in the clinical setting. We have recently developed a convenient method of evaluating human renal cortical blood flow with contrast-enhanced harmonic ultrasonography. The goal of this study was to use this method to examine the effect of valsartan, an angiotensin II receptor blocker, on renal cortical perfusion. We performed intermittent second harmonic imaging with venous infusion of a microbubble contrast agent in 7 healthy volunteers. Contrast-enhanced harmonic ultrasonography performed after oral administration of valsartan (80mg) showed a significant increase in microbubble velocity, which correlated well with the increase in total renal blood flow determined by p-aminohippurate clearance (r=0.950, p < 0.001). Although fractional vascular volume was not significantly increased, alterations in renal cortical blood flow calculated by the product of microbubble velocity and fractional volume were also correlated with the change in total renal blood flow (r=0.756, p < 0.05). These results indicate that valsartan increases the renal cortical blood flow in normal kidneys, mainly by increasing blood flow velocity. Contrast-enhanced harmonic ultrasonography is a promising technique for evaluating the precise effect on renal cortical perfusion and optimal dose of valsartan in diseased kidneys.

  2. Impact of blood flow on diffusion coefficients of the human kidney: a time-resolved ECG-triggered diffusion-tensor imaging (DTI) study at 3T.

    PubMed

    Heusch, Philipp; Wittsack, Hans-Jörg; Kröpil, Patric; Blondin, Dirk; Quentin, Michael; Klasen, Janina; Pentang, Gael; Antoch, Gerald; Lanzman, Rotem S

    2013-01-01

    To evaluate the impact of renal blood flow on apparent diffusion coefficients (ADC) and fractional anisotropy (FA) using time-resolved electrocardiogram (ECG)-triggered diffusion-tensor imaging (DTI) of the human kidneys. DTI was performed in eight healthy volunteers (mean age 29.1 ± 3.2) using a single slice coronal echoplanar imaging (EPI) sequence (3 b-values: 0, 50, and 300 s/mm(2)) at the timepoint of minimum (20 msec after R wave) and maximum renal blood flow (200 msec after R wave) at 3T. Following 2D motion correction, region of interest (ROI)-based analysis of cortical and medullary ADC- and FA-values was performed. ADC-values of the renal cortex at maximum blood flow (2.6 ± 0.19 × 10(-3) mm(2)/s) were significantly higher than at minimum blood flow (2.2 ± 0.11 × 10(-3) mm(2)/s) (P < 0.001), while medullary ADC-values did not differ significantly (maximum blood flow: 2.2 ± 0.18 × 10(-3) mm(2)/s; minimum blood flow: 2.15 ± 0.14 × 10(-3) mm(2)/s). FA-values of the renal medulla were significantly greater at maximal blood (0.53 ± 0.05) than at minimal blood flow (0.47 ± 0.05) (P < 0.01). In contrast, cortical FA-values were comparable at different timepoints of the cardiac cycle. ADC-values in the renal cortex as well as FA-values in the renal medulla are influenced by renal blood flow. This impact has to be considered when interpreting renal ADC- and FA-values. Copyright © 2012 Wiley Periodicals, Inc.

  3. Evidence for altered placental blood flow and vascularity in compromised pregnancies

    PubMed Central

    Reynolds, Lawrence P; Caton, Joel S; Redmer, Dale A; Grazul-Bilska, Anna T; Vonnahme, Kimberly A; Borowicz, Pawel P; Luther, Justin S; Wallace, Jacqueline M; Wu, Guoyao; Spencer, Thomas E

    2006-01-01

    The placenta is the organ that transports nutrients, respiratory gases, and wastes between the maternal and fetal systems. Consequently, placental blood flow and vascular development are essential components of normal placental function and are critical to fetal growth and development. Normal fetal growth and development are important to ensure optimum health of offspring throughout their subsequent life course. In numerous sheep models of compromised pregnancy, in which fetal or placental growth, or both, are impaired, utero-placental blood flows are reduced. In the models that have been evaluated, placental vascular development also is altered. Recent studies found that treatments designed to increase placental blood flow can ‘rescue’ fetal growth that was reduced due to low maternal dietary intake. Placental blood flow and vascular development are thus potential therapeutic targets in compromised pregnancies. PMID:16469783

  4. Numerical simulation of heat transfer in power law fluid flow through a stenosed artery

    NASA Astrophysics Data System (ADS)

    Talib, Amira Husni; Abdullah, Ilyani

    2017-11-01

    A numerical study of heat transfer in a power law fluid is investigated in this paper. The blood flow is treated as power law fluid with a presence of cosine shaped stenosis. This study reveals the effect of stenosis on the heat transfer and velocity of blood flowing in the constricted artery. The governing and energy equations are formulated in a cylindrical coordinate system. Hence, the set of equations and boundary conditions are solved numerically by Marker and Cell (MAC) method. The graphical result shows the profile of blood temperature is increased while the blood velocity is decreased at the critical height of stenosis.

  5. ( sup 99m Tc)diphosphonate uptake and hemodynamics in arthritis of the immature dog knee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, E.S.; Soballe, K.; Henriksen, T.B.

    1991-03-01

    The relationship between (99mTc)diphosphonate uptake and bone hemodynamics was studied in canine carrageenan-induced juvenile chronic arthritis. Blood flow was determined with microspheres, plasma and red cell volumes were measured by labeled fibrinogen and red cells, and the microvascular volume and mean transit time of blood were calculated. Normal femoral epiphyses had lower central and higher subchondral blood flow and diphosphonate uptake values. Epiphyseal vascular volume was uniform, resulting in a greater transit time of blood centrally. In arthritis, blood flow and diphosphonate uptake were increased subchondrally and unaffected centrally, while epiphyseal vascular volume was increased throughout, leading to prolonged transitmore » time centrally. The normal metaphyses had low blood flow and diphosphonate uptake values in cancellous bone and very high values in growth plates, but a large vascular volume throughout. The mean transit time therefore was low in growth plates and high in adjacent cancellous bone. Arthritis caused decreased blood flow and diphosphonate uptake in growth plates but increased vascular volume and transit time of blood. Diphosphonate uptake correlated positively with blood flow and plasma volume and negatively with red cell volume in a nonlinear fashion. Thus, changes in diphosphonate uptake and microvascular hemodynamics occur in both epiphyseal and metaphyseal bone in chronic synovitis of the immature knee. The (99mTc)diphosphonate bone scan seems to reflect blood flow, plasma volume, and red cell volume of bone.« less

  6. Measurement of retinal blood flow in normal Chinese-American subjects by Doppler Fourier-domain optical coherence tomography.

    PubMed

    Srinivas, Sowmya; Tan, Ou; Wu, Shuang; Nittala, Muneeswar Gupta; Huang, David; Varma, Rohit; Sadda, SriniVas R

    2015-02-10

    To measure total retinal blood flow (TRBF) in normal, healthy Chinese Americans by using semi-automated analysis of Doppler Fourier-domain optical coherence tomography (FD-OCT) scans. Two hundred sixty-six normal, healthy Chinese-American participants (266 eyes) were enrolled from The Chinese American Eye Study. All participants underwent complete ophthalmic examination, including best-corrected visual acuity, indirect ophthalmoscopy, and Doppler FD-OCT imaging, using the circumpapillary double circular scan protocol. Total retinal blood flow and other vascular parameters (e.g., venous and arterial cross-sectional area and their velocities) were calculated by using Doppler OCT of Retinal Circulation software. Associations between TRBF and other clinical parameters were assessed by using bivariate correlations and linear regression. The mean age of study participants was 57.40 ± 5.60 (range, 50-82) years. The mean TRBF was 49.34 ± 10.08 (range, 27.17-78.08, 95% confidence interval: 25.98-69.10) μL/min. The mean venous area was 0.0548 (±0.0084) mm(2). Superior retinal hemispheric blood flow (25.50 ± 6.62 μL/min) was slightly greater than inferior retinal hemispheric blood flow (23.84 ± 7.19 μL/min, P = 0.008). The mean flow velocity was 15.16 ± 3.12 mm/s. There was a weak but significant negative correlation between TRBF and age (r = -0.15, P = 0.012). No significant correlation was found between TRBF and axial length (r = 0.11, P = 0.08). Retinal blood flow was not significantly correlated with any other clinical parameters, including body mass index, systolic blood pressure, diastolic blood pressure, and intraocular pressure. Normal Doppler OCT-derived total retinal blood values in a Chinese-American population showed considerable variability, some of which was explained by age. These observations should help design future studies evaluating TRBF in populations with eye disease. Copyright 2015 The Association for Research in Vision and Ophthalmology, Inc.

  7. Multiscale modeling of sickle anemia blood blow by Dissipative Partice Dynamics

    NASA Astrophysics Data System (ADS)

    Lei, Huan; Caswell, Bruce; Karniadakis, George

    2011-11-01

    A multi-scale model for sickle red blood cell is developed based on Dissipative Particle Dynamics (DPD). Different cell morphologies (sickle, granular, elongated shapes) typically observed in in vitro and in vivo are constructed and the deviations from the biconcave shape is quantified by the Asphericity and Elliptical shape factors. The rheology of sickle blood is studied in both shear and pipe flow systems. The flow resistance obtained from both systems exhibits a larger value than the healthy blood flow due to the abnormal cell properties. However, the vaso-occulusion phenomenon, reported in a recent microfluid experiment, is not observed in the pipe flow system unless the adhesive interactions between sickle blood cells and endothelium properly introduced into the model.

  8. Extracorporeal bypass model of blood circulation for the study of microvascular hemodynamics.

    PubMed

    Nam, Kweon-Ho; Yeom, Eunseop; Lee, Sang Joon

    2012-05-01

    Many studies have been performed to better understand the hemodynamics in microvessels, such as arterioles and venules. However, due to the heterogeneous features of size, shape, blood-flow velocity, and pulsatility of microvessels, conducting a systematic study on these factors has been almost impossible. Although in vitro studies have been performed for this purpose, the usefulness of in vitro data is limited by the fact that the rheological properties of blood are changed as blood is exposed to in vitro environments. The purpose of the present study is to investigate the feasibility of a rat extracorporeal bypass model that combines in vivo and in vitro models. An arteriovenous shunt loop with a sub-bypass loop of fluorinated ethylene propylene (FEP) microtube was constructed between the jugular vein and femoral artery of a rat. Three pinch valves were installed in the main loop. Microscopic images of the blood flow in the FEP tube were sequentially captured with a high-speed camera, and the whole velocity field information was obtained using a micro-particle image velocimetry technique. Experimental results reveal that the velocity fields of the blood flow inside the microtube are well measured because the FEP tube is transparent and has nearly the same refractive index as water. The flow velocity and the pulsatility index of the blood flow in the microtube can be controlled by adjusting the three pinch valves installed upstream, midstream, and downstream of the bypass loop. This hybrid model that combines in vivo and in vitro models can be useful in studying microvascular hemodynamics. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Laser speckle contrast imaging of collateral blood flow during acute ischemic stroke

    PubMed Central

    Armitage, Glenn A; Todd, Kathryn G; Shuaib, Ashfaq; Winship, Ian R

    2010-01-01

    Collateral vasculature may provide an alternative route for blood flow to reach the ischemic tissue and partially maintain oxygen and nutrient support during ischemic stroke. However, much about the dynamics of stroke-induced collateralization remains unknown. In this study, we used laser speckle contrast imaging to map dynamic changes in collateral blood flow after middle cerebral artery occlusion in rats. We identified extensive anastomatic connections between the anterior and middle cerebral arteries that develop after vessel occlusion and persist for 24 hours. Augmenting blood flow through these persistent yet dynamic anastomatic connections may be an important but relatively unexplored avenue in stroke therapy. PMID:20517321

  10. Cerebral blood flow autoregulation is impaired in schizophrenia: A pilot study.

    PubMed

    Ku, Hsiao-Lun; Wang, Jiunn-Kae; Lee, Hsin-Chien; Lane, Timothy Joseph; Liu, I-Chao; Chen, Yung-Chan; Lee, Yao-Tung; Lin, I-Cheng; Lin, Chia-Pei; Hu, Chaur-Jong; Chi, Nai-Fang

    2017-10-01

    Patients with schizophrenia have a higher risk of cardiovascular diseases and higher mortality from them than does the general population; however, the underlying mechanism remains unclear. Impaired cerebral autoregulation is associated with cerebrovascular diseases and their mortality. Increased or decreased cerebral blood flow in different brain regions has been reported in patients with schizophrenia, which implies impaired cerebral autoregulation. This study investigated the cerebral autoregulation in 21 patients with schizophrenia and 23 age- and sex-matched healthy controls. None of the participants had a history of cardiovascular diseases, hypertension, or diabetes. All participants underwent 10-min blood pressure and cerebral blood flow recording through finger plethysmography and Doppler ultrasonography, respectively. Cerebral autoregulation was assessed by analyzing two autoregulation indices: the mean blood pressure and cerebral blood flow correlation coefficient (Mx), and the phase shift between the waveforms of blood pressure and cerebral blood flow determined using transfer function analysis. Compared with the controls, the patients had a significantly higher Mx (0.257 vs. 0.399, p=0.036) and lower phase shift (44.3° vs. 38.7° in the 0.07-0.20Hz frequency band, p=0.019), which indicated impaired maintenance of constant cerebral blood flow and a delayed cerebrovascular autoregulatory response. Impaired cerebral autoregulation may be caused by schizophrenia and may not be an artifact of coexisting medical conditions. The mechanism underlying impaired cerebral autoregulation in schizophrenia and its probable role in the development of cerebrovascular diseases require further investigation. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. A novel, microscope based, non invasive Laser Doppler flowmeter for choroidal blood flow assessment

    PubMed Central

    Strohmaier, C; Werkmeister, RM; Bogner, B; Runge, C; Schroedl, F; Brandtner, H; Radner, W; Schmetterer, L; Kiel, JW; Grabnerand, G; Reitsamer, HA

    2015-01-01

    Impaired ocular blood flow is involved in the pathogenesis of numerous ocular diseases like glaucoma or AMD. The purpose of the present study was to introduce and validate a novel, microscope based, non invasive laser Doppler flowmeter (NILDF) for measurement of blood flow in the choroid. The custom made NI-LDF was compared with a commercial fiber optic based laser Doppler flowmeter (Perimed PF4000). Linearity and stability of the NI-LDF were assessed in a silastic tubing model (i.d. 0.3 mm) at different flow rates (range 0.4 – 3 ml/h). In a rabbit model continuous choroidal blood flow measurements were performed with both instruments simultaneously. During blood flow measurements ocular perfusion pressure was changed by manipulations of intraocular pressure via intravitreal saline infusions. The NILDF measurement correlated linearly to intraluminal flow rates in the perfused tubing model (r = 0.99, p<0.05) and remained stable during a 1 hour measurement at a constant flow rate. Rabbit choroidal blood flow measured by the PF4000 and the NI-LDF linearly correlated with each other over the entire measurement range (r = 0.99, y = x* 1,01 – 12,35 P.U., p < 0,001). In conclusion, the NI-LDF provides valid, semi quantitative measurements of capillary blood flow in comparison to an established LDF instrument and is suitable for measurements at the posterior pole of the eye. PMID:21443871

  12. Oral Administration of Cilostazol Increases Ocular Blood Flow in Patients with Diabetic Retinopathy.

    PubMed

    Hwang, Duck Jin; Shin, Joo Young; Yu, Hyeong Gon

    2017-04-01

    To investigate the effect of cilostazol on ocular hemodynamics and to determine whether the administration of cilostazol increases the ocular blood flow in patients with diabetic retinopathy. This prospective observational study investigated the effect of orally administered cilostazol on diabetic retinopathy. Before and after administration for 1 week, pulsatile ocular blood flow (POBF) and retrobulbar hemodynamics were measured using a POBF analyzer and transcranial Doppler imaging, respectively. Visual acuity, intraocular pressure, and blood pressure were also evaluated before and after treatment. Twenty-five eyes of 25 patients were included in this study. POBF increased significantly (16.8 ± 4.6 µL/sec vs. 19.6 ± 6.2 µL/sec, p < 0.001) after administration of cilostazol, while no significant change was identified in visual acuity, intraocular pressure, and blood pressure. Mean flow velocity in the ophthalmic artery as measured with transcranial Doppler imaging also increased significantly after medication (23.5 ± 5.6 cm/sec vs. 26.0 ± 6.9 cm/sec, p = 0.001). The change in POBF directly correlated with the change in mean flow velocity (r = 0.419, p = 0.007). Cilostazol was effective in increasing ocular blood flow in patients with diabetic retinopathy, possibly by modulating retrobulbar circulation.

  13. Blood flow-independent accumulation of cisplatin in the guinea pig cochlea.

    PubMed

    Miettinen, S; Laurell, G; Andersson, A; Johansson, R; Laurikainen, E

    1997-01-01

    Considerable interindividual variability in the ototoxic effect of cisplatin has become the unpredictable dose-limiting factor in its use as curative as well as palliative therapy. The drug accumulates in highly vascular areas in the cochlea, causing dose-related hair cell loss. The purpose of this study was to assess blood flow-dependent aspects of cisplatin absorption in the cochlea in order to better understand factors that may influence cisplatin-induced ototoxicity. The effect of reduced cochlear blood flow on the ototoxic action of cisplatin was studied in guinea pigs. Before cisplatin administration the cochlear vasculature in each animal was unilaterally pre-constricted, by the application of 2% epinephrine to the round window. A 20-30% reduction in cochlear blood flow, assessed by laser Doppler flowmetry, was maintained before and after intravenous infusion of 0.1% cisplatin. Cisplatin infusion affected cochlear blood flow but not vessel conductivity. The cochlear blood flow decrease, maintained by local epinephrine application to the round window during cisplatin infusion, did not alter the cisplatin-induced hearing loss. In addition, the concentration of free cisplatin in scala tympani perilymph did not differ between epinephrine-treated and non-treated ears. Our results indicate that cisplatin transport into the cochlea is not an energy-dependent process in the lateral wall vasculature.

  14. Photon activation-15O decay studies of tumor blood flow.

    PubMed

    Ten Haken, R K; Nussbaum, G H; Emami, B; Hughes, W L

    1981-01-01

    A direct, noninvasive method for measuring absolute values of specific capillary blood flow in living tissue is described. The method is based on the photon activation, in situ, of tissue elements and the measurement of the subsequent decay of the positron activity induced, employing coincidence detection of the photon pairs produced in positron annihilation. Analysis of the time-dependent coincidence spectrum reveals the contribution to the total signal from the decay of 15O, from which the specific capillary blood flow in the imaged, activated volume is ultimately determined. By virtue of its introduction of the radioisotope of interest (15O) directly and uniformly into the tissue volume under investigation, the method described permits both the nonperfused and well perfused fractions of an activated volume to be estimated and hence, the average specific blood flow within imaged tumor volumes to be computed. The model employed to describe and analyze the data is discussed in detail. Results of application of the technique to measurement of specific blood flow in rhabdomyosarcoma tumors grown in WAG/Rij rats are presented and discussed. The method is shown to be reliable and well suited to studies designed to determined the effects of various agents, such as heat, radiation and drugs, on tumor blood flow.

  15. 21 CFR 870.2120 - Extravascular blood flow probe.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Extravascular blood flow probe. 870.2120 Section... blood flow probe. (a) Identification. An extravascular blood flow probe is an extravascular ultrasonic or electromagnetic probe used in conjunction with a blood flowmeter to measure blood flow in a...

  16. 21 CFR 870.2120 - Extravascular blood flow probe.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Extravascular blood flow probe. 870.2120 Section... blood flow probe. (a) Identification. An extravascular blood flow probe is an extravascular ultrasonic or electromagnetic probe used in conjunction with a blood flowmeter to measure blood flow in a...

  17. 21 CFR 870.2120 - Extravascular blood flow probe.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Extravascular blood flow probe. 870.2120 Section... blood flow probe. (a) Identification. An extravascular blood flow probe is an extravascular ultrasonic or electromagnetic probe used in conjunction with a blood flowmeter to measure blood flow in a...

  18. 21 CFR 870.2120 - Extravascular blood flow probe.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Extravascular blood flow probe. 870.2120 Section... blood flow probe. (a) Identification. An extravascular blood flow probe is an extravascular ultrasonic or electromagnetic probe used in conjunction with a blood flowmeter to measure blood flow in a...

  19. In vivo imaging of mammalian cochlear blood flow using fluorescence microendoscopy.

    PubMed

    Monfared, Ashkan; Blevins, Nikolas H; Cheung, Eunice L M; Jung, Juergen C; Popelka, Gerald; Schnitzer, Mark J

    2006-02-01

    We sought to develop techniques for visualizing cochlear blood flow in live mammalian subjects using fluorescence microendoscopy. Inner ear microcirculation appears to be intimately involved in cochlear function. Blood velocity measurements suggest that intense sounds can alter cochlear blood flow. Disruption of cochlear blood flow may be a significant cause of hearing impairment, including sudden sensorineural hearing loss. However, inability to image cochlear blood flow in a nondestructive manner has limited investigation of the role of inner ear microcirculation in hearing function. Present techniques for imaging cochlear microcirculation using intravital light microscopy involve extensive perturbations to cochlear structure, precluding application in human patients. The few previous endoscopy studies of the cochlea have suffered from optical resolution insufficient for visualizing cochlear microvasculature. Fluorescence microendoscopy is an emerging minimally invasive imaging modality that provides micron-scale resolution in tissues inaccessible to light microscopy. In this article, we describe the use of fluorescence microendoscopy in live guinea pigs to image capillary blood flow and movements of individual red blood cells within the basal turn of the cochlea. We anesthetized eight adult guinea pigs and accessed the inner ear through the mastoid bulla. After intravenous injection of fluorescein dye, we made a limited cochleostomy and introduced a compound doublet gradient refractive index endoscope probe 1 mm in diameter into the inner ear. We then imaged cochlear blood flow within individual vessels in an epifluorescence configuration using one-photon fluorescence microendoscopy. We observed single red blood cells passing through individual capillaries in several cochlear structures, including the round window membrane, spiral ligament, osseous spiral lamina, and basilar membrane. Blood flow velocities within inner ear capillaries varied widely, with observed speeds reaching up to approximately 500 microm/s. Fluorescence microendoscopy permits visualization of cochlear microcirculation with micron-scale optical resolution and determination of blood flow velocities through analysis of video sequences.

  20. Brain microvascular function during cardiopulmonary bypass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorensen, H.R.; Husum, B.; Waaben, J.

    1987-11-01

    Emboli in the brain microvasculature may inhibit brain activity during cardiopulmonary bypass. Such hypothetical blockade, if confirmed, may be responsible for the reduction of cerebral metabolic rate for glucose observed in animals subjected to cardiopulmonary bypass. In previous studies of cerebral blood flow during bypass, brain microcirculation was not evaluated. In the present study in animals (pigs), reduction of the number of perfused capillaries was estimated by measurements of the capillary diffusion capacity for hydrophilic tracers of low permeability. Capillary diffusion capacity, cerebral blood flow, and cerebral metabolic rate for glucose were measured simultaneously by the integral method, different tracersmore » being used with different circulation times. In eight animals subjected to normothermic cardiopulmonary bypass, and seven subjected to hypothermic bypass, cerebral blood flow, cerebral metabolic rate for glucose, and capillary diffusion capacity decreased significantly: cerebral blood flow from 63 to 43 ml/100 gm/min in normothermia and to 34 ml/100 gm/min in hypothermia and cerebral metabolic rate for glucose from 43.0 to 23.0 mumol/100 gm/min in normothermia and to 14.1 mumol/100 gm/min in hypothermia. The capillary diffusion capacity declined markedly from 0.15 to 0.03 ml/100 gm/min in normothermia but only to 0.08 ml/100 gm/min in hypothermia. We conclude that the decrease of cerebral metabolic rate for glucose during normothermic cardiopulmonary bypass is caused by interruption of blood flow through a part of the capillary bed, possibly by microemboli, and that cerebral blood flow is an inadequate indicator of capillary blood flow. Further studies must clarify why normal microvascular function appears to be preserved during hypothermic cardiopulmonary bypass.« less

  1. Vasopressin and nitroglycerin decrease portal and hepatic venous pressure and hepato-splanchnic blood flow.

    PubMed

    Wisén, E; Svennerholm, K; Bown, L S; Houltz, E; Rizell, M; Lundin, S; Ricksten, S-E

    2018-03-26

    Various methods are used to reduce venous blood pressure in the hepato-splanchnic circulation, and hence minimise blood loss during liver surgery. Previous studies show that combination of vasopressin and nitroglycerin reduces portal pressure and flow in patients with portal hypertension, and in this study we investigated this combination in patients with normal portal pressure. In all, 13 patients were studied. Measurements were made twice to confirm baseline (C1 and BL), during vasopressin infusion 4.8 U/h (V), and during vasopressin infusion combined with nitroglycerin infusion (V + N). Portal venous pressure (PVP), hepatic venous pressure (HVP), central haemodynamics and arterial and venous blood gases were obtained at each measuring point, and portal (splanchnic) and hepato-splanchnic blood flow changes were calculated. Vasopressin alone did not affect PVP, whereas HVP increased slightly. In combination with nitroglycerin, PVP decreased from 10.1 ± 1.6 to 8.9 ± 1.3 mmHg (P < 0.0001), and HVP decreased from 7.9 ± 1.9 to 6.2 ± 1.3 mmHg (P = 0.001). Vasopressin reduced portal blood flow by 47 ± 19% and hepatic venous flow by 11 ± 18%, respectively. Addition of nitroglycerin further reduced portal- and hepatic flow by 55 ± 13% and 30 ± 13%, respectively. Vasopressin alone had minor effects on central haemodynamics, whereas addition of nitroglycerin reduced cardiac index (3.2 ± 0.7 to 2.7 ± 0.5; P < 0.0001). The arterial-portal vein lactate gradient was unaffected. The combination of vasopressin and nitroglycerin decreases portal pressure and hepato-splanchnic blood flow, and could be a potential treatment to reduce bleeding in liver resection surgery. © 2018 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  2. Three-dimensional computational model of a blood oxygenator reconstructed from micro-CT scans.

    PubMed

    D'Onofrio, C; van Loon, R; Rolland, S; Johnston, R; North, L; Brown, S; Phillips, R; Sienz, J

    2017-09-01

    Cardiopulmonary bypass procedures are one of the most common operations and blood oxygenators are the centre piece for the heart-lung machines. Blood oxygenators have been tested as entire devices but intricate details on the flow field inside the oxygenators remain unknown. In this study, a novel method is presented to analyse the flow field inside oxygenators based on micro Computed Tomography (μCT) scans. Two Hollow Fibre Membrane (HFM) oxygenator prototypes were scanned and three-dimensional full scale models that capture the device-specific fibre distributions are set up for computational fluid dynamics analysis. The blood flow through the oxygenator is modelled as a non-Newtonian fluid. The results were compared against the flow solution through an ideal fibre distribution and show the importance of a uniform distribution of fibres and that the oxygenators analysed are not susceptible to flow directionality as mass flow versus area remain the same. However the pressure drop across the oxygenator is dependent on flow rate and direction. By comparing residence time of blood against the time frame to fully saturate blood with oxygen we highlight the potential of this method as design optimisation tool. In conclusion, image-based reconstruction is found to be a feasible route to assess oxygenator performance through flow modelling. It offers the possibility to review a product as manufactured rather than as designed, which is a valuable insight as a precursor to the approval processes. Finally, the flow analysis presented may be extended, at computational cost, to include species transport in further studies. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Investigation of the relative effects of vascular branching structure and gravity on pulmonary arterial blood flow heterogeneity via an image-based computational model.

    PubMed

    Burrowes, Kelly S; Hunter, Peter J; Tawhai, Merryn H

    2005-11-01

    A computational model of blood flow through the human pulmonary arterial tree has been developed to investigate the relative influence of branching structure and gravity on blood flow distribution in the human lung. Geometric models of the largest arterial vessels and lobar boundaries were first derived using multidetector row x-ray computed tomography (MDCT) scans. Further accompanying arterial vessels were generated from the MDCT vessel endpoints into the lobar volumes using a volume-filling branching algorithm. Equations governing the conservation of mass and momentum were solved within the geometric model to calculate pressure, velocity, and vessel radius. Blood flow results in the anatomically based model, with and without gravity, and in a symmetric geometric model were compared to investigate their relative contributions to blood flow heterogeneity. Results showed a persistent blood flow gradient and flow heterogeneity in the absence of gravitational forces in the anatomically based model. Comparison with flow results in the symmetric model revealed that the asymmetric vascular branching structure was largely responsible for producing this heterogeneity. Analysis of average results in varying slice thicknesses illustrated a clear flow gradient because of gravity in "lower resolution" data (thicker slices), but on examination of higher resolution data, a trend was less obvious. Results suggest that although gravity does influence flow distribution, the influence of the tree branching structure is also a dominant factor. These results are consistent with high-resolution experimental studies that have demonstrated gravity to be only a minor determinant of blood flow distribution.

  4. Continuous-Flow Left Ventricular Assist Device Support Improves Myocardial Supply:Demand in Chronic Heart Failure.

    PubMed

    Soucy, Kevin G; Bartoli, Carlo R; Phillips, Dustin; Giridharan, Guruprasad A; Sobieski, Michael A; Wead, William B; Dowling, Robert D; Wu, Zhongjun J; Prabhu, Sumanth D; Slaughter, Mark S; Koenig, Steven C

    2017-06-01

    Continuous-flow left ventricular assist devices (CF LVADs) are rotary blood pumps that improve mean blood flow, but with potential limitations of non-physiological ventricular volume unloading and diminished vascular pulsatility. In this study, we tested the hypothesis that left ventricular unloading with increasing CF LVAD flow increases myocardial flow normalized to left ventricular work. Healthy (n = 8) and chronic ischemic heart failure (IHF, n = 7) calves were implanted with CF LVADs. Acute hemodynamics and regional myocardial blood flow were measured during baseline (LVAD off, clamped), partial (2-4 L/min) and full (>4 L/min) LVAD support. IHF calves demonstrated greater reduction of cardiac energy demand with increasing LVAD support compared to healthy calves, as calculated by rate-pressure product. Coronary artery flows (p < 0.05) and myocardial blood flow (left ventricle (LV) epicardium and myocardium, p < 0.05) decreased with increasing LVAD support in normal calves. In the IHF model, blood flow to the septum, LV, LV epicardium, and LV myocardium increased significantly with increasing LVAD support when normalized to cardiac energy demand (p < 0.05). In conclusion, myocardial blood flow relative to cardiac demand significantly increased in IHF calves, thereby demonstrating that CF LVAD unloading effectively improves cardiac supply and demand ratio in the setting of ischemic heart failure.

  5. FloWave.US: validated, open-source, and flexible software for ultrasound blood flow analysis.

    PubMed

    Coolbaugh, Crystal L; Bush, Emily C; Caskey, Charles F; Damon, Bruce M; Towse, Theodore F

    2016-10-01

    Automated software improves the accuracy and reliability of blood velocity, vessel diameter, blood flow, and shear rate ultrasound measurements, but existing software offers limited flexibility to customize and validate analyses. We developed FloWave.US-open-source software to automate ultrasound blood flow analysis-and demonstrated the validity of its blood velocity (aggregate relative error, 4.32%) and vessel diameter (0.31%) measures with a skeletal muscle ultrasound flow phantom. Compared with a commercial, manual analysis software program, FloWave.US produced equivalent in vivo cardiac cycle time-averaged mean (TAMean) velocities at rest and following a 10-s muscle contraction (mean bias <1 pixel for both conditions). Automated analysis of ultrasound blood flow data was 9.8 times faster than the manual method. Finally, a case study of a lower extremity muscle contraction experiment highlighted the ability of FloWave.US to measure small fluctuations in TAMean velocity, vessel diameter, and mean blood flow at specific time points in the cardiac cycle. In summary, the collective features of our newly designed software-accuracy, reliability, reduced processing time, cost-effectiveness, and flexibility-offer advantages over existing proprietary options. Further, public distribution of FloWave.US allows researchers to easily access and customize code to adapt ultrasound blood flow analysis to a variety of vascular physiology applications. Copyright © 2016 the American Physiological Society.

  6. Twelve hour reproducibility of choroidal blood flow parameters in healthy subjects

    PubMed Central

    Polska, E; Polak, K; Luksch, A; Fuchsjager-Mayrl, G; Petternel, V; Findl, O; Schmetterer, L

    2004-01-01

    Aims/background: To investigate the reproducibility and potential diurnal variation of choroidal blood flow parameters in healthy subjects over a period of 12 hours. Methods: The choroidal blood flow parameters of 16 healthy non-smoking subjects were measured at five time points during the day (8:00, 11:00, 14:00, 17:00, and 20:00). Outcome parameters were pulsatile ocular blood flow as assessed by pneumotonometry, fundus pulsation amplitude as assessed by laser interferometry, blood velocities in the opthalmic and posterior ciliary arteries as assessed by colour Doppler imaging, and choroidal blood flow, volume, and velocity as assessed by fundus camera based laser Doppler flowmetry. The coefficient of variation and the maximum change from baseline in an individual were calculated for each outcome parameter. Results: None of the techniques used found a diurnal variation in choroidal blood flow. Coefficients of variation were within 2.9% and 13.6% for all outcome parameters. The maximum change from baseline in an individual was much higher, ranging from 11.2% to 58.8%. Conclusions: These data indicate that in healthy subjects the selected techniques provide adequate reproducibility to be used in clinical studies. Variability may, however, be considerably higher in older subjects or subjects with ocular disease. The higher individual differences in flow parameter readings limit the use of the techniques in clinical practice. To overcome problems with measurement validity, a clinical trial should include as many choroidal blood flow outcome parameters as possible to check for consistency. PMID:15031172

  7. Twelve hour reproducibility of choroidal blood flow parameters in healthy subjects.

    PubMed

    Polska, E; Polak, K; Luksch, A; Fuchsjager-Mayrl, G; Petternel, V; Findl, O; Schmetterer, L

    2004-04-01

    To investigate the reproducibility and potential diurnal variation of choroidal blood flow parameters in healthy subjects over a period of 12 hours. The choroidal blood flow parameters of 16 healthy non-smoking subjects were measured at five time points during the day (8:00, 11:00, 14:00, 17:00, and 20:00). Outcome parameters were pulsatile ocular blood flow as assessed by pneumotonometry, fundus pulsation amplitude as assessed by laser interferometry, blood velocities in the opthalmic and posterior ciliary arteries as assessed by colour Doppler imaging, and choroidal blood flow, volume, and velocity as assessed by fundus camera based laser Doppler flowmetry. The coefficient of variation and the maximum change from baseline in an individual were calculated for each outcome parameter. None of the techniques used found a diurnal variation in choroidal blood flow. Coefficients of variation were within 2.9% and 13.6% for all outcome parameters. The maximum change from baseline in an individual was much higher, ranging from 11.2% to 58.8%. These data indicate that in healthy subjects the selected techniques provide adequate reproducibility to be used in clinical studies. Variability may, however, be considerably higher in older subjects or subjects with ocular disease. The higher individual differences in flow parameter readings limit the use of the techniques in clinical practice. To overcome problems with measurement validity, a clinical trial should include as many choroidal blood flow outcome parameters as possible to check for consistency.

  8. The Effect of Pulsatile Versus Nonpulsatile Blood Flow on Viscoelasticity and Red Blood Cell Aggregation in Extracorporeal Circulation

    PubMed Central

    Ahn, Chi Bum; Kang, Yang Jun; Kim, Myoung Gon; Yang, Sung; Lim, Choon Hak; Son, Ho Sung; Kim, Ji Sung; Lee, So Young; Son, Kuk Hui; Sun, Kyung

    2016-01-01

    Background Extracorporeal circulation (ECC) can induce alterations in blood viscoelasticity and cause red blood cell (RBC) aggregation. In this study, the authors evaluated the effects of pump flow pulsatility on blood viscoelasticity and RBC aggregation. Methods Mongrel dogs were randomly assigned to two groups: a nonpulsatile pump group (n=6) or a pulsatile pump group (n=6). After ECC was started at a pump flow rate of 80 mL/kg/min, cardiac fibrillation was induced. Blood sampling was performed before and at 1, 2, and 3 hours after ECC commencement. To eliminate bias induced by hematocrit and plasma, all blood samples were adjusted to a hematocrit of 45% using baseline plasma. Blood viscoelasticity, plasma viscosity, hematocrit, arterial blood gas analysis, central venous O2 saturation, and lactate were measured. Results The blood viscosity and aggregation index decreased abruptly 1 hour after ECC and then remained low during ECC in both groups, but blood elasticity did not change during ECC. Blood viscosity, blood elasticity, plasma viscosity, and the aggregation index were not significantly different in the groups at any time. Hematocrit decreased abruptly 1 hour after ECC in both groups due to dilution by the priming solution used. Conclusion After ECC, blood viscoelasticity and RBC aggregation were not different in the pulsatile and nonpulsatile groups in the adult dog model. Furthermore, pulsatile flow did not have a more harmful effect on blood viscoelasticity or RBC aggregation than nonpulsatile flow. PMID:27298790

  9. The Effect of Pulsatile Versus Nonpulsatile Blood Flow on Viscoelasticity and Red Blood Cell Aggregation in Extracorporeal Circulation.

    PubMed

    Ahn, Chi Bum; Kang, Yang Jun; Kim, Myoung Gon; Yang, Sung; Lim, Choon Hak; Son, Ho Sung; Kim, Ji Sung; Lee, So Young; Son, Kuk Hui; Sun, Kyung

    2016-06-01

    Extracorporeal circulation (ECC) can induce alterations in blood viscoelasticity and cause red blood cell (RBC) aggregation. In this study, the authors evaluated the effects of pump flow pulsatility on blood viscoelasticity and RBC aggregation. Mongrel dogs were randomly assigned to two groups: a nonpulsatile pump group (n=6) or a pulsatile pump group (n=6). After ECC was started at a pump flow rate of 80 mL/kg/min, cardiac fibrillation was induced. Blood sampling was performed before and at 1, 2, and 3 hours after ECC commencement. To eliminate bias induced by hematocrit and plasma, all blood samples were adjusted to a hematocrit of 45% using baseline plasma. Blood viscoelasticity, plasma viscosity, hematocrit, arterial blood gas analysis, central venous O2 saturation, and lactate were measured. The blood viscosity and aggregation index decreased abruptly 1 hour after ECC and then remained low during ECC in both groups, but blood elasticity did not change during ECC. Blood viscosity, blood elasticity, plasma viscosity, and the aggregation index were not significantly different in the groups at any time. Hematocrit decreased abruptly 1 hour after ECC in both groups due to dilution by the priming solution used. After ECC, blood viscoelasticity and RBC aggregation were not different in the pulsatile and nonpulsatile groups in the adult dog model. Furthermore, pulsatile flow did not have a more harmful effect on blood viscoelasticity or RBC aggregation than nonpulsatile flow.

  10. Blood flow characteristics in the aortic arch

    NASA Astrophysics Data System (ADS)

    Prahl Wittberg, Lisa; van Wyk, Stevin; Mihaiescu, Mihai; Fuchs, Laszlo; Gutmark, Ephraim; Backeljauw, Philippe; Gutmark-Little, Iris

    2012-11-01

    The purpose with this study is to investigate the flow characteristics of blood in the aortic arch. Cardiovascular diseases are associated with specific locations in the arterial tree. Considering atherogenesis, it is claimed that the Wall Shear Stress (WSS) along with its temporal and spatial gradients play an important role in the development of the disease. The WSS is determined by the local flow characteristics, that in turn depends on the geometry as well as the rheological properties of blood. In this numerical work, the time dependent fluid flow during the entire cardiac cycle is fully resolved. The Quemada model is applied to account for the non-Newtonian properties of blood, an empirical model valid for different Red Blood Cell loading. Data obtained through Cardiac Magnetic Resonance Imaging have been used in order to reconstruct geometries of the the aortic arch. Here, three different geometries are studied out of which two display malformations that can be found in patients having the genetic disorder Turner's syndrome. The simulations show a highly complex flow with regions of secondary flow that is enhanced for the diseased aortas. The financial support from the Swedish Research Council (VR) and the Sweden-America Foundation is gratefully acknowledged.

  11. Anxiety and cerebral blood flow during behavioral challenge. Dissociation of central from peripheral and subjective measures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zohar, J.; Insel, T.R.; Berman, K.F.

    1989-06-01

    To investigate the relationship between anxiety and regional cerebral blood flow, we administered behavioral challenges to 10 patients with obsessive-compulsive disorder while measuring regional cerebral blood flow with the xenon 133 inhalation technique. Each patient was studied under three conditions: relaxation, imaginal flooding, and in vivo (actual) exposure to the phobic stimulus. Subjective anxiety, obsessive-compulsive ratings, and autonomic measures (heart rate, blood pressure) increased significantly, but respiratory rate and PCO/sub 2/ did not change across the three conditions. Regional cerebral blood flow increased slightly (in the temporal region) during imaginal flooding, but decreased markedly in several cortical regions during inmore » vivo exposure, when anxiety was highest by subjective and peripheral autonomic measures. These results demonstrate that intense anxiety can be associated with decreased rather than increased cortical perfusion and that ostensibly related states of anxiety (eg, anticipatory and obsessional anxiety) may be associated with opposite effects on regional cerebral blood flow.« less

  12. Pilot Study of Optical Coherence Tomography Measurement of Retinal Blood Flow in Retinal and Optic Nerve Diseases

    PubMed Central

    Wang, Yimin; Fawzi, Amani A.; Varma, Rohit; Sadun, Alfredo A.; Zhang, Xinbo; Tan, Ou; Izatt, Joseph A.

    2011-01-01

    Purpose. To investigate blood flow changes in retinal and optic nerve diseases with Doppler Fourier domain optical coherence tomography (OCT). Methods. Sixty-two participants were divided into five groups: normal, glaucoma, nonarteritic ischemic optic neuropathy (NAION), treated proliferative diabetic retinopathy (PDR), and branch retinal vein occlusion (BRVO). Doppler OCT was used to scan concentric circles of 3.4- and 3.75-mm diameters around the optic nerve head. Flow in retinal veins was calculated from the OCT velocity profiles. Arterial and venous diameters were measured from OCT Doppler and reflectance images. Results. Total retinal blood flow in normal subjects averaged 47.6 μL/min. The coefficient of variation of repeated measurements was 11% in normal eyes and 14% in diseased eyes. Eyes with glaucoma, NAION, treated PDR, and BRVO had significantly decreased retinal blood flow compared with normal eyes (P < 0.001). In glaucoma patients, the decrease in blood flow was highly correlated with the severity of visual field loss (P = 0.003). In NAION and BRVO patients, the hemisphere with more severe disease also had lower blood flow. Conclusions. Doppler OCT retinal blood flow measurements showed good repeatability and excellent correlation with visual field and clinical presentations. This approach could enhance our understanding of retinal and optic nerve diseases and facilitate the development of new therapies. PMID:21051715

  13. Effects of graded doses of epinephrine on regional myocardial blood flow during cardiopulmonary resuscitation in swine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, C.G.; Werman, H.A.; Davis, E.A.

    1987-02-01

    Although epinephrine has been shown to improve myocardial blood flow during cardiopulmonary resuscitation (CPR), the effects of standard as well as larger doses of epinephrine on regional myocardial blood flow have not been examined. In this study we compared the effects of various doses of epinephrine on regional myocardial blood flow after a 10 min arrest in a swine preparation. Fifteen swine weighing greater than 15 kg each were instrumented for regional myocardial blood flow measurements with tracer microspheres. Regional blood flow was measured during normal sinus rhythm. After 10 min of ventricular fibrillation, CPR was begun and regional myocardialmore » blood flow was determined. Animals were then randomly assigned to receive 0.02, 0.2, or 2.0 mg/kg epinephrine by peripheral injection. One minute after drug administration, regional myocardial blood flow measurements were repeated. The adjusted regional myocardial blood flows (ml/min/100 g) for animals given 0.02, 0.2, and 2.0 mg/kg epinephrine, respectively, were as follows: left atrium, 0.9, 67.4, and 58.8; right atrium, 0.3, 46.2, and 38.5; right ventricle, 0.7, 82.3, and 66.9; right interventricular septum, 1.7, 125.5, and 99.1; left interventricular septum, 2.8, 182.8, 109.5; mesointerventricular septum, 16.8, 142.2, and 79.2; left ventricular epicardium, 19.2, 98.5 and 108.7; left ventricular mesocardium, 22.8, 135.0, and 115.8; and left ventricular endocardium, 2.5, 176.1, and 132.9). All comparisons between the groups receiving 0.02 and 0.2 mg/kg epinephrine were statistically significant (p less than .05).« less

  14. Cerebral and Renal Oxygen Saturation Are Not Compromised in the Presence of Retrograde Blood Flow in either the Ascending or Descending Aorta in Term or Near-Term Infants with Left-Sided Obstructive Lesions.

    PubMed

    van der Laan, Michelle E; Mebius, Mirthe J; Roofthooft, Marcus T R; Bos, Arend F; Berger, Rolf M F; Kooi, Elisabeth M W

    2017-01-01

    In infants with left-sided obstructive lesions (LSOL), the presence of retrograde blood flow in either the ascending or descending aorta may lead to diminished cerebral and renal blood flow, respectively. Our aim was to compare cerebral and renal tissue oxygen saturation (rSO2) between infants with LSOL with antegrade and retrograde blood flow in the ascending aorta and with and without diastolic backflow in the descending aorta. Based on 2 echocardiograms, the study group was categorized according to the direction of blood flow in the ascending and descending aorta. We measured cerebral and renal rSO2 using near-infrared spectroscopy and calculated fractional tissue oxygen extraction (FTOE). Nineteen infants with LSOL, admitted to the NICU between 0 and 28 days after birth, were included. Infants with antegrade blood flow (n = 12) and infants with retrograde blood flow in the ascending aorta (n = 7) had similar cerebral rSO2 and FTOE during both echocardiograms. Only during the first echocardiogram, infants with retrograde blood flow in the ascending aorta had lower renal FTOE (0.14 vs. 0.32, p = 0.04) and tended to have higher renal rSO2 (80 vs. 65%, p = 0.09). The presence of diastolic backflow in the descending aorta was not associated with cerebral or renal rSO2 and FTOE during the first (n = 8) as well as the second echocardiogram (n = 10). Retrograde blood flow in the ascending aorta was not associated with cerebral oxygenation, while diastolic backflow in the descending aorta was not associated with renal oxygenation in infants with LSOL. © 2017 S. Karger AG, Basel.

  15. Effects of adenosine on intraocular pressure, optic nerve head blood flow, and choroidal blood flow in healthy humans.

    PubMed

    Polska, Elzbieta; Ehrlich, Paulina; Luksch, Alexandra; Fuchsjäger-Mayrl, Gabriele; Schmetterer, Leopold

    2003-07-01

    There is evidence from a variety of animal studies that the adenosine system plays a role in the control of intraocular pressure (IOP) and ocular blood flow. However, human data on the effect of adenosine on IOP and choroidal and optic nerve blood flow are not available. The effect of stepwise increases in doses of adenosine (10, 20, and 40 micro g/kg per minute, 30 minutes per infusion step) on optic nerve head blood flow, choroidal blood flow, and IOP was determined in a placebo-controlled double-masked clinical trial in 12 healthy male volunteers. Blood flow in the optic nerve head and choroid was measured with laser Doppler flowmetry. In addition, fundus pulsation amplitude in the macula (FPAM) and the optic nerve head (FPAO) were assessed with laser interferometry. Adenosine induced a small but significant decrease in IOP (at 40 microg/kg per minute: 12% +/- 13%), which was significant versus placebo (P = 0.046). In addition, adenosine induced a significant increase in choroidal blood flow (P < 0.001) and optic nerve head blood flow (P = 0.037), and FPAM (P = 0.0014) and tended to increase FPAO (P = 0.057). At the highest administered dose, the effect on choroidal hemodynamic parameters between 14% and 17%, whereas the effect on optic nerve hemodynamic parameters was between 3% and 11%. These data are consistent with adenosine inducing choroidal and optic nerve head vasodilatation and reducing IOP in healthy humans. Considering the neuroprotective properties of adenosine described in previous animal experiments the adenosine system is an attractive target system for therapeutic approaches in glaucoma.

  16. Cerebral blood flow reduction in Alzheimer's disease: impact of capillary occlusions on mice and humans

    NASA Astrophysics Data System (ADS)

    Berg, Maxime; Merlo, Adlan; Peyrounette, Myriam; Doyeux, Vincent; Smith, Amy; Cruz-Hernandez, Jean; Bracko, Oliver; Haft-Javaherian, Mohammad; Nishimura, Nozomi; Schaffer, Chris B.; Davit, Yohan; Quintard, Michel; Lorthois, Sylvie

    2017-11-01

    Alzheimer's disease may be the most common form of dementia, yet a satisfactory diagnosis procedure has still to be found. Recent studies suggest that a significant decrease of cerebral blood flow, probably caused by white blood cells stalling small vessels, may be among the earliest biological markers. To assess this hypothesis we derive a blood flow model, validate it against in vitro controlled experiments and in vivo measurements made on mice. We then investigate the influence of capillary occlusions on regional perfusion (sum of all arteriole flowrates feeding the network) of large mice and humans anatomical networks. Consistent with experiments, we observe no threshold effect, so that even a small percentage of occlusions (2-4%) leads to significant blood flow decrease (5-12%). We show that both species share the same linear dependance, suggesting possible translation from mice to human. ERC BrainMicroFlow GA61510, CALMIP HPC (Grant 2017-1541).

  17. ‘Fine-tuning’ blood flow to the exercising muscle with advancing age: an update

    PubMed Central

    Wray, D. Walter; Richardson, Russell S.

    2016-01-01

    During dynamic exercise, oxygen demand from the exercising muscle is dramatically elevated, requiring a marked increase in skeletal muscle blood flow that is accomplished through a combination of systemic sympathoexcitation and local metabolic vasodilatation. With advancing age, the balance between these factors appears to be disrupted in favour of vasoconstriction, leading to an impairment in exercising skeletal muscle blood flow in the elderly. This ‘hot topic’ review aims to provide an update to our current knowledge of age-related changes in the neural and local mechanisms that contribute to this ‘fine-tuning’ of blood flow during exercise. The focus is on results from recent human studies that have adopted a reductionist approach to explore how age-related changes in both vasodilators (nitric oxide) and vasoconstrictors (endothelin-1, α-adrenergic agonists and angiotensin II) interact and how these changes impact blood flow to the exercising skeletal muscle with advancing age. PMID:25858164

  18. Multiscale Simulation of Blood Flow in Brain Arteries with an Aneurysm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leopold Grinberg; Vitali Morozov; Dmitry A. Fedosov

    2013-04-24

    Multi-scale modeling of arterial blood flow can shed light on the interaction between events happening at micro- and meso-scales (i.e., adhesion of red blood cells to the arterial wall, clot formation) and at macro-scales (i.e., change in flow patterns due to the clot). Coupled numerical simulations of such multi-scale flow require state-of-the-art computers and algorithms, along with techniques for multi-scale visualizations.This animation presents results of studies used in the development of a multi-scale visualization methodology. First we use streamlines to show the path the flow is taking as it moves through the system, including the aneurysm. Next we investigate themore » process of thrombus (blood clot) formation, which may be responsible for the rupture of aneurysms, by concentrating on the platelet blood cells, observing as they aggregate on the wall of the aneurysm.« less

  19. Classification of Unsteady Flow Patterns in a Rotodynamic Blood Pump: Introduction of Non-Dimensional Regime Map.

    PubMed

    Shu, Fangjun; Vandenberghe, Stijn; Brackett, Jaclyn; Antaki, James F

    2015-09-01

    Rotodynamic blood pumps (also known as rotary or continuous flow blood pumps) are commonly evaluated in vitro under steady flow conditions. However, when these devices are used clinically as ventricular assist devices (VADs), the flow is pulsatile due to the contribution of the native heart. This study investigated the influence of this unsteady flow upon the internal hemodynamics of a centrifugal blood pump. The flow field within the median axial plane of the flow path was visualized with particle image velocimetry (PIV) using a transparent replica of the Levacor VAD. The replica was inserted in a dynamic cardiovascular simulator that synchronized the image acquisition to the cardiac cycle. As compared to steady flow, pulsatile conditions produced periodic, transient recirculation regions within the impeller and separation in the outlet diffuser. Dimensional analysis revealed that the flow characteristics could be uniquely described by the non-dimensional flow coefficient (Φ) and its time derivative ([Formula: see text]), thereby eliminating impeller speed from the experimental matrix. Four regimes within the Φ-[Formula: see text] plane were found to classify the flow patterns, well-attached or disturbed. These results and methods can be generalized to provide insights for both design and operation of rotodynamic blood pumps for safety and efficacy.

  20. Ocular Blood Flow Changes in Behçet Disease Patients with/without Thrombotic Disease

    PubMed Central

    Yüksel, Harun; Türkcü, Fatih M.; Hamidi, Cihat; Cingü, Abdullah K.; Çinar, Yasin; Şahin, Muhammed; Özkurt, Zeynep; Çaça, İhsan

    2014-01-01

    ABSTRACT In this study, the authors aimed to evaluate ocular blood flow changes in Behçet disease (BD) with and without thrombotic disease. Ninety eyes of 90 patients with a diagnosis of BD (30 eyes with active uveitis, 23 eyes with inactive uveitis, 25 eyes without ocular involvement, and 12 eyes without ocular involvement and with a history of thrombosis) and 30 eyes of 30 age- and sex-matched control patients without any systemic disease with a total of 120 eyes were evaluated. In all cases, ophthalmic, central retinal, and ciliary artery flow parameters were measured with colour Doppler ultrasonography (CDU). The ocular blood flow parameters of all vessels in patients with active uveitis were found to be affected. All the flow parameters in the CRAs of the study groups were significantly different from the control group (p < 0.001). Additionally, in non-ocular BD patients with thrombosis, blood flow parameters were affected more than the parameters in non-ocular BD patients without thrombosis and control patients. In conclusion, major haemodynamic changes were observed using CDU in the ophthalmic vessels of ocular Behçet patients. Also, CDU may detect ocular blood flow alterations before initial ocular clinical manifestations appear in BD patients PMID:27928286

  1. Ocular Blood Flow Changes in Behçet Disease Patients with/without Thrombotic Disease.

    PubMed

    Yüksel, Harun; Türkcü, Fatih M; Hamidi, Cihat; Cingü, Abdullah K; Çinar, Yasin; Şahin, Muhammed; Özkurt, Zeynep; Çaça, İhsan

    2014-01-01

    In this study, the authors aimed to evaluate ocular blood flow changes in Behçet disease (BD) with and without thrombotic disease. Ninety eyes of 90 patients with a diagnosis of BD (30 eyes with active uveitis, 23 eyes with inactive uveitis, 25 eyes without ocular involvement, and 12 eyes without ocular involvement and with a history of thrombosis) and 30 eyes of 30 age- and sex-matched control patients without any systemic disease with a total of 120 eyes were evaluated. In all cases, ophthalmic, central retinal, and ciliary artery flow parameters were measured with colour Doppler ultrasonography (CDU). The ocular blood flow parameters of all vessels in patients with active uveitis were found to be affected. All the flow parameters in the CRAs of the study groups were significantly different from the control group ( p  < 0.001). Additionally, in non-ocular BD patients with thrombosis, blood flow parameters were affected more than the parameters in non-ocular BD patients without thrombosis and control patients. In conclusion, major haemodynamic changes were observed using CDU in the ophthalmic vessels of ocular Behçet patients. Also, CDU may detect ocular blood flow alterations before initial ocular clinical manifestations appear in BD patients.

  2. Factors associated with respiration induced variability in cerebral blood flow velocity.

    PubMed Central

    Coughtrey, H; Rennie, J M; Evans, D H; Cole, T J

    1993-01-01

    A consecutive cohort of 73 very low birthweight infants was studied to determine the presence or absence of beat to beat variability in the velocity of blood flow in the cerebral circulation and its relation with respiration. One minute epochs of information included recordings of cerebral blood flow velocity estimated with Doppler ultrasound, blood pressure, spontaneous respiratory activity, and ventilator cycling. Fourier transformation was used to resolve the frequencies present within the one minute epochs and to classify the cerebral blood flow velocity as showing the presence or absence of any respiratory associated variability. A total of 249 recordings was made on days 1, 2, 3, and 7. Forty seven infants showed respiratory variability in cerebral blood flow velocity on 97 occasions, usually during the first day of life. The infants with respiratory associated variability were of lower gestational age and when the respiratory associated variability was present they were more likely to be ventilated and receiving higher inspired oxygen; these associations were shown to be independent of gestational age. There was no significant independent association with brain injury, cerebral blood flow velocity (cm/s), or blood pressure (mm Hg). The findings suggest that artificial ventilation may entrain normal respiratory associated variability in the cerebral circulation but do not provide evidence that it is harmful. PMID:8466269

  3. Optical tweezers for measuring the interaction of the two single red blood cells in flow condition

    NASA Astrophysics Data System (ADS)

    Lee, Kisung; Muravyov, Alexei; Semenov, Alexei; Wagner, Christian; Priezzhev, Alexander

    2017-03-01

    Aggregation of red blood cells (RBCs) is an intrinsic property of blood, which has direct effect on the blood viscosity and therefore affects overall the blood circulation throughout the body. It is attracting interest for the research in both fundamental science and clinical application. Despite of the intensive research, the aggregation mechanism is remaining not fully clear. Recent advances in methods allowed measuring the interaction between single RBCs in a well-defined configuration leading the better understanding of the mechanism of the process. However the most of the studies were made on the static cells. Thus, the measurements in flow mimicking conditions are missing. In this work, we aim to study the interaction of two RBCs in the flow conditions. We demonstrate the characterization of the cells interaction strength (or flow tolerance) by measuring the flow velocity to be applied to separate two aggregated cells trapped by double channel optical tweezers in a desired configuration. The age-separated cells were used for this study. The obtained values for the minimum flow velocities needed to separate the two cells were found to be 78.9 +/- 6.1 μm/s and 110 +/- 13 μm/s for old and young cells respectively. The data obtained is in agreement with the observations reported by other authors. The significance of our results is in ability for obtaining a comprehensible and absolute physical value characterizing the cells interaction in flow conditions (not like the Aggregation Index measured in whole blood suspensions by other techniques, which is some abstract parameter)

  4. Effects of Kaempferia parviflora extracts on reproductive parameters and spermatic blood flow in male rats.

    PubMed

    Chaturapanich, G; Chaiyakul, S; Verawatnapakul, V; Pholpramool, C

    2008-10-01

    Krachaidum (KD, Kaempferia parviflora Wall. Ex. Baker), a native plant of Southeast Asia, is traditionally used to enhance male sexual function. However, only few scientific data in support of this anecdote have been reported. The present study investigated the effects of feeding three different extracts of KD (alcohol, hexane, and water extracts) for 3-5 weeks on the reproductive organs, the aphrodisiac activity, fertility, sperm motility, and blood flow to the testis of male rats. Sexual performances (mount latency, mount frequency, ejaculatory latency, post-ejaculatory latency) and sperm motility were assessed by a video camera and computer-assisted sperm analysis respectively, while blood flow to the testis was measured by a directional pulsed Doppler flowmeter. The results showed that all extracts of KD had virtually no effect on the reproductive organ weights even after 5 weeks. However, administration of the alcohol extract at a dose of 70 mg/kg body weight (BW)/day for 4 weeks significantly decreased mount and ejaculatory latencies when compared with the control. By contrast, hexane and water extracts had no influence on any sexual behavior parameters. All types of extracts of KD had no effect on fertility or sperm motility. On the other hand, alcohol extract produced a significant increase in blood flow to the testis without affecting the heart rate and mean arterial blood pressure. In a separate study, an acute effect of alcohol extract of KD on blood flow to the testis was investigated. Intravenous injection of KD at doses of 10, 20, and 40 mg/kg BW caused dose-dependent increases in blood flow to the testis. The results indicate that alcohol extract of KD had an aphrodisiac activity probably via a marked increase in blood flow to the testis.

  5. Role of endothelin-1 in choroidal blood flow regulation during isometric exercise in healthy humans.

    PubMed

    Fuchsjäger-Mayrl, Gabriele; Luksch, Alexandra; Malec, Magdalena; Polska, Elzbieta; Wolzt, Michael; Schmetterer, Leopold

    2003-02-01

    There is evidence that the choroid has some autoregulatory capacity in response to changes in ocular perfusion pressure (OPP). The mediators of this response are hitherto unidentified. The hypothesis for the current study was that endothelin (ET)-1 and/or angiotensin (ANF)-II may be involved in choroidal vasoconstriction during an increase in OPP. To test this hypothesis a randomized, double-masked, placebo-controlled, three way crossover study was performed in 12 healthy male volunteers. Subjects received on different study days intravenous infusions of the specific ET(A) receptor antagonist BQ-123, the angiotensin converting enzyme inhibitor enalapril or placebo. During these infusion periods subjects were asked to squat for 6 minutes. Choroidal blood flow was measured using a confocal laser Doppler flowmeter and ocular perfusion pressure (OPP) was calculated from mean arterial pressure and intraocular pressure. BQ-123 and enalapril had no effect on basal blood pressure, pulse rate, intraocular pressure, or choroidal blood flow. During isometric exercise, a pronounced increase in mean arterial pressure paralleled by an increase in OPP was observed. Although choroidal blood flow slightly increased during squatting, the increase was much less pronounced than the increase in OPP, indicating some regulatory potential of the choroid. Enalapril did not alter the choroidal pressure-flow relationship during isometric exercise, but BQ-123 induced a significant leftward shift of the pressure-flow curve (P < 0.001). The present data indicate that ET-1, but not ANG II, plays a role in choroidal blood flow regulation during isometric exercise in healthy humans. Hence, impaired choroidal autoregulation in patients with ocular vascular diseases may arise from an altered endothelin system. Further studies in such patients are warranted to verify this hypothesis.

  6. The effects of furosemide on remal blood flow and cortical perfusion during methoxyflurane and halothane anaesthesia.

    PubMed

    Leighton, K M; Bruce, C; Machin, R

    1976-01-01

    Nephrotoxicity due to methoxyflurane may be due in part to alterations in intra-renal perfusion. Furosemide is believed to alter the intra-renal distribution of blood flow. Studies have been carried out to observe the effects of systemic furosemide administration during methoxyflurane and halothane anaesthesia in normotensive animals and in animals made hypotensive by increasing inspired concentrations of the anaesthetics. During halothane anaesthesia normotensive dogs showed a rise in total renal blood flow during the infusion of furosemide. Hypotensive dogs showed no increase in flow. During methoxyflurane anaesthesia no change in total renal blood flow followed furosemide administration to normotensive animals. Some diminution in total blood flow followed the administration of furosemide in hypotensive dogs during methoxyflurane anaesthesia. In normotensive dogs during halothane anaesthesia there was a significant increase in deep cortical perfusion after furosemide. Furosemide, therefore, is unlikely to mitigate the potential for nephrotoxicity which methoxyflurane possesses. Furthermore, this diuretic may adversely influence renal function when administered during halothane anaesthesia.

  7. Blood flow changes after unilateral carotid artery ligation monitored by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Ma, Yushu; Liang, Chengbo; Suo, Yanyan; Zhao, Yuqian; Wang, Yi; Xu, Tao; Wang, Ruikang; Ma, Zhenhe

    2016-03-01

    Unilateral carotid artery ligation which could induce adaptive improvement is a classic model that has been widely used to study pathology of ischemic disease. In those studies, blood flow is an important parameter to characterize the ischemia. Optical coherence tomography (OCT) is a powerful imaging modality which can provide depth resolved images in biological tissue with high spatial and temporal resolution. SPF rats was anesthetized with isoflurane and divided into two groups. In first group, bilateral carotid artery was surgically exposed, and then left carotid artery was ligated. Blood flow changes of the contralateral carotid artery was monitored using high speed spectral domain optical coherence tomography, including the absolute flow velocity and the flow volume. In the other group, skull window was opened at the ipsilateral cerebral cortex of ligation and blood supply of small artery was measured before and after the ligation. The measured results demonstrate the blood supply compensation process after unilateral carotid artery ligation. With the superiority of high resolution, OCT is an effective technology in monitoring results of carotid artery after ligation.

  8. [Preclinical diagnostics and correction of the disturbed renal blood flow in the children presenting with diabetic nephropathy].

    PubMed

    Aver'ianov, A P; Tkacheva, E N; Bolotova, N V; Filina, N Iu; Ivanova, Iu V; Nikolaeva, N V; Tikhonova, L A

    2011-01-01

    The present study included 86 children aged between 7 and 17 years with type 1 diabetes mellitus from 1 to 15 years in duration. In all the patients, renal blood flow was investigated with the use of ultrasonic dopplerography. The results of the study suggest disturbances of intrarenal hemodynamics that manifested themselves as enhanced resistance of renal arteries from periphery to the centre in the patients at the hyperfiltration stage of diabetic nephropathy (DN) in conjunction with the reduced velocity of blood flow in inter-lobular and segmental arteries. In contrast, the patients at the microalbuminuric stage of diabetic nephropathy exhibited increased resistance and reduced velocity of blood flow in the main renal veins. In 35 patients presenting with diabetic nephropathy, hemodynamic correction was achieved by the application of the traveling pulsed magnetic field (TP-MF) to the renal region using an AMO-ATOS-E apparatus (Russia). This treatment resulted in normalization of the characteristics of renal blood flow. It is concluded that TPMF has good prospects for the use as a component of the combined treatment of diabetic nephropathy.

  9. Changes in blood flow during one stage lengthening of bone: an experimental study in rats.

    PubMed

    Kwon, S T; Chung, C Y

    2000-06-01

    Distraction osteogenesis is a well-accepted method of bone lengthening. Its disadvantages, however, are that it requires an external fixator and takes a long time. One-stage lengthening therefore offers certain advantages. A first point of reference for the safe limits of this procedure might be the changes of blood flow, and this is also the crucial factor in deciding on the appropriate method of lengthening, particularly where the hand or foot is involved. Using a laser Doppler flowmeter we measured blood flow in the dorsum of the foot after using bilateral minimonofixators to lengthen the tibias of 15 Sprague-Dawley rats. They were lengthened in four stages: stage 0 (before lengthening); stage I--12.5%; stage II--25%; and stage III--31.25% of lengthening. The blood flow during stage I decreased to 79% compared to that of stage 0; 16% during stage II; and 1% during stage III. This study suggests that the maximal permissible extent of lengthening might be less than a quarter according to the blood flow as suggested by this animal model.

  10. [Ultrasonographic study of blood flow in the renal arteries of patients with arterial hypertension].

    PubMed

    Makarenko, E S; Dombrovskiĭ, V I; Nelasov, N Iu

    2012-01-01

    Vascular duplex ultrasound duplex with simultaneous ECG registration was made to estimate the quantitative and time parameters of blood flow in the renal arteries with grade 1-2 arterial hypertension. There were increases in vascular resistance indices and acceleration phase index and a reduction in systolic phase index. There were correlations of the time parameters of blood flow in the renal arteries with age and lipidogram values.

  11. Measurement of Venous Blood Flow in the Lower Limbs: Prevention of Deep Vein Thrombosis during Prolonged Sitting

    DTIC Science & Technology

    2004-06-01

    Abstract. The venous blood flow during stretching and deep breathing in the sitting posture was examined in the present study. First, an...increase in the venous return. Therefore, we suggest that stretching and deep breathing can be used sometimes as preventive measures for deep vein...thrombosis during prolonged sitting. Keywords. Venous blood flow, Near infrared spectroscopy, Deep vein thrombosis. 1. Introduction It has been

  12. Mathematical Modeling of Radiofrequency Ablation for Varicose Veins

    PubMed Central

    Choi, Sun Young; Kwak, Byung Kook

    2014-01-01

    We present a three-dimensional mathematical model for the study of radiofrequency ablation (RFA) with blood flow for varicose vein. The model designed to analyze temperature distribution heated by radiofrequency energy and cooled by blood flow includes a cylindrically symmetric blood vessel with a homogeneous vein wall. The simulated blood velocity conditions are U = 0, 1, 2.5, 5, 10, 20, and 40 mm/s. The lower the blood velocity, the higher the temperature in the vein wall and the greater the tissue damage. The region that is influenced by temperature in the case of the stagnant flow occupies approximately 28.5% of the whole geometry, while the region that is influenced by temperature in the case of continuously moving electrode against the flow direction is about 50%. The generated RF energy induces a temperature rise of the blood in the lumen and leads to an occlusion of the blood vessel. The result of the study demonstrated that higher blood velocity led to smaller thermal region and lower ablation efficiency. Since the peak temperature along the venous wall depends on the blood velocity and pullback velocity, the temperature distribution in the model influences ablation efficiency. The vein wall absorbs more energy in the low pullback velocity than in the high one. PMID:25587351

  13. Cerebrovascular aspects of converting-enzyme inhibition II: Blood-brain barrier permeability and effect of intracerebroventricular administration of captopril.

    PubMed

    Jarden, J O; Barry, D I; Juhler, M; Graham, D I; Strandgaard, S; Paulson, O B

    1984-12-01

    The blood-brain barrier permeability to captopril, and the cerebrovascular effects of intracerebroventricular administration of captopril, were studied in normotensive Wistar rats. The blood-brain barrier permeability-surface area product (PS), determined by an integral-uptake method, was about 1 X 10(-5) cm3/g/s in all brain regions studied. This was three to four times lower than the simultaneously determined PS of Na+ and Cl-, both of which are known to have very low blood-brain barrier permeability. Cerebral blood flow, determined by the intra-arterial 133xenon injection method, was unaffected by intracerebroventricular administration of 100 micrograms captopril. Furthermore the lower limit of cerebral blood flow autoregulation during haemorrhagic hypotension was also unaffected, being in the mean arterial pressure range (50-69 mmHg) in both controls and captopril-treated rats. It was concluded that the blood-brain barrier permeability of captopril was negligible and that inhibition of the brain renin-angiotensin system has no effect on global cerebral blood flow. The cerebrovascular effects of intravenously administered captopril (a resetting to lower pressure of the limits and range of cerebral blood flow autoregulation) are probably exerted via converting enzyme on the luminal surface of cerebral vessels.

  14. Visualization and Analysis of Biomaterial-Centered Thrombus Formation within a Defined Crevice Under Flow

    PubMed Central

    Jamiolkowski, Megan A.; Pedersen, Drake D.; Wu, Wei-Tao; Antaki, James F.; Wagner, William R.

    2016-01-01

    The blood flow pathway within a device, together with the biomaterial surfaces and status of the patient’s blood, are well-recognized factors in the development of thrombotic deposition and subsequent embolization. Blood flow patterns are of particular concern for devices such as blood pumps (i.e. ventricular assist devices, VADs) where shearing forces can be high, volumes are relatively large, and the flow fields can be complex. However, few studies have examined the effect of geometric irregularities on thrombus formation on clinically relevant opaque materials under flow. The objective of this study was to quantify human platelet deposition onto Ti6Al4V alloys, as well as positive and negative control surfaces, in the region of defined crevices (~50–150 µm in width) that might be encountered in many VADs or other cardiovascular devices. To achieve this, reconstituted fresh human blood with hemoglobin-depleted red blood cells (to achieve optical clarity while maintaining relevant rheology), long working optics, and a custom designed parallel plate flow chamber were employed. The results showed that the least amount of platelet deposition occurred in the largest crevice size examined, which was counterintuitive. The greatest levels of deposition occurred in the 90 µm and 53 µm crevices at the lower wall shear rate. The results suggest that while crevices may be unavoidable in device manufacturing, the crevice size might be tailored, depending on the flow conditions, to reduce the risk of thromboembolic events. Further, these data might be used to improve the accuracy of predictive models of thrombotic deposition in cardiovascular devices to help optimize the blood flow path and reduce device thrombogenicity. PMID:27156141

  15. The renal blood flow reserve in healthy humans and patients with atherosclerotic renovascular disease measured by positron emission tomography using [15O]H2O.

    PubMed

    Päivärinta, Johanna; Koivuviita, Niina; Oikonen, Vesa; Iida, Hidehiro; Liukko, Kaisa; Manner, Ilkka; Löyttyniemi, Eliisa; Nuutila, Pirjo; Metsärinne, Kaj

    2018-06-11

    Microvascular function plays an important role in ARVD (atherosclerotic renovascular disease). RFR (renal flow reserve), the capacity of renal vasculature to dilate, is known to reflect renal microvascular function. In this pilot study, we assessed PET (positron emission tomography)-based RFR values of healthy persons and renal artery stenosis patients. Seventeen patients with ARVD and eight healthy subjects were included in the study. Intravenous enalapril 1 mg was used as a vasodilatant, and the maximum response (blood pressure and RFR) to it was measured at 40 min. Renal perfusion was measured by means of oxygen-15-labeled water PET. RFR was calculated as a difference of stress flow and basal flow and was expressed as percent [(stress blood flow - basal blood flow)/basal blood flow] × 100%. RFR of the healthy was 22%. RFR of the stenosed kidneys of bilateral stenosis patients (27%) was higher than that of the stenosed kidneys of unilateral stenosis patients (15%). RFR of the contralateral kidneys of unilateral stenosis patients was 21%. There was no difference of statistical significance between RFR values of ARVD subgroups or between ARVD subgroups and the healthy. In the stenosed kidneys of unilateral ARVD patients, stenosis grade of the renal artery correlated negatively with basal (p = 0.04) and stress flow (p = 0.02). Dispersion of RFR values was high. This study is the first to report [ 15 O]H 2 O PET-based RFR values of healthy subjects and ARVD patients in humans. The difference between RFR values of ARVD patients and the healthy did not reach statistical significance perhaps because of high dispersion of RFR values. [ 15 O]H 2 O PET is a valuable non-invasive and quantitative method to evaluate renal blood flow though high dispersion makes imaging challenging. Larger studies are needed to get more information about [ 15 O]H 2 O PET method in evaluation of renal blood flow.

  16. The impact of intrarenal nitric oxide synthase inhibition on renal blood flow and function in mild and severe hyperdynamic sepsis.

    PubMed

    Ishikawa, Ken; Bellomo, Rinaldo; May, Clive N

    2011-04-01

    In experimental hyperdynamic sepsis, renal function deteriorates despite renal vasodilatation and increased renal blood flow. Because nitric oxide is increased in sepsis and participates in renal blood flow control, we investigated the effects of intrarenal Nω-nitro-L-arginine methyl ester, a nonspecific nitric oxide synthase inhibitor, in mild and severe sepsis. Prospective crossover and randomized control interventional studies. University-affiliated research institute. Thirty-two merino ewes. Examination of responses to intrarenal infusion of Nω-nitro-L-arginine methyl ester for 8 hrs in unilaterally nephrectomized normal sheep and in sheep administered Escherichia coli. : In normal sheep, Nω-nitro-L-arginine methyl ester decreased renal blood flow (301 ± 30 to 228 ± 26 mL/min) and creatinine clearance (40.0 ± 5.8 to 31.1 ± 2.8 mL/min), whereas plasma creatinine increased, but fractional excretion of sodium was unchanged. In sheep with nonhypotensive hyperdynamic sepsis, plasma creatinine increased and there were decreases in creatinine clearance (34.5 ± 4.6 to 20.1 ± 3.7 mL/min) and fractional excretion of sodium despite increased renal blood flow. Infusion of Nω-nitro-L-arginine methyl ester normalized renal blood flow and increased urine output, but creatinine clearance did not improve and plasma creatinine and fractional excretion of sodium increased. In sheep with severe hypotensive sepsis, creatinine clearance decreased further (31.1 ± 5.4 to 16.0 ± 1.7 mL/min) despite increased renal blood flow. Infusion of Nω-nitro-L-arginine methyl ester restored mean arterial pressure and reduced renal blood flow but did not improve plasma creatinine or creatinine clearance. In hyperdynamic sepsis, with or without hypotension, creatinine clearance decreased despite increasing renal blood flow. Intrarenal Nω-nitro-L-arginine methyl ester infusion reduced renal blood flow but did not improve creatinine clearance. These data indicate that septic acute kidney injury is not the result of decreased renal blood flow nor is it improved by nonspecific nitric oxide synthase inhibition.

  17. In microfluidico: Recreating in vivo hemodynamics using miniaturized devices

    PubMed Central

    Zhu, Shu; Herbig, Bradley A.; Li, Ruizhi; Colace, Thomas V.; Muthard, Ryan W.; Neeves, Keith B.; Diamond, Scott L.

    2016-01-01

    Microfluidic devices create precisely controlled reactive blood flows and typically involve: (i) validated anticoagulation/pharmacology protocols, (ii) defined reactive surfaces, (iii) defined flow-transport regimes, and (iv) optical imaging. An 8-channel device can be run at constant flow rate or constant pressure drop for blood perfusion over a patterned collagen, collagen/kaolin, or collagen/tissue factor (TF) to measure platelet, thrombin, and fibrin dynamics during clot growth. A membrane-flow device delivers a constant flux of platelet agonists or coagulation enzymes into flowing blood. A trifurcated device sheaths a central blood flow on both sides with buffer, an ideal approach for on-chip recalcification of citrated blood or drug delivery. A side-view device allows clotting on a porous collagen/TF plug at constant pressure differential across the developing clot. The core-shell architecture of clots made in mouse models can be replicated in this device using human blood. For pathological flows, a stenosis device achieves shear rates of >100,000 s−1 to drive plasma von Willebrand factor (VWF) to form thick long fibers on collagen. Similarly, a micropost-impingement device creates extreme elongational and shear flows for VWF fiber formation without collagen. Overall, microfluidics are ideal for studies of clotting, bleeding, fibrin polymerization/fibrinolysis, cell/clot mechanics, adhesion, mechanobiology, and reaction-transport dynamics. PMID:26600269

  18. Cerebral blood flow modulations during cognitive control in major depressive disorder.

    PubMed

    Hoffmann, Alexandra; Montoro, Casandra I; Reyes Del Paso, Gustavo A; Duschek, Stefan

    2018-09-01

    This study investigated cerebral blood flow modulations during proactive and reactive cognitive control in major depressive disorder (MDD). Proactive control refers to preparatory processes during anticipation of a behaviorally relevant event; reactive control is activated after such an event to ensure goal attainment. Using functional transcranial Doppler sonography, blood flow velocities in the middle cerebral arteries of both hemispheres were recorded in 40 MDD patients and 40 healthy controls during a precued Stroop task. The font color of color words, which appeared 5 s after an acoustic warning signal, had to be indicated while ignoring word meaning. Patients, as compared to controls, exhibited smaller bilateral blood flow increases during task preparation and larger increases after color word presentation. Response time was longer in patients irrespective of the match or mismatch between font color and word meaning. The blood flow increase after word presentation correlated positively with response time. Potential effects of psychotropic medication on cognition and cerebral blood flow could not be controlled. The study revealed evidence of reduced cortical activity during proactive and elevated activity that occurs during reactive control in MDD. Deficient implementation of proactive control in MDD may lead to increased reliance on reactive control. The association between the blood flow increase after color word presentation and poorer performance indicates that deficient response preparation cannot be compensated for by reactive strategies. The findings are clinically relevant, as they may contribute to our understanding of the mechanisms relevant to cognitive impairments in MDD. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. A multiple disk centrifugal pump as a blood flow device.

    PubMed

    Miller, G E; Etter, B D; Dorsi, J M

    1990-02-01

    A multiple disk, shear force, valveless centrifugal pump was studied to determine its suitability as a blood flow device. A pulsatile version of the Tesla viscous flow turbine was designed by modifying the original steady flow pump concept to produce physiological pressures and flows with the aid of controlling circuitry. Pressures and flows from this pump were compared to a Harvard Apparatus pulsatile piston pump. Both pumps were connected to an artificial circulatory system. Frequency and systolic duration were varied over a range of physiological conditions for both pumps. The results indicated that the Tesla pump, operating in a pulsatile mode, is capable of producing physiologic pressures and flows similar to the Harvard pump and other pulsatile blood pumps.

  20. Collection, Storage, and Preparation of Human Blood Cells

    PubMed Central

    Dagur, Pradeep K.; McCoy, J. Philip

    2015-01-01

    Human peripheral blood is often studied by flow cytometry in both the research and clinical laboratories. The methods for collection, storage, and preparation of peripheral blood will vary depending on the cell lineage to be examined as well as the type of assay to be performed. This unit presents protocols for collection of blood, separation of leukocytes from whole blood by lysis of erythrocytes, isolating mononuclear cells by density gradient separation, and assorted non-flow sorting methods, such as magnetic bead separations, for enriching specific cell populations, including monocytes, T lymphocytes, B lymphocytes, neutrophils,, , and platelets prior to flow cytometric analysis. A protocol is also offered for cryopreservation of cells since clinical research often involves retrospective flow cytometric analysis of samples stored over a period of months or years. PMID:26132177

  1. Effects of perfluorohexane vapor on relative blood flow distribution in an animal model of surfactant-depleted lung injury

    NASA Technical Reports Server (NTRS)

    Hubler, Matthias; Souders, Jennifer E.; Shade, Erin D.; Polissar, Nayak L.; Bleyl, Jorg U.; Hlastala, Michael P.

    2002-01-01

    OBJECTIVE: To test the hypothesis that treatment with vaporized perfluorocarbon affects the relative pulmonary blood flow distribution in an animal model of surfactant-depleted acute lung injury. DESIGN: Prospective, randomized, controlled trial. SETTING: A university research laboratory. SUBJECTS: Fourteen New Zealand White rabbits (weighing 3.0-4.5 kg). INTERVENTIONS: The animals were ventilated with an FIO(2) of 1.0 before induction of acute lung injury. Acute lung injury was induced by repeated saline lung lavages. Eight rabbits were randomized to 60 mins of treatment with an inspiratory perfluorohexane vapor concentration of 0.2 in oxygen. To compensate for the reduced FIO(2) during perfluorohexane treatment, FIO(2) was reduced to 0.8 in control animals. Change in relative pulmonary blood flow distribution was assessed by using fluorescent-labeled microspheres. MEASUREMENTS AND MAIN RESULTS: Microsphere data showed a redistribution of relative pulmonary blood flow attributable to depletion of surfactant. Relative pulmonary blood flow shifted from areas that were initially high-flow to areas that were initially low-flow. During the study period, relative pulmonary blood flow of high-flow areas decreased further in the control group, whereas it increased in the treatment group. This difference was statistically significant between the groups (p =.02) as well as in the treatment group compared with the initial injury (p =.03). Shunt increased in both groups over time (control group, 30% +/- 10% to 63% +/- 20%; treatment group, 37% +/- 20% to 49% +/- 23%), but the changes compared with injury were significantly less in the treatment group (p =.03). CONCLUSION: Short treatment with perfluorohexane vapor partially reversed the shift of relative pulmonary blood flow from high-flow to low-flow areas attributable to surfactant depletion.

  2. Effect of Rolling Massage on the Vortex Flow in Blood Vessels with Lattice Boltzmann Simulation

    NASA Astrophysics Data System (ADS)

    Yi, Hou Hui

    The rolling massage manipulation is a classic Chinese Medical Massage, which is a nature therapy in eliminating many diseases. Here, the effect of the rolling massage on the cavity flows in blood vessel under the rolling manipulation is studied by the lattice Boltzmann simulation. The simulation results show that the vortex flows are fully disturbed by the rolling massage. The flow behavior depends on the rolling velocity and the rolling depth. Rolling massage has a better effect on the flows in the cavity than that of the flows in a planar blood vessel. The result is helpful to understand the mechanism of the massage and develop the rolling techniques.

  3. Bilateral changes in forearm oxygen consumption at rest and after exercise in patients with unilateral repetitive strain injury: a case-control study.

    PubMed

    Brunnekreef, Jaap J J; Thijssen, Dick H J; Oosterhof, Jan; Hopman, Maria T E

    2012-04-01

    Case-control study. To investigate whether oxygen consumption and blood flow at rest and after exercise are lower in the affected arm of patients with repetitive strain injury (RSI) compared to controls, and lower in the healthy nonaffected forearm within patients with unilateral RSI. RSI is considered an upper extremity overuse injury. Despite the local presentation of complaints, RSI may be represented by systemic adaptations. Insight into the pathophysiology of RSI is important to better understand the development of RSI complaints and to develop effective treatment and prevention strategies. Twenty patients with unilateral RSI and 20 gender-matched control subjects participated in this study. Forearm muscle blood flow and oxygen consumption were measured using near-infrared spectroscopy at baseline and immediately after isometric handgrip exercises at 10%, 20%, and 40% of the individual maximal voluntary contraction. Unilateral RSI resulted in a lower oxygen consumption and blood flow in the affected forearm at baseline and lower oxygen consumption after incremental handgrip exercises compared to controls (P<.05). In addition, exercise-induced blood flow and oxygen consumption in the nonaffected forearm in patients with RSI were similarly reduced. Blood flow and oxygen consumption after exercise are similarly attenuated in the affected and nonaffected arms of patients with unilateral RSI. Our findings suggest that, despite the unilateral character in clinical symptoms, RSI demonstrates systemic adaptations in forearm blood flow and oxygen consumption at rest and after exercise.

  4. Concomitant administration of nitrous oxide and remifentanil reduces oral tissue blood flow without decreasing blood pressure during sevoflurane anesthesia in rabbits.

    PubMed

    Kasahara, Masataka; Ichinohe, Tatsuya; Okamoto, Sota; Okada, Reina; Kanbe, Hiroaki; Matsuura, Nobuyuki

    2015-06-01

    To determine whether continuous administration of nitrous oxide and remifentanil—either alone or together—alters blood flow in oral tissues during sevoflurane anesthesia. Eight male tracheotomized Japanese white rabbits were anesthetized with sevoflurane under mechanical ventilation. Heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP), common carotid arterial blood flow (CCBF), tongue mucosal blood flow (TMBF), mandibular bone marrow blood flow (BBF), masseter muscle blood flow (MBF), upper alveolar tissue blood flow (UBF), and lower alveolar tissue blood flow (LBF) were recorded in the absence of all test agents and after administration of the test agents (50 % nitrous oxide, 0.4 μg/kg/min remifentanil, and their combination) for 20 min. Nitrous oxide increased SBP, DBP, MAP, CCBF, BBF, MBF, UBF, and LBF relative to baseline values but did not affect HR or TMBF. Remifentanil decreased all hemodynamic variables except DBP. Combined administration of nitrous oxide and remifentanil recovered SBP, DBP, MAP, and CCBF to baseline levels, but HR and oral tissue blood flow remained lower than control values. Our findings suggest that concomitant administration of nitrous oxide and remifentanil reduces blood flow in oral tissues without decreasing blood pressure during sevoflurane anesthesia in rabbits.

  5. Usage of CO2 microbubbles as flow-tracing contrast media in X-ray dynamic imaging of blood flows.

    PubMed

    Lee, Sang Joon; Park, Han Wook; Jung, Sung Yong

    2014-09-01

    X-ray imaging techniques have been employed to visualize various biofluid flow phenomena in a non-destructive manner. X-ray particle image velocimetry (PIV) was developed to measure velocity fields of blood flows to obtain hemodynamic information. A time-resolved X-ray PIV technique that is capable of measuring the velocity fields of blood flows under real physiological conditions was recently developed. However, technical limitations still remained in the measurement of blood flows with high image contrast and sufficient biocapability. In this study, CO2 microbubbles as flow-tracing contrast media for X-ray PIV measurements of biofluid flows was developed. Human serum albumin and CO2 gas were mechanically agitated to fabricate CO2 microbubbles. The optimal fabricating conditions of CO2 microbubbles were found by comparing the size and amount of microbubbles fabricated under various operating conditions. The average size and quantity of CO2 microbubbles were measured by using a synchrotron X-ray imaging technique with a high spatial resolution. The quantity and size of the fabricated microbubbles decrease with increasing speed and operation time of the mechanical agitation. The feasibility of CO2 microbubbles as a flow-tracing contrast media was checked for a 40% hematocrit blood flow. Particle images of the blood flow were consecutively captured by the time-resolved X-ray PIV system to obtain velocity field information of the flow. The experimental results were compared with a theoretically amassed velocity profile. Results show that the CO2 microbubbles can be used as effective flow-tracing contrast media in X-ray PIV experiments.

  6. [Echocardiography in Boid snakes: Demonstration and blood flow measurements].

    PubMed

    Schroff, S; Starck, J M; Krautwald-Junghanns, M-E; Pees, M

    2012-01-01

    Comparative echocardiography and blood flow measurements in different boid species. 51 healthy snakes from seven different species were examined echocardiographically under standardized conditions. The heart and the great vessels were displayed using 2-D-ultrasonography. Pulsed-wave doppler technique measurements of the blood flow within the vessels were performed and results analyzed statistically. The examinations could be performed in non-sedated snakes in ventral recumbency. The best image quality was obtained using the ventrolateral coupling site. An examination scheme applicable to all examined snake species was established. Diversity in the anatomy of vessels could be detected in different snake species. A characteristic shape of the curve demonstrating the blood flow against time could be shown for the respective vessels. There were positive correlations between the size of the snakes and the absolute blood flow (total flow, systemic flow, pulmonary flow to body length: p<0.001; r=0.770; r=0.627; r=0.766; respectively to body mass: p<0.001; r=0.815; r=0.698; r=0.788), as well as negative correlations between the size of the animals and the blood flow relative to body mass (total flow, systemic flow, pulmonary flow to body length: p<0.001; r=-0.533; r=-0.512; r=-0.478; respectively total flow to body mass: p<0.001; r=-0.768). When using standardized conditions, echocardiography in boid snakes is a useful diagnostic tool for the assessment of cardiac function. Reference values provided in this study serve as a basis for ultrasound examination in veterinary practice.

  7. Effect of anticoagulants on the protein corona-induced reduced drug carrier adhesion efficiency in human blood flow.

    PubMed

    Sobczynski, Daniel J; Eniola-Adefeso, Omolola

    2017-01-15

    Plasma proteins rapidly coat the surfaces of particulate drug carriers to form a protein corona upon their injection into the bloodstream. The high presence of immunoglobulins in the corona formed on poly(lactic-co-glycolic acid) (PLGA) vascular-targeted carrier (VTC) surfaces was recently shown to negatively impact their adhesion to activated endothelial cells (aECs) in vitro. Here, we characterized the influence of anticoagulants, or their absence, on the binding efficiency of VTCs of various materials via modulation of their protein corona. Specifically, we evaluated the adhesion of PLGA, poly(lactic acid) (PLA), polycaprolactone (PCL), silica, and polystyrene VTCs to aECs in heparinized, citrated, and non-anticoagulated (serum and whole) blood flows relative to buffer control. Particle adhesion is substantially reduced in non-anticoagulated blood flows regardless of the material type while only moderate to minimal reduction is observed for VTCs in anticoagulant-containing blood flow depending on the anticoagulant and material type. The substantial reduction in VTC adhesion in blood flows was linked to a high presence of immunoglobulin-sized proteins in the VTC corona via SDS-PAGE analysis. Of all the materials evaluated, PLGA was the most sensitive to plasma protein effects while PCL was the most resistant, suggesting particle hydrophobicity is a critical component of the observed negative plasma protein effects. Overall, this work demonstrates that anticoagulant positively alters the effect of plasma proteins in prescribing VTC adhesion to aECs in human blood flow, which has implication in the use of in vitro blood flow assays for functional evaluation of VTCs for in vivo use. This study addresses the impact of anticoagulant on altering the extent of the previously observed protein corona-induced adhesion reduction of vascular-targeted drug carriers in human blood flows. Specifically, serum blood flow (no anticoagulant) magnifies the negative effect of the plasma protein corona on drug carrier adhesion relative to citrated or heparinized blood flows. Overall, the results from this work suggest that serum better predicts targeted drug carrier adhesion efficiency in vivo compared to anticoagulant containing plasma. Furthermore, this study offers critical insight into the importance of how the choice of anticoagulant can greatly affect drug delivery-related processes in vitro. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Dynamics of pulsatile flow in fractal models of vascular branching networks.

    PubMed

    Bui, Anh; Sutalo, Ilija D; Manasseh, Richard; Liffman, Kurt

    2009-07-01

    Efficient regulation of blood flow is critically important to the normal function of many organs, especially the brain. To investigate the circulation of blood in complex, multi-branching vascular networks, a computer model consisting of a virtual fractal model of the vasculature and a mathematical model describing the transport of blood has been developed. Although limited by some constraints, in particular, the use of simplistic, uniformly distributed model for cerebral vasculature and the omission of anastomosis, the proposed computer model was found to provide insights into blood circulation in the cerebral vascular branching network plus the physiological and pathological factors which may affect its functionality. The numerical study conducted on a model of the middle cerebral artery region signified the important effects of vessel compliance, blood viscosity variation as a function of the blood hematocrit, and flow velocity profile on the distributions of flow and pressure in the vascular network.

  9. Computer capillaroscopy as a new cardiological diagnostics method

    NASA Astrophysics Data System (ADS)

    Gurfinkel, Youri I.; Korol, Oleg A.; Kufal, George E.

    1998-04-01

    The blood flow in capillary vessels plays an important role in sustaining the vital activity of the human organism. The computerized capillaroscope is used for the investigations of nailfold (eponychium) capillary blood flow. An important advantage of the instrument is the possibility of performing non-invasive investigations, i.e., without damage to skin or vessels and causing no pain or unpleasant sensations. The high-class equipment and software allow direct observation of capillary blood flow dynamics on a computer screen at a 700 - 1300 times magnification. For the first time in the clinical practice, it has become possible to precisely measure the speed of capillary blood flow, as well as the frequency of aggregate formation (glued together in clots of blood particles). In addition, provision is made for automatic measurement of capillary size and wall thickness and automatic recording of blood aggregate images for further visual study, documentation, and electronic database management.

  10. Use of Inert Gases to Study the Interaction of Blood Flow and Diffusion during Passive Absorption from the Gastrointestinal Tract of the Rat

    PubMed Central

    Levitt, Michael D.; Levitt, David G.

    1973-01-01

    Measurement of the relative absorption rates of inert gases (H2, He, CH4, SF6, and 133Xe) was used to investigate the interaction between diffusion and blood flow during passive absorption from the stomach, small bowel, and colon of the rat. If uptake is blood flow limited, the gases should be absorbed in proportion to their solubilities in blood, but if diffusion limited, uptake should be proportional to the diffusion rate of the gases in mucosal tissues. The observed absorption data were fitted to a series of models of interaction between perfusion and diffusion. A simple model accurately predicted the absorption rates of the gases from all segments of bowel. In this model, gas is absorbed into two distinct blood flows: one which flows in proximity to the lumen and completely equilibrates with the lumen, and a second which is sufficiently rapid and distant from the lumen that its gas uptake is entirely diffusion limited. The fraction of the total absorption attributable to the equilibrating flow can be readily calculated and equalled 93%, 77%, and 33% for the small bowel, colon, and stomach, respectively. Thus the rate of passive absorption of gases from the small bowel is limited almost entirely by the blood flow to the mucosa, and absorption from the stomach is largely limited by the diffusion rate of the gases. The flow which equilibrates with the lumen can be quantitated, and this flow may provide a useful measure of “effective” mucosal blood flow. Images PMID:4719667

  11. A novel, microscope based, non-invasive laser Doppler flowmeter for choroidal blood flow assessment.

    PubMed

    Strohmaier, C; Werkmeister, R M; Bogner, B; Runge, C; Schroedl, F; Brandtner, H; Radner, W; Schmetterer, L; Kiel, J W; Grabner, G; Reitsamer, H A

    2011-06-01

    Impaired ocular blood flow is involved in the pathogenesis of numerous ocular diseases like glaucoma or AMD. The purpose of the present study was to introduce and validate a novel, microscope based, non-invasive Laser Doppler Flowmeter (NI-LDF) for measurement of blood flow in the choroid. The custom made NI-LDF was compared with a commercial fiber optic based laser Doppler flowmeter (Perimed PF4000). Linearity and stability of the NI-LDF were assessed in a silastic tubing model (i.d. 0.3 mm) at different flow rates (range 0.4-3 ml/h). In a rabbit model continuous choroidal blood flow measurements were performed with both instruments simultaneously. During blood flow measurements ocular perfusion pressure was changed by manipulations of intraocular pressure via intravitreal saline infusions. The NI-LDF measurement correlated linearly to intraluminal flow rates in the perfused tubing model (r = 0.99, p < 0.05) and remained stable during a 1 h measurement at a constant flow rate. Rabbit choroidal blood flow measured by the PF4000 and the NI-LDF linearly correlated with each other over the entire measurement range (r = 0.99, y = x∗1.01-12.35 P.U., p < 0.001). In conclusion, the NI-LDF provides valid, semi quantitative measurements of capillary blood flow in comparison to an established LDF instrument and is suitable for measurements at the posterior pole of the eye. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. [Positron emission tomographic evaluations on hemodynamics and glucose metabolism of brain tumors and perifocal edematous tissues].

    PubMed

    Mizukawa, N; Hino, A; Imahori, Y; Tenjin, H; Yano, I; Yoshino, E; Hirakawa, K; Yamashita, M; Oki, F; Nakahashi, H

    1989-03-01

    Blood flow and glucose metabolism of the tumors and perifocal edematous tissues were evaluated using positron emission tomography (PET). Thirty-one brain tumor cases were investigated 12 non glial tumors (9 meningiomas and 3 metastatic tumors) and 19 gliomas (these were classified in 5 astrocytomas, 7 anaplastic astrocytomas and 7 glioblastomas, according to the malignancy). The diagnosis were confirmed pathologically in 30 cases. Cerebral blood flow (CBF), cerebral metabolic rate for oxygen (CMRO2), oxygen extraction fraction (OEF) and cerebral blood volume (CBV) were measured by O-15 labeled gases inhalation methods. Cerebral metabolic rate for glucose (CMFglu) were measured by F-18 Deoxyglucose intravenous injection method and calculated by Hutchins's formula. The rate constant (ks) and lumped constant (LC) used in this study were the same as those published by Phelps et al. in 1979. The blood flow and glucose metabolic rates of tumors were measured by the same methods. The results were as follows: 1) Meningiomas showed very high blood flow and blood volume with a wide range. The OEF and metabolic rate for glucose (MRglu) values were very low. 2) Metastatic tumors showed the low values of blood flow, metabolic rate for oxygen (MRO2) and OEF. 3) The blood flow and MRglu values on gliomas were varied with no significant differences between the three subgroups. On the other hands, as the malignancy of the glioma increased, a statistically significant increase in blood volume and a decrease in OEF were noted. 4) The OEF values from the various types of tumors studied were significantly lower than those obtained from the normal tissue.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. C-peptide does not affect ocular blood flow in patients with type 1 diabetes.

    PubMed

    Polska, Elzbieta; Kolodjaschna, Julia; Berisha, Fatmire; Malec, Maria M; Simader, Christian; Bayerle-Eder, Michaela; Roden, Michael; Schmetterer, Leopold

    2006-09-01

    The aim of the present study was to investigate the effect of intravenous C-peptide infusion on ocular blood flow in patients with type 1 diabetes under euglycemic conditions. The study was performed in a randomized, placebo-controlled, double-masked, two-way, crossover design in 10 type 1 diabetic patients. C-peptide was intravenously administered at two different dosages (dosage 1: 25 pmol . kg(-1) . min(-1) bolus followed by 5 pmol . kg(-1) . min(-1) continuous infusion; dosage 2: six times higher than dosage 1), each for 60 min. Physiologic saline solution was used as a control for C-peptide on a different study day. On both study days, euglycemic clamps were performed. To assess retinal blood flow, laser Doppler velocimetry (blood flow velocities) and retinal vessel analyzer (vessels diameters) measurements were performed. Laser interferometric measurements of fundus pulsation were used to assess pulsatile choroidal blood flow. Blood velocities in the ophthalmic artery were measured using color Doppler imaging. Eight patients (two female and six male) completed the study according to the protocol and without adverse events. One patient developed an anaphylactic reaction to C-peptide, which resolved without sequelae. The following results originate from the remaining eight subjects. Systemic hemodynamic parameters remained stable during both study days. Infusion of C-peptide did not affect any ocular hemodynamic parameter. The data of the present study indicate that exogenous C-peptide exerts no effect on ocular hemodynamic parameters in type 1 diabetic patients under euglycemic conditions. The maximum detectable change in these parameters was <25%.

  14. Regional Blood Volume and Peripheral Blood Flow in the Postural Tachycardia Syndrome

    PubMed Central

    Stewart, Julian M.; Montgomery, Leslie D.

    2015-01-01

    Variants of postural tachycardia syndrome (POTS) are associated with increased (“high flow” POTS, HFP), decreased (“low flow POTS”, LFP) and normal (“normal flow POTS”, NFP) blood flow measured in the lower extremities while supine. We propose that postural tachycardia is related to thoracic hypovolemia during orthostasis but that the patterns of peripheral blood flow relate to different mechanisms for thoracic hypovolemia. We studied 37 POTS patients aged 14-21 years: 14 LFP, 15 NFP and 8 HFP patients and 12 healthy control subjects. Peripheral blood flow was measured supine by venous occlusion strain gauge plethysmography of the forearm and calf in order to subgroup patients. Using indocyanine green techniques we showed decreased cardiac index (CI) and increased total peripheral resistance (TPR) in LFP, increased CI and decreased TPR in HFP, and unchanged CI and TPR in NFP while supine compared to control subjects. Blood volume tended to be decreased in LFP compared to control subjects. We used impedance plethysmography to assess regional blood volume redistribution during upright tilt. Thoracic blood volume decreased while splanchnic, pelvic and leg blood volumes increased for all subjects during orthostasis, but were markedly lower than control for all POTS groups. Splanchnic volume was increased in NFP and LFP. Pelvic blood volume was increased in HFP only. Calf volume was increased above control in HFP and LFP. The results support the hypothesis of [at least] three pathophysiologic variants of POTS distinguished by peripheral blood flow related to characteristic changes in regional circulations. The data demonstrate enhanced thoracic hypovolemia during upright tilt and confirm that POTS is related to inadequate cardiac venous return during orthostasis. PMID:15117717

  15. Comparison of cerebral microcirculation of alloxan diabetes and healthy mice using laser speckle contrast imaging

    NASA Astrophysics Data System (ADS)

    Timoshina, Polina A.; Shi, Rui; Zhang, Yang; Zhu, Dan; Semyachkina-Glushkovskaya, Oxana V.; Tuchin, Valery V.; Luo, Qingming

    2015-03-01

    The study of blood microcirculation is one of the most important problems of the medicine. This paper presents results of experimental study of cerebral blood flow microcirculation in mice with alloxan-induced diabetes using Temporal Laser Speckle Imaging (TLSI). Additionally, a direct effect of glucose water solution (concentration 20% and 45%) on blood flow microcirculation was studied. In the research, 20 white laboratory mice weighing 20-30 g were used. The TLSI method allows one to investigate time dependent scattering from the objects with complex dynamics, since it possesses greater temporal resolution. Results show that in brain of animal diabetic group diameter of sagittal vein is increased and the speed of blood flow reduced relative to the control group. Topical application of 20%- or 45%-glucose solutions also causes increase of diameter of blood vessels and slows down blood circulation. The results obtained show that diabetes development causes changes in the cerebral microcirculatory system and TLSI techniques can be effectively used to quantify these alterations.

  16. Automatic retinal blood vessel parameter calculation in spectral domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Wehbe, Hassan; Ruggeri, Marco; Jiao, Shuliang; Gregori, Giovanni; Puliafito, Carmen A.

    2007-02-01

    Measurement of retinal blood vessel parameters like the blood blow in the vessels may have significant impact on the study and diagnosis of glaucoma, a leading blinding disease worldwide. Optical coherence tomography (OCT) is a noninvasive imaging technique that can provide not only microscopic structural imaging of the retina but also functional information like the blood flow velocity in the retina. The aim of this study is to automatically extract the parameters of retinal blood vessels like the 3D orientation, the vessel diameters, as well as the corresponding absolute blood flow velocity in the vessel. The parameters were extracted from circular OCT scans around the optic disc. By removing the surface reflection through simple segmentation of the circular OCT scans a blood vessel shadowgram can be generated. The lateral coordinates and the diameter of each blood vessel are extracted from the shadowgram through a series of signal processing. Upon determination of the lateral position and the vessel diameter, the coordinate in the depth direction of each blood vessel is calculated in combination with the Doppler information for the vessel. The extraction of the vessel coordinates and diameter makes it possible to calculate the orientation of the vessel in reference to the direction of the incident sample light, which in turn can be used to calculate the absolute blood flow velocity and the flow rate.

  17. Automatic retinal blood flow calculation using spectral domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Wehbe, Hassan; Ruggeri, Marco; Jiao, Shuliang; Gregori, Giovanni; Puliafito, Carmen A.

    2008-02-01

    Optical Doppler tomography (ODT) is a branch of optical coherence tomography (OCT) that can measure the speed of a blood flow by measuring the Doppler shift impinged on the probing sample light by the moving blood cells. However, the measured speed of blood flow is a function of the Doppler angle, which needs to be determined in order to calculate the absolute velocity of the blood flow inside a vessel. We developed a technique that can extract the Doppler angle from the 3D data measured with spectral-domain OCT, which needs to extract the lateral and depth coordinates of a vessel in each measured ODT and OCT image. The lateral coordinates and the diameter of a blood vessel were first extracted in each OCT structural image by using the technique of blood vessel shadowgram, a technique first developed by us for enhancing the retinal blood vessel contrast in the en face view of the 3D OCT. The depth coordinate of a vessel was then determined by using a circular averaging filter moving in the depth direction along the axis passing through the vessel center in the ODT image. The Doppler angle was then calculated from the extracted coordinates of the blood vessel. The technique was applied in blood flow measurements in retinal blood vessels, which has potential impact on the study and diagnosis of blinding diseases like glaucoma and diabetic retinopathy.

  18. Fractional blood flow in oscillatory arteries with thermal radiation and magnetic field effects

    NASA Astrophysics Data System (ADS)

    Bansi, C. D. K.; Tabi, C. B.; Motsumi, T. G.; Mohamadou, A.

    2018-06-01

    A fractional model is proposed to study the effect of heat transfer and magnetic field on the blood flowing inside oscillatory arteries. The flow is due to periodic pressure gradient and the fractional model equations include body acceleration. The proposed velocity and temperature distribution equations are solved using the Laplace and Hankel transforms. The effect of the fluid parameters such as the Reynolds number (Re), the magnetic parameter (M) and the radiation parameter (N) is studied graphically with changing the fractional-order parameter. It is found that the fractional derivative is a valuable tool to control both the temperature and velocity of blood when flow parameters change under treatment, for example. Besides, this work highlights the fact that in the presence of strong magnetic field, blood velocity and temperature reduce. A reversed effect is observed where the applied thermal radiation increase; the velocity and temperature of blood increase. However, the temperature remains high around the artery centerline, which is appropriate during treatment to avoid tissues damage.

  19. [Effect of caffeine on myocardial blood flow during pharmacological vasodilation].

    PubMed

    Wielepp, J P; Fricke, E; Horstkotte, D; Burchert, W

    2005-02-01

    Pharmacologic stress with adenosine is frequently used for noninvasive detection of coronary artery disease. Dietary intake of caffeinated food, beverages or medications might alter adenosine-induced hyperemic blood flow, thereby compromising the diagnostic sensitivity of adenosine stress testing. In this case we report on a male patient with CAD. Myocardial blood flow at rest and during adenosine-induced hyperemia 2 hours after consumption of decaffeinated coffee and again without caffeine intake were quantified by ammonia PET. After caffeine intake there was a clearly diminished increase of myocardial blood flow during adenosine. The average coronary flow reserve in the myocardium was 1.3 after caffeine. In the baseline study without caffeine the coronary flow reserve has been improved to 2.3. Caffeine intake alters the coronary vasodilatory capacity. These findings emphasize the importance of carefully screening patients for intake of caffeinated food prior to adenosine stress testing.

  20. Influence of magnetic field on chemically reactive blood flow through stenosed bifurcated arteries

    NASA Astrophysics Data System (ADS)

    Hossain, Khan Enaet; Haque, Md. Mohidul

    2017-06-01

    Dynamic response of mass transfer in chemically reactive blood flow through bifurcated arteries under the stenotic condition is numerically studied in the present of a uniform magnetic field. The blood flowing through the artery is assumed an incompressible, fully developed and Newtonian. The nonlinear unsteady flow phenomena are governed by the Navier-Stokes and concentration equations. All these equations together with the appropriate boundary conditions describing the present biomechanical problem are transformed by using a radial transformation and the numerical results are obtained using a finite difference technique. Effects of stenosed bifurcation and externally applied magnetic field on the blood flow with chemical reaction are discussed with the help of graph. All the flow characteristics are found to be affected by the presence of chemical reaction and exposure of magnetic field of different intensities. Finally some important findings of the problem are concluded in this work.

  1. Absent Cerebellar Circulation With Intact Cerebral Blood Flow on a 99mTc Bicisate "Brain Death" Study.

    PubMed

    Schmidt, Matthew Q; Schraml, Frank V

    2017-12-01

    A 55-year old woman presented in an obtunded state and was found to have a subarachnoid hemorrhage. After endovascular repair, her condition deteriorated, and brain death was suspected. A Tc bicisate brain blood flow study was performed, which showed a complete absence of blood flow to the cerebellum despite intact circulation to the cerebral hemispheres. These atypical findings are likely a result of a transient intracranial pressure differential and the timing of the study. A timely and accurate declaration of brain death has important psychosocial and ethical implications, particularly when organ donation is being considered.

  2. Effects of Wrist Posture and Fingertip Force on Median Nerve Blood Flow Velocity

    PubMed Central

    Wilson, Katherine E.; Tat, Jimmy

    2017-01-01

    Purpose. The purpose of this study was to assess nerve hypervascularization using high resolution ultrasonography to determine the effects of wrist posture and fingertip force on median nerve blood flow at the wrist in healthy participants and those experiencing carpal tunnel syndrome (CTS) symptoms. Methods. The median nerves of nine healthy participants and nine participants experiencing symptoms of CTS were evaluated using optimized ultrasonography in five wrist postures with and without a middle digit fingertip press (0, 6 N). Results. Both wrist posture and fingertip force had significant main effects on mean peak blood flow velocity. Blood flow velocity with a neutral wrist (2.87 cm/s) was significantly lower than flexed 30° (3.37 cm/s), flexed 15° (3.27 cm/s), and extended 30° (3.29 cm/s). Similarly, median nerve blood flow velocity was lower without force (2.81 cm/s) than with force (3.56 cm/s). A significant difference was not found between groups. Discussion. Vascular changes associated with CTS may be acutely induced by nonneutral wrist postures and fingertip force. This study represents an early evaluation of intraneural blood flow as a measure of nerve hypervascularization in response to occupational risk factors and advances our understanding of the vascular phenomena associated with peripheral nerve compression. PMID:28286771

  3. Femoral artery blood flow and microcirculatory perfusion during acute, low-level functional electrical stimulation in spinal cord injury.

    PubMed

    Barton, Thomas J; Low, David A; Janssen, Thomas W J; Sloots, Maurits; Smit, Christof A J; Thijssen, Dick H J

    2018-04-19

    Functional electrical stimulation (FES) may help to reduce the risk of developing macro- and microvascular complications in people with SCI. Low-intensity FES has significant clinical potential since this can be applied continuously throughout the day. This study examines the acute effects of low intensity FES using wearable clothing garment on vascular blood flow and oxygen consumption in people with SCI. Cross-sectional observation study METHODS: Eight participants with a motor complete SCI received 4x3 minutes of unilateral FES to the gluteal and hamstring muscles. Skin and deep femoral artery blood flow and oxygen consumption were measured at baseline and during each bout of stimulation. Femoral artery blood flow increased by 18.1% with the application of FES (P=0.02). Moreover, femoral artery blood flow increased further during each subsequent block of FES (P=0.004). Skin perfusion did not change during an individual block of stimulation (P=0.66). Skin perfusion progressively increased with each subsequent bout (P<0.001). There was no change in femoral or skin perfusion across time in the non-stimulated leg (all P>0.05). Low-intensity FES acutely increased blood flow during stimulation, with a progressive increase across subsequent FES bouts. These observations suggest continuous, low-intensity FES may represent a practical and effective strategy to improve perfusion and reduce the risk of vascular complications.

  4. Effects of exercise and heat stress on regional blood flow in pregnant sheep.

    PubMed

    Bell, A W; Hales, J R; Fawcett, A A; King, R B

    1986-05-01

    Radioactive microspheres were used to measure cardiac output and blood flow to most major tissues, including those in the pregnant uterus, in late-pregnant ewes at rest and during treadmill exercise (approximately 3-fold increase in metabolic rate for 30 min) in thermoneutral (TN) (dry bulb temperature (Tdb) = 13 degrees C, wet bulb temperature (Twb) = 10 degrees C) and mildly hot (MH) (Tdb = 40 degrees C, Twb = 27 degrees C) environments. Exercise caused major increases in blood flow to respiratory muscles, nonrespiratory limb muscles, and adipose tissue, and flow was decreased to some gastrointestinal tissues, spleen, pancreas, and to placental and nonplacental tissues in the pregnant uterus. Heat exposure had relatively little effect on these exercise-induced changes, except that flow was further increased in the respiratory muscles. Results are compared with those of a similar study on nonpregnant sheep in which changes in muscle, skin, and visceral flows during exercise were attenuated by heat exposure. It is suggested that redistribution of blood flow from the pregnant uterus, which in resting ewes took 22% of cardiac output, is a significant buffer against the potentially deleterious effects of combined exercise and heat stress on blood flow to exercising muscles and thermoregulatory tissues.

  5. Clinical Investigation Program.

    DTIC Science & Technology

    1979-10-01

    It has been established by a series of dog experiments using the-e-e-ctromagnetic flow meter that the blood flow in the inferior vena cava between...by thermodilution. Hepatic vein blood flow could be estimated by subtraction of the blood flow in the vena cava at the level of the renal veins from...the vena cava blood flow at the level of the diaphragm. This should be liver blood flow. It should be possible to sample pure hepatic vein blood by

  6. Brachial blood flow under relative levels of blood flow restriction is decreased in a nonlinear fashion.

    PubMed

    Mouser, J Grant; Ade, Carl J; Black, Christopher D; Bemben, Debra A; Bemben, Michael G

    2018-05-01

    Blood flow restriction (BFR), the application of external pressure to occlude venous return and restrict arterial inflow, has been shown to increase muscular size and strength when combined with low-load resistance exercise. BFR in the research setting uses a wide range of pressures, applying a pressure based upon an individual's systolic pressure or a percentage of occlusion pressure; not a directly determined reduction in blood flow. The relationship between relative pressure and blood flow has not been established. To measure blood flow in the arm under relative levels of BFR. Forty-five people (18-40 years old) participated. Arterial occlusion pressure in the right arm was measured using a 5-cm pneumatic cuff. Blood flow in the brachial artery was measured at rest and at pressures between 10% and 90% of occlusion using ultrasound. Blood flow decreased in a nonlinear, stepped fashion. Blood flow decreased at 10% of occlusion and remained constant until decreasing again at 40%, where it remained until 90% of occlusion. The decrease in brachial blood flow is not proportional to the applied relative pressure. The prescription of blood flow restriction should take into account the stimulus provided at each relative level of blood flow. © 2017 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  7. The Role of Neuronal Signaling in Controlling Cerebral Blood Flow

    ERIC Educational Resources Information Center

    Drake, Carrie T.; Iadecola, Costantino

    2007-01-01

    Well-regulated blood flow within the brain is vital to normal function. The brain's requirement for sufficient blood flow is ensured by a tight link between neural activity and blood flow. The link between regional synaptic activity and regional cerebral blood flow, termed functional hyperemia, is the basis for several modern imaging techniques…

  8. MULTI-LABORATORY STUDY OF FLOW-INDUCED HEMOLYSIS USING THE FDA BENCHMARK NOZZLE MODEL

    PubMed Central

    Herbertson, Luke H.; Olia, Salim E.; Daly, Amanda; Noatch, Christopher P.; Smith, William A.; Kameneva, Marina V.; Malinauskas, Richard A.

    2015-01-01

    Multilaboratory in vitro blood damage testing was performed on a simple nozzle model to determine how different flow parameters and blood properties affect device-induced hemolysis and to generate data for comparison with computational fluid dynamics-based predictions of blood damage as part of an FDA initiative for assessing medical device safety. Three independent laboratories evaluated hemolysis as a function of nozzle entrance geometry, flow rate, and blood properties. Bovine blood anticoagulated with acid citrate dextrose solution (2–80 h post-draw) was recirculated through nozzle-containing and paired nozzle-free control loops for 2 h. Controlled parameters included hematocrit (36 ± 1.5%), temperature (25°C), blood volume, flow rate, and pressure. Three nozzle test conditions were evaluated (n = 26–36 trials each): (i) sudden contraction at the entrance with a blood flow rate of 5 L/min, (ii) gradual cone at the entrance with a 6-L/min blood flow rate, and (iii) sudden-contraction inlet at 6 L/min. The blood damage caused only by the nozzle model was calculated by subtracting the hemolysis generated by the paired control loop test. Despite high intralaboratory variability, significant differences among the three test conditions were observed, with the sharp nozzle entrance causing the most hemolysis. Modified index of hemolysis (MIHnozzle) values were 0.292 ± 0.249, 0.021 ± 0.128, and 1.239 ± 0.667 for conditions i–iii, respectively. Porcine blood generated hemolysis results similar to those obtained with bovine blood. Although the interlaboratory hemolysis results are only applicable for the specific blood parameters and nozzle model used here, these empirical data may help to advance computational fluid dynamics models for predicting blood damage. PMID:25180887

  9. Computational Modeling of Blood Flow and Valve Dynamics in Hearts with Hypertrophic Cardiomyopathy

    NASA Astrophysics Data System (ADS)

    Zheng, Xudong; Mittal, Rajat; Abraham, Theodore; Pinheiro, Aurelio

    2010-11-01

    Hypertrophic Cardiomyopathy (HCM) is a cardiovascular disease manifested by the thickening of the ventricular wall and often leads to a partial obstruction to the blood flow out of the left ventricle. HCM is recognized as one of the most common causes of sudden cardiac death in athletes. In a heart with HCM, the hypertrophy usually narrows the blood flow pathway to the aorta and produces a low pressure zone between the mitral valve and the hypertrophy during systole. This low pressure can suck the mitral valve leaflet back and completely block the blood flow into the aorta. In the current study, a sharp interface immersed boundary method flow solver is employed to study the hemodynamics and valve dynamics inside a heart with HCM. The three-dimensional motion and configuration of the left ventricle including mitral valve leaflets and aortic valves are reconstructed based on echo-cardio data sets. The mechanisms of aortic obstruction associated with HCM are investigated. The long term objective of this study is to develop a computational tool to aid in the assessment and surgical management of HCM.

  10. Correlations between ovarian follicular blood flow and superovulatory responses in ewes.

    PubMed

    Oliveira, Maria E F; Feliciano, Marcus A R; D'Amato, Carla C; Oliveira, Luís G; Bicudo, Sony D; Fonseca, Jeferson F; Vicente, Wilter R R; Visco, Elise; Bartlewski, Pawel M

    2014-01-10

    The primary goal of this study was to employ ultrasonography to examine the ovaries of ewes undergoing superovulatory treatment for correlations between antral follicular blood flow and ovarian responses/embryo yields. Five Santa Inês ewes were subjected to a short- (Days 0-6, Group 1) and five to a long-term progesterone-based protocol (Days 0-12, Group 2) to synchronize estrus and ovulations after the superovulatory treatment. Porcine FSH (pFSH, 200mg) was administered in 8 decreasing doses over 4 days, starting on Days 4 and 10 in Groups 1 and 2, respectively. After CIDR removal, all ewes were bred by a ram and embryos were recovered surgically 7 days later. Transrectal ovarian ultrasonography was performed the day before and on all 4 days of the superovulatory treatment. Both an arbitrary-scale [(0) non-detectable; (1) small; (2) moderate; (3) intense blood flow] and quantitative analysis of the blood flow area were used to assess the follicular blood flow in color Doppler images. There were no significant correlations between the arbitrary blood flow scores and superovulatory responses in the ewes of the present study. However, there was a positive correlation between the quantitative estimates of follicular blood flow on the final day of the superovulatory treatment, and the number (DA: r=0.68, P<0.05; DA/TA×100%: r=0.85, P<0.05) and percentage (DA: r=0.65, P<0.05; DA/TA×100%: r=0.91, P<0.001) of unfertilized eggs (DA: Doppler area, TA: total area of the largest ovarian cross section). This experiment presents a commercially practical tool for predicting superovulatory outcomes in ewes and evidence for the existence of follicular blood flow threshold that may impinge negatively on oocyte quality when surpassed during hormonal ovarian superstimulation. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Application of intermittent negative pressure on the lower extremity and its effect on macro- and microcirculation in the foot of healthy volunteers.

    PubMed

    Sundby, Øyvind H; Høiseth, Lars Øivind; Mathiesen, Iacob; Jørgensen, Jørgen J; Weedon-Fekjær, Harald; Hisdal, Jonny

    2016-09-01

    Intermittent negative pressure (INP) applied to the lower leg and foot may increase peripheral circulation. However, it is not clear how different patterns of INP affect macro- and microcirculation in the foot. The aim of this study was therefore to determine the effect of different patterns of negative pressure on foot perfusion in healthy volunteers. We hypothesized that short periods with INP would elicit an increase in foot perfusion compared to no negative pressure. In 23 healthy volunteers, we continuously recorded blood flow velocity in a distal foot artery, skin blood flow, heart rate, and blood pressure during application of different patterns of negative pressure (-40 mmHg) to the lower leg. Each participant had their right leg inside an airtight chamber connected to an INP generator. After a baseline period at atmospheric pressure, we applied four different 120 sec sequences with either constant negative pressure or different INP patterns, in a randomized order. The results showed corresponding fluctuations in blood flow velocity and skin blood flow throughout the INP sequences. Blood flow velocity reached a maximum at 4 sec after the onset of negative pressure (average 44% increase above baseline, P < 0.001). Skin blood flow and skin temperature increased during all INP sequences (P < 0.001). During constant negative pressure, average blood flow velocity, skin blood flow, and skin temperature decreased (P < 0.001). In conclusion, we observed increased foot perfusion in healthy volunteers after the application of INP on the lower limb. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  12. Cerebral blood flow response to hypoglycemia is altered in patients with type 1 diabetes and impaired awareness of hypoglycemia

    PubMed Central

    Becker, Kirsten M; Rooijackers, Hanne M; von Samson-Himmelstjerna, Federico C; Tack, Cees J; Heerschap, Arend; de Galan, Bastiaan E; van der Graaf, Marinette

    2016-01-01

    It is unclear whether cerebral blood flow responses to hypoglycemia are altered in people with type 1 diabetes and impaired awareness of hypoglycemia. The aim of this study was to investigate the effect of hypoglycemia on both global and regional cerebral blood flow in type 1 diabetes patients with impaired awareness of hypoglycemia, type 1 diabetes patients with normal awareness of hypoglycemia and healthy controls (n = 7 per group). The subjects underwent a hyperinsulinemic euglycemic–hypoglycemic glucose clamp in a 3 T MR system. Global and regional changes in cerebral blood flow were determined by arterial spin labeling magnetic resonance imaging, at the end of both glycemic phases. Hypoglycemia generated typical symptoms in patients with type 1 diabetes and normal awareness of hypoglycemia and healthy controls, but not in patients with impaired awareness of hypoglycemia. Conversely, hypoglycemia increased global cerebral blood flow in patients with impaired awareness of hypoglycemia, which was not observed in the other two groups. Regionally, hypoglycemia caused a redistribution of cerebral blood flow towards the thalamus of both patients with normal awareness of hypoglycemia and healthy controls, consistent with activation of brain regions associated with the autonomic response to hypoglycemia. No such redistribution was found in the patients with impaired awareness of hypoglycemia. An increase in global cerebral blood flow may enhance nutrient supply to the brain, hence suppressing symptomatic awareness of hypoglycemia. Altogether these results suggest that changes in cerebral blood flow during hypoglycemia contribute to impaired awareness of hypoglycemia. PMID:27389175

  13. Vaginal blood flow after radical hysterectomy with and without nerve sparing. A preliminary report.

    PubMed

    Pieterse, Q D; Ter Kuile, M M; Deruiter, M C; Trimbos, J B M Z; Kenter, G G; Maas, C P

    2008-01-01

    Radical hysterectomy with pelvic lymphadenectomy (RHL) for cervical cancer causes damage to the autonomic nerves, which are responsible for increased vaginal blood flow during sexual arousal. The aim of the study of which we now report preliminary data was to determine whether a nerve-sparing technique leads to an objectively less disturbed vaginal blood flow response during sexual stimulation. Photoplethysmographic assessment of vaginal pulse amplitude (VPA) during sexual stimulation by erotic films was performed. Subjective sexual arousal was assessed after each stimulus. Thirteen women after conventional RHL, 10 women after nerve-sparing RHL, and 14 healthy premenopausal women participated. Data were collected between January and August 2006. The main outcome measure was the logarithmically transformed mean VPA. To detect statistically significant differences in mean VPA levels between the three groups, a univariate analysis of variance was used. Mean VPA differed between the three groups (P= 0.014). The conventional group had a lower vaginal blood flow response than the control group (P= 0.016), which tended also to be lower than that of the nerve-sparing group (P= 0.097). These differences were critically dependent on baseline vaginal blood flow differences between the groups. The conventional group follows a vaginal blood flow pattern similar to postmenopausal women. Conventional RHL is associated with an overall disturbed vaginal blood flow response compared with healthy controls. Because it is not observed to the same extent after nerve-sparing RHL, it seems that the nerve-sparing technique leads to a better overall vaginal blood flow caused by less denervation of the vagina.

  14. Evaluation of arterial digital blood flow using Doppler ultrasonography in healthy dairy cows.

    PubMed

    Müller, H; Heinrich, M; Mielenz, N; Reese, S; Steiner, A; Starke, A

    2017-06-06

    Local circulatory disturbances have been implicated in the development of foot disorders in cattle. The goals of this study were to evaluate the suitability of the interdigital artery in the pastern region in both hind limbs using pulsed-wave (PW) Doppler ultrasonography and to investigate quantitative arterial blood flow variables at that site in dairy cows. An Esaote MyLabOne ultrasound machine with a 10-MHz linear transducer was used to assess blood flow in the interdigital artery in the pastern region in both hind limbs of 22 healthy German Holstein cows. The cows originated from three commercial farms and were restrained in a standing hoof trimming chute without sedation. A PW Doppler signal suitable for analysis was obtained in 17 of 22 cows. The blood flow profiles were categorised into four curve types, and the following quantitative variables were measured in three uniform cardiac cycles: vessel diameter, pulse rate, maximum systolic velocity, maximum diastolic velocity, end-diastolic velocity, reverse velocity, maximum time-averaged mean velocity, blood flow rate, resistance index and persistence index. The measurements did not differ among cows from the three farms. Maximum systolic velocity, vessel diameter and pulse rate did not differ but other variables differed significantly among blood flow profiles. Differences in weight-bearing are thought to be responsible for the normal variability of blood flow profiles in healthy cows. The scanning technique used in this report for evaluation of blood flow in the interdigital artery appears suitable for further investigations in healthy and in lame cows.

  15. Cerebral microcirculation shear stress levels determine Neisseria meningitidis attachment sites along the blood–brain barrier

    PubMed Central

    Mairey, Emilie; Genovesio, Auguste; Donnadieu, Emmanuel; Bernard, Christine; Jaubert, Francis; Pinard, Elisabeth; Seylaz, Jacques; Olivo-Marin, Jean-Christophe; Nassif, Xavier; Duménil, Guillaume

    2006-01-01

    Neisseria meningitidis is a commensal bacterium of the human nasopharynx. Occasionally, this bacterium reaches the bloodstream and causes meningitis after crossing the blood–brain barrier by an unknown mechanism. An immunohistological study of a meningococcal sepsis case revealed that neisserial adhesion was restricted to capillaries located in low blood flow regions in the infected organs. This study led to the hypothesis that drag forces encountered by the meningococcus in the bloodstream determine its attachment site in vessels. We therefore investigated the ability of N. meningitidis to bind to endothelial cells in the presence of liquid flow mimicking the bloodstream with a laminar flow chamber. Strikingly, average blood flows reported for various organs strongly inhibited initial adhesion. As cerebral microcirculation is known to be highly heterogeneous, cerebral blood velocity was investigated at the level of individual vessels using intravital imaging of rat brain. In agreement with the histological study, shear stress levels compatible with meningococcal adhesion were only observed in capillaries, which exhibited transient reductions in flow. The flow chamber assay revealed that, after initial attachment, bacteria resisted high blood velocities and even multiplied, forming microcolonies resembling those observed in the septicemia case. These results argue that the combined mechanical properties of neisserial adhesion and blood microcirculation target meningococci to transiently underperfused cerebral capillaries and thus determine disease development. PMID:16864659

  16. Doppler optical coherence tomography of retinal circulation.

    PubMed

    Tan, Ou; Wang, Yimin; Konduru, Ranjith K; Zhang, Xinbo; Sadda, SriniVas R; Huang, David

    2012-09-18

    Noncontact retinal blood flow measurements are performed with a Fourier domain optical coherence tomography (OCT) system using a circumpapillary double circular scan (CDCS) that scans around the optic nerve head at 3.40 mm and 3.75 mm diameters. The double concentric circles are performed 6 times consecutively over 2 sec. The CDCS scan is saved with Doppler shift information from which flow can be calculated. The standard clinical protocol calls for 3 CDCS scans made with the OCT beam passing through the superonasal edge of the pupil and 3 CDCS scan through the inferonal pupil. This double-angle protocol ensures that acceptable Doppler angle is obtained on each retinal branch vessel in at least 1 scan. The CDCS scan data, a 3-dimensional volumetric OCT scan of the optic disc scan, and a color photograph of the optic disc are used together to obtain retinal blood flow measurement on an eye. We have developed a blood flow measurement software called "Doppler optical coherence tomography of retinal circulation" (DOCTORC). This semi-automated software is used to measure total retinal blood flow, vessel cross section area, and average blood velocity. The flow of each vessel is calculated from the Doppler shift in the vessel cross-sectional area and the Doppler angle between the vessel and the OCT beam. Total retinal blood flow measurement is summed from the veins around the optic disc. The results obtained at our Doppler OCT reading center showed good reproducibility between graders and methods (<10%). Total retinal blood flow could be useful in the management of glaucoma, other retinal diseases, and retinal diseases. In glaucoma patients, OCT retinal blood flow measurement was highly correlated with visual field loss (R(2)>0.57 with visual field pattern deviation). Doppler OCT is a new method to perform rapid, noncontact, and repeatable measurement of total retinal blood flow using widely available Fourier-domain OCT instrumentation. This new technology may improve the practicality of making these measurements in clinical studies and routine clinical practice.

  17. Renal cortical and medullary blood flow responses to altered NO availability in humans.

    PubMed

    Damkjær, Mads; Vafaee, Manoucher; Møller, Michael L; Braad, Poul Erik; Petersen, Henrik; Høilund-Carlsen, Poul Flemming; Bie, Peter

    2010-12-01

    The objective of this study was to quantify regional renal blood flow in humans. In nine young volunteers on a controlled diet, the lower abdomen was CT-scanned, and regional renal blood flow was determined by positron emission tomography (PET) scanning using H(2)(15)O as tracer. Measurements were performed at baseline, during constant intravenous infusion of nitric oxide (NO) donor glyceryl nitrate and after intravenous injection of NO synthase inhibitor N(ω)-monomethyl-L-arginine (L-NMMA). Using the CT image, the kidney pole areas were delineated as volumes of interest (VOI). In the data analysis, tissue layers with a thickness of one voxel were eliminated stepwise from the external surface of the VOI (voxel peeling), and the blood flow subsequently was determined in each new, reduced VOI. Blood flow in the shrinking VOIs decreased as the number of cycles of voxel peeling increased. After 4-5 cycles, blood flow was not reduced further by additional voxel peeling. This volume-insensitive flow was measured to be 2.30 ± 0.17 ml·g tissue(-1)·min(-1) during the control period; it increased during infusion of glyceryl nitrate to 2.97 ± 0.18 ml·g tissue(-1)·min(-1) (P < 0.05) and decreased after L-NMMA injection to 1.57 ± 0.17 ml·g tissue(-1)·min(-1) (P < 0.05). Cortical blood flow was 4.67 ± 0.31 ml·g tissue(-1)·min(-1) during control, unchanged by glyceryl nitrate, and decreased after L-NMMA [3.48 ± 0.23 ml·(g·min)(-1), P < 0.05]. PET/CT scanning allows identification of a renal medullary region in which the measured blood flow is 1) low, 2) independent of reduction in the VOI, and 3) reactive to changes in systemic NO supply. The technique seems to provide indices of renal medullary blood flow in humans.

  18. Assessment of blood flow with 68Ga-DOTA PET in experimental inflammation: a validation study using 15O-water

    PubMed Central

    Autio, Anu; Saraste, Antti; Kudomi, Nobuyuki; Saanijoki, Tiina; Johansson, Jarkko; Liljenbäck, Heidi; Tarkia, Miikka; Oikonen, Vesa; Sipilä, Hannu T; Roivainen, Anne

    2014-01-01

    Increased blood flow and vascular permeability are key events in inflammation. Based on the fact that Gadolinium-1,4,7,10-tetraazacyclododecane-N,N‘,N‘‘,N‘‘‘-tetraacetic acid (Gd-DOTA) is commonly used in magnetic resonance (MR) imaging of blood flow (perfusion), we evaluated the feasibility of its Gallium-68 labeled DOTA analog (68Ga-DOTA) for positron emission tomography (PET) imaging of blood flow in experimental inflammation. Adult, male Sprague-Dawley rats with turpentine oil induced sterile skin/muscle inflammation were anesthetized with isoflurane, and imaged under rest and adenosine-induced hyperemia by means of dynamic 2-min Oxygen-15 labeled water (H2 15O) and 30-min 68Ga-DOTA PET. For the quantification of PET data, regions of interest (ROIs) were defined in the focus of inflammation, healthy muscle, myocardium and heart left ventricle. Radioactivity concentration in the ROIs versus time after injection was determined for both tracers and blood flow was calculated using image-derived input. According to the H2 15O PET, blood flow was 0.69 ± 0.15 ml/min/g for inflammation and 0.15 ± 0.03 ml/min/g for muscle during rest. The blood flow remained unchanged during adenosine-induced hyperemia 0.67 ± 0.11 and 0.12 ± 0.03 ml/min/g for inflammation and muscle, respectively, indicating that adenosine has little effect on blood flow in peripheral tissues in rats. High focal uptake of 68Ga-DOTA was seen at the site of inflammation throughout the 30-min PET imaging. According to the 68Ga-DOTA PET, blood flow measured as the blood-to-tissue transport rate (K1) was 0.60 ± 0.07 ml/min/g for inflammation and 0.14 ± 0.06 ml/min/g for muscle during rest and 0.63 ± 0.08 ml/min/g for inflammation and 0.09 ± 0.04 ml/min/g for muscle during adenosine-induced hyperemia. The H2 15O-based blood flow and 68Ga-DOTA-based K1 values correlated well (r = 0.94, P < 0.0001). These results show that 68Ga-DOTA PET imaging is useful for the quantification of increased blood flow induced by inflammation. PMID:25250206

  19. Assessment of blood flow with (68)Ga-DOTA PET in experimental inflammation: a validation study using (15)O-water.

    PubMed

    Autio, Anu; Saraste, Antti; Kudomi, Nobuyuki; Saanijoki, Tiina; Johansson, Jarkko; Liljenbäck, Heidi; Tarkia, Miikka; Oikonen, Vesa; Sipilä, Hannu T; Roivainen, Anne

    2014-01-01

    Increased blood flow and vascular permeability are key events in inflammation. Based on the fact that Gadolinium-1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid (Gd-DOTA) is commonly used in magnetic resonance (MR) imaging of blood flow (perfusion), we evaluated the feasibility of its Gallium-68 labeled DOTA analog ((68)Ga-DOTA) for positron emission tomography (PET) imaging of blood flow in experimental inflammation. Adult, male Sprague-Dawley rats with turpentine oil induced sterile skin/muscle inflammation were anesthetized with isoflurane, and imaged under rest and adenosine-induced hyperemia by means of dynamic 2-min Oxygen-15 labeled water (H2 (15)O) and 30-min (68)Ga-DOTA PET. For the quantification of PET data, regions of interest (ROIs) were defined in the focus of inflammation, healthy muscle, myocardium and heart left ventricle. Radioactivity concentration in the ROIs versus time after injection was determined for both tracers and blood flow was calculated using image-derived input. According to the H2 (15)O PET, blood flow was 0.69 ± 0.15 ml/min/g for inflammation and 0.15 ± 0.03 ml/min/g for muscle during rest. The blood flow remained unchanged during adenosine-induced hyperemia 0.67 ± 0.11 and 0.12 ± 0.03 ml/min/g for inflammation and muscle, respectively, indicating that adenosine has little effect on blood flow in peripheral tissues in rats. High focal uptake of (68)Ga-DOTA was seen at the site of inflammation throughout the 30-min PET imaging. According to the (68)Ga-DOTA PET, blood flow measured as the blood-to-tissue transport rate (K1) was 0.60 ± 0.07 ml/min/g for inflammation and 0.14 ± 0.06 ml/min/g for muscle during rest and 0.63 ± 0.08 ml/min/g for inflammation and 0.09 ± 0.04 ml/min/g for muscle during adenosine-induced hyperemia. The H2 (15)O-based blood flow and (68)Ga-DOTA-based K1 values correlated well (r = 0.94, P < 0.0001). These results show that (68)Ga-DOTA PET imaging is useful for the quantification of increased blood flow induced by inflammation.

  20. Investigation of pumping mechanism for non-Newtonian blood flow with AC electrothermal forces in a microchannel by hybrid boundary element method and immersed boundary-lattice Boltzmann method.

    PubMed

    Ren, Qinlong

    2018-02-10

    Efficient pumping of blood flow in a microfluidic device is essential for rapid detection of bacterial bloodstream infections (BSI) using alternating current (AC) electrokinetics. Compared with AC electro-osmosis (ACEO) phenomenon, the advantage of AC electrothermal (ACET) mechanism is its capability of pumping biofluids with high electrical conductivities at a relatively high AC voltage frequency. In the current work, the microfluidic pumping of non-Newtonian blood flow using ACET forces is investigated in detail by modeling its multi-physics process with hybrid boundary element method (BEM) and immersed boundary-lattice Boltzmann method (IB-LBM). The Carreau-Yasuda model is used to simulate the realistic rheological behavior of blood flow. The ACET pumping efficiency of blood flow is studied in terms of different AC voltage magnitudes and frequencies, thermal boundary conditions of electrodes, electrode configurations, channel height, and the channel length per electrode pair. Besides, the effect of rheological behavior on the blood flow velocity is theoretically analyzed by comparing with the Newtonian fluid flow using scaling law analysis under the same physical conditions. The results indicate that the rheological behavior of blood flow and its frequency-dependent dielectric property make the pumping phenomenon of blood flow different from that of the common Newtonian aqueous solutions. It is also demonstrated that using a thermally insulated electrode could enhance the pumping efficiency dramatically. Besides, the results conclude that increasing the AC voltage magnitude is a more economical pumping approach than adding the number of electrodes with the same energy consumption when the Joule heating effect is acceptable. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Measurement of blood flow through the retinal circulation of the cat during normoxia and hypoxemia using fluorescent microspheres.

    PubMed

    Ahmed, J; Pulfer, M K; Linsenmeier, R A

    2001-09-01

    The most successful method for measuring absolute blood flow rate through the retinal circulation has been the use of radioactive microspheres. The purpose of this study was to develop a microsphere method that did not have the drawbacks associated with radioactivity and to use this method to make measurements of retinal blood flow in the cat. Blood flow measurements were made by injecting 15-microm-diameter polystyrene microspheres into the left ventricle of anesthetized, artificially ventilated cats. These microspheres were labeled with one of three fluorescent dyes. Retinal blood flow measurements were made by determining the number of spheres that were embedded in the retina and comparing them to the number found in a reference sample. Spheres in the retina were counted by making retinal whole mounts and taking retinal images with a CCD camera mounted on an epifluorescence microscope equipped with filter sets appropriate for imaging the dyes used to label the spheres. Blood flow measurements made under normal conditions showed a mean retinal blood flow of 19.8 +/- 12.4 ml/min 100 g tissue (mean +/- SD; n = 15 cats). Since the retinal circulation perfuses only the inner half of the retina, the effective flow rate in that region is about twice this value. RBF increased during hypoxemia (P(a)O2 < 42 mm Hg) to 336% of the normoxic value on average. Analysis of sphere deposition patterns showed that the central retina had a higher blood flow than the peripheral retina, although this difference was significant only during hypoxemia. We conclude that even with a relatively small number of spheres deposited in the retina, the technique can reveal important properties of the retinal circulation. Copyright 2001 Academic Press.

  2. [Regional blood flow and bone uptake of methylene-diphosphonate-technetium-99m].

    PubMed

    Vattimo, A; Martini, G; Pisani, M

    1983-05-30

    Sudeck's atrophy of the foot is an acute, patchy osteoporosis that, on bone scan, shows an increase in both bone blood flow and local bone uptake of bone-seeking radionuclides. The purpose of this study was to evaluate the relationship between bone uptake of 99mTc-MDP and local bone blood flow. In some patients with Sudeck's atrophy of one foot we measured local bone blood flow and bone uptake of 99mTc-MDP. External counting of radioactivity, with a count-rate of 1 second was performed for 60 minutes after i.v. injection of a known dose of 99mTc-MDP in some patients with Sudeck's atrophy of the foot. The regions of interest (ROI) were selected on the basis of a bone scan performed 24 hours earlier. We assumed that the data recorded during the first seconds (7-10) reflect local blood flow and the data at 60 minutes reflect the bone uptake. The ratio between the local blood flow in the involved and healthy foot was higher than the local bone uptake ratio. The ratio between bone uptake and local bone blood flow was higher in the normal foot than in the affected one. These results suggest that the bone avidity for bone-seeking radionuclides is lower in Sudeck's atrophy than in normal bone.

  3. Renal sympathetic nerve, blood flow, and epithelial transport responses to thermal stress.

    PubMed

    Wilson, Thad E

    2017-05-01

    Thermal stress is a profound sympathetic stress in humans; kidney responses involve altered renal sympathetic nerve activity (RSNA), renal blood flow, and renal epithelial transport. During mild cold stress, RSNA spectral power but not total activity is altered, renal blood flow is maintained or decreased, and epithelial transport is altered consistent with a sympathetic stress coupled with central volume loaded state. Hypothermia decreases RSNA, renal blood flow, and epithelial transport. During mild heat stress, RSNA is increased, renal blood flow is decreased, and epithelial transport is increased consistent with a sympathetic stress coupled with a central volume unloaded state. Hyperthermia extends these directional changes, until heat illness results. Because kidney responses are very difficult to study in humans in vivo, this review describes and qualitatively evaluates an in vivo human skin model of sympathetically regulated epithelial tissue compared to that of the nephron. This model utilizes skin responses to thermal stress, involving 1) increased skin sympathetic nerve activity (SSNA), decreased skin blood flow, and suppressed eccrine epithelial transport during cold stress; and 2) increased SSNA, skin blood flow, and eccrine epithelial transport during heat stress. This model appears to mimic aspects of the renal responses. Investigations of skin responses, which parallel certain renal responses, may aid understanding of epithelial-sympathetic nervous system interactions during cold and heat stress. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Effects of lornoxicam and intravenous ibuprofen on erythrocyte deformability and hepatic and renal blood flow in rats.

    PubMed

    Arpacı, Hande; Çomu, Faruk Metin; Küçük, Ayşegül; Kösem, Bahadır; Kartal, Seyfi; Şıvgın, Volkan; Turgut, Hüseyin Cihad; Aydın, Muhammed Enes; Koç, Derya Sebile; Arslan, Mustafa

    2016-01-01

    Change in blood supply is held responsible for anesthesia-related abnormal tissue and organ perfusion. Decreased erythrocyte deformability and increased aggregation may be detected after surgery performed under general anesthesia. It was shown that nonsteroidal anti-inflammatory drugs decrease erythrocyte deformability. Lornoxicam and/or intravenous (iv) ibuprofen are commonly preferred analgesic agents for postoperative pain management. In this study, we aimed to investigate the effects of lornoxicam (2 mg/kg, iv) and ibuprofen (30 mg/kg, iv) on erythrocyte deformability, as well as hepatic and renal blood flows, in male rats. Eighteen male Wistar albino rats were randomly divided into three groups as follows: iv lornoxicam-treated group (Group L), iv ibuprofen-treated group (Group İ), and control group (Group C). Drug administration was carried out by the iv route in all groups except Group C. Hepatic and renal blood flows were studied by laser Doppler, and euthanasia was performed via intra-abdominal blood uptake. Erythrocyte deformability was measured using a constant-flow filtrometry system. Lornoxicam and ibuprofen increased the relative resistance, which is an indicator of erythrocyte deformability, of rats (P=0.016). Comparison of the results from Group L and Group I revealed no statistically significant differences (P=0.694), although the erythrocyte deformability levels in Group L and Group I were statistically higher than the results observed in Group C (P=0.018 and P=0.008, respectively). Hepatic and renal blood flows were significantly lower than the same in Group C. We believe that lornoxicam and ibuprofen may lead to functional disorders related to renal and liver tissue perfusion secondary to both decreased blood flow and erythrocyte deformability. Further studies regarding these issues are thought to be essential.

  5. Twelve-hour reproducibility of retinal and optic nerve blood flow parameters in healthy individuals.

    PubMed

    Luksch, Alexandra; Lasta, Michael; Polak, Kaija; Fuchsjäger-Mayrl, Gabriele; Polska, Elzbieta; Garhöfer, Gerhard; Schmetterer, Leopold

    2009-11-01

    The aim of the present study was to investigate the reproducibility and potential diurnal variation of optic nerve head and retinal blood flow parameters in healthy individuals over a period of 12 hr. We measured optic nerve head and retinal blood flow parameters in 16 healthy male non-smoking individuals at five time-points during the day (08:00, 11:00, 14:00, 17:00 and 20:00 hr). Outcome parameters were perimacular white blood cell flux (as assessed with the blue field entoptic technique), blood velocities in retinal veins (as assessed with bi-directional laser Doppler velocimetry), retinal arterial and venous diameters (as assessed with the retinal vessel analyser), optic nerve head blood flow, volume and velocity (as assessed with single point and scanning laser Doppler flowmetry) and blood velocities in the central retinal artery (as assessed with colour Doppler imaging). The coefficient of variation and the maximum change from baseline in an individual were calculated for each outcome parameter. No diurnal variation in optic nerve head or retinal blood flow was observed with any of the techniques employed. Coefficients of variation were between 1.6% and 18.5% for all outcome parameters. The maximum change from baseline in an individual was much higher, ranging from 3.7% to 78.2%. Our data indicate that in healthy individuals the selected techniques provide adequate reproducibility to be used in clinical studies. However, in patients with eye diseases and reduced vision the reproducibility may be considerably worse.

  6. Effects of bisoprolol and cilazapril on the central retinal artery blood flow in patients with essential hypertension—preliminary results

    PubMed Central

    2010-01-01

    Background A growing body of evidence suggests that effective blood pressure reduction may inhibit the progression of microvascular damage in patients with essential arterial hypertension. However, the potential influence of anti-hypertensive drugs on ocular circulation has not been studied sufficiently. Purpose The aim of our study was to evaluate the effects of anti-hypertensive therapy on blood flow in the central retinal artery in patients with systemic arterial hypertension. Material and methods Twenty patients with essential arterial hypertension, aged 32–46 years, were examined with Doppler ultrasonography (10 MHz ultrasound probe). Blood flow velocities, pulsatility, and vascular resistance were determined before and 3 hours after systemic application of either bisoprolol 5 mg or cilazapril 2.5 mg. Results Administered bisoprolol significantly decreased maximum (9.8 ± 0.5 cm/s versus 8.5 ± 0.6 cm/s; P < 0.05) and minimum (2.75 ± 0.19 cm/s versus 1.75 ± 0.27 cm/s; P < 0.02) velocity, increased the Pourcellot's index (0.71 to 0.79; P < 0.05) in central retinal artery. There were no statistically significant changes in central retinal artery blood flow after administration of cilazapril. Conclusion Systemic application of beta-blockers may unfavourably disturb the ocular blood flow. PMID:20858158

  7. Designing and Constructing an Optical Monitoring System of Blood Supply to Tissues under Pressure.

    PubMed

    Hadi, Akbari; Amin, Younessi Heravi Mohammad

    2012-04-01

    Reduced blood flow due to obstruction is in most cases a primary factor in pressure ulcer formation and creation of bedsores. The aim of this study is to design and manufacture a care system for tissue under pressure, based on variations in blood flow at different depths of tissue. In the manufacture of the system two infrared light transmitters and receivers were located between 5 and 10 mm depth to measure the flow of blood at different in the under- pressure heel tissue. In addition, blood flow was evaluated in an unloaded and loaded condition, with 30 mmHg and 60.0 mmHg. A total of 15 people participated with a mean age of 50. Of these 15; 9 (60%) were men and 6 (40%) were women. Primary measurement results showed different individual differences in variation of blood flow in the tissue. To study signal amplitude changes significantly influenced by external pressure the PPG, P-value was measured. It was noted that there were significant changes in PPG signal amplitude during loading both pressures of 30 and 60 mmHg. Further development of this system would be possible with the use of a more flexible probe and by using a stronger optical receiver and transmitter to access more depth.

  8. Using optical fibers with different modes to improve the signal-to-noise ratio of diffuse correlation spectroscopy flow-oximeter measurements

    PubMed Central

    He, Lian; Lin, Yu; Shang, Yu; Shelton, Brent J.

    2013-01-01

    Abstract. The dual-wavelength diffuse correlation spectroscopy (DCS) flow-oximeter is an emerging technique enabling simultaneous measurements of blood flow and blood oxygenation changes in deep tissues. High signal-to-noise ratio (SNR) is crucial when applying DCS technologies in the study of human tissues where the detected signals are usually very weak. In this study, single-mode, few-mode, and multimode fibers are compared to explore the possibility of improving the SNR of DCS flow-oximeter measurements. Experiments on liquid phantom solutions and in vivo muscle tissues show only slight improvements in flow measurements when using the few-mode fiber compared with using the single-mode fiber. However, light intensities detected by the few-mode and multimode fibers are increased, leading to significant SNR improvements in detections of phantom optical property and tissue blood oxygenation. The outcomes from this study provide useful guidance for the selection of optical fibers to improve DCS flow-oximeter measurements. PMID:23455963

  9. Cerebral hemodynamics before and after shunting in normal pressure hydrocephalus.

    PubMed

    Bakker, S L M; Boon, A J W; Wijnhoud, A D; Dippel, D W J; Delwel, E J; Koudstaal, P J

    2002-09-01

    To study the relationship between cerebral hemodynamics and clinical performance in normal pressure hydrocephalus (NPH), before and after surgery. Ten patients were studied prospectively before and 3 months after shunt surgery by means of transcranial Doppler (TCD). Clinical performance was scored by means of an NPH scale and the modified Rankin scale. Peak systolic and mean cerebral blood flow velocity (MCV) were lower and cerebrovascular CO2 reactivity was higher after shunt surgery. The three patients with clinical improvement had higher preoperative end diastolic cerebral blood flow velocity and MCV. All postoperative cerebral blood flow velocities were higher in patients with clinical improvement. Our data suggest that higher cerebral blood flow velocity before surgery in patients with NPH is related to clinical improvement after shunt surgery. Cerebral hemodynamic parameters may develop into predictors of successful shunt surgery in patients with normal pressure hydrocephalus.

  10. Effect of Isometric Hand Grip Exercises on Blood Flow and Placement of IV Catheters for Administration of Chemotherapy.

    PubMed

    Ozkaraman, Ayse; Yesilbalkan, Öznur Usta

    2016-04-01

    Complications may occur in the subcutaneous or subdermal tissues during IV administration of chemotherapy related to blood flow and catheter placement. Daily isometric hand grip exercises were evaluated for their effect on blood flow in the vessels of the nondominant arm before placement of IV catheters and the success rate of IV catheter placement on the first attempt. The study focused on patients with non-Hodgkin lymphoma receiving the first and second cycles of chemotherapy. The intervention group performed daily isometric hand grip exercises before chemotherapy with peripheral catheter insertion. The control group performed routine activities only. Blood flow was measured by ultrasound in the brachial artery (BA) and brachial vein (BV) of the nondominant arm before the first (T1) and second (T2) cycles of chemotherapy. Blood flow slightly increased in the intervention group at T2 compared to T1. In the control group, blood flow decreased in the BA and did not change in the BV at T2 compared to T1. The success rate for first-attempt placement of a peripheral IV catheter was the same for the intervention and control groups.

  11. Betahistine metabolites, aminoethylpyridine, and hydroxyethylpyridine increase cochlear blood flow in guinea pigs in vivo.

    PubMed

    Bertlich, Mattis; Ihler, Fritz; Sharaf, Kariem; Weiss, Bernhard G; Strupp, Michael; Canis, Martin

    2014-10-01

    Betahistine is a histamine-like drug that is used in the treatment of Ménière's disease. It is commonly believed that betahistine increases cochlear blood flow and thus decreases the endolymphatic hydrops that is the cause of Ménière's. Despite common clinical use, there is little understanding of the kinetics or effects of its metabolites. This study investigated the effect of the betahistine metabolites aminoethylpyridine, hydroxyethylpyridine, and pyridylacetic acid on cochlear microcirculation. Guinea pigs were randomly assigned to one of the groups: placebo, betahistine, or equimolar amounts of aminoethylpyridine, hydroxyethylpyridine, or pyridylacetic acid. Cochlear blood flow and mean arterial pressure were recorded for three minutes before and 15 minutes after treatment. Thirty Dunkin-Hartley guinea pigs assigned to one of five groups with six guinea pigs per group. Betahistine, aminoethylpyridine, and hydroxyethylpyridine caused a significant increase in cochlear blood flow in comparison to placebo. The effect seen under aminoethylpyridin was greatest. The group treated with pyridylacetic acid showed no significant effect on cochlear blood flow. Aminoethylpyridine and hydroxyethylpyridine are, like betahistine, able to increase cochlear blood flow significantly. The effect of aminoethylpyridine was greatest. Pyridylacetic acid had no effect on cochlear microcirculation.

  12. Urea clearance: a new technique based on microdialysis to assess liver blood flow studied in a pig model of ischemia/reperfusion.

    PubMed

    Farnebo, S; Winbladh, A; Zettersten, E K; Sandström, P; Gullstrand, P; Samuelsson, A; Theodorson, E; Sjöberg, F

    2010-01-01

    Delayed detection of ischemia is one of the most feared postoperative complications. Early detection of impaired blood flow and close monitoring of the organ-specific metabolic status may therefore be critical for the surgical outcome. Urea clearance is a new technique for continuous monitoring of alterations in blood flow and metabolic markers with acceptable temporal characteristics. We compare this new microdialysis technique with the established microdialysis ethanol technique to assess hepatic blood flow. Six pigs were used in a liver ischemia/reperfusion injury model. Microdialysis catheters were placed in liver segment IV and all circulation was stopped for 80 min, followed by reperfusion for 220 min. Urea and ethanol clearance was calculated from the dialysate and correlated with metabolic changes. A laser Doppler probe was used as reference of restoration of blood flow. Both urea and ethanol clearance reproducibly depicted changes in liver blood flow in relation to metabolic changes and laser Doppler measurements. The two techniques highly correlated both overall and during the reperfusion phase (r = 0.8) and the changes were paralleled by altered perfusion as recorded by laser Doppler. Copyright © 2010 S. Karger AG, Basel.

  13. Carbon dioxide water-bath treatment augments peripheral blood flow through the development of angiogenesis.

    PubMed

    Xu, Yan-Jun; Elimban, Vijayan; Dhalla, Naranjan S

    2017-08-01

    In this study, we investigated the effects of CO 2 water-bath therapy on blood flow and angiogenesis in the ischemic hind limb, as well as some plasma angiogenic factors in peripheral ischemic model. The hind limb ischemia was induced by occluding the femoral artery for 2 weeks in rats and treated with or without CO 2 water-bath therapy at 37 °C for 4 weeks (20 min treatment every day for 5 days per week). The peak blood flow and minimal and mean blood flow in the ischemic skeletal muscle were markedly increased by the CO 2 water-bath therapy. This increase in blood flow was associated with development of angiogenesis in the muscle, as well as reduction in the ischemia-induced increase in plasma malondialdehyde levels. Although plasma vascular endothelial growth factor and nitric oxide levels were increased in animals with peripheral ischemia, the changes in these biomarkers were not affected by CO 2 water-bath therapy. These results suggest that augmentation of blood flow in the ischemic hind limb by CO 2 water-bath therapy may be due to the development of angiogenesis and reduction in oxidative stress.

  14. Perfusion information extracted from resting state functional magnetic resonance imaging.

    PubMed

    Tong, Yunjie; Lindsey, Kimberly P; Hocke, Lia M; Vitaliano, Gordana; Mintzopoulos, Dionyssios; Frederick, Blaise deB

    2017-02-01

    It is widely known that blood oxygenation level dependent (BOLD) contrast in functional magnetic resonance imaging (fMRI) is an indirect measure for neuronal activations through neurovascular coupling. The BOLD signal is also influenced by many non-neuronal physiological fluctuations. In previous resting state (RS) fMRI studies, we have identified a moving systemic low frequency oscillation (sLFO) in BOLD signal and were able to track its passage through the brain. We hypothesized that this seemingly intrinsic signal moves with the blood, and therefore, its dynamic patterns represent cerebral blood flow. In this study, we tested this hypothesis by performing Dynamic Susceptibility Contrast (DSC) MRI scans (i.e. bolus tracking) following the RS scans on eight healthy subjects. The dynamic patterns of sLFO derived from RS data were compared with the bolus flow visually and quantitatively. We found that the flow of sLFO derived from RS fMRI does to a large extent represent the blood flow measured with DSC. The small differences, we hypothesize, are largely due to the difference between the methods in their sensitivity to different vessel types. We conclude that the flow of sLFO in RS visualized by our time delay method represents the blood flow in the capillaries and veins in the brain.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barry, D.I.; Paulson, O.B.; Jarden, J.O.

    Cerebrovascular effects of the angiotensin converting enzyme inhibitor captopril were examined in normotensive and hypertensive rats. Cerebral blood flow was measured with the intracarotid /sup 133/xenon injection method in halothane-anesthetized animals. The blood-brain barrier permeability of captopril (determined with an integral-uptake method) was negligible, the permeability-surface area product in most brain regions being 1 X 10(-5) cm3/g per second, that is, three to four times lower than that of sodium ion. When administered into the cerebral ventricles to bypass the blood-brain barrier, captopril had no effect on cerebral blood flow: furthermore, cerebral blood flow autoregulation (studied by raising and loweringmore » blood pressure) was identical to that in controls. In contrast, when given intravenously, captopril had a marked effect on cerebral blood flow autoregulation--both the lower and upper limits of autoregulation being shifted to a lower pressure (by about 20 to 30 and 50 to 60 mm Hg, respectively), and the autoregulatory range was shortened by about 40 mm Hg. This effect may be ascribed to inhibition of converting enzyme in the cerebral blood vessels rather than within the brain.« less

  16. Evaluation of the impeller shroud performance of an axial flow ventricular assist device using computational fluid dynamics.

    PubMed

    Su, Boyang; Chua, Leok P; Lim, Tau M; Zhou, Tongming

    2010-09-01

    Generally, there are two types of impeller design used in the axial flow blood pumps. For the first type, which can be found in most of the axial flow blood pumps, the magnet is embedded inside the impeller hub or blades. For the second type, the magnet is embedded inside the cylindrical impeller shroud, and this design has not only increased the rotating stability of the impeller but has also avoided the flow interaction between the impeller blade tip and the pump casing. Although the axial flow blood pumps with either impeller design have been studied individually, the comparisons between these two designs have not been conducted in the literature. Therefore, in this study, two axial flow blood pumps with and without impeller shrouds were numerically simulated with computational fluid dynamics and compared with each other in terms of hydraulic and hematologic performances. For the ease of comparison, these two models have the same inner components, which include a three-blade straightener, a two-blade impeller, and a three-blade diffuser. The simulation results showed that the model with impeller shroud had a lower static pressure head with a lower hydraulic efficiency than its counterpart. It was also found that the blood had a high possibility to deposit on the impeller shroud inner surface, which greatly enhanced the possibility of thrombus formation. The blood damage indices in both models were around 1%, which was much lower than the 13.1% of the axial flow blood pump of Yano et al. with the corresponding experimental hemolysis of 0.033 g/100 L. © 2010, Copyright the Authors. Artificial Organs © 2010, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  17. A study of renal blood flow regulation using the discrete wavelet transform

    NASA Astrophysics Data System (ADS)

    Pavlov, Alexey N.; Pavlova, Olga N.; Mosekilde, Erik; Sosnovtseva, Olga V.

    2010-02-01

    In this paper we provide a way to distinguish features of renal blood flow autoregulation mechanisms in normotensive and hypertensive rats based on the discrete wavelet transform. Using the variability of the wavelet coefficients we show distinctions that occur between the normal and pathological states. A reduction of this variability in hypertension is observed on the microscopic level of the blood flow in efferent arteriole of single nephrons. This reduction is probably associated with higher flexibility of healthy cardiovascular system.

  18. Analysis of Hepatic Blood Flow Using Chaotic Models

    PubMed Central

    Cohen, M. E.; Moazamipour, H.; Hudson, D. L.; Anderson, M. F.

    1990-01-01

    The study of chaos in physical systems is an important new theoretical development in modeling which has emerged in the last fifteen years. It is particularly useful in explaining phenomena which arise in nonlinear dynamic systems, for which previous mathematical models produced results with intractable solutions. Analysis of blood flow is such an application. In the work described here, chaotic models are used to analyze hepatic artery and portal vein blood flow obtained from a pulsed Doppler ultrasonic flowmeter implanted in dogs. ImagesFigure 3

  19. Penile blood flow by xenon-133 washout

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haden, H.T.; Katz, P.G.; Mulligan, T.

    1989-06-01

    Penile erectile failure is often attributed to abnormalities of vascular supply or drainage, but few direct measurements of penile blood flow have been made. We describe the xenon washout method for measurement of penile blood flow, and present the results obtained in a group of normal and impotent subjects. The procedure was performed with standard nuclear imaging equipment. Flaccid-state penile blood flow in the impotent patients studied was not significantly different from the normal group, suggesting that flaccid-state measurements may not be helpful in evaluation of erectile failure. However, this method can be used to measure penile venous outflow withmore » stimulated or induced erection, and may provide a method for detecting abnormal venous leakage.« less

  20. A Microfluidics-based Pulpal Arteriole Blood Flow Phantom for Validation of Doppler Ultrasound Devices in Pulpal Blood Flow Velocity Measurement.

    PubMed

    Kim, Dohyun; Park, Sung-Ho

    2016-11-01

    Recently, Doppler ultrasound has been used for the measurement of pulpal blood flow in human teeth. However, the reliability of this method has not been verified. In this study, we developed a model to simulate arteriole blood flow within the dental pulp by using microfluidics. This arteriole simulator, or flow phantom, was used to determine the reliability of measurements obtained by using a Doppler ultrasound device. A microfluidic chip was fabricated by using the soft lithography technique, and blood-mimicking fluid was pumped through the channel by a microfluidic system. A Doppler ultrasound device was used for the measurement of flow velocity. The peak, mean, and minimal flow velocities obtained from the phantom and the Doppler ultrasound device were compared by using linear regression analysis and Pearson correlation coefficient. Bland-Altman analyses were performed to evaluate the velocity differences between the flow generated by the phantom and the flow measurements made with the Doppler ultrasound device. The microfluidic system was able to generate the flow profiles as intended, and the fluid flow could be monitored and controlled by the software program. There were excellent linear correlations between the peak, mean, and minimal flow velocities of the phantom and those of the Doppler ultrasound device (r = 0.94-0.996, P < .001). However, the velocities were overestimated by the Doppler ultrasound device. This phantom provides opportunities for research and education involving the Doppler ultrasound technique in dentistry. Although Doppler ultrasound can be an effective tool for the measurement of pulpal blood flow velocity, it is essential to validate and calibrate the device before clinical use. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  1. Analysis of the Magnetic Field Influence on the Rheological Properties of Healthy Persons Blood

    PubMed Central

    Nawrocka-Bogusz, Honorata

    2013-01-01

    The influence of magnetic field on whole blood rheological properties remains a weakly known phenomenon. An in vitro analysis of the magnetic field influence on the rheological properties of healthy persons blood is presented in this work. The study was performed on blood samples taken from 25 healthy nonsmoking persons and included comparative analysis of the results of both the standard rotary method (flow curve measurement) and the oscillatory method known also as the mechanical dynamic analysis, performed before and after exposition of blood samples to magnetic field. The principle of the oscillatory technique lies in determining the amplitude and phase of the oscillations of the studied sample subjected to action of a harmonic force of controlled amplitude and frequency. The flow curve measurement involved determining the shear rate dependence of blood viscosity. The viscoelastic properties of the blood samples were analyzed in terms of complex blood viscosity. All the measurements have been performed by means of the Contraves LS40 rheometer. The data obtained from the flow curve measurements complemented by hematocrit and plasma viscosity measurements have been analyzed using the rheological model of Quemada. No significant changes of the studied rheological parameters have been found. PMID:24078918

  2. What determines blood vessel structure? Genetic prespecification vs. hemodynamics.

    PubMed

    Jones, Elizabeth A V; le Noble, Ferdinand; Eichmann, Anne

    2006-12-01

    Vascular network remodeling, angiogenesis, and arteriogenesis play an important role in the pathophysiology of ischemic cardiovascular diseases and cancer. Based on recent studies of vascular network development in the embryo, several novel aspects to angiogenesis have been identified as crucial to generate a functional vascular network. These aspects include specification of arterial and venous identity in vessels and network patterning. In early embryogenesis, vessel identity and positioning are genetically hardwired and involve neural guidance genes expressed in the vascular system. We demonstrated that, during later stages of embryogenesis, blood flow plays a crucial role in regulating vessel identity and network remodeling. The flow-evoked remodeling process is dynamic and involves a high degree of vessel plasticity. The open question in the field is how genetically predetermined processes in vessel identity and patterning balance with the contribution of blood flow in shaping a functional vascular architecture. Although blood flow is essential, it remains unclear to what extent flow is able to act on the developing cardiovascular system. There is significant evidence that mechanical forces created by flowing blood are biologically active within the embryo and that the level of mechanical forces and the type of flow patterns present in the embryo are able to affect gene expression. Here, we highlight the pivotal role for blood flow and physical forces in shaping the cardiovascular system.

  3. Hemostatic action of OC-108, a novel agent for hemorrhoids, is associated with regional blood flow arrest induced by acute inflammation.

    PubMed

    Ono, Takashi; Nakagawa, Haruto; Fukunari, Atsushi; Hashimoto, Toshio; Komatsu, Hirotsugu

    2006-11-01

    Clinically, hemorrhoidal bleeding and prolapse disappeared immediately after injection of the sclerosing agent OC-108 into submucosa of hemorrhoids. The aim of this study was to elucidate the mechanism of action responsible for the immediate hemostatic effect of OC-108 using anesthetized rats. Subcutaneous injection of OC-108 in rats decreased blood flow at the injection site within 5 min. Aluminum potassium sulfate, one of the main ingredients of OC-108, reduced the skin blood flow. However, tannic acid, another main ingredient, did not. By perfusion of OC-108 on the mesenteric surface, microcirculatory blood flow was arrested without remarkable change in blood vessel diameter, accompanied by increased vascular permeability and venous hematocrit. These results indicate that OC-108 induces regional blood flow arrest with rapid onset, this effect being attributed to the action of aluminum potassium sulfate, and that hemoconcentration due to increased vascular permeability (plasma extravasation), an acute inflammatory reaction, is involved in the mechanisms of the immediate hemostatic action of OC-108.

  4. Pulsatile Flow and Gas Transport of Blood over an Array of Cylinders

    NASA Astrophysics Data System (ADS)

    Chan, Kit Yan

    2005-11-01

    In the artificial lung, blood passes through an array of micro-fibers and the gas transfer is strongly dependent on the flow field. The blood flow is unsteady and pulsatile. We have numerically simulated pulsatile flow and gas transfer of blood (modeled as a Casson fluid) over arrays of cylindrical micro-fibers. Oxygen and carbon dioxide are assumed to be in local equilibrium with hemoglobin in blood; and the carbon dioxide facilitated oxygen transport is incorporated into the model by allowing the coupling of carbon dioxide partial pressure and oxygen saturation. The pulsatile flow inputs considered are the sinusoidal and the cardiac waveforms. The squared and staggered arrays of arrangement of the cylinders are considered in this study. Gas transport can be enhanced by: increasing the oscillation frequency; increasing the Reynolds number; increasing the oscillation amplitude; decreasing the void fraction; the use of the cardiac pulsatile input. The overall gas transport is greatly enhanced by the presence of hemoglobin in blood even though the non-Newtonian effect of blood tends to decrease the size and strength of vortices. The pressure drop is also presented as it is an important design parameter confronting the heart.

  5. A study of the blood flow restriction pressure of a tourniquet system to facilitate development of a system that can prevent musculoskeletal complications.

    PubMed

    Maeda, Hiroyuki; Iwase, Hideaki; Kanda, Akio; Morohashi, Itaru; Kaneko, Kazuo; Maeda, Mutsuhiro; Kakinuma, Yuki; Takei, Yusuke; Amemiya, Shota; Mitsui, Kazuyuki

    2017-01-01

    After an emergency or disaster, subsequent trauma can cause severe bleeding and this can often prove fatal, so promptly stopping that bleeding is crucial to preventing avoidable trauma deaths. A tourniquet is often used to restrict blood flow to an extremity. In operation and hospital, the tourniquet systems currently in use are pneumatically actuated by an air compressor, so they must have a steady power supply. These devices have several drawbacks: they vibrate and are noisy since they are pneumatically actuated and they are far from portable since they are large and heavy. Presumably, the drawbacks of pneumatic tourniquets could be overcome by developing a small, lightweight, vibration-free, quiet, and battery-powered tourniquet system. The current study built a small, vibration-free electrohydrodynamic (EHD) pump and then used that pump to restrict blood flow to the leg of rats in an experiment. This study explored the optimal conditions for effective restriction of blood flow by assessing biochemical and musculoskeletal complications following the restriction of blood flow, and this study also examined whether or not an EHD pump could be used to actuate a tourniquet system. A tourniquet cuff (width 12 mm × length 150 mm, material: polyolefin) was placed on the thigh of Wistar rats and pressure was applied for 2 hours by a device that uses EHD phenomena to generate pressure (an EHD pump). Animals were divided into four groups based on how much compressive pressure was applied with a tourniquet: 40 kPa (300 mm Hg, n = 13), 30 kPa (225 mm Hg, n = 12), 20 kPa (150 mm Hg, n = 15), or 0 kPa (controls, n = 25). Tissue oxygen saturation (regional oxygen saturation, denoted here as rSO 2 ) was measured to assess the restriction of blood flow. To assess behavior once blood flow resumed, animal activity was monitored for third day and the amount of movement was counted with digital counters. Body weight was measured before and after the behavioral experiment, and changes in body weight were determined. Blood was sampled after a behavioral experiment and biochemically assessed and creatine kinase (CK) levels were measured. Tissue oxygen saturation decreased significantly in each group. When a tourniquet was applied at a pressure of 30 kPa or more, tissue oxygen saturation decreased significantly. The amount of movement (the count) over third day decreased more when a tourniquet was applied at a higher pressure. The control group resumed the same amount of movement per day second after blood flow resumed. Animals to which a tourniquet was applied at a pressure of 20 or 30 kPa resumed the same amount of movement third day after blood flow resumed. In contrast, animals to which a tourniquet was applied at a pressure of 40 kPa did not resume the same amount of movement third day after blood flow resumed. After the behavioral experiment, animals to which a tourniquet was applied at a pressure of 40 kPa had a significantly lower body weight in comparison to the control group. After the behavioral experiment, animals to which a tourniquet was applied at a pressure of 40 kPa had significantly elevated CK levels in comparison to the control group. A relationship between blood flow restriction pressure and tissue oxygen saturation was noted. rSO 2 measurement can be used to assess the restriction of blood flow during surgery. On the basis of the decrease in rSO 2 , blood flow was effectively restricted at a pressure of 30 kPa or more. When, however, blood flow was restricted at a pressure of 40 kPa, weight loss and decreased movement were noted and CK levels increased after the behavioral experiment. Thus, complications had presumably developed due to damage to muscle tissue. These findings indicate that blood flow was effectively restricted in this experiment and they also indicate the existence of an optimal blood flow restriction pressure that does not cause musculoskeletal complications. The pressure in question was around 30 kPa. The tourniquet system that was developed here is actuated with an EHD pump that is still in the trial stages. That said, its pressure can readily be controlled and this pump could be used in a tourniquet system since it is quiet, vibration-free, and small. The pressure of this pump can be finely adjusted to prevent musculoskeletal complications.

  6. Theoretical study on the constricted flow phenomena in arteries

    NASA Astrophysics Data System (ADS)

    Sen, S.; Chakravarty, S.

    2012-12-01

    The present study is dealt with the constricted flow characteristics of blood in arteries by making use of an appropriate mathematical model. The constricted artery experiences the generated wall shear stress due to flow disturbances in the presence of constriction. The disturbed flow in the stenosed arterial segment causes malfunction of the cardiovascular system leading to serious health problems in the form of heart attack and stroke. The flowing blood contained in the stenosed artery is considered to be non-Newtonian while the flow is treated to be two-dimensional. The present pursuit also accounts for the motion of the arterial wall and its effect on local fluid mechanics. The flow analysis applies the time-dependent, two-dimensional incompressible nonlinear Navier-Stokes equations for non-Newtonian fluid representing blood. An extensive quantitative analysis presented at the end of the paper based on large scale numerical computations of the quantities of major physiological significance enables one to estimate the constricted flow characteristics in the arterial system under consideration which deviates significantly from that of normal physiological flow conditions.

  7. Effects of ischemic stroke on dynamics of cerebral autoregulation

    NASA Astrophysics Data System (ADS)

    Chen, Zhi; Ivanov, Plamen Ch; Hu, Kun; Stanley, Eugene; Novak, Vera

    2004-03-01

    Cerebral vasoregulation involves several complex mechanisms adapting blood flow to fluctuations of systemic blood pressure (BP). Autonomic BP and metabolic vasoregulation are impaired after stroke and cerebral blood flow depends on systemic BP. To probe the mechanisms of cerebral autoregulation we study levels of nonlinear synchronization between cerebral blood flow velocity (BFV) and peripheral BP. We quantify the instantaneous phase of each signal employing analytic signal approach and Hilbert transform. As a marker of synchronization, we introduce a measure of cross-correlation between the instantaneous phase increments of the BFV and BP signals at different time lags. We have studied 12 subjects with minor chronic ischemic stroke and 11 matched normotensive controls (age<65years). BFV and BP of these subjects are continuously recorded during supine baseline, head-up tilt, hyperventilation and CO2 rebreathing. For control subjects we find significant synchronization between cerebral BFV and peripheral BP only for short time lags of up to 5-6 seconds, suggesting a rapid return to a steady cerebral blood flow after initial blood pressure perturbations. In contrast, for stroke subjects BFV/BP we find enhanced synchronization over longer time lags of up to 20 seconds, suggesting entrainment of cerebral blood flow velocity by slow vasomotor rhythms. These findings suggest that cerebral vasoregulation is impaired and cerebral blood flow follows the fluctuations of systemic BP in a synchronous manner. Our analysis shows that cerebral autoregulation is impaired in 10 out of the 12 stroke subjects, which is typically difficult to diagnose with conventional methods. Thus, our novel synchronization approach offers a new tool sensitive for evaluation of changes in the dynamics of cerebral autoregulation under stroke.

  8. Vasopressin-induced changes in splanchnic blood flow and hepatic and portal venous pressures in liver resection.

    PubMed

    Bown, L Sand; Ricksten, S-E; Houltz, E; Einarsson, H; Söndergaard, S; Rizell, M; Lundin, S

    2016-05-01

    To minimize blood loss during hepatic surgery, various methods are used to reduce pressure and flow within the hepato-splanchnic circulation. In this study, the effect of low- to moderate doses of vasopressin, a potent splanchnic vasoconstrictor, on changes in portal and hepatic venous pressures and splanchnic and hepato-splanchnic blood flows were assessed in elective liver resection surgery. Twelve patients were studied. Cardiac output (CO), stroke volume (SV), mean arterial (MAP), central venous (CVP), portal venous (PVP) and hepatic venous pressures (HVP) were measured, intraoperatively, at baseline and during vasopressin infusion at two infusion rates (2.4 and 4.8 U/h). From arterial and venous blood gases, the portal (splanchnic) and hepato-splanchnic blood flow changes were calculated, using Fick's equation. CO, SV, MAP and CVP increased slightly, but significantly, while systemic vascular resistance and heart rate remained unchanged at the highest infusion rate of vasopressin. PVP was not affected by vasopressin, while HVP increased slightly. Vasopressin infusion at 2.4 and 4.8 U/h reduced portal blood flow (-26% and -37%, respectively) and to a lesser extent hepato-splanchnic blood flow (-9% and -14%, respectively). The arterial-portal vein lactate gradient was not significantly affected by vasopressin. Postoperative serum creatinine was not affected by vasopressin. Short-term low to moderate infusion rates of vasopressin induced a splanchnic vasoconstriction without metabolic signs of splanchnic hypoperfusion or subsequent renal impairment. Vasopressin caused a centralization of blood volume and increased cardiac output. Vasopressin does not lower portal or hepatic venous pressures in this clinical setting. © 2016 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  9. Influence of Intradialytic Aerobic Training in Cerebral Blood Flow and Cognitive Function in Patients with Chronic Kidney Disease: A Pilot Randomized Controlled Trial.

    PubMed

    Stringuetta Belik, Fernanda; Oliveira E Silva, Viviana Rugolo; Braga, Gabriel Pereira; Bazan, Rodrigo; Perez Vogt, Barbara; Costa Teixeira Caramori, Jacqueline; Barretti, Pasqual; de Souza Gonçalves, Renato; Fortes Villas Bôas, Paulo José; Hueb, João Carlos; Martin, Luis Cuadrado; da Silva Franco, Roberto Jorge

    2018-06-07

    Changes in cerebral blood flow may play an important role in cognitive impairment among hemodialysis (HD) patients. Physical activity has a promising role in delaying cognitive impairment in general population, but there are only a few studies in HD to confirm this finding. We aimed to evaluate the effects of intradialytic aerobic training on cerebral blood flow and cognitive impairment in HD. This is a pilot, controlled, randomized trial. Fifteen patients underwent intradialytic aerobic training 3 times a week for 4 months. The control group was comprised of another 15 patients. Trained patients had a statistically significant improvement of cognitive impairment and basilar maximum blood flow velocity. The proportion of arteries with increased flow velocity was statistically significant between groups. Intradialytic aerobic training improves cognitive impairment and cerebral blood flow of patients in HD, suggesting a possible mechanism improving cognitive impairment by physical training in HD. These data still need to be confirmed by major trials. © 2018 S. Karger AG, Basel.

  10. Study of blood flow sensing with microwave radiometry

    NASA Technical Reports Server (NTRS)

    Porter, R. A.; Wentz, F. J., III

    1973-01-01

    A study and experimental investigation has been performed to determine the feasibility of measuring regional blood flow and volume in man by means of microwave radiometry. An indication was expected of regional blood flow from measurement of surface and subsurface temperatures with a sensitive radiometer. Following theoretical modeling of biological tissue, to determine the optimum operating frequency for adequate sensing depth, a sensitive microwave radiometer was designed for operation at 793 MHz. A temperature sensitivity of of 0.06 K rms was realized in this equipment. Measurements performed on phantom tissue models, consisting of beef fat and lean beefsteak showed that the radiometer was capable of sensing temperatures from a depth between 3.8 and 5.1 cm. Radiometric and thermodynamic temperature measurements were also performed on the hind thighs of large dogs. These showed that the radiometer could sense subsurface temperatures from a depth of, at least, 1.3 cm. Delays caused by externally-generated RF interference, coupled with the lack of reliable blood flow measurement equipment, prevented correlation of radiometer readings with reginal blood flow. For the same reasons, it was not possible to extend the radiometric observations to human subjects.

  11. Relationship between vertebral artery blood flow in different head positions and vertigo.

    PubMed

    Araz Server, Ela; Edizer, Deniz Tuna; Yiğit, Özgür; Yasak, Ahmet Görkem; Erdim, Çağrı

    2018-01-01

    To identify the vertebral artery blood flow in different head positions in patients with positional vertigo with no specific diagnosis. Patients with history of vestibular symptoms associated with changes in head position were enrolled into the study. Healthy volunteers were evaluated as control group. Doppler ultrasonography examination of the cervical segment of the vertebral arteries was performed under three different head positions: (i) supine position, (ii) head hyperextended and rotated to the right side and (iii) head hyperextended and rotated to the left side. In the study group, right and left vertebral artery blood flow was significantly lower in the ipsilateral hyperextended position compared to standard supine position (respectively p = .014; p = .001), but did not differ significantly when compared between the standard supine and contralateral hyperextended positions (respectively = .959; p = .669). In the control group, left and right vertebral artery blood flow did not differ significantly when the head was hyperextended to the right or left sides compared to standard supine position (p > .05). Our data demonstrated that the etiology of vestibular complaints in patients with undiagnosed positional vertigo might be related to impairment in vertebral artery blood flow according to head positions.

  12. Evaluation of Renal Blood Flow and Oxygenation in CKD Using Magnetic Resonance Imaging.

    PubMed

    Khatir, Dinah S; Pedersen, Michael; Jespersen, Bente; Buus, Niels H

    2015-09-01

    Animal studies suggest that progression of chronic kidney disease (CKD) is related to renal hypoxia. With renal blood supply determining oxygen delivery and sodium absorption being the main contributor to oxygen consumption, we describe the relationship between renal oxygenation, renal artery blood flow, and sodium absorption in patients with CKD and healthy controls. Cross-sectional study. 62 stable patients with CKD stages 3 to 4 (mean age, 61±13 [SD] years) and 24 age- and sex-matched controls. CKD versus control status. Renal artery blood flow, tissue oxygenation (relative changes in deoxyhemoglobin concentration of the renal medulla [MR2*] and cortex [CR2*]), and sodium absorption. Renal artery blood flow was determined by phase-contrast magnetic resonance imaging (MRI); MR2* and CR2* were determined by blood oxygen level-dependent MRI. Ultrafiltered and reabsorbed sodium were determined from measured glomerular filtration rate (mGFR) and 24-hour urine collections. mGFR in patients was 37% that of controls (36±15 vs 97±23 mL/min/1.73 m(2); P < 0.001), and reabsorbed sodium was 37% that of controls (6.9 vs 19.1 mol/24 h; P < 0.001). Single-kidney patient renal artery blood flow was 72% that of controls (319 vs 443 mL/min; P < 0.001). Glomerular filtration fraction was 9% in patients and 18% in controls (P < 0.001). Patients and controls had similar CR2* (13.4 vs 13.3 s(-1)) and medullary MR2* (26.4 vs 26.5 s(-1)) values. Linear regression analysis demonstrated no associations between R2* and renal artery blood flow or sodium absorption. Increasing arterial blood oxygen tension by breathing 100% oxygen had very small effects on CR2*, but reduced MR2* in both groups. Only renal artery blood flow was determined and thus regional perfusion could not be related to CR2* or MR2*. In CKD, reductions of mGFR and reabsorbed sodium are more than double that of renal artery blood flow, whereas cortical and medullary oxygenation are within the range of healthy persons. Reduction in glomerular filtration fraction may prevent renal hypoxia in CKD. Copyright © 2015 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  13. Cerebral responses to exercise and the influence of heat stress in human fatigue.

    PubMed

    Robertson, Caroline V; Marino, Frank E

    2017-01-01

    There are a number of mechanisms thought to be responsible for the onset of fatigue during exercise-induced hyperthermia. A greater understanding of the way in which fatigue develops during exercise could be gleaned from the studies which have examined the maintenance of cerebral blood flow through the process of cerebral autoregulation. Given that cerebral blood flow is a measure of the cerebral haemodynamics, and might reflect a level of brain activation, it is useful to understand the implications of this response during exercise and in the development of fatigue. It is known that cerebral blood flow is significantly altered under certain conditions such as altitude and exacerbated during exercise induced - hyperthermia. In this brief review we consider the processes of cerebral autoregulation predominantly through the measurement of cerebral blood flow and contrast these responses between exercise undertaken in normothermic versus heat stress conditions in order to draw some conclusions about the role cerebral blood flow might play in determining fatigue. Copyright © 2016. Published by Elsevier Ltd.

  14. Transthoracic Ultrafast Doppler Imaging of Human Left Ventricular Hemodynamic Function

    PubMed Central

    Osmanski, Bruno-Félix; Maresca, David; Messas, Emmanuel; Tanter, Mickael; Pernot, Mathieu

    2016-01-01

    Heart diseases can affect intraventricular blood flow patterns. Real-time imaging of blood flow patterns is challenging because it requires both a high frame rate and a large field of view. To date, standard Doppler techniques can only perform blood flow estimation with high temporal resolution within small regions of interest. In this work, we used ultrafast imaging to map in 2D human left ventricular blood flow patterns during the whole cardiac cycle. Cylindrical waves were transmitted at 4800 Hz with a transthoracic phased array probe to achieve ultrafast Doppler imaging of the left ventricle. The high spatio-temporal sampling of ultrafast imaging permits to rely on a much more effective wall filtering and to increase sensitivity when mapping blood flow patterns during the pre-ejection, ejection, early diastole, diastasis and late diastole phases of the heart cycle. The superior sensitivity and temporal resolution of ultrafast Doppler imaging makes it a promising tool for the noninvasive study of intraventricular hemodynamic function. PMID:25073134

  15. Cerebral oxygenation in the beach chair position for shoulder surgery in regional anesthesia: impact on cerebral blood flow and neurobehavioral outcome.

    PubMed

    Aguirre, José A; Märzendorfer, Olivia; Brada, Muriel; Saporito, Andrea; Borgeat, Alain; Bühler, Philipp

    2016-12-01

    Beach chair position is considered a potential risk factor for central neurological events particularly if combined with low blood pressure. The aim of this study was to assess the impact of regional anesthesia on cerebral blood flow and neurobehavioral outcome. This is a prospective, assessor-blinded observational study evaluating patients in the beach chair position undergoing shoulder surgery under regional anesthesia. University hospital operating room. Forty patients with American Society of Anesthesiologists classes I-II physical status scheduled for elective shoulder surgery. Cerebral saturation and blood flow of the middle cerebral artery were measured prior to anesthesia and continued after beach chair positioning until discharge to the postanesthesia care unit. The anesthesiologist was blinded for these values. Controlled hypotension with systolic blood pressure≤100mm Hg was maintained during surgery. Neurobehavioral tests and values of regional cerebral saturation, bispectral index, the mean maximal blood flow of the middle cerebral artery, and invasive blood pressure were measured prior to regional anesthesia, and measurements were repeated after placement of the patient on the beach chair position and every 20 minutes thereafter until discharge to postanesthesia care unit. The neurobehavioral tests were repeated the day after surgery. The incidence of cerebral desaturation events was 5%. All patients had a significant blood pressure drop 5 minutes after beach chair positioning, measured at the heart as well as the acoustic meatus levels, when compared with baseline values (P<.05). There was no decrease in either the regional cerebral saturation (P=.136) or the maximal blood flow of the middle cerebral artery (P=.212) at the same time points. Some neurocognitive tests showed an impairment 24 hours after surgery (P<.001 for 2 of 3 tests). Beach chair position in patients undergoing regional anesthesia for shoulder surgery had no major impact on cerebral blood flow and cerebral oxygenation. However, some impact on neurobehavioral outcome 24 hours after surgery was observed. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Local viscosity distribution in bifurcating microfluidic blood flows

    NASA Astrophysics Data System (ADS)

    Kaliviotis, E.; Sherwood, J. M.; Balabani, S.

    2018-03-01

    The red blood cell (RBC) aggregation phenomenon is majorly responsible for the non-Newtonian nature of blood, influencing the blood flow characteristics in the microvasculature. Of considerable interest is the behaviour of the fluid at the bifurcating regions. In vitro experiments, using microchannels, have shown that RBC aggregation, at certain flow conditions, affects the bluntness and skewness of the velocity profile, the local RBC concentration, and the cell-depleted layer at the channel walls. In addition, the developed RBC aggregates appear unevenly distributed in the outlets of these channels depending on their spatial distribution in the feeding branch, and on the flow conditions in the outlet branches. In the present work, constitutive equations of blood viscosity, from earlier work of the authors, are applied to flows in a T-type bifurcating microchannel to examine the local viscosity characteristics. Viscosity maps are derived for various flow distributions in the outlet branches of the channel, and the location of maximum viscosity magnitude is obtained. The viscosity does not appear significantly elevated in the branches of lower flow rate as would be expected on the basis of the low shear therein, and the maximum magnitude appears in the vicinity of the junction, and towards the side of the outlet branch with the higher flow rate. The study demonstrates that in the branches of lower flow rate, the local viscosity is also low, helping us to explain why the effects of physiological red blood cell aggregation have no adverse effects in terms of in vivo vascular resistance.

  17. Functional morphology and patterns of blood flow in the heart of Python regius.

    PubMed

    Starck, J Matthias

    2009-06-01

    Brightness-modulated ultrasonography, continuous-wave Doppler, and pulsed-wave Doppler-echocardiography were used to analyze the functional morphology of the undisturbed heart of ball pythons. In particular, the action of the muscular ridge and the atrio-ventricular valves are key features to understand how patterns of blood flow emerge from structures directing blood into the various chambers of the heart. A step-by-step image analysis of echocardiographs shows that during ventricular diastole, the atrio-ventricular valves block the interventricular canals so that blood from the right atrium first fills the cavum venosum, and blood from the left atrium fills the cavum arteriosum. During diastole, blood from the cavum venosum crosses the muscular ridge into the cavum pulmonale. During middle to late systole the muscular ridge closes, thus prohibiting further blood flow into the cavum pulmonale. At the same time, the atrio-ventricular valves open the interventricular canal and allow blood from the cavum arteriosum to flow into the cavum venosum. In the late phase of ventricular systole, all blood from the cavum pulmonale is pressed into the pulmonary trunk; all blood from the cavum venosum is pressed into both aortas. Quantitative measures of blood flow volume showed that resting snakes bypass the pulmonary circulation and shunt about twice the blood volume into the systemic circulation as into the pulmonary circulation. When digesting, the oxygen demand of snakes increased tremendously. This is associated with shunting more blood into the pulmonary circulation. The results of this study allow the presentation of a detailed functional model of the python heart. They are also the basis for a functional hypothesis of how shunting is achieved. Further, it was shown that shunting is an active regulation process in response to changing demands of the organism (here, oxygen demand). Finally, the results of this study support earlier reports about a dual pressure circulation in Python regius.

  18. Environmental cold exposure increases blood flow and affects pain sensitivity in the knee joints of CFA-induced arthritic mice in a TRPA1-dependent manner.

    PubMed

    Fernandes, Elizabeth S; Russell, Fiona A; Alawi, Khadija M; Sand, Claire; Liang, Lihuan; Salamon, Robin; Bodkin, Jennifer V; Aubdool, Aisah A; Arno, Matthew; Gentry, Clive; Smillie, Sarah-Jane; Bevan, Stuart; Keeble, Julie E; Malcangio, Marzia; Brain, Susan D

    2016-01-11

    The effect of cold temperature on arthritis symptoms is unclear. The aim of this study was to investigate how environmental cold affects pain and blood flow in mono-arthritic mice, and examine a role for transient receptor potential ankyrin 1 (TRPA1), a ligand-gated cation channel that can act as a cold sensor. Mono-arthritis was induced by unilateral intra-articular injection of complete Freund's adjuvant (CFA) in CD1 mice, and in mice either lacking TRPA1 (TRPA1 KO) or respective wildtypes (WT). Two weeks later, nociception and joint blood flow were measured following exposure to 10 °C (1 h) or room temperature (RT). Primary mechanical hyperalgesia in the knee was measured by pressure application apparatus; secondary mechanical hyperalgesia by automated von Frey system; thermal hyperalgesia by Hargreaves technique, and weight bearing by the incapacitance test. Joint blood flow was recorded by full-field laser perfusion imager (FLPI) and using clearance of (99m)Technetium. Blood flow was assessed after pretreatment with antagonists of either TRPA1 (HC-030031), substance P neurokinin 1 (NK1) receptors (SR140333) or calcitonin gene-related peptide (CGRP) (CGRP8-37). TRPA1, TAC-1 and CGRP mRNA levels were examined in dorsal root ganglia, synovial membrane and patellar cartilage samples. Cold exposure caused bilateral primary mechanical hyperalgesia 2 weeks after CFA injection, in a TRPA1-dependent manner. In animals maintained at RT, clearance techniques and FLPI showed that CFA-treated joints exhibited lower blood flow than saline-treated joints. In cold-exposed animals, this reduction in blood flow disappears, and increased blood flow in the CFA-treated joint is observed using FLPI. Cold-induced increased blood flow in CFA-treated joints was blocked by HC-030031 and not observed in TRPA1 KOs. Cold exposure increased TRPA1 mRNA levels in patellar cartilage, whilst reducing it in synovial membranes from CFA-treated joints. We provide evidence that environmental cold exposure enhances pain and increases blood flow in a mono-arthritis model. These changes are dependent on TRPA1. Thus, TRPA1 may act locally within the joint to influence blood flow via sensory nerves, in addition to its established nociceptive actions.

  19. Sex differences with aging in nutritive skeletal muscle blood flow: impact of exercise training, nitric oxide, and α-adrenergic-mediated mechanisms

    PubMed Central

    La Favor, Justin D.; Kraus, Raymond M.; Carrithers, Jonathan A.; Roseno, Steven L.; Gavin, Timothy P.

    2014-01-01

    The incidence of cardiovascular disease increases progressively with age, but aging may affect men and women differently. Age-associated changes in vascular structure and function may manifest in impaired nutritive blood flow, although the regulation of nutritive blood flow in healthy aging is not well understood. The purpose of this study was to determine if nitric oxide (NO)-mediated or α-adrenergic-mediated regulation of nutritive skeletal muscle blood flow is impaired with advanced age, and if exercise training improves age-related deficiencies. Nutritive blood flow was monitored in the vastus lateralis of healthy young and aged men and women via the microdialysis-ethanol technique prior to and following seven consecutive days of exercise training. NO-mediated and α-adrenergic-mediated regulation of nutritive blood flow was assessed by microdialysis perfusion of acetylcholine, sodium nitroprusside, NG-monomethyl-l-arginine, norepinephrine, or phentolamine. Pretraining nutritive blood flow was attenuated in aged compared with young women (7.39 ± 1.5 vs. 15.5 ± 1.9 ml·100 g−1·min−1, P = 0.018), but not aged men (aged 13.5 ± 3.7 vs. young 9.4 ± 1.3 ml·100 g−1·min−1, P = 0.747). There were no age-associated differences in NO-mediated or α-adrenergic-mediated nutritive blood flow. Exercise training increased resting nutritive blood flow only in young men (9.4 ± 1.3 vs. 19.7 ml·100 g−1·min−1, P = 0.005). The vasodilatory effect of phentolamine was significantly reduced following exercise training only in young men (12.3 ± 6.14 vs. −3.68 ± 3.26 ml·100 g−1·min−1, P = 0.048). In conclusion, the age-associated attenuation of resting nutritive skeletal muscle blood flow was specific to women, while the exercise-induced alleviation of α-adrenergic mediated vasoconstriction that was specific to young men suggests an age-associated modulation of the sympathetic response to exercise training. PMID:24951753

  20. Sex differences with aging in nutritive skeletal muscle blood flow: impact of exercise training, nitric oxide, and α-adrenergic-mediated mechanisms.

    PubMed

    La Favor, Justin D; Kraus, Raymond M; Carrithers, Jonathan A; Roseno, Steven L; Gavin, Timothy P; Hickner, Robert C

    2014-08-15

    The incidence of cardiovascular disease increases progressively with age, but aging may affect men and women differently. Age-associated changes in vascular structure and function may manifest in impaired nutritive blood flow, although the regulation of nutritive blood flow in healthy aging is not well understood. The purpose of this study was to determine if nitric oxide (NO)-mediated or α-adrenergic-mediated regulation of nutritive skeletal muscle blood flow is impaired with advanced age, and if exercise training improves age-related deficiencies. Nutritive blood flow was monitored in the vastus lateralis of healthy young and aged men and women via the microdialysis-ethanol technique prior to and following seven consecutive days of exercise training. NO-mediated and α-adrenergic-mediated regulation of nutritive blood flow was assessed by microdialysis perfusion of acetylcholine, sodium nitroprusside, N(G)-monomethyl-L-arginine, norepinephrine, or phentolamine. Pretraining nutritive blood flow was attenuated in aged compared with young women (7.39 ± 1.5 vs. 15.5 ± 1.9 ml·100 g(−1)·min(−1), P = 0.018), but not aged men (aged 13.5 ± 3.7 vs. young 9.4 ± 1.3 ml·100 g(−1)·min(−1), P = 0.747). There were no age-associated differences in NO-mediated or α-adrenergic-mediated nutritive blood flow. Exercise training increased resting nutritive blood flow only in young men (9.4 ± 1.3 vs. 19.7 ml·100 g(−1)·min(−1), P = 0.005). The vasodilatory effect of phentolamine was significantly reduced following exercise training only in young men (12.3 ± 6.14 vs. −3.68 ± 3.26 ml·100 g(−1)·min(−1), P = 0.048). In conclusion, the age-associated attenuation of resting nutritive skeletal muscle blood flow was specific to women, while the exercise-induced alleviation of α-adrenergic mediated vasoconstriction that was specific to young men suggests an age-associated modulation of the sympathetic response to exercise training.

  1. Skin blood flow and local temperature independently modify sweat rate during passive heat stress in humans.

    PubMed

    Wingo, Jonathan E; Low, David A; Keller, David M; Brothers, R Matthew; Shibasaki, Manabu; Crandall, Craig G

    2010-11-01

    Sweat rate (SR) is reduced in locally cooled skin, which may result from decreased temperature and/or parallel reductions in skin blood flow. The purpose of this study was to test the hypotheses that decreased skin blood flow and decreased local temperature each independently attenuate sweating. In protocols I and II, eight subjects rested supine while wearing a water-perfused suit for the control of whole body skin and internal temperatures. While 34°C water perfused the suit, four microdialysis membranes were placed in posterior forearm skin not covered by the suit to manipulate skin blood flow using vasoactive agents. Each site was instrumented for control of local temperature and measurement of local SR (capacitance hygrometry) and skin blood flow (laser-Doppler flowmetry). In protocol I, two sites received norepinephrine to reduce skin blood flow, while two sites received Ringer solution (control). All sites were maintained at 34°C. In protocol II, all sites received 28 mM sodium nitroprusside to equalize skin blood flow between sites before local cooling to 20°C (2 sites) or maintenance at 34°C (2 sites). In both protocols, individuals were then passively heated to increase core temperature ~1°C. Both decreased skin blood flow and decreased local temperature attenuated the slope of the SR to mean body temperature relationship (2.0 ± 1.2 vs. 1.0 ± 0.7 mg·cm(-2)·min(-1)·°C(-1) for the effect of decreased skin blood flow, P = 0.01; 1.2 ± 0.9 vs. 0.07 ± 0.05 mg·cm(-2)·min(-1)·°C(-1) for the effect of decreased local temperature, P = 0.02). Furthermore, local cooling delayed the onset of sweating (mean body temperature of 37.5 ± 0.4 vs. 37.6 ± 0.4°C, P = 0.03). These data demonstrate that local cooling attenuates sweating by independent effects of decreased skin blood flow and decreased local skin temperature.

  2. Modeling microcirculatory blood flow: current state and future perspectives.

    PubMed

    Gompper, Gerhard; Fedosov, Dmitry A

    2016-01-01

    Microvascular blood flow determines a number of important physiological processes of an organism in health and disease. Therefore, a detailed understanding of microvascular blood flow would significantly advance biophysical and biomedical research and its applications. Current developments in modeling of microcirculatory blood flow already allow to go beyond available experimental measurements and have a large potential to elucidate blood flow behavior in normal and diseased microvascular networks. There exist detailed models of blood flow on a single cell level as well as simplified models of the flow through microcirculatory networks, which are reviewed and discussed here. The combination of these models provides promising prospects for better understanding of blood flow behavior and transport properties locally as well as globally within large microvascular networks. © 2015 Wiley Periodicals, Inc.

  3. Automated segmentation of blood-flow regions in large thoracic arteries using 3D-cine PC-MRI measurements.

    PubMed

    van Pelt, Roy; Nguyen, Huy; ter Haar Romeny, Bart; Vilanova, Anna

    2012-03-01

    Quantitative analysis of vascular blood flow, acquired by phase-contrast MRI, requires accurate segmentation of the vessel lumen. In clinical practice, 2D-cine velocity-encoded slices are inspected, and the lumen is segmented manually. However, segmentation of time-resolved volumetric blood-flow measurements is a tedious and time-consuming task requiring automation. Automated segmentation of large thoracic arteries, based solely on the 3D-cine phase-contrast MRI (PC-MRI) blood-flow data, was done. An active surface model, which is fast and topologically stable, was used. The active surface model requires an initial surface, approximating the desired segmentation. A method to generate this surface was developed based on a voxel-wise temporal maximum of blood-flow velocities. The active surface model balances forces, based on the surface structure and image features derived from the blood-flow data. The segmentation results were validated using volunteer studies, including time-resolved 3D and 2D blood-flow data. The segmented surface was intersected with a velocity-encoded PC-MRI slice, resulting in a cross-sectional contour of the lumen. These cross-sections were compared to reference contours that were manually delineated on high-resolution 2D-cine slices. The automated approach closely approximates the manual blood-flow segmentations, with error distances on the order of the voxel size. The initial surface provides a close approximation of the desired luminal geometry. This improves the convergence time of the active surface and facilitates parametrization. An active surface approach for vessel lumen segmentation was developed, suitable for quantitative analysis of 3D-cine PC-MRI blood-flow data. As opposed to prior thresholding and level-set approaches, the active surface model is topologically stable. A method to generate an initial approximate surface was developed, and various features that influence the segmentation model were evaluated. The active surface segmentation results were shown to closely approximate manual segmentations.

  4. CT perfusion for determination of pharmacologically mediated blood flow changes in an animal tumor model.

    PubMed

    Hakimé, Antoine; Peddi, Himaja; Hines-Peralta, Andrew U; Wilcox, Carol J; Kruskal, Jonathan; Lin, Shezhang; de Baere, Thierry; Raptopoulos, Vassilios D; Goldberg, S Nahum

    2007-06-01

    To prospectively compare single- and multisection computed tomographic (CT) perfusion for tumor blood flow determination in an animal model. All animal protocols and experiments were approved by the institutional animal care and use committee before the study was initiated. R3230 mammary adenocarcinoma was implanted in 11 rats. Tumors (18-20 mm) were scanned with dynamic 16-section CT at baseline and after administration of arsenic trioxide, which is known to cause acute reduction in blood flow. The concentration of arsenic was titrated (0-6 mg of arsenic per kilogram of body weight) to achieve a defined blood flow reduction (0%-75%) from baseline levels at 60 minutes, as determined with correlative laser Doppler flowmetry. The mean blood flow was calculated for each of four 5-mm sections that covered the entire tumor, as well as for the entire tumor after multiple sections were processed. Measurements obtained with both methods were correlated with laser Doppler flowmetry measurements. Interobserver agreement was determined for two blinded radiologists, who calculated the percentage of blood flow reduction for the "most representative" single sections at baseline and after arsenic administration. These results were compared with the interobserver variability of the same radiologists obtained by summing blood flow changes for the entire tumor volume. Overall correlations for acute blood flow reduction were demonstrated between laser Doppler flowmetry and the two CT perfusion approaches (single-section CT, r=0.85 and r(2)=0.73; multisection CT, r=0.93 and r(2)=0.87; pooled data, P=.01). CT perfusion disclosed marked heterogeneity of blood flow, with variations of 36% +/- 13 between adjacent 5-mm sections. Given these marked differences, interobserver agreement was much lower for single-section CT (standard deviation, 0.22) than for multisection CT (standard deviation, 0.10; P=.01). Multisection CT perfusion techniques may provide an accurate and more reproducible method of tumor perfusion surveillance than comparison of single representative tumor sections. (c) RSNA, 2007.

  5. [Flowmetric, thermometric and rheologic studies in obliterating arterial diseases of the lower extremities treated with buflomedil].

    PubMed

    Dorigo, B; Raspanti, D; Trapani, M; Albanese, B; Cameli, A M; Digiesi, V

    1985-02-25

    Ten subjects with peripheral arterial occlusive disease were treated with buflomedil, analysing the effect of every single intravenous administration of the drug, and the effect of the administration repeated for a period of 5 days. This controlled study was aimed at evaluating the state of the peripheral blood flow, not just relating to the flowmetric parameters, but also to those more directly connected to the metabolic and functional conditions of the microcirculation. During every single administration, blood flow, skin and muscular temperatures were recorded. As concerned the drug's chronic effect, endurance limit, skin and muscular temperatures, whole blood viscosity, plasma viscosity and red cell filterability were recorded before beginning the treatment and after 15 days. The results of this study show that during a single buflomedil infusion no modifications have been observed in blood flow and muscular temperature, whereas skin temperature showed a slight increase. On the contrary, after a 15 days treatment, muscular temperature and endurance limit significantly increased, without flowmetric changes. A significant decrease in values of blood viscosity at high shear-rate was recorded too. The overall results seem to indicate that after treatment with buflomedil there is an improvement of the metabolic muscular conditions, probably due to a stimulant effect of the drug on microcirculatory blood flow.

  6. Resistance of uterine radial artery blood flow was correlated with peripheral blood NK cell fraction and improved with low molecular weight heparin therapy in women with unexplained recurrent pregnancy loss.

    PubMed

    Koo, Hwa Seon; Kwak-Kim, Joanne; Yi, Hyun Jeong; Ahn, Hyun Kyong; Park, Chan Woo; Cha, Sun Hwa; Kang, Inn Soo; Yang, Kwang Moon

    2015-02-01

    To investigate whether peripheral blood natural killer (pbNK) cell levels are associated with uterine blood flow, and low molecular weight heparin (LMWH) treatment is effective to improve uterine blood flow in women with decreased uterine blood flow and unexplained recurrent pregnancy loss (RPL). This was a prospective controlled study. Study population included 33 pregnant women (between 5 and 7 weeks gestation) with ≥ 2 RPL and controls were 47 healthy pregnant women. pbNK cell fractions (CD3(-)/56(+)/16(+)) of peripheral blood mononuclear cells were measured by flow cytometry. Uterine color-pulsed Doppler ultrasound was performed to evaluate uterine radial artery resistance index (URa-RI). In RPL women with elevated URa-RI (≥ 0.5), LMWH (ranges 40-60 mg/day) was administered subcutaneously daily and URa-RI was reassessed 1 week later. Pregnancy outcome was analyzed at 12 weeks gestation. URa-RI was significantly higher in pregnant women with RPL than controls (0.60 ± 0.14 versus 0.54 ± 0.12, P = 0.039). In pregnant women with RPL, pbNK cell fractions displayed a positive correlation with URa-RI (Pearson's r = 0.429, P = 0.013). URa-RI was significantly decreased 1 week after LMWH treatment as compared to that of pretreatment (pretreatment RI: 0.65 ± 0.11 versus post-treatment RI: 0.56 ± 0.13, P = 0.011). Pregnancy outcome of RPL women with LMWH treatment was not different from that of pregnant controls (73.3% versus 85.0%, P = NS). Increased pbNK cells are associated with decreased uterine radial artery blood flow. LMWH treatment effectively decreases URa-RI with improved pregnancy outcome in women with RPLs and elevated URa-RI. A larger scale study is needed to verify these findings. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Quantitative blood flow measurements in the small animal cardiopulmonary system using digital subtraction angiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin Mingde; Marshall, Craig T.; Qi, Yi

    Purpose: The use of preclinical rodent models of disease continues to grow because these models help elucidate pathogenic mechanisms and provide robust test beds for drug development. Among the major anatomic and physiologic indicators of disease progression and genetic or drug modification of responses are measurements of blood vessel caliber and flow. Moreover, cardiopulmonary blood flow is a critical indicator of gas exchange. Current methods of measuring cardiopulmonary blood flow suffer from some or all of the following limitations--they produce relative values, are limited to global measurements, do not provide vasculature visualization, are not able to measure acute changes, aremore » invasive, or require euthanasia. Methods: In this study, high-spatial and high-temporal resolution x-ray digital subtraction angiography (DSA) was used to obtain vasculature visualization, quantitative blood flow in absolute metrics (ml/min instead of arbitrary units or velocity), and relative blood volume dynamics from discrete regions of interest on a pixel-by-pixel basis (100x100 {mu}m{sup 2}). Results: A series of calibrations linked the DSA flow measurements to standard physiological measurement using thermodilution and Fick's method for cardiac output (CO), which in eight anesthetized Fischer-344 rats was found to be 37.0{+-}5.1 ml/min. Phantom experiments were conducted to calibrate the radiographic density to vessel thickness, allowing a link of DSA cardiac output measurements to cardiopulmonary blood flow measurements in discrete regions of interest. The scaling factor linking relative DSA cardiac output measurements to the Fick's absolute measurements was found to be 18.90xCO{sub DSA}=CO{sub Fick}. Conclusions: This calibrated DSA approach allows repeated simultaneous visualization of vasculature and measurement of blood flow dynamics on a regional level in the living rat.« less

  8. In vivo acoustic and photoacoustic focusing of circulating cells

    NASA Astrophysics Data System (ADS)

    Galanzha, Ekaterina I.; Viegas, Mark G.; Malinsky, Taras I.; Melerzanov, Alexander V.; Juratli, Mazen A.; Sarimollaoglu, Mustafa; Nedosekin, Dmitry A.; Zharov, Vladimir P.

    2016-03-01

    In vivo flow cytometry using vessels as natural tubes with native cell flows has revolutionized the study of rare circulating tumor cells in a complex blood background. However, the presence of many blood cells in the detection volume makes it difficult to count each cell in this volume. We introduce method for manipulation of circulating cells in vivo with the use of gradient acoustic forces induced by ultrasound and photoacoustic waves. In a murine model, we demonstrated cell trapping, redirecting and focusing in blood and lymph flow into a tight stream, noninvasive wall-free transportation of blood, and the potential for photoacoustic detection of sickle cells without labeling and of leukocytes targeted by functionalized nanoparticles. Integration of cell focusing with intravital imaging methods may provide a versatile biological tool for single-cell analysis in circulation, with a focus on in vivo needleless blood tests, and preclinical studies of human diseases in animal models.

  9. In vivo acoustic and photoacoustic focusing of circulating cells

    PubMed Central

    Galanzha, Ekaterina I.; Viegas, Mark G.; Malinsky, Taras I.; Melerzanov, Alexander V.; Juratli, Mazen A.; Sarimollaoglu, Mustafa; Nedosekin, Dmitry A.; Zharov, Vladimir P.

    2016-01-01

    In vivo flow cytometry using vessels as natural tubes with native cell flows has revolutionized the study of rare circulating tumor cells in a complex blood background. However, the presence of many blood cells in the detection volume makes it difficult to count each cell in this volume. We introduce method for manipulation of circulating cells in vivo with the use of gradient acoustic forces induced by ultrasound and photoacoustic waves. In a murine model, we demonstrated cell trapping, redirecting and focusing in blood and lymph flow into a tight stream, noninvasive wall-free transportation of blood, and the potential for photoacoustic detection of sickle cells without labeling and of leukocytes targeted by functionalized nanoparticles. Integration of cell focusing with intravital imaging methods may provide a versatile biological tool for single-cell analysis in circulation, with a focus on in vivo needleless blood tests, and preclinical studies of human diseases in animal models. PMID:26979811

  10. A new device for intraoperative renal blood flow measurement during open-heart surgery: an experimental study and the clinical pilot study.

    PubMed

    Tirilomis, Theodor; Popov, Aron F; Hanekop, Gunnar G; Braeuer, Anselm; Quintel, Michael; Schoendube, Friedrich A; Friedrich, Martin G

    2013-10-01

    Renal blood flow (RBF) may vary during cardiopulmonary bypass and low flow may cause insufficient blood supply of the kidney triggering renal failure postoperatively. Still, a valid intraoperative method of continuous RBF measurement is not available. A new catheter combining thermodilution and intravascular Doppler was developed, first calibrated in an in vitro model, and the catheter specific constant was determined. Then, application of the device was evaluated in a pilot study in an adult cardiovascular population. The data of the clinical pilot study revealed high correlation between the flow velocities detected by intravascular Doppler and the RBF measured by thermodilution (Pearson's correlation range: 0.78 to 0.97). In conclusion, the RBF can be measured excellently in real time using the new catheter, even under cardiopulmonary bypass. © 2013 Wiley Periodicals, Inc. and International Center for Artificial Organs and Transplantation.

  11. Three-dimensional imaging of absolute blood flow velocity and blood vessel position under low blood flow velocity based on Doppler signal information included in scattered light from red blood cells

    NASA Astrophysics Data System (ADS)

    Kyoden, Tomoaki; Akiguchi, Shunsuke; Tajiri, Tomoki; Andoh, Tsugunobu; Hachiga, Tadashi

    2017-11-01

    The development of a system for in vivo visualization of occluded distal blood vessels for diabetic patients is the main target of our research. We herein describe two-beam multipoint laser Doppler velocimetry (MLDV), which measures the instantaneous multipoint flow velocity and can be used to observe the blood flow velocity in peripheral blood vessels. By including a motorized stage to shift the measurement points horizontally and in the depth direction while measuring the velocity, the path of the blood vessel in the skin could be observed using blood flow velocity in three-dimensional space. The relationship of the signal power density between the blood vessel and the surrounding tissues was shown and helped us identify the position of the blood vessel. Two-beam MLDV can be used to simultaneously determine the absolute blood flow velocity distribution and identify the blood vessel position in skin.

  12. A two-stage rotary blood pump design with potentially lower blood trauma: a computational study.

    PubMed

    Thamsen, Bente; Mevert, Ricardo; Lommel, Michael; Preikschat, Philip; Gaebler, Julia; Krabatsch, Thomas; Kertzscher, Ulrich; Hennig, Ewald; Affeld, Klaus

    2016-06-15

    In current rotary blood pumps, complications related to blood trauma due to shear stresses are still frequently observed clinically. Reducing the rotor tip speed might decrease blood trauma. Therefore, the aim of this project was to design a two-stage rotary blood pump leading to lower shear stresses. Using the principles of centrifugal pumps, two diagonal rotor stages were designed with an outer diameter of 22 mm. The first stage begins with a flow straightener and terminates with a diffusor, while a volute casing behind the second stage is utilized to guide fluid to the outlet. Both stages are combined into one rotating part which is pivoted by cup-socket ruby bearings. Details of the flow field were analyzed employing computational fluid dynamics (CFD). A functional model of the pump was fabricated and the pressure-flow dependency was experimentally assessed. Measured pressure-flow performance of the developed pump indicated its ability to generate adequate pressure heads and flows with characteristic curves similar to centrifugal pumps. According to the CFD results, a pressure of 70 mmHg was produced at a flow rate of 5 L/min and a rotational speed of 3200 rpm. Circumferential velocities could be reduced to 3.7 m/s as compared to 6.2 m/s in a clinically used axial rotary blood pump. Flow fields were smooth with well-distributed pressure fields and comparatively few recirculation or vortices. Substantially smaller volumes were exposed to high shear stresses >150 Pa. Hence, blood trauma might be reduced with this design. Based on these encouraging results, future in vitro investigations to investigate actual blood damage are intended.

  13. [Nailfold capillaroscopy and blood flow laser-doppler analysis of the microvascular damage in systemic sclerosis: preliminary results].

    PubMed

    Secchi, M E; Sulli, A; Pizzorni, C; Cutolo, M

    2009-01-01

    Systemic sclerosis (SSc) is characterized by altered microvascular structure and function. Nailfold videocapillaroscopy (NVC) is the tool to evaluate capillary morphological structure and laser-Doppler Blood flowmetry (LDF) can be used to estimate cutaneous blood flow of microvessels. The aim of this study was to investigate possible relationships between capillary morphology and blood flow in SSc. Twenty-seven SSc patients and 12 healthy subjects were enrolled. SSc microvascular involvement, as evaluated by NVC, was classified in three different patterns ("Early", "Active", "Late"). LDF analysis was performed at the II, III, IV, V hand fingers in both hands and both at cutaneous temperature and at 36 degrees C. Statistical evaluation was carried out by non-parametric procedures. Blood flow was found significantly lower in SSc patients when compared with healthy subjects (p<0.05). The heating of the probe to 36 degrees C induced a significant increase in peripheral blood flow in all subjects compared to baseline (p <0.05), however, the amount of variation was significantly lower in patients with SSc, compared with healthy controls (p <0.05). The SSc patients with NVC "Late" pattern, showed lower values of peripheral blood flow than patients with NVC "Active" or "Early" patterns (p<0.05). Moreover, a negative correlation between the tissue perfusion score and the progression of the SSc microangiopathy was observed, as well as between the tissue perfusion and the duration of the Raynaud's phenomenon (p <0.03). LDF can be employed to evaluate blood perfusion in the microvascular circulation in SSc patients. The blood flow changes observed with the LDF seem to correlate with the severity of microvascular damage in SSc as detected by NVC.

  14. Relationship Between Blood Flow and Performance Recovery: A Randomized, Placebo-Controlled Study.

    PubMed

    Borne, Rachel; Hausswirth, Christophe; Bieuzen, François

    2017-02-01

    To investigate the effect of different limb blood-flow levels on cycling-performance recovery, blood lactate concentration, and heart rate. Thirty-three high-intensity intermittent-trained athletes completed two 30-s Wingate anaerobic test sessions, 3 × 30-s (WAnT 1-3) and 1 × 30-s (WAnT 4), on a cycling ergometer. WAnT 1-3 and WAnT 4 were separated by a randomly assigned 24-min recovery intervention selected from among blood-flow restriction, passive rest, placebo stimulation, or neuromuscular electrical-stimulation-induced blood flow. Calf arterial inflow was measured by venous occlusion plethysmography at regular intervals throughout the recovery period. Performance was measured in terms of peak and mean power output during WAnT 1 and WAnT 4. After the recovery interventions, a large (r = .68 [90% CL .42; .83]) and very large (r = .72 (90% CL .49; .86]) positive correlation were observed between the change in calf arterial inflow and the change in mean and peak power output, respectively. Calf arterial inflow was significantly higher during the neuromuscular-electrical-stimulation recovery intervention than with the blood-flow-restriction, passive-rest, and placebo-stimulation interventions (P < .001). This corresponds to the only intervention that allowed performance recovery (P > .05). No recovery effect was linked to heart rate or blood lactate concentration levels. For the first time, these data support the existence of a positive correlation between an increase in blood flow and performance recovery between bouts of high-intensity exercise. As a practical consideration, this effect can be obtained by using neuromuscular electrical stimulation-induced blood flow since this passive, simple strategy could be easily applied during short-term recovery.

  15. Lower limb sympathectomy assessed by laser Doppler blood flow and transcutaneous oxygen measurements.

    PubMed

    Lantsberg, L; Goldman, M

    1990-01-01

    In a retrospective study of critical ischaemia of the lower limb, sympathectomy appeared to be of value in the majority of patients. We therefore assessed sympathectomy by measuring skin blood flow before and after the procedure using laser Doppler flowmetry (LDF) and transcutaneous oxygen tension (TCpO2) techniques. Twenty patients underwent chemical sympathectomy and there was one surgical procedure. Measurements were performed before and 1 week after sympathectomy below the knee and on the forefoot. Symptomatic improvement occurred in 20 of 21 patients. This study demonstrates that skin blood flow in the leg and foot is improved by sympathectomy and confirms objectively our clinical impression.

  16. Dehydration accelerates reductions in cerebral blood flow during prolonged exercise in the heat without compromising brain metabolism

    PubMed Central

    Trangmar, Steven J.; Chiesa, Scott T.; Llodio, Iñaki; Garcia, Benjamin; Kalsi, Kameljit K.; Secher, Niels H.

    2015-01-01

    Dehydration hastens the decline in cerebral blood flow (CBF) during incremental exercise, whereas the cerebral metabolic rate for O2 (CMRO2) is preserved. It remains unknown whether CMRO2 is also maintained during prolonged exercise in the heat and whether an eventual decline in CBF is coupled to fatigue. Two studies were undertaken. In study 1, 10 male cyclists cycled in the heat for ∼2 h with (control) and without fluid replacement (dehydration) while internal and external carotid artery blood flow and core and blood temperature were obtained. Arterial and internal jugular venous blood samples were assessed with dehydration to evaluate CMRO2. In study 2, in 8 male subjects, middle cerebral artery blood velocity was measured during prolonged exercise to exhaustion in both dehydrated and euhydrated states. After a rise at the onset of exercise, internal carotid artery flow declined to baseline with progressive dehydration (P < 0.05). However, cerebral metabolism remained stable through enhanced O2 and glucose extraction (P < 0.05). External carotid artery flow increased for 1 h but declined before exhaustion. Fluid ingestion maintained cerebral and extracranial perfusion throughout nonfatiguing exercise. During exhaustive exercise, however, euhydration delayed but did not prevent the decline in cerebral perfusion. In conclusion, during prolonged exercise in the heat, dehydration accelerates the decline in CBF without affecting CMRO2 and also restricts extracranial perfusion. Thus, fatigue is related to a reduction in CBF and extracranial perfusion rather than CMRO2. PMID:26371170

  17. Micro-scale dynamic simulation of erythrocyte-platelet interaction in blood flow.

    PubMed

    AlMomani, T; Udaykumar, H S; Marshall, J S; Chandran, K B

    2008-06-01

    Platelet activation, adhesion, and aggregation on the blood vessel and implants result in the formation of mural thrombi. Platelet dynamics in blood flow is influenced by the far more numerous erythrocytes (RBCs). This is particularly the case in the smaller blood vessels (arterioles) and in constricted regions of blood flow (such as in valve leakage and hinge regions) where the dimensions of formed elements of blood become comparable with that of the flow geometry. In such regions, models to predict platelet motion, activation, aggregation and adhesion must account for platelet-RBC interactions. This paper studies platelet-RBC interactions in shear flows by performing simulations of micro-scale dynamics using a computational fluid dynamics (CFD) model. A level-set sharp-interface immersed boundary method is employed in the computations in which RBC and platelet boundaries are tracked on a two-dimensional Cartesian grid. The RBCs are assumed to have an elliptical shape and to deform elastically under fluid forces while the platelets are assumed to behave as rigid particles of circular shape. Forces and torques between colliding blood cells are modeled using an extension of the soft-sphere model for elliptical particles. RBCs and platelets are transported under the forces and torques induced by fluid flow and cell-cell and cell-platelet collisions. The simulations show that platelet migration toward the wall is enhanced with increasing hematocrit, in agreement with past experimental observations. This margination is seen to occur due to hydrodynamic forces rather than collisional forces or volumetric exclusion effects. The effect of fluid shear forces on the platelets increases exponentially as a function of hematocrit for the range of parameters covered in this study. The micro-scale analysis can be potentially employed to obtain a deterministic relationship between fluid forces and platelet activation and aggregation in blood flow past cardiovascular implants.

  18. Intraoperative Fluorescence Cerebral Angiography by Laser Surgical Microscopy: Comparison With Xenon Microscopy and Simultaneous Observation of Cerebral Blood Flow and Surrounding Structures.

    PubMed

    Ito, Yuhei; Suzuki, Kyouichi; Ichikawa, Tsuyoshi; Watanabe, Yoichi; Sato, Taku; Sakuma, Jun; Saito, Kiyoshi

    2018-06-12

    Laser surgical microscopes should enable uniform illumination of the operative field, and require less luminous energy compared with existing xenon surgical microscopes. To examine the utility of laser illumination in fluorescence cerebral angiography. Fluorescein sodium (fluorescein) was used as a fluorescent dye. We first compared the clarity of cerebral blood flow images collected by fluorescence angiography between the laser illumination and xenon illumination methods. We then assessed use of the laser illuminator for simultaneous observation of blood flow and surrounding structures during fluorescence angiography. Furthermore, the study was designed to evaluate usefulness of the thus determined excitation light in clinical cases. Fluorescence angiography using blue light laser for excitation provided higher clarity and contrast blood flow images compared with using blue light generated from a xenon lamp. Further, illumination with excitation light consisting of a combination of 3 types of laser (higher level of blue light, no green light, and lower level of red light) enabled both blood flow and surrounding structures to be observed through the microscope directly by the surgeon. Laser-illuminated fluorescence angiography provides high clarity and contrast images of cerebral blood flow. Further, a laser providing strong blue light and weak red light for excitation light enables simultaneous visual observation of fluorescent blood flow and surrounding structures by the surgeon using a surgical microscope. Overall, these data suggest that laser surgical microscopes are useful for both ordinary operative manipulations and fluorescence angiography.

  19. Role of eNOS in water exchange index maintenance-MRI studies

    NASA Astrophysics Data System (ADS)

    Atochin, D.; Litvak, M.; Huang, S.; Kim, Y. R.; Huang, P.

    2017-08-01

    Stroke studies employ experimental models of cerebral ischemic and reperfusion injury in rodents. MRI provides valuable supravital data of cerebral blood flow and brain tissue damage. This paper presents MRI applications for cerebral blood flow research in mice lines with impaired nitric oxide production by endothelial nitric oxide synthase. Our data demonstrates that specific modifications of MRI methodology in transgenic mouse models help to evaluate the role of eNOS in the brain-blood barrier function.

  20. Intraoperative laser speckle contrast imaging for monitoring cerebral blood flow: results from a 10-patient pilot study

    NASA Astrophysics Data System (ADS)

    Richards, Lisa M.; Weber, Erica L.; Parthasarathy, Ashwin B.; Kappeler, Kaelyn L.; Fox, Douglas J.; Dunn, Andrew K.

    2012-02-01

    Monitoring cerebral blood flow (CBF) during neurosurgery can provide important physiological information for a variety of surgical procedures. Although multiple intraoperative vascular monitoring technologies are currently available, a quantitative method that allows for continuous monitoring is still needed. Laser speckle contrast imaging (LSCI) is an optical imaging method with high spatial and temporal resolution that has been widely used to image CBF in animal models in vivo. In this pilot clinical study, we adapted a Zeiss OPMI Pentero neurosurgical microscope to obtain LSCI images by attaching a camera and a laser diode. This LSCI adapted instrument has been used to acquire full field flow images from 10 patients during tumor resection procedures. The patient's ECG was recorded during acquisition and image registration was performed in post-processing to account for pulsatile motion artifacts. Digital photographs confirmed alignment of vasculature and flow images in four cases, and a relative change in blood flow was observed in two patients after bipolar cautery. The LSCI adapted instrument has the capability to produce real-time, full field CBF image maps with excellent spatial resolution and minimal intervention to the surgical procedure. Results from this study demonstrate the feasibility of using LSCI to monitor blood flow during neurosurgery.

  1. Red blood cell microparticles and blood group antigens: an analysis by flow cytometry

    PubMed Central

    Canellini, Giorgia; Rubin, Olivier; Delobel, Julien; Crettaz, David; Lion, Niels; Tissot, Jean-Daniel

    2012-01-01

    Background The storage of blood induces the formation of erythrocytes-derived microparticles. Their pathogenic role in blood transfusion is not known so far, especially the risk to trigger alloantibody production in the recipient. This work aims to study the expression of clinically significant blood group antigens on the surface of red blood cells microparticles. Material and methods Red blood cells contained in erythrocyte concentrates were stained with specific antibodies directed against blood group antigens and routinely used in immunohematology practice. After inducing erythrocytes vesiculation with calcium ionophore, the presence of blood group antigens was analysed by flow cytometry. Results The expression of several blood group antigens from the RH, KEL, JK, FY, MNS, LE and LU systems was detected on erythrocyte microparticles. The presence of M (MNS1), N (MNS2) and s (MNS4) antigens could not be demonstrated by flow cytometry, despite that glycophorin A and B were identified on microparticles using anti-CD235a and anti-MNS3. Discussion We conclude that blood group antigens are localized on erythrocytes-derived microparticles and probably keep their immunogenicity because of their capacity to bind specific antibody. Selective segregation process during vesiculation or their ability to elicit an immune response in vivo has to be tested by further studies. PMID:22890266

  2. Temperature-dependent regulation of blood distribution in snakes.

    PubMed

    Amiel, Joshua J; Chua, Beverly; Wassersug, Richard J; Jones, David R

    2011-05-01

    Regional control of blood flow is often suggested as a mechanism for fine thermoregulatory adjustments in snakes. However, the flow of blood to different body regions at various temperatures has never been visualized to confirm this mechanism. We used (99m)technetium-labelled macroaggregated albumin ((99m)Tc-MAA), a radioactive tracer, to follow the flow of blood through the bodies of garter snakes (Thamnophis sirtalis) near their thermal maxima and minima. We injected snakes with(99m)Tc-MAA at cold (6-8°C) and hot (27-32°C) temperatures and imaged them using a gamma scanner. At cold ambient temperatures, snakes significantly reduced the blood flow to their tails and significantly increased the blood flow to their heads. Conversely, at hot ambient temperatures, snakes significantly increased the blood flow to their tails and significantly reduced the blood flow to their heads. This confirms that snakes are able to use differential blood distribution to regulate temperature. Our images confirm that snakes use regional control of blood flow as a means of thermoregulation and that vasomotor control of vascular beds is likely to be the mechanism of control.

  3. Compact dual-mode diffuse optical system for blood perfusion monitoring in a porcine model of microvascular tissue flaps

    NASA Astrophysics Data System (ADS)

    Lee, Seung Yup; Pakela, Julia M.; Helton, Michael C.; Vishwanath, Karthik; Chung, Yooree G.; Kolodziejski, Noah J.; Stapels, Christopher J.; McAdams, Daniel R.; Fernandez, Daniel E.; Christian, James F.; O'Reilly, Jameson; Farkas, Dana; Ward, Brent B.; Feinberg, Stephen E.; Mycek, Mary-Ann

    2017-12-01

    In reconstructive surgery, the ability to detect blood flow interruptions to grafted tissue represents a critical step in preventing postsurgical complications. We have developed and pilot tested a compact, fiber-based device that combines two complimentary modalities-diffuse correlation spectroscopy (DCS) and diffuse reflectance spectroscopy-to quantitatively monitor blood perfusion. We present a proof-of-concept study on an in vivo porcine model (n=8). With a controllable arterial blood flow supply, occlusion studies (n=4) were performed on surgically isolated free flaps while the device simultaneously monitored blood flow through the supplying artery as well as flap perfusion from three orientations: the distal side of the flap and two transdermal channels. Further studies featuring long-term monitoring, arterial failure simulations, and venous failure simulations were performed on flaps that had undergone an anastomosis procedure (n=4). Additionally, benchtop verification of the DCS system was performed on liquid flow phantoms. Data revealed relationships between diffuse optical measures and state of occlusion as well as the ability to detect arterial and venous compromise. The compact construction of the device, along with its noninvasive and quantitative nature, would make this technology suitable for clinical translation.

  4. Modeling and analysis of biomagnetic blood Carreau fluid flow through a stenosis artery with magnetic heat transfer: A transient study.

    PubMed

    Abdollahzadeh Jamalabadi, Mohammad Yaghoub; Daqiqshirazi, Mohammadreza; Nasiri, Hossein; Safaei, Mohammad Reza; Nguyen, Truong Khang

    2018-01-01

    We present a numerical investigation of tapered arteries that addresses the transient simulation of non-Newtonian bio-magnetic fluid dynamics (BFD) of blood through a stenosis artery in the presence of a transverse magnetic field. The current model is consistent with ferro-hydrodynamic (FHD) and magneto-hydrodynamic (MHD) principles. In the present work, blood in small arteries is analyzed using the Carreau-Yasuda model. The arterial wall is assumed to be fixed with cosine geometry for the stenosis. A parametric study was conducted to reveal the effects of the stenosis intensity and the Hartman number on a wide range of flow parameters, such as the flow velocity, temperature, and wall shear stress. Current findings are in a good agreement with recent findings in previous research studies. The results show that wall temperature control can keep the blood in its ideal blood temperature range (below 40°C) and that a severe pressure drop occurs for blockages of more than 60 percent. Additionally, with an increase in the Ha number, a velocity drop in the blood vessel is experienced.

  5. Useful method to monitor the physiological effects of alcohol ingestion by combination of micro-integrated laser Doppler blood flow meter and arm-raising test.

    PubMed

    Iwasaki, Wataru; Nogami, Hirofumi; Ito, Hiroki; Gotanda, Takeshi; Peng, Yao; Takeuchi, Satoshi; Furue, Masutaka; Higurashi, Eiji; Sawada, Renshi

    2012-10-01

    Alcohol has a variety of effects on the human body, affecting both the sympathetic and parasympathetic nervous system. We examined the peripheral blood flow of alcohol drinkers using a micro-integrated laser Doppler blood flow meter (micro-electromechanical system blood flow sensor). An increased heart rate and blood flow was recorded at the earlobe after alcohol ingestion, and we observed strong correlation between blood flow, heart rate, and breath alcohol content in light drinkers; but not heavy drinkers. We also found that the amplitude of pulse waves measured at the fingertip during an arm-raising test significantly decreased on alcohol consumption, regardless of the individual's alcohol tolerance. Our micro-electromechanical system blood flow sensor successfully detected various physiological changes in peripheral blood circulation induced by alcohol consumption.

  6. Detection of Site-Specific Blood Flow Variation in Humans during Running by a Wearable Laser Doppler Flowmeter.

    PubMed

    Iwasaki, Wataru; Nogami, Hirofumi; Takeuchi, Satoshi; Furue, Masutaka; Higurashi, Eiji; Sawada, Renshi

    2015-10-05

    Wearable wireless physiological sensors are helpful for monitoring and maintaining human health. Blood flow contains abundant physiological information but it is hard to measure blood flow during exercise using conventional blood flowmeters because of their size, weight, and use of optic fibers. To resolve these disadvantages, we previously developed a micro integrated laser Doppler blood flowmeter using microelectromechanical systems technology. This micro blood flowmeter is wearable and capable of stable measurement signals even during movement. Therefore, we attempted to measure skin blood flow at the forehead, fingertip, and earlobe of seven young men while running as a pilot experiment to extend the utility of the micro blood flowmeter. We measured blood flow in each subject at velocities of 6, 8, and 10 km/h. We succeeded in obtaining stable measurements of blood flow, with few motion artifacts, using the micro blood flowmeter, and the pulse wave signal and motion artifacts were clearly separated by conducting frequency analysis. Furthermore, the results showed that the extent of the changes in blood flow depended on the intensity of exercise as well as previous work with an ergometer. Thus, we demonstrated the capability of this wearable blood flow sensor for measurement during exercise.

  7. An in vitro investigation of the influence of stenosis severity on the flow in the ascending aorta.

    PubMed

    Gülan, Utku; Lüthi, Beat; Holzner, Markus; Liberzon, Alex; Tsinober, Arkady; Kinzelbach, Wolfgang

    2014-09-01

    Cardiovascular diseases can lead to abnormal blood flows, some of which are linked to hemolysis and thrombus formation. Abnormal turbulent flows of blood in the vessels with stenosis create strong shear stresses on blood elements and may cause blood cell destruction or platelet activation. We implemented a Lagrangian (following the fluid elements) measurement technique of three dimensional particle tracking velocimetry that provides insight on the evolution of viscous and turbulent stresses along blood element trajectories. We apply this method to study a pulsatile flow in a compliant phantom of an aorta and compare the results in three cases: the reference case (called "healthy" case), and two cases of abnormal flows due to mild and severe stenosis, respectively. The chosen conditions can mimic a clinical application of an abnormal flow due to a calcific valve. We estimate the effect of aortic stenosis on the kinetic energy of the mean flow and the turbulent kinetic energy, which increases about two orders of magnitude as compared with the healthy flow case. Measuring the total flow stress acting on a moving fluid element that incorporates viscous stresses and the apparent turbulent-induced stresses (the so-called Reynolds stresses) we find out similar increase of the stresses with the increased severity of the stenosis. Furthermore, these unique Lagrangian measurements provide full acceleration and, consequently, the forces acting on the blood elements that are estimated to reach the level that can considerably deform red blood cells. These forces are strong and abrupt due to the contribution of the turbulent fluctuations which is much stronger than the typically measured phase-averaged values. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

  8. Effects of postural changes and removal of vestibular inputs on blood flow to and from the hindlimb of conscious felines

    PubMed Central

    Yavorcik, K. J.; Reighard, D. A.; Misra, S. P.; Cotter, L. A.; Cass, S. P.; Wilson, T. D.

    2009-01-01

    Considerable data show that the vestibular system contributes to blood pressure regulation. Prior studies reported that lesions that eliminate inputs from the inner ears attenuate the vasoconstriction that ordinarily occurs in the hindlimbs of conscious cats during head-up rotations. These data led to the hypothesis that labyrinthine-deficient animals would experience considerable lower body blood pooling during head-up postural alterations. The present study tested this hypothesis by comparing blood flow though the femoral artery and vein of conscious cats during 20–60° head-up tilts from the prone position before and after removal of vestibular inputs. In vestibular-intact animals, venous return from the hindlimb dropped considerably at the onset of head-up tilts and, at 5 s after the initiation of 60° rotations, was 66% lower than when the animals were prone. However, after the animals were maintained in the head-up position for another 15 s, venous return was just 33% lower than before the tilt commenced. At the same time point, arterial inflow to the limb had decreased 32% from baseline, such that the decrease in blood flow out of the limb due to the force of gravity was precisely matched by a reduction in blood reaching the limb. After vestibular lesions, the decline in femoral artery blood flow that ordinarily occurs during head-up tilts was attenuated, such that more blood flowed into the leg. Contrary to expectations, in most animals, venous return was facilitated, such that no more blood accumulated in the hindlimb than when labyrinthine signals were present. These data show that peripheral blood pooling is unlikely to account for the fluctuations in blood pressure that can occur during postural changes of animals lacking inputs from the inner ear. Instead, alterations in total peripheral resistance following vestibular dysfunction could affect the regulation of blood pressure. PMID:19793952

  9. Needleless connectors substantially reduce flow of crystalloid and red blood cells during rapid infusion.

    PubMed

    Lehn, Robert A; Gross, Jeffrey B; McIsaac, Joseph H; Gipson, Keith E

    2015-04-01

    Although needleless connectors (NC) are frequently used in the perioperative setting, the potential of modern NCs to slow delivery of IV fluids has not been thoroughly studied. We examined flow characteristics of 5 NC models during pressurized delivery of crystalloid and banked red blood cells from a Level 1 warmer through various IV catheters. Crystalloid flow rates were reduced by 29% to 85% from control in catheters >18 gauge, while red blood cell flow reductions ranged from 22% to 76% in these catheters (all P < 0.0050). We suggest that practitioners consider eliminating NCs when large IV catheters are inserted for rapid fluid administration.

  10. Relationship between preoperative radial artery and postoperative arteriovenous fistula blood flow in hemodialysis patients.

    PubMed

    Sato, Michiko; Io, Hiroaki; Tanimoto, Mitsuo; Shimizu, Yoshio; Fukui, Mitsumine; Hamada, Chieko; Horikoshi, Satoshi; Tomino, Yasuhiko

    2012-01-01

    It is recommended that arteriovenous fistula (AVF) blood flow should be more than 425 ml/min before cannulation. However, the relationship between preoperative radial artery flow (RAF) and postoperative AVF blood flow has still not been examined. Sixty-one patients with end-stage kidney disease (ESKD) were examined. They had an AVF prepared at Juntendo University Hospital from July 2006 through August 2007. Preoperative RAF and postoperative AVF blood flows were measured by ultrasonography. AVF blood flow gradually increased after the operation. AVF blood flow was significantly correlated with preoperative RAF. When preoperative RAF exceeded 21.4 ml/min, AVF blood flow rose to more than 425 ml/min. The postoperative AVF blood flow in the group with RAF of more than 20 ml/min was significantly higher than that in those with less than 20 ml/min. Preoperative RAF of less than 20 ml/min had a significantly high risk of primary AVF failure within 8 months compared with that of more than 20 ml/min. It appears that measurement of RAF by ultrasonography is useful for estimating AVF blood flow postoperatively and can predict the risk of complications in ESKD patients.

  11. Renal blood flow dynamics in inbred rat strains provides insight into autoregulation.

    PubMed

    A Mitrou, Nicholas G; Cupples, William A

    2014-01-01

    Renal autoregulation maintains stable renal blood flow in the face of constantly fluctuating blood pressure. Autoregulation is also the only mechanism that protects the delicate glomerular capillaries when blood pressure increases. In order to understand autoregulation, the renal blood flow response to changing blood pressure is studied. The steadystate response of blood flow is informative, but limits investigation of the individual mechanisms of autoregulation. The dynamics of autoregulation can be probed with transfer function analysis. The frequency-domain analysis of autoregulation allows investigators to probe the relative activity of each mechanism of autoregulation. We discuss the methodology and interpretation of transfer function analysis. Autoregulation is routinely studied in the rat, of which there are many inbred strains. There are multiple strains of rat that are either selected or inbred as models of human pathology. We discuss relevant characteristics of Brown Norway, Spontaneously hypertensive, Dahl, and Fawn-Hooded hypertensive rats and explore differences among these strains in blood pressure, dynamic autoregulation, and susceptibility to hypertensive renal injury. Finally we show that the use of transfer function analysis in these rat strains has contributed to our understanding of the physiology and pathophysiology of autoregulation and hypertensive renal disease.Interestingly all these strains demonstrate effective tubuloglomerular feedback suggesting that this mechanism is not sufficient for effective autoregulation. In contrast, obligatory or conditional failure of the myogenic mechanism suggests that this component is both necessary and sufficient for autoregulation.

  12. IR imaging of blood circulation of patients with vascular disease

    NASA Astrophysics Data System (ADS)

    Wang, Hsin; Wade, Dwight R., Jr.; Kam, Jack

    2004-04-01

    We conducted a preliminary IR imaging study of blood circulation in patients with peripheral vascular diseases. Abnormal blood flow is common in older adults, especially those with elevated blood lipids, diabetes, hypertension, and a history of smoking. All of these conditions have a high prevalence in our population, often with more than one condition in the same individual. The differences in blood flow is revealed by temperature differences in areas of the extremities as well as other regions of the body. However, what is needed is an imaging technique that is relatively inexpensive and can reveal the blood flow in real time. The IR imaging can show detailed venous system and small tempearture changes associated with blood flow. Six patients with vascular diseases were tested in a clinic set up. Their legs and feet were imaged. We observed large temperature differences (cooling of more than 10° C) at the foot, especially toes. More valuable information were obtained from the temperature distribution maps. IR thermography is potentially a very valuable tool for medical application, especially for vascular diseases.

  13. Relationship between parietal blood flow studies in the left colon and the rectum in dogs. Colonic pressure and blood flow.

    PubMed

    Arhan, P; Bouchoucha, M; Martelli, H; Rimbert, J N; Berdeaux, A; Gallix, P; Héro, M; Barritault, L; Pellerin, D; Devroede, G

    1988-01-01

    An animal model was proposed to clarify the difference in occurrence of enterocolitis in congenital aganglionosis. When gaseous distention of the colon was localized to the rectosigmoid area, enterocolitis never occurred. On the contrary, when it involved the left colon, enterocolitis occurred in 13 of 15 patients. Intestinal blood flow rates were simultaneously measured in the left colon and rectum of six dogs by using labeled microspheres and expressed in function of the intraluminal pressure. Results show that for elevated values of intraluminal pressure, blood flow was significantly lower in the left colon than in the rectum. These results may explain why ischemia and necrosis occurred more frequently in the left colon than in the rectum.

  14. Early Evidence of Sepsis-Associated Hyperperfusion-A Study of Cerebral Blood Flow Measured With MRI Arterial Spin Labeling in Critically Ill Septic Patients and Control Subjects.

    PubMed

    Masse, Marie-Hélène; Richard, Marie Anne; D'Aragon, Frédérick; St-Arnaud, Charles; Mayette, Michael; Adhikari, Neill K J; Fraser, William; Carpentier, André; Palanchuck, Steven; Gauthier, David; Lanthier, Luc; Touchette, Matthieu; Lamontagne, Albert; Chénard, Jean; Mehta, Sangeeta; Sansoucy, Yanick; Croteau, Etienne; Lepage, Martin; Lamontagne, François

    2018-04-06

    Mechanisms underlying sepsis-associated encephalopathy remain unclear, but reduced cerebral blood flow, alone or in conjunction with altered autoregulation, is reported as a potential contributor. We compared cerebral blood flow of control subjects and vasopressor-dependent septic patients. Randomized crossover study. MRI with arterial spin labeling. Ten sedated septic patients on mechanical ventilation (four with controlled chronic hypertension) and 12 control subjects (six with controlled chronic hypertension) were enrolled. Mean ± SD ages were 61.4 ± 10.2 and 44.2 ± 12.8 years, respectively (p = 0.003). Mean Acute Physiology and Chronic Health Evaluation II score of septic patients at ICU admission was 27.7 ± 6.6. To assess the potential confounding effects of sedation and mean arterial pressure, we measured cerebral blood flow with and without sedation with propofol in control subjects and at a target mean arterial pressure of 65 mm Hg and greater than or equal to 75 mm Hg in septic patients. The sequence of sedation versus no sedation and mean arterial pressure targets were randomized. In septic patients, cerebral blood flow measured at a mean arterial pressure target of 65 mm Hg (40.4 ± 10.9 mL/100 g/min) was not different from cerebral blood flow measured at a mean arterial pressure target of greater than or equal to 75 mm Hg (41.3 ± 9.8 mL/100 g/min; p = 0.65). In control subjects, we observed no difference in cerebral blood flow measured without and with sedation (24.8 ± 4.2 vs 24.9 ± 5.9 mL/100 g/min; p = 0.93). We found no interaction between chronic hypertension and the effect of sedation or mean arterial pressure targets. Cerebral blood flow measured in sedated septic patients (mean arterial pressure target 65 mm Hg) was 62% higher than in sedated control subjects (p = 0.001). In septic patients, cerebral blood flow was higher than in sedated control subjects and did not vary with mean arterial pressure targets. Further research is required to understand the clinical significance of cerebral hyperperfusion in septic patients on vasopressors and to reassess the neurologic effects of current mean arterial pressure targets in sepsis.

  15. Tolerance of Snakes to Hypergravity

    NASA Technical Reports Server (NTRS)

    Lillywhite, H. B.; Ballard, R. E.; Hargens, A. R.

    1994-01-01

    Sensitivity of carotid blood flow to +Gz (head-to-tail) acceleration was studied in six species of snakes hypothesized to show varied adaptive cardiovascular responses to gravity. Blood flow in the proximal carotid artery was measured in 15 snakes before, during and following stepwise increments of +0.25Gz force produced on a 2.4 m diameter centrifuge. During centrifugation each snake was confined to a straight position within an individually- fitted acrylic tube with the head facing the center of rotation. We measured the centrifugal force at the tail of the snake in order to quantify the maximum intensity of force gradient promoting antero-posterior pooling of blood. Tolerance to increased gravity was quantified as the acceleration force at which carotid blood flow ceased. This parameter varied according to the gravitational adaptation of species defined by their ecology and behavior. At the extremes, carotid blood flow decreased in response to increasing gravity and approached zero near +1Gz in aquatic and ground-dwelling species, whereas in climbing species carotid flow was maintained at forces in excess of +2Gz. Surprisingly, tolerant (arboreal) species withstood hypergravic forces of +2 to +3 G. for periods up to 1 h without cessation of carotid blood flow or apparent loss of consciousness. Data suggest that relatively tight skin of the tolerant species provides a natural antigravity suit which is of prime importance in counteracting Gz stress on blood circulation.

  16. Methods of blood flow measurement in the arterial circulatory system.

    PubMed

    Tabrizchi, R; Pugsley, M K

    2000-01-01

    The most commonly employed techniques for the in vivo measurement of arterial blood flow to individual organs involve the use of flow probes or sensors. Commercially available systems for the measurement of in vivo blood flow can be divided into two categories: ultrasonic and electromagnetic. Two types of ultrasonic probes are used. The first type of flow probe measures blood flow-mediated Doppler shifts (Doppler flowmetry) in a vessel. The second type of flow probe measures the "transit time" required by an emitted ultrasound wave to traverse the vessel and are transit-time volume flow sensors. Measurement of blood flow in any vessel requires that the flow probe or sensor be highly accurate and exhibit signal linearity over the flow range in the vessel of interest. Moreover, additional desirable features include compact design, size, and weight. An additional important feature for flow probes is that they exhibit good biocompatability; it is imperative for the sensor to behave in an inert manner towards the biological system. A sensitive and reliable method to assess blood flow in individual organs in the body, other than by the use of probes/sensors, is the reference sample method that utilizes hematogeneously delivered microspheres. This method has been utilized to a large extend to assess regional blood flow in the entire body. Obviously, the purpose of measuring blood flow is to determine the amount of blood delivered to a given region per unit time (milliliters per minute) and it is desirable to achieve this goal by noninvasive methodologies. This, however, is not always possible. This review attempts to offer an overview of some of the techniques available for the assessment of regional blood flow in the arterial circulatory system and discusses advantages and disadvantages of these common techniques.

  17. Influence Of Low Intensity Laser Therapy On Diabetic Polyneuropathy

    NASA Astrophysics Data System (ADS)

    Abdel-Raoof, N. A.; Elnhas, N. G.; Elsayed, I. M.

    2011-09-01

    Diabetic peripheral neuropathy is a consequence of diabetes-mediated impairment of blood flow, and resultant hypoxia of nerves that may develop within 10 years of the onset of diabetes in 40-50% of people with type 1 or type 2 diabetes. Low Intensity Laser Therapy (LILT) has been advocated for the treatment of chronic pain disorders as blood flow is an important determinant for pain relief. Comparing the effect of Helium-Neon Laser therapy versus Infrared laser therapy on blood vessels diameter and flow as well as level of sensation for neuropathy. Twenty diabetic patients suffering from neuropathy were enrolled in the study with age 45-55 years. They were assigned randomly into two equal groups in number; Group A underwent an application of He-Neon laser while Group B underwent an application of Infrared laser. Both groups received laser for 2 months. Blood flow velocity, and blood vessel diameter were investigated by using duplex Doppler ultrasound and peripheral neuropathy parameters were investigated by Semmes-Weinstein monofilament assessment. The results revealed that He-Neon laser as well as Infrared laser groups showed significant improvement in blood flow velocity, blood vessel diameter & neuropathy tested parameters after treatment but there was no significance difference between the two types of LILT. LILT is a safe, non-invasive and drug free method for improving blood flow & sensation in patients suffering from diabetic polyneuropathy in addition to preventing one of the most threatening microvascular complications of diabetes.

  18. "Student Lab"-on-a-Chip: Integrating Low-Cost Microfluidics into Undergraduate Teaching Labs to Study Multiphase Flow Phenomena in Small Vessels

    ERIC Educational Resources Information Center

    Young, Edmond W. K.; Simmons, Craig A.

    2009-01-01

    We describe a simple, low-cost laboratory session to demonstrate the Fahraeus-Lindqvist effect, a microphase flow phenomenon that occurs in small blood vessels and alters the effective rheological properties of blood. The experiments are performed by flowing cells through microchannels fabricated by soft lithography and characterization of cell…

  19. Effect of antiischemic therapy on coronary flow reserve and the pressure-maximal coronary flow relationship in anesthetized swine.

    PubMed

    McFalls, E O; Duncker, D J; Sassen, L M; Gho, B C; Verdouw, P D

    1991-12-01

    The effect of nifedipine (0.5, 1.0, and 2.0 micrograms/kg/min), metoprolol (0.1, 0.5, and 1.0 mg/kg), the beta 1-selective adrenoceptor partial agonist epanolol (10, 50, and 200 micrograms/kg), or equivalent volumes of isotonic saline (n = 6, in each group), on coronary blood flow capacity were studied in anesthetized swine. Intracoronary bolus injections of adenosine (20 micrograms/kg/0.2 ml) were administered without and during three levels of coronary stenosis, prior to and following each dose of drug, to obtain maximal coronary blood flows at different perfusion pressures in the autoregulatory range. Coronary perfusion pressures were varied by partial inflation of a balloon around the left anterior descending coronary artery. Special care was taken that the stenoses not lead to myocardial ischemia. Three indices of coronary blood flow capacity were used: absolute coronary flow reserve (ACFR, the ratio of maximal to resting coronary blood flow), the slope and the extrapolated pressure at zero flow (Pzf) of the pressure-maximal coronary flow (PMCF) relationship, and relative coronary flow reserve (RCFR, the ratio of maximal coronary blood flow with a stenosis to maximal coronary blood flow without a stenosis) at two of the three levels of stenosis. Nifedipine decreased ACFR from 4.5 +/- 1.9 to 1.9 +/- 0.3 (mean +/- SD; p less than 0.05), reflecting in part the increase in resting coronary blood flow. The nifedipine-induced changes in maximal coronary blood flow were not only due to a drop in perfusion pressure, as the slope of the PMCF relationship decreased from 2.27 +/- 0.49 ml/(min.mm Hg) to 1.54 +/- 0.51 ml/(min.mm Hg) (p less than 0.05), and Pzf decreased from 30 +/- 4 mm Hg to 20 +/- 7 mm Hg (p less than 0.05). Consequently, calculated maximal coronary blood flow was attenuated from 114 +/- 31 ml/min to 93 +/- 37 ml/min at 80 mm Hg, but was enhanced from 23 +/- 13 to 37 +/- 24 ml/min at 40 mm Hg coronary perfusion pressure. In concert with the change in the PMCF relationship, RCFR at equivalent severe stenosis increased from 0.33 +/- 0.06 to 0.47 +/- 0.10 (p less than 0.05). No changes were observed with metoprolol, epanolol, or saline. The effect of nifedipine on the PMCF relationship not only provides a mechanism for the drug's antiischemic action, but should also be considered in the interpretation of coronary flow reserve measurements in patients on nifedipine treatment.

  20. Computational representation and hemodynamic characterization of in vivo acquired severe stenotic renal artery geometries using turbulence modeling.

    PubMed

    Kagadis, George C; Skouras, Eugene D; Bourantas, George C; Paraskeva, Christakis A; Katsanos, Konstantinos; Karnabatidis, Dimitris; Nikiforidis, George C

    2008-06-01

    The present study reports on computational fluid dynamics in the case of severe renal artery stenosis (RAS). An anatomically realistic model of a renal artery was reconstructed from CT scans, and used to conduct CFD simulations of blood flow across RAS. The recently developed shear stress transport (SST) turbulence model was pivotally applied in the simulation of blood flow in the region of interest. Blood flow was studied in vivo under the presence of RAS and subsequently in simulated cases before the development of RAS, and after endovascular stent implantation. The pressure gradients in the RAS case were many orders of magnitude larger than in the healthy case. The presence of RAS increased flow resistance, which led to considerably lower blood flow rates. A simulated stent in place of the RAS decreased the flow resistance at levels proportional to, and even lower than, the simulated healthy case without the RAS. The wall shear stresses, differential pressure profiles, and net forces exerted on the surface of the atherosclerotic plaque at peak pulse were shown to be of relevant high distinctiveness, so as to be considered potential indicators of hemodynamically significant RAS.

  1. Influence of Gravity on Blood Volume and Flow Distribution

    NASA Technical Reports Server (NTRS)

    Pendergast, D.; Olszowka, A.; Bednarczyk, E.; Shykoff, B.; Farhi, L.

    1999-01-01

    In our previous experiments during NASA Shuttle flights SLS 1 and 2 (9-15 days) and EUROMIR flights (30-90 days) we observed that pulmonary blood flow (cardiac output) was elevated initially, and surprisingly remained elevated for the duration of the flights. Stroke volume increased initially and then decreased, but was still above 1 Gz values. As venous return was constant, the changes in SV were secondary to modulation of heart rate. Mean blood pressure was at or slightly below 1 Gz levels in space, indicating a decrease in total peripheral resistance. It has been suggested that plasma volume is reduced in space, however cardiac output/venous return do not return to 1 Gz levels over the duration of flight. In spite of the increased cardiac output, central venous pressure was not elevated in space. These data suggest that there is a change in the basic relationship between cardiac output and central venous pressure, a persistent "hyperperfusion" and a re-distribution of blood flow and volume during space flight. Increased pulmonary blood flow has been reported to increase diffusing capacity in space, presumably due to the improved homogeneity of ventilation and perfusion. Other studies have suggested that ventilation may be independent of gravity, and perfusion may not be gravity- dependent. No data for the distribution of pulmonary blood volume were available for flight or simulated microgravity. Recent studies have suggested that the pulmonary vascular tree is influenced by sympathetic tone in a manner similar to that of the systemic system. This implies that the pulmonary circulation is dilated during microgravity and that the distribution of blood flow and volume may be influenced more by vascular control than by gravity. The cerebral circulation is influenced by sympathetic tone similarly to that of the systemic and pulmonary circulations; however its effects are modulated by cerebral autoregulation. Thus it is difficult to predict if cerebral perfusion is increased and if there is edema in space. Anecdotal evidence suggests there may be cerebral edema early in flight. Cerebral artery velocity has been shown to be elevated in simulated microgravity. The elevated cerebral artery velocity during simulated microgravity may reflect vasoconstriction of the arteries and not increased cerebral blood flow. The purpose of our investigations was to evaluate the effects of alterations in simulated gravity (+/-), resulting in changes in cardiac output (+/-), and on the blood flow and volume distribution in the lung and brain of human subjects. The first hypothesis of these studies was that blood flow and volume would be affected by gravity, but their distribution in the lung would be independent of gravity and due to vasoactivity changing vascular resistance in lung vessels. The vasodilitation of the lung vasculature (lower resistance) along with increased "compliance" of the heart could account for the absence of increased central venous pressure in microgravity. Secondly, we postulate that cerebral blood velocity is increased in microgravity due to large artery vasoconstriction, but that cerebral blood flow would be reduced due to autoregulation.

  2. Effects of forskolin on cerebral blood flow: implications for a role of adenylate cyclase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wysham, D.G.; Brotherton, A.F.; Heistad, D.D.

    1986-11-01

    We have studied cerebral vascular effects of forskolin, a drug which stimulates adenylate cyclase and potentiates dilator effects of adenosine in other vascular beds. Our goals were to determine whether forskolin is a cerebral vasodilator and whether it potentiates cerebral vasodilator responses to adenosine. We measured cerebral blood flow with microspheres in anesthetized rabbits. Forskolin (10 micrograms/kg per min) increased blood flow (ml/min per 100 gm) from 39 +/- 5 (mean +/- S.E.) to 56 +/- 9 (p less than 0.05) in cerebrum, and increased flow to myocardium and kidney despite a decrease in mean arterial pressure. Forskolin did notmore » alter cerebral oxygen consumption, which indicates that the increase in cerebral blood flow is a direct vasodilator effect and is not secondary to increased metabolism. We also examined effects of forskolin on the response to infusion of adenosine. Cerebral blood flow was measured during infusion of 1-5 microM/min adenosine into one internal carotid artery, under control conditions and during infusion of forskolin at 3 micrograms/kg per min i.v. Adenosine alone increased ipsilateral cerebral blood flow from 32 +/- 3 to 45 +/- 5 (p less than 0.05). Responses to adenosine were not augmented during infusion of forskolin. We conclude that forskolin is a direct cerebral vasodilator and forskolin does not potentiate cerebral vasodilator responses to adenosine.« less

  3. Two problems in multiphase biological flows: Blood flow and particulate transport in microvascular network, and pseudopod-driven motility of amoeboid cells

    NASA Astrophysics Data System (ADS)

    Bagchi, Prosenjit

    2016-11-01

    In this talk, two problems in multiphase biological flows will be discussed. The first is the direct numerical simulation of whole blood and drug particulates in microvascular networks. Blood in microcirculation behaves as a dense suspension of heterogeneous cells. The erythrocytes are extremely deformable, while inactivated platelets and leukocytes are nearly rigid. A significant progress has been made in recent years in modeling blood as a dense cellular suspension. However, many of these studies considered the blood flow in simple geometry, e.g., straight tubes of uniform cross-section. In contrast, the architecture of a microvascular network is very complex with bifurcating, merging and winding vessels, posing a further challenge to numerical modeling. We have developed an immersed-boundary-based method that can consider blood cell flow in physiologically realistic and complex microvascular network. In addition to addressing many physiological issues related to network hemodynamics, this tool can be used to optimize the transport properties of drug particulates for effective organ-specific delivery. Our second problem is pseudopod-driven motility as often observed in metastatic cancer cells and other amoeboid cells. We have developed a multiscale hydrodynamic model to simulate such motility. We study the effect of cell stiffness on motility as the former has been considered as a biomarker for metastatic potential. Funded by the National Science Foundation.

  4. CFD simulation of blood flow inside the corkscrew collaterals of the Buerger's disease.

    PubMed

    Sharifi, Alireza; Charjouei Moghadam, Mohammad

    2016-01-01

    Buerger's disease is an occlusive arterial disease that occurs mainly in medium and small vessels. This disease is associated with Tobacco usage. The existence of corkscrew collateral is one of the established characteristics of the Buerger's disease. In this study, the computational fluid dynamics (CFD) simulation of blood flow within the corkscrew artery of the Buerger's disease is conducted. The geometry of the artery is constructed based on the actual corkscrew artery of a patient diagnosed with the Buerger's disease. The blood properties are the same as the actual blood properties of the patient. The blood flow rate is taken from the available experimental data in the literature. The local velocity patterns, pressure and kinematic viscosity distributions in different segments of the corkscrew collateral artery was demonstrated and discussed for the first time for this kind of artery. The effects of non-Newtonian consideration for the blood viscosity behavior were investigated in different segments of the artery. Moreover, the variations of the blood flow patterns along the artery were investigated in details for each segment. It was found that the flow patterns were affected by the complex geometry of this artery in such a way that it could lead to the presence of sites that were prone to the accumulation of the flowing particles in blood like nicotine. Furthermore, due to the existence of many successive bends in this artery, the variations of kinematic viscosity along this artery were significant, therefore the non-Newtonian behavior of the blood viscosity must be considered.

  5. CFD simulation of blood flow inside the corkscrew collaterals of the Buerger’s disease

    PubMed Central

    Sharifi, Alireza; Charjouei Moghadam, Mohammad

    2016-01-01

    Introduction: Buerger’s disease is an occlusive arterial disease that occurs mainly in medium and small vessels. This disease is associated with Tobacco usage. The existence of corkscrew collateral is one of the established characteristics of the Buerger’s disease. Methods: In this study, the computational fluid dynamics (CFD) simulation of blood flow within the corkscrew artery of the Buerger’s disease is conducted. The geometry of the artery is constructed based on the actual corkscrew artery of a patient diagnosed with the Buerger’s disease. The blood properties are the same as the actual blood properties of the patient. The blood flow rate is taken from the available experimental data in the literature. Results: The local velocity patterns, pressure and kinematic viscosity distributions in different segments of the corkscrew collateral artery was demonstrated and discussed for the first time for this kind of artery. The effects of non-Newtonian consideration for the blood viscosity behavior were investigated in different segments of the artery. Moreover, the variations of the blood flow patterns along the artery were investigated in details for each segment. Conclusion: It was found that the flow patterns were affected by the complex geometry of this artery in such a way that it could lead to the presence of sites that were prone to the accumulation of the flowing particles in blood like nicotine. Furthermore, due to the existence of many successive bends in this artery, the variations of kinematic viscosity along this artery were significant, therefore the non-Newtonian behavior of the blood viscosity must be considered. PMID:27340623

  6. Influence of blood flow on adsorption of beta2-microglobulin onto AN69 dialyzer membrane.

    PubMed

    Kandus, A; Malovrh, M; Bren, A F

    1997-08-01

    Adsorption onto the dialyzer membrane is a contributing factor to the elimination of beta2-microglobulin (beta2M) from the sera of uremic patients. The purpose of this prospective study was to ascertain the influence of the blood flow rate on adsorption of beta2M onto the polyacrylonitrile (AN69) hollow-fiber dialyzer membrane in 8 patients during regular hemodialysis (HD). Blood first passed through a low-flux polysulfone dialyzer and then through an AN69 dialyzer, which was not in contact with the dialysis fluid. During the investigation period (first hour of the HD session), the blood flow rate was 100 ml/ min (first part of the study), 200 ml/min (second part of the study), and 300 ml/min (third part of the study). Ultrafiltration was not performed during the investigation period. At the start of the HD sessions, the serum concentration of beta2M in the afferent blood line did not differ significantly among the 3 parts of the study. Serum beta2M was measured in samples taken from the afferent and efferent blood lines of the AN69 dialyzer at 5, 10, 15, 30, 45, and 60 min. The serum beta2M concentration decreased significantly in blood that had passed through the AN69 dialyzer. This decrease, indicating membrane adsorption, was maximal during the first part and minimal during the third part of study. The decrease in the contact time between the blood and the AN69 could be the underlying cause. The calculated quantities of beta2M adsorbed onto the AN69 membrane (44.2 +/- 10.2, 43.2 +/- 12.1, and 42.6 +/- 17.3 mg) did not differ significantly among the 3 parts of the study. These results suggest that an increase in blood flow rate from 100 to 300 ml/min did not significantly affect the quantity of beta2M adsorbed onto the AN69 membrane.

  7. Inter-Slice Blood Flow and Magnetization Transfer Effects as A New Simultaneous Imaging Strategy.

    PubMed

    Han, Paul Kyu; Barker, Jeffrey W; Kim, Ki Hwan; Choi, Seung Hong; Bae, Kyongtae Ty; Park, Sung-Hong

    2015-01-01

    The recent blood flow and magnetization transfer (MT) technique termed alternate ascending/descending directional navigation (ALADDIN) achieves the contrast using interslice blood flow and MT effects with no separate preparation RF pulse, thereby potentially overcoming limitations of conventional methods. In this study, we examined the signal characteristics of ALADDIN as a simultaneous blood flow and MT imaging strategy, by comparing it with pseudo-continuous ASL (pCASL) and conventional MT asymmetry (MTA) methods, all of which had the same bSSFP readout. Bloch-equation simulations and experiments showed ALADDIN perfusion signals increased with flip angle, whereas MTA signals peaked at flip angle around 45°-60°. ALADDIN provided signals comparable to those of pCASL and conventional MTA methods emulating the first, second, and third prior slices of ALADDIN under the same scan conditions, suggesting ALADDIN signals to be superposition of signals from multiple labeling planes. The quantitative cerebral blood flow signals from a modified continuous ASL model overestimated the perfusion signals compared to those measured with a pulsed ASL method. Simultaneous mapping of blood flow, MTA, and MT ratio in the whole brain is feasible with ALADDIN within a clinically reasonable time, which can potentially help diagnosis of various diseases.

  8. Transrectal Doppler sonography of uterine blood flow during the first two weeks after parturition in Simmenthal heifers

    PubMed Central

    Krüger, Lars; Leidl, Stephanie; Bollwein, Heinrich

    2013-01-01

    Transrectal Doppler sonography was used to evaluate uterine blood flow during the first two weeks after parturition in six primiparous Simmental cows. The uterine blood flow was evaluated on the day of parturition (Day 0), once daily from Days 1 to 8 and then every other day until Day 14. Blood flow was quantified by determining the diameter (D), the time-averaged maximum velocity (TAMV), the pulsatility index (PI) and the blood flow volume (BFV) of the uterine arteries ipsilateral and contralateral to the formerly pregnant uterine horn. During the first four days after calving D, TAMV and BFV declined (ipsilateral: TAMV 70%, BFV 87%, contralateral: D 47%, BFV 84%; p < 0.05), while PI increased (ipsilateral 158%, contralateral 100%; p < 0.05) distinctly. Between Days 4 and 14 only the ipsilateral D (12%) and the BFV of both arteries (ipsilateral 5%, contralateral 8%) decreased (p < 0.05). Blood flow variables were very strongly correlated with each other (r > ±0.75, p < 0.05), with negative correlations with PI and positive correlations with all other investigated factors. Overall, this study revealed characteristic changes in uterine perfusion during the first two weeks after parturition in cows that were pronounced during the first four days postpartum. PMID:23820167

  9. Transrectal Doppler sonography of uterine blood flow during the first two weeks after parturition in Simmenthal heifers.

    PubMed

    Heppelmann, Maike; Krüger, Lars; Leidl, Stephanie; Bollwein, Heinrich

    2013-01-01

    Transrectal Doppler sonography was used to evaluate uterine blood flow during the first two weeks after parturition in six primiparous Simmental cows. The uterine blood flow was evaluated on the day of parturition (Day 0), once daily from Days 1 to 8 and then every other day until Day 14. Blood flow was quantified by determining the diameter (D), the time-averaged maximum velocity (TAMV), the pulsatility index (PI) and the blood flow volume (BFV) of the uterine arteries ipsilateral and contralateral to the formerly pregnant uterine horn. During the first four days after calving D, TAMV and BFV declined (ipsilateral: TAMV 70%, BFV 87%, contralateral: D 47%, BFV 84%; p < 0.05), while PI increased (ipsilateral 158%, contralateral 100%; p < 0.05) distinctly. Between Days 4 and 14 only the ipsilateral D (12%) and the BFV of both arteries (ipsilateral 5%, contralateral 8%) decreased (p < 0.05). Blood flow variables were very strongly correlated with each other (r > ±0.75, p < 0.05), with negative correlations with PI and positive correlations with all other investigated factors. Overall, this study revealed characteristic changes in uterine perfusion during the first two weeks after parturition in cows that were pronounced during the first four days postpartum.

  10. Dynamic spatio-temporal imaging of early reflow in a neonatal rat stroke model.

    PubMed

    Leger, Pierre-Louis; Bonnin, Philippe; Lacombe, Pierre; Couture-Lepetit, Elisabeth; Fau, Sebastien; Renolleau, Sylvain; Gharib, Abdallah; Baud, Olivier; Charriaut-Marlangue, Christiane

    2013-01-01

    The aim of the study was to better understand blood-flow changes in large arteries and microvessels during the first 15 minutes of reflow in a P7 rat model of arterial occlusion. Blood-flow changes were monitored by using ultrasound imaging with sequential Doppler recordings in internal carotid arteries (ICAs) and basilar trunk. Relative cerebral blood flow (rCBF) changes were obtained by using laser speckle Doppler monitoring. Tissue perfusion was measured with [(14)C]-iodoantipyrine autoradiography. Cerebral energy metabolism was evaluated by mitochondrial oxygen consumption. Gradual increase in mean blood-flow velocities illustrated a gradual perfusion during early reflow in both ICAs. On ischemia, the middle cerebral artery (MCA) territory presented a residual perfusion, whereas the caudal territory remained normally perfused. On reflow, speckle images showed a caudorostral propagation of reperfusion through anastomotic connections, and a reduced perfusion in the MCA territory. Autoradiography highlighted the caudorostral gradient, and persistent perfusion in ventral and medial regions. These blood-flow changes were accompanied by mitochondrial respiration impairment in the ipsilateral cortex. Collectively, these data indicate the presence of a primary collateral pathway through the circle of Willis, providing an immediate diversion of blood flow toward ischemic regions, and secondary efficient cortical anastomoses in the immature rat brain.

  11. Effects of three postexercice recovery treatments on femoral artery blood flow kinetics.

    PubMed

    Ménétrier, A; Mourot, L; Degano, B; Bouhaddi, M; Walther, G; Regnard, J; Tordi, N

    2015-04-01

    This study aimed to compare the kinetics of muscle leg blood flow during three recovery treatments following a prolonged exercise: contrast water therapy (CWT), compression stockings (CS) or passive recovery (PR). Fifteen men came to the laboratory three times to perform a 45-min exercise followed 5 min after by a standardized 12-min recovery treatment in upright position, alternating between two vats every 2 min: CWT (cold: ~12 °C to warm: 36 °C), CS (~20 mmHg) or PR. The order of treatments was randomized. Blood flow was measured using Doppler ultrasound during the recovery treatments (i.e., min 3, 5, 7 and 9) in the superficial femoral artery distally to the common bifurcation (~3 cm) (above the water and stocking). Blood flow was significantly higher during CWT (P<0.01; +22.91%) and CS (P<0.05; +15.26%) than during PR. Although no statistical difference between CWT and CS was observed, effect sizes were larger during CWT (large) than during CS (moderate). No changes in blood flow occurred in the femoral artery between hot and cold transitions of CWT. During immediate recovery of a high intensity exercise, CWT and CS trigger higher femoral artery blood flow than PR. Moreover, effect sizes were greater during CWT than during CS.

  12. Modelling the effect of intervillous flow on solute transfer based on 3D imaging of the human placental microstructure.

    PubMed

    Perazzolo, S; Lewis, R M; Sengers, B G

    2017-12-01

    A healthy pregnancy depends on placental transfer from mother to fetus. Placental transfer takes place at the micro scale across the placental villi. Solutes from the maternal blood are taken up by placental villi and enter the fetal capillaries. This study investigated the effect of maternal blood flow on solute uptake at the micro scale. A 3D image based modelling approach of the placental microstructures was undertaken. Solute transport in the intervillous space was modelled explicitly and solute uptake with respect to different maternal blood flow rates was estimated. Fetal capillary flow was not modelled and treated as a perfect sink. For a freely diffusing small solute, the flow of maternal blood through the intervillous space was found to be limiting the transfer. Ignoring the effects of maternal flow resulted in a 2.4 ± 0.4 fold over-prediction of transfer by simple diffusion, in absence of binding. Villous morphology affected the efficiency of solute transfer due to concentration depleted zones. Interestingly, less dense microvilli had lower surface area available for uptake which was compensated by increased flow due to their higher permeability. At super-physiological pressures, maternal flow was not limiting, however the efficiency of uptake decreased. This study suggests that the interplay between maternal flow and villous structure affects the efficiency of placental transfer but predicted that flow rate will be the major determinant of transfer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Oscillations and Multiple Equilibria in Microvascular Blood Flow.

    PubMed

    Karst, Nathaniel J; Storey, Brian D; Geddes, John B

    2015-07-01

    We investigate the existence of oscillatory dynamics and multiple steady-state flow rates in a network with a simple topology and in vivo microvascular blood flow constitutive laws. Unlike many previous analytic studies, we employ the most biologically relevant models of the physical properties of whole blood. Through a combination of analytic and numeric techniques, we predict in a series of two-parameter bifurcation diagrams a range of dynamical behaviors, including multiple equilibria flow configurations, simple oscillations in volumetric flow rate, and multiple coexistent limit cycles at physically realizable parameters. We show that complexity in network topology is not necessary for complex behaviors to arise and that nonlinear rheology, in particular the plasma skimming effect, is sufficient to support oscillatory dynamics similar to those observed in vivo.

  14. Characterizing pulmonary blood flow distribution measured using arterial spin labeling.

    PubMed

    Henderson, A Cortney; Prisk, G Kim; Levin, David L; Hopkins, Susan R; Buxton, Richard B

    2009-12-01

    The arterial spin labeling (ASL) method provides images in which, ideally, the signal intensity of each image voxel is proportional to the local perfusion. For studies of pulmonary perfusion, the relative dispersion (RD, standard deviation/mean) of the ASL signal across a lung section is used as a reliable measure of flow heterogeneity. However, the RD of the ASL signals within the lung may systematically differ from the true RD of perfusion because the ASL image also includes signals from larger vessels, which can reflect the blood volume rather than blood flow if the vessels are filled with tagged blood during the imaging time. Theoretical studies suggest that the pulmonary vasculature exhibits a lognormal distribution for blood flow and thus an appropriate measure of heterogeneity is the geometric standard deviation (GSD). To test whether the ASL signal exhibits a lognormal distribution for pulmonary blood flow, determine whether larger vessels play an important role in the distribution, and extract physiologically relevant measures of heterogeneity from the ASL signal, we quantified the ASL signal before and after an intervention (head-down tilt) in six subjects. The distribution of ASL signal was better characterized by a lognormal distribution than a normal distribution, reducing the mean squared error by 72% (p < 0.005). Head-down tilt significantly reduced the lognormal scale parameter (p = 0.01) but not the shape parameter or GSD. The RD increased post-tilt and remained significantly elevated (by 17%, p < 0.05). Test case results and mathematical simulations suggest that RD is more sensitive than the GSD to ASL signal from tagged blood in larger vessels, a probable explanation of the change in RD without a statistically significant change in GSD. This suggests that the GSD is a useful measure of pulmonary blood flow heterogeneity with the advantage of being less affected by the ASL signal from tagged blood in larger vessels.

  15. Study on the Effect of Thermal and Magnetic Stimulation by Measuring of the Peripheral Blood Flow and Skin Temperature

    NASA Astrophysics Data System (ADS)

    Kubota, Kouhei; Nuruki, Atsuo; Tamari, Youzou; Yunokuchi, Kazutomo

    Recently, the stiff shoulder accompanying the muscle fatigue becomes an issue of public concern. Therefore, we paid attention to the effect of the thermal and magnetic stimulation for the muscle fatigue. The maximum voluntary contraction has recovered significantly, and also peripheral blood flow has increased by stimulation. In order to evaluate if the thermal and magnetic stimulation has any effects, three parameters was measured, which are the maximum voluntary contraction, peripheral blood flow and skin temperature. The skin temperature, however, did not changed significantly.

  16. Contrast Gradient-Based Blood Velocimetry With Computed Tomography: Theory, Simulations, and Proof of Principle in a Dynamic Flow Phantom.

    PubMed

    Korporaal, Johannes G; Benz, Matthias R; Schindera, Sebastian T; Flohr, Thomas G; Schmidt, Bernhard

    2016-01-01

    The aim of this study was to introduce a new theoretical framework describing the relationship between the blood velocity, computed tomography (CT) acquisition velocity, and iodine contrast enhancement in CT images, and give a proof of principle of contrast gradient-based blood velocimetry with CT. The time-averaged blood velocity (v(blood)) inside an artery along the axis of rotation (z axis) is described as the mathematical division of a temporal (Hounsfield unit/second) and spatial (Hounsfield unit/centimeter) iodine contrast gradient. From this new theoretical framework, multiple strategies for calculating the time-averaged blood velocity from existing clinical CT scan protocols are derived, and contrast gradient-based blood velocimetry was introduced as a new method that can calculate v(blood) directly from contrast agent gradients and the changes therein. Exemplarily, the behavior of this new method was simulated for image acquisition with an adaptive 4-dimensional spiral mode consisting of repeated spiral acquisitions with alternating scan direction. In a dynamic flow phantom with flow velocities between 5.1 and 21.2 cm/s, the same acquisition mode was used to validate the simulations and give a proof of principle of contrast gradient-based blood velocimetry in a straight cylinder of 2.5 cm diameter, representing the aorta. In general, scanning with the direction of blood flow results in decreased and scanning against the flow in increased temporal contrast agent gradients. Velocity quantification becomes better for low blood and high acquisition speeds because the deviation of the measured contrast agent gradient from the temporal gradient will increase. In the dynamic flow phantom, a modulation of the enhancement curve, and thus alternation of the contrast agent gradients, can be observed for the adaptive 4-dimensional spiral mode and is in agreement with the simulations. The measured flow velocities in the downslopes of the enhancement curves were in good agreement with the expected values, although the accuracy and precision worsened with increasing flow velocities. The new theoretical framework increases the understanding of the relationship between the blood velocity, CT acquisition velocity, and iodine contrast enhancement in CT images, and it interconnects existing blood velocimetry methods with research on transluminary attenuation gradients. With these new insights, novel strategies for CT blood velocimetry, such as the contrast gradient-based method presented in this article, may be developed.

  17. Impact of membrane lung surface area and blood flow on extracorporeal CO2 removal during severe respiratory acidosis.

    PubMed

    Karagiannidis, Christian; Strassmann, Stephan; Brodie, Daniel; Ritter, Philine; Larsson, Anders; Borchardt, Ralf; Windisch, Wolfram

    2017-12-01

    Veno-venous extracorporeal CO 2 removal (vv-ECCO 2 R) is increasingly being used in the setting of acute respiratory failure. Blood flow rates through the device range from 200 ml/min to more than 1500 ml/min, and the membrane surface areas range from 0.35 to 1.3 m 2 . The present study in an animal model with similar CO 2 production as an adult patient was aimed at determining the optimal membrane lung surface area and technical requirements for successful vv-ECCO 2 R. Four different membrane lungs, with varying lung surface areas of 0.4, 0.8, 1.0, and 1.3m 2 were used to perform vv-ECCO 2 R in seven anesthetized, mechanically ventilated, pigs with experimentally induced severe respiratory acidosis (pH 7.0-7.1) using a 20Fr double-lumen catheter with a sweep gas flow rate of 8 L/min. During each experiment, the blood flow was increased stepwise from 250 to 1000 ml/min. Amelioration of severe respiratory acidosis was only feasible when blood flow rates from 750 to 1000 ml/min were used with a membrane lung surface area of at least 0.8 m 2 . Maximal CO 2 elimination was 150.8 ml/min, with pH increasing from 7.01 to 7.30 (blood flow 1000 ml/min; membrane lung 1.3 m 2 ). The membrane lung with a surface of 0.4 m 2 allowed a maximum CO 2 elimination rate of 71.7 mL/min, which did not result in the normalization of pH, even with a blood flow rate of 1000 ml/min. Also of note, an increase of the surface area above 1.0 m 2 did not result in substantially higher CO 2 elimination rates. The pressure drop across the oxygenator was considerably lower (<10 mmHg) in the largest membrane lung, whereas the smallest revealed a pressure drop of more than 50 mmHg with 1000 ml blood flow/min. In this porcine model, vv-ECCO 2 R was most effective when using blood flow rates ranging between 750 and 1000 ml/min, with a membrane lung surface of at least 0.8 m 2 . In contrast, low blood flow rates (250-500 ml/min) were not sufficient to completely correct severe respiratory acidosis, irrespective of the surface area of the membrane lung being used. The converse was also true, low surface membrane lungs (0.4 m 2 ) were not capable of completely correcting severe respiratory acidosis across the range of blood flows used in this study.

  18. Exploring sexual dimorphism in placental circulation at 22-24 weeks of gestation: A cross-sectional observational study.

    PubMed

    Widnes, Christian; Flo, Kari; Acharya, Ganesh

    2017-01-01

    Placental blood flow is closely associated with fetal growth and wellbeing. Recent studies suggest that there are differences in blood flow between male and female fetuses. We hypothesized that sexual dimorphism exists in fetal and placental blood flow at 22-24 weeks of gestation. This was a prospective cross-sectional study of 520 healthy pregnant women. Blood flow velocities of the middle cerebral artery (MCA), umbilical artery (UA), umbilical vein (UV) and the uterine arteries (UtA) were measured using Doppler ultrasonography. UV and UtA diameters were measured using two-dimensional ultrasonography and power Doppler angiography. Volume blood flows (Q) of the UV and UtA were calculated. Maternal haemodynamics was assessed with impedance cardiography. UtA resistance (R uta ) was computed as MAP/Q uta . UA PI was significantly (p = 0.008) higher in female fetuses (1.19 ± 0.15) compared with male fetuses (1.15 ± 0.14). MCA PI, cerebro-placental ratio (MCA PI/UA PI), Q uv, UtA PI, Q uta and R uta were not significantly different between groups. At delivery, the mean birth weight and placental weight of female infants (3504 g and 610 g) were significantly (p = 0.0005 and p = 0.039) lower than that of the male infants (3642 g and 634 g). We have demonstrated sexual dimorphism in UA PI, a surrogate for placental vascular resistance, at 22-24 weeks of gestation. Therefore, it would be useful to know when this difference emerges and whether it translates into blood flow differences that may impact upon the fetal growth trajectory. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Corpuls cpr resuscitation device generates superior emulated flows and pressures than LUCAS II in a mechanical thorax model.

    PubMed

    Eichhorn, S; Mendoza Garcia, A; Polski, M; Spindler, J; Stroh, A; Heller, M; Lange, R; Krane, M

    2017-06-01

    The provision of sufficient chest compression is among the most important factors influencing patient survival during cardiopulmonary resuscitation (CPR). One approach to optimize the quality of chest compressions is to use mechanical-resuscitation devices. The aim of this study was to compare a new device for chest compression (corpuls cpr) with an established device (LUCAS II). We used a mechanical thorax model consisting of a chest with variable stiffness and an integrated heart chamber which generated blood flow dependent on the compression depth and waveform. The method of blood-flow generation could be changed between direct cardiac-compression mode and thoracic-pump mode. Different chest-stiffness settings and compression modes were tested to generate various blood-flow profiles. Additionally, an endurance test at high stiffness was performed to measure overall performance and compression consistency. Both resuscitation machines were able to compress the model thorax with a frequency of 100/min and a depth of 5 cm, independent of the chosen chest stiffness. Both devices passed the endurance test without difficulty. The corpuls cpr device was able to generate about 10-40% more blood flow than the LUCAS II device, depending on the model settings. In most scenarios, the corpuls cpr device also generated a higher blood pressure than the LUCAS II. The peak compression forces during CPR were about 30% higher using the corpuls cpr device than with the LUCAS II. In this study, the corpuls cpr device had improved blood flow and pressure outcomes than the LUCAS II device. Further examination in an animal model is required to prove the findings of this preliminary study.

  20. Investigation of Blood Flow and the Effect of Vasoactive Substances in Cutaneous Blood Vessels of "Xenopus Laevis"

    ERIC Educational Resources Information Center

    Škorjanc, Aleš; Belušic, Gregor

    2015-01-01

    In the present study, a preparation of frog skin was presented, which can be used to demonstrate the basic concepts of blood flow regulation in a very clear and attractive way to high school and university students. In a freshly euthanized "Xenopus," a patch of abdominal skin was exposed from the internal side and viewed with a USB…

  1. Effects of insulin on physical factors: atherosclerosis in diabetes mellitus.

    PubMed

    McMillan, D E

    1985-12-01

    Newton's laws of motion play a major role in blood flow. Inertia and conservation of momentum cause flow to separate at branches and curves in large blood vessels. Areas of separated flow in the arterial system are sites of atherogenesis. The place at which the separation ends, called the stagnation point, is the focus for plaque development. Pulsation of the arterial circulation causes the stagnation point to move downstream with each systole and upstream with each diastole. This movement generates forward and backward shearing force in the stagnation region as the separated flow migrates back and forth. Angular momentum, introduced into flowing blood with each heart beat and further enhanced by the asymmetry of origin of vessels branching from the aorta, generates a sidewise force component that is preserved during migration of the stagnation point. The sidewise force, added to the forward and backward shear stresses, creates an area of multidirectional shear stress under the migrating stagnation point that increases the permeability of the local endothelium. Blood is a complex fluid; it can generate greater shear stresses near the stagnation point than the simple fluids normally studied by fluid mechanicists. Blood is capable of retaining shear stress for short periods after it ceases to flow and extra work is required to establish its flow. In diabetes, reduced erythrocyte deformability further burdens flow onset. We are not yet able to establish whether the increase is only a few percent, or whether the burden is larger. Whatever its magnitude, diabetic modifications of the flow properties of blood, directly affect the size, location, and rate of development of atherosclerotic plaques.

  2. An investigation into the blood-flow characteristics of telangiectatic skin lesions in systemic sclerosis using dual-wavelength laser Doppler imaging.

    PubMed

    Murray, A K; Moore, T L; Griffiths, C E M; Herrick, A L

    2009-07-01

    Superficial telangiectases associated with systemic sclerosis may be more responsive to treatment than those deeper in the dermis. We investigated whether dual-wavelength laser Doppler imaging (LDI) is sufficiently sensitive to ascertain the distribution of blood flow within telangiectases and whether blood flow relates to telangiectatic diameter. The perfusion and diameter of 20 telangiectases were measured in superficial and deeper layers of the skin using dual-wavelength LDI. Of 20 telangiectases, 18 had higher blood flow in the red (representing deeper blood flow), rather than the green (representing superficial blood flow) wavelength images. Clinically apparent diameters correlated with those of the superficial (r = 0.61, P = 0.01), but not with the deeper blood flow images. Hence, the apparent size of telangiectases at the skin surface does not predict blood flow through the microvessel(s) at deeper levels, and thus clinically apparent size is unlikely to predict treatment response. Dual-wavelength LDI may help predict treatment response.

  3. Effects of inhibition of nitric oxide synthase on basal anterior segment ocular blood flows and on potential autoregulatory mechanisms.

    PubMed

    Koss, M C

    2001-08-01

    Experiments were undertaken to determine the role played by nitric oxide (NO) in basal ocular blood flow in the anterior aspect of the eye. Subsequent studies focused on existence of autoregulatory mechanisms and on the potential involvement of NO. Cats were anesthetized with pentobarbital (36 mg/kg, i.p.). A femoral artery and vein were cannulated for measuring blood pressure and for drug administration, respectively. Anterior segment blood flow was measured in a continuous fashion from the long posterior ciliary artery (LPCA) using ultrasonic flowmetry and from the anterior choroid using laser-Doppler flowmetry. A needle was placed into the anterior chamber, and autoregulatory mechanisms were studied by decreasing ocular perfusion pressure via stepwise elevations of IOP. Non-selective inhibition of NO synthase with L-NAME (20 mg/kg, i.v.) significantly decreased basal blood flow from both sites. L-NAME (5 mg/kg, i.v.) was without effect as was D-NAME (25 mg/kg, i.v.). Increasing IOP produced a linear decrease on LPCA blood flow indicating absence of autoregulation. In contrast, stepwise elevation of IOP produced a delayed, non-linear response in the anterior choroid suggestive of a strong autoregulatory response. Neither response to elevated ocular perfusion pressure was further altered by inhibition of NO synthase with L-NAME (20 mg/kg, i.v.). The results confirm previous reports that nitric oxide plays a pivotal role in maintenance of basal ocular blood flow. Autoregulation was not seen in the LPCA. In contrast, there was a clear autoregulatory response in the anterior choroid, although neither response was altered by inhibition of NO synthase.

  4. Limb Blood Flow After Class 4 Laser Therapy

    PubMed Central

    Larkin, Kelly A.; Martin, Jeffrey S.; Zeanah, Elizabeth H.; True, Jerry M.; Braith, Randy W.; Borsa, Paul A.

    2012-01-01

    Context: Laser therapy is purported to improve blood flow in soft tissues. Modulating circulation would promote healing by controlling postinjury ischemia, hypoxia, edema, and secondary tissue damage. However, no studies have quantified these responses to laser therapy. Objective: To determine a therapeutic dose range for laser therapy for increasing blood flow to the forearm. Design: Crossover study. Setting: Controlled laboratory setting. Patients or Other Participants: Ten healthy, college-aged men (age = 20.80 ± 2.16 years, height = 177.93 ± 3.38 cm, weight = 73.64 ± 9.10 kg) with no current history of injury to the upper extremity or cardiovascular conditions. Intervention(s): A class 4 laser device was used to treat the biceps brachii muscle. Each grid point was treated for 3 to 4 seconds, for a total of 4 minutes. Each participant received 4 doses of laser therapy: sham, 1 W, 3 W, and 6 W. Main Outcome Measure(s): The dependent variables were changes in blood flow, measured using venous occlusion plethysmography. We used a repeated-measures analysis of variance to analyze changes in blood flow for each dose at 2, 3, and 4 minutes and at 1, 2, 3, 4, and 5 minutes after treatment. The Huynh-Feldt test was conducted to examine differences over time. Results: Compared with baseline, blood flow increased over time with the 3-W treatment (F3,9 = 3.468, P < .011) at minute 4 of treatment (2.417 ± 0.342 versus 2.794 ± 0.351 mL/min per 100 mL tissue, P = .032), and at 1 minute (2.767 ± 0.358 mL/min per 100 mL tissue, P < .01) and 2 minutes (2.657 ± 0.369 mL/min per 100 mL tissue, P = .022) after treatment. The sham, 1-W, and 6-W treatment doses did not change blood flow from baseline at any time point. Conclusions: Laser therapy at the 3-W (360-J) dose level was an effective treatment modality to increase blood flow in the soft tissues. PMID:22488283

  5. Blood Flow: Multi-scale Modeling and Visualization (July 2011)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2011-01-01

    Multi-scale modeling of arterial blood flow can shed light on the interaction between events happening at micro- and meso-scales (i.e., adhesion of red blood cells to the arterial wall, clot formation) and at macro-scales (i.e., change in flow patterns due to the clot). Coupled numerical simulations of such multi-scale flow require state-of-the-art computers and algorithms, along with techniques for multi-scale visualizations. This animation presents early results of two studies used in the development of a multi-scale visualization methodology. The fisrt illustrates a flow of healthy (red) and diseased (blue) blood cells with a Dissipative Particle Dynamics (DPD) method. Each bloodmore » cell is represented by a mesh, small spheres show a sub-set of particles representing the blood plasma, while instantaneous streamlines and slices represent the ensemble average velocity. In the second we investigate the process of thrombus (blood clot) formation, which may be responsible for the rupture of aneurysms, by concentrating on the platelet blood cells, observing as they aggregate on the wall of an aneruysm. Simulation was performed on Kraken at the National Institute for Computational Sciences. Visualization was produced using resources of the Argonne Leadership Computing Facility at Argonne National Laboratory.« less

  6. The Impact of Blood Rheology on Drug Transport in Stented Arteries: Steady Simulations

    PubMed Central

    Vijayaratnam, Pujith R. S.; O’Brien, Caroline C.; Reizes, John A.; Barber, Tracie J.; Edelman, Elazer R.

    2015-01-01

    Background and Methods It is important to ensure that blood flow is modelled accurately in numerical studies of arteries featuring drug-eluting stents due to the significant proportion of drug transport from the stent into the arterial wall which is flow-mediated. Modelling blood is complicated, however, by variations in blood rheological behaviour between individuals, blood’s complex near-wall behaviour, and the large number of rheological models which have been proposed. In this study, a series of steady-state computational fluid dynamics analyses were performed in which the traditional Newtonian model was compared against a range of non-Newtonian models. The impact of these rheological models was elucidated through comparisons of haemodynamic flow details and drug transport behaviour at various blood flow rates. Results Recirculation lengths were found to reduce by as much as 24% with the inclusion of a non-Newtonian rheological model. Another model possessing the viscosity and density of blood plasma was also implemented to account for near-wall red blood cell losses and yielded recirculation length increases of up to 59%. However, the deviation from the average drug concentration in the tissue obtained with the Newtonian model was observed to be less than 5% in all cases except one. Despite the small sensitivity to the effects of viscosity variations, the spatial distribution of drug matter in the tissue was found to be significantly affected by rheological model selection. Conclusions/Significance These results may be used to guide blood rheological model selection in future numerical studies. The clinical significance of these results is that they convey that the magnitude of drug uptake in stent-based drug delivery is relatively insensitive to individual variations in blood rheology. Furthermore, the finding that flow separation regions formed downstream of the stent struts diminish drug uptake may be of interest to device designers. PMID:26066041

  7. Effect of flow velocity on the photoacoustic detection for glucose aqueous solutions

    NASA Astrophysics Data System (ADS)

    Ren, Zhong; Liu, Guodong; Ding, Yu; Yao, Qingkai

    2018-01-01

    The blood glucose non-invasive detection has become the research hot-spot. The photoacoustic spectroscopy is a well-promising, high-efficient and noninvasive detection method because it combines the advantages of the pure optic and pure ultrasonic. In practice, the photoacoustic detection of blood glucose is impacted by many factors because the human body is a complicated bio-system. To study the effect of flow velocity in the blood vessel on the photoacoustic detection of blood glucose, a photoacoustic detection system based on optical parameter oscillator (OPO) pulsed laser induced ultrasonic was established. In this system, a 532nm pumped Nd: YAG OPO pulsed laser was used as the excitation source, and the photoacoustic signals of glucose were captured by ultrasonic transducer. Moreover, a set of blood circulation system was built to simulate the real blood flow situation in the human body. The experiments of the photoacoustic detection of glucose aqueous solutions with different concentrations at different flow velocities were experimentally investigated. Experimental results show that the photoacoustic peak-to-peak value linearly increases with the glucose concentration, but it decreases with the increase of the flow velocity although the profiles of photoacoustic signals don't change.

  8. Left Atrial 4D Blood Flow Dynamics and Hemostasis following Electrical Cardioversion of Atrial Fibrillation.

    PubMed

    Cibis, Merih; Lindahl, Tomas L; Ebbers, Tino; Karlsson, Lars O; Carlhäll, Carl-Johan

    2017-01-01

    Background: Electrical cardioversion in patients with atrial fibrillation is followed by a transiently impaired atrial mechanical function, termed atrial stunning. During atrial stunning, a retained risk of left atrial thrombus formation exists, which may be attributed to abnormal left atrial blood flow patterns. 4D Flow cardiovascular magnetic resonance (CMR) enables blood flow assessment from the entire three-dimensional atrial volume throughout the cardiac cycle. We sought to investigate left atrial 4D blood flow patterns and hemostasis during left atrial stunning and after left atrial mechanical function was restored. Methods: 4D Flow and morphological CMR data as well as blood samples were collected in fourteen patients at two time-points: 2-3 h (Time-1) and 4 weeks (Time-2) following cardioversion. The volume of blood stasis and duration of blood stasis were calculated. In addition, hemostasis markers were analyzed. Results: From Time-1 to Time-2: Heart rate decreased (61 ± 7 vs. 56 ± 8 bpm, p = 0.01); Maximum change in left atrial volume increased (8 ± 4 vs. 22 ± 15%, p = 0.009); The duration of stasis (68 ± 11 vs. 57 ± 8%, p = 0.002) and the volume of stasis (14 ± 9 vs. 9 ± 7%, p = 0.04) decreased; Thrombin-antithrombin complex (TAT) decreased (5.2 ± 3.3 vs. 3.3 ± 2.2 μg/L, p = 0.008). A significant correlation was found between TAT and the volume of stasis ( r 2 = 0.69, p < 0.001) at Time-1 and between TAT and the duration of stasis ( r 2 = 0.34, p = 0.04) at Time-2. Conclusion: In this longitudinal study, left atrial multidimensional blood flow was altered and blood stasis was elevated during left atrial stunning compared to the restored left atrial mechanical function. The coagulability of blood was also elevated during atrial stunning. The association between blood stasis and hypercoagulability proposes that assessment of left atrial 4D flow can add to the pathophysiological understanding of thrombus formation during atrial fibrillation related atrial stunning.

  9. Extensional flow of blood analog solutions in microfluidic devices

    PubMed Central

    Sousa, P. C.; Pinho, F. T.; Oliveira, M. S. N.; Alves, M. A.

    2011-01-01

    In this study, we show the importance of extensional rheology, in addition to the shear rheology, in the choice of blood analog solutions intended to be used in vitro for mimicking the microcirculatory system. For this purpose, we compare the flow of a Newtonian fluid and two well-established viscoelastic blood analog polymer solutions through microfluidic channels containing both hyperbolic and abrupt contractions∕expansions. The hyperbolic shape was selected in order to impose a nearly constant strain rate at the centerline of the microchannels and achieve a quasihomogeneous and strong extensional flow often found in features of the human microcirculatory system such as stenoses. The two blood analog fluids used are aqueous solutions of a polyacrylamide (125 ppm w∕w) and of a xanthan gum (500 ppm w∕w), which were characterized rheologically in steady-shear flow using a rotational rheometer and in extension using a capillary breakup extensional rheometer (CaBER). Both blood analogs exhibit a shear-thinning behavior similar to that of whole human blood, but their relaxation times, obtained from CaBER experiments, are substantially different (by one order of magnitude). Visualizations of the flow patterns using streak photography, measurements of the velocity field using microparticle image velocimetry, and pressure-drop measurements were carried out experimentally for a wide range of flow rates. The experimental results were also compared with the numerical simulations of the flow of a Newtonian fluid and a generalized Newtonian fluid with shear-thinning behavior. Our results show that the flow patterns of the two blood analog solutions are considerably different, despite their similar shear rheology. Furthermore, we demonstrate that the elastic properties of the fluid have a major impact on the flow characteristics, with the polyacrylamide solution exhibiting a much stronger elastic character. As such, these properties must be taken into account in the choice or development of analog fluids that are adequate to replicate blood behavior at the microscale. PMID:21483662

  10. Effect of heat transfer on rotating electroosmotic flow through a micro-vessel: haemodynamical applications

    NASA Astrophysics Data System (ADS)

    Sinha, A.; Mondal, A.; Shit, G. C.; Kundu, P. K.

    2016-08-01

    This paper theoretically analyzes the heat transfer characteristics associated with electroosmotic flow of blood through a micro-vessel having permeable walls. The analysis is based on the Debye-Hückel approximation for charge distributions and the Navier-Stokes equations are assumed to represent the flow field in a rotating system. The velocity slip condition at the vessel walls is taken into account. The essential features of the rotating electroosmotic flow of blood and associated heat transfer characteristics through a micro-vessel are clearly highlighted by the variation in the non-dimensional flow velocity, volumetric flow rate and non-dimensional temperature profiles. Moreover, the effect of Joule heating parameter and Prandtl number on the thermal transport characteristics are discussed thoroughly. The study reveals that the flow of blood is appreciably influenced by the elctroosmotic parameter as well as rotating Reynolds number.

  11. Correlation between uteroplacental three-dimensional power Doppler indices and true uterine blood flow: evaluation in a pregnant sheep model.

    PubMed

    Morel, O; Pachy, F; Chavatte-Palmer, P; Bonneau, M; Gayat, E; Laigre, P; Evain-Brion, D; Tsatsaris, V

    2010-11-01

    Three-dimensional (3D) Doppler quantification within the uteroplacental unit could be of great help in understanding and screening for pre-eclampsia and intrauterine growth restriction. Yet the correlation between 3D Doppler indices and true blood flow has not been confirmed in vivo. The aim of this study was to evaluate this correlation in a pregnant sheep model. A blood flow quantitative sensor and a controllable vascular occlusion system were placed around the common uterine artery in seven sheep in late pregnancy, while all the other arterial supplies were ligated. Several occlusion levels were applied, from 0 to 100%, simultaneously with 3D Doppler acquisitions of several placentomes, using standardized settings. Each placentome was analyzed using VOCAL™ (Virtual Organ Computer-aided AnaLysis) software. The correlation between true blood flow and Doppler indices (vascularization index (VI), flow index (FI) and vascularization flow index (VFI)) was evaluated, together with measurement reproducibility. Forty-eight acquisitions were analyzed. All 3D Doppler indices were significantly correlated with true blood flow. Higher correlations were observed for VI and VFI (r = 0.81 (0.74-0.87), P < 0.0001 and r = 0.75 (0.67-0.82), P < 0.0001) compared with FI (r = 0.53 (0.38-0.64) P < 0.0001). Both intra- and interobserver reproducibility were high, with intraclass correlation coefficients of at least 0.799. This is the first in-vivo experimental study confirming a significant correlation between true blood perfusion and quantitative 3D Doppler indices measured within the uteroplacental unit. These results confirm the potential usefulness of 3D Doppler ultrasound for the assessment of placental vascular insufficiency both in clinical cases and in a research setting. Copyright © 2010 ISUOG. Published by John Wiley & Sons, Ltd.

  12. Optic nerve head blood flow response to reduced ocular perfusion pressure by alteration of either the blood pressure or intraocular pressure.

    PubMed

    Wang, Lin; Cull, Grant A; Fortune, Brad

    2015-04-01

    To test the hypothesis that blood flow autoregulation in the optic nerve head has less reserve to maintain normal blood flow in the face of blood pressure-induced ocular perfusion pressure decrease than a similar magnitude intraocular pressure-induced ocular perfusion pressure decrease. Twelve normal non-human primates were anesthetized by continuous intravenous infusion of pentobarbital. Optic nerve blood flow was monitored by laser speckle flowgraphy. In the first group of animals (n = 6), the experimental eye intraocular pressure was maintained at 10 mmHg using a saline reservoir connected to the anterior chamber. The blood pressure was gradually reduced by a slow injection of pentobarbital. In the second group (n = 6), the intraocular pressure was slowly increased from 10 mmHg to 50 mmHg by raising the reservoir. In both experimental groups, optic nerve head blood flow was measured continuously. The blood pressure and intraocular pressure were simultaneously recorded in all experiments. The optic nerve head blood flow showed significant difference between the two groups (p = 0.021, repeat measures analysis of variance). It declined significantly more in the blood pressure group compared to the intraocular pressure group when the ocular perfusion pressure was reduced to 35 mmHg (p < 0.045) and below. There was also a significant interaction between blood flow changes and the ocular perfusion pressure treatment (p = 0.004, adjusted Greenhouse & Geisser univariate test), indicating the gradually enlarged blood flow difference between the two groups was due to the ocular perfusion pressure decrease. The results show that optic nerve head blood flow is more susceptible to an ocular perfusion pressure decrease induced by lowering the blood pressure compared with that induced by increasing the intraocular pressure. This blood flow autoregulation capacity vulnerability to low blood pressure may provide experimental evidence related to the hemodynamic pathophysiology in glaucoma.

  13. Flow-mediated dilation and exercise blood pressure in healthy adolescents

    USDA-ARS?s Scientific Manuscript database

    Objectives: Atherosclerosis is a process that begins in youth. The endothelium plays an essential role in regulating blood flow and protecting against progression of the initial stages of the atherosclerotic process. Few studies have investigated the relationship between aerobic fitness and exerc...

  14. Novel silicon microchannels device for use in red blood cell deformability studies

    NASA Astrophysics Data System (ADS)

    Zheng, Xiao-Lin; Liao, Yan-Jian; Zhang, Wen-Xian

    2001-10-01

    Currently, a number of techniques are used to access cell deformability. We study a novel silicon microchannels device for use in red blood cell deformability. The channels are produced in silicon substrate using microengineering technology. The microgrooves formed in the surface of a single-crystal silicon substrate. They were converted to channels by tightly covering them with an optical flat glass plate. An array of flow channels (number 950 in parallel) have typical dimensions of 5 micrometers width X 5.5 Xm depth, and 30 micrometers length. There the RBC's are forced to pass through channels. Thus, the microchannels are used to simulate human blood capillaries. It provides a specific measurement of individual cell in terms of both flow velocity profile and an index of cell volume while the cell flow through the channels. It dominates the complex cellular flow behavior, such as, the viscosity of whole blood is a nonlinear function of shear rate, index of filtration, etc.

  15. Cerebral blood flow is reduced in patients with sepsis syndrome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowton, D.L.; Bertels, N.H.; Prough, D.S.

    The relationship between sepsis-induced CNS dysfunction and changes in brain blood flow remains unknown, and animal studies examining the influence of sepsis on cerebral blood flow (CBF) do not satisfactorily address that relationship. We measured CBF and cerebrovascular reactivity to CO/sub 2/ in nine patients with sepsis syndrome using the /sup 133/Xe clearance technique. Mean CBF was 29.6 +/- 15.8 (SD) ml/100 g.min, significantly lower than the normal age-matched value in this laboratory of 44.9 +/- 6.2 ml/100 g.min (p less than .02). This depression did not correlate with changes in mean arterial pressure. Despite the reduction in CBF, themore » specific reactivity of the cerebral vasculature to changes in CO/sub 2/ was normal, 1.3 +/- 0.9 ml/100 g.min/mm Hg. Brain blood flow is reduced in septic humans; the contribution of this reduction to the metabolic and functional changes observed in sepsis requires further study.« less

  16. Cutaneous Microvascular Blood Flow and Reactivity in Hypoxia

    PubMed Central

    Treml, Benedikt; Kleinsasser, Axel; Stadlbauer, Karl-Heinz; Steiner, Iris; Pajk, Werner; Pilch, Michael; Burtscher, Martin; Knotzer, Hans

    2018-01-01

    As is known, hypoxia leads to an increase in microcirculatory blood flow of the skin in healthy volunteers. In this pilot study, we investigated microcirculatory blood flow and reactive hyperemia of the skin in healthy subjects in normobaric hypoxia. Furthermore, we examined differences in microcirculation between hypoxic subjects with and without short-term acclimatization, whether or not skin microvasculature can acclimatize. Fourty-six healthy persons were randomly allocated to either short-term acclimatization using intermittent hypoxia for 1 h over 7 days at an FiO2 0.126 (treatment, n = 23) or sham short-term acclimatization for 1 h over 7 days at an FiO2 0.209 (control, n = 23). Measurements were taken in normoxia and at 360 and 720 min during hypoxia (FiO2 0.126). Microcirculatory cutaneous blood flow was assessed with a laser Doppler flowmeter on the forearm. Reactive hyperemia was induced by an ischemic stimulus. Measurements included furthermore hemodynamics, blood gas analyses and blood lactate. Microcirculatory blood flow increased progressively during hypoxia (12.3 ± 7.1–19.0 ± 8.1 perfusion units; p = 0.0002) in all subjects. The magnitude of the reactive hyperemia was diminished during hypoxia (58.2 ± 14.5–40.3 ± 27.4 perfusion units; p = 0.0003). Short-term acclimatization had no effect on microcirculatory blood flow. When testing for a hyperemic response of the skin's microcirculation we found a diminished signal in hypoxia, indicative for a compromised auto-regulative circulatory capacity. Furthermore, hypoxic short-term acclimatization did not affect cutaneous microcirculatory blood flow. Seemingly, circulation of the skin was unable to acclimatize using a week-long short-term acclimatization protocol. A potential limitation of our study may be the 7 days between acclimatization and the experimental test run. However, there is evidence that the hypoxic ventilatory response, an indicator of acclimatization, is increased for 1 week after short-term acclimatization. Then again, 1 week is what one needs to get from home to a location at significant altitude. PMID:29559919

  17. Numerical Simulations of Blood Flows in the Left Atrium

    NASA Astrophysics Data System (ADS)

    Zhang, Lucy

    2008-11-01

    A novel numerical technique of solving complex fluid-structure interactions for biomedical applications is introduced. The method is validated through rigorous convergence and accuracy tests. In this study, the technique is specifically used to study blood flows in the left atrium, one of the four chambers in the heart. Stable solutions are obtained at physiologic Reynolds numbers by applying pulmonary venous inflow, mitral valve outflow and appropriate constitutive equations to closely mimic the behaviors of biomaterials. Atrial contraction is also implemented as a time-dependent boundary condition to realistically describe the atrial wall muscle movements, thus producing accurate interactions with the surrounding blood. From our study, the transmitral velocity, filling/emptying velocity ratio, durations and strengths of vortices are captured numerically for sinus rhythms (healthy heart beat) and they compare quite well with reported clinical studies. The solution technique can be further used to study heart diseases such as the atrial fibrillation, thrombus formation in the chamber and their corresponding effects in blood flows.

  18. Modified Beer-Lambert law for blood flow.

    PubMed

    Baker, Wesley B; Parthasarathy, Ashwin B; Busch, David R; Mesquita, Rickson C; Greenberg, Joel H; Yodh, A G

    2014-11-01

    We develop and validate a Modified Beer-Lambert law for blood flow based on diffuse correlation spectroscopy (DCS) measurements. The new formulation enables blood flow monitoring from temporal intensity autocorrelation function data taken at single or multiple delay-times. Consequentially, the speed of the optical blood flow measurement can be substantially increased. The scheme facilitates blood flow monitoring of highly scattering tissues in geometries wherein light propagation is diffusive or non-diffusive, and it is particularly well-suited for utilization with pressure measurement paradigms that employ differential flow signals to reduce contributions of superficial tissues.

  19. The effects of non-Newtonian blood flow on curved stenotic coronary artery

    NASA Astrophysics Data System (ADS)

    Li, Shuang; Chin, Cheng; Monty, Jason; Barlis, Peter; Ooi, Andrew

    2017-11-01

    Direct numerical simulations (DNS) are carried out using both Newtonian and non-Newtonian viscosity models under a pulsatile physiological flow condition to study the influences of the non-Newtonian blood property on the flow fields in the idealised curved stenotic artery model. Quemada model is adopted to simulate the non-Newtonian blood in the simulations. Both time-averaged and selected instantaneous velocity, vorticity and pressure data are examined and the differences between the Newtonian and non-Newtonian flows are examined. The non-Newtonian simulations tend to have blunted axial velocity profile compared to the Newtonian cases. In the proximal of post-stenotic region, smaller recirculation bubbles are observed because of the non-Newtonian effects. Decreased secondary flow strengths are observed upstream of stenosis while higher magnitudes of secondary flows are found out downstream of stenosis. The deviation of mean cross-sectionally axial vorticity is minimal except at the peak systole, where an additional vortice appears near the centre of the 90 degrees plane that is more pronounced in the Newtonian case. The influence of blood-analog viscosity increases the mean pressure drops. However, lower instantaneous pressure losses at peak systole are observed in contrast to the Newtonian blood analog fluid.

  20. Numerical investigation of hyperelastic wall deformation characteristics in a micro-scale stenotic blood vessel

    NASA Astrophysics Data System (ADS)

    Cheema, Taqi Ahmad; Park, Cheol Woo

    2013-08-01

    Stenosis is the drastic reduction of blood vessel diameter because of cholesterol accumulation in the vessel wall. In addition to the changes in blood flow characteristics, significant changes occur in the mechanical behavior of a stenotic blood vessel. We conducted a 3-D study of such behavior in micro-scale blood vessels by considering the fluid structure interaction between blood flow and vessel wall structure. The simulation consisted of one-way coupled analysis of blood flow and the resulting structural deformation without a moving mesh. A commercial code based on a finite element method with a hyperelastic material model (Neo-Hookean) of the wall was used to calculate wall deformation. Three different cases of stenosis severity and aspect ratios with and without muscles around the blood vessel were considered. The results showed that the wall deformation in a stenotic channel is directly related to stenosis severity and aspect ratio. The presence of muscles reduces the degree of deformation even in very severe stenosis.

  1. Cerebrovascular function and cognition in childhood: a systematic review of transcranial doppler studies

    PubMed Central

    2014-01-01

    Background The contribution of cerebrovascular function to cognitive performance is gaining increased attention. Transcranial doppler (TCD) is portable, reliable, inexpensive and extremely well tolerated by young and clinical samples. It enables measurement of blood flow velocity in major cerebral arteries at rest and during cognitive tasks. Methods We systematically reviewed evidence for associations between cognitive performance and cerebrovascular function in children (0-18 years), as measured using TCD. A total of 2778 articles were retrieved from PsychInfo, Pubmed, and EMBASE searches and 25 relevant articles were identified. Results Most studies investigated clinical groups, where decreased blood flow velocities in infants were associated with poor neurological functioning, and increased blood flow velocities in children with Sickle cell disease were typically associated with cognitive impairment and lower intelligence. Studies were also identified assessing autistic behaviour, mental retardation and sleep disordered breathing. In healthy children, the majority of studies reported cognitive processing produced lateralised changes in blood flow velocities however these physiological responses did not appear to correlate with behavioural cognitive performance. Conclusion Poor cognitive performance appears to be associated with decreased blood flow velocities in premature infants, and increased velocities in Sickle cell disease children using TCD methods. However knowledge in healthy samples is relatively limited. The technique is well tolerated by children, is portable and inexpensive. It therefore stands to make a valuable contribution to knowledge regarding the underlying functional biology of cognitive performance in childhood. PMID:24602446

  2. Using ultrasonography to monitor liver blood flow for liver transplant from donors supported on extracorporeal membrane oxygenation.

    PubMed

    Zhu, Xian-Sheng; Wang, Sha-Sha; Cheng, Qi; Ye, Chuang-Wen; Huo, Feng; Li, Peng

    2016-02-01

    Extracorporeal membrane oxygenation (ECMO) has been used to support brain-dead donors for liver procurement. This study investigated the potential role of ultrasonographic monitoring of hepatic perfusion as an aid to improve the viability of liver transplants obtained from brain-dead donors who are supported on ECMO. A total of 40 brain-dead patients maintained on ECMO served as the study population. Hepatic blood flow was monitored using ultrasonography, and perioperative optimal perfusion was maintained by calibrating ECMO. Liver function tests were performed to assess the viability of the graft. The hepatic arterial blood flow was well maintained with no significant changes observed before and after ECMO (206 ± 32 versus 241 ± 45 mL/minute; P = 0.06). Similarly, the portal venous blood flow was also maintained throughout (451 ± 65 versus 482 ± 77 mL/minute; P = 0.09). No significant change in levels of total bilirubin, alanine transaminase, and lactic acid were reported during ECMO (P = 0.17, P = 0.08, and P = 0.09, respectively). Before the liver is procured, ultrasonographic monitoring of hepatic blood flow could be a valuable aid to improve the viability of a liver transplant by allowing for real-time calibration of ECMO perfusion in brain-dead liver donors. In our study, ultrasonographic monitoring helped prevent warm ischemic injury to the liver graft by avoiding both overperfusion and underperfusion of the liver. © 2015 American Association for the Study of Liver Diseases.

  3. Determination of fractional flow reserve (FFR) based on scaling laws: a simulation study

    NASA Astrophysics Data System (ADS)

    Wong, Jerry T.; Molloi, Sabee

    2008-07-01

    Fractional flow reserve (FFR) provides an objective physiological evaluation of stenosis severity. A technique that can measure FFR using only angiographic images would be a valuable tool in the cardiac catheterization laboratory. To perform this, the diseased blood flow can be measured with a first pass distribution analysis and the theoretical normal blood flow can be estimated from the total coronary arterial volume based on scaling laws. A computer simulation of the coronary arterial network was used to gain a better understanding of how hemodynamic conditions and coronary artery disease can affect blood flow, arterial volume and FFR estimation. Changes in coronary arterial flow and volume due to coronary stenosis, aortic pressure and venous pressure were examined to evaluate the potential use of flow and volume for FFR determination. This study showed that FFR can be estimated using arterial volume and a scaling coefficient corrected for aortic pressure. However, variations in venous pressure were found to introduce some error in FFR estimation. A relative form of FFR was introduced and was found to cancel out the influence of pressure on coronary flow, arterial volume and FFR estimation. The use of coronary flow and arterial volume for FFR determination appears promising.

  4. Recirculation zone length in renal artery is affected by flow spirality and renal-to-aorta flow ratio.

    PubMed

    Javadzadegan, Ashkan; Fulker, David; Barber, Tracie

    2017-07-01

    Haemodynamic perturbations such as flow recirculation zones play a key role in progression and development of renal artery stenosis, which typically originate at the aorta-renal bifurcation. The spiral nature of aortic blood flow, division of aortic blood flow in renal artery as well as the exercise conditions have been shown to alter the haemodynamics in both positive and negative ways. This study focuses on the combinative effects of spiral component of blood flow, renal-to-aorta flow ratio and the exercise conditions on the size and distribution of recirculation zones in renal branches using computational fluid dynamics technique. Our findings show that the recirculation length was longest when the renal-to-aorta flow ratio was smallest. Spiral flow and exercise conditions were found to be effective in reducing the recirculation length in particular in small renal-to-aorta flow ratios. These results support the hypothesis that in renal arteries with small flow ratios where a stenosis is already developed an artificially induced spiral flow within the aorta may decelerate the progression of stenosis and thereby help preserve kidney function.

  5. The effectiveness of simple drainage technique in improvement of cerebral blood flow in patients with chronic subdural hemorrhage.

    PubMed

    Kaplan, Metin; Erol, Fatih Serhat; Bozgeyik, Zülküf; Koparan, Mehmet

    2007-07-01

    In the present study, the clinical effectiveness of a surgical procedure in which no draining tubes are installed following simple burr hole drainage and saline irrigation is investigated. 10 patients, having undergone operative intervention for unilateral chronic subdural hemorrhage, having a clinical grade of 2 and a hemorrhage thickness of 2 cm, were included in the study. The cerebral blood flow rates of middle cerebral artery were evaluated bilaterally with Doppler before and after the surgery. All the cases underwent the operation using the simple burr hole drainage technique without the drain and consequent saline irrigation. Statistical analysis was performed by Wilcoxon signed rank test (p<0.05). There was a pronounced decrease in the preoperative MCA blood flow in the hemisphere the hemorrhage had occurred (p=0.008). An increased PI value on the side of the hemorrhage drew our attention (p=0.005). Postoperative MCA blood flow measurements showed a statistically significant improvement (p=0.005). Furthermore, the PI value showed normalization (p<0.05). The paresis and the level of consciousness improved in all cases. Simple burr hole drainage technique is sufficient for the improvement of cerebral blood flow and clinical recovery in patients with chronic subdural hemorrhage.

  6. Can flavonoid-rich chocolate modulate arterial elasticity and pathological uterine artery Doppler blood flow in pregnant women? A pilot study.

    PubMed

    von Wowern, Emma; Olofsson, Per

    2018-09-01

    Dark chocolate has shown beneficial effects on cardiovascular health and might also modulate hypertensive complications in pregnancy and uteroplacental blood flow. Increased uteroplacental resistance is associated with systemic arterial stiffness. We aimed to investigate the short-term effect of flavonoid-rich chocolate on arterial stiffness and Doppler blood flow velocimetry indexes in pregnant women with compromised uteroplacental blood flow. Doppler blood flow velocimetry and digital pulse wave analysis (DPA) were performed in 25 women pregnant in the second and third trimesters with uterine artery (UtA) score (UAS) 3-4, before and after 3 days of ingestion of chocolate with high flavonoid and antioxidant contents. UtA pulsatility index (PI), UtA diastolic notching, UAS (semiquantitative measure of PI and notching combined), and umbilical artery PI were calculated, and DPA variables representing central and peripheral maternal arteries were recorded. Mean UtA PI (p = .049) and UAS (p = .025) significantly decreased after chocolate consumption. There were no significant changes in UtA diastolic notching or any DPA indexes of arterial stiffness/vascular tone. Chocolate may have beneficial effects on the uteroplacental circulation, but in this pilot study, we could not demonstrate effects on arterial vascular tone as assessed by DPA.

  7. Effect of beta-adrenergic blockade with timolol on myocardial blood flow during exercise after myocardial infarction in the dog.

    PubMed

    Herzog, C A; Aeppli, D P; Bache, R J

    1984-12-01

    The effect of beta-adrenergic blockade with timolol (40 micrograms/kg) on myocardial blood flow during rest and graded treadmill exercise was assessed in 12 chronically instrumented dogs 10 to 14 days after myocardial infarction was produced by acute left circumflex coronary artery occlusion. During exercise at comparable external work loads, the heart rate-systolic blood pressure product was significantly decreased after timilol, with concomitant reductions of myocardial blood flow in normal, border and central ischemic areas (p less than 0.001) and increases in subendocardial/subepicardial blood flow ratios (p less than 0.05). In addition to the blunted chronotropic response to exercise, timolol exerted an effect on myocardial blood flow that was not explained by changes in heart rate or blood pressure. At comparable rate-pressure products during exercise, total myocardial blood flow was 24% lower after timolol (p less than 0.02) and flow was redistributed from subepicardium to subendocardium in all myocardial regions. Thus, timolol altered myocardial blood flow during exercise by two separate mechanisms: a negative chronotropic effect, and a significant selective reduction of subepicardial perfusion independent of changes in heart rate or blood pressure with transmural redistribution of flow toward the subendocardium.

  8. Blood flow regulation and oxygen uptake during high-intensity forearm exercise.

    PubMed

    Nyberg, S K; Berg, O K; Helgerud, J; Wang, E

    2017-04-01

    The vascular strain is very high during heavy handgrip exercise, but the intensity and kinetics to reach peak blood flow, and peak oxygen uptake, are uncertain. We included 9 young (25 ± 2 yr) healthy males to evaluate blood flow and oxygen uptake responses during continuous dynamic handgrip exercise with increasing intensity. Blood flow was measured using Doppler-ultrasound, and venous blood was drawn from a deep forearm vein to determine arteriovenous oxygen difference (a-vO 2diff ) during 6-min bouts of 60, 80, and 100% of maximal work rate (WR max ), respectively. Blood flow and oxygen uptake increased ( P < 0.05) from 60%WR max [557 ± 177(SD) ml/min; 56.0 ± 21.6 ml/min] to 80%WR max (679 ± 190 ml/min; 70.6 ± 24.8 ml/min), but no change was seen from 80%WR max to 100%WR max Blood velocity (49.5 ± 11.5 to 58.1 ± 11.6 cm/s) and brachial diameter (0.49 ± 0.05 to 0.50 ± 0.06 cm) showed concomitant increases ( P < 0.05) with blood flow from 60% to 80%WR max, whereas no differences were observed in a-vO 2diff Shear rate also increased ( P < 0.05) from 60% (822 ± 196 s -1 ) to 80% (951 ± 234 s -1 ) of WR max The mean response time (MRT) was slower ( P < 0.05) for blood flow (60%WR max 50 ± 22 s; 80%WR max 51 ± 20 s; 100%WR max 51 ± 23 s) than a-vO 2diff (60%WR max 29 ± 9 s; 80%WR max 29 ± 5 s; 100%WR max 20 ± 5 s), but not different from oxygen uptake (60%WR max 44 ± 25 s; 80%WR max 43 ± 14 s; 100%WR max 41 ± 32 s). No differences were observed in MRT for blood flow or oxygen uptake with increased exercise intensity. In conclusion, when approaching maximal intensity, oxygen uptake appeared to reach a critical level at ~80% of WR max and be regulated by blood flow. This implies that high, but not maximal, exercise intensity may be an optimal stimulus for shear stress-induced small muscle mass training adaptations. NEW & NOTEWORTHY This study evaluated blood flow regulation and oxygen uptake during small muscle mass forearm exercise with high to maximal intensity. Despite utilizing only a fraction of cardiac output, blood flow reached a plateau at 80% of maximal work rate and regulated peak oxygen uptake. Furthermore, the results revealed that muscle contractions dictated bulk oxygen delivery and yielded three times higher peak blood flow in the relaxation phase compared with mean values. Copyright © 2017 the American Physiological Society.

  9. Effects of thermal stimulation, applied to the hindpaw via a hot water bath, upon ovarian blood flow in anesthetized nonpregnant rats.

    PubMed

    Uchida, Sae; Hotta, Harumi; Hanada, Tomoko; Okuno, Yuka; Aikawa, Yoshihiro

    2007-08-01

    The effects of thermal stimulation, applied to the hindpaw via a hot bath set to either 40 degrees C (non-noxious) or 49 degrees C (noxious), upon ovarian blood flow were examined in nonpregnant anesthetized rats. Ovarian blood flow was measured using a laser Doppler flowmeter. Blood pressure was markedly increased following 49 degrees C stimulation. Ovarian blood flow, however, showed no obvious change during stimulation, although a small increase was observed after stimulation. Ovarian blood flow and blood pressure responses to 49 degrees C stimulation were abolished after hindlimb somatic nerves proximal to the stimuli were cut. Heat stimulation (49 degrees C) resulted in remarkable increases in both ovarian blood flow and blood pressure in rats in which the sympathetic nerves supplying the ovary were cut but the hindlimb somatic nerves remained intact. The efferent activity of the ovarian plexus nerve was increased during stimulation at 49 degrees C. Stimulation at 40 degrees C had no effect upon ovarian blood flow, blood pressure or ovarian plexus nerve activity. Electrical stimulation of the distal part of the severed ovarian plexus nerve resulted in a decrease in both the diameter of ovarian arterioles, observed using a digital video microscope, and ovarian blood flow.The present results demonstrate that noxious heat, but not non-noxious warm, stimulation of the hindpaw skin in anesthetized rats influences ovarian blood flow in a manner that is attributed to reflex responses in ovarian sympathetic nerve activity and blood pressure.

  10. Histaminergic H3-Heteroreceptors as a Potential Mediator of Betahistine-Induced Increase in Cochlear Blood Flow.

    PubMed

    Bertlich, Mattis; Ihler, Friedrich; Freytag, Saskia; Weiss, Bernhard G; Strupp, Michael; Canis, Martin

    2015-01-01

    Betahistine is a histamine-like drug that is considered beneficial in Ménière's disease by increasing cochlear blood flow. Acting as an agonist at the histamine H1-receptor and as an inverse agonist at the H3-receptor, these receptors as well as the adrenergic α2-receptor were investigated for betahistine effects on cochlear blood flow. A total of 54 Dunkin-Hartley guinea pigs were randomly assigned to one of nine groups treated with a selection of H1-, H3- or α2-selective agonists and antagonists together with betahistine. Cochlear blood flow and mean arterial pressure were recorded for 3 min before and 15 min after infusion. Blockage of the H3- or α2-receptors caused a suppression of betahistine-mediated typical changes in cochlear blood flow or blood pressure. Activation of H3-receptors caused a drop in cochlear blood flow and blood pressure. H1-receptors showed no involvement in betahistine-mediated changes of cochlear blood flow. Betahistine most likely affects cochlear blood flow through histaminergic H3-heteroreceptors. © 2015 S. Karger AG, Basel.

  11. Critical cerebral perfusion pressure at high intracranial pressure measured by induced cerebrovascular and intracranial pressure reactivity.

    PubMed

    Bragin, Denis E; Statom, Gloria L; Yonas, Howard; Dai, Xingping; Nemoto, Edwin M

    2014-12-01

    The lower limit of cerebral blood flow autoregulation is the critical cerebral perfusion pressure at which cerebral blood flow begins to fall. It is important that cerebral perfusion pressure be maintained above this level to ensure adequate cerebral blood flow, especially in patients with high intracranial pressure. However, the critical cerebral perfusion pressure of 50 mm Hg, obtained by decreasing mean arterial pressure, differs from the value of 30 mm Hg, obtained by increasing intracranial pressure, which we previously showed was due to microvascular shunt flow maintenance of a falsely high cerebral blood flow. The present study shows that the critical cerebral perfusion pressure, measured by increasing intracranial pressure to decrease cerebral perfusion pressure, is inaccurate but accurately determined by dopamine-induced dynamic intracranial pressure reactivity and cerebrovascular reactivity. Cerebral perfusion pressure was decreased either by increasing intracranial pressure or decreasing mean arterial pressure and the critical cerebral perfusion pressure by both methods compared. Cortical Doppler flux, intracranial pressure, and mean arterial pressure were monitored throughout the study. At each cerebral perfusion pressure, we measured microvascular RBC flow velocity, blood-brain barrier integrity (transcapillary dye extravasation), and tissue oxygenation (reduced nicotinamide adenine dinucleotide) in the cerebral cortex of rats using in vivo two-photon laser scanning microscopy. University laboratory. Male Sprague-Dawley rats. At each cerebral perfusion pressure, dopamine-induced arterial pressure transients (~10 mm Hg, ~45 s duration) were used to measure induced intracranial pressure reactivity (Δ intracranial pressure/Δ mean arterial pressure) and induced cerebrovascular reactivity (Δ cerebral blood flow/Δ mean arterial pressure). At a normal cerebral perfusion pressure of 70 mm Hg, 10 mm Hg mean arterial pressure pulses had no effect on intracranial pressure or cerebral blood flow (induced intracranial pressure reactivity = -0.03 ± 0.07 and induced cerebrovascular reactivity = -0.02 ± 0.09), reflecting intact autoregulation. Decreasing cerebral perfusion pressure to 50 mm Hg by increasing intracranial pressure increased induced intracranial pressure reactivity and induced cerebrovascular reactivity to 0.24 ± 0.09 and 0.31 ± 0.13, respectively, reflecting impaired autoregulation (p < 0.05). By static cerebral blood flow, the first significant decrease in cerebral blood flow occurred at a cerebral perfusion pressure of 30 mm Hg (0.71 ± 0.08, p < 0.05). Critical cerebral perfusion pressure of 50 mm Hg was accurately determined by induced intracranial pressure reactivity and induced cerebrovascular reactivity, whereas the static method failed.

  12. POTENTIAL EFFECTS OF WHOLE-BODY VIBRATION EXERCISES ON BLOOD FLOW KINETICS OF DIFFERENT POPULATIONS: A SYSTEMATIC REVIEW WITH A SUITABLE APPROACH.

    PubMed

    Sá-Caputo, Danúbia; Paineiras-Domingos, Laisa; Carvalho-Lima, Rafaelle; Dias-Costa, Glenda; de Paiva, Patrícia de Castro; de Azeredo, Claudia Figueiredo; Carmo, Roberto Carlos Resende; Dionello, Carla F; Moreira-Marconi, Eloá; Frederico, Éric Heleno F F; Sousa-Gonçalves, Cintia Renata; Morel, Danielle S; Paiva, Dulciane N; Avelar, Núbia C P; Lacerda, Ana C; Magalhães, Carlos E V; Castro, Leonardo S; Presta, Giuseppe A; de Paoli, Severo; Sañudo, Borja; Bernardo-Filho, Mario

    2017-01-01

    The ability to control skin blood flow decreases with advancing age and some clinical disorders, as in diabetes and in rheumatologic diseases. Feasible clinical strategies such as whole-body vibration exercise (WBVE) are being used without a clear understanding of its effects. The aim of the present study is to review the effects of the WBVE on blood flow kinetics and its feasibility in different populations. The level of evidence (LE) of selected papers in PubMed and/or PEDRo databases was determined. We selected randomized, controlled trials in English to be evaluated. Six studies had LE II, one had LE III-2 and one III-3 according to the NHMRC. A great variability among the protocols was observed but also in the assessment devices; therefore, more research about this topic is warranted. Despite the limitations, it is can be concluded that the use of WBVE has proven to be a safe and useful strategy to improve blood flow. However, more studies with greater methodological quality are needed to clearly define the more suitable protocols.

  13. Quantitative analysis of optical properties of flowing blood using a photon-cell interactive Monte Carlo code: effects of red blood cells' orientation on light scattering.

    PubMed

    Sakota, Daisuke; Takatani, Setsuo

    2012-05-01

    Optical properties of flowing blood were analyzed using a photon-cell interactive Monte Carlo (pciMC) model with the physical properties of the flowing red blood cells (RBCs) such as cell size, shape, refractive index, distribution, and orientation as the parameters. The scattering of light by flowing blood at the He-Ne laser wavelength of 632.8 nm was significantly affected by the shear rate. The light was scattered more in the direction of flow as the flow rate increased. Therefore, the light intensity transmitted forward in the direction perpendicular to flow axis decreased. The pciMC model can duplicate the changes in the photon propagation due to moving RBCs with various orientations. The resulting RBC's orientation that best simulated the experimental results was with their long axis perpendicular to the direction of blood flow. Moreover, the scattering probability was dependent on the orientation of the RBCs. Finally, the pciMC code was used to predict the hematocrit of flowing blood with accuracy of approximately 1.0 HCT%. The photon-cell interactive Monte Carlo (pciMC) model can provide optical properties of flowing blood and will facilitate the development of the non-invasive monitoring of blood in extra corporeal circulatory systems.

  14. Computational approach to estimating the effects of blood properties on changes in intra-stent flow.

    PubMed

    Benard, Nicolas; Perrault, Robert; Coisne, Damien

    2006-08-01

    In this study various blood rheological assumptions are numerically investigated for the hemodynamic properties of intra-stent flow. Non-newtonian blood properties have never been implemented in blood coronary stented flow investigation, although its effects appear essential for a correct estimation and distribution of wall shear stress (WSS) exerted by the fluid on the internal vessel surface. Our numerical model is based on a full 3D stent mesh. Rigid wall and stationary inflow conditions are applied. Newtonian behavior, non-newtonian model based on Carreau-Yasuda relation and a characteristic newtonian value defined with flow representative parameters are introduced in this research. Non-newtonian flow generates an alteration of near wall viscosity norms compared to newtonian. Maximal WSS values are located in the center part of stent pattern structure and minimal values are focused on the proximal stent wire surface. A flow rate increase emphasizes fluid perturbations, and generates a WSS rise except for interstrut area. Nevertheless, a local quantitative analysis discloses an underestimation of WSS for modelisation using a newtonian blood flow, with clinical consequence of overestimate restenosis risk area. Characteristic viscosity introduction appears to present a useful option compared to rheological modelisation based on experimental data, with computer time gain and relevant results for quantitative and qualitative WSS determination.

  15. Differential visceral blood flow in the hyperdynamic circulation of patients with liver cirrhosis.

    PubMed

    McAvoy, N C; Semple, S; Richards, J M J; Robson, A J; Patel, D; Jardine, A G M; Leyland, K; Cooper, A S; Newby, D E; Hayes, P C

    2016-05-01

    With advancing liver disease and the development of portal hypertension, there are major alterations in somatic and visceral blood flow. Using phase-contrast magnetic resonance angiography, we characterised alterations in blood flow within the hepatic, splanchnic and extra-splanchnic circulations of patients with established liver cirrhosis. To compare blood flow in splanchnic and extra-splanchnic circulations in patients with varying degrees of cirrhosis and healthy controls. In a single-centre prospective study, 21 healthy volunteers and 19 patients with established liver disease (Child's stage B and C) underwent electrocardiogram-gated phase-contrast-enhanced 3T magnetic resonance angiography of the aorta, hepatic artery, portal vein, superior mesenteric artery, and the renal and common carotid arteries. In comparison to healthy volunteers, resting blood flow in the descending thoracic aorta was increased by 43% in patients with liver disease (4.31 ± 1.47 vs. 3.31 ± 0.80 L/min, P = 0.011). While portal vein flow was similar (0.83 ± 0.38 vs. 0.77 ± 0.35 L/min, P = 0.649), hepatic artery flow doubled (0.50 ± 0.46 vs. 0.25 ± 0.15 L/min, P = 0.021) and consequently total liver blood flow increased by 30% (1.33 ± 0.84 vs. 1.027 ± 0.5 L/min, P = 0.043). In patients with liver disease, superior mesenteric artery flow was threefold higher (0.65 ± 0.35 vs. 0.22 ± 0.13 L/min, P < 0.001), while total renal blood flow was reduced by 40% (0.37 ± 0.14 vs. 0.62 ± 0.22 L/min, P < 0.001) and total carotid blood flow unchanged (0.62 ± 0.20 vs. 0.65 ± 0.13 L/min, P = 0.315). Rather than a generalised systemic hyperdynamic circulation, liver disease is associated with dysregulated splanchnic vasodilatation and portosystemic shunting that, while inducing a high cardiac output, causes compensatory extra-splanchnic vasoconstriction - the 'splanchnic steal' phenomenon. These circulatory disturbances may underlie many of the manifestations of advanced liver disease. © 2016 John Wiley & Sons Ltd.

  16. Pharmacologic manipulation of the microcirculation in cutaneous and myocutaneous flaps in pigs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pang, C.Y.; Neligan, P.C.; Nakatsuka, T.

    1985-04-01

    The vascular effects of isoxsuprine, diazoxide, and isoproterenol were studied in arterial buttock flaps and latissimus dorsi myocutaneous flaps in pigs. Capillary blood flow to the skin and muscles of these flaps was measured by the radioactive microsphere (15-mu diameter) technique 6 hours postoperatively under pentobarbital anesthesia. It was observed that isoproterenol, a beta-adrenergic receptor agonist, was not effective in augmentation of skin blood flow in the arterial buttock flaps. However, isoproterenol significantly increased capillary blood flow to the arterialized portion of latissimus dorsi myocutaneous flaps compared with controls. Isoxsuprine and diazoxide (vascular smooth muscle relaxants) significantly (p less thanmore » 0.05) increased total capillary blood flow to the skin of arterial buttock flaps and to the skin and muscles of the latissimus dorsi myocutaneous flaps. However, the increase in capillary blood flow occurred mainly in the arterialized portion of these flaps. The capillary blood flow, which was supplied by the small arteries in the distal portion of the arterial buttock and latissimus dorsi flaps, was not increased by treatment with isoxsuprine or diazoxide. Therefore, there was also no increase in the maximum distance of capillary blood flow from the pedicle to the distal end of the flaps. These observations led the authors to hypothesize that different sizes (diameters) of arteries in the skin and muscle have different reactivity (or sensitivity) to vasodilatory drugs. In the present experiment, the large dominant artery of the arterial buttock and latissimus dorsi flaps responded to isoxsuprine or diazoxide (vascular smooth-muscle relaxants), resulting in an increase in blood supply to the capillaries in the proximal portion of the flaps.« less

  17. Intraocular Pressure, Blood Pressure, and Retinal Blood Flow Autoregulation: A Mathematical Model to Clarify Their Relationship and Clinical Relevance

    PubMed Central

    Guidoboni, Giovanna; Harris, Alon; Cassani, Simone; Arciero, Julia; Siesky, Brent; Amireskandari, Annahita; Tobe, Leslie; Egan, Patrick; Januleviciene, Ingrida; Park, Joshua

    2014-01-01

    Purpose. This study investigates the relationship between intraocular pressure (IOP) and retinal hemodynamics and predicts how arterial blood pressure (BP) and blood flow autoregulation (AR) influence this relationship. Methods. A mathematical model is developed to simulate blood flow in the central retinal vessels and retinal microvasculature as current flowing through a network of resistances and capacitances. Variable resistances describe active and passive diameter changes due to AR and IOP. The model is validated by using clinically measured values of retinal blood flow and velocity. The model simulations for six theoretical patients with high, normal, and low BP (HBP-, NBP-, LBP-) and functional or absent AR (-wAR, -woAR) are compared with clinical data. Results. The model predicts that NBPwAR and HBPwAR patients can regulate retinal blood flow (RBF) as IOP varies between 15 and 23 mm Hg and between 23 and 29 mm Hg, respectively, whereas LBPwAR patients do not adequately regulate blood flow if IOP is 15 mm Hg or higher. Hemodynamic alterations would be noticeable only if IOP changes occur outside of the regulating range, which, most importantly, depend on BP. The model predictions are consistent with clinical data for IOP reduction via surgery and medications and for cases of induced IOP elevation. Conclusions. The theoretical model results suggest that the ability of IOP to induce noticeable changes in retinal hemodynamics depends on the levels of BP and AR of the individual. These predictions might help to explain the inconsistencies found in the clinical literature concerning the relationship between IOP and retinal hemodynamics. PMID:24876284

  18. Intraocular pressure, blood pressure, and retinal blood flow autoregulation: a mathematical model to clarify their relationship and clinical relevance.

    PubMed

    Guidoboni, Giovanna; Harris, Alon; Cassani, Simone; Arciero, Julia; Siesky, Brent; Amireskandari, Annahita; Tobe, Leslie; Egan, Patrick; Januleviciene, Ingrida; Park, Joshua

    2014-05-29

    This study investigates the relationship between intraocular pressure (IOP) and retinal hemodynamics and predicts how arterial blood pressure (BP) and blood flow autoregulation (AR) influence this relationship. A mathematical model is developed to simulate blood flow in the central retinal vessels and retinal microvasculature as current flowing through a network of resistances and capacitances. Variable resistances describe active and passive diameter changes due to AR and IOP. The model is validated by using clinically measured values of retinal blood flow and velocity. The model simulations for six theoretical patients with high, normal, and low BP (HBP-, NBP-, LBP-) and functional or absent AR (-wAR, -woAR) are compared with clinical data. The model predicts that NBPwAR and HBPwAR patients can regulate retinal blood flow (RBF) as IOP varies between 15 and 23 mm Hg and between 23 and 29 mm Hg, respectively, whereas LBPwAR patients do not adequately regulate blood flow if IOP is 15 mm Hg or higher. Hemodynamic alterations would be noticeable only if IOP changes occur outside of the regulating range, which, most importantly, depend on BP. The model predictions are consistent with clinical data for IOP reduction via surgery and medications and for cases of induced IOP elevation. The theoretical model results suggest that the ability of IOP to induce noticeable changes in retinal hemodynamics depends on the levels of BP and AR of the individual. These predictions might help to explain the inconsistencies found in the clinical literature concerning the relationship between IOP and retinal hemodynamics. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  19. Tolerance of snakes to hypergravity

    NASA Technical Reports Server (NTRS)

    Lillywhite, H. B.; Ballard, R. E.; Hargens, A. R.

    1996-01-01

    Sensitivity of carotid blood flow to increased gravitational force acting in the head-to-tail direction(+Gz) was studied in diverse species of snakes hypothesized to show adaptive variation of response. Tolerance to increased gravity was measured red as the maximum graded acceleration force at which carotid blood flow ceased and was shown to vary according to gravitational adaptation of species defined by their ecology and behavior. Multiple regression analysis showed that gravitational habitat, but not body length, had a significant effect on Gz tolerance. At the extremes, carotid blood flow decreased in response to increasing G force and approached zero near +1 Gz in aquatic and ground-dwelling species, whereas in climbing species carotid flow was maintained at forces in excess of +2 Gz. Tolerant (arboreal) species were able to withstand hypergravic forces of +2 to +3 Gz for periods up to 1 h without cessation of carotid blood flow or loss of body movement and tongue flicking. Data suggest that the relatively tight skin characteristic of tolerant species provides a natural antigravity suit and is of prime importance in counteracting Gz stress on blood circulation.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajagopalan, B.; Raine, A.E.; Cooper, R.

    The intravenous /sup 133/xenon injection method was used to estimate global cerebral blood flow before and after treatment with captopril in nine patients with severe heart failure. The pretreatment mean blood pressure was 94.9 mm Hg (S.D. 13.9) and fell to 85.1 mm Hg (S.D. 18.1) after treatment with captopril for between four and 15 days. The cerebral blood flow before captopril was 61.1 ml/100 g per minute (S.D. 6.9), which was less than the value of 75.8 ml/100 g per minute found in control subjects. After treatment with captopril the cerebral blood flow increased to 73.8 ml/100 g permore » minute (S.D. 11.8, p less than 0.01). The fraction of carbon dioxide in the expired air was not significantly different in the two studies (4.1 +/- 0.88 versus 3.97 +/- 0.65). It is concluded that cerebral blood flow is reduced in severe heart failure and can be restored by treatment with captopril, but the reasons for the reduced flow and its improvement after converting enzyme inhibition are not known.« less

  1. Blood flow to the promontory in cochlear otosclerosis.

    PubMed

    Nakashima, T; Sone, M; Fujii, H; Teranishi, M; Yamamoto, H; Otake, H; Sugiura, M; Naganawa, S

    2006-04-01

    To investigate Schwartze sign with measurements of blood flow to the promontory in patients with cochlear otosclerosis. Prospective clinical study. Tertiary referral centre. Five patients with cochlear otosclerosis and five control subjects. Significant decalcification around the cochlea was observed by computed tomography (CT) in patients with cochlear otosclerosis. However, no recognizable lesion was observed at the oval window in two patients. One patient had mixed hearing loss and four patients had sensorineural hearing loss without an air-bone gap. The relationship between CT findings and the presence or absence of Schwartze sign was investigated. Blood flow to the promontory was measured through the tympanic membrane using laser speckle flowgraphy and laser Doppler flowmetry. The Schwartze sign correlated significantly with otosclerotic lesions invading the promontory. Patients with otosclerosis exhibited elevated and pulsating blood flow to the promontory with the Schwartze sign. Computed tomography demonstrated that cochlear otosclerosis can exist without the oval window lesion. Schwartze sign can be used as a sign of the otosclerotic invasion to the promontory. The reddening of the Schwartze sign is likely due to increased blood flow.

  2. Mathematical modelling of the human cardiovascular system in the presence of stenosis

    NASA Technical Reports Server (NTRS)

    Sud, V. K.; Srinivasan, R. S.; Charles, J. B.; Bungo, M. W.

    1993-01-01

    This paper reports a theoretical study on the distribution of blood flow in the human cardiovascular system when one or more blood vessels are affected by stenosis. The analysis employs a mathematical model of the entire system based on the finite element method. The arterial-venous network is represented by a large number of interconnected segments in the model. Values for the model parameters are based upon the published data on the physiological and rheological properties of blood. Computational results show how blood flow through various parts of the cardiovascular system is affected by stenosis in different blood vessels. No significant changes in the flow parameters of the cardiovascular system were found to occur when the reduction in the lumen diameter of the stenosed vessels was less than 65%.

  3. Bicuspid aortic valve

    MedlinePlus

    ... regulates blood flow from the heart into the aorta. The aorta is the major blood vessel that brings oxygen- ... blood to flow from the heart to the aorta. It prevents the blood from flowing back from ...

  4. Effect of warming and flow rate conditions of blood warmers on red blood cell integrity.

    PubMed

    Poder, T G; Pruneau, D; Dorval, J; Thibault, L; Fisette, J-F; Bédard, S K; Jacques, A; Beauregard, P

    2016-11-01

    Fluid warmers are routinely used to reduce the risk of hypothermia and cardiac complications associated with the infusion of cold blood products. However, warming blood products could generate haemolysis. This study was undertaken to compare the impact of temperature of blood warmers on the per cent haemolysis of packed red blood cells (RBCs) heated at different flow rates as well as non-flow conditions. Infusion warmers used were calibrated at 41·5°C ± 0·5°C and 37·5°C ± 0·5°C. Cold RBC units stored at 4°C in AS-3 (n = 30), aged 30-39 days old, were divided into half units before being allocated under two different scenarios (i.e. infusion pump or syringe). Blood warmers were effective to warm cold RBCs to 37·5°C or 41·5°C when used in conjunction with an infusion pump at flow rate up to 600 ml/h. However, when the warmed blood was held in a syringe for various periods of time, such as may occur in neonatal transfusions, the final temperature was below the expected requirements with measurement as low as 33·1°C. Increasing the flow with an infusion pump increased haemolysis in RBCs from 0·2% to up to 2·1% at a flow rate of 600 ml/h regardless of the warming device used (P < 0·05). No relevant increase of haemolysis was observed using a syringe. The use of a blood warmer adjusted to 41·5°C is probably the best choice for reducing the risk of hypothermia for the patient without generating haemolysis. However, we should be cautious with the use of an infusion pump for RBC transfusion, particularly at high flow rates. © 2016 International Society of Blood Transfusion.

  5. A protocol for characterizing the impact of collateral flow after distal middle cerebral artery occlusion

    PubMed Central

    DeFazio, R. Anthony; Levy, Sean; Morales, Carmen L.; Levy, Rebecca V.; Dave, Kunjan R.; Lin, Hung W.; Abaffy, Tatjana; Watson, Brant D.; Perez-Pinzon, Miguel A.; Ohanna, Victoria

    2010-01-01

    I. SUMMARY In humans and in animal models of stroke, collateral blood flow between territories of the major pial arteries has a profound impact on cortical infarct size. However, there is a gap in our understanding of the genetic determinants of collateral formation and flow, as well as the signaling pathways and neurovascular interactions regulating this flow. Previous studies have demonstrated that collateral flow between branches of the anterior cerebral artery (ACA) and the middle cerebral artery (MCA) can protect mouse cortex from infarction after middle cerebral artery occlusion. Because the number and diameter of collaterals varies among mouse strains and after transgenic manipulations, a combination of methods is required to control for these variations. Here, we report an inexpensive approach to characterizing the cerebrovascular anatomy, and in vivo monitoring of cerebral blood flow as well. Further, we introduce a new, minimally invasive method for the occlusion of distal MCA branches. These methods will permit a new generation of studies on the mechanisms regulating collateral remodeling and cortical blood flow after stroke. PMID:21593993

  6. Blood-brain barrier transport of butanol and water relative to N-isopropyl-p-iodoamphetamine as the internal reference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pardridge, W.M.; Fierer, G.

    1985-06-01

    The literature regarding the blood--brain barrier (BBB) transport of butanol is conflicting as studies report both incomplete and complete extraction of butanol by the brain. In this work the BBB transport of both (/sup 14/C)butanol and (/sup 3/H)water was studied using the carotid injection technique in conscious and in ketamine- or pentobarbital-anesthetized rats employing N-isopropyl-p-(/sup 125/I)iodoamphetamine ((/sup 125/I)IMP) as the internal reference and as a fluid microsphere. The three isotopes (/sup 3/H, /sup 125/I, /sup 14/C) were conveniently counted simultaneously in a liquid scintillation spectrometer. IMP is essentially completely sequestered by the brain for at least 1 min in consciousmore » rats and for 2 min in anesthetized animals. Butanol extraction by rat forebrain is not flow limited but ranges between 77 +/- 1 and 87 +/- 1% for the three conditions. The permeability-surface area product/cerebral blood flow ratio of butanol and water in rat forebrain remains relatively constant, despite a twofold increase in cerebral blood flow in conscious relative to pentobarbital-anesthetized rats. The absence of an inverse relationship between flow and butanol or water extraction is consistent with capillary recruitment being the principal mechanism underlying changes in cerebral blood flow in anesthesia. The diffusion restriction of BBB transport of butanol in some regions, but not in others, necessitates a careful regional analysis of BBB permeability to butanol prior to usage of this compound as a cerebral blood flow marker.« less

  7. 'Fine-tuning' blood flow to the exercising muscle with advancing age: an update.

    PubMed

    Wray, D Walter; Richardson, Russell S

    2015-06-01

    What is the topic of this review? This review focuses on age-related changes in the regulatory pathways that exist at the unique interface between the vascular smooth muscle and the endothelium of the skeletal muscle vasculature, and how these changes contribute to impairments in exercising skeletal muscle blood flow in the elderly. What advances does it highlight? Several recent in vivo human studies from our group and others are highlighted that have examined age-related changes in nitric oxide, endothelin-1, alpha adrenergic, and renin-angiotensin-aldosterone (RAAS) signaling. During dynamic exercise, oxygen demand from the exercising muscle is dramatically elevated, requiring a marked increase in skeletal muscle blood flow that is accomplished through a combination of systemic sympathoexcitation and local metabolic vasodilatation. With advancing age, the balance between these factors appears to be disrupted in favour of vasoconstriction, leading to an impairment in exercising skeletal muscle blood flow in the elderly. This 'hot topic' review aims to provide an update to our current knowledge of age-related changes in the neural and local mechanisms that contribute to this 'fine-tuning' of blood flow during exercise. The focus is on results from recent human studies that have adopted a reductionist approach to explore how age-related changes in both vasodilators (nitric oxide) and vasoconstrictors (endothelin-1, α-adrenergic agonists and angiotensin II) interact and how these changes impact blood flow to the exercising skeletal muscle with advancing age. © 2015 The Authors. Experimental Physiology © 2015 The Physiological Society.

  8. Catheter-Based Measurements of Absolute Coronary Blood Flow and Microvascular Resistance: Feasibility, Safety, and Reproducibility in Humans.

    PubMed

    Xaplanteris, Panagiotis; Fournier, Stephane; Keulards, Daniëlle C J; Adjedj, Julien; Ciccarelli, Giovanni; Milkas, Anastasios; Pellicano, Mariano; Van't Veer, Marcel; Barbato, Emanuele; Pijls, Nico H J; De Bruyne, Bernard

    2018-03-01

    The principle of continuous thermodilution can be used to calculate absolute coronary blood flow and microvascular resistance (R). The aim of the study is to explore the safety, feasibility, and reproducibility of coronary blood flow and R measurements as measured by continuous thermodilution in humans. Absolute coronary flow and R can be calculated by thermodilution by infusing saline at room temperature through a dedicated monorail catheter. The temperature of saline as it enters the vessel, the temperature of blood and saline mixed in the distal part of the vessel, and the distal coronary pressure were measured by a pressure/temperature sensor-tipped guidewire. The feasibility and safety of the method were tested in 135 patients who were referred for coronary angiography. No significant adverse events were observed; in 11 (8.1%) patients, bradycardia and concomitant atrioventricular block appeared transiently and were reversed immediately on interruption of the infusion. The reproducibility of measurements was tested in a subgroup of 80 patients (129 arteries). Duplicate measurements had a strong correlation both for coronary blood flow (ρ=0.841, P <0.001; intraclass correlation coefficient=0.89, P <0.001) and R (ρ=0.780, P <0.001; intraclass correlation coefficient=0.89, P <0.001). In Bland-Altman plots, there was no significant bias or asymmetry. Absolute coronary blood flow (in L/min) and R (in mm Hg/L/min or Wood units) can be safely and reproducibly measured with continuous thermodilution. This approach constitutes a new opportunity for the study of the coronary microcirculation. © 2018 American Heart Association, Inc.

  9. Doppler endoscopic probe as a guide to risk stratification and definitive hemostasis of peptic ulcer bleeding.

    PubMed

    Jensen, Dennis M; Ohning, Gordon V; Kovacs, Thomas O G; Ghassemi, Kevin A; Jutabha, Rome; Dulai, Gareth S; Machicado, Gustavo A

    2016-01-01

    For more than 4 decades endoscopists have relied on ulcer stigmata for risk stratification and as a guide to hemostasis. None used arterial blood flow underneath stigmata to predict outcomes. For patients with severe peptic ulcer bleeding (PUB), we used a Doppler endoscopic probe (DEP) for (1) detection of blood flow underlying stigmata of recent hemorrhage (SRH), (2) quantitating rates of residual arterial blood flow under SRH after visually directed standard endoscopic treatment, and (3) comparing risks of rebleeding and actual 30-day rebleed rates for spurting arterial bleeding (Forrest [F] IA) and oozing bleeding (F IB). Prospective cohort study of 163 consecutive patients with severe PUB and different SRH. All blood flow detected by the DEP was arterial. Detection rates were 87.4% in major SRH-spurting arterial bleeding (F IA), non-bleeding visible vessel (F IIA), clot (F IIB)-and were significantly lower at 42.3% (P < .0001) for an intermediate group of oozing bleeding (F IB) or flat spot (F IIC). For spurting bleeding (F IA) versus oozing (F IB), baseline DEP arterial flow was 100% versus 46.7%, residual blood flow detected after endoscopic hemostasis was 35.7% versus 0%, and 30-day rebleed rates were 28.6% versus 0% (all P < .05). (1) For major SRH versus oozing or spot, the arterial blood flow detection rate by the DEP was significantly higher, indicating a higher rebleed risk. (2) Before and after endoscopic treatment, spurting (F IA) PUB had significantly higher rates of blood flow detection than oozing (F IB) PUB and a significantly higher 30-day rebleed rate. (3) The DEP is recommended as a new endoscopic guide with SRH to improve risk stratification and potentially definitive hemostasis for PUB. Published by Elsevier Inc.

  10. Doppler Endoscopic Probe as a Guide to Risk Stratification and Definitive Hemostasis of Peptic Ulcer Bleeding

    PubMed Central

    Jensen, Dennis M.; Ohning, Gordon V.; Kovacs, Thomas OG; Ghassemi, Kevin A.; Jutabha, Rome; Dulai, Gareth S.; Machicado, Gustavo A.

    2015-01-01

    Background and Aims For more than 4 decades endoscopists have relied on ulcer stigmata for risk stratification and as a guide to hemostasis. None used arterial blood flow underneath stigmata to predict outcomes. For patients with severe peptic ulcer bleeding (PUBs), we used Doppler endoscopic probe (DEP) for: 1. detection of blood flow underlying stigmata of recent hemorrhage (SRH), 2. quantitating rates of residual arterial blood flow under SRH after visually directed standard endoscopic treatment, and 3. comparing risks of rebleeding and actual 30 day rebleed rates for spurting arterial bleeding (Forrest – FIA) and oozing bleeding (FIB). Methods Prospective cohort study of 163 consecutive patients with severe PUBs and different SRH. Results All blood flow detected by DEP was arterial. Detection rates were 87.4% in major SRH - spurting arterial bleeding (FIA), non bleeding visible vessel (FIIA), clot (FIIB) - and significantly lower at 42.3% (p<0.0001) for intermediate group of oozing bleeding (FIB) or flat spot (FIIC). For spurting bleeding (FIA) vs. oozing (FIB), baseline DEP arterial flow was 100% vs. 46.7%; residual blood flow detected after endoscopic hemostasis was 35.7% vs. 0%; and 30 day rebleed rates were 28.6% vs. 0% (all p<0.05). Conclusions 1. For major SRH vs. oozing or spot, the arterial blood flow detection rates by DEP was significantly higher, indicating a higher rebleed risk. 2. Before and after endoscopic treatment, spurting FIA PUB’s had significantly higher rates of blood flow detection than oozing FIB PUB’s and a significantly higher 30 rebleed rate. 3. DEP is recommended as a new endoscopic guide with SRH to improve risk stratification and potentially definitive hemostasis for PUBs. PMID:26318834

  11. Changes in cerebral blood flow and vasoreactivity in response to acetazolamide in patients with transient global amnesia

    PubMed Central

    Sakashita, Y.; Kanai, M.; Sugimoto, T.; Taki, S.; Takamori, M.

    1997-01-01

    OBJECTIVE—Previous reports about changes in cerebral blood flow (CBF) in transient global amnesia disclosed decreased flow in some parts of the brain. However, CBF analyses in most reports were qualitative but not quantitative. The purpose of this study was to determine changes in CBF in transient global amnesia.
METHODS—The CBF was measured and the vasoreactive response to acetazolamide was evaluated in six patients with transient global amnesia using technetium-99m hexamethylpropylene amine oxime single-photon emission computed tomography (SPECT). The CBF was measured during an attack in two patients and soon after an attack in the other four. About one month later, CBF was re-evaluated in each patient.
RESULTS—Two patients examined during an attack and one patient examined five hours after an attack had increased blood flow in the occipital cortex and cerebellum. Three patients examined at six to 10 hours after an attack had decreased blood flow in the thalamus, cerebellum, or putamen. These abnormalities of blood flow almost disappeared in all patients one month after onset. The vasodilatory response to acetazolamide, which was evaluated initially using SPECT, was poor in areas of increased blood flow. By the second evaluation of CBF with acetazolamide, the vasodilatory response had returned to normal.
CONCLUSIONS—In a patient with transient global amnesia, CBF increased in the vertebrobasilar territory during the attack and decreased afterwards. The vasodilatory response to acetazolamide may be impaired in the parts of the brain with increased blood flow. It is suggested that transient global amnesia is distinct from migraine but may share the same underlying mechanism.

 PMID:9408101

  12. Blood flow responses to mild-intensity exercise in ectopic vs. orthotopic prostate tumors; dependence upon host tissue hemodynamics and vascular reactivity

    PubMed Central

    Garcia, Emmanuel; Becker, Veronika G. C.; McCullough, Danielle J.; Stabley, John N.; Gittemeier, Elizabeth M.; Opoku-Acheampong, Alexander B.; Sieman, Dietmar W.

    2016-01-01

    Given the critical role of tumor O2 delivery in patient prognosis and the rise in preclinical exercise oncology studies, we investigated tumor and host tissue blood flow at rest and during exercise as well as vascular reactivity using a rat prostate cancer model grown in two transplantation sites. In male COP/CrCrl rats, blood flow (via radiolabeled microspheres) to prostate tumors [R3327-MatLyLu cells injected in the left flank (ectopic) or ventral prostate (orthotopic)] and host tissue was measured at rest and during a bout of mild-intensity exercise. α-Adrenergic vasoconstriction to norepinephrine (NE: 10−9 to 10−4 M) was determined in arterioles perforating the tumors and host tissue. To determine host tissue exercise hyperemia in healthy tissue, a sham-operated group was included. Blood flow was lower at rest and during exercise in ectopic tumors and host tissue (subcutaneous adipose) vs. the orthotopic tumor and host tissue (prostate). During exercise, blood flow to the ectopic tumor significantly decreased by 25 ± 5% (SE), whereas flow to the orthotopic tumor increased by 181 ± 30%. Maximal vasoconstriction to NE was not different between arterioles from either tumor location. However, there was a significantly higher peak vasoconstriction to NE in subcutaneous adipose arterioles (92 ± 7%) vs. prostate arterioles (55 ± 7%). Establishment of the tumor did not alter host tissue blood flow from either location at rest or during exercise. These data demonstrate that blood flow in tumors is dependent on host tissue hemodynamics and that the location of the tumor may critically affect how exercise impacts the tumor microenvironment and treatment outcomes. PMID:27125846

  13. Blood flow responses to mild-intensity exercise in ectopic vs. orthotopic prostate tumors; dependence upon host tissue hemodynamics and vascular reactivity.

    PubMed

    Garcia, Emmanuel; Becker, Veronika G C; McCullough, Danielle J; Stabley, John N; Gittemeier, Elizabeth M; Opoku-Acheampong, Alexander B; Sieman, Dietmar W; Behnke, Bradley J

    2016-07-01

    Given the critical role of tumor O2 delivery in patient prognosis and the rise in preclinical exercise oncology studies, we investigated tumor and host tissue blood flow at rest and during exercise as well as vascular reactivity using a rat prostate cancer model grown in two transplantation sites. In male COP/CrCrl rats, blood flow (via radiolabeled microspheres) to prostate tumors [R3327-MatLyLu cells injected in the left flank (ectopic) or ventral prostate (orthotopic)] and host tissue was measured at rest and during a bout of mild-intensity exercise. α-Adrenergic vasoconstriction to norepinephrine (NE: 10(-9) to 10(-4) M) was determined in arterioles perforating the tumors and host tissue. To determine host tissue exercise hyperemia in healthy tissue, a sham-operated group was included. Blood flow was lower at rest and during exercise in ectopic tumors and host tissue (subcutaneous adipose) vs. the orthotopic tumor and host tissue (prostate). During exercise, blood flow to the ectopic tumor significantly decreased by 25 ± 5% (SE), whereas flow to the orthotopic tumor increased by 181 ± 30%. Maximal vasoconstriction to NE was not different between arterioles from either tumor location. However, there was a significantly higher peak vasoconstriction to NE in subcutaneous adipose arterioles (92 ± 7%) vs. prostate arterioles (55 ± 7%). Establishment of the tumor did not alter host tissue blood flow from either location at rest or during exercise. These data demonstrate that blood flow in tumors is dependent on host tissue hemodynamics and that the location of the tumor may critically affect how exercise impacts the tumor microenvironment and treatment outcomes. Copyright © 2016 the American Physiological Society.

  14. Single-photon tomographic determination of regional cerebral blood flow in epilepsy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonte, F.J.; Devous, M.D. Sr.; Stokely, E.M.

    Using a single-photon emission computed tomographic scanner (SPECT) the authors determined regional cerebral blood flow (rCBF) with inhaled xenon-133, a noninvasive procedure. Studies were performed in 40 normal individuals, and these were compared with rCBF determinations in 51 patients with seizure disorders. Although positive results were obtained in 15 of 16 patients with mass lesions, the group of principal interest comprised 25 patients suffering from ''temporal lobe'' epilepsy. Only one of these had a positive x-ray computed tomogram, but 16 had positive findings on rCBF study. These findings included increased local blood flow in the ictal state and reduced flowmore » interictally.« less

  15. The influence of the aortic valve angle on the hemodynamic features of the thoracic aorta

    NASA Astrophysics Data System (ADS)

    Ha, Hojin; Kim, Guk Bae; Kweon, Jihoon; Lee, Sang Joon; Kim, Young-Hak; Kim, Namkug; Yang, Dong Hyun

    2016-08-01

    Since the first observation of a helical flow pattern in aortic blood flow, the existence of helical blood flow has been found to be associated with various pathological conditions such as bicuspid aortic valve, aortic stenosis, and aortic dilatation. However, an understanding of the development of helical blood flow and its clinical implications are still lacking. In our present study, we hypothesized that the direction and angle of aortic inflow can influence helical flow patterns and related hemodynamic features in the thoracic aorta. Therefore, we investigated the hemodynamic features in the thoracic aorta and various aortic inflow angles using patient-specific vascular phantoms that were generated using a 3D printer and time-resolved, 3D, phase-contrast magnetic resonance imaging (PC-MRI). The results show that the rotational direction and strength of helical blood flow in the thoracic aorta largely vary according to the inflow direction of the aorta, and a higher helical velocity results in higher wall shear stress distributions. In addition, right-handed rotational flow conditions with higher rotational velocities imply a larger total kinetic energy than left-handed rotational flow conditions with lower rotational velocities.

  16. Flow of Red Blood Cells in Stenosed Microvessels.

    PubMed

    Vahidkhah, Koohyar; Balogh, Peter; Bagchi, Prosenjit

    2016-06-20

    A computational study is presented on the flow of deformable red blood cells in stenosed microvessels. It is observed that the Fahraeus-Lindqvist effect is significantly enhanced due to the presence of a stenosis. The apparent viscosity of blood is observed to increase by several folds when compared to non-stenosed vessels. An asymmetric distribution of the red blood cells, caused by geometric focusing in stenosed vessels, is observed to play a major role in the enhancement. The asymmetry in cell distribution also results in an asymmetry in average velocity and wall shear stress along the length of the stenosis. The discrete motion of the cells causes large time-dependent fluctuations in flow properties. The root-mean-square of flow rate fluctuations could be an order of magnitude higher than that in non-stenosed vessels. Several folds increase in Eulerian velocity fluctuation is also observed in the vicinity of the stenosis. Surprisingly, a transient flow reversal is observed upstream a stenosis but not downstream. The asymmetry and fluctuations in flow quantities and the flow reversal would not occur in absence of the cells. It is concluded that the flow physics and its physiological consequences are significantly different in micro- versus macrovascular stenosis.

  17. Flow of Red Blood Cells in Stenosed Microvessels

    NASA Astrophysics Data System (ADS)

    Vahidkhah, Koohyar; Balogh, Peter; Bagchi, Prosenjit

    2016-06-01

    A computational study is presented on the flow of deformable red blood cells in stenosed microvessels. It is observed that the Fahraeus-Lindqvist effect is significantly enhanced due to the presence of a stenosis. The apparent viscosity of blood is observed to increase by several folds when compared to non-stenosed vessels. An asymmetric distribution of the red blood cells, caused by geometric focusing in stenosed vessels, is observed to play a major role in the enhancement. The asymmetry in cell distribution also results in an asymmetry in average velocity and wall shear stress along the length of the stenosis. The discrete motion of the cells causes large time-dependent fluctuations in flow properties. The root-mean-square of flow rate fluctuations could be an order of magnitude higher than that in non-stenosed vessels. Several folds increase in Eulerian velocity fluctuation is also observed in the vicinity of the stenosis. Surprisingly, a transient flow reversal is observed upstream a stenosis but not downstream. The asymmetry and fluctuations in flow quantities and the flow reversal would not occur in absence of the cells. It is concluded that the flow physics and its physiological consequences are significantly different in micro- versus macrovascular stenosis.

  18. The influence of the aortic valve angle on the hemodynamic features of the thoracic aorta.

    PubMed

    Ha, Hojin; Kim, Guk Bae; Kweon, Jihoon; Lee, Sang Joon; Kim, Young-Hak; Kim, Namkug; Yang, Dong Hyun

    2016-08-26

    Since the first observation of a helical flow pattern in aortic blood flow, the existence of helical blood flow has been found to be associated with various pathological conditions such as bicuspid aortic valve, aortic stenosis, and aortic dilatation. However, an understanding of the development of helical blood flow and its clinical implications are still lacking. In our present study, we hypothesized that the direction and angle of aortic inflow can influence helical flow patterns and related hemodynamic features in the thoracic aorta. Therefore, we investigated the hemodynamic features in the thoracic aorta and various aortic inflow angles using patient-specific vascular phantoms that were generated using a 3D printer and time-resolved, 3D, phase-contrast magnetic resonance imaging (PC-MRI). The results show that the rotational direction and strength of helical blood flow in the thoracic aorta largely vary according to the inflow direction of the aorta, and a higher helical velocity results in higher wall shear stress distributions. In addition, right-handed rotational flow conditions with higher rotational velocities imply a larger total kinetic energy than left-handed rotational flow conditions with lower rotational velocities.

  19. The influence of the aortic valve angle on the hemodynamic features of the thoracic aorta

    PubMed Central

    Ha, Hojin; Kim, Guk Bae; Kweon, Jihoon; Lee, Sang Joon; Kim, Young-Hak; Kim, Namkug; Yang, Dong Hyun

    2016-01-01

    Since the first observation of a helical flow pattern in aortic blood flow, the existence of helical blood flow has been found to be associated with various pathological conditions such as bicuspid aortic valve, aortic stenosis, and aortic dilatation. However, an understanding of the development of helical blood flow and its clinical implications are still lacking. In our present study, we hypothesized that the direction and angle of aortic inflow can influence helical flow patterns and related hemodynamic features in the thoracic aorta. Therefore, we investigated the hemodynamic features in the thoracic aorta and various aortic inflow angles using patient-specific vascular phantoms that were generated using a 3D printer and time-resolved, 3D, phase-contrast magnetic resonance imaging (PC-MRI). The results show that the rotational direction and strength of helical blood flow in the thoracic aorta largely vary according to the inflow direction of the aorta, and a higher helical velocity results in higher wall shear stress distributions. In addition, right-handed rotational flow conditions with higher rotational velocities imply a larger total kinetic energy than left-handed rotational flow conditions with lower rotational velocities. PMID:27561388

  20. Singular value decomposition of received ultrasound signal to separate tissue, blood flow, and cavitation signals

    NASA Astrophysics Data System (ADS)

    Ikeda, Hayato; Nagaoka, Ryo; Lafond, Maxime; Yoshizawa, Shin; Iwasaki, Ryosuke; Maeda, Moe; Umemura, Shin-ichiro; Saijo, Yoshifumi

    2018-07-01

    High-intensity focused ultrasound is a noninvasive treatment applied by externally irradiating ultrasound to the body to coagulate the target tissue thermally. Recently, it has been proposed as a noninvasive treatment for vascular occlusion to replace conventional invasive treatments. Cavitation bubbles generated by the focused ultrasound can accelerate the effect of thermal coagulation. However, the tissues surrounding the target may be damaged by cavitation bubbles generated outside the treatment area. Conventional methods based on Doppler analysis only in the time domain are not suitable for monitoring blood flow in the presence of cavitation. In this study, we proposed a novel filtering method based on the differences in spatiotemporal characteristics, to separate tissue, blood flow, and cavitation by employing singular value decomposition. Signals from cavitation and blood flow were extracted automatically using spatial and temporal covariance matrices.

  1. Effect of antiorthostatic bed rest on hepatic blood flow in man.

    PubMed

    Putcha, L; Cintron, N M; Vanderploeg, J M; Chen, Y; Habis, J; Adler, J

    1988-04-01

    Physiological changes that occur during exposure to weightlessness may induce alterations in blood flow to the liver. Estimation of hepatic blood flow (HBF) using ground-based weightlessness simulation models may provide insight into functional changes of the liver in crewmembers during flight. In the present study HBF, indirectly estimated by indocyanine green (ICG) clearance, is compared in 10 subjects during the normal ambulatory condition and antiorthostatic (-6 degrees) bed rest. Plasma clearance of ICG was determined following intravenous administration of a 0.5-mg.kg-1 dose of ICG to each subject on two separate occasions, once after being seated for 1 h and once after 24 h of head-down bed rest. After 24 h of head-down bed rest, hepatic blood flow did not change significantly from the respective control value.

  2. A Computational Model of the Fetal Circulation to Quantify Blood Redistribution in Intrauterine Growth Restriction

    PubMed Central

    Garcia-Canadilla, Patricia; Rudenick, Paula A.; Crispi, Fatima; Cruz-Lemini, Monica; Palau, Georgina; Camara, Oscar; Gratacos, Eduard; Bijens, Bart H.

    2014-01-01

    Intrauterine growth restriction (IUGR) due to placental insufficiency is associated with blood flow redistribution in order to maintain delivery of oxygenated blood to the brain. Given that, in the fetus the aortic isthmus (AoI) is a key arterial connection between the cerebral and placental circulations, quantifying AoI blood flow has been proposed to assess this brain sparing effect in clinical practice. While numerous clinical studies have studied this parameter, fundamental understanding of its determinant factors and its quantitative relation with other aspects of haemodynamic remodeling has been limited. Computational models of the cardiovascular circulation have been proposed for exactly this purpose since they allow both for studying the contributions from isolated parameters as well as estimating properties that cannot be directly assessed from clinical measurements. Therefore, a computational model of the fetal circulation was developed, including the key elements related to fetal blood redistribution and using measured cardiac outflow profiles to allow personalization. The model was first calibrated using patient-specific Doppler data from a healthy fetus. Next, in order to understand the contributions of the main parameters determining blood redistribution, AoI and middle cerebral artery (MCA) flow changes were studied by variation of cerebral and peripheral-placental resistances. Finally, to study how this affects an individual fetus, the model was fitted to three IUGR cases with different degrees of severity. In conclusion, the proposed computational model provides a good approximation to assess blood flow changes in the fetal circulation. The results support that while MCA flow is mainly determined by a fall in brain resistance, the AoI is influenced by a balance between increased peripheral-placental and decreased cerebral resistances. Personalizing the model allows for quantifying the balance between cerebral and peripheral-placental remodeling, thus providing potentially novel information to aid clinical follow up. PMID:24921933

  3. Effect of age on cerebral blood flow during hypothermic cardiopulmonary bypass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brusino, F.G.; Reves, J.G.; Smith, L.R.

    1989-04-01

    Cerebral blood flow was measured in 20 patients by xenon 133 clearance methodology during nonpulsatile hypothermic cardiopulmonary bypass to determine the effect of age on regional cerebral blood flow during these conditions. Measurements of cerebral blood flow at varying perfusion pressures were made in patients arbitrarily divided into two age groups at nearly identical nasopharyngeal temperature, hematocrit value, and carbon dioxide tension and with equal cardiopulmonary bypass flows of 1.6 L/min/m2. The range of mean arterial pressure was 30 to 110 mm Hg for group I (less than or equal to 50 years of age) and 20 to 90 mmmore » Hg for group II (greater than or equal to 65 years of age). There was no significant difference (p = 0.32) between the mean arterial pressure in group I (54 +/- 28 mm Hg) and that in group II (43 +/- 21 mm Hg). The range of cerebral blood flow was 14.8 to 29.2 ml/100 gm/min for group I and 13.8 to 37.5 ml/100 gm/min for group II. There was no significant difference (p = 0.37) between the mean cerebral blood flow in group I (21.5 +/- 4.6 ml/100 gm/min) and group II (24.3 +/- 8.1 ml/100 gm/min). There was a poor correlation between mean arterial pressure and cerebral blood flow in both groups: group I, r = 0.16 (p = 0.67); group II, r = 0.5 (p = 0.12). In 12 patients, a second cerebral blood flow measurements was taken to determine the effect of mean arterial pressure on cerebral blood flow in the individual patient. Changes in mean arterial pressure did not correlate with changes in cerebral blood flow (p less than 0.90). We conclude that age does not alter cerebral blood flow and that cerebral blood flow autoregulation is preserved in elderly patients during nonpulsatile hypothermic cardiopulmonary bypass.« less

  4. Dehydration accelerates reductions in cerebral blood flow during prolonged exercise in the heat without compromising brain metabolism.

    PubMed

    Trangmar, Steven J; Chiesa, Scott T; Llodio, Iñaki; Garcia, Benjamin; Kalsi, Kameljit K; Secher, Niels H; González-Alonso, José

    2015-11-01

    Dehydration hastens the decline in cerebral blood flow (CBF) during incremental exercise, whereas the cerebral metabolic rate for O2 (CMRO2 ) is preserved. It remains unknown whether CMRO2 is also maintained during prolonged exercise in the heat and whether an eventual decline in CBF is coupled to fatigue. Two studies were undertaken. In study 1, 10 male cyclists cycled in the heat for ∼2 h with (control) and without fluid replacement (dehydration) while internal and external carotid artery blood flow and core and blood temperature were obtained. Arterial and internal jugular venous blood samples were assessed with dehydration to evaluate CMRO2 . In study 2, in 8 male subjects, middle cerebral artery blood velocity was measured during prolonged exercise to exhaustion in both dehydrated and euhydrated states. After a rise at the onset of exercise, internal carotid artery flow declined to baseline with progressive dehydration (P < 0.05). However, cerebral metabolism remained stable through enhanced O2 and glucose extraction (P < 0.05). External carotid artery flow increased for 1 h but declined before exhaustion. Fluid ingestion maintained cerebral and extracranial perfusion throughout nonfatiguing exercise. During exhaustive exercise, however, euhydration delayed but did not prevent the decline in cerebral perfusion. In conclusion, during prolonged exercise in the heat, dehydration accelerates the decline in CBF without affecting CMRO2 and also restricts extracranial perfusion. Thus, fatigue is related to a reduction in CBF and extracranial perfusion rather than CMRO2 . Copyright © 2015 the American Physiological Society.

  5. Light therapy modulates serotonin levels and blood flow in women with headache. A preliminary study.

    PubMed

    Tomaz de Magalhães, Miriam; Núñez, Silvia Cristina; Kato, Ilka Tiemy; Ribeiro, Martha Simões

    2016-01-01

    In this study, we looked at the possible effects of low-level laser therapy (LLLT) on blood flow velocity, and serotonin (5-HT) and cholinesterase levels in patients with chronic headache associated with temporomandibular disorders (TMD). LLLT has been clinically applied over the past years with positive results in analgesia and without the report of any side effects. The understanding of biological mechanisms of action may improve clinical results and facilitate its indication. Ten patients presenting headache associated with TMD completed the study. An 830-nm infrared diode laser with power of 100 mW, exposure time of 34 s, and energy of 3.4 J was applied on the tender points of masseter and temporal muscle. Blood flow velocity was determined via ultrasound Doppler velocimetry before and after laser irradiation. The whole blood 5-HT and cholinesterase levels were evaluated three days before, immediately, and three days after laser irradiation. Pain score after treatment decreased to a score of 5.8 corresponding to 64% of pain reduction (P < 0.05). LLLT promoted a decrease in the blood flow velocity (P < 0.05). In addition, the 5-HT levels were significantly increased three days after LLLT (P < 0.05). The cholinesterase levels remained unchanged at the analyzed time points (P > 0.05). Our findings indicated that LLLT regulates blood flow in the temporal artery after irradiation and might control 5-HT levels in patients suffering with tension-type headache associated to TMD contributing to pain relief. © 2016 by the Society for Experimental Biology and Medicine.

  6. Fractal rigidity in migraine

    NASA Astrophysics Data System (ADS)

    Latka, Miroslaw; Glaubic-Latka, Marta; Latka, Dariusz; West, Bruce J.

    2004-04-01

    We study the middle cerebral artery blood flow velocity (MCAfv) in humans using transcranial Doppler ultrasonography (TCD). Scaling properties of time series of the axial flow velocity averaged over a cardiac beat interval may be characterized by two exponents. The short time scaling exponent (STSE) determines the statistical properties of fluctuations of blood flow velocities in short-time intervals while the Hurst exponent describes the long-term fractal properties. In many migraineurs the value of the STSE is significantly reduced and may approach that of the Hurst exponent. This change in dynamical properties reflects the significant loss of short-term adaptability and the overall hyperexcitability of the underlying cerebral blood flow control system. We call this effect fractal rigidity.

  7. Influence of cerebral blood vessel movements on the position of perivascular synapses.

    PubMed

    Urrecha, Miguel; Romero, Ignacio; DeFelipe, Javier; Merchán-Pérez, Angel

    2017-01-01

    Synaptic activity is regulated and limited by blood flow, which is controlled by blood vessel dilation and contraction. Traditionally, the study of neurovascular coupling has mainly focused on energy consumption and oxygen delivery. However, the mechanical changes that blood vessel movements induce in the surrounding tissue have not been considered. We have modeled the mechanical changes that movements of blood vessels cause in neighboring synapses. Our simulations indicate that synaptic densities increase or decrease during vascular dilation and contraction, respectively, near the blood vessel walls. This phenomenon may alter the concentration of neurotransmitters and vasoactive substances in the immediate vicinity of the vessel wall and thus may have an influence on local blood flow.

  8. Influence of type of aortic valve prosthesis on coronary blood flow velocity.

    PubMed

    Jelenc, Matija; Juvan, Katja Ažman; Medvešček, Nadja Tatjana Ružič; Geršak, Borut

    2013-02-01

    Severe aortic valve stenosis is associated with high resting and reduced hyperemic coronary blood flow. Coronary blood flow increases after aortic valve replacement (AVR); however, the increase depends on the type of prosthesis used. The present study investigates the influence of type of aortic valve prosthesis on coronary blood flow velocity. The blood flow velocity in the left anterior descending coronary artery (LAD) and the right coronary artery (RCA) was measured intraoperatively before and after AVR with a stentless bioprosthesis (Sorin Freedom Solo; n = 11) or a bileaflet mechanical prosthesis (St. Jude Medical Regent; n = 11). Measurements were made with an X-Plore epicardial Doppler probe (Medistim, Oslo, Norway) following induction of hyperemia with an adenosine infusion. Preoperative and postoperative echocardiography evaluations were used to assess valvular and ventricular function. Velocity time integrals (VTI) were measured from the Doppler signals and used to calculate the proportion of systolic VTI (SF), diastolic VTI (DF), and normalized systolic coronary blood flow velocities (NSF) and normalized diastolic coronary blood flow velocities (NDF). The systolic proportion of the LAD VTI increased after AVR with the St. Jude Medical Regent prosthesis, which produced higher LAD SF and NSF values than the Sorin Freedom Solo prosthesis (SF, 0.41 ± 0.09 versus 0.29 ± 0.13 [P = .04]; NSF, 0.88 ± 0.24 versus 0.55 ± 0.17 [P = .01]). No significant changes in the LAD velocity profile were noted after valve replacement with the Sorin Freedom Solo, despite a significant reduction in transvalvular gradient and an increase in the effective orifice area. AVR had no effect on the RCA flow velocity profile. The coronary flow velocity profile in the LAD was significantly influenced by the type of aortic valve prosthesis used. The differences in the LAD velocity profile probably reflect differences in valve design and the systolic transvalvular flow pattern.

  9. Regional Cerebral Blood Flow Analysis in Patients with Multiple Sclerosis Using TC-99M Hmpao and a Three - Spect System.

    NASA Astrophysics Data System (ADS)

    D'Souza, Maximian Felix

    1995-01-01

    The purpose of the present study was to determine the changes in regional cerebral blood flow (rCBF) with a cognitive task of semantic word retrieval (verbal fluency) in patients with multiple sclerosis (MS) and compare with the rCBF distribution of normal controls. Two groups of patients with low and high verbal fluency scores and two groups of normal controls were selected to determine a relationship between rCBF and verbal performance. A three-detector gamma camera (TRIAD 88) was used with radiotracer Tc-99m HMPAO and single photon emission computed tomography (SPECT) to obtain 3D rCBF maps. The performance characteristics of the camera was comprehensively studied before being utilized for clinical studies. In addition, technical improvements were implemented in the form of scatter correction and MRI-SPECT coregistration to potentially enhance the quantitative accuracy of the rCBF data. The performance analysis of the gamma camera showed remarkable consistency among the three-detector heads and yielded results that were consistent with the manufacturer's specification. Measurements of physical objects also showed excellent image quality. The coregistration of SPECT and MRI images allowed more accurate anatomical localization for extraction of regional blood flow information. The validation of the scatter correction technique with physical phantoms indicated marked improvements in quantitative accuracy. There was marked difference in activation patterns between patients and normals. In normals, individually subjects showed either an increase or a decrease in blood flow to left frontal and temporal, however, on average, there was not a statistically significant change. The lack of significant change may suggest large variability among subjects chosen or that the individual changes are not large enough to be significant. The results from MS patients showed several left cortical areas with statistically significant change in blood flow after cognitive activation, especially in the low fluent group, with decreased flow. Scatter corrected data yielded mostly right sided significant increases in blood flow. Further studies must be conducted to further evaluate the scatter correction technique. Additional studies on MS patients must focus on correlating lesion volume, location and number to the rCBF distribution.

  10. A randomized, controlled, double-blind crossover study on the effects of 2-L infusions of 0.9% saline and plasma-lyte® 148 on renal blood flow velocity and renal cortical tissue perfusion in healthy volunteers.

    PubMed

    Chowdhury, Abeed H; Cox, Eleanor F; Francis, Susan T; Lobo, Dileep N

    2012-07-01

    We compared the effects of intravenous infusions of 0.9% saline ([Cl] 154 mmol/L) and Plasma-Lyte 148 ([Cl] 98 mmol/L, Baxter Healthcare) on renal blood flow velocity and perfusion in humans using magnetic resonance imaging (MRI). Animal experiments suggest that hyperchloremia resulting from 0.9% saline infusion may affect renal hemodynamics adversely, a phenomenon not studied in humans. Twelve healthy adult male subjects received 2-L intravenous infusions over 1 hour of 0.9% saline or Plasma-Lyte 148 in a randomized, double-blind manner. Crossover studies were performed 7 to 10 days apart. MRI scanning proceeded for 90 minutes after commencement of infusion to measure renal artery blood flow velocity and renal cortical perfusion. Blood was sampled and weight recorded hourly for 4 hours. Sustained hyperchloremia was seen with saline but not with Plasma-Lyte 148 (P < 0.0001), and fall in strong ion difference was greater with the former (P = 0.025). Blood volume changes were identical (P = 0.867), but there was greater expansion of the extravascular fluid volume after saline (P = 0.029). There was a significant reduction in mean renal artery flow velocity (P = 0.045) and renal cortical tissue perfusion (P = 0.008) from baseline after saline, but not after Plasma-Lyte 148. There was no difference in concentrations of urinary neutrophil gelatinase-associated lipocalin after the 2 infusions (P = 0.917). This is the first human study to demonstrate that intravenous infusion of 0.9% saline results in reductions in renal blood flow velocity and renal cortical tissue perfusion. This has implications for intravenous fluid therapy in perioperative and critically ill patients. NCT01087853.

  11. Neural Control of the Cardiovascular System in Space

    NASA Technical Reports Server (NTRS)

    Levine, Benjamin D.; Pawelczyk, James A.; Zuckerman, Julie; Zhang, Rong; Fu, Qi; Iwasaki, Kenichi; Ray, Chet; Blomqvist, C. Gunnar; Lane, Lynda D.; Giller, Cole A.

    2003-01-01

    During the acute transition from lying supine to standing upright, a large volume of blood suddenly moves from the chest into the legs. To prevent fainting, the blood pressure control system senses this change immediately, and rapidly adjusts flow (by increasing heart rate) and resistance to flow (by constricting the blood vessels) to restore blood pressure and maintain brain blood flow. If this system is inadequate, the brain has a backup plan. Blood vessels in the brain can adjust their diameter to keep blood flow constant. If blood pressure drops, the brain blood vessels dilate; if blood pressure increases, the brain blood vessels constrict. This process, which is called autoregulation, allows the brain to maintain a steady stream of oxygen, even when blood pressure changes. We examined what changes in the blood pressure control system or cerebral autoregulation contribute to the blood pressure control problems seen after spaceflight. We asked: (1) does the adaptation to spaceflight cause an adaptation in the blood pressure control system that impairs the ability of the system to constrict blood vessels on return to Earth?; (2) if such a defect exists, could we pinpoint the neural pathways involved?; and (3) does cerebral autoregulation become abnormal during spaceflight, impairing the body s ability to maintain constant brain blood flow when standing upright on Earth? We stressed the blood pressure control system using lower body negative pressure, upright tilt, handgrip exercise, and cold stimulation of the hand. Standard cardiovascular parameters were measured along with sympathetic nerve activity (the nerve activity causing blood vessels to constrict) and brain blood flow. We confirmed that the primary cardiovascular effect of spaceflight was a postflight reduction in upright stroke volume (the amount of blood the heart pumps per beat). Heart rate increased appropriately for the reduction in stroke volume, thereby showing that changes in heart rate regulation alone cannot be responsible for orthostatic hypotension after spaceflight. All of the astronauts in our study had an increase in sympathetic nerve activity during upright tilting on Earth postflight. This increase was well calibrated for the reduction in stroke volume induced by the upright posture. The results obtained from stimulating the sympathetic nervous system using handgrip exercise or cold stress were also entirely normal during and after spaceflight. No astronaut had reduced cerebral blood flow during upright tilt, and cerebral autoregulation was normal or even enhanced inflight. These experiments show that the cardiovascular adaptation to spaceflight does not lead to a defect in the regulation of blood vessel constriction via sympathetic nerve activity. In addition, cerebral autoregulation is well-maintained. It is possible that despite the increased sympathetic nerve activity, blood vessels did not respond with a greater degree of constriction than occurred preflight, possibly uncovering a limit of vasoconstrictor reserve.

  12. Analysis of artery blood flow before and after angioplasty

    NASA Astrophysics Data System (ADS)

    Tomaszewski, Michał; Baranowski, Paweł; Małachowski, Jerzy; Damaziak, Krzysztof; Bukała, Jakub

    2018-01-01

    The study presents a comparison of results obtained from numerical simulations of blood flow in two different arteries. One of them was considered to be narrowed in order to simulate an arteriosclerosis obstructing the blood flow in the vessel, whereas the second simulates the vessel after angioplasty treatment. During the treatment, a biodegradable stent is inserted into the artery, which prevents the vessel walls from collapsing. The treatment was simulated through the use of numerical simulation using the finite element method. The final mesh geometry obtained from the analysis was exported to the dedicated software in order to create geometry in which a flow domain inside the artery with the stent was created. The flow analysis was conducted in ANSYS Fluent software with non-deformable vessel walls.

  13. Effects of dorzolamide on choroidal blood flow, ciliary blood flow, and aqueous production in rabbits.

    PubMed

    Reitsamer, Herbert A; Bogner, Barbara; Tockner, Birgit; Kiel, Jeffrey W

    2009-05-01

    To determine the effects of topical dorzolamide (a carbonic anhydrase inhibitor) on choroidal and ciliary blood flow and the relationship between ciliary blood flow and aqueous flow. The experiments were performed in four groups of pentobarbital-anesthetized rabbits treated with topical dorzolamide (2%, 50 microL). In all groups, intraocular pressure (IOP) and mean arterial pressure (MAP) at the eye level were measured continuously by direct cannulation. In group 1, aqueous flow was measured by fluorophotometry before and after dorzolamide treatment. In group 2, aqueous flow was measured after dorzolamide at normal MAP and while MAP was held constant at 80, 55, or 40 mm Hg with occluders on the aorta and vena cava. In group 3, the same MAP levels were used, and ciliary blood flow was measured transsclerally by laser Doppler flowmetry (LDF). In group 4, choroidal blood flow was measured by LDF with the probe tip positioned in the vitreous over the posterior pole during ramp increases and decreases in MAP before and after dorzolamide. Dorzolamide lowered IOP by 19% (P < 0.01) and aqueous flow by 17% (P < 0.01), and increased ciliary blood flow by 18% (P < 0.01), which was associated with a significant reduction in ciliary vasculature resistance (-7%, P < 0.01). Dorzolamide shifted the relationship between ciliary blood flow and aqueous flow downward relative to the previously determined control relationship in the rabbit. Dorzolamide did not alter choroidal blood flow, choroidal vascular resistance, or the choroidal pressure flow relationship. Acute topical dorzolamide is a ciliary vasodilator and has a direct inhibitory effect on aqueous production, but it does not have a detectable effect on choroidal hemodynamics at the posterior pole in the rabbit.

  14. Cerebral blood flow in humans following resuscitation from cardiac arrest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohan, S.L.; Mun, S.K.; Petite, J.

    1989-06-01

    Cerebral blood flow was measured by xenon-133 washout in 13 patients 6-46 hours after being resuscitated from cardiac arrest. Patients regaining consciousness had relatively normal cerebral blood flow before regaining consciousness, but all patients who died without regaining consciousness had increased cerebral blood flow that appeared within 24 hours after resuscitation (except in one patient in whom the first measurement was delayed until 28 hours after resuscitation, by which time cerebral blood flow was increased). The cause of the delayed-onset increase in cerebral blood flow is not known, but the increase may have adverse effects on brain function and maymore » indicate the onset of irreversible brain damage.« less

  15. Chemotherapeutic drug-specific alteration of microvascular blood flow in murine breast cancer as measured by diffuse correlation spectroscopy

    PubMed Central

    Ramirez, Gabriel; Proctor, Ashley R.; Jung, Ki Won; Wu, Tong Tong; Han, Songfeng; Adams, Russell R.; Ren, Jingxuan; Byun, Daniel K.; Madden, Kelley S.; Brown, Edward B.; Foster, Thomas H.; Farzam, Parisa; Durduran, Turgut; Choe, Regine

    2016-01-01

    The non-invasive, in vivo measurement of microvascular blood flow has the potential to enhance breast cancer therapy monitoring. Here, longitudinal blood flow of 4T1 murine breast cancer (N=125) under chemotherapy was quantified with diffuse correlation spectroscopy based on layer models. Six different treatment regimens involving doxorubicin, cyclophosphamide, and paclitaxel at clinically relevant doses were investigated. Treatments with cyclophosphamide increased blood flow as early as 3 days after administration, whereas paclitaxel induced a transient blood flow decrease at 1 day after administration. Early blood flow changes correlated strongly with the treatment outcome and distinguished treated from untreated mice individually for effective treatments. PMID:27699124

  16. The mechanism of late deceleration of the heart rate and its relationship to oxygenation in normoxemic and chronically hypoxemic fetal lambs.

    PubMed

    Itskovitz, J; Goetzman, B W; Rudolph, A M

    1982-01-01

    The responses of fetal heart rate and blood pressure to a transient reduction in uterine blood flow were studied in normoxemic and chronically hypoxemic lambs. In normoxemic fetuses, a reduction in uterine blood flow, if prolonged sufficiently, produced reflex bradycardia mediated through chemoreceptors and was associated with a decrease in carotid arterial PO2 to below 20 torr. The bradycardia was associated with a marked decrease in left ventricular output as measured by electromagnetic flowmeter; both were abolished by atropine. In chronically hypoxemic fetuses, a reduction in uterine blood flow produced a delayed deceleration of the heart rate which consisted of three components: reflex bradycardia due to chemoreceptor stimulation; baroreceptor-mediated reflex bradycardia which involved the slow and late recovery of the heart rate; and nonreflex bradycardia which was probably secondary to hypoxic myocardial depression. Quantitative analysis revealed a relationship between the components of delayed deceleration and the status of fetal oxygenation prior to the reduction in uterine blood flow. The lower the carotid arterial PO2, the shorter was the delay in the onset of bradycardia, the greater the decrease in heart rate, and the more prolonged the duration of bradycardia. The conclusion is that the response of fetal heart rate to a transient reduction in uterine blood flow is related to the duration of the reduction and to the status of fetal oxygenation prior to the decrease in uterine blood flow.

  17. Relationship between insulin resistance and tissue blood flow in preeclampsia.

    PubMed

    Anim-Nyame, Nick; Gamble, John; Sooranna, Suren R; Johnson, Mark R; Steer, Philip J

    2015-05-01

    Preeclampsia is characterized by generalized endothelial dysfunction and impaired maternal tissue perfusion, and insulin resistance is a prominent feature of this disease. The aim of this study was to test the hypothesis that insulin resistance in preeclampsia is related to the reduced resting tissue blood flow. We used venous occlusion plethysmography to compare the resting calf muscle blood flow (measured as QaU) in 20 nulliparous women with preeclampsia and 20 normal pregnant controls matched for maternal age, gestational age, parity and BMI during the third trimester. Fasting blood samples were obtained to measure the plasma concentrations of insulin and glucose, and to calculate the fasting insulin resistance index (FIRI), a measure of insulin resistance in both groups of women. Calf blood flow was significantly reduced in the preeclampsia group (1.93 ± 0.86 QaU), compared with normal pregnant controls (3.94 ± 1.1 QaU, P < 0.001). Fasting insulin concentrations and Insulin Resistance Index were significantly higher in preeclampsia compared with normal pregnancy (P < 0.001 for both variables). There were significant inverse correlations between resting calf blood flow and fasting insulin concentrations (r = -0.57, P = 0.008) and FIRI (r = -0.59, P = 0.006) in preeclampsia, but not in normal pregnancy. These findings support our hypothesis and raise the possibility that reduced tissue blood flow may a play a role in the increased insulin resistance seen in preeclampsia.

  18. Regional myocardial extraction of a radioiodinated branched chain fatty acid during right ventricular pressure overload due to acute pulmonary hypertension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurford, W.; Lowenstein, E.; Zapol, W.

    1985-05-01

    To determine whether branched chain fatty acid extraction is reduced during right ventricular (RV) dysfunction due to acute pulmonary artery hypertension, studies were done in 6 anesthetized dogs. Regional branched chain fatty acid extraction was measured by comparing the myocardial uptake of I-125 labeled 15-(p-(iodophenyl))-3-methylpentadecanoic acid (I-PDA) to myocardial blood flow. Acute pulmonary hypertension was induced by incremental intravenous injection of 100 micron diameter glass beads into six pentobarbital anesthetized, mechanically ventilated dogs. Myocardial blood flow was measured by radiolabeled microspheres both under baseline conditions and during pulmonary hypertension. Mean RV pressure rose from 12 +- 2 (mean +- SEM)more » to 30 +-3mmHg resulting in a 225 +- 16% increase in RV stroke work. RV ejection fraction, as assessed by gated blood pool scans fell from 39 +- 2 to 18 +- 2%. Left ventricular (LV) pressures, stroke work and ejection fraction were unchanged. Myocardial blood flow increased 132 + 59% in the RV free wall and 67 +- 22% in the RV septum. LV blood flow was unchanged. Despite increased RV work and myocardial blood flow, no differences were noted in the branched chain fatty acid extraction ratios among LV or RV free walls or septum. The authors conclude that early RV dysfunction associated with pulmonary artery hypertension is not due to inadequate myocardial blood flow or branched chain fatty acid extraction.« less

  19. Multi-modal in vivo imaging of brain blood oxygenation, blood flow and neural calcium dynamics during acute seizures

    NASA Astrophysics Data System (ADS)

    Ringuette, Dene; Jeffrey, Melanie A.; Carlen, Peter L.; Levi, Ofer

    2016-03-01

    Dysfunction of the vascular endothelium has been implicated in the development of epilepsy. To better understand the relation between vascular function and seizure and provide a foundation for interpreting results from functional imaging in chronic disease models, we investigate the relationship between intracellular calcium dynamics and local cerebral blood flow and blood oxygen saturation during acute seizure-like events and pharmacological seizure rescue. To probe the relation between the aforementioned physiological markers in an acute model of epilepsy in rats, we integrated three different optical modalities together with electrophysiological recordings: Laser speckle contrast imaging (LSCI) was used to study changes in flow speeds, Intrinsic optical signal imaging (IOSI) was used to monitor changes in oxygenated, de-oxygenated, and total hemoglobin concentration, and Calcium-sensitive dye imaging was used to monitor intracellular calcium dynamics. We designed a dedicated cortical flow chamber to remove superficial blood and dye resulting from the injection procedure, which reduced spurious artifacts. The near infrared light used for IOSI and LSCI was delivered via a light pipe integrated with the flow chamber to minimize the effect of fluid surface movement on illumination stability. Calcium-sensitive dye was injected via a glass electrode used for recording the local field potential. Our system allowed us to observe and correlate increases in intracellular calcium, blood flow and blood volume during seizure-like events and provide a quantitative analysis of neurovascular coupling changes associated with seizure rescue via injection of an anti-convulsive agent.

  20. The pulsating brain: A review of experimental and clinical studies of intracranial pulsatility

    PubMed Central

    2011-01-01

    The maintenance of adequate blood flow to the brain is critical for normal brain function; cerebral blood flow, its regulation and the effect of alteration in this flow with disease have been studied extensively and are very well understood. This flow is not steady, however; the systolic increase in blood pressure over the cardiac cycle causes regular variations in blood flow into and throughout the brain that are synchronous with the heart beat. Because the brain is contained within the fixed skull, these pulsations in flow and pressure are in turn transferred into brain tissue and all of the fluids contained therein including cerebrospinal fluid. While intracranial pulsatility has not been a primary focus of the clinical community, considerable data have accrued over the last sixty years and new applications are emerging to this day. Investigators have found it a useful marker in certain diseases, particularly in hydrocephalus and traumatic brain injury where large changes in intracranial pressure and in the biomechanical properties of the brain can lead to significant changes in pressure and flow pulsatility. In this work, we review the history of intracranial pulsatility beginning with its discovery and early characterization, consider the specific technologies such as transcranial Doppler and phase contrast MRI used to assess various aspects of brain pulsations, and examine the experimental and clinical studies which have used pulsatility to better understand brain function in health and with disease. PMID:21349153

  1. Effect of pyrrolidone-pyroglutamic acid composition on blood flow in rat middle cerebral artery.

    PubMed

    Semkina, G A; Matsievskii, D D; Mirzoyan, N R

    2006-01-01

    We compared the effects of a pyrrolidone-pyroglutamic acid composition and nimodipine on blood circulation in the middle cerebral artery in rats. The composition produced a strong effect on blood supply to the brain, stimulated blood flow in the middle cerebral artery (by 60 +/- 9%) and decreased blood pressure (by 25.0 +/- 2.7%). The cerebrovascular effects of this composition differed from those of nimodipine. Nimodipine not only increased middle cerebral artery blood flow, but also decreased cerebral blood flow in the early period after treatment.

  2. Full dimensional computer simulations to study pulsatile blood flow in vessels, aortic arch and bifurcated veins: Investigation of blood viscosity and turbulent effects.

    PubMed

    Sultanov, Renat A; Guster, Dennis

    2009-01-01

    We report computational results of blood flow through a model of the human aortic arch and a vessel of actual diameter and length. A realistic pulsatile flow is used in all simulations. Calculations for bifurcation type vessels are also carried out and presented. Different mathematical methods for numerical solution of the fluid dynamics equations have been considered. The non-Newtonian behaviour of the human blood is investigated together with turbulence effects. A detailed time-dependent mathematical convergence test has been carried out. The results of computer simulations of the blood flow in vessels of three different geometries are presented: for pressure, strain rate and velocity component distributions we found significant disagreements between our results obtained with realistic non-Newtonian treatment of human blood and the widely used method in the literature: a simple Newtonian approximation. A significant increase of the strain rate and, as a result, the wall shear stress distribution, is found in the region of the aortic arch. Turbulent effects are found to be important, particularly in the case of bifurcation vessels.

  3. Extracorporeal CO2 removal by hemodialysis: in vitro model and feasibility.

    PubMed

    May, Alexandra G; Sen, Ayan; Cove, Matthew E; Kellum, John A; Federspiel, William J

    2017-12-01

    Critically ill patients with acute respiratory distress syndrome and acute exacerbations of chronic obstructive pulmonary disease often develop hypercapnia and require mechanical ventilation. Extracorporeal carbon dioxide removal can manage hypercarbia by removing carbon dioxide directly from the bloodstream. Respiratory hemodialysis uses traditional hemodialysis to remove CO 2 from the blood, mainly as bicarbonate. In this study, Stewart's approach to acid-base chemistry was used to create a dialysate that would maintain blood pH while removing CO 2 as well as determine the blood and dialysate flow rates necessary to remove clinically relevant CO 2 volumes. Bench studies were performed using a scaled down respiratory hemodialyzer in bovine or porcine blood. The scaling factor for the bench top experiments was 22.5. In vitro dialysate flow rates ranged from 2.2 to 24 mL/min (49.5-540 mL/min scaled up) and blood flow rates were set at 11 and 18.7 mL/min (248-421 mL/min scaled up). Blood inlet CO 2 concentrations were set at 50 and 100 mmHg. Results are reported as scaled up values. The CO 2 removal rate was highest at intermittent hemodialysis blood and dialysate flow rates. At an inlet pCO 2 of 50 mmHg, the CO 2 removal rate increased from 62.6 ± 4.8 to 77.7 ± 3 mL/min when the blood flow rate increased from 248 to 421 mL/min. At an inlet pCO 2 of 100 mmHg, the device was able to remove up to 117.8 ± 3.8 mL/min of CO 2 . None of the test conditions caused the blood pH to decrease, and increases were ≤0.08. When the bench top data is scaled up, the system removes a therapeutic amount of CO 2 standard intermittent hemodialysis flow rates. The zero bicarbonate dialysate did not cause acidosis in the post-dialyzer blood. These results demonstrate that, with further development, respiratory hemodialysis can be a minimally invasive extracorporeal carbon dioxide removal treatment option.

  4. Modified Beer-Lambert law for blood flow

    PubMed Central

    Baker, Wesley B.; Parthasarathy, Ashwin B.; Busch, David R.; Mesquita, Rickson C.; Greenberg, Joel H.; Yodh, A. G.

    2014-01-01

    We develop and validate a Modified Beer-Lambert law for blood flow based on diffuse correlation spectroscopy (DCS) measurements. The new formulation enables blood flow monitoring from temporal intensity autocorrelation function data taken at single or multiple delay-times. Consequentially, the speed of the optical blood flow measurement can be substantially increased. The scheme facilitates blood flow monitoring of highly scattering tissues in geometries wherein light propagation is diffusive or non-diffusive, and it is particularly well-suited for utilization with pressure measurement paradigms that employ differential flow signals to reduce contributions of superficial tissues. PMID:25426330

  5. Redistribution of blood within the body is important for thermoregulation in an ectothermic vertebrate (Crocodylus porosus).

    PubMed

    Seebacher, Frank; Franklin, Craig E

    2007-11-01

    Changes in blood flow are a principal mechanism of thermoregulation in vertebrates. Changes in heart rate will alter blood flow, although multiple demands for limited cardiac output may compromise effective thermoregulation. We tested the hypothesis that regional differences in blood flow during heating and cooling can occur independently from changes in heart rate. We measured heart rate and blood pressure concurrently with blood flow in the crocodile, Crocodylus porosus. We measured changes in blood flow by laser Doppler flowmetry, and by injecting coloured microspheres. All measurements were made under different heat loads, with and without blocking cholinergic and beta-adrenergic receptors (autonomic blockade). Heart rates were significantly faster during heating than cooling in the control animals, but not when autonomic receptors were blocked. There were no significant differences in blood flow distribution between the control and autonomic blockade treatments. In both treatments, blood flow was directed to the dorsal skin and muscle and away from the tail and duodenum during heating. When the heat source was switched off, there was a redistribution of blood from the dorsal surface to the duodenum. Blood flow to the leg skin and muscle, and to the liver did not change significantly with thermal state. Blood pressure was significantly higher during the autonomic blockade than during the control. Thermal time constants of heating and cooling were unaffected by the blockade of autonomic receptors. We concluded that animals partially compensated for a lack of differential heart rates during heating and cooling by redistributing blood within the body, and by increasing blood pressure to increase flow. Hence, measures of heart rate alone are insufficient to assess physiological thermoregulation in reptiles.

  6. Water Flow through Xylem: An Investigation of a Fluid Dynamics Principle Applied to Plants

    ERIC Educational Resources Information Center

    Rice, Stanley A.; McArthur, John

    2004-01-01

    A study was conducted to prove that a large blood or xylem vessel could conduct 256 times more fluid than a vessel or a pipe that is four times smaller. The result of this study proved that if arteriosclerosis causes an artery to loose half its effective diameter, the blood flow would be reduced by fifteen-sixteenths.

  7. Brief Report: Alterations in Cerebral Blood Flow as Assessed by PET/CT in Adults with Autism Spectrum Disorder with Normal IQ

    ERIC Educational Resources Information Center

    Pagani, Marco; Manouilenko, Irina; Stone-Elander, Sharon; Odh, Richard; Salmaso, Dario; Hatherly, Robert; Brolin, Fredrik; Jacobsson, Hans; Larsson, Stig A.; Bejerot, Susanne

    2012-01-01

    Specific biological markers for Autism Spectrum Disorder (ASD) have not yet been established. Functional studies have shown abnormalities in the anatomo-functional connectivity of the limbic-striatal "social" brain. This study aimed to investigate regional cerebral blood flow (rCBF) at rest. Thirteen patients with ASD of normal intelligence and…

  8. The Impact of Increased Bladder Blood Flow on Storage Symptoms after Holmium Laser Enucleation of the Prostate

    PubMed Central

    Ide, Hisamitsu; Aoki, Hiroaki; Muto, Satoru; Yamaguchi, Raizo; Tsujimura, Akira; Horie, Shigeo

    2015-01-01

    In order to investigate how holmium laser enucleation of the prostate (HoLEP) improves urinary storage symptoms, we assessed blood flow in the urinary bladder mucosa of patients with benign prostatic hyperplasia (BPH) before and after laser surgery. Seventy-four consecutive patients with BPH (median age 69 years, range; 53–88) underwent HoLEP at our institution and are included in this study. We prospectively assessed the International Prostate Symptom Score (IPSS), IPSS-QOL Score, the Overactive Bladder Symptom Score (OABSS), uroflowmetry, and blood flow in the urinary bladder, before and after surgery. Blood flow in the bladder mucosa was measured using the OMEGA FLOW (OMEGAWAVE, Tokyo, Japan) laser Doppler flowmeter. The median volume of the enucleated adenomas was 45.0 g (range: 25.0 to 83.2). The median IPSS improved significantly from 20 (range: 6–35) to 3 (0–22) (p<0.001; Wilcoxon signed-rank test), as did the storage symptoms score, which decreased from 13 (2–20) to 3 (1–8) (p<0.001). Median bladder blood flow increased at the trigone from 9.57±0.83 ml/sec to 17.60±1.08 ml/sec. Multiple regression analysis for the improved storage symptom score eliminated all explanatory variables except increased bladder perfusion. The data suggest that HoLEP improves blood flow in the bladder mucosa, which independently leads to the improvement of storage symptoms. PMID:26090819

  9. Evaluation of (/sup 18/F)-4-fluoroantipyrine as a new blood flow tracer for multiradionuclide autoradiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sako, K.; Diksic, M.; Kato, A.

    This article reports the evaluation of (/sup 18/F)-4-fluoroantipyrine (FAP) as a quantitative blood flow tracer by comparing blood flow measured with (/sup 18/F)FAP to that determined simultaneously with (/sup 14/C)-4-iodoantipyrine (IAP), a standard blood flow tracer, by means of double-tracer autoradiography. The single-pass extraction value (m), which indicates diffusibility of a tracer, was determined according to the procedure described by Crone. The diffusibility of FAP was essentially the same as that of IAP. The brain-blood partition coefficient for FAP was found to be similar to that for IAP, 0.89 +/- 0.01. Values of local cerebral blood flow obtained with FAPmore » agree with those determined with IAP. From these results, we concluded that FAP is indeed as good a blood flow tracer as IAP. Since /sup 18/F is a positron-emitting radionuclide, it might be a useful tracer for blood flow measurement by positron emission tomography.« less

  10. Effects of intraduodenal administration of the artificial sweetener sucralose on blood pressure and superior mesenteric artery blood flow in healthy older subjects.

    PubMed

    Pham, Hung T; Stevens, Julie E; Rigda, Rachael S; Phillips, Liza K; Wu, Tongzhi; Hausken, Trygve; Soenen, Stijn; Visvanathan, Renuka; Rayner, Christopher K; Horowitz, Michael; Jones, Karen L

    2018-06-06

    Postprandial hypotension (PPH) occurs frequently, particularly in older people and those with type 2 diabetes, and is associated with increased morbidity and mortality. The magnitude of the decrease in blood pressure (BP) induced by carbohydrate, fat, and protein appears to be comparable and results from the interaction of macronutrients with the small intestine, including an observed stimulation of mesenteric blood flow. It is not known whether artificial sweeteners, such as sucralose, which are widely used, affect BP. The aim of this study was to evaluate the effects of intraduodenal sucralose on BP and superior mesenteric artery (SMA) blood flow, compared with intraduodenal glucose and saline (control), in healthy older subjects. Twelve healthy subjects (6 men, 6 women; aged 66-79 y) were studied on 3 separate occasions in a randomized, double-blind, crossover design. After an overnight fast, subjects had concurrent measurements of BP and heart rate (HR; automated device), SMA blood flow (Doppler ultrasound), and blood glucose (glucometer) during intraduodenal infusion of 1) glucose (25% wt:vol, ∼1400 mOsmol/L), 2) sucralose (4 mmol/L, ∼300 mOsmol/L), or 3) saline (0.9% wt:vol, ∼300 mOsmol/L) at a rate of 3 mL/min for 60 min followed by intraduodenal saline for a further 60 min. There was a decrease in mean arterial BP (P < 0.001) during intraduodenal glucose [baseline (mean ± SEM): 91.7 ± 2.6 mm Hg compared with t = 60 min: 85.9 ± 2.8 mm Hg] but not during intraduodenal saline or intraduodenal sucralose. The HR (P < 0.0001) and SMA blood flow (P < 0.0001) also increased during intraduodenal glucose but not during intraduodenal saline or intraduodenal sucralose. As expected, blood glucose concentrations increased in response to glucose (P < 0.0001) but not saline or sucralose. In healthy older subjects, intraduodenal administration of the artificial sweetener sucralose was not associated with changes in BP or SMA blood flow. Further studies are therefore warranted to determine the potential role for artificial sweeteners as a therapy for PPH. This trial was registered at http://www.ANZCTR.org.au as ACTRN12617001249347.

  11. Effect of non-Newtonian viscosity on the fluid-dynamic characteristics in stenotic vessels

    NASA Astrophysics Data System (ADS)

    Huh, Hyung Kyu; Ha, Hojin; Lee, Sang Joon

    2015-08-01

    Although blood is known to have shear-thinning and viscoelastic properties, the effects of such properties on the hemodynamic characteristics in various vascular environments are not fully understood yet. For a quantitative hemodynamic analysis, the refractive index of a transparent blood analogue needs to be matched with that of the flowing conduit in order to minimize the errors according to the distortion of the light. In this study, three refractive index-matched blood analogue fluids with different viscosities are prepared—one Newtonian and two non-Newtonian analogues—which correspond to healthy blood with 45 % hematocrit (i.e., normal non-Newtonian) and obese blood with higher viscosity (i.e., abnormal non-Newtonian). The effects of the non-Newtonian rheological properties of the blood analogues on the hemodynamic characteristics in the post-stenosis region of an axisymmetric stenosis model are experimentally investigated using particle image velocimetry velocity field measurement technique and pathline flow visualization. As a result, the centerline jet flow from the stenosis apex is suppressed by the shear-thinning feature of the blood analogues when the Reynolds number is smaller than 500. The lengths of the recirculation zone for abnormal and normal non-Newtonian blood analogues are 3.67 and 1.72 times shorter than that for the Newtonian analogue at Reynolds numbers smaller than 200. The Reynolds number of the transition from laminar to turbulent flow for all blood analogues increases as the shear-thinning feature increases, and the maximum wall shear stresses in non-Newtonian fluids are five times greater than those in Newtonian fluids. However, the shear-thinning effect on the hemodynamic characteristics is not significant at Reynolds numbers higher than 1000. The findings of this study on refractive index-matched non-Newtonian blood analogues can be utilized in other in vitro experiments, where non-Newtonian features dominantly affect the flow characteristics.

  12. Adenosine and adenine nucleotides as regulators of cerebral blood flow: roles of acidosis, cell swelling, and KATP channels.

    PubMed

    Phillis, John W

    2004-01-01

    A considerable volume of evidence implicates the purine adenosine in the regulation of cerebral blood flow during states such as hypotension, neural activation, hypoxia/ischemia, and hypercapnia/acidosis. The aim of this review is to describe developments in our understanding of the roles that adenosine and the adenine nucleotides play in cerebral blood flow control, with some comparisons to coronary blood flow. The first part of the review focuses on the categorization of receptors for adenosine (A1, A2A, A2B, and A3) and the adenine nucleotides, ATP and ADP (P2X and P2Y). Frequently used agonists and antagonists for these different receptors are mentioned. A description follows of the distribution of these different receptors in cerebral arterioles. The second part of the review initially deals with the literature on the release of adenosine and adenine nucleotides into the extracellular space of the brain, describing the various techniques used to make these measurements and assessing the pitfalls associated with their use. This is followed by a discussion of the factors affecting purine release, which include cell swelling and acidosis. The third section evaluates the role of smooth muscle potassium channels in controlling arteriolar diameter. There is evidence for an important role of KATP and KCa channels, but less is known about the contributions of voltage-dependent (KV) and inwardly rectifying (KIR) channels. This section ends with a discussion on the reported inhibitory effect of nitric oxide synthase inhibitors on the KATP channel and the consequences of such an action for the interpretation of much of the published work on nitric oxide as a regulator of cerebral blood flow. The fourth section evaluates the data supporting a role of adenosine and ATP in the regulation of cerebral blood flow during autoregulation, hypotension, neural activity, hypoxia/ ischemia, and hypercapnia. Studies using antagonists and potentiators of adenosine's actions have led to the conclusion that adenosine is involved in vascular flow control, matching metabolic activity to blood flow in all of these conditions, possibly with the exceptions of autoregulation at mean arterial blood pressures above approximately 60 mmHg. Evidence is presented for a major role of A2A, and a more limited role of A2B receptors, in balancing blood flow with metabolism. The primary effect of receptor occupancy is activation of KATP and KCa channels with smooth muscle relaxation and elevated blood flow rates. There are presently fewer data on ATP's participation in flow control, but recent evidence regarding glial cell control of cerebral arteriolar diameter suggests that this may be an important mechanism. The semi-final section, which briefly describes the evidence for a comparable role of adenosine in regulating coronary blood flow, is followed by a concluding statement reaffirming the importance of adenosine as a cerebral blood flow regulator.

  13. HEMORHEOLOGICAL IMPLICATIONS OF PERFLUOROCARBON BASED OXYGEN CARRIER INTERACTION WITH COLLOID PLASMA EXPANDERS AND BLOOD

    PubMed Central

    Vásquez, Diana M.; Ortiz, Daniel; Alvarez, Oscar A.; Briceño, Juan C.; Cabrales, Pedro

    2013-01-01

    Perfluorocarbon (PFC) emulsion based oxygen carriers lack colloid osmotic pressure (COP) and must be administered with colloid-based plasma expanders (PEs). Although PFC emulsions have been widely studied, there is limited information about PFC emulsion interaction with PEs and blood. Their interaction forms aggregates due to electrostatic and rheological phenomena, and change blood rheology and blood flow. This study analyzes the effects of the interaction between PFC emulsions with blood in the presence of clinically-used PEs. The rheological behavior of the mixtures was analyzed in parallel with in vivo analysis of blood flow in microvessels using intravital microscopy when administered in a clinically relevant scenario. The interaction between the PFC emulsion and PE with blood produced PFC droplets and red blood cell (RBCs) aggregation, and increased blood viscosity. The PFC droplets formed aggregates when mixed with PEs containing electrolytes, and the aggregation increased with the electrolyte concentration. Mixtures of PFC with PEs that produced PFC aggregates also induced RCBs aggregation when mixed with blood, increasing blood viscosity at low shear rates. The more viscous suspension at low shear rates produced a blunted blood flow velocity profile in vivo relative to non-aggregating mixtures of PFC and PEs. For the PEs evaluated, albumin produced minimal to undetectable aggregation. PFC and PEs interaction with blood can affect sections of the microcirculation with low shear rate (e.g. arterioles, venules, and pulmonary circulation) because aggregates could cause capillary occlusion, decrease perfusion, pulmonary emboli, or focal ischemia. PMID:23606592

  14. The Accuracy and Precision of Flow Measurements Using Phase Contrast Techniques

    NASA Astrophysics Data System (ADS)

    Tang, Chao

    Quantitative volume flow rate measurements using the magnetic resonance imaging technique are studied in this dissertation because the volume flow rates have a special interest in the blood supply of the human body. The method of quantitative volume flow rate measurements is based on the phase contrast technique, which assumes a linear relationship between the phase and flow velocity of spins. By measuring the phase shift of nuclear spins and integrating velocity across the lumen of the vessel, we can determine the volume flow rate. The accuracy and precision of volume flow rate measurements obtained using the phase contrast technique are studied by computer simulations and experiments. The various factors studied include (1) the partial volume effect due to voxel dimensions and slice thickness relative to the vessel dimensions; (2) vessel angulation relative to the imaging plane; (3) intravoxel phase dispersion; (4) flow velocity relative to the magnitude of the flow encoding gradient. The partial volume effect is demonstrated to be the major obstacle to obtaining accurate flow measurements for both laminar and plug flow. Laminar flow can be measured more accurately than plug flow in the same condition. Both the experiment and simulation results for laminar flow show that, to obtain the accuracy of volume flow rate measurements to within 10%, at least 16 voxels are needed to cover the vessel lumen. The accuracy of flow measurements depends strongly on the relative intensity of signal from stationary tissues. A correction method is proposed to compensate for the partial volume effect. The correction method is based on a small phase shift approximation. After the correction, the errors due to the partial volume effect are compensated, allowing more accurate results to be obtained. An automatic program based on the correction method is developed and implemented on a Sun workstation. The correction method is applied to the simulation and experiment results. The results show that the correction significantly reduces the errors due to the partial volume effect. We apply the correction method to the data of in vivo studies. Because the blood flow is not known, the results of correction are tested according to the common knowledge (such as cardiac output) and conservation of flow. For example, the volume of blood flowing to the brain should be equal to the volume of blood flowing from the brain. Our measurement results are very convincing.

  15. Microdevice for plasma separation from whole human blood using bio-physical and geometrical effects

    NASA Astrophysics Data System (ADS)

    Tripathi, Siddhartha; Kumar, Y. V. Balavarun; Agrawal, Amit; Prabhakar, Amit; Joshi, Suhas S.

    2016-06-01

    In this research work, we present a simple and efficient passive microfluidic device for plasma separation from pure blood. The microdevice has been fabricated using conventional photolithography technique on a single layer of polydimethylsiloxane, and has been extensively tested on whole blood and enhanced (upto 62%) hematocrit levels of human blood. The microdevice employs elevated dimensions of about 100 μm such elevated dimensions ensure clog-free operation of the microdevice and is relatively easy to fabricate. We show that our microdevice achieves almost 100% separation efficiency on undiluted blood in the flow rate range of 0.3 to 0.5 ml/min. Detailed biological characterization of the plasma obtained from the microdevice is carried out by testing: proteins by ultra-violet spectrophotometric method, hCG (human chorionic gonadotropin) hormone, and conducting random blood glucose test. Additionally, flow cytometry study has also been carried on the separated plasma. These tests attest to the high quality of plasma recovered. The microdevice developed in this work is an outcome of extensive experimental research on understanding the flow behavior and separation phenomenon of blood in microchannels. The microdevice is compact, economical and effective, and is particularly suited in continuous flow operations.

  16. Modeling and analysis of biomagnetic blood Carreau fluid flow through a stenosis artery with magnetic heat transfer: A transient study

    PubMed Central

    Abdollahzadeh Jamalabadi, Mohammad Yaghoub; Daqiqshirazi, Mohammadreza; Nasiri, Hossein; Nguyen, Truong Khang

    2018-01-01

    We present a numerical investigation of tapered arteries that addresses the transient simulation of non-Newtonian bio-magnetic fluid dynamics (BFD) of blood through a stenosis artery in the presence of a transverse magnetic field. The current model is consistent with ferro-hydrodynamic (FHD) and magneto-hydrodynamic (MHD) principles. In the present work, blood in small arteries is analyzed using the Carreau-Yasuda model. The arterial wall is assumed to be fixed with cosine geometry for the stenosis. A parametric study was conducted to reveal the effects of the stenosis intensity and the Hartman number on a wide range of flow parameters, such as the flow velocity, temperature, and wall shear stress. Current findings are in a good agreement with recent findings in previous research studies. The results show that wall temperature control can keep the blood in its ideal blood temperature range (below 40°C) and that a severe pressure drop occurs for blockages of more than 60 percent. Additionally, with an increase in the Ha number, a velocity drop in the blood vessel is experienced. PMID:29489852

  17. Effects of melatonin or maternal nutrient restriction on vascularity and cell proliferation in the ovine placenta

    USDA-ARS?s Scientific Manuscript database

    Previously we reported increased umbilical artery blood flow in ewes supplemented with melatonin from mid- to late-pregnancy, while maternal nutrient restriction decreased uterine artery blood flow. To further unravel these responses, this study was designed to assess placental cell proliferation an...

  18. Pre-breeding beef heifer management and season affect mid to late gestation uterine artery hemodynamics

    USDA-ARS?s Scientific Manuscript database

    Examining uterine blood flow, which regulates nutrient and waste exchange to the developing fetus, is vital to understanding strategies to prevent placental wastage. This study examines uterine blood flow of heifers developed with low-input versus traditional management schemes, which allows us to m...

  19. Neurotransmitter Amines in Hemorrhagic Shock.

    DTIC Science & Technology

    1984-03-02

    and synthesis for future studies. Crit Care Med 11:202-207, 1983. 7. Gelmer HJ: Effect of ninodipine (Bay e 9736) on post-ischaemic- cerebro - vascular...the calcium antagonist, nimodipine on cerebral blood flow and metabolism in the primate . JCereb Blood Flow and Metabol 1:349-356, 1981. 9. Edvinsson L

  20. Cerebral blood flow response to changes in arterial carbon dioxide tension during hypothermic cardiopulmonary bypass in children

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kern, F.H.; Ungerleider, R.M.; Quill, T.J.

    1991-04-01

    We examined the relationship of changes in partial pressure of carbon dioxide on cerebral blood flow responsiveness in 20 pediatric patients undergoing hypothermic cardiopulmonary bypass. Cerebral blood flow was measured during steady-state hypothermic cardiopulmonary bypass with the use of xenon 133 clearance methodology at two different arterial carbon dioxide tensions. During these measurements there was no significant change in mean arterial pressure, nasopharyngeal temperature, pump flow rate, or hematocrit value. Cerebral blood flow was found to be significantly greater at higher arterial carbon dioxide tensions (p less than 0.01), so that for every millimeter of mercury rise in arterial carbonmore » dioxide tension there was a 1.2 ml.100 gm-1.min-1 increase in cerebral blood flow. Two factors, deep hypothermia (18 degrees to 22 degrees C) and reduced age (less than 1 year), diminished the effect carbon dioxide had on cerebral blood flow responsiveness but did not eliminate it. We conclude that cerebral blood flow remains responsive to changes in arterial carbon dioxide tension during hypothermic cardiopulmonary bypass in infants and children; that is, increasing arterial carbon dioxide tension will independently increase cerebral blood flow.« less

Top