Sample records for study brain structure

  1. The effects of musical training on structural brain development: a longitudinal study.

    PubMed

    Hyde, Krista L; Lerch, Jason; Norton, Andrea; Forgeard, Marie; Winner, Ellen; Evans, Alan C; Schlaug, Gottfried

    2009-07-01

    Long-term instrumental music training is an intense, multisensory and motor experience that offers an ideal opportunity to study structural brain plasticity in the developing brain in correlation with behavioral changes induced by training. Here, for the first time, we demonstrate structural brain changes after only 15 months of musical training in early childhood, which were correlated with improvements in musically relevant motor and auditory skills. These findings shed light on brain plasticity, and suggest that structural brain differences in adult experts (whether musicians or experts in other areas) are likely due to training-induced brain plasticity.

  2. Beyond sex differences: new approaches for thinking about variation in brain structure and function

    PubMed Central

    Joel, Daphna; Fausto-Sterling, Anne

    2016-01-01

    In the study of variation in brain structure and function that might relate to sex and gender, language matters because it frames our research questions and methods. In this article, we offer an approach to thinking about variation in brain structure and function that pulls us outside the sex differences formulation. We argue that the existence of differences between the brains of males and females does not unravel the relations between sex and the brain nor is it sufficient to characterize a population of brains. Such characterization is necessary for studying sex effects on the brain as well as for studying brain structure and function in general. Animal studies show that sex interacts with environmental, developmental and genetic factors to affect the brain. Studies of humans further suggest that human brains are better described as belonging to a single heterogeneous population rather than two distinct populations. We discuss the implications of these observations for studies of brain and behaviour in humans and in laboratory animals. We believe that studying sex effects in context and developing or adopting analytical methods that take into account the heterogeneity of the brain are crucial for the advancement of human health and well-being. PMID:26833844

  3. Medication Overuse Headache: Pathophysiological Insights from Structural and Functional Brain MRI Research.

    PubMed

    Schwedt, Todd J; Chong, Catherine D

    2017-07-01

    Research imaging of brain structure and function has helped to elucidate the pathophysiology of medication overuse headache (MOH). This is a narrative review of imaging research studies that have investigated brain structural and functional alterations associated with MOH. Studies included in this review have investigated abnormal structure and function of pain processing regions in people with MOH, functional patterns that might predispose individuals to development of MOH, similarity of brain functional patterns in patients with MOH to those found in people with addiction, brain structure that could predict headache improvement following discontinuation of the overused medication, and changes in brain structure and function after discontinuation of medication overuse. MOH is associated with atypical structure and function of brain regions responsible for pain processing as well as brain regions that are commonly implicated in addiction. Several studies have shown "normalization" of structure and function in pain processing regions following discontinuation of the overused medication and resolution of MOH. However, some of the abnormalities in regions also implicated in addiction tend to persist following discontinuation of the overused medication, suggesting that they are a brain trait that predisposes certain individuals to medication overuse and MOH. © 2017 American Headache Society.

  4. A pediatric brain structure atlas from T1-weighted MR images

    NASA Astrophysics Data System (ADS)

    Shan, Zuyao Y.; Parra, Carlos; Ji, Qing; Ogg, Robert J.; Zhang, Yong; Laningham, Fred H.; Reddick, Wilburn E.

    2006-03-01

    In this paper, we have developed a digital atlas of the pediatric human brain. Human brain atlases, used to visualize spatially complex structures of the brain, are indispensable tools in model-based segmentation and quantitative analysis of brain structures. However, adult brain atlases do not adequately represent the normal maturational patterns of the pediatric brain, and the use of an adult model in pediatric studies may introduce substantial bias. Therefore, we proposed to develop a digital atlas of the pediatric human brain in this study. The atlas was constructed from T1 weighted MR data set of a 9 year old, right-handed girl. Furthermore, we extracted and simplified boundary surfaces of 25 manually defined brain structures (cortical and subcortical) based on surface curvature. Higher curvature surfaces were simplified with more reference points; lower curvature surfaces, with fewer. We constructed a 3D triangular mesh model for each structure by triangulation of the structure's reference points. Kappa statistics (cortical, 0.97; subcortical, 0.91) indicated substantial similarities between the mesh-defined and the original volumes. Our brain atlas and structural mesh models (www.stjude.org/BrainAtlas) can be used to plan treatment, to conduct knowledge and modeldriven segmentation, and to analyze the shapes of brain structures in pediatric patients.

  5. Beyond sex differences: new approaches for thinking about variation in brain structure and function.

    PubMed

    Joel, Daphna; Fausto-Sterling, Anne

    2016-02-19

    In the study of variation in brain structure and function that might relate to sex and gender, language matters because it frames our research questions and methods. In this article, we offer an approach to thinking about variation in brain structure and function that pulls us outside the sex differences formulation. We argue that the existence of differences between the brains of males and females does not unravel the relations between sex and the brain nor is it sufficient to characterize a population of brains. Such characterization is necessary for studying sex effects on the brain as well as for studying brain structure and function in general. Animal studies show that sex interacts with environmental, developmental and genetic factors to affect the brain. Studies of humans further suggest that human brains are better described as belonging to a single heterogeneous population rather than two distinct populations. We discuss the implications of these observations for studies of brain and behaviour in humans and in laboratory animals. We believe that studying sex effects in context and developing or adopting analytical methods that take into account the heterogeneity of the brain are crucial for the advancement of human health and well-being. © 2016 The Author(s).

  6. A comparative study of theoretical graph models for characterizing structural networks of human brain.

    PubMed

    Li, Xiaojin; Hu, Xintao; Jin, Changfeng; Han, Junwei; Liu, Tianming; Guo, Lei; Hao, Wei; Li, Lingjiang

    2013-01-01

    Previous studies have investigated both structural and functional brain networks via graph-theoretical methods. However, there is an important issue that has not been adequately discussed before: what is the optimal theoretical graph model for describing the structural networks of human brain? In this paper, we perform a comparative study to address this problem. Firstly, large-scale cortical regions of interest (ROIs) are localized by recently developed and validated brain reference system named Dense Individualized Common Connectivity-based Cortical Landmarks (DICCCOL) to address the limitations in the identification of the brain network ROIs in previous studies. Then, we construct structural brain networks based on diffusion tensor imaging (DTI) data. Afterwards, the global and local graph properties of the constructed structural brain networks are measured using the state-of-the-art graph analysis algorithms and tools and are further compared with seven popular theoretical graph models. In addition, we compare the topological properties between two graph models, namely, stickiness-index-based model (STICKY) and scale-free gene duplication model (SF-GD), that have higher similarity with the real structural brain networks in terms of global and local graph properties. Our experimental results suggest that among the seven theoretical graph models compared in this study, STICKY and SF-GD models have better performances in characterizing the structural human brain network.

  7. Structure Shapes Dynamics and Directionality in Diverse Brain Networks: Mathematical Principles and Empirical Confirmation in Three Species

    NASA Astrophysics Data System (ADS)

    Moon, Joon-Young; Kim, Junhyeok; Ko, Tae-Wook; Kim, Minkyung; Iturria-Medina, Yasser; Choi, Jee-Hyun; Lee, Joseph; Mashour, George A.; Lee, Uncheol

    2017-04-01

    Identifying how spatially distributed information becomes integrated in the brain is essential to understanding higher cognitive functions. Previous computational and empirical studies suggest a significant influence of brain network structure on brain network function. However, there have been few analytical approaches to explain the role of network structure in shaping regional activities and directionality patterns. In this study, analytical methods are applied to a coupled oscillator model implemented in inhomogeneous networks. We first derive a mathematical principle that explains the emergence of directionality from the underlying brain network structure. We then apply the analytical methods to the anatomical brain networks of human, macaque, and mouse, successfully predicting simulation and empirical electroencephalographic data. The results demonstrate that the global directionality patterns in resting state brain networks can be predicted solely by their unique network structures. This study forms a foundation for a more comprehensive understanding of how neural information is directed and integrated in complex brain networks.

  8. At least eighty percent of brain grey matter is modifiable by physical activity: A review study.

    PubMed

    Batouli, Seyed Amir Hossein; Saba, Valiallah

    2017-08-14

    The human brain is plastic, i.e. it can show structural changes in response to the altered environment. Physical activity (PA) is a lifestyle factor which has significant associations with the structural and functional aspects of the human brain, as well as with the mind and body health. Many studies have reported regional/global brain volume increments due to exercising; however, a map which shows the overall extent of the influences of PAs on brain structure is not available. In this study, we collected all the reports on brain structural alterations in association with PA in healthy humans, and next, a brain map of the extent of these effects is provided. The results of this study showed that a large network of brain areas, equal to 82% of the total grey matter volume, were associated with PA. This finding has important implications in utilizing PA as a mediator factor for educational purposes in children, rehabilitation applications in patients, improving the cognitive abilities of the human brain such as in learning or memory, and preventing age-related brain deteriorations. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Genetic influences on schizophrenia and subcortical brain volumes: large-scale proof-of-concept and roadmap for future studies

    PubMed Central

    Anttila, Verneri; Hibar, Derrek P; van Hulzen, Kimm J E; Arias-Vasquez, Alejandro; Smoller, Jordan W; Nichols, Thomas E; Neale, Michael C; McIntosh, Andrew M; Lee, Phil; McMahon, Francis J; Meyer-Lindenberg, Andreas; Mattheisen, Manuel; Andreassen, Ole A; Gruber, Oliver; Sachdev, Perminder S; Roiz-Santiañez, Roberto; Saykin, Andrew J; Ehrlich, Stefan; Mather, Karen A; Turner, Jessica A; Schwarz, Emanuel; Thalamuthu, Anbupalam; Shugart, Yin Yao; Ho, Yvonne YW; Martin, Nicholas G; Wright, Margaret J

    2016-01-01

    Schizophrenia is a devastating psychiatric illness with high heritability. Brain structure and function differ, on average, between schizophrenia cases and healthy individuals. As common genetic associations are emerging for both schizophrenia and brain imaging phenotypes, we can now use genome-wide data to investigate genetic overlap. Here we integrated results from common variant studies of schizophrenia (33,636 cases, 43,008 controls) and volumes of several (mainly subcortical) brain structures (11,840 subjects). We did not find evidence of genetic overlap between schizophrenia risk and subcortical volume measures either at the level of common variant genetic architecture or for single genetic markers. The current study provides proof-of-concept (albeit based on a limited set of structural brain measures), and defines a roadmap for future studies investigating the genetic covariance between structural/functional brain phenotypes and risk for psychiatric disorders. PMID:26854805

  10. TSPO Expression and Brain Structure in the Psychosis Spectrum.

    PubMed

    Hafizi, Sina; Guma, Elisa; Koppel, Alex; Da Silva, Tania; Kiang, Michael; Houle, Sylvain; Wilson, Alan A; Rusjan, Pablo M; Chakravarty, M Mallar; Mizrahi, Romina

    2018-06-12

    Psychosis is associated with abnormal structural changes in the brain including decreased regional brain volumes and abnormal brain morphology. However, the underlying causes of these structural abnormalities are less understood. The immune system, including microglial activation, has been implicated in the pathophysiology of psychosis. Although previous studies have suggested a connection between peripheral proinflammatory cytokines and structural brain abnormalities in schizophrenia, no in-vivo studies have investigated whether microglial activation is also linked to brain structure alterations previously observed in schizophrenia and its putative prodrome. In this study, we investigated the link between mitochondrial 18kDa translocator protein (TSPO) and structural brain characteristics (i.e. regional brain volume, cortical thickness, and hippocampal shape) in key brain regions such as dorsolateral prefrontal cortex and hippocampus of a large group of participants (N = 90) including individuals at clinical high risk (CHR) for psychosis, first-episode psychosis (mostly antipsychotic naïve) patients, and healthy volunteers. The participants underwent structural brain MRI scan and [ 18 F]FEPPA positron emission tomography (PET) targeting TSPO. A significant [ 18 F]FEPPA binding-by-group interaction was observed in morphological measures across the left hippocampus. In first-episode psychosis, we observed associations between [ 18 F]FEPPA V T (total volume of distribution) and outward and inward morphological alterations, respectively, in the dorsal and ventro-medial portions of the left hippocampus. These associations were not significant in CHR or healthy volunteers. There was no association between [ 18 F]FEPPA V T and other structural brain characteristics. Our findings suggest a link between TSPO expression and alterations in hippocampal morphology in first-episode psychosis. Copyright © 2018. Published by Elsevier Inc.

  11. Effects of Cannabis Use on Human Brain Structure in Psychosis: A Systematic Review Combining In Vivo Structural Neuroimaging and Post Mortem Studies

    PubMed Central

    Rapp, Charlotte; Bugra, Hilal; Riecher-Rössler, Anita; Tamagni, Corinne; Borgwardt, Stefan

    2012-01-01

    It is unclear yet whether cannabis use is a moderating or causal factor contributing to grey matter alterations in schizophrenia and the development of psychotic symptoms. We therefore systematically reviewed structural brain imaging and post mortem studies addressing the effects of cannabis use on brain structure in psychosis. Studies with schizophrenia (SCZ) and first episode psychosis (FEP) patients as well as individuals at genetic (GHR) or clinical high risk for psychosis (ARMS) were included. We identified 15 structural magnetic resonance imaging (MRI) (12 cross sectional / 3 longitudinal) and 4 post mortem studies. The total number of subjects encompassed 601 schizophrenia or first episode psychosis patients, 255 individuals at clinical or genetic high risk for psychosis and 397 healthy controls. We found evidence for consistent brain structural abnormalities in cannabinoid 1 (CB1) receptor enhanced brain areas as the cingulate and prefrontal cortices and the cerebellum. As these effects have not consistently been reported in studies examining non-psychotic and healthy samples, psychosis patients and subjects at risk for psychosis might be particularly vulnerable to brain volume loss due to cannabis exposure PMID:22716152

  12. Brain Structure and Executive Functions in Children with Cerebral Palsy: A Systematic Review

    ERIC Educational Resources Information Center

    Weierink, Lonneke; Vermeulen, R. Jeroen; Boyd, Roslyn N.

    2013-01-01

    This systematic review aimed to establish the current knowledge about brain structure and executive function (EF) in children with cerebral palsy (CP). Five databases were searched (up till July 2012). Six articles met the inclusion criteria, all included structural brain imaging though no functional brain imaging. Study quality was assessed using…

  13. Neurodevelopmental alterations of large-scale structural networks in children with new-onset epilepsy

    PubMed Central

    Bonilha, Leonardo; Tabesh, Ali; Dabbs, Kevin; Hsu, David A.; Stafstrom, Carl E.; Hermann, Bruce P.; Lin, Jack J.

    2014-01-01

    Recent neuroimaging and behavioral studies have revealed that children with new onset epilepsy already exhibit brain structural abnormalities and cognitive impairment. How the organization of large-scale brain structural networks is altered near the time of seizure onset and whether network changes are related to cognitive performances remain unclear. Recent studies also suggest that regional brain volume covariance reflects synchronized brain developmental changes. Here, we test the hypothesis that epilepsy during early-life is associated with abnormalities in brain network organization and cognition. We used graph theory to study structural brain networks based on regional volume covariance in 39 children with new-onset seizures and 28 healthy controls. Children with new-onset epilepsy showed a suboptimal topological structural organization with enhanced network segregation and reduced global integration compared to controls. At the regional level, structural reorganization was evident with redistributed nodes from the posterior to more anterior head regions. The epileptic brain network was more vulnerable to targeted but not random attacks. Finally, a subgroup of children with epilepsy, namely those with lower IQ and poorer executive function, had a reduced balance between network segregation and integration. Taken together, the findings suggest that the neurodevelopmental impact of new onset childhood epilepsies alters large-scale brain networks, resulting in greater vulnerability to network failure and cognitive impairment. PMID:24453089

  14. Sex differences in the brain-an interplay of sex steroid hormones and sex chromosomes.

    PubMed

    Grgurevic, Neza; Majdic, Gregor

    2016-09-01

    Although considerable progress has been made in our understanding of brain function, many questions remain unanswered. The ultimate goal of studying the brain is to understand the connection between brain structure and function and behavioural outcomes. Since sex differences in brain morphology were first observed, subsequent studies suggest different functional organization of the male and female brains in humans. Sex and gender have been identified as being a significant factor in understanding human physiology, health and disease, and the biological differences between the sexes is not limited to the gonads and secondary sexual characteristics, but also affects the structure and, more crucially, the function of the brain and other organs. Significant variability in brain structures between individuals, in addition to between the sexes, is factor that complicates the study of sex differences in the brain. In this review, we explore the current understanding of sex differences in the brain, mostly focusing on preclinical animal studies. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  15. Evaluating predisposition and training in shaping the musician's brain: the need for a developmental perspective.

    PubMed

    Zuk, Jennifer; Gaab, Nadine

    2018-05-24

    The study of music training as a model for structural plasticity has evolved significantly over the past 15 years. Neuroimaging studies have identified characteristic structural brain alterations in musicians compared to nonmusicians in school-age children and adults, using primarily cross-sectional designs. Despite this emerging evidence and advances in pediatric neuroimaging techniques, hardly any studies have examined brain development in early childhood (before age 8) in association with musical training, and longitudinal studies starting in infancy or preschool are particularly scarce. Consequently, it remains unclear whether the characteristic "musician brain" is solely the result of musical training, or whether certain predispositions may have an impact on its development. Moving toward a developmental perspective, the present review considers various factors that may contribute to early brain structure prior to the onset of formal musical training. This review introduces a model for potential neurobiological pathways leading to the characteristic "musician brain," which involves a developmental interaction between predisposition and its temporal dynamics, environmental experience, and training-induced plasticity. This perspective illuminates the importance of studying the brain structure associated with musical training through a developmental lens, and the need for longitudinal studies in early childhood to advance our understanding of music training-induced structural plasticity. © 2018 New York Academy of Sciences.

  16. The independent and interacting effects of socioeconomic status and dual-language use on brain structure and cognition.

    PubMed

    Brito, Natalie H; Noble, Kimberly G

    2018-06-07

    Family socioeconomic status (SES) is strongly associated with children's cognitive development, and past studies have reported socioeconomic disparities in both neurocognitive skills and brain structure across childhood. In other studies, bilingualism has been associated with cognitive advantages and differences in brain structure across the lifespan. The aim of the current study is to concurrently examine the joint and independent associations between family SES and dual-language use with brain structure and cognitive skills during childhood. A subset of data from the Pediatric Imaging, Neurocognition and Genetics (PING) study was analyzed; propensity score matching established an equal sample (N = 562) of monolinguals and dual-language users with similar socio-demographic characteristics (M age = 13.5, Range = 3-20 years). When collapsing across all ages, SES was linked to both brain structure and cognitive skills. When examining differences by age group, brain structure was significantly associated with both income and dual-language use during adolescence, but not earlier in childhood. Additionally, in adolescence, a significant interaction between dual-language use and SES was found, with no difference in cortical surface area (SA) between language groups of higher-SES backgrounds but significantly increased SA for dual-language users from lower-SES families compared to SES-matched monolinguals. These results suggest both independent and interacting associations between SES and dual-language use with brain development. To our knowledge, this is the first study to concurrently examine dual-language use and socioeconomic differences in brain structure during childhood and adolescence. © 2018 John Wiley & Sons Ltd.

  17. Brain structure differences between Chinese and Caucasian cohorts: A comprehensive morphometry study.

    PubMed

    Tang, Yuchun; Zhao, Lu; Lou, Yunxia; Shi, Yonggang; Fang, Rui; Lin, Xiangtao; Liu, Shuwei; Toga, Arthur

    2018-05-01

    Numerous behavioral observations and brain function studies have demonstrated that neurological differences exist between East Asians and Westerners. However, the extent to which these factors relate to differences in brain structure is still not clear. As the basis of brain functions, the anatomical differences in brain structure play a primary and critical role in the origination of functional and behavior differences. To investigate the underlying differences in brain structure between the two cultural/ethnic groups, we conducted a comparative study on education-matched right-handed young male adults (age = 22-29 years) from two cohorts, Han Chinese (n = 45) and Caucasians (n = 45), using high-dimensional structural magnetic resonance imaging (MRI) data. Using two well-validated imaging analysis techniques, surface-based morphometry (SBM) and voxel-based morphometry (VBM), we performed a comprehensive vertex-wise morphometric analysis of the brain structures between Chinese and Caucasian cohorts. We identified consistent significant between-group differences in cortical thickness, volume, and surface area in the frontal, temporal, parietal, occipital, and insular lobes as well as the cingulate cortices. The SBM analyses revealed that compared with Caucasians, the Chinese population showed larger cortical structures in the temporal and cingulate regions, and smaller structural measures in the frontal and parietal cortices. The VBM data of the same sample was well-aligned with the SBM findings. Our findings systematically revealed comprehensive brain structural differences between young male Chinese and Caucasians, and provided new neuroanatomical insights to the behavioral and functional distinctions in the two cultural/ethnic populations. © 2018 Wiley Periodicals, Inc.

  18. Brain and Language.

    ERIC Educational Resources Information Center

    Damasio, Antonio R., Damasio, Hanna

    1992-01-01

    Discusses the advances made in understanding the brain structures responsible for language. Presents findings made using magnetic resonance imaging (MRI) and positron emission tomographic (PET) scans to study brain activity. These findings map the structures in the brain that manipulate concepts and those that turn concepts into words. (MCO)

  19. Neurodevelopmental alterations of large-scale structural networks in children with new-onset epilepsy.

    PubMed

    Bonilha, Leonardo; Tabesh, Ali; Dabbs, Kevin; Hsu, David A; Stafstrom, Carl E; Hermann, Bruce P; Lin, Jack J

    2014-08-01

    Recent neuroimaging and behavioral studies have revealed that children with new onset epilepsy already exhibit brain structural abnormalities and cognitive impairment. How the organization of large-scale brain structural networks is altered near the time of seizure onset and whether network changes are related to cognitive performances remain unclear. Recent studies also suggest that regional brain volume covariance reflects synchronized brain developmental changes. Here, we test the hypothesis that epilepsy during early-life is associated with abnormalities in brain network organization and cognition. We used graph theory to study structural brain networks based on regional volume covariance in 39 children with new-onset seizures and 28 healthy controls. Children with new-onset epilepsy showed a suboptimal topological structural organization with enhanced network segregation and reduced global integration compared with controls. At the regional level, structural reorganization was evident with redistributed nodes from the posterior to more anterior head regions. The epileptic brain network was more vulnerable to targeted but not random attacks. Finally, a subgroup of children with epilepsy, namely those with lower IQ and poorer executive function, had a reduced balance between network segregation and integration. Taken together, the findings suggest that the neurodevelopmental impact of new onset childhood epilepsies alters large-scale brain networks, resulting in greater vulnerability to network failure and cognitive impairment. Copyright © 2014 Wiley Periodicals, Inc.

  20. Contribution of Neuroimaging Studies to Understanding Development of Human Cognitive Brain Functions

    PubMed Central

    Morita, Tomoyo; Asada, Minoru; Naito, Eiichi

    2016-01-01

    Humans experience significant physical and mental changes from birth to adulthood, and a variety of perceptual, cognitive and motor functions mature over the course of approximately 20 years following birth. To deeply understand such developmental processes, merely studying behavioral changes is not sufficient; simultaneous investigation of the development of the brain may lead us to a more comprehensive understanding. Recent advances in noninvasive neuroimaging technologies largely contribute to this understanding. Here, it is very important to consider the development of the brain from the perspectives of “structure” and “function” because both structure and function of the human brain mature slowly. In this review, we first discuss the process of structural brain development, i.e., how the structure of the brain, which is crucial when discussing functional brain development, changes with age. Second, we introduce some representative studies and the latest studies related to the functional development of the brain, particularly for visual, facial recognition, and social cognition functions, all of which are important for humans. Finally, we summarize how brain science can contribute to developmental study and discuss the challenges that neuroimaging should address in the future. PMID:27695409

  1. Exercise, cognition, and the adolescent brain.

    PubMed

    Herting, Megan M; Chu, Xiaofang

    2017-12-01

    Few adolescents engage in the recommended levels of physical activity, and daily exercise levels tend to drastically decrease throughout adolescence. Beyond physical health benefits, regular exercise may also have important implications for the teenage brain and cognitive and academic capabilities. This narrative review examines how physical activity and aerobic exercise relate to school performance, cognition, and brain structure and function. A number of studies have found that habitual exercise and physical activity are associated with academic performance, cognitive function, brain structure, and brain activity in adolescents. We also discuss how additional intervention studies that examine a wide range of neurological and cognitive outcomes are necessary, as well as characterizing the type, frequency, and dose of exercise and identifying individual differences that contribute to how exercise may benefit the teen brain. Routine exercise relates to adolescent brain structure and function as well as cognitive performance. Together, these studies suggest that physical activity and aerobic exercise may be important factors for optimal adolescent brain development. © 2017 Wiley Periodicals, Inc.

  2. Structural Image Analysis of the Brain in Neuropsychology Using Magnetic Resonance Imaging (MRI) Techniques.

    PubMed

    Bigler, Erin D

    2015-09-01

    Magnetic resonance imaging (MRI) of the brain provides exceptional image quality for visualization and neuroanatomical classification of brain structure. A variety of image analysis techniques provide both qualitative as well as quantitative methods to relate brain structure with neuropsychological outcome and are reviewed herein. Of particular importance are more automated methods that permit analysis of a broad spectrum of anatomical measures including volume, thickness and shape. The challenge for neuropsychology is which metric to use, for which disorder and the timing of when image analysis methods are applied to assess brain structure and pathology. A basic overview is provided as to the anatomical and pathoanatomical relations of different MRI sequences in assessing normal and abnormal findings. Some interpretive guidelines are offered including factors related to similarity and symmetry of typical brain development along with size-normalcy features of brain anatomy related to function. The review concludes with a detailed example of various quantitative techniques applied to analyzing brain structure for neuropsychological outcome studies in traumatic brain injury.

  3. The Effects of Spaceflight on Neurocognitive Performance: Extent, Longevity, and Neural Bases

    NASA Technical Reports Server (NTRS)

    Seidler, Rachael D.; Bloomberg, Jacob; Wood, Scott; Mason, Sara; Mulavara, Ajit; Kofman, Igor; De Dios, Yiri; Gadd, Nicole; Stepanyan, Vahagn; Szecsy, Darcy

    2017-01-01

    Spaceflight effects on gait, balance, & manual motor control have been well studied; some evidence for cognitive deficits. Rodent cortical motor & sensory systems show neural structural alterations with spaceflight. We found extensive changes in behavior, brain structure & brain function following 70 days of HDBR. Specific Aim: Aim 1-Identify changes in brain structure, function, and network integrity as a function of spaceflight and characterize their time course. Aim 2-Specify relationships between structural and functional brain changes and performance and characterize their time course.

  4. A review of structural and functional brain networks: small world and atlas.

    PubMed

    Yao, Zhijun; Hu, Bin; Xie, Yuanwei; Moore, Philip; Zheng, Jiaxiang

    2015-03-01

    Brain networks can be divided into two categories: structural and functional networks. Many studies of neuroscience have reported that the complex brain networks are characterized by small-world or scale-free properties. The identification of nodes is the key factor in studying the properties of networks on the macro-, micro- or mesoscale in both structural and functional networks. In the study of brain networks, nodes are always determined by atlases. Therefore, the selection of atlases is critical, and appropriate atlases are helpful to combine the analyses of structural and functional networks. Currently, some problems still exist in the establishment or usage of atlases, which are often caused by the segmentation or the parcellation of the brain. We suggest that quantification of brain networks might be affected by the selection of atlases to a large extent. In the process of building atlases, the influences of single subjects and groups should be balanced. In this article, we focused on the effects of atlases on the analysis of brain networks and the improved divisions based on the tractography or connectivity in the parcellation of atlases.

  5. Brain-mapping projects using the common marmoset.

    PubMed

    Okano, Hideyuki; Mitra, Partha

    2015-04-01

    Globally, there is an increasing interest in brain-mapping projects, including the Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative project in the USA, the Human Brain Project (HBP) in Europe, and the Brain Mapping by Integrated Neurotechnologies for Disease Studies (Brain/MINDS) project in Japan. These projects aim to map the structure and function of neuronal circuits to ultimately understand the vast complexity of the human brain. Brain/MINDS is focused on structural and functional mapping of the common marmoset (Callithrix jacchus) brain. This non-human primate has numerous advantages for brain mapping, including a well-developed frontal cortex and a compact brain size, as well as the availability of transgenic technologies. In the present review article, we discuss strategies for structural and functional mapping of the marmoset brain and the relation of the common marmoset to other animals models. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  6. Genetic influences on schizophrenia and subcortical brain volumes: large-scale proof of concept.

    PubMed

    Franke, Barbara; Stein, Jason L; Ripke, Stephan; Anttila, Verneri; Hibar, Derrek P; van Hulzen, Kimm J E; Arias-Vasquez, Alejandro; Smoller, Jordan W; Nichols, Thomas E; Neale, Michael C; McIntosh, Andrew M; Lee, Phil; McMahon, Francis J; Meyer-Lindenberg, Andreas; Mattheisen, Manuel; Andreassen, Ole A; Gruber, Oliver; Sachdev, Perminder S; Roiz-Santiañez, Roberto; Saykin, Andrew J; Ehrlich, Stefan; Mather, Karen A; Turner, Jessica A; Schwarz, Emanuel; Thalamuthu, Anbupalam; Shugart, Yin Yao; Ho, Yvonne Yw; Martin, Nicholas G; Wright, Margaret J; O'Donovan, Michael C; Thompson, Paul M; Neale, Benjamin M; Medland, Sarah E; Sullivan, Patrick F

    2016-03-01

    Schizophrenia is a devastating psychiatric illness with high heritability. Brain structure and function differ, on average, between people with schizophrenia and healthy individuals. As common genetic associations are emerging for both schizophrenia and brain imaging phenotypes, we can now use genome-wide data to investigate genetic overlap. Here we integrated results from common variant studies of schizophrenia (33,636 cases, 43,008 controls) and volumes of several (mainly subcortical) brain structures (11,840 subjects). We did not find evidence of genetic overlap between schizophrenia risk and subcortical volume measures either at the level of common variant genetic architecture or for single genetic markers. These results provide a proof of concept (albeit based on a limited set of structural brain measures) and define a roadmap for future studies investigating the genetic covariance between structural or functional brain phenotypes and risk for psychiatric disorders.

  7. Disruptions of brain structural network in end-stage renal disease patients with long-term hemodialysis and normal-appearing brain tissues.

    PubMed

    Chou, Ming-Chung; Ko, Chih-Hung; Chang, Jer-Ming; Hsieh, Tsyh-Jyi

    2018-05-04

    End-stage renal disease (ESRD) patients on hemodialysis were demonstrated to exhibit silent and invisible white-matter alterations which would likely lead to disruptions of brain structural networks. Therefore, the purpose of this study was to investigate the disruptions of brain structural network in ESRD patients. Thiry-three ESRD patients with normal-appearing brain tissues and 29 age- and gender-matched healthy controls were enrolled in this study and underwent both cognitive ability screening instrument (CASI) assessment and diffusion tensor imaging (DTI) acquisition. Brain structural connectivity network was constructed using probabilistic tractography with automatic anatomical labeling template. Graph-theory analysis was performed to detect the alterations of node-strength, node-degree, node-local efficiency, and node-clustering coefficient in ESRD patients. Correlational analysis was performed to understand the relationship between network measures, CASI score, and dialysis duration. Structural connectivity, node-strength, node-degree, and node-local efficiency were significantly decreased, whereas node-clustering coefficient was significantly increased in ESRD patients as compared with healthy controls. The disrupted local structural networks were generally associated with common neurological complications of ESRD patients, but the correlational analysis did not reveal significant correlation between network measures, CASI score, and dialysis duration. Graph-theory analysis was helpful to investigate disruptions of brain structural network in ESRD patients with normal-appearing brain tissues. Copyright © 2018. Published by Elsevier Masson SAS.

  8. Influence of the segmentation on the characterization of cerebral networks of structural damage for patients with disorders of consciousness

    NASA Astrophysics Data System (ADS)

    Martínez, Darwin; Mahalingam, Jamuna J.; Soddu, Andrea; Franco, Hugo; Lepore, Natasha; Laureys, Steven; Gómez, Francisco

    2015-01-01

    Disorders of consciousness (DOC) are a consequence of a variety of severe brain injuries. DOC commonly results in anatomical brain modifications, which can affect cortical and sub-cortical brain structures. Postmortem studies suggest that severity of brain damage correlates with level of impairment in DOC. In-vivo studies in neuroimaging mainly focus in alterations on single structures. Recent evidence suggests that rather than one, multiple brain regions can be simultaneously affected by this condition. In other words, DOC may be linked to an underlying cerebral network of structural damage. Recently, geometrical spatial relationships among key sub-cortical brain regions, such as left and right thalamus and brain stem, have been used for the characterization of this network. This approach is strongly supported on automatic segmentation processes, which aim to extract regions of interests without human intervention. Nevertheless, patients with DOC usually present massive structural brain changes. Therefore, segmentation methods may highly influence the characterization of the underlying cerebral network structure. In this work, we evaluate the level of characterization obtained by using the spatial relationships as descriptor of a sub-cortical cerebral network (left and right thalamus) in patients with DOC, when different segmentation approaches are used (FSL, Free-surfer and manual segmentation). Our results suggest that segmentation process may play a critical role for the construction of robust and reliable structural characterization of DOC conditions.

  9. Brain structure in sagittal craniosynostosis

    NASA Astrophysics Data System (ADS)

    Paniagua, Beatriz; Kim, Sunghyung; Moustapha, Mahmoud; Styner, Martin; Cody-Hazlett, Heather; Gimple-Smith, Rachel; Rumple, Ashley; Piven, Joseph; Gilmore, John; Skolnick, Gary; Patel, Kamlesh

    2017-03-01

    Craniosynostosis, the premature fusion of one or more cranial sutures, leads to grossly abnormal head shapes and pressure elevations within the brain caused by these deformities. To date, accepted treatments for craniosynostosis involve improving surgical skull shape aesthetics. However, the relationship between improved head shape and brain structure after surgery has not been yet established. Typically, clinical standard care involves the collection of diagnostic medical computed tomography (CT) imaging to evaluate the fused sutures and plan the surgical treatment. CT is known to provide very good reconstructions of the hard tissues in the skull but it fails to acquire good soft brain tissue contrast. This study intends to use magnetic resonance imaging to evaluate brain structure in a small dataset of sagittal craniosynostosis patients and thus quantify the effects of surgical intervention in overall brain structure. Very importantly, these effects are to be contrasted with normative shape, volume and brain structure databases. The work presented here wants to address gaps in clinical knowledge in craniosynostosis focusing on understanding the changes in brain volume and shape secondary to surgery, and compare those with normally developing children. This initial pilot study has the potential to add significant quality to the surgical care of a vulnerable patient population in whom we currently have limited understanding of brain developmental outcomes.

  10. Brain Structural and Vascular Anatomy Is Altered in Offspring of Pre-Eclamptic Pregnancies: A Pilot Study.

    PubMed

    Rätsep, M T; Paolozza, A; Hickman, A F; Maser, B; Kay, V R; Mohammad, S; Pudwell, J; Smith, G N; Brien, D; Stroman, P W; Adams, M A; Reynolds, J N; Croy, B A; Forkert, N D

    2016-05-01

    Pre-eclampsia is a serious clinical gestational disorder occurring in 3%-5% of all human pregnancies and characterized by endothelial dysfunction and vascular complications. Offspring born of pre-eclamptic pregnancies are reported to exhibit deficits in cognitive function, higher incidence of depression, and increased susceptibility to stroke. However, no brain imaging reports exist on these offspring. We aimed to assess brain structural and vascular anatomy in 7- to 10-year-old offspring of pre-eclamptic pregnancies compared with matched controls. Offspring of pre-eclamptic pregnancies and matched controls (n = 10 per group) were recruited from an established longitudinal cohort examining the effects of pre-eclampsia. Children underwent MR imaging to identify brain structural and vascular anatomic differences. Maternal plasma samples collected at birth were assayed for angiogenic factors by enzyme-linked immunosorbent assay. Offspring of pre-eclamptic pregnancies exhibited enlarged brain regional volumes of the cerebellum, temporal lobe, brain stem, and right and left amygdalae. These offspring displayed reduced cerebral vessel radii in the occipital and parietal lobes. Enzyme-linked immunosorbent assay analysis revealed underexpression of the placental growth factor among the maternal plasma samples from women who experienced pre-eclampsia. This study is the first to report brain structural and vascular anatomic alterations in the population of offspring of pre-eclamptic pregnancies. Brain structural alterations shared similarities with those seen in autism. Vascular alterations may have preceded these structural alterations. This pilot study requires further validation with a larger population to provide stronger estimates of brain structural and vascular outcomes among the offspring of pre-eclamptic pregnancies. © 2016 by American Journal of Neuroradiology.

  11. Mapping the order and pattern of brain structural MRI changes using change-point analysis in premanifest Huntington's disease.

    PubMed

    Wu, Dan; Faria, Andreia V; Younes, Laurent; Mori, Susumu; Brown, Timothy; Johnson, Hans; Paulsen, Jane S; Ross, Christopher A; Miller, Michael I

    2017-10-01

    Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder that progressively affects motor, cognitive, and emotional functions. Structural MRI studies have demonstrated brain atrophy beginning many years prior to clinical onset ("premanifest" period), but the order and pattern of brain structural changes have not been fully characterized. In this study, we investigated brain regional volumes and diffusion tensor imaging (DTI) measurements in premanifest HD, and we aim to determine (1) the extent of MRI changes in a large number of structures across the brain by atlas-based analysis, and (2) the initiation points of structural MRI changes in these brain regions. We adopted a novel multivariate linear regression model to detect the inflection points at which the MRI changes begin (namely, "change-points"), with respect to the CAG-age product (CAP, an indicator of extent of exposure to the effects of CAG repeat expansion). We used approximately 300 T1-weighted and DTI data from premanifest HD and control subjects in the PREDICT-HD study, with atlas-based whole brain segmentation and change-point analysis. The results indicated a distinct topology of structural MRI changes: the change-points of the volumetric measurements suggested a central-to-peripheral pattern of atrophy from the striatum to the deep white matter; and the change points of DTI measurements indicated the earliest changes in mean diffusivity in the deep white matter and posterior white matter. While interpretation needs to be cautious given the cross-sectional nature of the data, these findings suggest a spatial and temporal pattern of spread of structural changes within the HD brain. Hum Brain Mapp 38:5035-5050, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. Complementary aspects of diffusion imaging and fMRI; I: structure and function.

    PubMed

    Mulkern, Robert V; Davis, Peter E; Haker, Steven J; Estepar, Raul San Jose; Panych, Lawrence P; Maier, Stephan E; Rivkin, Michael J

    2006-05-01

    Studying the intersection of brain structure and function is an important aspect of modern neuroscience. The development of magnetic resonance imaging (MRI) over the last 25 years has provided new and powerful tools for the study of brain structure and function. Two tools in particular, diffusion imaging and functional MRI (fMRI), are playing increasingly important roles in elucidating the complementary aspects of brain structure and function. In this work, we review basic technical features of diffusion imaging and fMRI for studying the integrity of white matter structural components and for determining the location and extent of cortical activation in gray matter, respectively. We then review a growing body of literature in which the complementary aspects of diffusion imaging and fMRI, applied as separate examinations but analyzed in tandem, have been exploited to enhance our knowledge of brain structure and function.

  13. First trimester size charts of embryonic brain structures.

    PubMed

    Gijtenbeek, M; Bogers, H; Groenenberg, I A L; Exalto, N; Willemsen, S P; Steegers, E A P; Eilers, P H C; Steegers-Theunissen, R P M

    2014-02-01

    Can reliable size charts of human embryonic brain structures be created from three-dimensional ultrasound (3D-US) visualizations? Reliable size charts of human embryonic brain structures can be created from high-quality images. Previous studies on the visualization of both the cavities and the walls of the brain compartments were performed using 2D-US, 3D-US or invasive intrauterine sonography. However, the walls of the diencephalon, mesencephalon and telencephalon have not been measured non-invasively before. Last-decade improvements in transvaginal ultrasound techniques allow a better visualization and offer the tools to measure these human embryonic brain structures with precision. This study is embedded in a prospective periconceptional cohort study. A total of 141 pregnancies were included before the sixth week of gestation and were monitored until delivery to assess complications and adverse outcomes. For the analysis of embryonic growth, 596 3D-US scans encompassing the entire embryo were obtained from 106 singleton non-malformed live birth pregnancies between 7(+0) and 12(+6) weeks' gestational age (GA). Using 4D View (3D software) the measured embryonic brain structures comprised thickness of the diencephalon, mesencephalon and telencephalon, and the total diameter of the diencephalon and mesencephalon. Of 596 3D scans, 161 (27%) high-quality scans of 79 pregnancies were eligible for analysis. The reliability of all embryonic brain structure measurements, based on the intra-class correlation coefficients (ICCs) (all above 0.98), was excellent. Bland-Altman plots showed moderate agreement for measurements of the telencephalon, but for all other measurements the agreement was good. Size charts were constructed according to crown-rump length (CRL). The percentage of high-quality scans suitable for analysis of these brain structures was low (27%).  The size charts of human embryonic brain structures can be used to study normal and abnormal development of brain development in future. Also, the effects of periconceptional maternal exposures, such as folic acid supplement use and smoking, on human embryonic brain development can be a topic of future research. This study was supported by the Department of Obstetrics and Gynaecology of the Erasmus University Medical Center. M.G. was supported by an additional grant from the Sophia Foundation for Medical Research (SSWO grant number 644). No competing interests are declared.

  14. Neuroimaging studies in people with gender incongruence.

    PubMed

    Kreukels, Baudewijntje P C; Guillamon, Antonio

    2016-01-01

    The current review gives an overview of brain studies in transgender people. First, we describe studies into the aetiology of feelings of gender incongruence, primarily addressing the sexual differentiation hypothesis: does the brain of transgender individuals resemble that of their natal sex, or that of their experienced gender? Findings from neuroimaging studies focusing on brain structure suggest that the brain phenotypes of trans women (MtF) and trans men (FtM) differ in various ways from control men and women with feminine, masculine, demasculinized and defeminized features. The brain phenotypes of people with feelings of gender incongruence may help us to figure out whether sex differentiation of the brain is atypical in these individuals, and shed light on gender identity development. Task-related imaging studies may show whether brain activation and task performance in transgender people is sex-atypical. Second, we review studies that evaluate the effects of cross-sex hormone treatment on the brain. This type of research provides knowledge on how changes in sex hormone levels may affect brain structure and function.

  15. Asymmetry of Hemispheric Network Topology Reveals Dissociable Processes between Functional and Structural Brain Connectome in Community-Living Elders

    PubMed Central

    Sun, Yu; Li, Junhua; Suckling, John; Feng, Lei

    2017-01-01

    Human brain is structurally and functionally asymmetrical and the asymmetries of brain phenotypes have been shown to change in normal aging. Recent advances in graph theoretical analysis have showed topological lateralization between hemispheric networks in the human brain throughout the lifespan. Nevertheless, apparent discrepancies of hemispheric asymmetry were reported between the structural and functional brain networks, indicating the potentially complex asymmetry patterns between structural and functional networks in aging population. In this study, using multimodal neuroimaging (resting-state fMRI and structural diffusion tensor imaging), we investigated the characteristics of hemispheric network topology in 76 (male/female = 15/61, age = 70.08 ± 5.30 years) community-dwelling older adults. Hemispheric functional and structural brain networks were obtained for each participant. Graph theoretical approaches were then employed to estimate the hemispheric topological properties. We found that the optimal small-world properties were preserved in both structural and functional hemispheric networks in older adults. Moreover, a leftward asymmetry in both global and local levels were observed in structural brain networks in comparison with a symmetric pattern in functional brain network, suggesting a dissociable process of hemispheric asymmetry between structural and functional connectome in healthy older adults. Finally, the scores of hemispheric asymmetry in both structural and functional networks were associated with behavioral performance in various cognitive domains. Taken together, these findings provide new insights into the lateralized nature of multimodal brain connectivity, highlight the potentially complex relationship between structural and functional brain network alterations, and augment our understanding of asymmetric structural and functional specializations in normal aging. PMID:29209197

  16. [Factor structure of regional CBF and CMRglu values as a tool for the study of default mode of the brain].

    PubMed

    Kataev, G V; Korotkov, A D; Kireev, M V; Medvedev, S V

    2013-01-01

    In the present article it was shown that the functional connectivity of brain structures, revealed by factor analysis of resting PET CBF and rCMRglu data, is an adequate tool to study the default mode of the human brain. The identification of neuroanatomic systems of default mode (default mode network) during routine clinical PET investigations is important for further studying the functional organization of the normal brain and its reorganizations in pathological conditions.

  17. Abnormalities in Structural Covariance of Cortical Gyrification in Parkinson's Disease.

    PubMed

    Xu, Jinping; Zhang, Jiuquan; Zhang, Jinlei; Wang, Yue; Zhang, Yanling; Wang, Jian; Li, Guanglin; Hu, Qingmao; Zhang, Yuanchao

    2017-01-01

    Although abnormal cortical morphology and connectivity between brain regions (structural covariance) have been reported in Parkinson's disease (PD), the topological organizations of large-scale structural brain networks are still poorly understood. In this study, we investigated large-scale structural brain networks in a sample of 37 PD patients and 34 healthy controls (HC) by assessing the structural covariance of cortical gyrification with local gyrification index (lGI). We demonstrated prominent small-world properties of the structural brain networks for both groups. Compared with the HC group, PD patients showed significantly increased integrated characteristic path length and integrated clustering coefficient, as well as decreased integrated global efficiency in structural brain networks. Distinct distributions of hub regions were identified between the two groups, showing more hub regions in the frontal cortex in PD patients. Moreover, the modular analyses revealed significantly decreased integrated regional efficiency in lateral Fronto-Insula-Temporal module, and increased integrated regional efficiency in Parieto-Temporal module in the PD group as compared to the HC group. In summary, our study demonstrated altered topological properties of structural networks at a global, regional and modular level in PD patients. These findings suggests that the structural networks of PD patients have a suboptimal topological organization, resulting in less effective integration of information between brain regions.

  18. Physical fitness and shapes of subcortical brain structures in children.

    PubMed

    Ortega, Francisco B; Campos, Daniel; Cadenas-Sanchez, Cristina; Altmäe, Signe; Martínez-Zaldívar, Cristina; Martín-Matillas, Miguel; Catena, Andrés; Campoy, Cristina

    2017-03-27

    A few studies have recently reported that higher cardiorespiratory fitness is associated with higher volumes of subcortical brain structures in children. It is, however, unknown how different fitness measures relate to shapes of subcortical brain nuclei. We aimed to examine the association of the main health-related physical fitness components with shapes of subcortical brain structures in a sample of forty-four Spanish children aged 9·7 (sd 0·2) years from the NUtraceuticals for a HEALthier life project. Cardiorespiratory fitness, muscular strength and speed agility were assessed using valid and reliable tests (ALPHA-fitness test battery). Shape of the subcortical brain structures was assessed by MRI, and its relationship with fitness was examined after controlling for a set of potential confounders using a partial correlation permutation approach. Our results showed that all physical fitness components studied were significantly related to the shapes of subcortical brain nuclei. These associations were both positive and negative, indicating that a higher level of fitness in childhood is related to both expansions and contractions in certain regions of the accumbens, amygdala, caudate, hippocampus, pallidum, putamen and thalamus. Cardiorespiratory fitness was mainly associated with expansions, whereas handgrip was mostly associated with contractions in the structures studied. Future randomised-controlled trials will confirm or contrast our findings, demonstrating whether changes in fitness modify the shapes of brain structures and the extent to which those changes influence cognitive function.

  19. Integrated Analysis and Visualization of Group Differences in Structural and Functional Brain Connectivity: Applications in Typical Ageing and Schizophrenia.

    PubMed

    Langen, Carolyn D; White, Tonya; Ikram, M Arfan; Vernooij, Meike W; Niessen, Wiro J

    2015-01-01

    Structural and functional brain connectivity are increasingly used to identify and analyze group differences in studies of brain disease. This study presents methods to analyze uni- and bi-modal brain connectivity and evaluate their ability to identify differences. Novel visualizations of significantly different connections comparing multiple metrics are presented. On the global level, "bi-modal comparison plots" show the distribution of uni- and bi-modal group differences and the relationship between structure and function. Differences between brain lobes are visualized using "worm plots". Group differences in connections are examined with an existing visualization, the "connectogram". These visualizations were evaluated in two proof-of-concept studies: (1) middle-aged versus elderly subjects; and (2) patients with schizophrenia versus controls. Each included two measures derived from diffusion weighted images and two from functional magnetic resonance images. The structural measures were minimum cost path between two anatomical regions according to the "Statistical Analysis of Minimum cost path based Structural Connectivity" method and the average fractional anisotropy along the fiber. The functional measures were Pearson's correlation and partial correlation of mean regional time series. The relationship between structure and function was similar in both studies. Uni-modal group differences varied greatly between connectivity types. Group differences were identified in both studies globally, within brain lobes and between regions. In the aging study, minimum cost path was highly effective in identifying group differences on all levels; fractional anisotropy and mean correlation showed smaller differences on the brain lobe and regional levels. In the schizophrenia study, minimum cost path and fractional anisotropy showed differences on the global level and within brain lobes; mean correlation showed small differences on the lobe level. Only fractional anisotropy and mean correlation showed regional differences. The presented visualizations were helpful in comparing and evaluating connectivity measures on multiple levels in both studies.

  20. Human Brain Modeling with Its Anatomical Structure and Realistic Material Properties for Brain Injury Prediction.

    PubMed

    Atsumi, Noritoshi; Nakahira, Yuko; Tanaka, Eiichi; Iwamoto, Masami

    2018-05-01

    Impairments of executive brain function after traumatic brain injury (TBI) due to head impacts in traffic accidents need to be obviated. Finite element (FE) analyses with a human brain model facilitate understanding of the TBI mechanisms. However, conventional brain FE models do not suitably describe the anatomical structure in the deep brain, which is a critical region for executive brain function, and the material properties of brain parenchyma. In this study, for better TBI prediction, a novel brain FE model with anatomical structure in the deep brain was developed. The developed model comprises a constitutive model of brain parenchyma considering anisotropy and strain rate dependency. Validation was performed against postmortem human subject test data associated with brain deformation during head impact. Brain injury analyses were performed using head acceleration curves obtained from reconstruction analysis of rear-end collision with a human whole-body FE model. The difference in structure was found to affect the regions of strain concentration, while the difference in material model contributed to the peak strain value. The injury prediction result by the proposed model was consistent with the characteristics in the neuroimaging data of TBI patients due to traffic accidents.

  1. Aberrant Global and Regional Topological Organization of the Fractional Anisotropy-weighted Brain Structural Networks in Major Depressive Disorder

    PubMed Central

    Chen, Jian-Huai; Yao, Zhi-Jian; Qin, Jiao-Long; Yan, Rui; Hua, Ling-Ling; Lu, Qing

    2016-01-01

    Background: Most previous neuroimaging studies have focused on the structural and functional abnormalities of local brain regions in major depressive disorder (MDD). Moreover, the exactly topological organization of networks underlying MDD remains unclear. This study examined the aberrant global and regional topological patterns of the brain white matter networks in MDD patients. Methods: The diffusion tensor imaging data were obtained from 27 patients with MDD and 40 healthy controls. The brain fractional anisotropy-weighted structural networks were constructed, and the global network and regional nodal metrics of the networks were explored by the complex network theory. Results: Compared with the healthy controls, the brain structural network of MDD patients showed an intact small-world topology, but significantly abnormal global network topological organization and regional nodal characteristic of the network in MDD were found. Our findings also indicated that the brain structural networks in MDD patients become a less strongly integrated network with a reduced central role of some key brain regions. Conclusions: All these resulted in a less optimal topological organization of networks underlying MDD patients, including an impaired capability of local information processing, reduced centrality of some brain regions and limited capacity to integrate information across different regions. Thus, these global network and regional node-level aberrations might contribute to understanding the pathogenesis of MDD from the view of the brain network. PMID:26960371

  2. The impact of brain size on pilot performance varies with aviation training and years of education

    PubMed Central

    Adamson, Maheen M.; Samarina, Viktoriya; Xiangyan, Xu; Huynh, Virginia; Kennedy, Quinn; Weiner, Michael; Yesavage, Jerome; Taylor, Joy L.

    2010-01-01

    Previous studies have consistently reported age-related changes in cognitive abilities and brain structure. Previous studies also suggest compensatory roles for specialized training, skill, and years of education in the age-related decline of cognitive function. The Stanford/VA Aviation Study examines the influence of specialized training and skill level (expertise) on age-related changes in cognition and brain structure. This preliminary report examines the effect of aviation expertise, years of education, age, and brain size on flight simulator performance in pilots aged 45–68 years. Fifty-one pilots were studied with structural magnetic resonance imaging, flight simulator, and processing speed tasks. There were significant main effects of age (p < .01) and expertise (p < .01), but not of whole brain size (p > .1) or education (p > .1), on flight simulator performance. However, even though age and brain size were correlated (r = −0.41), age differences in flight simulator performance were not explained by brain size. Both aviation expertise and education were involved in an interaction with brain size in predicting flight simulator performance (p < .05). These results point to the importance of examining measures of expertise and their interactions to assess age-related cognitive changes. PMID:20193103

  3. Multivariate pattern analysis reveals subtle brain anomalies relevant to the cognitive phenotype in neurofibromatosis type 1.

    PubMed

    Duarte, João V; Ribeiro, Maria J; Violante, Inês R; Cunha, Gil; Silva, Eduardo; Castelo-Branco, Miguel

    2014-01-01

    Neurofibromatosis Type 1 (NF1) is a common genetic condition associated with cognitive dysfunction. However, the pathophysiology of the NF1 cognitive deficits is not well understood. Abnormal brain structure, including increased total brain volume, white matter (WM) and grey matter (GM) abnormalities have been reported in the NF1 brain. These previous studies employed univariate model-driven methods preventing detection of subtle and spatially distributed differences in brain anatomy. Multivariate pattern analysis allows the combination of information from multiple spatial locations yielding a discriminative power beyond that of single voxels. Here we investigated for the first time subtle anomalies in the NF1 brain, using a multivariate data-driven classification approach. We used support vector machines (SVM) to classify whole-brain GM and WM segments of structural T1 -weighted MRI scans from 39 participants with NF1 and 60 non-affected individuals, divided in children/adolescents and adults groups. We also employed voxel-based morphometry (VBM) as a univariate gold standard to study brain structural differences. SVM classifiers correctly classified 94% of cases (sensitivity 92%; specificity 96%) revealing the existence of brain structural anomalies that discriminate NF1 individuals from controls. Accordingly, VBM analysis revealed structural differences in agreement with the SVM weight maps representing the most relevant brain regions for group discrimination. These included the hippocampus, basal ganglia, thalamus, and visual cortex. This multivariate data-driven analysis thus identified subtle anomalies in brain structure in the absence of visible pathology. Our results provide further insight into the neuroanatomical correlates of known features of the cognitive phenotype of NF1. Copyright © 2012 Wiley Periodicals, Inc.

  4. Human Fetal Brain Connectome: Structural Network Development from Middle Fetal Stage to Birth

    PubMed Central

    Song, Limei; Mishra, Virendra; Ouyang, Minhui; Peng, Qinmu; Slinger, Michelle; Liu, Shuwei; Huang, Hao

    2017-01-01

    Complicated molecular and cellular processes take place in a spatiotemporally heterogeneous and precisely regulated pattern in the human fetal brain, yielding not only dramatic morphological and microstructural changes, but also macroscale connectomic transitions. As the underlying substrate of the fetal brain structural network, both dynamic neuronal migration pathways and rapid developing fetal white matter (WM) fibers could fundamentally reshape early fetal brain connectome. Quantifying structural connectome development can not only shed light on the brain reconfiguration in this critical yet rarely studied developmental period, but also reveal alterations of the connectome under neuropathological conditions. However, transition of the structural connectome from the mid-fetal stage to birth is not yet known. The contribution of different types of neural fibers to the structural network in the mid-fetal brain is not known, either. In this study, diffusion tensor magnetic resonance imaging (DT-MRI or DTI) of 10 fetal brain specimens at the age of 20 postmenstrual weeks (PMW), 12 in vivo brains at 35 PMW, and 12 in vivo brains at term (40 PMW) were acquired. The structural connectome of each brain was established with evenly parcellated cortical regions as network nodes and traced fiber pathways based on DTI tractography as network edges. Two groups of fibers were categorized based on the fiber terminal locations in the cerebral wall in the 20 PMW fetal brains. We found that fetal brain networks become stronger and more efficient during 20–40 PMW. Furthermore, network strength and global efficiency increase more rapidly during 20–35 PMW than during 35–40 PMW. Visualization of the whole brain fiber distribution by the lengths suggested that the network reconfiguration in this developmental period could be associated with a significant increase of major long association WM fibers. In addition, non-WM neural fibers could be a major contributor to the structural network configuration at 20 PMW and small-world network organization could exist as early as 20 PMW. These findings offer a preliminary record of the fetal brain structural connectome maturation from the middle fetal stage to birth and reveal the critical role of non-WM neural fibers in structural network configuration in the middle fetal stage. PMID:29081731

  5. Brain structural changes and their correlation with vascular disease in type 2 diabetes mellitus patients: a voxel-based morphometric study.

    PubMed

    Wang, Chunxia; Fu, Kailiang; Liu, Huaijun; Xing, Fei; Zhang, Songyun

    2014-08-15

    Voxel-based morphometry has been used in the study of alterations in brain structure in type 1 diabetes mellitus patients. These changes are associated with clinical indices. The age at onset, pathogenesis, and treatment of type 1 diabetes mellitus are different from those for type 2 diabetes mellitus. Thus, type 1 and type 2 diabetes mellitus may have different impacts on brain structure. Only a few studies of the alterations in brain structure in type 2 diabetes mellitus patients using voxel-based morphometry have been conducted, with inconsistent results. We detected subtle changes in the brain structure of 23 cases of type 2 diabetes mellitus, and demonstrated that there was no significant difference between the total volume of gray and white matter of the brain of type 2 diabetes mellitus patients and that in controls. Regional atrophy of gray matter mainly occurred in the right temporal and left occipital cortex, while regional atrophy of white matter involved the right temporal lobe and the right cerebellar hemisphere. The ankle-brachial index in patients with type 2 diabetes mellitus strongly correlated with the volume of brain regions in the default mode network. The ankle-brachial index, followed by the level of glycosylated hemoglobin, most strongly correlated with the volume of gray matter in the right temporal lobe. These data suggest that voxel-based morphometry could detect small structural changes in patients with type 2 diabetes mellitus. Early macrovascular atherosclerosis may play a crucial role in subtle brain atrophy in type 2 diabetes mellitus patients, with chronic hyperglycemia playing a lesser role.

  6. Analysis of structure-function network decoupling in the brain systems of spastic diplegic cerebral palsy.

    PubMed

    Lee, Dongha; Pae, Chongwon; Lee, Jong Doo; Park, Eun Sook; Cho, Sung-Rae; Um, Min-Hee; Lee, Seung-Koo; Oh, Maeng-Keun; Park, Hae-Jeong

    2017-10-01

    Manifestation of the functionalities from the structural brain network is becoming increasingly important to understand a brain disease. With the aim of investigating the differential structure-function couplings according to network systems, we investigated the structural and functional brain networks of patients with spastic diplegic cerebral palsy with periventricular leukomalacia compared to healthy controls. The structural and functional networks of the whole brain and motor system, constructed using deterministic and probabilistic tractography of diffusion tensor magnetic resonance images and Pearson and partial correlation analyses of resting-state functional magnetic resonance images, showed differential embedding of functional networks in the structural networks in patients. In the whole-brain network of patients, significantly reduced global network efficiency compared to healthy controls were found in the structural networks but not in the functional networks, resulting in reduced structural-functional coupling. On the contrary, the motor network of patients had a significantly lower functional network efficiency over the intact structural network and a lower structure-function coupling than the control group. This reduced coupling but reverse directionality in the whole-brain and motor networks of patients was prominent particularly between the probabilistic structural and partial correlation-based functional networks. Intact (or less deficient) functional network over impaired structural networks of the whole brain and highly impaired functional network topology over the intact structural motor network might subserve relatively preserved cognitions and impaired motor functions in cerebral palsy. This study suggests that the structure-function relationship, evaluated specifically using sparse functional connectivity, may reveal important clues to functional reorganization in cerebral palsy. Hum Brain Mapp 38:5292-5306, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. Computational Morphometry for Detecting Changes in Brain Structure Due to Development, Aging, Learning, Disease and Evolution

    PubMed Central

    Mietchen, Daniel; Gaser, Christian

    2009-01-01

    The brain, like any living tissue, is constantly changing in response to genetic and environmental cues and their interaction, leading to changes in brain function and structure, many of which are now in reach of neuroimaging techniques. Computational morphometry on the basis of Magnetic Resonance (MR) images has become the method of choice for studying macroscopic changes of brain structure across time scales. Thanks to computational advances and sophisticated study designs, both the minimal extent of change necessary for detection and, consequently, the minimal periods over which such changes can be detected have been reduced considerably during the last few years. On the other hand, the growing availability of MR images of more and more diverse brain populations also allows more detailed inferences about brain changes that occur over larger time scales, way beyond the duration of an average research project. On this basis, a whole range of issues concerning the structures and functions of the brain are now becoming addressable, thereby providing ample challenges and opportunities for further contributions from neuroinformatics to our understanding of the brain and how it changes over a lifetime and in the course of evolution. PMID:19707517

  8. Do antipsychotic drugs affect brain structure? A systematic and critical review of MRI findings.

    PubMed

    Navari, S; Dazzan, P

    2009-11-01

    The potential effects of antipsychotic drugs on brain structure represent a key factor in understanding neuroanatomical changes in psychosis. This review addresses two issues: (1) do antipsychotic medications induce changes in total or regional human brain volumes and (2) do such effects depend on antipsychotic type? A systematic review of studies reporting structural brain magnetic resonance imaging (MRI) measures: (1) directly in association with antipsychotic use; and (2) in patients receiving lifetime treatment with antipsychotics in comparison with drug-naive patients or healthy controls. We searched Medline and EMBASE databases using the medical subject heading terms: 'antipsychotics' AND 'brain' AND (MRI NOT functional). The search included studies published up to 31 January 2007. Wherever possible, we reported the effect size of the difference observed. Thirty-three studies met our inclusion criteria. The results suggest that antipsychotics act regionally rather than globally on the brain. These volumetric changes are of a greater magnitude in association with typical than with atypical antipsychotic use. Indeed, there is evidence of a specific effect of antipsychotic type on the basal ganglia, with typicals specifically increasing the volume of these structures. Differential effects of antipsychotic type may also be present on the thalamus and the cortex, but data on these and other brain areas are more equivocal. Antipsychotic treatment potentially contributes to the brain structural changes observed in psychosis. Future research should take into account these potential effects, and use adequate sample sizes, to allow improved interpretation of neuroimaging findings in these disorders.

  9. [Brain imaging in autism spectrum disorders. A review].

    PubMed

    Dziobek, I; Köhne, S

    2011-05-01

    In the past two decades, an increasing number of functional and structural brain imaging studies has provided insights into the neurobiological basis of autism spectrum disorders (ASD). This article summarizes pertinent functional brain imaging studies addressing the neuronal underpinnings of ASD symptomatology (impairments in social interaction and communication, repetitive and restrictive behavior) and associated neuropsychological deficits (theory of mind, executive functions, central coherence), complemented by relevant structural imaging findings. The results of these studies show that although cognitive functions in ASD are generally mediated by the same brain regions as in typically developed individuals, the degree and especially the patterns of brain activation often differ. Therefore, a hypothesis of aberrant network connectivity has increasingly been favored over one of focal brain dysfunction.

  10. Nanotomography of brain networks

    NASA Astrophysics Data System (ADS)

    Saiga, Rino; Mizutani, Ryuta; Takekoshi, Susumu; Osawa, Motoki; Arai, Makoto; Takeuchi, Akihisa; Uesugi, Kentaro; Terada, Yasuko; Suzuki, Yoshio; de Andrade, Vincent; de Carlo, Francesco

    The first step to understanding how the brain functions is to analyze its 3D network. The brain network consists of neurons having micrometer to nanometer sized structures. Therefore, 3D analysis of brain tissue at the relevant resolution is essential for elucidating brain's functional mechanisms. Here, we report 3D structures of human and fly brain networks revealed with synchrotron radiation nanotomography, or nano-CT. Neurons were stained with high-Z elements to visualize their structures with X-rays. Nano-CT experiments were then performed at the 32-ID beamline of the Advanced Photon Source, Argonne National Laboratory and at the BL37XU and BL47XU beamlines of SPring-8. Reconstructed 3D images illustrated precise structures of human neurons, including dendritic spines responsible for synaptic connections. The network of the fly brain hemisphere was traced to build a skeletonized wire model. An article reviewing our study appeared in MIT Technology Review. Movies of the obtained structures can be found in our YouTube channel.

  11. Neurological soft signs are not "soft" in brain structure and functional networks: evidence from ALE meta-analysis.

    PubMed

    Zhao, Qing; Li, Zhi; Huang, Jia; Yan, Chao; Dazzan, Paola; Pantelis, Christos; Cheung, Eric F C; Lui, Simon S Y; Chan, Raymond C K

    2014-05-01

    Neurological soft signs (NSS) are associated with schizophrenia and related psychotic disorders. NSS have been conventionally considered as clinical neurological signs without localized brain regions. However, recent brain imaging studies suggest that NSS are partly localizable and may be associated with deficits in specific brain areas. We conducted an activation likelihood estimation meta-analysis to quantitatively review structural and functional imaging studies that evaluated the brain correlates of NSS in patients with schizophrenia and other psychotic disorders. Six structural magnetic resonance imaging (sMRI) and 15 functional magnetic resonance imaging (fMRI) studies were included. The results from meta-analysis of the sMRI studies indicated that NSS were associated with atrophy of the precentral gyrus, the cerebellum, the inferior frontal gyrus, and the thalamus. The results from meta-analysis of the fMRI studies demonstrated that the NSS-related task was significantly associated with altered brain activation in the inferior frontal gyrus, bilateral putamen, the cerebellum, and the superior temporal gyrus. Our findings from both sMRI and fMRI meta-analyses further support the conceptualization of NSS as a manifestation of the "cerebello-thalamo-prefrontal" brain network model of schizophrenia and related psychotic disorders.

  12. In Vivo Characterization of Traumatic Brain Injury Neuropathology with Structural and Functional Neuroimaging

    PubMed Central

    LEVINE, BRIAN; FUJIWARA, ESTHER; O’CONNOR, CHARLENE; RICHARD, NADINE; KOVACEVIC, NATASA; MANDIC, MARINA; RESTAGNO, ADRIANA; EASDON, CRAIG; ROBERTSON, IAN H.; GRAHAM, SIMON J.; CHEUNG, GORDON; GAO, FUQIANG; SCHWARTZ, MICHAEL L.; BLACK, SANDRA E.

    2007-01-01

    Quantitative neuroimaging is increasingly used to study the effects of traumatic brain injury (TBI) on brain structure and function. This paper reviews quantitative structural and functional neuroimaging studies of patients with TBI, with an emphasis on the effects of diffuse axonal injury (DAI), the primary neuropathology in TBI. Quantitative structural neuroimaging has evolved from simple planometric measurements through targeted region-of-interest analyses to whole-brain analysis of quantified tissue compartments. Recent studies converge to indicate widespread volume loss of both gray and white matter in patients with moderate-to-severe TBI. These changes can be documented even when patients with focal lesions are excluded. Broadly speaking, performance on standard neuropsychological tests of speeded information processing are related to these changes, but demonstration of specific brain-behavior relationships requires more refined experimental behavioral measures. The functional consequences of these structural changes can be imaged with activation functional neuroimaging. Although this line of research is at an early stage, results indicate that TBI causes a more widely dispersed activation in frontal and posterior cortices. Further progress in analysis of the consequences of TBI on neural structure and function will require control of variability in neuropathology and behavior. PMID:17020478

  13. Insights into Brain Glycogen Metabolism: THE STRUCTURE OF HUMAN BRAIN GLYCOGEN PHOSPHORYLASE.

    PubMed

    Mathieu, Cécile; Li de la Sierra-Gallay, Ines; Duval, Romain; Xu, Ximing; Cocaign, Angélique; Léger, Thibaut; Woffendin, Gary; Camadro, Jean-Michel; Etchebest, Catherine; Haouz, Ahmed; Dupret, Jean-Marie; Rodrigues-Lima, Fernando

    2016-08-26

    Brain glycogen metabolism plays a critical role in major brain functions such as learning or memory consolidation. However, alteration of glycogen metabolism and glycogen accumulation in the brain contributes to neurodegeneration as observed in Lafora disease. Glycogen phosphorylase (GP), a key enzyme in glycogen metabolism, catalyzes the rate-limiting step of glycogen mobilization. Moreover, the allosteric regulation of the three GP isozymes (muscle, liver, and brain) by metabolites and phosphorylation, in response to hormonal signaling, fine-tunes glycogenolysis to fulfill energetic and metabolic requirements. Whereas the structures of muscle and liver GPs have been known for decades, the structure of brain GP (bGP) has remained elusive despite its critical role in brain glycogen metabolism. Here, we report the crystal structure of human bGP in complex with PEG 400 (2.5 Å) and in complex with its allosteric activator AMP (3.4 Å). These structures demonstrate that bGP has a closer structural relationship with muscle GP, which is also activated by AMP, contrary to liver GP, which is not. Importantly, despite the structural similarities between human bGP and the two other mammalian isozymes, the bGP structures reveal molecular features unique to the brain isozyme that provide a deeper understanding of the differences in the activation properties of these allosteric enzymes by the allosteric effector AMP. Overall, our study further supports that the distinct structural and regulatory properties of GP isozymes contribute to the different functions of muscle, liver, and brain glycogen. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Premature brain aging in humans exposed to maternal nutrient restriction during early gestation.

    PubMed

    Franke, Katja; Gaser, Christian; Roseboom, Tessa J; Schwab, Matthias; de Rooij, Susanne R

    2018-06-01

    Prenatal exposure to undernutrition is widespread in both developing and industrialized countries, causing irreversible damage to the developing brain, resulting in altered brain structure and decreased cognitive function during adulthood. The Dutch famine in 1944/45 was a humanitarian disaster, now enabling studies of the effects of prenatal undernutrition during gestation on brain aging in late adulthood. We hypothesized that study participants prenatally exposed to maternal nutrient restriction (MNR) would demonstrate altered brain structure resembling premature brain aging in late adulthood, expecting the effect being stronger in men. Utilizing the Dutch famine birth cohort (n = 118; mean age: 67.5 ± 0.9 years), this study implements an innovative biomarker for individual brain aging, using structural neuroimaging. BrainAGE was calculated using state-of-the-art pattern recognition methods, trained on an independent healthy reference sample, then applied to the Dutch famine MRI sample, to evaluate the effects of prenatal undernutrition during early gestation on individual brain aging in late adulthood. Exposure to famine in early gestation was associated with BrainAGE scores indicative of an older-appearing brain in the male sample (mean difference to subjects born before famine: 4.3 years, p < 0.05). Furthermore, in explaining the observed variance in individual BrainAGE scores in the male sample, maternal age at birth, head circumference at birth, medical treatment of hypertension, history of cerebral incidences, actual heart rate, and current alcohol intake emerged to be the most influential variables (adjusted R 2  = 0.63, p < 0.01). The findings of our study on exposure to prenatal undernutrition being associated with a status of premature brain aging during late adulthood, as well as individual brain structure being shaped by birth- and late-life health characteristics, are strongly supporting the critical importance of sufficient nutrient supply during pregnancy. Interestingly, the status of premature brain aging in participants exposed to the Dutch famine during early gestation occurred in the absence of fetal growth restriction at birth as well as vascular pathology in late-life. Additionally, the neuroimaging brain aging biomarker presented in this study will further enable tracking effects of environmental influences or (preventive) treatments on individual brain maturation and aging in epidemiological and clinical studies. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Prevalence of prenatal brain abnormalities in fetuses with congenital heart disease: a systematic review.

    PubMed

    Khalil, A; Bennet, S; Thilaganathan, B; Paladini, D; Griffiths, P; Carvalho, J S

    2016-09-01

    Studies have shown an association between congenital heart defects (CHDs) and postnatal brain abnormalities and neurodevelopmental delay. Recent evidence suggests that some of these brain abnormalities are present before birth. The primary aim of this study was to perform a systematic review to quantify the prevalence of prenatal brain abnormalities in fetuses with CHDs. MEDLINE, EMBASE and The Cochrane Library were searched electronically. Reference lists within each article were hand-searched for additional reports. The outcomes observed included structural brain abnormalities (on magnetic resonance imaging (MRI)) and changes in brain volume (on MRI, three-dimensional (3D) volumetric MRI, 3D ultrasound and phase-contrast MRI), brain metabolism or maturation (on magnetic resonance spectroscopy and phase-contrast MRI) and brain blood flow (on Doppler ultrasound, phase-contrast MRI and 3D power Doppler ultrasound) in fetuses with CHDs. Cohort and case-control studies were included and cases of chromosomal or genetic abnormalities, case reports and editorials were excluded. Proportion meta-analysis was used for analysis. Between-study heterogeneity was assessed using the I(2) test. The search yielded 1943 citations, and 20 studies (n = 1175 cases) were included in the review. Three studies reported data on structural brain abnormalities, while data on altered brain volume, metabolism and blood flow were reported in seven, three and 14 studies, respectively. The three studies (221 cases) reporting on structural brain abnormalities were suitable for inclusion in a meta-analysis. The prevalence of prenatal structural brain abnormalities in fetuses with CHD was 28% (95% CI, 18-40%), with a similar prevalence (25% (95% CI, 14-39%)) when tetralogy of Fallot was considered alone. These abnormalities included ventriculomegaly (most common), agenesis of the corpus callosum, ventricular bleeding, increased extra-axial space, vermian hypoplasia, white-matter abnormalities and delayed brain development. Fetuses with CHD were more likely than those without CHD to have reduced brain volume, delay in brain maturation and altered brain circulation, most commonly in the form of reduced middle cerebral artery pulsatility index and cerebroplacental ratio. These changes were usually evident in the third trimester, but some studies reported them from as early as the second trimester. In the absence of known major aneuploidy or genetic syndromes, fetuses with CHD are at increased risk of brain abnormalities, which are discernible prenatally. Copyright © 2016 ISUOG. Published by John Wiley & Sons Ltd. Copyright © 2016 ISUOG. Published by John Wiley & Sons Ltd.

  16. Patients with primary biliary cholangitis and fatigue present with depressive symptoms and selected cognitive deficits, but with normal attention performance and brain structure.

    PubMed

    Zenouzi, Roman; von der Gablentz, Janina; Heldmann, Marcus; Göttlich, Martin; Weiler-Normann, Christina; Sebode, Marcial; Ehlken, Hanno; Hartl, Johannes; Fellbrich, Anja; Siemonsen, Susanne; Schramm, Christoph; Münte, Thomas F; Lohse, Ansgar W

    2018-01-01

    In primary biliary cholangitis (PBC) fatigue is a major clinical challenge of unknown etiology. By demonstrating that fatigue in PBC is associated with an impaired cognitive performance, previous studies have pointed out the possibility of brain abnormalities underlying fatigue in PBC. Whether structural brain changes are present in PBC patients with fatigue, however, is unclear. To evaluate the role of structural brain abnormalities in PBC patients severely affected from fatigue we, therefore, performed a case-control cerebral magnetic resonance imaging (cMRI) study and correlated changes of white and grey brain matter with the cognitive and attention performance. 20 female patients with PBC and 20 female age-matched controls were examined in this study. The assessment of fatigue, psychological symptoms, cognitive and attention performance included clinical questionnaires, established cognition tests and a computerized test battery of attention performance. T1-weighted cMRI and diffusion tensor imaging (DTI) scans were acquired with a 3 Tesla scanner. Structural brain alterations were investigated with voxel-based morphometry (VBM) and DTI analyses. Results were correlated to the cognitive and attention performance. Compared to healthy controls, PBC patients had significantly higher levels of fatigue and associated psychological symptoms. Except for an impairment of verbal fluency, no cognitive or attention deficits were found in the PBC cohort. The VBM and DTI analyses revealed neither major structural brain abnormalities in the PBC cohort nor correlations with the cognitive and attention performance. Despite the high burden of fatigue and selected cognitive deficits, the attention performance of PBC patients appears to be comparable to healthy people. As structural brain alterations do not seem to be present in PBC patients with fatigue, fatigue in PBC must be regarded as purely functional. Future studies should evaluate, whether functional brain changes underlie fatigue in PBC.

  17. Changes in functional and structural brain connectome along the Alzheimer's disease continuum.

    PubMed

    Filippi, Massimo; Basaia, Silvia; Canu, Elisa; Imperiale, Francesca; Magnani, Giuseppe; Falautano, Monica; Comi, Giancarlo; Falini, Andrea; Agosta, Federica

    2018-05-09

    The aim of this study was two-fold: (i) to investigate structural and functional brain network architecture in patients with Alzheimer's disease (AD) and amnestic mild cognitive impairment (aMCI), stratified in converters (c-aMCI) and non-converters (nc-aMCI) to AD; and to assess the relationship between healthy brain network functional connectivity and the topography of brain atrophy in patients along the AD continuum. Ninety-four AD patients, 47 aMCI patients (25 c-aMCI within 36 months) and 53 age- and sex-matched healthy controls were studied. Graph analysis and connectomics assessed global and local, structural and functional topological network properties and regional connectivity. Healthy topological features of brain regions were assessed based on their connectivity with the point of maximal atrophy (epicenter) in AD and aMCI patients. Brain network graph analysis properties were severely altered in AD patients. Structural brain network was already altered in c-aMCI patients relative to healthy controls in particular in the temporal and parietal brain regions, while functional connectivity did not change. Structural connectivity alterations distinguished c-aMCI from nc-aMCI cases. In both AD and c-aMCI, the point of maximal atrophy was located in left hippocampus (disease-epicenter). Brain regions most strongly connected with the disease-epicenter in the healthy functional connectome were also the most atrophic in both AD and c-aMCI patients. Progressive degeneration in the AD continuum is associated with an early breakdown of anatomical brain connections and follows the strongest connections with the disease-epicenter. These findings support the hypothesis that the topography of brain connectional architecture can modulate the spread of AD through the brain.

  18. Brain structure and executive functions in children with cerebral palsy: a systematic review.

    PubMed

    Weierink, Lonneke; Vermeulen, R Jeroen; Boyd, Roslyn N

    2013-05-01

    This systematic review aimed to establish the current knowledge about brain structure and executive function (EF) in children with cerebral palsy (CP). Five databases were searched (up till July 2012). Six articles met the inclusion criteria, all included structural brain imaging though no functional brain imaging. Study quality was assessed using the STROBE checklist. All articles scored between 58.7% and 70.5% for quality (100% is the maximum score). The included studies all reported poorer performance on EF tasks for children with CP compared to children without CP. For the selected EF measures non-significant effect sizes were found for the CP group compared to a semi-control group (children without cognitive deficits but not included in a control group). This could be due to the small sample sizes, group heterogeneity and lack of comparison of the CP group to typically developing children. The included studies did not consider specific brain areas associated with EF performance. To conclude, there is a paucity of brain imaging studies focused on EF in children with CP, especially of studies that include functional brain imaging. Outcomes of the present studies are difficult to compare as each study included different EF measures and cortical abnormality measures. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Persistent post-traumatic headache vs. migraine: an MRI study demonstrating differences in brain structure.

    PubMed

    Schwedt, Todd J; Chong, Catherine D; Peplinski, Jacob; Ross, Katherine; Berisha, Visar

    2017-08-22

    The majority of individuals with post-traumatic headache have symptoms that are indistinguishable from migraine. The overlap in symptoms amongst these individuals raises the question as to whether post-traumatic headache has a unique pathophysiology or if head trauma triggers migraine. The objective of this study was to compare brain structure in individuals with persistent post-traumatic headache (i.e. headache lasting at least 3 months following a traumatic brain injury) attributed to mild traumatic brain injury to that of individuals with migraine. Twenty-eight individuals with persistent post-traumatic headache attributed to mild traumatic brain injury and 28 individuals with migraine underwent brain magnetic resonance imaging on a 3 T scanner. Regional volumes, cortical thickness, surface area and curvature measurements were calculated from T1-weighted sequences and compared between subject groups using ANCOVA. MRI data from 28 healthy control subjects were used to interpret the differences in brain structure between migraine and persistent post-traumatic headache. Differences in regional volumes, cortical thickness, surface area and brain curvature were identified when comparing the group of individuals with persistent post-traumatic headache to the group with migraine. Structure was different between groups for regions within the right lateral orbitofrontal lobe, left caudal middle frontal lobe, left superior frontal lobe, left precuneus and right supramarginal gyrus (p < .05). Considering these regions only, there were differences between individuals with persistent post-traumatic headache and healthy controls within the right lateral orbitofrontal lobe, right supramarginal gyrus, and left superior frontal lobe and no differences when comparing the migraine cohort to healthy controls. In conclusion, persistent post-traumatic headache and migraine are associated with differences in brain structure, perhaps suggesting differences in their underlying pathophysiology. Additional studies are needed to further delineate similarities and differences in brain structure and function that are associated with post-traumatic headache and migraine and to determine their specificity for each of the headache types.

  20. Segmentation of brain structures in presence of a space-occupying lesion.

    PubMed

    Pollo, Claudio; Cuadra, Meritxell Bach; Cuisenaire, Olivier; Villemure, Jean-Guy; Thiran, Jean-Philippe

    2005-02-15

    Brain deformations induced by space-occupying lesions may result in unpredictable position and shape of functionally important brain structures. The aim of this study is to propose a method for segmentation of brain structures by deformation of a segmented brain atlas in presence of a space-occupying lesion. Our approach is based on an a priori model of lesion growth (MLG) that assumes radial expansion from a seeding point and involves three steps: first, an affine registration bringing the atlas and the patient into global correspondence; then, the seeding of a synthetic tumor into the brain atlas providing a template for the lesion; finally, the deformation of the seeded atlas, combining a method derived from optical flow principles and a model of lesion growth. The method was applied on two meningiomas inducing a pure displacement of the underlying brain structures, and segmentation accuracy of ventricles and basal ganglia was assessed. Results show that the segmented structures were consistent with the patient's anatomy and that the deformation accuracy of surrounding brain structures was highly dependent on the accurate placement of the tumor seeding point. Further improvements of the method will optimize the segmentation accuracy. Visualization of brain structures provides useful information for therapeutic consideration of space-occupying lesions, including surgical, radiosurgical, and radiotherapeutic planning, in order to increase treatment efficiency and prevent neurological damage.

  1. Critical perspectives on causality and inference in brain networks: Allusions, illusions, solutions?. Comment on: "Foundational perspectives on causality in large-scale brain networks" by M. Mannino and S.L. Bressler

    NASA Astrophysics Data System (ADS)

    Diwadkar, Vaibhav A.

    2015-12-01

    The human brain is an impossibly difficult cartographic landscape to map out. Within it's convoluted and labyrinthine structure is folded a million years of phylogeny, somehow expressed in the ontogeny of the specific organism; an ontogeny that conceals idiosyncratic effects of countless genes, and then the (perhaps) countably infinite effects of processes of the organism's lifespan subsequently resulting in remarkable heterogeneity [1,2]. The physical brain itself is therefore a nearly un-decodable ;time machine; motivating more questions than frameworks for answering those questions: Why has evolution endowed it with the general structure that is possesses [3]; Is there regularity in macroscopic metrics of structure across species [4]; What are the most meaningful structural units in the brain: molecules, neurons, cortical columns or cortical maps [5]? Remarkably, understanding the intricacies of structure is perhaps not even the most difficult aspect of understanding the human brain. In fact, and as recently argued, a central issue lies in resolving the dialectic between structure and function: how does dynamic function arises from static (at least at the time scales at which human brain function is experimentally studied) brain structures [6]? In other words, if the mind is the brain ;in action;, how does it arise?

  2. Investigation of brain structure in the 1-month infant.

    PubMed

    Dean, Douglas C; Planalp, E M; Wooten, W; Schmidt, C K; Kecskemeti, S R; Frye, C; Schmidt, N L; Goldsmith, H H; Alexander, A L; Davidson, R J

    2018-05-01

    The developing brain undergoes systematic changes that occur at successive stages of maturation. Deviations from the typical neurodevelopmental trajectory are hypothesized to underlie many early childhood disorders; thus, characterizing the earliest patterns of normative brain development is essential. Recent neuroimaging research provides insight into brain structure during late childhood and adolescence; however, few studies have examined the infant brain, particularly in infants under 3 months of age. Using high-resolution structural MRI, we measured subcortical gray and white matter brain volumes in a cohort (N = 143) of 1-month infants and examined characteristics of these volumetric measures throughout this early period of neurodevelopment. We show that brain volumes undergo age-related changes during the first month of life, with the corresponding patterns of regional asymmetry and sexual dimorphism. Specifically, males have larger total brain volume and volumes differ by sex in regionally specific brain regions, after correcting for total brain volume. Consistent with findings from studies of later childhood and adolescence, subcortical regions appear more rightward asymmetric. Neither sex differences nor regional asymmetries changed with gestation-corrected age. Our results complement a growing body of work investigating the earliest neurobiological changes associated with development and suggest that asymmetry and sexual dimorphism are present at birth.

  3. Mechanical properties of the in vivo adolescent human brain.

    PubMed

    McIlvain, Grace; Schwarb, Hillary; Cohen, Neal J; Telzer, Eva H; Johnson, Curtis L

    2018-06-10

    Viscoelastic mechanical properties of the in vivo human brain, measured noninvasively with magnetic resonance elastography (MRE), have recently been shown to be affected by aging and neurological disease, as well as relate to performance on cognitive tasks in adults. The demonstrated sensitivity of brain mechanical properties to neural tissue integrity make them an attractive target for examining the developing brain; however, to date, MRE studies on children are lacking. In this work, we characterized global and regional brain stiffness and damping ratio in a sample of 40 adolescents aged 12-14 years, including the lobes of the cerebrum and subcortical gray matter structures. We also compared the properties of the adolescent brain to the healthy adult brain. Temporal and parietal cerebral lobes were softer in adolescents compared to adults. We found that of subcortical gray matter structures, the caudate and the putamen were significantly stiffer in adolescents, and that the hippocampus and amygdala were significantly less stiff than all other subcortical structures. This study provides the first detailed characterization of adolescent brain viscoelasticity and provides baseline data to be used in studying development and pathophysiology. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Validity of semi-quantitative scale for brain MRI in unilateral cerebral palsy due to periventricular white matter lesions: Relationship with hand sensorimotor function and structural connectivity.

    PubMed

    Fiori, Simona; Guzzetta, Andrea; Pannek, Kerstin; Ware, Robert S; Rossi, Giuseppe; Klingels, Katrijn; Feys, Hilde; Coulthard, Alan; Cioni, Giovanni; Rose, Stephen; Boyd, Roslyn N

    2015-01-01

    To provide first evidence of construct validity of a semi-quantitative scale for brain structural MRI (sqMRI scale) in children with unilateral cerebral palsy (UCP) secondary to periventricular white matter (PWM) lesions, by examining the relationship with hand sensorimotor function and whole brain structural connectivity. Cross-sectional study of 50 children with UCP due to PWM lesions using 3 T (MRI), diffusion MRI and assessment of hand sensorimotor function. We explored the relationship of lobar, hemispheric and global scores on the sqMRI scale, with fractional anisotropy (FA), as a measure of brain white matter microstructure, and with hand sensorimotor measures (Assisting Hand Assessment, AHA; Jebsen-Taylor Test for Hand Function, JTTHF; Melbourne Assessment of Unilateral Upper Limb Function, MUUL; stereognosis; 2-point discrimination). Lobar and hemispheric scores on the sqMRI scale contralateral to the clinical side of hemiplegia correlated with sensorimotor paretic hand function measures and FA of a number of brain structural connections, including connections of brain areas involved in motor control (postcentral, precentral and paracentral gyri in the parietal lobe). More severe lesions correlated with lower sensorimotor performance, with the posterior limb of internal capsule score being the strongest contributor to impaired hand function. The sqMRI scale demonstrates first evidence of construct validity against impaired motor and sensory function measures and brain structural connectivity in a cohort of children with UCP due to PWM lesions. More severe lesions correlated with poorer paretic hand sensorimotor function and impaired structural connectivity in the hemisphere contralateral to the clinical side of hemiplegia. The quantitative structural MRI scoring may be a useful clinical tool for studying brain structure-function relationships but requires further validation in other populations of CP.

  5. The CLAIR model: Extension of Brodmann areas based on brain oscillations and connectivity.

    PubMed

    Başar, Erol; Düzgün, Aysel

    2016-05-01

    Since the beginning of the last century, the localization of brain function has been represented by Brodmann areas, maps of the anatomic organization of the brain. They are used to broadly represent cortical structures with their given sensory-cognitive functions. In recent decades, the analysis of brain oscillations has become important in the correlation of brain functions. Moreover, spectral connectivity can provide further information on the dynamic connectivity between various structures. In addition, brain responses are dynamic in nature and structural localization is almost impossible, according to Luria (1966). Therefore, brain functions are very difficult to localize; hence, a combined analysis of oscillation and event-related coherences is required. In this study, a model termed as "CLAIR" is described to enrich and possibly replace the concept of the Brodmann areas. A CLAIR model with optimum function may take several years to develop, but this study sets out to lay its foundation. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Structural imaging of the brain reveals decreased total brain and total gray matter volumes in obese but not in lean women with polycystic ovary syndrome compared to body mass index-matched counterparts.

    PubMed

    Ozgen Saydam, Basak; Has, Arzu Ceylan; Bozdag, Gurkan; Oguz, Kader Karli; Yildiz, Bulent Okan

    2017-07-01

    To detect differences in global brain volumes and identify relations between brain volume and appetite-related hormones in women with polycystic ovary syndrome (PCOS) compared to body mass index-matched controls. Forty subjects participated in this study. Cranial magnetic resonance imaging and measurements of fasting ghrelin, leptin and glucagon-like peptide 1 (GLP-1), as well as GLP-1 levels during mixed-meal tolerance test (MTT), were performed. Total brain volume and total gray matter volume (GMV) were decreased in obese PCOS compared to obese controls (p < 0.05 for both) whereas lean PCOS and controls did not show a significant difference. Secondary analyses of regional brain volumes showed decreases in GMV of the caudate nucleus, ventral diencephalon and hippocampus in obese PCOS compared to obese controls (p < 0.05 for all), whereas lean patients with PCOS had lower GMV in the amygdala than lean controls (p < 0.05). No significant relations were detected between structural differences and measured hormone levels at baseline or during MTT. This study, investigating structural brain alterations in PCOS, suggests volumetric reductions in global brain areas in obese women with PCOS. Functional studies with larger sample size are needed to determine physiopathological roles of these changes and potential effects of long-term medical management on brain structure of PCOS.

  7. Sex differences and structural brain maturation from childhood to early adulthood.

    PubMed

    Koolschijn, P Cédric M P; Crone, Eveline A

    2013-07-01

    Recent advances in structural brain imaging have demonstrated that brain development continues through childhood and adolescence. In the present cross-sectional study, structural MRI data from 442 typically developing individuals (range 8-30) were analyzed to examine and replicate the relationship between age, sex, brain volumes, cortical thickness and surface area. Our findings show differential patterns for subcortical and cortical areas. Analysis of subcortical volumes showed that putamen volume decreased with age and thalamus volume increased with age. Independent of age, males demonstrated larger amygdala and thalamus volumes compared to females. Cerebral white matter increased linearly with age, at a faster pace for females than males. Gray matter showed nonlinear decreases with age. Sex-by-age interactions were primarily found in lobar surface area measurements, with males demonstrating a larger cortical surface up to age 15, while cortical surface in females remained relatively stable with increasing age. The current findings replicate some, but not all prior reports on structural brain development, which calls for more studies with large samples, replications, and specific tests for brain structural changes. In addition, the results point toward an important role for sex differences in brain development, specifically during the heterogeneous developmental phase of puberty. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Insights into Brain Glycogen Metabolism

    PubMed Central

    Mathieu, Cécile; de la Sierra-Gallay, Ines Li; Duval, Romain; Xu, Ximing; Cocaign, Angélique; Léger, Thibaut; Woffendin, Gary; Camadro, Jean-Michel; Etchebest, Catherine; Haouz, Ahmed; Dupret, Jean-Marie; Rodrigues-Lima, Fernando

    2016-01-01

    Brain glycogen metabolism plays a critical role in major brain functions such as learning or memory consolidation. However, alteration of glycogen metabolism and glycogen accumulation in the brain contributes to neurodegeneration as observed in Lafora disease. Glycogen phosphorylase (GP), a key enzyme in glycogen metabolism, catalyzes the rate-limiting step of glycogen mobilization. Moreover, the allosteric regulation of the three GP isozymes (muscle, liver, and brain) by metabolites and phosphorylation, in response to hormonal signaling, fine-tunes glycogenolysis to fulfill energetic and metabolic requirements. Whereas the structures of muscle and liver GPs have been known for decades, the structure of brain GP (bGP) has remained elusive despite its critical role in brain glycogen metabolism. Here, we report the crystal structure of human bGP in complex with PEG 400 (2.5 Å) and in complex with its allosteric activator AMP (3.4 Å). These structures demonstrate that bGP has a closer structural relationship with muscle GP, which is also activated by AMP, contrary to liver GP, which is not. Importantly, despite the structural similarities between human bGP and the two other mammalian isozymes, the bGP structures reveal molecular features unique to the brain isozyme that provide a deeper understanding of the differences in the activation properties of these allosteric enzymes by the allosteric effector AMP. Overall, our study further supports that the distinct structural and regulatory properties of GP isozymes contribute to the different functions of muscle, liver, and brain glycogen. PMID:27402852

  9. Brain medical image diagnosis based on corners with importance-values.

    PubMed

    Gao, Linlin; Pan, Haiwei; Li, Qing; Xie, Xiaoqin; Zhang, Zhiqiang; Han, Jinming; Zhai, Xiao

    2017-11-21

    Brain disorders are one of the top causes of human death. Generally, neurologists analyze brain medical images for diagnosis. In the image analysis field, corners are one of the most important features, which makes corner detection and matching studies essential. However, existing corner detection studies do not consider the domain information of brain. This leads to many useless corners and the loss of significant information. Regarding corner matching, the uncertainty and structure of brain are not employed in existing methods. Moreover, most corner matching studies are used for 3D image registration. They are inapplicable for 2D brain image diagnosis because of the different mechanisms. To address these problems, we propose a novel corner-based brain medical image classification method. Specifically, we automatically extract multilayer texture images (MTIs) which embody diagnostic information from neurologists. Moreover, we present a corner matching method utilizing the uncertainty and structure of brain medical images and a bipartite graph model. Finally, we propose a similarity calculation method for diagnosis. Brain CT and MRI image sets are utilized to evaluate the proposed method. First, classifiers are trained in N-fold cross-validation analysis to produce the best θ and K. Then independent brain image sets are tested to evaluate the classifiers. Moreover, the classifiers are also compared with advanced brain image classification studies. For the brain CT image set, the proposed classifier outperforms the comparison methods by at least 8% on accuracy and 2.4% on F1-score. Regarding the brain MRI image set, the proposed classifier is superior to the comparison methods by more than 7.3% on accuracy and 4.9% on F1-score. Results also demonstrate that the proposed method is robust to different intensity ranges of brain medical image. In this study, we develop a robust corner-based brain medical image classifier. Specifically, we propose a corner detection method utilizing the diagnostic information from neurologists and a corner matching method based on the uncertainty and structure of brain medical images. Additionally, we present a similarity calculation method for brain image classification. Experimental results on two brain image sets show the proposed corner-based brain medical image classifier outperforms the state-of-the-art studies.

  10. Stuck in a State of Inattention? Functional Hyperconnectivity as an Indicator of Disturbed Intrinsic Brain Dynamics in Adolescents With Concussion: A Pilot Study

    PubMed Central

    Virji-Babul, Naznin

    2018-01-01

    Sports-related concussion in youth is a major public health issue. Evaluating the diffuse and often subtle changes in structure and function that occur in the brain, particularly in this population, remains a significant challenge. The goal of this pilot study was to evaluate the relationship between the intrinsic dynamics of the brain using resting-state functional magnetic resonance imaging (rs-fMRI) and relate these findings to structural brain correlates from diffusion tensor imaging in a group of adolescents with sports-related concussions (n = 6) and a group of healthy adolescent athletes (n = 6). We analyzed rs-fMRI data using a sliding windows approach and related the functional findings to structural brain correlates by applying graph theory analysis to the diffusion tensor imaging data. Within the resting-state condition, we extracted three separate brain states in both groups. Our analysis revealed that the brain dynamics in healthy adolescents was characterized by a dynamic pattern, shifting equally between three brain states; however, in adolescents with concussion, the pattern was more static with a longer time spent in one brain state. Importantly, this lack of dynamic flexibility in the concussed group was associated with increased nodal strength in the left middle frontal gyrus, suggesting reorganization in a region related to attention. This preliminary report shows that both the intrinsic brain dynamics and structural organization are altered in networks related to attention in adolescents with concussion. This first report in adolescents will be used to inform future studies in a larger cohort. PMID:29357675

  11. Stuck in a State of Inattention? Functional Hyperconnectivity as an Indicator of Disturbed Intrinsic Brain Dynamics in Adolescents With Concussion: A Pilot Study.

    PubMed

    Muller, Angela M; Virji-Babul, Naznin

    2018-01-01

    Sports-related concussion in youth is a major public health issue. Evaluating the diffuse and often subtle changes in structure and function that occur in the brain, particularly in this population, remains a significant challenge. The goal of this pilot study was to evaluate the relationship between the intrinsic dynamics of the brain using resting-state functional magnetic resonance imaging (rs-fMRI) and relate these findings to structural brain correlates from diffusion tensor imaging in a group of adolescents with sports-related concussions ( n = 6) and a group of healthy adolescent athletes ( n = 6). We analyzed rs-fMRI data using a sliding windows approach and related the functional findings to structural brain correlates by applying graph theory analysis to the diffusion tensor imaging data. Within the resting-state condition, we extracted three separate brain states in both groups. Our analysis revealed that the brain dynamics in healthy adolescents was characterized by a dynamic pattern, shifting equally between three brain states; however, in adolescents with concussion, the pattern was more static with a longer time spent in one brain state. Importantly, this lack of dynamic flexibility in the concussed group was associated with increased nodal strength in the left middle frontal gyrus, suggesting reorganization in a region related to attention. This preliminary report shows that both the intrinsic brain dynamics and structural organization are altered in networks related to attention in adolescents with concussion. This first report in adolescents will be used to inform future studies in a larger cohort.

  12. Are there differences in brain morphometry between twins and unrelated singletons? A pediatric MRI study.

    PubMed

    Ordaz, S J; Lenroot, R K; Wallace, G L; Clasen, L S; Blumenthal, J D; Schmitt, J E; Giedd, J N

    2010-04-01

    Twins provide a unique capacity to explore relative genetic and environmental contributions to brain development, but results are applicable to non-twin populations only to the extent that twin and singleton brains are alike. A reason to suspect differences is that as a group twins are more likely than singletons to experience adverse prenatal and perinatal events that may affect brain development. We sought to assess whether this increased risk leads to differences in child or adolescent brain anatomy in twins who do not experience behavioral or neurological sequelae during the perinatal period. Brain MRI scans of 185 healthy pediatric twins (mean age = 11.0, SD = 3.6) were compared to scans of 167 age- and sex-matched unrelated singletons on brain structures measured, which included gray and white matter lobar volumes, ventricular volume, and area of the corpus callosum. There were no significant differences between groups for any structure, despite sufficient power for low type II (i.e. false negative) error. The implications of these results are twofold: (1) within this age range and for these measures, it is appropriate to include healthy twins in studies of typical brain development, and (2) findings regarding heritability of brain structures obtained from twin studies can be generalized to non-twin populations.

  13. Structural Similarities between Brain and Linguistic Data Provide Evidence of Semantic Relations in the Brain

    PubMed Central

    Crangle, Colleen E.; Perreau-Guimaraes, Marcos; Suppes, Patrick

    2013-01-01

    This paper presents a new method of analysis by which structural similarities between brain data and linguistic data can be assessed at the semantic level. It shows how to measure the strength of these structural similarities and so determine the relatively better fit of the brain data with one semantic model over another. The first model is derived from WordNet, a lexical database of English compiled by language experts. The second is given by the corpus-based statistical technique of latent semantic analysis (LSA), which detects relations between words that are latent or hidden in text. The brain data are drawn from experiments in which statements about the geography of Europe were presented auditorily to participants who were asked to determine their truth or falsity while electroencephalographic (EEG) recordings were made. The theoretical framework for the analysis of the brain and semantic data derives from axiomatizations of theories such as the theory of differences in utility preference. Using brain-data samples from individual trials time-locked to the presentation of each word, ordinal relations of similarity differences are computed for the brain data and for the linguistic data. In each case those relations that are invariant with respect to the brain and linguistic data, and are correlated with sufficient statistical strength, amount to structural similarities between the brain and linguistic data. Results show that many more statistically significant structural similarities can be found between the brain data and the WordNet-derived data than the LSA-derived data. The work reported here is placed within the context of other recent studies of semantics and the brain. The main contribution of this paper is the new method it presents for the study of semantics and the brain and the focus it permits on networks of relations detected in brain data and represented by a semantic model. PMID:23799009

  14. Neuroimaging of child abuse: a critical review

    PubMed Central

    Hart, Heledd; Rubia, Katya

    2012-01-01

    Childhood maltreatment is a stressor that can lead to the development of behavior problems and affect brain structure and function. This review summarizes the current evidence for the effects of childhood maltreatment on behavior, cognition and the brain in adults and children. Neuropsychological studies suggest an association between child abuse and deficits in IQ, memory, working memory, attention, response inhibition and emotion discrimination. Structural neuroimaging studies provide evidence for deficits in brain volume, gray and white matter of several regions, most prominently the dorsolateral and ventromedial prefrontal cortex but also hippocampus, amygdala, and corpus callosum (CC). Diffusion tensor imaging (DTI) studies show evidence for deficits in structural interregional connectivity between these areas, suggesting neural network abnormalities. Functional imaging studies support this evidence by reporting atypical activation in the same brain regions during response inhibition, working memory, and emotion processing. There are, however, several limitations of the abuse research literature which are discussed, most prominently the lack of control for co-morbid psychiatric disorders, which make it difficult to disentangle which of the above effects are due to maltreatment, the associated psychiatric conditions or a combination or interaction between both. Overall, the better controlled studies that show a direct correlation between childhood abuse and brain measures suggest that the most prominent deficits associated with early childhood abuse are in the function and structure of lateral and ventromedial fronto-limbic brain areas and networks that mediate behavioral and affect control. Future, large scale multimodal neuroimaging studies in medication-naïve subjects, however, are needed that control for psychiatric co-morbidities in order to elucidate the structural and functional brain sequelae that are associated with early environmental adversity, independently of secondary co-morbid conditions. PMID:22457645

  15. Adaptation of brain functional and structural networks in aging.

    PubMed

    Lee, Annie; Ratnarajah, Nagulan; Tuan, Ta Anh; Chen, Shen-Hsing Annabel; Qiu, Anqi

    2015-01-01

    The human brain, especially the prefrontal cortex (PFC), is functionally and anatomically reorganized in order to adapt to neuronal challenges in aging. This study employed structural MRI, resting-state fMRI (rs-fMRI), and high angular resolution diffusion imaging (HARDI), and examined the functional and structural reorganization of the PFC in aging using a Chinese sample of 173 subjects aged from 21 years and above. We found age-related increases in the structural connectivity between the PFC and posterior brain regions. Such findings were partially mediated by age-related increases in the structural connectivity of the occipital lobe within the posterior brain. Based on our findings, it is thought that the PFC reorganization in aging could be partly due to the adaptation to age-related changes in the structural reorganization of the posterior brain. This thus supports the idea derived from task-based fMRI that the PFC reorganization in aging may be adapted to the need of compensation for resolving less distinctive stimulus information from the posterior brain regions. In addition, we found that the structural connectivity of the PFC with the temporal lobe was fully mediated by the temporal cortical thickness, suggesting that the brain morphology plays an important role in the functional and structural reorganization with aging.

  16. Structural covariance of brain region volumes is associated with both structural connectivity and transcriptomic similarity.

    PubMed

    Yee, Yohan; Fernandes, Darren J; French, Leon; Ellegood, Jacob; Cahill, Lindsay S; Vousden, Dulcie A; Spencer Noakes, Leigh; Scholz, Jan; van Eede, Matthijs C; Nieman, Brian J; Sled, John G; Lerch, Jason P

    2018-05-18

    An organizational pattern seen in the brain, termed structural covariance, is the statistical association of pairs of brain regions in their anatomical properties. These associations, measured across a population as covariances or correlations usually in cortical thickness or volume, are thought to reflect genetic and environmental underpinnings. Here, we examine the biological basis of structural volume covariance in the mouse brain. We first examined large scale associations between brain region volumes using an atlas-based approach that parcellated the entire mouse brain into 318 regions over which correlations in volume were assessed, for volumes obtained from 153 mouse brain images via high-resolution MRI. We then used a seed-based approach and determined, for 108 different seed regions across the brain and using mouse gene expression and connectivity data from the Allen Institute for Brain Science, the variation in structural covariance data that could be explained by distance to seed, transcriptomic similarity to seed, and connectivity to seed. We found that overall, correlations in structure volumes hierarchically clustered into distinct anatomical systems, similar to findings from other studies and similar to other types of networks in the brain, including structural connectivity and transcriptomic similarity networks. Across seeds, this structural covariance was significantly explained by distance (17% of the variation, up to a maximum of 49% for structural covariance to the visceral area of the cortex), transcriptomic similarity (13% of the variation, up to maximum of 28% for structural covariance to the primary visual area) and connectivity (15% of the variation, up to a maximum of 36% for structural covariance to the intermediate reticular nucleus in the medulla) of covarying structures. Together, distance, connectivity, and transcriptomic similarity explained 37% of structural covariance, up to a maximum of 63% for structural covariance to the visceral area. Additionally, this pattern of explained variation differed spatially across the brain, with transcriptomic similarity playing a larger role in the cortex than subcortex, while connectivity explains structural covariance best in parts of the cortex, midbrain, and hindbrain. These results suggest that both gene expression and connectivity underlie structural volume covariance, albeit to different extents depending on brain region, and this relationship is modulated by distance. Copyright © 2018. Published by Elsevier Inc.

  17. BrainMap VBM: An environment for structural meta-analysis.

    PubMed

    Vanasse, Thomas J; Fox, P Mickle; Barron, Daniel S; Robertson, Michaela; Eickhoff, Simon B; Lancaster, Jack L; Fox, Peter T

    2018-05-02

    The BrainMap database is a community resource that curates peer-reviewed, coordinate-based human neuroimaging literature. By pairing the results of neuroimaging studies with their relevant meta-data, BrainMap facilitates coordinate-based meta-analysis (CBMA) of the neuroimaging literature en masse or at the level of experimental paradigm, clinical disease, or anatomic location. Initially dedicated to the functional, task-activation literature, BrainMap is now expanding to include voxel-based morphometry (VBM) studies in a separate sector, titled: BrainMap VBM. VBM is a whole-brain, voxel-wise method that measures significant structural differences between or within groups which are reported as standardized, peak x-y-z coordinates. Here we describe BrainMap VBM, including the meta-data structure, current data volume, and automated reverse inference functions (region-to-disease profile) of this new community resource. CBMA offers a robust methodology for retaining true-positive and excluding false-positive findings across studies in the VBM literature. As with BrainMap's functional database, BrainMap VBM may be synthesized en masse or at the level of clinical disease or anatomic location. As a use-case scenario for BrainMap VBM, we illustrate a trans-diagnostic data-mining procedure wherein we explore the underlying network structure of 2,002 experiments representing over 53,000 subjects through independent components analysis (ICA). To reduce data-redundancy effects inherent to any database, we demonstrate two data-filtering approaches that proved helpful to ICA. Finally, we apply hierarchical clustering analysis (HCA) to measure network- and disease-specificity. This procedure distinguished psychiatric from neurological diseases. We invite the neuroscientific community to further exploit BrainMap VBM with other modeling approaches. © 2018 Wiley Periodicals, Inc.

  18. Toward a standardized structural-functional group connectome in MNI space.

    PubMed

    Horn, Andreas; Blankenburg, Felix

    2016-01-01

    The analysis of the structural architecture of the human brain in terms of connectivity between its subregions has provided profound insights into its underlying functional organization and has coined the concept of the "connectome", a structural description of the elements forming the human brain and the connections among them. Here, as a proof of concept, we introduce a novel group connectome in standard space based on a large sample of 169 subjects from the Enhanced Nathan Kline Institute-Rockland Sample (eNKI-RS). Whole brain structural connectomes of each subject were estimated with a global tracking approach, and the resulting fiber tracts were warped into standard stereotactic (MNI) space using DARTEL. Employing this group connectome, the results of published tracking studies (i.e., the JHU white matter and Oxford thalamic connectivity atlas) could be largely reproduced directly within MNI space. In a second analysis, a study that examined structural connectivity between regions of a functional network, namely the default mode network, was reproduced. Voxel-wise structural centrality was then calculated and compared to others' findings. Furthermore, including additional resting-state fMRI data from the same subjects, structural and functional connectivity matrices between approximately forty thousand nodes of the brain were calculated. This was done to estimate structure-function agreement indices of voxel-wise whole brain connectivity. Taken together, the combination of a novel whole brain fiber tracking approach and an advanced normalization method led to a group connectome that allowed (at least heuristically) performing fiber tracking directly within MNI space. Such an approach may be used for various purposes like the analysis of structural connectivity and modeling experiments that aim at studying the structure-function relationship of the human connectome. Moreover, it may even represent a first step toward a standard DTI template of the human brain in stereotactic space. The standardized group connectome might thus be a promising new resource to better understand and further analyze the anatomical architecture of the human brain on a population level. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. MRI as a tool to study brain structure from mouse models for mental retardation

    NASA Astrophysics Data System (ADS)

    Verhoye, Marleen; Sijbers, Jan; Kooy, R. F.; Reyniers, E.; Fransen, E.; Oostra, B. A.; Willems, Peter; Van der Linden, Anne-Marie

    1998-07-01

    Nowadays, transgenic mice are a common tool to study brain abnormalities in neurological disorders. These studies usually rely on neuropathological examinations, which have a number of drawbacks, including the risk of artefacts introduced by fixation and dehydration procedures. Here we present 3D Fast Spin Echo Magnetic Resonance Imaging (MRI) in combination with 2D and 3D segmentation techniques as a powerful tool to study brain anatomy. We set up MRI of the brain in mouse models for the fragile X syndrome (FMR1 knockout) and Corpus callosum hypoplasia, mental Retardation, Adducted thumbs, Spastic paraplegia and Hydrocephalus (CRASH) syndrome (L1CAM knockout). Our major goal was to determine qualitative and quantitative differences in specific brain structures. MRI of the brain of fragile X and CRASH patients has revealed alterations in the size of specific brain structures, including the cerebellar vermis and the ventricular system. In the present MRI study of the brain from fragile X knockout mice, we have measured the size of the brain, cerebellum and 4th ventricle, which were reported as abnormal in human fragile X patients, but found no evidence for altered brain regions in the mouse model. In CRASH syndrome, the most specific brain abnormalities are vermis hypoplasia and abnormalities of the ventricular system with some degree of hydrocephalus. With the MRI study of L1CAM knockout mice we found vermis hypoplasia, abnormalities of the ventricular system including dilatation of the lateral and the 4th ventricles. These subtle abnormalities were not detected upon standard neuropathological examination. Here we proved that this sensitive MRI technique allows to measure small differences which can not always be detected by means of pathology.

  20. Children with New-Onset Epilepsy: Neuropsychological Status and Brain Structure

    ERIC Educational Resources Information Center

    Hermann, Bruce; Jones, Jana; Sheth, Raj; Dow, Christian; Koehn, Monica; Seidenberg, Michael

    2006-01-01

    Abnormalities in cognition, academic performance and brain volumetrics have been reported in children with chronic epilepsy. The nature and degree to which these problems may be present at epilepsy onset or may instead become more evident over time remains to be determined. This study characterizes neuropsychological status, brain structure and…

  1. The Brain Dynamics of Intellectual Development: Waxing and Waning White and Gray Matter

    ERIC Educational Resources Information Center

    Tamnes, Christian K.; Fjell, Anders M.; Ostby, Ylva; Westlye, Lars T.; Due-Tonnessen, Paulina; Bjornerud, Atle; Walhovd, Kristine B.

    2011-01-01

    Distributed brain areas support intellectual abilities in adults. How structural maturation of these areas in childhood enables development of intelligence is not established. Neuroimaging can be used to monitor brain development, but studies to date have typically considered single imaging modalities. To explore the impact of structural brain…

  2. 3D printing of layered brain-like structures using peptide modified gellan gum substrates.

    PubMed

    Lozano, Rodrigo; Stevens, Leo; Thompson, Brianna C; Gilmore, Kerry J; Gorkin, Robert; Stewart, Elise M; in het Panhuis, Marc; Romero-Ortega, Mario; Wallace, Gordon G

    2015-10-01

    The brain is an enormously complex organ structured into various regions of layered tissue. Researchers have attempted to study the brain by modeling the architecture using two dimensional (2D) in vitro cell culturing methods. While those platforms attempt to mimic the in vivo environment, they do not truly resemble the three dimensional (3D) microstructure of neuronal tissues. Development of an accurate in vitro model of the brain remains a significant obstacle to our understanding of the functioning of the brain at the tissue or organ level. To address these obstacles, we demonstrate a new method to bioprint 3D brain-like structures consisting of discrete layers of primary neural cells encapsulated in hydrogels. Brain-like structures were constructed using a bio-ink consisting of a novel peptide-modified biopolymer, gellan gum-RGD (RGD-GG), combined with primary cortical neurons. The ink was optimized for a modified reactive printing process and developed for use in traditional cell culturing facilities without the need for extensive bioprinting equipment. Furthermore the peptide modification of the gellan gum hydrogel was found to have a profound positive effect on primary cell proliferation and network formation. The neural cell viability combined with the support of neural network formation demonstrated the cell supportive nature of the matrix. The facile ability to form discrete cell-containing layers validates the application of this novel printing technique to form complex, layered and viable 3D cell structures. These brain-like structures offer the opportunity to reproduce more accurate 3D in vitro microstructures with applications ranging from cell behavior studies to improving our understanding of brain injuries and neurodegenerative diseases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Joint representation of consistent structural and functional profiles for identification of common cortical landmarks.

    PubMed

    Zhang, Shu; Zhao, Yu; Jiang, Xi; Shen, Dinggang; Liu, Tianming

    2018-06-01

    In the brain mapping field, there have been significant interests in representation of structural/functional profiles to establish structural/functional landmark correspondences across individuals and populations. For example, from the structural perspective, our previous studies have identified hundreds of consistent DICCCOL (dense individualized and common connectivity-based cortical landmarks) landmarks across individuals and populations, each of which possess consistent DTI-derived fiber connection patterns. From the functional perspective, a large collection of well-characterized HAFNI (holistic atlases of functional networks and interactions) networks based on sparse representation of whole-brain fMRI signals have been identified in our prior studies. However, due to the remarkable variability of structural and functional architectures in the human brain, it is challenging for earlier studies to jointly represent the connectome-scale structural and functional profiles for establishing a common cortical architecture which can comprehensively encode both structural and functional characteristics across individuals. To address this challenge, we propose an effective computational framework to jointly represent the structural and functional profiles for identification of consistent and common cortical landmarks with both structural and functional correspondences across different brains based on DTI and fMRI data. Experimental results demonstrate that 55 structurally and functionally common cortical landmarks can be successfully identified.

  4. What is special about the adolescent (JME) brain?

    PubMed

    Craiu, Dana

    2013-07-01

    Juvenile myoclonic epilepsy (JME) involves cortico-thalamo-cortical networks. Thalamic, frontal gray matter, connectivity, and neurotransmitter disturbances have been demonstrated by structural/functional imaging studies. Few patients with JME show mutations in genes coding ion channels or GABAA (gamma-aminobutyric acid) receptor subunits. Recent research points to EFHC1 gene mutations leading to microdysgenesis and possible aberrant circuitry. Imaging studies have shown massive structural/functional changes of normally developing adolescent brain structures maturing at strikingly different rates and times. Gray matter (GM) volume diminishes in cortical areas (frontal and parietal) and deep structures (anterior thalamus, putamen, and caudate). Diffusion tensor imaging (DTI) findings support continued microstructural change in WM (white matter) during late adolescence with robust developmental changes in thalamocortical connectivity. The GABAA receptor distribution and specific receptor subunits' expression patterns change with age from neonate to adolescent/adult, contributing to age-related changes in brain excitability. Hormonal influence on brain structure development during adolescence is presented. Possible implications of brain changes during adolescence on the course of JME are discussed. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. High prevalence of brain pathology in violent prisoners: a qualitative CT and MRI scan study.

    PubMed

    Schiltz, Kolja; Witzel, Joachim G; Bausch-Hölterhoff, Josef; Bogerts, Bernhard

    2013-10-01

    The aim of this study was to determine the frequency and extent of brain anomalies in a large sample of incarcerated violent offenders not previously considered neuropsychiatrically ill, in comparison with non-violent offenders and non-offending controls. MRI and CT brain scans from 287 male prison inmates (162 violent and 125 non-violent) not diagnosed as mentally ill before that were obtained due to headache, vertigo or psychological complaints during imprisonment were assessed and compared to 52 non-criminal controls. Brain scans were rated qualitatively with respect to evidence of structural brain damage. Each case received a semiquantitative rating of "normal" (=0), "questionably abnormal" (=1) or "definitely abnormal" (=2) for the lateral ventricles, frontal/parietal cortex and medial temporal structures bilaterally as well as third ventricle. Overall, offenders displayed a significantly higher rate of morphological abnormality, with the violent offenders scoring significantly higher than non-violent offenders and controls. This difference was statistically detectable for frontal/parietal cortex, medial temporal structures, third ventricle and the left but not the right lateral ventricle. The remarkable prevalence of brain pathology in convicted violent prisoners detectable by neuroradiological routine assessment not only highlights the importance of frontal and temporal structures in the control of social, and specifically of violent behaviour, but also raises questions on the legal culpability of violent offenders with brain abnormalities. The high proportion of undetected presence of structural brain damage emphasizes the need that in violent criminals, the comprehensive routine neuropsychiatric assessment usually performed in routine forensic psychiatric expertises should be complemented with brain imaging.

  6. Neuroanatomy of the killer whale (Orcinus orca): a magnetic resonance imaging investigation of structure with insights on function and evolution.

    PubMed

    Wright, Alexandra; Scadeng, Miriam; Stec, Dominik; Dubowitz, Rebecca; Ridgway, Sam; Leger, Judy St

    2017-01-01

    The evolutionary process of adaptation to an obligatory aquatic existence dramatically modified cetacean brain structure and function. The brain of the killer whale (Orcinus orca) may be the largest of all taxa supporting a panoply of cognitive, sensory, and sensorimotor abilities. Despite this, examination of the O. orca brain has been limited in scope resulting in significant deficits in knowledge concerning its structure and function. The present study aims to describe the neural organization and potential function of the O. orca brain while linking these traits to potential evolutionary drivers. Magnetic resonance imaging was used for volumetric analysis and three-dimensional reconstruction of an in situ postmortem O. orca brain. Measurements were determined for cortical gray and cerebral white matter, subcortical nuclei, cerebellar gray and white matter, corpus callosum, hippocampi, superior and inferior colliculi, and neuroendocrine structures. With cerebral volume comprising 81.51 % of the total brain volume, this O. orca brain is one of the most corticalized mammalian brains studied to date. O. orca and other delphinoid cetaceans exhibit isometric scaling of cerebral white matter with increasing brain size, a trait that violates an otherwise evolutionarily conserved cerebral scaling law. Using comparative neurobiology, it is argued that the divergent cerebral morphology of delphinoid cetaceans compared to other mammalian taxa may have evolved in response to the sensorimotor demands of the aquatic environment. Furthermore, selective pressures associated with the evolution of echolocation and unihemispheric sleep are implicated in substructure morphology and function. This neuroanatomical dataset, heretofore absent from the literature, provides important quantitative data to test hypotheses regarding brain structure, function, and evolution within Cetacea and across Mammalia.

  7. Sensitivity to musical structure in the human brain

    PubMed Central

    McDermott, Josh H.; Norman-Haignere, Sam; Kanwisher, Nancy

    2012-01-01

    Evidence from brain-damaged patients suggests that regions in the temporal lobes, distinct from those engaged in lower-level auditory analysis, process the pitch and rhythmic structure in music. In contrast, neuroimaging studies targeting the representation of music structure have primarily implicated regions in the inferior frontal cortices. Combining individual-subject fMRI analyses with a scrambling method that manipulated musical structure, we provide evidence of brain regions sensitive to musical structure bilaterally in the temporal lobes, thus reconciling the neuroimaging and patient findings. We further show that these regions are sensitive to the scrambling of both pitch and rhythmic structure but are insensitive to high-level linguistic structure. Our results suggest the existence of brain regions with representations of musical structure that are distinct from high-level linguistic representations and lower-level acoustic representations. These regions provide targets for future research investigating possible neural specialization for music or its associated mental processes. PMID:23019005

  8. The CONNECT project: Combining macro- and micro-structure.

    PubMed

    Assaf, Yaniv; Alexander, Daniel C; Jones, Derek K; Bizzi, Albero; Behrens, Tim E J; Clark, Chris A; Cohen, Yoram; Dyrby, Tim B; Huppi, Petra S; Knoesche, Thomas R; Lebihan, Denis; Parker, Geoff J M; Poupon, Cyril; Anaby, Debbie; Anwander, Alfred; Bar, Leah; Barazany, Daniel; Blumenfeld-Katzir, Tamar; De-Santis, Silvia; Duclap, Delphine; Figini, Matteo; Fischi, Elda; Guevara, Pamela; Hubbard, Penny; Hofstetter, Shir; Jbabdi, Saad; Kunz, Nicolas; Lazeyras, Francois; Lebois, Alice; Liptrot, Matthew G; Lundell, Henrik; Mangin, Jean-François; Dominguez, David Moreno; Morozov, Darya; Schreiber, Jan; Seunarine, Kiran; Nava, Simone; Poupon, Cyril; Riffert, Till; Sasson, Efrat; Schmitt, Benoit; Shemesh, Noam; Sotiropoulos, Stam N; Tavor, Ido; Zhang, Hui Gary; Zhou, Feng-Lei

    2013-10-15

    In recent years, diffusion MRI has become an extremely important tool for studying the morphology of living brain tissue, as it provides unique insights into both its macrostructure and microstructure. Recent applications of diffusion MRI aimed to characterize the structural connectome using tractography to infer connectivity between brain regions. In parallel to the development of tractography, additional diffusion MRI based frameworks (CHARMED, AxCaliber, ActiveAx) were developed enabling the extraction of a multitude of micro-structural parameters (axon diameter distribution, mean axonal diameter and axonal density). This unique insight into both tissue microstructure and connectivity has enormous potential value in understanding the structure and organization of the brain as well as providing unique insights to abnormalities that underpin disease states. The CONNECT (Consortium Of Neuroimagers for the Non-invasive Exploration of brain Connectivity and Tracts) project aimed to combine tractography and micro-structural measures of the living human brain in order to obtain a better estimate of the connectome, while also striving to extend validation of these measurements. This paper summarizes the project and describes the perspective of using micro-structural measures to study the connectome. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Altered voxel-wise gray matter structural brain networks in schizophrenia: Association with brain genetic expression pattern.

    PubMed

    Liu, Feng; Tian, Hongjun; Li, Jie; Li, Shen; Zhuo, Chuanjun

    2018-05-04

    Previous seed- and atlas-based structural covariance/connectivity analyses have demonstrated that patients with schizophrenia is accompanied by aberrant structural connection and abnormal topological organization. However, it remains unclear whether this disruption is present in unbiased whole-brain voxel-wise structural covariance networks (SCNs) and whether brain genetic expression variations are linked with network alterations. In this study, ninety-five patients with schizophrenia and 95 matched healthy controls were recruited and gray matter volumes were extracted from high-resolution structural magnetic resonance imaging scans. Whole-brain voxel-wise gray matter SCNs were constructed at the group level and were further analyzed by using graph theory method. Nonparametric permutation tests were employed for group comparisons. In addition, regression modes along with random effect analysis were utilized to explore the associations between structural network changes and gene expression from the Allen Human Brain Atlas. Compared with healthy controls, the patients with schizophrenia showed significantly increased structural covariance strength (SCS) in the right orbital part of superior frontal gyrus and bilateral middle frontal gyrus, while decreased SCS in the bilateral superior temporal gyrus and precuneus. The altered SCS showed reproducible correlations with the expression profiles of the gene classes involved in therapeutic targets and neurodevelopment. Overall, our findings not only demonstrate that the topological architecture of whole-brain voxel-wise SCNs is impaired in schizophrenia, but also provide evidence for the possible role of therapeutic targets and neurodevelopment-related genes in gray matter structural brain networks in schizophrenia.

  10. Sleep duration and age-related changes in brain structure and cognitive performance.

    PubMed

    Lo, June C; Loh, Kep Kee; Zheng, Hui; Sim, Sam K Y; Chee, Michael W L

    2014-07-01

    To investigate the contribution of sleep duration and quality to age-related changes in brain structure and cognitive performance in relatively healthy older adults. Community-based longitudinal brain and cognitive aging study using a convenience sample. Participants were studied in a research laboratory. Relatively healthy adults aged 55 y and older at study commencement. N/A. Participants underwent magnetic resonance imaging and neuropsychological assessment every 2 y. Subjective assessments of sleep duration and quality and blood samples were obtained. Each hour of reduced sleep duration at baseline augmented the annual expansion rate of the ventricles by 0.59% (P = 0.007) and the annual decline rate in global cognitive performance by 0.67% (P = 0.050) in the subsequent 2 y after controlling for the effects of age, sex, education, and body mass index. In contrast, global sleep quality at baseline did not modulate either brain or cognitive aging. High-sensitivity C-reactive protein, a marker of systemic inflammation, showed no correlation with baseline sleep duration, brain structure, or cognitive performance. In healthy older adults, short sleep duration is associated with greater age-related brain atrophy and cognitive decline. These associations are not associated with elevated inflammatory responses among short sleepers. Lo JC, Loh KK, Zheng H, Sim SK, Chee MW. Sleep duration and age-related changes in brain structure and cognitive performance.

  11. Development of structure and function in the infant brain: Implications for cognition, language and social behaviour

    PubMed Central

    Paterson, Sarah J.; Heim, Sabine; Friedman, Jennifer Thomas; Choudhury, Naseem; Benasich, April A.

    2007-01-01

    Recent advances in cognitive neuroscience have allowed us to begin investigating the development of both structure and function in the infant brain. However, despite the rapid evolution of technology, surprisingly few studies have examined the intersection between brain and behaviour over the first years of life. Even fewer have done so in the context of a particular research question. This paper aims to provide an overview of four domains that have been studied using techniques amenable to elucidating the brain/behaviour interface: language, face processing, object permanence, and joint attention, with particular emphasis on studies focusing on early development. The importance of the unique role of development and the interplay between structure and function is stressed throughout. It is hoped that this review will serve as a catalyst for further thinking about the substantial gaps in our understanding of the relationship between brain and behaviour across development. Further, our aim is to provide ideas about candidate brain areas that are likely to be implicated in particular behaviours or cognitive domains. PMID:16890291

  12. Using Structural Equation Modeling to Assess Functional Connectivity in the Brain: Power and Sample Size Considerations

    ERIC Educational Resources Information Center

    Sideridis, Georgios; Simos, Panagiotis; Papanicolaou, Andrew; Fletcher, Jack

    2014-01-01

    The present study assessed the impact of sample size on the power and fit of structural equation modeling applied to functional brain connectivity hypotheses. The data consisted of time-constrained minimum norm estimates of regional brain activity during performance of a reading task obtained with magnetoencephalography. Power analysis was first…

  13. Only Time Will Tell: Cross-Sectional Studies Offer No Solution to the Age-Brain-Cognition Triangle--Comment on Salthouse (2011)

    ERIC Educational Resources Information Center

    Raz, Naftali; Lindenberger, Ulman

    2011-01-01

    Salthouse (2011) critically reviewed cross-sectional and longitudinal relations among adult age, brain structure, and cognition (ABC) and identified problems in interpretation of the extant literature. His review, however, missed several important points. First, there is enough disparity among the measures of brain structure and cognitive…

  14. Sleep Duration and Age-Related Changes in Brain Structure and Cognitive Performance

    PubMed Central

    Lo, June C.; Loh, Kep Kee; Zheng, Hui; Sim, Sam K.Y.; Chee, Michael W.L.

    2014-01-01

    Study Objectives: To investigate the contribution of sleep duration and quality to age-related changes in brain structure and cognitive performance in relatively healthy older adults. Design: Community-based longitudinal brain and cognitive aging study using a convenience sample. Setting: Participants were studied in a research laboratory. Participants: Relatively healthy adults aged 55 y and older at study commencement. Interventions: N/A. Measurements and Results: Participants underwent magnetic resonance imaging and neuropsychological assessment every 2 y. Subjective assessments of sleep duration and quality and blood samples were obtained. Each hour of reduced sleep duration at baseline augmented the annual expansion rate of the ventricles by 0.59% (P = 0.007) and the annual decline rate in global cognitive performance by 0.67% (P = 0.050) in the subsequent 2 y after controlling for the effects of age, sex, education, and body mass index. In contrast, global sleep quality at baseline did not modulate either brain or cognitive aging. High-sensitivity C-reactive protein, a marker of systemic inflammation, showed no correlation with baseline sleep duration, brain structure, or cognitive performance. Conclusions: In healthy older adults, short sleep duration is associated with greater age-related brain atrophy and cognitive decline. These associations are not associated with elevated inflammatory responses among short sleepers. Citation: Lo JC, Loh KK, Zheng H, Sim SK, Chee MW. Sleep duration and age-related changes in brain structure and cognitive performance. SLEEP 2014;37(7):1171-1178. PMID:25061245

  15. Infant Brain Structures, Executive Function, and Attention Deficit/Hyperactivity Problems at Preschool Age. A Prospective Study

    ERIC Educational Resources Information Center

    Ghassabian, Akhgar; Herba, Catherine M.; Roza, Sabine J.; Govaert, Paul; Schenk, Jacqueline J.; Jaddoe, Vincent W.; Hofman, Albert; White, Tonya; Verhulst, Frank C.; Tiemeier, Henning

    2013-01-01

    Background: Neuroimaging findings have provided evidence for a relation between variations in brain structures and Attention Deficit/Hyperactivity Disorder (ADHD). However, longitudinal neuroimaging studies are typically confined to children who have already been diagnosed with ADHD. In a population-based study, we aimed to characterize the…

  16. Brain responses to filled gaps.

    PubMed

    Hestvik, Arild; Maxfield, Nathan; Schwartz, Richard G; Shafer, Valerie

    2007-03-01

    An unresolved issue in the study of sentence comprehension is whether the process of gap-filling is mediated by the construction of empty categories (traces), or whether the parser relates fillers directly to the associated verb's argument structure. We conducted an event-related potentials (ERP) study that used the violation paradigm to examine the time course and spatial distribution of brain responses to ungrammatically filled gaps. The results indicate that the earliest brain response to the violation is an early left anterior negativity (eLAN). This ERP indexes an early phase of pure syntactic structure building, temporally preceding ERPs that reflect semantic integration and argument structure satisfaction. The finding is interpreted as evidence that gap-filling is mediated by structurally predicted empty categories, rather than directly by argument structure operations.

  17. [Regularities of fixation of brain serum antibodies from patients with lateral amyotrophic sclerosis in rabbit CNS].

    PubMed

    Musaeva, L S; Gannyshkina, I V; Zavalishin, I A; Markova, E D; Ivanova-Smolenskaia, I A

    2002-01-01

    Kuhns' indirect immunofluorescent test was used to study fixation of serum brain antibodies (Ab) of patients with bulbar, cervicothoracic, lumbosacral lateral amyotropic sclerosis (LAS) on brain sections of rabbits. The disease is characterized by formation of brain Ab complementary to various structures of nervous and glial cells, myelin of fibers from different conducting systems, vessels which exhibit both common and individual antigenic properties. It was found that fixation of antineuronal, antimyelin brain Ab of patients with bulbar, cervicothoracic and lumbosacral LAS in different CNS structures varies.

  18. The glia doctrine: addressing the role of glial cells in healthy brain ageing.

    PubMed

    Nagelhus, Erlend A; Amiry-Moghaddam, Mahmood; Bergersen, Linda H; Bjaalie, Jan G; Eriksson, Jens; Gundersen, Vidar; Leergaard, Trygve B; Morth, J Preben; Storm-Mathisen, Jon; Torp, Reidun; Walhovd, Kristine B; Tønjum, Tone

    2013-10-01

    Glial cells in their plurality pervade the human brain and impact on brain structure and function. A principal component of the emerging glial doctrine is the hypothesis that astrocytes, the most abundant type of glial cells, trigger major molecular processes leading to brain ageing. Astrocyte biology has been examined using molecular, biochemical and structural methods, as well as 3D brain imaging in live animals and humans. Exosomes are extracelluar membrane vesicles that facilitate communication between glia, and have significant potential for biomarker discovery and drug delivery. Polymorphisms in DNA repair genes may indirectly influence the structure and function of membrane proteins expressed in glial cells and predispose specific cell subgroups to degeneration. Physical exercise may reduce or retard age-related brain deterioration by a mechanism involving neuro-glial processes. It is most likely that additional information about the distribution, structure and function of glial cells will yield novel insight into human brain ageing. Systematic studies of glia and their functions are expected to eventually lead to earlier detection of ageing-related brain dysfunction and to interventions that could delay, reduce or prevent brain dysfunction. Copyright © 2013 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  19. Abnormal rich club organization and functional brain dynamics in schizophrenia.

    PubMed

    van den Heuvel, Martijn P; Sporns, Olaf; Collin, Guusje; Scheewe, Thomas; Mandl, René C W; Cahn, Wiepke; Goñi, Joaquín; Hulshoff Pol, Hilleke E; Kahn, René S

    2013-08-01

    The human brain forms a large-scale structural network of regions and interregional pathways. Recent studies have reported the existence of a selective set of highly central and interconnected hub regions that may play a crucial role in the brain's integrative processes, together forming a central backbone for global brain communication. Abnormal brain connectivity may have a key role in the pathophysiology of schizophrenia. To examine the structure of the rich club in schizophrenia and its role in global functional brain dynamics. Structural diffusion tensor imaging and resting-state functional magnetic resonance imaging were performed in patients with schizophrenia and matched healthy controls. Department of Psychiatry, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, the Netherlands. Forty-eight patients and 45 healthy controls participated in the study. An independent replication data set of 41 patients and 51 healthy controls was included to replicate and validate significant findings. MAIN OUTCOME(S) AND MEASURES: Measures of rich club organization, connectivity density of rich club connections and connections linking peripheral regions to brain hubs, measures of global brain network efficiency, and measures of coupling between brain structure and functional dynamics. Rich club organization between high-degree hub nodes was significantly affected in patients, together with a reduced density of rich club connections predominantly comprising the white matter pathways that link the midline frontal, parietal, and insular hub regions. This reduction in rich club density was found to be associated with lower levels of global communication capacity, a relationship that was absent for other white matter pathways. In addition, patients had an increase in the strength of structural connectivity-functional connectivity coupling. Our findings provide novel biological evidence that schizophrenia is characterized by a selective disruption of brain connectivity among central hub regions of the brain, potentially leading to reduced communication capacity and altered functional brain dynamics.

  20. Prefrontal Cortex Structure Predicts Training-Induced Improvements in Multitasking Performance.

    PubMed

    Verghese, Ashika; Garner, K G; Mattingley, Jason B; Dux, Paul E

    2016-03-02

    The ability to perform multiple, concurrent tasks efficiently is a much-desired cognitive skill, but one that remains elusive due to the brain's inherent information-processing limitations. Multitasking performance can, however, be greatly improved through cognitive training (Van Selst et al., 1999, Dux et al., 2009). Previous studies have examined how patterns of brain activity change following training (for review, see Kelly and Garavan, 2005). Here, in a large-scale human behavioral and imaging study of 100 healthy adults, we tested whether multitasking training benefits, assessed using a standard dual-task paradigm, are associated with variability in brain structure. We found that the volume of the rostral part of the left dorsolateral prefrontal cortex (DLPFC) predicted an individual's response to training. Critically, this association was observed exclusively in a task-specific training group, and not in an active-training control group. Our findings reveal a link between DLPFC structure and an individual's propensity to gain from training on a task that taps the limits of cognitive control. Cognitive "brain" training is a rapidly growing, multibillion dollar industry (Hayden, 2012) that has been touted as the panacea for a variety of disorders that result in cognitive decline. A key process targeted by such training is "cognitive control." Here, we combined an established cognitive control measure, multitasking ability, with structural brain imaging in a sample of 100 participants. Our goal was to determine whether individual differences in brain structure predict the extent to which people derive measurable benefits from a cognitive training regime. Ours is the first study to identify a structural brain marker-volume of left hemisphere dorsolateral prefrontal cortex-associated with the magnitude of multitasking performance benefits induced by training at an individual level. Copyright © 2016 the authors 0270-6474/16/362638-08$15.00/0.

  1. Better diet quality relates to larger brain tissue volumes: The Rotterdam Study.

    PubMed

    Croll, Pauline H; Voortman, Trudy; Ikram, M Arfan; Franco, Oscar H; Schoufour, Josje D; Bos, Daniel; Vernooij, Meike W

    2018-05-16

    To investigate the relation of diet quality with structural brain tissue volumes and focal vascular lesions in a dementia-free population. From the population-based Rotterdam Study, 4,447 participants underwent dietary assessment and brain MRI scanning between 2005 and 2015. We excluded participants with an implausible energy intake, prevalent dementia, or cortical infarcts, leaving 4,213 participants for the current analysis. A diet quality score (0-14) was calculated reflecting adherence to Dutch dietary guidelines. Brain MRI was performed to obtain information on brain tissue volumes, white matter lesion volume, lacunes, and cerebral microbleeds. The associations of diet quality score and separate food groups with brain structures were assessed using multivariable linear and logistic regression. We found that better diet quality related to larger brain volume, gray matter volume, white matter volume, and hippocampal volume. Diet quality was not associated with white matter lesion volume, lacunes, or microbleeds. High intake of vegetables, fruit, whole grains, nuts, dairy, and fish and low intake of sugar-containing beverages were associated with larger brain volumes. A better diet quality is associated with larger brain tissue volumes. These results suggest that the effect of nutrition on neurodegeneration may act via brain structure. More research, in particular longitudinal research, is needed to unravel direct vs indirect effects between diet quality and brain health. © 2018 American Academy of Neurology.

  2. Brain/MINDS: brain-mapping project in Japan

    PubMed Central

    Okano, Hideyuki; Miyawaki, Atsushi; Kasai, Kiyoto

    2015-01-01

    There is an emerging interest in brain-mapping projects in countries across the world, including the USA, Europe, Australia and China. In 2014, Japan started a brain-mapping project called Brain Mapping by Integrated Neurotechnologies for Disease Studies (Brain/MINDS). Brain/MINDS aims to map the structure and function of neuronal circuits to ultimately understand the vast complexity of the human brain, and takes advantage of a unique non-human primate animal model, the common marmoset (Callithrix jacchus). In Brain/MINDS, the RIKEN Brain Science Institute acts as a central institute. The objectives of Brain/MINDS can be categorized into the following three major subject areas: (i) structure and functional mapping of a non-human primate brain (the marmoset brain); (ii) development of innovative neurotechnologies for brain mapping; and (iii) human brain mapping; and clinical research. Brain/MINDS researchers are highly motivated to identify the neuronal circuits responsible for the phenotype of neurological and psychiatric disorders, and to understand the development of these devastating disorders through the integration of these three subject areas. PMID:25823872

  3. STRUCTURAL AND CONNECTOMIC NEUROIMAGING FOR THE PERSONALIZED STUDY OF LONGITUDINAL ALTERATIONS IN CORTICAL SHAPE, THICKNESS AND CONNECTIVITY AFTER TRAUMATIC BRAIN INJURY

    PubMed Central

    Irimia, A.; Goh, S.-Y. M.; Torgerson, C. M.; Vespa, P. M.; Van Horn, J. D.

    2014-01-01

    The integration of longitudinal brain structure analysis with neurointensive care strategies continues to be a substantial difficulty facing the traumatic brain injury (TBI) research community. For patient-tailored case analysis, it remains challenging to establish how lesion profile modulates longitudinal changes in cortical structure and connectivity, as well as how these changes lead to behavioral, cognitive and neural dysfunction. Additionally, despite the clinical potential of morphometric and connectomic studies, few analytic tools are available for their study in TBI. Here we review the state of the art in structural and connectomic neuroimaging for the study of TBI and illustrate a set of recently-developed, patient-tailored approaches for the study of TBI-related brain atrophy and alterations in morphometry as well as inter-regional connectivity. The ability of such techniques to quantify how injury modulates longitudinal changes in cortical shape, structure and circuitry is highlighted. Quantitative approaches such as these can be used to assess and monitor the clinical condition and evolution of TBI victims, and can have substantial translational impact, especially when used in conjunction with measures of neuropsychological function. PMID:24844173

  4. Brain Structure Abnormalities in Adolescent Girls with Conduct Disorder

    ERIC Educational Resources Information Center

    Fairchild, Graeme; Hagan, Cindy C.; Walsh, Nicholas D.; Passamonti, Luca; Calder, Andrew J.; Goodyer, Ian M.

    2013-01-01

    Background: Conduct disorder (CD) in female adolescents is associated with a range of negative outcomes, including teenage pregnancy and antisocial personality disorder. Although recent studies have documented changes in brain structure and function in male adolescents with CD, there have been no neuroimaging studies of female adolescents with CD.…

  5. Hominoid visual brain structure volumes and the position of the lunate sulcus.

    PubMed

    de Sousa, Alexandra A; Sherwood, Chet C; Mohlberg, Hartmut; Amunts, Katrin; Schleicher, Axel; MacLeod, Carol E; Hof, Patrick R; Frahm, Heiko; Zilles, Karl

    2010-04-01

    It has been argued that changes in the relative sizes of visual system structures predated an increase in brain size and provide evidence of brain reorganization in hominins. However, data about the volume and anatomical limits of visual brain structures in the extant taxa phylogenetically closest to humans-the apes-remain scarce, thus complicating tests of hypotheses about evolutionary changes. Here, we analyze new volumetric data for the primary visual cortex and the lateral geniculate nucleus to determine whether or not the human brain departs from allometrically-expected patterns of brain organization. Primary visual cortex volumes were compared to lunate sulcus position in apes to investigate whether or not inferences about brain reorganization made from fossil hominin endocasts are reliable in this context. In contrast to previous studies, in which all species were relatively poorly sampled, the current study attempted to evaluate the degree of intraspecific variability by including numerous hominoid individuals (particularly Pan troglodytes and Homo sapiens). In addition, we present and compare volumetric data from three new hominoid species-Pan paniscus, Pongo pygmaeus, and Symphalangus syndactylus. These new data demonstrate that hominoid visual brain structure volumes vary more than previously appreciated. In addition, humans have relatively reduced primary visual cortex and lateral geniculate nucleus volumes as compared to allometric predictions from other hominoids. These results suggest that inferences about the position of the lunate sulcus on fossil endocasts may provide information about brain organization. Copyright 2010 Elsevier Ltd. All rights reserved.

  6. Parameters of glucose metabolism and the aging brain: a magnetization transfer imaging study of brain macro- and micro-structure in older adults without diabetes.

    PubMed

    Akintola, Abimbola A; van den Berg, Annette; Altmann-Schneider, Irmhild; Jansen, Steffy W; van Buchem, Mark A; Slagboom, P Eline; Westendorp, Rudi G; van Heemst, Diana; van der Grond, Jeroen

    2015-08-01

    Given the concurrent, escalating epidemic of diabetes mellitus and neurodegenerative diseases, two age-related disorders, we aimed to understand the relation between parameters of glucose metabolism and indices of pathology in the aging brain. From the Leiden Longevity Study, 132 participants (mean age 66 years) underwent a 2-h oral glucose tolerance test to assess glucose tolerance (fasted and area under the curve (AUC) glucose), insulin sensitivity (fasted and AUC insulin and homeostatic model assessment of insulin sensitivity (HOMA-IS)) and insulin secretion (insulinogenic index). 3-T brain MRI was used to detect macro-structural damage (atrophy, white matter hyper-intensities, infarcts and/or micro-bleeds) and magnetization transfer imaging (MTI) to detect loss of micro-structural homogeneity that remains otherwise invisible on conventional MRI. Macro-structurally, higher fasted glucose was significantly associated with white matter atrophy (P = 0.028). Micro-structurally, decreased magnetization transfer ratio (MTR) peak height in gray matter was associated with higher fasted insulin (P = 0.010), AUCinsulin (P = 0.001), insulinogenic index (P = 0.008) and lower HOMA-IS index (P < 0.001). Similar significant associations were found for white matter. Thus, while higher glucose was associated with macro-structural damage, impaired insulin action was associated more strongly with reduced micro-structural brain parenchymal homogeneity. These findings offer some insight into the association between different parameters of glucose metabolism (impairment of which is characteristic of diabetes mellitus) and brain aging.

  7. Connectivity and functional profiling of abnormal brain structures in pedophilia

    PubMed Central

    Poeppl, Timm B.; Eickhoff, Simon B.; Fox, Peter T.; Laird, Angela R.; Rupprecht, Rainer; Langguth, Berthold; Bzdok, Danilo

    2015-01-01

    Despite its 0.5–1% lifetime prevalence in men and its general societal relevance, neuroimaging investigations in pedophilia are scarce. Preliminary findings indicate abnormal brain structure and function. However, no study has yet linked structural alterations in pedophiles to both connectional and functional properties of the aberrant hotspots. The relationship between morphological alterations and brain function in pedophilia as well as their contribution to its psychopathology thus remain unclear. First, we assessed bimodal connectivity of structurally altered candidate regions using meta-analytic connectivity modeling (MACM) and resting-state correlations employing openly accessible data. We compared the ensuing connectivity maps to the activation likelihood estimation (ALE) maps of a recent quantitative meta-analysis of brain activity during processing of sexual stimuli. Second, we functionally characterized the structurally altered regions employing meta-data of a large-scale neuroimaging database. Candidate regions were functionally connected to key areas for processing of sexual stimuli. Moreover, we found that the functional role of structurally altered brain regions in pedophilia relates to nonsexual emotional as well as neurocognitive and executive functions, previously reported to be impaired in pedophiles. Our results suggest that structural brain alterations affect neural networks for sexual processing by way of disrupted functional connectivity, which may entail abnormal sexual arousal patterns. The findings moreover indicate that structural alterations account for common affective and neurocognitive impairments in pedophilia. The present multi-modal integration of brain structure and function analyses links sexual and nonsexual psychopathology in pedophilia. PMID:25733379

  8. Connectivity and functional profiling of abnormal brain structures in pedophilia.

    PubMed

    Poeppl, Timm B; Eickhoff, Simon B; Fox, Peter T; Laird, Angela R; Rupprecht, Rainer; Langguth, Berthold; Bzdok, Danilo

    2015-06-01

    Despite its 0.5-1% lifetime prevalence in men and its general societal relevance, neuroimaging investigations in pedophilia are scarce. Preliminary findings indicate abnormal brain structure and function. However, no study has yet linked structural alterations in pedophiles to both connectional and functional properties of the aberrant hotspots. The relationship between morphological alterations and brain function in pedophilia as well as their contribution to its psychopathology thus remain unclear. First, we assessed bimodal connectivity of structurally altered candidate regions using meta-analytic connectivity modeling (MACM) and resting-state correlations employing openly accessible data. We compared the ensuing connectivity maps to the activation likelihood estimation (ALE) maps of a recent quantitative meta-analysis of brain activity during processing of sexual stimuli. Second, we functionally characterized the structurally altered regions employing meta-data of a large-scale neuroimaging database. Candidate regions were functionally connected to key areas for processing of sexual stimuli. Moreover, we found that the functional role of structurally altered brain regions in pedophilia relates to nonsexual emotional as well as neurocognitive and executive functions, previously reported to be impaired in pedophiles. Our results suggest that structural brain alterations affect neural networks for sexual processing by way of disrupted functional connectivity, which may entail abnormal sexual arousal patterns. The findings moreover indicate that structural alterations account for common affective and neurocognitive impairments in pedophilia. The present multimodal integration of brain structure and function analyses links sexual and nonsexual psychopathology in pedophilia. © 2015 Wiley Periodicals, Inc.

  9. Highlighting the Structure-Function Relationship of the Brain with the Ising Model and Graph Theory

    PubMed Central

    Das, T. K.; Abeyasinghe, P. M.; Crone, J. S.; Sosnowski, A.; Laureys, S.; Owen, A. M.; Soddu, A.

    2014-01-01

    With the advent of neuroimaging techniques, it becomes feasible to explore the structure-function relationships in the brain. When the brain is not involved in any cognitive task or stimulated by any external output, it preserves important activities which follow well-defined spatial distribution patterns. Understanding the self-organization of the brain from its anatomical structure, it has been recently suggested to model the observed functional pattern from the structure of white matter fiber bundles. Different models which study synchronization (e.g., the Kuramoto model) or global dynamics (e.g., the Ising model) have shown success in capturing fundamental properties of the brain. In particular, these models can explain the competition between modularity and specialization and the need for integration in the brain. Graphing the functional and structural brain organization supports the model and can also highlight the strategy used to process and organize large amount of information traveling between the different modules. How the flow of information can be prevented or partially destroyed in pathological states, like in severe brain injured patients with disorders of consciousness or by pharmacological induction like in anaesthesia, will also help us to better understand how global or integrated behavior can emerge from local and modular interactions. PMID:25276772

  10. Head circumference and brain size in autism spectrum disorder: A systematic review and meta-analysis.

    PubMed

    Sacco, Roberto; Gabriele, Stefano; Persico, Antonio M

    2015-11-30

    Macrocephaly and brain overgrowth have been associated with autism spectrum disorder. We performed a systematic review and meta-analysis to provide an overall estimate of effect size and statistical significance for both head circumference and total brain volume in autism. Our literature search strategy identified 261 and 391 records, respectively; 27 studies defining percentages of macrocephalic patients and 44 structural brain imaging studies providing total brain volumes for patients and controls were included in our meta-analyses. Head circumference was significantly larger in autistic compared to control individuals, with 822/5225 (15.7%) autistic individuals displaying macrocephaly. Structural brain imaging studies measuring brain volume estimated effect size. The effect size is higher in low functioning autistics compared to high functioning and ASD individuals. Brain overgrowth was recorded in 142/1558 (9.1%) autistic patients. Finally, we found a significant interaction between age and total brain volume, resulting in larger head circumference and brain size during early childhood. Our results provide conclusive effect sizes and prevalence rates for macrocephaly and brain overgrowth in autism, confirm the variation of abnormal brain growth with age, and support the inclusion of this endophenotype in multi-biomarker diagnostic panels for clinical use. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Dance and the brain: a review.

    PubMed

    Karpati, Falisha J; Giacosa, Chiara; Foster, Nicholas E V; Penhune, Virginia B; Hyde, Krista L

    2015-03-01

    Dance is a universal form of human expression that offers a rich source for scientific study. Dance provides a unique opportunity to investigate brain plasticity and its interaction with behavior. Several studies have investigated the behavioral correlates of dance, but less is known about the brain basis of dance. Studies on dance observation suggest that long- and short-term dance training affect brain activity in the action observation and simulation networks. Despite methodological challenges, the feasibility of conducting neuroimaging while dancing has been demonstrated, and several brain regions have been implicated in dance execution. Preliminary work from our laboratory suggests that long-term dance training changes both gray and white matter structure. This article provides a critical summary of work investigating the neural correlates of dance. It covers functional neuroimaging studies of dance observation and performance as well as structural neuroimaging studies of expert dancers. To stimulate ongoing dialogue between dance and science, future directions in dance and brain research as well as implications are discussed. Research on the neuroscience of dance will lead to a better understanding of brain-behavior relationships and brain plasticity in experts and nonexperts and can be applied to the development of dance-based therapy programs. © 2014 New York Academy of Sciences.

  12. Complex network analysis of resting-state fMRI of the brain.

    PubMed

    Anwar, Abdul Rauf; Hashmy, Muhammad Yousaf; Imran, Bilal; Riaz, Muhammad Hussnain; Mehdi, Sabtain Muhammad Muntazir; Muthalib, Makii; Perrey, Stephane; Deuschl, Gunther; Groppa, Sergiu; Muthuraman, Muthuraman

    2016-08-01

    Due to the fact that the brain activity hardly ever diminishes in healthy individuals, analysis of resting state functionality of the brain seems pertinent. Various resting state networks are active inside the idle brain at any time. Based on various neuro-imaging studies, it is understood that various structurally distant regions of the brain could be functionally connected. Regions of the brain, that are functionally connected, during rest constitutes to the resting state network. In the present study, we employed the complex network measures to estimate the presence of community structures within a network. Such estimate is named as modularity. Instead of using a traditional correlation matrix, we used a coherence matrix taken from the causality measure between different nodes. Our results show that in prolonged resting state the modularity starts to decrease. This decrease was observed in all the resting state networks and on both sides of the brain. Our study highlights the usage of coherence matrix instead of correlation matrix for complex network analysis.

  13. Neuroimaging studies of social cognition in schizophrenia.

    PubMed

    Fujiwara, Hironobu; Yassin, Walid; Murai, Toshiya

    2015-05-01

    Impaired social cognition is considered a core contributor to unfavorable psychosocial functioning in schizophrenia. Rather than being a unitary process, social cognition is a collection of multifaceted processes that recruit multiple brain structures, thus structural and functional neuroimaging techniques are ideal methodologies for revealing the underlying pathophysiology of impaired social cognition. Many neuroimaging studies have suggested that in addition to white-matter deficits, schizophrenia is associated with decreased gray-matter volume in multiple brain areas, especially fronto-temporal and limbic regions. However, few schizophrenia studies have examined associations between brain abnormalities and social cognitive disabilities. During the last decade, we have investigated structural brain abnormalities in schizophrenia using high-resolution magnetic resonance imaging, and our findings have been confirmed by us and others. By assessing different types of social cognitive abilities, structural abnormalities in multiple brain regions have been found to be associated with disabilities in social cognition, such as recognition of facial emotion, theory of mind, and empathy. These structural deficits have also been associated with alexithymia and quality of life in ways that are closely related to the social cognitive disabilities found in schizophrenia. Here, we overview a series of neuroimaging studies from our laboratory that exemplify current research into this topic, and discuss how it can be further tackled using recent advances in neuroimaging technology. © 2014 The Authors. Psychiatry and Clinical Neurosciences © 2014 Japanese Society of Psychiatry and Neurology.

  14. Normal variation in early parental sensitivity predicts child structural brain development.

    PubMed

    Kok, Rianne; Thijssen, Sandra; Bakermans-Kranenburg, Marian J; Jaddoe, Vincent W V; Verhulst, Frank C; White, Tonya; van IJzendoorn, Marinus H; Tiemeier, Henning

    2015-10-01

    Early caregiving can have an impact on brain structure and function in children. The influence of extreme caregiving experiences has been demonstrated, but studies on the influence of normal variation in parenting quality are scarce. Moreover, no studies to date have included the role of both maternal and paternal sensitivity in child brain maturation. This study examined the prospective relation between mothers' and fathers' sensitive caregiving in early childhood and brain structure later in childhood. Participants were enrolled in a population-based prenatal cohort. For 191 families, maternal and paternal sensitivity was repeatedly observed when the child was between 1 year and 4 years of age. Head circumference was assessed at 6 weeks, and brain structure was assessed using magnetic resonance imaging (MRI) measurements at 8 years of age. Higher levels of parental sensitivity in early childhood were associated with larger total brain volume (adjusted β = 0.15, p = .01) and gray matter volume (adjusted β = 0.16, p = .01) at 8 years, controlling for infant head size. Higher levels of maternal sensitivity in early childhood were associated with a larger gray matter volume (adjusted β = 0.13, p = .04) at 8 years, independent of infant head circumference. Associations with maternal versus paternal sensitivity were not significantly different. Normal variation in caregiving quality is related to markers of more optimal brain development in children. The results illustrate the important role of both mothers and fathers in child brain development. Copyright © 2015 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  15. Microstructure abnormalities in adolescents with internet addiction disorder.

    PubMed

    Yuan, Kai; Qin, Wei; Wang, Guihong; Zeng, Fang; Zhao, Liyan; Yang, Xuejuan; Liu, Peng; Liu, Jixin; Sun, Jinbo; von Deneen, Karen M; Gong, Qiyong; Liu, Yijun; Tian, Jie

    2011-01-01

    Recent studies suggest that internet addiction disorder (IAD) is associated with structural abnormalities in brain gray matter. However, few studies have investigated the effects of internet addiction on the microstructural integrity of major neuronal fiber pathways, and almost no studies have assessed the microstructural changes with the duration of internet addiction. We investigated the morphology of the brain in adolescents with IAD (N = 18) using an optimized voxel-based morphometry (VBM) technique, and studied the white matter fractional anisotropy (FA) changes using the diffusion tensor imaging (DTI) method, linking these brain structural measures to the duration of IAD. We provided evidences demonstrating the multiple structural changes of the brain in IAD subjects. VBM results indicated the decreased gray matter volume in the bilateral dorsolateral prefrontal cortex (DLPFC), the supplementary motor area (SMA), the orbitofrontal cortex (OFC), the cerebellum and the left rostral ACC (rACC). DTI analysis revealed the enhanced FA value of the left posterior limb of the internal capsule (PLIC) and reduced FA value in the white matter within the right parahippocampal gyrus (PHG). Gray matter volumes of the DLPFC, rACC, SMA, and white matter FA changes of the PLIC were significantly correlated with the duration of internet addiction in the adolescents with IAD. Our results suggested that long-term internet addiction would result in brain structural alterations, which probably contributed to chronic dysfunction in subjects with IAD. The current study may shed further light on the potential brain effects of IAD.

  16. Computational genetic neuroanatomy of the developing mouse brain: dimensionality reduction, visualization, and clustering.

    PubMed

    Ji, Shuiwang

    2013-07-11

    The structured organization of cells in the brain plays a key role in its functional efficiency. This delicate organization is the consequence of unique molecular identity of each cell gradually established by precise spatiotemporal gene expression control during development. Currently, studies on the molecular-structural association are beginning to reveal how the spatiotemporal gene expression patterns are related to cellular differentiation and structural development. In this article, we aim at a global, data-driven study of the relationship between gene expressions and neuroanatomy in the developing mouse brain. To enable visual explorations of the high-dimensional data, we map the in situ hybridization gene expression data to a two-dimensional space by preserving both the global and the local structures. Our results show that the developing brain anatomy is largely preserved in the reduced gene expression space. To provide a quantitative analysis, we cluster the reduced data into groups and measure the consistency with neuroanatomy at multiple levels. Our results show that the clusters in the low-dimensional space are more consistent with neuroanatomy than those in the original space. Gene expression patterns and developing brain anatomy are closely related. Dimensionality reduction and visual exploration facilitate the study of this relationship.

  17. Effects of Soccer Heading on Brain Structure and Function

    PubMed Central

    Rodrigues, Ana Carolina; Lasmar, Rodrigo Pace; Caramelli, Paulo

    2016-01-01

    Soccer is the most popular sport in the world, with more than 265 million players worldwide, including professional and amateur ones. Soccer is unique in comparison to other sports, as it is the only sport in which participants purposely use their head to hit the ball. Heading is considered as an offensive or defensive move whereby the player’s unprotected head is used to deliberately impact the ball and direct it during play. A soccer player can be subjected to an average of 6–12 incidents of heading the ball per competitive game, where the ball reaches high velocities. Moreover, in practice sessions, heading training, which involves heading the ball repeatedly at low velocities, is common. Although the scientific community, as well as the media, has focused on the effects of concussions in contact sports, the role of subconcussive impacts, as it can occur during heading, has recently gained attention, considering that it may represent an additional mechanism of cumulative brain injury. The purpose of this study is to review the existing literature regarding the effects of soccer heading on brain structure and function. Only in the last years, some investigations have addressed the impact of heading on brain structure, by using neuroimaging techniques. Similarly, there have been some recent studies investigating biochemical markers of brain injury in soccer players. There is evidence of association between heading and abnormal brain structure, but the data are still preliminary. Also, some studies have suggested that subconcussive head impacts, as heading, could cause cognitive impairment, whereas others have not corroborated this finding. Questions persist as to whether or not heading is deleterious to cognitive functioning. Further studies, especially with longitudinal designs, are needed to clarify the clinical significance of heading as a cause of brain injury and to identify risk factors. Such investigations might contribute to the establishment of safety guidelines that could help to minimize the risk of possible adverse effects of soccer on brain structure and function. PMID:27047444

  18. Understanding the evolution of Mammalian brain structures; the need for a (new) cerebrotype approach.

    PubMed

    Willemet, Romain

    2012-05-18

    The mammalian brain varies in size by a factor of 100,000 and is composed of anatomically and functionally distinct structures. Theoretically, the manner in which brain composition can evolve is limited, ranging from highly modular ("mosaic evolution") to coordinated changes in brain structure size ("concerted evolution") or anything between these two extremes. There is a debate about the relative importance of these distinct evolutionary trends. It is shown here that the presence of taxa-specific allometric relationships between brain structures makes a taxa-specific approach obligatory. In some taxa, the evolution of the size of brain structures follows a unique, coordinated pattern, which, in addition to other characteristics at different anatomical levels, defines what has been called here a "taxon cerebrotype". In other taxa, no clear pattern is found, reflecting heterogeneity of the species' lifestyles. These results suggest that the evolution of brain size and composition depends on the complex interplay between selection pressures and constraints that have changed constantly during mammalian evolution. Therefore the variability in brain composition between species should not be considered as deviations from the normal, concerted mammalian trend, but in taxa and species-specific versions of the mammalian brain. Because it forms homogenous groups of species within this complex "space" of constraints and selection pressures, the cerebrotype approach developed here could constitute an adequate level of analysis for evo-devo studies, and by extension, for a wide range of disciplines related to brain evolution.

  19. Understanding the Evolution of Mammalian Brain Structures; the Need for a (New) Cerebrotype Approach

    PubMed Central

    Willemet, Romain

    2012-01-01

    The mammalian brain varies in size by a factor of 100,000 and is composed of anatomically and functionally distinct structures. Theoretically, the manner in which brain composition can evolve is limited, ranging from highly modular (“mosaic evolution”) to coordinated changes in brain structure size (“concerted evolution”) or anything between these two extremes. There is a debate about the relative importance of these distinct evolutionary trends. It is shown here that the presence of taxa-specific allometric relationships between brain structures makes a taxa-specific approach obligatory. In some taxa, the evolution of the size of brain structures follows a unique, coordinated pattern, which, in addition to other characteristics at different anatomical levels, defines what has been called here a “taxon cerebrotype”. In other taxa, no clear pattern is found, reflecting heterogeneity of the species’ lifestyles. These results suggest that the evolution of brain size and composition depends on the complex interplay between selection pressures and constraints that have changed constantly during mammalian evolution. Therefore the variability in brain composition between species should not be considered as deviations from the normal, concerted mammalian trend, but in taxa and species-specific versions of the mammalian brain. Because it forms homogenous groups of species within this complex “space” of constraints and selection pressures, the cerebrotype approach developed here could constitute an adequate level of analysis for evo-devo studies, and by extension, for a wide range of disciplines related to brain evolution. PMID:24962772

  20. Neurocinema: A brief overview

    PubMed Central

    Naser Moghadasi, Abdorreza

    2015-01-01

    Cinema is a multidimensional art capable of affecting our neurophysiologic structure in different ways. Studies show that different parts of the brain are activated while watching a structured film and consequently, the movie imitates consciousness structure. This imitation of the consciousness structure enables cinema to deeply influence the brain. The effect and its manner are the main themes of the newly-emerged science of neurocinema. PMID:26622987

  1. Problematic internet use is associated with structural alterations in the brain reward system in females.

    PubMed

    Altbäcker, Anna; Plózer, Enikő; Darnai, Gergely; Perlaki, Gábor; Horváth, Réka; Orsi, Gergely; Nagy, Szilvia Anett; Bogner, Péter; Schwarcz, Attila; Kovács, Norbert; Komoly, Sámuel; Clemens, Zsófia; Janszky, József

    2016-12-01

    Neuroimaging findings suggest that excessive Internet use shows functional and structural brain changes similar to substance addiction. Even though it is still under debate whether there are gender differences in case of problematic use, previous studies by-passed this question by focusing on males only or by using gender matched approach without controlling for potential gender effects. We designed our study to find out whether there are structural correlates in the brain reward system of problematic Internet use in habitual Internet user females. T1-weighted Magnetic Resonance (MR) images were collected in 82 healthy habitual Internet user females. Structural brain measures were investigated using both automated MR volumetry and voxel based morphometry (VBM). Self-reported measures of problematic Internet use and hours spent online were also assessed. According to MR volumetry, problematic Internet use was associated with increased grey matter volume of bilateral putamen and right nucleus accumbens while decreased grey matter volume of orbitofrontal cortex (OFC). Similarly, VBM analysis revealed a significant negative association between the absolute amount of grey matter OFC and problematic Internet use. Our findings suggest structural brain alterations in the reward system usually related to addictions are present in problematic Internet use.

  2. Functional MRI Preprocessing in Lesioned Brains: Manual Versus Automated Region of Interest Analysis

    PubMed Central

    Garrison, Kathleen A.; Rogalsky, Corianne; Sheng, Tong; Liu, Brent; Damasio, Hanna; Winstein, Carolee J.; Aziz-Zadeh, Lisa S.

    2015-01-01

    Functional magnetic resonance imaging (fMRI) has significant potential in the study and treatment of neurological disorders and stroke. Region of interest (ROI) analysis in such studies allows for testing of strong a priori clinical hypotheses with improved statistical power. A commonly used automated approach to ROI analysis is to spatially normalize each participant’s structural brain image to a template brain image and define ROIs using an atlas. However, in studies of individuals with structural brain lesions, such as stroke, the gold standard approach may be to manually hand-draw ROIs on each participant’s non-normalized structural brain image. Automated approaches to ROI analysis are faster and more standardized, yet are susceptible to preprocessing error (e.g., normalization error) that can be greater in lesioned brains. The manual approach to ROI analysis has high demand for time and expertise, but may provide a more accurate estimate of brain response. In this study, commonly used automated and manual approaches to ROI analysis were directly compared by reanalyzing data from a previously published hypothesis-driven cognitive fMRI study, involving individuals with stroke. The ROI evaluated is the pars opercularis of the inferior frontal gyrus. Significant differences were identified in task-related effect size and percent-activated voxels in this ROI between the automated and manual approaches to ROI analysis. Task interactions, however, were consistent across ROI analysis approaches. These findings support the use of automated approaches to ROI analysis in studies of lesioned brains, provided they employ a task interaction design. PMID:26441816

  3. Trajectories of Early Brain Volume Development in Fragile X and Autism RH: Trajectory of Brain Volume in Fragile X

    PubMed Central

    Hazlett, Heather Cody; Poe, Michele D.; Lightbody, Amy A.; Styner, Martin; MacFall, James R.; Reiss, Allan L.; Piven, Joseph

    2012-01-01

    Objective To examine patterns of early brain growth in young children with fragile X syndrome (FXS) compared to a comparison group (controls) and a group with idiopathic autism. Method The study included 53 boys between 18–42 months of age with FXS, 68 boys with idiopathic autism (ASD), and a comparison group of 50 typically-developing and developmentally-delayed controls. We examined structural brain volumes using magnetic resonance imaging (MRI) across two timepoints between ages 2–3 and 4–5 years and examined total brain volumes and regional (lobar) tissue volumes. Additionally, we studied a selected group of subcortical structures implicated in the behavioral features of FXS (e.g., basal ganglia, hippocampus, amygdala). Results Children with FXS had greater global brain volumes compared to controls, but were not different than children with idiopathic autism, and the rate of brain growth between ages 2 and 5 paralleled that seen in controls. In contrast to the children with idiopathic autism who had generalized cortical lobe enlargement, the children with FXS showed a specific enlargement in temporal lobe white matter, cerebellar gray matter, and caudate nucleus, but significantly smaller amygdala. Conclusions This structural longitudinal MRI study of preschoolers with FXS observed generalized brain overgrowth in FXS compared to controls, evident at age 2 and maintained across ages 4–5. We also find different patterns of brain growth that distinguishes boys with FXS from children with idiopathic autism. PMID:22917205

  4. [The brain in stereotaxic coordinates (a textbook for colleges)].

    PubMed

    Budantsev, A Iu; Kisliuk, O S; Shul'govskiĭ, V V; Rykunov, D S; Iarkov, A V

    1993-01-01

    The present textbook is directed forward students of universities and medical colleges, young scientists and practicing doctors dealing with stereotaxic method. The Paxinos and Watson stereotaxic rat brain atlas (1982) is the basis of the textbook. The atlas has been transformed into computer educational program and seven laboratory works: insertion of the electrode into brain, microelectrophoresis, microinjection of drugs into brain, electrolytic destruction in the brain structures, local brain superfusion. The laboratory works are compiled so that they allow not only to study practical use of the stereotaxic method but to model simple problems involving stereotaxic surgery in the deep structures of brain. The textbook is intended for carrying by IBM PC/AT computers. The volume of the textbook is 1.7 Mbytes.

  5. Robust estimation of fractal measures for characterizing the structural complexity of the human brain: optimization and reproducibility

    PubMed Central

    Goñi, Joaquín; Sporns, Olaf; Cheng, Hu; Aznárez-Sanado, Maite; Wang, Yang; Josa, Santiago; Arrondo, Gonzalo; Mathews, Vincent P; Hummer, Tom A; Kronenberger, William G; Avena-Koenigsberger, Andrea; Saykin, Andrew J.; Pastor, María A.

    2013-01-01

    High-resolution isotropic three-dimensional reconstructions of human brain gray and white matter structures can be characterized to quantify aspects of their shape, volume and topological complexity. In particular, methods based on fractal analysis have been applied in neuroimaging studies to quantify the structural complexity of the brain in both healthy and impaired conditions. The usefulness of such measures for characterizing individual differences in brain structure critically depends on their within-subject reproducibility in order to allow the robust detection of between-subject differences. This study analyzes key analytic parameters of three fractal-based methods that rely on the box-counting algorithm with the aim to maximize within-subject reproducibility of the fractal characterizations of different brain objects, including the pial surface, the cortical ribbon volume, the white matter volume and the grey matter/white matter boundary. Two separate datasets originating from different imaging centers were analyzed, comprising, 50 subjects with three and 24 subjects with four successive scanning sessions per subject, respectively. The reproducibility of fractal measures was statistically assessed by computing their intra-class correlations. Results reveal differences between different fractal estimators and allow the identification of several parameters that are critical for high reproducibility. Highest reproducibility with intra-class correlations in the range of 0.9–0.95 is achieved with the correlation dimension. Further analyses of the fractal dimensions of parcellated cortical and subcortical gray matter regions suggest robustly estimated and region-specific patterns of individual variability. These results are valuable for defining appropriate parameter configurations when studying changes in fractal descriptors of human brain structure, for instance in studies of neurological diseases that do not allow repeated measurements or for disease-course longitudinal studies. PMID:23831414

  6. Genetic and environmental influences on structural variability of the brain in pediatric twin: deformation based morphometry.

    PubMed

    Yoon, Uicheul; Perusse, Daniel; Lee, Jong-Min; Evans, Alan C

    2011-04-08

    Twin studies are one of the most powerful study designs for estimating the relative contribution of genetic and environmental influences on phenotypic variation inhuman brain morphology. In this study, we applied deformation based morphometry, a technique that provides a voxel-wise index of local tissue growth or atrophy relative to a template brain, combined with univariate ACE model, to investigate the genetic and environmental effects on the human brain structural variations in a cohort of homogeneously aged healthy pediatric twins. In addition, anatomical regions of interest (ROIs) were defined in order to explore global and regional genetic effects. ROI results showed that the influence of genetic factors on cerebrum (h(2)=0.70), total gray matter (0.67), and total white matter (0.73) volumes were significant. In particular, structural variability of left-side lobar volumes showed a significant heritability. Several subcortical structures such as putamen (h(ROI)(2)=0.79/0.77(L/R),h(MAX)(2)=0.82/0.79) and globus pallidus (0.81/0.76, 0.88/0.82) were also significantly heritable in both voxel-wise and ROI-based results. In the voxel-wise results, lateral parts of right cerebellum (c(2)=0.68) and the posterior portion of the corpus callosum (0.63) were rather environmentally determined, but it failed to reach statistical significance. Pediatric twin studies are important because they can discriminate several influences on developmental brain trajectories and identify relationships between gene and behavior. Several brain structures showed significant genetic effects and might therefore serve as biological markers for inherited traits, or as targets for genetic linkage and association studies. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  7. Validity of semi-quantitative scale for brain MRI in unilateral cerebral palsy due to periventricular white matter lesions: Relationship with hand sensorimotor function and structural connectivity

    PubMed Central

    Fiori, Simona; Guzzetta, Andrea; Pannek, Kerstin; Ware, Robert S.; Rossi, Giuseppe; Klingels, Katrijn; Feys, Hilde; Coulthard, Alan; Cioni, Giovanni; Rose, Stephen; Boyd, Roslyn N.

    2015-01-01

    Aim To provide first evidence of construct validity of a semi-quantitative scale for brain structural MRI (sqMRI scale) in children with unilateral cerebral palsy (UCP) secondary to periventricular white matter (PWM) lesions, by examining the relationship with hand sensorimotor function and whole brain structural connectivity. Methods Cross-sectional study of 50 children with UCP due to PWM lesions using 3 T (MRI), diffusion MRI and assessment of hand sensorimotor function. We explored the relationship of lobar, hemispheric and global scores on the sqMRI scale, with fractional anisotropy (FA), as a measure of brain white matter microstructure, and with hand sensorimotor measures (Assisting Hand Assessment, AHA; Jebsen–Taylor Test for Hand Function, JTTHF; Melbourne Assessment of Unilateral Upper Limb Function, MUUL; stereognosis; 2-point discrimination). Results Lobar and hemispheric scores on the sqMRI scale contralateral to the clinical side of hemiplegia correlated with sensorimotor paretic hand function measures and FA of a number of brain structural connections, including connections of brain areas involved in motor control (postcentral, precentral and paracentral gyri in the parietal lobe). More severe lesions correlated with lower sensorimotor performance, with the posterior limb of internal capsule score being the strongest contributor to impaired hand function. Conclusion The sqMRI scale demonstrates first evidence of construct validity against impaired motor and sensory function measures and brain structural connectivity in a cohort of children with UCP due to PWM lesions. More severe lesions correlated with poorer paretic hand sensorimotor function and impaired structural connectivity in the hemisphere contralateral to the clinical side of hemiplegia. The quantitative structural MRI scoring may be a useful clinical tool for studying brain structure–function relationships but requires further validation in other populations of CP. PMID:26106533

  8. Expansion of brain T cells in homeostatic conditions in lymphopenic Rag2(-/-) mice.

    PubMed

    Song, Chang; Nicholson, James D; Clark, Sarah M; Li, Xin; Keegan, Achsah D; Tonelli, Leonardo H

    2016-10-01

    The concept of the brain as an immune privileged organ is rapidly evolving in light of new findings outlining the sophisticated relationship between the central nervous and the immune systems. The role of T cells in brain development and function, as well as modulation of behavior has been demonstrated by an increasing number of studies. Moreover, recent studies have redefined the existence of a brain lymphatic system and the presence of T cells in specific brain structures, such as the meninges and choroid plexus. Nevertheless, much information is needed to further the understanding of brain T cells and their relationship with the central nervous system under non-inflammatory conditions. In the present study we employed the Rag2(-/-) mouse model of lymphocyte deficiency and reconstitution by adoptive transfer to study the temporal and anatomical expansion of T cells in the brain under homeostatic conditions. Lymphopenic Rag2(-/-) mice were reconstituted with 10 million lymphoid cells and studied at one, two and four weeks after transfer. Moreover, lymphoid cells and purified CD4(+) and CD8(+) T cells from transgenic GFP expressing mice were used to define the neuroanatomical localization of transferred cells. T cell numbers were very low in the brain of reconstituted mice up to one week after transfer and significantly increased by 2weeks, reaching wild type values at 4weeks after transfer. CD4(+) T cells were the most abundant lymphocyte subtype found in the brain followed by CD8(+) T cells and lastly B cells. Furthermore, proliferation studies showed that CD4(+) T cells expand more rapidly than CD8(+) T cells. Lymphoid cells localize abundantly in meningeal structures, choroid plexus, and circumventricular organs. Lymphocytes were also found in vascular and perivascular spaces and in the brain parenchyma across several regions of the brain, in particular in structures rich in white matter content. These results provide proof of concept that the brain meningeal system, as well as vascular and perivascular spaces, are homing sites of lymphocytes and suggest the possibility of a brain specific T cell subtype. Published by Elsevier Inc.

  9. [Study on Abnormal Topological Properties of Structural Brain Networks of Patients with Depression Comorbid with Anxiety].

    PubMed

    Wu, Xiuyong; Wu, Xiaoming; Peng, Hongjun; Ning, Yuping; Wu, Kai

    2016-06-01

    This paper is aimed to analyze the topological properties of structural brain networks in depressive patients with and without anxiety and to explore the neuropath logical mechanisms of depression comorbid with anxiety.Diffusion tensor imaging and deterministic tractography were applied to map the white matter structural networks.We collected 20 depressive patients with anxiety(DPA),18 depressive patients without anxiety(DP),and 28 normal controls(NC)as comparative groups.The global and nodal properties of the structural brain networks in the three groups were analyzed with graph theoretical methods.The result showed that1 the structural brain networks in three groups showed small-world properties and highly connected global hubs predominately from association cortices;2DP group showed lower local efficiency and global efficiency compared to NC group,whereas DPA group showed higher local efficiency and global efficiency compared to NC group;3significant differences of network properties(clustering coefficient,characteristic path lengths,local efficiency,global efficiency)were found between DPA and DP groups;4DP group showed significant changes of nodal efficiency in the brain areas primarily in the temporal lobe and bilateral frontal gyrus,compared to DPA and NC groups.The analysis indicated that the DP and DPA groups showed nodal properties of the structural brain networks,compared to NC group.Moreover,the two diseased groups indicated an opposite trend in the network properties.The results of this study may provide a new imaging index for clinical diagnosis for depression comorbid with anxiety.

  10. Brain structure correlates of component reading processes: implications for reading disability.

    PubMed

    Phinney, Erin; Pennington, Bruce F; Olson, Richard; Filley, Christopher M; Filipek, Pauline A

    2007-08-01

    Brain structures implicated in developmental dyslexia (reading disability - RD) vary greatly across structural magnetic resonance imaging (MRI) studies due to methodological differences regarding the definition of RD and the exact measurements of a specific brain structure. The current study attempts to resolve some of those methodological concerns by examining brain volume as it relates to components of proposed RD subtypes. We performed individual regression analyses on total cerebral volume, neocortical volume, subcortical volume, 9 neo-cortical structures and 2 sub-cortical structures. These analyses used three dimensions of reading, phonemic ability (PA), orthographic ability, and rapid naming (RN) ability, while accounting for total cerebral volume, age, and performance IQ (PIQ). Primary analyses included membership to a group (poor reader vs. good reader) in the analysis. The result was a significant interaction between PA and reading ability as it predicts total cerebral volume. Analyses revealed that poor readers lacked a relationship between PA and brain size, but that good readers had a significant positive relationship. This pattern of interaction was not present for the other two reading component factors. These findings bring into question the general belief that individuals with RD are at the low end of a reading ability distribution and do not have a unique disorder. Additional analyses revealed only a few significant relationships between brain size and task performance, most notably a positive correlation between orthographic ability and the angular gyrus (AG), as well as a negative correlation between RN ability and the parietal operculum (PO).

  11. A comprehensive visual rating scale of brain magnetic resonance imaging: application in elderly subjects with Alzheimer's disease, mild cognitive impairment, and normal cognition.

    PubMed

    Jang, Jae-Won; Park, So Young; Park, Young Ho; Baek, Min Jae; Lim, Jae-Sung; Youn, Young Chul; Kim, SangYun

    2015-01-01

    Brain magnetic resonance imaging (MRI) shows cerebral structural changes. However, a unified comprehensive visual rating scale (CVRS) has seldom been studied. Thus, we combined brain atrophy and small vessel disease scales and used an MRI template as a CVRS. The aims of this study were to design a simple and reliable CVRS, validate it by investigating cerebral structural changes in clinical groups, and made comparison to the volumetric measurements. Elderly subjects (n = 260) with normal cognition (NC, n = 65), mild cognitive impairment (MCI, n = 101), or Alzheimer's disease (AD, n = 94) were evaluated with brain MRI according to the CVRS of brain atrophy and small vessel disease. Validation of the CVRS with structural changes, neuropsychological tests, and volumetric analyses was performed. The CVRS revealed a high intra-rater and inter-rater agreement and it reflected the structural changes of subjects with NC, MCI, and AD better than volumetric measures (CVRS-coronal: F = 13.5, p < 0.001; CVRS-axial: F = 19.9, p < 0.001). The area under the receiver operation curve (aROC) of the CVRS showed higher accuracy than volumetric analyses. (NC versus MCI aROC: CVRS-coronal, 0.777; CVRS-axial, 0.773; MCI versus AD aROC: CVRS-coronal, 0.680; CVRS-axial, 0.681). The CVRS can be used clinically to conveniently measure structural changes of brain. It reflected cerebral structural changes of clinical groups and correlated with the age better than volumetric measures.

  12. Genetic influences on individual differences in longitudinal changes in global and subcortical brain volumes: Results of the ENIGMA plasticity working group.

    PubMed

    Brouwer, Rachel M; Panizzon, Matthew S; Glahn, David C; Hibar, Derrek P; Hua, Xue; Jahanshad, Neda; Abramovic, Lucija; de Zubicaray, Greig I; Franz, Carol E; Hansell, Narelle K; Hickie, Ian B; Koenis, Marinka M G; Martin, Nicholas G; Mather, Karen A; McMahon, Katie L; Schnack, Hugo G; Strike, Lachlan T; Swagerman, Suzanne C; Thalamuthu, Anbupalam; Wen, Wei; Gilmore, John H; Gogtay, Nitin; Kahn, René S; Sachdev, Perminder S; Wright, Margaret J; Boomsma, Dorret I; Kremen, William S; Thompson, Paul M; Hulshoff Pol, Hilleke E

    2017-09-01

    Structural brain changes that occur during development and ageing are related to mental health and general cognitive functioning. Individuals differ in the extent to which their brain volumes change over time, but whether these differences can be attributed to differences in their genotypes has not been widely studied. Here we estimate heritability (h 2 ) of changes in global and subcortical brain volumes in five longitudinal twin cohorts from across the world and in different stages of the lifespan (N = 861). Heritability estimates of brain changes were significant and ranged from 16% (caudate) to 42% (cerebellar gray matter) for all global and most subcortical volumes (with the exception of thalamus and pallidum). Heritability estimates of change rates were generally higher in adults than in children suggesting an increasing influence of genetic factors explaining individual differences in brain structural changes with age. In children, environmental influences in part explained individual differences in developmental changes in brain structure. Multivariate genetic modeling showed that genetic influences of change rates and baseline volume significantly overlapped for many structures. The genetic influences explaining individual differences in the change rate for cerebellum, cerebellar gray matter and lateral ventricles were independent of the genetic influences explaining differences in their baseline volumes. These results imply the existence of genetic variants that are specific for brain plasticity, rather than brain volume itself. Identifying these genes may increase our understanding of brain development and ageing and possibly have implications for diseases that are characterized by deviant developmental trajectories of brain structure. Hum Brain Mapp 38:4444-4458, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. Fetal brain extracellular matrix boosts neuronal network formation in 3D bioengineered model of cortical brain tissue.

    PubMed

    Sood, Disha; Chwalek, Karolina; Stuntz, Emily; Pouli, Dimitra; Du, Chuang; Tang-Schomer, Min; Georgakoudi, Irene; Black, Lauren D; Kaplan, David L

    2016-01-01

    The extracellular matrix (ECM) constituting up to 20% of the organ volume is a significant component of the brain due to its instructive role in the compartmentalization of functional microdomains in every brain structure. The composition, quantity and structure of ECM changes dramatically during the development of an organism greatly contributing to the remarkably sophisticated architecture and function of the brain. Since fetal brain is highly plastic, we hypothesize that the fetal brain ECM may contain cues promoting neural growth and differentiation, highly desired in regenerative medicine. Thus, we studied the effect of brain-derived fetal and adult ECM complemented with matricellular proteins on cortical neurons using in vitro 3D bioengineered model of cortical brain tissue. The tested parameters included neuronal network density, cell viability, calcium signaling and electrophysiology. Both, adult and fetal brain ECM as well as matricellular proteins significantly improved neural network formation as compared to single component, collagen I matrix. Additionally, the brain ECM improved cell viability and lowered glutamate release. The fetal brain ECM induced superior neural network formation, calcium signaling and spontaneous spiking activity over adult brain ECM. This study highlights the difference in the neuroinductive properties of fetal and adult brain ECM and suggests that delineating the basis for this divergence may have implications for regenerative medicine.

  14. An Adaptive Complex Network Model for Brain Functional Networks

    PubMed Central

    Gomez Portillo, Ignacio J.; Gleiser, Pablo M.

    2009-01-01

    Brain functional networks are graph representations of activity in the brain, where the vertices represent anatomical regions and the edges their functional connectivity. These networks present a robust small world topological structure, characterized by highly integrated modules connected sparsely by long range links. Recent studies showed that other topological properties such as the degree distribution and the presence (or absence) of a hierarchical structure are not robust, and show different intriguing behaviors. In order to understand the basic ingredients necessary for the emergence of these complex network structures we present an adaptive complex network model for human brain functional networks. The microscopic units of the model are dynamical nodes that represent active regions of the brain, whose interaction gives rise to complex network structures. The links between the nodes are chosen following an adaptive algorithm that establishes connections between dynamical elements with similar internal states. We show that the model is able to describe topological characteristics of human brain networks obtained from functional magnetic resonance imaging studies. In particular, when the dynamical rules of the model allow for integrated processing over the entire network scale-free non-hierarchical networks with well defined communities emerge. On the other hand, when the dynamical rules restrict the information to a local neighborhood, communities cluster together into larger ones, giving rise to a hierarchical structure, with a truncated power law degree distribution. PMID:19738902

  15. Brain structural plasticity with spaceflight.

    PubMed

    Koppelmans, Vincent; Bloomberg, Jacob J; Mulavara, Ajitkumar P; Seidler, Rachael D

    2016-01-01

    Humans undergo extensive sensorimotor adaptation during spaceflight due to altered vestibular inputs and body unloading. No studies have yet evaluated the effects of spaceflight on human brain structure despite the fact that recently reported optic nerve structural changes are hypothesized to occur due to increased intracranial pressure occurring with microgravity. This is the first report on human brain structural changes with spaceflight. We evaluated retrospective longitudinal T2-weighted MRI scans and balance data from 27 astronauts (thirteen ~2-week shuttle crew members and fourteen ~6-month International Space Station crew members) to determine spaceflight effects on brain structure, and whether any pre to postflight brain changes are associated with balance changes. Data were obtained from the NASA Lifetime Surveillance of Astronaut Health. Brain scans were segmented into gray matter maps and normalized into MNI space using a stepwise approach through subject specific templates. Non-parametric permutation testing was used to analyze pre to postflight volumetric gray matter changes. We found extensive volumetric gray matter decreases, including large areas covering the temporal and frontal poles and around the orbits. This effect was larger in International Space Station versus shuttle crew members in some regions. There were bilateral focal gray matter increases within the medial primary somatosensory and motor cortex; i.e., the cerebral areas where the lower limbs are represented. These intriguing findings are observed in a retrospective data set; future prospective studies should probe the underlying mechanisms and behavioral consequences.

  16. Neural Signatures of Autism Spectrum Disorders: Insights into Brain Network Dynamics

    PubMed Central

    Hernandez, Leanna M; Rudie, Jeffrey D; Green, Shulamite A; Bookheimer, Susan; Dapretto, Mirella

    2015-01-01

    Neuroimaging investigations of autism spectrum disorders (ASDs) have advanced our understanding of atypical brain function and structure, and have recently converged on a model of altered network-level connectivity. Traditional task-based functional magnetic resonance imaging (MRI) and volume-based structural MRI studies have identified widespread atypicalities in brain regions involved in social behavior and other core ASD-related behavioral deficits. More recent advances in MR-neuroimaging methods allow for quantification of brain connectivity using diffusion tensor imaging, functional connectivity, and graph theoretic methods. These newer techniques have moved the field toward a systems-level understanding of ASD etiology, integrating functional and structural measures across distal brain regions. Neuroimaging findings in ASD as a whole have been mixed and at times contradictory, likely due to the vast genetic and phenotypic heterogeneity characteristic of the disorder. Future longitudinal studies of brain development will be crucial to yield insights into mechanisms of disease etiology in ASD sub-populations. Advances in neuroimaging methods and large-scale collaborations will also allow for an integrated approach linking neuroimaging, genetics, and phenotypic data. PMID:25011468

  17. Hemispheric Asymmetry of Human Brain Anatomical Network Revealed by Diffusion Tensor Tractography

    PubMed Central

    Liu, Yaou; Duan, Yunyun; Li, Kuncheng

    2015-01-01

    The topological architecture of the cerebral anatomical network reflects the structural organization of the human brain. Recently, topological measures based on graph theory have provided new approaches for quantifying large-scale anatomical networks. However, few studies have investigated the hemispheric asymmetries of the human brain from the perspective of the network model, and little is known about the asymmetries of the connection patterns of brain regions, which may reflect the functional integration and interaction between different regions. Here, we utilized diffusion tensor imaging to construct binary anatomical networks for 72 right-handed healthy adult subjects. We established the existence of structural connections between any pair of the 90 cortical and subcortical regions using deterministic tractography. To investigate the hemispheric asymmetries of the brain, statistical analyses were performed to reveal the brain regions with significant differences between bilateral topological properties, such as degree of connectivity, characteristic path length, and betweenness centrality. Furthermore, local structural connections were also investigated to examine the local asymmetries of some specific white matter tracts. From the perspective of both the global and local connection patterns, we identified the brain regions with hemispheric asymmetries. Combined with the previous studies, we suggested that the topological asymmetries in the anatomical network may reflect the functional lateralization of the human brain. PMID:26539535

  18. Diffusion Tensor Tractography Reveals Disrupted Structural Connectivity during Brain Aging

    NASA Astrophysics Data System (ADS)

    Lin, Lan; Tian, Miao; Wang, Qi; Wu, Shuicai

    2017-10-01

    Brain aging is one of the most crucial biological processes that entail many physical, biological, chemical, and psychological changes, and also a major risk factor for most common neurodegenerative diseases. To improve the quality of life for the elderly, it is important to understand how the brain is changed during the normal aging process. We compared diffusion tensor imaging (DTI)-based brain networks in a cohort of 75 healthy old subjects by using graph theory metrics to describe the anatomical networks and connectivity patterns, and network-based statistic (NBS) analysis was used to identify pairs of regions with altered structural connectivity. The NBS analysis revealed a significant network comprising nine distinct fiber bundles linking 10 different brain regions showed altered white matter structures in young-old group compare with middle-aged group (p < .05, family-wise error-corrected). Our results might guide future studies and help to gain a better understanding of brain aging.

  19. Methodological issues in volumetric magnetic resonance imaging of the brain in the Edinburgh High Risk Project.

    PubMed

    Whalley, H C; Kestelman, J N; Rimmington, J E; Kelso, A; Abukmeil, S S; Best, J J; Johnstone, E C; Lawrie, S M

    1999-07-30

    The Edinburgh High Risk Project is a longitudinal study of brain structure (and function) in subjects at high risk of developing schizophrenia in the next 5-10 years for genetic reasons. In this article we describe the methods of volumetric analysis of structural magnetic resonance images used in the study. We also consider potential sources of error in these methods: the validity of our image analysis techniques; inter- and intra-rater reliability; possible positional variation; and thresholding criteria used in separating brain from cerebro-spinal fluid (CSF). Investigation with a phantom test object (of similar imaging characteristics to the brain) provided evidence for the validity of our image acquisition and analysis techniques. Both inter- and intra-rater reliability were found to be good in whole brain measures but less so for smaller regions. There were no statistically significant differences in positioning across the three study groups (patients with schizophrenia, high risk subjects and normal volunteers). A new technique for thresholding MRI scans longitudinally is described (the 'rescale' method) and compared with our established method (thresholding by eye). Few differences between the two techniques were seen at 3- and 6-month follow-up. These findings demonstrate the validity and reliability of the structural MRI analysis techniques used in the Edinburgh High Risk Project, and highlight methodological issues of general concern in cross-sectional and longitudinal studies of brain structure in healthy control subjects and neuropsychiatric populations.

  20. Structured Illumination Diffuse Optical Tomography for Mouse Brain Imaging

    NASA Astrophysics Data System (ADS)

    Reisman, Matthew David

    As advances in functional magnetic resonance imaging (fMRI) have transformed the study of human brain function, they have also widened the divide between standard research techniques used in humans and those used in mice, where high quality images are difficult to obtain using fMRI given the small volume of the mouse brain. Optical imaging techniques have been developed to study mouse brain networks, which are highly valuable given the ability to study brain disease treatments or development in a controlled environment. A planar imaging technique known as optical intrinsic signal (OIS) imaging has been a powerful tool for capturing functional brain hemodynamics in rodents. Recent wide field-of-view implementations of OIS have provided efficient maps of functional connectivity from spontaneous brain activity in mice. However, OIS requires scalp retraction and is limited to imaging a 2-dimensional view of superficial cortical tissues. Diffuse optical tomography (DOT) is a non-invasive, volumetric neuroimaging technique that has been valuable for bedside imaging of patients in the clinic, but previous DOT systems for rodent neuroimaging have been limited by either sparse spatial sampling or by slow speed. My research has been to develop diffuse optical tomography for whole brain mouse neuroimaging by expanding previous techniques to achieve high spatial sampling using multiple camera views for detection and high speed using structured illumination sources. I have shown the feasibility of this method to perform non-invasive functional neuroimaging in mice and its capabilities of imaging the entire volume of the brain. Additionally, the system has been built with a custom, flexible framework to accommodate the expansion to imaging multiple dynamic contrasts in the brain and populations that were previously difficult or impossible to image, such as infant mice and awake mice. I have contributed to preliminary feasibility studies of these more advanced techniques using OIS, which can now be carried out using the structured illumination diffuse optical tomography technique to perform longitudinal, non-invasive studies of the whole volume of the mouse brain.

  1. Is Traumatic and Non-Traumatic Neck Pain Associated with Brain Alterations? - A Systematic Review.

    PubMed

    DePauw, Robby; Coppieters, Iris; Meeus, Mira; Caeyenberghs, Karen; Danneels, Lieven; Cagnie, Barbara

    2017-05-01

    Chronic neck pain affects 50% - 85% of people who have experienced an acute episode. This transition and the persistence of chronic complaints are believed to be mediated by brain alterations among different central mechanisms. This study aimed to systematically review and critically appraise the current existing evidence regarding structural and functional brain alterations in patients with whiplash associated disorders (WAD) and idiopathic neck pain (INP). Additionally, associations between brain alterations and clinical symptoms reported in neck pain patients were evaluated. Systematic review. The present systematic review was performed according to the PRISMA guidelines. PubMed, Web of Science, and Cochrane databases were searched. First, the obtained articles were screened based on title and abstract. Secondly, the screening was based on the full text. Risk of bias in included studies was investigated. Twelve studies met the inclusion criteria. Alterations in brain morphology and function, including perfusion, neurotransmission, and blood oxygenation level dependent-signal, were demonstrated in chronic neck pain patients. There is some to moderate evidence for both structural and functional brain alterations in patients with chronic neck pain. In contrast, no evidence for structural brain alterations in acute neck pain patients was found. Only 12 articles were included, which allows only cautious conclusions to be drawn. Brain alterations were observed in both patients with chronic WAD and chronic INP. Furthermore, more evidence exists for brain alterations in chronic WAD, and different underlying mechanisms might be present in both pathologies. In addition, pain and disability were correlated with the observed brain alterations. Accordingly, morphological and functional brain alterations should be further investigated in patients with chronic WAD and chronic INP with newer and more sensitive techniques, and associative clinical measurements seem indispensable in future research.

  2. Brain composition and olfactory learning in honey bees

    PubMed Central

    Gronenberg, Wulfila; Couvillon, Margaret J.

    2015-01-01

    Correlations between brain or brain component size and behavioral measures are frequently studied by comparing different animal species, which sometimes introduces variables that complicate interpretation in terms of brain function. Here, we have analyzed the brain composition of honey bees (Apis mellifera) that have been individually tested in an olfactory learning paradigm. We found that the total brain size correlated with the bees’ learning performance. Among different brain components, only the mushroom body, a structure known to be involved in learning and memory, showed a positive correlation with learning performance. In contrast, visual neuropils were relatively smaller in bees that performed better in the olfactory learning task, suggesting modality-specific behavioral specialization of individual bees. This idea is also supported by inter-individual differences in brain composition. Some slight yet statistically significant differences in the brain composition of European and Africanized honey bees are reported. Larger bees had larger brains, and by comparing brains of different sizes, we report isometric correlations for all brain components except for a small structure, the central body. PMID:20060918

  3. Aberrant brain stem morphometry associated with sleep disturbance in drug-naïve subjects with Alzheimer's disease.

    PubMed

    Lee, Ji Han; Jung, Won Sang; Choi, Woo Hee; Lim, Hyun Kook

    2016-01-01

    Among patients with Alzheimer's disease (AD), sleep disturbances are common and serious noncognitive symptoms. Previous studies of AD patients have identified deformations in the brain stem, which may play an important role in the regulation of sleep. The aim of this study was to further investigate the relationship between sleep disturbances and alterations in brain stem morphology in AD. In 44 patients with AD and 40 healthy elderly controls, sleep disturbances were measured using the Neuropsychiatry Inventory sleep subscale. We employed magnetic resonance imaging-based automated segmentation tools to examine the relationship between sleep disturbances and changes in brain stem morphology. Analyses of the data from AD subjects revealed significant correlations between the Neuropsychiatry Inventory sleep-subscale scores and structural alterations in the left posterior lateral region of the brain stem, as well as normalized brain stem volumes. In addition, significant group differences in posterior brain stem morphology were observed between the AD group and the control group. This study is the first to analyze an association between sleep disturbances and brain stem morphology in AD. In line with previous findings, this study lends support to the possibility that brain stem structural abnormalities might be important neurobiological mechanisms underlying sleep disturbances associated with AD. Further longitudinal research is needed to confirm these findings.

  4. Driving and driven architectures of directed small-world human brain functional networks.

    PubMed

    Yan, Chaogan; He, Yong

    2011-01-01

    Recently, increasing attention has been focused on the investigation of the human brain connectome that describes the patterns of structural and functional connectivity networks of the human brain. Many studies of the human connectome have demonstrated that the brain network follows a small-world topology with an intrinsically cohesive modular structure and includes several network hubs in the medial parietal regions. However, most of these studies have only focused on undirected connections between regions in which the directions of information flow are not taken into account. How the brain regions causally influence each other and how the directed network of human brain is topologically organized remain largely unknown. Here, we applied linear multivariate Granger causality analysis (GCA) and graph theoretical approaches to a resting-state functional MRI dataset with a large cohort of young healthy participants (n = 86) to explore connectivity patterns of the population-based whole-brain functional directed network. This directed brain network exhibited prominent small-world properties, which obviously improved previous results of functional MRI studies showing weak small-world properties in the directed brain networks in terms of a kernel-based GCA and individual analysis. This brain network also showed significant modular structures associated with 5 well known subsystems: fronto-parietal, visual, paralimbic/limbic, subcortical and primary systems. Importantly, we identified several driving hubs predominantly located in the components of the attentional network (e.g., the inferior frontal gyrus, supplementary motor area, insula and fusiform gyrus) and several driven hubs predominantly located in the components of the default mode network (e.g., the precuneus, posterior cingulate gyrus, medial prefrontal cortex and inferior parietal lobule). Further split-half analyses indicated that our results were highly reproducible between two independent subgroups. The current study demonstrated the directions of spontaneous information flow and causal influences in the directed brain networks, thus providing new insights into our understanding of human brain functional connectome.

  5. Structural covariance mapping delineates medial and medio-lateral temporal networks in déjà vu.

    PubMed

    Shaw, Daniel Joel; Mareček, Radek; Brázdil, Milan

    2016-12-01

    Déjà vu (DV) is an eerie phenomenon experienced frequently as an aura of temporal lobe epilepsy, but also reported commonly by healthy individuals. The former pathological manifestation appears to result from aberrant neural activity among brain structures within the medial temporal lobes. Recent studies also implicate medial temporal brain structures in the non-pathological experience of DV, but as one element of a diffuse neuroanatomical correlate; it remains to be seen if neural activity among the medial temporal lobes also underlies this benign manifestation. The present study set out to investigate this. Due to its unpredictable and infrequent occurrence, however, non-pathological DV does not lend itself easily to functional neuroimaging. Instead, we draw on research showing that brain structure covaries among regions that interact frequently as nodes of functional networks. Specifically, we assessed whether grey-matter covariance among structures implicated in non-pathological DV differs according to the frequency with which the phenomenon is experienced. This revealed two diverging patterns of structural covariation: Among the first, comprised primarily of medial temporal structures and the caudate, grey-matter volume becomes more positively correlated with higher frequency of DV experience. The second pattern encompasses medial and lateral temporal structures, among which greater DV frequency is associated with more negatively correlated grey matter. Using a meta-analytic method of co-activation mapping, we demonstrate a higher probability of functional interactions among brain structures constituting the former pattern, particularly during memory-related processes. Our findings suggest that altered neural signalling within memory-related medial temporal brain structures underlies both pathological and non-pathological DV.

  6. Dissociation and Alterations in Brain Function and Structure: Implications for Borderline Personality Disorder.

    PubMed

    Krause-Utz, Annegret; Frost, Rachel; Winter, Dorina; Elzinga, Bernet M

    2017-01-01

    Dissociation involves disruptions of usually integrated functions of consciousness, perception, memory, identity, and affect (e.g., depersonalization, derealization, numbing, amnesia, and analgesia). While the precise neurobiological underpinnings of dissociation remain elusive, neuroimaging studies in disorders, characterized by high dissociation (e.g., depersonalization/derealization disorder (DDD), dissociative identity disorder (DID), dissociative subtype of posttraumatic stress disorder (D-PTSD)), have provided valuable insight into brain alterations possibly underlying dissociation. Neuroimaging studies in borderline personality disorder (BPD), investigating links between altered brain function/structure and dissociation, are still relatively rare. In this article, we provide an overview of neurobiological models of dissociation, primarily based on research in DDD, DID, and D-PTSD. Based on this background, we review recent neuroimaging studies on associations between dissociation and altered brain function and structure in BPD. These studies are discussed in the context of earlier findings regarding methodological differences and limitations and concerning possible implications for future research and the clinical setting.

  7. Common genetic variants influence human subcortical brain structures.

    PubMed

    Hibar, Derrek P; Stein, Jason L; Renteria, Miguel E; Arias-Vasquez, Alejandro; Desrivières, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S; Armstrong, Nicola J; Bernard, Manon; Bohlken, Marc M; Boks, Marco P; Bralten, Janita; Brown, Andrew A; Chakravarty, M Mallar; Chen, Qiang; Ching, Christopher R K; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H; Olde Loohuis, Loes M; Luciano, Michelle; Macare, Christine; Mather, Karen A; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L; Roiz-Santiañez, Roberto; Rose, Emma J; Salami, Alireza; Sämann, Philipp G; Schmaal, Lianne; Schork, Andrew J; Shin, Jean; Strike, Lachlan T; Teumer, Alexander; van Donkelaar, Marjolein M J; van Eijk, Kristel R; Walters, Raymond K; Westlye, Lars T; Whelan, Christopher D; Winkler, Anderson M; Zwiers, Marcel P; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M H; Hartberg, Cecilie B; Haukvik, Unn K; Heister, Angelien J G A M; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C M; Lopez, Lorna M; Makkinje, Remco R R; Matarin, Mar; Naber, Marlies A M; McKay, D Reese; Needham, Margaret; Nugent, Allison C; Pütz, Benno; Royle, Natalie A; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S L; van Hulzen, Kimm J E; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A; Bastin, Mark E; Brodaty, Henry; Bulayeva, Kazima B; Carless, Melanie A; Cichon, Sven; Corvin, Aiden; Curran, Joanne E; Czisch, Michael; de Zubicaray, Greig I; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D; Erk, Susanne; Fedko, Iryna O; Ferrucci, Luigi; Foroud, Tatiana M; Fox, Peter T; Fukunaga, Masaki; Gibbs, J Raphael; Göring, Harald H H; Green, Robert C; Guelfi, Sebastian; Hansell, Narelle K; Hartman, Catharina A; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G; Heslenfeld, Dirk J; Hoekstra, Pieter J; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W; Kochunov, Peter; Kwok, John B; Lawrie, Stephen M; Liu, Xinmin; Longo, Dan L; McMahon, Katie L; Meisenzahl, Eva; Melle, Ingrid; Mohnke, Sebastian; Montgomery, Grant W; Mostert, Jeanette C; Mühleisen, Thomas W; Nalls, Michael A; Nichols, Thomas E; Nilsson, Lars G; Nöthen, Markus M; Ohi, Kazutaka; Olvera, Rene L; Perez-Iglesias, Rocio; Pike, G Bruce; Potkin, Steven G; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D; Rujescu, Dan; Schnell, Knut; Schofield, Peter R; Smith, Colin; Steen, Vidar M; Sussmann, Jessika E; Thalamuthu, Anbupalam; Toga, Arthur W; Traynor, Bryan J; Troncoso, Juan; Turner, Jessica A; Valdés Hernández, Maria C; van 't Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J A; van Tol, Marie-Jose; Veltman, Dick J; Wassink, Thomas H; Westman, Eric; Zielke, Ronald H; Zonderman, Alan B; Ashbrook, David G; Hager, Reinmar; Lu, Lu; McMahon, Francis J; Morris, Derek W; Williams, Robert W; Brunner, Han G; Buckner, Randy L; Buitelaar, Jan K; Cahn, Wiepke; Calhoun, Vince D; Cavalleri, Gianpiero L; Crespo-Facorro, Benedicto; Dale, Anders M; Davies, Gareth E; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C; Espeseth, Thomas; Gollub, Randy L; Ho, Beng-Choon; Hoffmann, Wolfgang; Hosten, Norbert; Kahn, René S; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Müller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W J H; Roffman, Joshua L; Sisodiya, Sanjay M; Smoller, Jordan W; van Bokhoven, Hans; van Haren, Neeltje E M; Völzke, Henry; Walter, Henrik; Weiner, Michael W; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A; Blangero, John; Boomsma, Dorret I; Brouwer, Rachel M; Cannon, Dara M; Cookson, Mark R; de Geus, Eco J C; Deary, Ian J; Donohoe, Gary; Fernández, Guillén; Fisher, Simon E; Francks, Clyde; Glahn, David C; Grabe, Hans J; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Hulshoff Pol, Hilleke E; Jönsson, Erik G; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M; Ophoff, Roel A; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S; Saykin, Andrew J; Simmons, Andy; Singleton, Andrew; Soininen, Hilkka; Wardlaw, Joanna M; Weale, Michael E; Weinberger, Daniel R; Adams, Hieab H H; Launer, Lenore J; Seiler, Stephan; Schmidt, Reinhold; Chauhan, Ganesh; Satizabal, Claudia L; Becker, James T; Yanek, Lisa; van der Lee, Sven J; Ebling, Maritza; Fischl, Bruce; Longstreth, W T; Greve, Douglas; Schmidt, Helena; Nyquist, Paul; Vinke, Louis N; van Duijn, Cornelia M; Xue, Luting; Mazoyer, Bernard; Bis, Joshua C; Gudnason, Vilmundur; Seshadri, Sudha; Ikram, M Arfan; Martin, Nicholas G; Wright, Margaret J; Schumann, Gunter; Franke, Barbara; Thompson, Paul M; Medland, Sarah E

    2015-04-09

    The highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume and intracranial volume. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10(-33); 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability in human brain development, and may help to determine mechanisms of neuropsychiatric dysfunction.

  8. Development of Human Brain Structural Networks Through Infancy and Childhood

    PubMed Central

    Huang, Hao; Shu, Ni; Mishra, Virendra; Jeon, Tina; Chalak, Lina; Wang, Zhiyue J.; Rollins, Nancy; Gong, Gaolang; Cheng, Hua; Peng, Yun; Dong, Qi; He, Yong

    2015-01-01

    During human brain development through infancy and childhood, microstructural and macrostructural changes take place to reshape the brain's structural networks and better adapt them to sophisticated functional and cognitive requirements. However, structural topological configuration of the human brain during this specific development period is not well understood. In this study, diffusion magnetic resonance image (dMRI) of 25 neonates, 13 toddlers, and 25 preadolescents were acquired to characterize network dynamics at these 3 landmark cross-sectional ages during early childhood. dMRI tractography was used to construct human brain structural networks, and the underlying topological properties were quantified by graph-theory approaches. Modular organization and small-world attributes are evident at birth with several important topological metrics increasing monotonically during development. Most significant increases of regional nodes occur in the posterior cingulate cortex, which plays a pivotal role in the functional default mode network. Positive correlations exist between nodal efficiencies and fractional anisotropy of the white matter traced from these nodes, while correlation slopes vary among the brain regions. These results reveal substantial topological reorganization of human brain structural networks through infancy and childhood, which is likely to be the outcome of both heterogeneous strengthening of the major white matter tracts and pruning of other axonal fibers. PMID:24335033

  9. Lack of Influence of Apolipoprotein E Status on Cognition or Brain Structure in Professional Fighters

    PubMed Central

    Miller, Justin B.; Rissman, Robert A.; Bernick, Charles B.

    2017-01-01

    Abstract The role of the apolipoprotein e4 allele in moderating cognitive and neuroanatomical degeneration following repeated traumatic brain injury is controversial. Here we sought to establish the presence or absence of such a moderating relationship in a prospective study of active and retired boxers and mixed martial arts fighters. Fighters (n = 193) underwent cognitive evaluations, interviews regarding fight history, MRI of the brain, and genetic testing. We used a series of moderator analyses to test for any relationship of apolipoprotein genotype on structural volumes of brain regions previously established to be smaller in those with the most fight exposure, and on cognitive abilities also established to be sensitive to fight exposure. No moderating relationship was detected in any of the analyses. The results of this study suggest that there is no impact of apolipoprotein genotype on the apparent negative association between exposure to professional fighting and brain structure volume or aspects of cognition. PMID:27245878

  10. Brain function and structure and risk for incident diabetes: The Atherosclerosis Risk in Communities Study.

    PubMed

    Bancks, Michael P; Alonso, Alvaro; Gottesman, Rebecca F; Mosley, Thomas H; Selvin, Elizabeth; Pankow, James S

    2017-12-01

    Diabetes is prospectively associated with cognitive decline. Whether lower cognitive function and worse brain structure are prospectively associated with incident diabetes is unclear. We analyzed data for 10,133 individuals with cognitive function testing (1990-1992) and 1212 individuals with brain magnetic resonance imaging (1993-1994) from the Atherosclerosis Risk in Communities cohort. We estimated hazard ratios for incident diabetes through 2014 after adjustment for traditional diabetes risk factors and cohort attrition. Higher level of baseline cognitive function was associated with lower risk for diabetes (per 1 standard deviation, hazard ratio = 0.94; 95% confidence interval = 0.90, 0.98). This association did not persist after accounting for baseline glucose level, case ascertainment methods, and cohort attrition. No association was observed between any brain magnetic resonance imaging measure and incident diabetes. This is one of the first studies to prospectively evaluate the association between both cognitive function and brain structure and the incidence of diabetes. Copyright © 2017 the Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  11. Structure and function of complex brain networks

    PubMed Central

    Sporns, Olaf

    2013-01-01

    An increasing number of theoretical and empirical studies approach the function of the human brain from a network perspective. The analysis of brain networks is made feasible by the development of new imaging acquisition methods as well as new tools from graph theory and dynamical systems. This review surveys some of these methodological advances and summarizes recent findings on the architecture of structural and functional brain networks. Studies of the structural connectome reveal several modules or network communities that are interlinked by hub regions mediating communication processes between modules. Recent network analyses have shown that network hubs form a densely linked collective called a “rich club,” centrally positioned for attracting and dispersing signal traffic. In parallel, recordings of resting and task-evoked neural activity have revealed distinct resting-state networks that contribute to functions in distinct cognitive domains. Network methods are increasingly applied in a clinical context, and their promise for elucidating neural substrates of brain and mental disorders is discussed. PMID:24174898

  12. Changes in Brain Structural Networks and Cognitive Functions in Testicular Cancer Patients Receiving Cisplatin-Based Chemotherapy.

    PubMed

    Amidi, Ali; Hosseini, S M Hadi; Leemans, Alexander; Kesler, Shelli R; Agerbæk, Mads; Wu, Lisa M; Zachariae, Robert

    2017-12-01

    Cisplatin-based chemotherapy may have neurotoxic effects within the central nervous system. The aims of this study were 1) to longitudinally investigate the impact of cisplatin-based chemotherapy on whole-brain networks in testicular cancer patients undergoing treatment and 2) to explore whether possible changes are related to decline in cognitive functioning. Sixty-four newly orchiectomized TC patients underwent structural magnetic resonance imaging (T1-weighted and diffusion-weighted imaging) and cognitive testing at baseline prior to further treatment and again at a six-month follow-up. At follow-up, 22 participants had received cisplatin-based chemotherapy (CT) while 42 were in active surveillance (S). Brain structural networks were constructed for each participant, and network properties were investigated using graph theory and longitudinally compared across groups. Cognitive functioning was evaluated using standardized neuropsychological tests. All statistical tests were two-sided. Compared with the S group, the CT group demonstrated altered global and local brain network properties from baseline to follow-up as evidenced by decreases in important brain network properties such as small-worldness (P = .04), network clustering (P = .04), and local efficiency (P = .02). In the CT group, poorer overall cognitive performance was associated with decreased small-worldness (r = -0.46, P = .04) and local efficiency (r = -0.51, P = .02), and verbal fluency was associated with decreased local efficiency (r = -0.55, P = .008). Brain structural networks may be disrupted following treatment with cisplatin-based chemotherapy. Impaired brain networks may underlie poorer performance over time on both specific and nonspecific cognitive functions in patients undergoing chemotherapy. To the best of our knowledge, this is the first study to longitudinally investigate changes in structural brain networks in a cancer population, providing novel insights regarding the neurobiological mechanisms of cancer-related cognitive impairment.

  13. Functional brain imaging and the induction of traumatic recall: a cross-correlational review between neuroimaging and hypnosis.

    PubMed

    Vermetten, Eric; Douglas Bremner, J

    2004-07-01

    The behavioral and psychophysiological alterations during recall in patients with trauma disorders often resemble phenomena that are seen in hypnosis. In studies of emotional recall as well as in neuroimaging studies of hypnotic processes similar brain structures are involved: thalamus, hippocampus, amygdala, medial prefrontal cortex, anterior cingulate cortex. This paper focuses on cross-correlations in traumatic recall and hypnotic responses and reviews correlations between the involvement of brain structures in traumatic recall and processes that are involved in hypnotic responsiveness. To further improve uniformity of results of brain imaging specifically for traumatic recall studies, attention is needed for standardization of hypnotic variables, isolation of the emotional process of interest (state),and assessment of trait-related differences.

  14. Brain Structural Concomitants of Resting State Heart Rate Variability in the Young and Old – Evidence from Two Independent Samples

    PubMed Central

    Yoo, Hyun Joo; Thayer, Julian F; Greening, Steven; Lee, Tae-Ho; Ponzio, Allison; Min, Jungwon; Sakaki, Michiko; Nga, Lin; Mather, Mara; Koenig, Julian

    2018-01-01

    Previous research has shown associations between brain structure and resting state high-frequency heart rate variability (HF-HRV). Age affects both brain structure and HF-HRV. Therefore we sought to examine the relationship between brain structure and HF-HRV as a function of age. Data from two independent studies were used for the present analysis. Study 1 included 19 older adults (10 males, age range 62–78 years) and 19 younger adults (12 males, age range 19–37). Study 2 included 23 older adults (12 males; age range 55–75) and 27 younger adults (17 males; age range 18–34). The root-mean-square of successive R-R-interval differences (RMSSD) from ECG recordings was used as time-domain measure of HF-HRV. MRI scans were performed on a 3.0-T Siemens Magnetom Trio scanner. Cortical reconstruction and volumetric segmentation were performed with the Freesurfer image analysis suite, including 12 regions as regions-of-interests (ROI). Zero-order and partial correlations were used to assess the correlation of RMSSD with cortical thickness in selected ROIs. Lateral orbitofrontal cortex (OFC) cortical thickness was significantly associated with RMSSD. Further, both studies, in line with previous research, showed correlations between RMSSD and anterior cingulate cortex (ACC) cortical thickness. Meta-analysis on adjusted correlation coefficients from individual studies confirmed an association of RMSSD with the left rostral ACC and the left lateral OFC. Future longitudinal studies are necessary to trace individual trajectories in the association of HRV and brain structure across aging. PMID:28921167

  15. Calcified parenchymal central nervous system cysticercosis and clinical outcomes in epilepsy.

    PubMed

    Leon, Amanda; Saito, Erin K; Mehta, Bijal; McMurtray, Aaron M

    2015-02-01

    This study aimed to compare clinical outcomes including seizure frequency and psychiatric symptoms between patients with epilepsy with neuroimaging evidence of past brain parenchymal neurocysticercosis infection, patients with other structural brain lesions, and patients without structural neuroimaging abnormalities. The study included retrospective cross-sectional analysis of all patients treated for epilepsy in a community-based adult neurology clinic during a three-month period. A total of 160 patients were included in the analysis, including 63 with neuroimaging findings consistent with past parenchymal neurocysticercosis infection, 55 with structurally normal brain neuroimaging studies, and 42 with other structural brain lesions. No significant differences were detected between groups for either seizure freedom (46.03%, 50.91%, and 47.62%, respectively; p=0.944) or mean seizure frequency per month (mean=2.50, S.D.=8.1; mean=4.83, S.D.=17.64; mean=8.55, S.D.=27.31, respectively; p=0.267). Self-reported depressive symptoms were more prevalent in those with parenchymal neurocysticercosis than in the other groups (p=0.003). No significant differences were detected for prevalence of self-reported anxiety or psychotic symptoms. Calcified parenchymal neurocysticercosis results in refractory epilepsy about as often as other structural brain lesions. Depressive symptoms may be more common among those with epilepsy and calcified parenchymal neurocysticercosis; consequently, screening for depression may be indicated in this population. Published by Elsevier Inc.

  16. Sign Language and the Brain: A Review

    ERIC Educational Resources Information Center

    Campbell, Ruth; MacSweeney, Mairead; Waters, Dafydd

    2008-01-01

    How are signed languages processed by the brain? This review briefly outlines some basic principles of brain structure and function and the methodological principles and techniques that have been used to investigate this question. We then summarize a number of different studies exploring brain activity associated with sign language processing…

  17. Structural Brain Connectivity Constrains within-a-Day Variability of Direct Functional Connectivity

    PubMed Central

    Park, Bumhee; Eo, Jinseok; Park, Hae-Jeong

    2017-01-01

    The idea that structural white matter connectivity constrains functional connectivity (interactions among brain regions) has widely been explored in studies of brain networks; studies have mostly focused on the “average” strength of functional connectivity. The question of how structural connectivity constrains the “variability” of functional connectivity remains unresolved. In this study, we investigated the variability of resting state functional connectivity that was acquired every 3 h within a single day from 12 participants (eight time sessions within a 24-h period, 165 scans per session). Three different types of functional connectivity (functional connectivity based on Pearson correlation, direct functional connectivity based on partial correlation, and the pseudo functional connectivity produced by their difference) were estimated from resting state functional magnetic resonance imaging data along with structural connectivity defined using fiber tractography of diffusion tensor imaging. Those types of functional connectivity were evaluated with regard to properties of structural connectivity (fiber streamline counts and lengths) and types of structural connectivity such as intra-/inter-hemispheric edges and topological edge types in the rich club organization. We observed that the structural connectivity constrained the variability of direct functional connectivity more than pseudo-functional connectivity and that the constraints depended strongly on structural connectivity types. The structural constraints were greater for intra-hemispheric and heterologous inter-hemispheric edges than homologous inter-hemispheric edges, and feeder and local edges than rich club edges in the rich club architecture. While each edge was highly variable, the multivariate patterns of edge involvement, especially the direct functional connectivity patterns among the rich club brain regions, showed low variability over time. This study suggests that structural connectivity not only constrains the strength of functional connectivity, but also the within-a-day variability of functional connectivity and connectivity patterns, particularly the direct functional connectivity among brain regions. PMID:28848416

  18. Disrupted Structural and Functional Networks and Their Correlation with Alertness in Right Temporal Lobe Epilepsy: A Graph Theory Study.

    PubMed

    Jiang, Wenyu; Li, Jianping; Chen, Xuemei; Ye, Wei; Zheng, Jinou

    2017-01-01

    Previous studies have shown that temporal lobe epilepsy (TLE) involves abnormal structural or functional connectivity in specific brain areas. However, limited comprehensive studies have been conducted on TLE associated changes in the topological organization of structural and functional networks. Additionally, epilepsy is associated with impairment in alertness, a fundamental component of attention. In this study, structural networks were constructed using diffusion tensor imaging tractography, and functional networks were obtained from resting-state functional MRI temporal series correlations in 20 right temporal lobe epilepsy (rTLE) patients and 19 healthy controls. Global network properties were computed by graph theoretical analysis, and correlations were assessed between global network properties and alertness. The results from these analyses showed that rTLE patients exhibit abnormal small-world attributes in structural and functional networks. Structural networks shifted toward more regular attributes, but functional networks trended toward more random attributes. After controlling for the influence of the disease duration, negative correlations were found between alertness, small-worldness, and the cluster coefficient. However, alertness did not correlate with either the characteristic path length or global efficiency in rTLE patients. Our findings show that disruptions of the topological construction of brain structural and functional networks as well as small-world property bias are associated with deficits in alertness in rTLE patients. These data suggest that reorganization of brain networks develops as a mechanism to compensate for altered structural and functional brain function during disease progression.

  19. Do anesthetics harm the developing human brain? An integrative analysis of animal and human studies.

    PubMed

    Lin, Erica P; Lee, Jeong-Rim; Lee, Christopher S; Deng, Meng; Loepke, Andreas W

    Anesthetics that permit surgical procedures and stressful interventions have been found to cause structural brain abnormalities and functional impairment in immature animals, generating extensive concerns among clinicians, parents, and government regulators regarding the safe use of these drugs in young children. Critically important questions remain, such as the exact age at which the developing brain is most vulnerable to the effects of anesthetic exposure, whether a particular age exists beyond which anesthetics are devoid of long-term effects on the brain, and whether any specific exposure duration exists that does not lead to deleterious effects. Accordingly, the present analysis attempts to put the growing body of animal studies, which we identified to include >440 laboratory studies to date, into a translational context, by integrating the preclinical data on brain structure and function with clinical results attained from human neurocognitive studies, which currently exceed 30 studies. Our analysis demonstrated no clear exposure duration threshold below which no structural injury or subsequent cognitive abnormalities occurred. Animal data did not clearly identify a specific age beyond which anesthetic exposure did not cause any structural or functional abnormalities. Several potential mitigating strategies were found, however, no general anesthetic was identified that consistently lacked neurodegenerative properties and could be recommended over other anesthetics. It therefore is imperative, to expand efforts to devise safer anesthetic techniques and mitigating strategies, even before long-term alterations in brain development are unequivocally confirmed to occur in millions of young children undergoing anesthesia every year. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Hemispheric lateralization of topological organization in structural brain networks.

    PubMed

    Caeyenberghs, Karen; Leemans, Alexander

    2014-09-01

    The study on structural brain asymmetries in healthy individuals plays an important role in our understanding of the factors that modulate cognitive specialization in the brain. Here, we used fiber tractography to reconstruct the left and right hemispheric networks of a large cohort of 346 healthy participants (20-86 years) and performed a graph theoretical analysis to investigate this brain laterality from a network perspective. Findings revealed that the left hemisphere is significantly more "efficient" than the right hemisphere, whereas the right hemisphere showed higher values of "betweenness centrality" and "small-worldness." In particular, left-hemispheric networks displayed increased nodal efficiency in brain regions related to language and motor actions, whereas the right hemisphere showed an increase in nodal efficiency in brain regions involved in memory and visuospatial attention. In addition, we found that hemispheric networks decrease in efficiency with age. Finally, we observed significant gender differences in measures of global connectivity. By analyzing the structural hemispheric brain networks, we have provided new insights into understanding the neuroanatomical basis of lateralized brain functions. Copyright © 2014 Wiley Periodicals, Inc.

  1. Brain-region–specific alterations of the trajectories of neuronal volume growth throughout the lifespan in autism

    PubMed Central

    2014-01-01

    Several morphometric studies have revealed smaller than normal neurons in the neocortex of autistic subjects. To test the hypothesis that abnormal neuronal growth is a marker of an autism-associated global encephalopathy, neuronal volumes were estimated in 16 brain regions, including various subcortical structures, Ammon’s horn, archicortex, cerebellum, and brainstem in 14 brains from individuals with autism 4 to 60 years of age and 14 age-matched control brains. This stereological study showed a significantly smaller volume of neuronal soma in 14 of 16 regions in the 4- to 8-year-old autistic brains than in the controls. Arbitrary classification revealed a very severe neuronal volume deficit in 14.3% of significantly altered structures, severe in 50%, moderate in 21.4%, and mild in 14.3% structures. This pattern suggests desynchronized neuronal growth in the interacting neuronal networks involved in the autistic phenotype. The comparative study of the autistic and control subject brains revealed that the number of structures with a significant volume deficit decreased from 14 in the 4- to 8-year-old autistic subjects to 4 in the 36- to 60-year-old. Neuronal volumes in 75% of the structures examined in the older adults with autism are comparable to neuronal volume in age-matched controls. This pattern suggests defects of neuronal growth in early childhood and delayed up-regulation of neuronal growth during adolescence and adulthood reducing neuron soma volume deficit in majority of examined regions. However, significant correction of neuron size but limited clinical improvements suggests that delayed correction does not restore functional deficits. PMID:24612906

  2. The brain map of gait variability in aging, cognitive impairment and dementia. A systematic review

    PubMed Central

    Tian, Qu; Chastan, Nathalie; Bair, Woei-Nan; Resnick, Susan M.; Ferrucci, Luigi; Studenski, Stephanie A.

    2017-01-01

    While gait variability may reflect subtle changes due to aging or cognitive impairment (CI), associated brain characteristics remain unclear. We summarize structural and functional neuroimaging findings associated with gait variability in older adults with and without CI and dementia. We identified 17 eligible studies; all were cross-sectional; few examined multiple brain areas. In older adults, temporal gait variability was associated with structural differences in medial areas important for lower limb coordination and balance. Both temporal and spatial gait variability were associated with structural and functional differences in hippocampus and primary sensorimotor cortex and structural differences in anterior cingulate cortex, basal ganglia, association tracts, and posterior thalamic radiation. In CI or dementia, some associations were found in primary motor cortex, hippocampus, prefrontal cortex and basal ganglia. In older adults, gait variability may be associated with areas important for sensorimotor integration and coordination. To comprehend the neural basis of gait variability with aging and CI, longitudinal studies of multiple brain areas are needed. PMID:28115194

  3. Sexual dimorphism of volume reduction but not cognitive deficit in fetal alcohol spectrum disorders: A combined diffusion tensor imaging, cortical thickness and brain volume study.

    PubMed

    Treit, Sarah; Chen, Zhang; Zhou, Dongming; Baugh, Lauren; Rasmussen, Carmen; Andrew, Gail; Pei, Jacqueline; Beaulieu, Christian

    2017-01-01

    Quantitative magnetic resonance imaging (MRI) has revealed abnormalities in brain volumes, cortical thickness and white matter microstructure in fetal alcohol spectrum disorders (FASD); however, no study has reported all three measures within the same cohort to assess the relative magnitude of deficits, and few studies have examined sex differences. Participants with FASD (n = 70; 30 females; 5-32 years) and healthy controls (n = 74; 35 females; 5-32 years) underwent cognitive testing and MRI to assess cortical thickness, regional brain volumes and fractional anisotropy (FA)/mean diffusivity (MD) of white matter tracts. A significant effect of group, age-by-group, or sex-by-group was found for 9/9 volumes, 7/39 cortical thickness regions, 3/9 white matter tracts, and 9/10 cognitive tests, indicating group differences that in some cases differ by age or sex. Volume reductions for several structures were larger in males than females, despite similar deficits of cognition in both sexes. Correlations between brain structure and cognitive scores were found in females of both groups, but were notably absent in males. Correlations within a given MRI modality (e.g. total brain volume and caudate volume) were prevalent in both the control and FASD groups, and were more numerous than correlations between measurement types (e.g. volumes and diffusion tensor imaging) in either cohort. This multi-modal MRI study finds widespread differences of brain structure in participants with prenatal alcohol exposure, and to a greater extent in males than females which may suggest attenuation of the expected process of sexual dimorphism of brain structure during typical development.

  4. Maintaining brain health by monitoring inflammatory processes: a mechanism to promote successful aging.

    PubMed

    Rosano, Caterina; Marsland, Anna L; Gianaros, Peter J

    2012-02-01

    Maintaining brain health promotes successful aging. The main determinants of brain health are the preservation of cognitive function and remaining free from structural and metabolic abnormalities, including loss of neuronal synapses, atrophy, small vessel disease and focal amyloid deposits visible by neuroimaging. Promising studies indicate that these determinants are to some extent modifiable, even among adults seventy years and older. Converging animal and human evidence further suggests that inflammation is a shared mechanism, contributing to both cognitive decline and abnormalities in brain structure and metabolism. Thus, inflammation may provide a target for intervention. Specifically, circulating inflammatory markers have been associated with declines in cognitive function and worsening of brain structural and metabolic characteristics. Additionally, it has been proposed that older brains are characterized by a sensitization to neuroinflammatory responses, even in the absence of overt disease. This increased propensity to central inflammation may contribute to poor brain health and premature brain aging. Still unknown is whether and how peripheral inflammatory factors directly contribute to decline of brain health. Human research is limited by the challenges of directly measuring neuroinflammation in vivo. This review assesses the role that inflammation may play in the brain changes that often accompany aging, focusing on relationships between peripheral inflammatory markers and brain health among well-functioning, community-dwelling adults seventy years and older. We propose that monitoring and maintaining lower levels of systemic and central inflammation among older adults could help preserve brain health and support successful aging. Hence, we also identify plausible ways and novel experimental study designs of maintaining brain health late in age through interventions that target the immune system.

  5. Epilepsy in the setting of full trisomy 18: A multicenter study on 18 affected children with and without structural brain abnormalities.

    PubMed

    Matricardi, Sara; Spalice, Alberto; Salpietro, Vincenzo; Di Rosa, Gabriella; Balistreri, Maria Cristina; Grosso, Salvatore; Parisi, Pasquale; Elia, Maurizio; Striano, Pasquale; Accorsi, Patrizia; Cusmai, Raffaella; Specchio, Nicola; Coppola, Giangennaro; Savasta, Salvatore; Carotenuto, Marco; Tozzi, Elisabetta; Ferrara, Pietro; Ruggieri, Martino; Verrotti, Alberto

    2016-09-01

    This paper reports on the clinical aspects, electroencephalographic (EEG) features, and neuroimaging findings in children with full trisomy 18 and associated epilepsy, and compares the evolution and outcome of their neurological phenotype. We retrospectively studied 18 patients (10 males and 8 females; aged 14 months to 9 years) with full trisomy 18 and epilepsy. All patients underwent comprehensive assessment including neuroimaging studies of the brain. We divided patients into two groups according to neuroimaging findings: (Group 1) 10 patients harboring structural brain malformations, and (Group 2) 8 patients with normal brain images. Group 1 had a significantly earlier age at seizure onset (2 months) compared to Group 2 (21 months). The seizure semiology was more severe in Group 1, who presented multiple seizure types, need for polytherapy (80% of patients), multifocal EEG abnormalities and poorer outcome (drug resistant epilepsy in 90% of patients) than Group 2 who presented a single seizure type, generalized or focal, and non-specific EEG pattern; these patients were successfully treated with monotherapy with good outcome. Imaging revealed a wide and complex spectrum of structural brain abnormalities including anomalies of the commissures, cerebellar malformations, cortical abnormalities, and various degrees of cortical atrophy. Epilepsy in full trisomy 18 may develop during the first months of life and can be associated with structural brain malformations. Patients with brain malformations can show multiple seizure types and can frequently be resistant to therapy with antiepileptic drugs. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Altered resting brain function and structure in professional badminton players.

    PubMed

    Di, Xin; Zhu, Senhua; Jin, Hua; Wang, Pin; Ye, Zhuoer; Zhou, Ke; Zhuo, Yan; Rao, Hengyi

    2012-01-01

    Neuroimaging studies of professional athletic or musical training have demonstrated considerable practice-dependent plasticity in various brain structures, which may reflect distinct training demands. In the present study, structural and functional brain alterations were examined in professional badminton players and compared with healthy controls using magnetic resonance imaging (MRI) and resting-state functional MRI. Gray matter concentration (GMC) was assessed using voxel-based morphometry (VBM), and resting-brain functions were measured by amplitude of low-frequency fluctuation (ALFF) and seed-based functional connectivity. Results showed that the athlete group had greater GMC and ALFF in the right and medial cerebellar regions, respectively. The athlete group also demonstrated smaller ALFF in the left superior parietal lobule and altered functional connectivity between the left superior parietal and frontal regions. These findings indicate that badminton expertise is associated with not only plastic structural changes in terms of enlarged gray matter density in the cerebellum, but also functional alterations in fronto-parietal connectivity. Such structural and functional alterations may reflect specific experiences of badminton training and practice, including high-capacity visuo-spatial processing and hand-eye coordination in addition to refined motor skills.

  7. Brain morphology in school-aged children with prenatal opioid exposure: A structural MRI study.

    PubMed

    Sirnes, Eivind; Oltedal, Leif; Bartsch, Hauke; Eide, Geir Egil; Elgen, Irene B; Aukland, Stein Magnus

    Both animal and human studies have suggested that prenatal opioid exposure may be detrimental to the developing fetal brain. However, results are somewhat conflicting. Structural brain changes in children with prenatal opioid exposure have been reported in a few studies, and such changes may contribute to neuropsychological impairments observed in exposed children. To investigate the association between prenatal opioid exposure and brain morphology in school-aged children. A cross-sectional magnetic resonance imaging (MRI) study of prenatally opioid-exposed children and matched controls. A hospital-based sample (n=16) of children aged 10-14years with prenatal exposure to opioids and 1:1 sex- and age-matched unexposed controls. Automated brain volume measures obtained from T1-weighted MRI scans using FreeSurfer. Volumes of the basal ganglia, thalamus, and cerebellar white matter were reduced in the opioid-exposed group, whereas there were no statistically significant differences in global brain measures (total brain, cerebral cortex, and cerebral white matter volumes). In line with the limited findings reported in the literature to date, our study showed an association between prenatal opioid exposure and reduced regional brain volumes. Adverse effects of opioids on the developing fetal brain may explain this association. However, further research is needed to explore the causal nature and functional consequences of these findings. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Subjective cognitive impairment and brain structural networks in Chinese gynaecological cancer survivors compared with age-matched controls: a cross-sectional study.

    PubMed

    Zeng, Yingchun; Cheng, Andy S K; Song, Ting; Sheng, Xiujie; Zhang, Yang; Liu, Xiangyu; Chan, Chetwyn C H

    2017-11-28

    Subjective cognitive impairment can be a significant and prevalent problem for gynaecological cancer survivors. The aims of this study were to assess subjective cognitive functioning in gynaecological cancer survivors after primary cancer treatment, and to investigate the impact of cancer treatment on brain structural networks and its association with subjective cognitive impairment. This was a cross-sectional survey using a self-reported questionnaire by the Functional Assessment of Cancer Therapy-Cognitive Function (FACT-Cog) to assess subjective cognitive functioning, and applying DTI (diffusion tensor imaging) and graph theoretical analyses to investigate brain structural networks after primary cancer treatment. A total of 158 patients with gynaecological cancer (mean age, 45.86 years) and 130 age-matched non-cancer controls (mean age, 44.55 years) were assessed. Patients reported significantly greater subjective cognitive functioning on the FACT-Cog total score and two subscales of perceived cognitive impairment and perceived cognitive ability (all p values <0.001). Compared with patients who had received surgery only and non-cancer controls, patients treated with chemotherapy indicated the most altered global brain structural networks, especially in one of properties of small-worldness (p = 0.004). Reduced small-worldness was significantly associated with a lower FACT-Cog total score (r = 0.412, p = 0.024). Increased characteristic path length was also significantly associated with more subjective cognitive impairment (r = -0.388, p = 0.034). When compared with non-cancer controls, a considerable proportion of gynaecological cancer survivors may exhibit subjective cognitive impairment. This study provides the first evidence of brain structural network alteration in gynaecological cancer patients at post-treatment, and offers novel insights regarding the possible neurobiological mechanism of cancer-related cognitive impairment (CRCI) in gynaecological cancer patients. As primary cancer treatment can result in a more random organisation of structural brain networks, this may reduce brain functional specificity and segregation, and have implications for cognitive impairment. Future prospective and longitudinal studies are needed to build upon the study findings in order to assess potentially relevant clinical and psychosocial variables and brain network measures, so as to more accurately understand the specific risk factors related to subjective cognitive impairment in the gynaecological cancer population. Such knowledge could inform the development of appropriate treatment and rehabilitation efforts to ameliorate cognitive impairment in gynaecological cancer survivors.

  9. In vivo studies of brain development by magnetic resonance techniques.

    PubMed

    Inder, T E; Huppi, P S

    2000-01-01

    Understanding of the morphological development of the human brain has largely come from neuropathological studies obtained postmortem. Magnetic resonance (MR) techniques have recently allowed the provision of detailed structural, metabolic, and functional information in vivo on the human brain. These techniques have been utilized in studies from premature infants to adults and have provided invaluable data on the sequence of normal human brain development. This article will focus on MR techniques including conventional structural MR imaging techniques, quantitative morphometric MR techniques, diffusion weighted MR techniques, and MR spectroscopy. In order to understand the potential applications and limitations of MR techniques, relevant physical and biological principles for each of the MR techniques are first reviewed. This is followed by a review of the understanding of the sequence of normal brain development utilizing these techniques. MRDD Research Reviews 6:59-67, 2000. Copyright 2000 Wiley-Liss, Inc.

  10. Computational genetic neuroanatomy of the developing mouse brain: dimensionality reduction, visualization, and clustering

    PubMed Central

    2013-01-01

    Background The structured organization of cells in the brain plays a key role in its functional efficiency. This delicate organization is the consequence of unique molecular identity of each cell gradually established by precise spatiotemporal gene expression control during development. Currently, studies on the molecular-structural association are beginning to reveal how the spatiotemporal gene expression patterns are related to cellular differentiation and structural development. Results In this article, we aim at a global, data-driven study of the relationship between gene expressions and neuroanatomy in the developing mouse brain. To enable visual explorations of the high-dimensional data, we map the in situ hybridization gene expression data to a two-dimensional space by preserving both the global and the local structures. Our results show that the developing brain anatomy is largely preserved in the reduced gene expression space. To provide a quantitative analysis, we cluster the reduced data into groups and measure the consistency with neuroanatomy at multiple levels. Our results show that the clusters in the low-dimensional space are more consistent with neuroanatomy than those in the original space. Conclusions Gene expression patterns and developing brain anatomy are closely related. Dimensionality reduction and visual exploration facilitate the study of this relationship. PMID:23845024

  11. Studying variability in human brain aging in a population-based German cohort-rationale and design of 1000BRAINS.

    PubMed

    Caspers, Svenja; Moebus, Susanne; Lux, Silke; Pundt, Noreen; Schütz, Holger; Mühleisen, Thomas W; Gras, Vincent; Eickhoff, Simon B; Romanzetti, Sandro; Stöcker, Tony; Stirnberg, Rüdiger; Kirlangic, Mehmet E; Minnerop, Martina; Pieperhoff, Peter; Mödder, Ulrich; Das, Samir; Evans, Alan C; Jöckel, Karl-Heinz; Erbel, Raimund; Cichon, Sven; Nöthen, Markus M; Sturma, Dieter; Bauer, Andreas; Jon Shah, N; Zilles, Karl; Amunts, Katrin

    2014-01-01

    The ongoing 1000 brains study (1000BRAINS) is an epidemiological and neuroscientific investigation of structural and functional variability in the human brain during aging. The two recruitment sources are the 10-year follow-up cohort of the German Heinz Nixdorf Recall (HNR) Study, and the HNR MultiGeneration Study cohort, which comprises spouses and offspring of HNR subjects. The HNR is a longitudinal epidemiological investigation of cardiovascular risk factors, with a comprehensive collection of clinical, laboratory, socioeconomic, and environmental data from population-based subjects aged 45-75 years on inclusion. HNR subjects underwent detailed assessments in 2000, 2006, and 2011, and completed annual postal questionnaires on health status. 1000BRAINS accesses these HNR data and applies a separate protocol comprising: neuropsychological tests of attention, memory, executive functions and language; examination of motor skills; ratings of personality, life quality, mood and daily activities; analysis of laboratory and genetic data; and state-of-the-art magnetic resonance imaging (MRI, 3 Tesla) of the brain. The latter includes (i) 3D-T1- and 3D-T2-weighted scans for structural analyses and myelin mapping; (ii) three diffusion imaging sequences optimized for diffusion tensor imaging, high-angular resolution diffusion imaging for detailed fiber tracking and for diffusion kurtosis imaging; (iii) resting-state and task-based functional MRI; and (iv) fluid-attenuated inversion recovery and MR angiography for the detection of vascular lesions and the mapping of white matter lesions. The unique design of 1000BRAINS allows: (i) comprehensive investigation of various influences including genetics, environment and health status on variability in brain structure and function during aging; and (ii) identification of the impact of selected influencing factors on specific cognitive subsystems and their anatomical correlates.

  12. The effects of rearing light level and duration differences on the optic nerve, brain, and associated structures in developing zebrafish larvae: a light and transmission electron microscope study.

    PubMed

    Chapman, George B; Tarboush, Rania; Connaughton, Victoria P

    2012-03-01

    The ultrastructure of the optic nerve, brain, and some associated structures of larval zebrafish, grown under three different light regimens were studied. Fish grown under cyclic light (control), constant dark (CD), and constant light (CL) were studied for 4 and 8 days postfertilization (dpf). We also studied the control and CD fish at 15 dpf. The brains of the control and CL fish were larger at 4 dpf than at 8 dpf. In all 4 dpf fish, the brain occupied the entire expanse between the two retinas and the optic nerve extended the shortest distance between the retina and the brain. The 15 dpf zebrafish had the smallest brain size. Groups of skeletal muscle cells associated with the optic nerves became visible in all older larvae. In the 15 dpf larvae, bulges and dilations in the optic nerve occurred as it reached the brain and optic chiasms occurred proximal to the brain. Electron microscopy yielded information about myelinated and unmyelinated axons in the optic nerve, the dimensions of neurotubules, neurofilaments, and myofilaments, including a unique variation in actin myofilaments, and a confirmation of reported myosin myofilament changes (but with dimensions). We also describe the ultrastructure of a sheath-like structure that is confluent over the optic nerve and the brain, which has not been described before in zebrafish. Also presented are images of associated fibroblasts, epithelial cells lining the mouth, cartilage plates, blood vessels, nerve bundles, and skeletal muscle cells, most of which have not been previously described in the literature. Copyright © 2012 Wiley Periodicals, Inc.

  13. Multimodal neuroimaging of male and female brain structure in health and disease across the life span

    PubMed Central

    Thompson, Paul M.

    2016-01-01

    Sex differences in brain development and aging are important to identify, as they may help to understand risk factors and outcomes in brain disorders that are more prevalent in one sex compared with the other. Brain imaging techniques have advanced rapidly in recent years, yielding detailed structural and functional maps of the living brain. Even so, studies are often limited in sample size, and inconsistent findings emerge, one example being varying findings regarding sex differences in the size of the corpus callosum. More recently, large‐scale neuroimaging consortia such as the Enhancing Neuro Imaging Genetics through Meta Analysis Consortium have formed, pooling together expertise, data, and resources from hundreds of institutions around the world to ensure adequate power and reproducibility. These initiatives are helping us to better understand how brain structure is affected by development, disease, and potential modulators of these effects, including sex. This review highlights some established and disputed sex differences in brain structure across the life span, as well as pitfalls related to interpreting sex differences in health and disease. We also describe sex‐related findings from the ENIGMA consortium, and ongoing efforts to better understand sex differences in brain circuitry. © 2016 The Authors. Journal of Neuroscience Research Published by Wiley Periodicals, Inc. PMID:27870421

  14. Analysis of evoked deep brain connectivity.

    PubMed

    Klimeš, Petr; Janeček, Jiři; Jurák, Pavel; Halámek, Josef; Chládek, Han; Brázdil, Milan

    2013-01-01

    Establishing dependencies and connectivity among different structures in the human brain is an extremely complex issue. Methods that are often used for connectivity analysis are based on correlation mechanisms. Correlation methods can analyze changes in signal shape or instantaneous power level. Although recent studies imply that observation of results from both groups of methods together can disclose some of the basic functions and behavior of the human brain during mental activity and decision-making, there is no technique covering changes in the shape of signals along with changes in their power levels. We present a method using a time evaluation of the correlation along with a comparison of power levels in every available contact pair from intracranial electrodes placed in deep brain structures. Observing shape changes in signals after stimulation together with their power levels provides us with new information about signal character between different structures in the brain during task-related events - visual stimulation with motor response. The results for a subject with 95 intracerebral contacts used in this paper demonstrate a clear methodology capable of spatially analyzing connectivity among deep brain structures.

  15. The macro-structural variability of the human neocortex.

    PubMed

    Kruggel, Frithjof

    2018-05-15

    The human neocortex shows a considerable individual structural variability. While primary gyri and sulci are found in all normally developed brains and bear clear-cut gross structural descriptions, secondary structures are highly variable and not present in all brains. The blend of common and individual structures poses challenges when comparing structural and functional results from quantitative neuroimaging studies across individuals, and sets limits on the precision of location information much above the spatial resolution of current neuroimaging methods. This work aimed at quantifying structural variability on the neocortex, and at assessing the spatial relationship between regions common to all brains and their individual structural variants. Based on structural MRI data provided as the "900 Subjects Release" of the Human Connectome Project, a data-driven analytic approach was employed here from which the definition of seven cortical "communities" emerged. Apparently, these communities comprise common regions of structural features, while the individual variability is confined within a community. Similarities between the community structure and the state of the brain development at gestation week 32 lead suggest that communities are segregated early. Subdividing the neocortex into communities is suggested as anatomically more meaningful than the traditional lobar structure. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Origin of hyperbolicity in brain-to-brain coordination networks

    NASA Astrophysics Data System (ADS)

    Tadić, Bosiljka; Andjelković, Miroslav; Šuvakov, Milovan

    2018-02-01

    Hyperbolicity or negative curvature of complex networks is the intrinsic geometric proximity of nodes in the graph metric space, which implies an improved network function. Here, we investigate hidden combinatorial geometries in brain-to-brain coordination networks arising through social communications. The networks originate from correlations among EEG signals previously recorded during spoken communications comprising of 14 individuals with 24 speaker-listener pairs. We find that the corresponding networks are delta-hyperbolic with delta_max=1 and the graph diameter D=3 in each brain. While the emergent hyperbolicity in the two-brain networks satisfies delta_max/D/2 < 1 and can be attributed to the topology of the subgraph formed around the cross-brains linking channels. We identify these subgraphs in each studied two-brain network and decompose their structure into simple geometric descriptors (triangles, tetrahedra and cliques of higher orders) that contribute to hyperbolicity. Considering topologies that exceed two separate brain networks as a measure of coordination synergy between the brains, we identify different neuronal correlation patterns ranging from weak coordination to super-brain structure. These topology features are in qualitative agreement with the listener’s self-reported ratings of own experience and quality of the speaker, suggesting that studies of the cross-brain connector networks can reveal new insight into the neural mechanisms underlying human social behavior.

  17. Imaging brain development: the adolescent brain.

    PubMed

    Blakemore, Sarah-Jayne

    2012-06-01

    The past 15 years have seen a rapid expansion in the number of studies using neuroimaging techniques to investigate maturational changes in the human brain. In this paper, I review MRI studies on structural changes in the developing brain, and fMRI studies on functional changes in the social brain during adolescence. Both MRI and fMRI studies point to adolescence as a period of continued neural development. In the final section, I discuss a number of areas of research that are just beginning and may be the subject of developmental neuroimaging in the next twenty years. Future studies might focus on complex questions including the development of functional connectivity; how gender and puberty influence adolescent brain development; the effects of genes, environment and culture on the adolescent brain; development of the atypical adolescent brain; and implications for policy of the study of the adolescent brain. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Mapping the Alzheimer’s Brain with Connectomics

    PubMed Central

    Xie, Teng; He, Yong

    2012-01-01

    Alzheimer’s disease (AD) is the most common form of dementia. As an incurable, progressive, and neurodegenerative disease, it causes cognitive and memory deficits. However, the biological mechanisms underlying the disease are not thoroughly understood. In recent years, non-invasive neuroimaging and neurophysiological techniques [e.g., structural magnetic resonance imaging (MRI), diffusion MRI, functional MRI, and EEG/MEG] and graph theory based network analysis have provided a new perspective on structural and functional connectivity patterns of the human brain (i.e., the human connectome) in health and disease. Using these powerful approaches, several recent studies of patients with AD exhibited abnormal topological organization in both global and regional properties of neuronal networks, indicating that AD not only affects specific brain regions, but also alters the structural and functional associations between distinct brain regions. Specifically, disruptive organization in the whole-brain networks in AD is involved in the loss of small-world characters and the re-organization of hub distributions. These aberrant neuronal connectivity patterns were associated with cognitive deficits in patients with AD, even with genetic factors in healthy aging. These studies provide empirical evidence to support the existence of an aberrant connectome of AD. In this review we will summarize recent advances discovered in large-scale brain network studies of AD, mainly focusing on graph theoretical analysis of brain connectivity abnormalities. These studies provide novel insights into the pathophysiological mechanisms of AD and could be helpful in developing imaging biomarkers for disease diagnosis and monitoring. PMID:22291664

  19. Cognitive Abilities Independent of IQ Correlate with Regional Brain Structure

    ERIC Educational Resources Information Center

    Johnson, Wendy; Jung, Rex E.; Colom, Roberto; Haier, Richard J.

    2008-01-01

    There is increasing evidence relating psychometric measures of general intelligence and reasoning to regional brain structure and function assessed with a variety of neuroimaging techniques. Cognitive dimensions independent of general intelligence can also be identified psychometrically and studied for any neuroanatomical correlates. Here we…

  20. Gender differences in the structural connectome of the teenage brain revealed by generalized q-sampling MRI.

    PubMed

    Tyan, Yeu-Sheng; Liao, Jan-Ray; Shen, Chao-Yu; Lin, Yu-Chieh; Weng, Jun-Cheng

    2017-01-01

    The question of whether there are biological differences between male and female brains is a fraught one, and political positions and prior expectations seem to have a strong influence on the interpretation of scientific data in this field. This question is relevant to issues of gender differences in the prevalence of psychiatric conditions, including autism, attention deficit hyperactivity disorder (ADHD), Tourette's syndrome, schizophrenia, dyslexia, depression, and eating disorders. Understanding how gender influences vulnerability to these conditions is significant. Diffusion magnetic resonance imaging (dMRI) provides a non-invasive method to investigate brain microstructure and the integrity of anatomical connectivity. Generalized q-sampling imaging (GQI) has been proposed to characterize complicated fiber patterns and distinguish fiber orientations, providing an opportunity for more accurate, higher-order descriptions through the water diffusion process. Therefore, we aimed to investigate differences in the brain's structural network between teenage males and females using GQI. This study included 59 (i.e., 33 males and 26 females) age- and education-matched subjects (age range: 13 to 14 years). The structural connectome was obtained by graph theoretical and network-based statistical (NBS) analyses. Our findings show that teenage male brains exhibit better intrahemispheric communication, and teenage female brains exhibit better interhemispheric communication. Our results also suggest that the network organization of teenage male brains is more local, more segregated, and more similar to small-world networks than teenage female brains. We conclude that the use of an MRI study with a GQI-based structural connectomic approach like ours presents novel insights into network-based systems of the brain and provides a new piece of the puzzle regarding gender differences.

  1. Physical exercise in overweight to obese individuals induces metabolic- and neurotrophic-related structural brain plasticity

    PubMed Central

    Mueller, Karsten; Möller, Harald E.; Horstmann, Annette; Busse, Franziska; Lepsien, Jöran; Blüher, Matthias; Stumvoll, Michael; Villringer, Arno; Pleger, Burkhard

    2015-01-01

    Previous cross-sectional studies on body-weight-related alterations in brain structure revealed profound changes in the gray matter (GM) and white matter (WM) that resemble findings obtained from individuals with advancing age. This suggests that obesity may lead to structural brain changes that are comparable with brain aging. Here, we asked whether weight-loss-dependent improved metabolic and neurotrophic functioning parallels the reversal of obesity-related alterations in brain structure. To this end we applied magnetic resonance imaging (MRI) together with voxel-based morphometry and diffusion-tensor imaging in overweight to obese individuals who participated in a fitness course with intensive physical training twice a week over a period of 3 months. After the fitness course, participants presented, with inter-individual heterogeneity, a reduced body mass index (BMI), reduced serum leptin concentrations, elevated high-density lipoprotein-cholesterol (HDL-C), and alterations of serum brain-derived neurotrophic factor (BDNF) concentrations suggesting changes of metabolic and neurotrophic function. Exercise-dependent changes in BMI and serum concentration of BDNF, leptin, and HDL-C were related to an increase in GM density in the left hippocampus, the insular cortex, and the left cerebellar lobule. We also observed exercise-dependent changes of diffusivity parameters in surrounding WM structures as well as in the corpus callosum. These findings suggest that weight-loss due to physical exercise in overweight to obese participants induces profound structural brain plasticity, not primarily of sensorimotor brain regions involved in physical exercise, but of regions previously reported to be structurally affected by an increased body weight and functionally implemented in gustation and cognitive processing. PMID:26190989

  2. ErbB4 in Laminated Brain Structures: A Neurodevelopmental Approach to Schizophrenia

    PubMed Central

    Perez-Garcia, Carlos G.

    2015-01-01

    The susceptibility genes for schizophrenia Neuregulin-1 (NRG1) and ErbB4 have critical functions during brain development and in the adult. Alterations in the ErbB4 signaling pathway cause a variety of neurodevelopmental defects including deficiencies in neuronal migration, synaptic plasticity, and myelination. I have used the ErbB4-/- HER4heart KO mice to study the neurodevelopmental insults associated to deficiencies in the NRG1-ErbB4 signaling pathway and their potential implication with brain disorders such as schizophrenia, a chronic psychiatric disease affecting 1% of the population worldwide. ErbB4 deletion results in an array of neurodevelopmental deficits that are consistent with a schizophrenic model. First, similar defects appear in multiple brain structures, from the cortex to the cerebellum. Second, these defects affect multiple aspects of brain development, from deficits in neuronal migration to impairments in excitatory/inhibitory systems, including reductions in brain volume, cortical and cerebellar heterotopias, alterations in number and distribution of specific subpopulations of interneurons, deficiencies in the astrocytic and oligodendrocytic lineages, and additional insults in major brain structures. This suggests that alterations in specific neurodevelopmental genes that play similar functions in multiple neuroanatomical structures might account for some of the symptomatology observed in schizophrenic patients, such as defects in cognition. ErbB4 mutation uncovers flaws in brain development that are compatible with a neurodevelopmental model of schizophrenia, and it establishes a comprehensive model to study the basis of the disorder before symptoms are detected in the adult. PMID:26733804

  3. Imaging functional and structural brain connectomics in attention-deficit/hyperactivity disorder.

    PubMed

    Cao, Miao; Shu, Ni; Cao, Qingjiu; Wang, Yufeng; He, Yong

    2014-12-01

    Attention-deficit/hyperactivity disorder (ADHD) is one of the most common neurodevelopment disorders in childhood. Clinically, the core symptoms of this disorder include inattention, hyperactivity, and impulsivity. Previous studies have documented that these behavior deficits in ADHD children are associated with not only regional brain abnormalities but also changes in functional and structural connectivity among regions. In the past several years, our understanding of how ADHD affects the brain's connectivity has been greatly advanced by mapping topological alterations of large-scale brain networks (i.e., connectomes) using noninvasive neurophysiological and neuroimaging techniques (e.g., electroencephalograph, functional MRI, and diffusion MRI) in combination with graph theoretical approaches. In this review, we summarize the recent progresses of functional and structural brain connectomics in ADHD, focusing on graphic analysis of large-scale brain systems. Convergent evidence suggests that children with ADHD had abnormal small-world properties in both functional and structural brain networks characterized by higher local clustering and lower global integrity, suggesting a disorder-related shift of network topology toward regular configurations. Moreover, ADHD children showed the redistribution of regional nodes and connectivity involving the default-mode, attention, and sensorimotor systems. Importantly, these ADHD-associated alterations significantly correlated with behavior disturbances (e.g., inattention and hyperactivity/impulsivity symptoms) and exhibited differential patterns between clinical subtypes. Together, these connectome-based studies highlight brain network dysfunction in ADHD, thus opening up a new window into our understanding of the pathophysiological mechanisms of this disorder. These works might also have important implications on the development of imaging-based biomarkers for clinical diagnosis and treatment evaluation in ADHD.

  4. [Study on ultra-structural pathological changes of rats poisoned by tetramine].

    PubMed

    Zhi, Chuan-hong; Liu, Liang; Liu, Yan

    2005-05-01

    To observe ultra-structural pathological changes of materiality viscera of rats poisoned by different dose of tetramine and to study the toxic mechanism. Acute and subacute tetramine toxicity models were made by oral administration with different dose of tetramine. Brain, heart, liver, spleen and kidney were extracted and observed by electromicroscopic examination. The injuries of brain cells, cardiocytes and liver cells were induced by different dose of tetramine. These were not obviously different of the injuries of the kindy cells and spleen cells of rats poisoned by different dose of tetramine. Ultra-structural pathological changes were abserved including mitochondria slight swelling and neurolemma's array turbulence in the brain cells, mitochondria swelling or abolish and rupture of muscle fiber in the heart cells, mitochondria swelling and the glycogen decreased in the liver cells. The toxic target organs of tetramine are the heart, brain and liver.

  5. Individual Functional ROI Optimization via Maximization of Group-wise Consistency of Structural and Functional Profiles

    PubMed Central

    Li, Kaiming; Guo, Lei; Zhu, Dajiang; Hu, Xintao; Han, Junwei; Liu, Tianming

    2013-01-01

    Studying connectivities among functional brain regions and the functional dynamics on brain networks has drawn increasing interest. A fundamental issue that affects functional connectivity and dynamics studies is how to determine the best possible functional brain regions or ROIs (regions of interest) for a group of individuals, since the connectivity measurements are heavily dependent on ROI locations. Essentially, identification of accurate, reliable and consistent corresponding ROIs is challenging due to the unclear boundaries between brain regions, variability across individuals, and nonlinearity of the ROIs. In response to these challenges, this paper presents a novel methodology to computationally optimize ROIs locations derived from task-based fMRI data for individuals so that the optimized ROIs are more consistent, reproducible and predictable across brains. Our computational strategy is to formulate the individual ROI location optimization as a group variance minimization problem, in which group-wise consistencies in functional/structural connectivity patterns and anatomic profiles are defined as optimization constraints. Our experimental results from multimodal fMRI and DTI data show that the optimized ROIs have significantly improved consistency in structural and functional profiles across individuals. These improved functional ROIs with better consistency could contribute to further study of functional interaction and dynamics in the human brain. PMID:22281931

  6. Spectral mapping of brain functional connectivity from diffusion imaging.

    PubMed

    Becker, Cassiano O; Pequito, Sérgio; Pappas, George J; Miller, Michael B; Grafton, Scott T; Bassett, Danielle S; Preciado, Victor M

    2018-01-23

    Understanding the relationship between the dynamics of neural processes and the anatomical substrate of the brain is a central question in neuroscience. On the one hand, modern neuroimaging technologies, such as diffusion tensor imaging, can be used to construct structural graphs representing the architecture of white matter streamlines linking cortical and subcortical structures. On the other hand, temporal patterns of neural activity can be used to construct functional graphs representing temporal correlations between brain regions. Although some studies provide evidence that whole-brain functional connectivity is shaped by the underlying anatomy, the observed relationship between function and structure is weak, and the rules by which anatomy constrains brain dynamics remain elusive. In this article, we introduce a methodology to map the functional connectivity of a subject at rest from his or her structural graph. Using our methodology, we are able to systematically account for the role of structural walks in the formation of functional correlations. Furthermore, in our empirical evaluations, we observe that the eigenmodes of the mapped functional connectivity are associated with activity patterns associated with different cognitive systems.

  7. Evaluation of five diffeomorphic image registration algorithms for mouse brain magnetic resonance microscopy.

    PubMed

    Fu, Zhenrong; Lin, Lan; Tian, Miao; Wang, Jingxuan; Zhang, Baiwen; Chu, Pingping; Li, Shaowu; Pathan, Muhammad Mohsin; Deng, Yulin; Wu, Shuicai

    2017-11-01

    The development of genetically engineered mouse models for neuronal diseases and behavioural disorders have generated a growing need for small animal imaging. High-resolution magnetic resonance microscopy (MRM) provides powerful capabilities for noninvasive studies of mouse brains, while avoiding some limits associated with the histological procedures. Quantitative comparison of structural images is a critical step in brain imaging analysis, which highly relies on the performance of image registration techniques. Nowadays, there is a mushrooming growth of human brain registration algorithms, while fine-tuning of those algorithms for mouse brain MRMs is rarely addressed. Because of their topology preservation property and outstanding performance in human studies, diffeomorphic transformations have become popular in computational anatomy. In this study, we specially tuned five diffeomorphic image registration algorithms [DARTEL, geodesic shooting, diffeo-demons, SyN (Greedy-SyN and geodesic-SyN)] for mouse brain MRMs and evaluated their performance using three measures [volume overlap percentage (VOP), residual intensity error (RIE) and surface concordance ratio (SCR)]. Geodesic-SyN performed significantly better than the other methods according to all three different measures. These findings are important for the studies on structural brain changes that may occur in wild-type and transgenic mouse brains. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  8. The effects of lithium and anticonvulsants on brain structure in bipolar disorder.

    PubMed

    Germaná, C; Kempton, M J; Sarnicola, A; Christodoulou, T; Haldane, M; Hadjulis, M; Girardi, P; Tatarelli, R; Frangou, S

    2010-12-01

    To investigate the effect of lithium, anticonvulsants and antipsychotics on brain structure in bipolar disorder (BD). A cross-sectional structural brain magnetic resonance imaging study of 74 remitted patients with BD, aged 18-65, who were receiving long-term prophylactic treatment with lithium or anticonvulsants or antipsychotics. Global and regional grey matter, white matter, and cerebrospinal fluid volumes were compared between treatment groups. Grey matter in the subgenual anterior cingulate gyrus on the right (extending into the hypothalamus) and in the postcentral gyrus, the hippocampus/amygdale complex and the insula on the left was greater in BD patients on lithium treatment compared to all other treatment groups. Lithium treatment in BD has a significant effect on brain structure particularly in limbic/paralimbic regions associated with emotional processing. © 2010 John Wiley & Sons A/S.

  9. A review on neuroimaging studies of genetic and environmental influences on early brain development.

    PubMed

    Gao, Wei; Grewen, Karen; Knickmeyer, Rebecca C; Qiu, Anqi; Salzwedel, Andrew; Lin, Weili; Gilmore, John H

    2018-04-16

    The past decades witnessed a surge of interest in neuroimaging study of normal and abnormal early brain development. Structural and functional studies of normal early brain development revealed massive structural maturation as well as sequential, coordinated, and hierarchical emergence of functional networks during the infancy period, providing a great foundation for the investigation of abnormal early brain development mechanisms. Indeed, studies of altered brain development associated with either genetic or environmental risks emerged and thrived. In this paper, we will review selected studies of genetic and environmental risks that have been relatively more extensively investigated-familial risks, candidate risk genes, and genome-wide association studies (GWAS) on the genetic side; maternal mood disorders and prenatal drug exposures on the environmental side. Emerging studies on environment-gene interactions will also be reviewed. Our goal was not to perform an exhaustive review of all studies in the field but to leverage some representative ones to summarize the current state, point out potential limitations, and elicit discussions on important future directions. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Rapid Morphological Brain Abnormalities during Acute Methamphetamine Intoxication in the Rat. An Experimental study using Light and Electron Microscopy

    PubMed Central

    Sharma, Hari S.; Kiyatkin, Eugene A.

    2009-01-01

    This study describes morphological abnormalities of brain cells during acute methamphetamine (METH) intoxication in the rat and demonstrates the role of hyperthermia, disruption of the blood-brain barrier (BBB) and edema in their development. Rats with chronically implanted brain, muscle and skin temperature probes and an intravenous (iv) catheter were exposed to METH (9 mg/kg) at standard (23°C) and warm (29°C) ambient temperatures, allowing for the observation of hyperthermia ranging from mild to pathological levels (38–42°C). When brain temperature peaked or reached a level suggestive of possible lethality (>41.5°C), rats were injected with Evans blue (EB), rapidly anesthetized, perfused, and their brains were taken for further analyses. Four brain areas (cortex, hippocampus, thalamus and hypothalamus) were analyzed for EB extravasation, water and electrolyte (Na+, K+, Cl−) contents, immunostained for albumin and glial fibrillary acidic protein, and examined for neuronal, glial and axonal alterations using standard light and electron microscopy. These examinations revealed profound abnormalities in neuronal, glial, and endothelial cells, which were stronger with METH administered at 29°C than 23°C and tightly correlated with brain and body hyperthermia. These changes had some structural specificity, but in each structure they tightly correlated with increases in EB levels, the numbers of albumin-positive cells, and water and ion contents, suggesting leakage of the BBB, acutely developing brain edema, and serious shifts in brain ion homeostasis as leading factors underlying brain abnormalities. While most of these acute structural and functional abnormalities appear to be reversible, they could trigger subsequent cellular alterations in the brain and accelerate neurodegeneration—the most dangerous complication of chronic amphetamine-like drug abuse. PMID:18773954

  11. Classifying social anxiety disorder using multivoxel pattern analyses of brain function and structure☆

    PubMed Central

    Frick, Andreas; Gingnell, Malin; Marquand, Andre F.; Howner, Katarina; Fischer, Håkan; Kristiansson, Marianne; Williams, Steven C.R.; Fredrikson, Mats; Furmark, Tomas

    2014-01-01

    Functional neuroimaging of social anxiety disorder (SAD) support altered neural activation to threat-provoking stimuli focally in the fear network, while structural differences are distributed over the temporal and frontal cortices as well as limbic structures. Previous neuroimaging studies have investigated the brain at the voxel level using mass-univariate methods which do not enable detection of more complex patterns of activity and structural alterations that may separate SAD from healthy individuals. Support vector machine (SVM) is a supervised machine learning method that capitalizes on brain activation and structural patterns to classify individuals. The aim of this study was to investigate if it is possible to discriminate SAD patients (n = 14) from healthy controls (n = 12) using SVM based on (1) functional magnetic resonance imaging during fearful face processing and (2) regional gray matter volume. Whole brain and region of interest (fear network) SVM analyses were performed for both modalities. For functional scans, significant classifications were obtained both at whole brain level and when restricting the analysis to the fear network while gray matter SVM analyses correctly classified participants only when using the whole brain search volume. These results support that SAD is characterized by aberrant neural activation to affective stimuli in the fear network, while disorder-related alterations in regional gray matter volume are more diffusely distributed over the whole brain. SVM may thus be useful for identifying imaging biomarkers of SAD. PMID:24239689

  12. Structural and functional imaging studies in chronic cannabis users: a systematic review of adolescent and adult findings.

    PubMed

    Batalla, Albert; Bhattacharyya, Sagnik; Yücel, Murat; Fusar-Poli, Paolo; Crippa, Jose Alexandre; Nogué, Santiago; Torrens, Marta; Pujol, Jesús; Farré, Magí; Martin-Santos, Rocio

    2013-01-01

    The growing concern about cannabis use, the most commonly used illicit drug worldwide, has led to a significant increase in the number of human studies using neuroimaging techniques to determine the effect of cannabis on brain structure and function. We conducted a systematic review to assess the evidence of the impact of chronic cannabis use on brain structure and function in adults and adolescents. Papers published until August 2012 were included from EMBASE, Medline, PubMed and LILACS databases following a comprehensive search strategy and pre-determined set of criteria for article selection. Only neuroimaging studies involving chronic cannabis users with a matched control group were considered. One hundred and forty-two studies were identified, of which 43 met the established criteria. Eight studies were in adolescent population. Neuroimaging studies provide evidence of morphological brain alterations in both population groups, particularly in the medial temporal and frontal cortices, as well as the cerebellum. These effects may be related to the amount of cannabis exposure. Functional neuroimaging studies suggest different patterns of resting global and brain activity during the performance of several cognitive tasks both in adolescents and adults, which may indicate compensatory effects in response to chronic cannabis exposure. However, the results pointed out methodological limitations of the work conducted to date and considerable heterogeneity in the findings. Chronic cannabis use may alter brain structure and function in adult and adolescent population. Further studies should consider the use of convergent methodology, prospective large samples involving adolescent to adulthood subjects, and data-sharing initiatives.

  13. Structural and Functional Imaging Studies in Chronic Cannabis Users: A Systematic Review of Adolescent and Adult Findings

    PubMed Central

    Batalla, Albert; Bhattacharyya, Sagnik; Yücel, Murat; Fusar-Poli, Paolo; Crippa, Jose Alexandre; Nogué, Santiago; Torrens, Marta; Pujol, Jesús; Farré, Magí; Martin-Santos, Rocio

    2013-01-01

    Background The growing concern about cannabis use, the most commonly used illicit drug worldwide, has led to a significant increase in the number of human studies using neuroimaging techniques to determine the effect of cannabis on brain structure and function. We conducted a systematic review to assess the evidence of the impact of chronic cannabis use on brain structure and function in adults and adolescents. Methods Papers published until August 2012 were included from EMBASE, Medline, PubMed and LILACS databases following a comprehensive search strategy and pre-determined set of criteria for article selection. Only neuroimaging studies involving chronic cannabis users with a matched control group were considered. Results One hundred and forty-two studies were identified, of which 43 met the established criteria. Eight studies were in adolescent population. Neuroimaging studies provide evidence of morphological brain alterations in both population groups, particularly in the medial temporal and frontal cortices, as well as the cerebellum. These effects may be related to the amount of cannabis exposure. Functional neuroimaging studies suggest different patterns of resting global and brain activity during the performance of several cognitive tasks both in adolescents and adults, which may indicate compensatory effects in response to chronic cannabis exposure. Limitations However, the results pointed out methodological limitations of the work conducted to date and considerable heterogeneity in the findings. Conclusion Chronic cannabis use may alter brain structure and function in adult and adolescent population. Further studies should consider the use of convergent methodology, prospective large samples involving adolescent to adulthood subjects, and data-sharing initiatives. PMID:23390554

  14. Long-term antipsychotic and benzodiazepine use and brain volume changes in schizophrenia: The Northern Finland Birth Cohort 1966 study.

    PubMed

    Huhtaniska, Sanna; Jääskeläinen, Erika; Heikka, Tuomas; Moilanen, Jani S; Lehtiniemi, Heli; Tohka, Jussi; Manjón, José V; Coupé, Pierrick; Björnholm, Lassi; Koponen, Hannu; Veijola, Juha; Isohanni, Matti; Kiviniemi, Vesa; Murray, Graham K; Miettunen, Jouko

    2017-08-30

    High doses of antipsychotics have been associated with loss in cortical and total gray matter in schizophrenia. However, previous imaging studies have not taken benzodiazepine use into account, in spite of evidence suggesting adverse effects such as cognitive impairment and increased mortality. In this Northern Finland Birth Cohort 1966 study, 69 controls and 38 individuals with schizophrenia underwent brain MRI at the ages of 34 and 43 years. At baseline, the average illness duration was over 10 years. Brain structures were delineated using an automated volumetry system, volBrain, and medication data on cumulative antipsychotic and benzodiazepine doses were collected using medical records and interviews. We used linear regression with intracranial volume and sex as covariates; illness severity was also taken into account. Though both medication doses associated to volumetric changes in subcortical structures, after adjusting for each other and the average PANSS total score, higher scan-interval antipsychotic dose associated only to volume increase in lateral ventricles and higher benzodiazepine dose associated with volume decrease in the caudate nucleus. To our knowledge, there are no previous studies reporting associations between benzodiazepine dose and brain structural changes. Further studies should focus on how these observations correspond to cognition and functioning. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  15. Genetics, Cognition, and Neurobiology of Schizotypal Personality: A Review of the Overlap with Schizophrenia

    PubMed Central

    Ettinger, Ulrich; Meyhöfer, Inga; Steffens, Maria; Wagner, Michael; Koutsouleris, Nikolaos

    2013-01-01

    Schizotypy refers to a set of temporally stable traits that are observed in the general population and that resemble the signs and symptoms of schizophrenia. Here, we review evidence from studies on genetics, cognition, perception, motor and oculomotor control, brain structure, brain function, and psychopharmacology in schizotypy. We specifically focused on identifying areas of overlap between schizotypy and schizophrenia. Evidence was corroborated that significant overlap exists between the two, covering the behavioral brain structural and functional as well molecular levels. In particular, several studies showed that individuals with high levels of schizotypal traits exhibit alterations in neurocognitive task performance and underlying brain function similar to the deficits seen in patients with schizophrenia. Studies of brain structure have shown both volume reductions and increase in schizotypy, pointing to schizophrenia-like deficits as well as possible protective or compensatory mechanisms. Experimental pharmacological studies have shown that high levels of schizotypy are associated with (i) enhanced dopaminergic response in striatum following administration of amphetamine and (ii) improvement of cognitive performance following administration of antipsychotic compounds. Together, this body of work suggests that schizotypy shows overlap with schizophrenia across multiple behavioral and neurobiological domains, suggesting that the study of schizotypal traits may be useful in improving our understanding of the etiology of schizophrenia. PMID:24600411

  16. Structures and Functions of Selective Attention.

    ERIC Educational Resources Information Center

    Posner, Michael I.

    While neuropsychology relates the neural structures damaged in traumatic brain injury with their cognitive functions in daily life, this report reviews evidence that elementary operations of cognition as defined by cognitive studies are the level at which the brain localizes its computations. Orienting of visual attention is used as a model task.…

  17. Brief Report: CANTAB Performance and Brain Structure in Pediatric Patients with Asperger Syndrome

    ERIC Educational Resources Information Center

    Kaufmann, Liane; Zotter, Sibylle; Pixner, Silvia; Starke, Marc; Haberlandt, Edda; Steinmayr-Gensluckner, Maria; Egger, Karl; Schocke, Michael; Weiss, Elisabeth M.; Marksteiner, Josef

    2013-01-01

    By merging neuropsychological (CANTAB/Cambridge Neuropsychological Test Automated Battery) and structural brain imaging data (voxel-based-morphometry) the present study sought to identify the neurocognitive correlates of executive functions in individuals with Asperger syndrome (AS) compared to healthy controls. Results disclosed subtle group…

  18. Comparison of the brain development trajectory between Chinese and U.S. children and adolescents

    PubMed Central

    Xie, Wanze; Richards, John E.; Lei, Du; Lee, Kang; Gong, Qiyong

    2015-01-01

    This current study investigated brain development of Chinese and American children and adolescents from 8 to 16 years of age using structural magnetic resonance imaging (MRI) techniques. Analyses comparing Chinese and U.S. children brain/head MR images were performed to explore similarities and differences in the trajectory of brain development between these two groups. Our results revealed regional and age differences in both brain/head morphological and tissue level development between Chinese and U.S. children. Chinese children's brains and heads were shorter, wider, and taller than those of U.S. children. There were significant differences in the gray matter (GM) and white matter (WM) intensity between the two nationalities. Development trajectories for cerebral volume, GM, and several key brain structures were also distinct between these two populations. PMID:25698941

  19. Development of human brain structural networks through infancy and childhood.

    PubMed

    Huang, Hao; Shu, Ni; Mishra, Virendra; Jeon, Tina; Chalak, Lina; Wang, Zhiyue J; Rollins, Nancy; Gong, Gaolang; Cheng, Hua; Peng, Yun; Dong, Qi; He, Yong

    2015-05-01

    During human brain development through infancy and childhood, microstructural and macrostructural changes take place to reshape the brain's structural networks and better adapt them to sophisticated functional and cognitive requirements. However, structural topological configuration of the human brain during this specific development period is not well understood. In this study, diffusion magnetic resonance image (dMRI) of 25 neonates, 13 toddlers, and 25 preadolescents were acquired to characterize network dynamics at these 3 landmark cross-sectional ages during early childhood. dMRI tractography was used to construct human brain structural networks, and the underlying topological properties were quantified by graph-theory approaches. Modular organization and small-world attributes are evident at birth with several important topological metrics increasing monotonically during development. Most significant increases of regional nodes occur in the posterior cingulate cortex, which plays a pivotal role in the functional default mode network. Positive correlations exist between nodal efficiencies and fractional anisotropy of the white matter traced from these nodes, while correlation slopes vary among the brain regions. These results reveal substantial topological reorganization of human brain structural networks through infancy and childhood, which is likely to be the outcome of both heterogeneous strengthening of the major white matter tracts and pruning of other axonal fibers. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Childhood adversity impacts on brain subcortical structures relevant to depression.

    PubMed

    Frodl, Thomas; Janowitz, Deborah; Schmaal, Lianne; Tozzi, Leonardo; Dobrowolny, Henrik; Stein, Dan J; Veltman, Dick J; Wittfeld, Katharina; van Erp, Theo G M; Jahanshad, Neda; Block, Andrea; Hegenscheid, Katrin; Völzke, Henry; Lagopoulos, Jim; Hatton, Sean N; Hickie, Ian B; Frey, Eva Maria; Carballedo, Angela; Brooks, Samantha J; Vuletic, Daniella; Uhlmann, Anne; Veer, Ilya M; Walter, Henrik; Schnell, Knut; Grotegerd, Dominik; Arolt, Volker; Kugel, Harald; Schramm, Elisabeth; Konrad, Carsten; Zurowski, Bartosz; Baune, Bernhard T; van der Wee, Nic J A; van Tol, Marie-Jose; Penninx, Brenda W J H; Thompson, Paul M; Hibar, Derrek P; Dannlowski, Udo; Grabe, Hans J

    2017-03-01

    Childhood adversity plays an important role for development of major depressive disorder (MDD). There are differences in subcortical brain structures between patients with MDD and healthy controls, but the specific impact of childhood adversity on such structures in MDD remains unclear. Thus, aim of the present study was to investigate whether childhood adversity is associated with subcortical volumes and how it interacts with a diagnosis of MDD and sex. Within the ENIGMA-MDD network, nine university partner sites, which assessed childhood adversity and magnetic resonance imaging in patients with MDD and controls, took part in the current joint mega-analysis. In this largest effort world-wide to identify subcortical brain structure differences related to childhood adversity, 3036 participants were analyzed for subcortical brain volumes using FreeSurfer. A significant interaction was evident between childhood adversity, MDD diagnosis, sex, and region. Increased exposure to childhood adversity was associated with smaller caudate volumes in females independent of MDD. All subcategories of childhood adversity were negatively associated with caudate volumes in females - in particular emotional neglect and physical neglect (independently from age, ICV, imaging site and MDD diagnosis). There was no interaction effect between childhood adversity and MDD diagnosis on subcortical brain volumes. Childhood adversity is one of the contributors to brain structural abnormalities. It is associated with subcortical brain abnormalities that are relevant to psychiatric disorders such as depression. Copyright © 2016. Published by Elsevier Ltd.

  1. Common genetic variants influence human subcortical brain structures

    PubMed Central

    Hibar, Derrek P.; Stein, Jason L.; Renteria, Miguel E.; Arias-Vasquez, Alejandro; Desrivières, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S.; Armstrong, Nicola J.; Bernard, Manon; Bohlken, Marc M.; Boks, Marco P.; Bralten, Janita; Brown, Andrew A.; Chakravarty, M. Mallar; Chen, Qiang; Ching, Christopher R. K.; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L.; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J.; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H.; Olde Loohuis, Loes M.; Luciano, Michelle; Macare, Christine; Mather, Karen A.; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L.; Roiz-Santiañez, Roberto; Rose, Emma J.; Salami, Alireza; Sämann, Philipp G.; Schmaal, Lianne; Schork, Andrew J.; Shin, Jean; Strike, Lachlan T.; Teumer, Alexander; van Donkelaar, Marjolein M. J.; van Eijk, Kristel R.; Walters, Raymond K.; Westlye, Lars T.; Whelan, Christopher D.; Winkler, Anderson M.; Zwiers, Marcel P.; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M. H.; Hartberg, Cecilie B.; Haukvik, Unn K.; Heister, Angelien J. G. A. M.; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C. M.; Lopez, Lorna M.; Makkinje, Remco R. R.; Matarin, Mar; Naber, Marlies A. M.; McKay, D. Reese; Needham, Margaret; Nugent, Allison C.; Pütz, Benno; Royle, Natalie A.; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S. L.; van Hulzen, Kimm J. E.; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A.; Bastin, Mark E.; Brodaty, Henry; Bulayeva, Kazima B.; Carless, Melanie A.; Cichon, Sven; Corvin, Aiden; Curran, Joanne E.; Czisch, Michael; de Zubicaray, Greig I.; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D.; Erk, Susanne; Fedko, Iryna O.; Ferrucci, Luigi; Foroud, Tatiana M.; Fox, Peter T.; Fukunaga, Masaki; Gibbs, J. Raphael; Göring, Harald H. H.; Green, Robert C.; Guelfi, Sebastian; Hansell, Narelle K.; Hartman, Catharina A.; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G.; Heslenfeld, Dirk J.; Hoekstra, Pieter J.; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R.; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W.; Kochunov, Peter; Kwok, John B.; Lawrie, Stephen M.; Liu, Xinmin; Longo, Dan L.; McMahon, Katie L.; Meisenzahl, Eva; Melle, Ingrid; Mohnke, Sebastian; Montgomery, Grant W.; Mostert, Jeanette C.; Mühleisen, Thomas W.; Nalls, Michael A.; Nichols, Thomas E.; Nilsson, Lars G.; Nöthen, Markus M.; Ohi, Kazutaka; Olvera, Rene L.; Perez-Iglesias, Rocio; Pike, G. Bruce; Potkin, Steven G.; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D.; Rujescu, Dan; Schnell, Knut; Schofield, Peter R.; Smith, Colin; Steen, Vidar M.; Sussmann, Jessika E.; Thalamuthu, Anbupalam; Toga, Arthur W.; Traynor, Bryan J.; Troncoso, Juan; Turner, Jessica A.; Valdés Hernández, Maria C.; van ’t Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J. A.; van Tol, Marie-Jose; Veltman, Dick J.; Wassink, Thomas H.; Westman, Eric; Zielke, Ronald H.; Zonderman, Alan B.; Ashbrook, David G.; Hager, Reinmar; Lu, Lu; McMahon, Francis J.; Morris, Derek W.; Williams, Robert W.; Brunner, Han G.; Buckner, Randy L.; Buitelaar, Jan K.; Cahn, Wiepke; Calhoun, Vince D.; Cavalleri, Gianpiero L.; Crespo-Facorro, Benedicto; Dale, Anders M.; Davies, Gareth E.; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C.; Espeseth, Thomas; Gollub, Randy L.; Ho, Beng-Choon; Hoffmann, Wolfgang; Hosten, Norbert; Kahn, René S.; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Müller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W. J. H.; Roffman, Joshua L.; Sisodiya, Sanjay M.; Smoller, Jordan W.; van Bokhoven, Hans; van Haren, Neeltje E. M.; Völzke, Henry; Walter, Henrik; Weiner, Michael W.; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A.; Blangero, John; Boomsma, Dorret I.; Brouwer, Rachel M.; Cannon, Dara M.; Cookson, Mark R.; de Geus, Eco J. C.; Deary, Ian J.; Donohoe, Gary; Fernández, Guillén; Fisher, Simon E.; Francks, Clyde; Glahn, David C.; Grabe, Hans J.; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Hulshoff Pol, Hilleke E.; Jönsson, Erik G.; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S.; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M.; Ophoff, Roel A.; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S.; Saykin, Andrew J.; Simmons, Andy; Singleton, Andrew; Soininen, Hilkka; Wardlaw, Joanna M.; Weale, Michael E.; Weinberger, Daniel R.; Adams, Hieab H. H.; Launer, Lenore J.; Seiler, Stephan; Schmidt, Reinhold; Chauhan, Ganesh; Satizabal, Claudia L.; Becker, James T.; Yanek, Lisa; van der Lee, Sven J.; Ebling, Maritza; Fischl, Bruce; Longstreth, W. T.; Greve, Douglas; Schmidt, Helena; Nyquist, Paul; Vinke, Louis N.; van Duijn, Cornelia M.; Xue, Luting; Mazoyer, Bernard; Bis, Joshua C.; Gudnason, Vilmundur; Seshadri, Sudha; Ikram, M. Arfan; Martin, Nicholas G.; Wright, Margaret J.; Schumann, Gunter; Franke, Barbara; Thompson, Paul M.; Medland, Sarah E.

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences1. Subcortical brain regions form circuits with cortical areas to coordinate movement2, learning, memory3 and motivation4, and altered circuits can lead to abnormal behaviour and disease2. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume5 and intracranial volume6. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10−33; 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability inhuman brain development, and may help to determine mechanisms of neuropsychiatric dysfunction. PMID:25607358

  2. Selective vulnerability of Rich Club brain regions is an organizational principle of structural connectivity loss in Huntington's disease.

    PubMed

    McColgan, Peter; Seunarine, Kiran K; Razi, Adeel; Cole, James H; Gregory, Sarah; Durr, Alexandra; Roos, Raymund A C; Stout, Julie C; Landwehrmeyer, Bernhard; Scahill, Rachael I; Clark, Chris A; Rees, Geraint; Tabrizi, Sarah J

    2015-11-01

    Huntington's disease can be predicted many years before symptom onset, and thus makes an ideal model for studying the earliest mechanisms of neurodegeneration. Diffuse patterns of structural connectivity loss occur in the basal ganglia and cortex early in the disease. However, the organizational principles that underlie these changes are unclear. By understanding such principles we can gain insight into the link between the cellular pathology caused by mutant huntingtin and its downstream effect at the macroscopic level. The 'rich club' is a pattern of organization established in healthy human brains, where specific hub 'rich club' brain regions are more highly connected to each other than other brain regions. We hypothesized that selective loss of rich club connectivity might represent an organizing principle underlying the distributed pattern of structural connectivity loss seen in Huntington's disease. To test this hypothesis we performed diffusion tractography and graph theoretical analysis in a pseudo-longitudinal study of 50 premanifest and 38 manifest Huntington's disease participants compared with 47 healthy controls. Consistent with our hypothesis we found that structural connectivity loss selectively affected rich club brain regions in premanifest and manifest Huntington's disease participants compared with controls. We found progressive network changes across controls, premanifest Huntington's disease and manifest Huntington's disease characterized by increased network segregation in the premanifest stage and loss of network integration in manifest disease. These regional and whole brain network differences were highly correlated with cognitive and motor deficits suggesting they have pathophysiological relevance. We also observed greater reductions in the connectivity of brain regions that have higher network traffic and lower clustering of neighbouring regions. This provides a potential mechanism that results in a characteristic pattern of structural connectivity loss targeting highly connected brain regions with high network traffic and low clustering of neighbouring regions. Our findings highlight the role of the rich club as a substrate for the structural connectivity loss seen in Huntington's disease and have broader implications for understanding the connection between molecular and systems level pathology in neurodegenerative disease. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain.

  3. Algebraic Topology of Multi-Brain Connectivity Networks Reveals Dissimilarity in Functional Patterns during Spoken Communications

    PubMed Central

    Tadić, Bosiljka; Andjelković, Miroslav; Boshkoska, Biljana Mileva; Levnajić, Zoran

    2016-01-01

    Human behaviour in various circumstances mirrors the corresponding brain connectivity patterns, which are suitably represented by functional brain networks. While the objective analysis of these networks by graph theory tools deepened our understanding of brain functions, the multi-brain structures and connections underlying human social behaviour remain largely unexplored. In this study, we analyse the aggregate graph that maps coordination of EEG signals previously recorded during spoken communications in two groups of six listeners and two speakers. Applying an innovative approach based on the algebraic topology of graphs, we analyse higher-order topological complexes consisting of mutually interwoven cliques of a high order to which the identified functional connections organise. Our results reveal that the topological quantifiers provide new suitable measures for differences in the brain activity patterns and inter-brain synchronisation between speakers and listeners. Moreover, the higher topological complexity correlates with the listener’s concentration to the story, confirmed by self-rating, and closeness to the speaker’s brain activity pattern, which is measured by network-to-network distance. The connectivity structures of the frontal and parietal lobe consistently constitute distinct clusters, which extend across the listener’s group. Formally, the topology quantifiers of the multi-brain communities exceed the sum of those of the participating individuals and also reflect the listener’s rated attributes of the speaker and the narrated subject. In the broader context, the presented study exposes the relevance of higher topological structures (besides standard graph measures) for characterising functional brain networks under different stimuli. PMID:27880802

  4. The power-proportion method for intracranial volume correction in volumetric imaging analysis.

    PubMed

    Liu, Dawei; Johnson, Hans J; Long, Jeffrey D; Magnotta, Vincent A; Paulsen, Jane S

    2014-01-01

    In volumetric brain imaging analysis, volumes of brain structures are typically assumed to be proportional or linearly related to intracranial volume (ICV). However, evidence abounds that many brain structures have power law relationships with ICV. To take this relationship into account in volumetric imaging analysis, we propose a power law based method-the power-proportion method-for ICV correction. The performance of the new method is demonstrated using data from the PREDICT-HD study.

  5. In-vivo imaging of the morphology and blood perfusion of brain tumours in rats with UHR-OCT (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Bizheva, Kostadinka; Tan, Bingyao; Fisher, Carl J.; Mason, Erik; Lilge, Lothar D.

    2017-02-01

    Brain tumors are characterized with morphological changes at cellular level such as enlarged, non-spherical nuclei, microcalcifications, cysts, etc., and are highly vascularized. In this study, two research-grade optical coherence tomography (OCT) systems operating at 800 nm and 1060 nm with axial resolution of 0.95 µm and 3.5 µm in biological tissue respectively, were used to image in vivo and ex vivo the structure of brain tumours in rats. Female Fischer 344 rats were used for this study, which has received ethics clearance by the Animal Research Ethics Committees of the University of Waterloo and the University Health Network, Toronto. Brain tumours were induced by injection of rat brain cancer cell line (RG2 glioma) through a small craniotomy. Presence of brain tumours was verified by MRI imaging on day 7 post tumour cells injection. The in vivo OCT imaging session was conducted on day 14 of the study with the 1060 nm OCT system and both morphological OCT, Doppler OCT and OMAG images were acquired from the brain tumour and the surrounding healthy brain tissue. After completion of the imaging procedure, the brains were harvested, fixed in formalin and reimaged after 2 weeks with the 800 nm OCT system. The in vivo and ex vivo OCT morphological images were correlated with H and E histology. Results from this study demonstrate that UHR-OCT can distinguish between healthy and cancerous brain tissue based on differences in structural and vascular pattern.

  6. Relations between Brain Structure and Attentional Function in Spina Bifida: Utilization of Robust Statistical Approaches

    PubMed Central

    Kulesz, Paulina A.; Tian, Siva; Juranek, Jenifer; Fletcher, Jack M.; Francis, David J.

    2015-01-01

    Objective Weak structure-function relations for brain and behavior may stem from problems in estimating these relations in small clinical samples with frequently occurring outliers. In the current project, we focused on the utility of using alternative statistics to estimate these relations. Method Fifty-four children with spina bifida meningomyelocele performed attention tasks and received MRI of the brain. Using a bootstrap sampling process, the Pearson product moment correlation was compared with four robust correlations: the percentage bend correlation, the Winsorized correlation, the skipped correlation using the Donoho-Gasko median, and the skipped correlation using the minimum volume ellipsoid estimator Results All methods yielded similar estimates of the relations between measures of brain volume and attention performance. The similarity of estimates across correlation methods suggested that the weak structure-function relations previously found in many studies are not readily attributable to the presence of outlying observations and other factors that violate the assumptions behind the Pearson correlation. Conclusions Given the difficulty of assembling large samples for brain-behavior studies, estimating correlations using multiple, robust methods may enhance the statistical conclusion validity of studies yielding small, but often clinically significant, correlations. PMID:25495830

  7. Relations between volumetric measures of brain structure and attentional function in spina bifida: utilization of robust statistical approaches.

    PubMed

    Kulesz, Paulina A; Tian, Siva; Juranek, Jenifer; Fletcher, Jack M; Francis, David J

    2015-03-01

    Weak structure-function relations for brain and behavior may stem from problems in estimating these relations in small clinical samples with frequently occurring outliers. In the current project, we focused on the utility of using alternative statistics to estimate these relations. Fifty-four children with spina bifida meningomyelocele performed attention tasks and received MRI of the brain. Using a bootstrap sampling process, the Pearson product-moment correlation was compared with 4 robust correlations: the percentage bend correlation, the Winsorized correlation, the skipped correlation using the Donoho-Gasko median, and the skipped correlation using the minimum volume ellipsoid estimator. All methods yielded similar estimates of the relations between measures of brain volume and attention performance. The similarity of estimates across correlation methods suggested that the weak structure-function relations previously found in many studies are not readily attributable to the presence of outlying observations and other factors that violate the assumptions behind the Pearson correlation. Given the difficulty of assembling large samples for brain-behavior studies, estimating correlations using multiple, robust methods may enhance the statistical conclusion validity of studies yielding small, but often clinically significant, correlations. PsycINFO Database Record (c) 2015 APA, all rights reserved.

  8. Structural and functional differences in the cingulate cortex relate to disease severity in anorexia nervosa

    PubMed Central

    Bär, Karl-Jürgen; de la Cruz, Feliberto; Berger, Sandy; Schultz, Carl Christoph; Wagner, Gerd

    2015-01-01

    Background The dysfunction of specific brain areas might account for the distortion of body image in patients with anorexia nervosa. The present study was designed to reveal brain regions that are abnormal in structure and function in patients with this disorder. We hypothesized, based on brain areas of altered activity in patients with anorexia nervosa and regions involved in pain processing, an interrelation of structural aberrations in the frontoparietal–cingulate network and aberrant functional activation during thermal pain processing in patients with the disorder. Methods We determined pain thresholds outside the MRI scanner in patients with anorexia nervosa and matched healthy controls. Thereafter, thermal pain stimuli were applied during fMRI imaging. Structural analyses with high-resolution structural T1-weighted volumes were performed using voxel-based morphometry and a surface-based approach. Results Twenty-six patients and 26 controls participated in our study, and owing to technical difficulties, 15 participants in each group were included in our fMRI analysis. Structural analyses revealed significantly decreased grey matter volume and cortical thickness in the frontoparietal–cingulate network in patients with anorexia nervosa. We detected an increased blood oxygen level–dependent signal in patients during the painful 45°C condition in the midcingulate and posterior cingulate cortex, which positively correlated with increased pain thresholds. Decreased grey matter and cortical thickness correlated negatively with pain thresholds, symptom severity and illness duration, but not with body mass index. Limitations The lack of a specific quantification of body image distortion is a limitation of our study. Conclusion This study provides further evidence for confined structural and functional brain abnormalities in patients with anorexia nervosa in brain regions that are involved in perception and integration of bodily stimuli. The association of structural and functional deviations with thermal thresholds as well as with clinical characteristics might indicate a common neuronal origin. PMID:25825813

  9. Mechanical Evaluation of the Skeletal Structure and Tissue of the Woodpecker and Its Shock Absorbing System

    NASA Astrophysics Data System (ADS)

    Oda, Juhachi; Sakamoto, Jiro; Sakano, Kenichi

    A woodpecker strikes its beak toward a tree repeatedly. But, the damage of brain or the brain concussion doesn’t occur by this action. Human cannot strike strongly the head without the damage of a brain. Therefore, it is predicted that the brain of a woodpecker is protected from the shock by some methods and that the woodpecker has the original mechanism to absorb a shock. In this study, the endoskeltal structure, especially head part structure of woodpecker is dissected and the impact-proof system is analyzed by FEM and model experiment. From the results, it is obvious that the woodpecker has the original impact-proof system as the unique states of hyoid bone, skull, tissue and brain. Moreover it is considered that woodpecker has the advanced impact-proof system relating with not only the head part but also with the whole body.

  10. The mind as a process.

    PubMed

    Bruhn, John G; Wolf, Stewart

    2003-01-01

    Essentially all behavior is regulated by the brain in response to information received from within the body or from the environment. The tangible structures of the brain serve as devices for processing thoughts and emotions as well as information. Stored among the interacting neural structures are memories of past experiences and responses to them. These intangibles participate in determining the decisions made and the actions performed by the brain's structures. There are valuable studies of the clinical and neurological effects of environmental stimuli, but we need to learn more about the processes that lead to these effects. More definitive correlations could be made between environmental stimuli and the neurological pathways they create by studying individual's real life experiences rather than laboratory simulations alone.

  11. From Structure to Circuits: The Contribution of MEG Connectivity Studies to Functional Neurosurgery.

    PubMed

    Pang, Elizabeth W; Snead Iii, O C

    2016-01-01

    New advances in structural neuroimaging have revealed the intricate and extensive connections within the brain, data which have informed a number of ambitious projects such as the mapping of the human connectome. Elucidation of the structural connections of the brain, at both the macro and micro levels, promises new perspectives on brain structure and function that could translate into improved outcomes in functional neurosurgery. The understanding of neuronal structural connectivity afforded by these data now offers a vista on the brain, in both healthy and diseased states, that could not be seen with traditional neuroimaging. Concurrent with these developments in structural imaging, a complementary modality called magnetoencephalography (MEG) has been garnering great attention because it too holds promise for being able to shed light on the intricacies of functional brain connectivity. MEG is based upon the elemental principle of physics that an electrical current generates a magnetic field. Hence, MEG uses highly sensitive biomagnetometers to measure extracranial magnetic fields produced by intracellular neuronal currents. Put simply then, MEG is a measure of neurophysiological activity, which captures the magnetic fields generated by synchronized intraneuronal electrical activity. As such, MEG recordings offer exquisite resolution in the time and oscillatory domain and, as well, when co-registered with magnetic resonance imaging (MRI), offer excellent resolution in the spatial domain. Recent advances in MEG computational and graph theoretical methods have led to studies of connectivity in the time-frequency domain. As such, MEG can elucidate a neurophysiological-based functional circuitry that may enhance what is seen with MRI connectivity studies. In particular, MEG may offer additional insight not possible by MRI when used to study complex eloquent function, where the precise timing and coordination of brain areas is critical. This article will review the traditional use of MEG for functional neurosurgery, describe recent advances in MEG connectivity analyses, and consider the additional benefits that could be gained with the inclusion of MEG connectivity studies. Since MEG has been most widely applied to the study of epilepsy, we will frame this article within the context of epilepsy surgery and functional neurosurgery for epilepsy.

  12. Individual differences in personality traits reflect structural variance in specific brain regions.

    PubMed

    Gardini, Simona; Cloninger, C Robert; Venneri, Annalena

    2009-06-30

    Personality dimensions such as novelty seeking (NS), harm avoidance (HA), reward dependence (RD) and persistence (PER) are said to be heritable, stable across time and dependent on genetic and neurobiological factors. Recently a better understanding of the relationship between personality traits and brain structures/systems has become possible due to advances in neuroimaging techniques. This Magnetic Resonance Imaging (MRI) study investigated if individual differences in these personality traits reflected structural variance in specific brain regions. A large sample of eighty five young adult participants completed the Three-dimensional Personality Questionnaire (TPQ) and had their brain imaged with MRI. A voxel-based correlation analysis was carried out between individuals' personality trait scores and grey matter volume values extracted from 3D brain scans. NS correlated positively with grey matter volume in frontal and posterior cingulate regions. HA showed a negative correlation with grey matter volume in orbito-frontal, occipital and parietal structures. RD was negatively correlated with grey matter volume in the caudate nucleus and in the rectal frontal gyrus. PER showed a positive correlation with grey matter volume in the precuneus, paracentral lobule and parahippocampal gyrus. These results indicate that individual differences in the main personality dimensions of NS, HA, RD and PER, may reflect structural variance in specific brain areas.

  13. Altered structural brain changes and neurocognitive performance in pediatric HIV.

    PubMed

    Yadav, Santosh K; Gupta, Rakesh K; Garg, Ravindra K; Venkatesh, Vimala; Gupta, Pradeep K; Singh, Alok K; Hashem, Sheema; Al-Sulaiti, Asma; Kaura, Deepak; Wang, Ena; Marincola, Francesco M; Haris, Mohammad

    2017-01-01

    Pediatric HIV patients often suffer with neurodevelopmental delay and subsequently cognitive impairment. While tissue injury in cortical and subcortical regions in the brain of adult HIV patients has been well reported there is sparse knowledge about these changes in perinatally HIV infected pediatric patients. We analyzed cortical thickness, subcortical volume, structural connectivity, and neurocognitive functions in pediatric HIV patients and compared with those of pediatric healthy controls. With informed consent, 34 perinatally infected pediatric HIV patients and 32 age and gender matched pediatric healthy controls underwent neurocognitive assessment and brain magnetic resonance imaging (MRI) on a 3 T clinical scanner. Altered cortical thickness, subcortical volumes, and abnormal neuropsychological test scores were observed in pediatric HIV patients. The structural network connectivity analysis depicted lower connection strengths, lower clustering coefficients, and higher path length in pediatric HIV patients than healthy controls. The network betweenness and network hubs in cortico-limbic regions were distorted in pediatric HIV patients. The findings suggest that altered cortical and subcortical structures and regional brain connectivity in pediatric HIV patients may contribute to deficits in their neurocognitive functions. Further, longitudinal studies are required for better understanding of the effect of HIV pathogenesis on brain structural changes throughout the brain development process under standard ART treatment.

  14. Alcohol’s Effects on the Brain: Neuroimaging Results in Humans and Animal Models

    PubMed Central

    Zahr, Natalie M.; Pfefferbaum, Adolf

    2017-01-01

    Brain imaging technology has allowed researchers to conduct rigorous studies of the dynamic course of alcoholism through periods of drinking, sobriety, and relapse and to gain insights into the effects of chronic alcoholism on the human brain. Magnetic resonance imaging (MRI) studies have distinguished alcohol-related brain effects that are permanent from those that are reversible with abstinence. In support of postmortem neuropathological studies showing degeneration of white matter, MRI studies have shown a specific vulnerability of white matter to chronic alcohol exposure. Such studies have demonstrated white-matter volume deficits as well as damage to selective gray-matter structures. Diffusion tensor imaging (DTI), by permitting microstructural characterization of white matter, has extended MRI findings in alcoholics. MR spectroscopy (MRS) allows quantification of several metabolites that shed light on brain biochemical alterations caused by alcoholism. This article focuses on MRI, DTI, and MRS findings in neurological disorders that commonly co-occur with alcoholism, including Wernicke’s encephalopathy, Korsakoff’s syndrome, and hepatic encephalopathy. Also reviewed are neuroimaging findings in animal models of alcoholism and related neurological disorders. This report also suggests that the dynamic course of alcoholism presents a unique opportunity to examine brain structural and functional repair and recovery. PMID:28988573

  15. Third Trimester Brain Growth in Preterm Infants Compared With In Utero Healthy Fetuses.

    PubMed

    Bouyssi-Kobar, Marine; du Plessis, Adré J; McCarter, Robert; Brossard-Racine, Marie; Murnick, Jonathan; Tinkleman, Laura; Robertson, Richard L; Limperopoulos, Catherine

    2016-11-01

    Compared with term infants, preterm infants have impaired brain development at term-equivalent age, even in the absence of structural brain injury. However, details regarding the onset and progression of impaired preterm brain development over the third trimester are unknown. Our primary objective was to compare third-trimester brain volumes and brain growth trajectories in ex utero preterm infants without structural brain injury and in healthy in utero fetuses. As a secondary objective, we examined risk factors associated with brain volumes in preterm infants over the third-trimester postconception. Preterm infants born before 32 weeks of gestational age (GA) and weighing <1500 g with no evidence of structural brain injury on conventional MRI and healthy pregnant women were prospectively recruited. Anatomic T2-weighted brain images of preterm infants and healthy fetuses were parcellated into the following regions: cerebrum, cerebellum, brainstem, and intracranial cavity. We studied 205 participants (75 preterm infants and 130 healthy control fetuses) between 27 and 39 weeks' GA. Third-trimester brain volumes were reduced and brain growth trajectories were slower in the ex utero preterm group compared with the in utero healthy fetuses in the cerebrum, cerebellum, brainstem, and intracranial cavity. Clinical risk factors associated with reduced brain volumes included dexamethasone treatment, the presence of extra-axial blood on brain MRI, confirmed sepsis, and duration of oxygen support. These preterm infants exhibited impaired third-trimester global and regional brain growth in the absence of cerebral/cerebellar parenchymal injury detected by using conventional MRI. Copyright © 2016 by the American Academy of Pediatrics.

  16. Third Trimester Brain Growth in Preterm Infants Compared With In Utero Healthy Fetuses

    PubMed Central

    Bouyssi-Kobar, Marine; du Plessis, Adré J.; McCarter, Robert; Brossard-Racine, Marie; Murnick, Jonathan; Tinkleman, Laura; Robertson, Richard L.

    2016-01-01

    BACKGROUND AND OBJECTIVES: Compared with term infants, preterm infants have impaired brain development at term-equivalent age, even in the absence of structural brain injury. However, details regarding the onset and progression of impaired preterm brain development over the third trimester are unknown. Our primary objective was to compare third-trimester brain volumes and brain growth trajectories in ex utero preterm infants without structural brain injury and in healthy in utero fetuses. As a secondary objective, we examined risk factors associated with brain volumes in preterm infants over the third-trimester postconception. METHODS: Preterm infants born before 32 weeks of gestational age (GA) and weighing <1500 g with no evidence of structural brain injury on conventional MRI and healthy pregnant women were prospectively recruited. Anatomic T2-weighted brain images of preterm infants and healthy fetuses were parcellated into the following regions: cerebrum, cerebellum, brainstem, and intracranial cavity. RESULTS: We studied 205 participants (75 preterm infants and 130 healthy control fetuses) between 27 and 39 weeks’ GA. Third-trimester brain volumes were reduced and brain growth trajectories were slower in the ex utero preterm group compared with the in utero healthy fetuses in the cerebrum, cerebellum, brainstem, and intracranial cavity. Clinical risk factors associated with reduced brain volumes included dexamethasone treatment, the presence of extra-axial blood on brain MRI, confirmed sepsis, and duration of oxygen support. CONCLUSIONS: These preterm infants exhibited impaired third-trimester global and regional brain growth in the absence of cerebral/cerebellar parenchymal injury detected by using conventional MRI. PMID:27940782

  17. Neuroanatomical abnormalities in chronic tinnitus in the human brain

    PubMed Central

    Adjamian, Peyman; Hall, Deborah A.; Palmer, Alan R.; Allan, Thomas W.; Langers, Dave R.M.

    2014-01-01

    In this paper, we review studies that have investigated brain morphology in chronic tinnitus in order to better understand the underlying pathophysiology of the disorder. Current consensus is that tinnitus is a disorder involving a distributed network of peripheral and central pathways in the nervous system. However, the precise mechanism remains elusive and it is unclear which structures are involved. Given that brain structure and function are highly related, identification of anatomical differences may shed light upon the mechanism of tinnitus generation and maintenance. We discuss anatomical changes in the auditory cortex, the limbic system, and prefrontal cortex, among others. Specifically, we discuss the gating mechanism of tinnitus and evaluate the evidence in support of the model from studies of brain anatomy. Although individual studies claim significant effects related to tinnitus, outcomes are divergent and even contradictory across studies. Moreover, results are often confounded by the presence of hearing loss. We conclude that, at present, the overall evidence for structural abnormalities specifically related to tinnitus is poor. As this area of research is expanding, we identify some key considerations for research design and propose strategies for future research. PMID:24892904

  18. Regional growth and atlasing of the developing human brain

    PubMed Central

    Makropoulos, Antonios; Aljabar, Paul; Wright, Robert; Hüning, Britta; Merchant, Nazakat; Arichi, Tomoki; Tusor, Nora; Hajnal, Joseph V.; Edwards, A. David; Counsell, Serena J.; Rueckert, Daniel

    2016-01-01

    Detailed morphometric analysis of the neonatal brain is required to characterise brain development and define neuroimaging biomarkers related to impaired brain growth. Accurate automatic segmentation of neonatal brain MRI is a prerequisite to analyse large datasets. We have previously presented an accurate and robust automatic segmentation technique for parcellating the neonatal brain into multiple cortical and subcortical regions. In this study, we further extend our segmentation method to detect cortical sulci and provide a detailed delineation of the cortical ribbon. These detailed segmentations are used to build a 4-dimensional spatio-temporal structural atlas of the brain for 82 cortical and subcortical structures throughout this developmental period. We employ the algorithm to segment an extensive database of 420 MR images of the developing brain, from 27 to 45 weeks post-menstrual age at imaging. Regional volumetric and cortical surface measurements are derived and used to investigate brain growth and development during this critical period and to assess the impact of immaturity at birth. Whole brain volume, the absolute volume of all structures studied, cortical curvature and cortical surface area increased with increasing age at scan. Relative volumes of cortical grey matter, cerebellum and cerebrospinal fluid increased with age at scan, while relative volumes of white matter, ventricles, brainstem and basal ganglia and thalami decreased. Preterm infants at term had smaller whole brain volumes, reduced regional white matter and cortical and subcortical grey matter volumes, and reduced cortical surface area compared with term born controls, while ventricular volume was greater in the preterm group. Increasing prematurity at birth was associated with a reduction in total and regional white matter, cortical and subcortical grey matter volume, an increase in ventricular volume, and reduced cortical surface area. PMID:26499811

  19. Regional growth and atlasing of the developing human brain.

    PubMed

    Makropoulos, Antonios; Aljabar, Paul; Wright, Robert; Hüning, Britta; Merchant, Nazakat; Arichi, Tomoki; Tusor, Nora; Hajnal, Joseph V; Edwards, A David; Counsell, Serena J; Rueckert, Daniel

    2016-01-15

    Detailed morphometric analysis of the neonatal brain is required to characterise brain development and define neuroimaging biomarkers related to impaired brain growth. Accurate automatic segmentation of neonatal brain MRI is a prerequisite to analyse large datasets. We have previously presented an accurate and robust automatic segmentation technique for parcellating the neonatal brain into multiple cortical and subcortical regions. In this study, we further extend our segmentation method to detect cortical sulci and provide a detailed delineation of the cortical ribbon. These detailed segmentations are used to build a 4-dimensional spatio-temporal structural atlas of the brain for 82 cortical and subcortical structures throughout this developmental period. We employ the algorithm to segment an extensive database of 420 MR images of the developing brain, from 27 to 45weeks post-menstrual age at imaging. Regional volumetric and cortical surface measurements are derived and used to investigate brain growth and development during this critical period and to assess the impact of immaturity at birth. Whole brain volume, the absolute volume of all structures studied, cortical curvature and cortical surface area increased with increasing age at scan. Relative volumes of cortical grey matter, cerebellum and cerebrospinal fluid increased with age at scan, while relative volumes of white matter, ventricles, brainstem and basal ganglia and thalami decreased. Preterm infants at term had smaller whole brain volumes, reduced regional white matter and cortical and subcortical grey matter volumes, and reduced cortical surface area compared with term born controls, while ventricular volume was greater in the preterm group. Increasing prematurity at birth was associated with a reduction in total and regional white matter, cortical and subcortical grey matter volume, an increase in ventricular volume, and reduced cortical surface area. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Multimodal neuroimaging of male and female brain structure in health and disease across the life span.

    PubMed

    Jahanshad, Neda; Thompson, Paul M

    2017-01-02

    Sex differences in brain development and aging are important to identify, as they may help to understand risk factors and outcomes in brain disorders that are more prevalent in one sex compared with the other. Brain imaging techniques have advanced rapidly in recent years, yielding detailed structural and functional maps of the living brain. Even so, studies are often limited in sample size, and inconsistent findings emerge, one example being varying findings regarding sex differences in the size of the corpus callosum. More recently, large-scale neuroimaging consortia such as the Enhancing Neuro Imaging Genetics through Meta Analysis Consortium have formed, pooling together expertise, data, and resources from hundreds of institutions around the world to ensure adequate power and reproducibility. These initiatives are helping us to better understand how brain structure is affected by development, disease, and potential modulators of these effects, including sex. This review highlights some established and disputed sex differences in brain structure across the life span, as well as pitfalls related to interpreting sex differences in health and disease. We also describe sex-related findings from the ENIGMA consortium, and ongoing efforts to better understand sex differences in brain circuitry. © 2016 The Authors. Journal of Neuroscience Research Published by Wiley Periodicals, Inc. © 2016 The Authors. Journal of Neuroscience Research Published by Wiley Periodicals, Inc.

  1. Analysis of the Metabolic and Structural Brain Changes in Patients With Torture-Related Post-Traumatic Stress Disorder (TR-PTSD) Using 18F-FDG PET and MRI

    PubMed Central

    Zandieh, Shahin; Bernt, Reinhard; Knoll, Peter; Wenzel, Thomas; Hittmair, Karl; Haller, Joerg; Hergan, Klaus; Mirzaei, Siroos

    2016-01-01

    Abstract Many people exposed to torture later suffer from torture-related post-traumatic stress disorder (TR-PTSD). The aim of this study was to analyze the morphologic and functional brain changes in patients with TR-PTSD using magnetic resonance imaging (MRI) and positron emission tomography (PET). This study evaluated 19 subjects. Thirteen subcortical brain structures were evaluated using FSL software. On the T1-weighted images, normalized brain volumes were measured using SIENAX software. The study compared the volume of the brain and 13 subcortical structures in 9 patients suffering from TR-PTSD after torture and 10 healthy volunteers (HV). Diffusion-weighted imaging (DWI) was performed in the transverse plane. In addition, the 18F-FDG PET data were evaluated to identify the activity of the elected regions. The mean left hippocampal volume for the TR-PTSD group was significantly lower than in the HV group (post hoc test (Bonferroni) P < 0.001). There was a significant difference between the gray matter volume of the patients with TR-PTSD and the HV group (post hoc test (Bonferroni) P < 0.001). The TR-PTSD group showed low significant expansion of the ventricles in contrast to the HV group (post hoc test (Bonferroni) P < 0.001). Diffusion-weighted imaging revealed significant differences in the right frontal lobe and the left occipital lobe between the TR-PTSD and HV group (post hoc test (Bonferroni) P < 0.001). Moderate hypometabolism was noted in the occipital lobe in 6 of the 9 patients with TR-PTSD, in the temporal lobe in 1 of the 9 patients, and in the caudate nucleus in 5 of the 9 patients. In 2 cases, additional hypometabolism was observed in the posterior cingulate cortex and in the parietal and frontal lobes. The findings from this study show that TR-PTSD might have a deleterious influence on a set of specific brain structures. This study also demonstrated that PET combined with MRI is sensitive in detecting possible metabolic and structural brain changes in TR-PTSD. PMID:27082610

  2. Analysis of the Metabolic and Structural Brain Changes in Patients With Torture-Related Post-Traumatic Stress Disorder (TR-PTSD) Using ¹⁸F-FDG PET and MRI.

    PubMed

    Zandieh, Shahin; Bernt, Reinhard; Knoll, Peter; Wenzel, Thomas; Hittmair, Karl; Haller, Joerg; Hergan, Klaus; Mirzaei, Siroos

    2016-04-01

    Many people exposed to torture later suffer from torture-related post-traumatic stress disorder (TR-PTSD). The aim of this study was to analyze the morphologic and functional brain changes in patients with TR-PTSD using magnetic resonance imaging (MRI) and positron emission tomography (PET). This study evaluated 19 subjects. Thirteen subcortical brain structures were evaluated using FSL software. On the T1-weighted images, normalized brain volumes were measured using SIENAX software. The study compared the volume of the brain and 13 subcortical structures in 9 patients suffering from TR-PTSD after torture and 10 healthy volunteers (HV). Diffusion-weighted imaging (DWI) was performed in the transverse plane. In addition, the 18F-FDG PET data were evaluated to identify the activity of the elected regions. The mean left hippocampal volume for the TR-PTSD group was significantly lower than in the HV group (post hoc test (Bonferroni) P < 0.001). There was a significant difference between the gray matter volume of the patients with TR-PTSD and the HV group (post hoc test (Bonferroni) P < 0.001). The TR-PTSD group showed low significant expansion of the ventricles in contrast to the HV group (post hoc test (Bonferroni) P < 0.001). Diffusion-weighted imaging revealed significant differences in the right frontal lobe and the left occipital lobe between the TR-PTSD and HV group (post hoc test (Bonferroni) P < 0.001). Moderate hypometabolism was noted in the occipital lobe in 6 of the 9 patients with TR-PTSD, in the temporal lobe in 1 of the 9 patients, and in the caudate nucleus in 5 of the 9 patients. In 2 cases, additional hypometabolism was observed in the posterior cingulate cortex and in the parietal and frontal lobes. The findings from this study show that TR-PTSD might have a deleterious influence on a set of specific brain structures. This study also demonstrated that PET combined with MRI is sensitive in detecting possible metabolic and structural brain changes in TR-PTSD.

  3. Multiple brain atlas database and atlas-based neuroimaging system.

    PubMed

    Nowinski, W L; Fang, A; Nguyen, B T; Raphel, J K; Jagannathan, L; Raghavan, R; Bryan, R N; Miller, G A

    1997-01-01

    For the purpose of developing multiple, complementary, fully labeled electronic brain atlases and an atlas-based neuroimaging system for analysis, quantification, and real-time manipulation of cerebral structures in two and three dimensions, we have digitized, enhanced, segmented, and labeled the following print brain atlases: Co-Planar Stereotaxic Atlas of the Human Brain by Talairach and Tournoux, Atlas for Stereotaxy of the Human Brain by Schaltenbrand and Wahren, Referentially Oriented Cerebral MRI Anatomy by Talairach and Tournoux, and Atlas of the Cerebral Sulci by Ono, Kubik, and Abernathey. Three-dimensional extensions of these atlases have been developed as well. All two- and three-dimensional atlases are mutually preregistered and may be interactively registered with an actual patient's data. An atlas-based neuroimaging system has been developed that provides support for reformatting, registration, visualization, navigation, image processing, and quantification of clinical data. The anatomical index contains about 1,000 structures and over 400 sulcal patterns. Several new applications of the brain atlas database also have been developed, supported by various technologies such as virtual reality, the Internet, and electronic publishing. Fusion of information from multiple atlases assists the user in comprehensively understanding brain structures and identifying and quantifying anatomical regions in clinical data. The multiple brain atlas database and atlas-based neuroimaging system have substantial potential impact in stereotactic neurosurgery and radiotherapy by assisting in visualization and real-time manipulation in three dimensions of anatomical structures, in quantitative neuroradiology by allowing interactive analysis of clinical data, in three-dimensional neuroeducation, and in brain function studies.

  4. Brain Imaging of Human Sexual Response: Recent Developments and Future Directions.

    PubMed

    Ruesink, Gerben B; Georgiadis, Janniko R

    2017-01-01

    The purpose of this study is to provide a comprehensive summary of the latest developments in the experimental brain study of human sexuality, focusing on brain connectivity during the sexual response. Stable patterns of brain activation have been established for different phases of the sexual response, especially with regard to the wanting phase, and changes in these patterns can be linked to sexual response variations, including sexual dysfunctions. From this solid basis, connectivity studies of the human sexual response have begun to add a deeper understanding of the brain network function and structure involved. The study of "sexual" brain connectivity is still very young. Yet, by approaching the brain as a connected organ, the essence of brain function is captured much more accurately, increasing the likelihood of finding useful biomarkers and targets for intervention in sexual dysfunction.

  5. [Effect of centrophenoxine, piracetam and aniracetam on the monoamine oxidase activity in different brain structures of rats].

    PubMed

    Stancheva, S L; Alova, L G

    1988-01-01

    In vitro studies of effects of some nootropic drugs (centrophenoxine, piracetam and aniracetam) on monoamine oxidase (MAO) activity in the rat striatum and hypothalamus, using tyramine, serotonin and beta-phenylethylamine as substrates, were carried out. At all concentrations used (5.10(-5)-1.10(-3) M) centrophenoxine inhibited total MAO, MAO A and MAO B in both brain structures. Piracetam activated striatal and hypothalamic total MAO, hypothalamic MAO A and MAO B but exerted a pronounced inhibitory effect on MAO A and MAO B activity in the striatum. Aniracetam inhibited total MAO and MAO A in both brain structures but activated striatal and hypothalamic MAO B. The different effects of centrophenoxine, piracetam and aniracetam on MAO activity in the brain structures support the view for the independent mode of action of nootropic drugs in spite of their similar molecular and metabolic activity.

  6. Brain surface contraction mapped in first-episode schizophrenia: a longitudinal magnetic resonance imaging study

    PubMed Central

    Sun, D; Stuart, GW; Jenkinson, M; Wood, SJ; McGorry, PD; Velakoulis, D; van Erp, TGM; Thompson, PM; Toga, AW; Smith, DJ; Cannon, TD; Pantelis, C

    2009-01-01

    Schizophrenia is associated with structural brain abnormalities, but the timing of onset and course of these changes remains unclear. Longitudinal magnetic resonance imaging (MRI) studies have demonstrated progressive brain volume decreases in patients around and after the onset of illness, although considerable discrepancies exist regarding which brain regions are affected. The anatomical pattern of these progressive changes in schizophrenia is largely unknown. In this study, MRI scans were acquired repeatedly from 16 schizophrenia patients approximately 2 years apart following their first episode of illness, and also from 14 age-matched healthy subjects. Cortical Pattern Matching, in combination with Structural Image Evaluation, using Normalisation, of Atrophy, was applied to compare the rates of cortical surface contraction between patients and controls. Surface contraction in the dorsal surfaces of the frontal lobe was significantly greater in patients with first-episode schizophrenia (FESZ) compared with healthy controls. Overall, brain surface contraction in patients and healthy controls showed similar anatomical patterns, with that of the former group exaggerated in magnitude across the entire brain surface. That the pattern of structural change in the early course of schizophrenia corresponds so closely to that associated with normal development is consistent with the hypothesis that a schizophrenia-related factor interacts with normal adolescent brain developmental processes in the pathophysiology of schizophrenia. The exaggerated progressive changes seen in patients with schizophrenia may reflect an increased rate of synaptic pruning, resulting in excessive loss of neuronal connectivity, as predicted by the late neurodevelopmental hypothesis of the illness. PMID:18607377

  7. A Review of the Status of Brain Structure Research in Transsexualism.

    PubMed

    Guillamon, Antonio; Junque, Carme; Gómez-Gil, Esther

    2016-10-01

    The present review focuses on the brain structure of male-to-female (MtF) and female-to-male (FtM) homosexual transsexuals before and after cross-sex hormone treatment as shown by in vivo neuroimaging techniques. Cortical thickness and diffusion tensor imaging studies suggest that the brain of MtFs presents complex mixtures of masculine, feminine, and demasculinized regions, while FtMs show feminine, masculine, and defeminized regions. Consequently, the specific brain phenotypes proposed for MtFs and FtMs differ from those of both heterosexual males and females. These phenotypes have theoretical implications for brain intersexuality, asymmetry, and body perception in transsexuals as well as for Blanchard's hypothesis on sexual orientation in homosexual MtFs. Falling within the aegis of the neurohormonal theory of sex differences, we hypothesize that cortical differences between homosexual MtFs and FtMs and male and female controls are due to differently timed cortical thinning in different regions for each group. Cross-sex hormone studies have reported marked effects of the treatment on MtF and FtM brains. Their results are used to discuss the early postmortem histological studies of the MtF brain.

  8. Infant brain structures, executive function, and attention deficit/hyperactivity problems at preschool age. A prospective study.

    PubMed

    Ghassabian, Akhgar; Herba, Catherine M; Roza, Sabine J; Govaert, Paul; Schenk, Jacqueline J; Jaddoe, Vincent W; Hofman, Albert; White, Tonya; Verhulst, Frank C; Tiemeier, Henning

    2013-01-01

    Neuroimaging findings have provided evidence for a relation between variations in brain structures and attention deficit/hyperactivity disorder (ADHD). However, longitudinal neuroimaging studies are typically confined to children who have already been diagnosed with ADHD. In a population-based study, we aimed to characterize the prospective association between brain structures measured during infancy and executive function and attention deficit/hyperactivity problems assessed at preschool age. In the Generation R Study, the corpus callosum length, the gangliothalamic ovoid diameter (encompassing the basal ganglia and thalamus), and the ventricular volume were measured in 784 6-week-old children using cranial postnatal ultrasounds. Parents rated executive functioning at 4 years using the behavior rating inventory of executive function-preschool version in five dimensions: inhibition, shifting, emotional control, working memory, and planning/organizing. Attention deficit/hyperactivity problems were assessed at ages 3 and 5 years using the child behavior checklist. A smaller corpus callosum length during infancy was associated with greater deficits in executive functioning at 4 years. This was accounted for by higher problem scores on inhibition and emotional control. The corpus callosum length during infancy did not predict attention deficit/hyperactivity problem at 3 and 5 years, when controlling for the confounders. We did not find any relation between gangliothalamic ovoid diameter and executive function or Attention deficit/hyperactivity problem. Variations in brain structures detectible in infants predicted subtle impairments in inhibition and emotional control. However, in this population-based study, we could not demonstrate that early structural brain variations precede symptoms of ADHD. © 2012 The Authors. Journal of Child Psychology and Psychiatry © 2012 Association for Child and Adolescent Mental Health.

  9. Structural and Perfusion Abnormalities of Brain on MRI and Technetium-99m-ECD SPECT in Children With Cerebral Palsy: A Comparative Study.

    PubMed

    Rana, Kamer Singh; Narwal, Varun; Chauhan, Lokesh; Singh, Giriraj; Sharma, Monica; Chauhan, Suneel

    2016-04-01

    Cerebral palsy has traditionally been associated with hypoxic ischemic brain damage. This study was undertaken to demonstrate structural and perfusion brain abnormalities. Fifty-six children diagnosed clinically as having cerebral palsy were studied between 1 to 14 years of age and were subjected to 3 Tesla magnetic resonance imaging (MRI). Brain and Technetium-99m-ECD brain single-photon emission computed tomography (SPECT) scan. Male to female ratio was 1.8:1 with a mean age of 4.16 ± 2.274 years. Spastic cerebral palsy was the most common type, observed in 91%. Birth asphyxia was the most common etiology (69.6%). White matter changes (73.2%) such as periventricular leukomalacia and corpus callosal thinning were the most common findings on MRI. On SPECT all cases except one revealed perfusion impairments in different regions of brain. MRI is more sensitive in detecting white matter changes, whereas SPECT is better in detecting cortical and subcortical gray matter abnormalities of perfusion. © The Author(s) 2015.

  10. The Effects of Spaceflight and a Spaceflight Analog on Neurocognitive Perfonnance: Extent, Longevity, and Neural Bases

    NASA Technical Reports Server (NTRS)

    Seidler, R. D.; Mulavara, A. P.; Koppelmans, V.; Erdeniz, B.; Kofman, I. S.; DeDios, Y. E.; Szecsy, D. L.; Riascos-Castaneda, R. F.; Wood, S. J.; Bloomberg, J. J.

    2014-01-01

    We are conducting ongoing experiments in which we are performing structural and functional magnetic resonance brain imaging to identify the relationships between changes in neurocognitive function and neural structural alterations following a six month International Space Station mission and following 70 days exposure to a spaceflight analog, head down tilt bedrest. Our central hypothesis is that measures of brain structure, function, and network integrity will change from pre to post intervention (spaceflight, bedrest). Moreover, we predict that these changes will correlate with indices of cognitive, sensory, and motor function in a neuroanatomically selective fashion. Our interdisciplinary approach utilizes cutting edge neuroimaging techniques and a broad ranging battery of sensory, motor, and cognitive assessments that will be conducted pre flight, during flight, and post flight to investigate potential neuroplastic and maladaptive brain changes in crewmembers following long-duration spaceflight. Success in this endeavor would 1) result in identification of the underlying neural mechanisms and operational risks of spaceflight-induced changes in behavior, and 2) identify whether a return to normative behavioral function following re-adaptation to Earth's gravitational environment is associated with a restitution of brain structure and function or instead is supported by substitution with compensatory brain processes. With the bedrest study, we will be able to determine the neural and neurocognitive effects of extended duration unloading, reduced sensory inputs, and increased cephalic fluid distribution. This will enable us to parse out the multiple mechanisms contributing to any spaceflight-induced neural structural and behavioral changes that we observe in the flight study. In this presentation I will discuss preliminary results from six participants who have undergone the bed rest protocol. These individuals show decrements in balance and functional mobility, and alterations in brain structure and function, in association with extended bed rest.

  11. Neuroimaging and Fetal Alcohol Spectrum Disorders

    ERIC Educational Resources Information Center

    Norman, Andria L.; Crocker, Nicole; Mattson, Sarah N.; Riley, Edward P.

    2009-01-01

    The detrimental effects of prenatal alcohol exposure on the developing brain include structural brain anomalies as well as cognitive and behavioral deficits. Initial neuroimaging studies of fetal alcohol spectrum disorders (FASD) using magnetic resonance imaging (MRI) confirmed previous autopsy reports of overall reduction in brain volume and…

  12. Blood pressure, brain structure, and cognition: opposite associations in men and women.

    PubMed

    Cherbuin, Nicolas; Mortby, Moyra E; Janke, Andrew L; Sachdev, Perminder S; Abhayaratna, Walter P; Anstey, Kaarin J

    2015-02-01

    Research on associations between blood pressure, brain structure, and cognitive function has produced somewhat inconsistent results. In part, this may be due to differences in age ranges studied and because of sex differences in physiology and/or exposure to risk factors, which may lead to different time course or patterns in cardiovascular disease progression. The aim of this study was to investigate the impact of sex on associations between blood pressure, regional cerebral volumes, and cognitive function in older individuals. In this cohort study, brachial blood pressure was measured twice at rest in 266 community-based individuals free of dementia aged 68-73 years who had also undergone a brain scan and a neuropsychological assessment. Associations between mean blood pressure (MAP), regional brain volumes, and cognition were investigated with voxel-wise regression analyses. Positive associations between MAP and regional volumes were detected in men, whereas negative associations were found in women. Similarly, there were sex differences in the brain-volume cognition relationship, with a positive relationship between regional brain volumes associated with MAP in men and a negative relationship in women. In this cohort of older individuals, higher MAP was associated with larger regional volume and better cognition in men, whereas opposite findings were demonstrated in women. These effects may be due to different lifetime risk exposure or because of physiological differences between men and women. Future studies investigating the relationship between blood pressure and brain structure or cognitive function should evaluate the potential for differential sex effects. © American Journal of Hypertension, Ltd 2014. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Altered Resting Brain Function and Structure in Professional Badminton Players

    PubMed Central

    Di, Xin; Zhu, Senhua; Wang, Pin; Ye, Zhuoer; Zhou, Ke; Zhuo, Yan

    2012-01-01

    Abstract Neuroimaging studies of professional athletic or musical training have demonstrated considerable practice-dependent plasticity in various brain structures, which may reflect distinct training demands. In the present study, structural and functional brain alterations were examined in professional badminton players and compared with healthy controls using magnetic resonance imaging (MRI) and resting-state functional MRI. Gray matter concentration (GMC) was assessed using voxel-based morphometry (VBM), and resting-brain functions were measured by amplitude of low-frequency fluctuation (ALFF) and seed-based functional connectivity. Results showed that the athlete group had greater GMC and ALFF in the right and medial cerebellar regions, respectively. The athlete group also demonstrated smaller ALFF in the left superior parietal lobule and altered functional connectivity between the left superior parietal and frontal regions. These findings indicate that badminton expertise is associated with not only plastic structural changes in terms of enlarged gray matter density in the cerebellum, but also functional alterations in fronto-parietal connectivity. Such structural and functional alterations may reflect specific experiences of badminton training and practice, including high-capacity visuo-spatial processing and hand-eye coordination in addition to refined motor skills. PMID:22840241

  14. Hemodynamic and morphologic responses in mouse brain during acute head injury imaged by multispectral structured illumination

    NASA Astrophysics Data System (ADS)

    Volkov, Boris; Mathews, Marlon S.; Abookasis, David

    2015-03-01

    Multispectral imaging has received significant attention over the last decade as it integrates spectroscopy, imaging, tomography analysis concurrently to acquire both spatial and spectral information from biological tissue. In the present study, a multispectral setup based on projection of structured illumination at several near-infrared wavelengths and at different spatial frequencies is applied to quantitatively assess brain function before, during, and after the onset of traumatic brain injury in an intact mouse brain (n=5). For the production of head injury, we used the weight drop method where weight of a cylindrical metallic rod falling along a metal tube strikes the mouse's head. Structured light was projected onto the scalp surface and diffuse reflected light was recorded by a CCD camera positioned perpendicular to the mouse head. Following data analysis, we were able to concurrently show a series of hemodynamic and morphologic changes over time including higher deoxyhemoglobin, reduction in oxygen saturation, cell swelling, etc., in comparison with baseline measurements. Overall, results demonstrates the capability of multispectral imaging based structured illumination to detect and map of brain tissue optical and physiological properties following brain injury in a simple noninvasive and noncontact manner.

  15. Opaque for the Reader but Transparent for the Brain: Neural Signatures of Morphological Complexity

    ERIC Educational Resources Information Center

    Meinzer, Marcus; Lahiri, Aditi; Flaisch, Tobias; Hannemann, Ronny; Eulitz, Carsten

    2009-01-01

    Within linguistics, words with a complex internal structure are commonly assumed to be decomposed into their constituent morphemes (e.g., un-help-ful). Nevertheless, an ongoing debate concerns the brain structures that subserve this process. Using functional magnetic resonance imaging, the present study varied the internal complexity of derived…

  16. Structural, Metabolic, and Functional Brain Abnormalities as a Result of Prenatal Exposure to Drugs of Abuse: Evidence from Neuroimaging

    PubMed Central

    Roussotte, Florence; Soderberg, Lindsay

    2010-01-01

    Prenatal exposure to alcohol and stimulants negatively affects the developing trajectory of the central nervous system in many ways. Recent advances in neuroimaging methods have allowed researchers to study the structural, metabolic, and functional abnormalities resulting from prenatal exposure to drugs of abuse in living human subjects. Here we review the neuroimaging literature of prenatal exposure to alcohol, cocaine, and methamphetamine. Neuroimaging studies of prenatal alcohol exposure have reported differences in the structure and metabolism of many brain systems, including in frontal, parietal, and temporal regions, in the cerebellum and basal ganglia, as well as in the white matter tracts that connect these brain regions. Functional imaging studies have identified significant differences in brain activation related to various cognitive domains as a result of prenatal alcohol exposure. The published literature of prenatal exposure to cocaine and methamphetamine is much smaller, but evidence is beginning to emerge suggesting that exposure to stimulant drugs in utero may be particularly toxic to dopamine-rich basal ganglia regions. Although the interpretation of such findings is somewhat limited by the problem of polysubstance abuse and by the difficulty of obtaining precise exposure histories in retrospective studies, such investigations provide important insights into the effects of drugs of abuse on the structure, function, and metabolism of the developing human brain. These insights may ultimately help clinicians develop better diagnostic tools and devise appropriate therapeutic interventions to improve the condition of children with prenatal exposure to drugs of abuse. PMID:20978945

  17. A quantitative and qualitative review of the effects of testosterone on the function and structure of the human social-emotional brain.

    PubMed

    Heany, Sarah J; van Honk, Jack; Stein, Dan J; Brooks, Samantha J

    2016-02-01

    Social and affective research in humans is increasingly using functional and structural neuroimaging techniques to aid the understanding of how hormones, such as testosterone, modulate a wide range of psychological processes. We conducted a meta-analysis of functional magnetic resonance imaging (fMRI) studies of testosterone administration, and of fMRI studies that measured endogenous levels of the hormone, in relation to social and affective stimuli. Furthermore, we conducted a review of structural MRI i.e. voxel based morphometry (VBM) studies which considered brain volume in relation to testosterone levels in adults and in children. In the included testosterone administration fMRI studies, which consisted of female samples only, bilateral amygdala/parahippocampal regions as well as the right caudate were significantly activated by social-affective stimuli in the testosterone condition. In the studies considering endogenous levels of testosterone, stimuli-invoked activations relating to testosterone levels were noted in the bilateral amygdala/parahippocampal regions and the brainstem. When the endogenous testosterone studies were split by sex, the significant activation of the brain stem was seen in the female samples only. Significant stimuli-invoked deactivations relating to endogenous testosterone levels were also seen in the right and left amygdala/parahippocampal regions studies. The findings of the VBM studies were less consistent. In adults larger volumes in the limbic and temporal regions were associated with higher endogenous testosterone. In children, boys showed a positive correlation between testosterone and brain volume in many regions, including the amygdala, as well as global grey matter volume, while girls showed a neutral or negative association between testosterone levels and many brain volumes. In conclusion, amygdalar and parahippocampal regions appear to be key target regions for the acute actions of testosterone in response to social and affective stimuli, while neurodevelopmentally the volumes of a broader network of brain structures are associated with testosterone levels in a sexually dimorphic manner.

  18. Gestational Age is Dimensionally Associated with Structural Brain Network Abnormalities Across Development.

    PubMed

    Nassar, Rula; Kaczkurkin, Antonia N; Xia, Cedric Huchuan; Sotiras, Aristeidis; Pehlivanova, Marieta; Moore, Tyler M; Garcia de La Garza, Angel; Roalf, David R; Rosen, Adon F G; Lorch, Scott A; Ruparel, Kosha; Shinohara, Russell T; Davatzikos, Christos; Gur, Ruben C; Gur, Raquel E; Satterthwaite, Theodore D

    2018-04-21

    Prematurity is associated with diverse developmental abnormalities, yet few studies relate cognitive and neurostructural deficits to a dimensional measure of prematurity. Leveraging a large sample of children, adolescents, and young adults (age 8-22 years) studied as part of the Philadelphia Neurodevelopmental Cohort, we examined how variation in gestational age impacted cognition and brain structure later in development. Participants included 72 preterm youth born before 37 weeks' gestation and 206 youth who were born at term (37 weeks or later). Using a previously-validated factor analysis, cognitive performance was assessed in three domains: (1) executive function and complex reasoning, (2) social cognition, and (3) episodic memory. All participants completed T1-weighted neuroimaging at 3 T to measure brain volume. Structural covariance networks were delineated using non-negative matrix factorization, an advanced multivariate analysis technique. Lower gestational age was associated with both deficits in executive function and reduced volume within 11 of 26 structural covariance networks, which included orbitofrontal, temporal, and parietal cortices as well as subcortical regions including the hippocampus. Notably, the relationship between lower gestational age and executive dysfunction was accounted for in part by structural network deficits. Together, these findings emphasize the durable impact of prematurity on cognition and brain structure, which persists across development.

  19. Effect of Experimental Thyrotoxicosis on Brain Gray Matter: A Voxel-Based Morphometry Study.

    PubMed

    Göbel, Anna; Heldmann, Marcus; Göttlich, Martin; Dirk, Anna-Luise; Brabant, Georg; Münte, Thomas F

    2015-09-01

    Hyper-as well hypothyroidism have an effect on behavior and brain function. Moreover, during development thyroid hormones influence brain structure. This study aimed to demonstrate an effect of experimentally induced hyperthyroidism on brain gray matter in healthy adult humans. High-resolution 3D T1-weighted images were acquired in 29 healthy young subjects prior to as well as after receiving 250 µg of T4 per day for 8 weeks. Voxel-based morphometry analysis was performed using Statistical Parametric Mapping 8 (SPM8). Laboratory testing confirmed the induction of hyperthyroidism. In the hyperthyroid condition, gray matter volumes were increased in the right posterior cerebellum (lobule VI) and decreased in the bilateral visual cortex and anterior cerebellum (lobules I-IV) compared to the euthyroid condition. Our study provides evidence that short periods of hyperthyroidism induce distinct alterations in brain structures of cerebellar regions that have been associated with sensorimotor functions as well as working memory in the literature.

  20. Structural and functional rich club organization of the brain in children and adults.

    PubMed

    Grayson, David S; Ray, Siddharth; Carpenter, Samuel; Iyer, Swathi; Dias, Taciana G Costa; Stevens, Corinne; Nigg, Joel T; Fair, Damien A

    2014-01-01

    Recent studies using Magnetic Resonance Imaging (MRI) have proposed that the brain's white matter is organized as a rich club, whereby the most highly connected regions of the brain are also highly connected to each other. Here we use both functional and diffusion-weighted MRI in the human brain to investigate whether the rich club phenomena is present with functional connectivity, and how this organization relates to the structural phenomena. We also examine whether rich club regions serve to integrate information between distinct brain systems, and conclude with a brief investigation of the developmental trajectory of rich-club phenomena. In agreement with prior work, both adults and children showed robust structural rich club organization, comprising regions of the superior medial frontal/dACC, medial parietal/PCC, insula, and inferior temporal cortex. We also show that these regions were highly integrated across the brain's major networks. Functional brain networks were found to have rich club phenomena in a similar spatial layout, but a high level of segregation between systems. While no significant differences between adults and children were found structurally, adults showed significantly greater functional rich club organization. This difference appeared to be driven by a specific set of connections between superior parietal, insula, and supramarginal cortex. In sum, this work highlights the existence of both a structural and functional rich club in adult and child populations with some functional changes over development. It also offers a potential target in examining atypical network organization in common developmental brain disorders, such as ADHD and Autism.

  1. COBRA: A prospective multimodal imaging study of dopamine, brain structure and function, and cognition.

    PubMed

    Nevalainen, N; Riklund, K; Andersson, M; Axelsson, J; Ögren, M; Lövdén, M; Lindenberger, U; Bäckman, L; Nyberg, L

    2015-07-01

    Cognitive decline is a characteristic feature of normal human aging. Previous work has demonstrated marked interindividual variability in onset and rate of decline. Such variability has been linked to factors such as maintenance of functional and structural brain integrity, genetics, and lifestyle. Still, few, if any, studies have combined a longitudinal design with repeated multimodal imaging and a comprehensive assessment of cognition as well as genetic and lifestyle factors. The present paper introduces the Cognition, Brain, and Aging (COBRA) study, in which cognitive performance and brain structure and function are measured in a cohort of 181 older adults aged 64 to 68 years at baseline. Participants will be followed longitudinally over a 10-year period, resulting in a total of three equally spaced measurement occasions. The measurement protocol at each occasion comprises a comprehensive set of behavioral and imaging measures. Cognitive performance is evaluated via computerized testing of working memory, episodic memory, perceptual speed, motor speed, implicit sequence learning, and vocabulary. Brain imaging is performed using positron emission tomography with [(11)C]-raclopride to assess dopamine D2/D3 receptor availability. Structural magnetic resonance imaging (MRI) is used for assessment of white and gray-matter integrity and cerebrovascular perfusion, and functional MRI maps brain activation during rest and active task conditions. Lifestyle descriptives are collected, and blood samples are obtained and stored for future evaluation. Here, we present selected results from the baseline assessment along with a discussion of sample characteristics and methodological considerations that determined the design of the study. This article is part of a Special Issue entitled SI: Memory & Aging. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  2. In vivo Visuotopic Brain Mapping with Manganese-Enhanced MRI and Resting-State Functional Connectivity MRI

    PubMed Central

    Chan, Kevin C.; Fan, Shu-Juan; Chan, Russell W.; Cheng, Joe S.; Zhou, Iris Y.; Wu, Ed X.

    2014-01-01

    The rodents are an increasingly important model for understanding the mechanisms of development, plasticity, functional specialization and disease in the visual system. However, limited tools have been available for assessing the structural and functional connectivity of the visual brain network globally, in vivo and longitudinally. There are also ongoing debates on whether functional brain connectivity directly reflects structural brain connectivity. In this study, we explored the feasibility of manganese-enhanced MRI (MEMRI) via 3 different routes of Mn2+ administration for visuotopic brain mapping and understanding of physiological transport in normal and visually deprived adult rats. In addition, resting-state functional connectivity MRI (RSfcMRI) was performed to evaluate the intrinsic functional network and structural-functional relationships in the corresponding anatomical visual brain connections traced by MEMRI. Upon intravitreal, subcortical, and intracortical Mn2+ injection, different topographic and layer-specific Mn enhancement patterns could be revealed in the visual cortex and subcortical visual nuclei along retinal, callosal, cortico-subcortical, transsynaptic and intracortical horizontal connections. Loss of visual input upon monocular enucleation to adult rats appeared to reduce interhemispheric polysynaptic Mn2+ transfer but not intra- or inter-hemispheric monosynaptic Mn2+ transport after Mn2+ injection into visual cortex. In normal adults, both structural and functional connectivity by MEMRI and RSfcMRI was stronger interhemispherically between bilateral primary/secondary visual cortex (V1/V2) transition zones (TZ) than between V1/V2 TZ and other cortical nuclei. Intrahemispherically, structural and functional connectivity was stronger between visual cortex and subcortical visual nuclei than between visual cortex and other subcortical nuclei. The current results demonstrated the sensitivity of MEMRI and RSfcMRI for assessing the neuroarchitecture, neurophysiology and structural-functional relationships of the visual brains in vivo. These may possess great potentials for effective monitoring and understanding of the basic anatomical and functional connections in the visual system during development, plasticity, disease, pharmacological interventions and genetic modifications in future studies. PMID:24394694

  3. Reliability of a novel, semi-quantitative scale for classification of structural brain magnetic resonance imaging in children with cerebral palsy.

    PubMed

    Fiori, Simona; Cioni, Giovanni; Klingels, Katrjin; Ortibus, Els; Van Gestel, Leen; Rose, Stephen; Boyd, Roslyn N; Feys, Hilde; Guzzetta, Andrea

    2014-09-01

    To describe the development of a novel rating scale for classification of brain structural magnetic resonance imaging (MRI) in children with cerebral palsy (CP) and to assess its interrater and intrarater reliability. The scale consists of three sections. Section 1 contains descriptive information about the patient and MRI. Section 2 contains the graphical template of brain hemispheres onto which the lesion is transposed. Section 3 contains the scoring system for the quantitative analysis of the lesion characteristics, grouped into different global scores and subscores that assess separately side, regions, and depth. A larger interrater and intrarater reliability study was performed in 34 children with CP (22 males, 12 females; mean age at scan of 9 y 5 mo [SD 3 y 3 mo], range 4 y-16 y 11 mo; Gross Motor Function Classification System level I, [n=22], II [n=10], and level III [n=2]). Very high interrater and intrarater reliability of the total score was found with indices above 0.87. Reliability coefficients of the lobar and hemispheric subscores ranged between 0.53 and 0.95. Global scores for hemispheres, basal ganglia, brain stem, and corpus callosum showed reliability coefficients above 0.65. This study presents the first visual, semi-quantitative scale for classification of brain structural MRI in children with CP. The high degree of reliability of the scale supports its potential application for investigating the relationship between brain structure and function and examining treatment response according to brain lesion severity in children with CP. © 2014 Mac Keith Press.

  4. Cortical brain connectivity evaluated by graph theory in dementia: a correlation study between functional and structural data.

    PubMed

    Vecchio, Fabrizio; Miraglia, Francesca; Curcio, Giuseppe; Altavilla, Riccardo; Scrascia, Federica; Giambattistelli, Federica; Quattrocchi, Carlo Cosimo; Bramanti, Placido; Vernieri, Fabrizio; Rossini, Paolo Maria

    2015-01-01

    A relatively new approach to brain function in neuroscience is the "functional connectivity", namely the synchrony in time of activity in anatomically-distinct but functionally-collaborating brain regions. On the other hand, diffusion tensor imaging (DTI) is a recently developed magnetic resonance imaging (MRI)-based technique with the capability to detect brain structural connection with fractional anisotropy (FA) identification. FA decrease has been observed in the corpus callosum of subjects with Alzheimer's disease (AD) and mild cognitive impairment (MCI, an AD prodromal stage). Corpus callosum splenium DTI abnormalities are thought to be associated with functional disconnections among cortical areas. This study aimed to investigate possible correlations between structural damage, measured by MRI-DTI, and functional abnormalities of brain integration, measured by characteristic path length detected in resting state EEG source activity (40 participants: 9 healthy controls, 10 MCI, 10 mild AD, 11 moderate AD). For each subject, undirected and weighted brain network was built to evaluate graph core measures. eLORETA lagged linear connectivity values were used as weight of the edges of the network. Results showed that callosal FA reduction is associated to a loss of brain interhemispheric functional connectivity characterized by increased delta and decreased alpha path length. These findings suggest that "global" (average network shortest path length representing an index of how efficient is the information transfer between two parts of the network) functional measure can reflect the reduction of fiber connecting the two hemispheres as revealed by DTI analysis and also anticipate in time this structural loss.

  5. Developmental changes in the structure of the social brain in late childhood and adolescence.

    PubMed

    Mills, Kathryn L; Lalonde, François; Clasen, Liv S; Giedd, Jay N; Blakemore, Sarah-Jayne

    2014-01-01

    Social cognition provides humans with the necessary skills to understand and interact with one another. One aspect of social cognition, mentalizing, is associated with a network of brain regions often referred to as the 'social brain.' These consist of medial prefrontal cortex [medial Brodmann Area 10 (mBA10)], temporoparietal junction (TPJ), posterior superior temporal sulcus (pSTS) and anterior temporal cortex (ATC). How these specific regions develop structurally across late childhood and adolescence is not well established. This study examined the structural developmental trajectories of social brain regions in the longest ongoing longitudinal neuroimaging study of human brain maturation. Structural trajectories of grey matter volume, cortical thickness and surface area were analyzed using surface-based cortical reconstruction software and mixed modeling in a longitudinal sample of 288 participants (ages 7-30 years, 857 total scans). Grey matter volume and cortical thickness in mBA10, TPJ and pSTS decreased from childhood into the early twenties. The ATC increased in grey matter volume until adolescence and in cortical thickness until early adulthood. Surface area for each region followed a cubic trajectory, peaking in early or pre-adolescence before decreasing into the early twenties. These results are discussed in the context of developmental changes in social cognition across adolescence.

  6. Brain structure and function correlates of cognitive subtypes in schizophrenia.

    PubMed

    Geisler, Daniel; Walton, Esther; Naylor, Melissa; Roessner, Veit; Lim, Kelvin O; Charles Schulz, S; Gollub, Randy L; Calhoun, Vince D; Sponheim, Scott R; Ehrlich, Stefan

    2015-10-30

    Stable neuropsychological deficits may provide a reliable basis for identifying etiological subtypes of schizophrenia. The aim of this study was to identify clusters of individuals with schizophrenia based on dimensions of neuropsychological performance, and to characterize their neural correlates. We acquired neuropsychological data as well as structural and functional magnetic resonance imaging from 129 patients with schizophrenia and 165 healthy controls. We derived eight cognitive dimensions and subsequently applied a cluster analysis to identify possible schizophrenia subtypes. Analyses suggested the following four cognitive clusters of schizophrenia: (1) Diminished Verbal Fluency, (2) Diminished Verbal Memory and Poor Motor Control, (3) Diminished Face Memory and Slowed Processing, and (4) Diminished Intellectual Function. The clusters were characterized by a specific pattern of structural brain changes in areas such as Wernicke's area, lingual gyrus and occipital face area, and hippocampus as well as differences in working memory-elicited neural activity in several fronto-parietal brain regions. Separable measures of cognitive function appear to provide a method for deriving cognitive subtypes meaningfully related to brain structure and function. Because the present study identified brain-based neural correlates of the cognitive clusters, the proposed groups of individuals with schizophrenia have some external validity. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Abdominal fat distribution and its relationship to brain changes: the differential effects of age on cerebellar structure and function: a cross-sectional, exploratory study

    PubMed Central

    Raschpichler, Matthias; Straatman, Kees; Schroeter, Matthias Leopold; Arelin, Katrin; Schlögl, Haiko; Fritzsch, Dominik; Mende, Meinhard; Pampel, André; Böttcher, Yvonne; Stumvoll, Michael; Villringer, Arno; Mueller, Karsten

    2013-01-01

    Objectives To investigate whether the metabolically important visceral adipose tissue (VAT) relates differently to structural and functional brain changes in comparison with body weight measured as body mass index (BMI). Moreover, we aimed to investigate whether these effects change with age. Design Cross-sectional, exploratory. Setting University Clinic, Integrative Research and Treatment Centre. Participants We included 100 (mean BMI=26.0 kg/m², 42 women) out of 202 volunteers randomly invited by the city's registration office, subdivided into two age groups: young-to-mid-age (n=51, 20–45 years of age, mean BMI=24.9, 24 women) versus old (n=49, 65–70 years of age, mean BMI=27.0, 18 women). Main outcome measures VAT, BMI, subcutaneous abdominal adipose tissue, brain structure (grey matter density), functional brain architecture (eigenvector centrality, EC). Results We discovered a loss of cerebellar structure with increasing VAT in the younger participants, most significantly in regions involved in motor processing. This negative correlation disappeared in the elderly. Investigating functional brain architecture showed again inverse VAT–cerebellum correlations, whereas now regions involved in cognitive and emotional processing were significant. Although we detected similar results for EC using BMI, significant age interaction for both brain structure and functional architecture was only found using VAT. Conclusions Visceral adiposity is associated with cerebellar changes of both structure and function, whereas the regions involved contribute to motor, cognitive and emotional processes. Furthermore, these associations seem to be age dependent, with younger adults’ brains being adversely affected. PMID:23355665

  8. Poor Brain Growth in Extremely Preterm Neonates Long Before the Onset of Autism Spectrum Disorder Symptoms.

    PubMed

    Padilla, Nelly; Eklöf, Eva; Mårtensson, Gustaf E; Bölte, Sven; Lagercrantz, Hugo; Ådén, Ulrika

    2017-02-01

    Preterm infants face an increased risk of autism spectrum disorder (ASD). The relationship between autism during childhood and early brain development remains unexplored. We studied 84 preterm children born at <27 weeks of gestation, who underwent neonatal magnetic resonance imaging (MRI) at term and were screened for ASD at 6.5 years. Full-scale intelligence quotient was measured and neonatal morbidities were recorded. Structural brain morphometric studies were performed in 33 infants with high-quality MRI and no evidence of focal brain lesions. Twenty-three (27.4%) of the children tested ASD positive and 61 (72.6%) tested ASD negative. The ASD-positive group had a significantly higher frequency of neonatal complications than the ASD-negative group. In the subgroup of 33 children, the ASD infants had reduced volumes in the temporal, occipital, insular, and limbic regions and in the brain areas involved in social/behavior and salience integration. This study shows that the neonatal MRI scans of extremely preterm children, subsequently diagnosed with ASD at 6.5 years, showed brain structural alterations, localized in the regions that play a key role in the core features of autism. Early detection of these structural alterations may allow the early identification and intervention of children at risk of ASD. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Comparison of brain volume abnormalities between ADHD and conduct disorder in adolescence

    PubMed Central

    Stevens, Michael C.; Haney-Caron, Emily

    2012-01-01

    Background Previous studies of brain structure abnormalities in conduct disorder and attention-deficit/hyperactivity disorder (ADHD) samples have been limited owing to cross-comorbidity, preventing clear understanding of which structural brain abnormalities might be specific to or shared by each disorder. To our knowledge, this study was the first direct comparison of grey and white matter volumes in diagnostically “pure” (i.e., no comorbidities) conduct disorder and ADHD samples. Methods Groups of adolescents with noncormobid conduct disorder and with noncomorbid, combined-subtype ADHD were compared with age- and sex-matched controls using DARTEL voxel-based analysis of T1-weighted brain structure images. Analysis of variance with post hoc analyses compared whole brain grey and white matter volumes among the groups. Results We included 24 adolescents in each study group. There was an overall 13% reduction in grey matter volume in adolescents with conduct disorder, reflecting numerous frontal, temporal, parietal and subcortical deficits. The same grey matter regions typically were not abnormal in those with ADHD. Deficits in frontal lobe regions previously identified in studies of patients with ADHD either were not detected, or group differences from controls were not as strong as those between the conduct disorder and control groups. White matter volume measurements did not differentiate conduct disorder and ADHD. Limitations Our modest sample sizes prevented meaningful examination of individual features of ADHD or conduct disorder, such as aggression, callousness, or hyperactive versus inattentive symptom subtypes. Conclusion The evidence supports theories of frontotemporal abnormalities in adolescents with conduct disorder, but raises questions about the prominence of frontal lobe and striatal structural abnormalities in those with noncomorbid, combined-subtype ADHD. The latter point is clinically important, given the widely held belief that ADHD is associated with numerous frontal lobe structural deficits, a conclusion that is not strongly supported following direct comparison of diagnostically pure groups. The results are important for future etiological studies, particularly those seeking to identify how early expression of specific brain structure abnormalities could potentiate the risk for antisocial behaviour. PMID:22663946

  10. Toward Developmental Connectomics of the Human Brain

    PubMed Central

    Cao, Miao; Huang, Hao; Peng, Yun; Dong, Qi; He, Yong

    2016-01-01

    Imaging connectomics based on graph theory has become an effective and unique methodological framework for studying structural and functional connectivity patterns of the developing brain. Normal brain development is characterized by continuous and significant network evolution throughout infancy, childhood, and adolescence, following specific maturational patterns. Disruption of these normal changes is associated with neuropsychiatric developmental disorders, such as autism spectrum disorders or attention-deficit hyperactivity disorder. In this review, we focused on the recent progresses regarding typical and atypical development of human brain networks from birth to early adulthood, using a connectomic approach. Specifically, by the time of birth, structural networks already exhibit adult-like organization, with global efficient small-world and modular structures, as well as hub regions and rich-clubs acting as communication backbones. During development, the structure networks are fine-tuned, with increased global integration and robustness and decreased local segregation, as well as the strengthening of the hubs. In parallel, functional networks undergo more dramatic changes during maturation, with both increased integration and segregation during development, as brain hubs shift from primary regions to high order functioning regions, and the organization of modules transitions from a local anatomical emphasis to a more distributed architecture. These findings suggest that structural networks develop earlier than functional networks; meanwhile functional networks demonstrate more dramatic maturational changes with the evolution of structural networks serving as the anatomical backbone. In this review, we also highlighted topologically disorganized characteristics in structural and functional brain networks in several major developmental neuropsychiatric disorders (e.g., autism spectrum disorders, attention-deficit hyperactivity disorder and developmental dyslexia). Collectively, we showed that delineation of the brain network from a connectomics perspective offers a unique and refreshing view of both normal development and neuropsychiatric disorders. PMID:27064378

  11. Influence of metformin on mitochondrial subproteome in the brain of apoE knockout mice.

    PubMed

    Suski, Maciej; Olszanecki, Rafał; Chmura, Łukasz; Stachowicz, Aneta; Madej, Józef; Okoń, Krzysztof; Adamek, Dariusz; Korbut, Ryszard

    2016-02-05

    Neurodegenerative diseases are the set of progressive, age-related brain disorders, characterized by an excessive accumulation of mutant proteins in the certain regions of the brain. Such changes, collectively identified as causal factors of neurodegeneration, all impact mitochondria, imminently leading to their dysfunction. These observations predestine mitochondria as an attractive drug target for counteracting degenerative brain damage. The aim of this study was to use a differential proteomic approach to comprehensively assess the changes in mitochondrial protein expression in the brain of apoE-knockout mice (apoE(-/-)) and to investigate the influence of prolonged treatment with metformin - an indirect activator of AMP-activated protein kinase (AMPK) on the brain mitoproteome in apoE(-/-) mice. The quantitative assessment of the brain mitoproteome in apoE(-/-) revealed the changes in 10 proteins expression as compared to healthy C57BL/6J mice and 25 proteins expression in metformin-treated apoE(-/-) mice. Identified proteins mainly included apoptosis regulators, metabolic enzymes and structural proteins. In summary, our study provided proteomic characteristics suggesting the decrease of antioxidant defense and structural disturbances in the brain mitochondria of apoE(-/-) mice as compared to healthy controls. In this setting, the use of metformin changed the expression of several proteins primarily involved in metabolic processes, the regulation of apoptosis and the structural maintenance of mitochondria, what could potentially restore their native functionalities. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Increased gray matter volume in the right angular and posterior parahippocampal gyri in loving-kindness meditators.

    PubMed

    Leung, Mei-Kei; Chan, Chetwyn C H; Yin, Jing; Lee, Chack-Fan; So, Kwok-Fai; Lee, Tatia M C

    2013-01-01

    Previous voxel-based morphometry (VBM) studies have revealed that meditation is associated with structural brain changes in regions underlying cognitive processes that are required for attention or mindfulness during meditation. This VBM study examined brain changes related to the practice of an emotion-oriented meditation: loving-kindness meditation (LKM). A 3 T magnetic resonance imaging (MRI) scanner captured images of the brain structures of 25 men, 10 of whom had practiced LKM in the Theravada tradition for at least 5 years. Compared with novices, more gray matter volume was detected in the right angular and posterior parahippocampal gyri in LKM experts. The right angular gyrus has not been previously reported to have structural differences associated with meditation, and its specific role in mind and cognitive empathy theory suggests the uniqueness of this finding for LKM practice. These regions are important for affective regulation associated with empathic response, anxiety and mood. At the same time, gray matter volume in the left temporal lobe in the LKM experts appeared to be greater, an observation that has also been reported in previous MRI meditation studies on meditation styles other than LKM. Overall, the findings of our study suggest that experience in LKM may influence brain structures associated with affective regulation.

  13. Developmental Thyroid Hormone Insufficiency Induces Cortical Brain Malformation and Learning Impairments: A Cross-Fostering Study

    EPA Science Inventory

    Thyroid hormones (TH) are essential for brain development, but animal models of well-defined and sensitive downstream apical neurotoxic outcomes associated with developmental TH disruption are lacking. A structural anomaly, a cortical heterotopia, in the brains of hypothyroid rat...

  14. Cross-population myelination covariance of human cerebral cortex.

    PubMed

    Ma, Zhiwei; Zhang, Nanyin

    2017-09-01

    Cross-population covariance of brain morphometric quantities provides a measure of interareal connectivity, as it is believed to be determined by the coordinated neurodevelopment of connected brain regions. Although useful, structural covariance analysis predominantly employed bulky morphological measures with mixed compartments, whereas studies of the structural covariance of any specific subdivisions such as myelin are rare. Characterizing myelination covariance is of interest, as it will reveal connectivity patterns determined by coordinated development of myeloarchitecture between brain regions. Using myelin content MRI maps from the Human Connectome Project, here we showed that the cortical myelination covariance was highly reproducible, and exhibited a brain organization similar to that previously revealed by other connectivity measures. Additionally, the myelination covariance network shared common topological features of human brain networks such as small-worldness. Furthermore, we found that the correlation between myelination covariance and resting-state functional connectivity (RSFC) was uniform within each resting-state network (RSN), but could considerably vary across RSNs. Interestingly, this myelination covariance-RSFC correlation was appreciably stronger in sensory and motor networks than cognitive and polymodal association networks, possibly due to their different circuitry structures. This study has established a new brain connectivity measure specifically related to axons, and this measure can be valuable to investigating coordinated myeloarchitecture development. Hum Brain Mapp 38:4730-4743, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. Consciousness, brain, neuroplasticity

    PubMed Central

    Askenasy, Jean; Lehmann, Joseph

    2013-01-01

    Subjectivity, intentionality, self-awareness and will are major components of consciousness in human beings. Changes in consciousness and its content following different brain processes and malfunction have long been studied. Cognitive sciences assume that brain activities have an infrastructure, but there is also evidence that consciousness itself may change this infrastructure. The two-way influence between brain and consciousness has been at the center of philosophy and less so, of science. This so-called bottom-up and top-down interrelationship is controversial and is the subject of our article. We would like to ask: how does it happen that consciousness may provoke structural changes in the brain? The living brain means continuous changes at the synaptic level with every new experience, with every new process of learning, memorizing or mastering new and existing skills. Synapses are generated and dissolved, while others are preserved, in an ever-changing process of so-called neuroplasticity. Ongoing processes of synaptic reinforcements and decay occur during wakefulness when consciousness is present, but also during sleep when it is mostly absent. We suggest that consciousness influences brain neuroplasticity both during wakefulness as well as sleep in a top-down way. This means that consciousness really activates synaptic flow and changes brain structures and functional organization. The dynamic impact of consciousness on brain never stops despite the relative stationary structure of the brain. Such a process can be a target for medical intervention, e.g., by cognitive training. PMID:23847580

  16. Brain structure characteristics in intellectually superior schizophrenia.

    PubMed

    Vaskinn, Anja; Hartberg, Cecilie B; Sundet, Kjetil; Westlye, Lars T; Andreassen, Ole A; Melle, Ingrid; Agartz, Ingrid

    2015-04-30

    The current study aims to fill a gap in the knowledge base by investigating the structural brain characteristics of individuals with schizophrenia and superior intellectual abilities. Subcortical volumes, cortical thickness and cortical surface area were examined in intellectually normal and intellectually superior participants with schizophrenia and their IQ-matched healthy controls, as well as in intellectually low schizophrenia participants. We replicated significant diagnostic group effects on hippocampal and ventricular size after correction for multiple comparisons. There were no statistically significant effects of intellectual level or of the interaction between diagnostic group and intellectual level. Effect sizes indicated that differences between schizophrenia and healthy control participants were of similar magnitude at both intellectual levels for all three types of morphological data. A secondary analysis within the schizophrenia group, including participants with low intellectual abilities, yielded numerical, but no statistically significant differences on any structural brain measure. The present findings indicate that the brain structure abnormalities in schizophrenia are present at all intellectual levels, and individuals with schizophrenia and superior intellectual abilities have brain structure abnormalities of the same magnitude as individuals with schizophrenia and normal intellectual abilities. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Identifying Lesions on Structural Brain Images-Validation of the Method and Application to Neuropsychological Patients

    ERIC Educational Resources Information Center

    Stamatakis, E.A.; Tyler, L.K.

    2005-01-01

    The study of neuropsychological disorders has been greatly facilitated by the localization of brain lesions on MRI scans. Current popular approaches for the assessment of MRI brain scans mostly depend on the successful segmentation of the brain into grey and white matter. These methods cannot be used effectively with large lesions because lesions…

  18. Inattention and Reaction Time Variability Are Linked to Ventromedial Prefrontal Volume in Adolescents.

    PubMed

    Albaugh, Matthew D; Orr, Catherine; Chaarani, Bader; Althoff, Robert R; Allgaier, Nicholas; D'Alberto, Nicholas; Hudson, Kelsey; Mackey, Scott; Spechler, Philip A; Banaschewski, Tobias; Brühl, Rüdiger; Bokde, Arun L W; Bromberg, Uli; Büchel, Christian; Cattrell, Anna; Conrod, Patricia J; Desrivières, Sylvane; Flor, Herta; Frouin, Vincent; Gallinat, Jürgen; Goodman, Robert; Gowland, Penny; Grimmer, Yvonne; Heinz, Andreas; Kappel, Viola; Martinot, Jean-Luc; Paillère Martinot, Marie-Laure; Nees, Frauke; Orfanos, Dimitri Papadopoulos; Penttila, Jani; Poustka, Luise; Paus, Tomáš; Smolka, Michael N; Struve, Maren; Walter, Henrik; Whelan, Robert; Schumann, Gunter; Garavan, Hugh; Potter, Alexandra S

    2017-11-01

    Neuroimaging studies of attention-deficit/hyperactivity disorder (ADHD) have most commonly reported volumetric abnormalities in the basal ganglia, cerebellum, and prefrontal cortices. Few studies have examined the relationship between ADHD symptomatology and brain structure in population-based samples. We investigated the relationship between dimensional measures of ADHD symptomatology, brain structure, and reaction time variability-an index of lapses in attention. We also tested for associations between brain structural correlates of ADHD symptomatology and maps of dopaminergic gene expression. Psychopathology and imaging data were available for 1538 youths. Parent ratings of ADHD symptoms were obtained using the Development and Well-Being Assessment and the Strengths and Difficulties Questionnaire (SDQ). Self-reports of ADHD symptoms were assessed using the youth version of the SDQ. Reaction time variability was available in a subset of participants. For each measure, whole-brain voxelwise regressions with gray matter volume were calculated. Parent ratings of ADHD symptoms (Development and Well-Being Assessment and SDQ), adolescent self-reports of ADHD symptoms on the SDQ, and reaction time variability were each negatively associated with gray matter volume in an overlapping region of the ventromedial prefrontal cortex. Maps of DRD1 and DRD2 gene expression were associated with brain structural correlates of ADHD symptomatology. This is the first study to reveal relationships between ventromedial prefrontal cortex structure and multi-informant measures of ADHD symptoms in a large population-based sample of adolescents. Our results indicate that ventromedial prefrontal cortex structure is a biomarker for ADHD symptomatology. These findings extend previous research implicating the default mode network and dopaminergic dysfunction in ADHD. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  19. On the nature and evolution of the neural bases of human language

    NASA Technical Reports Server (NTRS)

    Lieberman, Philip

    2002-01-01

    The traditional theory equating the brain bases of language with Broca's and Wernicke's neocortical areas is wrong. Neural circuits linking activity in anatomically segregated populations of neurons in subcortical structures and the neocortex throughout the human brain regulate complex behaviors such as walking, talking, and comprehending the meaning of sentences. When we hear or read a word, neural structures involved in the perception or real-world associations of the word are activated as well as posterior cortical regions adjacent to Wernicke's area. Many areas of the neocortex and subcortical structures support the cortical-striatal-cortical circuits that confer complex syntactic ability, speech production, and a large vocabulary. However, many of these structures also form part of the neural circuits regulating other aspects of behavior. For example, the basal ganglia, which regulate motor control, are also crucial elements in the circuits that confer human linguistic ability and abstract reasoning. The cerebellum, traditionally associated with motor control, is active in motor learning. The basal ganglia are also key elements in reward-based learning. Data from studies of Broca's aphasia, Parkinson's disease, hypoxia, focal brain damage, and a genetically transmitted brain anomaly (the putative "language gene," family KE), and from comparative studies of the brains and behavior of other species, demonstrate that the basal ganglia sequence the discrete elements that constitute a complete motor act, syntactic process, or thought process. Imaging studies of intact human subjects and electrophysiologic and tracer studies of the brains and behavior of other species confirm these findings. As Dobzansky put it, "Nothing in biology makes sense except in the light of evolution" (cited in Mayr, 1982). That applies with as much force to the human brain and the neural bases of language as it does to the human foot or jaw. The converse follows: the mark of evolution on the brains of human beings and other species provides insight into the evolution of the brain bases of human language. The neural substrate that regulated motor control in the common ancestor of apes and humans most likely was modified to enhance cognitive and linguistic ability. Speech communication played a central role in this process. However, the process that ultimately resulted in the human brain may have started when our earliest hominid ancestors began to walk.

  20. Brain structural changes associated with chronicity and antipsychotic treatment in schizophrenia.

    PubMed

    Tomelleri, Luisa; Jogia, Jigar; Perlini, Cinzia; Bellani, Marcella; Ferro, Adele; Rambaldelli, Gianluca; Tansella, Michele; Frangou, Sophia; Brambilla, Paolo

    2009-12-01

    Accumulating evidence suggest a life-long impact of disease related mechanisms on brain structure in schizophrenia which may be modified by antipsychotic treatment. The aim of the present study was to investigate in a large sample of patients with schizophrenia the effect of illness duration and antipsychotic treatment on brain structure. Seventy-one schizophrenic patients and 79 age and gender matched healthy participants underwent brain magnetic resonance imaging (MRI). All images were processed with voxel based morphometry, using SPM5. Compared to healthy participants, patients showed decrements in gray matter volume in the left medial and left inferior frontal gyrus. In addition, duration of illness was negatively associated with gray matter volume in prefrontal regions bilaterally, in the temporal pole on the left and the caudal superior temporal gyrus on the right. Cumulative exposure to antipsychotics correlated positively with gray matter volumes in the cingulate gyrus for typical agents and in the thalamus for atypical drugs. These findings (a) indicate that structural abnormalities in prefrontal and temporal cortices in schizophrenia are progressive and, (b) suggest that antipsychotic medication has a significant impact on brain morphology.

  1. Hierarchical organization of functional connectivity in the mouse brain: a complex network approach.

    PubMed

    Bardella, Giampiero; Bifone, Angelo; Gabrielli, Andrea; Gozzi, Alessandro; Squartini, Tiziano

    2016-08-18

    This paper represents a contribution to the study of the brain functional connectivity from the perspective of complex networks theory. More specifically, we apply graph theoretical analyses to provide evidence of the modular structure of the mouse brain and to shed light on its hierarchical organization. We propose a novel percolation analysis and we apply our approach to the analysis of a resting-state functional MRI data set from 41 mice. This approach reveals a robust hierarchical structure of modules persistent across different subjects. Importantly, we test this approach against a statistical benchmark (or null model) which constrains only the distributions of empirical correlations. Our results unambiguously show that the hierarchical character of the mouse brain modular structure is not trivially encoded into this lower-order constraint. Finally, we investigate the modular structure of the mouse brain by computing the Minimal Spanning Forest, a technique that identifies subnetworks characterized by the strongest internal correlations. This approach represents a faster alternative to other community detection methods and provides a means to rank modules on the basis of the strength of their internal edges.

  2. Hierarchical organization of functional connectivity in the mouse brain: a complex network approach

    NASA Astrophysics Data System (ADS)

    Bardella, Giampiero; Bifone, Angelo; Gabrielli, Andrea; Gozzi, Alessandro; Squartini, Tiziano

    2016-08-01

    This paper represents a contribution to the study of the brain functional connectivity from the perspective of complex networks theory. More specifically, we apply graph theoretical analyses to provide evidence of the modular structure of the mouse brain and to shed light on its hierarchical organization. We propose a novel percolation analysis and we apply our approach to the analysis of a resting-state functional MRI data set from 41 mice. This approach reveals a robust hierarchical structure of modules persistent across different subjects. Importantly, we test this approach against a statistical benchmark (or null model) which constrains only the distributions of empirical correlations. Our results unambiguously show that the hierarchical character of the mouse brain modular structure is not trivially encoded into this lower-order constraint. Finally, we investigate the modular structure of the mouse brain by computing the Minimal Spanning Forest, a technique that identifies subnetworks characterized by the strongest internal correlations. This approach represents a faster alternative to other community detection methods and provides a means to rank modules on the basis of the strength of their internal edges.

  3. Structural brain alterations in primary open angle glaucoma: a 3T MRI study

    PubMed Central

    Wang, Jieqiong; Li, Ting; Sabel, Bernhard A.; Chen, Zhiqiang; Wen, Hongwei; Li, Jianhong; Xie, Xiaobin; Yang, Diya; Chen, Weiwei; Wang, Ningli; Xian, Junfang; He, Huiguang

    2016-01-01

    Glaucoma is not only an eye disease but is also associated with degeneration of brain structures. We now investigated the pattern of visual and non-visual brain structural changes in 25 primary open angle glaucoma (POAG) patients and 25 age-gender-matched normal controls using T1-weighted imaging. MRI images were subjected to volume-based analysis (VBA) and surface-based analysis (SBA) in the whole brain as well as ROI-based analysis of the lateral geniculate nucleus (LGN), visual cortex (V1/2), amygdala and hippocampus. While VBA showed no significant differences in the gray matter volumes of patients, SBA revealed significantly reduced cortical thickness in the right frontal pole and ROI-based analysis volume shrinkage in LGN bilaterally, right V1 and left amygdala. Structural abnormalities were correlated with clinical parameters in a subset of the patients revealing that the left LGN volume was negatively correlated with bilateral cup-to-disk ratio (CDR), the right LGN volume was positively correlated with the mean deviation of the right visual hemifield, and the right V1 cortical thickness was negatively correlated with the right CDR in glaucoma. These results demonstrate that POAG affects both vision-related structures and non-visual cortical regions. Moreover, alterations of the brain visual structures reflect the clinical severity of glaucoma. PMID:26743811

  4. Brain Imaging Studies on the Cognitive, Pharmacological and Neurobiological Effects of Cannabis in Humans: Evidence from Studies of Adult Users.

    PubMed

    Weinstein, Aviv; Livny, Abigail; Weizman, Abraham

    2016-01-01

    Cannabis is the most widely used illicit drug worldwide. Regular cannabis use has been associated with a range of acute and chronic mental health problems, such as anxiety, depression, psychotic symptoms and neurocognitive impairments and their neural mechanisms need to be examined. This review summarizes and critically evaluates brain-imaging studies of cannabis in recreational and regular cannabis users between January 2000 and January 2016. The search has yielded eligible 103 structural and functional studies. Regular use of cannabis results in volumetric, gray matter and white matter structural changes in the brain, in particular in the hippocampus and the amygdala. Regular use of cannabis affects cognitive processes such as attention, memory, inhibitory control, decision-making, emotional processing, social cognition and their associated brain areas. There is evidence that regular cannabis use leads to altered neural function during attention and working memory and that recruitment of activity in additional brain regions can compensate for it. Similar to other drugs of abuse, cannabis cues activated areas in the reward pathway. Pharmacological studies showed a modest increase in human striatal dopamine transmission after administration of THC in healthy volunteers. Regular cannabis use resulted in reduced dopamine transporter occupancy and reduced dopamine synthesis but not in reduced striatal D2/D3 receptor occupancy compared with healthy control participants. Studies also showed different effects of Δ-9 tetrahydrocannabinol (THC) and cannabidiol (CBD) on emotion, cognition and associated brain regions in healthy volunteers, whereby CBD protects against the psychoactive effects of THC. Brain imaging studies using selective high-affinity radioligands for the imaging of cannabinoid CB1 receptor availability in Positron Emission Tomography (PET) showed downregulation of CB1 in regular users of cannabis. In conclusion, regular use of the cannabinoids exerts structural and functional changes in the human brain. These changes have profound implications for our understanding of the neuropharmacology of cannabis and its effects on cognition, mental health and the brain. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. What We Know About the Brain Structure-Function Relationship.

    PubMed

    Batista-García-Ramó, Karla; Fernández-Verdecia, Caridad Ivette

    2018-04-18

    How the human brain works is still a question, as is its implication with brain architecture: the non-trivial structure–function relationship. The main hypothesis is that the anatomic architecture conditions, but does not determine, the neural network dynamic. The functional connectivity cannot be explained only considering the anatomical substrate. This involves complex and controversial aspects of the neuroscience field and that the methods and methodologies to obtain structural and functional connectivity are not always rigorously applied. The goal of the present article is to discuss about the progress made to elucidate the structure–function relationship of the Central Nervous System, particularly at the brain level, based on results from human and animal studies. The current novel systems and neuroimaging techniques with high resolutive physio-structural capacity have brought about the development of an integral framework of different structural and morphometric tools such as image processing, computational modeling and graph theory. Different laboratories have contributed with in vivo, in vitro and computational/mathematical models to study the intrinsic neural activity patterns based on anatomical connections. We conclude that multi-modal techniques of neuroimaging are required such as an improvement on methodologies for obtaining structural and functional connectivity. Even though simulations of the intrinsic neural activity based on anatomical connectivity can reproduce much of the observed patterns of empirical functional connectivity, future models should be multifactorial to elucidate multi-scale relationships and to infer disorder mechanisms.

  6. Postnatal brain development: Structural imaging of dynamic neurodevelopmental processes

    PubMed Central

    Jernigan, Terry L.; Baaré, William F. C.; Stiles, Joan; Madsen, Kathrine Skak

    2013-01-01

    After birth, there is striking biological and functional development of the brain’s fiber tracts as well as remodeling of cortical and subcortical structures. Behavioral development in children involves a complex and dynamic set of genetically guided processes by which neural structures interact constantly with the environment. This is a protracted process, beginning in the third week of gestation and continuing into early adulthood. Reviewed here are studies using structural imaging techniques, with a special focus on diffusion weighted imaging, describing age-related brain maturational changes in children and adolescents, as well as studies that link these changes to behavioral differences. Finally, we discuss evidence for effects on the brain of several factors that may play a role in mediating these brain–behavior associations in children, including genetic variation, behavioral interventions, and hormonal variation associated with puberty. At present longitudinal studies are few, and we do not yet know how variability in individual trajectories of biological development in specific neural systems map onto similar variability in behavioral trajectories. PMID:21489384

  7. Selective vulnerability of Rich Club brain regions is an organizational principle of structural connectivity loss in Huntington’s disease

    PubMed Central

    Seunarine, Kiran K.; Razi, Adeel; Cole, James H.; Gregory, Sarah; Durr, Alexandra; Roos, Raymund A. C.; Stout, Julie C.; Landwehrmeyer, Bernhard; Scahill, Rachael I.; Clark, Chris A.; Rees, Geraint

    2015-01-01

    Huntington’s disease can be predicted many years before symptom onset, and thus makes an ideal model for studying the earliest mechanisms of neurodegeneration. Diffuse patterns of structural connectivity loss occur in the basal ganglia and cortex early in the disease. However, the organizational principles that underlie these changes are unclear. By understanding such principles we can gain insight into the link between the cellular pathology caused by mutant huntingtin and its downstream effect at the macroscopic level. The ‘rich club’ is a pattern of organization established in healthy human brains, where specific hub ‘rich club’ brain regions are more highly connected to each other than other brain regions. We hypothesized that selective loss of rich club connectivity might represent an organizing principle underlying the distributed pattern of structural connectivity loss seen in Huntington’s disease. To test this hypothesis we performed diffusion tractography and graph theoretical analysis in a pseudo-longitudinal study of 50 premanifest and 38 manifest Huntington’s disease participants compared with 47 healthy controls. Consistent with our hypothesis we found that structural connectivity loss selectively affected rich club brain regions in premanifest and manifest Huntington’s disease participants compared with controls. We found progressive network changes across controls, premanifest Huntington’s disease and manifest Huntington’s disease characterized by increased network segregation in the premanifest stage and loss of network integration in manifest disease. These regional and whole brain network differences were highly correlated with cognitive and motor deficits suggesting they have pathophysiological relevance. We also observed greater reductions in the connectivity of brain regions that have higher network traffic and lower clustering of neighbouring regions. This provides a potential mechanism that results in a characteristic pattern of structural connectivity loss targeting highly connected brain regions with high network traffic and low clustering of neighbouring regions. Our findings highlight the role of the rich club as a substrate for the structural connectivity loss seen in Huntington’s disease and have broader implications for understanding the connection between molecular and systems level pathology in neurodegenerative disease. PMID:26384928

  8. The Virtual Mouse Brain: A Computational Neuroinformatics Platform to Study Whole Mouse Brain Dynamics.

    PubMed

    Melozzi, Francesca; Woodman, Marmaduke M; Jirsa, Viktor K; Bernard, Christophe

    2017-01-01

    Connectome-based modeling of large-scale brain network dynamics enables causal in silico interrogation of the brain's structure-function relationship, necessitating the close integration of diverse neuroinformatics fields. Here we extend the open-source simulation software The Virtual Brain (TVB) to whole mouse brain network modeling based on individual diffusion magnetic resonance imaging (dMRI)-based or tracer-based detailed mouse connectomes. We provide practical examples on how to use The Virtual Mouse Brain (TVMB) to simulate brain activity, such as seizure propagation and the switching behavior of the resting state dynamics in health and disease. TVMB enables theoretically driven experimental planning and ways to test predictions in the numerous strains of mice available to study brain function in normal and pathological conditions.

  9. Abuse of Amphetamines and Structural Abnormalities in Brain

    PubMed Central

    Berman, Steven; O’Neill, Joseph; Fears, Scott; Bartzokis, George; London, Edythe D.

    2009-01-01

    We review evidence that structural brain abnormalities are associated with abuse of amphetamines. A brief history of amphetamine use/abuse, and evidence for toxicity is followed by a summary of findings from structural magnetic resonance imaging (MRI) studies of human subjects who had abused amphetamines and children who were exposed to amphetamines in utero. Evidence comes from studies that used a variety of techniques that include manual tracing, pattern matching, voxel-based, tensor-based, or cortical thickness mapping, quantification of white matter signal hyperintensities, and diffusion tensor imaging. Ten studies compared controls to individuals who were exposed to methamphetamine. Three studies assessed individuals exposed to 3-4-methylenedioxymethamphetamine (MDMA). Brain structural abnormalities were consistently reported in amphetamine abusers, as compared to control subjects. These included lower cortical gray matter volume and higher striatal volume than control subjects. These differences might reflect brain features that could predispose to substance dependence. High striatal volumes might also reflect compensation for toxicity in the dopamine-rich basal ganglia. Prenatal exposure was associated with striatal volume that was below control values, suggesting that such compensation might not occur in utero. Several forms of white matter abnormality are also common, and may involve gliosis. Many of the limitations and inconsistencies in the literature relate to techniques and cross-sectional designs, which cannot infer causality. Potential confounding influences include effects of pre-existing risk/protective factors, development, gender, severity of amphetamine abuse, abuse of other drugs, abstinence, and differences in lifestyle. Longitudinal designs in which multimodal datasets are acquired and are subjected to multivariate analyses would enhance our ability to provide general conclusions regarding the associations between amphetamine abuse and brain structure. PMID:18991959

  10. Alterations in emotion generation and regulation neurocircuitry in depression and eating disorders: A comparative review of structural and functional neuroimaging studies.

    PubMed

    Donofry, Shannon D; Roecklein, Kathryn A; Wildes, Jennifer E; Miller, Megan A; Erickson, Kirk I

    2016-09-01

    Major depression and eating disorders (EDs) are highly co-morbid and may share liability. Impaired emotion regulation may represent a common etiological or maintaining mechanism. Research has demonstrated that depressed individuals and individuals with EDs exhibit impaired emotion regulation, with these impairments being associated with changes in brain structure and function. The goal of this review was to evaluate findings from neuroimaging studies of depression and EDs to determine whether there are overlapping alterations in the brain regions known to be involved in emotion regulation, evidence of which would aid in the diagnosis and treatment of these conditions. Our review of the literature suggests that depression and EDs exhibit common structural and functional alterations in brain regions involved in emotion regulation, including the amygdala, ventral striatum and nucleus accumbens, anterior cingulate cortex, insula, and dorsolateral prefrontal cortex. We present preliminary support for a shared etiological mechanism. Future studies should consider manipulating emotion regulation in a sample of individuals with depression and EDs to better characterize abnormalities in these brain circuits. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Finding Imaging Patterns of Structural Covariance via Non-Negative Matrix Factorization

    PubMed Central

    Sotiras, Aristeidis; Resnick, Susan M.; Davatzikos, Christos

    2015-01-01

    In this paper, we investigate the use of Non-Negative Matrix Factorization (NNMF) for the analysis of structural neuroimaging data. The goal is to identify the brain regions that co-vary across individuals in a consistent way, hence potentially being part of underlying brain networks or otherwise influenced by underlying common mechanisms such as genetics and pathologies. NNMF offers a directly data-driven way of extracting relatively localized co-varying structural regions, thereby transcending limitations of Principal Component Analysis (PCA), Independent Component Analysis (ICA) and other related methods that tend to produce dispersed components of positive and negative loadings. In particular, leveraging upon the well known ability of NNMF to produce parts-based representations of image data, we derive decompositions that partition the brain into regions that vary in consistent ways across individuals. Importantly, these decompositions achieve dimensionality reduction via highly interpretable ways and generalize well to new data as shown via split-sample experiments. We empirically validate NNMF in two data sets: i) a Diffusion Tensor (DT) mouse brain development study, and ii) a structural Magnetic Resonance (sMR) study of human brain aging. We demonstrate the ability of NNMF to produce sparse parts-based representations of the data at various resolutions. These representations seem to follow what we know about the underlying functional organization of the brain and also capture some pathological processes. Moreover, we show that these low dimensional representations favorably compare to descriptions obtained with more commonly used matrix factorization methods like PCA and ICA. PMID:25497684

  12. Functional Brain Network Abnormalities during Verbal Working Memory Performance in Adolescents and Young Adults with Dyslexia

    ERIC Educational Resources Information Center

    Wolf, Robert Christian; Sambataro, Fabio; Lohr, Christina; Steinbrink, Claudia; Martin, Claudia; Vasic, Nenad

    2010-01-01

    Behavioral and functional neuroimaging studies indicate deficits in verbal working memory (WM) and frontoparietal dysfunction in individuals with dyslexia. Additionally, structural brain abnormalities in dyslexics suggest a dysconnectivity of brain regions associated with phonological processing. However, little is known about the functional…

  13. Structural and functional correlates of visual field asymmetry in the human brain by diffusion kurtosis MRI and functional MRI.

    PubMed

    O'Connell, Caitlin; Ho, Leon C; Murphy, Matthew C; Conner, Ian P; Wollstein, Gadi; Cham, Rakie; Chan, Kevin C

    2016-11-09

    Human visual performance has been observed to show superiority in localized regions of the visual field across many classes of stimuli. However, the underlying neural mechanisms remain unclear. This study aims to determine whether the visual information processing in the human brain is dependent on the location of stimuli in the visual field and the corresponding neuroarchitecture using blood-oxygenation-level-dependent functional MRI (fMRI) and diffusion kurtosis MRI, respectively, in 15 healthy individuals at 3 T. In fMRI, visual stimulation to the lower hemifield showed stronger brain responses and larger brain activation volumes than the upper hemifield, indicative of the differential sensitivity of the human brain across the visual field. In diffusion kurtosis MRI, the brain regions mapping to the lower visual field showed higher mean kurtosis, but not fractional anisotropy or mean diffusivity compared with the upper visual field. These results suggested the different distributions of microstructural organization across visual field brain representations. There was also a strong positive relationship between diffusion kurtosis and fMRI responses in the lower field brain representations. In summary, this study suggested the structural and functional brain involvements in the asymmetry of visual field responses in humans, and is important to the neurophysiological and psychological understanding of human visual information processing.

  14. Is there a neuroanatomical basis of the vulnerability to suicidal behavior? A coordinate-based meta-analysis of structural and functional MRI studies

    PubMed Central

    van Heeringen, Kees; Bijttebier, Stijn; Desmyter, Stefanie; Vervaet, Myriam; Baeken, Chris

    2014-01-01

    Objective: We conducted meta-analyses of functional and structural neuroimaging studies comparing adolescent and adult individuals with a history of suicidal behavior and a psychiatric disorder to psychiatric controls in order to objectify changes in brain structure and function in association with a vulnerability to suicidal behavior. Methods: Magnetic resonance imaging studies published up to July 2013 investigating structural or functional brain correlates of suicidal behavior were identified through computerized and manual literature searches. Activation foci from 12 studies encompassing 475 individuals, i.e., 213 suicide attempters and 262 psychiatric controls were subjected to meta-analytical study using anatomic or activation likelihood estimation (ALE). Result: Activation likelihood estimation revealed structural deficits and functional changes in association with a history of suicidal behavior. Structural findings included reduced volumes of the rectal gyrus, superior temporal gyrus and caudate nucleus. Functional differences between study groups included an increased reactivity of the anterior and posterior cingulate cortices. Discussion: A history of suicidal behavior appears to be associated with (probably interrelated) structural deficits and functional overactivation in brain areas, which contribute to a decision-making network. The findings suggest that a vulnerability to suicidal behavior can be defined in terms of a reduced motivational control over the intentional behavioral reaction to salient negative stimuli. PMID:25374525

  15. Cross-Sectional and Longitudinal Abnormalities in Brain Structure in Children with Severe Mood Dysregulation or Bipolar Disorder

    ERIC Educational Resources Information Center

    Adleman, Nancy E.; Fromm, Stephen J.; Razdan, Varun; Kayser, Reilly; Dickstein, Daniel P.; Brotman, Melissa A.; Pine, Daniel S.; Leibenluft, Ellen

    2012-01-01

    Background: There is debate as to whether chronic irritability (operationalized as severe mood dysregulation, SMD) is a developmental form of bipolar disorder (BD). Although structural brain abnormalities in BD have been demonstrated, no study compares neuroanatomy among SMD, BD, and healthy volunteers (HV) either cross-sectionally or over time.…

  16. The social network-network: size is predicted by brain structure and function in the amygdala and paralimbic regions

    PubMed Central

    Von Der Heide, Rebecca; Vyas, Govinda

    2014-01-01

    The social brain hypothesis proposes that the large size of the primate neocortex evolved to support complex and demanding social interactions. Accordingly, recent studies have reported correlations between the size of an individual’s social network and the density of gray matter (GM) in regions of the brain implicated in social cognition. However, the reported relationships between GM density and social group size are somewhat inconsistent with studies reporting correlations in different brain regions. One factor that might account for these discrepancies is the use of different measures of social network size (SNS). This study used several measures of SNS to assess the relationships SNS and GM density. The second goal of this study was to test the relationship between social network measures and functional brain activity. Participants performed a social closeness task using photos of their friends and unknown people. Across the VBM and functional magnetic resonance imaging analyses, individual differences in SNS were consistently related to structural and functional differences in three regions: the left amygdala, right amygdala and the right entorhinal/ventral anterior temporal cortex. PMID:24493846

  17. Discriminating the Difference between Remote and Close Association with Relation to White-Matter Structural Connectivity

    PubMed Central

    Wu, Chinglin; Zhong, Suyu; Chen, Hsuehchih

    2016-01-01

    Remote association is a core ability that influences creative output. In contrast to close association, remote association is commonly agreed to be connected with more original and unique concepts. However, although existing studies have discovered that creativity is closely related to the white-matter structure of the brain, there are no studies that examine the relevance between the connectivity efficiencies and creativity of the brain regions from the perspective of networks. Consequently, this study constructed a brain white matter network structure that consisted of cerebral tissues and nerve fibers and used graph theory to analyze the connection efficiencies among the network nodes, further illuminating the differences between remote and close association in relation to the connectivity of the brain network. Researchers analyzed correlations between the scores of 35 healthy adults with regard to remote and close associations and the connectivity efficiencies of the white-matter network of the brain. Controlling for gender, age, and verbal intelligence, the remote association positively correlated with the global efficiency and negatively correlated with the levels of small-world. A close association negatively correlated with the global efficiency. Notably, the node efficiency in the middle temporal gyrus (MTG) positively correlated with remote association and negatively correlated with close association. To summarize, remote and close associations work differently as patterns in the brain network. Remote association requires efficient and convenient mutual connections between different brain regions, while close association emphasizes the limited connections that exist in a local region. These results are consistent with previous results, which indicate that creativity is based on the efficient integration and connection between different regions of the brain and that temporal lobes are the key regions for discriminating remote and close associations. PMID:27760177

  18. The consequences of fetal growth restriction on brain structure and neurodevelopmental outcome.

    PubMed

    Miller, Suzanne L; Huppi, Petra S; Mallard, Carina

    2016-02-15

    Fetal growth restriction (FGR) is a significant complication of pregnancy describing a fetus that does not grow to full potential due to pathological compromise. FGR affects 3-9% of pregnancies in high-income countries, and is a leading cause of perinatal mortality and morbidity. Placental insufficiency is the principal cause of FGR, resulting in chronic fetal hypoxia. This hypoxia induces a fetal adaptive response of cardiac output redistribution to favour vital organs, including the brain, and is in consequence called brain sparing. Despite this, it is now apparent that brain sparing does not ensure normal brain development in growth-restricted fetuses. In this review we have brought together available evidence from human and experimental animal studies to describe the complex changes in brain structure and function that occur as a consequence of FGR. In both humans and animals, neurodevelopmental outcomes are influenced by the timing of the onset of FGR, the severity of FGR, and gestational age at delivery. FGR is broadly associated with reduced total brain volume and altered cortical volume and structure, decreased total number of cells and myelination deficits. Brain connectivity is also impaired, evidenced by neuronal migration deficits, reduced dendritic processes, and less efficient networks with decreased long-range connections. Subsequent to these structural alterations, short- and long-term functional consequences have been described in school children who had FGR, most commonly including problems in motor skills, cognition, memory and neuropsychological dysfunctions. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  19. Interventional programmes to improve cognition during healthy and pathological ageing: Cortical modulations and evidence for brain plasticity.

    PubMed

    Cespón, Jesús; Miniussi, Carlo; Pellicciari, Maria Concetta

    2018-05-01

    A growing body of evidence suggests that healthy elderly individuals and patients with Alzheimer's disease retain an important potential for neuroplasticity. This review summarizes studies investigating the modulation of neural activity and structural brain integrity in response to interventions involving cognitive training, physical exercise and non-invasive brain stimulation in healthy elderly and cognitively impaired subjects (including patients with mild cognitive impairment (MCI) and Alzheimer's disease). Moreover, given the clinical relevance of neuroplasticity, we discuss how evidence for neuroplasticity can be inferred from the functional and structural brain changes observed after implementing these interventions. We emphasize that multimodal programmes, which combine several types of interventions, improve cognitive function to a greater extent than programmes that use a single interventional approach. We suggest specific methods for weighting the relative importance of cognitive training, physical exercise and non-invasive brain stimulation according to the functional and structural state of the brain of the targeted subject to maximize the cognitive improvements induced by multimodal programmes. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. 8-week Mindfulness Based Stress Reduction induces brain changes similar to traditional long-term meditation practice - A systematic review.

    PubMed

    Gotink, Rinske A; Meijboom, Rozanna; Vernooij, Meike W; Smits, Marion; Hunink, M G Myriam

    2016-10-01

    The objective of the current study was to systematically review the evidence of the effect of secular mindfulness techniques on function and structure of the brain. Based on areas known from traditional meditation neuroimaging results, we aimed to explore a neuronal explanation of the stress-reducing effects of the 8-week Mindfulness Based Stress Reduction (MBSR) and Mindfulness Based Cognitive Therapy (MBCT) program. We assessed the effect of MBSR and MBCT (N=11, all MBSR), components of the programs (N=15), and dispositional mindfulness (N=4) on brain function and/or structure as assessed by (functional) magnetic resonance imaging. 21 fMRI studies and seven MRI studies were included (two studies performed both). The prefrontal cortex, the cingulate cortex, the insula and the hippocampus showed increased activity, connectivity and volume in stressed, anxious and healthy participants. Additionally, the amygdala showed decreased functional activity, improved functional connectivity with the prefrontal cortex, and earlier deactivation after exposure to emotional stimuli. Demonstrable functional and structural changes in the prefrontal cortex, cingulate cortex, insula and hippocampus are similar to changes described in studies on traditional meditation practice. In addition, MBSR led to changes in the amygdala consistent with improved emotion regulation. These findings indicate that MBSR-induced emotional and behavioral changes are related to functional and structural changes in the brain. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Creative females have larger white matter structures: Evidence from a large sample study.

    PubMed

    Takeuchi, Hikaru; Taki, Yasuyuki; Nouchi, Rui; Yokoyama, Ryoichi; Kotozaki, Yuka; Nakagawa, Seishu; Sekiguchi, Atsushi; Iizuka, Kunio; Yamamoto, Yuki; Hanawa, Sugiko; Araki, Tsuyoshi; Makoto Miyauchi, Carlos; Shinada, Takamitsu; Sakaki, Kohei; Sassa, Yuko; Nozawa, Takayuki; Ikeda, Shigeyuki; Yokota, Susumu; Daniele, Magistro; Kawashima, Ryuta

    2017-01-01

    The importance of brain connectivity for creativity has been theoretically suggested and empirically demonstrated. Studies have shown sex differences in creativity measured by divergent thinking (CMDT) as well as sex differences in the structural correlates of CMDT. However, the relationships between regional white matter volume (rWMV) and CMDT and associated sex differences have never been directly investigated. In addition, structural studies have shown poor replicability and inaccuracy of multiple comparisons over the whole brain. To address these issues, we used the data from a large sample of healthy young adults (776 males and 560 females; mean age: 20.8 years, SD = 0.8). We investigated the relationship between CMDT and WMV using the newest version of voxel-based morphometry (VBM). We corrected for multiple comparisons over whole brain using the permutation-based method, which is known to be quite accurate and robust. Significant positive correlations between rWMV and CMDT scores were observed in widespread areas below the neocortex specifically in females. These associations with CMDT were not observed in analyses of fractional anisotropy using diffusion tensor imaging. Using rigorous methods, our findings further supported the importance of brain connectivity for creativity as well as its female-specific association. Hum Brain Mapp 38:414-430, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Radiation-induced brain structural and functional abnormalities in presymptomatic phase and outcome prediction.

    PubMed

    Ding, Zhongxiang; Zhang, Han; Lv, Xiao-Fei; Xie, Fei; Liu, Lizhi; Qiu, Shijun; Li, Li; Shen, Dinggang

    2018-01-01

    Radiation therapy, a major method of treatment for brain cancer, may cause severe brain injuries after many years. We used a rare and unique cohort of nasopharyngeal carcinoma patients with normal-appearing brains to study possible early irradiation injury in its presymptomatic phase before severe, irreversible necrosis happens. The aim is to detect any structural or functional imaging biomarker that is sensitive to early irradiation injury, and to understand the recovery and progression of irradiation injury that can shed light on outcome prediction for early clinical intervention. We found an acute increase in local brain activity that is followed by extensive reductions in such activity in the temporal lobe and significant loss of functional connectivity in a distributed, large-scale, high-level cognitive function-related brain network. Intriguingly, these radiosensitive functional alterations were found to be fully or partially recoverable. In contrast, progressive late disruptions to the integrity of the related far-end white matter structure began to be significant after one year. Importantly, early increased local brain functional activity was predictive of severe later temporal lobe necrosis. Based on these findings, we proposed a dynamic, multifactorial model for radiation injury and another preventive model for timely clinical intervention. Hum Brain Mapp 39:407-427, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. Alteration of diffusion-tensor MRI measures in brain regions involved in early stages of Parkinson's disease.

    PubMed

    Chen, Nan-Kuei; Chou, Ying-Hui; Sundman, Mark; Hickey, Patrick; Kasoff, Willard S; Bernstein, Adam; Trouard, Theodore P; Lin, Tanya; Rapcsak, Steven Z; Sherman, Scott J; Weingarten, Carol

    2018-06-07

    Many non-motor symptoms (e.g., hyposmia) appear years before the cardinal motor features of Parkinson's disease (PD). It is thus desirable to be able to use noninvasive brain imaging methods, such as magnetic resonance imaging (MRI), to detect brain abnormalities in early PD stages. Among the MRI modalities, diffusion tensor imaging (DTI) is suitable for detecting changes of brain tissue structure due to neurological diseases. The main purpose of this study was to investigate whether DTI signals measured from brain regions involved in early stages of PD differ from those of healthy controls. To answer this question, we analyzed whole-brain DTI data of 30 early-stage PD patients and 30 controls using improved ROI based analysis methods. Results showed that 1) the fractional anisotropy (FA) values in the olfactory tract (connected with the olfactory bulb: one of the first structures affected by PD) are lower in PD patients than healthy controls; 2) FA values are higher in PD patients than healthy controls in the following brain regions: corticospinal tract, cingulum (near hippocampus), and superior longitudinal fasciculus (temporal part). Experimental results suggest that the tissue property, measured by FA, in olfactory regions is structurally modulated by PD with a mechanism that is different from other brain regions.

  4. Structural brain development between childhood and adulthood: Convergence across four longitudinal samples.

    PubMed

    Mills, Kathryn L; Goddings, Anne-Lise; Herting, Megan M; Meuwese, Rosa; Blakemore, Sarah-Jayne; Crone, Eveline A; Dahl, Ronald E; Güroğlu, Berna; Raznahan, Armin; Sowell, Elizabeth R; Tamnes, Christian K

    2016-11-01

    Longitudinal studies including brain measures acquired through magnetic resonance imaging (MRI) have enabled population models of human brain development, crucial for our understanding of typical development as well as neurodevelopmental disorders. Brain development in the first two decades generally involves early cortical grey matter volume (CGMV) increases followed by decreases, and monotonic increases in cerebral white matter volume (CWMV). However, inconsistencies regarding the precise developmental trajectories call into question the comparability of samples. This issue can be addressed by conducting a comprehensive study across multiple datasets from diverse populations. Here, we present replicable models for gross structural brain development between childhood and adulthood (ages 8-30years) by repeating analyses in four separate longitudinal samples (391 participants; 852 scans). In addition, we address how accounting for global measures of cranial/brain size affect these developmental trajectories. First, we found evidence for continued development of both intracranial volume (ICV) and whole brain volume (WBV) through adolescence, albeit following distinct trajectories. Second, our results indicate that CGMV is at its highest in childhood, decreasing steadily through the second decade with deceleration in the third decade, while CWMV increases until mid-to-late adolescence before decelerating. Importantly, we show that accounting for cranial/brain size affects models of regional brain development, particularly with respect to sex differences. Our results increase confidence in our knowledge of the pattern of brain changes during adolescence, reduce concerns about discrepancies across samples, and suggest some best practices for statistical control of cranial volume and brain size in future studies. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Obligatory and facultative brain regions for voice-identity recognition.

    PubMed

    Roswandowitz, Claudia; Kappes, Claudia; Obrig, Hellmuth; von Kriegstein, Katharina

    2018-01-01

    Recognizing the identity of others by their voice is an important skill for social interactions. To date, it remains controversial which parts of the brain are critical structures for this skill. Based on neuroimaging findings, standard models of person-identity recognition suggest that the right temporal lobe is the hub for voice-identity recognition. Neuropsychological case studies, however, reported selective deficits of voice-identity recognition in patients predominantly with right inferior parietal lobe lesions. Here, our aim was to work towards resolving the discrepancy between neuroimaging studies and neuropsychological case studies to find out which brain structures are critical for voice-identity recognition in humans. We performed a voxel-based lesion-behaviour mapping study in a cohort of patients (n = 58) with unilateral focal brain lesions. The study included a comprehensive behavioural test battery on voice-identity recognition of newly learned (voice-name, voice-face association learning) and familiar voices (famous voice recognition) as well as visual (face-identity recognition) and acoustic control tests (vocal-pitch and vocal-timbre discrimination). The study also comprised clinically established tests (neuropsychological assessment, audiometry) and high-resolution structural brain images. The three key findings were: (i) a strong association between voice-identity recognition performance and right posterior/mid temporal and right inferior parietal lobe lesions; (ii) a selective association between right posterior/mid temporal lobe lesions and voice-identity recognition performance when face-identity recognition performance was factored out; and (iii) an association of right inferior parietal lobe lesions with tasks requiring the association between voices and faces but not voices and names. The results imply that the right posterior/mid temporal lobe is an obligatory structure for voice-identity recognition, while the inferior parietal lobe is only a facultative component of voice-identity recognition in situations where additional face-identity processing is required. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain.

  6. Increased frequency of brain pathology in inmates of a high-security forensic institution: a qualitative CT and MRI scan study.

    PubMed

    Witzel, Joachim G; Bogerts, Bernhard; Schiltz, Kolja

    2016-09-01

    This study aimed to assess whether brain pathology might be more abundant in forensic inpatients in a high-security setting than in non-criminal individuals. By using a previously used reliable approach, we explored the frequency and extent of brain pathology in a large group of institutionalized offenders who had not previously been considered to be suffering from structural brain damage and compare it to healthy, non-offending subjects. MRI and CT brain scans from 148 male inpatients of a high-security mental health institution (offense type: 51 sex, 80 violent, 9 arson, and 8 nonviolent) that were obtained due to headache, vertigo, or psychological complaints during imprisonment were assessed and compared to 52 non-criminal healthy controls. Brain scans were assessed qualitatively with respect to evidence of structural brain damage. Each case received a semiquantitative rating of "normal" (=0), "questionably abnormal" (=1), or "definitely abnormal" (=2) for the lateral ventricles, frontal/parietal cortex, and medial temporal structures bilaterally as well as third ventricle. Forensic inpatients displayed signs of brain damage to a significantly higher degree than healthy controls (p < 0.001). Even after adjustment for age, in the patients, being younger than the controls (p < 0.05), every offender type group displayed a higher proportion of subjects with brain regions categorized as definitely abnormal than the non-criminal controls. Within the forensic inpatients, offense type groups did not significantly differ in brain pathology. The astonishingly high prevalence of brain pathology in institutionalized inmates of a high-security mental health institution who previously had not been considered to be suffering from an organic brain syndrome raises questions on whether such neuroradiological assessment might be considered as a routine procedure in newly admitted patients. Furthermore, it highlights that organic changes, detectable under clinical routine conditions, may play a role in the development of legally relevant behavioral disturbances which might be underestimated.

  7. Volumetric MRI study of the intrauterine growth restriction fetal brain.

    PubMed

    Polat, A; Barlow, S; Ber, R; Achiron, R; Katorza, E

    2017-05-01

    Intrauterine growth restriction (IUGR) is a pathologic fetal condition known to affect the fetal brain regionally and associated with future neurodevelopmental abnormalities. This study employed MRI to assess in utero regional brain volume changes in IUGR fetuses compared to controls. Retrospectively, using MRI images of fetuses at 30-34 weeks gestational age, a total of 8 brain regions-supratentorial brain and cavity, cerebral hemispheres, temporal lobes and cerebellum-were measured for volume in 13 fetuses with IUGR due to placental insufficiency and in 21 controls. Volumes and their ratios were assessed for difference using regression models. Reliability was assessed by intraclass correlation coefficients (ICC) between two observers. In both groups, all structures increase in absolute volume during that gestation period, and the rate of cerebellar growth is higher compared to that of supratentorial structures. All structures' absolute volumes were significantly smaller for the IUGR group. Cerebellar to supratentorial ratios were found to be significantly smaller (P < 0.05) for IUGR compared to controls. No other significant ratio differences were found. ICC showed excellent agreement. The cerebellar to supratentorial volume ratio is affected in IUGR fetuses. Additional research is needed to assess this as a radiologic marker in relation to long-term outcome. • IUGR is a pathologic fetal condition affecting the brain • IUGR is associated with long-term neurodevelopmental abnormalities; fetal characterization is needed • This study aimed to evaluate regional brain volume differences in IUGR • Cerebellar to supratentorial volume ratios were smaller in IUGR fetuses • This finding may play a role in long-term development of IUGR fetuses.

  8. Delineation of early brain development from fetuses to infants with diffusion MRI and beyond.

    PubMed

    Ouyang, Minhui; Dubois, Jessica; Yu, Qinlin; Mukherjee, Pratik; Huang, Hao

    2018-04-12

    Dynamic macrostructural and microstructural changes take place from the mid-fetal stage to 2 years after birth. Delineating structural changes of the brain during early development provides new insights into the complicated processes of both typical development and the pathological mechanisms underlying various psychiatric and neurological disorders including autism, attention deficit hyperactivity disorder and schizophrenia. Decades of histological studies have identified strong spatial and functional maturation gradients in human brain gray and white matter. The recent improvements in magnetic resonance imaging (MRI) techniques, especially diffusion MRI (dMRI), relaxometry imaging, and magnetization transfer imaging (MTI) have provided unprecedented opportunities to non-invasively quantify and map the early developmental changes at whole brain and regional levels. Here, we review the recent advances in understanding early brain structural development during the second half of gestation and the first two postnatal years using modern MR techniques. Specifically, we review studies that delineate the emergence and microstructural maturation of white matter tracts, as well as dynamic mapping of inhomogeneous cortical microstructural organization unique to fetuses and infants. These imaging studies converge into maturational curves of MRI measurements that are distinctive across different white matter tracts and cortical regions. Furthermore, contemporary models offering biophysical interpretations of the dMRI-derived measurements are illustrated to infer the underlying microstructural changes. Collectively, this review summarizes findings that contribute to charting spatiotemporally heterogeneous gray and white matter structural development, offering MRI-based biomarkers of typical brain development and setting the stage for understanding aberrant brain development in neurodevelopmental disorders. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Structural covariance of neostriatal and limbic regions in patients with obsessive-compulsive disorder.

    PubMed

    Subirà, Marta; Cano, Marta; de Wit, Stella J; Alonso, Pino; Cardoner, Narcís; Hoexter, Marcelo Q; Kwon, Jun Soo; Nakamae, Takashi; Lochner, Christine; Sato, João R; Jung, Wi Hoon; Narumoto, Jin; Stein, Dan J; Pujol, Jesus; Mataix-Cols, David; Veltman, Dick J; Menchón, José M; van den Heuvel, Odile A; Soriano-Mas, Carles

    2016-03-01

    Frontostriatal and frontoamygdalar connectivity alterations in patients with obsessive-compulsive disorder (OCD) have been typically described in functional neuroimaging studies. However, structural covariance, or volumetric correlations across distant brain regions, also provides network-level information. Altered structural covariance has been described in patients with different psychiatric disorders, including OCD, but to our knowledge, alterations within frontostriatal and frontoamygdalar circuits have not been explored. We performed a mega-analysis pooling structural MRI scans from the Obsessive-compulsive Brain Imaging Consortium and assessed whole-brain voxel-wise structural covariance of 4 striatal regions (dorsal and ventral caudate nucleus, and dorsal-caudal and ventral-rostral putamen) and 2 amygdalar nuclei (basolateral and centromedial-superficial). Images were preprocessed with the standard pipeline of voxel-based morphometry studies using Statistical Parametric Mapping software. Our analyses involved 329 patients with OCD and 316 healthy controls. Patients showed increased structural covariance between the left ventral-rostral putamen and the left inferior frontal gyrus/frontal operculum region. This finding had a significant interaction with age; the association held only in the subgroup of older participants. Patients with OCD also showed increased structural covariance between the right centromedial-superficial amygdala and the ventromedial prefrontal cortex. This was a cross-sectional study. Because this is a multisite data set analysis, participant recruitment and image acquisition were performed in different centres. Most patients were taking medication, and treatment protocols differed across centres. Our results provide evidence for structural network-level alterations in patients with OCD involving 2 frontosubcortical circuits of relevance for the disorder and indicate that structural covariance contributes to fully characterizing brain alterations in patients with psychiatric disorders.

  10. Establishing a link between sex-related differences in the structural connectome and behaviour.

    PubMed

    Tunç, Birkan; Solmaz, Berkan; Parker, Drew; Satterthwaite, Theodore D; Elliott, Mark A; Calkins, Monica E; Ruparel, Kosha; Gur, Raquel E; Gur, Ruben C; Verma, Ragini

    2016-02-19

    Recent years have witnessed an increased attention to studies of sex differences, partly because such differences offer important considerations for personalized medicine. While the presence of sex differences in human behaviour is well documented, our knowledge of their anatomical foundations in the brain is still relatively limited. As a natural gateway to fathom the human mind and behaviour, studies concentrating on the human brain network constitute an important segment of the research effort to investigate sex differences. Using a large sample of healthy young individuals, each assessed with diffusion MRI and a computerized neurocognitive battery, we conducted a comprehensive set of experiments examining sex-related differences in the meso-scale structures of the human connectome and elucidated how these differences may relate to sex differences at the level of behaviour. Our results suggest that behavioural sex differences, which indicate complementarity of males and females, are accompanied by related differences in brain structure across development. When using subnetworks that are defined over functional and behavioural domains, we observed increased structural connectivity related to the motor, sensory and executive function subnetworks in males. In females, subnetworks associated with social motivation, attention and memory tasks had higher connectivity. Males showed higher modularity compared to females, with females having higher inter-modular connectivity. Applying multivariate analysis, we showed an increasing separation between males and females in the course of development, not only in behavioural patterns but also in brain structure. We also showed that these behavioural and structural patterns correlate with each other, establishing a reliable link between brain and behaviour. © 2016 The Author(s).

  11. Effects of Marijuana Use on Brain Structure and Function: Neuroimaging Findings from a Neurodevelopmental Perspective

    PubMed Central

    Brumback, T.; Castro, N.; Jacobus, J.; Tapert, S.

    2016-01-01

    Marijuana, behind only tobacco and alcohol, is the most popular recreational drug in America with prevalence rates of use rising over the past decade. A wide range of research has highlighted neurocognitive deficits associated with marijuana use, particularly when initiated during childhood or adolescence. Neuroimaging, describing alterations to brain structure and function, has begun to provide a picture of possible mechanisms associated with the deleterious effects of marijuana use. This chapter provides a neurodevelopmental framework from which recent data on brain structural and functional abnormalities associated with marijuana use is reviewed. Based on the current data, we provide aims for future studies to more clearly delineate the effects of marijuana on the developing brain and to define underlying mechanisms of the potential long-term negative consequences of marijuana use. PMID:27503447

  12. Computation of a high-resolution MRI 3D stereotaxic atlas of the sheep brain.

    PubMed

    Ella, Arsène; Delgadillo, José A; Chemineau, Philippe; Keller, Matthieu

    2017-02-15

    The sheep model was first used in the fields of animal reproduction and veterinary sciences and then was utilized in fundamental and preclinical studies. For more than a decade, magnetic resonance (MR) studies performed on this model have been increasingly reported, especially in the field of neuroscience. To contribute to MR translational neuroscience research, a brain template and an atlas are necessary. We have recently generated the first complete T1-weighted (T1W) and T2W MR population average images (or templates) of in vivo sheep brains. In this study, we 1) defined a 3D stereotaxic coordinate system for previously established in vivo population average templates; 2) used deformation fields obtained during optimized nonlinear registrations to compute nonlinear tissues or prior probability maps (nlTPMs) of cerebrospinal fluid (CSF), gray matter (GM), and white matter (WM) tissues; 3) delineated 25 external and 28 internal sheep brain structures by segmenting both templates and nlTPMs; and 4) annotated and labeled these structures using an existing histological atlas. We built a quality high-resolution 3D atlas of average in vivo sheep brains linked to a reference stereotaxic space. The atlas and nlTPMs, associated with previously computed T1W and T2W in vivo sheep brain templates and nlTPMs, provide a complete set of imaging space that are able to be imported into other imaging software programs and could be used as standardized tools for neuroimaging studies or other neuroscience methods, such as image registration, image segmentation, identification of brain structures, implementation of recording devices, or neuronavigation. J. Comp. Neurol. 525:676-692, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Use of Brain MRI Atlases to Determine Boundaries of Age-Related Pathology: The Importance of Statistical Method

    PubMed Central

    Dickie, David Alexander; Job, Dominic E.; Gonzalez, David Rodriguez; Shenkin, Susan D.; Wardlaw, Joanna M.

    2015-01-01

    Introduction Neurodegenerative disease diagnoses may be supported by the comparison of an individual patient’s brain magnetic resonance image (MRI) with a voxel-based atlas of normal brain MRI. Most current brain MRI atlases are of young to middle-aged adults and parametric, e.g., mean ±standard deviation (SD); these atlases require data to be Gaussian. Brain MRI data, e.g., grey matter (GM) proportion images, from normal older subjects are apparently not Gaussian. We created a nonparametric and a parametric atlas of the normal limits of GM proportions in older subjects and compared their classifications of GM proportions in Alzheimer’s disease (AD) patients. Methods Using publicly available brain MRI from 138 normal subjects and 138 subjects diagnosed with AD (all 55–90 years), we created: a mean ±SD atlas to estimate parametrically the percentile ranks and limits of normal ageing GM; and, separately, a nonparametric, rank order-based GM atlas from the same normal ageing subjects. GM images from AD patients were then classified with respect to each atlas to determine the effect statistical distributions had on classifications of proportions of GM in AD patients. Results The parametric atlas often defined the lower normal limit of the proportion of GM to be negative (which does not make sense physiologically as the lowest possible proportion is zero). Because of this, for approximately half of the AD subjects, 25–45% of voxels were classified as normal when compared to the parametric atlas; but were classified as abnormal when compared to the nonparametric atlas. These voxels were mainly concentrated in the frontal and occipital lobes. Discussion To our knowledge, we have presented the first nonparametric brain MRI atlas. In conditions where there is increasing variability in brain structure, such as in old age, nonparametric brain MRI atlases may represent the limits of normal brain structure more accurately than parametric approaches. Therefore, we conclude that the statistical method used for construction of brain MRI atlases should be selected taking into account the population and aim under study. Parametric methods are generally robust for defining central tendencies, e.g., means, of brain structure. Nonparametric methods are advisable when studying the limits of brain structure in ageing and neurodegenerative disease. PMID:26023913

  14. White matter integrity of central executive network correlates with enhanced brain reactivity to smoking cues.

    PubMed

    Bi, Yanzhi; Yuan, Kai; Yu, Dahua; Wang, Ruonan; Li, Min; Li, Yangding; Zhai, Jinquan; Lin, Wei; Tian, Jie

    2017-12-01

    The attentional bias to smoking cues contributes to smoking cue reactivity and cognitive declines underlines smoking behaviors, which were probably associated with the central executive network (CEN). However, little is known about the implication of the structural connectivity of the CEN in smoking cue reactivity and cognitive control impairments in smokers. In the present study, the white matter structural connectivity of the CEN was quantified in 35 smokers and 26 non-smokers using the diffusion tensor imaging and deterministic fiber tractography methods. Smoking cue reactivity was evaluated using cue exposure tasks, and cognitive control performance was assessed by the Stroop task. Relative to non-smokers, smokers showed increased fractional anisotropy (FA) values of the bilateral CEN fiber tracts. The FA values of left CEN positively correlated with the smoking cue-induced activation of the dorsolateral prefrontal cortex and right middle occipital cortex in smokers. Meanwhile, the FA values of left CEN positively correlated with the incongruent errors during Stroop task in smokers. Collectively, the present study highlighted the role of the structural connectivity of the CEN in smoking cue reactivity and cognitive control performance, which may underpin the attentional bias to smoking cues and cognitive deficits in smokers. The multimodal imaging method by forging links from brain structure to brain function extended the notion that structural connections can modulate the brain activity in specific projection target regions. Hum Brain Mapp 38:6239-6249, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. Altered structural connectivity of pain-related brain network in burning mouth syndrome-investigation by graph analysis of probabilistic tractography.

    PubMed

    Wada, Akihiko; Shizukuishi, Takashi; Kikuta, Junko; Yamada, Haruyasu; Watanabe, Yusuke; Imamura, Yoshiki; Shinozaki, Takahiro; Dezawa, Ko; Haradome, Hiroki; Abe, Osamu

    2017-05-01

    Burning mouth syndrome (BMS) is a chronic intraoral pain syndrome featuring idiopathic oral pain and burning discomfort despite clinically normal oral mucosa. The etiology of chronic pain syndrome is unclear, but preliminary neuroimaging research has suggested the alteration of volume, metabolism, blood flow, and diffusion at multiple brain regions. According to the neuromatrix theory of Melzack, pain sense is generated in the brain by the network of multiple pain-related brain regions. Therefore, the alteration of pain-related network is also assumed as an etiology of chronic pain. In this study, we investigated the brain network of BMS brain by using probabilistic tractography and graph analysis. Fourteen BMS patients and 14 age-matched healthy controls underwent 1.5T MRI. Structural connectivity was calculated in 83 anatomically defined regions with probabilistic tractography of 60-axis diffusion tensor imaging and 3D T1-weighted imaging. Graph theory network analysis was used to evaluate the brain network at local and global connectivity. In BMS brain, a significant difference of local brain connectivity was recognized at the bilateral rostral anterior cingulate cortex, right medial orbitofrontal cortex, and left pars orbitalis which belong to the medial pain system; however, no significant difference was recognized at the lateral system including the somatic sensory cortex. A strengthened connection of the anterior cingulate cortex and medial prefrontal cortex with the basal ganglia, thalamus, and brain stem was revealed. Structural brain network analysis revealed the alteration of the medial system of the pain-related brain network in chronic pain syndrome.

  16. Impact of Zika Virus on adult human brain structure and functional organization.

    PubMed

    Bido-Medina, Richard; Wirsich, Jonathan; Rodríguez, Minelly; Oviedo, Jairo; Miches, Isidro; Bido, Pamela; Tusen, Luis; Stoeter, Peter; Sadaghiani, Sepideh

    2018-06-01

    To determine the impact of Zika virus (ZIKV) infection on brain structure and functional organization of severely affected adult patients with neurological complications that extend beyond Guillain-Barré Syndrome (GBS)-like manifestations and include symptoms of the central nervous system (CNS). In this first case-control neuroimaging study, we obtained structural and functional magnetic resonance images in nine rare adult patients in the subacute phase, and healthy age- and sex-matched controls. ZIKV patients showed atypical descending and rapidly progressing peripheral nervous system (PNS) manifestations, and importantly, additional CNS presentations such as perceptual deficits. Voxel-based morphometry was utilized to evaluate gray matter volume, and resting state functional connectivity and Network Based Statistics were applied to assess the functional organization of the brain. Gray matter volume was decreased bilaterally in motor areas (supplementary motor cortex, specifically Frontal Eye Fields) and beyond (left inferior frontal sulcus). Additionally, gray matter volume increased in right middle frontal gyrus. Functional connectivity increased in a widespread network within and across temporal lobes. We provide preliminary evidence for a link between ZIKV neurological complications and changes in adult human brain structure and functional organization, comprising both motor-related regions potentially secondary to prolonged PNS weakness, and nonsomatomotor regions indicative of PNS-independent alternations. The latter included the temporal lobes, particularly vulnerable in a range of neurological conditions. While future studies into the ZIKV-related neuroinflammatory mechanisms in adults are urgently needed, this study indicates that ZIKV infection can lead to an impact on the brain.

  17. Brain Imaging and Human Nutrition: Which Measures to Use in Intervention Studies?12

    PubMed Central

    Sizonenko, Stéphane V.; Babiloni, Claudio; Sijben, John W.; Walhovd, Kristine B.

    2013-01-01

    Throughout the life span, the brain is a metabolically highly active organ that uses a large proportion of total nutrient and energy intake. Furthermore, the development and repair of neural tissue depend on the proper intake of essential structural nutrients, minerals, and vitamins. Therefore, what we eat, or refrain from eating, may have an important impact on our cognitive ability and mental performance. Two of the key areas in which diet is thought to play an important role are in optimizing neurodevelopment in children and in preventing neurodegeneration and cognitive decline during aging. From early development to aging, brain imaging can detect structural, functional, and metabolic changes in humans and modifications due to altered nutrition or to additional nutritional supplementation. Inclusion of imaging measures in clinical studies can increase understanding with regard to the modification of brain structure, metabolism, and functional endpoints and may provide early sensitive measures of long-term effects. In this symposium, the utility of existing brain imaging technologies to assess the effects of nutritional intervention in humans is described. Examples of current research showing the utility of these markers are reviewed. PMID:24038255

  18. Construction of multi-scale consistent brain networks: methods and applications.

    PubMed

    Ge, Bao; Tian, Yin; Hu, Xintao; Chen, Hanbo; Zhu, Dajiang; Zhang, Tuo; Han, Junwei; Guo, Lei; Liu, Tianming

    2015-01-01

    Mapping human brain networks provides a basis for studying brain function and dysfunction, and thus has gained significant interest in recent years. However, modeling human brain networks still faces several challenges including constructing networks at multiple spatial scales and finding common corresponding networks across individuals. As a consequence, many previous methods were designed for a single resolution or scale of brain network, though the brain networks are multi-scale in nature. To address this problem, this paper presents a novel approach to constructing multi-scale common structural brain networks from DTI data via an improved multi-scale spectral clustering applied on our recently developed and validated DICCCOLs (Dense Individualized and Common Connectivity-based Cortical Landmarks). Since the DICCCOL landmarks possess intrinsic structural correspondences across individuals and populations, we employed the multi-scale spectral clustering algorithm to group the DICCCOL landmarks and their connections into sub-networks, meanwhile preserving the intrinsically-established correspondences across multiple scales. Experimental results demonstrated that the proposed method can generate multi-scale consistent and common structural brain networks across subjects, and its reproducibility has been verified by multiple independent datasets. As an application, these multi-scale networks were used to guide the clustering of multi-scale fiber bundles and to compare the fiber integrity in schizophrenia and healthy controls. In general, our methods offer a novel and effective framework for brain network modeling and tract-based analysis of DTI data.

  19. Brain structural anomalies in borderline and avoidant personality disorder patients and their associations with disorder-specific symptoms.

    PubMed

    Denny, Bryan T; Fan, Jin; Liu, Xun; Guerreri, Stephanie; Mayson, Sarah Jo; Rimsky, Liza; McMaster, Antonia; Alexander, Heather; New, Antonia S; Goodman, Marianne; Perez-Rodriguez, Mercedes; Siever, Larry J; Koenigsberg, Harold W

    2016-08-01

    Borderline personality disorder (BPD) and avoidant personality disorder (AvPD) are characterized by hyper-reactivity to negatively-perceived interpersonal cues, yet they differ in degree of affective instability. Recent work has begun to elucidate the neural (structural and functional) and cognitive-behavioral underpinnings of BPD, although some initial studies of brain structure have reached divergent conclusions. AvPD, however, has been almost unexamined in the cognitive neuroscience literature. In the present study we investigated group differences among 29 BPD patients, 27 AvPD patients, and 29 healthy controls (HC) in structural brain volumes using voxel-based morphometry (VBM) in five anatomically-defined regions of interest: amygdala, hippocampus, medial prefrontal cortex (MPFC), dorsolateral prefrontal cortex (DLPFC), and anterior cingulate cortex (ACC). We also examined the relationship between individual differences in brain structure and self-reported anxiety and affective instability in each group. We observed reductions in MPFC and ACC volume in BPD relative to HC, with no significant difference among patient groups. No group differences in amygdala volume were found. However, BPD and AvPD patients each showed a positive relationship between right amygdala volume and state-related anxiety. By contrast, in HC there was an inverse relationship between MPFC volume and state and trait-related anxiety as well as between bilateral DLPFC volume and affective instability. Current sample sizes did not permit examination of gender effects upon structure-symptom correlations. These results shed light on potentially protective, or compensatory, aspects of brain structure in these populations-namely, relatively reduced amygdala volume or relatively enhanced MPFC and DLPFC volume. Published by Elsevier B.V.

  20. Structural brain imaging correlates of ASD and ADHD across the lifespan: a hypothesis-generating review on developmental ASD-ADHD subtypes.

    PubMed

    Rommelse, Nanda; Buitelaar, Jan K; Hartman, Catharina A

    2017-02-01

    We hypothesize that it is plausible that biologically distinct developmental ASD-ADHD subtypes are present, each characterized by a distinct time of onset of symptoms, progression and combination of symptoms. The aim of the present narrative review was to explore if structural brain imaging studies may shed light on key brain areas that are linked to both ASD and ADHD symptoms and undergo significant changes during development. These findings may possibly pinpoint to brain mechanisms underlying differential developmental ASD-ADHD subtypes. To this end we brought together the literature on ASD and ADHD structural brain imaging symptoms and particularly highlight the adolescent years and beyond. Findings indicate that the vast majority of existing MRI studies has been cross-sectional and conducted in children, and sometimes did include adolescents as well, but without explicitly documenting on this age group. MRI studies documenting on age effects in adults with ASD and/or ADHD are rare, and if age is taken into account, only linear effects are examined. Data from various studies suggest that a crucial distinctive feature underlying different developmental ASD-ADHD subtypes may be the differential developmental thinning patterns of the anterior cingulate cortex and related connections towards other prefrontal regions. These regions are crucial for the development of cognitive/effortful control and socio-emotional functioning, with impairments in these features as key to both ASD and ADHD.

  1. Repeated head trauma is associated with smaller thalamic volumes and slower processing speed: the Professional Fighters’ Brain Health Study

    PubMed Central

    Bernick, Charles; Banks, Sarah J; Shin, Wanyong; Obuchowski, Nancy; Butler, Sam; Noback, Michael; Phillips, Michael; Lowe, Mark; Jones, Stephen; Modic, Michael

    2015-01-01

    Objectives Cumulative head trauma may alter brain structure and function. We explored the relationship between exposure variables, cognition and MRI brain structural measures in a cohort of professional combatants. Methods 224 fighters (131 mixed martial arts fighters and 93 boxers) participating in the Professional Fighters Brain Health Study, a longitudinal cohort study of licensed professional combatants, were recruited, as were 22 controls. Each participant underwent computerised cognitive testing and volumetric brain MRI. Fighting history including years of fighting and fights per year was obtained from self-report and published records. Statistical analyses of the baseline evaluations were applied cross-sectionally to determine the relationship between fight exposure variables and volumes of the hippocampus, amygdala, thalamus, caudate, putamen. Moreover, the relationship between exposure and brain volumes with cognitive function was assessed. Results Increasing exposure to repetitive head trauma measured by number of professional fights, years of fighting, or a Fight Exposure Score (FES) was associated with lower brain volumes, particularly the thalamus and caudate. In addition, speed of processing decreased with decreased thalamic volumes and with increasing fight exposure. Higher scores on a FES used to reflect exposure to repetitive head trauma were associated with greater likelihood of having cognitive impairment. Conclusions Greater exposure to repetitive head trauma is associated with lower brain volumes and lower processing speed in active professional fighters. PMID:25633832

  2. The effect of alcohol consumption on the adolescent brain: A systematic review of MRI and fMRI studies of alcohol-using youth

    PubMed Central

    Feldstein Ewing, Sarah W.; Sakhardande, Ashok; Blakemore, Sarah-Jayne

    2014-01-01

    Background A large proportion of adolescents drink alcohol, with many engaging in high-risk patterns of consumption, including binge drinking. Here, we systematically review and synthesize the existing empirical literature on how consuming alcohol affects the developing human brain in alcohol-using (AU) youth. Methods For this systematic review, we began by conducting a literature search using the PubMED database to identify all available peer-reviewed magnetic resonance imaging (MRI) and functional magnetic resonance imaging (fMRI) studies of AU adolescents (aged 19 and under). All studies were screened against a strict set of criteria designed to constrain the impact of confounding factors, such as co-occurring psychiatric conditions. Results Twenty-one studies (10 MRI and 11 fMRI) met the criteria for inclusion. A synthesis of the MRI studies suggested that overall, AU youth showed regional differences in brain structure as compared with non-AU youth, with smaller grey matter volumes and lower white matter integrity in relevant brain areas. In terms of fMRI outcomes, despite equivalent task performance between AU and non-AU youth, AU youth showed a broad pattern of lower task-relevant activation, and greater task-irrelevant activation. In addition, a pattern of gender differences was observed for brain structure and function, with particularly striking effects among AU females. Conclusions Alcohol consumption during adolescence was associated with significant differences in structure and function in the developing human brain. However, this is a nascent field, with several limiting factors (including small sample sizes, cross-sectional designs, presence of confounding factors) within many of the reviewed studies, meaning that results should be interpreted in light of the preliminary state of the field. Future longitudinal and large-scale studies are critical to replicate the existing findings, and to provide a more comprehensive and conclusive picture of the effect of alcohol consumption on the developing brain. PMID:26958467

  3. The effect of alcohol consumption on the adolescent brain: A systematic review of MRI and fMRI studies of alcohol-using youth.

    PubMed

    Ewing, Sarah W Feldstein; Sakhardande, Ashok; Blakemore, Sarah-Jayne

    2014-01-01

    A large proportion of adolescents drink alcohol, with many engaging in high-risk patterns of consumption, including binge drinking. Here, we systematically review and synthesize the existing empirical literature on how consuming alcohol affects the developing human brain in alcohol-using (AU) youth. For this systematic review, we began by conducting a literature search using the PubMED database to identify all available peer-reviewed magnetic resonance imaging (MRI) and functional magnetic resonance imaging (fMRI) studies of AU adolescents (aged 19 and under). All studies were screened against a strict set of criteria designed to constrain the impact of confounding factors, such as co-occurring psychiatric conditions. Twenty-one studies (10 MRI and 11 fMRI) met the criteria for inclusion. A synthesis of the MRI studies suggested that overall, AU youth showed regional differences in brain structure as compared with non-AU youth, with smaller grey matter volumes and lower white matter integrity in relevant brain areas. In terms of fMRI outcomes, despite equivalent task performance between AU and non-AU youth, AU youth showed a broad pattern of lower task-relevant activation, and greater task-irrelevant activation. In addition, a pattern of gender differences was observed for brain structure and function, with particularly striking effects among AU females. Alcohol consumption during adolescence was associated with significant differences in structure and function in the developing human brain. However, this is a nascent field, with several limiting factors (including small sample sizes, cross-sectional designs, presence of confounding factors) within many of the reviewed studies, meaning that results should be interpreted in light of the preliminary state of the field. Future longitudinal and large-scale studies are critical to replicate the existing findings, and to provide a more comprehensive and conclusive picture of the effect of alcohol consumption on the developing brain.

  4. How environment and genes shape the adolescent brain.

    PubMed

    Paus, Tomáš

    2013-07-01

    This article is part of a Special Issue "Puberty and Adolescence". This review provides a conceptual framework for the study of factors--in our genes and environment--that shape the adolescent brain. I start by pointing out that brain phenotypes obtained with magnetic resonance imaging are complex traits reflecting the interplay of genes and the environment. In some cases, variations in the structural phenotypes observed during adolescence have their origin in the pre-natal or early post-natal periods. I then emphasize the bidirectional nature of brain-behavior relationships observed during this period of human development, where function may be more likely to influence structure rather than vice versa. In the main part of this article, I review our ongoing work on the influence of gonadal hormones on the adolescent brain. I also discuss the importance of social context and brain plasticity on shaping the relevant neural circuits. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. The role of sleep in regulating structural plasticity and synaptic strength: Implications for memory and cognitive function.

    PubMed

    Raven, Frank; Van der Zee, Eddy A; Meerlo, Peter; Havekes, Robbert

    2018-06-01

    Dendritic spines are the major sites of synaptic transmission in the central nervous system. Alterations in the strength of synaptic connections directly affect the neuronal communication, which is crucial for brain function as well as the processing and storage of information. Sleep and sleep loss bidirectionally alter structural plasticity, by affecting spine numbers and morphology, which ultimately can affect the functional output of the brain in terms of alertness, cognition, and mood. Experimental data from studies in rodents suggest that sleep deprivation may impact structural plasticity in different ways. One of the current views, referred to as the synaptic homeostasis hypothesis, suggests that wake promotes synaptic potentiation whereas sleep facilitates synaptic downscaling. On the other hand, several studies have now shown that sleep deprivation can reduce spine density and attenuate synaptic efficacy in the hippocampus. These data are the basis for the view that sleep promotes hippocampal structural plasticity critical for memory formation. Altogether, the impact of sleep and sleep loss may vary between regions of the brain. A better understanding of the role that sleep plays in regulating structural plasticity may ultimately lead to novel therapeutic approaches for brain disorders that are accompanied by sleep disturbances and sleep loss. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Individual differences in the dominance of interhemispheric connections predict cognitive ability beyond sex and brain size.

    PubMed

    Martínez, Kenia; Janssen, Joost; Pineda-Pardo, José Ángel; Carmona, Susanna; Román, Francisco Javier; Alemán-Gómez, Yasser; Garcia-Garcia, David; Escorial, Sergio; Quiroga, María Ángeles; Santarnecchi, Emiliano; Navas-Sánchez, Francisco Javier; Desco, Manuel; Arango, Celso; Colom, Roberto

    2017-07-15

    Global structural brain connectivity has been reported to be sex-dependent with women having increased interhemispheric connectivity (InterHc) and men having greater intrahemispheric connectivity (IntraHc). However, (a) smaller brains show greater InterHc, (b) larger brains show greater IntraHc, and (c) women have, on average, smaller brains than men. Therefore, sex differences in brain size may modulate sex differences in global brain connectivity. At the behavioural level, sex-dependent differences in connectivity are thought to contribute to men-women differences in spatial and verbal abilities. But this has never been tested at the individual level. The current study assessed whether individual differences in global structural connectome measures (InterHc, IntraHc and the ratio of InterHc relative to IntraHc) predict spatial and verbal ability while accounting for the effect of sex and brain size. The sample included forty men and forty women, who did neither differ in age nor in verbal and spatial latent components defined by a broad battery of tests and tasks. High-resolution T 1 -weighted and diffusion-weighted images were obtained for computing brain size and reconstructing the structural connectome. Results showed that men had higher IntraHc than women, while women had an increased ratio InterHc/IntraHc. However, these sex differences were modulated by brain size. Increased InterHc relative to IntraHc predicted higher spatial and verbal ability irrespective of sex and brain size. The positive correlations between the ratio InterHc/IntraHc and the spatial and verbal abilities were confirmed in 1000 random samples generated by bootstrapping. Therefore, sex differences in global structural connectome connectivity were modulated by brain size and did not underlie sex differences in verbal and spatial abilities. Rather, the level of dominance of InterHc over IntraHc may be associated with individual differences in verbal and spatial abilities in both men and women. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. The impacts of pesticide and nicotine exposures on functional brain networks in Latino immigrant workers.

    PubMed

    Bahrami, Mohsen; Laurienti, Paul J; Quandt, Sara A; Talton, Jennifer; Pope, Carey N; Summers, Phillip; Burdette, Jonathan H; Chen, Haiying; Liu, Jing; Howard, Timothy D; Arcury, Thomas A; Simpson, Sean L

    2017-09-01

    Latino immigrants that work on farms experience chronic exposures to potential neurotoxicants, such as pesticides, as part of their work. For tobacco farmworkers there is the additional risk of exposure to moderate to high doses of nicotine. Pesticide and nicotine exposures have been associated with neurological changes in the brain. Long-term exposure to cholinesterase-inhibiting pesticides, such as organophosphates and carbamates, and nicotine place this vulnerable population at risk for developing neurological dysfunction. In this study we examined whole-brain connectivity patterns and brain network properties of Latino immigrant workers. Comparisons were made between farmworkers and non-farmworkers using resting-state functional magnetic resonance imaging data and a mixed-effects modeling framework. We also evaluated how measures of pesticide and nicotine exposures contributed to the findings. Our results indicate that despite having the same functional connectivity density and strength, brain networks in farmworkers had more clustered and modular structures when compared to non-farmworkers. Our findings suggest increased functional specificity and decreased functional integration in farmworkers when compared to non-farmworkers. Cholinesterase activity was associated with population differences in community structure and the strength of brain network functional connections. Urinary cotinine, a marker of nicotine exposure, was associated with the differences in network community structure. Brain network differences between farmworkers and non-farmworkers, as well as pesticide and nicotine exposure effects on brain functional connections in this study, may illuminate underlying mechanisms that cause neurological implications in later life. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Revealing pathologies in the liquid crystalline structures of the brain by polarimetric studies (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Bakhshetyan, Karen; Melkonyan, Gurgen G.; Galstian, Tigran V.; Saghatelyan, Armen

    2015-10-01

    Natural or "self" alignment of molecular complexes in living tissue represents many similarities with liquid crystals (LC), which are anisotropic liquids. The orientational characteristics of those complexes may be related to many important functional parameters and their study may reveal important pathologies. The know-how, accumulated thanks to the study of LC materials, may thus be used to this end. One of the traditionally used methods, to characterize those materials, is the polarized light imaging (PLI) that allows for label-free analysis of anisotropic structures in the brain tissue and can be used, for example, for the analysis of myelinated fiber bundles. In the current work, we first attempted to apply the PLI on the mouse histological brain sections to create a map of anisotropic structures using cross-polarizer transmission light. Then we implemented the PLI for comparative study of histological sections of human postmortem brain samples under normal and pathological conditions, such as Parkinson's disease (PD). Imaging the coronal, sagittal and horizontal sections of mouse brain allowed us to create a false color-coded fiber orientation map under polarized light. In human brain datasets for both control and PD groups we measured the pixel intensities in myelin-rich subregions of internal capsule and normalized these to non-myelinated background signal from putamen and caudate nucleus. Quantification of intensities revealed a statistically significant reduction of fiber intensity of PD compared to control subjects (2.801 +/- 0.303 and 3.724 +/- 0.07 respectively; *p < 0.05). Our study confirms the validity of PLI method for visualizing myelinated axonal fibers. This relatively simple technique can become a promising tool for study of neurodegenerative diseases where labeling-free imaging is an important benefit.

  9. High-resolution in vivo Wistar rodent brain atlas based on T1 weighted image

    NASA Astrophysics Data System (ADS)

    Huang, Su; Lu, Zhongkang; Huang, Weimin; Seramani, Sankar; Ramasamy, Boominathan; Sekar, Sakthivel; Guan, Cuntai; Bhakoo, Kishore

    2016-03-01

    Image based atlases for rats brain have a significant impact on pre-clinical research. In this project we acquired T1-weighted images from Wistar rodent brains with fine 59μm isotropical resolution for generation of the atlas template image. By applying post-process procedures using a semi-automatic brain extraction method, we delineated the brain tissues from source data. Furthermore, we applied a symmetric group-wise normalization method to generate an optimized template of T1 image of rodent brain, then aligned our template to the Waxholm Space. In addition, we defined several simple and explicit landmarks to corresponding our template with the well known Paxinos stereotaxic reference system. Anchoring at the origin of the Waxholm Space, we applied piece-wise linear transformation method to map the voxels of the template into the coordinates system in Paxinos' stereotoxic coordinates to facilitate the labelling task. We also cross-referenced our data with both published rodent brain atlas and image atlases available online, methodologically labelling the template to produce a Wistar brain atlas identifying more than 130 structures. Particular attention was paid to the cortex and cerebellum, as these areas encompass the most researched aspects of brain functions. Moreover, we adopted the structure hierarchy and naming nomenclature common to various atlases, so that the names and hierarchy structure presented in the atlas are readily recognised for easy use. It is believed the atlas will present a useful tool in rodent brain functional and pharmaceutical studies.

  10. A Double Blind Trial of Divalproex Sodium for Affective Liability and Alcohol Use Following Traumatic Brain Injury

    DTIC Science & Technology

    2016-01-01

    Pennsylvania, we completed computerized volumetric analysis of the structural MRI scans of the brain collected from the study subjects, using the... pharmacological management. Brain Injury 2001;15(2):139-48. 07. Wroblewski BA, Joseph AB, Kupfer J, Kalliel K. Effectiveness of valproic acid on

  11. Aggression, the Prequel: Preventing the Need

    ERIC Educational Resources Information Center

    Gartrell, Dan

    2011-01-01

    An authority on neuroscience (the study of the structure and functioning of the brain) and human relationships, Daniel Siegel (2001) begins his classic work, "The Developing Mind: How Relationships and the Brain Interact to Shape Who We Are," with a basic concept: the brain is an open system that physically changes throughout life in response to…

  12. Automated segmentation of neuroanatomical structures in multispectral MR microscopy of the mouse brain.

    PubMed

    Ali, Anjum A; Dale, Anders M; Badea, Alexandra; Johnson, G Allan

    2005-08-15

    We present the automated segmentation of magnetic resonance microscopy (MRM) images of the C57BL/6J mouse brain into 21 neuroanatomical structures, including the ventricular system, corpus callosum, hippocampus, caudate putamen, inferior colliculus, internal capsule, globus pallidus, and substantia nigra. The segmentation algorithm operates on multispectral, three-dimensional (3D) MR data acquired at 90-microm isotropic resolution. Probabilistic information used in the segmentation is extracted from training datasets of T2-weighted, proton density-weighted, and diffusion-weighted acquisitions. Spatial information is employed in the form of prior probabilities of occurrence of a structure at a location (location priors) and the pairwise probabilities between structures (contextual priors). Validation using standard morphometry indices shows good consistency between automatically segmented and manually traced data. Results achieved in the mouse brain are comparable with those achieved in human brain studies using similar techniques. The segmentation algorithm shows excellent potential for routine morphological phenotyping of mouse models.

  13. Depression Anxiety Stress Scales (DASS-21): Factor Structure in Traumatic Brain Injury Rehabilitation.

    PubMed

    Randall, Diane; Thomas, Matt; Whiting, Diane; McGrath, Andrew

    To confirm the construct validity of the Depression Anxiety Stress Scales-21 (DASS-21) by investigating the fit of published factor structures in a sample of adults with moderate to severe traumatic brain injury (posttraumatic amnesia > 24 hours). Archival data from 504 patient records at the Brain Injury Rehabilitation Unit at Liverpool Hospital, Australia. Participants were aged between 16 and 71 years and were engaged in a specialist rehabilitation program. The DASS-21. Two of the 6 models had adequate fit using structural equation modeling. The data best fit Henry and Crawford's quadripartite model, which comprised a Depression, Anxiety and Stress factor, as well as a General Distress factor. The data also adequately fit Lovibond and Lovibond's original 3-factor model, and the internal consistencies of each factor were very good (α = 0.82-0.90). This study confirms the structure and construct validity of the DASS-21 and provides support for its use as a screening tool in traumatic brain injury rehabilitation.

  14. Laser scattering by transcranial rat brain illumination

    NASA Astrophysics Data System (ADS)

    Sousa, Marcelo V. P.; Prates, Renato; Kato, Ilka T.; Sabino, Caetano P.; Suzuki, Luis C.; Ribeiro, Martha S.; Yoshimura, Elisabeth M.

    2012-06-01

    Due to the great number of applications of Low-Level-Laser-Therapy (LLLT) in Central Nervous System (CNS), the study of light penetration through skull and distribution in the brain becomes extremely important. The aim is to analyze the possibility of precise illumination of deep regions of the rat brain, measure the penetration and distribution of red (λ = 660 nm) and Near Infra-Red (NIR) (λ = 808 nm) diode laser light and compare optical properties of brain structures. The head of the animal (Rattus Novergicus) was epilated and divided by a sagittal cut, 2.3 mm away from mid plane. This section of rat's head was illuminated with red and NIR lasers in points above three anatomical structures: hippocampus, cerebellum and frontal cortex. A high resolution camera, perpendicularly positioned, was used to obtain images of the brain structures. Profiles of scattered intensities in the laser direction were obtained from the images. There is a peak in the scattered light profile corresponding to the skin layer. The bone layer gives rise to a valley in the profile indicating low scattering coefficient, or frontal scattering. Another peak in the region related to the brain is an indication of high scattering coefficient (μs) for this tissue. This work corroborates the use of transcranial LLLT in studies with rats which are subjected to models of CNS diseases. The outcomes of this study point to the possibility of transcranial LLLT in humans for a large number of diseases.

  15. Genetic dyslexia risk variant is related to neural connectivity patterns underlying phonological awareness in children.

    PubMed

    Skeide, Michael A; Kirsten, Holger; Kraft, Indra; Schaadt, Gesa; Müller, Bent; Neef, Nicole; Brauer, Jens; Wilcke, Arndt; Emmrich, Frank; Boltze, Johannes; Friederici, Angela D

    2015-09-01

    Phonological awareness is the best-validated predictor of reading and spelling skill and therefore highly relevant for developmental dyslexia. Prior imaging genetics studies link several dyslexia risk genes to either brain-functional or brain-structural factors of phonological deficits. However, coherent evidence for genetic associations with both functional and structural neural phenotypes underlying variation in phonological awareness has not yet been provided. Here we demonstrate that rs11100040, a reported modifier of SLC2A3, is related to the functional connectivity of left fronto-temporal phonological processing areas at resting state in a sample of 9- to 12-year-old children. Furthermore, we provide evidence that rs11100040 is related to the fractional anisotropy of the arcuate fasciculus, which forms the structural connection between these areas. This structural connectivity phenotype is associated with phonological awareness, which is in turn associated with the individual retrospective risk scores in an early dyslexia screening as well as to spelling. These results suggest a link between a dyslexia risk genotype and a functional as well as a structural neural phenotype, which is associated with a phonological awareness phenotype. The present study goes beyond previous work by integrating genetic, brain-functional and brain-structural aspects of phonological awareness within a single approach. These combined findings might be another step towards a multimodal biomarker for developmental dyslexia. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Transsexualism: A Different Viewpoint to Brain Changes.

    PubMed

    Mohammadi, Mohammad Reza; Khaleghi, Ali

    2018-05-31

    Transsexualism refers to a condition or belief which results in gender dysphoria in individuals and makes them insist that their biological gender is different from their psychological and experienced gender. Although the etiology of gender dysphoria (or transsexualism) is still unknown, different neuroimaging studies show that structural and functional changes of the brain result from this sexual incongruence. The question here is whether these reported changes form part of the etiology of transsexualism or themselves result from transsexualism culture, behaviors and lifestyle. Responding to this question can be more precise by consideration of cultural neuroscience concepts, particularly the culture-behavior-brain (CBB) loop model and the interactions between behavior, culture and brain. In this article, we first review the studies on the brain of transgender people and then we will discuss the validity of this claim based on the CBB loop model. In summary, transgender individuals experience change in lifestyle, context of beliefs and concepts and, as a result, their culture and behaviors. Given the close relationship and interaction between culture, behavior and brain, the individual's brain adapts itself to the new condition (culture) and concepts and starts to alter its function and structure.

  17. Transsexualism: A Different Viewpoint to Brain Changes

    PubMed Central

    Mohammadi, Mohammad Reza

    2018-01-01

    Transsexualism refers to a condition or belief which results in gender dysphoria in individuals and makes them insist that their biological gender is different from their psychological and experienced gender. Although the etiology of gender dysphoria (or transsexualism) is still unknown, different neuroimaging studies show that structural and functional changes of the brain result from this sexual incongruence. The question here is whether these reported changes form part of the etiology of transsexualism or themselves result from transsexualism culture, behaviors and lifestyle. Responding to this question can be more precise by consideration of cultural neuroscience concepts, particularly the culture–behavior–brain (CBB) loop model and the interactions between behavior, culture and brain. In this article, we first review the studies on the brain of transgender people and then we will discuss the validity of this claim based on the CBB loop model. In summary, transgender individuals experience change in lifestyle, context of beliefs and concepts and, as a result, their culture and behaviors. Given the close relationship and interaction between culture, behavior and brain, the individual’s brain adapts itself to the new condition (culture) and concepts and starts to alter its function and structure. PMID:29739126

  18. Joint genetic analysis of hippocampal size in mouse and human identifies a novel gene linked to neurodegenerative disease.

    PubMed

    Ashbrook, David G; Williams, Robert W; Lu, Lu; Stein, Jason L; Hibar, Derrek P; Nichols, Thomas E; Medland, Sarah E; Thompson, Paul M; Hager, Reinmar

    2014-10-03

    Variation in hippocampal volume has been linked to significant differences in memory, behavior, and cognition among individuals. To identify genetic variants underlying such differences and associated disease phenotypes, multinational consortia such as ENIGMA have used large magnetic resonance imaging (MRI) data sets in human GWAS studies. In addition, mapping studies in mouse model systems have identified genetic variants for brain structure variation with great power. A key challenge is to understand how genetically based differences in brain structure lead to the propensity to develop specific neurological disorders. We combine the largest human GWAS of brain structure with the largest mammalian model system, the BXD recombinant inbred mouse population, to identify novel genetic targets influencing brain structure variation that are linked to increased risk for neurological disorders. We first use a novel cross-species, comparative analysis using mouse and human genetic data to identify a candidate gene, MGST3, associated with adult hippocampus size in both systems. We then establish the coregulation and function of this gene in a comprehensive systems-analysis. We find that MGST3 is associated with hippocampus size and is linked to a group of neurodegenerative disorders, such as Alzheimer's.

  19. A critical review of the neuroimaging literature on synesthesia

    PubMed Central

    Hupé, Jean-Michel; Dojat, Michel

    2015-01-01

    Synesthesia refers to additional sensations experienced by some people for specific stimulations, such as the systematic arbitrary association of colors to letters for the most studied type. Here, we review all the studies (based mostly on functional and structural magnetic resonance imaging) that have searched for the neural correlates of this subjective experience, as well as structural differences related to synesthesia. Most differences claimed for synesthetes are unsupported, due mainly to low statistical power, statistical errors, and methodological limitations. Our critical review therefore casts some doubts on whether any neural correlate of the synesthetic experience has been established yet. Rather than being a neurological condition (i.e., a structural or functional brain anomaly), synesthesia could be reconsidered as a special kind of childhood memory, whose signature in the brain may be out of reach with present brain imaging techniques. PMID:25873873

  20. Overlap and Differences in Brain Networks Underlying the Processing of Complex Sentence Structures in Second Language Users Compared with Native Speakers.

    PubMed

    Weber, Kirsten; Luther, Lisa; Indefrey, Peter; Hagoort, Peter

    2016-05-01

    When we learn a second language later in life, do we integrate it with the established neural networks in place for the first language or is at least a partially new network recruited? While there is evidence that simple grammatical structures in a second language share a system with the native language, the story becomes more multifaceted for complex sentence structures. In this study, we investigated the underlying brain networks in native speakers compared with proficient second language users while processing complex sentences. As hypothesized, complex structures were processed by the same large-scale inferior frontal and middle temporal language networks of the brain in the second language, as seen in native speakers. These effects were seen both in activations and task-related connectivity patterns. Furthermore, the second language users showed increased task-related connectivity from inferior frontal to inferior parietal regions of the brain, regions related to attention and cognitive control, suggesting less automatic processing for these structures in a second language.

  1. Matrix Metalloproteinase (MMP) 9 Transcription in Mouse Brain Induced by Fear Learning*

    PubMed Central

    Ganguly, Krishnendu; Rejmak, Emilia; Mikosz, Marta; Nikolaev, Evgeni; Knapska, Ewelina; Kaczmarek, Leszek

    2013-01-01

    Memory formation requires learning-based molecular and structural changes in neurons, whereas matrix metalloproteinase (MMP) 9 is involved in the synaptic plasticity by cleaving extracellular matrix proteins and, thus, is associated with learning processes in the mammalian brain. Because the mechanisms of MMP-9 transcription in the brain are poorly understood, this study aimed to elucidate regulation of MMP-9 gene expression in the mouse brain after fear learning. We show here that contextual fear conditioning markedly increases MMP-9 transcription, followed by enhanced enzymatic levels in the three major brain structures implicated in fear learning, i.e. the amygdala, hippocampus, and prefrontal cortex. To reveal the role of AP-1 transcription factor in MMP-9 gene expression, we have used reporter gene constructs with specifically mutated AP-1 gene promoter sites. The constructs were introduced into the medial prefrontal cortex of neonatal mouse pups by electroporation, and the regulation of MMP-9 transcription was studied after contextual fear conditioning in the adult animals. Specifically, −42/-50- and −478/-486-bp AP-1 binding motifs of the mouse MMP-9 promoter sequence have been found to play a major role in MMP-9 gene activation. Furthermore, increases in MMP-9 gene promoter binding by the AP-1 transcription factor proteins c-Fos and c-Jun have been demonstrated in all three brain structures under investigation. Hence, our results suggest that AP-1 acts as a positive regulator of MMP-9 transcription in the brain following fear learning. PMID:23720741

  2. Matrix metalloproteinase (MMP) 9 transcription in mouse brain induced by fear learning.

    PubMed

    Ganguly, Krishnendu; Rejmak, Emilia; Mikosz, Marta; Nikolaev, Evgeni; Knapska, Ewelina; Kaczmarek, Leszek

    2013-07-19

    Memory formation requires learning-based molecular and structural changes in neurons, whereas matrix metalloproteinase (MMP) 9 is involved in the synaptic plasticity by cleaving extracellular matrix proteins and, thus, is associated with learning processes in the mammalian brain. Because the mechanisms of MMP-9 transcription in the brain are poorly understood, this study aimed to elucidate regulation of MMP-9 gene expression in the mouse brain after fear learning. We show here that contextual fear conditioning markedly increases MMP-9 transcription, followed by enhanced enzymatic levels in the three major brain structures implicated in fear learning, i.e. the amygdala, hippocampus, and prefrontal cortex. To reveal the role of AP-1 transcription factor in MMP-9 gene expression, we have used reporter gene constructs with specifically mutated AP-1 gene promoter sites. The constructs were introduced into the medial prefrontal cortex of neonatal mouse pups by electroporation, and the regulation of MMP-9 transcription was studied after contextual fear conditioning in the adult animals. Specifically, -42/-50- and -478/-486-bp AP-1 binding motifs of the mouse MMP-9 promoter sequence have been found to play a major role in MMP-9 gene activation. Furthermore, increases in MMP-9 gene promoter binding by the AP-1 transcription factor proteins c-Fos and c-Jun have been demonstrated in all three brain structures under investigation. Hence, our results suggest that AP-1 acts as a positive regulator of MMP-9 transcription in the brain following fear learning.

  3. Brain reorganization, not relative brain size, primarily characterizes anthropoid brain evolution.

    PubMed

    Smaers, J B; Soligo, C

    2013-05-22

    Comparative analyses of primate brain evolution have highlighted changes in size and internal organization as key factors underlying species diversity. It remains, however, unclear (i) how much variation in mosaic brain reorganization versus variation in relative brain size contributes to explaining the structural neural diversity observed across species, (ii) which mosaic changes contribute most to explaining diversity, and (iii) what the temporal origin, rates and processes are that underlie evolutionary shifts in mosaic reorganization for individual branches of the primate tree of life. We address these questions by combining novel comparative methods that allow assessing the temporal origin, rate and process of evolutionary changes on individual branches of the tree of life, with newly available data on volumes of key brain structures (prefrontal cortex, frontal motor areas and cerebrocerebellum) for a sample of 17 species (including humans). We identify patterns of mosaic change in brain evolution that mirror brain systems previously identified by electrophysiological and anatomical tract-tracing studies in non-human primates and functional connectivity MRI studies in humans. Across more than 40 Myr of anthropoid primate evolution, mosaic changes contribute more to explaining neural diversity than changes in relative brain size, and different mosaic patterns are differentially selected for when brains increase or decrease in size. We identify lineage-specific evolutionary specializations for all branches of the tree of life covered by our sample and demonstrate deep evolutionary roots for mosaic patterns associated with motor control and learning.

  4. Brain reorganization, not relative brain size, primarily characterizes anthropoid brain evolution

    PubMed Central

    Smaers, J. B.; Soligo, C.

    2013-01-01

    Comparative analyses of primate brain evolution have highlighted changes in size and internal organization as key factors underlying species diversity. It remains, however, unclear (i) how much variation in mosaic brain reorganization versus variation in relative brain size contributes to explaining the structural neural diversity observed across species, (ii) which mosaic changes contribute most to explaining diversity, and (iii) what the temporal origin, rates and processes are that underlie evolutionary shifts in mosaic reorganization for individual branches of the primate tree of life. We address these questions by combining novel comparative methods that allow assessing the temporal origin, rate and process of evolutionary changes on individual branches of the tree of life, with newly available data on volumes of key brain structures (prefrontal cortex, frontal motor areas and cerebrocerebellum) for a sample of 17 species (including humans). We identify patterns of mosaic change in brain evolution that mirror brain systems previously identified by electrophysiological and anatomical tract-tracing studies in non-human primates and functional connectivity MRI studies in humans. Across more than 40 Myr of anthropoid primate evolution, mosaic changes contribute more to explaining neural diversity than changes in relative brain size, and different mosaic patterns are differentially selected for when brains increase or decrease in size. We identify lineage-specific evolutionary specializations for all branches of the tree of life covered by our sample and demonstrate deep evolutionary roots for mosaic patterns associated with motor control and learning. PMID:23536600

  5. Assessing the effects of common variation in the FOXP2 gene on human brain structure.

    PubMed

    Hoogman, Martine; Guadalupe, Tulio; Zwiers, Marcel P; Klarenbeek, Patricia; Francks, Clyde; Fisher, Simon E

    2014-01-01

    The FOXP2 transcription factor is one of the most well-known genes to have been implicated in developmental speech and language disorders. Rare mutations disrupting the function of this gene have been described in different families and cases. In a large three-generation family carrying a missense mutation, neuroimaging studies revealed significant effects on brain structure and function, most notably in the inferior frontal gyrus, caudate nucleus, and cerebellum. After the identification of rare disruptive FOXP2 variants impacting on brain structure, several reports proposed that common variants at this locus may also have detectable effects on the brain, extending beyond disorder into normal phenotypic variation. These neuroimaging genetics studies used groups of between 14 and 96 participants. The current study assessed effects of common FOXP2 variants on neuroanatomy using voxel-based morphometry (VBM) and volumetric techniques in a sample of >1300 people from the general population. In a first targeted stage we analyzed single nucleotide polymorphisms (SNPs) claimed to have effects in prior smaller studies (rs2253478, rs12533005, rs2396753, rs6980093, rs7784315, rs17137124, rs10230558, rs7782412, rs1456031), beginning with regions proposed in the relevant papers, then assessing impact across the entire brain. In the second gene-wide stage, we tested all common FOXP2 variation, focusing on volumetry of those regions most strongly implicated from analyses of rare disruptive mutations. Despite using a sample that is more than 10 times that used for prior studies of common FOXP2 variation, we found no evidence for effects of SNPs on variability in neuroanatomy in the general population. Thus, the impact of this gene on brain structure may be largely limited to extreme cases of rare disruptive alleles. Alternatively, effects of common variants at this gene exist but are too subtle to be detected with standard volumetric techniques.

  6. Brain Structural Effects of Psychopharmacological Treatment in Bipolar Disorder

    PubMed Central

    McDonald, Colm

    2015-01-01

    Bipolar disorder is associated with subtle neuroanatomical deficits including lateral ventricular enlargement, grey matter deficits incorporating limbic system structures, and distributed white matter pathophysiology. Substantial heterogeneity has been identified by structural neuroimaging studies to date and differential psychotropic medication use is potentially a substantial contributor to this. This selective review of structural neuroimaging and diffusion tensor imaging studies considers evidence that lithium, mood stabilisers, antipsychotic medication and antidepressant medications are associated with neuroanatomical variation. Most studies are negative and suffer from methodological weaknesses in terms of directly assessing medication effects on neuroanatomy, since they commonly comprise posthoc assessments of medication associations with neuroimaging metrics in small heterogenous patient groups. However the studies which report positive findings tend to form a relatively consistent picture whereby lithium and antiepileptic mood stabiliser use is associated with increased regional grey matter volume, especially in limbic structures. These findings are further supported by the more methodologically robust studies which include large numbers of patients or repeated intra-individual scanning in longitudinal designs. Some similar findings of an apparently ameliorative effect of lithium on white matter microstructure are also emerging. There is less support for an effect of antipsychotic or antidepressant medication on brain structure in bipolar disorder, but these studies are further limited by methodological difficulties. In general the literature to date supports a normalising effect of lithium and mood stabilisers on brain structure in bipolar disorder, which is consistent with the neuroprotective characteristics of these medications identified by preclinical studies. PMID:26412064

  7. Brain Structural Effects of Psychopharmacological Treatment in Bipolar Disorder.

    PubMed

    McDonald, Colm

    2015-01-01

    Bipolar disorder is associated with subtle neuroanatomical deficits including lateral ventricular enlargement, grey matter deficits incorporating limbic system structures, and distributed white matter pathophysiology. Substantial heterogeneity has been identified by structural neuroimaging studies to date and differential psychotropic medication use is potentially a substantial contributor to this. This selective review of structural neuroimaging and diffusion tensor imaging studies considers evidence that lithium, mood stabilisers, antipsychotic medication and antidepressant medications are associated with neuroanatomical variation. Most studies are negative and suffer from methodological weaknesses in terms of directly assessing medication effects on neuroanatomy, since they commonly comprise posthoc assessments of medication associations with neuroimaging metrics in small heterogenous patient groups. However the studies which report positive findings tend to form a relatively consistent picture whereby lithium and antiepileptic mood stabiliser use is associated with increased regional grey matter volume, especially in limbic structures. These findings are further supported by the more methodologically robust studies which include large numbers of patients or repeated intra-individual scanning in longitudinal designs. Some similar findings of an apparently ameliorative effect of lithium on white matter microstructure are also emerging. There is less support for an effect of antipsychotic or antidepressant medication on brain structure in bipolar disorder, but these studies are further limited by methodological difficulties. In general the literature to date supports a normalising effect of lithium and mood stabilisers on brain structure in bipolar disorder, which is consistent with the neuroprotective characteristics of these medications identified by preclinical studies.

  8. Developmental effects of androgens in the human brain.

    PubMed

    Nguyen, T-V

    2018-02-01

    Neuroendocrine theories of brain development posit that androgens play a crucial role in sex-specific cortical growth, although little is known about the differential effects of testosterone and dehydroepiandrosterone (DHEA) on cortico-limbic development and cognition during adolescence. In this context, the National Institutes of Health Study of Normal Brain Development, a longitudinal study of typically developing children and adolescents aged 4-24 years (n=433), offers a unique opportunity to examine the developmental effects of androgens on cortico-limbic maturation and cognition. Using data from this sample, our group found that higher testosterone levels were associated with left-sided decreases in cortical thickness (CTh) in post-pubertal boys, particularly in the prefrontal cortex, compared to right-sided increases in CTh in somatosensory areas in pre-pubertal girls. Prefrontal-amygdala and prefrontal-hippocampal structural covariance (considered to reflect structural connectivity) also varied according to testosterone levels, with the testosterone-related brain phenotype predicting higher aggression levels and lower executive function, particularly in boys. By contrast, DHEA was associated with a pre-pubertal increase in CTh of several regions involved in cognitive control in both boys and girls. Covariance within several cortico-amygdalar structural networks also varied as a function of DHEA levels, with the DHEA-related brain phenotype predicting improvements in visual attention in both boys and girls. DHEA-related cortico-hippocampal structural covariance, on the other hand, predicted higher scores on a test of working memory. Interestingly, there were significant interactions between testosterone and DHEA, such that DHEA tended to mitigate the anti-proliferative effects of testosterone on brain structure. In sum, testosterone-related effects on the developing brain may lead to detrimental effects on cortical functions (ie, higher aggression and lower executive function), whereas DHEA-related effects may optimise cortical functions (ie, better attention and working memory), perhaps by decreasing the influence of amygdalar and hippocampal afferents on cortical functions. © 2017 British Society for Neuroendocrinology.

  9. Structural brain abnormalities in patients with inflammatory illness acquired following exposure to water-damaged buildings: a volumetric MRI study using NeuroQuant®.

    PubMed

    Shoemaker, Ritchie C; House, Dennis; Ryan, James C

    2014-01-01

    Executive cognitive and neurologic abnormalities are commonly seen in patients with a chronic inflammatory response syndrome (CIRS) acquired following exposure to the interior environment of water-damaged buildings (WDB), but a clear delineation of the physiologic or structural basis for these abnormalities has not been defined. Symptoms of affected patients routinely include headache, difficulty with recent memory, concentration, word finding, numbness, tingling, metallic taste and vertigo. Additionally, persistent proteomic abnormalities in inflammatory parameters that can alter permeability of the blood-brain barrier, such as C4a, TGFB1, MMP9 and VEGF, are notably present in cases of CIRS-WDB compared to controls, suggesting a consequent inflammatory injury to the central nervous system. Findings of gliotic areas in MRI scans in over 45% of CIRS-WDB cases compared to 5% of controls, as well as elevated lactate and depressed ratios of glutamate to glutamine, are regularly seen in MR spectroscopy of cases. This study used the volumetric software program NeuroQuant® (NQ) to determine specific brain structure volumes in consecutive patients (N=17) seen in a medical clinic specializing in inflammatory illness. Each of these patients presented for evaluation of an illness thought to be associated with exposure to WDB, and received an MRI that was evaluated by NQ. When compared to those of a medical control group (N=18), statistically significant differences in brain structure proportions were seen for patients in both hemispheres of two of the eleven brain regions analyzed; atrophy of the caudate nucleus and enlargement of the pallidum. In addition, the left amygdala and right forebrain were also enlarged. These volumetric abnormalities, in conjunction with concurrent abnormalities in inflammatory markers, suggest a model for structural brain injury in "mold illness" based on increased permeability of the blood-brain barrier due to chronic, systemic inflammation. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Sport-related structural brain injury associated with arachnoid cysts: a systematic review and quantitative analysis.

    PubMed

    Zuckerman, Scott L; Prather, Colin T; Yengo-Kahn, Aaron M; Solomon, Gary S; Sills, Allen K; Bonfield, Christopher M

    2016-04-01

    OBJECTIVE Arachnoid cysts (ACs) are congenital lesions bordered by an arachnoid membrane. Researchers have postulated that individuals with an AC demonstrate a higher rate of structural brain injury after trauma. Given the potential neurological consequences of a structural brain injury requiring neurosurgical intervention, the authors sought to perform a systematic review of sport-related structural-brain injury associated with ACs with a corresponding quantitative analysis. METHODS Titles and abstracts were searched systematically across the following databases: PubMed, Embase, CINAHL, and PsycINFO. The review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. Peer-reviewed case reports, case series, or observational studies that reported a structural brain injury due to a sport or recreational activity (hereafter referred to as sport-related) with an associated AC were included. Patients were excluded if they did not have an AC, suffered a concussion without structural brain injury, or sustained the injury during a non-sport-related activity (e.g., fall, motor vehicle collision). Descriptive statistical analysis and time to presentation data were summarized. Univariate logistic regression models to assess predictors of neurological deficit, open craniotomy, and cystoperitoneal shunt were completed. RESULTS After an initial search of 994 original articles, 52 studies were found that reported 65 cases of sport-related structural brain injury associated with an AC. The median age at presentation was 16 years (range 4-75 years). Headache was the most common presenting symptom (98%), followed by nausea and vomiting in 49%. Thirteen patients (21%) presented with a neurological deficit, most commonly hemiparesis. Open craniotomy was the most common form of treatment (49%). Bur holes and cyst fenestration were performed in 29 (45%) and 31 (48%) patients, respectively. Seven patients (11%) received a cystoperitoneal shunt. Four cases reported medical management only without any surgical intervention. No significant predictors were found for neurological deficit or open craniotomy. In the univariate model predicting the need for a cystoperitoneal shunt, the odds of receiving a shunt decreased as age increased (p = 0.004, OR 0.62 [95% CI 0.45-0.86]) and with male sex (p = 0.036, OR 0.15 [95% CI 0.03-0.88]). CONCLUSIONS This systematic review yielded 65 cases of sport-related structural brain injury associated with ACs. The majority of patients presented with chronic symptoms, and recovery was reported generally to be good. Although the review is subject to publication bias, the authors do not find at present that there is contraindication for patients with an AC to participate in sports, although parents and children should be counseled appropriately. Further studies are necessary to better evaluate AC characteristics that could pose a higher risk of adverse events after trauma.

  11. Developmental changes in organization of structural brain networks.

    PubMed

    Khundrakpam, Budhachandra S; Reid, Andrew; Brauer, Jens; Carbonell, Felix; Lewis, John; Ameis, Stephanie; Karama, Sherif; Lee, Junki; Chen, Zhang; Das, Samir; Evans, Alan C

    2013-09-01

    Recent findings from developmental neuroimaging studies suggest that the enhancement of cognitive processes during development may be the result of a fine-tuning of the structural and functional organization of brain with maturation. However, the details regarding the developmental trajectory of large-scale structural brain networks are not yet understood. Here, we used graph theory to examine developmental changes in the organization of structural brain networks in 203 normally growing children and adolescents. Structural brain networks were constructed using interregional correlations in cortical thickness for 4 age groups (early childhood: 4.8-8.4 year; late childhood: 8.5-11.3 year; early adolescence: 11.4-14.7 year; late adolescence: 14.8-18.3 year). Late childhood showed prominent changes in topological properties, specifically a significant reduction in local efficiency, modularity, and increased global efficiency, suggesting a shift of topological organization toward a more random configuration. An increase in number and span of distribution of connector hubs was found in this age group. Finally, inter-regional connectivity analysis and graph-theoretic measures indicated early maturation of primary sensorimotor regions and protracted development of higher order association and paralimbic regions. Our finding reveals a time window of plasticity occurring during late childhood which may accommodate crucial changes during puberty and the new developmental tasks that an adolescent faces.

  12. Associations between Family Adversity and Brain Volume in Adolescence: Manual vs. Automated Brain Segmentation Yields Different Results.

    PubMed

    Lyden, Hannah; Gimbel, Sarah I; Del Piero, Larissa; Tsai, A Bryna; Sachs, Matthew E; Kaplan, Jonas T; Margolin, Gayla; Saxbe, Darby

    2016-01-01

    Associations between brain structure and early adversity have been inconsistent in the literature. These inconsistencies may be partially due to methodological differences. Different methods of brain segmentation may produce different results, obscuring the relationship between early adversity and brain volume. Moreover, adolescence is a time of significant brain growth and certain brain areas have distinct rates of development, which may compromise the accuracy of automated segmentation approaches. In the current study, 23 adolescents participated in two waves of a longitudinal study. Family aggression was measured when the youths were 12 years old, and structural scans were acquired an average of 4 years later. Bilateral amygdalae and hippocampi were segmented using three different methods (manual tracing, FSL, and NeuroQuant). The segmentation estimates were compared, and linear regressions were run to assess the relationship between early family aggression exposure and all three volume segmentation estimates. Manual tracing results showed a positive relationship between family aggression and right amygdala volume, whereas FSL segmentation showed negative relationships between family aggression and both the left and right hippocampi. However, results indicate poor overlap between methods, and different associations were found between early family aggression exposure and brain volume depending on the segmentation method used.

  13. Associations between Family Adversity and Brain Volume in Adolescence: Manual vs. Automated Brain Segmentation Yields Different Results

    PubMed Central

    Lyden, Hannah; Gimbel, Sarah I.; Del Piero, Larissa; Tsai, A. Bryna; Sachs, Matthew E.; Kaplan, Jonas T.; Margolin, Gayla; Saxbe, Darby

    2016-01-01

    Associations between brain structure and early adversity have been inconsistent in the literature. These inconsistencies may be partially due to methodological differences. Different methods of brain segmentation may produce different results, obscuring the relationship between early adversity and brain volume. Moreover, adolescence is a time of significant brain growth and certain brain areas have distinct rates of development, which may compromise the accuracy of automated segmentation approaches. In the current study, 23 adolescents participated in two waves of a longitudinal study. Family aggression was measured when the youths were 12 years old, and structural scans were acquired an average of 4 years later. Bilateral amygdalae and hippocampi were segmented using three different methods (manual tracing, FSL, and NeuroQuant). The segmentation estimates were compared, and linear regressions were run to assess the relationship between early family aggression exposure and all three volume segmentation estimates. Manual tracing results showed a positive relationship between family aggression and right amygdala volume, whereas FSL segmentation showed negative relationships between family aggression and both the left and right hippocampi. However, results indicate poor overlap between methods, and different associations were found between early family aggression exposure and brain volume depending on the segmentation method used. PMID:27656121

  14. Childhood-Onset Schizophrenia: Insights from Neuroimaging Studies

    ERIC Educational Resources Information Center

    Gogtay, Nitin; Rapoport, Judith L.

    2008-01-01

    The use of longitudinal neuroimaging to study the developmental perspectives of brain pathology in children with childhood-onset schizophrenia (COS) is described. Structural neuroimaging is capable of providing evidence of neurobiological specificity of COS to distinguish it from other brain abnormalities seen in neuropsychiatric illnesses like…

  15. A study of the comparative anatomy of the brain of domestic ruminants using magnetic resonance imaging.

    PubMed

    Schmidt, M J; Langen, N; Klumpp, S; Nasirimanesh, F; Shirvanchi, P; Ondreka, N; Kramer, M

    2012-01-01

    Although magnetic resonance imaging has been used to examine the brain of domestic ruminants, detailed information relating the precise anatomical features in these species is lacking. In this study the brain structures of calves (Bos taurus domesticus), sheep (Ovis aries), goats (Capra hircus) and a mesaticephalic dog (Canis lupis familiaris) were examined using T2-weighed Turbo Spin Echo sequences; three-dimensional models based on high-resolution gradient echo scans were used to identify brain sulci and gyri in two-dimensional images. The ruminant brains examined were similar in structure and organisation to those of other mammals but particular features included the deep depression of the insula and the pronounced gyri of the cortices, the dominant position of the visual (optic nerve, optic chiasm and rostral colliculus) and olfactory (olfactory bulb, olfactory tracts and piriform lobe) systems, and the relatively large size of the diencephalon. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Structural brain differences in emotional processing and regulation areas between male batterers and other criminals: A preliminary study.

    PubMed

    Verdejo-Román, Juan; Bueso-Izquierdo, Natalia; Daugherty, Julia C; Pérez-García, Miguel; Hidalgo-Ruzzante, Natalia

    2018-05-31

    Poor emotion processing is thought to influence violent behaviors among male batterers in abusive relationships. Nevertheless, little is known about the neural mechanisms of emotion processing in this population. With the objective of better understanding brain structure and its relation to emotion processing in male batterers, the present study compares the cortical grey matter thickness of male batterers to that of other criminals in brain areas related to emotion. Differences among these brain areas were also compared to an emotional perception task. An MRI study and an emotional perception assessment was conducted with 21 male batterers and 20 men convicted of crimes other than Intimate Partner Violence (IPV). Results demonstrated that batterers' had significantly thinner cortices in prefrontal (orbitofrontal), midline (anterior and posterior cingulate) and limbic (insula, parahipocampal) brain regions. The thickness of the dorsal posterior cingulate cortex in the batterer group correlated with scores on the emotional perception task. These findings shed light on a neuroscientific approach to analyzing violent behavior perpetrated by male batterers, leading to a better understanding of the underlying mechanisms involved in IPV.

  17. Development of three-dimensional brain arteriovenous malformation model for patient communication and young neurosurgeon education.

    PubMed

    Dong, Mengqi; Chen, Guangzhong; Qin, Kun; Ding, Xiaowen; Zhou, Dong; Peng, Chao; Zeng, Shaojian; Deng, Xianming

    2018-01-15

    Rapid prototyping technology is used to fabricate three-dimensional (3D) brain arteriovenous malformation (AVM) models and facilitate presurgical patient communication and medical education for young surgeons. Two intracranial AVM cases were selected for this study. Using 3D CT angiography or 3D rotational angiography images, the brain AVM models were reconstructed on personal computer and the rapid prototyping process was completed using a 3D printer. The size and morphology of the models were compared to brain digital subtraction arteriography of the same patients. 3D brain AVM models were used for preoperative patient communication and young neurosurgeon education. Two brain AVM models were successfully produced. By neurosurgeons' evaluation, the printed models have high fidelity with the actual brain AVM structures of the patients. The patient responded positively toward the brain AVM model specific to himself. Twenty surgical residents from residency programs tested the brain AVM models and provided positive feedback on their usefulness as educational tool and resemblance to real brain AVM structures. Patient-specific 3D printed models of brain AVM can be constructed with high fidelity. 3D printed brain AVM models are proved to be helpful in preoperative patient consultation, surgical planning and resident training.

  18. Structural neural correlates of multitasking: A voxel-based morphometry study.

    PubMed

    Zhang, Rui-Ting; Yang, Tian-Xiao; Wang, Yi; Sui, Yuxiu; Yao, Jingjing; Zhang, Chen-Yuan; Cheung, Eric F C; Chan, Raymond C K

    2016-12-01

    Multitasking refers to the ability to organize assorted tasks efficiently in a short period of time, which plays an important role in daily life. However, the structural neural correlates of multitasking performance remain unclear. The present study aimed at exploring the brain regions associated with multitasking performance using global correlation analysis. Twenty-six healthy participants first underwent structural brain scans and then performed the modified Six Element Test, which required participants to attempt six subtasks in 10 min while obeying a specific rule. Voxel-based morphometry of the whole brain was used to detect the structural correlates of multitasking ability. Grey matter volume of the anterior cingulate cortex (ACC) was positively correlated with the overall performance and time monitoring in multitasking. In addition, white matter volume of the anterior thalamic radiation (ATR) was also positively correlated with time monitoring during multitasking. Other related brain regions associated with multitasking included the superior frontal gyrus, the inferior occipital gyrus, the lingual gyrus, and the inferior longitudinal fasciculus. No significant correlation was found between grey matter volume of the prefrontal cortex (Brodmann Area 10) and multitasking performance. Using a global correlation analysis to examine various aspects of multitasking performance, this study provided new insights into the structural neural correlates of multitasking ability. In particular, the ACC was identified as an important brain region that played both a general and a specific time-monitoring role in multitasking, extending the role of the ACC from lesioned populations to healthy populations. The present findings also support the view that the ATR may influence multitasking performance by affecting time-monitoring abilities. © 2016 The Institute of Psychology, Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  19. Prediction of brain maturity based on cortical thickness at different spatial resolutions.

    PubMed

    Khundrakpam, Budhachandra S; Tohka, Jussi; Evans, Alan C

    2015-05-01

    Several studies using magnetic resonance imaging (MRI) scans have shown developmental trajectories of cortical thickness. Cognitive milestones happen concurrently with these structural changes, and a delay in such changes has been implicated in developmental disorders such as attention-deficit/hyperactivity disorder (ADHD). Accurate estimation of individuals' brain maturity, therefore, is critical in establishing a baseline for normal brain development against which neurodevelopmental disorders can be assessed. In this study, cortical thickness derived from structural magnetic resonance imaging (MRI) scans of a large longitudinal dataset of normally growing children and adolescents (n=308), were used to build a highly accurate predictive model for estimating chronological age (cross-validated correlation up to R=0.84). Unlike previous studies which used kernelized approach in building prediction models, we used an elastic net penalized linear regression model capable of producing a spatially sparse, yet accurate predictive model of chronological age. Upon investigating different scales of cortical parcellation from 78 to 10,240 brain parcels, we observed that the accuracy in estimated age improved with increased spatial scale of brain parcellation, with the best estimations obtained for spatial resolutions consisting of 2560 and 10,240 brain parcels. The top predictors of brain maturity were found in highly localized sensorimotor and association areas. The results of our study demonstrate that cortical thickness can be used to estimate individuals' brain maturity with high accuracy, and the estimated ages relate to functional and behavioural measures, underscoring the relevance and scope of the study in the understanding of biological maturity. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Toward defining deep brain stimulation targets in MNI space: A subcortical atlas based on multimodal MRI, histology and structural connectivity.

    PubMed

    Ewert, Siobhan; Plettig, Philip; Li, Ningfei; Chakravarty, M Mallar; Collins, D Louis; Herrington, Todd M; Kühn, Andrea A; Horn, Andreas

    2018-04-15

    Three-dimensional atlases of subcortical brain structures are valuable tools to reference anatomy in neuroscience and neurology. For instance, they can be used to study the position and shape of the three most common deep brain stimulation (DBS) targets, the subthalamic nucleus (STN), internal part of the pallidum (GPi) and ventral intermediate nucleus of the thalamus (VIM) in spatial relationship to DBS electrodes. Here, we present a composite atlas based on manual segmentations of a multimodal high resolution brain template, histology and structural connectivity. In a first step, four key structures were defined on the template itself using a combination of multispectral image analysis and manual segmentation. Second, these structures were used as anchor points to coregister a detailed histological atlas into standard space. Results show that this approach significantly improved coregistration accuracy over previously published methods. Finally, a sub-segmentation of STN and GPi into functional zones was achieved based on structural connectivity. The result is a composite atlas that defines key nuclei on the template itself, fills the gaps between them using histology and further subdivides them using structural connectivity. We show that the atlas can be used to segment DBS targets in single subjects, yielding more accurate results compared to priorly published atlases. The atlas will be made publicly available and constitutes a resource to study DBS electrode localizations in combination with modern neuroimaging methods. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. MRI anatomy of schizophrenia.

    PubMed

    McCarley, R W; Wible, C G; Frumin, M; Hirayasu, Y; Levitt, J J; Fischer, I A; Shenton, M E

    1999-05-01

    Structural magnetic resonance imaging (MRI) data have provided much evidence in support of our current view that schizophrenia is a brain disorder with altered brain structure, and consequently involving more than a simple disturbance in neurotransmission. This review surveys 118 peer-reviewed studies with control group from 1987 to May 1998. Most studies (81%) do not find abnormalities of whole brain/intracranial contents, while lateral ventricle enlargement is reported in 77%, and third ventricle enlargement in 67%. The temporal lobe was the brain parenchymal region with the most consistently documented abnormalities. Volume decreases were found in 62% of 37 studies of whole temporal lobe, and in 81% of 16 studies of the superior temporal gyrus (and in 100% with gray matter separately evaluated). Fully 77% of the 30 studies of the medial temporal lobe reported volume reduction in one or more of its constituent structures (hippocampus, amygdala, parahippocampal gyrus). Despite evidence for frontal lobe functional abnormalities, structural MRI investigations less consistently found abnormalities, with 55% describing volume reduction. It may be that frontal lobe volume changes are small, and near the threshold for MRI detection. The parietal and occipital lobes were much less studied; about half of the studies showed positive findings. Most studies of cortical gray matter (86%) found volume reductions were not diffuse, but more pronounced in certain areas. About two thirds of the studies of subcortical structures of thalamus, corpus callosum and basal ganglia (which tend to increase volume with typical neuroleptics), show positive findings, as do almost all (91%) studies of cavum septi pellucidi (CSP). Most data were consistent with a developmental model, but growing evidence was compatible also with progressive, neurodegenerative features, suggesting a "two-hit" model of schizophrenia, for which a cellular hypothesis is discussed. The relationship of clinical symptoms to MRI findings is reviewed, as is the growing evidence suggesting structural abnormalities differ in affective (bipolar) psychosis and schizophrenia.

  2. Anatomically related gray and white matter alterations in the brains of functional dyspepsia patients.

    PubMed

    Nan, J; Liu, J; Mu, J; Zhang, Y; Zhang, M; Tian, J; Liang, F; Zeng, F

    2015-06-01

    Previous studies summarized altered brain functional patterns in functional dyspepsia (FD) patients, but how the brain structural patterns are related to FD remains largely unclear. The objective of this study was to determine the brain structural characteristics in FD patients. Optimized voxel-based morphometry and tract-based spatial statistics were employed to investigate the changes in gray matter (GM) and white matter (WM) respectively in 34 FD patients with postprandial distress syndrome and 33 healthy controls based on T1-weighted and diffusion-weighted imaging. The Pearson's correlation evaluated the link among GM alterations, WM abnormalities, and clinical variables in FD patients. The optimal brain structural parameters for identifying FD were explored using the receiver operating characteristic curve. Compared to controls, FD patients exhibited a decrease in GM density (GMD) in the right posterior insula/temporal superior cortex (marked as pINS), right inferior frontal cortex (IFC), and left middle cingulate cortex, and an increase in fractional anisotropy (FA) in the posterior limb of the internal capsule, posterior thalamic radiation, and external capsule (EC). Interestingly, the GMD in the pINS was significantly associated with GMD in the IFC and FA in the EC. Moreover, the EC adjacent to the pINS provided the best performance for distinguishing FD patients from controls. Our results showed pINS-related structural abnormalities in FD patients, indicating that GM and WM parameters were not affected independently. These findings would lay the foundation for probing an efficient target in the brain for treating FD. © 2015 John Wiley & Sons Ltd.

  3. Detecting brain dynamics during resting state: a tensor based evolutionary clustering approach

    NASA Astrophysics Data System (ADS)

    Al-sharoa, Esraa; Al-khassaweneh, Mahmood; Aviyente, Selin

    2017-08-01

    Human brain is a complex network with connections across different regions. Understanding the functional connectivity (FC) of the brain is important both during resting state and task; as disruptions in connectivity patterns are indicators of different psychopathological and neurological diseases. In this work, we study the resting state functional connectivity networks (FCNs) of the brain from fMRI BOLD signals. Recent studies have shown that FCNs are dynamic even during resting state and understanding the temporal dynamics of FCNs is important for differentiating between different conditions. Therefore, it is important to develop algorithms to track the dynamic formation and dissociation of FCNs of the brain during resting state. In this paper, we propose a two step tensor based community detection algorithm to identify and track the brain network community structure across time. First, we introduce an information-theoretic function to reduce the dynamic FCN and identify the time points that are similar topologically to combine them into a tensor. These time points will be used to identify the different FC states. Second, a tensor based spectral clustering approach is developed to identify the community structure of the constructed tensors. The proposed algorithm applies Tucker decomposition to the constructed tensors and extract the orthogonal factor matrices along the connectivity mode to determine the common subspace within each FC state. The detected community structure is summarized and described as FC states. The results illustrate the dynamic structure of resting state networks (RSNs), including the default mode network, somatomotor network, subcortical network and visual network.

  4. Finding imaging patterns of structural covariance via Non-Negative Matrix Factorization.

    PubMed

    Sotiras, Aristeidis; Resnick, Susan M; Davatzikos, Christos

    2015-03-01

    In this paper, we investigate the use of Non-Negative Matrix Factorization (NNMF) for the analysis of structural neuroimaging data. The goal is to identify the brain regions that co-vary across individuals in a consistent way, hence potentially being part of underlying brain networks or otherwise influenced by underlying common mechanisms such as genetics and pathologies. NNMF offers a directly data-driven way of extracting relatively localized co-varying structural regions, thereby transcending limitations of Principal Component Analysis (PCA), Independent Component Analysis (ICA) and other related methods that tend to produce dispersed components of positive and negative loadings. In particular, leveraging upon the well known ability of NNMF to produce parts-based representations of image data, we derive decompositions that partition the brain into regions that vary in consistent ways across individuals. Importantly, these decompositions achieve dimensionality reduction via highly interpretable ways and generalize well to new data as shown via split-sample experiments. We empirically validate NNMF in two data sets: i) a Diffusion Tensor (DT) mouse brain development study, and ii) a structural Magnetic Resonance (sMR) study of human brain aging. We demonstrate the ability of NNMF to produce sparse parts-based representations of the data at various resolutions. These representations seem to follow what we know about the underlying functional organization of the brain and also capture some pathological processes. Moreover, we show that these low dimensional representations favorably compare to descriptions obtained with more commonly used matrix factorization methods like PCA and ICA. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. The Effects of Long Duration Head Down Tilt Bed Rest on Neurocognitive Performance: The Effects of Exercise Interventions

    NASA Technical Reports Server (NTRS)

    Seidler, R. D.; Mulavara, A. P.; Koppelmans, V.; Erdeniz. B.; Kofman, I. S.; DeDios, Y. E.; Szecsy, D. L.; Riascos-Castaneda, R. F.; Wood, S. J.; Bloomberg, J. J.

    2014-01-01

    We are conducting ongoing experiments in which we are performing structural and functional magnetic resonance brain imaging to identify the relationships between changes in neurocognitive function and neural structural alterations following a six month International Space Station mission and following 70 days exposure to a spaceflight analog, head down tilt bedrest. Our central hypothesis is that measures of brain structure, function, and network integrity will change from pre to post intervention (spaceflight, bedrest). Moreover, we predict that these changes will correlate with indices of cognitive, sensory, and motor function in a neuroanatomically selective fashion. Our interdisciplinary approach utilizes cutting edge neuroimaging techniques and a broad ranging battery of sensory, motor, and cognitive assessments that will be conducted pre flight, during flight, and post flight to investigate potential neuroplastic and maladaptive brain changes in crewmembers following long-duration spaceflight. Success in this endeavor would 1) result in identification of the underlying neural mechanisms and operational risks of spaceflight-induced changes in behavior, and 2) identify whether a return to normative behavioral function following re-adaptation to Earth's gravitational environment is associated with a restitution of brain structure and function or instead is supported by substitution with compensatory brain processes. Our ongoing bed rest participants are also engaging in exercise studies directed by Dr. Lori Ploutz Snyder. In this presentation, I will briefly highlight the existing literature linking exercise and fitness to brain and behavioral functions. I will also overview the metrics from my study that could be investigated in relation to the exercise and control subgroups.

  6. How Do the Size, Charge and Shape of Nanoparticles Affect Amyloid β Aggregation on Brain Lipid Bilayer?

    NASA Astrophysics Data System (ADS)

    Kim, Yuna; Park, Ji-Hyun; Lee, Hyojin; Nam, Jwa-Min

    2016-01-01

    Here, we studied the effect of the size, shape, and surface charge of Au nanoparticles (AuNPs) on amyloid beta (Aβ) aggregation on a total brain lipid-based supported lipid bilayer (brain SLB), a fluid platform that facilitates Aβ-AuNP aggregation process. We found that larger AuNPs induce large and amorphous aggregates on the brain SLB, whereas smaller AuNPs induce protofibrillar Aβ structures. Positively charged AuNPs were more strongly attracted to Aβ than negatively charged AuNPs, and the stronger interactions between AuNPs and Aβ resulted in fewer β-sheets and more random coil structures. We also compared spherical AuNPs, gold nanorods (AuNRs), and gold nanocubes (AuNCs) to study the effect of nanoparticle shape on Aβ aggregation on the brain SLB. Aβ was preferentially bound to the long axis of AuNRs and fewer fibrils were formed whereas all the facets of AuNCs interacted with Aβ to produce the fibril networks. Finally, it was revealed that different nanostructures induce different cytotoxicity on neuroblastoma cells, and, overall, smaller Aβ aggregates induce higher cytotoxicity. The results offer insight into the roles of NPs and brain SLB in Aβ aggregation on the cell membrane and can facilitate the understanding of Aβ-nanostructure co-aggregation mechanism and tuning Aβ aggregate structures.

  7. Multiregional Age-Associated Reduction of Brain Neuronal Reserve Without Association With Neurofibrillary Degeneration or β-Amyloidosis.

    PubMed

    Wegiel, Jerzy; Flory, Michael; Kuchna, Izabela; Nowicki, Krzysztof; Yong Ma, Shuang; Wegiel, Jarek; Badmaev, Eulalia; Silverman, Wayne P; de Leon, Mony; Reisberg, Barry; Wisniewski, Thomas

    2017-06-01

    Increase in human life expectancy has resulted in the rapid growth of the elderly population with minimal or no intellectual deterioration. The aim of this stereological study of 10 structures and 5 subdivisions with and without neurofibrillary degeneration in the brains of 28 individuals 25-102-years-old was to establish the pattern of age-associated neurodegeneration and neuronal loss in the brains of nondemented adults and elderly. The study revealed the absence of significant neuronal loss in 7 regions and topographically selective reduction of neuronal reserve over 77 years in 8 brain structures including the entorhinal cortex (EC) (-33.3%), the second layer of the EC (-54%), cornu Ammonis sector 1 (CA1) (-28.5%), amygdala, (-45.8%), thalamus (-40.5%), caudate nucleus (-35%), Purkinje cells (-48.3%), and neurons in the dentate nucleus (40.1%). A similar rate of neuronal loss in adults and elderly, without signs of accelerating neuronal loss in agers or super-agers, appears to indicate age-associated brain remodeling with significant reduction of neuronal reserve in 8 brain regions. Multivariate analysis demonstrates the absence of a significant association between neuronal loss and the severity of neurofibrillary degeneration and β-amyloidosis, and a similar rate of age-associated neuronal loss in structures with and without neurofibrillary degeneration. © 2017 American Association of Neuropathologists, Inc. All rights reserved.

  8. High-throughput RNA sequencing reveals structural differences of orthologous brain-expressed genes between western lowland gorillas and humans.

    PubMed

    Lipovich, Leonard; Hou, Zhuo-Cheng; Jia, Hui; Sinkler, Christopher; McGowen, Michael; Sterner, Kirstin N; Weckle, Amy; Sugalski, Amara B; Pipes, Lenore; Gatti, Domenico L; Mason, Christopher E; Sherwood, Chet C; Hof, Patrick R; Kuzawa, Christopher W; Grossman, Lawrence I; Goodman, Morris; Wildman, Derek E

    2016-02-01

    The human brain and human cognitive abilities are strikingly different from those of other great apes despite relatively modest genome sequence divergence. However, little is presently known about the interspecies divergence in gene structure and transcription that might contribute to these phenotypic differences. To date, most comparative studies of gene structure in the brain have examined humans, chimpanzees, and macaque monkeys. To add to this body of knowledge, we analyze here the brain transcriptome of the western lowland gorilla (Gorilla gorilla gorilla), an African great ape species that is phylogenetically closely related to humans, but with a brain that is approximately one-third the size. Manual transcriptome curation from a sample of the planum temporale region of the neocortex revealed 12 protein-coding genes and one noncoding-RNA gene with exons in the gorilla unmatched by public transcriptome data from the orthologous human loci. These interspecies gene structure differences accounted for a total of 134 amino acids in proteins found in the gorilla that were absent from protein products of the orthologous human genes. Proteins varying in structure between human and gorilla were involved in immunity and energy metabolism, suggesting their relevance to phenotypic differences. This gorilla neocortical transcriptome comprises an empirical, not homology- or prediction-driven, resource for orthologous gene comparisons between human and gorilla. These findings provide a unique repository of the sequences and structures of thousands of genes transcribed in the gorilla brain, pointing to candidate genes that may contribute to the traits distinguishing humans from other closely related great apes. © 2015 Wiley Periodicals, Inc.

  9. The Effects of Video Games on Cognition and Brain Structure: Potential Implications for Neuropsychiatric Disorders.

    PubMed

    Shams, Tahireh A; Foussias, George; Zawadzki, John A; Marshe, Victoria S; Siddiqui, Ishraq; Müller, Daniel J; Wong, Albert H C

    2015-09-01

    Video games are now a ubiquitous form of entertainment that has occasionally attracted negative attention. Video games have also been used to test cognitive function, as therapeutic interventions for neuropsychiatric disorders, and to explore mechanisms of experience-dependent structural brain changes. Here, we review current research on video games published from January 2011 to April 2014 with a focus on studies relating to mental health, cognition, and brain imaging. Overall, there is evidence that specific types of video games can alter brain structure or improve certain aspects of cognitive functioning. Video games can also be useful as neuropsychological assessment tools. While research in this area is still at a very early stage, there are interesting results that encourage further work in this field, and hold promise for utilizing this technology as a powerful therapeutic and experimental tool.

  10. Chemical Probes for Visualizing Intact Animal and Human Brain Tissue.

    PubMed

    Lai, Hei Ming; Ng, Wai-Lung; Gentleman, Steve M; Wu, Wutian

    2017-06-22

    Newly developed tissue clearing techniques can be used to render intact tissues transparent. When combined with fluorescent labeling technologies and optical sectioning microscopy, this allows visualization of fine structure in three dimensions. Gene-transfection techniques have proved very useful in visualizing cellular structures in animal models, but they are not applicable to human brain tissue. Here, we discuss the characteristics of an ideal chemical fluorescent probe for use in brain and other cleared tissues, and offer a comprehensive overview of currently available chemical probes. We describe their working principles and compare their performance with the goal of simplifying probe selection for neuropathologists and stimulating probe development by chemists. We propose several approaches for the development of innovative chemical labeling methods which, when combined with tissue clearing, have the potential to revolutionize how we study the structure and function of the human brain. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. [Processes of logical thought in a case of cerebral vascular lesion].

    PubMed

    Blanco Men ndez, R; Aguado Balsas, A M

    Reasoning and logical thought processes have traditionally been attributed to frontal lobe function or,on the other hand, have been considered as diffuse functions of the brain. However, there is today evidence enough about the possibility to find dissociations in thought processes, depending on logical structure of the experimental tasks and referring to different areas of the brain, frontal and post rolandic ones. To study possible dissociations between thought structures corresponding to categorical and relational logic, on one hand, and propositional logic on the other hand. The case of a brain injured patient with vascular etiology, localized in left frontal parietal cortex, is presented. A specific battery of reasoning tests has been administered. . A differential performance at some reasoning experimental tasks has been found depending on such logical conceptual structures. The possibility of establishing dissociations among certain logical thought and intelectual functions depending on localization of possible brain lesion (frontal versus temporal) is discussed.

  12. Trisomy 13

    MedlinePlus

    ... the head may reveal a problem with the structure of the brain. The problem is called holoprosencephaly. It is the joining together of the 2 sides of the brain. Chromosome studies show trisomy 13, trisomy 13 mosaicism, or partial trisomy.

  13. Cognitive Reserve and Brain Maintenance: Orthogonal Concepts in Theory and Practice.

    PubMed

    Habeck, C; Razlighi, Q; Gazes, Y; Barulli, D; Steffener, J; Stern, Y

    2017-08-01

    Cognitive Reserve and Brain Maintenance have traditionally been understood as complementary concepts: Brain Maintenance captures the processes underlying the structural preservation of the brain with age, and might be assessed relative to age-matched peers. Cognitive Reserve, on the other hand, refers to how cognitive processing can be performed regardless of how well brain structure has been maintained. Thus, Brain Maintenance concerns the "hardware," whereas Cognitive Reserve concerns "software," that is, brain functioning explained by factors beyond mere brain structure. We used structural brain data from 368 community-dwelling adults, age 20-80, to derive measures of Brain Maintenance and Cognitive Reserve. We found that Brain Maintenance and Cognitive were uncorrelated such that values on one measure did not imply anything about the other measure. Further, both measures were positively correlated with verbal intelligence and education, hinting at formative influences of the latter to both measures. We performed extensive split-half simulations to check our derived measures' statistical robustness. Our approach enables the out-of-sample quantification of Brain Maintenance and Cognitive Reserve for single subjects on the basis of chronological age, neuropsychological performance and structural brain measures. Future work will investigate the prognostic power of these measures with regard to future cognitive status. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Structural and Functional Correlates of Visual Field Asymmetry in the Human Brain by Diffusion Kurtosis MRI and Functional MRI

    PubMed Central

    O’Connell, Caitlin; Ho, Leon C.; Murphy, Matthew C.; Conner, Ian P.; Wollstein, Gadi; Cham, Rakie; Chan, Kevin C.

    2016-01-01

    Human visual performance has been observed to exhibit superiority in localized regions of the visual field across many classes of stimuli. However, the underlying neural mechanisms remain unclear. This study aims to determine if the visual information processing in the human brain is dependent on the location of stimuli in the visual field and the corresponding neuroarchitecture using blood-oxygenation-level-dependent functional MRI (fMRI) and diffusion kurtosis MRI (DKI), respectively in 15 healthy individuals at 3 Tesla. In fMRI, visual stimulation to the lower hemifield showed stronger brain responses and larger brain activation volumes than the upper hemifield, indicative of the differential sensitivity of the human brain across the visual field. In DKI, the brain regions mapping to the lower visual field exhibited higher mean kurtosis but not fractional anisotropy or mean diffusivity when compared to the upper visual field. These results suggested the different distributions of microstructural organization across visual field brain representations. There was also a strong positive relationship between diffusion kurtosis and fMRI responses in the lower field brain representations. In summary, this study suggested the structural and functional brain involvements in the asymmetry of visual field responses in humans, and is important to the neurophysiological and psychological understanding of human visual information processing. PMID:27631541

  15. Cocaine-Induced Neurodevelopmental Deficits and Underlying Mechanisms

    PubMed Central

    Martin, Melissa M.; Graham, Devon L.; McCarthy, Deirdre M.; Bhide, Pradeep G.; Stanwood, Gregg D.

    2017-01-01

    Exposure to drugs early in life has complex and long-lasting implications for brain structure and function. This review summarizes work to date on the immediate and long-term effects of prenatal exposure to cocaine. In utero cocaine exposure produces disruptions in brain monoamines, particularly dopamine, during sensitive periods of brain development, and leads to permanent changes in specific brain circuits, molecules, and behavior. Here, we integrate clinical studies and significance with mechanistic preclinical studies, to define our current knowledge base and identify gaps for future investigation. PMID:27345015

  16. Taste Reward Circuitry Related Brain Structures Characterize Ill and Recovered Anorexia Nervosa and Bulimia Nervosa

    PubMed Central

    Frank, Guido K.; Shott, Megan E.; Hagman, Jennifer O.; Mittal, Vijay A.

    2013-01-01

    Objective The pathophysiology of the eating disorder anorexia nervosa remains obscure, but structural brain alterations could be functionally important biomarkers. Here we assessed taste pleasantness and reward sensitivity in relation to brain structure, which might be related to food avoidance commonly seen in eating disorders. Method We used structural magnetic resonance brain imaging to study gray and white matter volumes in individuals with restricting type currently ill (n = 19) or recovered-anorexia nervosa (n = 24), bulimia nervosa (n= 19) and healthy control women (n=24). Results All eating disorder groups showed increased gray matter volume of the medial orbitofrontal cortex (gyrus rectus). Manually tracing confirmed larger gyrus rectus volume, and predicted taste pleasantness across all groups. The analyses also indicated other morphological differences between diagnostic categories: Ill and recovered-anorexia nervosa had increased right, while bulimia nervosa had increased left antero-ventral insula gray matter volumes compared to controls. Furthermore, dorsal striatum volumes were reduced in recovered-anorexia and bulimia nervosa, and predicted sensitivity to reward in the eating disorder groups. The eating disorder groups also showed reduced white matter in right temporal and parietal areas when compared to healthy controls. Notably, the results held when controlling for a range of covariates (e.g., age, depression, anxiety, medications). Conclusion Brain structure in medial orbitofrontal cortex, insula and striatum is altered in eating disorders and suggests altered brain circuitry that has been associated with taste pleasantness and reward value. PMID:23680873

  17. Fractal analysis of MRI data for the characterization of patients with schizophrenia and bipolar disorder.

    PubMed

    Squarcina, Letizia; De Luca, Alberto; Bellani, Marcella; Brambilla, Paolo; Turkheimer, Federico E; Bertoldo, Alessandra

    2015-02-21

    Fractal geometry can be used to analyze shape and patterns in brain images. With this study we use fractals to analyze T1 data of patients affected by schizophrenia or bipolar disorder, with the aim of distinguishing between healthy and pathological brains using the complexity of brain structure, in particular of grey matter, as a marker of disease. 39 healthy volunteers, 25 subjects affected by schizophrenia and 11 patients affected by bipolar disorder underwent an MRI session. We evaluated fractal dimension of the brain cortex and its substructures, calculated with an algorithm based on the box-count algorithm. We modified this algorithm, with the aim of avoiding the segmentation processing step and using all the information stored in the image grey levels. Moreover, to increase sensitivity to local structural changes, we computed a value of fractal dimension for each slice of the brain or of the particular structure. To have reference values in comparing healthy subjects with patients, we built a template by averaging fractal dimension values of the healthy volunteers data. Standard deviation was evaluated and used to create a confidence interval. We also performed a slice by slice t-test to assess the difference at slice level between the three groups. Consistent average fractal dimension values were found across all the structures in healthy controls, while in the pathological groups we found consistent differences, indicating a change in brain and structures complexity induced by these disorders.

  18. Fractal analysis of MRI data for the characterization of patients with schizophrenia and bipolar disorder

    NASA Astrophysics Data System (ADS)

    Squarcina, Letizia; De Luca, Alberto; Bellani, Marcella; Brambilla, Paolo; Turkheimer, Federico E.; Bertoldo, Alessandra

    2015-02-01

    Fractal geometry can be used to analyze shape and patterns in brain images. With this study we use fractals to analyze T1 data of patients affected by schizophrenia or bipolar disorder, with the aim of distinguishing between healthy and pathological brains using the complexity of brain structure, in particular of grey matter, as a marker of disease. 39 healthy volunteers, 25 subjects affected by schizophrenia and 11 patients affected by bipolar disorder underwent an MRI session. We evaluated fractal dimension of the brain cortex and its substructures, calculated with an algorithm based on the box-count algorithm. We modified this algorithm, with the aim of avoiding the segmentation processing step and using all the information stored in the image grey levels. Moreover, to increase sensitivity to local structural changes, we computed a value of fractal dimension for each slice of the brain or of the particular structure. To have reference values in comparing healthy subjects with patients, we built a template by averaging fractal dimension values of the healthy volunteers data. Standard deviation was evaluated and used to create a confidence interval. We also performed a slice by slice t-test to assess the difference at slice level between the three groups. Consistent average fractal dimension values were found across all the structures in healthy controls, while in the pathological groups we found consistent differences, indicating a change in brain and structures complexity induced by these disorders.

  19. Brain Stimulation in Alzheimer's Disease.

    PubMed

    Chang, Chun-Hung; Lane, Hsien-Yuan; Lin, Chieh-Hsin

    2018-01-01

    Brain stimulation techniques can modulate cognitive functions in many neuropsychiatric diseases. Pilot studies have shown promising effects of brain stimulations on Alzheimer's disease (AD). Brain stimulations can be categorized into non-invasive brain stimulation (NIBS) and invasive brain stimulation (IBS). IBS includes deep brain stimulation (DBS), and invasive vagus nerve stimulation (VNS), whereas NIBS includes transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), transcranial alternating current stimulation (tACS), electroconvulsive treatment (ECT), magnetic seizure therapy (MST), cranial electrostimulation (CES), and non-invasive VNS. We reviewed the cutting-edge research on these brain stimulation techniques and discussed their therapeutic effects on AD. Both IBS and NIBS may have potential to be developed as novel treatments for AD; however, mixed findings may result from different study designs, patients selection, population, or samples sizes. Therefore, the efficacy of NIBS and IBS in AD remains uncertain, and needs to be further investigated. Moreover, more standardized study designs with larger sample sizes and longitudinal follow-up are warranted for establishing a structural guide for future studies and clinical application.

  20. Delay discounting differences in brain activation, connectivity, and structure in individuals with addiction: a systematic review protocol.

    PubMed

    Owens, Max M; Amlung, Michael T; Beach, Steven R H; Sweet, Lawrence H; MacKillop, James

    2017-07-11

    Delayed reward discounting (DRD), the degree to which future rewards are discounted relative to immediate rewards, is used as an index of impulsive decision-making and has been associated with a number of problematic health behaviors. Given the robust behavioral association between DRD and addictive behavior, there is an expanding literature investigating the differences in the functional and structural correlates of DRD in the brain between addicted and healthy individuals. However, there has yet to be a systematic review which characterizes differences in regional brain activation, functional connectivity, and structure and places them in the larger context of the DRD literature. The objective of this systematic review is to summarize and critically appraise the existing literature examining differences between addicted and healthy individuals in the neural correlates of DRD using magnetic resonance imaging (MRI) or functional magnetic resonance imaging (fMRI). A systematic search strategy will be implemented that uses Boolean search terms in PubMed/MEDLINE and PsycINFO, as well as manual search methods, to identify the studies comprehensively. This review will include studies using MRI or fMRI in humans to directly compare brain activation, functional connectivity, or structure in relation to DRD between addicted and healthy individuals or continuously assess addiction severity in the context of DRD. Two independent reviewers will determine studies that meet the inclusion criteria for this review, extract data from included studies, and assess the quality of included studies using the Grading of Recommendations Assessment, Development and Evaluation framework. Then, narrative review will be used to explicate the differences in structural and functional correlates of DRD implicated by the literature and assess the strength of evidence for this conclusion. This review will provide a needed critical exegesis of the MRI studies that have been conducted investigating brain differences in addictive behavior in relation to healthy samples in the context of DRD. This will provide clarity on the elements of neural activation, connectivity, and structure that are most implicated in the differences in DRD seen in addicted individuals. PROSPERO CRD42017056857.

  1. Brain Structure and Function Associated with Younger Adults in Growth Hormone Receptor-Deficient Humans

    PubMed Central

    Nashiro, Kaoru; Braskie, Meredith N.; Velasco, Rico; Balasubramanian, Priya; Wei, Min; Thompson, Paul M.; Nelson, Marvin D.; Guevara, Alexandra

    2017-01-01

    Growth hormone receptor deficiency (GHRD) results in short stature, enhanced insulin sensitivity, and low circulating levels of insulin and insulin-like growth factor 1 (IGF-1). Previous studies in mice and humans suggested that GHRD has protective effects against age-related diseases, including cancer and diabetes. Whereas GHRD mice show improved age-dependent cognitive performance, the effect of GHRD on human cognition remains unknown. Using MRI, we compared brain structure, function, and connectivity between 13 people with GHRD and 12 unaffected relatives. We assessed differences in white matter microstructural integrity, hippocampal volume, subregional volumes, and cortical thickness and surface area of selected regions. We also evaluated brain activity at rest and during a hippocampal-dependent pattern separation task. The GHRD group had larger surface areas in several frontal and cingulate regions and showed trends toward larger dentate gyrus and CA1 regions of the hippocampus. They had lower mean diffusivity in the genu of the corpus callosum and the anterior thalamic tracts. The GHRD group showed enhanced cognitive performance and greater task-related activation in frontal, parietal, and hippocampal regions compared with controls. Furthermore, they had greater functional synchronicity of activity between the precuneus and the rest of the default mode network at rest. The results suggest that, compared with controls, GHRD subjects have brain structure and function that are more consistent with those observed in younger adults reported in previous studies. Further investigation may lead to improved understanding of underlying mechanisms and could contribute to the identification of treatments for age-related cognitive deficits. SIGNIFICANCE STATEMENT People and mice with growth hormone receptor deficiency (GHRD or Laron syndrome) are protected against age-related diseases including cancer and diabetes. However, in humans, it is unknown whether cognitive function and brain structure are affected by GHRD. Using MRI, we examined cognition in an Ecuadorian population with GHRD and their unaffected relatives. The GHRD group showed better memory performance than their relatives. The differences in brain structure and function that we saw between the two groups were not consistent with variations typically associated with brain deficits. This study contributes to our understanding of the connection between growth genes and brain aging in humans and provides data indicating that GHR inhibition has the potential to protect against age-dependent cognitive decline. PMID:28073935

  2. The Effects of Spaceflight and Head Down Tilt Bed Rest on Neurocognitive Performance: Extent, Longevity, and Neural Bases

    NASA Technical Reports Server (NTRS)

    Seidler, Rachael D.; Bloomberg, Jacob; Wood, Scott; Mulavara, Ajit; Kofman, Igor; De Dios, Yiri; Gadd, Nicole; Stepanyan, Vahagn

    2017-01-01

    Spaceflight effects on gait, balance, & manual motor control have been well studied; some evidence for cognitive deficits. Rodent cortical motor & sensory systems show neural structural alterations with spaceflight. specific Aims: Aim 1-Identify changes in brain structure, function, and network integrity as a function of head down tilt bed rest and spaceflight, and characterize their time course. Aim 2-Specify relationships between structural and functional brain changes and performance and characterize their time course.

  3. Automatic Structural Parcellation of Mouse Brain MRI Using Multi-Atlas Label Fusion

    PubMed Central

    Ma, Da; Cardoso, Manuel J.; Modat, Marc; Powell, Nick; Wells, Jack; Holmes, Holly; Wiseman, Frances; Tybulewicz, Victor; Fisher, Elizabeth; Lythgoe, Mark F.; Ourselin, Sébastien

    2014-01-01

    Multi-atlas segmentation propagation has evolved quickly in recent years, becoming a state-of-the-art methodology for automatic parcellation of structural images. However, few studies have applied these methods to preclinical research. In this study, we present a fully automatic framework for mouse brain MRI structural parcellation using multi-atlas segmentation propagation. The framework adopts the similarity and truth estimation for propagated segmentations (STEPS) algorithm, which utilises a locally normalised cross correlation similarity metric for atlas selection and an extended simultaneous truth and performance level estimation (STAPLE) framework for multi-label fusion. The segmentation accuracy of the multi-atlas framework was evaluated using publicly available mouse brain atlas databases with pre-segmented manually labelled anatomical structures as the gold standard, and optimised parameters were obtained for the STEPS algorithm in the label fusion to achieve the best segmentation accuracy. We showed that our multi-atlas framework resulted in significantly higher segmentation accuracy compared to single-atlas based segmentation, as well as to the original STAPLE framework. PMID:24475148

  4. Trigeminal pathways deliver a low molecular weight drug from the nose to the brain and orofacial structures.

    PubMed

    Johnson, Neil J; Hanson, Leah R; Frey, William H

    2010-06-07

    Intranasal delivery has been shown to noninvasively deliver drugs from the nose to the brain in minutes along the olfactory and trigeminal nerve pathways, bypassing the blood-brain barrier. However, no one has investigated whether nasally applied drugs target orofacial structures, despite high concentrations observed in the trigeminal nerve innervating these tissues. Following intranasal administration of lidocaine to rats, trigeminally innervated structures (teeth, temporomandibular joint (TMJ), and masseter muscle) were found to have up to 20-fold higher tissue concentrations of lidocaine than the brain and blood as measured by ELISA. This concentration difference could allow intranasally administered therapeutics to treat disorders of orofacial structures (i.e., teeth, TMJ, and masseter muscle) without causing unwanted side effects in the brain and the rest of the body. In this study, an intranasally administered infrared dye reached the brain within 10 minutes. Distribution of dye is consistent with dye entering the trigeminal nerve after intranasal administration through three regions with high drug concentrations in the nasal cavity: the middle concha, the maxillary sinus, and the choana. In humans the trigeminal nerve passes through the maxillary sinus to innervate the maxillary teeth. Delivering lidocaine intranasally may provide an effective anesthetic technique for a noninvasive maxillary nerve block. Intranasal delivery could be used to target vaccinations and treat disorders with fewer side effects such as tooth pain, TMJ disorder, trigeminal neuralgia, headache, and brain diseases.

  5. Potential protective effects of cannabidiol on neuroanatomical alterations in cannabis users and psychosis: a critical review.

    PubMed

    Hermann, Derik; Schneider, Miriam

    2012-01-01

    Cannabis use and the development of schizophrenic psychoses share a variety of similarities. Both start during late adolescence; go along with neuropsychological deficits, reduced activity, motivation deficits, and hallucinations suggesting impairment of similar brain structures. In cannabis heavy users diminished regional gray and white matter volume was reported. Similar alterations were observed in the large literature addressing structural abnormalities in schizophrenia. Furthermore, in cannabis using schizophrenic patients, these brain alterations were especially pronounced. Close relatives of schizophrenic patients showed greater cannabis-associated brain tissue loss than non-relatives indicating a genetically mediated particular sensitivity to brain tissue loss. Possible mechanisms for the induction of structural brain alterations are here discussed including impairments of neurogenesis, disturbance of endocannabinoids and diminished neuroplasticity. Especially direct THC effects (or via endocannabinoids) may mediate diminished glutamatergic neurotransmission usually driving neuroplasticity. Correspondingly, alterations of the kynurenic acid blocking NMDA receptors may contribute to brain structure alterations. However, different cannabis compounds may exert opposite effects on the neuroanatomical changes underlying psychosis. In particular, cannabidiol (CBD) was shown to prevent THC associated hippocampal volume loss in a small pilot study. This finding is further supported by several animal experiments supporting neuroprotective properties of CBD mainly via anti-oxidative effects, CB2 receptors or adenosine receptors. We will discuss here the mechanisms by which CBD may reduce brain volume loss, including antagonism of THC, interactions with endocannabinoids, and mechanisms that specifically underlie antipsychotic properties of CBD.

  6. Transcripts with in silico predicted RNA structure are enriched everywhere in the mouse brain

    PubMed Central

    2012-01-01

    Background Post-transcriptional control of gene expression is mostly conducted by specific elements in untranslated regions (UTRs) of mRNAs, in collaboration with specific binding proteins and RNAs. In several well characterized cases, these RNA elements are known to form stable secondary structures. RNA secondary structures also may have major functional implications for long noncoding RNAs (lncRNAs). Recent transcriptional data has indicated the importance of lncRNAs in brain development and function. However, no methodical efforts to investigate this have been undertaken. Here, we aim to systematically analyze the potential for RNA structure in brain-expressed transcripts. Results By comprehensive spatial expression analysis of the adult mouse in situ hybridization data of the Allen Mouse Brain Atlas, we show that transcripts (coding as well as non-coding) associated with in silico predicted structured probes are highly and significantly enriched in almost all analyzed brain regions. Functional implications of these RNA structures and their role in the brain are discussed in detail along with specific examples. We observe that mRNAs with a structure prediction in their UTRs are enriched for binding, transport and localization gene ontology categories. In addition, after manual examination we observe agreement between RNA binding protein interaction sites near the 3’ UTR structures and correlated expression patterns. Conclusions Our results show a potential use for RNA structures in expressed coding as well as noncoding transcripts in the adult mouse brain, and describe the role of structured RNAs in the context of intracellular signaling pathways and regulatory networks. Based on this data we hypothesize that RNA structure is widely involved in transcriptional and translational regulatory mechanisms in the brain and ultimately plays a role in brain function. PMID:22651826

  7. Non-invasive Brain Stimulation: Probing Intracortical Circuits and Improving Cognition in the Aging Brain

    PubMed Central

    Gomes-Osman, Joyce; Indahlastari, Aprinda; Fried, Peter J.; Cabral, Danylo L. F.; Rice, Jordyn; Nissim, Nicole R.; Aksu, Serkan; McLaren, Molly E.; Woods, Adam J.

    2018-01-01

    The impact of cognitive aging on brain function and structure is complex, and the relationship between aging-related structural changes and cognitive function are not fully understood. Physiological and pathological changes to the aging brain are highly variable, making it difficult to estimate a cognitive trajectory with which to monitor the conversion to cognitive decline. Beyond the information on the structural and functional consequences of cognitive aging gained from brain imaging and neuropsychological studies, non-invasive brain stimulation techniques such as transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) can enable stimulation of the human brain in vivo, offering useful insights into the functional integrity of intracortical circuits using electrophysiology and neuromodulation. TMS measurements can be used to identify and monitor changes in cortical reactivity, the integrity of inhibitory and excitatory intracortical circuits, the mechanisms of long-term potentiation (LTP)/depression-like plasticity and central cholinergic function. Repetitive TMS and tDCS can be used to modulate neuronal excitability and enhance cortical function, and thus offer a potential means to slow or reverse cognitive decline. This review will summarize and critically appraise relevant literature regarding the use of TMS and tDCS to probe cortical areas affected by the aging brain, and as potential therapeutic tools to improve cognitive function in the aging population. Challenges arising from intra-individual differences, limited reproducibility, and methodological differences will be discussed.

  8. Remodeling Functional Connectivity in Multiple Sclerosis: A Challenging Therapeutic Approach.

    PubMed

    Stampanoni Bassi, Mario; Gilio, Luana; Buttari, Fabio; Maffei, Pierpaolo; Marfia, Girolama A; Restivo, Domenico A; Centonze, Diego; Iezzi, Ennio

    2017-01-01

    Neurons in the central nervous system are organized in functional units interconnected to form complex networks. Acute and chronic brain damage disrupts brain connectivity producing neurological signs and/or symptoms. In several neurological diseases, particularly in Multiple Sclerosis (MS), structural imaging studies cannot always demonstrate a clear association between lesion site and clinical disability, originating the "clinico-radiological paradox." The discrepancy between structural damage and disability can be explained by a complex network perspective. Both brain networks architecture and synaptic plasticity may play important roles in modulating brain networks efficiency after brain damage. In particular, long-term potentiation (LTP) may occur in surviving neurons to compensate network disconnection. In MS, inflammatory cytokines dramatically interfere with synaptic transmission and plasticity. Importantly, in addition to acute and chronic structural damage, inflammation could contribute to reduce brain networks efficiency in MS leading to worse clinical recovery after a relapse and worse disease progression. These evidence suggest that removing inflammation should represent the main therapeutic target in MS; moreover, as synaptic plasticity is particularly altered by inflammation, specific strategies aimed at promoting LTP mechanisms could be effective for enhancing clinical recovery. Modulation of plasticity with different non-invasive brain stimulation (NIBS) techniques has been used to promote recovery of MS symptoms. Better knowledge of features inducing brain disconnection in MS is crucial to design specific strategies to promote recovery and use NIBS with an increasingly tailored approach.

  9. Networks of myelin covariance.

    PubMed

    Melie-Garcia, Lester; Slater, David; Ruef, Anne; Sanabria-Diaz, Gretel; Preisig, Martin; Kherif, Ferath; Draganski, Bogdan; Lutti, Antoine

    2018-04-01

    Networks of anatomical covariance have been widely used to study connectivity patterns in both normal and pathological brains based on the concurrent changes of morphometric measures (i.e., cortical thickness) between brain structures across subjects (Evans, ). However, the existence of networks of microstructural changes within brain tissue has been largely unexplored so far. In this article, we studied in vivo the concurrent myelination processes among brain anatomical structures that gathered together emerge to form nonrandom networks. We name these "networks of myelin covariance" (Myelin-Nets). The Myelin-Nets were built from quantitative Magnetization Transfer data-an in-vivo magnetic resonance imaging (MRI) marker of myelin content. The synchronicity of the variations in myelin content between anatomical regions was measured by computing the Pearson's correlation coefficient. We were especially interested in elucidating the effect of age on the topological organization of the Myelin-Nets. We therefore selected two age groups: Young-Age (20-31 years old) and Old-Age (60-71 years old) and a pool of participants from 48 to 87 years old for a Myelin-Nets aging trajectory study. We found that the topological organization of the Myelin-Nets is strongly shaped by aging processes. The global myelin correlation strength, between homologous regions and locally in different brain lobes, showed a significant dependence on age. Interestingly, we also showed that the aging process modulates the resilience of the Myelin-Nets to damage of principal network structures. In summary, this work sheds light on the organizational principles driving myelination and myelin degeneration in brain gray matter and how such patterns are modulated by aging. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  10. Subcortical brain volume differences of participants with ADHD across the lifespan: an ENIGMA collaboration

    PubMed Central

    Hoogman, Martine; Bralten, Janita; Hibar, Derrek P.; Mennes, Maarten; Zwiers, Marcel P.; Schweren, Lizanne; van Hulzen, Kimm J.E.; Medland, Sarah E.; Shumskaya, Elena; Jahanshad, Neda; de Zeeuw, Patrick; Szekely, Eszter; Sudre, Gustavo; Wolfers, Thomas; Onnink, Alberdingk M.H.; Dammers, Janneke T.; Mostert, Jeanette C.; Vives-Gilabert, Yolanda; Kohls, Gregor; Oberwelland, Eileen; Seitz, Jochen; Schulte-Rüther, Martin; di Bruttopilo, Sara Ambrosino; Doyle, Alysa E.; Høvik, Marie F.; Dramsdahl, Margaretha; Tamm, Leanne; van Erp, Theo G.M.; Dale, Anders; Schork, Andrew; Conzelmann, Annette; Zierhut, Kathrin; Baur, Ramona; McCarthy, Hazel; Yoncheva, Yuliya N.; Cubillo, Ana; Chantiluke, Kaylita; Mehta, Mitul A.; Paloyelis, Yannis; Hohmann, Sarah; Baumeister, Sarah; Bramati, Ivanei; Mattos, Paulo; Tovar-Moll, Fernanda; Douglas, Pamela; Banaschewski, Tobias; Brandeis, Daniel; Kuntsi, Jonna; Asherson, Phil; Rubia, Katya; Kelly, Clare; Di Martino, Adriana; Milham, Michael P.; Castellanos, Francisco X.; Frodl, Thomas; Zentis, Mariam; Lesch, Klaus-Peter; Reif, Andreas; Pauli, Paul; Jernigan, Terry; Haavik, Jan; Plessen, Kerstin J.; Lundervold, Astri J.; Hugdahl, Kenneth; Seidman, Larry J.; Biederman, Joseph; Rommelse, Nanda; Heslenfeld, Dirk J.; Hartman, Catharina; Hoekstra, Pieter J.; Oosterlaan, Jaap; von Polier, Georg; Konrad, Kerstin; Vilarroya, Oscar; Ramos-Quiroga, Josep-Antoni; Soliva, Joan Carles; Durston, Sarah; Buitelaar, Jan K.; Faraone, Stephen V.; Shaw, Philip; Thompson, Paul; Franke, Barbara

    2017-01-01

    BACKGROUND Neuroimaging studies show structural alterations in several brain regions in children and adults with attention-deficit/hyperactivity disorder (ADHD). Through the formation of the worldwide ENIGMA ADHD Working Group, we addressed weaknesses of prior imaging studies and meta-analyses in sample size and methodological heterogeneity. METHODS Our sample comprised 1713 participants with ADHD and 1529 controls from 23 sites (age range: 4–63 years; 66% males). Individual sites analyzed magnetic resonance imaging brain scans with harmonized protocols. Case-control differences in subcortical structures and intracranial volume (ICV) were assessed through mega-and meta-analysis. FINDINGS The volumes of the accumbens (Cohen’s d=−0.15), amygdala (d=−0.19), caudate (d=−0.11), hippocampus (d=−0.11), putamen (d=−0.14), and ICV (d=−0.10) were found to be smaller in cases relative to controls. Effect sizes were highest in children, case-control differences were not present in adults. Explorative lifespan modeling suggested a delay of maturation and a delay of degeneration. Psychostimulant medication use or presence of comorbid psychiatric disorders did not influence results, nor did symptom scores correlate with brain volume. INTERPRETATION Using the largest data set to date, we extend the brain maturation delay theory for ADHD to include subcortical structures and refute medication effects on brain volume suggested by earlier meta-analyses. We add new knowledge about bilateral amygdala, accumbens, and hippocampus reductions in ADHD, and provide unprecedented precision in effect size estimates. Lifespan analyses suggest that, in the absence of well-powered longitudinal studies, the ENIGMA cross-sectional sample across six decades of life provides a means to generate hypotheses about lifespan trajectories in brain phenotypes. FUNDING National Institutes of Health PMID:28219628

  11. The permeability P-glycoprotein: a focus on enantioselectivity and brain distribution.

    PubMed

    Choong, Eva; Dobrinas, Maria; Carrupt, Pierre-Alain; Eap, Chin B

    2010-08-01

    The permeability glycoprotein (P-gp) is an important protein transporter involved in the disposition of many drugs with different chemical structures, but few studies have examined a possible stereoselectivity in its activity. P-gp can have a major impact on the distribution of drugs in selected organs, including the brain. Polymorphisms of the ABCB1 gene, which encodes for P-gp, can influence the kinetics of several drugs. A search including publications from 1990 up to 2009 was performed on P-gp stereoselectivity and on the impact of ABCB1 polymorphisms on enantiomer brain distribution. Despite stereoselectivity not being expected because of the large variability of chemical structures of P-gp substrates, structure-activity relationships suggest different P-gp-binding sites for enantiomers. Enantioselectivity in the activity of P-gp has been demonstrated by in vitro studies and in animal models (preferential transport of one enantiomer or different inhibitory potencies towards P-gp activity between enantiomers). There is also in vivo evidence of an enantioselective drug transport at the human blood-brain barrier. The significant enantioselective activity of P-gp might be clinically relevant and must be taken into account in future studies.

  12. Is the social brain theory applicable to human individual differences? Relationship between sociability personality dimension and brain size.

    PubMed

    Horváth, Klára; Martos, János; Mihalik, Béla; Bódizs, Róbert

    2011-06-17

    Our study intends to examine whether the social brain theory is applicable to human individual differences. According to the social brain theory primates have larger brains as it could be expected from their body sizes due to the adaptation to a more complex social life. Regarding humans there were few studies about the relationship between theory of mind and frontal and temporal brain lobes. We hypothesized that these brain lobes, as well as the whole cerebrum and neocortex are in connection with the Sociability personality dimension that is associated with individuals' social lives. Our findings support this hypothesis as Sociability correlated positively with the examined brain structures if we control the effects of body size differences and age. These results suggest that the social brain theory can be extended to human interindividual differences and they have some implications to personality psychology too.

  13. Structural Dissociation of Attentional Control and Memory in Adults with and without Mild Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Niogi, Sumit N.; Mukherjee, Pratik; Ghajar, Jamshid; Johnson, Carl E.; Kolster, Rachel; Lee, Hana; Suh, Minah; Zimmerman, Robert D.; Manley, Geoffrey T.; McCandliss, Bruce D.

    2008-01-01

    Memory and attentional control impairments are the two most common forms of dysfunction following mild traumatic brain injury (TBI) and lead to significant morbidity in patients, yet these functions are thought to be supported by different brain networks. This 3 T magnetic resonance diffusion tensor imaging (DTI) study investigates whether…

  14. Brain Entropy Mapping Using fMRI

    PubMed Central

    Wang, Ze; Li, Yin; Childress, Anna Rose; Detre, John A.

    2014-01-01

    Entropy is an important trait for life as well as the human brain. Characterizing brain entropy (BEN) may provide an informative tool to assess brain states and brain functions. Yet little is known about the distribution and regional organization of BEN in normal brain. The purpose of this study was to examine the whole brain entropy patterns using a large cohort of normal subjects. A series of experiments were first performed to validate an approximate entropy measure regarding its sensitivity, specificity, and reliability using synthetic data and fMRI data. Resting state fMRI data from a large cohort of normal subjects (n = 1049) from multi-sites were then used to derive a 3-dimensional BEN map, showing a sharp low-high entropy contrast between the neocortex and the rest of brain. The spatial heterogeneity of resting BEN was further studied using a data-driven clustering method, and the entire brain was found to be organized into 7 hierarchical regional BEN networks that are consistent with known structural and functional brain parcellations. These findings suggest BEN mapping as a physiologically and functionally meaningful measure for studying brain functions. PMID:24657999

  15. Using Case Studies as a Semester-Long Tool to Teach Neuroanatomy and Structure-Function Relationships to Undergraduates

    PubMed Central

    Kennedy, Susan

    2013-01-01

    In addition to being inherently interesting to students, case studies can serve as useful tools to teach neuroanatomy and demonstrate important relationships between brain structure and function. In most undergraduate courses, however, neuroanatomy is presented to students as a “unit” or chapter, much like other topics (e.g., receptors, pharmacology) covered in the course, over a period of a week or two. In this article, a relatively simple model of teaching neuroanatomy is described in which students are actively engaged in the presentation and discussion of case studies throughout the semester, following a general introduction to the structure of the nervous system. In this way, the teaching of neuroanatomy is “distributed” throughout the semester and put into a more user-friendly context for students as additional topics are introduced. Generally, students report enjoying learning brain structure using this method, and commented positively on the class activities associated with learning brain anatomy. Advantages and disadvantages of such a model are presented, as are suggestions for implementing similar models of undergraduate neuroanatomy education. PMID:24319386

  16. The structure of creative cognition in the human brain

    PubMed Central

    Jung, Rex E.; Mead, Brittany S.; Carrasco, Jessica; Flores, Ranee A.

    2013-01-01

    Creativity is a vast construct, seemingly intractable to scientific inquiry—perhaps due to the vague concepts applied to the field of research. One attempt to limit the purview of creative cognition formulates the construct in terms of evolutionary constraints, namely that of blind variation and selective retention (BVSR). Behaviorally, one can limit the “blind variation” component to idea generation tests as manifested by measures of divergent thinking. The “selective retention” component can be represented by measures of convergent thinking, as represented by measures of remote associates. We summarize results from measures of creative cognition, correlated with structural neuroimaging measures including structural magnetic resonance imaging (sMRI), diffusion tensor imaging (DTI), and proton magnetic resonance spectroscopy (1H-MRS). We also review lesion studies, considered to be the “gold standard” of brain-behavioral studies. What emerges is a picture consistent with theories of disinhibitory brain features subserving creative cognition, as described previously (Martindale, 1981). We provide a perspective, involving aspects of the default mode network (DMN), which might provide a “first approximation” regarding how creative cognition might map on to the human brain. PMID:23847503

  17. Whole-brain structural topology in adult attention-deficit/hyperactivity disorder: Preserved global - disturbed local network organization.

    PubMed

    Sidlauskaite, Justina; Caeyenberghs, Karen; Sonuga-Barke, Edmund; Roeyers, Herbert; Wiersema, Jan R

    2015-01-01

    Prior studies demonstrate altered organization of functional brain networks in attention-deficit/hyperactivity disorder (ADHD). However, the structural underpinnings of these functional disturbances are poorly understood. In the current study, we applied a graph-theoretic approach to whole-brain diffusion magnetic resonance imaging data to investigate the organization of structural brain networks in adults with ADHD and unaffected controls using deterministic fiber tractography. Groups did not differ in terms of global network metrics - small-worldness, global efficiency and clustering coefficient. However, there were widespread ADHD-related effects at the nodal level in relation to local efficiency and clustering. The affected nodes included superior occipital, supramarginal, superior temporal, inferior parietal, angular and inferior frontal gyri, as well as putamen, thalamus and posterior cerebellum. Lower local efficiency of left superior temporal and supramarginal gyri was associated with higher ADHD symptom scores. Also greater local clustering of right putamen and lower local clustering of left supramarginal gyrus correlated with ADHD symptom severity. Overall, the findings indicate preserved global but altered local network organization in adult ADHD implicating regions underpinning putative ADHD-related neuropsychological deficits.

  18. Cortical thickness and surface area correlates with cognitive dysfunction among first-episode psychosis patients.

    PubMed

    Haring, L; Müürsepp, A; Mõttus, R; Ilves, P; Koch, K; Uppin, K; Tarnovskaja, J; Maron, E; Zharkovsky, A; Vasar, E; Vasar, V

    2016-07-01

    In studies using magnetic resonance imaging (MRI), some have reported specific brain structure-function relationships among first-episode psychosis (FEP) patients, but findings are inconsistent. We aimed to localize the brain regions where cortical thickness (CTh) and surface area (cortical area; CA) relate to neurocognition, by performing an MRI on participants and measuring their neurocognitive performance using the Cambridge Neuropsychological Test Automated Battery (CANTAB), in order to investigate any significant differences between FEP patients and control subjects (CS). Exploration of potential correlations between specific cognitive functions and brain structure was performed using CANTAB computer-based neurocognitive testing and a vertex-by-vertex whole-brain MRI analysis of 63 FEP patients and 30 CS. Significant correlations were found between cortical parameters in the frontal, temporal, cingular and occipital brain regions and performance in set-shifting, working memory manipulation, strategy usage and sustained attention tests. These correlations were significantly dissimilar between FEP patients and CS. Significant correlations between CTh and CA with neurocognitive performance were localized in brain areas known to be involved in cognition. The results also suggested a disrupted structure-function relationship in FEP patients compared with CS.

  19. Brain network connectivity in women exposed to intimate partner violence: a graph theory analysis study.

    PubMed

    Roos, Annerine; Fouche, Jean-Paul; Stein, Dan J

    2017-12-01

    Evidence suggests that women who suffer from intimate partner violence (IPV) and posttraumatic stress disorder (PTSD) have structural and functional alterations in specific brain regions. Yet, little is known about how brain connectivity may be altered in individuals with IPV, but without PTSD. Women exposed to IPV (n = 18) and healthy controls (n = 18) underwent structural brain imaging using a Siemens 3T MRI. Global and regional brain network connectivity measures were determined, using graph theory analyses. Structural covariance networks were created using volumetric and cortical thickness data after controlling for intracranial volume, age and alcohol use. Nonparametric permutation tests were used to investigate group differences. Findings revealed altered connectivity on a global and regional level in the IPV group of regions involved in cognitive-emotional control, with principal involvement of the caudal anterior cingulate, the middle temporal gyrus, left amygdala and ventral diencephalon that includes the thalamus. To our knowledge, this is the first evidence showing different brain network connectivity in global and regional networks in women exposed to IPV, and without PTSD. Altered cognitive-emotional control in IPV may underlie adaptive neural mechanisms in environments characterized by potentially dangerous cues.

  20. Effect of Heterogeneity of Tissues on RF Energy Absorption in the Brain for Exposure Assessment in Epidemiological Studies on Mobile Phone Use and Brain Tumors

    NASA Astrophysics Data System (ADS)

    Varsier, Nadege; Wake, Kanako; Taki, Masao; Watanabe, Soichi

    We compared SAR distributions in major anatomical structures of the brain of a homogeneous and a heterogeneous model using FDTD calculations. Our results proved a good correlation between SAR values in lobes of the brain where tumors may arise more frequently. However SAR values at some specific locations were shown to be under or overestimated.

  1. Resting-state functional connectivity emerges from structurally and dynamically shaped slow linear fluctuations.

    PubMed

    Deco, Gustavo; Ponce-Alvarez, Adrián; Mantini, Dante; Romani, Gian Luca; Hagmann, Patric; Corbetta, Maurizio

    2013-07-03

    Brain fluctuations at rest are not random but are structured in spatial patterns of correlated activity across different brain areas. The question of how resting-state functional connectivity (FC) emerges from the brain's anatomical connections has motivated several experimental and computational studies to understand structure-function relationships. However, the mechanistic origin of resting state is obscured by large-scale models' complexity, and a close structure-function relation is still an open problem. Thus, a realistic but simple enough description of relevant brain dynamics is needed. Here, we derived a dynamic mean field model that consistently summarizes the realistic dynamics of a detailed spiking and conductance-based synaptic large-scale network, in which connectivity is constrained by diffusion imaging data from human subjects. The dynamic mean field approximates the ensemble dynamics, whose temporal evolution is dominated by the longest time scale of the system. With this reduction, we demonstrated that FC emerges as structured linear fluctuations around a stable low firing activity state close to destabilization. Moreover, the model can be further and crucially simplified into a set of motion equations for statistical moments, providing a direct analytical link between anatomical structure, neural network dynamics, and FC. Our study suggests that FC arises from noise propagation and dynamical slowing down of fluctuations in an anatomically constrained dynamical system. Altogether, the reduction from spiking models to statistical moments presented here provides a new framework to explicitly understand the building up of FC through neuronal dynamics underpinned by anatomical connections and to drive hypotheses in task-evoked studies and for clinical applications.

  2. A voxel-based asymmetry study of the relationship between hemispheric asymmetry and language dominance in Wada tested patients.

    PubMed

    Keller, Simon S; Roberts, Neil; Baker, Gus; Sluming, Vanessa; Cezayirli, Enis; Mayes, Andrew; Eldridge, Paul; Marson, Anthony G; Wieshmann, Udo C

    2018-03-23

    Determining the anatomical basis of hemispheric language dominance (HLD) remains an important scientific endeavor. The Wada test remains the gold standard test for HLD and provides a unique opportunity to determine the relationship between HLD and hemispheric structural asymmetries on MRI. In this study, we applied a whole-brain voxel-based asymmetry (VBA) approach to determine the relationship between interhemispheric structural asymmetries and HLD in a large consecutive sample of Wada tested patients. Of 135 patients, 114 (84.4%) had left HLD, 10 (7.4%) right HLD, and 11 (8.2%) bilateral language representation. Fifty-four controls were also studied. Right-handed controls and right-handed patients with left HLD had comparable structural brain asymmetries in cortical, subcortical, and cerebellar regions that have previously been documented in healthy people. However, these patients and controls differed in structural asymmetry of the mesial temporal lobe and a circumscribed region in the superior temporal gyrus, suggesting that only asymmetries of these regions were due to brain alterations caused by epilepsy. Additional comparisons between patients with left and right HLD, matched for type and location of epilepsy, revealed that structural asymmetries of insula, pars triangularis, inferior temporal gyrus, orbitofrontal cortex, ventral temporo-occipital cortex, mesial somatosensory cortex, and mesial cerebellum were significantly associated with the side of HLD. Patients with right HLD and bilateral language representation were significantly less right-handed. These results suggest that structural asymmetries of an insular-fronto-temporal network may be related to HLD. © 2018 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  3. Consensus between Pipelines in Structural Brain Networks

    PubMed Central

    Parker, Christopher S.; Deligianni, Fani; Cardoso, M. Jorge; Daga, Pankaj; Modat, Marc; Dayan, Michael; Clark, Chris A.

    2014-01-01

    Structural brain networks may be reconstructed from diffusion MRI tractography data and have great potential to further our understanding of the topological organisation of brain structure in health and disease. Network reconstruction is complex and involves a series of processesing methods including anatomical parcellation, registration, fiber orientation estimation and whole-brain fiber tractography. Methodological choices at each stage can affect the anatomical accuracy and graph theoretical properties of the reconstructed networks, meaning applying different combinations in a network reconstruction pipeline may produce substantially different networks. Furthermore, the choice of which connections are considered important is unclear. In this study, we assessed the similarity between structural networks obtained using two independent state-of-the-art reconstruction pipelines. We aimed to quantify network similarity and identify the core connections emerging most robustly in both pipelines. Similarity of network connections was compared between pipelines employing different atlases by merging parcels to a common and equivalent node scale. We found a high agreement between the networks across a range of fiber density thresholds. In addition, we identified a robust core of highly connected regions coinciding with a peak in similarity across network density thresholds, and replicated these results with atlases at different node scales. The binary network properties of these core connections were similar between pipelines but showed some differences in atlases across node scales. This study demonstrates the utility of applying multiple structural network reconstrution pipelines to diffusion data in order to identify the most important connections for further study. PMID:25356977

  4. Individual differences in brain structure and resting brain function underlie cognitive styles: evidence from the Embedded Figures Test.

    PubMed

    Hao, Xin; Wang, Kangcheng; Li, Wenfu; Yang, Wenjing; Wei, Dongtao; Qiu, Jiang; Zhang, Qinglin

    2013-01-01

    Cognitive styles can be characterized as individual differences in the way people perceive, think, solve problems, learn, and relate to others. Field dependence/independence (FDI) is an important and widely studied dimension of cognitive styles. Although functional imaging studies have investigated the brain activation of FDI cognitive styles, the combined structural and functional correlates with individual differences in a large sample have never been investigated. In the present study, we investigated the neural correlates of individual differences in FDI cognitive styles by analyzing the correlations between Embedded Figures Test (EFT) score and structural neuroimaging data [regional gray matter volume (rGMV) was assessed using voxel-based morphometry (VBM)]/functional neuroimaging data [resting-brain functions were measured by amplitude of low-frequency fluctuation (ALFF)] throughout the whole brain. Results showed that the increased rGMV in the left inferior parietal lobule (IPL) was associated with the EFT score, which might be the structural basis of effective local processing. Additionally, a significant positive correlation between ALFF and EFT score was found in the fronto-parietal network, including the left inferior parietal lobule (IPL) and the medial prefrontal cortex (mPFC). We speculated that the left IPL might be associated with superior feature identification, and mPFC might be related to cognitive inhibition of global processing bias. These results suggested that the underlying neuroanatomical and functional bases were linked to the individual differences in FDI cognitive styles and emphasized the important contribution of superior local processing ability and cognitive inhibition to field-independent style.

  5. Individual Differences in Brain Structure and Resting Brain Function Underlie Cognitive Styles: Evidence from the Embedded Figures Test

    PubMed Central

    Hao, Xin; Wang, Kangcheng; Li, Wenfu; Yang, Wenjing; Wei, Dongtao; Qiu, Jiang; Zhang, Qinglin

    2013-01-01

    Cognitive styles can be characterized as individual differences in the way people perceive, think, solve problems, learn, and relate to others. Field dependence/independence (FDI) is an important and widely studied dimension of cognitive styles. Although functional imaging studies have investigated the brain activation of FDI cognitive styles, the combined structural and functional correlates with individual differences in a large sample have never been investigated. In the present study, we investigated the neural correlates of individual differences in FDI cognitive styles by analyzing the correlations between Embedded Figures Test (EFT) score and structural neuroimaging data [regional gray matter volume (rGMV) was assessed using voxel-based morphometry (VBM)] / functional neuroimaging data [resting-brain functions were measured by amplitude of low-frequency fluctuation (ALFF)] throughout the whole brain. Results showed that the increased rGMV in the left inferior parietal lobule (IPL) was associated with the EFT score, which might be the structural basis of effective local processing. Additionally, a significant positive correlation between ALFF and EFT score was found in the fronto-parietal network, including the left inferior parietal lobule (IPL) and the medial prefrontal cortex (mPFC). We speculated that the left IPL might be associated with superior feature identification, and mPFC might be related to cognitive inhibition of global processing bias. These results suggested that the underlying neuroanatomical and functional bases were linked to the individual differences in FDI cognitive styles and emphasized the important contribution of superior local processing ability and cognitive inhibition to field-independent style. PMID:24348991

  6. Effect of SOHAM meditation on human brain: a voxel-based morphometry study.

    PubMed

    Kumar, Uttam; Guleria, Anupam; Kishan, Sadguru Sri Kunal; Khetrapal, C L

    2014-01-01

    The anatomical correlates of long-term meditators involved in practice of "SOHAM" meditation have been studied using voxel-based morphometry (VBM). The VBM analysis indicates significantly higher gray matter density in brain stem, ventral pallidum, and supplementary motor area in the meditators as compared with age-matched nonmeditators. The observed changes in brain structure are compared with other forms of meditation. Copyright © 2013 by the American Society of Neuroimaging.

  7. Dominant hemisphere lateralization of cortical parasympathetic control as revealed by frontotemporal dementia

    PubMed Central

    Guo, Christine C.; Sturm, Virginia E.; Zhou, Juan; Gennatas, Efstathios D.; Trujillo, Andrew J.; Hua, Alice Y.; Crawford, Richard; Stables, Lara; Kramer, Joel H.; Rankin, Katherine; Levenson, Robert W.; Rosen, Howard J.; Miller, Bruce L.; Seeley, William W.

    2016-01-01

    The brain continuously influences and perceives the physiological condition of the body. Related cortical representations have been proposed to shape emotional experience and guide behavior. Although previous studies have identified brain regions recruited during autonomic processing, neurological lesion studies have yet to delineate the regions critical for maintaining autonomic outflow. Even greater controversy surrounds hemispheric lateralization along the parasympathetic–sympathetic axis. The behavioral variant of frontotemporal dementia (bvFTD), featuring progressive and often asymmetric degeneration that includes the frontoinsular and cingulate cortices, provides a unique lesion model for elucidating brain structures that control autonomic tone. Here, we show that bvFTD is associated with reduced baseline cardiac vagal tone and that this reduction correlates with left-lateralized functional and structural frontoinsular and cingulate cortex deficits and with reduced agreeableness. Our results suggest that networked brain regions in the dominant hemisphere are critical for maintaining an adaptive level of baseline parasympathetic outflow. PMID:27071080

  8. The neurobiology of pain, affect and hypnosis.

    PubMed

    Feldman, Jeffrey B

    2004-01-01

    Recent neuroimaging studies have used hypnotic suggestion to distinguish the brain structures most associated with the sensory and affective dimensions of pain. This paper reviews studies that delineate the overlapping brain circuits involved in the processing of pain and emotions, and their relationship to autonomic arousal. Also examined are the replicated findings of reliable changes in the activation of specific brain structures and the deactivation of others associated with the induction of hypnosis. These differ from those parts of the brain involved in response to hypnotic suggestions. It is proposed that the activation of a portion of the prefrontal cortex in response to both hypnotic suggestions for decreased pain and to positive emotional experience might indicate a more general underlying mechanism. Great potential exists for further research to clarify the relationships among individual differences in reactivity to pain, emotion, and stress, and the possible role of such differences in the development of chronic pain.

  9. Brain imaging and behavioral outcome in traumatic brain injury.

    PubMed

    Bigler, E D

    1996-09-01

    Brain imaging studies have become an essential diagnostic assessment procedure in evaluating the effects of traumatic brain injury (TBI). Such imaging studies provide a wealth of information about structural and functional deficits following TBI. But how pathologic changes identified by brain imaging methods relate to neurobehavioral outcome is not as well known. Thus, the focus of this article is on brain imaging findings and outcome following TBI. The article starts with an overview of current research dealing with the cellular pathology associated with TBI. Understanding the cellular elements of pathology permits extrapolation to what is observed with brain imaging. Next, this article reviews the relationship of brain imaging findings to underlying pathology and how that pathology relates to neurobehavioral outcome. The brain imaging techniques of magnetic resonance imaging, computerized tomography, and single photon emission computed tomography are reviewed. Various image analysis procedures, and how such findings relate to neuropsychological testing, are discussed. The importance of brain imaging in evaluating neurobehavioral deficits following brain injury is stressed.

  10. Brain Mapping of drug addiction in witdrawal condition based P300 Signals

    NASA Astrophysics Data System (ADS)

    Turnip, Arjon; Esti Kusumandari, Dwi; Hidayat, Teddy

    2018-04-01

    Drug abuse for a long time will slowly cause changes in brain structure and performance. These changes tend to occur in the front of the brain which is directly interfere the concentration and the decision-making process. In this study an experiment involving 10 drug users was performed. The process of recording data with EEG system is conducted during craving condition and 1 hour after taking methadone. From brain mapping results obtained that brain activity tend to occur in the upper layer of the brain during craving conditions and tend to be in the midle layer of the brain after one hour of taking methadone.

  11. Normal feline brain: clinical anatomy using magnetic resonance imaging.

    PubMed

    Mogicato, G; Conchou, F; Layssol-Lamour, C; Raharison, F; Sautet, J

    2012-04-01

    The purpose of this study was to provide a clinical anatomy atlas of the feline brain using magnetic resonance imaging (MRI). Brains of twelve normal cats were imaged using a 1.5 T magnetic resonance unit and an inversion/recovery sequence (T1). Fourteen relevant MRI sections were chosen in transverse, dorsal, median and sagittal planes. Anatomic structures were identified and labelled using anatomical texts and Nomina Anatomica Veterinaria, sectioned specimen heads, and previously published articles. The MRI sections were stained according to the major embryological and anatomical subdivisions of the brain. The relevant anatomical structures seen on MRI will assist clinicians to better understand MR images and to relate this neuro-anatomy to clinical signs. © 2011 Blackwell Verlag GmbH.

  12. Functional brain networks reconstruction using group sparsity-regularized learning.

    PubMed

    Zhao, Qinghua; Li, Will X Y; Jiang, Xi; Lv, Jinglei; Lu, Jianfeng; Liu, Tianming

    2018-06-01

    Investigating functional brain networks and patterns using sparse representation of fMRI data has received significant interests in the neuroimaging community. It has been reported that sparse representation is effective in reconstructing concurrent and interactive functional brain networks. To date, most of data-driven network reconstruction approaches rarely take consideration of anatomical structures, which are the substrate of brain function. Furthermore, it has been rarely explored whether structured sparse representation with anatomical guidance could facilitate functional networks reconstruction. To address this problem, in this paper, we propose to reconstruct brain networks utilizing the structure guided group sparse regression (S2GSR) in which 116 anatomical regions from the AAL template, as prior knowledge, are employed to guide the network reconstruction when performing sparse representation of whole-brain fMRI data. Specifically, we extract fMRI signals from standard space aligned with the AAL template. Then by learning a global over-complete dictionary, with the learned dictionary as a set of features (regressors), the group structured regression employs anatomical structures as group information to regress whole brain signals. Finally, the decomposition coefficients matrix is mapped back to the brain volume to represent functional brain networks and patterns. We use the publicly available Human Connectome Project (HCP) Q1 dataset as the test bed, and the experimental results indicate that the proposed anatomically guided structure sparse representation is effective in reconstructing concurrent functional brain networks.

  13. Long-term reorganization of structural brain networks in a rabbit model of intrauterine growth restriction.

    PubMed

    Batalle, Dafnis; Muñoz-Moreno, Emma; Arbat-Plana, Ariadna; Illa, Miriam; Figueras, Francesc; Eixarch, Elisenda; Gratacos, Eduard

    2014-10-15

    Characterization of brain changes produced by intrauterine growth restriction (IUGR) is among the main challenges of modern fetal medicine and pediatrics. This condition affects 5-10% of all pregnancies and is associated with a wide range of neurodevelopmental disorders. Better understanding of the brain reorganization produced by IUGR opens a window of opportunity to find potential imaging biomarkers in order to identify the infants with a high risk of having neurodevelopmental problems and apply therapies to improve their outcomes. Structural brain networks obtained from diffusion magnetic resonance imaging (MRI) is a promising tool to study brain reorganization and to be used as a biomarker of neurodevelopmental alterations. In the present study this technique is applied to a rabbit animal model of IUGR, which presents some advantages including a controlled environment and the possibility to obtain high quality MRI with long acquisition times. Using a Q-Ball diffusion model, and a previously published rabbit brain MRI atlas, structural brain networks of 15 IUGR and 14 control rabbits at 70 days of age (equivalent to pre-adolescence human age) were obtained. The analysis of graph theory features showed a decreased network infrastructure (degree and binary global efficiency) associated with IUGR condition and a set of generalized fractional anisotropy (GFA) weighted measures associated with abnormal neurobehavior. Interestingly, when assessing the brain network organization independently of network infrastructure by means of normalized networks, IUGR showed increased global and local efficiencies. We hypothesize that this effect could reflect a compensatory response to reduced infrastructure in IUGR. These results present new evidence on the long-term persistence of the brain reorganization produced by IUGR that could underlie behavioral and developmental alterations previously described. The described changes in network organization have the potential to be used as biomarkers to monitor brain changes produced by experimental therapies in IUGR animal model. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Gender differences in functional connectivities between insular subdivisions and selective pain-related brain structures.

    PubMed

    Dai, Yu-Jie; Zhang, Xin; Yang, Yang; Nan, Hai-Yan; Yu, Ying; Sun, Qian; Yan, Lin-Feng; Hu, Bo; Zhang, Jin; Qiu, Zi-Yu; Gao, Yi; Cui, Guang-Bin; Chen, Bi-Liang; Wang, Wen

    2018-03-14

    The incidence of pain disorders in women is higher than in men, making gender differences in pain a research focus. The human insular cortex is an important brain hub structure for pain processing and is divided into several subdivisions, serving different functions in pain perception. Here we aimed to examine the gender differences of the functional connectivities (FCs) between the twelve insular subdivisions and selected pain-related brain structures in healthy adults. Twenty-six healthy males and 11 age-matched healthy females were recruited in this cross-sectional study. FCs between the 12 insular subdivisions (as 12 regions of interest (ROIs)) and the whole brain (ROI-whole brain level) or 64 selected pain-related brain regions (64 ROIs, ROI-ROI level) were measured between the males and females. Significant gender differences in the FCs of the insular subdivisions were revealed: (1) The FCs between the dorsal dysgranular insula (dId) and other brain regions were significantly increased in males using two different techniques (ROI-whole brain and ROI-ROI analyses); (2) Based on the ROI-whole brain analysis, the FC increases in 4 FC-pairs were observed in males, including the left dId - the right median cingulate and paracingulate/ right posterior cingulate gyrus/ right precuneus, the left dId - the right median cingulate and paracingulate, the left dId - the left angular as well as the left dId - the left middle frontal gyrus; (3) According to the ROI-ROI analysis, increased FC between the left dId and the right rostral anterior cingulate cortex was investigated in males. In summary, the gender differences in the FCs of the insular subdivisions with pain-related brain regions were revealed in the current study, offering neuroimaging evidence for gender differences in pain processing. ClinicalTrials.gov, NCT02820974 . Registered 28 June 2016.

  15. Age-dependent changes at the blood-brain barrier. A Comparative structural and functional study in young adult and middle aged rats.

    PubMed

    Bors, Luca; Tóth, Kinga; Tóth, Estilla Zsófia; Bajza, Ágnes; Csorba, Attila; Szigeti, Krisztián; Máthé, Domokos; Perlaki, Gábor; Orsi, Gergely; Tóth, Gábor K; Erdő, Franciska

    2018-05-01

    Decreased beta-amyloid clearance in Alzheimer's disease and increased blood-brain barrier permeability in aged subjects have been reported in several articles. However, morphological and functional characterization of blood-brain barrier and its membrane transporter activity have not been described in physiological aging yet. The aim of our study was to explore the structural changes in the brain microvessels and possible functional alterations of P-glycoprotein at the blood-brain barrier with aging. Our approach included MR imaging for anatomical orientation in middle aged rats, electronmicroscopy and immunohistochemistry to analyse the alterations at cellular level, dual or triple-probe microdialysis and SPECT to test P-glycoprotein functionality in young and middle aged rats. Our results indicate that the thickness of basal lamina increases, the number of tight junctions decreases and the size of astrocyte endfeet extends with advanced age. On the basis of microdialysis and SPECT results the P-gp function is reduced in old rats. With our multiparametric approach a complex regulation can be suggested which includes elements leading to increased permeability of blood-brain barrier by enhanced paracellular and transcellular transport, and factors working against it. To verify the role of P-gp pumps in brain aging further studies are warranted. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Turner Syndrome: Neuroimaging Findings--Structural and Functional

    ERIC Educational Resources Information Center

    Mullaney, Ronan; Murphy, Declan

    2009-01-01

    Neuroimaging studies of Turner syndrome can advance our understanding of the X chromosome in brain development, and the modulatory influence of endocrine factors. There is increasing evidence from neuroimaging studies that TX individuals have significant differences in the anatomy, function, and metabolism of a number of brain regions; including…

  17. The effect of alcohol use on human adolescent brain structures and systems.

    PubMed

    Squeglia, Lindsay M; Jacobus, Joanna; Tapert, Susan F

    2014-01-01

    This article reviews the neurocognitive and neuroimaging literature regarding the effect of alcohol use on human adolescent brain structure and function. Adolescents who engage in heavy alcohol use, even at subdiagnostic levels, show differences in brain structure, function, and behavior when compared with non-drinking controls. Preliminary longitudinal studies have helped disentangle premorbid factors from consequences associated with drinking. Neural abnormalities and cognitive disadvantages both appear to predate drinking, particularly in youth who have a family history of alcoholism, and are directly related to the neurotoxic effect of alcohol use. Binge drinking and withdrawal and hangover symptoms have been associated with the greatest neural abnormalities during adolescence, particularly in frontal, parietal, and temporal regions. © 2014 Elsevier B.V. All rights reserved.

  18. Sexual differentiation of the brain: a model for drug-induced alterations of the reproductive system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorski, R.A.

    1986-12-01

    The process of the sexual differentiation of the brain represents a valuable model system for the study of the chemical modification of the mammalian brain. Although there are numerous functional and structural sex differences in the adult brain, these are imposed on an essentially feminine or bipotential brain by testicular hormones during a critical phase of perinatal development in the rat. It is suggested that a relatively marked structural sex difference in the rat brain, the sexually dimorphic nucleus of the preoptic area (SDN-POA), is a morphological signature of the permanent or organizational action of estradiol derived from the aromatizationmore » of testicular testosterone. The SDN-POA of the male rat is severalfold larger in volume and is composed of more neurons than that of the female. The observation that the mitotic formation of the neurons of the SDN-POA is specifically prolonged has enabled us to identify the time course and pathway of neuronal migration into the nucleus. Study of the development of the SDN-POA suggests that estradiol in the male increases the number of neurons which survive a phase of neuronal death by exerting a neurite growth promoting action and/or a direct neuronotrophic action. Finally, although it is clear that gonadal hormones have dramatic permanent effects on the brain during perinatal development, even after puberty and in adulthood gonadal steroids can alter neuronal structure and, perhaps as a corollary to this, have permanent effects on reproductive function. Although the brain may be most sensitive to gonadal hormones or exogenous chemical factors during perinatal development, such as sensitivity does not appear limited to this period.« less

  19. Visceral fat is associated with brain structure independent of human immunodeficiency virus infection status.

    PubMed

    Lake, Jordan E; Popov, Mikhail; Post, Wendy S; Palella, Frank J; Sacktor, Ned; Miller, Eric N; Brown, Todd T; Becker, James T

    2017-06-01

    The combined effects of human immunodeficiency virus (HIV), obesity, and elevated visceral adipose tissue (VAT) on brain structure are unknown. In a cross-sectional analysis of Multicenter AIDS Cohort Study (MACS) participants, we determined associations between HIV serostatus, adiposity, and brain structure. Men (133 HIV+, 84 HIV-) in the MACS Cardiovascular 2 and magnetic resonance imaging (MRI) sub-studies with CT-quantified VAT and whole brain MRI measured within 1 year were assessed. Voxel-based morphometry analyzed brain volumes. Men were stratified by elevated (eVAT, ≥100cm 2 ) or "normal" (nVAT, <100cm 2 ) VAT. Forward stepwise modeling determined associations between clinical and demographic variables and regional brain volumes. eVAT was present in 67% of men. Groups were similar in age and education, but eVAT men were more likely to be HIV+ and have hypertension, diabetes mellitus, body mass index >25 kg/m 2 , smaller gray and white matter volumes, and larger cerebrospinal fluid volume than nVAT men. In multivariate analysis, hypertension, higher adiponectin, higher interleukin-6, age, diabetes mellitus, higher body mass index, and eVAT were associated with brain atrophy (p < 0.05, ordered by increasing strength of association), but HIV serostatus and related factors were generally not. No interactions were observed. Greater VAT was associated with smaller bilateral posterior hippocampus and left mesial temporal lobe and temporal stem white matter volume. Traditional risk factors are more strongly associated with brain atrophy than HIV serostatus, with VAT having the strongest association. However, HIV+ MACS men had disproportionately greater VAT, suggesting the risk for central nervous system effects may be amplified in this population.

  20. Beneficial effect of feeding a ketogenic diet to mothers on brain development in their progeny with a murine model of pyruvate dehydrogenase complex deficiency.

    PubMed

    Pliss, Lioudmila; Jatania, Urvi; Patel, Mulchand S

    2016-06-01

    Pyruvate dehydrogenase complex (PDC) deficiency is a major inborn error of oxidative metabolism of pyruvate in the mitochondria causing congenital lactic acidosis and primarily structural and functional abnormalities of the central nervous system. To provide an alternate source of acetyl-CoA derived from ketone bodies to the developing brain, a formula high in fat content is widely employed as a treatment. In the present study we investigated efficacy of a high-fat diet given to mothers during pregnancy and lactation on lessening of the impact of PDC deficiency on brain development in PDC-deficient female progeny. A murine model of systemic PDC deficiency by interrupting the X-linked Pdha1 gene was employed in this study. Maternal consumption of a high-fat diet during pregnancy and lactation had no effect on number of live-birth, body growth, tissue PDC activity levels, as well as the in vitro rates of glucose oxidation and fatty acid biosynthesis by the developing brain of PDC-deficient female offspring during the postnatal age 35 days, as compared to the PDC-deficient progeny born to dams on a chow diet. Interestingly, brain weight was normalized in PDC-deficient progeny of high fat-fed mothers with improvement in impairment in brain structure deficit whereas brain weight was significantly decreased and was associated with greater cerebral structural defects in progeny of chow-fed mothers as compared to control progeny of mothers fed either a chow or high fat diet. The findings provide for the first time experimental support for beneficial effects of a ketogenic diet during the prenatal and early postnatal periods on the brain development of PDC-deficient mammalian progeny.

  1. Mapping the Regional Influence of Genetics on Brain Structure Variability - A Tensor-Based Morphometry Study

    PubMed Central

    Brun, Caroline; Leporé, Natasha; Pennec, Xavier; Lee, Agatha D.; Barysheva, Marina; Madsen, Sarah K.; Avedissian, Christina; Chou, Yi-Yu; de Zubicaray, Greig I.; McMahon, Katie; Wright, Margaret; Toga, Arthur W.; Thompson, Paul M.

    2010-01-01

    Genetic and environmental factors influence brain structure and function profoundly The search for heritable anatomical features and their influencing genes would be accelerated with detailed 3D maps showing the degree to which brain morphometry is genetically determined. As part of an MRI study that will scan 1150 twins, we applied Tensor-Based Morphometry to compute morphometric differences in 23 pairs of identical twins and 23 pairs of same-sex fraternal twins (mean age: 23.8 ± 1.8 SD years). All 92 twins’ 3D brain MRI scans were nonlinearly registered to a common space using a Riemannian fluid-based warping approach to compute volumetric differences across subjects. A multi-template method was used to improve volume quantification. Vector fields driving each subject’s anatomy onto the common template were analyzed to create maps of local volumetric excesses and deficits relative to the standard template. Using a new structural equation modeling method, we computed the voxelwise proportion of variance in volumes attributable to additive (A) or dominant (D) genetic factors versus shared environmental (C) or unique environmental factors (E). The method was also applied to various anatomical regions of interest (ROIs). As hypothesized, the overall volumes of the brain, basal ganglia, thalamus, and each lobe were under strong genetic control; local white matter volumes were mostly controlled by common environment. After adjusting for individual differences in overall brain scale, genetic influences were still relatively high in the corpus callosum and in early-maturing brain regions such as the occipital lobes, while environmental influences were greater in frontal brain regions which have a more protracted maturational time-course. PMID:19446645

  2. Developmental process emerges from extended brain-body-behavior networks

    PubMed Central

    Byrge, Lisa; Sporns, Olaf; Smith, Linda B.

    2014-01-01

    Studies of brain connectivity have focused on two modes of networks: structural networks describing neuroanatomy and the intrinsic and evoked dependencies of functional networks at rest and during tasks. Each mode constrains and shapes the other across multiple time scales, and each also shows age-related changes. Here we argue that understanding how brains change across development requires understanding the interplay between behavior and brain networks: changing bodies and activities modify the statistics of inputs to the brain; these changing inputs mold brain networks; these networks, in turn, promote further change in behavior and input. PMID:24862251

  3. MR Anatomy of Deep Brain Nuclei with Special Reference to Specific Diseases and Deep Brain Stimulation Localization

    PubMed Central

    Telford, Ryan; Vattoth, Surjith

    2014-01-01

    Summary Diseases affecting the basal ganglia and deep brain structures vary widely in etiology and include metabolic, infectious, ischemic, and neurodegenerative conditions. Some neurologic diseases, such as Wernicke encephalopathy or pseudohypoparathyroidism, require specific treatments, which if unrecognized could lead to further complications. Other pathologies, such as hypertrophic olivary degeneration, if not properly diagnosed may be mistaken for a primary medullary neoplasm and create unnecessary concern. The deep brain structures are complex and can be difficult to distinguish on routine imaging. It is imperative that radiologists first understand the intrinsic anatomic relationships between the different basal ganglia nuclei and deep brain structures with magnetic resonance (MR) imaging. It is important to understand the "normal" MR signal characteristics, locations, and appearances of these structures. This is essential to recognizing diseases affecting the basal ganglia and deep brain structures, especially since most of these diseases result in symmetrical, and therefore less noticeable, abnormalities. It is also crucial that neurosurgeons correctly identify the deep brain nuclei presurgically for positioning deep brain stimulator leads, the most important being the subthalamic nucleus for Parkinson syndromes and the thalamic ventral intermediate nucleus for essential tremor. Radiologists will be able to better assist clinicians in diagnosis and treatment once they are able to accurately localize specific deep brain structures. PMID:24571832

  4. A review on functional and structural brain connectivity in numerical cognition

    PubMed Central

    Moeller, Korbinian; Willmes, Klaus; Klein, Elise

    2015-01-01

    Only recently has the complex anatomo-functional system underlying numerical cognition become accessible to evaluation in the living brain. We identified 27 studies investigating brain connectivity in numerical cognition. Despite considerable heterogeneity regarding methodological approaches, populations investigated, and assessment procedures implemented, the results provided largely converging evidence regarding the underlying brain connectivity involved in numerical cognition. Analyses of both functional/effective as well as structural connectivity have consistently corroborated the assumption that numerical cognition is subserved by a fronto-parietal network including (intra)parietal as well as (pre)frontal cortex sites. Evaluation of structural connectivity has indicated the involvement of fronto-parietal association fibers encompassing the superior longitudinal fasciculus dorsally and the external capsule/extreme capsule system ventrally. Additionally, commissural fibers seem to connect the bilateral intraparietal sulci when number magnitude information is processed. Finally, the identification of projection fibers such as the superior corona radiata indicates connections between cortex and basal ganglia as well as the thalamus in numerical cognition. Studies on functional/effective connectivity further indicated a specific role of the hippocampus. These specifications of brain connectivity augment the triple-code model of number processing and calculation with respect to how gray matter areas associated with specific number-related representations may work together. PMID:26029075

  5. The effect of competitive and non-competitive NMDA receptor antagonists, ACPC and MK-801 on NPY and CRF-like immunoreactivity in the rat brain amygdala.

    PubMed

    Wierońska, J M; Brański, P; Pałvcha, A; Smiałowska, M

    2001-01-01

    Amygdala is the brain structure responsible for integrating all behavior connected with fear, and in this structure two neuropeptides, neuropeptide Y (NPY), corticoliberin (CRF) and the most abundant excitatory neurotransmitter glutamate seem to take part in the regulation of anxiety behavior. Our previous studies showed the modulation of NPY and CRF expression by classical neurotransmitters in some brain structures, therefore in the present study we investigated the effect of NMDA receptor antagonists on the expression of NPY and CRF immunoreactivity in the rat brain amygdala. A non-competitive NMDA receptor antagonist, MK-801, or a functional NMDA antagonist, ACPC were used. Brains were taken out and processed by immunohistochemical method using specific NPY or CRF antibodies. The staining intensity and density of IR neurons were evaluated under a microscope in amygdala sections. It was found that both MK-801 and ACPC induced a significant decrease in NPY-immunoreactivity in amygdala nerve cell bodies and terminals, which may suggest an increased release of this peptide. CRF-IR was decreased after ACPC only. The obtained results indicate that in the amygdala, the NMDA receptors mediated glutamatergic transmission may regulate NPY neurons. Copyright 2001 Harcourt Publishers Ltd.

  6. Cardiorespiratory fitness, cognition and brain structure after TIA or minor ischemic stroke.

    PubMed

    Boss, H Myrthe; Van Schaik, Sander M; Witkamp, Theo D; Geerlings, Mirjam I; Weinstein, Henry C; Van den Berg-Vos, Renske M

    2017-10-01

    Background It is not known whether cardiorespiratory fitness is associated with better cognitive performance and brain structure in patients with a TIA or minor ischemic stroke. Aims To examine the association between cardiorespiratory fitness, cognition and brain structure in patients with a TIA and minor stroke. Methods The study population consisted of patients with a TIA or minor stroke with a baseline measurement of the peak oxygen consumption, a MRI scan of brain and neuropsychological assessment. Composite z-scores were calculated for the cognitive domains attention, memory and executive functioning. White matter hyperintensities, microbleeds and lacunes were rated visually. The mean apparent diffusion coefficient was measured in regions of interest in frontal and occipital white matter and in the centrum semiovale as a marker of white matter structure. Normalized brain volumes were estimated by use of Statistical Parametric Mapping. Results In 84 included patients, linear regression analysis adjusted for age, sex and education showed that a higher peak oxygen consumption was associated with higher cognitive z-scores, a larger grey matter volume (B = 0.15 (95% CI 0.05; 0.26)) and a lower mean apparent diffusion coefficient (B = -.004 (95% CI -.007; -.001)). We found no association between the peak oxygen consumption and severe white matter hyperintensities, microbleeds, lacunes and total brain volume. Conclusions These data suggest that cardiorespiratory fitness is associated with better cognitive performance, greater grey matter volume and greater integrity of the white matter in patients with a TIA or minor ischemic stroke. Further prospective trials are necessary to define the effect of cardiorespiratory fitness on cognition and brain structure in patients with TIA or minor stroke.

  7. Structural Brain Imaging of Long-Term Anabolic-Androgenic Steroid Users and Nonusing Weightlifters.

    PubMed

    Bjørnebekk, Astrid; Walhovd, Kristine B; Jørstad, Marie L; Due-Tønnessen, Paulina; Hullstein, Ingunn R; Fjell, Anders M

    2017-08-15

    Prolonged high-dose anabolic-androgenic steroid (AAS) use has been associated with psychiatric symptoms and cognitive deficits, yet we have almost no knowledge of the long-term consequences of AAS use on the brain. The purpose of this study is to investigate the association between long-term AAS exposure and brain morphometry, including subcortical neuroanatomical volumes and regional cortical thickness. Male AAS users and weightlifters with no experience with AASs or any other equivalent doping substances underwent structural magnetic resonance imaging scans of the brain. The current paper is based upon high-resolution structural T1-weighted images from 82 current or past AAS users exceeding 1 year of cumulative AAS use and 68 non-AAS-using weightlifters. Images were processed with the FreeSurfer software to compare neuroanatomical volumes and cerebral cortical thickness between the groups. Compared to non-AAS-using weightlifters, the AAS group had thinner cortex in widespread regions and significantly smaller neuroanatomical volumes, including total gray matter, cerebral cortex, and putamen. Both volumetric and thickness effects remained relatively stable across different AAS subsamples comprising various degrees of exposure to AASs and also when excluding participants with previous and current non-AAS drug abuse. The effects could not be explained by differences in verbal IQ, intracranial volume, anxiety/depression, or attention or behavioral problems. This large-scale systematic investigation of AAS use on brain structure shows negative correlations between AAS use and brain volume and cortical thickness. Although the findings are correlational, they may serve to raise concern about the long-term consequences of AAS use on structural features of the brain. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  8. Advancing multiscale structural mapping of the brain through fluorescence imaging and analysis across length scales

    PubMed Central

    Hogstrom, L. J.; Guo, S. M.; Murugadoss, K.; Bathe, M.

    2016-01-01

    Brain function emerges from hierarchical neuronal structure that spans orders of magnitude in length scale, from the nanometre-scale organization of synaptic proteins to the macroscopic wiring of neuronal circuits. Because the synaptic electrochemical signal transmission that drives brain function ultimately relies on the organization of neuronal circuits, understanding brain function requires an understanding of the principles that determine hierarchical neuronal structure in living or intact organisms. Recent advances in fluorescence imaging now enable quantitative characterization of neuronal structure across length scales, ranging from single-molecule localization using super-resolution imaging to whole-brain imaging using light-sheet microscopy on cleared samples. These tools, together with correlative electron microscopy and magnetic resonance imaging at the nanoscopic and macroscopic scales, respectively, now facilitate our ability to probe brain structure across its full range of length scales with cellular and molecular specificity. As these imaging datasets become increasingly accessible to researchers, novel statistical and computational frameworks will play an increasing role in efforts to relate hierarchical brain structure to its function. In this perspective, we discuss several prominent experimental advances that are ushering in a new era of quantitative fluorescence-based imaging in neuroscience along with novel computational and statistical strategies that are helping to distil our understanding of complex brain structure. PMID:26855758

  9. Social networking sites use and the morphology of a social-semantic brain network.

    PubMed

    Turel, Ofir; He, Qinghua; Brevers, Damien; Bechara, Antoine

    2017-09-30

    Social lives have shifted, at least in part, for large portions of the population to social networking sites. How such lifestyle changes may be associated with brain structures is still largely unknown. In this manuscript, we describe two preliminary studies aimed at exploring this issue. The first study (n = 276) showed that Facebook users reported on increased social-semantic and mentalizing demands, and that such increases were positively associated with people's level of Facebook use. The second study (n = 33) theorized on and examined likely anatomical correlates of such changes in demands on the brain. Findings indicated that the grey matter volumes of the posterior parts of the bilateral middle and superior temporal, and left fusiform gyri were positively associated with the level of Facebook use. These results provided preliminary evidence that grey matter volumes of brain structures involved in social-semantic and mentalizing tasks may be linked to the extent of social networking sites use.

  10. The sequential structure of brain activation predicts skill.

    PubMed

    Anderson, John R; Bothell, Daniel; Fincham, Jon M; Moon, Jungaa

    2016-01-29

    In an fMRI study, participants were trained to play a complex video game. They were scanned early and then again after substantial practice. While better players showed greater activation in one region (right dorsal striatum) their relative skill was better diagnosed by considering the sequential structure of whole brain activation. Using a cognitive model that played this game, we extracted a characterization of the mental states that are involved in playing a game and the statistical structure of the transitions among these states. There was a strong correspondence between this measure of sequential structure and the skill of different players. Using multi-voxel pattern analysis, it was possible to recognize, with relatively high accuracy, the cognitive states participants were in during particular scans. We used the sequential structure of these activation-recognized states to predict the skill of individual players. These findings indicate that important features about information-processing strategies can be identified from a model-based analysis of the sequential structure of brain activation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. The Meditative Mind: A Comprehensive Meta-Analysis of MRI Studies

    PubMed Central

    2015-01-01

    Over the past decade mind and body practices, such as yoga and meditation, have raised interest in different scientific fields; in particular, the physiological mechanisms underlying the beneficial effects observed in meditators have been investigated. Neuroimaging studies have studied the effects of meditation on brain structure and function and findings have helped clarify the biological underpinnings of the positive effects of meditation practice and the possible integration of this technique in standard therapy. The large amount of data collected thus far allows drawing some conclusions about the neural effects of meditation practice. In the present study we used activation likelihood estimation (ALE) analysis to make a coordinate-based meta-analysis of neuroimaging data on the effects of meditation on brain structure and function. Results indicate that meditation leads to activation in brain areas involved in processing self-relevant information, self-regulation, focused problem-solving, adaptive behavior, and interoception. Results also show that meditation practice induces functional and structural brain modifications in expert meditators, especially in areas involved in self-referential processes such as self-awareness and self-regulation. These results demonstrate that a biological substrate underlies the positive pervasive effect of meditation practice and suggest that meditation techniques could be adopted in clinical populations and to prevent disease. PMID:26146618

  12. Increased densities of monocarboxylate transporter MCT1 after chronic hyperglycemia in rat brain.

    PubMed

    Canis, Martin; Maurer, Martin H; Kuschinsky, Wolfgang; Duembgen, Lutz; Duelli, Roman

    2009-02-27

    The brain is capable of taking up monocarboxylates as energy substrates. Under physiological conditions, plasma levels of monocarboxylates are very low and glucose is the primary energy substrate in brain metabolism. However, given conditions such as hyperglycemia and ketosis, levels of circulating monocarboxylates such as lactate and pyruvate are elevated. Previous studies reported an increased expression of monocarboxylate transporter MCT1 in brain following ketotic diet. The major aim of the present study was to answer the question whether chronic hyperglycemia is likewise sufficient to change local densities of MCT1 in the brain. Moreover, chronic hyperglycemia increases local cerebral glucose utilization (LCGU) in particular brain areas. Glucose hereby enters the brain parenchyma via glucose transporters and is partially metabolised by astrocytes, which then release lactate to meet the energetic demands of surrounding neurons. Streptozotocin was given intravenously to induce chronic hyperglycemia and local densities of MCT1 were measured by immunoautoradiographic methods in cryosections of rat brains. The density of monocarboxylate transporter MCT1 was significantly increased in 10 of 24 brain structures investigated (median increase 11.7+/-3.4 %). Immunocytochemical stainings of these substructures revealed an expression of MCT1 within endothelial cells and astrocytes. A comparison of MCT1 densities with LCGU measured in a previous study under normo- and hyperglycemic conditions revealed a partial correlation between both parameters and under both conditions. Four out of 10 brain areas, which showed a significant increase in MCT1 density due to hyperglycemia, also showed a significant increase in LCGU. In summary, our data show that chronic hyperglycemia induces a moderate increase of local and global density of MCT1 in several brain structures. However, in terms of brain topologies and substructures this phenomenon did only partially match with increased LCGU. It is concluded that MCT1 transporters were up-regulated during chronic hyperglycemia at the level of brain substructures and independently of LCGU.

  13. Examining brain structures associated with the motive to achieve success and the motive to avoid failure: A voxel-based morphometry study.

    PubMed

    Ming, Dan; Chen, Qunlin; Yang, Wenjing; Chen, Rui; Wei, Dongtao; Li, Wenfu; Qiu, Jiang; Xu, Zhan; Zhang, Qinglin

    2016-01-01

    The motive to achieve success (MAS) and motive to avoid failure (MAF) are two different but classical kinds of achievement motivation. Though many functional magnetic resonance imaging studies have explored functional activation in motivation-related conditions, research has been silent as to the brain structures associated with individual differences in achievement motivation, especially with respect to MAS and MAF. In this study, the voxel-based morphometry method was used to uncover focal differences in brain structures related to MAS and MAF measured by the Mehrabian Achieving Tendency Scale in 353 healthy young Chinese adults. The results showed that the brain structures associated with individual differences in MAS and MAF were distinct. MAS was negatively correlated with regional gray matter volume (rGMV) in the medial prefrontal cortex (mPFC)/orbitofrontal cortex while MAF was negatively correlated with rGMV in the mPFC/subgenual cingulate gyrus. After controlling for mutual influences of MAS and MAF scores, MAS scores were found to be related to rGMV in the mPFC/orbitofrontal cortex and another cluster containing the parahippocampal gyrus and precuneus. These results may predict that compared with MAF, the generation process of MAS may be more complex and rational, thus in the real world, perhaps MAS is more beneficial to personal growth and guaranteeing the quality of task performance.

  14. [Why do we call the brain 'brain'?

    PubMed

    Garcia-Molina, A; Ensenat, A

    2017-01-16

    Every day millions of professionals use a countless number of technical words to refer to the different structures inside the skull. But few of them would know how to explain their origin. In this study we take an in-depth look into the etymological origins of some of these neuroanatomical terms. The study takes an etymological tour of the central nervous system. It is in no way meant to be an exhaustive, detailed review of the terms currently in use, but instead a means to familiarise the reader with the linguistic past of words like brain, hippocampus, thalamus, claustrum, fornix, corpus callosum or limbic system. All of them come from either Greek or Latin, which were used for centuries as the lingua francas of science. The study also analyses the evolution of the word meninges, originally of Greco-Latin origin, although its current usages derive from Arabic. The neuroanatomical terms that are in use today do not come from words that associate a particular brain structure with its function, but instead from words that reflect the formal or conceptual similarity between a structure and a familiar or everyday entity (for example, an object or a part of the human body). In other cases, these words indicate the spatial location of the neuroanatomical structure with respect to a third, or they may be terms derived from characters in Greco-Latin mythology.

  15. Childhood Music Training Induces Change in Micro and Macroscopic Brain Structure: Results from a Longitudinal Study.

    PubMed

    Habibi, Assal; Damasio, Antonio; Ilari, Beatriz; Veiga, Ryan; Joshi, Anand A; Leahy, Richard M; Haldar, Justin P; Varadarajan, Divya; Bhushan, Chitresh; Damasio, Hanna

    2017-11-08

    Several studies comparing adult musicians and nonmusicians have shown that music training is associated with structural brain differences. It is not been established, however, whether such differences result from pre-existing biological traits, lengthy musical training, or an interaction of the two factors, or if comparable changes can be found in children undergoing music training. As part of an ongoing longitudinal study, we investigated the effects of music training on the developmental trajectory of children's brain structure, over two years, beginning at age 6. We compared these children with children of the same socio-economic background but either involved in sports training or not involved in any systematic after school training. We established at the onset that there were no pre-existing structural differences among the groups. Two years later we observed that children in the music group showed (1) a different rate of cortical thickness maturation between the right and left posterior superior temporal gyrus, and (2) higher fractional anisotropy in the corpus callosum, specifically in the crossing pathways connecting superior frontal, sensory, and motor segments. We conclude that music training induces macro and microstructural brain changes in school-age children, and that those changes are not attributable to pre-existing biological traits. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Networks of myelin covariance

    PubMed Central

    Slater, David; Ruef, Anne; Sanabria‐Diaz, Gretel; Preisig, Martin; Kherif, Ferath; Draganski, Bogdan; Lutti, Antoine

    2017-01-01

    Abstract Networks of anatomical covariance have been widely used to study connectivity patterns in both normal and pathological brains based on the concurrent changes of morphometric measures (i.e., cortical thickness) between brain structures across subjects (Evans, 2013). However, the existence of networks of microstructural changes within brain tissue has been largely unexplored so far. In this article, we studied in vivo the concurrent myelination processes among brain anatomical structures that gathered together emerge to form nonrandom networks. We name these “networks of myelin covariance” (Myelin‐Nets). The Myelin‐Nets were built from quantitative Magnetization Transfer data—an in‐vivo magnetic resonance imaging (MRI) marker of myelin content. The synchronicity of the variations in myelin content between anatomical regions was measured by computing the Pearson's correlation coefficient. We were especially interested in elucidating the effect of age on the topological organization of the Myelin‐Nets. We therefore selected two age groups: Young‐Age (20–31 years old) and Old‐Age (60–71 years old) and a pool of participants from 48 to 87 years old for a Myelin‐Nets aging trajectory study. We found that the topological organization of the Myelin‐Nets is strongly shaped by aging processes. The global myelin correlation strength, between homologous regions and locally in different brain lobes, showed a significant dependence on age. Interestingly, we also showed that the aging process modulates the resilience of the Myelin‐Nets to damage of principal network structures. In summary, this work sheds light on the organizational principles driving myelination and myelin degeneration in brain gray matter and how such patterns are modulated by aging. PMID:29271053

  17. Comparisons of topological properties in autism for the brain network construction methods

    NASA Astrophysics Data System (ADS)

    Lee, Min-Hee; Kim, Dong Youn; Lee, Sang Hyeon; Kim, Jin Uk; Chung, Moo K.

    2015-03-01

    Structural brain networks can be constructed from the white matter fiber tractography of diffusion tensor imaging (DTI), and the structural characteristics of the brain can be analyzed from its networks. When brain networks are constructed by the parcellation method, their network structures change according to the parcellation scale selection and arbitrary thresholding. To overcome these issues, we modified the Ɛ -neighbor construction method proposed by Chung et al. (2011). The purpose of this study was to construct brain networks for 14 control subjects and 16 subjects with autism using both the parcellation and the Ɛ-neighbor construction method and to compare their topological properties between two methods. As the number of nodes increased, connectedness decreased in the parcellation method. However in the Ɛ-neighbor construction method, connectedness remained at a high level even with the rising number of nodes. In addition, statistical analysis for the parcellation method showed significant difference only in the path length. However, statistical analysis for the Ɛ-neighbor construction method showed significant difference with the path length, the degree and the density.

  18. Neurolinguistics: Structure, Function, and Connectivity in the Bilingual Brain

    PubMed Central

    Wong, Becky; Yin, Bin; O'Brien, Beth

    2016-01-01

    Advances in neuroimaging techniques and analytic methods have led to a proliferation of studies investigating the impact of bilingualism on the cognitive and brain systems in humans. Lately, these findings have attracted much interest and debate in the field, leading to a number of recent commentaries and reviews. Here, we contribute to the ongoing discussion by compiling and interpreting the plethora of findings that relate to the structural, functional, and connective changes in the brain that ensue from bilingualism. In doing so, we integrate theoretical models and empirical findings from linguistics, cognitive/developmental psychology, and neuroscience to examine the following issues: (1) whether the language neural network is different for first (dominant) versus second (nondominant) language processing; (2) the effects of bilinguals' executive functioning on the structure and function of the “universal” language neural network; (3) the differential effects of bilingualism on phonological, lexical-semantic, and syntactic aspects of language processing on the brain; and (4) the effects of age of acquisition and proficiency of the user's second language in the bilingual brain, and how these have implications for future research in neurolinguistics. PMID:26881224

  19. Sex differences in the structural connectome of the human brain.

    PubMed

    Ingalhalikar, Madhura; Smith, Alex; Parker, Drew; Satterthwaite, Theodore D; Elliott, Mark A; Ruparel, Kosha; Hakonarson, Hakon; Gur, Raquel E; Gur, Ruben C; Verma, Ragini

    2014-01-14

    Sex differences in human behavior show adaptive complementarity: Males have better motor and spatial abilities, whereas females have superior memory and social cognition skills. Studies also show sex differences in human brains but do not explain this complementarity. In this work, we modeled the structural connectome using diffusion tensor imaging in a sample of 949 youths (aged 8-22 y, 428 males and 521 females) and discovered unique sex differences in brain connectivity during the course of development. Connection-wise statistical analysis, as well as analysis of regional and global network measures, presented a comprehensive description of network characteristics. In all supratentorial regions, males had greater within-hemispheric connectivity, as well as enhanced modularity and transitivity, whereas between-hemispheric connectivity and cross-module participation predominated in females. However, this effect was reversed in the cerebellar connections. Analysis of these changes developmentally demonstrated differences in trajectory between males and females mainly in adolescence and in adulthood. Overall, the results suggest that male brains are structured to facilitate connectivity between perception and coordinated action, whereas female brains are designed to facilitate communication between analytical and intuitive processing modes.

  20. Characterizing structural association alterations within brain networks in normal aging using Gaussian Bayesian networks.

    PubMed

    Guo, Xiaojuan; Wang, Yan; Chen, Kewei; Wu, Xia; Zhang, Jiacai; Li, Ke; Jin, Zhen; Yao, Li

    2014-01-01

    Recent multivariate neuroimaging studies have revealed aging-related alterations in brain structural networks. However, the sensory/motor networks such as the auditory, visual and motor networks, have obtained much less attention in normal aging research. In this study, we used Gaussian Bayesian networks (BN), an approach investigating possible inter-regional directed relationship, to characterize aging effects on structural associations between core brain regions within each of these structural sensory/motor networks using volumetric MRI data. We then further examined the discriminability of BN models for the young (N = 109; mean age =22.73 years, range 20-28) and old (N = 82; mean age =74.37 years, range 60-90) groups. The results of the BN modeling demonstrated that structural associations exist between two homotopic brain regions from the left and right hemispheres in each of the three networks. In particular, compared with the young group, the old group had significant connection reductions in each of the three networks and lesser connection numbers in the visual network. Moreover, it was found that the aging-related BN models could distinguish the young and old individuals with 90.05, 73.82, and 88.48% accuracy for the auditory, visual, and motor networks, respectively. Our findings suggest that BN models can be used to investigate the normal aging process with reliable statistical power. Moreover, these differences in structural inter-regional interactions may help elucidate the neuronal mechanism of anatomical changes in normal aging.

  1. Evaluation of structural connectivity changes in betel-quid chewers using generalized q-sampling MRI.

    PubMed

    Weng, Jun-Cheng; Kao, Te-Wei; Huang, Guo-Joe; Tyan, Yeu-Sheng; Tseng, Hsien-Chun; Ho, Ming-Chou

    2017-07-01

    Betel quid (BQ) is a common addictive substance in many Asian countries. However, few studies have focused on the influences of BQ on the brain. It remains unclear how BQ can affect structural brain abnormalities in BQ chewers. We aimed to use generalized q-sampling imaging (GQI) to evaluate the impact of the neurological structure of white matter caused by BQ. The study population comprised 16 BQ chewers, 15 tobacco and alcohol controls, and 17 healthy controls. We used GQI with voxel-based statistical analysis (VBA) to evaluate structural brain and connectivity abnormalities in the BQ chewers compared to the tobacco and alcohol controls and the healthy controls. Graph theoretical analysis (GTA) and network-based statistical (NBS) analysis were also performed to identify the structural network differences among the three groups. Using GQI, we found increases in diffusion anisotropy in the right anterior cingulate cortex (ACC), the midbrain, the bilateral angular gyrus, the right superior temporal gyrus (rSTG), the bilateral superior occipital gyrus, the left middle occipital gyrus, the bilateral superior and inferior parietal lobule, and the bilateral postcentral and precentral gyrus in the BQ chewers when compared to the tobacco and alcohol controls and the healthy controls. In GTA and NBS analyses, we found more connections in connectivity among the BQ chewers, particularly in the bilateral anterior cingulum. Our results provided further evidence indicating that BQ chewing may lead to brain structure and connectivity changes in BQ chewers.

  2. Long-term exposure to fine particulate matter, residential proximity to major roads and measures of brain structure.

    PubMed

    Wilker, Elissa H; Preis, Sarah R; Beiser, Alexa S; Wolf, Philip A; Au, Rhoda; Kloog, Itai; Li, Wenyuan; Schwartz, Joel; Koutrakis, Petros; DeCarli, Charles; Seshadri, Sudha; Mittleman, Murray A

    2015-05-01

    Long-term exposure to ambient air pollution is associated with cerebrovascular disease and cognitive impairment, but whether it is related to structural changes in the brain is not clear. We examined the associations between residential long-term exposure to ambient air pollution and markers of brain aging using magnetic resonance imaging. Framingham Offspring Study participants who attended the seventh examination were at least 60 years old and free of dementia and stroke were included. We evaluated associations between exposures (fine particulate matter [PM2.5] and residential proximity to major roadways) and measures of total cerebral brain volume, hippocampal volume, white matter hyperintensity volume (log-transformed and extensive white matter hyperintensity volume for age), and covert brain infarcts. Models were adjusted for age, clinical covariates, indicators of socioeconomic position, and temporal trends. A 2-μg/m(3) increase in PM2.5 was associated with -0.32% (95% confidence interval, -0.59 to -0.05) smaller total cerebral brain volume and 1.46 (95% confidence interval, 1.10 to 1.94) higher odds of covert brain infarcts. Living further away from a major roadway was associated with 0.10 (95% confidence interval, 0.01 to 0.19) greater log-transformed white matter hyperintensity volume for an interquartile range difference in distance, but no clear pattern of association was observed for extensive white matter. Exposure to elevated levels of PM2.5 was associated with smaller total cerebral brain volume, a marker of age-associated brain atrophy, and with higher odds of covert brain infarcts. These findings suggest that air pollution is associated with insidious effects on structural brain aging even in dementia- and stroke-free persons. © 2015 American Heart Association, Inc.

  3. Study protocol: imaging brain development in the Childhood to Adolescence Transition Study (iCATS).

    PubMed

    Simmons, Julian G; Whittle, Sarah L; Patton, George C; Dudgeon, Paul; Olsson, Craig; Byrne, Michelle L; Mundy, Lisa K; Seal, Marc L; Allen, Nicholas B

    2014-04-30

    Puberty is a critical developmental phase in physical, reproductive and socio-emotional maturation that is associated with the period of peak onset for psychopathology. Puberty also drives significant changes in brain development and function. Research to date has focused on gonadarche, driven by the hypothalamic-pituitary-gonadal axis, and yet increasing evidence suggests that the earlier pubertal stage of adrenarche, driven by the hypothalamic-pituitary-adrenal axis, may play a critical role in both brain development and increased risk for disorder. We have established a unique cohort of children who differ in their exposure to adrenarcheal hormones. This presents a unique opportunity to examine the influence of adrenarcheal timing on brain structural and functional development, and subsequent health outcomes. The primary objective of the study is to explore the hypothesis that patterns of structural and functional brain development will mediate the relationship between adrenarcheal timing and indices of affect, self-regulation, and mental health symptoms collected across time (and therefore years of development). Children were recruited based upon earlier or later timing of adrenarche, from a larger cohort, with 128 children (68 female; M age 9.51 years) and one of their parents taking part. Children completed brain MRI structural and functional sequences, provided saliva samples for adrenarcheal hormones and immune biomarkers, hair for long-term cortisol levels, and completed questionnaires, anthropometric measures and an IQ test. Parents completed questionnaires reporting on child behaviour, development, health, traumatic events, and parental report of family environment and parenting style. This study, by examining the neurobiological and behavioural consequences of relatively early and late exposure to adrenarche, has the potential to significantly impact our understanding of pubertal risk processes.

  4. Brain Morphometry using MRI in Schizophrenia Patients

    NASA Astrophysics Data System (ADS)

    Abanshina, I.; Pirogov, Yu.; Kupriyanov, D.; Orlova, V.

    2010-01-01

    Schizophrenia has been the focus of intense neuroimaging research. Although its fundamental pathobiology remains elusive, neuroimaging studies provide evidence of abnormalities of cerebral structure and function in patients with schizophrenia. We used morphometry as a quantitative method for estimation of volume of brain structures. Seventy eight right-handed subjects aged 18-45 years were exposed to MRI-examination. Patients were divided into 3 groups: patients with schizophrenia, their relatives and healthy controls. The volumes of interested structures (caudate nucleus, putamen, ventricles, frontal and temporal lobe) were measured using T2-weighted MR-images. Correlations between structural differences and functional deficit were evaluated.

  5. Complex Networks - A Key to Understanding Brain Function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sporns, Olaf

    2008-01-23

    The brain is a complex network of neurons, engaging in spontaneous and evoked activity that is thought to be the main substrate of mental life.  How this complex system works together to process information and generate coherent cognitive states, even consciousness, is not yet well understood.  In my talk I will review recent studies that have revealed characteristic structural and functional attributes of brain networks, and discuss efforts to build computational models of the brain that are informed by our growing knowledge of brain anatomy and physiology.

  6. Complex Networks - A Key to Understanding Brain Function

    ScienceCinema

    Sporns, Olaf

    2017-12-22

    The brain is a complex network of neurons, engaging in spontaneous and evoked activity that is thought to be the main substrate of mental life.  How this complex system works together to process information and generate coherent cognitive states, even consciousness, is not yet well understood.  In my talk I will review recent studies that have revealed characteristic structural and functional attributes of brain networks, and discuss efforts to build computational models of the brain that are informed by our growing knowledge of brain anatomy and physiology.

  7. Brain Volume Differences Associated With Hearing Impairment in Adults

    PubMed Central

    Vriend, Chris; Heslenfeld, Dirk J.; Versfeld, Niek J.; Kramer, Sophia E.

    2018-01-01

    Speech comprehension depends on the successful operation of a network of brain regions. Processing of degraded speech is associated with different patterns of brain activity in comparison with that of high-quality speech. In this exploratory study, we studied whether processing degraded auditory input in daily life because of hearing impairment is associated with differences in brain volume. We compared T1-weighted structural magnetic resonance images of 17 hearing-impaired (HI) adults with those of 17 normal-hearing (NH) controls using a voxel-based morphometry analysis. HI adults were individually matched with NH adults based on age and educational level. Gray and white matter brain volumes were compared between the groups by region-of-interest analyses in structures associated with speech processing, and by whole-brain analyses. The results suggest increased gray matter volume in the right angular gyrus and decreased white matter volume in the left fusiform gyrus in HI listeners as compared with NH ones. In the HI group, there was a significant correlation between hearing acuity and cluster volume of the gray matter cluster in the right angular gyrus. This correlation supports the link between partial hearing loss and altered brain volume. The alterations in volume may reflect the operation of compensatory mechanisms that are related to decoding meaning from degraded auditory input. PMID:29557274

  8. Glycosaminoglycan in cerebrum, cerebellum and brainstem of young sheep brain with particular reference to compositional and structural variations of chondroitin-dermatan sulfate and hyaluronan.

    PubMed

    Kilia, Virginia; Skandalis, Spyros S; Theocharis, Achilleas D; Theocharis, Dimitrios A; Karamanos, Nikos K; Papageorgakopoulou, Nickoletta

    2008-09-01

    Recent advances in the structural biology of chondroitin sulfate chains have suggested important biological functions in the development of the brain. Several studies have demonstrated that the composition of chondroitin sulfate chains changes with aging and normal brain maturation. In this study, we determined the concentration of all glycosaminoglycan types, i.e. chondroitin sulfate, dermatan sulfate, keratan sulfate, heparan sulfate, hyaluronan and chondroitin in cerebrum, cerebellum and brainstem of young sheep brain. In all cases, chondroitin sulfate was the predominant glycosaminoglycan type, comprising about 54-58% of total glycosaminoglycans, with hyaluronan being present also in significant amounts of about 19-28%. Of particular interest was the increased presence of the disulfated disaccharides and dermatan sulfate in cerebellum and brainstem, respectively, as well as the detectable and measurable occurrence of chondroitin in young sheep brain. Among the three brain areas, cerebrum was found to be significantly richer in chondroitin sulfate and hyaluronan, two major extracellular matrix components. These findings imply that the extracellular matrix of the cerebrum is different from those of cerebellum and brainstem, and probably this fact is related to the particular histological and functional characteristics of each anatomic area of the brain.

  9. Risk and protective factors for structural brain ageing in the eighth decade of life.

    PubMed

    Ritchie, Stuart J; Tucker-Drob, Elliot M; Cox, Simon R; Dickie, David Alexander; Del C Valdés Hernández, Maria; Corley, Janie; Royle, Natalie A; Redmond, Paul; Muñoz Maniega, Susana; Pattie, Alison; Aribisala, Benjamin S; Taylor, Adele M; Clarke, Toni-Kim; Gow, Alan J; Starr, John M; Bastin, Mark E; Wardlaw, Joanna M; Deary, Ian J

    2017-11-01

    Individuals differ markedly in brain structure, and in how this structure degenerates during ageing. In a large sample of human participants (baseline n = 731 at age 73 years; follow-up n = 488 at age 76 years), we estimated the magnitude of mean change and variability in changes in MRI measures of brain macrostructure (grey matter, white matter, and white matter hyperintensity volumes) and microstructure (fractional anisotropy and mean diffusivity from diffusion tensor MRI). All indices showed significant average change with age, with considerable heterogeneity in those changes. We then tested eleven socioeconomic, physical, health, cognitive, allostatic (inflammatory and metabolic), and genetic variables for their value in predicting these differences in changes. Many of these variables were significantly correlated with baseline brain structure, but few could account for significant portions of the heterogeneity in subsequent brain change. Physical fitness was an exception, being correlated both with brain level and changes. The results suggest that only a subset of correlates of brain structure are also predictive of differences in brain ageing.

  10. Developmental Changes in Organization of Structural Brain Networks

    PubMed Central

    Khundrakpam, Budhachandra S.; Reid, Andrew; Brauer, Jens; Carbonell, Felix; Lewis, John; Ameis, Stephanie; Karama, Sherif; Lee, Junki; Chen, Zhang; Das, Samir; Evans, Alan C.; Ball, William S.; Byars, Anna Weber; Schapiro, Mark; Bommer, Wendy; Carr, April; German, April; Dunn, Scott; Rivkin, Michael J.; Waber, Deborah; Mulkern, Robert; Vajapeyam, Sridhar; Chiverton, Abigail; Davis, Peter; Koo, Julie; Marmor, Jacki; Mrakotsky, Christine; Robertson, Richard; McAnulty, Gloria; Brandt, Michael E.; Fletcher, Jack M.; Kramer, Larry A.; Yang, Grace; McCormack, Cara; Hebert, Kathleen M.; Volero, Hilda; Botteron, Kelly; McKinstry, Robert C.; Warren, William; Nishino, Tomoyuki; Robert Almli, C.; Todd, Richard; Constantino, John; McCracken, James T.; Levitt, Jennifer; Alger, Jeffrey; O'Neil, Joseph; Toga, Arthur; Asarnow, Robert; Fadale, David; Heinichen, Laura; Ireland, Cedric; Wang, Dah-Jyuu; Moss, Edward; Zimmerman, Robert A.; Bintliff, Brooke; Bradford, Ruth; Newman, Janice; Evans, Alan C.; Arnaoutelis, Rozalia; Bruce Pike, G.; Louis Collins, D.; Leonard, Gabriel; Paus, Tomas; Zijdenbos, Alex; Das, Samir; Fonov, Vladimir; Fu, Luke; Harlap, Jonathan; Leppert, Ilana; Milovan, Denise; Vins, Dario; Zeffiro, Thomas; Van Meter, John; Lange, Nicholas; Froimowitz, Michael P.; Botteron, Kelly; Robert Almli, C.; Rainey, Cheryl; Henderson, Stan; Nishino, Tomoyuki; Warren, William; Edwards, Jennifer L.; Dubois, Diane; Smith, Karla; Singer, Tish; Wilber, Aaron A.; Pierpaoli, Carlo; Basser, Peter J.; Chang, Lin-Ching; Koay, Chen Guan; Walker, Lindsay; Freund, Lisa; Rumsey, Judith; Baskir, Lauren; Stanford, Laurence; Sirocco, Karen; Gwinn-Hardy, Katrina; Spinella, Giovanna; McCracken, James T.; Alger, Jeffry R.; Levitt, Jennifer; O'Neill, Joseph

    2013-01-01

    Recent findings from developmental neuroimaging studies suggest that the enhancement of cognitive processes during development may be the result of a fine-tuning of the structural and functional organization of brain with maturation. However, the details regarding the developmental trajectory of large-scale structural brain networks are not yet understood. Here, we used graph theory to examine developmental changes in the organization of structural brain networks in 203 normally growing children and adolescents. Structural brain networks were constructed using interregional correlations in cortical thickness for 4 age groups (early childhood: 4.8–8.4 year; late childhood: 8.5–11.3 year; early adolescence: 11.4–14.7 year; late adolescence: 14.8–18.3 year). Late childhood showed prominent changes in topological properties, specifically a significant reduction in local efficiency, modularity, and increased global efficiency, suggesting a shift of topological organization toward a more random configuration. An increase in number and span of distribution of connector hubs was found in this age group. Finally, inter-regional connectivity analysis and graph-theoretic measures indicated early maturation of primary sensorimotor regions and protracted development of higher order association and paralimbic regions. Our finding reveals a time window of plasticity occurring during late childhood which may accommodate crucial changes during puberty and the new developmental tasks that an adolescent faces. PMID:22784607

  11. Spaceflight Effects on Neurocognitive Performance: Extent, Longevity and Neural Bases

    NASA Technical Reports Server (NTRS)

    Seidler, R. D.; Mulavara, A. P.; Koppelmans, V.; Kofman, I. S.; Cassady, K.; Yuan, P.; De Dios, Y. E.; Gadd, N.; Riascos, R. F.; Wood, S. J.; hide

    2017-01-01

    We are conducting ongoing experiments in which we are performing structural and functional magnetic resonance brain imaging to identify the relationships between changes in neurocognitive function and neural structural alterations following a six month International Space Station mission. Our central hypothesis is that measures of brain structure, function, and network integrity will change from pre to post spaceflight. Moreover, we predict that these changes will correlate with indices of cognitive, sensory, and motor function in a neuroanatomically selective fashion. Our interdisciplinary approach utilizes cutting edge neuroimaging techniques and a broad ranging battery of sensory, motor, and cognitive assessments that are conducted pre flight, during flight, and post flight to investigate potential neuroplastic and maladaptive brain changes in crewmembers following long-duration spaceflight. Success in this endeavor would 1) result in identification of the underlying neural mechanisms and operational risks of spaceflight-induced changes in behavior, and 2) identify whether a return to normative behavioral function following re-adaptation to Earth's gravitational environment is associated with a restitution of brain structure and function or instead is supported by substitution with compensatory brain processes. We have collected data on several crewmembers and preliminary findings will be presented. Eventual comparison to results from our parallel bed rest study will enable us to parse out the multiple mechanisms contributing to any spaceflight-induced neural structural and behavioral changes that we observe.

  12. Voxel-based morphometry and fMRI revealed differences in brain gray matter in breastfed and milk formula–fed children

    USDA-ARS?s Scientific Manuscript database

    Background and Purpose: Infant diets may have significant impact on brain development in children. The aim of this study was to evaluate brain grey matter structure and function in 8-year-old children who were predominantly breastfed (BF) or fed cow’s milk formula (MF) as infants. Materials and Me...

  13. The effect of electromagnetic radiation on the rat brain: an experimental study.

    PubMed

    Eser, Olcay; Songur, Ahmet; Aktas, Cevat; Karavelioglu, Ergun; Caglar, Veli; Aylak, Firdevs; Ozguner, Fehmi; Kanter, Mehmet

    2013-01-01

    The aim of this study is to determine the structural changes of electromagnetic waves in the frontal cortex, brain stem and cerebellum. 24 Wistar Albino adult male rats were randomly divided into four groups: group I consisted of control rats, and groups II-IV comprised electromagnetically irradiated (EMR) with 900, 1800 and 2450 MHz. The heads of the rats were exposed to 900, 1800 and 2450 MHz microwaves irradiation for 1h per day for 2 months. While the histopathological changes in the frontal cortex and brain stem were normal in the control group, there were severe degenerative changes, shrunken cytoplasm and extensively dark pyknotic nuclei in the EMR groups. Biochemical analysis demonstrated that the Total Antioxidative Capacity level was significantly decreased in the EMR groups and also Total Oxidative Capacity and Oxidative Stress Index levels were significantly increased in the frontal cortex, brain stem and cerebellum. IL-1β level was significantly increased in the EMR groups in the brain stem. EMR causes to structural changes in the frontal cortex, brain stem and cerebellum and impair the oxidative stress and inflammatory cytokine system. This deterioration can cause to disease including loss of these areas function and cancer development.

  14. Psychotic Experiences, Working Memory, and the Developing Brain: A Multimodal Neuroimaging Study

    PubMed Central

    Fonville, Leon; Cohen Kadosh, Kathrin; Drakesmith, Mark; Dutt, Anirban; Zammit, Stanley; Mollon, Josephine; Reichenberg, Abraham; Lewis, Glyn; Jones, Derek K.; David, Anthony S.

    2015-01-01

    Psychotic experiences (PEs) occur in the general population, especially in children and adolescents, and are associated with poor psychosocial outcomes, impaired cognition, and increased risk of transition to psychosis. It is unknown how the presence and persistence of PEs during early adulthood affects cognition and brain function. The current study assessed working memory as well as brain function and structure in 149 individuals, with and without PEs, drawn from a population cohort. Observer-rated PEs were classified as persistent or transient on the basis of longitudinal assessments. Working memory was assessed using the n-back task during fMRI. Dynamic causal modeling (DCM) was used to characterize frontoparietal network configuration and voxel-based morphometry was utilized to examine gray matter. Those with persistent, but not transient, PEs performed worse on the n-back task, compared with controls, yet showed no significant differences in regional brain activation or brain structure. DCM analyses revealed greater emphasis on frontal connectivity within a frontoparietal network in those with PEs compared with controls. We propose that these findings portray an altered configuration of working memory function in the brain, potentially indicative of an adaptive response to atypical development associated with the manifestation of PEs. PMID:26286920

  15. Long-term effects of marijuana use on the brain

    PubMed Central

    Filbey, Francesca M.; Aslan, Sina; Calhoun, Vince D.; Spence, Jeffrey S.; Damaraju, Eswar; Caprihan, Arvind; Segall, Judith

    2014-01-01

    Questions surrounding the effects of chronic marijuana use on brain structure continue to increase. To date, however, findings remain inconclusive. In this comprehensive study that aimed to characterize brain alterations associated with chronic marijuana use, we measured gray matter (GM) volume via structural MRI across the whole brain by using voxel-based morphology, synchrony among abnormal GM regions during resting state via functional connectivity MRI, and white matter integrity (i.e., structural connectivity) between the abnormal GM regions via diffusion tensor imaging in 48 marijuana users and 62 age- and sex-matched nonusing controls. The results showed that compared with controls, marijuana users had significantly less bilateral orbitofrontal gyri volume, higher functional connectivity in the orbitofrontal cortex (OFC) network, and higher structural connectivity in tracts that innervate the OFC (forceps minor) as measured by fractional anisotropy (FA). Increased OFC functional connectivity in marijuana users was associated with earlier age of onset. Lastly, a quadratic trend was observed suggesting that the FA of the forceps minor tract initially increased following regular marijuana use but decreased with protracted regular use. This pattern may indicate differential effects of initial and chronic marijuana use that may reflect complex neuroadaptive processes in response to marijuana use. Despite the observed age of onset effects, longitudinal studies are needed to determine causality of these effects. PMID:25385625

  16. Brain structures in the sciences and humanities.

    PubMed

    Takeuchi, Hikaru; Taki, Yasuyuki; Sekiguchi, Atsushi; Nouchi, Rui; Kotozaki, Yuka; Nakagawa, Seishu; Miyauchi, Carlos Makoto; Iizuka, Kunio; Yokoyama, Ryoichi; Shinada, Takamitsu; Yamamoto, Yuki; Hanawa, Sugiko; Araki, Tsuyoshi; Hashizume, Hiroshi; Sassa, Yuko; Kawashima, Ryuta

    2015-11-01

    The areas of academic interest (sciences or humanities) and area of study have been known to be associated with a number of factors associated with autistic traits. However, despite the vast amount of literature on the psychological and physiological characteristics associated with faculty membership, brain structural characteristics associated with faculty membership have never been investigated directly. In this study, we used voxel-based morphometry to investigate differences in regional gray matter volume (rGMV)/regional white matter volume (rWMV) between science and humanities students to test our hypotheses that brain structures previously robustly shown to be altered in autistic subjects are related to differences in faculty membership. We examined 312 science students (225 males and 87 females) and 179 humanities students (105 males and 74 females). Whole-brain analyses of covariance revealed that after controlling for age, sex, and total intracranial volume, the science students had significantly larger rGMV in an anatomical cluster around the medial prefrontal cortex and the frontopolar area, whereas the humanities students had significantly larger rWMV in an anatomical cluster mainly concentrated around the right hippocampus. These anatomical structures have been linked to autism in previous studies and may mediate cognitive functions that characterize differences in faculty membership. The present results may support the ideas that autistic traits and characteristics of the science students compared with the humanities students share certain characteristics from neuroimaging perspectives. This study improves our understanding of differences in faculty membership which is the link among cognition, biological factors, disorders, and education (academia).

  17. Altered brain structural connectivity in post-traumatic stress disorder: a diffusion tensor imaging tractography study.

    PubMed

    Long, Zhiliang; Duan, Xujun; Xie, Bing; Du, Handan; Li, Rong; Xu, Qiang; Wei, Luqing; Zhang, Shao-xiang; Wu, Yi; Gao, Qing; Chen, Huafu

    2013-09-25

    Post-traumatic stress disorder (PTSD) is characterized by dysfunction of several discrete brain regions such as medial prefrontal gyrus with hypoactivation and amygdala with hyperactivation. However, alterations of large-scale whole brain topological organization of structural networks remain unclear. Seventeen patients with PTSD in motor vehicle accident survivors and 15 normal controls were enrolled in our study. Large-scale structural connectivity network (SCN) was constructed using diffusion tensor tractography, followed by thresholding the mean factional anisotropy matrix of 90 brain regions. Graph theory analysis was then employed to investigate their aberrant topological properties. Both patient and control group showed small-world topology in their SCNs. However, patients with PTSD exhibited abnormal global properties characterized by significantly decreased characteristic shortest path length and normalized characteristic shortest path length. Furthermore, the patient group showed enhanced nodal centralities predominately in salience network including bilateral anterior cingulate and pallidum, and hippocampus/parahippocamus gyrus, and decreased nodal centralities mainly in medial orbital part of superior frontal gyrus. The main limitation of this study is the small sample of PTSD patients, which may lead to decrease the statistic power. Consequently, this study should be considered an exploratory analysis. These results are consistent with the notion that PTSD can be understood by investigating the dysfunction of large-scale, spatially distributed neural networks, and also provide structural evidences for further exploration of neurocircuitry models in PTSD. © 2013 Elsevier B.V. All rights reserved.

  18. Brain surface temperature under a craniotomy

    PubMed Central

    Kalmbach, Abigail S.

    2012-01-01

    Many neuroscientists access surface brain structures via a small cranial window, opened in the bone above the brain region of interest. Unfortunately this methodology has the potential to perturb the structure and function of the underlying brain tissue. One potential perturbation is heat loss from the brain surface, which may result in local dysregulation of brain temperature. Here, we demonstrate that heat loss is a significant problem in a cranial window preparation in common use for electrical recording and imaging studies in mice. In the absence of corrective measures, the exposed surface of the neocortex was at ∼28°C, ∼10°C below core body temperature, and a standing temperature gradient existed, with tissue below the core temperature even several millimeters into the brain. Cooling affected cellular and network function in neocortex and resulted principally from increased heat loss due to convection and radiation through the skull and cranial window. We demonstrate that constant perfusion of solution, warmed to 37°C, over the brain surface readily corrects the brain temperature, resulting in a stable temperature of 36–38°C at all depths. Our results indicate that temperature dysregulation may be common in cranial window preparations that are in widespread use in neuroscience, underlining the need to take measures to maintain the brain temperature in many physiology experiments. PMID:22972953

  19. Identification of alterations associated with age in the clustering structure of functional brain networks.

    PubMed

    Guzman, Grover E C; Sato, Joao R; Vidal, Maciel C; Fujita, Andre

    2018-01-01

    Initial studies using resting-state functional magnetic resonance imaging on the trajectories of the brain network from childhood to adulthood found evidence of functional integration and segregation over time. The comprehension of how healthy individuals' functional integration and segregation occur is crucial to enhance our understanding of possible deviations that may lead to brain disorders. Recent approaches have focused on the framework wherein the functional brain network is organized into spatially distributed modules that have been associated with specific cognitive functions. Here, we tested the hypothesis that the clustering structure of brain networks evolves during development. To address this hypothesis, we defined a measure of how well a brain region is clustered (network fitness index), and developed a method to evaluate its association with age. Then, we applied this method to a functional magnetic resonance imaging data set composed of 397 males under 31 years of age collected as part of the Autism Brain Imaging Data Exchange Consortium. As results, we identified two brain regions for which the clustering change over time, namely, the left middle temporal gyrus and the left putamen. Since the network fitness index is associated with both integration and segregation, our finding suggests that the identified brain region plays a role in the development of brain systems.

  20. Gene, Brain, and Behavior Relationships in Fragile X Syndrome: Evidence from Neuroimaging Studies

    ERIC Educational Resources Information Center

    Lightbody, Amy A.; Reiss, Allan L.

    2009-01-01

    Fragile X syndrome (FraX) remains the most common inherited cause of intellectual disability and provides a valuable model for studying gene-brain-behavior relationships. Over the past 15 years, structural and functional magnetic resonance imaging studies have emerged with the goal of better understanding the neural pathways contributing to the…

  1. Complex Regional Pain Syndrome Type I Affects Brain Structure in Prefrontal and Motor Cortex

    PubMed Central

    Pleger, Burkhard; Draganski, Bogdan; Schwenkreis, Peter; Lenz, Melanie; Nicolas, Volkmar; Maier, Christoph; Tegenthoff, Martin

    2014-01-01

    The complex regional pain syndrome (CRPS) is a rare but debilitating pain disorder that mostly occurs after injuries to the upper limb. A number of studies indicated altered brain function in CRPS, whereas possible influences on brain structure remain poorly investigated. We acquired structural magnetic resonance imaging data from CRPS type I patients and applied voxel-by-voxel statistics to compare white and gray matter brain segments of CRPS patients with matched controls. Patients and controls were statistically compared in two different ways: First, we applied a 2-sample ttest to compare whole brain white and gray matter structure between patients and controls. Second, we aimed to assess structural alterations specifically of the primary somatosensory (S1) and motor cortex (M1) contralateral to the CRPS affected side. To this end, MRI scans of patients with left-sided CRPS (and matched controls) were horizontally flipped before preprocessing and region-of-interest-based group comparison. The unpaired ttest of the “non-flipped” data revealed that CRPS patients presented increased gray matter density in the dorsomedial prefrontal cortex. The same test applied to the “flipped” data showed further increases in gray matter density, not in the S1, but in the M1 contralateral to the CRPS-affected limb which were inversely related to decreased white matter density of the internal capsule within the ipsilateral brain hemisphere. The gray-white matter interaction between motor cortex and internal capsule suggests compensatory mechanisms within the central motor system possibly due to motor dysfunction. Altered gray matter structure in dorsomedial prefrontal cortex may occur in response to emotional processes such as pain-related suffering or elevated analgesic top-down control. PMID:24416397

  2. Multimodal Investigation of Network Level Effects Using Intrinsic Functional Connectivity, Anatomical Covariance, and Structure-to-Function Correlations in Unmedicated Major Depressive Disorder

    PubMed Central

    Scheinost, Dustin; Holmes, Sophie E; DellaGioia, Nicole; Schleifer, Charlie; Matuskey, David; Abdallah, Chadi G; Hampson, Michelle; Krystal, John H; Anticevic, Alan; Esterlis, Irina

    2018-01-01

    Converging evidence suggests that major depressive disorder (MDD) affects multiple large-scale brain networks. Analyses of the correlation or covariance of regional brain structure and function applied to structural and functional MRI data may provide insights into systems-level organization and structure-to-function correlations in the brain in MDD. This study applied tensor-based morphometry and intrinsic connectivity distribution to identify regions of altered volume and intrinsic functional connectivity in data from unmedicated individuals with MDD (n=17) and healthy comparison participants (HC, n=20). These regions were then used as seeds for exploratory anatomical covariance and connectivity analyses. Reduction in volume in the anterior cingulate cortex (ACC) and lower structural covariance between the ACC and the cerebellum were observed in the MDD group. Additionally, individuals with MDD had significantly lower whole-brain intrinsic functional connectivity in the medial prefrontal cortex (mPFC). This mPFC region showed altered connectivity to the ventral lateral PFC (vlPFC) and local circuitry in MDD. Global connectivity in the ACC was negatively correlated with reported depressive symptomatology. The mPFC–vlPFC connectivity was positively correlated with depressive symptoms. Finally, we observed increased structure-to-function correlation in the PFC/ACC in the MDD group. Although across all analysis methods and modalities alterations in the PFC/ACC were a common finding, each modality and method detected alterations in subregions belonging to distinct large-scale brain networks. These exploratory results support the hypothesis that MDD is a systems level disorder affecting multiple brain networks located in the PFC and provide new insights into the pathophysiology of this disorder. PMID:28944772

  3. Multimodal Investigation of Network Level Effects Using Intrinsic Functional Connectivity, Anatomical Covariance, and Structure-to-Function Correlations in Unmedicated Major Depressive Disorder.

    PubMed

    Scheinost, Dustin; Holmes, Sophie E; DellaGioia, Nicole; Schleifer, Charlie; Matuskey, David; Abdallah, Chadi G; Hampson, Michelle; Krystal, John H; Anticevic, Alan; Esterlis, Irina

    2018-04-01

    Converging evidence suggests that major depressive disorder (MDD) affects multiple large-scale brain networks. Analyses of the correlation or covariance of regional brain structure and function applied to structural and functional MRI data may provide insights into systems-level organization and structure-to-function correlations in the brain in MDD. This study applied tensor-based morphometry and intrinsic connectivity distribution to identify regions of altered volume and intrinsic functional connectivity in data from unmedicated individuals with MDD (n=17) and healthy comparison participants (HC, n=20). These regions were then used as seeds for exploratory anatomical covariance and connectivity analyses. Reduction in volume in the anterior cingulate cortex (ACC) and lower structural covariance between the ACC and the cerebellum were observed in the MDD group. Additionally, individuals with MDD had significantly lower whole-brain intrinsic functional connectivity in the medial prefrontal cortex (mPFC). This mPFC region showed altered connectivity to the ventral lateral PFC (vlPFC) and local circuitry in MDD. Global connectivity in the ACC was negatively correlated with reported depressive symptomatology. The mPFC-vlPFC connectivity was positively correlated with depressive symptoms. Finally, we observed increased structure-to-function correlation in the PFC/ACC in the MDD group. Although across all analysis methods and modalities alterations in the PFC/ACC were a common finding, each modality and method detected alterations in subregions belonging to distinct large-scale brain networks. These exploratory results support the hypothesis that MDD is a systems level disorder affecting multiple brain networks located in the PFC and provide new insights into the pathophysiology of this disorder.

  4. Novel frontiers in ultra-structural and molecular MRI of the brain.

    PubMed

    Duyn, Jeff H; Koretsky, Alan P

    2011-08-01

    Recent developments in the MRI of the brain continue to expand its use in basic and clinical neuroscience. This review highlights some areas of recent progress. Higher magnetic field strengths and improved signal detectors have allowed improved visualization of the various properties of the brain, facilitating the anatomical definition of function-specific areas and their connections. For example, by sensitizing the MRI signal to the magnetic susceptibility of tissue, it is starting to become possible to reveal the laminar structure of the cortex and identify millimeter-scale fiber bundles. Using exogenous contrast agents, and innovative ways to manipulate contrast, it is becoming possible to highlight specific fiber tracts and cell populations. These techniques are bringing us closer to understanding the evolutionary blueprint of the brain, improving the detection and characterization of disease, and help to guide treatment. Recent MRI techniques are leading to more detailed and more specific contrast in the study of the brain.

  5. Attachment Security in Infancy: A Preliminary Study of Prospective Links to Brain Morphometry in Late Childhood

    PubMed Central

    Leblanc, Élizabel; Dégeilh, Fanny; Daneault, Véronique; Beauchamp, Miriam H.; Bernier, Annie

    2017-01-01

    A large body of longitudinal research provides compelling evidence for the critical role of early attachment relationships in children’s social, emotional, and cognitive development. It is expected that parent–child attachment relationships may also impact children’s brain development, however, studies linking normative caregiving experiences and brain structure are scarce. To our knowledge, no study has yet examined the associations between the quality of parent–infant attachment relationships and brain morphology during childhood. The aim of this preliminary study was to investigate the prospective links between mother–infant attachment security and whole-brain gray matter (GM) volume and thickness in late childhood. Attachment security toward the mother was assessed in 33 children when they were 15 months old. These children were then invited to undergo structural magnetic resonance imaging at 10–11 years of age. Results indicated that children more securely attached to their mother in infancy had larger GM volumes in the superior temporal sulcus and gyrus, temporo-parietal junction, and precentral gyrus in late childhood. No associations between attachment security and cortical thickness were found. If replicated, these results would suggest that a secure attachment relationship and its main features (e.g., adequate dyadic emotion regulation, competent exploration) may influence GM volume in brain regions involved in social, cognitive, and emotional functioning through experience-dependent processes. PMID:29312029

  6. Investigating structural brain changes of dehydration using voxel-based morphometry.

    PubMed

    Streitbürger, Daniel-Paolo; Möller, Harald E; Tittgemeyer, Marc; Hund-Georgiadis, Margret; Schroeter, Matthias L; Mueller, Karsten

    2012-01-01

    Dehydration can affect the volume of brain structures, which might imply a confound in volumetric and morphometric studies of normal or diseased brain. Six young, healthy volunteers were repeatedly investigated using three-dimensional T(1)-weighted magnetic resonance imaging during states of normal hydration, hyperhydration, and dehydration to assess volume changes in gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF). The datasets were analyzed using voxel-based morphometry (VBM), a widely used voxel-wise statistical analysis tool, FreeSurfer, a fully automated volumetric segmentation measure, and SIENAr a longitudinal brain-change detection algorithm. A significant decrease of GM and WM volume associated with dehydration was found in various brain regions, most prominently, in temporal and sub-gyral parietal areas, in the left inferior orbito-frontal region, and in the extra-nuclear region. Moreover, we found consistent increases in CSF, that is, an expansion of the ventricular system affecting both lateral ventricles, the third, and the fourth ventricle. Similar degrees of shrinkage in WM volume and increase of the ventricular system have been reported in studies of mild cognitive impairment or Alzheimer's disease during disease progression. Based on these findings, a potential confound in GM and WM or ventricular volume studies due to the subjects' hydration state cannot be excluded and should be appropriately addressed in morphometric studies of the brain.

  7. Investigating Structural Brain Changes of Dehydration Using Voxel-Based Morphometry

    PubMed Central

    Streitbürger, Daniel-Paolo; Möller, Harald E.; Tittgemeyer, Marc; Hund-Georgiadis, Margret; Schroeter, Matthias L.; Mueller, Karsten

    2012-01-01

    Dehydration can affect the volume of brain structures, which might imply a confound in volumetric and morphometric studies of normal or diseased brain. Six young, healthy volunteers were repeatedly investigated using three-dimensional T 1-weighted magnetic resonance imaging during states of normal hydration, hyperhydration, and dehydration to assess volume changes in gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF). The datasets were analyzed using voxel-based morphometry (VBM), a widely used voxel-wise statistical analysis tool, FreeSurfer, a fully automated volumetric segmentation measure, and SIENAr a longitudinal brain-change detection algorithm. A significant decrease of GM and WM volume associated with dehydration was found in various brain regions, most prominently, in temporal and sub-gyral parietal areas, in the left inferior orbito-frontal region, and in the extra-nuclear region. Moreover, we found consistent increases in CSF, that is, an expansion of the ventricular system affecting both lateral ventricles, the third, and the fourth ventricle. Similar degrees of shrinkage in WM volume and increase of the ventricular system have been reported in studies of mild cognitive impairment or Alzheime s disease during disease progression. Based on these findings, a potential confound in GM and WM or ventricular volume studies due to the subjects’ hydration state cannot be excluded and should be appropriately addressed in morphometric studies of the brain. PMID:22952926

  8. Amphetamine Dependence and Co-Morbid Alcohol Abuse: Associations to Brain Cortical Thickness

    PubMed Central

    2010-01-01

    Background Long-term amphetamine and methamphetamine dependence has been linked to cerebral blood perfusion, metabolic, and white matter abnormalities. Several studies have linked methamphetamine abuse to cortical grey matter reduction, though with divergent findings. Few publications investigate unmethylated amphetamine's potential effects on cortical grey matter. This work investigated if amphetamine dependent patients showed reduced cortical grey matter thickness. Subjects were 40 amphetamine dependent subjects and 40 healthy controls. While all subjects were recruited to be free of alcohol dependence, structured clinical interviews revealed significant patterns of alcohol use in the patients. Structural magnetic resonance brain images were obtained from the subjects using a 1.5 Tesla GE Signa machine. Brain cortical thickness was measured with submillimeter precision at multiple finely spaced cortical locations using semi-automated post-processing (FreeSurfer). Contrast analysis of a general linear model was used to test for differences between the two groups at each cortical location. In addition to contrasting patients with controls, a number of analyses sought to identify possible confounding effects from alcohol. Results No significant cortical thickness differences were observed between the full patient group and controls, nor between non-drinking patients and controls. Patients with a history of co-morbid heavy alcohol use (n = 29) showed reductions in the superior-frontal right hemisphere and pre-central left hemisphere when compared to healthy controls (n = 40). Conclusions Amphetamine usage was associated with reduced cortical thickness only in patients co-morbid for heavy alcohol use. Since cortical thickness is but one measure of brain structure and does not capture brain function, further studies of brain structure and function in amphetamine dependence are warranted. PMID:20487539

  9. Structural MRI biomarkers of shared pathogenesis in autism spectrum disorder and epilepsy.

    PubMed

    Blackmon, Karen

    2015-06-01

    Etiological factors that contribute to a high comorbidity between autism spectrum disorder (ASD) and epilepsy are the subject of much debate. Does epilepsy cause ASD or are there common underlying brain abnormalities that increase the risk of developing both disorders? This review summarizes evidence from quantitative MRI studies to suggest that abnormalities of brain structure are not necessarily the consequence of ASD and epilepsy but are antecedent to disease expression. Abnormal gray and white matter volumes are present prior to onset of ASD and evident at the time of onset in pediatric epilepsy. Aberrant brain growth trajectories are also common in both disorders, as evidenced by blunted gray matter maturation and white matter maturation. Although the etiological factors that explain these abnormalities are unclear, high heritability estimates for gray matter volume and white matter microstructure demonstrate that genetic factors assert a strong influence on brain structure. In addition, histopathological studies of ASD and epilepsy brain tissue reveal elevated rates of malformations of cortical development (MCDs), such as focal cortical dysplasia and heterotopias, which supports disruption of neuronal migration as a contributing factor. Although MCDs are not always visible on MRI with conventional radiological analysis, quantitative MRI detection methods show high sensitivity to subtle malformations in epilepsy and can be potentially applied to MCD detection in ASD. Such an approach is critical for establishing quantitative neuroanatomic endophenotypes that can be used in genetic research. In the context of emerging drug treatments for seizures and autism symptoms, such as rapamycin and rapalogs, in vivo neuroimaging markers of subtle structural brain abnormalities could improve sample stratification in human clinical trials and potentially extend the range of patients that might benefit from treatment. This article is part of a Special Issue entitled "Autism and Epilepsy". Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Altered Integration of Structural Covariance Networks in Young Children With Type 1 Diabetes.

    PubMed

    Hosseini, S M Hadi; Mazaika, Paul; Mauras, Nelly; Buckingham, Bruce; Weinzimer, Stuart A; Tsalikian, Eva; White, Neil H; Reiss, Allan L

    2016-11-01

    Type 1 diabetes mellitus (T1D), one of the most frequent chronic diseases in children, is associated with glucose dysregulation that contributes to an increased risk for neurocognitive deficits. While there is a bulk of evidence regarding neurocognitive deficits in adults with T1D, little is known about how early-onset T1D affects neural networks in young children. Recent data demonstrated widespread alterations in regional gray matter and white matter associated with T1D in young children. These widespread neuroanatomical changes might impact the organization of large-scale brain networks. In the present study, we applied graph-theoretical analysis to test whether the organization of structural covariance networks in the brain for a cohort of young children with T1D (N = 141) is altered compared to healthy controls (HC; N = 69). While the networks in both groups followed a small world organization-an architecture that is simultaneously highly segregated and integrated-the T1D network showed significantly longer path length compared with HC, suggesting reduced global integration of brain networks in young children with T1D. In addition, network robustness analysis revealed that the T1D network model showed more vulnerability to neural insult compared with HC. These results suggest that early-onset T1D negatively impacts the global organization of structural covariance networks and influences the trajectory of brain development in childhood. This is the first study to examine structural covariance networks in young children with T1D. Improving glycemic control for young children with T1D might help prevent alterations in brain networks in this population. Hum Brain Mapp 37:4034-4046, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Prenatal cocaine effects on brain structure in early infancy.

    PubMed

    Grewen, Karen; Burchinal, Margaret; Vachet, Clement; Gouttard, Sylvain; Gilmore, John H; Lin, Weili; Johns, Josephine; Elam, Mala; Gerig, Guido

    2014-11-01

    Prenatal cocaine exposure (PCE) is related to subtle deficits in cognitive and behavioral function in infancy, childhood and adolescence. Very little is known about the effects of in utero PCE on early brain development that may contribute to these impairments. The purpose of this study was to examine brain structural differences in infants with and without PCE. We conducted MRI scans of newborns (mean age = 5 weeks) to determine cocaine's impact on early brain structural development. Subjects were three groups of infants: 33 with PCE co-morbid with other drugs, 46 drug-free controls and 40 with prenatal exposure to other drugs (nicotine, alcohol, marijuana, opiates, SSRIs) but without cocaine. Infants with PCE exhibited lesser total gray matter (GM) volume and greater total cerebral spinal fluid (CSF) volume compared with controls and infants with non-cocaine drug exposure. Analysis of regional volumes revealed that whole brain GM differences were driven primarily by lesser GM in prefrontal and frontal brain regions in infants with PCE, while more posterior regions (parietal, occipital) did not differ across groups. Greater CSF volumes in PCE infants were present in prefrontal, frontal and parietal but not occipital regions. Greatest differences (GM reduction, CSF enlargement) in PCE infants were observed in dorsal prefrontal cortex. Results suggest that PCE is associated with structural deficits in neonatal cortical gray matter, specifically in prefrontal and frontal regions involved in executive function and inhibitory control. Longitudinal study is required to determine whether these early differences persist and contribute to deficits in cognitive functions and enhanced risk for drug abuse seen at school age and in later life. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Child overweight and obesity are associated with reduced executive cognitive performance and brain alterations: a magnetic resonance imaging study in Mexican children.

    PubMed

    Bauer, C C C; Moreno, B; González-Santos, L; Concha, L; Barquera, S; Barrios, F A

    2015-06-01

    Overweight and obesity in childhood is associated with negative physical and psychological effects. It has been proposed that obesity increase the risk for developing cognitive deficits, dementia and Alzheimer's disease and that it may be associated with marked differences in specific brain structure volumes. The purpose of this study was a neurobiopsychological approach to examine the association between overweight and obesity, brain structure and a paediatric neuropsychological assessment in Mexican children between 6 and 8 years of age. We investigated the relation between the body mass index (BMI), brain volumetric segmentation of subcortical gray and white matter regions obtained with magnetic resonance imaging and the Neuropsychological Assessment of Children standardized for Latin America. Thirty-three healthy Mexican children between 6 and 8 years of age, divided into normal weight (18 children) and overweight/obese (15 children) groups. Overweight/obese children showed reduced executive cognitive performance on neuropsychological evaluations (i.e. verbal fluidity, P = 0.03) and presented differences in brain structures related to learning and memory (reduced left hippocampal volumes, P = 0.04) and executive functions (larger white matter volumes in the left cerebellum, P = 0.04 and mid-posterior corpus callosum, P = 0.03). Additionally, we found a positive correlation between BMI and left globulus pallidus (P = 0.012, ρ = 0.43) volume and a negative correlation between BMI and neuropsychological evaluation scores (P = 0.033, ρ = -0.37). The findings contribute to the idea that there is a relationship between BMI, executive cognitive performance and brain structure that may underlie the causal chain that leads to obesity in adulthood. © 2014 The Authors. Pediatric Obesity © 2014 World Obesity.

  13. Expression of alcoholism-relevant genes in the liver are differently correlated to different parts of the brain.

    PubMed

    Wang, Lishi; Huang, Yue; Jiao, Yan; Chen, Hong; Cao, Yanhong; Bennett, Beth; Wang, Yongjun; Gu, Weikuan

    2013-01-01

    The purpose of this study is to investigate whether expression profiles of alcoholism-relevant genes in different parts of the brain are correlated differently with those in the liver. Four experiments were conducted. First, we used gene expression profiles from five parts of the brain (striatum, prefrontal cortex, nucleus accumbens, hippocampus, and cerebellum) and from liver in a population of recombinant inbred mouse strains to examine the expression association of 10 alcoholism-relevant genes. Second, we conducted the same association analysis between brain structures and the lung. Third, using five randomly selected, nonalcoholism-relevant genes, we conducted the association analysis between brain and liver. Finally, we compared the expression of 10 alcoholism-relevant genes in hippocampus and cerebellum between an alcohol preference strain and a wild-type control. We observed a difference in correlation patterns in expression levels of 10 alcoholism-relevant genes between different parts of the brain with those of liver. We then examined the association of gene expression between alcohol dehydrogenases (Adh1, Adh2, Adh5, and Adh7) and different parts of the brain. The results were similar to those of the 10 genes. Then, we found that the association of those genes between brain structures and lung was different from that of liver. Next, we found that the association patterns of five alcoholism-nonrelevant genes were different from those of 10 alcoholism-relevant genes. Finally, we found that the expression level of 10 alcohol-relevant genes is influenced more in hippocampus than in cerebellum in the alcohol preference strain. Our results show that the expression of alcoholism-relevant genes in liver is differently associated with the expression of genes in different parts of the brain. Because different structural changes in different parts of the brain in alcoholism have been reported, it is important to investigate whether those structural differences in the brains of those with alcoholism are due to the difference in the associations of gene expression between genes in liver and in different parts of the brain.

  14. The Vertebrate Brain, Evidence of Its Modular Organization and Operating System: Insights into the Brain's Basic Units of Structure, Function, and Operation and How They Influence Neuronal Signaling and Behavior.

    PubMed

    Baslow, Morris H

    2011-01-01

    The human brain is a complex organ made up of neurons and several other cell types, and whose role is processing information for use in eliciting behaviors. However, the composition of its repeating cellular units for both structure and function are unresolved. Based on recent descriptions of the brain's physiological "operating system", a function of the tri-cellular metabolism of N-acetylaspartate (NAA) and N-acetylaspartylglutamate (NAAG) for supply of energy, and on the nature of "neuronal words and languages" for intercellular communication, insights into the brain's modular structural and functional units have been gained. In this article, it is proposed that the basic structural unit in brain is defined by its physiological operating system, and that it consists of a single neuron, and one or more astrocytes, oligodendrocytes, and vascular system endothelial cells. It is also proposed that the basic functional unit in the brain is defined by how neurons communicate, and consists of two neurons and their interconnecting dendritic-synaptic-dendritic field. Since a functional unit is composed of two neurons, it requires two structural units to form a functional unit. Thus, the brain can be envisioned as being made up of the three-dimensional stacking and intertwining of myriad structural units which results not only in its gross structure, but also in producing a uniform distribution of binary functional units. Since the physiological NAA-NAAG operating system for supply of energy is repeated in every structural unit, it is positioned to control global brain function.

  15. Diffusion tractography and graph theory analysis reveal the disrupted rich-club organization of white matter structural networks in early Tourette Syndrome children

    NASA Astrophysics Data System (ADS)

    Wen, Hongwei; Liu, Yue; Wang, Shengpei; Zhang, Jishui; Peng, Yun; He, Huiguang

    2017-03-01

    Tourette syndrome (TS) is a childhood-onset neurobehavioral disorder. At present, the topological disruptions of the whole brain white matter (WM) structural networks remain poorly understood in TS children. Considering the unique position of the topologically central role of densely interconnected brain hubs, namely the rich club regions, therefore, we aimed to investigate whether the rich club regions and their related connections would be particularly vulnerable in early TS children. In our study, we used diffusion tractography and graph theoretical analyses to explore the rich club structures in 44 TS children and 48 healthy children. The structural networks of TS children exhibited significantly increased normalized rich club coefficient, suggesting that TS is characterized by increased structural integrity of this centrally embedded rich club backbone, potentially resulting in increased global communication capacity. In addition, TS children showed a reorganization of rich club regions, as well as significantly increased density and decreased number in feeder connections. Furthermore, the increased rich club coefficients and feeder connections density of TS children were significantly positively correlated to tic severity, indicating that TS may be characterized by a selective alteration of the structural connectivity of the rich club regions, tending to have higher bridging with non-rich club regions, which may increase the integration among tic-related brain circuits with more excitability but less inhibition for information exchanges between highly centered brain regions and peripheral areas. In all, our results suggest the disrupted rich club organization in early TS children and provide structural insights into the brain networks.

  16. Quantitative magnetic resonance imaging in traumatic brain injury.

    PubMed

    Bigler, E D

    2001-04-01

    Quantitative neuroimaging has now become a well-established method for analyzing magnetic resonance imaging in traumatic brain injury (TBI). A general review of studies that have examined quantitative changes following TBI is presented. The consensus of quantitative neuroimaging studies is that most brain structures demonstrate changes in volume or surface area after injury. The patterns of atrophy are consistent with the generalized nature of brain injury and diffuse axonal injury. Various clinical caveats are provided including how quantitative neuroimaging findings can be used clinically and in predicting rehabilitation outcome. The future of quantitative neuroimaging also is discussed.

  17. Evaluation of Cross-Protocol Stability of a Fully Automated Brain Multi-Atlas Parcellation Tool.

    PubMed

    Liang, Zifei; He, Xiaohai; Ceritoglu, Can; Tang, Xiaoying; Li, Yue; Kutten, Kwame S; Oishi, Kenichi; Miller, Michael I; Mori, Susumu; Faria, Andreia V

    2015-01-01

    Brain parcellation tools based on multiple-atlas algorithms have recently emerged as a promising method with which to accurately define brain structures. When dealing with data from various sources, it is crucial that these tools are robust for many different imaging protocols. In this study, we tested the robustness of a multiple-atlas, likelihood fusion algorithm using Alzheimer's Disease Neuroimaging Initiative (ADNI) data with six different protocols, comprising three manufacturers and two magnetic field strengths. The entire brain was parceled into five different levels of granularity. In each level, which defines a set of brain structures, ranging from eight to 286 regions, we evaluated the variability of brain volumes related to the protocol, age, and diagnosis (healthy or Alzheimer's disease). Our results indicated that, with proper pre-processing steps, the impact of different protocols is minor compared to biological effects, such as age and pathology. A precise knowledge of the sources of data variation enables sufficient statistical power and ensures the reliability of an anatomical analysis when using this automated brain parcellation tool on datasets from various imaging protocols, such as clinical databases.

  18. Sex differences in brain and behavior in adolescence: Findings from the Philadelphia Neurodevelopmental Cohort.

    PubMed

    Gur, Raquel E; Gur, Ruben C

    2016-11-01

    Sex differences in brain and behavior were investigated across the lifespan. Parameters include neurobehavioral measures linkable to neuroanatomic and neurophysiologic indicators of brain structure and function. Sexual differentiation of behavior has been related to organizational factors during sensitive periods of development, with adolescence and puberty gaining increased attention. Adolescence is a critical developmental period where transition to adulthood is impacted by multiple factors that can enhance vulnerability to brain dysfunction. Here we highlight sex differences in neurobehavioral measures in adolescence that are linked to brain function. We summarize neuroimaging studies examining brain structure, connectivity and perfusion, underscoring the relationship to sex differences in behavioral measures and commenting on hormonal findings. We focus on relevant data from the Philadelphia Neurodevelopmental Cohort (PNC), a community-based sample of nearly 10,000 clinically and neurocognitively phenotyped youths age 8-21 of whom 1600 have received multimodal neuroimaging. These data indicate early and pervasive sexual differentiation in neurocognitive measures that is linkable to brain parameters. We conclude by describing possible clinical implications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. High-throughput dual-colour precision imaging for brain-wide connectome with cytoarchitectonic landmarks at the cellular level

    PubMed Central

    Gong, Hui; Xu, Dongli; Yuan, Jing; Li, Xiangning; Guo, Congdi; Peng, Jie; Li, Yuxin; Schwarz, Lindsay A.; Li, Anan; Hu, Bihe; Xiong, Benyi; Sun, Qingtao; Zhang, Yalun; Liu, Jiepeng; Zhong, Qiuyuan; Xu, Tonghui; Zeng, Shaoqun; Luo, Qingming

    2016-01-01

    The precise annotation and accurate identification of neural structures are prerequisites for studying mammalian brain function. The orientation of neurons and neural circuits is usually determined by mapping brain images to coarse axial-sampling planar reference atlases. However, individual differences at the cellular level likely lead to position errors and an inability to orient neural projections at single-cell resolution. Here, we present a high-throughput precision imaging method that can acquire a co-localized brain-wide data set of both fluorescent-labelled neurons and counterstained cell bodies at a voxel size of 0.32 × 0.32 × 2.0 μm in 3 days for a single mouse brain. We acquire mouse whole-brain imaging data sets of multiple types of neurons and projections with anatomical annotation at single-neuron resolution. The results show that the simultaneous acquisition of labelled neural structures and cytoarchitecture reference in the same brain greatly facilitates precise tracing of long-range projections and accurate locating of nuclei. PMID:27374071

  20. Sex differences in brain and behavior in adolescence: Findings from the Philadelphia Neurodevelopmental Cohort

    PubMed Central

    Gur, Raquel E.; Gur, Ruben C.

    2016-01-01

    Sex differences in brain and behavior were investigated across the lifespan. Parameters include neurobehavioral measures linkable to neuroanatomic and neurophysiologic indicators of brain structure and function. Sexual differentiation of behavior has been related to organizational factors during sensitive periods of development, with adolescence and puberty gaining increased attention. Adolescence is a critical developmental period where transition to adulthood is impacted by multiple factors that can enhance vulnerability to brain dysfunction. Here we highlight sex differences in neurobehavioral measures in adolescence that are linked to brain function. We summarize neuroimaging studies examining brain structure, connectivity and perfusion, underscoring the relationship to sex differences in behavioral measures and commenting on hormonal findings. We focus on relevant data from the Philadelphia Neurodevelopmental Cohort (PNC), a community-based sample of nearly 10,000 clinically and neurocognitively phenotyped youths age 8–21 of whom 1600 have received multimodal neuroimaging. These data indicate early and pervasive sexual differentiation in neurocognitive measures that is linkable to brain parameters. We conclude by describing possible clinical implications. PMID:27498084

  1. Gene expression based mouse brain parcellation using Markov random field regularized non-negative matrix factorization

    NASA Astrophysics Data System (ADS)

    Pathak, Sayan D.; Haynor, David R.; Thompson, Carol L.; Lein, Ed; Hawrylycz, Michael

    2009-02-01

    Understanding the geography of genetic expression in the mouse brain has opened previously unexplored avenues in neuroinformatics. The Allen Brain Atlas (www.brain-map.org) (ABA) provides genome-wide colorimetric in situ hybridization (ISH) gene expression images at high spatial resolution, all mapped to a common three-dimensional 200μm3 spatial framework defined by the Allen Reference Atlas (ARA) and is a unique data set for studying expression based structural and functional organization of the brain. The goal of this study was to facilitate an unbiased data-driven structural partitioning of the major structures in the mouse brain. We have developed an algorithm that uses nonnegative matrix factorization (NMF) to perform parts based analysis of ISH gene expression images. The standard NMF approach and its variants are limited in their ability to flexibly integrate prior knowledge, in the context of spatial data. In this paper, we introduce spatial connectivity as an additional regularization in NMF decomposition via the use of Markov Random Fields (mNMF). The mNMF algorithm alternates neighborhood updates with iterations of the standard NMF algorithm to exploit spatial correlations in the data. We present the algorithm and show the sub-divisions of hippocampus and somatosensory-cortex obtained via this approach. The results are compared with established neuroanatomic knowledge. We also highlight novel gene expression based sub divisions of the hippocampus identified by using the mNMF algorithm.

  2. Neuroimaging studies in schizophrenia: an overview of research from Asia.

    PubMed

    Narayanaswamy, Janardhanan C; Venkatasubramanian, Ganesan; Gangadhar, Bangalore N

    2012-10-01

    Neuroimaging studies in schizophrenia help clarify the neural substrates underlying the pathogenesis of this neuropsychiatric disorder. Contemporary brain imaging in schizophrenia is predominated by magnetic resonance imaging (MRI)-based research approaches. This review focuses on the various imaging studies from India and their relevance to the understanding of brain abnormalities in schizophrenia. The existing studies are predominantly comprised of structural MRI reports involving region-of-interest and voxel-based morphometry approaches, magnetic resonance spectroscopy and single-photon emission computed tomography/positron emission tomography (SPECT/PET) studies. Most of these studies are significant in that they have evaluated antipsychotic-naïve schizophrenia patients--a relatively difficult population to obtain in contemporary research. Findings of these studies offer robust support to the existence of significant brain abnormalities at very early stages of the disorder. In addition, theoretically relevant relationships between these brain abnormalities and developmental aberrations suggest possible neurodevelopmental basis for these brain deficits.

  3. Brain networks, structural realism, and local approaches to the scientific realism debate.

    PubMed

    Yan, Karen; Hricko, Jonathon

    2017-08-01

    We examine recent work in cognitive neuroscience that investigates brain networks. Brain networks are characterized by the ways in which brain regions are functionally and anatomically connected to one another. Cognitive neuroscientists use various noninvasive techniques (e.g., fMRI) to investigate these networks. They represent them formally as graphs. And they use various graph theoretic techniques to analyze them further. We distinguish between knowledge of the graph theoretic structure of such networks (structural knowledge) and knowledge of what instantiates that structure (nonstructural knowledge). And we argue that this work provides structural knowledge of brain networks. We explore the significance of this conclusion for the scientific realism debate. We argue that our conclusion should not be understood as an instance of a global structural realist claim regarding the structure of the unobservable part of the world, but instead, as a local structural realist attitude towards brain networks in particular. And we argue that various local approaches to the realism debate, i.e., approaches that restrict realist commitments to particular theories and/or entities, are problematic insofar as they don't allow for the possibility of such a local structural realist attitude. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Brain structural differences associated with the behavioural phenotype in children with Williams syndrome.

    PubMed

    Campbell, Linda E; Daly, Eileen; Toal, Fiona; Stevens, Angela; Azuma, Rayna; Karmiloff-Smith, Annette; Murphy, Declan G M; Murphy, Kieran C

    2009-03-03

    We investigated structural brain morphology of intellectually disabled children with Williams (WS) syndrome and its relationship to the behavioural phenotype. We compared the neuroanatomy of 15 children (mean age:13+/-2) with WS and 15 age/gender-matched healthy children using a manual region-of-interest analysis to measure bulk (white+grey) tissue volumes and unbiased fully-automated voxel-based morphometry to assess differences in grey/white matter throughout the brain. Ratings of abnormal behaviours were correlated with brain structure. Compared to controls, the brains of children with WS had a decreased volume of the right parieto-occipital regions and basal ganglia. We identified reductions of grey matter of the parieto-occipital regions, left putamen/globus pallidus and thalamus; and in white matter of the basal ganglia and right posterior cingulate gyrus. In contrast, significant increases of grey matter were identified in the frontal lobes, anterior cingulate gyrus, left temporal lobe, and of white matter bilaterally in the anterior cingulate. Inattention in WS was correlated with volumetric differences in the frontal lobes, caudate nucleus and cerebellum, and hyperactivity was related to differences in the left temporal and parietal lobes and cerebellum. Finally, ratings of peer problems were related to differences in the temporal lobes, right basal ganglia and frontal lobe. In one of the first studies of brain structure in intellectually disabled children with WS using voxel-based morphometry, our findings suggest that this group has specific differences in grey/white matter morphology. In addition, it was found that structural differences were correlated to ratings of inattention, hyperactivity and peer problems in children with WS.

  5. Volumetric evaluation of the relations among the cerebrum, cerebellum and brain stem in young subjects: a combination of stereology and magnetic resonance imaging.

    PubMed

    Ekinci, Nihat; Acer, Niyazi; Akkaya, Akcan; Sankur, Seref; Kabadayi, Taner; Sahin, Bünyamin

    2008-08-01

    The Cavalieri estimator using a point grid is used to estimate the volume of three-dimensional structures based on two-dimensional slices of the object. The size of the components of intracranial neural structures should have proportional relations among them. The volume fraction approach of stereological methods provides information about volumetric relations of the components of structures. The purpose of our study is to estimate the volume and volume fraction data related to the cerebrum, cerebellum and brain stem. In this study, volume of the total brain, cerebrum, cerebellum and brain stem were estimated in 24 young Turkish volunteers (12 males and 12 females) who are free of any neurological symptoms and signs. The volume and volume fraction of the total brain, cerebrum, cerebellum and brain stem were determined on magnetic resonance (MR) images using the point-counting approach of stereological methods. The mean (+/-SD) total brain, cerebrum and cerebellum volumes were 1,202.05 +/- 103.51, 1,143.65 +/- 106.25 cm3 in males and females, 1,060.0 +/- 94.6, 1,008.9 +/- 104.3 cm3 in males and females, 117.75 +/- 10.7, 111.83 +/- 8.0 cm3 in males and females, respectively. The mean brain stem volumes were 24.3 +/- 2.89, 22.9 +/- 4.49 cm3 in males and females, respectively. Our results revealed that female subjects have less cerebral, cerebellar and brain stem volumes compared to males, although there was no statistically significant difference between genders (P > 0.05). The volume ratio of the cerebrum to total brain volume (TBV), cerebellum to TBV and brain stem to TBV were 88.16 and 88.13% in males and females, 9.8 and 9.8% in males and females, 2.03 and 2.03% in males and females, respectively. The volume ratio of the cerebellum to cerebrum, brain stem to cerebrum and brain stem to cerebellum were 11.12 and 11.16% in males and females, 2.30 and 2.31% in males and females, 20.7 and 20.6% in males and females, respectively. The difference between the genders was not statistically significant (P > 0.05). Our results revealed that the volumetric composition of the cerebrum, cerebellum and brain stem does not show sexual dimorphism.

  6. Neuroimaging is a novel tool to understand the impact of environmental chemicals on neurodevelopment.

    PubMed

    Horton, Megan K; Margolis, Amy E; Tang, Cheuk; Wright, Robert

    2014-04-01

    The prevalence of childhood neurodevelopmental disorders has been increasing over the last several decades. Prenatal and early childhood exposure to environmental toxicants is increasingly recognized as contributing to the growing rate of neurodevelopmental disorders. Very little information is known about the mechanistic processes by which environmental chemicals alter brain development. We review the recent advances in brain imaging modalities and discuss their application in epidemiologic studies of prenatal and early childhood exposure to environmental toxicants. Neuroimaging techniques (volumetric and functional MRI, diffusor tensor imaging, and magnetic resonance spectroscopy) have opened unprecedented access to study the developing human brain. These techniques are noninvasive and free of ionization radiation making them suitable for research applications in children. Using these techniques, we now understand much about structural and functional patterns in the typically developing brain. This knowledge allows us to investigate how prenatal exposure to environmental toxicants may alter the typical developmental trajectory. MRI is a powerful tool that allows in-vivo visualization of brain structure and function. Used in epidemiologic studies of environmental exposure, it offers the promise to causally link exposure with behavioral and cognitive manifestations and ultimately to inform programs to reduce exposure and mitigate adverse effects of exposure.

  7. Preclinical studies of photodynamic therapy of intracranial tissues

    NASA Astrophysics Data System (ADS)

    Lilge, Lothar D.; Sepers, Marja; Park, Jane; O'Carroll, Cindy; Pournazari, Poupak; Prosper, Joe; Wilson, Brian C.

    1997-05-01

    The applicability and limitations of the photodynamic threshold model were investigated for an intracranial tumor (VX2) and normal brain tissues in a rabbit model. Photodynamic threshold values for four different photosensitizers, i.e., Photofrin, 5(delta) -aminolaevulinic acid (5(delta) -ALA) induced Protoporphyrin IX (PPIX), Tin Ethyl Etiopurpurin (SnET2), and chloroaluminum phthalocyanine (AlClPc), were determined based on measured light fluence distributions, macroscopic photosensitizer concentration in various brain structures, and histologically determined extent of tissue necrosis following PDT. For Photofrin, AlClPc, and SnET2, normal brain displayed a significantly lower threshold value than VX2 tumor. For 5(delta) -ALA induced PPIX and SnET2 no or very little white matter damage, equalling to very high or infinite threshold values, was observed. Additionally, the latter two photosensitizers showed significantly lower uptake in white matter compared to other brain structures and VX2 tumor. Normal brain structures lacking a blood- brain-barrier, such as the choroid plexus and the meninges, showed high photosensitizer uptake for all photosensitizers, and, hence, are at risk when exposed to light. Results to date suggest that the photodynamic threshold values iares valid for white matter, cortex and VX2 tumor. For clinical PDT of intracranial neoplasms 5(delta) -ALA induced PPIX and SnET2 appear to be the most promising for selective tumor necrosis.However, the photosensitizer concentration in each normal brain structure and the fluence distribution throughout the treatment volume and adjacent tissues at risk must be monitored to maximize the selectivity of PDT for intracranial tumors.

  8. Obligatory and facultative brain regions for voice-identity recognition

    PubMed Central

    Roswandowitz, Claudia; Kappes, Claudia; Obrig, Hellmuth; von Kriegstein, Katharina

    2018-01-01

    Abstract Recognizing the identity of others by their voice is an important skill for social interactions. To date, it remains controversial which parts of the brain are critical structures for this skill. Based on neuroimaging findings, standard models of person-identity recognition suggest that the right temporal lobe is the hub for voice-identity recognition. Neuropsychological case studies, however, reported selective deficits of voice-identity recognition in patients predominantly with right inferior parietal lobe lesions. Here, our aim was to work towards resolving the discrepancy between neuroimaging studies and neuropsychological case studies to find out which brain structures are critical for voice-identity recognition in humans. We performed a voxel-based lesion-behaviour mapping study in a cohort of patients (n = 58) with unilateral focal brain lesions. The study included a comprehensive behavioural test battery on voice-identity recognition of newly learned (voice-name, voice-face association learning) and familiar voices (famous voice recognition) as well as visual (face-identity recognition) and acoustic control tests (vocal-pitch and vocal-timbre discrimination). The study also comprised clinically established tests (neuropsychological assessment, audiometry) and high-resolution structural brain images. The three key findings were: (i) a strong association between voice-identity recognition performance and right posterior/mid temporal and right inferior parietal lobe lesions; (ii) a selective association between right posterior/mid temporal lobe lesions and voice-identity recognition performance when face-identity recognition performance was factored out; and (iii) an association of right inferior parietal lobe lesions with tasks requiring the association between voices and faces but not voices and names. The results imply that the right posterior/mid temporal lobe is an obligatory structure for voice-identity recognition, while the inferior parietal lobe is only a facultative component of voice-identity recognition in situations where additional face-identity processing is required. PMID:29228111

  9. Shared Predisposition in the Association Between Cannabis Use and Subcortical Brain Structure.

    PubMed

    Pagliaccio, David; Barch, Deanna M; Bogdan, Ryan; Wood, Phillip K; Lynskey, Michael T; Heath, Andrew C; Agrawal, Arpana

    2015-10-01

    Prior neuroimaging studies have suggested that alterations in brain structure may be a consequence of cannabis use. Siblings discordant for cannabis use offer an opportunity to use cross-sectional data to disentangle such causal hypotheses from shared effects of genetics and familial environment on brain structure and cannabis use. To determine whether cannabis use is associated with differences in brain structure in a large sample of twins/siblings and to examine sibling pairs discordant for cannabis use to separate potential causal and predispositional factors linking lifetime cannabis exposure to volumetric alterations. Cross-sectional diagnostic interview, behavioral, and neuroimaging data were collected from community sampling and established family registries from August 2012 to September 2014. This study included data from 483 participants (22-35 years old) enrolled in the ongoing Human Connectome Project, with 262 participants reporting cannabis exposure (ie, ever used cannabis in their lifetime). Cannabis exposure was measured with the Semi-Structured Assessment for the Genetics of Alcoholism. Whole-brain, hippocampus, amygdala, ventral striatum, and orbitofrontal cortex volumes were related to lifetime cannabis use (ever used, age at onset, and frequency of use) using linear regressions. Genetic (ρg) and environmental (ρe) correlations between cannabis use and brain volumes were estimated. Linear mixed models were used to examine volume differences in sex-matched concordant unexposed (n = 71 pairs), exposed (n = 81 pairs), or exposure discordant (n = 89 pairs) sibling pairs. Among 483 study participants, cannabis exposure was related to smaller left amygdala (approximately 2.3%; P = .007) and right ventral striatum (approximately 3.5%; P < .005) volumes. These volumetric differences were within the range of normal variation. The association between left amygdala volume and cannabis use was largely owing to shared genetic factors (ρg = -0.43; P = .004), while the origin of the association with right ventral striatum volumes was unclear. Importantly, brain volumes did not differ between sex-matched siblings discordant for use (fixed effect = -7.43; t = -0.93, P = .35). Both the exposed and unexposed siblings in pairs discordant for cannabis exposure showed reduced amygdala volumes relative to members of concordant unexposed pairs (fixed effect = 12.56; t = 2.97; P = .003). In this study, differences in amygdala volume in cannabis users were attributable to common predispositional factors, genetic or environmental in origin, with little support for causal influences. Causal influences, in isolation or in conjunction with predispositional factors, may exist for other brain regions (eg, ventral striatum) or at more severe levels of cannabis involvement and deserve further study.

  10. Childhood Onset Schizophrenia: Cortical Brain Abnormalities as Young Adults

    ERIC Educational Resources Information Center

    Greenstein, Deanna; Lerch, Jason; Shaw, Philip; Clasen, Liv; Giedd, Jay; Gochman, Peter; Rapoport, Judith; Gogtay, Nitin

    2006-01-01

    Background: Childhood onset schizophrenia (COS) is a rare but severe form of the adult onset disorder. While structural brain imaging studies show robust, widespread, and progressive gray matter loss in COS during adolescence, there have been no longitudinal studies of sufficient duration to examine comparability with the more common adult onset…

  11. Perceived Quality of Maternal Care in Childhood and Structure and Function of Mothers' Brain

    ERIC Educational Resources Information Center

    Kim, Pilyoung; Leckman, James F.; Mayes, Linda C.; Newman, Michal-Ann; Feldman, Ruth; Swain, James E.

    2010-01-01

    Animal studies indicate that early maternal care has long-term effects on brain areas related to social attachment and parenting, whereas neglectful mothering is linked with heightened stress reactivity in the hippocampus across the lifespan. The present study explores the possibility, using magnetic resonance imaging, that perceived quality of…

  12. Normalization of Reverse Transcription Quantitative PCR Data During Ageing in Distinct Cerebral Structures.

    PubMed

    Bruckert, G; Vivien, D; Docagne, F; Roussel, B D

    2016-04-01

    Reverse transcription quantitative-polymerase chain reaction (RT-qPCR) has become a routine method in many laboratories. Normalization of data from experimental conditions is critical for data processing and is usually achieved by the use of a single reference gene. Nevertheless, as pointed by the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines, several reference genes should be used for reliable normalization. Ageing is a physiological process that results in a decline of many expressed genes. Reliable normalization of RT-qPCR data becomes crucial when studying ageing. Here, we propose a RT-qPCR study from four mouse brain regions (cortex, hippocampus, striatum and cerebellum) at different ages (from 8 weeks to 22 months) in which we studied the expression of nine commonly used reference genes. With the use of two different algorithms, we found that all brain structures need at least two genes for a good normalization step. We propose specific pairs of gene for efficient data normalization in the four brain regions studied. These results underline the importance of reliable reference genes for specific brain regions in ageing.

  13. A systematic review and meta-analysis of structural magnetic resonance imaging studies investigating cognitive and social activity levels in older adults.

    PubMed

    Anatürk, M; Demnitz, N; Ebmeier, K P; Sexton, C E

    2018-06-22

    Population aging has prompted considerable interest in identifying modifiable factors that may help protect the brain and its functions. Collectively, epidemiological studies show that leisure activities with high mental and social demands are linked with better cognition in old age. The extent to which socio-intellectual activities relate to the brain's structure is, however, not yet fully understood. This systematic review and meta-analysis summarizes magnetic resonance imaging studies that have investigated whether cognitive and social activities correlate with measures of gray and white matter volume, white matter microstructure and white matter lesions. Across eighteen included studies (total n = 8429), activity levels were associated with whole-brain white matter volume, white matter lesions and regional gray matter volume, although effect sizes were small. No associations were found for global gray matter volume and the evidence concerning white matter microstructure was inconclusive. While the causality of the reviewed associations needs to be established, our findings implicate socio-intellectual activity levels as promising targets for interventions aimed at promoting healthy brain aging. Copyright © 2018. Published by Elsevier Ltd.

  14. Altered brain structural networks in attention deficit/hyperactivity disorder children revealed by cortical thickness.

    PubMed

    Liu, Tian; Chen, Yanni; Li, Chenxi; Li, Youjun; Wang, Jue

    2017-07-04

    This study investigated the cortical thickness and topological features of human brain anatomical networks related to attention deficit/hyperactivity disorder. Data were collected from 40 attention deficit/hyperactivity disorder children and 40 normal control children. Interregional correlation matrices were established by calculating the correlations of cortical thickness between all pairs of cortical regions (68 regions) of the whole brain. Further thresholds were applied to create binary matrices to construct a series of undirected and unweighted graphs, and global, local, and nodal efficiencies were computed as a function of the network cost. These experimental results revealed abnormal cortical thickness and correlations in attention deficit/hyperactivity disorder, and showed that the brain structural networks of attention deficit/hyperactivity disorder subjects had inefficient small-world topological features. Furthermore, their topological properties were altered abnormally. In particular, decreased global efficiency combined with increased local efficiency in attention deficit/hyperactivity disorder children led to a disorder-related shift of the network topological structure toward regular networks. In addition, nodal efficiency, cortical thickness, and correlation analyses revealed that several brain regions were altered in attention deficit/hyperactivity disorder patients. These findings are in accordance with a hypothesis of dysfunctional integration and segregation of the brain in patients with attention deficit/hyperactivity disorder and provide further evidence of brain dysfunction in attention deficit/hyperactivity disorder patients by observing cortical thickness on magnetic resonance imaging.

  15. A brain imaging repository of normal structural MRI across the life course: Brain Images of Normal Subjects (BRAINS).

    PubMed

    Job, Dominic E; Dickie, David Alexander; Rodriguez, David; Robson, Andrew; Danso, Sammy; Pernet, Cyril; Bastin, Mark E; Boardman, James P; Murray, Alison D; Ahearn, Trevor; Waiter, Gordon D; Staff, Roger T; Deary, Ian J; Shenkin, Susan D; Wardlaw, Joanna M

    2017-01-01

    The Brain Images of Normal Subjects (BRAINS) Imagebank (http://www.brainsimagebank.ac.uk) is an integrated repository project hosted by the University of Edinburgh and sponsored by the Scottish Imaging Network: A Platform for Scientific Excellence (SINAPSE) collaborators. BRAINS provide sharing and archiving of detailed normal human brain imaging and relevant phenotypic data already collected in studies of healthy volunteers across the life-course. It particularly focusses on the extremes of age (currently older age, and in future perinatal) where variability is largest, and which are under-represented in existing databanks. BRAINS is a living imagebank where new data will be added when available. Currently BRAINS contains data from 808 healthy volunteers, from 15 to 81years of age, from 7 projects in 3 centres. Additional completed and ongoing studies of normal individuals from 1st to 10th decades are in preparation and will be included as they become available. BRAINS holds several MRI structural sequences, including T1, T2, T2* and fluid attenuated inversion recovery (FLAIR), available in DICOM (http://dicom.nema.org/); in future Diffusion Tensor Imaging (DTI) will be added where available. Images are linked to a wide range of 'textual data', such as age, medical history, physiological measures (e.g. blood pressure), medication use, cognitive ability, and perinatal information for pre/post-natal subjects. The imagebank can be searched to include or exclude ranges of these variables to create better estimates of 'what is normal' at different ages. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Postmortem changes in the neuroanatomical characteristics of the primate brain: the hippocampal formation

    PubMed Central

    Lavenex, Pierre; Lavenex, Pamela Banta; Bennett, Jeffrey L.; Amaral, David G.

    2009-01-01

    Comparative studies of the structural organization of the brain are fundamental to our understanding of human brain function. However, whereas brains of experimental animals are fixed by perfusion of a fixative through the vasculature, human or ape brains are fixed by immersion after varying postmortem intervals. Although differential treatments might affect the fundamental characteristics of the tissue, this question has not been evaluated empirically in primate brains. Monkey brains were either perfused, or acquired after varying postmortem intervals before immersion-fixation in 4% paraformaldehyde. We found that the fixation method affected the neuroanatomical characteristics of the monkey hippocampal formation. Soma size was smaller in Nissl-stained, immersion-fixed tissue, although overall brain volume was larger, as compared to perfusion-fixed tissue. Non-phosphorylated high-molecular-weight neurofilament immunoreactivity was lower in CA3 pyramidal neurons, dentate mossy cells and the entorhinal cortex, whereas it was higher in the mossy fiber pathway in immersion-fixed tissue. Serotonin-immunoreactive fibers were well-stained in perfused tissue but were undetectable in immersion-fixed tissue. Although regional immunoreactivity patterns for calcium-binding proteins were not affected, intracellular staining degraded with increasing postmortem intervals. Somatostatin-immunoreactive clusters of large axonal varicosities, previously reported only in humans, were observed in immersion-fixed monkey tissue. In addition, calretinin-immunoreactive multipolar neurons, previously observed only in rodents, were found in the rostral dentate gyrus in both perfused and immersion-fixed brains. In conclusion, comparative studies of the brain must evaluate the effects of fixation on the staining pattern of each marker in every structure of interest before drawing conclusions about species differences. PMID:18972553

  17. Postmortem changes in the neuroanatomical characteristics of the primate brain: hippocampal formation.

    PubMed

    Lavenex, Pierre; Lavenex, Pamela Banta; Bennett, Jeffrey L; Amaral, David G

    2009-01-01

    Comparative studies of the structural organization of the brain are fundamental to our understanding of human brain function. However, whereas brains of experimental animals are fixed by perfusion of a fixative through the vasculature, human or ape brains are fixed by immersion after varying postmortem intervals. Although differential treatments might affect the fundamental characteristics of the tissue, this question has not been evaluated empirically in primate brains. Monkey brains were either perfused or acquired after varying postmortem intervals before immersion-fixation in 4% paraformaldehyde. We found that the fixation method affected the neuroanatomical characteristics of the monkey hippocampal formation. Soma size was smaller in Nissl-stained, immersion-fixed tissue, although overall brain volume was larger as compared to perfusion-fixed tissue. Nonphosphorylated high-molecular-weight neurofilament immunoreactivity was lower in CA3 pyramidal neurons, dentate mossy cells, and the entorhinal cortex, whereas it was higher in the mossy fiber pathway in immersion-fixed tissue. Serotonin-immunoreactive fibers were well stained in perfused tissue but were undetectable in immersion-fixed tissue. Although regional immunoreactivity patterns for calcium-binding proteins were not affected, intracellular staining degraded with increasing postmortem intervals. Somatostatin-immunoreactive clusters of large axonal varicosities, previously reported only in humans, were observed in immersion-fixed monkey tissue. In addition, calretinin-immunoreactive multipolar neurons, previously observed only in rodents, were found in the rostral dentate gyrus in both perfused and immersion-fixed brains. In conclusion, comparative studies of the brain must evaluate the effects of fixation on the staining pattern of each marker in every structure of interest before drawing conclusions about species differences.

  18. Isoflurane Impairs Low-Frequency Feedback but Leaves High-Frequency Feedforward Connectivity Intact in the Fly Brain.

    PubMed

    Cohen, Dror; van Swinderen, Bruno; Tsuchiya, Naotsugu

    2018-01-01

    Hierarchically organized brains communicate through feedforward (FF) and feedback (FB) pathways. In mammals, FF and FB are mediated by higher and lower frequencies during wakefulness. FB is preferentially impaired by general anesthetics in multiple mammalian species. This suggests FB serves critical functions in waking brains. The brain of Drosophila melanogaster (fruit fly) is also hierarchically organized, but the presence of FB in these brains is not established. Here, we studied FB in the fly brain, by simultaneously recording local field potentials (LFPs) from low-order peripheral structures and higher-order central structures. We analyzed the data using Granger causality (GC), the first application of this analysis technique to recordings from the insect brain. Our analysis revealed that low frequencies (0.1-5 Hz) mediated FB from the center to the periphery, while higher frequencies (10-45 Hz) mediated FF in the opposite direction. Further, isoflurane anesthesia preferentially reduced FB. Our results imply that the spectral characteristics of FF and FB may be a signature of hierarchically organized brains that is conserved from insects to mammals. We speculate that general anesthetics may induce unresponsiveness across species by targeting the mechanisms that support FB.

  19. Isoflurane Impairs Low-Frequency Feedback but Leaves High-Frequency Feedforward Connectivity Intact in the Fly Brain

    PubMed Central

    2018-01-01

    Abstract Hierarchically organized brains communicate through feedforward (FF) and feedback (FB) pathways. In mammals, FF and FB are mediated by higher and lower frequencies during wakefulness. FB is preferentially impaired by general anesthetics in multiple mammalian species. This suggests FB serves critical functions in waking brains. The brain of Drosophila melanogaster (fruit fly) is also hierarchically organized, but the presence of FB in these brains is not established. Here, we studied FB in the fly brain, by simultaneously recording local field potentials (LFPs) from low-order peripheral structures and higher-order central structures. We analyzed the data using Granger causality (GC), the first application of this analysis technique to recordings from the insect brain. Our analysis revealed that low frequencies (0.1–5 Hz) mediated FB from the center to the periphery, while higher frequencies (10–45 Hz) mediated FF in the opposite direction. Further, isoflurane anesthesia preferentially reduced FB. Our results imply that the spectral characteristics of FF and FB may be a signature of hierarchically organized brains that is conserved from insects to mammals. We speculate that general anesthetics may induce unresponsiveness across species by targeting the mechanisms that support FB. PMID:29541686

  20. Perspectives from the symposium: The role of nutrition in infant and toddler brain and behavioral development.

    PubMed

    Rosales, Francisco J; Zeisel, Steven H

    2008-06-01

    This symposium examined current trends in neuroscience and developmental psychology as they apply to assessing the effects of nutrients on brain and behavioral development of 0-6-year-olds. Although the spectrum of nutrients with brain effects has not changed much in the last 25 years, there has been an explosion in new knowledge about the genetics, structure and function of the brain. This has helped to link the brain mechanistic pathway by which these nutrients act with cognitive functions. A clear example of this is linking of brain structural changes due to hypoglycemia versus hyperglycemia with cognitive functions by using magnetic resonance imaging (MRI) to assess changes in brain-region volumes in combination with cognitive test of intelligence, memory and processing speed. Another example is the use of event-related potential (ERP) studies to show that infants of diabetic mothers have impairments in memory from birth through 8 months of age that are consistent with alterations in mechanistic pathways of memory observed in animal models of perinatal iron deficiency. However, gaps remain in the understanding of how nutrients and neurotrophic factors interact with each other in optimizing brain development and function.

  1. Growth and development of the brain and impact on cognitive outcomes.

    PubMed

    Hüppi, Petra S

    2010-01-01

    Understanding human brain development from the fetal life to adulthood is of great clinical importance as many neurological and neurobehavioral disorders have their origin in early structural and functional cerebral maturation. The developing brain is particularly prone to being affected by endogenous and exogenous events through the fetal and early postnatal life. The concept of 'developmental plasticity or disruption of the developmental program' summarizes these events. Increases in white matter, which speed up communication between brain cells, growing complexity of neuronal networks suggested by gray and white matter changes, and environmentally sensitive plasticity are all essential aspects in a child's ability to mentalize and maintain the adaptive flexibility necessary for achieving high sociocognitive functioning. Advancement in neuroimaging has opened up new ways for examining the developing human brain in vivo, the study of the effects of early antenatal, perinatal and neonatal events on later structural and functional brain development resulting in developmental disabilities or developmental resilience. In this review, methods of quantitative assessment of human brain development, such as 3D-MRI with image segmentation, diffusion tensor imaging to assess connectivity and functional MRI to visualize brain function will be presented. Copyright (c) 2010 S. Karger AG, Basel.

  2. Prenatal Brain MR Imaging: Reference Linear Biometric Centiles between 20 and 24 Gestational Weeks.

    PubMed

    Conte, G; Milani, S; Palumbo, G; Talenti, G; Boito, S; Rustico, M; Triulzi, F; Righini, A; Izzo, G; Doneda, C; Zolin, A; Parazzini, C

    2018-05-01

    Evaluation of biometry is a fundamental step in prenatal brain MR imaging. While different studies have reported reference centiles for MR imaging biometric data of fetuses in the late second and third trimesters of gestation, no one has reported them in fetuses in the early second trimester. We report centiles of normal MR imaging linear biometric data of a large cohort of fetal brains within 24 weeks of gestation. From the data bases of 2 referral centers of fetal medicine, accounting for 3850 examinations, we retrospectively collected 169 prenatal brain MR imaging examinations of singleton pregnancies, between 20 and 24 weeks of gestational age, with normal brain anatomy at MR imaging and normal postnatal neurologic development. To trace the reference centiles, we used the CG-LMS method. Reference biometric centiles for the developing structures of the cerebrum, cerebellum, brain stem, and theca were obtained. The overall interassessor agreement was adequate for all measurements. Reference biometric centiles of the brain structures in fetuses between 20 and 24 weeks of gestational age may be a reliable tool in assessing fetal brain development. © 2018 by American Journal of Neuroradiology.

  3. Early parental care is important for hippocampal maturation: evidence from brain morphology in humans.

    PubMed

    Rao, Hengyi; Betancourt, Laura; Giannetta, Joan M; Brodsky, Nancy L; Korczykowski, Marc; Avants, Brian B; Gee, James C; Wang, Jiongjiong; Hurt, Hallam; Detre, John A; Farah, Martha J

    2010-01-01

    The effects of early life experience on later brain structure and function have been studied extensively in animals, yet the relationship between childhood experience and normal brain development in humans remains largely unknown. Using a unique longitudinal data set including ecologically valid in-home measures of early experience during childhood (at age 4 and 8 years) and high-resolution structural brain imaging during adolescence (mean age 14 years), we examined the effects on later brain morphology of two dimensions of early experience: parental nurturance and environmental stimulation. Parental nurturance at age 4 predicts the volume of the left hippocampus in adolescence, with better nurturance associated with smaller hippocampal volume. In contrast, environmental stimulation did not correlate with hippocampal volume. Moreover, the association between hippocampal volume and parental nurturance disappears at age 8, supporting the existence of a sensitive developmental period for brain maturation. These findings indicate that variation in normal childhood experience is associated with differences in brain morphology, and hippocampal volume is specifically associated with early parental nurturance. Our results provide neuroimaging evidence supporting the important role of warm parental care during early childhood for brain maturation.

  4. Brain morphometry shows effects of long-term musical practice in middle-aged keyboard players

    PubMed Central

    Gärtner, H.; Minnerop, M.; Pieperhoff, P.; Schleicher, A.; Zilles, K.; Altenmüller, E.; Amunts, K.

    2013-01-01

    To what extent does musical practice change the structure of the brain? In order to understand how long-lasting musical training changes brain structure, 20 male right-handed, middle-aged professional musicians and 19 matched controls were investigated. Among the musicians, 13 were pianists or organists with intensive practice regimes. The others were either music teachers at schools or string instrumentalists, who had studied the piano at least as a subsidiary subject, and practiced less intensively. The study was based on T1-weighted MR images, which were analyzed using deformation-based morphometry. Cytoarchitectonic probabilistic maps of cortical areas and subcortical nuclei as well as myeloarchitectonic maps of fiber tracts were used as regions of interest to compare volume differences in the brains of musicians and controls. In addition, maps of voxel-wise volume differences were computed and analyzed. Musicians showed a significantly better symmetric motor performance as well as a greater capability of controlling hand independence than controls. Structural MRI-data revealed significant volumetric differences between the brains of keyboard players, who practiced intensively and controls in right sensorimotor areas and the corticospinal tract as well as in the entorhinal cortex and the left superior parietal lobule. Moreover, they showed also larger volumes in a comparable set of regions than the less intensively practicing musicians. The structural changes in the sensory and motor systems correspond well to the behavioral results, and can be interpreted in terms of plasticity as a result of intensive motor training. Areas of the superior parietal lobule and the entorhinal cortex might be enlarged in musicians due to their special skills in sight-playing and memorizing of scores. In conclusion, intensive and specific musical training seems to have an impact on brain structure, not only during the sensitive period of childhood but throughout life. PMID:24069009

  5. Cognitive function and brain structure in females with a history of adolescent-onset anorexia nervosa.

    PubMed

    Chui, Harold T; Christensen, Bruce K; Zipursky, Robert B; Richards, Blake A; Hanratty, M Katherine; Kabani, Noor J; Mikulis, David J; Katzman, Debra K

    2008-08-01

    Abnormalities in cognitive function and brain structure have been reported in acutely ill adolescents with anorexia nervosa, but whether these abnormalities persist or are reversible in the context of weight restoration remains unclear. Brain structure and cognitive function in female subjects with adolescent-onset anorexia nervosa assessed at long-term follow-up were studied in comparison with healthy female subjects, and associations with clinical outcome were investigated. Sixty-six female subjects (aged 21.3 +/- 2.3 years) who had a diagnosis of adolescent-onset anorexia nervosa and treated 6.5 +/- 1.7 years earlier in a tertiary care hospital and 42 healthy female control subjects (aged 20.7 +/- 2.5 years) were assessed. All participants underwent a clinical examination, magnetic resonance brain scan, and cognitive evaluation. Clinical data were analyzed first as a function of weight recovery (n = 14, <85% ideal body weight; n = 52, >or=85% ideal body weight) and as a function of menstrual status (n = 18, absent/irregular menses; n = 29, oral contraceptive pill; n = 19, regular menses). Group comparisons were made across structural brain volumes and cognitive scores. Compared with control subjects, participants with anorexia nervosa who remained at low weight had larger lateral ventricles. Twenty-four-hour urinary free-cortisol levels were positively correlated with volumes of the temporal horns of the lateral ventricles and negatively correlated with volumes of the hippocampi in clinical participants. Participants who were amenorrheic or had irregular menses showed significant cognitive deficits across a broad range of many domains. Female subjects with adolescent-onset anorexia nervosa showed abnormal cognitive function and brain structure compared with healthy individuals despite an extended period since diagnosis. To our knowledge, this is the first study to report a specific relationship between menstrual function and cognitive function in this patient population. Possible mechanisms underlying neural and cognitive deficits with anorexia nervosa are discussed. Additional examination of the effects of estrogen on cognitive function in female subjects with anorexia nervosa is necessary.

  6. Brain morphometry shows effects of long-term musical practice in middle-aged keyboard players.

    PubMed

    Gärtner, H; Minnerop, M; Pieperhoff, P; Schleicher, A; Zilles, K; Altenmüller, E; Amunts, K

    2013-01-01

    To what extent does musical practice change the structure of the brain? In order to understand how long-lasting musical training changes brain structure, 20 male right-handed, middle-aged professional musicians and 19 matched controls were investigated. Among the musicians, 13 were pianists or organists with intensive practice regimes. The others were either music teachers at schools or string instrumentalists, who had studied the piano at least as a subsidiary subject, and practiced less intensively. The study was based on T1-weighted MR images, which were analyzed using deformation-based morphometry. Cytoarchitectonic probabilistic maps of cortical areas and subcortical nuclei as well as myeloarchitectonic maps of fiber tracts were used as regions of interest to compare volume differences in the brains of musicians and controls. In addition, maps of voxel-wise volume differences were computed and analyzed. Musicians showed a significantly better symmetric motor performance as well as a greater capability of controlling hand independence than controls. Structural MRI-data revealed significant volumetric differences between the brains of keyboard players, who practiced intensively and controls in right sensorimotor areas and the corticospinal tract as well as in the entorhinal cortex and the left superior parietal lobule. Moreover, they showed also larger volumes in a comparable set of regions than the less intensively practicing musicians. The structural changes in the sensory and motor systems correspond well to the behavioral results, and can be interpreted in terms of plasticity as a result of intensive motor training. Areas of the superior parietal lobule and the entorhinal cortex might be enlarged in musicians due to their special skills in sight-playing and memorizing of scores. In conclusion, intensive and specific musical training seems to have an impact on brain structure, not only during the sensitive period of childhood but throughout life.

  7. Investigating brain community structure abnormalities in bipolar disorder using path length associated community estimation.

    PubMed

    Gadelkarim, Johnson J; Ajilore, Olusola; Schonfeld, Dan; Zhan, Liang; Thompson, Paul M; Feusner, Jamie D; Kumar, Anand; Altshuler, Lori L; Leow, Alex D

    2014-05-01

    In this article, we present path length associated community estimation (PLACE), a comprehensive framework for studying node-level community structure. Instead of the well-known Q modularity metric, PLACE utilizes a novel metric, Ψ(PL), which measures the difference between intercommunity versus intracommunity path lengths. We compared community structures in human healthy brain networks generated using these two metrics and argued that Ψ(PL) may have theoretical advantages. PLACE consists of the following: (1) extracting community structure using top-down hierarchical binary trees, where a branch at each bifurcation denotes a collection of nodes that form a community at that level, (2) constructing and assessing mean group community structure, and (3) detecting node-level changes in community between groups. We applied PLACE and investigated the structural brain networks obtained from a sample of 25 euthymic bipolar I subjects versus 25 gender- and age-matched healthy controls. Results showed community structural differences in posterior default mode network regions, with the bipolar group exhibiting left-right decoupling. Copyright © 2013 Wiley Periodicals, Inc.

  8. Regional distribution of calretinin and calbindin-D28k expression in the brain of the urodele amphibian Pleurodeles waltl during embryonic and larval development.

    PubMed

    Joven, Alberto; Morona, Ruth; Moreno, Nerea; González, Agustín

    2013-07-01

    The sequence of appearance of calretinin and calbindin-D28k immunoreactive (CRir and CBir, respectively) cells and fibers has been studied in the brain of the urodele amphibian Pleurodeles waltl. Embryonic, larval and juvenile stages were studied. The early expression and the dynamics of the distribution of CBir and CRir structures have been used as markers for developmental aspects of distinct neuronal populations, highlighting the accurate extent of many regions in the developing brain, not observed on the basis of cytoarchitecture alone. CR and, to a lesser extent, CB are expressed early in the central nervous system and show a progressively increasing expression from the embryonic stages throughout the larval life and, in general, the labeled structures in the developing brain retain their ability to express these proteins in the adult brain. The onset of CRir cells primarily served to follow the development of the olfactory bulbs, subpallium, thalamus, alar hypothalamus, mesencephalic tegmentum, and distinct cell populations in the rhombencephalic reticular formation. CBir cells highlighted the development of, among others, the pallidum, hypothalamus, dorsal habenula, midbrain tegmentum, cerebellum, and central gray of the rostral rhombencephalon. However, it was the relative and mostly segregated distribution of both proteins in distinct cell populations which evidenced the developing regionalization of the brain. The results have shown the usefulness in neuroanatomy of the analysis during development of the onset of CBir and CRir structures, but the comparison with previous data has shown extensive variability across vertebrate classes. Therefore, one should be cautious when comparing possible homologue structures across species only on the basis of the expression of these proteins, due to the variation of the content of calcium-binding proteins observed in well-established homologous regions in the brain of different vertebrates.

  9. Meta-analysis of associations between childhood adversity and hippocampus and amygdala volume in non-clinical and general population samples.

    PubMed

    Calem, Maria; Bromis, Konstantinos; McGuire, Philip; Morgan, Craig; Kempton, Matthew J

    2017-01-01

    Studies of psychiatric populations have reported associations between childhood adversity and volumes of stress-related brain structures. This meta-analysis investigated these associations in non-clinical samples and therefore independent of the effects of severe mental health difficulties and their treatment. The MEDLINE database was searched for magnetic resonance imaging studies measuring brain structure in adults with and without childhood adversity. Fifteen eligible papers (1781 participants) reporting hippocampal volumes and/or amygdala volumes were pooled using a random effects meta-analysis. Those with childhood adversity had lower hippocampus volumes (hedges g = - 0.15, p  = 0.010). Controlling for gender, this difference became less evident (hedges g = - 0.12, p  = 0.124). This association differed depending on whether studies included participants with some psychopathology, though this may be due to differences in the type of adversity these studies examined. There was no strong evidence of any differences in amygdala volume. Childhood adversity may have only a modest impact on stress-related brain structures in those without significant mental health difficulties.

  10. Surface displacement based shape analysis of central brain structures in preterm-born children

    NASA Astrophysics Data System (ADS)

    Garg, Amanmeet; Grunau, Ruth E.; Popuri, Karteek; Miller, Steven; Bjornson, Bruce; Poskitt, Kenneth J.; Beg, Mirza Faisal

    2016-03-01

    Many studies using T1 magnetic resonance imaging (MRI) data have found associations between changes in global metrics (e.g. volume) of brain structures and preterm birth. In this work, we use the surface displacement feature extracted from the deformations of the surface models of the third ventricle, fourth ventricle and brainstem to capture the variation in shape in these structures at 8 years of age that may be due to differences in the trajectory of brain development as a result of very preterm birth (24-32 weeks gestation). Understanding the spatial patterns of shape alterations in these structures in children who were born very preterm as compared to those who were born at full term may lead to better insights into mechanisms of differing brain development between these two groups. The T1 MRI data for the brain was acquired from children born full term (FT, n=14, 8 males) and preterm (PT, n=51, 22 males) at age 8-years. Accurate segmentation labels for these structures were obtained via a multi-template fusion based segmentation method. A high dimensional non-rigid registration algorithm was utilized to register the target segmentation labels to a set of segmentation labels defined on an average-template. The surface displacement data for the brainstem and the third ventricle were found to be significantly different (p < 0.05) between the PT and FT groups. Further, spatially localized clusters with inward and outward deformation were found to be associated with lower gestational age. The results from this study present a shape analysis method for pediatric MRI data and reveal shape changes that may be due to preterm birth.

  11. Exploring Deep Space - Uncovering the Anatomy of Periventricular Structures to Reveal the Lateral Ventricles of the Human Brain.

    PubMed

    Colibaba, Alexandru S; Calma, Aicee Dawn B; Webb, Alexandra L; Valter, Krisztina

    2017-10-22

    Anatomy students are typically provided with two-dimensional (2D) sections and images when studying cerebral ventricular anatomy and students find this challenging. Because the ventricles are negative spaces located deep within the brain, the only way to understand their anatomy is by appreciating their boundaries formed by related structures. Looking at a 2D representation of these spaces, in any of the cardinal planes, will not enable visualisation of all of the structures that form the boundaries of the ventricles. Thus, using 2D sections alone requires students to compute their own mental image of the 3D ventricular spaces. The aim of this study was to develop a reproducible method for dissecting the human brain to create an educational resource to enhance student understanding of the intricate relationships between the ventricles and periventricular structures. To achieve this, we created a video resource that features a step-by-step guide using a fiber dissection method to reveal the lateral and third ventricles together with the closely related limbic system and basal ganglia structures. One of the advantages of this method is that it enables delineation of the white matter tracts that are difficult to distinguish using other dissection techniques. This video is accompanied by a written protocol that provides a systematic description of the process to aid in the reproduction of the brain dissection. This package offers a valuable anatomy teaching resource for educators and students alike. By following these instructions educators can create teaching resources and students can be guided to produce their own brain dissection as a hands-on practical activity. We recommend that this video guide be incorporated into neuroanatomy teaching to enhance student understanding of the morphology and clinical relevance of the ventricles.

  12. Immunological biomarkers associated with brain structure and executive function in late-life depression: exploratory pilot study.

    PubMed

    Smagula, Stephen F; Lotrich, Francis E; Aizenstein, Howard J; Diniz, Breno S; Krystek, Jeffrey; Wu, Gregory F; Mulsant, Benoit H; Butters, Meryl A; Reynolds, Charles F; Lenze, Eric J

    2017-06-01

    Several immunological biomarkers are altered in late-life major depressive disorder (LLD). Immunological alterations could contribute to LLD's consequences, but little is known about the relations between specific immunological biomarkers and brain health in LLD. We performed an exploratory pilot study to identify, from several candidates, the specific immunological biomarkers related to important aspects of brain health that are altered in LLD (brain structure and executive function). Adults (n = 31) were at least 60 years old and had major depressive disorder. A multiplex immunoassay assessed 13 immunological biomarkers, and we examined their associations with structural MRI (grey matter volume and white matter hyperintensity volume (WMH)) and executive function (Color-Word Interference and Trail-Making tests) measures. Vascular endothelial growth factor (VEGF) and the chemokine eotaxin had significant negative associations with grey matter volume (VEGF: n = 31, r = -0.65; eotaxin: n = 29, r = -0.44). Tumor necrosis factor alpha (TNF-α) had a significant positive relationship with WMHs (n = 30, r = 0.52); interferon-γ (IFN-γ) and macrophage inflammatory protein-1α (MIP-1α) were also significantly associated with WMHs (IFN-γ: n = 31, r = 0.48; MIP-1α: n = 29, r = 0.45). Only eotaxin was associated with executive function (set-shifting performance as measured with the Trail-making test: n = 33, r = -0.43). Immunological markers are associated with brain structure in LLD. We found the immunological correlates of grey and white matter differ. Prospective studies are needed to evaluate whether these immunological correlates of brain health increase the risk of LLD's consequences. Eotaxin, which correlated with both grey matter volume and set-shifting performance, may be particularly relevant to neurodegeneration and cognition in LLD. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Alterations in brain temperatures as a possible cause of migraine headache.

    PubMed

    Horváth, Csilla

    2014-05-01

    Migraine is a debilitating disease with a recurring generally unilateral headache and concomitant symptoms of nausea, vomiting and photo- and/or phonophobia that affects some 11-18% of the population. Most of the mechanisms previously put forward to explain the attacks have been questioned or give an explanation only some of the symptoms. Moreover, the best drugs for treatment are still the 20-year-old triptans, which have serious limitations as regards both efficacy and tolerability. As the dura and some cranial vessels are the only intracranial structures capable of pain sensations, a vascular theory of migraine emerged, but has been debated. Recent theories identified the hyperexcitability of structures involved in pain transmission, such as the trigeminal system or the cortex, or an abnormal modulatory function of the brainstem. However, there is ongoing scientific debate concerning these theories, neither of which is fully capable of explaining the occurrence of a migraine attack. The present article puts forward a hypothesis of the possibility of abnormal temperature regulation in certain regions or the overall brain in migraineurs, the attack being a defense mechanism to prevent neuronal damage. Few examinations have been made of temperature regulation in the human brain. It lacks the carotid rete, a vascular heat exchanger that serves in many animals to provide constant brain temperature. The human brain contains a high density of neurons with a considerable energy demand that is converted to heat. The human brain has a higher temperature than other parts of the body and needs continuous cooling. Recent studies revealed unexpectedly great variations in temperature of various structures of the brain and considerable changes in response to functional activation. There is various evidence in support of the hypothesis that accumulated heat in some structure or the overall brain may be behind the symptoms observed, such as a platelet abnormality, a decreased serotonin content, and dural "inflammation" including vasodilation and brainstem activation. The hypothesis postulates that a migraine attack serves to restore the brain temperature. Abnormally low temperatures in the brain can also result in headache. Surprisingly, no systematic examination of brain temperature changes in migraineurs has been published. Certain case reports support the present hypothesis. Various noninvasive technologies (e.g. MR) capable of monitoring brain temperature are available. If a systematic examination of local brain temperature revealed abnormalities in structures presumed to be involved in migraine, that would increase our understanding of the disease and trigger the development of improved treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. The function of neurocognitive networks. Comment on “Understanding brain networks and brain organization” by Pessoa

    NASA Astrophysics Data System (ADS)

    Bressler, Steven L.

    2014-09-01

    Pessoa [5] has performed a valuable service by reviewing the extant literature on brain networks and making a number of interesting proposals about their cognitive function. The term function is at the core of understanding the brain networks of cognition, or neurocognitive networks (NCNs) [1]. The great Russian neuropsychologist, Luria [4], defined brain function as the common task executed by a distributed brain network of complex dynamic structures united by the demands of cognition. Casting Luria in a modern light, we can say that function emerges from the interactions of brain regions in NCNs as they dynamically self-organize according to cognitive demands. Pessoa rightly details the mapping between brain function and structure, emphasizing both its pluripotency (one structure having multiple functions) and degeneracy (many structures having the same function). However, he fails to consider the potential importance of a one-to-one mapping between NCNs and function. If NCNs are uniquely composed of specific collections of brain areas, then each NCN has a unique function determined by that composition.

  15. Heritability of changes in brain volume over time in twin pairs discordant for schizophrenia.

    PubMed

    Brans, Rachel G H; van Haren, Neeltje E M; van Baal, G Caroline M; Schnack, Hugo G; Kahn, René S; Hulshoff Pol, Hilleke E

    2008-11-01

    Structural brain abnormalities have consistently been found in schizophrenia, with increased familial risk for the disease associated with these abnormalities. Some brain volume changes are progressive over the course of the illness. Whether these progressive brain volume changes are mediated by genetic or disease-related factors is unknown. To investigate whether genetic and/or environmental factors are associated with progressive brain volume changes in schizophrenia. Longitudinal 5-year follow-up in monozygotic (MZ) and dizygotic (DZ) twin pairs discordant for schizophrenia and healthy comparison twin pairs using brain magnetic resonance imaging. Participants were recruited from the twin pair cohort at the University Medical Center Utrecht. A total of 92 participants completed the study: 9 MZ and 10 DZ twin pairs discordant for schizophrenia and 14 MZ and 13 DZ healthy twin pairs. Percentage volume changes of the whole brain; cerebral gray and white matter of the frontal, temporal, parietal, and occipital lobes; cerebellum; and lateral and third ventricles over time between and within twin pairs were compared using repeated measures analysis of covariance. Structural equation modeling was applied to estimate contributions of additive genetic and common and unique environmental factors. Significant decreases over time in whole brain and frontal and temporal lobe volumes were found in patients with schizophrenia and their unaffected co-twins compared with control twins. Bivariate structural equation modeling using cross-trait/cross-twin correlations revealed significant additive genetic influences on the correlations between schizophrenia liability and progressive whole brain (66%; 95% confidence interval [CI], 51%-100%), frontal lobe (76%; 95% CI, 54%-100%), and temporal lobe (79%; CI, 56%-100%) volume change. The progressive brain volume loss found in patients with schizophrenia and their unaffected co-twins is at least partly attributable to genetic factors related to the illness.

  16. High-contrast differentiation resolution 3D imaging of rodent brain by X-ray computed microtomography

    NASA Astrophysics Data System (ADS)

    Zikmund, T.; Novotná, M.; Kavková, M.; Tesařová, M.; Kaucká, M.; Szarowská, B.; Adameyko, I.; Hrubá, E.; Buchtová, M.; Dražanová, E.; Starčuk, Z.; Kaiser, J.

    2018-02-01

    The biomedically focused brain research is largely performed on laboratory mice considering a high homology between the human and mouse genomes. A brain has an intricate and highly complex geometrical structure that is hard to display and analyse using only 2D methods. Applying some fast and efficient methods of brain visualization in 3D will be crucial for the neurobiology in the future. A post-mortem analysis of experimental animals' brains usually involves techniques such as magnetic resonance and computed tomography. These techniques are employed to visualize abnormalities in the brains' morphology or reparation processes. The X-ray computed microtomography (micro CT) plays an important role in the 3D imaging of internal structures of a large variety of soft and hard tissues. This non-destructive technique is applied in biological studies because the lab-based CT devices enable to obtain a several-micrometer resolution. However, this technique is always used along with some visualization methods, which are based on the tissue staining and thus differentiate soft tissues in biological samples. Here, a modified chemical contrasting protocol of tissues for a micro CT usage is introduced as the best tool for ex vivo 3D imaging of a post-mortem mouse brain. This way, the micro CT provides a high spatial resolution of the brain microscopic anatomy together with a high tissue differentiation contrast enabling to identify more anatomical details in the brain. As the micro CT allows a consequent reconstruction of the brain structures into a coherent 3D model, some small morphological changes can be given into context of their mutual spatial relationships.

  17. Syringe Injectable Electronics: Precise Targeted Delivery with Quantitative Input/Output Connectivity.

    PubMed

    Hong, Guosong; Fu, Tian-Ming; Zhou, Tao; Schuhmann, Thomas G; Huang, Jinlin; Lieber, Charles M

    2015-10-14

    Syringe-injectable mesh electronics with tissue-like mechanical properties and open macroporous structures is an emerging powerful paradigm for mapping and modulating brain activity. Indeed, the ultraflexible macroporous structure has exhibited unprecedented minimal/noninvasiveness and the promotion of attractive interactions with neurons in chronic studies. These same structural features also pose new challenges and opportunities for precise targeted delivery in specific brain regions and quantitative input/output (I/O) connectivity needed for reliable electrical measurements. Here, we describe new results that address in a flexible manner both of these points. First, we have developed a controlled injection approach that maintains the extended mesh structure during the "blind" injection process, while also achieving targeted delivery with ca. 20 μm spatial precision. Optical and microcomputed tomography results from injections into tissue-like hydrogel, ex vivo brain tissue, and in vivo brains validate our basic approach and demonstrate its generality. Second, we present a general strategy to achieve up to 100% multichannel I/O connectivity using an automated conductive ink printing methodology to connect the mesh electronics and a flexible flat cable, which serves as the standard "plug-in" interface to measurement electronics. Studies of resistance versus printed line width were used to identify optimal conditions, and moreover, frequency-dependent noise measurements show that the flexible printing process yields values comparable to commercial flip-chip bonding technology. Our results address two key challenges faced by syringe-injectable electronics and thereby pave the way for facile in vivo applications of injectable mesh electronics as a general and powerful tool for long-term mapping and modulation of brain activity in fundamental neuroscience through therapeutic biomedical studies.

  18. Age Related Changes in Topological Properties of Brain Functional Network and Structural Connectivity.

    PubMed

    Shah, Chandan; Liu, Jia; Lv, Peilin; Sun, Huaiqiang; Xiao, Yuan; Liu, Jieke; Zhao, Youjin; Zhang, Wenjing; Yao, Li; Gong, Qiyong; Lui, Su

    2018-01-01

    Introduction: There are still uncertainties about the true nature of age related changes in topological properties of the brain functional network and its structural connectivity during various developmental stages. In this cross- sectional study, we investigated the effects of age and its relationship with regional nodal properties of the functional brain network and white matter integrity. Method: DTI and fMRI data were acquired from 458 healthy Chinese participants ranging from age 8 to 81 years. Tractography was conducted on the DTI data using FSL. Graph Theory analyses were conducted on the functional data yielding topological properties of the functional network using SPM and GRETNA toolbox. Two multiple regressions were performed to investigate the effects of age on nodal topological properties of the functional brain network and white matter integrity. Result: For the functional studies, we observed that regional nodal characteristics such as node betweenness were decreased while node degree and node efficiency was increased in relation to increasing age. Perversely, we observed that the relationship between nodal topological properties and fasciculus structures were primarily positive for nodal betweenness but negative for nodal degree and nodal efficiency. Decrease in functional nodal betweenness was primarily located in superior frontal lobe, right occipital lobe and the global hubs. These brain regions also had both direct and indirect anatomical relationships with the 14 fiber bundles. A linear age related decreases in the Fractional anisotropy (FA) value was found in the callosum forceps minor. Conclusion: These results suggests that age related differences were more pronounced in the functional than in structural measure indicating these measures do not have direct one-to-one mapping. Our study also indicates that the fiber bundles with longer fibers exhibited a more pronounced effect on the properties of functional network.

  19. Structural Network Disorganization in Subjects at Clinical High Risk for Psychosis.

    PubMed

    Schmidt, André; Crossley, Nicolas A; Harrisberger, Fabienne; Smieskova, Renata; Lenz, Claudia; Riecher-Rössler, Anita; Lang, Undine E; McGuire, Philip; Fusar-Poli, Paolo; Borgwardt, Stefan

    2017-05-01

    Previous network studies in chronic schizophrenia patients revealed impaired structural organization of the brain's rich-club members, a set of highly interconnected hub regions that play an important integrative role for global brain communication. Moreover, impaired rich-club connectivity has also been found in unaffected siblings of schizophrenia patients, suggesting that abnormal rich-club connectivity is related to familiar, possibly reflecting genetic, vulnerability for schizophrenia. However, no study has yet investigated whether structural rich-club organization is also impaired in individuals with a clinical risk syndrome for psychosis. Diffusion tensor imaging and probabilistic tractography was used to construct structural whole-brain networks in 24 healthy controls and 24 subjects with an at-risk mental state (ARMS). Graph theory was applied to quantify the structural rich-club organization and global network properties. ARMS subjects revealed a significantly altered structural rich-club organization compared with the control group. The disruption of rich-club organization was associated with the severity of negative psychotic symptoms and led to an elevated level of modularity in ARMS subjects. This study shows that abnormal structural rich-club organization is already evident in clinical high-risk subjects for psychosis and further demonstrates the impact of rich-club disorganization on global network communication. Together with previous evidence in chronic schizophrenia patients and unaffected siblings, our findings suggest that abnormal structural rich-club organization may reflect an endophenotypic marker of psychosis. © The Author 2016. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center.

  20. Microhabitat use, trophic patterns, and the evolution of brain structure in African cichlids.

    PubMed

    Huber, R; van Staaden, M J; Kaufman, L S; Liem, K F

    1997-01-01

    The species assemblages of cichlids in the three largest African Great Lakes are among the richest concentrations of vertebrate species on earth. The faunas are broadly similar in terms of trophic diversity, species richness, rates of endemism, and taxonomic composition, yet they are historically independent of each other. Hence, they offer a true and unique evolutionary experiment to test hypotheses concerning the mutual dependencies of ecology and brain morphology. We examined the brains of 189 species of cichlids from the three large lakes: Victoria, Tanganyika, and Malawi. A first paper demonstrated that patterns of evolutionary change in cichlid brain morphology are similar across taxonomic boundaries as well as across the three lakes [van Staaden et al., 1995 ZACS 98: 165-178]. Here we report a close relationship between the relative sizes of various brain structures and variables related to the utilization of habitat and prey. Causality is difficult to assign in this context, nonetheless, prey size and agility, turbidity levels, depth, and substrate complexity are all highly predictive of variation in brain structure. Areas associated with primary sensory functions such as vision and taste relate significantly to differences in feeding habits. Turbidity and depth are closely associated with differences in eye size, and large eyes are associated with species that pick plankton from the water column. Piscivorous taxa and others that utilize motile prey are characterized by a well developed optic tectum and a large cerebellum compared to species that prey on molluscs or plants. Structures relating to taste are well developed in species feeding on benthos over muddy or sandy substrates. The data militated against the existence of compensatory changes in brain structure. Thus enhanced development of a particular function is generally not accompanied by a parallel reduction of structures related to other modalities. Although genetic and environmental influences during ontogeny of the brain cannot be isolated, this study provides a rich source of hypotheses concerning the way the nervous system functions under various environmental conditions and how it has responded to natural selection.

Top