NASA Astrophysics Data System (ADS)
Kontos, Despina; Xing, Ye; Bakic, Predrag R.; Conant, Emily F.; Maidment, Andrew D. A.
2010-03-01
We performed a study to compare methods for volumetric breast density estimation in digital mammography (DM) and magnetic resonance imaging (MRI) for a high-risk population of women. DM and MRI images of the unaffected breast from 32 women with recently detected abnormalities and/or previously diagnosed breast cancer (age range 31-78 yrs, mean 50.3 yrs) were retrospectively analyzed. DM images were analyzed using QuantraTM (Hologic Inc). The MRI images were analyzed using a fuzzy-C-means segmentation algorithm on the T1 map. Both methods were compared to Cumulus (Univ. Toronto). Volumetric breast density estimates from DM and MRI are highly correlated (r=0.90, p<=0.001). The correlation between the volumetric and the area-based density measures is lower and depends on the training background of the Cumulus software user (r=0.73-84, p<=0.001). In terms of absolute values, MRI provides the lowest volumetric estimates (mean=14.63%), followed by the DM volumetric (mean=22.72%) and area-based measures (mean=29.35%). The MRI estimates of the fibroglandular volume are statistically significantly lower than the DM estimates for women with very low-density breasts (p<=0.001). We attribute these differences to potential partial volume effects in MRI and differences in the computational aspects of the image analysis methods in MRI and DM. The good correlation between the volumetric and the area-based measures, shown to correlate with breast cancer risk, suggests that both DM and MRI volumetric breast density measures can aid in breast cancer risk assessment. Further work is underway to fully-investigate the association between volumetric breast density measures and breast cancer risk.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pursley, Jennifer, E-mail: jpursley@mgh.harvard.edu; Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA; Damato, Antonio L.
The purpose of this study was to investigate class solutions using RapidArc volumetric-modulated arc therapy (VMAT) planning for ipsilateral and bilateral head and neck (H&N) irradiation, and to compare dosimetric results with intensity-modulated radiotherapy (IMRT) plans. A total of 14 patients who received ipsilateral and 10 patients who received bilateral head and neck irradiation were retrospectively replanned with several volumetric-modulated arc therapy techniques. For ipsilateral neck irradiation, the volumetric-modulated arc therapy techniques included two 360° arcs, two 360° arcs with avoidance sectors around the contralateral parotid, two 260° or 270° arcs, and two 210° arcs. For bilateral neck irradiation, themore » volumetric-modulated arc therapy techniques included two 360° arcs, two 360° arcs with avoidance sectors around the shoulders, and 3 arcs. All patients had a sliding-window-delivery intensity-modulated radiotherapy plan that was used as the benchmark for dosimetric comparison. For ipsilateral neck irradiation, a volumetric-modulated arc therapy technique using two 360° arcs with avoidance sectors around the contralateral parotid was dosimetrically comparable to intensity-modulated radiotherapy, with improved conformity (conformity index = 1.22 vs 1.36, p < 0.04) and lower contralateral parotid mean dose (5.6 vs 6.8 Gy, p < 0.03). For bilateral neck irradiation, 3-arc volumetric-modulated arc therapy techniques were dosimetrically comparable to intensity-modulated radiotherapy while also avoiding irradiation through the shoulders. All volumetric-modulated arc therapy techniques required fewer monitor units than sliding-window intensity-modulated radiotherapy to deliver treatment, with an average reduction of 35% for ipsilateral plans and 67% for bilateral plans. Thus, for ipsilateral head and neck irradiation a volumetric-modulated arc therapy technique using two 360° arcs with avoidance sectors around the contralateral parotid is recommended. For bilateral neck irradiation, 2- or 3-arc techniques are dosimetrically comparable to intensity-modulated radiotherapy, but more work is needed to determine the optimal approaches by disease site.« less
Pursley, Jennifer; Damato, Antonio L; Czerminska, Maria A; Margalit, Danielle N; Sher, David J; Tishler, Roy B
2017-01-01
The purpose of this study was to investigate class solutions using RapidArc volumetric-modulated arc therapy (VMAT) planning for ipsilateral and bilateral head and neck (H&N) irradiation, and to compare dosimetric results with intensity-modulated radiotherapy (IMRT) plans. A total of 14 patients who received ipsilateral and 10 patients who received bilateral head and neck irradiation were retrospectively replanned with several volumetric-modulated arc therapy techniques. For ipsilateral neck irradiation, the volumetric-modulated arc therapy techniques included two 360° arcs, two 360° arcs with avoidance sectors around the contralateral parotid, two 260° or 270° arcs, and two 210° arcs. For bilateral neck irradiation, the volumetric-modulated arc therapy techniques included two 360° arcs, two 360° arcs with avoidance sectors around the shoulders, and 3 arcs. All patients had a sliding-window-delivery intensity-modulated radiotherapy plan that was used as the benchmark for dosimetric comparison. For ipsilateral neck irradiation, a volumetric-modulated arc therapy technique using two 360° arcs with avoidance sectors around the contralateral parotid was dosimetrically comparable to intensity-modulated radiotherapy, with improved conformity (conformity index = 1.22 vs 1.36, p < 0.04) and lower contralateral parotid mean dose (5.6 vs 6.8Gy, p < 0.03). For bilateral neck irradiation, 3-arc volumetric-modulated arc therapy techniques were dosimetrically comparable to intensity-modulated radiotherapy while also avoiding irradiation through the shoulders. All volumetric-modulated arc therapy techniques required fewer monitor units than sliding-window intensity-modulated radiotherapy to deliver treatment, with an average reduction of 35% for ipsilateral plans and 67% for bilateral plans. Thus, for ipsilateral head and neck irradiation a volumetric-modulated arc therapy technique using two 360° arcs with avoidance sectors around the contralateral parotid is recommended. For bilateral neck irradiation, 2- or 3-arc techniques are dosimetrically comparable to intensity-modulated radiotherapy, but more work is needed to determine the optimal approaches by disease site. Copyright © 2017 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
Comparison of four software packages for CT lung volumetry in healthy individuals.
Nemec, Stefan F; Molinari, Francesco; Dufresne, Valerie; Gosset, Natacha; Silva, Mario; Bankier, Alexander A
2015-06-01
To compare CT lung volumetry (CTLV) measurements provided by different software packages, and to provide normative data for lung densitometric measurements in healthy individuals. This retrospective study included 51 chest CTs of 17 volunteers (eight men and nine women; mean age, 30 ± 6 years), who underwent spirometrically monitored CT at total lung capacity (TLC), functional residual capacity (FRC), and mean inspiratory capacity (MIC). Volumetric differences assessed by four commercial software packages were compared with analysis of variance (ANOVA) for repeated measurements and benchmarked against the threshold for acceptable variability between spirometric measurements. Mean lung density (MLD) and parenchymal heterogeneity (MLD-SD) were also compared with ANOVA. Volumetric differences ranged from 12 to 213 ml (0.20 % to 6.45 %). Although 16/18 comparisons (among four software packages at TLC, MIC, and FRC) were statistically significant (P < 0.001 to P = 0.004), only 3/18 comparisons, one at MIC and two at FRC, exceeded the spirometry variability threshold. MLD and MLD-SD significantly increased with decreasing volumes, and were significantly larger in lower compared to upper lobes (P < 0.001). Lung volumetric differences provided by different software packages are small. These differences should not be interpreted based on statistical significance alone, but together with absolute volumetric differences. • Volumetric differences, assessed by different CTLV software, are small but statistically significant. • Volumetric differences are smaller at TLC than at MIC and FRC. • Volumetric differences rarely exceed spirometric repeatability thresholds at MIC and FRC. • Differences between CTLV measurements should be interpreted based on comparison of absolute differences. • MLD increases with decreasing volumes, and is larger in lower compared to upper lobes.
Multiple sparse volumetric priors for distributed EEG source reconstruction.
Strobbe, Gregor; van Mierlo, Pieter; De Vos, Maarten; Mijović, Bogdan; Hallez, Hans; Van Huffel, Sabine; López, José David; Vandenberghe, Stefaan
2014-10-15
We revisit the multiple sparse priors (MSP) algorithm implemented in the statistical parametric mapping software (SPM) for distributed EEG source reconstruction (Friston et al., 2008). In the present implementation, multiple cortical patches are introduced as source priors based on a dipole source space restricted to a cortical surface mesh. In this note, we present a technique to construct volumetric cortical regions to introduce as source priors by restricting the dipole source space to a segmented gray matter layer and using a region growing approach. This extension allows to reconstruct brain structures besides the cortical surface and facilitates the use of more realistic volumetric head models including more layers, such as cerebrospinal fluid (CSF), compared to the standard 3-layered scalp-skull-brain head models. We illustrated the technique with ERP data and anatomical MR images in 12 subjects. Based on the segmented gray matter for each of the subjects, cortical regions were created and introduced as source priors for MSP-inversion assuming two types of head models. The standard 3-layered scalp-skull-brain head models and extended 4-layered head models including CSF. We compared these models with the current implementation by assessing the free energy corresponding with each of the reconstructions using Bayesian model selection for group studies. Strong evidence was found in favor of the volumetric MSP approach compared to the MSP approach based on cortical patches for both types of head models. Overall, the strongest evidence was found in favor of the volumetric MSP reconstructions based on the extended head models including CSF. These results were verified by comparing the reconstructed activity. The use of volumetric cortical regions as source priors is a useful complement to the present implementation as it allows to introduce more complex head models and volumetric source priors in future studies. Copyright © 2014 Elsevier Inc. All rights reserved.
2013-01-01
Background Intravascular ultrasound (IVUS) is a standard imaging modality for identification of plaque formation in the coronary and peripheral arteries. Volumetric three-dimensional (3D) IVUS visualization provides a powerful tool to overcome the limited comprehensive information of 2D IVUS in terms of complex spatial distribution of arterial morphology and acoustic backscatter information. Conventional 3D IVUS techniques provide sub-optimal visualization of arterial morphology or lack acoustic information concerning arterial structure due in part to low quality of image data and the use of pixel-based IVUS image reconstruction algorithms. In the present study, we describe a novel volumetric 3D IVUS reconstruction algorithm to utilize IVUS signal data and a shape-based nonlinear interpolation. Methods We developed an algorithm to convert a series of IVUS signal data into a fully volumetric 3D visualization. Intermediary slices between original 2D IVUS slices were generated utilizing the natural cubic spline interpolation to consider the nonlinearity of both vascular structure geometry and acoustic backscatter in the arterial wall. We evaluated differences in image quality between the conventional pixel-based interpolation and the shape-based nonlinear interpolation methods using both virtual vascular phantom data and in vivo IVUS data of a porcine femoral artery. Volumetric 3D IVUS images of the arterial segment reconstructed using the two interpolation methods were compared. Results In vitro validation and in vivo comparative studies with the conventional pixel-based interpolation method demonstrated more robustness of the shape-based nonlinear interpolation algorithm in determining intermediary 2D IVUS slices. Our shape-based nonlinear interpolation demonstrated improved volumetric 3D visualization of the in vivo arterial structure and more realistic acoustic backscatter distribution compared to the conventional pixel-based interpolation method. Conclusions This novel 3D IVUS visualization strategy has the potential to improve ultrasound imaging of vascular structure information, particularly atheroma determination. Improved volumetric 3D visualization with accurate acoustic backscatter information can help with ultrasound molecular imaging of atheroma component distribution. PMID:23651569
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Youngjun; Li, Ruijiang; Na, Yong Hum
2014-12-15
Purpose: 3D optical surface imaging has been applied to patient positioning in radiation therapy (RT). The optical patient positioning system is advantageous over conventional method using cone-beam computed tomography (CBCT) in that it is radiation free, frameless, and is capable of real-time monitoring. While the conventional radiographic method uses volumetric registration, the optical system uses surface matching for patient alignment. The relative accuracy of these two methods has not yet been sufficiently investigated. This study aims to investigate the theoretical accuracy of the surface registration based on a simulation study using patient data. Methods: This study compares the relative accuracymore » of surface and volumetric registration in head-and-neck RT. The authors examined 26 patient data sets, each consisting of planning CT data acquired before treatment and patient setup CBCT data acquired at the time of treatment. As input data of surface registration, patient’s skin surfaces were created by contouring patient skin from planning CT and treatment CBCT. Surface registration was performed using the iterative closest points algorithm by point–plane closest, which minimizes the normal distance between source points and target surfaces. Six degrees of freedom (three translations and three rotations) were used in both surface and volumetric registrations and the results were compared. The accuracy of each method was estimated by digital phantom tests. Results: Based on the results of 26 patients, the authors found that the average and maximum root-mean-square translation deviation between the surface and volumetric registrations were 2.7 and 5.2 mm, respectively. The residual error of the surface registration was calculated to have an average of 0.9 mm and a maximum of 1.7 mm. Conclusions: Surface registration may lead to results different from those of the conventional volumetric registration. Only limited accuracy can be achieved for patient positioning with an approach based solely on surface information.« less
NASA Astrophysics Data System (ADS)
Zuo, Wenhua; Wang, Chong; Li, Yuanyuan; Liu, Jinping
2015-01-01
Hybrid supercapacitor (HSC), which typically consists of a Li-ion battery electrode and an electric double-layer supercapacitor electrode, has been extensively investigated for large-scale applications such as hybrid electric vehicles, etc. Its application potential for thin-film downsized energy storage systems that always prefer high volumetric energy/power densities, however, has not yet been explored. Herein, as a case study, we develop an entirely binder-free HSC by using multiwalled carbon nanotube (MWCNT) network film as the cathode and Li4Ti5O12 (LTO) nanowire array as the anode and study the volumetric energy storage capability. Both the electrode materials are grown directly on carbon cloth current collector, ensuring robust mechanical/electrical contacts and flexibility. Our 3 V HSC device exhibits maximum volumetric energy density of ~4.38 mWh cm-3, much superior to those of previous supercapacitors based on thin-film electrodes fabricated directly on carbon cloth and even comparable to the commercial thin-film lithium battery. It also has volumetric power densities comparable to that of the commercial 5.5 V/100 mF supercapacitor (can be operated within 3 s) and has excellent cycling stability (~92% retention after 3000 cycles). The concept of utilizing binder-free electrodes to construct HSC for thin-film energy storage may be readily extended to other HSC electrode systems.
Singh, Tulika; Sharma, Madhurima; Singla, Veenu; Khandelwal, Niranjan
2016-01-01
The objective of our study was to calculate mammographic breast density with a fully automated volumetric breast density measurement method and to compare it to breast imaging reporting and data system (BI-RADS) breast density categories assigned by two radiologists. A total of 476 full-field digital mammography examinations with standard mediolateral oblique and craniocaudal views were evaluated by two blinded radiologists and BI-RADS density categories were assigned. Using a fully automated software, mean fibroglandular tissue volume, mean breast volume, and mean volumetric breast density were calculated. Based on percentage volumetric breast density, a volumetric density grade was assigned from 1 to 4. The weighted overall kappa was 0.895 (almost perfect agreement) for the two radiologists' BI-RADS density estimates. A statistically significant difference was seen in mean volumetric breast density among the BI-RADS density categories. With increased BI-RADS density category, increase in mean volumetric breast density was also seen (P < 0.001). A significant positive correlation was found between BI-RADS categories and volumetric density grading by fully automated software (ρ = 0.728, P < 0.001 for first radiologist and ρ = 0.725, P < 0.001 for second radiologist). Pairwise estimates of the weighted kappa between Volpara density grade and BI-RADS density category by two observers showed fair agreement (κ = 0.398 and 0.388, respectively). In our study, a good correlation was seen between density grading using fully automated volumetric method and density grading using BI-RADS density categories assigned by the two radiologists. Thus, the fully automated volumetric method may be used to quantify breast density on routine mammography. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
AISLE: an automatic volumetric segmentation method for the study of lung allometry.
Ren, Hongliang; Kazanzides, Peter
2011-01-01
We developed a fully automatic segmentation method for volumetric CT (computer tomography) datasets to support construction of a statistical atlas for the study of allometric laws of the lung. The proposed segmentation method, AISLE (Automated ITK-Snap based on Level-set), is based on the level-set implementation from an existing semi-automatic segmentation program, ITK-Snap. AISLE can segment the lung field without human interaction and provide intermediate graphical results as desired. The preliminary experimental results show that the proposed method can achieve accurate segmentation, in terms of volumetric overlap metric, by comparing with the ground-truth segmentation performed by a radiologist.
Adhesive blood microsampling systems for steroid measurement via LC-MS/MS in the rat.
Heussner, Kirsten; Rauh, Manfred; Cordasic, Nada; Menendez-Castro, Carlos; Huebner, Hanna; Ruebner, Matthias; Schmidt, Marius; Hartner, Andrea; Rascher, Wolfgang; Fahlbusch, Fabian B
2017-04-01
Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS) allows for the direct analysis of multiple hormones in a single probe with minimal sample volume. Rodent-based animal studies strongly rely on microsampling, such as the dry blood spot (DBS) method. However, DBS suffers the drawback of hematocrit-dependence (non-volumetric). Hence, novel volumetric microsampling techniques were introduced recently, allowing sampling of fixed accurate volumes. We compared these methods for steroid analysis in the rat to improve inter-system comparability. We analyzed steroid levels in blood using the absorptive microsampling devices Whatman® 903 Protein Saver Cards, Noviplex™ Plasma Prep Cards and the Mitra™ Microsampling device and compared the obtained results to the respective EDTA plasma levels. Quantitative steroid analysis was performed via LC-MS/MS. For the determination of the plasma volume factor for each steroid, their levels in pooled blood samples from each human adults and rats (18weeks) were compared and the transferability of these factors was evaluated in a new set of juvenile (21days) and adult (18weeks) rats. Hematocrit was determined concomitantly. Using these approaches, we were unable to apply one single volume factor for each steroid. Instead, plasma volume factors had to be adjusted for the recovery rate of each steroid and device individually. The tested microsampling systems did not allow the use of one single volume factor for adult and juvenile rats based on an unexpectedly strong hematocrit-dependency and other steroid specific (pre-analytic) factors. Our study provides correction factors for LC-MS/MS steroid analysis of volumetric and non-volumetric microsampling systems in comparison to plasma. It argues for thorough analysis of chromatographic effects before the use of novel volumetric systems for steroid analysis. Copyright © 2017 Elsevier Inc. All rights reserved.
Volumetric velocity measurements in restricted geometries using spiral sampling: a phantom study.
Nilsson, Anders; Revstedt, Johan; Heiberg, Einar; Ståhlberg, Freddy; Bloch, Karin Markenroth
2015-04-01
The aim of this study was to evaluate the accuracy of maximum velocity measurements using volumetric phase-contrast imaging with spiral readouts in a stenotic flow phantom. In a phantom model, maximum velocity, flow, pressure gradient, and streamline visualizations were evaluated using volumetric phase-contrast magnetic resonance imaging (MRI) with velocity encoding in one (extending on current clinical practice) and three directions (for characterization of the flow field) using spiral readouts. Results of maximum velocity and pressure drop were compared to computational fluid dynamics (CFD) simulations, as well as corresponding low-echo-time (TE) Cartesian data. Flow was compared to 2D through-plane phase contrast (PC) upstream from the restriction. Results obtained with 3D through-plane PC as well as 4D PC at shortest TE using a spiral readout showed excellent agreements with the maximum velocity values obtained with CFD (<1 % for both methods), while larger deviations were seen using Cartesian readouts (-2.3 and 13 %, respectively). Peak pressure drop calculations from 3D through-plane PC and 4D PC spiral sequences were respectively 14 and 13 % overestimated compared to CFD. Identification of the maximum velocity location, as well as the accurate velocity quantification can be obtained in stenotic regions using short-TE spiral volumetric PC imaging.
Berrios, Julio; Flores, María-Olga; Díaz-Barrera, Alvaro; Altamirano, Claudia; Martínez, Irene; Cabrera, Zaida
2017-03-01
The production of recombinant proteins by Pichia pastoris under AOX1 promoter is usually performed using methanol together with either glycerol or sorbitol as co-substrate. Although both co-substrates have been widely used, comparative studies are scarce. In addition, these comparisons have been performed at different specific growth rate (µ) that it is well known that has an important effect on productivity. Thus, the effect of using these co-substrates on the production of Rhyzopus oryzae lipase (ROL) by P. pastoris was compared in continuous cultures growing at the same µ at either 22 or 30 °C. Results show that using glycerol as co-substrate led to higher volumetric productivities, and lower specific and volumetric methanol consumption rates. Scale-up simulation with 10-10,000 L bioreactor sizes indicated that glycerol produced the highest volumetric productivity of ROL with lower aeration requirements. Therefore, glycerol rises as a better option than sorbitol in ROL production.
Zuo, Wenhua; Wang, Chong; Li, Yuanyuan; Liu, Jinping
2015-01-01
Hybrid supercapacitor (HSC), which typically consists of a Li-ion battery electrode and an electric double-layer supercapacitor electrode, has been extensively investigated for large-scale applications such as hybrid electric vehicles, etc. Its application potential for thin-film downsized energy storage systems that always prefer high volumetric energy/power densities, however, has not yet been explored. Herein, as a case study, we develop an entirely binder-free HSC by using multiwalled carbon nanotube (MWCNT) network film as the cathode and Li4Ti5O12 (LTO) nanowire array as the anode and study the volumetric energy storage capability. Both the electrode materials are grown directly on carbon cloth current collector, ensuring robust mechanical/electrical contacts and flexibility. Our 3 V HSC device exhibits maximum volumetric energy density of ~4.38 mWh cm−3, much superior to those of previous supercapacitors based on thin-film electrodes fabricated directly on carbon cloth and even comparable to the commercial thin-film lithium battery. It also has volumetric power densities comparable to that of the commercial 5.5 V/100 mF supercapacitor (can be operated within 3 s) and has excellent cycling stability (~92% retention after 3000 cycles). The concept of utilizing binder-free electrodes to construct HSC for thin-film energy storage may be readily extended to other HSC electrode systems. PMID:25586374
Brewer, Paul; Berryman, Fiona; Baker, De; Pynsent, Paul; Gardner, Adrian
2013-11-01
Retrospective sequential patient series. To establish the relationship between the magnitude of the deformity in scoliosis and patients' perception of their condition, as measured with Scoliosis Research Society-22 scores. A total of 93 untreated patients with adolescent idiopathic scoliosis were included retrospectively. The Cobb angle was measured from a plain radiograph, and volumetric asymmetry was measured by ISIS2 surface topography. The association between Scoliosis Research Society scores for function, pain, self-image, and mental health against Cobb angle and volumetric asymmetry was investigated using the Pearson correlation coefficient. Correlation of both Cobb angle and volumetric asymmetry with function and pain was weak (all < .23); these correlation values were not statistically significant. Correlation of Cobb angle and volumetric asymmetry with self-image, was higher, although still moderate (-.37 for Cobb angle and -.44 for volumetric asymmetry). Both were statistically significant (Cobb angle, p = .0002; volumetric asymmetry; p = .00001). Cobb angle contributed 13.8% to the linear relationship with self-image, whereas volumetric asymmetry contributed 19.3%. For mental health, correlation was statistically significant with Cobb angle (p = .011) and volumetric asymmetry (p = .0005), but the correlation was low to moderate (-.26 and -.35, respectively). Cobb angle contributed 6.9% to the linear relationship with mental health, whereas volumetric asymmetry contributed 12.4%. Volumetric asymmetry correlates better with both mental health and self-image compared with Cobb angle, but the correlation was only moderate. This study suggests that a patient's own perception of self-image and mental health is multifactorial and not completely explained through present objective measurements of the size of the deformity. This helps to explain the difficulties in any objective analysis of a problem with multifactorial perception issues. Further study is required to investigate other physical aspects of the deformity that may have a role in how patients view themselves. Copyright © 2013 Scoliosis Research Society. Published by Elsevier Inc. All rights reserved.
Volumetric CT-images improve testing of radiological image interpretation skills.
Ravesloot, Cécile J; van der Schaaf, Marieke F; van Schaik, Jan P J; ten Cate, Olle Th J; van der Gijp, Anouk; Mol, Christian P; Vincken, Koen L
2015-05-01
Current radiology practice increasingly involves interpretation of volumetric data sets. In contrast, most radiology tests still contain only 2D images. We introduced a new testing tool that allows for stack viewing of volumetric images in our undergraduate radiology program. We hypothesized that tests with volumetric CT-images enhance test quality, in comparison with traditional completely 2D image-based tests, because they might better reflect required skills for clinical practice. Two groups of medical students (n=139; n=143), trained with 2D and volumetric CT-images, took a digital radiology test in two versions (A and B), each containing both 2D and volumetric CT-image questions. In a questionnaire, they were asked to comment on the representativeness for clinical practice, difficulty and user-friendliness of the test questions and testing program. Students' test scores and reliabilities, measured with Cronbach's alpha, of 2D and volumetric CT-image tests were compared. Estimated reliabilities (Cronbach's alphas) were higher for volumetric CT-image scores (version A: .51 and version B: .54), than for 2D CT-image scores (version A: .24 and version B: .37). Participants found volumetric CT-image tests more representative of clinical practice, and considered them to be less difficult than volumetric CT-image questions. However, in one version (A), volumetric CT-image scores (M 80.9, SD 14.8) were significantly lower than 2D CT-image scores (M 88.4, SD 10.4) (p<.001). The volumetric CT-image testing program was considered user-friendly. This study shows that volumetric image questions can be successfully integrated in students' radiology testing. Results suggests that the inclusion of volumetric CT-images might improve the quality of radiology tests by positively impacting perceived representativeness for clinical practice and increasing reliability of the test. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Chae, Soo Young; Suh, Sangil; Ryoo, Inseon; Park, Arim; Noh, Kyoung Jin; Shim, Hackjoon; Seol, Hae Young
2017-05-01
We developed a semi-automated volumetric software, NPerfusion, to segment brain tumors and quantify perfusion parameters on whole-brain CT perfusion (WBCTP) images. The purpose of this study was to assess the feasibility of the software and to validate its performance compared with manual segmentation. Twenty-nine patients with pathologically proven brain tumors who underwent preoperative WBCTP between August 2012 and February 2015 were included. Three perfusion parameters, arterial flow (AF), equivalent blood volume (EBV), and Patlak flow (PF, which is a measure of permeability of capillaries), of brain tumors were generated by a commercial software and then quantified volumetrically by NPerfusion, which also semi-automatically segmented tumor boundaries. The quantification was validated by comparison with that of manual segmentation in terms of the concordance correlation coefficient and Bland-Altman analysis. With NPerfusion, we successfully performed segmentation and quantified whole volumetric perfusion parameters of all 29 brain tumors that showed consistent perfusion trends with previous studies. The validation of the perfusion parameter quantification exhibited almost perfect agreement with manual segmentation, with Lin concordance correlation coefficients (ρ c ) for AF, EBV, and PF of 0.9988, 0.9994, and 0.9976, respectively. On Bland-Altman analysis, most differences between this software and manual segmentation on the commercial software were within the limit of agreement. NPerfusion successfully performs segmentation of brain tumors and calculates perfusion parameters of brain tumors. We validated this semi-automated segmentation software by comparing it with manual segmentation. NPerfusion can be used to calculate volumetric perfusion parameters of brain tumors from WBCTP.
Volumetrics relate to the development of depression after traumatic brain injury.
Maller, Jerome J; Thomson, Richard H S; Pannek, Kerstin; Bailey, Neil; Lewis, Philip M; Fitzgerald, Paul B
2014-09-01
Previous research suggests that many people who sustain a traumatic brain injury (TBI), even of the mild form, will develop major depression (MD). We previously reported white matter integrity differences between those who did and did not develop MD after mild TBI. In this current paper, we aimed to investigate whether there were also volumetric differences between these groups, as suggested by previous volumetric studies in mild TBI populations. A sample of TBI-with-MD subjects (N=14), TBI-without-MD subjects (N=12), MD-without-TBI (N=26) and control subjects (no TBI or MD, N=23), received structural MRI brain scans. T1-weighted data were analysed using the Freesurfer software package which produces automated volumetric results. The findings of this study indicate that (1) TBI patients who develop MD have reduced volume in temporal, parietal and lingual regions compared to TBI patients who do not develop MD, and (2) MD patients with a history of TBI have decreased volume in the temporal region compared to those who had MD but without a history of TBI. We also found that more severe MD in those with TBI-with-MD significantly correlated with reduced volume in anterior cingulate, temporal lobe and insula. These findings suggest that volumetric reduction to specific regions, including parietal, temporal and occipital lobes, after a mild TBI may underlie the susceptibility of these patients developing major depression, in addition to altered white matter integrity. Copyright © 2014 Elsevier B.V. All rights reserved.
Temporal lobe epilepsy: quantitative MR volumetry in detection of hippocampal atrophy.
Farid, Nikdokht; Girard, Holly M; Kemmotsu, Nobuko; Smith, Michael E; Magda, Sebastian W; Lim, Wei Y; Lee, Roland R; McDonald, Carrie R
2012-08-01
To determine the ability of fully automated volumetric magnetic resonance (MR) imaging to depict hippocampal atrophy (HA) and to help correctly lateralize the seizure focus in patients with temporal lobe epilepsy (TLE). This study was conducted with institutional review board approval and in compliance with HIPAA regulations. Volumetric MR imaging data were analyzed for 34 patients with TLE and 116 control subjects. Structural volumes were calculated by using U.S. Food and Drug Administration-cleared software for automated quantitative MR imaging analysis (NeuroQuant). Results of quantitative MR imaging were compared with visual detection of atrophy, and, when available, with histologic specimens. Receiver operating characteristic analyses were performed to determine the optimal sensitivity and specificity of quantitative MR imaging for detecting HA and asymmetry. A linear classifier with cross validation was used to estimate the ability of quantitative MR imaging to help lateralize the seizure focus. Quantitative MR imaging-derived hippocampal asymmetries discriminated patients with TLE from control subjects with high sensitivity (86.7%-89.5%) and specificity (92.2%-94.1%). When a linear classifier was used to discriminate left versus right TLE, hippocampal asymmetry achieved 94% classification accuracy. Volumetric asymmetries of other subcortical structures did not improve classification. Compared with invasive video electroencephalographic recordings, lateralization accuracy was 88% with quantitative MR imaging and 85% with visual inspection of volumetric MR imaging studies but only 76% with visual inspection of clinical MR imaging studies. Quantitative MR imaging can depict the presence and laterality of HA in TLE with accuracy rates that may exceed those achieved with visual inspection of clinical MR imaging studies. Thus, quantitative MR imaging may enhance standard visual analysis, providing a useful and viable means for translating volumetric analysis into clinical practice.
Wang, Xiaojing; Kammerer, Candace M; Wheeler, Victor W; Patrick, Alan L; Bunker, Clareann H; Zmuda, Joseph M
2007-04-01
BMD is higher and fracture risk is lower among individuals of African versus European descent, but little is known about the genetic architecture of BMD in the former group. Heritabilities of areal and volumetric BMD were moderate in our large families of African descent but differed for trabecular and cortical BMD. Populations of African ancestry have lower osteoporotic fracture risk and higher BMD than other ethnic groups. However, there is a paucity of information regarding the genetic and environmental influences on bone health among populations of African heritage. We dissected the genetic architecture of areal BMD measured by DXA at the proximal femur, lumbar spine, and whole body and volumetric BMD measured by pQCT at the distal and proximal radius and tibia in 283 women and 188 men > or =18 years of age (mean, 43 years) from eight multigenerational Afro-Caribbean families (mean family size > 50). Using quantitative genetic methods, we estimated the residual heritability and the effects of anthropometric, demographic, lifestyle, and medical variables on areal and volumetric BMD. Compared with U.S. non-Hispanic blacks and whites, areal BMD at the femoral neck was highest in the Afro-Caribbean men and women at all ages. Trabecular volumetric BMD decreased linearly with increasing age, whereas cortical volumetric BMD did not decrease until age 40-49, especially in women. Anthropometric, lifestyle, and medical factors accounted for 12-32% of the variation in areal and volumetric BMD, and residual heritabilities (range, 0.23-0.52) were similar to those reported in other ethnic groups. Heritability of cortical BMD was substantially lower than that of areal or trabecular volumetric BMD, although the measured covariates accounted for a similar proportion of the total phenotypic variation. Our study is the first comprehensive genetic epidemiologic analysis of volumetric BMD measured by QCT and the first analysis of these traits in extended families of African descent. Genes account for as much or more of the total variation in areal and volumetric BMD than do environmental factors, but these effects seem to differ for trabecular and cortical bone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onal, Cem, E-mail: hcemonal@hotmail.com; Arslan, Gungor; Dolek, Yemliha
2016-01-01
The aim of this study is to evaluate the incidental testicular doses during prostate radiation therapy with intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc radiotherapy (VMAT) at different energies. Dosimetric data of 15 patients with intermediate-risk prostate cancer who were treated with radiotherapy were analyzed. The prescribed dose was 78 Gy in 39 fractions. Dosimetric analysis compared testicular doses generated by 7-field intensity-modulated radiotherapy and volumetric-modulated arc radiotherapy with a single arc at 6, 10, and 15 MV energy levels. Testicular doses calculated from the treatment planning system and doses measured from the detectors were analyzed. Mean testicular doses from themore » intensity-modulated radiotherapy and volumetric-modulated arc radiotherapy per fraction calculated in the treatment planning system were 16.3 ± 10.3 cGy vs 21.5 ± 11.2 cGy (p = 0.03) at 6 MV, 13.4 ± 10.4 cGy vs 17.8 ± 10.7 cGy (p = 0.04) at 10 MV, and 10.6 ± 8.5 cGy vs 14.5 ± 8.6 cGy (p = 0.03) at 15 MV, respectively. Mean scattered testicular doses in the phantom measurements were 99.5 ± 17.2 cGy, 118.7 ± 16.4 cGy, and 193.9 ± 14.5 cGy at 6, 10, and 15 MV, respectively, in the intensity-modulated radiotherapy plans. In the volumetric-modulated arc radiotherapy plans, corresponding testicular doses per course were 90.4 ± 16.3 cGy, 103.6 ± 16.4 cGy, and 139.3 ± 14.6 cGy at 6, 10, and 15 MV, respectively. In conclusions, this study was the first to measure the incidental testicular doses by intensity-modulated radiotherapy and volumetric-modulated arc radiotherapy plans at different energy levels during prostate-only irradiation. Higher photon energy and volumetric-modulated arc radiotherapy plans resulted in higher incidental testicular doses compared with lower photon energy and intensity-modulated radiotherapy plans.« less
Morris, Katrina A; Parry, Allyson; Pretorius, Pieter M
2016-09-01
To compare the sensitivity of linear and volumetric measurements on MRI in detecting schwannoma progression in patients with neurofibromatosis type 2 on bevacizumab treatment as well as the extent to which this depends on the size of the tumour. We compared retrospectively, changes in linear tumour dimensions at a range of thresholds to volumetric tumour measurements performed using Brainlab iPlan(®) software (Feldkirchen, Germany) and classified for tumour progression according to the Response Evaluation in Neurofibromatosis and Schwannomatosis (REiNS) criteria. Assessment of 61 schwannomas in 46 patients with a median follow-up of 20 months (range 3-43 months) was performed. There was a mean of 7 time points per tumour (range 2-12 time points). Using the volumetric REiNS criteria as the gold standard, a sensitivity of 86% was achieved for linear measurement using a 2-mm threshold to define progression. We propose that a change in linear measurement by 2 mm (particularly in tumours with starting diameters 20-30 mm, the majority of this cohort) could be used as a filter to identify cases of possible progression requiring volumetric analysis. This pragmatic approach can be used if stabilization of a previously growing schwannoma is sufficient for a patient to continue treatment in such a circumstance. We demonstrate the real-world limitations of linear vs volumetric measurement in tumour response assessment and identify limited circumstances where linear measurements can be used to determine which patients require the more resource-intensive volumetric measurements.
van der Waal, Daniëlle; den Heeten, Gerard J; Pijnappel, Ruud M; Schuur, Klaas H; Timmers, Johanna M H; Verbeek, André L M; Broeders, Mireille J M
2015-01-01
The objective of this study is to compare different methods for measuring breast density, both visual assessments and automated volumetric density, in a breast cancer screening setting. These measures could potentially be implemented in future screening programmes, in the context of personalised screening or screening evaluation. Digital mammographic exams (N = 992) of women participating in the Dutch breast cancer screening programme (age 50-75y) in 2013 were included. Breast density was measured in three different ways: BI-RADS density (5th edition) and with two commercially available automated software programs (Quantra and Volpara volumetric density). BI-RADS density (ordinal scale) was assessed by three radiologists. Quantra (v1.3) and Volpara (v1.5.0) provide continuous estimates. Different comparison methods were used, including Bland-Altman plots and correlation coefficients (e.g., intraclass correlation coefficient [ICC]). Based on the BI-RADS classification, 40.8% of the women had 'heterogeneously or extremely dense' breasts. The median volumetric percent density was 12.1% (IQR: 9.6-16.5) for Quantra, which was higher than the Volpara estimate (median 6.6%, IQR: 4.4-10.9). The mean difference between Quantra and Volpara was 5.19% (95% CI: 5.04-5.34) (ICC: 0.64). There was a clear increase in volumetric percent dense volume as BI-RADS density increased. The highest accuracy for predicting the presence of BI-RADS c+d (heterogeneously or extremely dense) was observed with a cut-off value of 8.0% for Volpara and 13.8% for Quantra. Although there was no perfect agreement, there appeared to be a strong association between all three measures. Both volumetric density measures seem to be usable in breast cancer screening programmes, provided that the required data flow can be realized.
Comparative Study of the Volumetric Methods Calculation Using GNSS Measurements
NASA Astrophysics Data System (ADS)
Şmuleac, Adrian; Nemeş, Iacob; Alina Creţan, Ioana; Sorina Nemeş, Nicoleta; Şmuleac, Laura
2017-10-01
This paper aims to achieve volumetric calculations for different mineral aggregates using different methods of analysis and also comparison of results. To achieve these comparative studies and presentation were chosen two software licensed, namely TopoLT 11.2 and Surfer 13. TopoLT program is a program dedicated to the development of topographic and cadastral plans. 3D terrain model, level courves and calculation of cut and fill volumes, including georeferencing of images. The program Surfer 13 is produced by Golden Software, in 1983 and is active mainly used in various fields such as agriculture, construction, geophysical, geotechnical engineering, GIS, water resources and others. It is also able to achieve GRID terrain model, to achieve the density maps using the method of isolines, volumetric calculations, 3D maps. Also, it can read different file types, including SHP, DXF and XLSX. In these paper it is presented a comparison in terms of achieving volumetric calculations using TopoLT program by two methods: a method where we choose a 3D model both for surface as well as below the top surface and a 3D model in which we choose a 3D terrain model for the bottom surface and another 3D model for the top surface. The comparison of the two variants will be made with data obtained from the realization of volumetric calculations with the program Surfer 13 generating GRID terrain model. The topographical measurements were performed with equipment from Leica GPS 1200 Series. Measurements were made using Romanian position determination system - ROMPOS which ensures accurate positioning of reference and coordinates ETRS through the National Network of GNSS Permanent Stations. GPS data processing was performed with the program Leica Geo Combined Office. For the volumetric calculating the GPS used point are in 1970 stereographic projection system and for the altitude the reference is 1975 the Black Sea projection system.
van der Waal, Daniëlle; den Heeten, Gerard J.; Pijnappel, Ruud M.; Schuur, Klaas H.; Timmers, Johanna M. H.; Verbeek, André L. M.; Broeders, Mireille J. M.
2015-01-01
Introduction The objective of this study is to compare different methods for measuring breast density, both visual assessments and automated volumetric density, in a breast cancer screening setting. These measures could potentially be implemented in future screening programmes, in the context of personalised screening or screening evaluation. Materials and Methods Digital mammographic exams (N = 992) of women participating in the Dutch breast cancer screening programme (age 50–75y) in 2013 were included. Breast density was measured in three different ways: BI-RADS density (5th edition) and with two commercially available automated software programs (Quantra and Volpara volumetric density). BI-RADS density (ordinal scale) was assessed by three radiologists. Quantra (v1.3) and Volpara (v1.5.0) provide continuous estimates. Different comparison methods were used, including Bland-Altman plots and correlation coefficients (e.g., intraclass correlation coefficient [ICC]). Results Based on the BI-RADS classification, 40.8% of the women had ‘heterogeneously or extremely dense’ breasts. The median volumetric percent density was 12.1% (IQR: 9.6–16.5) for Quantra, which was higher than the Volpara estimate (median 6.6%, IQR: 4.4–10.9). The mean difference between Quantra and Volpara was 5.19% (95% CI: 5.04–5.34) (ICC: 0.64). There was a clear increase in volumetric percent dense volume as BI-RADS density increased. The highest accuracy for predicting the presence of BI-RADS c+d (heterogeneously or extremely dense) was observed with a cut-off value of 8.0% for Volpara and 13.8% for Quantra. Conclusion Although there was no perfect agreement, there appeared to be a strong association between all three measures. Both volumetric density measures seem to be usable in breast cancer screening programmes, provided that the required data flow can be realized. PMID:26335569
Thust, S C; Hassanein, S; Bisdas, S; Rees, J H; Hyare, H; Maynard, J A; Brandner, S; Tur, C; Jäger, H R; Yousry, T A; Mancini, L
2018-03-23
To investigate if quantitative apparent diffusion coefficient (ADC) measurements can predict genetic subtypes of non-gadolinium-enhancing gliomas, comparing whole tumour against single slice analysis. Volumetric T2-derived masks of 44 gliomas were co-registered to ADC maps with ADC mean (ADC mean ) calculated. For the slice analysis, two observers placed regions of interest in the largest tumour cross-section. The ratio (ADC ratio ) between ADC mean in the tumour and normal appearing white matter was calculated for both methods. Isocitrate dehydrogenase (IDH) wild-type gliomas showed the lowest ADC values throughout (p < 0.001). ADC mean in the IDH-mutant 1p19q intact group was significantly higher than in the IDH-mutant 1p19q co-deleted group (p < 0.01). A volumetric ADC mean threshold of 1201 × 10 -6 mm 2 /s identified IDH wild-type with a sensitivity of 83% and a specificity of 86%; a volumetric ADC ratio cut-off value of 1.65 provided a sensitivity of 80% and a specificity of 92% (area under the curve (AUC) 0.9-0.94). A slice ADC ratio threshold for observer 1 (observer 2) of 1.76 (1.83) provided a sensitivity of 80% (86%), specificity of 91% (100%) and AUC of 0.95 (0.96). The intraclass correlation coefficient was excellent (0.98). ADC measurements can support the distinction of glioma subtypes. Volumetric and two-dimensional measurements yielded similar results in this study. • Diffusion-weighted MRI aids the identification of non-gadolinium-enhancing malignant gliomas • ADC measurements may permit non-gadolinium-enhancing glioma molecular subtyping • IDH wild-type gliomas have lower ADC values than IDH-mutant tumours • Single cross-section and volumetric ADC measurements yielded comparable results in this study.
Ceramic Heads Decrease Metal Release Caused by Head-taper Fretting and Corrosion.
Kocagoz, Sevi B; Underwood, Richard J; MacDonald, Daniel W; Gilbert, Jeremy L; Kurtz, Steven M
2016-04-01
Metal release resulting from taper fretting and corrosion is a clinical concern, because wear and corrosion products may stimulate adverse local tissue reactions. Unimodular hip arthroplasties have a conical taper between the femoral head (head bore taper) and the femoral stem (stem cone taper). The use of ceramic heads has been suggested as a way of reducing the generation of wear and corrosion products from the head bore/stem cone taper junction. A previous semiquantitative study found that ceramic heads had less visual evidence of fretting-corrosion damage compared with CoCr heads; but, to our knowledge, no studies have quantified the volumetric material loss from the head bore and stem cone tapers of a matched cohort of ceramic and metal heads. We asked: (1) Do ceramic heads result in less volume of material loss at the head-stem junction compared with CoCr heads; (2) do stem cone tapers have less volumetric material loss compared with CoCr head bore tapers; (3) do visual fretting-corrosion scores correlate with volumetric material loss; and (4) are device, patient, or intraoperative factors associated with volumetric material loss? A quantitative method was developed to estimate volumetric material loss from the head and stem taper in previously matched cohorts of 50 ceramic and 50 CoCr head-stem pairs retrieved during revision surgery for causes not related to adverse reactions to metal particles. The cohorts were matched according to (1) implantation time, (2) stem flexural rigidity, and (3) lateral offset. Fretting corrosion was assessed visually using a previously published four-point, semiquantitative scoring system. The volumetric loss was measured using a precision roundness machine. Using 24 equally spaced axial traces, the volumetric loss was estimated using a linear least squares fit to interpolate the as-manufactured surfaces. The results of this analysis were considered in the context of device (taper angle clearance, head size, head offset, lateral offset, stem material, and stem surface finish) and patient factors that were obtained from the patients' operative records (implantation time, age at insertion, activity level, and BMI). The cumulative volumetric material losses estimated for the ceramic cohort had a median of 0.0 mm(3) per year (range, 0.0-0.4 mm(3)). The cumulative volumetric material losses estimated for the CoCr cohort had a median of 0.1 mm(3) per year (range, 0.0-8.8 mm(3)). An order of magnitude reduction in volumetric material loss was found when a ceramic head was used instead of a CoCr head (p < 0.0001). In the CoCr cohort, the femoral head bore tapers had a median material loss of 0.02 mm(3) (range, 0.0-8.7 mm(3)) and the stem cone tapers had a median material loss of 0.0 mm(3) (range, 0.0-0.32 mm(3)/year). There was greater material loss from femoral head bore tapers compared with stem cone tapers in the CoCr cohort (p < 0.001). There was a positive correlation between visual scoring and volumetric material loss (Spearman's ρ = 0.67, p < 0.01). Although visual scoring was effective for preliminary screening to separate tapers with no or mild damage from tapers with moderate to severe damage, it was not capable of discriminating in the large range of material loss observed at the taper surfaces with moderate to severe fretting-corrosion damage, indicated with a score of 3 or 4. We observed no correlations between volumetric material loss and device and patient factors. The majority of estimated material loss from the head bore-stem cone junctions resulting from taper fretting and corrosion was from the CoCr head bore tapers as opposed to the stem cone tapers. Additionally, the total material loss from the ceramic cohort showed a reduction in the amount of metal released by an order of magnitude compared with the CoCr cohort. We found that ceramic femoral heads may be an effective means by which to reduce metal release caused by taper fretting and corrosion at the head bore-stem cone modular interface in THAs.
Youk, Ji Hyun; Kim, So Jung; Son, Eun Ju; Gweon, Hye Mi; Kim, Jeong-Ah
2017-09-01
The purpose of this study was to compare visual assessments of mammographic breast density by radiologists using BI-RADS 4th and 5th editions in correlation with automated volumetric breast density measurements. A total of 337 consecutive full-field digital mammographic examinations with standard views were retrospectively assessed by two radiologists for mammographic breast density according to BI-RADS 4th and 5th editions. Fully automated measurement of the volume of fibroglandular tissue and total breast and percentage breast density was performed with a commercially available software program. Interobserver and intraobserver agreement was assessed with kappa statistics. The distributions of breast density categories for both editions of BI-RADS were compared and correlated with volumetric data. Interobserver agreement on breast density category was moderate to substantial (κ = 0.58-0.63) with use of BI-RADS 4th edition and substantial (κ = 0.63-0.66) with use of the 5th edition but without significant difference between the two editions. For intraobserver agreement between the two editions, the distributions of density category were significantly different (p < 0.0001), the proportions of dense breast increased, and the proportion of fatty breast decreased with use of the 5th edition compared with the 4th edition (p < 0.0001). All volumetric breast density data, including percentage breast density, were significantly different among density categories (p < 0.0001) and had significant correlation with visual assessment for both editions of BI-RADS (p < 0.01). Assessment using BI-RADS 5th edition revealed a higher proportion of dense breast than assessment using BI-RADS 4th edition. Nevertheless, automated volumetric density assessment had good correlation with visual assessment for both editions of BI-RADS.
Hoyt, Kenneth; Sorace, Anna; Saini, Reshu
2013-01-01
Objectives The objective of this study was to determine whether volumetric contrast-enhanced ultrasound (US) imaging could detect early tumor response to anti–death receptor 5 antibody (TRA-8) therapy alone or in combination with chemotherapy in a preclinical triple-negative breast cancer animal model. Methods Animal experiments had Institutional Animal Care and Use Committee approval. Thirty breast tumor–bearing mice were administered Abraxane (paclitaxel; Celgene Corporation, Summit, NJ), TRA-8, TRA-8 + Abraxane, or saline as a control on days 0, 3, 7, 10, 14, and 17. Volumetric contrast-enhanced US imaging was performed on days 0, 1, 3, and 7 before dosing. Changes in parametric maps of tumor perfusion were compared with the tumor volume and immunohistologic findings. Results Therapeutic efficacy was detected within 7 days after drug administration using parametric volumetric contrast-enhanced US imaging. Decreased tumor perfusion was observed in both the TRA-8-alone– and TRA-8 + Abraxane–dosed animals compared to control tumors (P = .17; P = .001, respectively). The reduction in perfusion observed in the TRA-8 + Abraxane group was matched with a corresponding regression in tumor size over the same period. Survival curves illustrate that the combination of TRA-8 + Abraxane improves drug efficacy compared to the same drugs administered alone. Immunohistologic analysis revealed increased levels of apoptotic activity in the TRA-8-dosed tumors, confirming enhanced antitumor effects. Conclusions Preliminary results are encouraging, and volumetric contrast-enhanced US-based tumor perfusion imaging may prove clinically feasible for detecting and monitoring the early antitumor effects in response to combination TRA-8 + Abraxane therapy. PMID:23091246
Primate Brain Anatomy: New Volumetric MRI Measurements for Neuroanatomical Studies.
Navarrete, Ana F; Blezer, Erwin L A; Pagnotta, Murillo; de Viet, Elizabeth S M; Todorov, Orlin S; Lindenfors, Patrik; Laland, Kevin N; Reader, Simon M
2018-06-12
Since the publication of the primate brain volumetric dataset of Stephan and colleagues in the early 1980s, no major new comparative datasets covering multiple brain regions and a large number of primate species have become available. However, technological and other advances in the last two decades, particularly magnetic resonance imaging (MRI) and the creation of institutions devoted to the collection and preservation of rare brain specimens, provide opportunities to rectify this situation. Here, we present a new dataset including brain region volumetric measurements of 39 species, including 20 species not previously available in the literature, with measurements of 16 brain areas. These volumes were extracted from MRI of 46 brains of 38 species from the Netherlands Institute of Neuroscience Primate Brain Bank, scanned at high resolution with a 9.4-T scanner, plus a further 7 donated MRI of 4 primate species. Partial measurements were made on an additional 8 brains of 5 species. We make the dataset and MRI scans available online in the hope that they will be of value to researchers conducting comparative studies of primate evolution. © 2018 S. Karger AG, Basel.
Chan, Fuan Chiang; Kawamoto, Henry K; Federico, Christina; Bradley, James P
2013-03-01
We have previously reported that monobloc advancement by distraction osteogenesis resulted in decreased morbidity and greater advancement with less relapse compared with acute monobloc advancement with bone grafting. In this study, we examine the three-dimensional (3D) volumetric soft-tissue changes in monobloc distraction.Patients with syndromic craniosynostosis who underwent monobloc distraction from 2002 to 2010 at University of California-Los Angeles Craniofacial Center were studied (n = 12). We recorded diagnosis, indications for the surgery, and volumetric changes for skeletal and soft-tissue midface structures (preoperative/postoperative [6 weeks]/follow-up [>1 year]). Computed tomography scans and a digital 3D photogrammetry system were used for image analysis.Patients ranged from 6 to 14 years of age (mean, 10.1 years) at the time of the operation (follow-up 2-11 years); mean distraction advancement was 19.4 mm (range, 14-25 mm). There was a mean increase in the 3D volumetric soft-tissue changes: 99.5 ± 4.0 cm(3) (P < 0.05) at 6 weeks and 94.9 ± 3.6 cm(3) (P < 0.05) at 1-year follow-up. When comparing soft-tissue changes at 6 weeks postoperative to 1-year follow-up, there were minimal relapse changes. The overall mean 3D skeletal change was 108.9 ± 4.2 cm. For every 1 cm of skeletal gain, there was 0.78 cm(3) of soft-tissue gain.Monobloc advancement by distraction osteogenesis using internal devices resulted in increased volumetric soft-tissue changes, which remained stable at 1 year. The positive linear correlation between soft-tissue increments and bony advancement can be incorporated during the planning of osteotomies to achieve optimum surgical outcomes with monobloc distraction.
Temporal Lobe Epilepsy: Quantitative MR Volumetry in Detection of Hippocampal Atrophy
Farid, Nikdokht; Girard, Holly M.; Kemmotsu, Nobuko; Smith, Michael E.; Magda, Sebastian W.; Lim, Wei Y.; Lee, Roland R.
2012-01-01
Purpose: To determine the ability of fully automated volumetric magnetic resonance (MR) imaging to depict hippocampal atrophy (HA) and to help correctly lateralize the seizure focus in patients with temporal lobe epilepsy (TLE). Materials and Methods: This study was conducted with institutional review board approval and in compliance with HIPAA regulations. Volumetric MR imaging data were analyzed for 34 patients with TLE and 116 control subjects. Structural volumes were calculated by using U.S. Food and Drug Administration–cleared software for automated quantitative MR imaging analysis (NeuroQuant). Results of quantitative MR imaging were compared with visual detection of atrophy, and, when available, with histologic specimens. Receiver operating characteristic analyses were performed to determine the optimal sensitivity and specificity of quantitative MR imaging for detecting HA and asymmetry. A linear classifier with cross validation was used to estimate the ability of quantitative MR imaging to help lateralize the seizure focus. Results: Quantitative MR imaging–derived hippocampal asymmetries discriminated patients with TLE from control subjects with high sensitivity (86.7%–89.5%) and specificity (92.2%–94.1%). When a linear classifier was used to discriminate left versus right TLE, hippocampal asymmetry achieved 94% classification accuracy. Volumetric asymmetries of other subcortical structures did not improve classification. Compared with invasive video electroencephalographic recordings, lateralization accuracy was 88% with quantitative MR imaging and 85% with visual inspection of volumetric MR imaging studies but only 76% with visual inspection of clinical MR imaging studies. Conclusion: Quantitative MR imaging can depict the presence and laterality of HA in TLE with accuracy rates that may exceed those achieved with visual inspection of clinical MR imaging studies. Thus, quantitative MR imaging may enhance standard visual analysis, providing a useful and viable means for translating volumetric analysis into clinical practice. © RSNA, 2012 Supplemental material: http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.12112638/-/DC1 PMID:22723496
Kowallick, Johannes T; Morton, Geraint; Lamata, Pablo; Jogiya, Roy; Kutty, Shelby; Hasenfuß, Gerd; Lotz, Joachim; Nagel, Eike; Chiribiri, Amedeo; Schuster, Andreas
2015-05-17
Cardiovascular magnetic resonance (CMR) offers quantification of phasic atrial functions based on volumetric assessment and more recently, on CMR feature tracking (CMR-FT) quantitative strain and strain rate (SR) deformation imaging. Inter-study reproducibility is a key requirement for longitudinal studies but has not been defined for CMR-based quantification of left atrial (LA) and right atrial (RA) dynamics. Long-axis 2- and 4-chamber cine images were acquired at 9:00 (Exam A), 9:30 (Exam B) and 14:00 (Exam C) in 16 healthy volunteers. LA and RA reservoir, conduit and contractile booster pump functions were quantified by volumetric indexes as derived from fractional volume changes and by strain and SR as derived from CMR-FT. Exam A and B were compared to assess the inter-study reproducibility. Morning and afternoon scans were compared to address possible diurnal variation of atrial function. Inter-study reproducibility was within acceptable limits for all LA and RA volumetric, strain and SR parameters. Inter-study reproducibility was better for volumetric indexes and strain than for SR parameters and better for LA than for RA dynamics. For the LA, reservoir function showed the best reproducibility (intraclass correlation coefficient (ICC) 0.94-0.97, coefficient of variation (CoV) 4.5-8.2%), followed by conduit (ICC 0.78-0.97, CoV 8.2-18.5%) and booster pump function (ICC 0.71-0.95, CoV 18.3-22.7). Similarly, for the RA, reproducibility was best for reservoir function (ICC 0.76-0.96, CoV 7.5-24.0%) followed by conduit (ICC 0.67-0.91, CoV 13.9-35.9) and booster pump function (ICC 0.73-0.90, CoV 19.4-32.3). Atrial dynamics were not measurably affected by diurnal variation between morning and afternoon scans. Inter-study reproducibility for CMR-based derivation of LA and RA functions is acceptable using either volumetric, strain or SR parameters with LA function showing higher reproducibility than RA function assessment. Amongst the different functional components, reservoir function is most reproducibly assessed by either technique followed by conduit and booster pump function, which needs to be considered in future longitudinal research studies.
Measurement of insecticides for house spraying
Alvarez, Humberto Romero; Franco, Rafael Miranda
1959-01-01
In view of the economic and operational importance in malaria eradication campaigns of correctly measuring the insecticides used, tests have been made in Mexico to compare the accuracy of two manual procedures, one volumetric and the other gravimetric. For volumetric measurement a calibrated, metal measuring-can of sheet metal is used, and for gravimetric measurement a specially designed Roman balance. Altogether 1022 volumetric and 1411 gravimetric tests were made. The results, given in this paper, show that the volumetric measurement entails too great a margin of error to be acceptable, but that the Roman balance is both sufficiently accurate and practical and economical. PMID:14438618
NASA Astrophysics Data System (ADS)
Luna, J. A.; Rojas, J. I.
2016-07-01
All prostate cancer patients from Centro Médico Radioterapia Siglo XXI receive Volumetric Modulated Arc Therapy (VMAT). This therapy uses image-guided radiotherapy (IGRT) with the Cone Beam Computed Tomography (CBCT). This study compares the planned dose in the reference CT image against the delivered dose recalculate in the CBCT image. The purpose of this study is to evaluate the anatomic changes and related dosimetric effect based on weekly CBCT directly for patients with prostate cancer undergoing volumetric modulated arc therapy (VMAT) treatment. The collected data were analyzed using one-way ANOVA.
Ferreira, Mariana S; Mendes, Roberto T; Marson, Fernando A L; Zambon, Mariana P; Antonio, Maria A R G M; Paschoal, Ilma A; Toro, Adyléia A D C; Severino, Silvana D; Ribeiro, Maria A G O; Ribeiro, José D
To analyze and compare lung function of obese and healthy, normal-weight children and adolescents, without asthma, through spirometry and volumetric capnography. Cross-sectional study including 77 subjects (38 obese) aged 5-17 years. All subjects underwent spirometry and volumetric capnography. The evaluations were repeated in obese subjects after the use of a bronchodilator. At the spirometry assessment, obese individuals, when compared with the control group, showed lower values of forced expiratory volume in the first second by forced vital capacity (FEV 1 /FVC) and expiratory flows at 75% and between 25 and 75% of the FVC (p<0.05). Volumetric capnography showed that obese individuals had a higher volume of produced carbon dioxide and alveolar tidal volume (p<0.05). Additionally, the associations between dead space volume and tidal volume, as well as phase-3 slope normalized by tidal volume, were lower in healthy subjects (p<0.05). These data suggest that obesity does not alter ventilation homogeneity, but flow homogeneity. After subdividing the groups by age, a greater difference in lung function was observed in obese and healthy individuals aged >11 years (p<0.05). Even without the diagnosis of asthma by clinical criteria and without response to bronchodilator use, obese individuals showed lower FEV 1 /FVC values and forced expiratory flow, indicating the presence of an obstructive process. Volumetric capnography showed that obese individuals had higher alveolar tidal volume, with no alterations in ventilation homogeneity, suggesting flow alterations, without affecting lung volumes. Copyright © 2017 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, B; Kim, S; Kim, T
Purpose: To develop a novel method that enables 4D MR imaging in near real-time for continuous monitoring of tumor motion in MR-guided radiotherapy. Methods: This method is mainly based on an idea of expanding dynamic keyhole to full volumetric imaging acquisition. In the VDK approach introduced in this study, a library of peripheral volumetric k-space data is generated in given number of phases (5 and 10 in this study) in advance. For 4D MRI at any given time, only volumetric central k-space data are acquired in real-time and combined with pre-acquired peripheral volumetric k-space data in the library corresponding tomore » the respiratory phase (or amplitude). The combined k-space data are Fourier-transformed to MR images. For simulation study, an MRXCAT program was used to generate synthetic MR images of the thorax with desired respiratory motion, contrast levels, and spatial and temporal resolution. 20 phases of volumetric MR images, with 200 ms temporal resolution in 4 s respiratory period, were generated using balanced steady-state free precession MR pulse sequence. The total acquisition time was 21.5s/phase with a voxel size of 3×3×5 mm{sup 3} and an image matrix of 128×128×56. Image similarity was evaluated with difference maps between the reference and reconstructed images. The VDK, conventional keyhole, and zero filling methods were compared for this simulation study. Results: Using 80% of the ky data and 70% of the kz data from the library resulted in 12.20% average intensity difference from the reference, and 21.60% and 28.45% difference in threshold pixel difference for conventional keyhole and zero filling, respectively. The imaging time will be reduced from 21.5s to 1.3s per volume using the VDK method. Conclusion: Near real-time 4D MR imaging can be achieved using the volumetric dynamic keyhole method. That makes the possibility of utilizing 4D MRI during MR-guided radiotherapy.« less
Ross, David E; Ochs, Alfred L; Seabaugh, Jan M; Shrader, Carole R
2013-01-01
NeuroQuant® is a recently developed, FDA-approved software program for measuring brain MRI volume in clinical settings. The purpose of this study was to compare NeuroQuant with the radiologist's traditional approach, based on visual inspection, in 20 outpatients with mild or moderate traumatic brain injury (TBI). Each MRI was analyzed with NeuroQuant, and the resulting volumetric analyses were compared with the attending radiologist's interpretation. The radiologist's traditional approach found atrophy in 10.0% of patients; NeuroQuant found atrophy in 50.0% of patients. NeuroQuant was more sensitive for detecting brain atrophy than the traditional radiologist's approach.
Sieslack, Anne K; Dziallas, Peter; Nolte, Ingo; Wefstaedt, Patrick; Hungerbühler, Stephan O
2014-10-12
Right ventricular (RV) volume and function are important diagnostic and prognostic factors in dogs with primary or secondary right-sided heart failure. The complex shape of the right ventricle and its retrosternal position make the quantification of its volume difficult. For that reason, only few studies exist, which deal with the determination of RV volume parameters. In human medicine cardiac magnetic resonance imaging (CMRI) is considered to be the reference technique for RV volumetric measurement (Nat Rev Cardiol 7(10):551-563, 2010), but cardiac computed tomography (CCT) and three-dimensional echocardiography (3DE) are other non-invasive methods feasible for RV volume quantification. The purpose of this study was the comparison of 3DE and CCT with CMRI, the gold standard for RV volumetric quantification. 3DE showed significant lower and CCT significant higher right ventricular volumes than CMRI. Both techniques showed very good correlations (R > 0.8) with CMRI for the volumetric parameters end-diastolic volume (EDV) and end-systolic volume (ESV). Ejection fraction (EF) and stroke volume (SV) were not different when considering CCT and CMRI, whereas 3DE showed a significant higher EF and lower SV than CMRI. The 3DE values showed excellent intra-observer variability (<3%) and still acceptable inter-observer variability (<13%). CCT provides an accurate image quality of the right ventricle with comparable results to the reference method CMRI. CCT overestimates the RV volumes; therefore, it is not an interchangeable method, having the disadvantage as well of needing general anaesthesia. 3DE underestimated the RV-Volumes, which could be explained by the worse image resolution. The excellent correlation between the methods indicates a close relationship between 3DE and CMRI although not directly comparable. 3DE is a promising technique for RV volumetric quantification, but further studies in awake dogs and dogs with heart disease are necessary to evaluate its usefulness in veterinary cardiology.
Adaptive controller for volumetric display of neuroimaging studies
NASA Astrophysics Data System (ADS)
Bleiberg, Ben; Senseney, Justin; Caban, Jesus
2014-03-01
Volumetric display of medical images is an increasingly relevant method for examining an imaging acquisition as the prevalence of thin-slice imaging increases in clinical studies. Current mouse and keyboard implementations for volumetric control provide neither the sensitivity nor specificity required to manipulate a volumetric display for efficient reading in a clinical setting. Solutions to efficient volumetric manipulation provide more sensitivity by removing the binary nature of actions controlled by keyboard clicks, but specificity is lost because a single action may change display in several directions. When specificity is then further addressed by re-implementing hardware binary functions through the introduction of mode control, the result is a cumbersome interface that fails to achieve the revolutionary benefit required for adoption of a new technology. We address the specificity versus sensitivity problem of volumetric interfaces by providing adaptive positional awareness to the volumetric control device by manipulating communication between hardware driver and existing software methods for volumetric display of medical images. This creates a tethered effect for volumetric display, providing a smooth interface that improves on existing hardware approaches to volumetric scene manipulation.
Single and multidimensional measurements underestimate neuroblastoma response to therapy.
Trout, Andrew T; Towbin, Alexander J; Klingbeil, Lindsey; Weiss, Brian D; von Allmen, Daniel
2017-01-01
Changes in three-dimensional (3D) measurements of neuroblastoma are used to assess response. Linear measurements may not accurately characterize tumor size due to the infiltrative character of these tumors. The purpose of this study was to assess the accuracy of one-dimensional (1D), two-dimensional (2D), and 3D measurements in characterizing neuroblastoma response compared to a reference standard of tumor volume. We retrospectively reviewed imaging for 34 patients with stage 3 or 4 neuroblastoma. Blinded readers contoured or made linear measurements of tumors. Correlation coefficients were used to compare linear measurements to volumetric and 3D measurements. Bland-Altman analyses were used to assess bias between measurements. Sensitivity and specificity for patient events and survival were calculated for each measurement technique. Mean patient age was 2.9 ± 3.0 years (range 0-15 years). There was strong correlation between volumetric and 1D (r = 0.78, P < 0.0001), 2D (r = 0.86, P < 0.0001), and 3D (r = 0.88, P < 0.0001) measurements. Mean bias between volumetric measurements and 1D, 2D, and 3D measurements was 37.1% (95% limits: 6.2-67.9%), 16.1% (95% limits: -11.7-43.8%), and 7.7% (95% limits: -19.7-35.1%), respectively. 1D and 2D measurements undercategorized response versus volumetric change in 88.2% (30/34) and 29.4% (10/34) of cases. 3D measurements incorrectly characterized response in 16.7% (4/24) of cases versus volumetric change. 3D measurements were highly sensitive for patient events and survival, but all measurement techniques had poor specificity. 3D measurements most accurately quantify neuroblastoma size response versus volumetric change in patients with stage 3 and 4 neuroblastoma. 1D and 2D measurements underrepresent tumor response. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Shoukat, Ahmad Adnan; Shaban, Muhammad; Israr, Asif; Shah, Owaisur Rahman; Khan, Muhammad Zubair; Anwar, Muhammad
2018-03-01
We investigate the heat transfer effect of different types of Nano-fluids on the pin fin heat sinks used in computer's microprocessor. Nano-particles of Aluminum oxide have been used with volumetric concentrations of 0.002% and Silver oxide with volumetric concentrations of 0.001% in the base fluid of deionized water. We have also used Aluminum oxide with ethylene glycol at volumetric concentrations of 0.002%. We report the cooling rates of Nano-fluids for pin-fin heat to cool the microprocessor and compare these with the cooling rate of pure water. We use a microprocessor heat generator in this investigation. The base temperature is obtained using surface heater of power 130 W. The main purpose of this work is to minimize the base temperature, and increase the heat transfer rate of the water block and radiator. The temperature of the heat sink is maintained at 110 °C which is nearly equal to the observed computer microprocessor temperature. We also provide the base temperature at different Reynolds's number using the above mention Nano-fluids with different volumetric concentrations.
Muncy, Nathan M; Hedges-Muncy, Ariana M; Kirwan, C Brock
2017-01-01
Pre-processing MRI scans prior to performing volumetric analyses is common practice in MRI studies. As pre-processing steps adjust the voxel intensities, the space in which the scan exists, and the amount of data in the scan, it is possible that the steps have an effect on the volumetric output. To date, studies have compared between and not within pipelines, and so the impact of each step is unknown. This study aims to quantify the effects of pre-processing steps on volumetric measures in T1-weighted scans within a single pipeline. It was our hypothesis that pre-processing steps would significantly impact ROI volume estimations. One hundred fifteen participants from the OASIS dataset were used, where each participant contributed three scans. All scans were then pre-processed using a step-wise pipeline. Bilateral hippocampus, putamen, and middle temporal gyrus volume estimations were assessed following each successive step, and all data were processed by the same pipeline 5 times. Repeated-measures analyses tested for a main effects of pipeline step, scan-rescan (for MRI scanner consistency) and repeated pipeline runs (for algorithmic consistency). A main effect of pipeline step was detected, and interestingly an interaction between pipeline step and ROI exists. No effect for either scan-rescan or repeated pipeline run was detected. We then supply a correction for noise in the data resulting from pre-processing.
Guzmán Pérez-Carrillo, Gloria J; Owen, Christopher; Schwetye, Katherine E; McFarlane, Spencer; Vellimana, Ananth K; Mar, Soe; Miller-Thomas, Michelle M; Shimony, Joshua S; Smyth, Matthew D; Benzinger, Tammie L S
2017-06-01
OBJECTIVE Many patients with medically intractable epilepsy have mesial temporal sclerosis (MTS), which significantly affects their quality of life. The surgical excision of MTS lesions can result in marked improvement or even complete resolution of the epileptic episodes. Reliable radiological diagnosis of MTS is a clinical challenge. The purpose of this study was to evaluate the utility of volumetric mapping of the hippocampi for the identification of MTS in a case-controlled series of pediatric patients who underwent resection for medically refractory epilepsy, using pathology as a gold standard. METHODS A cohort of 57 pediatric patients who underwent resection for medically intractable epilepsy between 2005 and 2015 was evaluated. On pathological investigation, this group included 24 patients with MTS and 33 patients with non-MTS findings. Retrospective quantitative volumetric measurements of the hippocampi were acquired for 37 of these 57 patients. Two neuroradiologists with more than 10 years of experience who were blinded to the patients' MTS status performed the retrospective review of MR images. To produce the volumetric data, MR scans were parcellated and segmented using the FreeSurfer software suite. Hippocampal regions of interest were compared against an age-weighted local regression curve generated with data from the pediatric normal cohort. Standard deviations and percentiles of specific subjects were calculated. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were determined for the original clinical read and the expert readers. Receiver operating characteristic curves were generated for the methods of classification to compare results from the readers with the authors' results, and an optimal threshold was determined. From that threshold the sensitivity, specificity, PPV, and NPV were calculated for the volumetric analysis. RESULTS With the use of quantitative volumetry, a sensitivity of 72%, a specificity of 95%, a PPV of 93%, an NPV of 78%, and an area under the curve of 0.84 were obtained using a percentage difference of normalized hippocampal volume. The resulting specificity (95%) and PPV (93%) are superior to the original clinical read and to Reader A and Reader B's findings (range for specificity 74%-86% and for PPV 64%-71%). The sensitivity (72%) and NPV (78%) are comparable to Reader A's findings (73% and 81%, respectively) and are better than those of the original clinical read and of Reader B (sensitivity 45% and 63% and NPV 71% and 70%, respectively). CONCLUSIONS Volumetric measurement of the hippocampi outperforms expert readers in specificity and PPV, and it demonstrates comparable to superior sensitivity and NPV. Volumetric measurements can complement anatomical imaging for the identification of MTS, much like a computer-aided detection tool would. The implementation of this approach in the daily clinical workflow could significantly improve diagnostic accuracy.
Odland, Audun; Server, Andres; Saxhaug, Cathrine; Breivik, Birger; Groote, Rasmus; Vardal, Jonas; Larsson, Christopher; Bjørnerud, Atle
2015-11-01
Volumetric magnetic resonance imaging (MRI) is now widely available and routinely used in the evaluation of high-grade gliomas (HGGs). Ideally, volumetric measurements should be included in this evaluation. However, manual tumor segmentation is time-consuming and suffers from inter-observer variability. Thus, tools for semi-automatic tumor segmentation are needed. To present a semi-automatic method (SAM) for segmentation of HGGs and to compare this method with manual segmentation performed by experts. The inter-observer variability among experts manually segmenting HGGs using volumetric MRIs was also examined. Twenty patients with HGGs were included. All patients underwent surgical resection prior to inclusion. Each patient underwent several MRI examinations during and after adjuvant chemoradiation therapy. Three experts performed manual segmentation. The results of tumor segmentation by the experts and by the SAM were compared using Dice coefficients and kappa statistics. A relatively close agreement was seen among two of the experts and the SAM, while the third expert disagreed considerably with the other experts and the SAM. An important reason for this disagreement was a different interpretation of contrast enhancement as either surgically-induced or glioma-induced. The time required for manual tumor segmentation was an average of 16 min per scan. Editing of the tumor masks produced by the SAM required an average of less than 2 min per sample. Manual segmentation of HGG is very time-consuming and using the SAM could increase the efficiency of this process. However, the accuracy of the SAM ultimately depends on the expert doing the editing. Our study confirmed a considerable inter-observer variability among experts defining tumor volume from volumetric MRIs. © The Foundation Acta Radiologica 2014.
2013-01-01
Objective To investigate the anatomic and dosimetric variations of volumetric modulated arc therapy (VMAT) in the treatment of nasopharyngeal cancer (NPC) patients based on weekly cone beam CT (CBCT). Materials and methods Ten NPC patients treated by VMAT with weekly CBCT for setup corrections were reviewed retrospectively. Deformed volumes of targets and organs at risk (OARs) in the CBCT were compared with those in the planning CT. Delivered doses were recalculated based on weekly CBCT and compared with the planned doses. Results No significant volumetric changes on targets, brainstem, and spinal cord were observed. The average volumes of right and left parotid measured from the fifth CBCT were about 4.4 and 4.5 cm3 less than those from the first CBCT, respectively. There were no significant dose differences between average planned and delivered doses for targets, brainstem and spinal cord. For right parotid, the delivered mean dose was 10.5 cGy higher (p = 0.004) than the planned value per fraction, and the V26 and V32 increased by 7.5% (p = 0.002) and 7.4% (p = 0.01), respectively. For the left parotid, the D50 (dose to the 50% volume) was 8.8 cGy higher (p = 0.03) than the planned values per fraction, and the V26 increased by 8.8% (p = 0.002). Conclusion Weekly CBCTs were applied directly to study the continuous volume changes and resulting dosimetric variations of targets and OARs for NPC patients undergoing VMAT. Significant volumetric and dosimetric variations were observed for parotids. Replanning after 30 Gy will benefit the protection on parotids. PMID:24289312
Iordanova, B.; Rosenbaum, D.; Norman, D.; Weiner, M.; Studholme, C.
2007-01-01
BACKGROUND AND PURPOSE Brain volumetry is widely used for evaluating tissue degeneration; however, the parcellation methods are rarely validated and use arbitrary planes to mark boundaries of brain regions. The goal of this study was to develop, validate, and apply an MR imaging tracing method for the parcellation of 3 major gyri of the frontal lobe, which uses only local landmarks intrinsic to the structures of interest, without the need for global reorientation or the use of dividing planes or lines. METHODS Studies were performed on 25 subjects—healthy controls and subjects diagnosed with Lewy body dementia and Alzheimer disease—with significant variation in the underlying gyral anatomy and state of atrophy. The protocol was evaluated by using multiple observers tracing scans of subjects diagnosed with neurodegenerative disease and those aging normally, and the results were compared by spatial overlap agreement. To confirm the results, observers marked the same locations in different brains. We illustrated the variabilities of the key boundaries that pose the greatest challenge to defining consistent parcellations across subjects. RESULTS The resulting gyral volumes were evaluated, and their consistency across raters was used as an additional assessment of the validity of our marking method. The agreement on a scale of 0–1 was found to be 0.83 spatial and 0.90 volumetric for the same rater and 0.85 spatial and 0.90 volumetric for 2 different raters. The results revealed that the protocol remained consistent across different neurodegenerative conditions. CONCLUSION Our method provides a simple and reliable way for the volumetric evaluation of frontal lobe neurodegeneration and can be used as a resource for larger comparative studies as well as a validation procedure of automated algorithms. PMID:16971629
Comparing electronic probes for volumetric water content of low-density feathermoss
Overduin, P.P.; Yoshikawa, K.; Kane, D.L.; Harden, J.W.
2005-01-01
Purpose - Feathermoss is ubiquitous in the boreal forest and across various land-cover types of the arctic and subarctic. A variety of affordable commercial sensors for soil moisture content measurement have recently become available and are in use in such regions, often in conjunction with fire-susceptibility or ecological studies. Few come supplied with calibrations suitable or suggested for soils high in organics. Aims to test seven of these sensors for use in feathermoss, seeking calibrations between sensor output and volumetric water content. Design/methodology/approach - Measurements from seven sensors installed in live, dead and burned feathermoss samples, drying in a controlled manner, were compared to moisture content measurements. Empirical calibrations of sensor output to water content were determined. Findings - Almost all of the sensors tested were suitable for measuring the moss sample water content, and a unique calibration for each sensor for this material is presented. Differences in sensor design lead to changes in sensitivity as a function of volumetric water content, affecting the spatial averaging over the soil measurement volume. Research limitations/implications - The wide range of electromagnetic sensors available include frequency and time domain designs with variations in wave guide and sensor geometry, the location of sensor electronics and operating frequency. Practical implications - This study provides information for extending the use of electromagnetic sensors to feathermoss. Originality/value - A comparison of volumetric water content sensor mechanics and design is of general interest to researchers measuring soil water content. In particular, researchers working in wetlands, boreal forests and tundra regions will be able to apply these results. ?? Emerald Group Publishing Limited.
NASA Astrophysics Data System (ADS)
Owers, Christopher J.; Rogers, Kerrylee; Woodroffe, Colin D.
2018-05-01
Above-ground biomass represents a small yet significant contributor to carbon storage in coastal wetlands. Despite this, above-ground biomass is often poorly quantified, particularly in areas where vegetation structure is complex. Traditional methods for providing accurate estimates involve harvesting vegetation to develop mangrove allometric equations and quantify saltmarsh biomass in quadrats. However broad scale application of these methods may not capture structural variability in vegetation resulting in a loss of detail and estimates with considerable uncertainty. Terrestrial laser scanning (TLS) collects high resolution three-dimensional point clouds capable of providing detailed structural morphology of vegetation. This study demonstrates that TLS is a suitable non-destructive method for estimating biomass of structurally complex coastal wetland vegetation. We compare volumetric models, 3-D surface reconstruction and rasterised volume, and point cloud elevation histogram modelling techniques to estimate biomass. Our results show that current volumetric modelling approaches for estimating TLS-derived biomass are comparable to traditional mangrove allometrics and saltmarsh harvesting. However, volumetric modelling approaches oversimplify vegetation structure by under-utilising the large amount of structural information provided by the point cloud. The point cloud elevation histogram model presented in this study, as an alternative to volumetric modelling, utilises all of the information within the point cloud, as opposed to sub-sampling based on specific criteria. This method is simple but highly effective for both mangrove (r2 = 0.95) and saltmarsh (r2 > 0.92) vegetation. Our results provide evidence that application of TLS in coastal wetlands is an effective non-destructive method to accurately quantify biomass for structurally complex vegetation.
Sharma, Anurag; Vandenberg, Brian; Hollingsworth, Bruce
2014-01-01
We estimate the effect on light, moderate and heavy consumers of alcohol from implementing a minimum unit price for alcohol (MUP) compared with a uniform volumetric tax. We analyse scanner data from a panel survey of demographically representative households (n = 885) collected over a one-year period (24 Jan 2010-22 Jan 2011) in the state of Victoria, Australia, which includes detailed records of each household's off-trade alcohol purchasing. The heaviest consumers (3% of the sample) currently purchase 20% of the total litres of alcohol (LALs), are more likely to purchase cask wine and full strength beer, and pay significantly less on average per standard drink compared to the lightest consumers (A$1.31 [95% CI 1.20-1.41] compared to $2.21 [95% CI 2.10-2.31]). Applying a MUP of A$1 per standard drink has a greater effect on reducing the mean annual volume of alcohol purchased by the heaviest consumers of wine (15.78 LALs [95% CI 14.86-16.69]) and beer (1.85 LALs [95% CI 1.64-2.05]) compared to a uniform volumetric tax (9.56 LALs [95% CI 9.10-10.01] and 0.49 LALs [95% CI 0.46-0.41], respectively). A MUP results in smaller increases in the annual cost for the heaviest consumers of wine ($393.60 [95% CI 374.19-413.00]) and beer ($108.26 [95% CI 94.76-121.75]), compared to a uniform volumetric tax ($552.46 [95% CI 530.55-574.36] and $163.92 [95% CI 152.79-175.03], respectively). Both a MUP and uniform volumetric tax have little effect on changing the annual cost of wine and beer for light and moderate consumers, and likewise little effect upon their purchasing. While both a MUP and a uniform volumetric tax have potential to reduce heavy consumption of wine and beer without adversely affecting light and moderate consumers, a MUP offers the potential to achieve greater reductions in heavy consumption at a lower overall annual cost to consumers.
Lee, Sang Il; Lee, Keon Jin; Chun, Ho Hyun; Ha, Sanghyun; Gwak, Hyun Jung; Kim, Ho Myeong; Lee, Jong-Hee; Choi, Hak-Jong; Kim, Hyeong Hwan; Shin, Teak Soo; Park, Hae Woong; Kim, Jin-Cheol
2018-03-01
Oxalic acid has potent nematicidal activity against the root-knot nematode Meloidogyne incognita. In this study, fermentation parameters for oxalic acid production in submerged culture of Aspergillus niger F22 at 23, 25, and 30 °C were optimized in 5-L jar fermenters. The viscosity of the culture broth increased with increasing temperature. There was a negative correlation between oxalic acid production and the apparent viscosity; high volumetric productivity of oxalic acid was obtained at low apparent viscosity (less than 1000 cP), with a productivity of more than 100 mg/L h. When the apparent viscosity was over 2500 cP, the volumetric productivity decreased below 50 mg/L h. In addition, the volumetric mass transfer coefficient, K L a, positively correlated with volumetric productivity. When the K L a value increased from 0.0 to 0.017 /s, the volumetric productivity proportionally increased up to 176 mg/L h. When the temperature decreased, K L a increased due to the decrease in viscosity, leading to increased volumetric productivity. The highest productivity of 7453.3 mg/L was obtained at the lowest temperature, i.e., 23 °C. The nematicidal activity of culture filtrate was proportional to the content of oxalic acid. Based on a constant impeller tip speed, oxalic acid production was successfully scaled up to a 500-L pilot vessel, producing a final concentration comparable to that in the 5-L jar.
de Fraga, Rogerio; Dambros, Miriam; Miyaoka, Ricardo; Riccetto, Cássio Luís Zanettini; Palma, Paulo César Rodrigues
2007-10-01
The authors quantified the type IV collagen fibers volumetric density in the basement membrane of bladder wall of ovariectomized rats with and without estradiol replacement. This study was conducted on 40 Wistar rats (3 months old) randomly divided in 4 groups: group 1, remained intact (control); group 2, submitted to bilateral oophorectomy and daily replacement 4 weeks later of 17 beta-estradiol for 12 weeks; group 3, sham operated and daily replacement 4 weeks later of sesame oil for 12 weeks; and group 4, submitted to bilateral oophorectomy and killed after 12 weeks. It was used in immunohistochemistry evaluation using type IV collagen polyclonal antibody to stain the fibers on paraffin rat bladder sections. The M-42 stereological grid system was used to analyze the fibers. Ovariectomy had an increase effect on the volumetric density of the type IV collagen fibers in the basement membrane of rat bladder wall. Estradiol replacement in castrated animals demonstrated a significative difference in the stereological parameters when compared to the castrated group without hormonal replacement. Surgical castration performed on rats induced an increasing volumetric density of type IV collagen fibers in the basement membrane of rats bladder wall and the estradiol treatment had a significant effect in keeping a low volumetric density of type IV collagen fibers in the basement membrane of rats bladder wall.
VOLUMETRIC TANK TESTING: AN OVERVIEW
This report summarizes the technical findings of an EPA study on volumetric tank testing. The results of this study, which evaluated the viability of volumetric tank tests as a means of detecting leaks in underground storage tanks, are described. Also, the accuracy requirements s...
Pelletier, Solenne; Vilayphiou, Nicolas; Boutroy, Stéphanie; Bacchetta, Justine; Sornay-Rendu, Elisabeth; Szulc, Pawel; Arkouche, Walid; Guebre-Egziabher, Fitsum; Fouque, Denis; Chapurlat, Roland
2012-09-01
We used high-resolution quantitative computed tomography to study the microarchitecture of bone in patients with chronic kidney disease on dialysis. We compared bone characteristics in 56 maintenance hemodialysis (21 women, 14 post-menopausal) and 23 peritoneal dialysis patients (9 women, 6 post-menopausal) to 79 healthy men and women from two cohorts matched for age, body mass index, gender, and menopausal status. All underwent dual-energy X-ray absorptiometry of the spine and hip to measure areal bone mineral density, and high-resolution peripheral quantitative computed tomography of the radius and tibia to measure volumetric bone mineral density and microarchitecture. When compared to their matched healthy controls, patients receiving hemodialysis and peritoneal dialysis had a significantly lower areal bone mineral density in the hip. Hemodialysis patients had significantly lower total, cortical, and trabecular volumetric bone mineral density at both sites. Hemodialysis patients had significantly lower trabecular volumetric bone mineral density and microarchitecture at the tibia than the peritoneal dialysis patients. Overall, peritoneal dialysis patients were less affected, their cortical thickness at the distal tibia being the only significant difference versus controls. Thus, we found more severe trabecular damage at the weight-bearing tibia in hemodialysis compared to peritoneal dialysis patients, but this latter finding needs confirmation in larger cohorts.
Huisman, Merel; Lam, Mie K; Bartels, Lambertus W; Nijenhuis, Robbert J; Moonen, Chrit T; Knuttel, Floor M; Verkooijen, Helena M; van Vulpen, Marco; van den Bosch, Maurice A
2014-01-01
Magnetic resonance-guided high intensity focused ultrasound (MR-HIFU) has recently emerged as an effective treatment option for painful bone metastases. We describe here the first experience with volumetric MR-HIFU for palliative treatment of painful bone metastases and evaluate the technique on three levels: technical feasibility, safety, and initial effectiveness. In this observational cohort study, 11 consecutive patients (7 male and 4 female; median age, 60 years; age range, 53-86 years) underwent 13 treatments for 12 bone metastases. All patients exhibited persistent metastatic bone pain refractory to the standard of care. Patients were asked to rate their worst pain on an 11-point pain scale before treatment, 3 days after treatment, and 1 month after treatment. Complications were monitored. All data were prospectively recorded in the context of routine clinical care. Response was defined as a ≥2-point decrease in pain at the treated site without increase in analgesic intake. Baseline pain scores were compared to pain scores at 3 days and 1 month using the Wilcoxon signed-rank test. For reporting, the STROBE guidelines were followed. No treatment-related major adverse events were observed. At 3 days after volumetric MR-HIFU ablation, pain scores decreased significantly (p = 0.045) and response was observed in a 6/11 (55%) patients. At 1-month follow-up, which was available for nine patients, pain scores decreased significantly compared to baseline (p = 0.028) and 6/9 patients obtained pain response (overall response rate 67% (95% confidence interval (CI) 35%-88%)). This is the first study reporting on the volumetric MR-HIFU ablation for painful bone metastases. No major treatment-related adverse events were observed during follow-up. The results of our study showed that volumetric MR-HIFU ablation for painful bone metastases is technically feasible and can induce pain relief in patients with metastatic bone pain refractory to the standard of care. Future research should be aimed at standardization of the treatment procedures and treatment of larger numbers of patients to assess treatment effectiveness and comparison to the standard of care.
2014-01-01
Background Magnetic resonance-guided high intensity focused ultrasound (MR-HIFU) has recently emerged as an effective treatment option for painful bone metastases. We describe here the first experience with volumetric MR-HIFU for palliative treatment of painful bone metastases and evaluate the technique on three levels: technical feasibility, safety, and initial effectiveness. Methods In this observational cohort study, 11 consecutive patients (7 male and 4 female; median age, 60 years; age range, 53–86 years) underwent 13 treatments for 12 bone metastases. All patients exhibited persistent metastatic bone pain refractory to the standard of care. Patients were asked to rate their worst pain on an 11-point pain scale before treatment, 3 days after treatment, and 1 month after treatment. Complications were monitored. All data were prospectively recorded in the context of routine clinical care. Response was defined as a ≥2-point decrease in pain at the treated site without increase in analgesic intake. Baseline pain scores were compared to pain scores at 3 days and 1 month using the Wilcoxon signed-rank test. For reporting, the STROBE guidelines were followed. Results No treatment-related major adverse events were observed. At 3 days after volumetric MR-HIFU ablation, pain scores decreased significantly (p = 0.045) and response was observed in a 6/11 (55%) patients. At 1-month follow-up, which was available for nine patients, pain scores decreased significantly compared to baseline (p = 0.028) and 6/9 patients obtained pain response (overall response rate 67% (95% confidence interval (CI) 35%–88%)). Conclusions This is the first study reporting on the volumetric MR-HIFU ablation for painful bone metastases. No major treatment-related adverse events were observed during follow-up. The results of our study showed that volumetric MR-HIFU ablation for painful bone metastases is technically feasible and can induce pain relief in patients with metastatic bone pain refractory to the standard of care. Future research should be aimed at standardization of the treatment procedures and treatment of larger numbers of patients to assess treatment effectiveness and comparison to the standard of care. PMID:25309743
Magunia, Harry; Schmid, Eckhard; Hilberath, Jan N; Häberle, Leo; Grasshoff, Christian; Schlensak, Christian; Rosenberger, Peter; Nowak-Machen, Martina
2017-04-01
The early diagnosis and treatment of right ventricular (RV) dysfunction are of critical importance in cardiac surgery patients and impact clinical outcome. Two-dimensional (2D) transesophageal echocardiography (TEE) can be used to evaluate RV function using surrogate parameters due to complex RV geometry. The aim of this study was to evaluate whether the commonly used visual evaluation of RV function and size using 2D TEE correlated with the calculated three-dimensional (3D) volumetric models of RV function. Retrospective study, single center, University Hospital. Seventy complete datasets were studied consisting of 2D 4-chamber view loops (2-3 beats) and the corresponding 4-chamber view 3D full-volume loop of the right ventricle. RV function and RV size of the 2D loops then were assessed retrospectively purely qualitatively individually by 4 clinician echocardiographers certified in perioperative TEE. Corresponding 3D volumetric models calculating RV ejection fraction and RV end-diastolic volumes then were established and compared with the 2D assessments. 2D assessment of RV function correlated with 3D volumetric calculations (Spearman's rho -0.5; p<0.0001). No correlation could be established between 2D estimates of RV size and actual 3D volumetric end-diastolic volumes (Spearman's rho 0.15; p = 0.25). The 2D assessment of right ventricular function based on visual estimation as frequently used in clinical practice appeared to be a reliable method of RV functional evaluation. However, 2D assessment of RV size seemed unreliable and should be used with caution. Copyright © 2017 Elsevier Inc. All rights reserved.
Wenzel, Chad G; Wacholtz, William F; Janssen, David A; Bengtson, Bradley P
2015-10-01
There are significant differences in weight and volumetric characteristics between silicone and saline breast implants of which most plastic surgeons are unaware. Phase I of this study was a weight measurement focused on recording differences in the weight of saline volumes instilled versus recorded weights of saline implants and expanders. Phase II compared displaced volume differences of tissue expanders with instilled volumes. As a result of this study, surgeons should now be able to precisely calculate the volume created for breast pocket development, allowing for accurate matching of expander and final breast implant. Copyright © 2015 Elsevier Inc. All rights reserved.
Rozen, Warren Matthew; Spychal, Robert T.; Hunter-Smith, David J.
2016-01-01
Background Accurate volumetric analysis is an essential component of preoperative planning in both reconstructive and aesthetic breast procedures towards achieving symmetrization and patient-satisfactory outcome. Numerous comparative studies and reviews of individual techniques have been reported. However, a unifying review of all techniques comparing their accuracy, reliability, and practicality has been lacking. Methods A review of the published English literature dating from 1950 to 2015 using databases, such as PubMed, Medline, Web of Science, and EMBASE, was undertaken. Results Since Bouman’s first description of water displacement method, a range of volumetric assessment techniques have been described: thermoplastic casting, direct anthropomorphic measurement, two-dimensional (2D) imaging, and computed tomography (CT)/magnetic resonance imaging (MRI) scans. However, most have been unreliable, difficult to execute and demonstrate limited practicability. Introduction of 3D surface imaging has revolutionized the field due to its ease of use, fast speed, accuracy, and reliability. However, its widespread use has been limited by its high cost and lack of high level of evidence. Recent developments have unveiled the first web-based 3D surface imaging program, 4D imaging, and 3D printing. Conclusions Despite its importance, an accurate, reliable, and simple breast volumetric analysis tool has been elusive until the introduction of 3D surface imaging technology. However, its high cost has limited its wide usage. Novel adjunct technologies, such as web-based 3D surface imaging program, 4D imaging, and 3D printing, appear promising. PMID:27047788
Yu, Huidan; Chen, Xi; Wang, Zhiqiang; Deep, Debanjan; Lima, Everton; Zhao, Ye; Teague, Shawn D
2014-06-01
In this paper, we develop a mass-conserved volumetric lattice Boltzmann method (MCVLBM) for numerically solving fluid dynamics with willfully moving arbitrary boundaries. In MCVLBM, fluid particles are uniformly distributed in lattice cells and the lattice Boltzmann equations deal with the time evolution of the particle distribution function. By introducing a volumetric parameter P(x,y,z,t) defined as the occupation of solid volume in the cell, we distinguish three types of lattice cells in the simulation domain: solid cell (pure solid occupation, P=1), fluid cell (pure fluid occupation, P=0), and boundary cell (partial solid and partial fluid, 0
2017-01-01
Pre-processing MRI scans prior to performing volumetric analyses is common practice in MRI studies. As pre-processing steps adjust the voxel intensities, the space in which the scan exists, and the amount of data in the scan, it is possible that the steps have an effect on the volumetric output. To date, studies have compared between and not within pipelines, and so the impact of each step is unknown. This study aims to quantify the effects of pre-processing steps on volumetric measures in T1-weighted scans within a single pipeline. It was our hypothesis that pre-processing steps would significantly impact ROI volume estimations. One hundred fifteen participants from the OASIS dataset were used, where each participant contributed three scans. All scans were then pre-processed using a step-wise pipeline. Bilateral hippocampus, putamen, and middle temporal gyrus volume estimations were assessed following each successive step, and all data were processed by the same pipeline 5 times. Repeated-measures analyses tested for a main effects of pipeline step, scan-rescan (for MRI scanner consistency) and repeated pipeline runs (for algorithmic consistency). A main effect of pipeline step was detected, and interestingly an interaction between pipeline step and ROI exists. No effect for either scan-rescan or repeated pipeline run was detected. We then supply a correction for noise in the data resulting from pre-processing. PMID:29023597
NASA Astrophysics Data System (ADS)
Zhao, Zhen-tao; Huang, Wei; Li, Shi-Bin; Zhang, Tian-Tian; Yan, Li
2018-06-01
In the current study, a variable Mach number waverider design approach has been proposed based on the osculating cone theory. The design Mach number of the osculating cone constant Mach number waverider with the same volumetric efficiency of the osculating cone variable Mach number waverider has been determined by writing a program for calculating the volumetric efficiencies of waveriders. The CFD approach has been utilized to verify the effectiveness of the proposed approach. At the same time, through the comparative analysis of the aerodynamic performance, the performance advantage of the osculating cone variable Mach number waverider is studied. The obtained results show that the osculating cone variable Mach number waverider owns higher lift-to-drag ratio throughout the flight profile when compared with the osculating cone constant Mach number waverider, and it has superior low-speed aerodynamic performance while maintaining nearly the same high-speed aerodynamic performance.
Volumetric modulated arc therapy: a review of current literature and clinical use in practice
Teoh, M; Clark, C H; Wood, K; Whitaker, S; Nisbet, A
2011-01-01
Volumetric modulated arc therapy (VMAT) is a novel radiation technique, which can achieve highly conformal dose distributions with improved target volume coverage and sparing of normal tissues compared with conventional radiotherapy techniques. VMAT also has the potential to offer additional advantages, such as reduced treatment delivery time compared with conventional static field intensity modulated radiotherapy (IMRT). The clinical worldwide use of VMAT is increasing significantly. Currently the majority of published data on VMAT are limited to planning and feasibility studies, although there is emerging clinical outcome data in several tumour sites. This article aims to discuss the current use of VMAT techniques in practice and review the available data from planning and clinical outcome studies in various tumour sites including prostate, pelvis (lower gastrointestinal, gynaecological), head and neck, thoracic, central nervous system, breast and other tumour sites. PMID:22011829
MacMaster, Frank P; Carrey, Normand; Langevin, Lisa Marie; Jaworska, Natalia; Crawford, Susan
2014-03-01
Structural abnormalities in frontal, limbic and subcortical regions have been noted in adults with both major depressive disorder (MDD) and bipolar disorder (BD). In the current study, we examined regional brain morphology in youth with MDD and BD as compared to controls. Regional brain volumes were measured in 32 MDD subjects (15.7 ± 2.1 years), 14 BD subjects (16.0 ± 2.4 years) and 22 healthy controls (16.0 ± 2.8 years) using magnetic resonance imaging (MRI). Regions of interest included the hippocampus, dorsolateral prefrontal cortex (DLPFC), anterior cingulate cortex (ACC), caudate, putamen and thalamus. Volumetric differences between groups were significant (F26,80 = 1.80, p = 0.02). Post-hoc analyses indicated that individuals with MDD showed reduced left hippocampus volumes (p = 0.048) as well as right ACC white and gray matter volumes (p = 0.003; p = 0.01) compared to controls. BD participants also displayed reduced left hippocampal and right/left putamen volumes compared to controls (p < 0.001; p = 0.015; p = 0.046 respectively). Interestingly, right and left ACC white matter volumes were smaller in MDD than in BD participants (p = 0.019; p = 0.045 respectively). No volumetric group differences were observed for the DLPFC and thalamus. Discriminant analysis was able to correctly classify 81.0 % of subjects as having BD or as MDD based on imaging data. Confirmation and extension of our findings requires larger sample sizes. Our findings provide new evidence of distinct, specific regional brain volumetric differences between MDD and BD that may be used to distinguish the two disorders.
Carrion, Victor G.; Weems, Carl F.; Watson, Christa; Eliez, Stephan; Menon, Vinod; Reiss, Allan L.
2009-01-01
Objective Volumetric imaging research has shown abnormal brain morphology in posttraumatic stress disorder (PTSD) when compared to controls. We present results on a study of brain morphology in the prefrontal cortex (PFC) and midline structures, via indices of gray matter volume and density, in pediatric PTSD. We hypothesized that both methods would demonstrate aberrant morphology in the PFC. Further, we hypothesized aberrant brainstem anatomy and reduced corpus collosum volume in children with PTSD. Methods Twenty-four children (aged 7-14) with history of interpersonal trauma and 24 age, and gender matched controls underwent structural magnetic resonance imaging. Images of the PFC and midline brain structures were first analyzed using volumetric image analysis. The PFC data were then compared with whole-brain voxel-based techniques using statistical parametric mapping (SPM). Results The PTSD group showed significant increased gray matter volume in the right and left inferior and superior quadrants of the prefrontal cortex and smaller gray matter volume in pons, and posterior vermis areas by volumetric image analysis. The voxel-byvoxel group comparisons demonstrated increased gray matter density mostly localized to ventral PFC as compared to the control group. Conclusions Abnormal frontal lobe morphology, as revealed by separate-complementary image analysis methods, and reduced pons and posterior vermis areas are associated with pediatric PTSD. Voxel-based morphometry may help to corroborate and further localize data obtained by volume of interest methods in PTSD. PMID:19349151
VFMA: Topographic Analysis of Sensitivity Data From Full-Field Static Perimetry
Weleber, Richard G.; Smith, Travis B.; Peters, Dawn; Chegarnov, Elvira N.; Gillespie, Scott P.; Francis, Peter J.; Gardiner, Stuart K.; Paetzold, Jens; Dietzsch, Janko; Schiefer, Ulrich; Johnson, Chris A.
2015-01-01
Purpose: To analyze static visual field sensitivity with topographic models of the hill of vision (HOV), and to characterize several visual function indices derived from the HOV volume. Methods: A software application, Visual Field Modeling and Analysis (VFMA), was developed for static perimetry data visualization and analysis. Three-dimensional HOV models were generated for 16 healthy subjects and 82 retinitis pigmentosa patients. Volumetric visual function indices, which are measures of quantity and comparable regardless of perimeter test pattern, were investigated. Cross-validation, reliability, and cross-sectional analyses were performed to assess this methodology and compare the volumetric indices to conventional mean sensitivity and mean deviation. Floor effects were evaluated by computer simulation. Results: Cross-validation yielded an overall R2 of 0.68 and index of agreement of 0.89, which were consistent among subject groups, indicating good accuracy. Volumetric and conventional indices were comparable in terms of test–retest variability and discriminability among subject groups. Simulated floor effects did not negatively impact the repeatability of any index, but large floor changes altered the discriminability for regional volumetric indices. Conclusions: VFMA is an effective tool for clinical and research analyses of static perimetry data. Topographic models of the HOV aid the visualization of field defects, and topographically derived indices quantify the magnitude and extent of visual field sensitivity. Translational Relevance: VFMA assists with the interpretation of visual field data from any perimetric device and any test location pattern. Topographic models and volumetric indices are suitable for diagnosis, monitoring of field loss, patient counseling, and endpoints in therapeutic trials. PMID:25938002
Volumetric calibration of a plenoptic camera.
Hall, Elise Munz; Fahringer, Timothy W; Guildenbecher, Daniel R; Thurow, Brian S
2018-02-01
The volumetric calibration of a plenoptic camera is explored to correct for inaccuracies due to real-world lens distortions and thin-lens assumptions in current processing methods. Two methods of volumetric calibration based on a polynomial mapping function that does not require knowledge of specific lens parameters are presented and compared to a calibration based on thin-lens assumptions. The first method, volumetric dewarping, is executed by creation of a volumetric representation of a scene using the thin-lens assumptions, which is then corrected in post-processing using a polynomial mapping function. The second method, direct light-field calibration, uses the polynomial mapping in creation of the initial volumetric representation to relate locations in object space directly to image sensor locations. The accuracy and feasibility of these methods is examined experimentally by capturing images of a known dot card at a variety of depths. Results suggest that use of a 3D polynomial mapping function provides a significant increase in reconstruction accuracy and that the achievable accuracy is similar using either polynomial-mapping-based method. Additionally, direct light-field calibration provides significant computational benefits by eliminating some intermediate processing steps found in other methods. Finally, the flexibility of this method is shown for a nonplanar calibration.
Clarke, G. M.; Murray, M.; Holloway, C. M. B.; Liu, K.; Zubovits, J. T.; Yaffe, M. J.
2012-01-01
Tumour size, most commonly measured by maximum linear extent, remains a strong predictor of survival in breast cancer. Tumour volume, proportional to the number of tumour cells, may be a more accurate surrogate for size. We describe a novel “3D pathology volumetric technique” for lumpectomies and compare it with 2D measurements. Volume renderings and total tumour volume are computed from digitized whole-mount serial sections using custom software tools. Results are presented for two lumpectomy specimens selected for tumour features which may challenge accurate measurement of tumour burden with conventional, sampling-based pathology: (1) an infiltrative pattern admixed with normal breast elements; (2) a localized invasive mass separated from the in situ component by benign tissue. Spatial relationships between key features (tumour foci, close or involved margins) are clearly visualized in volume renderings. Invasive tumour burden can be underestimated using conventional pathology, compared to the volumetric technique (infiltrative pattern: 30% underestimation; localized mass: 3% underestimation for invasive tumour, 44% for in situ component). Tumour volume approximated from 2D measurements (i.e., maximum linear extent), assuming elliptical geometry, was seen to overestimate volume compared to the 3D volumetric calculation (by a factor of 7x for the infiltrative pattern; 1.5x for the localized invasive mass). PMID:23320179
Comparison of subjective and fully automated methods for measuring mammographic density.
Moshina, Nataliia; Roman, Marta; Sebuødegård, Sofie; Waade, Gunvor G; Ursin, Giske; Hofvind, Solveig
2018-02-01
Background Breast radiologists of the Norwegian Breast Cancer Screening Program subjectively classified mammographic density using a three-point scale between 1996 and 2012 and changed into the fourth edition of the BI-RADS classification since 2013. In 2015, an automated volumetric breast density assessment software was installed at two screening units. Purpose To compare volumetric breast density measurements from the automated method with two subjective methods: the three-point scale and the BI-RADS density classification. Material and Methods Information on subjective and automated density assessment was obtained from screening examinations of 3635 women recalled for further assessment due to positive screening mammography between 2007 and 2015. The score of the three-point scale (I = fatty; II = medium dense; III = dense) was available for 2310 women. The BI-RADS density score was provided for 1325 women. Mean volumetric breast density was estimated for each category of the subjective classifications. The automated software assigned volumetric breast density to four categories. The agreement between BI-RADS and volumetric breast density categories was assessed using weighted kappa (k w ). Results Mean volumetric breast density was 4.5%, 7.5%, and 13.4% for categories I, II, and III of the three-point scale, respectively, and 4.4%, 7.5%, 9.9%, and 13.9% for the BI-RADS density categories, respectively ( P for trend < 0.001 for both subjective classifications). The agreement between BI-RADS and volumetric breast density categories was k w = 0.5 (95% CI = 0.47-0.53; P < 0.001). Conclusion Mean values of volumetric breast density increased with increasing density category of the subjective classifications. The agreement between BI-RADS and volumetric breast density categories was moderate.
Moreno-Alcázar, Ana; Gonzalvo, Begoña; Canales-Rodríguez, Erick J; Blanco, Laura; Bachiller, Diana; Romaguera, Anna; Monté-Rubio, Gemma C; Roncero, Carlos; McKenna, Peter J; Pomarol-Clotet, Edith
2018-01-01
Background: Structural imaging studies of cannabis users have found evidence of both cortical and subcortical volume reductions, especially in cannabinoid receptor-rich regions such as the hippocampus and amygdala. However, the findings have not been consistent. In the present study, we examined a sample of adult heavy cannabis users without other substance abuse to determine whether long-term use is associated with brain structural changes, especially in the subcortical regions. Method: We compared the gray matter volume of 14 long-term, heavy cannabis users with non-using controls. To provide robust findings, we conducted two separate studies using two different MRI techniques. Each study used the same sample of cannabis users and a different control group, respectively. Both control groups were independent of each other. First, whole-brain voxel-based morphometry (VBM) was used to compare the cannabis users against 28 matched controls (HC1 group). Second, a volumetric analysis of subcortical regions was performed to assess differences between the cannabis users and a sample of 100 matched controls (HC2 group) obtained from a local database of healthy volunteers. Results: The VBM study revealed that, compared to the control group HC1, the cannabis users did not show cortical differences nor smaller volume in any subcortical structure but showed a cluster ( p < 0.001) of larger GM volume in the basal ganglia, involving the caudate, putamen, pallidum, and nucleus accumbens, bilaterally. The subcortical volumetric analysis revealed that, compared to the control group HC2, the cannabis users showed significantly larger volumes in the putamen ( p = 0.001) and pallidum ( p = 0.0015). Subtle trends, only significant at the uncorrected level, were also found in the caudate ( p = 0.05) and nucleus accumbens ( p = 0.047). Conclusions: This study does not support previous findings of hippocampal and/or amygdala structural changes in long-term, heavy cannabis users. It does, however, provide evidence of basal ganglia volume increases.
The effects of taxing sugar-sweetened beverages across different income groups.
Sharma, Anurag; Hauck, Katharina; Hollingsworth, Bruce; Siciliani, Luigi
2014-09-01
This paper investigates the impact of sugar-sweetened beverages (SSB) taxes on consumption, bodyweight and tax burden for low-income, middle-income and high-income groups using an Almost Ideal Demand System and 2011 Household level scanner data. A significant contribution of our paper is that we compare two types of SSB taxes recently advocated by policy makers: A 20% flat rate sales (valoric) tax and a 20 cent/L volumetric tax. Censored demand is accounted for using a two-step procedure. We find that the volumetric tax would result in a greater per capita weight loss than the valoric tax (0.41 kg vs. 0.29 kg). The difference between the change in weight is substantial for the target group of heavy purchasers of SSBs in low-income households, with a weight reduction of up to 3.20 kg for the volumetric and 2.06 kg for the valoric tax. The average yearly per capita tax burden on low-income households is $17.87 (0.21% of income) compared with $15.17 for high-income households (0.07% of income) for the valoric tax, and $13.80 (0.15%) and $10.10 (0.04%) for the volumetric tax. Thus, the tax burden is lower, and weight reduction is higher under a volumetric tax. Copyright © 2014 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Harlapur, M. D.; Mallapur, D. G.; Udupa, K. Rajendra
2018-04-01
In the current study, an experimental analysis of volumetric wear behaviour and mechanical properties of aluminium (Al-25Mg2Si2Cu4Ni) alloy in as cast and 1Hr homogenized with T6 heat treatment is carried out at constant load. Pin-on-disc apparatus was used to carry out sliding wear test. Mechanical properties such as tensile, hardness and compression test on as-cast and 1 hr homogenized samples are measured. Universal testing machine was used to conduct the tensile and compressive test at room temperature. Brinell hardness tester was used to conduct the hardness test. The scanning electron microscope was used to analyze the worn-out wear surfaces. Wear results and mechanical properties shows that 1Hr homogenized Al-25Mg2Si2Cu4Ni alloy samples with T6 treated had better volumetric wear resistance, hardness, tensile and compressive strength as compared to as cast samples.
Amianto, Federico; Caroppo, Paola; D'Agata, Federico; Spalatro, Angela; Lavagnino, Luca; Caglio, Marcella; Righi, Dorico; Bergui, Mauro; Abbate-Daga, Giovanni; Rigardetto, Roberto; Mortara, Paolo; Fassino, Secondo
2013-09-30
Recent studies focussing on neuroimaging features of eating disorders have observed that anorexia nervosa (AN) is characterized by significant grey matter (GM) atrophy in many brain regions, especially in the cerebellum and anterior cingulate cortex. To date, no studies have found GM atrophy in bulimia nervosa (BN) or have directly compared patients with AN and BN. We used voxel-based morphometry (VBM) to characterize brain abnormalities in AN and BN patients, comparing them with each other and with a control group, and correlating brain volume with clinical features. We recruited 17 AN, 13 BN and 14 healthy controls. All subjects underwent high-resolution magnetic resonance imaging (MRI) with a T1-weighted 3D image. VBM analysis was carried out with the FSL-VBM 4.1 tool. We found no global atrophy, but regional GM reduction in AN with respect to controls and BN in the cerebellum, fusiform area, supplementary motor area, and occipital cortex, and in the caudate in BN compared to AN and controls. Both groups of patients had a volumetric increase bilaterally in somatosensory regions with respect to controls, in areas that are typically involved in the sensory-motor integration of body stimuli and in mental representation of the body image. Our VBM study documented, for the first time in BN patients, the presence of volumetric alterations and replicated previous findings in AN patients. We evidenced morphological differences between AN and BN, demonstrating in the latter atrophy of the caudate nucleus, a region involved in reward mechanisms and processes of self-regulation, perhaps involved in the genesis of the binge-eating behaviors of this disorder. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xiaohua; Yuan, Huishu; Duan, Jianghui
2013-08-15
Purpose: The purpose of this study was to evaluate the effect of various computed tomography (CT) thresholds on trapping volumetric measurements by multidetector CT in chronic obstructive pulmonary disease (COPD).Methods: Twenty-three COPD patients were scanned with a 64-slice CT scanner in both the inspiratory and expiratory phase. CT thresholds of −950 Hu in inspiration and −950 to −890 Hu in expiration were used, after which trapping volumetric measurements were made using computer software. Trapping volume percentage (Vtrap%) under the different CT thresholds in the expiratory phase and below −950 Hu in the inspiratory phase was compared and correlated with lungmore » function.Results: Mean Vtrap% was similar under −930 Hu in the expiratory phase and below −950 Hu in the inspiratory phase, being 13.18 ± 9.66 and 13.95 ± 6.72 (both lungs), respectively; this difference was not significant (P= 0.240). Vtrap% under −950 Hu in the inspiratory phase and below the −950 to −890 Hu threshold in the expiratory phase was moderately negatively correlated with the ratio of forced expiratory volume in one second to forced vital capacity and the measured value of forced expiratory volume in one second as a percentage of the predicted value.Conclusions: Trapping volumetric measurement with multidetector CT is a promising method for the quantification of COPD. It is important to know the effect of various CT thresholds on trapping volumetric measurements.« less
Asif, Muhammad Khan; Nambiar, Phrabhakaran; Mani, Shani Ann; Ibrahim, Norliza Binti; Khan, Iqra Muhammad; Sukumaran, Prema
2018-02-01
The methods of dental age estimation and identification of unknown deceased individuals are evolving with the introduction of advanced innovative imaging technologies in forensic investigations. However, assessing small structures like root canal volumes can be challenging in spite of using highly advanced technology. The aim of the study was to investigate which amongst the two methods of volumetric analysis of maxillary central incisors displayed higher strength of correlation between chronological age and pulp/tooth volume ratio for Malaysian adults. Volumetric analysis of pulp cavity/tooth ratio was employed in Method 1 and pulp chamber/crown ratio (up to cemento-enamel junction) was analysed in Method 2. The images were acquired employing CBCT scans and enhanced by manipulating them with the Mimics software. These scans belonged to 56 males and 54 females and their ages ranged from 16 to 65 years. Pearson correlation and regression analysis indicated that both methods used for volumetric measurements had strong correlation between chronological age and pulp/tooth volume ratio. However, Method 2 gave higher coefficient of determination value (R2 = 0.78) when compared to Method 1 (R2 = 0.64). Moreover, manipulation in Method 2 was less time consuming and revealed higher inter-examiner reliability (0.982) as no manual intervention during 'multiple slice editing phase' of the software was required. In conclusion, this study showed that volumetric analysis of pulp cavity/tooth ratio is a valuable gender independent technique and the Method 2 regression equation should be recommended for dental age estimation. Copyright © 2018 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
Sharma, Anurag; Vandenberg, Brian; Hollingsworth, Bruce
2014-01-01
Background We estimate the effect on light, moderate and heavy consumers of alcohol from implementing a minimum unit price for alcohol (MUP) compared with a uniform volumetric tax. Methods We analyse scanner data from a panel survey of demographically representative households (n = 885) collected over a one-year period (24 Jan 2010–22 Jan 2011) in the state of Victoria, Australia, which includes detailed records of each household's off-trade alcohol purchasing. Findings The heaviest consumers (3% of the sample) currently purchase 20% of the total litres of alcohol (LALs), are more likely to purchase cask wine and full strength beer, and pay significantly less on average per standard drink compared to the lightest consumers (A$1.31 [95% CI 1.20–1.41] compared to $2.21 [95% CI 2.10–2.31]). Applying a MUP of A$1 per standard drink has a greater effect on reducing the mean annual volume of alcohol purchased by the heaviest consumers of wine (15.78 LALs [95% CI 14.86–16.69]) and beer (1.85 LALs [95% CI 1.64–2.05]) compared to a uniform volumetric tax (9.56 LALs [95% CI 9.10–10.01] and 0.49 LALs [95% CI 0.46–0.41], respectively). A MUP results in smaller increases in the annual cost for the heaviest consumers of wine ($393.60 [95% CI 374.19–413.00]) and beer ($108.26 [95% CI 94.76–121.75]), compared to a uniform volumetric tax ($552.46 [95% CI 530.55–574.36] and $163.92 [95% CI 152.79–175.03], respectively). Both a MUP and uniform volumetric tax have little effect on changing the annual cost of wine and beer for light and moderate consumers, and likewise little effect upon their purchasing. Conclusions While both a MUP and a uniform volumetric tax have potential to reduce heavy consumption of wine and beer without adversely affecting light and moderate consumers, a MUP offers the potential to achieve greater reductions in heavy consumption at a lower overall annual cost to consumers. PMID:24465368
Progression of Amygdala Volumetric Abnormalities in Adolescents after Their First Manic Episode
ERIC Educational Resources Information Center
Bitter, Samantha M.; Mills, Neil P.; Adler, Caleb M.; Strakowski, Stephen M.; DelBello, Melissa P.
2011-01-01
Objective: Although previous neuroimaging studies suggest that adolescents with bipolar disorder exhibit smaller amygdala volumes compared with healthy adolescents, whether these abnormalities are present at illness onset or instead develop over time remains unclear. The aim of this study was to conduct a prospective longitudinal investigation…
Abdelhamid, Alaa; Omran, Mostafa; Bakhshalian, Neema; Tarnow, Dennis; Zadeh, Homayoun H
2016-06-01
The aims of this study were (i) to evaluate the efficacy of ridge preservation and repair procedures involving the application of SocketKAP(™) and SocketKAGE(™) devices following tooth removal and (ii) to evaluate alveolar bone volumetric changes at 6 months post-extraction in intact sockets or those with facial wall dehiscence defects using 3-dimensional pre- and postoperative CBCT data. Thirty-six patients required 61 teeth extracted. Five cohorts were established: Group A: Intact Socket Negative Control Group B: Intact Socket + SocketKAP(™) Group C: Intact Socket Filled with Anorganic Bovine Bone Mineral (ABBM) + SocketKAP(™) Group D: Facial Dehiscence Socket Negative Control Group E: Facial Dehiscence Socket Filled with ABBM + SocketKAP(™) + SocketKAGE(™) . Preoperative CBCT scans were obtained followed by digital subtraction of the test teeth. At 6 months post-extraction, another CBCT scan was obtained. The pre- and postoperative scans were then superimposed, allowing highly accurate quantitative determination of the 3D volumetric alveolar bone volume changes from baseline through 6 months. Significant volumetric bone loss occurred in all sockets, localized mainly in the 0-3 mm zone apical to the ridge crest. For intact sockets, SocketKAP(™) + ABBM treatment led to a statistically significant greater percentage of remaining mineralized tissue volume when compared to negative control group. A significant difference favoring SocketKAP(™) + SocketKAGE(™) + ABBM treatment was observed for sockets with facial dehiscence defects compared to the negative control group. SocketKAP(™) , with ABBM, appears effective in limiting post-extraction volumetric bone loss in intact sockets, while SocketKAP(™) + SocketKAGE + ABBM appears effective in limiting post-extraction bone loss in sockets with dehiscence defects. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Clinical Evaluation of a Fully-automatic Segmentation Method for Longitudinal Brain Tumor Volumetry
NASA Astrophysics Data System (ADS)
Meier, Raphael; Knecht, Urspeter; Loosli, Tina; Bauer, Stefan; Slotboom, Johannes; Wiest, Roland; Reyes, Mauricio
2016-03-01
Information about the size of a tumor and its temporal evolution is needed for diagnosis as well as treatment of brain tumor patients. The aim of the study was to investigate the potential of a fully-automatic segmentation method, called BraTumIA, for longitudinal brain tumor volumetry by comparing the automatically estimated volumes with ground truth data acquired via manual segmentation. Longitudinal Magnetic Resonance (MR) Imaging data of 14 patients with newly diagnosed glioblastoma encompassing 64 MR acquisitions, ranging from preoperative up to 12 month follow-up images, was analysed. Manual segmentation was performed by two human raters. Strong correlations (R = 0.83-0.96, p < 0.001) were observed between volumetric estimates of BraTumIA and of each of the human raters for the contrast-enhancing (CET) and non-enhancing T2-hyperintense tumor compartments (NCE-T2). A quantitative analysis of the inter-rater disagreement showed that the disagreement between BraTumIA and each of the human raters was comparable to the disagreement between the human raters. In summary, BraTumIA generated volumetric trend curves of contrast-enhancing and non-enhancing T2-hyperintense tumor compartments comparable to estimates of human raters. These findings suggest the potential of automated longitudinal tumor segmentation to substitute manual volumetric follow-up of contrast-enhancing and non-enhancing T2-hyperintense tumor compartments.
Clinical Evaluation of a Fully-automatic Segmentation Method for Longitudinal Brain Tumor Volumetry.
Meier, Raphael; Knecht, Urspeter; Loosli, Tina; Bauer, Stefan; Slotboom, Johannes; Wiest, Roland; Reyes, Mauricio
2016-03-22
Information about the size of a tumor and its temporal evolution is needed for diagnosis as well as treatment of brain tumor patients. The aim of the study was to investigate the potential of a fully-automatic segmentation method, called BraTumIA, for longitudinal brain tumor volumetry by comparing the automatically estimated volumes with ground truth data acquired via manual segmentation. Longitudinal Magnetic Resonance (MR) Imaging data of 14 patients with newly diagnosed glioblastoma encompassing 64 MR acquisitions, ranging from preoperative up to 12 month follow-up images, was analysed. Manual segmentation was performed by two human raters. Strong correlations (R = 0.83-0.96, p < 0.001) were observed between volumetric estimates of BraTumIA and of each of the human raters for the contrast-enhancing (CET) and non-enhancing T2-hyperintense tumor compartments (NCE-T2). A quantitative analysis of the inter-rater disagreement showed that the disagreement between BraTumIA and each of the human raters was comparable to the disagreement between the human raters. In summary, BraTumIA generated volumetric trend curves of contrast-enhancing and non-enhancing T2-hyperintense tumor compartments comparable to estimates of human raters. These findings suggest the potential of automated longitudinal tumor segmentation to substitute manual volumetric follow-up of contrast-enhancing and non-enhancing T2-hyperintense tumor compartments.
Clinical Evaluation of a Fully-automatic Segmentation Method for Longitudinal Brain Tumor Volumetry
Meier, Raphael; Knecht, Urspeter; Loosli, Tina; Bauer, Stefan; Slotboom, Johannes; Wiest, Roland; Reyes, Mauricio
2016-01-01
Information about the size of a tumor and its temporal evolution is needed for diagnosis as well as treatment of brain tumor patients. The aim of the study was to investigate the potential of a fully-automatic segmentation method, called BraTumIA, for longitudinal brain tumor volumetry by comparing the automatically estimated volumes with ground truth data acquired via manual segmentation. Longitudinal Magnetic Resonance (MR) Imaging data of 14 patients with newly diagnosed glioblastoma encompassing 64 MR acquisitions, ranging from preoperative up to 12 month follow-up images, was analysed. Manual segmentation was performed by two human raters. Strong correlations (R = 0.83–0.96, p < 0.001) were observed between volumetric estimates of BraTumIA and of each of the human raters for the contrast-enhancing (CET) and non-enhancing T2-hyperintense tumor compartments (NCE-T2). A quantitative analysis of the inter-rater disagreement showed that the disagreement between BraTumIA and each of the human raters was comparable to the disagreement between the human raters. In summary, BraTumIA generated volumetric trend curves of contrast-enhancing and non-enhancing T2-hyperintense tumor compartments comparable to estimates of human raters. These findings suggest the potential of automated longitudinal tumor segmentation to substitute manual volumetric follow-up of contrast-enhancing and non-enhancing T2-hyperintense tumor compartments. PMID:27001047
NASA Astrophysics Data System (ADS)
Burress, Jacob; Bethea, Donald; Troub, Brandon
2017-05-01
The accurate measurement of adsorbed gas up to high pressures (˜100 bars) is critical for the development of new materials for adsorbed gas storage. The typical Sievert-type volumetric method introduces accumulating errors that can become large at maximum pressures. Alternatively, gravimetric methods employing microbalances require careful buoyancy corrections. In this paper, we present a combination gravimetric and volumetric system for methane sorption measurements on samples between ˜0.5 and 1 g. The gravimetric method described requires no buoyancy corrections. The tandem use of the gravimetric method allows for a check on the highest uncertainty volumetric measurements. The sources and proper calculation of uncertainties are discussed. Results from methane measurements on activated carbon MSC-30 and metal-organic framework HKUST-1 are compared across methods and within the literature.
Burress, Jacob; Bethea, Donald; Troub, Brandon
2017-05-01
The accurate measurement of adsorbed gas up to high pressures (∼100 bars) is critical for the development of new materials for adsorbed gas storage. The typical Sievert-type volumetric method introduces accumulating errors that can become large at maximum pressures. Alternatively, gravimetric methods employing microbalances require careful buoyancy corrections. In this paper, we present a combination gravimetric and volumetric system for methane sorption measurements on samples between ∼0.5 and 1 g. The gravimetric method described requires no buoyancy corrections. The tandem use of the gravimetric method allows for a check on the highest uncertainty volumetric measurements. The sources and proper calculation of uncertainties are discussed. Results from methane measurements on activated carbon MSC-30 and metal-organic framework HKUST-1 are compared across methods and within the literature.
Transport properties of alumina nanofluids.
Wong, Kau-Fui Vincent; Kurma, Tarun
2008-08-27
Recent studies have showed that nanofluids have significantly greater thermal conductivity compared to their base fluids. Large surface area to volume ratio and certain effects of Brownian motion of nanoparticles are believed to be the main factors for the significant increase in the thermal conductivity of nanofluids. In this paper all three transport properties, namely thermal conductivity, electrical conductivity and viscosity, were studied for alumina nanofluid (aluminum oxide nanoparticles in water). Experiments were performed both as a function of volumetric concentration (3-8%) and temperature (2-50 °C). Alumina nanoparticles with a mean diameter of 36 nm were dispersed in water. The effect of particle size was not studied. The transient hot wire method as described by Nagaska and Nagashima for electrically conducting fluids was used to test the thermal conductivity. In this work, an insulated platinum wire of 0.003 inch diameter was used. Initial calibration was performed using de-ionized water and the resulting data was within 2.5% of standard thermal conductivity values for water. The thermal conductivity of alumina nanofluid increased with both increase in temperature and concentration. A maximum thermal conductivity of 0.7351 W m(-1) K(-1) was recorded for an 8.47% volume concentration of alumina nanoparticles at 46.6 °C. The effective thermal conductivity at this concentration and temperature was observed to be 1.1501, which translates to an increase in thermal conductivity by 22% when compared to water at room temperature. Alumina being a good conductor of electricity, alumina nanofluid displays an increasing trend in electrical conductivity as volumetric concentration increases. A microprocessor-based conductivity/TDS meter was used to perform the electrical conductivity experiments. After carefully calibrating the conductivity meter's glass probe with platinum tip, using a standard potassium chloride solution, readings were taken at various volumetric concentrations. A 3457.1% increase in the electrical conductivity was measured for a small 1.44% volumetric concentration of alumina nanoparticles in water. The highest value of electrical conductivity, 314 µS cm(-1), was recorded for a volumetric concentration of 8.47%. In the determination of the kinematic viscosity of alumina nanofluid, a standard kinematic viscometer with constant temperature bath was used. Calibrated capillary viscometers were used to measure flow under gravity at precisely controlled temperatures. The capillary viscometers were calibrated with de-ionized water at different temperatures, and the resulting kinematic viscosity values were found to be within 3% of the standard published values. An increase of 35.5% in the kinematic viscosity was observed for an 8.47% volumetric concentration of alumina nanoparticles in water. The maximum kinematic viscosity of alumina nanofluid, 2.901 42 mm(2) s(-1), was obtained at 0 °C for an 8.47% volumetric concentration of alumina nanoparticles. The experimental results of the present work will help researchers arrive at better theoretical models.
Reid, Matthew W; Hannemann, Nathan P; York, Gerald E; Ritter, John L; Kini, Jonathan A; Lewis, Jeffrey D; Sherman, Paul M; Velez, Carmen S; Drennon, Ann Marie; Bolzenius, Jacob D; Tate, David F
2017-07-01
To compare volumetric results from NeuroQuant® and FreeSurfer in a service member setting. Since the advent of medical imaging, quantification of brain anatomy has been a major research and clinical effort. Rapid advancement of methods to automate quantification and to deploy this information into clinical practice has surfaced in recent years. NeuroQuant® is one such tool that has recently been used in clinical settings. Accurate volumetric data are useful in many clinical indications; therefore, it is important to assess the intermethod reliability and concurrent validity of similar volume quantifying tools. Volumetric data from 148 U.S. service members across three different experimental groups participating in a study of mild traumatic brain injury (mTBI) were examined. Groups included mTBI (n = 71), posttraumatic stress disorder (n = 22), or a noncranial orthopedic injury (n = 55). Correlation coefficients and nonparametric group mean comparisons were used to assess reliability and concurrent validity, respectively. Comparison of these methods across our entire sample demonstrates generally fair to excellent reliability as evidenced by large intraclass correlation coefficients (ICC = .4 to .99), but little concurrent validity as evidenced by significantly different Mann-Whitney U comparisons for 26 of 30 brain structures measured. While reliability between the two segmenting tools is fair to excellent, volumetric outcomes are statistically different between the two methods. As suggested by both developers, structure segmentation should be visually verified prior to clinical use and rigor should be used when interpreting results generated by either method. Copyright © 2017 by the American Society of Neuroimaging.
Singer, H S; Dela Cruz, P S; Abrams, M T; Bean, S C; Reiss, A L
1997-07-01
We present the case of an adolescent boy who developed a variety of simple and complex motor and vocal tics (Tourette-like syndrome), along with inattentiveness and obsessive-compulsive behaviors after cardiac surgery with cardiopulmonary bypass and profound hypothermia. A single photon emission computed tomography study 2 months after surgery showed reduced uptake in the left hemisphere and 2 years later a perfusion defect in the basal ganglia. Serial magnetic resonance imaging (MRI) studies were normal. Volumetric MRI studies were obtained 4 years after surgery and compared with published values for normal individuals and children with Tourette syndrome (TS), including subsets matched for age, sex, and handedness. Measurement of basal ganglia structures showed a right-dominant asymmetry of the caudate and putamen, in part similar to findings previously reported in patients with TS. Other volumetric abnormalities included a > 2-SD reduction of cortical gray matter, a small decrease of total cerebral volume, and increase in cerebral white matter. Although a variety of neurological problems may occur after cardiopulmonary bypass, to our knowledge this case represents the first report of a chronic tic disorder following cardiac surgery with cardiopulmonary bypass and hypothermia.
Bedini, Rossella; Pecci, Raffaella; Notarangelo, Gianluca; Zuppante, Francesca; Persico, Salvatore; Di Carlo, Fabio
2012-01-01
In this study a 3D microtomography display of tooth surfaces after in vitro dental wear tests has been obtained. Natural teeth have been compared with prosthetic teeth, manufactured by three different polyceramic composite materials. The prosthetic dental element samples, similar to molars, have been placed in opposition to human teeth extracted by paradontology diseases. After microtomography analysis, samples have been subjected to in vitro fatigue test cycles by servo-hydraulic mechanical testing machine. After the fatigue test, each sample has been subjected again to microtomography analysis to obtain volumetric value changes and dental wear surface images. Wear surface images were obtained by 3D reconstruction software and volumetric value changes were measured by CT analyser software. The aim of this work has been to show the potential of microtomography technique to display very clear and reliable wear surface images. Microtomography analysis methods to evaluate volumetric value changes have been used to quantify dental tissue and composite material wear.
Wetzel, Stephan G; Cha, Soonmee; Law, Meng; Johnson, Glyn; Golfinos, John; Lee, Peter; Nelson, Peter Kim
2002-01-01
In evaluating intracranial tumors, a safe low-cost alternative that provides information similar to that of digital subtraction angiography (DSA) may be of interest. Our purpose was to determine the utility and limitations of a combined MR protocol in assessing (neo-) vascularity in intracranial tumors and their relation to adjacent vessels and to compare the results with those of DSA. Twenty-two consecutive patients with an intracranial tumor who underwent preoperative stereoscopic DSA were examined with contrast-enhanced dynamic T2*-weighted perfusion MR imaging followed by a T1-weighted three-dimensional (3D) MR study (volumetric interpolated brain examination [VIBE]). The maximum relative cerebral blood volume (rCBV) of the tumor was compared with tumor vascularity at DSA. Critical vessel structures were defined in each patient, and VIBE images of these structures were compared with DSA findings. For full exploitation of the 3D data sets, maximum-intensity projection algorithms reconstructed in real time with any desired volume and orientation were used. Tumor blush scores at DSA were significantly correlated with the rCBV measurements (r = 0.75; P <.01, Spearman rank correlation coefficient). In 17 (77%) patients, VIBE provided all relevant information about the venous system, whereas information about critical arteries were partial in 50% of the cases and not relevant in the other 50%. A fast imaging protocol consisting of perfusion MR imaging and a volumetric MR acquisition provides some of the information about tumor (neo-) vascularity and adjacent vascular anatomy that can be obtained with conventional angiography. However, the MR protocol provides insufficient visualization of distal cerebral arteries.
Michiels, Steven; Poels, Kenneth; Crijns, Wouter; Delombaerde, Laurence; De Roover, Robin; Vanstraelen, Bianca; Haustermans, Karin; Nuyts, Sandra; Depuydt, Tom
2018-05-05
Linac improvements in gantry speed, leaf speed and dose rate may increase the time-efficiency of volumetric modulated arc therapy (VMAT) delivery. The plan quality achievable with faster VMAT however remains to be investigated. In this study, a fast-rotating O-ring linac with fast-moving leaves is compared with a C-arm linac in terms of plan quality and delivery time for VMAT of head-and-neck cancer (HNC). For 30 patients with HNC, treatment planning was performed using dual-arc (HA2) and triple-arc (HA3) VMAT on a Halcyon fast-rotating O-ring linac and using dual-arc VMAT on a TrueBeam C-arm linac (TB2). Target coverage metrics and complication probabilities were compared. Plan delivery was verified using 3%/3 mm gamma-index analysis of helical diode array measurements. Volumetric image acquisition and plan delivery times were compared. All studied VMAT-techniques fulfilled the target coverage objectives. D 2% to the boost volume was higher for HA2 (median 103.7%, 1st-3rd quartile [103.5%;104.0%]) and HA3 (103.2% [103.0%;103.7%)] than for TB2 (102.6% [102.3%;103.0%)], resulting in an increased boost target dose heterogeneity for HA2 and HA3. Complication probabilities were comparable between HA2 and TB2, while HA3 showed a xerostomia probability reduction (0.8% [0.2%;1.8%]) and dysphagia probability reduction (1.0% [0.2%;1.8%]) compared with TB2. Gamma-index agreement scores were never below 93.0% for HA2, HA3 and TB2. Volumetric imaging and plan delivery time was shorter for HA2 (1 m 24 s ± 1 s) and HA3 (1 m 54 s ± 1 s) than for TB2 (2 m 47 s ± 1 s). For VMAT of HNC, the fast-rotating O-ring linac at least maintains the plan quality of two arcs on a C-arm linac while reducing the image acquisition and plan delivery time. Copyright © 2018 Elsevier B.V. All rights reserved.
Practical considerations for volumetric wear analysis of explanted hip arthroplasties.
Langton, D J; Sidaginamale, R P; Holland, J P; Deehan, D; Joyce, T J; Nargol, A V F; Meek, R D; Lord, J K
2014-01-01
Wear debris released from bearing surfaces has been shown to provoke negative immune responses in the recipient. Excessive wear has been linked to early failure of prostheses. Analysis using coordinate measuring machines (CMMs) can provide estimates of total volumetric material loss of explanted prostheses and can help to understand device failure. The accuracy of volumetric testing has been debated, with some investigators stating that only protocols involving hundreds of thousands of measurement points are sufficient. We looked to examine this assumption and to apply the findings to the clinical arena. We examined the effects on the calculated material loss from a ceramic femoral head when different CMM scanning parameters were used. Calculated wear volumes were compared with gold standard gravimetric tests in a blinded study. Various scanning parameters including point pitch, maximum point to point distance, the number of scanning contours or the total number of points had no clinically relevant effect on volumetric wear calculations. Gravimetric testing showed that material loss can be calculated to provide clinically relevant degrees of accuracy. Prosthetic surfaces can be analysed accurately and rapidly with currently available technologies. Given these results, we believe that routine analysis of explanted hip components would be a feasible and logical extension to National Joint Registries. Cite this article: Bone Joint Res 2014;3:60-8.
Volumetric cerebral characteristics of children exposed to opiates and other substances in utero
Walhovd, K. B.; Moe, V.; Slinning, K.; Due-Tønnessen, P.; Bjørnerud, A.; Dale, A. M.; van der Kouwe, A.; Quinn, B. T.; Kosofsky, B.; Greve, D.; Fischl, B.
2007-01-01
Morphometric cerebral characteristics were studied in children with prenatal poly-substance exposure (n =14) compared to controls (n = 14) without such exposure. Ten of the substance exposed children were born to mothers who used opiates (heroin) throughout the pregnancy. Groups were compared across 16 brain measures: cortical gray matter, cerebral white matter, hippocampus, amygdala, thalamus, accumbens area, caudate, putamen, pallidum, brainstem, cerebellar cortex, cerebellar white matter, lateral ventricles, inferior lateral ventricles, and the 3rd and 4th ventricles. In addition, continuous measurement of thickness across the entire cortical mantle was performed. Volumetric characteristics were correlated with ability and questionnaire assessments 2 years prior to scan. Compared to controls, the substance-exposed children had smaller intracranial and brain volumes, including smaller cerebral cortex, amygdala, accumbens area, putamen, pallidum, brainstem, cerebellar cortex, cerebellar white matter, and inferior lateral ventricles, and thinner cortex of the right anterior cingulate and lateral orbitofrontal cortex. Pallidum and putamen appeared especially reduced in the subgroup exposed to opiates. Only volumes of the right anterior cingulate, the right lateral orbitofrontal cortex and the accumbens area, showed some association with ability and questionnaire measures. The sample studied is rare, and hence small, so conclusions cannot be drawn with certainty. Morphometric group differences were observed, but associations with previous behavioral assessment were generally weak. Some of the volumetric differences, particularly thinner cortex in part of the right lateral orbitofrontal cortex, may be moderately involved in cognitive and behavioral difficulties more frequently experienced by opiate and poly-substance exposed children. PMID:17513131
Volumetric calibration of a plenoptic camera
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, Elise Munz; Fahringer, Timothy W.; Guildenbecher, Daniel Robert
Here, the volumetric calibration of a plenoptic camera is explored to correct for inaccuracies due to real-world lens distortions and thin-lens assumptions in current processing methods. Two methods of volumetric calibration based on a polynomial mapping function that does not require knowledge of specific lens parameters are presented and compared to a calibration based on thin-lens assumptions. The first method, volumetric dewarping, is executed by creation of a volumetric representation of a scene using the thin-lens assumptions, which is then corrected in post-processing using a polynomial mapping function. The second method, direct light-field calibration, uses the polynomial mapping in creationmore » of the initial volumetric representation to relate locations in object space directly to image sensor locations. The accuracy and feasibility of these methods is examined experimentally by capturing images of a known dot card at a variety of depths. Results suggest that use of a 3D polynomial mapping function provides a significant increase in reconstruction accuracy and that the achievable accuracy is similar using either polynomial-mapping-based method. Additionally, direct light-field calibration provides significant computational benefits by eliminating some intermediate processing steps found in other methods. Finally, the flexibility of this method is shown for a nonplanar calibration.« less
Volumetric calibration of a plenoptic camera
Hall, Elise Munz; Fahringer, Timothy W.; Guildenbecher, Daniel Robert; ...
2018-02-01
Here, the volumetric calibration of a plenoptic camera is explored to correct for inaccuracies due to real-world lens distortions and thin-lens assumptions in current processing methods. Two methods of volumetric calibration based on a polynomial mapping function that does not require knowledge of specific lens parameters are presented and compared to a calibration based on thin-lens assumptions. The first method, volumetric dewarping, is executed by creation of a volumetric representation of a scene using the thin-lens assumptions, which is then corrected in post-processing using a polynomial mapping function. The second method, direct light-field calibration, uses the polynomial mapping in creationmore » of the initial volumetric representation to relate locations in object space directly to image sensor locations. The accuracy and feasibility of these methods is examined experimentally by capturing images of a known dot card at a variety of depths. Results suggest that use of a 3D polynomial mapping function provides a significant increase in reconstruction accuracy and that the achievable accuracy is similar using either polynomial-mapping-based method. Additionally, direct light-field calibration provides significant computational benefits by eliminating some intermediate processing steps found in other methods. Finally, the flexibility of this method is shown for a nonplanar calibration.« less
Disrupted trabecular bone micro-architecture in middle-aged male HIV-infected treated patients.
Sellier, P; Ostertag, A; Collet, C; Trout, H; Champion, K; Fernandez, S; Lopes, A; Morgand, M; Clevenbergh, P; Evans, J; Souak, S; de Vernejoul, M-C; Bergmann, J-F
2016-08-01
HIV-infected individuals are at increased risk of incident fractures. Evaluation of trabecular bone micro-architecture is an important tool to assess bone strength, but its use has not yet been reported in middle-aged HIV-infected male individuals. The aim of the study was to compare bone micro-architecture between HIV-infected and HIV-uninfected men. In this cross-sectional study, 53 HIV-infected male individuals with a mean (± standard deviation) age of 49 ± 9 years who had been receiving antiretroviral therapy including tenofovir disoproxil fumarate (DF) for at least 60 months were compared with 50 HIV-uninfected male controls, matched for age and ethnic origin. We studied the volumetric bone density and micro-architecture of the radius and tibia using high-resolution peripheral quantitative computed tomography (HR-p QCT). Volumetric trabecular bone density was 17% lower in the tibia (P < 10(-4) ) and 16% lower in the radius (P < 10(-3) ) in HIV-infected patients compared with controls. By contrast, the cortical bone density was normal at both sites. The tibial trabecular micro-architecture differed markedly between patients and controls: bone volume/total volume (BV/TV) and trabecular number were each 13% lower (P < 10(-4) for both). Trabecular separation and inhomogeneity of the network were 18% and 24% higher in HIV-infected patients than in controls, respectively. The radial BV/TV and trabecular thickness were each 13% lower (P < 10(-3) and 10(-2) , respectively). Cortical thickness was not different between the two groups. The findings of lower volumetric trabecular bone density and disrupted trabecular micro-architectural parameters in middle-aged male HIV-infected treated patients help to explain bone frailty in these patients. © 2016 British HIV Association.
Liu, Hao; Cho, Hyung-Man; Meng, Ying Shirley; Li, Quan
2014-06-25
Aiming at improving the volumetric capacity of nanostructured Li-ion battery anode, an electrodeposited Si-on-Ni inverse opal structure has been proposed in the present work. This type of electrode provides three-dimensional bi-continuous pathways for ion/electron transport and high surface area-to-volume ratios, and thus exhibits lower interfacial resistance, but higher effective Li ions diffusion coefficients, when compared to the Si-on-Ni nanocable array electrode of the same active material mass. As a result, improved volumetric capacities and rate capabilities have been demonstrated in the Si-on-Ni inverse opal anode. We also show that optimization of the volumetric capacities and the rate performance of the inverse opal electrode can be realized by manipulating the pore size of the Ni scaffold and the thickness of the Si deposit.
Full-spectrum volumetric solar thermal conversion via photonic nanofluids.
Liu, Xianglei; Xuan, Yimin
2017-10-12
Volumetric solar thermal conversion is an emerging technique for a plethora of applications such as solar thermal power generation, desalination, and solar water splitting. However, achieving broadband solar thermal absorption via dilute nanofluids is still a daunting challenge. In this work, full-spectrum volumetric solar thermal conversion is demonstrated over a thin layer of the proposed 'photonic nanofluids'. The underlying mechanism is found to be the photonic superposition of core resonances, shell plasmons, and core-shell resonances at different wavelengths, whose coexistence is enabled by the broken symmetry of specially designed composite nanoparticles, i.e., Janus nanoparticles. The solar thermal conversion efficiency can be improved by 10.8% compared with core-shell nanofluids. The extinction coefficient of Janus dimers with various configurations is also investigated to unveil the effects of particle couplings. This work provides the possibility to achieve full-spectrum volumetric solar thermal conversion, and may have potential applications in efficient solar energy harvesting and utilization.
NASA Technical Reports Server (NTRS)
Easter, R. W.
1974-01-01
Simplified design concepts were used to estimate gravimetric and volumetric energy densities for metal hydrogen battery cells for assessing the characteristics of cells containing metal hydrides as compared to gaseous storage cells, and for comparing nickel cathode and silver cathode systems. The silver cathode was found to yield superior energy densities in all cases considered. The inclusion of hydride forming materials yields cells with very high volumetric energy densities that also retain gravimetric energy densities nearly as high as those of gaseous storage cells.
Neuroanatomical Characterization of Child Offspring of Bipolar Parents
ERIC Educational Resources Information Center
Singh, Manpreet K.; Delbello, Melissa; Adler, Caleb M.; Stanford, Kevin E.; Strakowski, Stephen M.
2008-01-01
A study was conducted to examine the neuroanatomical abnormalities in at-risk children and adolescents of parents with bipolar disorder, and compare them with children of healthy parents. It was found that at-risk children exhibited volumetric abnormalities in portions of the anterior limbic network.
NASA Astrophysics Data System (ADS)
Mishra, Shubham; Sarkar, Jahar
2016-12-01
Performance assessment of ejector-expansion vapor compression refrigeration system with eco-friendly R134a alternative refrigerants (R152a, R1234yf, R600a, R600, R290, R161, R32, and propylene) is presented for air-conditioning application. Ejector has been modeled by considering experimental data based correlations of component efficiencies to take care of all irreversibilities. Ejector area ratio has been optimized based on maximum coefficient of performance (COP) for typical air-conditioner operating temperatures. Selected refrigerants have been compared based on area ratio, pressure lift ratio, entrainment ratio, COP, COP improvement and volumetric cooling capacity. Effects of normal boiling point and critical point on the performances have been studied as well. Using ejector as an expansion device, maximum improvement in COP is noted in R1234yf (10.1%), which reduces the COP deviation with R134a (4.5% less in basic cycle and 2.5% less in ejector cycle). Hence, R1234yf seems to be best alternative for ejector expansion system due to its mild flammability and comparable volumetric capacity and cooling COP. refrigerant R161 is superior to R134a in terms of both COP and volumetric cooling capacity, although may be restricted for low capacity application due to its flammability.
NASA Astrophysics Data System (ADS)
Moshiri Sedeh, Nader
Intensity Modulated Radiation Therapy (IMRT) is a well-known type of external beam radiation therapy. The advancement in technology has had an inevitable influence in radiation oncology as well that has led to a newer and faster dose delivery technique called Volumetric Modulated Arc Therapy (VMAT). Since the presence of the VMAT modality in clinics in the late 2000, there have been many studies in order to compare the results of the VMAT modality with the current popular modality IMRT for various tumor sites in the body such as brain, prostate, head and neck, cervix and anal carcinoma. This is the first study to compare VMAT with IMRT for breast cancer. The results show that the RapidArc technique in Eclipse version 11 does not improve all aspects of the treatment plans for the breast cases automatically and easily, but it needs to be manipulated by extra techniques to create acceptable plans thus further research is needed.
Evaluation of a continuous-rotation, high-speed scanning protocol for micro-computed tomography.
Kerl, Hans Ulrich; Isaza, Cristina T; Boll, Hanne; Schambach, Sebastian J; Nolte, Ingo S; Groden, Christoph; Brockmann, Marc A
2011-01-01
Micro-computed tomography is used frequently in preclinical in vivo research. Limiting factors are radiation dose and long scan times. The purpose of the study was to compare a standard step-and-shoot to a continuous-rotation, high-speed scanning protocol. Micro-computed tomography of a lead grid phantom and a rat femur was performed using a step-and-shoot and a continuous-rotation protocol. Detail discriminability and image quality were assessed by 3 radiologists. The signal-to-noise ratio and the modulation transfer function were calculated, and volumetric analyses of the femur were performed. The radiation dose of the scan protocols was measured using thermoluminescence dosimeters. The 40-second continuous-rotation protocol allowed a detail discriminability comparable to the step-and-shoot protocol at significantly lower radiation doses. No marked differences in volumetric or qualitative analyses were observed. Continuous-rotation micro-computed tomography significantly reduces scanning time and radiation dose without relevantly reducing image quality compared with a normal step-and-shoot protocol.
Dumas, J L; Lorchel, F; Perrot, Y; Aletti, P; Noel, A; Wolf, D; Courvoisier, P; Bosset, J F
2007-03-01
The goal of our study was to quantify the limits of the EUD models for use in score functions in inverse planning software, and for clinical application. We focused on oesophagus cancer irradiation. Our evaluation was based on theoretical dose volume histograms (DVH), and we analyzed them using volumetric and linear quadratic EUD models, average and maximum dose concepts, the linear quadratic model and the differential area between each DVH. We evaluated our models using theoretical and more complex DVHs for the above regions of interest. We studied three types of DVH for the target volume: the first followed the ICRU dose homogeneity recommendations; the second was built out of the first requirements and the same average dose was built in for all cases; the third was truncated by a small dose hole. We also built theoretical DVHs for the organs at risk, in order to evaluate the limits of, and the ways to use both EUD(1) and EUD/LQ models, comparing them to the traditional ways of scoring a treatment plan. For each volume of interest we built theoretical treatment plans with differences in the fractionation. We concluded that both volumetric and linear quadratic EUDs should be used. Volumetric EUD(1) takes into account neither hot-cold spot compensation nor the differences in fractionation, but it is more sensitive to the increase of the irradiated volume. With linear quadratic EUD/LQ, a volumetric analysis of fractionation variation effort can be performed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neyman, G
Purpose: To compare typical volumetric spatial distortions for 1.5 Tesla versus 3 Tesla MRI Gamma Knife radiosurgery scans in the frame marker fusion and co-registration frame-less modes. Methods: Quasar phantom by Modus Medical Devices Inc. with GRID image distortion software was used for measurements of volumetric distortions. 3D volumetric T1 weighted scans of the phantom were produced on 1.5 T Avanto and 3 T Skyra MRI Siemens scanners. The analysis was done two ways: for scans with localizer markers from the Leksell frame and relatively to the phantom only (simulated co-registration technique). The phantom grid contained a total of 2002more » vertices or control points that were used in the assessment of volumetric geometric distortion for all scans. Results: Volumetric mean absolute spatial deviations relatively to the frame localizer markers for 1.5 and 3 Tesla machine were: 1.39 ± 0.15 and 1.63 ± 0.28 mm with max errors of 1.86 and 2.65 mm correspondingly. Mean 2D errors from the Gamma Plan were 0.3 and 1.0 mm. For simulated co-registration technique the volumetric mean absolute spatial deviations relatively to the phantom for 1.5 and 3 Tesla machine were: 0.36 ± 0.08 and 0.62 ± 0.13 mm with max errors of 0.57 and 1.22 mm correspondingly. Conclusion: Volumetric spatial distortions are lower for 1.5 Tesla versus 3 Tesla MRI machines localized with markers on frames and significantly lower for co-registration techniques with no frame localization. The results show the advantage of using co-registration technique for minimizing MRI volumetric spatial distortions which can be especially important for steep dose gradient fields typically used in Gamma Knife radiosurgery. Consultant for Elekta AB.« less
Kumra, Sanjiv; Robinson, Paul; Tambyraja, Rabindra; Jensen, Daniel; Schimunek, Caroline; Houri, Alaa; Reis, Tiffany; Lim, Kelvin
2012-02-01
In early-onset schizophrenia (EOS), the earliest structural brain volumetric abnormalities appear in the parietal cortices. Early exposure to cannabis may represent an environmental risk factor for developing schizophrenia. This study characterized cerebral cortical gray matter structure in adolescents in regions of interest (ROIs) that have been implicated in EOS and cannabis use disorders (CUD). T1-weighted magnetic resonance images were acquired from adolescents with EOS (n = 35), CUD (n = 16), EOS + CUD (n = 13), and healthy controls (HC) (n = 51). Using FreeSurfer, brain volume was examined within frontal, temporal, parietal and subcortical ROIs by a 2 (EOS versus no EOS) × 2 (CUD versus no CUD) design using multivariate analysis of covariance. In ROIs in which volumetric differences were identified, additional analyses of cortical thickness and surface area were conducted. A significant EOS-by-CUD interaction was observed. In the left superior parietal region, both "pure" EOS and "pure" CUD had smaller gray matter volumes that were associated with lower surface area compared with HC. A similar alteration was observed in the comorbid group compared with HC, but there was no additive volumetric deficit found in the comorbid group compared with the separate groups. In the left thalamus, the comorbid group had smaller gray matter volumes compared with the CUD and HC groups. These preliminary data indicate that the presence of a CUD may moderate the relationship between EOS and cerebral cortical gray matter structure in the left superior parietal lobe. Future research will follow this cohort over adolescence to further examine the impact of cannabis use on neurodevelopment.
Comparison of air void content measurements in fresh versus hardened concretes.
DOT National Transportation Integrated Search
1990-01-01
This study compares the air content of freshly mixed and hardened concretes. At the fresh stage, pressure meters (Types A and B) and a volumetric meter were used to determine the air content. At the hardened stage, the air content was calculated usin...
Cieslak, Kasia P; Bennink, Roelof J; de Graaf, Wilmar; van Lienden, Krijn P; Besselink, Marc G; Busch, Olivier R C; Gouma, Dirk J; van Gulik, Thomas M
2016-09-01
(99m)Tc-mebrofenin-hepatobiliary-scintigraphy (HBS) enables measurement of future remnant liver (FRL)-function and was implemented in our preoperative routine after calculation of the cut-off value for prediction of postoperative liver failure (LF). This study evaluates our results since the implementation of HBS. Additionally, CT-volumetric methods of FRL-assessment, standardized liver volumetry and FRL/body-weight ratio (FRL-BWR), were evaluated. 163 patients who underwent major liver resection were included. Insufficient FRL-volume and/or FRL-function <2.7%/min/m(2) were indications for portal vein embolization (PVE). Non-PVE patients were compared with a historical cohort (n = 55). Primary endpoints were postoperative LF and LF related mortality. Secondary endpoint was preoperative identification of patients at risk for LF using the CT-volumetric methods. 29/163 patients underwent PVE; 8/29 patients because of insufficient FRL-function despite sufficient FRL-volume. According to FRL-BWR and standardized liver volumetry, 16/29 and 11/29 patients, respectively, would not have undergone PVE. LF and LF related mortality were significantly reduced compared to the historical cohort. HBS appeared superior in the identification of patients with increased surgical risk compared to the CT-volumetric methods. Implementation of HBS in the preoperative work-up led to a function oriented use of PVE and was associated with a significant decrease in postoperative LF and LF related mortality. Copyright © 2016 International Hepato-Pancreato-Biliary Association Inc. Published by Elsevier Ltd. All rights reserved.
Liang, Fan; Yen, Stephen L-K; Imahiyerobo, Thomas; Sanborn, Luke; Yen, Leia; Yen, Daniel; Nazarian, Sheila; Jedrzejewski, Breanna; Urata, Mark; Hammoudeh, Jeffrey
2017-10-01
Recent studies indicate that recombinant human bone morphogenetic protein-2 (rhBMP-2) in a demineralized bone matrix scaffold is a comparable alternative to iliac bone autograft in the setting of secondary alveolar cleft repair. Postreconstruction occlusal radiographs demonstrate improved bone stock when rhBMP-2/demineralized bone matrix (DBM) scaffold is used but lack the capacity to evaluate bone growth in three dimensions. This study uses cone beam computed tomography to provide the first clinical evaluation of volumetric and density comparisons between these two treatment modalities. A prospective study was conducted with 31 patients and 36 repairs of the alveolar cleft over a 2-year period. Twenty-one repairs used rhBMP-2/DBM scaffold and 14 repairs used iliac bone grafting. Postoperatively, occlusal radiographs were obtained at 3 months to evaluate bone fill; cone beam computed tomographic images were obtained at 6 to 9 months to compare volumetric and density data. At 3 months, postoperative occlusal radiographs demonstrated that 67 percent of patients receiving rhBMP-2/DBM scaffold had complete bone fill of the alveolus, versus 56 percent of patients in the autologous group. In contrast, cone beam computed tomographic data showed 31.6 percent (95 percent CI, 24.2 to 38.5 percent) fill in the rhBMP-2 group compared with 32.5 percent (95 percent CI, 22.1 to 42.9 percent) in the autologous population. Density analysis demonstrated identical average values between the groups (1.38 g/cc). These data demonstrate comparable bone regrowth and density values following secondary alveolar cleft repair using rhBMP-2/DBM scaffold versus autologous iliac bone graft. Cone beam computed tomography provides a more nuanced understanding of true bone regeneration within the alveolar cleft that may contribute to the information provided by occlusal radiographs alone. Therapeutic, II.
Use of volumetric features for temporal comparison of mass lesions in full field digital mammograms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bozek, Jelena, E-mail: jelena.bozek@fer.hr; Grgic, Mislav; Kallenberg, Michiel
2014-02-15
Purpose: Temporal comparison of lesions might improve classification between benign and malignant lesions in full-field digital mammograms (FFDM). The authors compare the use of volumetric features for lesion classification, which are computed from dense tissue thickness maps, to the use of mammographic lesion area. Use of dense tissue thickness maps for lesion characterization is advantageous, since it results in lesion features that are invariant to acquisition parameters. Methods: The dataset used in the analysis consisted of 60 temporal mammogram pairs comprising 120 mediolateral oblique or craniocaudal views with a total of 65 lesions, of which 41 were benign and 24more » malignant. The authors analyzed the performance of four volumetric features, area, and four other commonly used features obtained from temporal mammogram pairs, current mammograms, and prior mammograms. The authors evaluated the individual performance of all features and of different feature sets. The authors used linear discriminant analysis with leave-one-out cross validation to classify different feature sets. Results: Volumetric features from temporal mammogram pairs achieved the best individual performance, as measured by the area under the receiver operating characteristic curve (A{sub z} value). Volume change (A{sub z} = 0.88) achieved higher A{sub z} value than projected lesion area change (A{sub z} = 0.78) in the temporal comparison of lesions. Best performance was achieved with a set that consisted of a set of features extracted from the current exam combined with four volumetric features representing changes with respect to the prior mammogram (A{sub z} = 0.90). This was significantly better (p = 0.005) than the performance obtained using features from the current exam only (A{sub z} = 0.77). Conclusions: Volumetric features from temporal mammogram pairs combined with features from the single exam significantly improve discrimination of benign and malignant lesions in FFDM mammograms compared to using only single exam features. In the comparison with prior mammograms, use of volumetric change may lead to better performance than use of lesion area change.« less
A prototype table-top inverse-geometry volumetric CT system.
Schmidt, Taly Gilat; Star-Lack, Josh; Bennett, N Robert; Mazin, Samuel R; Solomon, Edward G; Fahrig, Rebecca; Pelc, Norbert J
2006-06-01
A table-top volumetric CT system has been implemented that is able to image a 5-cm-thick volume in one circular scan with no cone-beam artifacts. The prototype inverse-geometry CT (IGCT) scanner consists of a large-area, scanned x-ray source and a detector array that is smaller in the transverse direction. The IGCT geometry provides sufficient volumetric sampling because the source and detector have the same axial, or slice direction, extent. This paper describes the implementation of the table-top IGCT scanner, which is based on the NexRay Scanning-Beam Digital X-ray system (NexRay, Inc., Los Gatos, CA) and an investigation of the system performance. The alignment and flat-field calibration procedures are described, along with a summary of the reconstruction algorithm. The resolution and noise performance of the prototype IGCT system are studied through experiments and further supported by analytical predictions and simulations. To study the presence of cone-beam artifacts, a "Defrise" phantom was scanned on both the prototype IGCT scanner and a micro CT system with a +/-5 cone angle for a 4.5-cm volume thickness. Images of inner ear specimens are presented and compared to those from clinical CT systems. Results showed that the prototype IGCT system has a 0.25-mm isotropic resolution and that noise comparable to that from a clinical scanner with equivalent spatial resolution is achievable. The measured MTF and noise values agreed reasonably well with theoretical predictions and computer simulations. The IGCT system was able to faithfully reconstruct the laminated pattern of the Defrise phantom while the micro CT system suffered severe cone-beam artifacts for the same object. The inner ear acquisition verified that the IGCT system can image a complex anatomical object, and the resulting images exhibited more high-resolution details than the clinical CT acquisition. Overall, the successful implementation of the prototype system supports the IGCT concept for single-rotation volumetric scanning free from cone-beam artifacts.
Effect of various Portland cement paste compositions on early-age strain
NASA Astrophysics Data System (ADS)
Guzzetta, Alana G.
Early-age strain in paste, mortar, and concrete mixtures was investigated using a new method where the specimen shape was a cone frustum. Strain of the specimen from both the horizontal and vertical directions was captured by height change measurement. The volumetric strain was then calculated as a function of the height change and was plotted versus time. A correlation was found between the slopes of the volumetric strain curve resulting from this test method and the initial setting time of the tested material. An initial evaluation of the repeatability of this innovative test method was conducted. The early-age strain effects of aggregate volume, shrinkage reducing admixture, water-cementitious ratio (w/cm), and partial cement replacement with supplementary cementitious materials were tested and individually compared. From these comparisons, it was observed that ambient temperature, bleed water development, and rheological properties had a significant impact on the volumetric strain results. Data showed increased strain as aggregate volume was reduced and as the w/cm was changed from 0.25 up to 0.50. The addition of shrinkage reducing admixture generally caused an increase in the 36-hour volumetric strain value. In most of the mixtures, cement replacement with 20% fly ash or 10% metakaolin reduced the measured volumetric strain when the w/cm was 0.30. Replacement of cement with 10% silica fume caused an insignificant change in volumetric strain results.
Physically Based Modeling and Simulation with Dynamic Spherical Volumetric Simplex Splines
Tan, Yunhao; Hua, Jing; Qin, Hong
2009-01-01
In this paper, we present a novel computational modeling and simulation framework based on dynamic spherical volumetric simplex splines. The framework can handle the modeling and simulation of genus-zero objects with real physical properties. In this framework, we first develop an accurate and efficient algorithm to reconstruct the high-fidelity digital model of a real-world object with spherical volumetric simplex splines which can represent with accuracy geometric, material, and other properties of the object simultaneously. With the tight coupling of Lagrangian mechanics, the dynamic volumetric simplex splines representing the object can accurately simulate its physical behavior because it can unify the geometric and material properties in the simulation. The visualization can be directly computed from the object’s geometric or physical representation based on the dynamic spherical volumetric simplex splines during simulation without interpolation or resampling. We have applied the framework for biomechanic simulation of brain deformations, such as brain shifting during the surgery and brain injury under blunt impact. We have compared our simulation results with the ground truth obtained through intra-operative magnetic resonance imaging and the real biomechanic experiments. The evaluations demonstrate the excellent performance of our new technique. PMID:20161636
Practical considerations for volumetric wear analysis of explanted hip arthroplasties
Langton, D. J.; Sidaginamale, R. P.; Holland, J. P.; Deehan, D.; Joyce, T. J.; Nargol, A. V. F.; Meek, R. D.; Lord, J. K.
2014-01-01
Objectives Wear debris released from bearing surfaces has been shown to provoke negative immune responses in the recipient. Excessive wear has been linked to early failure of prostheses. Analysis using coordinate measuring machines (CMMs) can provide estimates of total volumetric material loss of explanted prostheses and can help to understand device failure. The accuracy of volumetric testing has been debated, with some investigators stating that only protocols involving hundreds of thousands of measurement points are sufficient. We looked to examine this assumption and to apply the findings to the clinical arena. Methods We examined the effects on the calculated material loss from a ceramic femoral head when different CMM scanning parameters were used. Calculated wear volumes were compared with gold standard gravimetric tests in a blinded study. Results Various scanning parameters including point pitch, maximum point to point distance, the number of scanning contours or the total number of points had no clinically relevant effect on volumetric wear calculations. Gravimetric testing showed that material loss can be calculated to provide clinically relevant degrees of accuracy. Conclusions Prosthetic surfaces can be analysed accurately and rapidly with currently available technologies. Given these results, we believe that routine analysis of explanted hip components would be a feasible and logical extension to National Joint Registries. Cite this article: Bone Joint Res 2014;3:60–8. PMID:24627327
Effect of compressibility on the hypervelocity penetration
NASA Astrophysics Data System (ADS)
Song, W. J.; Chen, X. W.; Chen, P.
2018-02-01
We further consider the effect of rod strength by employing the compressible penetration model to study the effect of compressibility on hypervelocity penetration. Meanwhile, we define different instances of penetration efficiency in various modified models and compare these penetration efficiencies to identify the effects of different factors in the compressible model. To systematically discuss the effect of compressibility in different metallic rod-target combinations, we construct three cases, i.e., the penetrations by the more compressible rod into the less compressible target, rod into the analogously compressible target, and the less compressible rod into the more compressible target. The effects of volumetric strain, internal energy, and strength on the penetration efficiency are analyzed simultaneously. It indicates that the compressibility of the rod and target increases the pressure at the rod/target interface. The more compressible rod/target has larger volumetric strain and higher internal energy. Both the larger volumetric strain and higher strength enhance the penetration or anti-penetration ability. On the other hand, the higher internal energy weakens the penetration or anti-penetration ability. The two trends conflict, but the volumetric strain dominates in the variation of the penetration efficiency, which would not approach the hydrodynamic limit if the rod and target are not analogously compressible. However, if the compressibility of the rod and target is analogous, it has little effect on the penetration efficiency.
NASA Astrophysics Data System (ADS)
Ke, Xinyou; Alexander, J. Iwan D.; Prahl, Joseph M.; Savinell, Robert F.
2015-08-01
A simple analytical model of a layered system comprised of a single passage of a serpentine flow channel and a parallel underlying porous electrode (or porous layer) is proposed. This analytical model is derived from Navier-Stokes motion in the flow channel and Darcy-Brinkman model in the porous layer. The continuities of flow velocity and normal stress are applied at the interface between the flow channel and the porous layer. The effects of the inlet volumetric flow rate, thickness of the flow channel and thickness of a typical carbon fiber paper porous layer on the volumetric flow rate within this porous layer are studied. The maximum current density based on the electrolyte volumetric flow rate is predicted, and found to be consistent with reported numerical simulation. It is found that, for a mean inlet flow velocity of 33.3 cm s-1, the analytical maximum current density is estimated to be 377 mA cm-2, which compares favorably with experimental result reported by others of ∼400 mA cm-2.
Karidakis, George K; Karachalios, Theofilos
2015-12-01
Osteolysis resulting from wear debris production from the bearing surfaces is a major factor limiting long-term survival of hip implants. Oxidized zirconium head on crosslinked polyethylene (XLPE) is a modern bearing coupling. However, midterm in vivo wear data of this coupling are not known. The purpose of this study was to investigate in vivo whether the combination of an oxidized zirconium femoral head on XLPE produces less wear than a ceramic head on XLPE or a ceramic head on conventional polyethylene (CPE) couplings and whether any of these bearing combinations results in higher hip scores. Between 2003 and 2007, we performed 356 total hip arthroplasties in 288 patients; of those, 199 (69.1%) patients (199 hips) were enrolled in what began as a randomized trial. Unfortunately, after the 57(th) patient, the randomization process was halted because of patients' preference for the oxidized zirconium bearing instead of the ceramic after (as they were informed by the consent form), and after that, alternate allocation to the study groups was performed. Hips were allocated into four groups: in Group A, a 28-mm ceramic head on CPE was used; in Group B, a 28-mm ceramic head on XLPE; in Group C, a 28-mm Oxinium head on XLPE; and in Group D, a 32-mm Oxinium head on XLPE. The authors prospectively collected in vivo wear data (linear wear, linear wear rate, volumetric wear, and volumetric wear rate) using PolyWare software. Preoperative and postoperative clinical data, including Harris and Oxford hip scores, were also collected at regular intervals. Of those patients enrolled, 188 (95%) were available for final followup at a minimum of 7 years (mean, 9 years; range, 7-12 years). All bearing surfaces showed a varying high bedding-in effect (plastic deformation of the liner) up to the second postoperative year. At 5 years both oxidized zirconium on XLPE groups showed lower (p < 0.01) volumetric wear (mean ± SD mm(3)) and volumetric wear rates (mean ± SD mm(3)/year) (Group C: 310 ± 55-206 ± 55 mm(3)/year, Group D: 320 ± 58-205 ± 61 mm(3)/year) when compared with ceramic on CPE (Group A: 791 ± 124-306 ± 85 mm(3)/year) and ceramic on XLPE (Group B: 1420 ± 223-366 ± 88 mm(3)/year) groups. For those patients who had completed 10 years of followup (20 patients [44.5%] of Group A, 21 [45.7%] of Group B, 23 [47.9%] of Group C, and 22 [44.9%] of Group D), at 10 years, both oxidized zirconium on XLPE groups also showed lower (p < 0.01) volumetric wear (mean ± SD mm(3)) and volumetric wear rates (mean ± SD mm(3)/year) (Group C: 356 ± 64 to 215 ± 54 mm(3)/year, Group D: 354 ± 50 to 210 ± 64 mm(3)/year) when compared with ceramic on CPE (Group A: 895 ± 131 to 380 ± 80 mm(3)/year) and ceramic on XLPE (Group B: 1625 ± 253 to 480 ± 101 mm(3)/year) groups. When wear rates of both oxidized zirconium groups were compared, no differences were found at any time interval with the numbers available. Two hips (one from Group A and one from Group B) are scheduled for revision as a result of wear and osteolysis. There were no differences in hip scores among the groups with the numbers available. In this study, in vivo wear parameters were lower when the combination of an oxidized zirconium head on XLPE liner was used at an average of 9 years (range, 7-12 years) followup. Further larger-scale clinical studies should confirm these findings and evaluate osteolysis and revision rates in association with the use of this bearing coupling. Level II, therapeutic study.
Design, Implementation and Characterization of a Quantum-Dot-Based Volumetric Display
NASA Astrophysics Data System (ADS)
Hirayama, Ryuji; Naruse, Makoto; Nakayama, Hirotaka; Tate, Naoya; Shiraki, Atsushi; Kakue, Takashi; Shimobaba, Tomoyoshi; Ohtsu, Motoichi; Ito, Tomoyoshi
2015-02-01
In this study, we propose and experimentally demonstrate a volumetric display system based on quantum dots (QDs) embedded in a polymer substrate. Unlike conventional volumetric displays, our system does not require electrical wiring; thus, the heretofore unavoidable issue of occlusion is resolved because irradiation by external light supplies the energy to the light-emitting voxels formed by the QDs. By exploiting the intrinsic attributes of the QDs, the system offers ultrahigh definition and a wide range of colours for volumetric displays. In this paper, we discuss the design, implementation and characterization of the proposed volumetric display's first prototype. We developed an 8 × 8 × 8 display comprising two types of QDs. This display provides multicolour three-type two-dimensional patterns when viewed from different angles. The QD-based volumetric display provides a new way to represent images and could be applied in leisure and advertising industries, among others.
Design, implementation and characterization of a quantum-dot-based volumetric display.
Hirayama, Ryuji; Naruse, Makoto; Nakayama, Hirotaka; Tate, Naoya; Shiraki, Atsushi; Kakue, Takashi; Shimobaba, Tomoyoshi; Ohtsu, Motoichi; Ito, Tomoyoshi
2015-02-16
In this study, we propose and experimentally demonstrate a volumetric display system based on quantum dots (QDs) embedded in a polymer substrate. Unlike conventional volumetric displays, our system does not require electrical wiring; thus, the heretofore unavoidable issue of occlusion is resolved because irradiation by external light supplies the energy to the light-emitting voxels formed by the QDs. By exploiting the intrinsic attributes of the QDs, the system offers ultrahigh definition and a wide range of colours for volumetric displays. In this paper, we discuss the design, implementation and characterization of the proposed volumetric display's first prototype. We developed an 8 × 8 × 8 display comprising two types of QDs. This display provides multicolour three-type two-dimensional patterns when viewed from different angles. The QD-based volumetric display provides a new way to represent images and could be applied in leisure and advertising industries, among others.
Quantifying spatial and temporal trends in beach-dune volumetric changes using spatial statistics
NASA Astrophysics Data System (ADS)
Eamer, Jordan B. R.; Walker, Ian J.
2013-06-01
Spatial statistics are generally underutilized in coastal geomorphology, despite offering great potential for identifying and quantifying spatial-temporal trends in landscape morphodynamics. In particular, local Moran's Ii provides a statistical framework for detecting clusters of significant change in an attribute (e.g., surface erosion or deposition) and quantifying how this changes over space and time. This study analyzes and interprets spatial-temporal patterns in sediment volume changes in a beach-foredune-transgressive dune complex following removal of invasive marram grass (Ammophila spp.). Results are derived by detecting significant changes in post-removal repeat DEMs derived from topographic surveys and airborne LiDAR. The study site was separated into discrete, linked geomorphic units (beach, foredune, transgressive dune complex) to facilitate sub-landscape scale analysis of volumetric change and sediment budget responses. Difference surfaces derived from a pixel-subtraction algorithm between interval DEMs and the LiDAR baseline DEM were filtered using the local Moran's Ii method and two different spatial weights (1.5 and 5 m) to detect statistically significant change. Moran's Ii results were compared with those derived from a more spatially uniform statistical method that uses a simpler student's t distribution threshold for change detection. Morphodynamic patterns and volumetric estimates were similar between the uniform geostatistical method and Moran's Ii at a spatial weight of 5 m while the smaller spatial weight (1.5 m) consistently indicated volumetric changes of less magnitude. The larger 5 m spatial weight was most representative of broader site morphodynamics and spatial patterns while the smaller spatial weight provided volumetric changes consistent with field observations. All methods showed foredune deflation immediately following removal with increased sediment volumes into the spring via deposition at the crest and on lobes in the lee, despite erosion on the stoss slope and dune toe. Generally, the foredune became wider by landward extension and the seaward slope recovered from erosion to a similar height and form to that of pre-restoration despite remaining essentially free of vegetation.
Tan, Judith Zhi-Yie; Crossett, Marcus; Ditchfield, Michael
2013-04-01
The aim of this study was to evaluate the dynamic volumetric CT in the assessment of the paediatric airway. Ethics board approval was obtained for this retrospective review. Eight infants (median age 6 months, range 3 weeks to 1 year, 50% female) at a tertiary paediatric centre with complex clinical respiratory presentation underwent volumetric CT assessment of their airways. The entire lungs were examined over 1-2 respiratory cycles. In four patients, intravenous contrast was administered to assess for vascular airway compression. The patients were not intubated. CT findings were correlated with bronchography and bronchoscopy, where available. Two patients had diffuse tracheobronchomalacia associated with chronic lung disease. One patient demonstrated focal severe cervical tracheomalacia. One patient had a double aortic arch causing fixed narrowing with superimposed malacia of the distal trachea. Four patients had normal airways; one with chronic lung disease, one demonstrating air trapping. CT findings were concordant with bronchography (one case) and bronchoscopy (four cases) in all but one (CT negative, bronchoscopy positive) but did not alter patient management. The assessment of the paediatric airway, and in particular for tracheobronchomalacia, is difficult. Assessment with bronchography, bronchoscopy, helical CT and MR have issues with reliability, intubation, intratracheal/bronchial contrast administration and ionising radiation. Volumetric CT assesses the entire central airway in children at much lower radiation dose compared with previous dynamic CT imaging. This non-invasive, rapid assessment obviates the need for patient cooperation and enables evaluation of extratracheal intrathoracic structures. Volumetric CT enables four-dimensional assessment for paediatric tracheobronchomalacia without intubation or patient cooperation and at low radiation dose. © 2012 The Authors. Journal of Medical Imaging and Radiation Oncology © 2012 The Royal Australian and New Zealand College of Radiologists.
de Diego, Víctor; Martínez-Monseny, Antonio F; Muchart, Jordi; Cuadras, Daniel; Montero, Raquel; Artuch, Rafael; Pérez-Cerdá, Celia; Pérez, Belén; Pérez-Dueñas, Belén; Poretti, Andrea; Serrano, Mercedes
2017-09-01
We aim to delineate the progression of cerebellar atrophy (the primary neuroimaging finding) in children with phosphomannomutase-deficiency (PMM2-CDG) by analyzing longitudinal MRI studies and performing cerebellar volumetric analysis and a 2D cerebellar measurement. Statistical analysis was used to compare MRI measurements [midsagittal vermis relative diameter (MVRD) and volume] of children with PMM2-CDG and sex- and age-matched controls, and to determine the rate of progression of cerebellar atrophy at different ages. Fifty MRI studies of 33 PMM2-CDG patients were used for 2D evaluation, and 19 MRI studies were available for volumetric analysis. Results from a linear regression model showed that patients have a significantly lower MVRD and cerebellar volume compared to controls (p < 0.001 and p < 0.001 respectively). There was a significant negative correlation between age and MVRD for patients (p = 0.014). The rate of cerebellar atrophy measured by the loss of MVRD and cerebellar volume per year was higher at early ages (r = -0.578, p = 0.012 and r = -0.323, p = 0.48 respectively), particularly in patients under 11 years (p = 0.004). There was a significant positive correlation between MVRD and cerebellar volume in PMM2-CDG patients (r = 0.669, p = 0.001). Our study quantifies a progression of cerebellar atrophy in PMM2-CDG patients, particularly during the first decade of life, and suggests a simple and reliable measure, the MVRD, to monitor cerebellar atrophy. Quantitative measurement of MVRD and cerebellar volume are essential for correlation with phenotype and outcome, natural follow-up, and monitoring in view of potential therapies in children with PMM2-CDG.
Modeling of macrosegregation caused by volumetric deformation in a coherent mushy zone
NASA Astrophysics Data System (ADS)
Nicolli, Lilia C.; Mo, Asbjørn; M'hamdi, Mohammed
2005-02-01
A two-phase volume-averaged continuum model is presented that quantifies macrosegregation formation during solidification of metallic alloys caused by deformation of the dendritic network and associated melt flow in the coherent part of the mushy zone. Also, the macrosegregation formation associated with the solidification shrinkage (inverse segregation) is taken into account. Based on experimental evidence established elsewhere, volumetric viscoplastic deformation (densification/dilatation) of the coherent dendritic network is included in the model. While the thermomechanical model previously outlined (M. M’Hamdi, A. Mo, and C.L. Martin: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2081-93) has been used to calculate the temperature and velocity fields associated with the thermally induced deformations and shrinkage driven melt flow, the solute conservation equation including both the liquid and a solid volume-averaged velocity is solved in the present study. In modeling examples, the macrosegregation formation caused by mechanically imposed as well as by thermally induced deformations has been calculated. The modeling results for an Al-4 wt pct Cu alloy indicate that even quite small volumetric strains (≈2 pct), which can be associated with thermally induced deformations, can lead to a macroscopic composition variation in the final casting comparable to that resulting from the solidification shrinkage induced melt flow. These results can be explained by the relatively large volumetric viscoplastic deformation in the coherent mush resulting from the applied constitutive model, as well as the relatively large difference in composition for the studied Al-Cu alloy in the solid and liquid phases at high solid fractions at which the deformation takes place.
Sabati, Mohammad; Sheriff, Sulaiman; Gu, Meng; Wei, Juan; Zhu, Henry; Barker, Peter B.; Spielman, Daniel M.; Alger, Jeffry R.; Maudsley, Andrew A.
2014-01-01
Purpose To assess volumetric proton MR spectroscopic imaging of the human brain on multi-vendor MRI instruments. Methods Echo-planar spectroscopic imaging (EPSI) was developed on instruments from three manufacturers, with matched specifications and acquisition protocols that accounted for differences in sampling performance, RF power, and data formats. Inter-site reproducibility was evaluated for signal-normalized maps of N-acetylaspartate (NAA), Creatine (Cre) and Choline using phantom and human subject measurements. Comparative analyses included metrics for spectral quality, spatial coverage, and mean values in atlas-registered brain regions. Results Inter-site differences for phantom measurements were under 1.7% for individual metabolites and 0.2% for ratio measurements. Spatial uniformity ranged from 79% to 91%. The human studies found differences of mean values in the temporal lobe, but good agreement in other white-matter regions, with maximum differences relative to their mean of under 3.2%. For NAA/Cre, the maximum difference was 1.8%. In grey-matter a significant difference was observed for frontal lobe NAA. Primary causes of inter-site differences were attributed to shim quality, B0 drift, and accuracy of RF excitation. Correlation coefficients for measurements at each site were over 0.60, indicating good reliability. Conclusion A volumetric intensity-normalized MRSI acquisition can be implemented in a comparable manner across multi-vendor MR instruments. PMID:25354190
Sabati, Mohammad; Sheriff, Sulaiman; Gu, Meng; Wei, Juan; Zhu, Henry; Barker, Peter B; Spielman, Daniel M; Alger, Jeffry R; Maudsley, Andrew A
2015-11-01
To assess volumetric proton MR spectroscopic imaging (MRSI) of the human brain on multivendor MRI instruments. Echo-planar spectroscopic imaging was developed on instruments from three manufacturers, with matched specifications and acquisition protocols that accounted for differences in sampling performance, radiofrequency (RF) power, and data formats. Intersite reproducibility was evaluated for signal-normalized maps of N-acetylaspartate (NAA), creatine (Cre), and choline using phantom and human subject measurements. Comparative analyses included metrics for spectral quality, spatial coverage, and mean values in atlas-registered brain regions. Intersite differences for phantom measurements were less than 1.7% for individual metabolites and less than 0.2% for ratio measurements. Spatial uniformity ranged from 79% to 91%. The human studies found differences of mean values in the temporal lobe, but good agreement in other white matter regions, with maximum differences relative to their mean of under 3.2%. For NAA/Cre, the maximum difference was 1.8%. In gray matter, a significant difference was observed for frontal lobe NAA. Primary causes of intersite differences were attributed to shim quality, B0 drift, and accuracy of RF excitation. Correlation coefficients for measurements at each site were over 0.60, indicating good reliability. A volumetric intensity-normalized MRSI acquisition can be implemented in a comparable manner across multivendor MR instruments. © 2014 Wiley Periodicals, Inc.
Cost-effectiveness of volumetric alcohol taxation in Australia.
Byrnes, Joshua M; Cobiac, Linda J; Doran, Christopher M; Vos, Theo; Shakeshaft, Anthony P
2010-04-19
To estimate the potential health benefits and cost savings of an alcohol tax rate that applies equally to all alcoholic beverages based on their alcohol content (volumetric tax) and to compare the cost savings with the cost of implementation. Mathematical modelling of three scenarios of volumetric alcohol taxation for the population of Australia: (i) no change in deadweight loss, (ii) no change in tax revenue, and (iii) all alcoholic beverages taxed at the same rate as spirits. Estimated change in alcohol consumption, tax revenue and health benefit. The estimated cost of changing to a volumetric tax rate is $18 million. A volumetric tax that is deadweight loss-neutral would increase the cost of beer and wine and reduce the cost of spirits, resulting in an estimated annual increase in taxation revenue of $492 million and a 2.77% reduction in annual consumption of pure alcohol. The estimated net health gain would be 21 000 disability-adjusted life-years (DALYs), with potential cost offsets of $110 million per annum. A tax revenue-neutral scenario would result in an 0.05% decrease in consumption, and a tax on all alcohol at a spirits rate would reduce consumption by 23.85% and increase revenue by $3094 million [corrected]. All volumetric tax scenarios would provide greater health benefits and cost savings to the health sector than the existing taxation system, based on current understandings of alcohol-related health effects. An equalized volumetric tax that would reduce beer and wine consumption while increasing the consumption of spirits would need to be approached with caution. Further research is required to examine whether alcohol-related health effects vary by type of alcoholic beverage independent of the amount of alcohol consumed to provide a strong evidence platform for alcohol taxation policies.
Urschler, Martin; Höller, Johannes; Bornik, Alexander; Paul, Tobias; Giretzlehner, Michael; Bischof, Horst; Yen, Kathrin; Scheurer, Eva
2014-08-01
The increasing use of CT/MR devices in forensic analysis motivates the need to present forensic findings from different sources in an intuitive reference visualization, with the aim of combining 3D volumetric images along with digital photographs of external findings into a 3D computer graphics model. This model allows a comprehensive presentation of forensic findings in court and enables comparative evaluation studies correlating data sources. The goal of this work was to investigate different methods to generate anonymous and patient-specific 3D models which may be used as reference visualizations. The issue of registering 3D volumetric as well as 2D photographic data to such 3D models is addressed to provide an intuitive context for injury documentation from arbitrary modalities. We present an image processing and visualization work-flow, discuss the major parts of this work-flow, compare the different investigated reference models, and show a number of cases studies that underline the suitability of the proposed work-flow for presenting forensically relevant information in 3D visualizations. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Valakh, Vladimir; Chan, Philip; D'Adamo, Karen; Micaily, Bizhan
2013-10-01
In the present article we review on the use of Volumetric Modulated Arc Therapy (VMAT) for a small lung nodule that was centrally located in close proximity to the mediastinal structures. An inoperable patient with central, clinical stage IA adenocarcinoma of the right lung was treated with external-beam radiation therapy of 52.5 Gy in 15 factions. A single 360° coplanar arc VMAT plan (360-VMAT) was used for treatment and compared to step-and-shoot Intensity Modulation Radiotherapy (IMRT) and a single 180° ipsilateral partial arc VMAT plan (180-VMAT). Planning Target Volume (PTV) coverage was not different, and 360-VMAT had the highest dose homogeneity. Both 360-VMAT and 180-VMAT reduced esophageal dose compared to IMRT. While IMRT had the lowest lung dose, all 3 plans achieved acceptable sparing of the lung. 180-VMAT had the highest dose conformity. Both 360-VMAT and 180-VMAT improved esophageal sparing compared to IMRT. Use of VMAT in early-stage, centrally located NSCLC is a promising treatment approach and merits additional investigation.
Stoeckel, Luke E; Chai, Xiaoqian J; Zhang, Jiahe; Whitfield-Gabrieli, Susan; Evins, A Eden
2016-07-01
Although nicotine addiction is characterized by both structural and functional abnormalities in brain networks involved in salience and cognitive control, few studies have integrated these data to understand how these abnormalities may support addiction. This study aimed to (1) evaluate gray matter density and functional connectivity of the anterior insula in cigarette smokers and never smokers and (2) characterize how differences in these measures were related to smoking behavior. We compared structural magnetic resonance imaging (MRI) (gray matter density via voxel-based morphometry) and seed-based functional connectivity MRI data in 16 minimally deprived smokers and 16 matched never smokers. Compared with controls, smokers had lower gray matter density in left anterior insula extending into inferior frontal and temporal cortex. Gray matter density in this region was inversely correlated with cigarettes smoked per day. Smokers exhibited negative functional connectivity (anti-correlation) between the anterior insula and regions involved in cognitive control (left lPFC) and semantic processing/emotion regulation (lateral temporal cortex), whereas controls exhibited positive connectivity between these regions. There were differences in the anterior insula, a central region in the brain's salience network, when comparing both volumetric and functional connectivity data between cigarette smokers and never smokers. Volumetric data, but not the functional connectivity data, were also associated with an aspect of smoking behavior (daily cigarettes smoked). © 2015 Society for the Study of Addiction.
Sipkova, Zuzana; Lam, Fook Chang; Francis, Ian; Herold, Jim; Liu, Christopher
2013-04-01
To assess the use of serial computed tomography (CT) in the detection of osteo-odonto-lamina resorption in osteo-odonto-keratoprosthesis (OOKP) and to investigate the use of new volumetric software, Advanced Lung Analysis software (3D-ALA; GE Healthcare), for detecting changes in OOKP laminar volume. A retrospective assessment of the radiological databases and hospital records was performed for 22 OOKP patients treated at the National OOKP referral center in Brighton, United Kingdom. Three-dimensional surface reconstructions of the OOKP laminae were performed using stored CT data. For the 2-dimensional linear analysis, the linear dimensions of the reconstructed laminae were measured, compared with original measurements taken at the time of surgery, and then assigned a CT grade based on a predetermined resorption grading scale. The volumetric analysis involved calculating the laminar volumes using 3D-ALA. The effectiveness of 2-dimensional linear analysis, volumetric analysis, and clinical examination in detecting laminar resorption was compared. The mean change in laminar volume between the first and second scans was -6.67% (range, +10.13% to -24.86%). CT grades assigned to patients based on laminar dimension measurements remained the same, despite significant changes in laminar volumes. Clinical examination failed to identify 60% of patients who were found to have resorption on volumetric analysis. Currently, the detection of laminar resorption relies on clinical examination and the measurement of laminar dimensions on the 2- and 3-dimensional radiological images. Laminar volume measurement is a useful new addition to the armamentarium. It provides an objective tool that allows for a precise and reproducible assessment of laminar resorption.
Indexing Volumetric Shapes with Matching and Packing
Koes, David Ryan; Camacho, Carlos J.
2014-01-01
We describe a novel algorithm for bulk-loading an index with high-dimensional data and apply it to the problem of volumetric shape matching. Our matching and packing algorithm is a general approach for packing data according to a similarity metric. First an approximate k-nearest neighbor graph is constructed using vantage-point initialization, an improvement to previous work that decreases construction time while improving the quality of approximation. Then graph matching is iteratively performed to pack related items closely together. The end result is a dense index with good performance. We define a new query specification for shape matching that uses minimum and maximum shape constraints to explicitly specify the spatial requirements of the desired shape. This specification provides a natural language for performing volumetric shape matching and is readily supported by the geometry-based similarity search (GSS) tree, an indexing structure that maintains explicit representations of volumetric shape. We describe our implementation of a GSS tree for volumetric shape matching and provide a comprehensive evaluation of parameter sensitivity, performance, and scalability. Compared to previous bulk-loading algorithms, we find that matching and packing can construct a GSS-tree index in the same amount of time that is denser, flatter, and better performing, with an observed average performance improvement of 2X. PMID:26085707
Driscoll, Mark; Mac-Thiong, Jean-Marc; Labelle, Hubert; Parent, Stefan
2013-01-01
A large spectrum of medical devices exists; it aims to correct deformities associated with spinal disorders. The development of a detailed volumetric finite element model of the osteoligamentous spine would serve as a valuable tool to assess, compare, and optimize spinal devices. Thus the purpose of the study was to develop and initiate validation of a detailed osteoligamentous finite element model of the spine with simulated correction from spinal instrumentation. A finite element of the spine from T1 to L5 was developed using properties and geometry from the published literature and patient data. Spinal instrumentation, consisting of segmental translation of a scoliotic spine, was emulated. Postoperative patient and relevant published data of intervertebral disc stress, screw/vertebra pullout forces, and spinal profiles was used to evaluate the models validity. Intervertebral disc and vertebral reaction stresses respected published in vivo, ex vivo, and in silico values. Screw/vertebra reaction forces agreed with accepted pullout threshold values. Cobb angle measurements of spinal deformity following simulated surgical instrumentation corroborated with patient data. This computational biomechanical analysis validated a detailed volumetric spine model. Future studies seek to exploit the model to explore the performance of corrective spinal devices. PMID:23991426
Jeevanandan, Ganesh; Thomas, Eapen
2018-01-01
This present study was conducted to analyze the volumetric change in the root canal space and instrumentation time between hand files, hand files in reciprocating motion, and three rotary files in primary molars. One hundred primary mandibular molars were randomly allotted to one of the five groups. Instrumentation was done using Group I; nickel-titanium (Ni-Ti) hand file, Group II; Ni-Ti hand files in reciprocating motion, Group III; Race rotary files, Group IV; prodesign pediatric rotary files, and Group V; ProTaper rotary files. The mean volumetric changes were assessed using pre- and post-operative spiral computed tomography scans. Instrumentation time was recorded. Statistical analysis to access intergroup comparison for mean canal volume and instrumentation time was done using Bonferroni-adjusted Mann-Whitney test and Mann-Whitney test, respectively. Intergroup comparison of mean canal volume showed statistically significant difference between Groups II versus IV, Groups III versus V, and Groups IV versus V. Intergroup comparison of mean instrumentation time showed statistically significant difference among all the groups except Groups IV versus V. Among the various instrumentation techniques available, rotary instrumentation is the considered to be the better instrumentation technique for canal preparation in primary teeth.
Cerebellar malformations alter regional cerebral development.
Bolduc, Marie-Eve; Du Plessis, Adre J; Evans, Alan; Guizard, Nicolas; Zhang, Xun; Robertson, Richard L; Limperopoulos, Catherine
2011-12-01
The aim of this study was to compare total and regional cerebral volumes in children with isolated cerebellar malformations (CBMs) with those in typically developing children, and to examine the extent to which cerebellar volumetric reductions are associated with total and regional cerebral volumes. This is a case-control study of children diagnosed with isolated CBMs. Each child was matched on age and sex to two typically developing children. Using advanced three-dimensional volumetric magnetic resonance imaging, the cerebrum was segmented into tissue classes and partitioned into eight regions. Analysis of variance was used to compare cerebral volumes between children with CBMs and control children, and linear regressions to examine the impact of cerebellar volume reduction on cerebral volumes. Magnetic resonance imaging was performed at a mean age of 27 months in 20 children (10 males, 10 females) with CBMs and 40 typically developing children. Children with CBMs showed significantly smaller deep grey matter nuclei (p < 0.001), subgenual white matter (p = 0.03), midtemporal white matter (p = 0.02), and inferior occipital grey matter (p = 0.03) volumes than typically developing children. Greater cerebellar volumetric reduction in children with CBMs was associated with decreased total cerebral volume and deep grey matter nuclei (p = 0.02), subgenual white/grey matter (p = 0.001), midtemporal white (p = 0.02) and grey matter (p = 0.01), and parieto-occipital grey matter (p = 0.004). CBMs are associated with impaired regional cerebral growth, suggesting deactivation of principal cerebello-cerebral pathways. © The Authors. Developmental Medicine & Child Neurology © 2011 Mac Keith Press.
Turkdogan-Aydinol, F Ilter; Yetilmezsoy, Kaan
2010-10-15
A MIMO (multiple inputs and multiple outputs) fuzzy-logic-based model was developed to predict biogas and methane production rates in a pilot-scale 90-L mesophilic up-flow anaerobic sludge blanket (UASB) reactor treating molasses wastewater. Five input variables such as volumetric organic loading rate (OLR), volumetric total chemical oxygen demand (TCOD) removal rate (R(V)), influent alkalinity, influent pH and effluent pH were fuzzified by the use of an artificial intelligence-based approach. Trapezoidal membership functions with eight levels were conducted for the fuzzy subsets, and a Mamdani-type fuzzy inference system was used to implement a total of 134 rules in the IF-THEN format. The product (prod) and the centre of gravity (COG, centroid) methods were employed as the inference operator and defuzzification methods, respectively. Fuzzy-logic predicted results were compared with the outputs of two exponential non-linear regression models derived in this study. The UASB reactor showed a remarkable performance on the treatment of molasses wastewater, with an average TCOD removal efficiency of 93 (+/-3)% and an average volumetric TCOD removal rate of 6.87 (+/-3.93) kg TCOD(removed)/m(3)-day, respectively. Findings of this study clearly indicated that, compared to non-linear regression models, the proposed MIMO fuzzy-logic-based model produced smaller deviations and exhibited a superior predictive performance on forecasting of both biogas and methane production rates with satisfactory determination coefficients over 0.98. 2010 Elsevier B.V. All rights reserved.
Sran, Meena M; Khan, Karim M; Keiver, Kathy; Chew, Jason B; McKay, Heather A; Oxland, Thomas R
2005-12-01
Biomechanical studies of the thoracic spine often scan cadaveric segments by dual energy X-ray absorptiometry (DXA) to obtain measures of bone mass. Only one study has reported the accuracy of lateral scans of thoracic vertebral bodies. The accuracy of DXA scans of thoracic spine segments and of anterior-posterior (AP) thoracic scans has not been investigated. We have examined the accuracy of AP and lateral thoracic DXA scans by comparison with ash weight, the gold-standard for measuring bone mineral content (BMC). We have also compared three methods of estimating volumetric bone mineral density (vBMD) with a novel standard-ash weight (g)/bone volume (cm3) as measured by computed tomography (CT). Twelve T5-T8 spine segments were scanned with DXA (AP and lateral) and CT. The T6 vertebrae were excised, the posterior elements removed and then the vertebral bodies were ashed in a muffle furnace. We proposed a new method of estimating vBMD and compared it with two previously published methods. BMC values from lateral DXA scans displayed the strongest correlation with ash weight (r=0.99) and were on average 12.8% higher (p<0.001). As expected, BMC (AP or lateral) was more strongly correlated with ash weight than areal bone mineral density (aBMD; AP: r=0.54, or lateral: r=0.71) or estimated vBMD. Estimates of vBMD with either of the three methods were strongly and similarly correlated with volumetric BMD calculated by dividing ash weight by CT-derived volume. These data suggest that readily available DXA scanning is an appropriate surrogate measure for thoracic spine bone mineral and that the lateral scan might be the scan method of choice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorayski, Peter; Fitzgerald, Rhys; Barry, Tamara
Cutaneous squamous cell carcinoma with large nerve perineural (LNPN) infiltration of the base of skull is a radiotherapeutic challenge given the complex target volumes to nearby organs at risk (OAR). A comparative planning study was undertaken to evaluate dosimetric differences between volumetric modulated arc therapy (VMAT) versus intensity modulated radiation therapy (IMRT) in the treatment of LNPN. Five consecutive patients previously treated with IMRT for LNPN were selected. VMAT plans were generated for each case using the same planning target volumes (PTV), dose prescriptions and OAR constraints as IMRT. Comparative parameters used to assess target volume coverage, conformity and homogeneitymore » included V95 of the PTV (volume encompassed by the 95% isodose), conformity index (CI) and homogeneity index (HI). In addition, OAR maximum point doses, V20, V30, non-target tissue (NTT) point max doses, NTT volume above reference dose, monitor units (MU) were compared. IMRT and VMAT plans generated were comparable for CI (P = 0.12) and HI (P = 0.89). VMAT plans achieved better V95 (P = < 0.001) and reduced V20 and V30 by 652 cubic centimetres (cc) (28.5%) and 425.7 cc (29.1%), respectively. VMAT increased MU delivered by 18% without a corresponding increase in NTT dose. Compared with IMRT plans for LNPN, VMAT achieved comparable HI and CI.« less
Accuracy of Digital vs. Conventional Implant Impressions
Lee, Sang J.; Betensky, Rebecca A.; Gianneschi, Grace E.; Gallucci, German O.
2015-01-01
The accuracy of digital impressions greatly influences the clinical viability in implant restorations. The aim of this study is to compare the accuracy of gypsum models acquired from the conventional implant impression to digitally milled models created from direct digitalization by three-dimensional analysis. Thirty gypsum and 30 digitally milled models impressed directly from a reference model were prepared. The models were scanned by a laboratory scanner and 30 STL datasets from each group were imported to an inspection software. The datasets were aligned to the reference dataset by a repeated best fit algorithm and 10 specified contact locations of interest were measured in mean volumetric deviations. The areas were pooled by cusps, fossae, interproximal contacts, horizontal and vertical axes of implant position and angulation. The pooled areas were statistically analysed by comparing each group to the reference model to investigate the mean volumetric deviations accounting for accuracy and standard deviations for precision. Milled models from digital impressions had comparable accuracy to gypsum models from conventional impressions. However, differences in fossae and vertical displacement of the implant position from the gypsum and digitally milled models compared to the reference model, exhibited statistical significance (p<0.001, p=0.020 respectively). PMID:24720423
Ghaffari, Mehdi; Zhou, Yue; Xu, Haiping; Lin, Minren; Kim, Tae Young; Ruoff, Rodney S; Zhang, Q M
2013-09-20
Ultra-high volumetric performance electrochemical double layer capacitors based on high density aligned nano-porous microwave exfoliated graphite oxide have been studied. Elimination of macro-, meso-, and larger micro-pores from electrodes and controlling the nano-morphology results in very high volumetric capacitance, energy, and power density values. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sideridou, Irini D; Karabela, Maria M; Vouvoudi, Evagelia Ch
2008-08-01
This study evaluated the influence of water and ethanol sorption on the volumetric dimensional changes of resins prepared by light curing of Bis-GMA, Bis-EMA, UDMA, TEGDMA or D(3)MA. The resin specimens (15mm diameterx1mm height) were immersed in water or ethanol 37+/-1 degrees C for 30 days. Volumetric changes of specimens were obtained via accurate mass measurements using Archimedes principle. The specimens were reconditioned by dry storage in an oven at 37+/-1 degrees C until constant mass was obtained and then immersed in water or ethanol for 30 days. The volumetric changes of specimens were determined and compared to those obtained from the first sorption. Resins showed similar volume increase during the first and second sorptions of water or ethanol. The volume increase due to water absorption is in the following order: poly-TEGDMA>poly-Bis-GMA>poly-UDMA>poly-Bis-EMA>poly-D(3)MA. On the contrary, the order in ethanol is poly-Bis-GMA>poly-UDMA>poly-TEGDMA>poly-Bis-EMA approximately poly-D(3)MA. The volume increase was found to depend linearly on the amount of water or ethanol absorbed. In the choice of monomers for preparation of composite resin matrix the volume increase in the resin after immersion in water or ethanol must be taken into account. Resins of Bis-EMA and D(3)MA showed the lowest values.
The role of mass removal mechanisms in the onset of ns-laser induced plasma formation
NASA Astrophysics Data System (ADS)
Autrique, D.; Clair, G.; L'Hermite, D.; Alexiades, V.; Bogaerts, A.; Rethfeld, B.
2013-07-01
The present study focuses on the role of mass removal mechanisms in ns-laser ablation. A copper sample is placed in argon, initially set at standard pressure and temperature. Calculations are performed for a 6 ns laser pulse with a wavelength of 532 nm and laser fluences up to 10 J/cm2. The transient behavior in and above the copper target is described by a hydrodynamic model. Transmission profiles and ablation depths are compared with experimental results and similar trends are found. Our calculations reveal an interesting self-inhibiting mechanism: volumetric mass removal in the supercritical region triggers plasma shielding and therefore stops proceeding. This self-limiting process indicates that volumetric mass removal does not necessarily result in large ablation depths.
Volumetric differences suggest involvement of cerebellum and brainstem in chronic migraine.
Bilgiç, Başar; Kocaman, Gülşen; Arslan, Ali Bilgin; Noyan, Handan; Sherifov, Resul; Alkan, Alpay; Asil, Talip; Parman, Yeşim; Baykan, Betül
2016-04-01
Chronic migraine (CM) is a disabling neurologic condition that often evolves from episodic migraine. There has been mounting evidence on the volumetric changes detected by magnetic resonance imaging (MRI) technique in migraineurs. These studies mainly focused on episodic migraine patients and less is known about the differences in CM patients. A total of 24 CM patients and 24 healthy control individuals (all females) were included in this study. All participants underwent neurological examination and MRI. High-resolution anatomical MRI images were processed with an automated segmentation method (FreeSurfer). White-matter abnormalities of the brain were also evaluated with the Age-Related White-Matter-Changes Scale. The volumes of the cerebellum and brainstem were found to be smaller in CM patients compared to healthy controls. White-matter abnormalities were also found in CM patients, specifically in the bilateral parieto-occipital areas. There was no correlation between the clinical variables and volume decrease in these regions. CM patients showed significant volume differences in infratentorial areas and white-matter abnormalities in the posterior part of the brain. It is currently unclear whether the structural brain changes seen in migraine patients are the cause or the result of headaches. Longitudinal volumetric neuroimaging studies with larger groups, especially on the chronification of migraine, are needed to shed light on this topic. © International Headache Society 2015.
SUMCOR: Cascade summing correction for volumetric sources applying MCNP6.
Dias, M S; Semmler, R; Moreira, D S; de Menezes, M O; Barros, L F; Ribeiro, R V; Koskinas, M F
2018-04-01
The main features of code SUMCOR developed for cascade summing correction for volumetric sources are described. MCNP6 is used to track histories starting from individual points inside the volumetric source, for each set of cascade transitions from the radionuclide. Total and FEP efficiencies are calculated for all gamma-rays and X-rays involved in the cascade. Cascade summing correction is based on the matrix formalism developed by Semkow et al. (1990). Results are presented applying the experimental data sent to the participants of two intercomparisons organized by the ICRM-GSWG and coordinated by Dr. Marie-Cristine Lépy from the Laboratoire National Henri Becquerel (LNE-LNHB), CEA, in 2008 and 2010, respectively and compared to the other participants in the intercomparisons. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Harlapur, M. D.; Mallapur, D. G.; Udupa, K. Rajendra
2018-04-01
In the present study, an experimental study of the volumetric wear behaviour of Aluminium (Al-25Mg2Si2Cu4Ni) alloy in as cast and 5Hr homogenized with T6 heat treatment is carried out at constant load. The Pin on disc apparatus was used to carry out the sliding wear test. Taguchi method based on L-16 orthogonal array was employed to evaluate the data on the wear behavior. Signal-to-noise ratio among the objective of smaller the better and mean of means results were used. General regression model is obtained by correlation. Lastly confirmation test was completed to compose a comparison between the experimental results foreseen from the mention correlation. The mathematical model reveals the load has maximum contribution on the wear rate compared to speed. Scanning Electron Microscope was used to analyze the worn-out wear surfaces. Wear results show that 5Hr homogenized Al-25Mg2Si2Cu4Ni alloy samples with T6 treated had better volumetric wear resistance as compared to as cast samples.
Liu, X Sherry; Sajda, Paul; Saha, Punam K; Wehrli, Felix W; Bevill, Grant; Keaveny, Tony M; Guo, X Edward
2008-02-01
Trabecular plates and rods are important microarchitectural features in determining mechanical properties of trabecular bone. A complete volumetric decomposition of individual trabecular plates and rods was used to assess the orientation and morphology of 71 human trabecular bone samples. The ITS-based morphological analyses better characterize microarchitecture and help predict anisotropic mechanical properties of trabecular bone. Standard morphological analyses of trabecular architecture lack explicit segmentations of individual trabecular plates and rods. In this study, a complete volumetric decomposition technique was developed to segment trabecular bone microstructure into individual plates and rods. Contributions of trabecular type-associated morphological parameters to the anisotropic elastic moduli of trabecular bone were studied. Seventy-one human trabecular bone samples from the femoral neck (FN), tibia, and vertebral body (VB) were imaged using muCT or serial milling. Complete volumetric decomposition was applied to segment trabecular bone microstructure into individual plates and rods. The orientation of each individual trabecula was determined, and the axial bone volume fractions (aBV/TV), axially aligned bone volume fraction along each orthotropic axis, were correlated with the elastic moduli. The microstructural type-associated morphological parameters were derived and compared with standard morphological parameters. Their contributions to the anisotropic elastic moduli, calculated by finite element analysis (FEA), were evaluated and compared. The distribution of trabecular orientation suggested that longitudinal plates and transverse rods dominate at all three anatomic sites. aBV/TV along each axis, in general, showed a better correlation with the axial elastic modulus (r(2) = 0.95 approximately 0.99) compared with BV/TV (r(2) = 0.93 approximately 0.94). The plate-associated morphological parameters generally showed higher correlations with the corresponding standard morphological parameters than the rod-associated parameters. Multiple linear regression models of six elastic moduli with individual trabeculae segmentation (ITS)-based morphological parameters (adjusted r(2) = 0.95 approximately 0.98) performed equally well as those with standard morphological parameters (adjusted r(2) = 0.94 approximately 0.97) but revealed specific contributions from individual trabecular plates or rods. The ITS-based morphological analyses provide a better characterization of the morphology and trabecular orientation of trabecular bone. The axial loading of trabecular bone is mainly sustained by the axially aligned trabecular bone volume. Results suggest that trabecular plates dominate the overall elastic properties of trabecular bone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carvalho, P.A.; Garada, B.M.; Loeffler, J.S.
To verify the utility of a volumetric estimation of Tl-201 uptake in the context of possible astrocytoma recurrence after surgery, radiotherapy plus stereotactic boost (radiosurgery/brachitherapy), we analyzed sequential Tl-201/Tc99m-HMPAO brain SPECT studies of 28 patients (18 m/10 f). These were categorized as having tumor mass recurrence (TM), infiltrating tumor cells but no definite tumor mass (IT), or radiation changes and necrosis (RCN) after stereotactic biopsy and/or craniotomy. SPECT studies were obtained with a high-resolution dedicated gamma camera (CERASPECT, Digital Scinitgraphics, Inc.) and image acquisition was performed after intravenous Tl-201 (18.5 MBq) and Tc-99m HMPAO (740 MBq). In order to includemore » relevant information about tumor burden, a volumetric index of Tl-201 uptake was expressed in cm{sup 3} related to voxel size (4.6 x 10{sup -3} cc) within an elliptical ROI that included the tumor area. Only voxels with a threshold {ge} 2 in relation to the average scalp Tl-201 uptake were included and this total number of voxels expressed in cc was compared to previously established maximal tumor/scalp Tl-201 uptake ratios (T/S) and histopathology. Results are presented as the median (min-max) and differences were considered significant for p<0.05. Differences were significant between all groups for both ratios and volume indices and correlation between the two variables was 0.90. In conclusion, the volumetric index of Tl-201 is similar to the maximal Tl-201 T/S ratios in discriminating tumor recurrence and radiation necrosis, suggesting a future role for the volumetric index estimation in the evaluation of treatment efficacy and patient follow-up.« less
Erosion of water-based cements evaluated by volumetric and gravimetric methods.
Nomoto, Rie; Uchida, Keiko; Momoi, Yasuko; McCabe, John F
2003-05-01
To compare the erosion of glass ionomer, zinc phosphate and polycarboxylate cements using volumetric and gravimetric methods. For the volumetric method, the eroded depth of cement placed in a cylindrical cavity in PMMA was measured using a dial gauge after immersion in an eroding solution. For the gravimetric method, the weight of the residue of a solution in which a cylindrical specimen had been immersed was measured. 0.02 M lactic acid solution (0.02 M acid) and 0.1 M lactic acid/sodium lactate buffer solution (0.1 M buffer) were used as eroding solutions. The pH of both solutions was 2.74 and the test period was 24 h. Ranking of eroded depth and weight of residue was polycarboxylate>zinc phosphate>glass ionomers. Differences in erosion were more clearly defined by differences in eroded depth than differences in weight of residue. In 0.02 M acid, the erosion of glass ionomer using the volumetric method was effected by the hygroscopic expansion. In 0.1 M buffer, the erosion for polycarboxylate and zinc phosphate using the volumetric method was much greater than that using the gravimetric method. This is explained by cryo-SEM images which show many holes in the surface of specimens after erosion. It appears that zinc oxide is dissolved leaving a spongy matrix which easily collapses under the force applied to the dial gauge during measurement. The volumetric method that employs eroded depth of cement using a 0.1 M buffer solution is able to quantify erosion and to make material comparisons.
In vivo imaging of the rodent eye with swept source/Fourier domain OCT
Liu, Jonathan J.; Grulkowski, Ireneusz; Kraus, Martin F.; Potsaid, Benjamin; Lu, Chen D.; Baumann, Bernhard; Duker, Jay S.; Hornegger, Joachim; Fujimoto, James G.
2013-01-01
Swept source/Fourier domain OCT is demonstrated for in vivo imaging of the rodent eye. Using commercial swept laser technology, we developed a prototype OCT imaging system for small animal ocular imaging operating in the 1050 nm wavelength range at an axial scan rate of 100 kHz with ~6 µm axial resolution. The high imaging speed enables volumetric imaging with high axial scan densities, measuring high flow velocities in vessels, and repeated volumetric imaging over time. The 1050 nm wavelength light provides increased penetration into tissue compared to standard commercial OCT systems at 850 nm. The long imaging range enables multiple operating modes for imaging the retina, posterior eye, as well as anterior eye and full eye length. A registration algorithm using orthogonally scanned OCT volumetric data sets which can correct motion on a per A-scan basis is applied to compensate motion and merge motion corrected volumetric data for enhanced OCT image quality. Ultrahigh speed swept source OCT is a promising technique for imaging the rodent eye, proving comprehensive information on the cornea, anterior segment, lens, vitreous, posterior segment, retina and choroid. PMID:23412778
Volumetric full-range magnetomotive optical coherence tomography
Ahmad, Adeel; Kim, Jongsik; Shemonski, Nathan D.; Marjanovic, Marina; Boppart, Stephen A.
2014-01-01
Abstract. Magnetomotive optical coherence tomography (MM-OCT) can be utilized to spatially localize the presence of magnetic particles within tissues or organs. These magnetic particle-containing regions are detected by using the capability of OCT to measure small-scale displacements induced by the activation of an external electromagnet coil typically driven by a harmonic excitation signal. The constraints imposed by the scanning schemes employed and tissue viscoelastic properties limit the speed at which conventional MM-OCT data can be acquired. Realizing that electromagnet coils can be designed to exert MM force on relatively large tissue volumes (comparable or larger than typical OCT imaging fields of view), we show that an order-of-magnitude improvement in three-dimensional (3-D) MM-OCT imaging speed can be achieved by rapid acquisition of a volumetric scan during the activation of the coil. Furthermore, we show volumetric (3-D) MM-OCT imaging over a large imaging depth range by combining this volumetric scan scheme with full-range OCT. Results with tissue equivalent phantoms and a biological tissue are shown to demonstrate this technique. PMID:25472770
Park, H M; Kim, T W
2009-01-21
Electrokinetic flows through hydrophobic microchannels experience velocity slip at the microchannel wall, which affects volumetric flow rate and solute retention time. The usual method of predicting the volumetric flow rate and velocity profile for hydrophobic microchannels is to solve the Navier-Stokes equation and the Poisson-Boltzmann equation for the electric potential with the boundary condition of velocity slip expressed by the Navier slip coefficient, which is computationally demanding and defies analytic solutions. In the present investigation, we have devised a simple method of predicting the velocity profiles and volumetric flow rates of electrokinetic flows by extending the concept of the Helmholtz-Smoluchowski velocity to microchannels with Navier slip. The extended Helmholtz-Smoluchowski velocity is simple to use and yields accurate results as compared to the exact solutions. Employing the extended Helmholtz-Smoluchowski velocity, the analytical expressions for volumetric flow rate and velocity profile for electrokinetic flows through rectangular microchannels with Navier slip have been obtained at high values of zeta potential. The range of validity of the extended Helmholtz-Smoluchowski velocity is also investigated.
Yu, Dingshan; Goh, Kunli; Zhang, Qiang; Wei, Li; Wang, Hong; Jiang, Wenchao; Chen, Yuan
2014-10-22
A 1.8 V asymmetric solid-state flexible micro-supercapacitor is designed with one MnO2 -coated reduced graphene oxide/single-walled carbon nanotube (rGO/SWCNT) composite fiber as positive electrode and one nitrogen-doped rGO/SWCNT fiber as negative electrode, which demonstrates ultrahigh volumetric energy density, comparable to some thin-film lithium batteries, along with high power density, long cycle life, and good flexibility. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Volumetric blood flow via time-domain correlation: experimental verification.
Embree, P M; O'Brien, W R
1990-01-01
A novel ultrasonic volumetric flow measurement method using time-domain correlation of consecutive pairs of echoes has been developed. An ultrasonic data acquisition system determined the time shift between a pair of range gated echoes by searching for the time shift with the maximum correlation between the RF sampled waveforms. Experiments with a 5-MHz transducer indicate that the standard deviation of the estimate of steady fluid velocity through 6-mm-diameter tubes is less than 10% of the mean. Experimentally, Sephadex (G-50; 20-80 mum dia.) particles in water and fresh porcine blood have been used as ultrasound scattering fluids. Two-dimensional (2-D) flow velocity can be estimated by slowly sweeping the ultrasonic beam across the blood vessel phantom. Volumetric flow through the vessel is estimated by integrating the 2-D flow velocity field and then is compared to hydrodynamic flow measurements to assess the overall experimental accuracy of the time-domain method. Flow rates from 50-500 ml/min have been estimated with an accuracy better than 10% under the idealized characteristics used in this study, which include straight circular thin-walled tubes, laminar axially-symmetric steady flow, and no intervening tissues.
Suter, Melissa J; Gora, Michalina J; Lauwers, Gregory Y; Arnason, Thomas; Sauk, Jenny; Gallagher, Kevin A; Kava, Lauren; Tan, Khay M; Soomro, Amna R; Gallagher, Timothy P; Gardecki, Joseph A; Bouma, Brett E; Rosenberg, Mireille; Nishioka, Norman S; Tearney, Guillermo J
2014-06-01
Biopsy surveillance protocols for the assessment of Barrett's esophagus can be subject to sampling errors, resulting in diagnostic uncertainty. Optical coherence tomography is a cross-sectional imaging technique that can be used to conduct volumetric laser endomicroscopy (VLE) of the entire distal esophagus. We have developed a biopsy guidance platform that places endoscopically visible marks at VLE-determined biopsy sites. The objective of this study was to demonstrate in human participants the safety and feasibility of VLE-guided biopsy in vivo. A pilot feasibility study. Massachusetts General Hospital. A total of 22 participants were enrolled from January 2011 to June 2012 with a prior diagnosis of Barrett's esophagus. Twelve participants were used to optimize the laser marking parameters and the system platform. A total of 30 target sites were selected and marked in real-time by using the VLE-guided biopsy platform in the remaining 10 participants. Volumetric laser endomicroscopy. Endoscopic and VLE visibility, and accuracy of VLE diagnosis of the tissue between the laser cautery marks. There were no adverse events of VLE and laser marking. The optimal laser marking parameters were determined to be 2 seconds at 410 mW, with a mark separation of 6 mm. All marks made with these parameters were visible on endoscopy and VLE. The accuracies for diagnosing tissue in between the laser cautery marks by independent blinded readers for endoscopy were 67% (95% confidence interval [CI], 47%-83%), for VLE intent-to-biopsy images 93% (95% CI, 78%-99%), and for corrected VLE post-marking images 100% when compared with histopathology interpretations. This is a single-center feasibility study with a limited number of patients. Our results demonstrate that VLE-guided biopsy of the esophagus is safe and can be used to guide biopsy site selection based on the acquired volumetric optical coherence tomography imaging data. ( NCT01439633.). Copyright © 2014 American Society for Gastrointestinal Endoscopy. Published by Mosby, Inc. All rights reserved.
Suter, Melissa J.; Gora, Michalina J.; Lauwers, Gregory Y.; Arnason, Thomas; Sauk, Jenny; Gallagher, Kevin A.; Kava, Lauren; Tan, Khay M.; Soomro, Amna R.; Gallagher, Timothy P.; Gardecki, Joseph A.; Bouma, Brett E.; Rosenberg, Mireille; Nishioka, Norman S.; Tearney, Guillermo J.
2018-01-01
Background Biopsy surveillance protocols for the assessment of Barrett’s esophagus can be subject to sampling errors, resulting in diagnostic uncertainty. Optical coherence tomography is a cross-sectional imaging technique that can be used to conduct volumetric laser endomicroscopy (VLE) of the entire distal esophagus. We have developed a biopsy guidance platform that places endoscopically visible marks at VLE-determined biopsy sites. Objective The objective of this study was to demonstrate in human participants the safety and feasibility of VLE-guided biopsy in vivo. Design A pilot feasibility study. Setting Massachusetts General Hospital. Patients A total of 22 participants were enrolled from January 2011 to June 2012 with a prior diagnosis of Barrett’s esophagus. Twelve participants were used to optimize the laser marking parameters and the system platform. A total of 30 target sites were selected and marked in real-time by using the VLE-guided biopsy platform in the remaining 10 participants. Intervention Volumetric laser endomicroscopy. Main Outcome Measurements Endoscopic and VLE visibility, and accuracy of VLE diagnosis of the tissue between the laser cautery marks. Results There were no adverse events of VLE and laser marking. The optimal laser marking parameters were determined to be 2 seconds at 410 mW, with a mark separation of 6 mm. All marks made with these parameters were visible on endoscopy and VLE. The accuracies for diagnosing tissue in between the laser cautery marks by independent blinded readers for endoscopy were 67% (95% confidence interval [CI], 47%–83%), for VLE intent-to-biopsy images 93% (95% CI, 78%–99%), and for corrected VLE post-marking images 100% when compared with histopathology interpretations. Limitations This is a single-center feasibility study with a limited number of patients. Conclusion Our results demonstrate that VLE-guided biopsy of the esophagus is safe and can be used to guide biopsy site selection based on the acquired volumetric optical coherence tomography imaging data. (Clinical trial registration number: NCT01439633.) PMID:24462171
Diagnostic criteria for mass lesions differentiating in electrical impedance mammography
NASA Astrophysics Data System (ADS)
A, Karpov; M, Korotkova
2013-04-01
The purpose of this research was to determine the diagnostic criteria for differentiating volumetric lesions in the mammary gland in electrical impedance mammography. The research was carried out utilizing the electrical impedance computer mammograph llMEIK v.5.6gg®, which enables to acquire images of 3-D conductivity distribution layers within mamma's tissues up to 5 cm depth. The weighted reciprocal projection method was employed to reconstruct the 3-D electric conductivity distribution of the examined organ. The results of 3,710 electrical impedance examinations were analyzed. The analysis of a volumetric lesion included assessment of its shape, contour, internal electrical structure and changes of the surrounding tissues. Moreover, mammary gland status was evaluated with the help of comparative and age-related electrical conductivity curves. The diagnostic chart is provided. Each criterion is measured in points. Using the numerical score for evaluation of mass and non-volumetric lesions within the mammary gland in electrical impedance mammography allowed comparing this information to BI-RADS categories developed by American College of Radiology experts. The article is illustrated with electrical impedance mammograms and tables.
Natural gas storage with activated carbon from a bituminous coal
Sun, Jielun; Rood, M.J.; Rostam-Abadi, M.; Lizzio, A.A.
1996-01-01
Granular activated carbons ( -20 + 100 mesh; 0.149-0.84 mm) were produced by physical activation and chemical activation with KOH from an Illinois bituminous coal (IBC-106) for natural gas storage. The products were characterized by BET surface area, micropore volume, bulk density, and methane adsorption capacities. Volumetric methane adsorption capacities (Vm/Vs) of some of the granular carbons produced by physical activation are about 70 cm3/cm3 which is comparable to that of BPL, a commercial activated carbon. Vm/Vs values above 100 cm3/cm3 are obtainable by grinding the granular products to - 325 mesh (<0.044 mm). The increase in Vm/Vs is due to the increase in bulk density of the carbons. Volumetric methane adsorption capacity increases with increasing pore surface area and micropore volume when normalizing with respect to sample bulk volume. Compared with steam-activated carbons, granular carbons produced by KOH activation have higher micropore volume and higher methane adsorption capacities (g/g). Their volumetric methane adsorption capacities are lower due to their lower bulk densities. Copyright ?? 1996 Elsevier Science Ltd.
Hopkins, William D.; Lyn, Heidi; Cantalupo, Claudio
2009-01-01
The two species of Pan, bonobos and common chimpanzees, have been reported to have different social organization, cognitive and linguistic abilities and motor skill, despite their close biological relationship. Here, we examined whether bonobos and chimpanzee differ in selected brain regions that may map to these different social and cognitive abilities. Eight chimpanzees and eight bonobos matched on age, sex and rearing experiences were magnetic resonance images scanned and volumetric measures were obtained for the whole brain, cerebellum, striatum, motor-hand area, hippocampus, inferior frontal gyrus and planum temporale. Chimpanzees had significantly larger cerebellum and borderline significantly larger hippocampus and putamen, after adjusting for brain size, compared with bonobos. Bonobos showed greater leftward asymmetries in the striatum and motor-hand area compared with chimpanzees. No significant differences in either the volume or lateralization for the so-called language homologs were found between species. The results suggest that the two species of Pan are quite similar neurologically, though some volumetric and lateralized differences may reflect inherent differences in social organization, cognition and motor skills. PMID:19760676
Hopkins, William D; Lyn, Heidi; Cantalupo, Claudio
2009-12-01
The two species of Pan, bonobos and common chimpanzees, have been reported to have different social organization, cognitive and linguistic abilities and motor skill, despite their close biological relationship. Here, we examined whether bonobos and chimpanzee differ in selected brain regions that may map to these different social and cognitive abilities. Eight chimpanzees and eight bonobos matched on age, sex and rearing experiences were magnetic resonance images scanned and volumetric measures were obtained for the whole brain, cerebellum, striatum, motor-hand area, hippocampus, inferior frontal gyrus and planum temporale. Chimpanzees had significantly larger cerebellum and borderline significantly larger hippocampus and putamen, after adjusting for brain size, compared with bonobos. Bonobos showed greater leftward asymmetries in the striatum and motor-hand area compared with chimpanzees. No significant differences in either the volume or lateralization for the so-called language homologs were found between species. The results suggest that the two species of Pan are quite similar neurologically, though some volumetric and lateralized differences may reflect inherent differences in social organization, cognition and motor skills.
WE-FG-207B-06: Plaque Composition Measurement with Dual Energy Computed Tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, C; Ding, H; Malkasian, S
Purpose: To investigate the feasibility of characterizing arterial plaque composition in terms of water, lipid and protein or calcium using dual energy computed tomography. Characterization of plaque composition can potentially help distinguish vulnerable from stable plaques. Methods: Simulations studies were performed by the CT simulator based on ASTRA tomography toolbox. The beam energy for dual energy images was selected to be 80 kVp and 135 kVp. The radiation dose and energy spectrum for the CT simulator were carefully calibrated with respect to a 320-slice CT scanner. A digital chest phantom was constructed using Matlab for calibration and plaque measurement. Puremore » water, lipid, protein or calcium was used for calibration and a mixture of different volume percentages of these materials were used for validation purposes. Non-calcified plaque was simulated using water, lipid and protein with volumetric percentage range of 35%∼65%, 5%∼60% and 5%∼40%, respectively. Calcified plaque was simulated using water, lipid and calcium with volumetric percentage range of 50%∼80%, 8%∼45% and 3%∼13%, respectively. We employed iterative sinogram processing (ISP) to reduce the beam hardening effect in the simulation to improve the decomposition results. Results: The simulated known composition and dual energy decomposition results were in good agreement. Water, lipid and protein (calcium) mixtures were decomposed into water, lipid and protein (calcium) contents. The RMS errors of volumetric percentage for the water, lipid and protein (non-calcified plaque) decomposition, as compared to known values, were estimated to be approximately 5.74%, 2.54%, and 0.95% respectively. The RMS errors of volumetric percentage for the water, lipid and Calcium (calcified plaque) decomposition, as compared to known values, were estimated to be approximately 7.4%, 8.64%, and 0.08% respectively. Conclusion: The results of this study suggest that the dual energy decomposition can potentially be used to quantify the water, lipid, and protein or calcium composition of a plaque with relatively good accuracy. Grant funding from Toshiba Medical Systems and Philips Medical Systems.« less
Knollmann, Friedrich D; Kumthekar, Rohan; Fetzer, David; Socinski, Mark A
2014-03-01
We set out to investigate whether volumetric tumor measurements allow for a prediction of treatment response, as measured by patient survival, in patients with advanced non-small-cell lung cancer (NSCLC). Patients with nonresectable NSCLC (stage III or IV, n = 100) who were repeatedly evaluated for treatment response by computed tomography (CT) were included in a Health Insurance Portability and Accountability Act (HIPAA)-compliant retrospective study. Tumor response was measured by comparing tumor volumes over time. Patient survival was compared with Response Evaluation Criteria in Solid Tumors (RECIST) using Kaplan-Meier survival statistics and Cox regression analysis. The median overall patient survival was 553 days (standard error, 146 days); for patients with stage III NSCLC, it was 822 days, and for patients with stage IV disease, 479 days. The survival differences were not statistically significant (P = .09). According to RECIST, 5 patients demonstrated complete response, 39 partial response, 44 stable disease, and 12 progressive disease. Patient survival was not significantly associated with RECIST class, the change of the sum of tumor diameters (P = .98), nor the change of the sum of volumetric tumor dimensions (P = .17). In a group of 100 patients with advanced-stage NSCLC, neither volumetric CT measurements of changes in tumor size nor RECIST class significantly predicted patient survival. This observation suggests that size response may not be a sufficiently precise surrogate marker of success to steer treatment decisions in individual patients. Copyright © 2014 Elsevier Inc. All rights reserved.
Mullin, Jeffrey P; Soni, Pranay; Lee, Sungho; Jehi, Lara; Naduvil Valappi, Ahsan Moosa; Bingaman, William; Gonzalez-Martinez, Jorge
2016-09-01
In some cases of refractory epilepsy, hemispherectomy is the final invasive treatment option. However, predictors of postoperative hemiparesis in these patients have not been widely studied. To investigate how the volumetric analysis of cerebral peduncles and cerebellar hemispheres in patients who have undergone hemispherectomy may determine prognostic implications for postoperative hemiparesis. Twenty-two patients who underwent hemispherectomy at our institution were retrospectively included. Using iPlan/BrainLAB (BrainLAB, Feldkirchen, Germany) imaging software and a semiautomatic voxel-based segmentation method, we calculated the preoperative cerebral peduncle and cerebellar hemisphere volumes. Cerebral peduncle and cerebellar hemisphere ratios were compared between patients with worsened or unchanged/better hemiparesis postoperatively. The ratios of ipsilateral/contralateral cerebral peduncles (0.570 vs 0.828; P = .02) and contralateral/ipsilateral cerebellar hemispheres (0.885 vs 1.031; P = .009) were significantly lower in patients who had unchanged/improved hemiparesis postoperatively compared with patients who had worsened hemiparesis. Relative risk of worsening hemiparesis was significantly higher in patients with a cerebral peduncle ratio < 0.7 (relative risk, 4.3; P = .03) or a cerebellar ratio < 1.0 (relative risk, 6.4; P = .006). Although patients who undergo hemispherectomy are heterogeneous, we report a method of predicting postoperative hemiparesis using only standard volumetric magnetic resonance imaging. This information could be used in preoperative discussions with patients and families to help better understand that chance of retaining baseline motor function. CST, corticospinal tractfMRI, functional magnetic resonance imagingTMS, transcranial magnetic stimulation.
On the Stefan Problem with Volumetric Energy Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
John Crepeau; Ali Siahpush; Blaine Spotten
2009-11-01
This paper presents results of solid-liquid phase change, driven by volumetric energy generation, in a vertical cylinder. We show excellent agreement between a quasi-static, approximate analytical solution valid for Stefan numbers less than one, and a computational model solved using the CFD code FLUENT®. A computational study also shows the effect that the volumetric energy generation has on both the mushy zone thickness and convection in the melt during phase change.
Verplaetse, Ruth; Henion, Jack
2016-07-05
A workflow overcoming microsample collection issues and hematocrit (HCT)-related bias would facilitate more widespread use of dried blood spots (DBS). This report describes comparative results between the use of a pipet and a microfluidic-based sampling device for the creation of volumetric DBS. Both approaches were successfully coupled to HCT-independent, fully automated sample preparation and online liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) analysis allowing detection of five stimulants in finger prick blood. Reproducible, selective, accurate, and precise responses meeting generally accepted regulated bioanalysis guidelines were observed over the range of 5-1000 ng/mL whole blood. The applied heated flow-through solvent desorption of the entire spot and online solid phase extraction (SPE) procedure were unaffected by the blood's HCT value within the tested range of 28.0-61.5% HCT. Enhanced stability for mephedrone on DBS compared to liquid whole blood was observed. Finger prick blood samples were collected using both volumetric sampling approaches over a time course of 25 h after intake of a single oral dose of phentermine. A pharmacokinetic curve for the incurred phentermine was successfully produced using the described validated method. These results suggest that either volumetric sample collection method may be amenable to field-use followed by fully automated, HCT-independent DBS-SPE-LC-MS/MS bioanalysis for the quantitation of these representative controlled substances. Analytical data from DBS prepared with a pipet and microfluidic-based sampling devices were comparable, but the latter is easier to operate, making this approach more suitable for sample collection by unskilled persons.
Mesial Temporal Sclerosis: Accuracy of NeuroQuant versus Neuroradiologist.
Azab, M; Carone, M; Ying, S H; Yousem, D M
2015-08-01
We sought to compare the accuracy of a volumetric fully automated computer assessment of hippocampal volume asymmetry versus neuroradiologists' interpretations of the temporal lobes for mesial temporal sclerosis. Detecting mesial temporal sclerosis (MTS) is important for the evaluation of patients with temporal lobe epilepsy as it often guides surgical intervention. One feature of MTS is hippocampal volume loss. Electronic medical record and researcher reports of scans of patients with proved mesial temporal sclerosis were compared with volumetric assessment with an FDA-approved software package, NeuroQuant, for detection of mesial temporal sclerosis in 63 patients. The degree of volumetric asymmetry was analyzed to determine the neuroradiologists' threshold for detecting right-left asymmetry in temporal lobe volumes. Thirty-six patients had left-lateralized MTS, 25 had right-lateralized MTS, and 2 had bilateral MTS. The estimated accuracy of the neuroradiologist was 72.6% with a κ statistic of 0.512 (95% CI, 0.315-0.710) [moderate agreement, P < 3 × 10(-6)]), whereas the estimated accuracy of NeuroQuant was 79.4% with a κ statistic of 0.588 (95% CI, 0.388-0.787) [moderate agreement, P < 2 × 10(-6)]). This discrepancy in accuracy was not statistically significant. When at least a 5%-10% volume discrepancy between temporal lobes was present, the neuroradiologists detected it 75%-80% of the time. As a stand-alone fully automated software program that can process temporal lobe volume in 5-10 minutes, NeuroQuant compares favorably with trained neuroradiologists in predicting the side of mesial temporal sclerosis. Neuroradiologists can often detect even small temporal lobe volumetric changes visually. © 2015 by American Journal of Neuroradiology.
Dinçer, Murat; Kucukdurmaz, Faruk; Salabas, Emre; Ortac, Mazhar; Aktan, Gulsan; Kadioglu, Ates
2017-01-01
The aim of this study was to evaluate whether there is a difference between gravimetrically and volumetrically measured semen samples and to assess the impact of semen volume, density, and sperm count on the discrepancy between gravimetric and volumetric methods. This study was designed in an andrology laboratory setting and performed on semen samples of 1,055 men receiving infertility treatment. Semen volume was calculated by gravimetric and volumetric methods. The total sperm count, semen density and sperm viability were also examined according to recent version of World Health Organization manual. The median values for gravimetric and volumetric measurements were 3.44 g and 2.96 ml respectively. The numeric difference in semen volume between 2 methods was 0.48. The mean density of samples was 1.01 ± 0.46 g/ml (range 0.90-2.0 g/ml). The numeric difference between 2 methods gets higher as semen volume increases (p < 0.001). Gravimetric and volumetric semen volume measurements were strongly correlated for all samples and for each subgroup of semen volume, semen density and sperm count, with minimum correlation coefficient of 0.895 (p < 0.001). In conclusion, the gravimetric measurement provides higher results than volumetric one and numeric differences between 2 methods increase as semen volume increases. However, further studies are needed to offer the use of gravimetrical method, which was thought to minimize laboratory errors, particularly for a high amount of semen samples. © 2016 S. Karger AG, Basel.
A semi-automatic method for left ventricle volume estimate: an in vivo validation study
NASA Technical Reports Server (NTRS)
Corsi, C.; Lamberti, C.; Sarti, A.; Saracino, G.; Shiota, T.; Thomas, J. D.
2001-01-01
This study aims to the validation of the left ventricular (LV) volume estimates obtained by processing volumetric data utilizing a segmentation model based on level set technique. The validation has been performed by comparing real-time volumetric echo data (RT3DE) and magnetic resonance (MRI) data. A validation protocol has been defined. The validation protocol was applied to twenty-four estimates (range 61-467 ml) obtained from normal and pathologic subjects, which underwent both RT3DE and MRI. A statistical analysis was performed on each estimate and on clinical parameters as stroke volume (SV) and ejection fraction (EF). Assuming MRI estimates (x) as a reference, an excellent correlation was found with volume measured by utilizing the segmentation procedure (y) (y=0.89x + 13.78, r=0.98). The mean error on SV was 8 ml and the mean error on EF was 2%. This study demonstrated that the segmentation technique is reliably applicable on human hearts in clinical practice.
Handheld real-time volumetric imaging of the spine: technology development.
Tiouririne, Mohamed; Nguyen, Sarah; Hossack, John A; Owen, Kevin; William Mauldin, F
2014-03-01
Technical difficulties, poor image quality and reliance on pattern identifications represent some of the drawbacks of two-dimensional ultrasound imaging of spinal bone anatomy. To overcome these limitations, this study sought to develop real-time volumetric imaging of the spine using a portable handheld device. The device measured 19.2 cm × 9.2 cm × 9.0 cm and imaged at 5 MHz centre frequency. 2D imaging under conventional ultrasound and volumetric (3D) imaging in real time was achieved and verified by inspection using a custom spine phantom. Further device performance was assessed and revealed a 75-min battery life and an average frame rate of 17.7 Hz in volumetric imaging mode. The results suggest that real-time volumetric imaging of the spine is a feasible technique for more intuitive visualization of the spine. These results may have important ramifications for a large array of neuraxial procedures.
Inkjet printing-based volumetric display projecting multiple full-colour 2D patterns
NASA Astrophysics Data System (ADS)
Hirayama, Ryuji; Suzuki, Tomotaka; Shimobaba, Tomoyoshi; Shiraki, Atsushi; Naruse, Makoto; Nakayama, Hirotaka; Kakue, Takashi; Ito, Tomoyoshi
2017-04-01
In this study, a method to construct a full-colour volumetric display is presented using a commercially available inkjet printer. Photoreactive luminescence materials are minutely and automatically printed as the volume elements, and volumetric displays are constructed with high resolution using easy-to-fabricate means that exploit inkjet printing technologies. The results experimentally demonstrate the first prototype of an inkjet printing-based volumetric display composed of multiple layers of transparent films that yield a full-colour three-dimensional (3D) image. Moreover, we propose a design algorithm with 3D structures that provide multiple different 2D full-colour patterns when viewed from different directions and experimentally demonstrate prototypes. It is considered that these types of 3D volumetric structures and their fabrication methods based on widely deployed existing printing technologies can be utilised as novel information display devices and systems, including digital signage, media art, entertainment and security.
COMPARISON OF VOLUMETRIC REGISTRATION ALGORITHMS FOR TENSOR-BASED MORPHOMETRY
Villalon, Julio; Joshi, Anand A.; Toga, Arthur W.; Thompson, Paul M.
2015-01-01
Nonlinear registration of brain MRI scans is often used to quantify morphological differences associated with disease or genetic factors. Recently, surface-guided fully 3D volumetric registrations have been developed that combine intensity-guided volume registrations with cortical surface constraints. In this paper, we compare one such algorithm to two popular high-dimensional volumetric registration methods: large-deformation viscous fluid registration, formulated in a Riemannian framework, and the diffeomorphic “Demons” algorithm. We performed an objective morphometric comparison, by using a large MRI dataset from 340 young adult twin subjects to examine 3D patterns of correlations in anatomical volumes. Surface-constrained volume registration gave greater effect sizes for detecting morphometric associations near the cortex, while the other two approaches gave greater effects sizes subcortically. These findings suggest novel ways to combine the advantages of multiple methods in the future. PMID:26925198
Milanese, Gianluca; Eberhard, Matthias; Martini, Katharina; Vittoria De Martini, Ilaria; Frauenfelder, Thomas
2018-04-01
To evaluate whether vessel-suppressed computed tomography (VSCT) can be reliably used for semi-automated volumetric measurements of solid pulmonary nodules, as compared to standard CT (SCT) MATERIAL AND METHODS: Ninety-three SCT were elaborated by dedicated software (ClearRead CT, Riverain Technologies, Miamisburg, OH, USA), that allows subtracting vessels from lung parenchyma. Semi-automated volumetric measurements of 65 solid nodules were compared between SCT and VSCT. The measurements were repeated by two readers. For each solid nodule, volume measured on SCT by Reader 1 and Reader 2 was averaged and the average volume between readers acted as standard of reference value. Concordance between measurements was assessed using Lin's Concordance Correlation Coefficient (CCC). Limits of agreement (LoA) between readers and CT datasets were evaluated. Standard of reference nodule volume ranged from 13 to 366 mm 3 . The mean overestimation between readers was 3 mm 3 and 2.9 mm 3 on SCT and VSCT, respectively. Semi-automated volumetric measurements on VSCT showed substantial agreement with the standard of reference (Lin's CCC = 0.990 for Reader 1; 0.985 for Reader 2). The upper and lower LoA between readers' measurements were (16.3, -22.4 mm 3 ) and (15.5, -21.4 mm 3 ) for SCT and VSCT, respectively. VSCT datasets are feasible for the measurements of solid nodules, showing an almost perfect concordance between readers and with measurements on SCT. Copyright © 2018 Elsevier B.V. All rights reserved.
A Critical Assessment of Microbiological Biogas to Biomethane Upgrading Systems.
Rittmann, Simon K-M R
2015-01-01
Microbiological biogas upgrading could become a promising technology for production of methane (CH(4)). This is, storage of irregular generated electricity results in a need to store electricity generated at peak times for use at non-peak times, which could be achieved in an intermediate step by electrolysis of water to molecular hydrogen (H(2)). Microbiological biogas upgrading can be performed by contacting carbon dioxide (CO(2)), H(2) and hydrogenotrophic methanogenic Archaea either in situ in an anaerobic digester, or ex situ in a separate bioreactor. In situ microbiological biogas upgrading is indicated to require thorough bioprocess development, because only low volumetric CH(4) production rates and low CH(4) fermentation offgas content have been achieved. Higher volumetric production rates are shown for the ex situ microbiological biogas upgrading compared to in situ microbiological biogas upgrading. However, the ex situ microbiological biogas upgrading currently suffers from H(2) gas liquid mass transfer limitation, which results in low volumetric CH(4) productivity compared to pure H(2)/CO(2) conversion to CH(4). If waste gas utilization from biological and industrial sources can be shown without reduction in volumetric CH(4) productivity, as well as if the aim of a single stage conversion to a CH(4) fermentation offgas content exceeding 95 vol% can be demonstrated, ex situ microbiological biogas upgrading with pure or enrichment cultures of methanogens could become a promising future technology for almost CO(2)-neutral biomethane production.
Remote Monitoring of Groundwater Overdraft Using GRACE and InSAR
NASA Astrophysics Data System (ADS)
Scher, C.; Saah, D.
2017-12-01
Gravity Recovery and Climate Experiment (GRACE) data paired with radar-derived analyses of volumetric changes in aquifer storage capacity present a viable technique for remote monitoring of aquifer depletion. Interferometric Synthetic Aperture Radar (InSAR) analyses of ground level subsidence can account for a significant portion of mass loss observed in GRACE data and provide information on point-sources of overdraft. This study summed one water-year of GRACE monthly mass change grids and delineated regions with negative water storage anomalies for further InSAR analyses. Magnitude of water-storage anomalies observed by GRACE were compared to InSAR-derived minimum volumetric changes in aquifer storage capacity as a result of measurable compaction at the surface. Four major aquifers were selected within regions where GRACE observed a net decrease in water storage (Central Valley, California; Mekong Delta, Vietnam; West Bank, occupied Palestinian Territory; and the Indus Basin, South Asia). Interferogram imagery of the extent and magnitude of subsidence within study regions provided estimates for net minimum volume of groundwater extracted between image acquisitions. These volumetric estimates were compared to GRACE mass change grids to resolve a percent contribution of mass change observed by GRACE likely due to groundwater overdraft. Interferograms revealed characteristic cones of depression within regions of net mass loss observed by GRACE, suggesting point-source locations of groundwater overdraft and demonstrating forensic potential for the use of InSAR and GRACE data in remote monitoring of aquifer depletion. Paired GRACE and InSAR analyses offer a technique to increase the spatial and temporal resolution of remote applications for monitoring groundwater overdraft in addition to providing a novel parameter - measurable vertical deformation at the surface - to global groundwater models.
Benbassat, Carlos A; Eshed, Varda; Kamjin, Moshe; Laron, Zvi
2003-10-01
Severe short stature resulting from a deficiency in IGF-I is a prominent feature of Laron syndrome (LS). Although low bone mineral density (BMD) has been noted in LS patients examined by dual energy x-ray absorptiometry (DEXA), this technique does not take volume into account and may therefore underestimate the true bone density in patients with small bones. The aim of the present study was to evaluate the BMD yielded by DEXA in our LS patients using estimated volumetric values. Volumetric density was calculated with the following formulas: bone mineral apparent density (BMAD) = bone mineral content (BMC)/(area)(3/2) for the lumbar spine and BMAD = BMC/area(2) for the femoral neck. The study sample included 12 patients (mean age, 43.9 yr; mean height, 123.7 cm). Findings were compared with 10 osteopenic subjects without developmental abnormalities (mean age, 56 yr; mean height, 164.8 cm) and 10 healthy control subjects matched for sex and age to the LS patients (mean height, 165.5 cm). BMAD in the LS group was 0.201 +/- 0.02 g/cm(3) at the lumbar spine and 0.201 +/- 0.04 g/cm(3) at the femoral neck; corresponding values for the osteopenic group were 0.130 +/- 0.01 and 0.140 +/- 0.01 g/cm(3), and for the controls, 0.178 +/- 0.03 and 0.192 +/- 0.02 g/cm(3). Although areal BMD was significantly lower in the LS and osteopenic subjects compared with controls (P < 0.02) at both the lumbar spine and femoral neck, BMAD was low (P < 0.01) in the osteopenic group only. In conclusion, DEXA does not seem to be a reliable measure of osteoporosis in patients with LS.
Aimetti, Mario; Manavella, Valeria; Corano, Lisa; Ercoli, Elena; Bignardi, Cristina; Romano, Federica
2018-02-01
The aim of this study was to analyze linear and volumetric hard tissue changes in severely resorbed alveolar sockets after ridge augmentation procedure and to compare them with spontaneous healing using three-dimensional cone beam computed tomography (CBCT). Thirty patients (mean age 53.2 ± 6.3 years) requiring tooth extraction for advanced periodontitis were randomly allocated to test and control groups. The test sites were grafted using a collagenated bovine-derived bone (DBBM-C) covered with a collagen membrane, while control sites had spontaneous healing. Both groups healed by secondary intention. Linear and volumetric measurements were taken on superimposed CBCT images obtained after tooth extraction and 12 months later. Greater horizontal shrinkage, localized mainly in the crestal zone, was observed in the control group (4.92 ± 2.45 mm) compared to the test group (2.60 ± 1.24 mm). While both groups presented a rebuilding of the buccal wall, it was most pronounced in the grafted sockets (2.50 ± 2.12 mm vs. 0.51 ± 1.02 mm). A significant difference was also registered in the percentage of volume loss between grafted and non-grafted sites (9.14% vs. 35.16%, p-value <.0001). Alveolar sockets with extensive buccal bone deficiencies undergo significant three-dimensional volumetric alterations following natural healing. The immediate application of a slow-resorbing xenograft with a covering collagen membrane seems to be effective in improving alveolar ridge shape and dimensions, thus potentially reducing the need for adjunctive regenerative procedures at the time of implant placement. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Relationships of bone characteristics in MYO9B deficient femurs.
Kim, Do-Gyoon; Jeong, Yong-Hoon; McMichael, Brooke K; Bähler, Martin; Bodnyk, Kyle; Sedlar, Ryan; Lee, Beth S
2018-08-01
The objective of this study was to examine relationships among a variety of bone characteristics, including volumetric, mineral density, geometric, dynamic mechanical analysis, and static fracture mechanical properties. As MYO9B is an unconventional myosin in bone cells responsible for normal skeletal growth, bone characteristics of wild-type (WT), heterozygous (HET), and MYO9B knockout (KO) mice groups were compared as an animal model to express different bone quantity and quality. Forty-five sex-matched 12-week-old mice were used in this study. After euthanization, femurs were isolated and scanned using microcomputed tomography (micro-CT) to assess bone volumetric, tissue mineral density (TMD), and geometric parameters. Then, a non-destructive dynamic mechanical analysis (DMA) was performed by applying oscillatory bending displacement on the femur. Finally, the same femur was subject to static fracture testing. KO group had significantly lower length, bone mineral density (BMD), bone mass and volume, dynamic and static stiffness, and strength than WT and HET groups (p < 0.019). On the other hand, TMD parameters of KO group were comparable with those of WT group. HET group showed volumetric, geometric, and mechanical properties similar to WT group, but had lower TMD (p < 0.014). Non-destructive micro-CT and DMA parameters had significant positive correlations with strength (p < 0.015) without combined effect of groups and sex on the correlations (p > 0.077). This comprehensive characterization provides a better understanding of interactive behavior between the tissue- and organ-level of the same femur. The current findings elucidate that MYO9B is responsible for controlling bone volume to determine the growth rate and fracture risk of bone. Copyright © 2018 Elsevier Ltd. All rights reserved.
Shoemaker, Ritchie C; House, Dennis; Ryan, James C
2014-01-01
Executive cognitive and neurologic abnormalities are commonly seen in patients with a chronic inflammatory response syndrome (CIRS) acquired following exposure to the interior environment of water-damaged buildings (WDB), but a clear delineation of the physiologic or structural basis for these abnormalities has not been defined. Symptoms of affected patients routinely include headache, difficulty with recent memory, concentration, word finding, numbness, tingling, metallic taste and vertigo. Additionally, persistent proteomic abnormalities in inflammatory parameters that can alter permeability of the blood-brain barrier, such as C4a, TGFB1, MMP9 and VEGF, are notably present in cases of CIRS-WDB compared to controls, suggesting a consequent inflammatory injury to the central nervous system. Findings of gliotic areas in MRI scans in over 45% of CIRS-WDB cases compared to 5% of controls, as well as elevated lactate and depressed ratios of glutamate to glutamine, are regularly seen in MR spectroscopy of cases. This study used the volumetric software program NeuroQuant® (NQ) to determine specific brain structure volumes in consecutive patients (N=17) seen in a medical clinic specializing in inflammatory illness. Each of these patients presented for evaluation of an illness thought to be associated with exposure to WDB, and received an MRI that was evaluated by NQ. When compared to those of a medical control group (N=18), statistically significant differences in brain structure proportions were seen for patients in both hemispheres of two of the eleven brain regions analyzed; atrophy of the caudate nucleus and enlargement of the pallidum. In addition, the left amygdala and right forebrain were also enlarged. These volumetric abnormalities, in conjunction with concurrent abnormalities in inflammatory markers, suggest a model for structural brain injury in "mold illness" based on increased permeability of the blood-brain barrier due to chronic, systemic inflammation. Copyright © 2014 Elsevier Inc. All rights reserved.
The power-proportion method for intracranial volume correction in volumetric imaging analysis.
Liu, Dawei; Johnson, Hans J; Long, Jeffrey D; Magnotta, Vincent A; Paulsen, Jane S
2014-01-01
In volumetric brain imaging analysis, volumes of brain structures are typically assumed to be proportional or linearly related to intracranial volume (ICV). However, evidence abounds that many brain structures have power law relationships with ICV. To take this relationship into account in volumetric imaging analysis, we propose a power law based method-the power-proportion method-for ICV correction. The performance of the new method is demonstrated using data from the PREDICT-HD study.
Fenerty, Kathleen E; Folio, Les R; Patronas, Nicholas J; Marté, Jennifer L; Gulley, James L; Heery, Christopher R
2016-08-23
The Response Evaluation Criteria in Solid Tumors (RECIST) are the current standard for evaluating disease progression or therapy response in patients with solid tumors. RECIST 1.1 calls for axial, longest-diameter (or perpendicular short axis of lymph nodes) measurements of a maximum of five tumors, which limits clinicians' ability to adequately measure disease burden, especially in patients with irregularly shaped tumors. This is especially problematic in chordoma, a disease for which RECIST does not always adequately capture disease burden because chordoma tumors are typically irregularly shaped and slow-growing. Furthermore, primary chordoma tumors tend to be adjacent to vital structures in the skull or sacrum that, when compressed, lead to significant clinical consequences. Volumetric segmentation is a newer technology that allows tumor burden to be measured in three dimensions on either MR or CT. Here, we compared the ability of RECIST measurements and tumor volumes to predict clinical outcomes in a cohort of 21 chordoma patients receiving immunotherapy. There was a significant difference in radiologic time to progression Kaplan-Meier curves between clinical outcome groups using volumetric segmentation (P = 0.012) but not RECIST (P = 0.38). In several cases, changes in volume were earlier and more sensitive reflections of clinical status. RECIST is a useful evaluation method when obvious changes are occurring in patients with chordoma. However, in many cases, RECIST does not detect small changes, and volumetric assessment was capable of detecting changes and predicting clinical outcome earlier than RECIST. Although this study was small and retrospective, we believe our results warrant further research in this area.
Volumetric response of intracranial meningioma after photon or particle irradiation.
Mozes, Petra; Dittmar, Jan Oliver; Habermehl, Daniel; Tonndorf-Martini, Eric; Hideghety, Katalin; Dittmar, Anne; Debus, Jürgen; Combs, Stephanie E
2017-03-01
Meningiomas are usually slow growing, well circumscribed intracranial tumors. In symptom-free cases observation with close follow-up imaging could be performed. Symptomatic meningiomas could be surgically removed and/or treated with radiotherapy. The study aimed to evaluate the volumetric response of intracranial meningiomas at different time points after photon, proton, and a mixed photon and carbon ion boost irradiation. In Group A 38 patients received proton therapy (median dose: 56 GyE in 1.8-2 GyE daily fractions) or a mixed photon/carbon ion therapy (50 Gy in 2 Gy daily fractions with intensity modulated radiotherapy (IMRT) and 18 GyE in 3 GyE daily dose carbon ion boost). Thirty-nine patients (Group B) were treated by photon therapy with IMRT or fractionated stereotactic radiotherapy technique (median dose: 56 Gy in 1.8-2 Gy daily fractions). The delineation of the tumor volume was based on the initial, one- and two-year follow-up magnetic resonance imaging and these volumes were compared to evaluate the volumetric tumor response. Significant tumor volume shrinkage was detected at one- and at two-year follow-up both after irradiation by particles and by photons. No significant difference in tumor volume change was observed between photon, proton or combined photon plus carbon ion boost treated patients. WHO grade and gender appear to be determining factors for tumor volume shrinkage. Significant volumetric shrinkage of meningiomas could be observed independently of the applied radiation modality. Long-term follow-up is recommended to evaluate further dynamic of size reduction and its correlation with outcome data.
Eom, Hye-Joung; Cha, Joo Hee; Kang, Ji-Won; Choi, Woo Jung; Kim, Han Jun; Go, EunChae
2018-05-01
Background Only few studies have assessed variability in the results obtained by the readers with different experience levels in comparison with automated volumetric breast density measurements. Purpose To examine the variations in breast density assessment according to BI-RADS categories among readers with different experience levels and to compare it with the results of automated quantitative measurements. Material and Methods Density assignment was done for 1000 screening mammograms by six readers with three different experience levels (breast-imaging experts, general radiologists, and students). Agreement level between the results obtained by the readers and the Volpara automated volumetric breast density measurements was assessed. The agreement analysis using two categories-non-dense and dense breast tissue-was also performed. Results Intra-reader agreement for experts, general radiologists, and students were almost perfect or substantial (k = 0.74-0.95). The agreement between visual assessments of the breast-imaging experts and volumetric assessments by Volpara was substantial (k = 0.77). The agreement was moderate between the experts and general radiologists (k = 0.67) and slight between the students and Volpara (k = 0.01). The agreement for the two category groups (nondense and dense) was almost perfect between the experts and Volpara (k = 0.83). The agreement was substantial between the experts and general radiologists (k = 0.78). Conclusion We observed similar high agreement levels between visual assessments of breast density performed by radiologists and the volumetric assessments. However, agreement levels were substantially lower for the untrained readers.
Szabo, Bence T; Aksoy, Seçil; Repassy, Gabor; Csomo, Krisztian; Dobo-Nagy, Csaba; Orhan, Kaan
2017-06-09
The aim of this study was to compare the paranasal sinus volumes obtained by manual and semiautomatic imaging software programs using both CT and CBCT imaging. 121 computed tomography (CT) and 119 cone beam computed tomography (CBCT) examinations were selected from the databases of the authors' institutes. The Digital Imaging and Communications in Medicine (DICOM) images were imported into 3-dimensonal imaging software, in which hand mode and semiautomatic tracing methods were used to measure the volumes of both maxillary sinuses and the sphenoid sinus. The determined volumetric means were compared to previously published averages. Isometric CBCT-based volume determination results were closer to the real volume conditions, whereas the non-isometric CT-based volume measurements defined coherently lower volumes. By comparing the 2 volume measurement modes, the values gained from hand mode were closer to the literature data. Furthermore, CBCT-based image measurement results corresponded to the known averages. Our results suggest that CBCT images provide reliable volumetric information that can be depended on for artificial organ construction, and which may aid the guidance of the operator prior to or during the intervention.
Motion mitigation for lung cancer patients treated with active scanning proton therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grassberger, Clemens, E-mail: Grassberger.Clemens@mgh.harvard.edu; Dowdell, Stephen; Sharp, Greg
2015-05-15
Purpose: Motion interplay can affect the tumor dose in scanned proton beam therapy. This study assesses the ability of rescanning and gating to mitigate interplay effects during lung treatments. Methods: The treatments of five lung cancer patients [48 Gy(RBE)/4fx] with varying tumor size (21.1–82.3 cm{sup 3}) and motion amplitude (2.9–30.6 mm) were simulated employing 4D Monte Carlo. The authors investigated two spot sizes (σ ∼ 12 and ∼3 mm), three rescanning techniques (layered, volumetric, breath-sampled volumetric) and respiratory gating with a 30% duty cycle. Results: For 4/5 patients, layered rescanning 6/2 times (for the small/large spot size) maintains equivalent uniformmore » dose within the target >98% for a single fraction. Breath sampling the timing of rescanning is ∼2 times more effective than the same number of continuous rescans. Volumetric rescanning is sensitive to synchronization effects, which was observed in 3/5 patients, though not for layered rescanning. For the large spot size, rescanning compared favorably with gating in terms of time requirements, i.e., 2x-rescanning is on average a factor ∼2.6 faster than gating for this scenario. For the small spot size however, 6x-rescanning takes on average 65% longer compared to gating. Rescanning has no effect on normal lung V{sub 20} and mean lung dose (MLD), though it reduces the maximum lung dose by on average 6.9 ± 2.4/16.7 ± 12.2 Gy(RBE) for the large and small spot sizes, respectively. Gating leads to a similar reduction in maximum dose and additionally reduces V{sub 20} and MLD. Breath-sampled rescanning is most successful in reducing the maximum dose to the normal lung. Conclusions: Both rescanning (2–6 times, depending on the beam size) as well as gating was able to mitigate interplay effects in the target for 4/5 patients studied. Layered rescanning is superior to volumetric rescanning, as the latter suffers from synchronization effects in 3/5 patients studied. Gating minimizes the irradiated volume of normal lung more efficiently, while breath-sampled rescanning is superior in reducing maximum doses to organs at risk.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forde, Elizabeth, E-mail: eforde@tcd.ie; Kneebone, Andrew; Northern Clinical School, University of Sydney, New South Wales
2013-10-01
The purpose of this study was to compare postprostatectomy planning for volumetric-modulated arc therapy (VMAT) with both single arc (SA) and double arcs (DA) against dynamic sliding window intensity-modulated radiotherapy (IMRT). Ten cases were planned with IMRT, SA VMAT, and DA VMAT. All cases were planned to achieve a minimum dose of 68 Gy to 95% of the planning target volume (PTV) and goals to limit rectal volume >40 Gy to 35% and >65 Gy to 17%, and bladder volumes >40 Gy to 50% and >65 Gy to 25%. Plans were averaged across the 10 patients and compared for meanmore » dose, conformity, homogeneity, rectal and bladder doses, and monitor units. The mean dose to the clinical target volume and PTV was significantly higher (p<0.05) for SA compared with DA or IMRT. The homogeneity index was not significantly different: SA = 0.09; DA = 0.08; and IMRT = 0.07. The rectal V40 was lowest for the DA plan. The rectal V20 was significantly lower (p<0.05) for both the VMAT plans compared with IMRT. There were no significant differences for bladder V40 or rectal and bladder V65. The IMRT plans required 1400 MU compared with 745 for DA and 708 for SA. This study shows that for equivalent dose coverage, SA and DA VMAT plans result in higher mean doses to the clinical target volume and PTV. This greater dose heterogeneity is balanced by improved low-range rectal doses and halving of the monitor units.« less
Sadik, Zjiwar H A; Lie, Suan Te; Leenstra, Sieger; Hanssens, Patrick E J
2018-01-26
OBJECTIVE Petroclival meningiomas (PCMs) can cause devastating clinical symptoms due to mass effect on cranial nerves (CNs); thus, patients harboring these tumors need treatment. Many neurosurgeons advocate for microsurgery because removal of the tumor can provide relief or result in symptom disappearance. Gamma Knife radiosurgery (GKRS) is often an alternative for surgery because it can cause tumor shrinkage with improvement of symptoms. This study evaluates qualitative volumetric changes of PCM after primary GKRS and its impact on clinical symptoms. METHODS The authors performed a retrospective study of patients with PCM who underwent primary GKRS between 2003 and 2015 at the Gamma Knife Center of the Elisabeth-Tweesteden Hospital in Tilburg, the Netherlands. This study yields 53 patients. In this study the authors concentrate on qualitative volumetric tumor changes, local tumor control rate, and the effect of the treatment on trigeminal neuralgia (TN). RESULTS Local tumor control was 98% at 5 years and 93% at 7 years (Kaplan-Meier estimates). More than 90% of the tumors showed regression in volume during the first 5 years. The mean volumetric tumor decrease was 21.2%, 27.1%, and 31% at 1, 3, and 6 years of follow-up, respectively. Improvement in TN was achieved in 61%, 67%, and 70% of the cases at 1, 2, and 3 years of follow-up, respectively. This was associated with a mean volumetric tumor decrease of 25% at the 1-year follow-up to 32% at the 3-year follow-up. CONCLUSIONS GKRS for PCMs yields a high tumor control rate with a low incidence of neurological deficits. Many patients with TN due to PCM experienced improvement in TN after radiosurgery. GKRS achieves significant volumetric tumor decrease in the first years of follow-up and thereafter.
NASA Astrophysics Data System (ADS)
Zhang, Xiaozhe; Raj, Devaraj Vasanth; Zhou, Xufeng; Liu, Zhaoping
2018-04-01
Graphene-based electrode materials for supercapacitors usually suffer from poor volumetric performance due to the low density. The enhancement of volumetric capacitance by densification of graphene materials, however, is usually accompanied by deterioration of rate capability, as the huge contraction of pore size hinders rapid diffusion of electrolytes. Thus, it is important to develop suitable pore size in graphene materials, which can sustain fast ion diffusion and avoid excessive voids to acquire high density simultaneously for supercapacitor applications. Accordingly, we propose a simple solvent evaporation method to control the pore size of graphene powders by adjusting the surface tension of solvents. Ethanol is used instead of water to reduce the shrinkage degree of graphene powder during solvent evaporation process, due to its lower surface tension comparing with water. Followed by the assistance of mechanical compression, graphene powder having high compaction density of 1.30 g cm-3 and a large proportion of mesopores in the pore size range of 2-30 nm is obtained, which delivers high volumetric capacitance of 162 F cm-3 and exhibits outstanding rate performance of 76% capacity retention at a high current density of 100 A g-1 simultaneously.
NASA Astrophysics Data System (ADS)
Son, C. H.; Yoon, J. I.; Choi, K. H.; Lee, H. K.; Lee, K. S.; Moon, C. G.; Seol, S. H.
2018-01-01
This study analyzes performance of the sherbet type ice making machine using seawater with respect to seawater volumetric flow rate, evaporation temperature, cooling water inlet and seawater inlet temperature as variables. Cooling water inlet and seawater inlet temperature are set considering average temperature of South Korea and the equator regions. Volumetric flow rate of seawater range is 0.75-1.75 LPM in this experiment. The results obtained from the experiment are as follows. As the seawater volumetric flow rate increases, or seawater inlet temperature increases, evaporation capacity tends to increase. At the point of seawater inlet temperature of 27°C and volumetric flow rate of 1.0LPM, evaporation capacity is over 2kW. On the other hand, results of COP change tendency are different from that of evaporation capacity. It appears to increase until volumetric flow rate of 1.0LPM, and decrease gradually from volumetric flow rate of 1.5LPM. This is due to the increase of compressor work to keep the evaporation pressure in accordance with the temperature of heat source. As the evaporation temperature decreases from -8 to -15°C, the evaporation capacity increases, but the COP decreases.
NASA Astrophysics Data System (ADS)
Subhash, Hrebesh M.; O'Gorman, Sean; Neuhaus, Kai; Leahy, Martin
2014-03-01
In this paper we demonstrate a novel application of correlation mapping optical coherence tomography (cm-OCT) for volumetric nailfold capillaroscopy (NFC). NFC is a widely used non-invasive diagnostic method to analyze capillary morphology and microvascular abnormalities of nailfold area for a range of disease conditions. However, the conventional NFC is incapable of providing volumetric imaging, when volumetric quantitative microangiopathic parameters such as plexus morphology, capillary density, and morphologic anomalies of the end row loops most critical. cm-OCT is a recently developed well established coherence domain magnitude based angiographic modality, which takes advantage of the time-varying speckle effect, which is normally dominant in the vicinity of vascular regions compared to static tissue region. It utilizes the correlation coefficient as a direct measurement of decorrelation between two adjacent B-frames to enhance the visibility of depth-resolved microcirculation.
Wang, Yi; Huang, Yanqiu; Liu, Jiaping; Wang, Hai; Liu, Qiuhan
2013-01-01
The flow-field characteristics of high-temperature annular buoyant jets as well as the development laws influenced by ventilation system were studied using numerical methods to eliminate the pollutants effectively in this paper. The development laws of high-temperature annular buoyant jets were analyzed and compared with previous studies, including radial velocity distribution, axial velocity and temperature decay, reattachment position, cross-section diameter, volumetric flow rate, and velocity field characteristics with different pressures at the exhaust hood inlet. The results showed that when the ratio of outer diameter to inner diameter of the annulus was smaller than 5/2, the flow-field characteristics had significant difference compared to circular buoyant jets with the same outer diameter. For similar diameter ratios, reattachment in this paper occurred further downstream in contrast to previous study. Besides, the development laws of volumetric flow rate and cross-section diameter were given with different initial parameters. In addition, through analyzing air distribution characteristics under the coupling effect of high-temperature annular buoyant jets and ventilation system, it could be found that the position where maximum axial velocity occurred was changing gradually when the pressure at the exhaust hood inlet changed from 0 Pa to -5 Pa.
Liu, Jiaping; Wang, Hai; Liu, Qiuhan
2013-01-01
The flow-field characteristics of high-temperature annular buoyant jets as well as the development laws influenced by ventilation system were studied using numerical methods to eliminate the pollutants effectively in this paper. The development laws of high-temperature annular buoyant jets were analyzed and compared with previous studies, including radial velocity distribution, axial velocity and temperature decay, reattachment position, cross-section diameter, volumetric flow rate, and velocity field characteristics with different pressures at the exhaust hood inlet. The results showed that when the ratio of outer diameter to inner diameter of the annulus was smaller than 5/2, the flow-field characteristics had significant difference compared to circular buoyant jets with the same outer diameter. For similar diameter ratios, reattachment in this paper occurred further downstream in contrast to previous study. Besides, the development laws of volumetric flow rate and cross-section diameter were given with different initial parameters. In addition, through analyzing air distribution characteristics under the coupling effect of high-temperature annular buoyant jets and ventilation system, it could be found that the position where maximum axial velocity occurred was changing gradually when the pressure at the exhaust hood inlet changed from 0 Pa to −5 Pa. PMID:24000278
Volumetric Magnetic Resonance Imaging Study of Brain and Cerebellum in Children with Cerebral Palsy
Maciorkowska, Elżbieta; Gościk, Elżbieta
2016-01-01
Introduction. Quantitative magnetic resonance imaging (MRI) studies are rarely used in the diagnosis of patients with cerebral palsy. The aim of present study was to assess the relationships between the volumetric MRI and clinical findings in children with cerebral palsy compared to control subjects. Materials and Methods. Eighty-two children with cerebral palsy and 90 age- and sex-matched healthy controls were collected. Results. The dominant changes identified on MRI scans in children with cerebral palsy were periventricular leukomalacia (42%) and posthemorrhagic hydrocephalus (21%). The total brain and cerebellum volumes in children with cerebral palsy were significantly reduced in comparison to controls. Significant grey matter volume reduction was found in the total brain in children with cerebral palsy compared with the control subjects. Positive correlations between the age of the children of both groups and the grey matter volumes in the total brain were found. Negative relationship between width of third ventricle and speech development was found in the patients. Positive correlations were noted between the ventricles enlargement and motor dysfunction and mental retardation in children with cerebral palsy. Conclusions. By using the voxel-based morphometry, the total brain, cerebellum, and grey matter volumes were significantly reduced in children with cerebral palsy. PMID:27579318
Volumetric Magnetic Resonance Imaging Study of Brain and Cerebellum in Children with Cerebral Palsy.
Kułak, Piotr; Maciorkowska, Elżbieta; Gościk, Elżbieta
2016-01-01
Introduction. Quantitative magnetic resonance imaging (MRI) studies are rarely used in the diagnosis of patients with cerebral palsy. The aim of present study was to assess the relationships between the volumetric MRI and clinical findings in children with cerebral palsy compared to control subjects. Materials and Methods. Eighty-two children with cerebral palsy and 90 age- and sex-matched healthy controls were collected. Results. The dominant changes identified on MRI scans in children with cerebral palsy were periventricular leukomalacia (42%) and posthemorrhagic hydrocephalus (21%). The total brain and cerebellum volumes in children with cerebral palsy were significantly reduced in comparison to controls. Significant grey matter volume reduction was found in the total brain in children with cerebral palsy compared with the control subjects. Positive correlations between the age of the children of both groups and the grey matter volumes in the total brain were found. Negative relationship between width of third ventricle and speech development was found in the patients. Positive correlations were noted between the ventricles enlargement and motor dysfunction and mental retardation in children with cerebral palsy. Conclusions. By using the voxel-based morphometry, the total brain, cerebellum, and grey matter volumes were significantly reduced in children with cerebral palsy.
A spiral-based volumetric acquisition for MR temperature imaging.
Fielden, Samuel W; Feng, Xue; Zhao, Li; Miller, G Wilson; Geeslin, Matthew; Dallapiazza, Robert F; Elias, W Jeffrey; Wintermark, Max; Butts Pauly, Kim; Meyer, Craig H
2018-06-01
To develop a rapid pulse sequence for volumetric MR thermometry. Simulations were carried out to assess temperature deviation, focal spot distortion/blurring, and focal spot shift across a range of readout durations and maximum temperatures for Cartesian, spiral-out, and retraced spiral-in/out (RIO) trajectories. The RIO trajectory was applied for stack-of-spirals 3D imaging on a real-time imaging platform and preliminary evaluation was carried out compared to a standard 2D sequence in vivo using a swine brain model, comparing maximum and mean temperatures measured between the two methods, as well as the temporal standard deviation measured by the two methods. In simulations, low-bandwidth Cartesian trajectories showed substantial shift of the focal spot, whereas both spiral trajectories showed no shift while maintaining focal spot geometry. In vivo, the 3D sequence achieved real-time 4D monitoring of thermometry, with an update time of 2.9-3.3 s. Spiral imaging, and RIO imaging in particular, is an effective way to speed up volumetric MR thermometry. Magn Reson Med 79:3122-3127, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Volumetric image interpretation in radiology: scroll behavior and cognitive processes.
den Boer, Larissa; van der Schaaf, Marieke F; Vincken, Koen L; Mol, Chris P; Stuijfzand, Bobby G; van der Gijp, Anouk
2018-05-16
The interpretation of medical images is a primary task for radiologists. Besides two-dimensional (2D) images, current imaging technologies allow for volumetric display of medical images. Whereas current radiology practice increasingly uses volumetric images, the majority of studies on medical image interpretation is conducted on 2D images. The current study aimed to gain deeper insight into the volumetric image interpretation process by examining this process in twenty radiology trainees who all completed four volumetric image cases. Two types of data were obtained concerning scroll behaviors and think-aloud data. Types of scroll behavior concerned oscillations, half runs, full runs, image manipulations, and interruptions. Think-aloud data were coded by a framework of knowledge and skills in radiology including three cognitive processes: perception, analysis, and synthesis. Relating scroll behavior to cognitive processes showed that oscillations and half runs coincided more often with analysis and synthesis than full runs, whereas full runs coincided more often with perception than oscillations and half runs. Interruptions were characterized by synthesis and image manipulations by perception. In addition, we investigated relations between cognitive processes and found an overall bottom-up way of reasoning with dynamic interactions between cognitive processes, especially between perception and analysis. In sum, our results highlight the dynamic interactions between these processes and the grounding of cognitive processes in scroll behavior. It suggests, that the types of scroll behavior are relevant to describe how radiologists interact with and manipulate volumetric images.
Liu, X Sherry; Sajda, Paul; Saha, Punam K; Wehrli, Felix W; Bevill, Grant; Keaveny, Tony M; Guo, X Edward
2008-01-01
Trabecular plates and rods are important microarchitectural features in determining mechanical properties of trabecular bone. A complete volumetric decomposition of individual trabecular plates and rods was used to assess the orientation and morphology of 71 human trabecular bone samples. The ITS-based morphological analyses better characterize microarchitecture and help predict anisotropic mechanical properties of trabecular bone. Introduction Standard morphological analyses of trabecular architecture lack explicit segmentations of individual trabecular plates and rods. In this study, a complete volumetric decomposition technique was developed to segment trabecular bone microstructure into individual plates and rods. Contributions of trabecular type–associated morphological parameters to the anisotropic elastic moduli of trabecular bone were studied. Materials and Methods Seventy-one human trabecular bone samples from the femoral neck (FN), tibia, and vertebral body (VB) were imaged using μCT or serial milling. Complete volumetric decomposition was applied to segment trabecular bone microstructure into individual plates and rods. The orientation of each individual trabecula was determined, and the axial bone volume fractions (aBV/TV), axially aligned bone volume fraction along each orthotropic axis, were correlated with the elastic moduli. The microstructural type–associated morphological parameters were derived and compared with standard morphological parameters. Their contributions to the anisotropic elastic moduli, calculated by finite element analysis (FEA), were evaluated and compared. Results The distribution of trabecular orientation suggested that longitudinal plates and transverse rods dominate at all three anatomic sites. aBV/TV along each axis, in general, showed a better correlation with the axial elastic modulus (r 2 = 0.95∼0.99) compared with BV/TV (r 2 = 0.93∼0.94). The plate-associated morphological parameters generally showed higher correlations with the corresponding standard morphological parameters than the rod-associated parameters. Multiple linear regression models of six elastic moduli with individual trabeculae segmentation (ITS)-based morphological parameters (adjusted r 2 = 0.95∼0.98) performed equally well as those with standard morphological parameters (adjusted r 2 = 0.94∼0.97) but revealed specific contributions from individual trabecular plates or rods. Conclusions The ITS-based morphological analyses provide a better characterization of the morphology and trabecular orientation of trabecular bone. The axial loading of trabecular bone is mainly sustained by the axially aligned trabecular bone volume. Results suggest that trabecular plates dominate the overall elastic properties of trabecular bone. PMID:17907921
Performance of a Retrofitted Multicyclone for PM2.5 Emission Control
NASA Astrophysics Data System (ADS)
Dewika, M.; Rashid, M.; Ammar, M. R.
2018-03-01
This paper presents on the performance of a retrofitted multicyclone system, which aims to increase the collection efficiency of PM2.5 (i.e. particulate size fraction ≤ 2.5 μm) emission. The multicyclone was retrofitted by extracting 15% and 20% of the total volumetric air flow rate at the dust hopper of the unit using an additional Induced Draft Fan. The total collection efficiency with and without the extraction was measured at various air volumetric flow rates and particulate mass inlet concentration. The results showed that there was a reduction of 12% to 54% depending on the inlet concentration of PM2.5 emission in the stack with compared to without extraction increasing the collection efficiency of the retrofitted multicyclone. The finding suggests that a simple technique of applying gas extraction at the dust hopper of a multicyclone as reported in this study able to increase the overall performance in fine particulate collection.
Van Caenegem, E; Wierckx, K; Taes, Y; Schreiner, T; Vandewalle, S; Toye, K; Kaufman, J-M; T'Sjoen, G
2015-01-01
Although trans women before the start of hormonal therapy have a less bone and muscle mass compared with control men, their bone mass and geometry are preserved during the first 2 years of hormonal therapy, despite of substantial muscle loss, illustrating the major role of estrogen in the male skeleton. The aim of this study is to examine the evolution of areal and volumetric bone density, geometry, and turnover in trans women undergoing sex steroid changes, during the first 2 years of hormonal therapy. In a prospective observational study, we examined 49 trans women (male-to-female) before and after 1 and 2 years of cross-sex hormonal therapy (CSH) in comparison with 49 age-matched control men measuring grip strength (hand dynamometer), areal bone mineral density (aBMD), and total body fat and lean mass using dual X-ray absorptiometry (DXA), bone geometry and volumetric bone mineral density, regional fat, and muscle area at the forearm and calf using peripheral quantitative computed tomography. Standardized treatment regimens were used with oral estradiol valerate, 4 mg daily (or transdermal 17-β estradiol 100 μg/24 h for patients >45 years old), both combined with oral cyproterone acetate 50 mg daily. Prior to CSH, trans women had lower aBMD at all measured sites (all p < 0.001), smaller cortical bone size (all p < 0.05), and lower muscle mass and strength and lean body mass (all p < 0.05) compared with control men. During CSH, muscle mass and strength decreased and all measures of fat mass increased (all p < 0.001). The aBMD increased at the femoral neck, radius, lumbar spine, and total body; cortical and trabecular bone remained stable and bone turnover markers decreased (all p < 0.05). Although trans women, before CSH, have a lower aBMD and cortical bone size compared with control men, their skeletal status is well preserved during CSH treatment, despite of substantial muscle loss.
Structural covariance and cortical reorganisation in schizophrenia: a MRI-based morphometric study.
Palaniyappan, Lena; Hodgson, Olha; Balain, Vijender; Iwabuchi, Sarina; Gowland, Penny; Liddle, Peter
2018-05-06
In patients with schizophrenia, distributed abnormalities are observed in grey matter volume. A recent hypothesis posits that these distributed changes are indicative of a plastic reorganisation process occurring in response to a functional defect in neuronal information transmission. We investigated the structural covariance across various brain regions in early-stage schizophrenia to determine if indeed the observed patterns of volumetric loss conform to a coordinated pattern of structural reorganisation. Structural magnetic resonance imaging scans were obtained from 40 healthy adults and 41 age, gender and parental socioeconomic status matched patients with schizophrenia. Volumes of grey matter tissue were estimated at the regional level across 90 atlas-based parcellations. Group-level structural covariance was studied using a graph theoretical framework. Patients had distributed reduction in grey matter volume, with high degree of localised covariance (clustering) compared with controls. Patients with schizophrenia had reduced centrality of anterior cingulate and insula but increased centrality of the fusiform cortex, compared with controls. Simulating targeted removal of highly central nodes resulted in significant loss of the overall covariance patterns in patients compared with controls. Regional volumetric deficits in schizophrenia are not a result of random, mutually independent processes. Our observations support the occurrence of a spatially interconnected reorganisation with the systematic de-escalation of conventional 'hub' regions. This raises the question of whether the morphological architecture in schizophrenia is primed for compensatory functions, albeit with a high risk of inefficiency.
Suzuki, Kenji; Epstein, Mark L.; Kohlbrenner, Ryan; Garg, Shailesh; Hori, Masatoshi; Oto, Aytekin; Baron, Richard L.
2014-01-01
OBJECTIVE The purpose of this study was to evaluate automated CT volumetry in the assessment of living-donor livers for transplant and to compare this technique with software-aided interactive volumetry and manual volumetry. MATERIALS AND METHODS Hepatic CT scans of 18 consecutively registered prospective liver donors were obtained under a liver transplant protocol. Automated liver volumetry was developed on the basis of 3D active-contour segmentation. To establish reference standard liver volumes, a radiologist manually traced the contour of the liver on each CT slice. We compared the results obtained with automated and interactive volumetry with those obtained with the reference standard for this study, manual volumetry. RESULTS The average interactive liver volume was 1553 ± 343 cm3, and the average automated liver volume was 1520 ± 378 cm3. The average manual volume was 1486 ± 343 cm3. Both interactive and automated volumetric results had excellent agreement with manual volumetric results (intraclass correlation coefficients, 0.96 and 0.94). The average user time for automated volumetry was 0.57 ± 0.06 min/case, whereas those for interactive and manual volumetry were 27.3 ± 4.6 and 39.4 ± 5.5 min/case, the difference being statistically significant (p < 0.05). CONCLUSION Both interactive and automated volumetry are accurate for measuring liver volume with CT, but automated volumetry is substantially more efficient. PMID:21940543
Suzuki, Kenji; Epstein, Mark L; Kohlbrenner, Ryan; Garg, Shailesh; Hori, Masatoshi; Oto, Aytekin; Baron, Richard L
2011-10-01
The purpose of this study was to evaluate automated CT volumetry in the assessment of living-donor livers for transplant and to compare this technique with software-aided interactive volumetry and manual volumetry. Hepatic CT scans of 18 consecutively registered prospective liver donors were obtained under a liver transplant protocol. Automated liver volumetry was developed on the basis of 3D active-contour segmentation. To establish reference standard liver volumes, a radiologist manually traced the contour of the liver on each CT slice. We compared the results obtained with automated and interactive volumetry with those obtained with the reference standard for this study, manual volumetry. The average interactive liver volume was 1553 ± 343 cm(3), and the average automated liver volume was 1520 ± 378 cm(3). The average manual volume was 1486 ± 343 cm(3). Both interactive and automated volumetric results had excellent agreement with manual volumetric results (intraclass correlation coefficients, 0.96 and 0.94). The average user time for automated volumetry was 0.57 ± 0.06 min/case, whereas those for interactive and manual volumetry were 27.3 ± 4.6 and 39.4 ± 5.5 min/case, the difference being statistically significant (p < 0.05). Both interactive and automated volumetry are accurate for measuring liver volume with CT, but automated volumetry is substantially more efficient.
Polte, Christian L; Lagerstrand, Kerstin M; Gao, Sinsia A; Lamm, Carl R; Bech-Hanssen, Odd
2015-07-01
Two-dimensional echocardiography and real-time 3-D echocardiography have been reported to underestimate human left ventricular volumes significantly compared with cardiovascular magnetic resonance. We investigated the ability of 2-D echocardiography, real-time 3-D echocardiography and cardiovascular magnetic resonance to delineate dimensions of increasing complexity (diameter-area-volume) in a multimodality phantom model and in vivo, with the aim of elucidating the main cause of underestimation. All modalities were able to delineate phantom dimensions with high precision. In vivo, 2-D and real-time 3-D echocardiography underestimated short-axis end-diastolic linear and areal and all left ventricular volumetric dimensions significantly compared with cardiovascular magnetic resonance, but not short-axis end-systolic linear and areal dimensions. Underestimation increased successively from linear to volumetric left ventricular dimensions. When analyzed according to the same principles, 2-D and real-time 3-DE echocardiography provided similar left ventricular volumes. In conclusion, echocardiographic underestimation of left ventricular dimensions is due mainly to inherent technical differences in the ability to differentiate trabeculated from compact myocardium. Identical endocardial border definition criteria are needed to minimize differences between the modalities and to ensure better comparability in clinical practice. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
The combined effect of mammographic texture and density on breast cancer risk: a cohort study.
Wanders, Johanna O P; van Gils, Carla H; Karssemeijer, Nico; Holland, Katharina; Kallenberg, Michiel; Peeters, Petra H M; Nielsen, Mads; Lillholm, Martin
2018-05-02
Texture patterns have been shown to improve breast cancer risk segregation in addition to area-based mammographic density. The additional value of texture pattern scores on top of volumetric mammographic density measures in a large screening cohort has never been studied. Volumetric mammographic density and texture pattern scores were assessed automatically for the first available digital mammography (DM) screening examination of 51,400 women (50-75 years of age) participating in the Dutch biennial breast cancer screening program between 2003 and 2011. The texture assessment method was developed in a previous study and validated in the current study. Breast cancer information was obtained from the screening registration system and through linkage with the Netherlands Cancer Registry. All screen-detected breast cancers diagnosed at the first available digital screening examination were excluded. During a median follow-up period of 4.2 (interquartile range (IQR) 2.0-6.2) years, 301 women were diagnosed with breast cancer. The associations between texture pattern scores, volumetric breast density measures and breast cancer risk were determined using Cox proportional hazard analyses. Discriminatory performance was assessed using c-indices. The median age of the women at the time of the first available digital mammography examination was 56 years (IQR 51-63). Texture pattern scores were positively associated with breast cancer risk (hazard ratio (HR) 3.16 (95% CI 2.16-4.62) (p value for trend <0.001), for quartile (Q) 4 compared to Q1). The c-index of texture was 0.61 (95% CI 0.57-0.64). Dense volume and percentage dense volume showed positive associations with breast cancer risk (HR 1.85 (95% CI 1.32-2.59) (p value for trend <0.001) and HR 2.17 (95% CI 1.51-3.12) (p value for trend <0.001), respectively, for Q4 compared to Q1). When adding texture measures to models with dense volume or percentage dense volume, c-indices increased from 0.56 (95% CI 0.53-0.59) to 0.62 (95% CI 0.58-0.65) (p < 0.001) and from 0.58 (95% CI 0.54-0.61) to 0.60 (95% CI 0.57-0.63) (p = 0.054), respectively. Deep-learning-based texture pattern scores, measured automatically on digital mammograms, are associated with breast cancer risk, independently of volumetric mammographic density, and augment the capacity to discriminate between future breast cancer and non-breast cancer cases.
NASA Astrophysics Data System (ADS)
Kim, Hak-Rin; Park, Min-Kyu; Choi, Jun-Chan; Park, Ji-Sub; Min, Sung-Wook
2016-09-01
Three-dimensional (3D) display technology has been studied actively because it can offer more realistic images compared to the conventional 2D display. Various psychological factors such as accommodation, binocular parallax, convergence and motion parallax are used to recognize a 3D image. For glass-type 3D displays, they use only the binocular disparity in 3D depth cues. However, this method cause visual fatigue and headaches due to accommodation conflict and distorted depth perception. Thus, the hologram and volumetric display are expected to be an ideal 3D display. Holographic displays can represent realistic images satisfying the entire factors of depth perception. But, it require tremendous amount of data and fast signal processing. The volumetric 3D displays can represent images using voxel which is a physical volume. However, it is required for large data to represent the depth information on voxel. In order to simply encode 3D information, the compact type of depth fused 3D (DFD) display, which can create polarization distributed depth map (PDDM) image having both 2D color image and depth image is introduced. In this paper, a new volumetric 3D display system is shown by using PDDM image controlled by polarization controller. In order to introduce PDDM image, polarization states of the light through spatial light modulator (SLM) was analyzed by Stokes parameter depending on the gray level. Based on the analysis, polarization controller is properly designed to convert PDDM image into sectioned depth images. After synchronizing PDDM images with active screens, we can realize reconstructed 3D image. Acknowledgment This work was supported by `The Cross-Ministry Giga KOREA Project' grant from the Ministry of Science, ICT and Future Planning, Korea
Inventory of File gfs.t06z.sfluxgrbf00.grib2
Volumetric Soil Moisture Content [Fraction] 007 0.1-0.4 m below ground SOILW analysis Volumetric Soil Volumetric Soil Moisture Content [Fraction] 068 1-2 m below ground SOILW analysis Volumetric Soil Moisture analysis Temperature [K] 071 0-0.1 m below ground SOILL analysis Liquid Volumetric Soil Moisture (non
Didona, Annamaria; Lancellotta, Valentina; Zucchetti, Claudio; Panizza, Bianca Moira; Frattegiani, Alessandro; Iacco, Martina; Di Pilato, Anna Concetta; Saldi, Simonetta; Aristei, Cynthia
2018-01-01
Intensity-modulated radiotherapy (IMRT) improves dose distribution in head and neck (HN) radiation therapy. Volumetric-modulated arc therapy (VMAT), a new form of IMRT, delivers radiation in single or multiple arcs, varying dose rates (VDR-VMAT) and gantry speeds, has gained considerable attention. Constant dose rate VMAT (CDR-VMAT) associated with a fixed gantry speed does not require a dedicated linear accelerator like VDR-VMAT. The present study explored the feasibility, efficiency and delivery accuracy of CDR-VMAT, by comparing it with IMRT and VDR-VMAT in treatment planning for HN cancer. Step and shoot IMRT (SS-IMRT), CDR-VMAT and VDR-VMAT plans were created for 15 HN cancer patients and were generated by Pinnacle 3 TPS (v 9.8) using 6 MV photon energy. Three PTVs were defined to receive respectively prescribed doses of 66 Gy, 60 Gy and 54 Gy, in 30 fractions. Organs at risk (OARs) included the mandible, spinal cord, brain stem, parotids, salivary glands, esophagus, larynx and thyroid. SS-IMRT plans were based on 7 co-planar beams at fixed gantry angles. CDR-VMAT and VDR-VMAT plans, generated by the SmartArc module, used a 2-arc technique: one clockwise from 182° to 178° and the other one anti-clockwise from 178° to 182°. Comparison parameters included dose distribution to PTVs ( D mean , D 2% , D 50% , D 95% , D 98% and Homogeneity Index), maximum or mean doses to OARs, specific dose-volume data, the monitor units and treatment delivery times. Compared with SS-IMRT, CDR-VMAT significantly reduced the maximum doses to PTV1 and PTV2 and significantly improved all PTV3 parameters, except D 98% and D 95% . It significantly spared parotid and submandibular glands and was associated with a lower D mean to the larynx. Compared with VDR-VMAT, CDR-VMAT was linked to a significantly better D mean , to the PTV3 but results were worse for the parotids, left submandibular gland, esophagus and mandible. Furthermore, the D mean to the larynx was also worse. Compared with SS-IMRT and VDR-VMAT, CDR-VMAT was associated with higher average monitor unit values and significantly shorter average delivery times. CDR-VMAT appeared to be a valid option in Radiation Therapy Centers that lack a dedicated linear accelerator for volumetric arc therapy with variable dose-rates and gantry velocities, and are unwilling or unable to sanction major expenditure at present but want to adopt volumetric techniques.
DOT National Transportation Integrated Search
2015-02-01
This study was initiated to validate and refine mixture volumetric material properties identified in the : Superpave Monitoring Project II. It has been found that differences in performance are primarily controlled : by differences in gradation and r...
The Volumetric Rate of Calcium-rich Transients in the Local Universe
NASA Astrophysics Data System (ADS)
Frohmaier, Chris; Sullivan, Mark; Maguire, Kate; Nugent, Peter
2018-05-01
We present a measurement of the volumetric rate of “calcium-rich” optical transients in the local universe, using a sample of three events from the Palomar Transient Factory (PTF). This measurement builds on a detailed study of the PTF transient detection efficiencies and uses a Monte Carlo simulation of the PTF survey. We measure the volumetric rate of calcium-rich transients to be higher than previous estimates: {1.21}-0.39+1.13 × {10}-5 events yr‑1 Mpc‑3. This is equivalent to 33%–94% of the local volumetric Type Ia supernova rate. This calcium-rich transient rate is sufficient to reproduce the observed calcium abundances in galaxy clusters, assuming an asymptotic calcium yield per calcium-rich event of ∼0.05 {M}ȯ . We also study the PTF detection efficiency of these transients as a function of position within their candidate host galaxies. We confirm as a real physical effect previous results that suggest that calcium-rich transients prefer large physical offsets from their host galaxies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCulloch, M; Polan, D; Feng, M
Purpose: Previous studies have shown that radiotherapy treatment for liver metastases causes marked liver hypertrophy in areas receiving low dose and atrophy/fibrosis in areas receiving high dose. The purpose of this work is to develop and evaluate a biomechanical model-based dose-response model to describe these liver responses to SBRT. Methods: In this retrospective study, a biomechanical model-based deformable registration algorithm, Morfeus, was expanded to include dose-based boundary conditions. Liver and tumor volumes were contoured on the planning images and CT/MR images three months post-RT and converted to finite element models. A thermal expansion-based relationship correlating the delivered dose and volumemore » response was generated from 22 patients previously treated. This coefficient, combined with the planned dose, was applied as an additional boundary condition to describe the volumetric response of the liver of an additional cohort of metastatic liver patients treated with SBRT. The accuracy of the model was evaluated based on overall volumetric liver comparisons and the target registration error (TRE) using the average deviations in positions of identified vascular bifurcations on each set of registered images, with a target accuracy of the 2.5mm isotropic dose grid (vector dimension 4.3mm). Results: The thermal expansion coefficient models the volumetric change of the liver to within 3%. The accuracy of Morfeus with dose-expansion boundary conditions a TRE of 5.7±2.8mm compared to 11.2±3.7mm using rigid registration and 8.9±0.28mm using Morfeus with only spatial boundary conditions. Conclusion: A biomechanical model has been developed to describe the volumetric and spatial response of the liver to SBRT. This work will enable the improvement of correlating functional imaging with delivered dose, the mapping of the delivered dose from one treatment onto the planning images for a subsequent treatment, and will further provide information to assist with the biological characterization of patients’ response to radiation.« less
Synthesis of Volumetric Ring Antenna Array for Terrestrial Coverage Pattern
Reyna, Alberto; Panduro, Marco A.; Del Rio Bocio, Carlos
2014-01-01
This paper presents a synthesis of a volumetric ring antenna array for a terrestrial coverage pattern. This synthesis regards the spacing among the rings on the planes X-Y, the positions of the rings on the plane X-Z, and uniform and concentric excitations. The optimization is carried out by implementing the particle swarm optimization. The synthesis is compared with previous designs by resulting with proper performance of this geometry to provide an accurate coverage to be applied in satellite applications with a maximum reduction of the antenna hardware as well as the side lobe level reduction. PMID:24701150
Ducher, G; Eser, P; Hill, B; Bass, S
2009-10-01
Female gymnasts frequently present with overt signs of hypoestrogenism, such as late menarche or menstrual dysfunction. The objective was to investigate the impact of history of amenorrhoea on the exercise-induced skeletal benefits in bone geometry and volumetric density in retired elite gymnasts. 24 retired artistic gymnasts, aged 17-36 years, who had been training for at least 15 h/week at the peak of their career and had been retired for 3-18 years were recruited. They had not been engaged in more than 2 h/week of regular physical activity since retirement. Former gymnasts who reported history of amenorrhoea ('AME', n=12: either primary or secondary amenorrhoea) were compared with former gymnasts ('NO-AME', n=12) and controls ('C', n=26) who did not report history of amenorrhoea. Bone mineral content (BMC), total bone area (ToA) and total volumetric density (ToD) were measured by pQCT at the radius and tibia (4% and 66%). Trabecular volumetric density (TrD) and bone strength index (BSI) were measured at the 4% sites. Cortical area (CoA), cortical thickness (CoTh), medullary area (MedA), cortical volumetric density (CoD), stress-strain index (SSI) and muscle and fat area were measured at the 66% sites. Spinal BMC, areal BMD and bone mineral apparent density (BMAD) were measured by DXA. Menarcheal age was delayed in AME when compared to NO-AME (16.4+/-0.5 years vs. 13.3+/-0.4 years, p<0.001). No differences were detected between AME and C for height-adjusted spinal BMC, aBMD and BMAD, TrD and BSI at the distal radius and tibia, CoA at the proximal radius, whereas these parameters were greater in NO-AME than C (p<0.05-0.005). AME had lower TrD and BSI at the distal radius, and lower spinal BMAD than NO-AME (p<0.05) but they had greater ToA at the distal radius (p<0.05). Greater spinal BMC, aBMD and BMAD as well as trabecular volumetric density and bone strength in the peripheral skeleton were found in former gymnasts without a history of menstrual dysfunction but not in those who reported either primary or secondary amenorrhoea. History of amenorrhoea may have compromised some of the skeletal benefits associated with high-impact gymnastics training.
Seuss, Hannes; Janka, Rolf; Prümmer, Marcus; Cavallaro, Alexander; Hammon, Rebecca; Theis, Ragnar; Sandmair, Martin; Amann, Kerstin; Bäuerle, Tobias; Uder, Michael; Hammon, Matthias
2017-04-01
Volumetric analysis of the kidney parenchyma provides additional information for the detection and monitoring of various renal diseases. Therefore the purposes of the study were to develop and evaluate a semi-automated segmentation tool and a modified ellipsoid formula for volumetric analysis of the kidney in non-contrast T2-weighted magnetic resonance (MR)-images. Three readers performed semi-automated segmentation of the total kidney volume (TKV) in axial, non-contrast-enhanced T2-weighted MR-images of 24 healthy volunteers (48 kidneys) twice. A semi-automated threshold-based segmentation tool was developed to segment the kidney parenchyma. Furthermore, the three readers measured renal dimensions (length, width, depth) and applied different formulas to calculate the TKV. Manual segmentation served as a reference volume. Volumes of the different methods were compared and time required was recorded. There was no significant difference between the semi-automatically and manually segmented TKV (p = 0.31). The difference in mean volumes was 0.3 ml (95% confidence interval (CI), -10.1 to 10.7 ml). Semi-automated segmentation was significantly faster than manual segmentation, with a mean difference = 188 s (220 vs. 408 s); p < 0.05. Volumes did not differ significantly comparing the results of different readers. Calculation of TKV with a modified ellipsoid formula (ellipsoid volume × 0.85) did not differ significantly from the reference volume; however, the mean error was three times higher (difference of mean volumes -0.1 ml; CI -31.1 to 30.9 ml; p = 0.95). Applying the modified ellipsoid formula was the fastest way to get an estimation of the renal volume (41 s). Semi-automated segmentation and volumetric analysis of the kidney in native T2-weighted MR data delivers accurate and reproducible results and was significantly faster than manual segmentation. Applying a modified ellipsoid formula quickly provides an accurate kidney volume.
Ng, Manwa L; Yan, Nan; Chan, Venus; Chen, Yang; Lam, Paul K Y
2018-06-28
Previous studies of the laryngectomized vocal tract using formant frequencies reported contradictory findings. Imagining studies of the vocal tract in alaryngeal speakers are limited due to the possible radiation effect as well as the cost and time associated with the studies. The present study examined the vocal tract configuration of laryngectomized individuals using acoustic reflection technology. Thirty alaryngeal and 30 laryngeal male speakers of Cantonese participated in the study. A pharyngometer was used to obtain volumetric information of the vocal tract. All speakers were instructed to imitate the production of /a/ when the length and volume information of the oral cavity, pharyngeal cavity, and the entire vocal tract were obtained. The data of alaryngeal and laryngeal speakers were compared. Pharyngometric measurements revealed no significant difference in the vocal tract dimensions between laryngeal and alaryngeal speakers. Despite the removal of the larynx and a possible alteration in the pharyngeal cavity during total laryngectomy, the vocal tract configuration (length and volume) in laryngectomized individuals was not significantly different from laryngeal speakers. It is suggested that other factors might have affected formant measures in previous studies. © 2018 S. Karger AG, Basel.
USDA-ARS?s Scientific Manuscript database
In a preliminary study to measure total water in lint cotton we demonstrated that volumetric Karl Fischer Titration of moisture transported by a carrier gas from an attached small oven is more accurate than standard oven drying in air. The objective of the present study was to assess the measuremen...
De Pauw, Ruben; Shoykhet Choikhet, Konstantin; Desmet, Gert; Broeckhoven, Ken
2016-08-12
When using compressible mobile phases such as fluidic CO2, the density, the volumetric flow rates and volumetric fractions are pressure dependent. The pressure and temperature definition of these volumetric parameters (referred to as the reference conditions) may alter between systems, manufacturers and operating conditions. A supercritical fluid chromatography system was modified to operate in two modes with different definition of the eluent delivery parameters, referred to as fixed and variable mode. For the variable mode, the volumetric parameters are defined with reference to the pump operating pressure and actual pump head temperature. These conditions may vary when, e.g. changing the column length, permeability, flow rate, etc. and are thus variable reference conditions. For the fixed mode, the reference conditions were set at 150bar and 30°C, resulting in a mass flow rate and mass fraction of modifier definition which is independent of the operation conditions. For the variable mode, the mass flow rate of carbon dioxide increases with system pump operating pressure, decreasing the fraction of modifier. Comparing the void times and retention factor shows that the deviation between the two modes is almost independent of modifier percentage, but depends on the operating pressure. Recalculating the set volumetric fraction of modifier to the mass fraction results in the same retention behaviour for both modes. This shows that retention in SFC can be best modelled using the mass fraction of modifier. The fixed mode also simplifies method scaling as it only requires matching average column pressure. Copyright © 2016 Elsevier B.V. All rights reserved.
Stoeckel, Luke E.; Chai, Xiaoqian J.; Zhang, Jiahe; Whitfield-Gabrieli, Susan; Evins, A. Eden
2015-01-01
Rationale While nicotine addiction is characterized by both structural and functional abnormalities in brain networks involved in salience and cognitive control, few studies have integrated these data to understand how these abnormalities may support addiction. Objectives (1) To evaluate grey matter density and functional connectivity of the anterior insula in cigarette smokers and never-smokers and (2) characterize how differences in these measures related to smoking behavior. Methods We compared structural MRI (grey matter density via voxel-based morphometry) and seed-based functional connectivity MRI data in 16 minimally deprived smokers and 16 matched never-smokers. Results Compared to controls, smokers had lower grey matter density in left anterior insula extending into inferior frontal and temporal cortex. Grey matter density in this region was inversely correlated with cigarettes smoked per day. Smokers exhibited negative functional connectivity (anti-correlation) between the anterior insula and regions involved in cognitive control (left lateral prefrontal cortex) and semantic processing / emotion regulation (lateral temporal cortex), whereas controls exhibited positive connectivity between these regions. Conclusions There were differences in the anterior insula, a central region in the brain’s salience network, when comparing both volumetric and functional connectivity data between cigarette smokers and never smokers. Volumetric data, but not the functional connectivity data, was also associated with an aspect of smoking behavior (daily cigarettes smoked). PMID:25990865
Yang, Pinchen; Wang, Pei-Ning; Chuang, Kai-Hsiang; Jong, Yuh-Jyh; Chao, Tzu-Cheng; Wu, Ming-Ting
2008-12-30
Brain abnormalities, as determined by structural magnetic resonance imaging (MRI), have been reported in patients with attention-deficit hyperactivity disorder (ADHD); however, female subjects have been underrepresented in previous reports. In this study, we used optimized voxel-based morphometry to compare the total and regional gray matter volumes between groups of 7- to 17-year-old ADHD and healthy children (total 114 subjects). Fifty-seven children with ADHD (n=57, 35 males and 22 females) and healthy children (n=57) received MRI scans. Segmented brain MRI images were normalized into standardized stereotactic space, modulated to allow volumetric analysis, smoothed and compared at the voxel level with statistical parametric mapping. Global volumetric comparisons between groups revealed that the total brain volumes of ADHD children were smaller than those of the control children. As for the regional brain analysis, the brain volumes of ADHD children were found to be bilaterally smaller in the following regions as compared with normal control values: the caudate nucleus and the cerebellum. There were two clusters of regional decrease in the female brain, left posterior cingulum and right precuneus, as compared with the male brain. Brain regions showing the interaction effect of diagnosis and gender were negligible. These results were consistent with the hypothesized dysfunctional systems in ADHD, and they also suggested that neuroanatomical abnormalities in ADHD were not influenced by gender.
Nesteruk, Tomasz; Nesteruk, Marta; Styczyńska, Maria; Barcikowska-Kotowicz, Maria; Walecki, Jerzy
2016-01-01
The aim of the study was to evaluate the diagnostic value of two measurement techniques in patients with cognitive impairment - automated volumetry of the hippocampus, entorhinal cortex, parahippocampal gyrus, posterior cingulate gyrus, cortex of the temporal lobes and corpus callosum, and fractional anisotropy (FA) index measurement of the corpus callosum using diffusion tensor imaging. A total number of 96 patients underwent magnetic resonance imaging study of the brain - 33 healthy controls (HC), 33 patients with diagnosed mild cognitive impairment (MCI) and 30 patients with Alzheimer's disease (AD) in early stage. The severity of the dementia was evaluated with neuropsychological test battery. The volumetric measurements were performed automatically using FreeSurfer imaging software. The measurements of FA index were performed manually using ROI (region of interest) tool. The volumetric measurement of the temporal lobe cortex had the highest correct classification rate (68.7%), whereas the lowest was achieved with FA index measurement of the corpus callosum (51%). The highest sensitivity and specificity in discriminating between the patients with MCI vs. early AD was achieved with the volumetric measurement of the corpus callosum - the values were 73% and 71%, respectively, and the correct classification rate was 72%. The highest sensitivity and specificity in discriminating between HC and the patients with early AD was achieved with the volumetric measurement of the entorhinal cortex - the values were 94% and 100%, respectively, and the correct classification rate was 97%. The highest sensitivity and specificity in discriminating between HC and the patients with MCI was achieved with the volumetric measurement of the temporal lobe cortex - the values were 90% and 93%, respectively, and the correct classification rate was 92%. The diagnostic value varied depending on the measurement technique. The volumetric measurement of the atrophy proved to be the best imaging biomarker, which allowed the distinction between the groups of patients. The volumetric assessment of the corpus callosum proved to be a useful tool in discriminating between the patients with MCI vs. early AD.
SU-F-J-54: Towards Real-Time Volumetric Imaging Using the Treatment Beam and KV Beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, M; Rozario, T; Liu, A
Purpose: Existing real-time imaging uses dual (orthogonal) kV beam fluoroscopies and may result in significant amount of extra radiation to patients, especially for prolonged treatment cases. In addition, kV projections only provide 2D information, which is insufficient for in vivo dose reconstruction. We propose real-time volumetric imaging using prior knowledge of pre-treatment 4D images and real-time 2D transit data of treatment beam and kV beam. Methods: The pre-treatment multi-snapshot volumetric images are used to simulate 2D projections of both the treatment beam and kV beam, respectively, for each treatment field defined by the control point. During radiation delivery, the transitmore » signals acquired by the electronic portal image device (EPID) are processed for every projection and compared with pre-calculation by cross-correlation for phase matching and thus 3D snapshot identification or real-time volumetric imaging. The data processing involves taking logarithmic ratios of EPID signals with respect to the air scan to reduce modeling uncertainties in head scatter fluence and EPID response. Simulated 2D projections are also used to pre-calculate confidence levels in phase matching. Treatment beam projections that have a low confidence level either in pre-calculation or real-time acquisition will trigger kV beams so that complementary information can be exploited. In case both the treatment beam and kV beam return low confidence in phase matching, a predicted phase based on linear regression will be generated. Results: Simulation studies indicated treatment beams provide sufficient confidence in phase matching for most cases. At times of low confidence from treatment beams, kV imaging provides sufficient confidence in phase matching due to its complementary configuration. Conclusion: The proposed real-time volumetric imaging utilizes the treatment beam and triggers kV beams for complementary information when the treatment beam along does not provide sufficient confidence for phase matching. This strategy minimizes the use of extra radiation to patients. This project is partially supported by a Varian MRA grant.« less
Lin, Jang-Chun; Tsai, Jo-Ting; Chang, Chih-Chieh; Jen, Yee-Min; Li, Ming-Hsien; Liu, Wei-Hsiu
2015-05-01
The aim of this study was to compare treatment plans of volumetric modulated arc therapy (VMAT) with intensity-modulated radiotherapy (IMRT) for all esophageal cancer (EC) tumor locations.This retrospective study from July 2009 to June 2014 included 20 patients with EC who received definitive concurrent chemoradiotherapy with radiation doses >50.4 Gy. Version 9.2 of Pinnacle with SmartArc was used for treatment planning. Dosimetric quality was evaluated based on doses to several organs at risk, including the spinal cord, heart, and lung, over the same coverage of gross tumor volume.In upper thoracic EC, the IMRT treatment plan had a lower lung mean dose (P = 0.0126) and lung V5 (P = 0.0037) compared with VMAT; both techniques had similar coverage of the planning target volumes (PTVs) (P = 0.3575). In middle thoracic EC, a lower lung mean dose (P = 0.0010) and V5 (P = 0.0145), but higher lung V20 (P = 0.0034), spinal cord Dmax (P = 0.0262), and heart mean dose (P = 0.0054), were observed for IMRT compared with VMAT; IMRT provided better PTV coverage. Patients with lower thoracic ECs had a lower lung mean dose (P = 0.0469) and V5 (P = 0.0039), but higher spinal cord Dmax (P = 0.0301) and heart mean dose (P = 0.0020), with IMRT compared with VMAT. PTV coverage was similar (P = 0.0858) for the 2 techniques.IMRT provided a lower mean dose and lung V5 in upper thoracic EC compared with VMAT, but exhibited different advantages and disadvantages in patients with middle or lower thoracic ECs. Thus, choosing different techniques for different EC locations is warranted.
Preoperative bevacizumab and volumetric recovery after resection of colorectal liver metastases.
Margonis, Georgios Antonios; Buettner, Stefan; Andreatos, Nikolaos; Sasaki, Kazunari; Pour, Manijeh Zargham; Deshwar, Ammar; Wang, Jane; Ghasebeh, Mounes Aliyari; Damaskos, Christos; Rezaee, Neda; Pawlik, Timothy M; Wolfgang, Christopher L; Kamel, Ihab R; Weiss, Matthew J
2017-12-01
While preoperative treatment is frequently administered to CRLM patients, the impact of chemotherapy, with or without bevacizumab, on liver regeneration remains controversial. The early and late regeneration indexes were defined as the relative increase in liver volume (RLV) within 2 and 9 months from surgery. Regeneration rates of the preoperative treatment groups were compared. Preoperative chemotherapy details and volumetric data were available for 185 patients; 78 (42.2%) received preoperative chemotherapy with bevacizumab (Bev+), 46 (24.8%) received chemotherapy only (Bev-), and 61 (33%) received no chemotherapy. Patients in the Bev+ and Bev- groups received similar chemotherapy cycles (4 [3-6] vs 4 [4-6]; P = 0.499). Despite the comparable clinicopathological characteristics and Resected Volume/Total Liver Volume (TLV) at surgery (P = 0.944) of both groups, Bev+ group had higher early and late regeneration (17.2% vs 4.3%; P = 0.035 and 14.0% vs 9.4%; P = 0.091, respectively). Of note, early and late regeneration rates (3.7% and 10.9% vs 6.6% and 5.5%, respectively) were comparable between the no chemotherapy and Bev- groups (all P > 0.05). In multivariable analysis -adjusted for gender, age, portal vein embolization, preoperative chemotherapy, resected liver volume, tumor number, postoperative chemotherapy, fibrosis, steatosis- bevacizumab independently predicted early liver regeneration (P = 0.019). Our findings suggest that preoperative bevacizumab administered along with chemotherapy was associated with enhanced volumetric restoration. Interestingly, this effect was more pronounced among patients who received oxaliplatin-based regimens and bevacizumab compared to those treated with irinotecan-based regimens and bevacizumab. © 2017 Wiley Periodicals, Inc.
Powell, N B; Riley, R W; Troell, R J; Blumen, M B; Guilleminault, C
1997-05-01
To investigate, in an animal model, the feasibility of radiofrequency (RF) volumetric tongue reduction for the future purpose of determining its clinical applications in obstructive sleep apnea syndrome (OSAS). The study was performed in three stages, one in vitro bovine stage and two in vivo porcine stages. The last stage was a prospective investigation with histologic and volumetric analyses to establish outcomes. Laboratory and operating room of veterinary research center. A homogeneous population of porcine animal models, including seven in stage 2 and 12 in stage 3. RF energy was delivered by a custom-fabricated needle electrode and RF generator to the tongue tissue of both the in vitro and in vivo models. Microultransonic crystals were used to measure three-dimensional changes (volumetric reduction). Lesion size correlated well with increasing RF energy delivery (Sperman correlation coefficient of 0.986; p = 0.0003). Histologic assessments done serially over time (1 h through 3 weeks) showed a well-circumscribed lesion with a normal healing progression and no peripheral damage to nerves. Volumetric analysis documented a very mild initial edematous response that promptly tapered at 24 h. At 10 days after RF, a 26.3% volume reduction was documented at the treatment site (circumscribed by the microultrasonic crystals). RF, in a porcine animal model, can safely reduce tongue volume in a precise and controlled manner. Further studies will validate the use of RF in the treatment of OSAS.
Dolera, Mario; Malfassi, Luca; Marcarini, Silvia; Mazza, Giovanni; Carrara, Nancy; Pavesi, Simone; Sala, Massimo; Finesso, Sara; Urso, Gaetano
2018-06-08
The aim of this prospective pilot study was to evaluate the feasibility and effectiveness of curative intent high dose hypofractionated frameless volumetric modulated arc radiotherapy for treatment of canine trigeminal peripheral nerve sheath tumors. Client-owned dogs with a presumptive imaging-based diagnosis of trigeminal peripheral nerve sheath tumor were recruited for the study during the period of February 2010 to December 2013. Seven dogs were enrolled and treated with high dose hypofractionated volumetric modulated arc radiotherapy delivered by a 6 MV linear accelerator equipped with a micro-multileaf beam collimator. The plans were computed using a Monte Carlo algorithm with a prescription dose of 37 Gy delivered in five fractions on alternate days. Overall survival was estimated using a Kaplan-Meier curve analysis. Magnetic resonance imaging (MRI) follow-up examinations revealed complete response in one dog, partial response in four dogs, and stable disease in two dogs. Median overall survival was 952 days with a 95% confidence interval of 543-1361 days. Volumetric modulated arc radiotherapy was demonstrated to be feasible and effective for trigeminal peripheral nerve sheath tumor treatment in this sample of dogs. The technique required few sedations and spared organs at risk. Even though larger studies are required, these preliminary results supported the use of high dose hypofractionated volumetric modulated arc radiotherapy as an alternative to other treatment modalities. © 2018 American College of Veterinary Radiology.
VASP-E: Specificity Annotation with a Volumetric Analysis of Electrostatic Isopotentials
Chen, Brian Y.
2014-01-01
Algorithms for comparing protein structure are frequently used for function annotation. By searching for subtle similarities among very different proteins, these algorithms can identify remote homologs with similar biological functions. In contrast, few comparison algorithms focus on specificity annotation, where the identification of subtle differences among very similar proteins can assist in finding small structural variations that create differences in binding specificity. Few specificity annotation methods consider electrostatic fields, which play a critical role in molecular recognition. To fill this gap, this paper describes VASP-E (Volumetric Analysis of Surface Properties with Electrostatics), a novel volumetric comparison tool based on the electrostatic comparison of protein-ligand and protein-protein binding sites. VASP-E exploits the central observation that three dimensional solids can be used to fully represent and compare both electrostatic isopotentials and molecular surfaces. With this integrated representation, VASP-E is able to dissect the electrostatic environments of protein-ligand and protein-protein binding interfaces, identifying individual amino acids that have an electrostatic influence on binding specificity. VASP-E was used to examine a nonredundant subset of the serine and cysteine proteases as well as the barnase-barstar and Rap1a-raf complexes. Based on amino acids established by various experimental studies to have an electrostatic influence on binding specificity, VASP-E identified electrostatically influential amino acids with 100% precision and 83.3% recall. We also show that VASP-E can accurately classify closely related ligand binding cavities into groups with different binding preferences. These results suggest that VASP-E should prove a useful tool for the characterization of specific binding and the engineering of binding preferences in proteins. PMID:25166865
NASA Astrophysics Data System (ADS)
Gastounioti, Aimilia; Hsieh, Meng-Kang; Pantalone, Lauren; Conant, Emily F.; Kontos, Despina
2018-03-01
Mammographic density is an established risk factor for breast cancer. However, area-based density (ABD) measured in 2D mammograms consider the projection, rather than the actual volume of dense tissue which may be an important limitation. With the increasing utilization of digital breast tomosynthesis (DBT) in screening, there's an opportunity to routinely estimate volumetric breast density (VBD). In this study, we investigate associations between DBT-VBD and ABD extracted from standard-dose mammography (DM) and synthetic 2D digital mammography (sDM) increasingly replacing DM. We retrospectively analyzed bilateral imaging data from a random sample of 1000 women, acquired over a transitional period at our institution when all women had DBT, sDM and DM acquired as part of their routine breast screening. For each exam, ABD was measured in DM and sDM images with the publicly available "LIBRA" software, while DBT-VBD was measured using a previously validated, fully-automated computer algorithm. Spearman correlation (r) was used to compare VBD to ABD measurements. For each density measure, we also estimated the within woman intraclass correlation (ICC) and finally, to compare to clinical assessments, we performed analysis of variance (ANOVA) to evaluate the variation to the assigned clinical BI-RADS breast density category for each woman. DBT-VBD was moderately correlated to ABD from DM (r=0.70) and sDM (r=0.66). All density measures had strong bilateral symmetry (ICC = [0.85, 0.95]), but were significantly different across BI-RADS density categories (ANOVA, p<0.001). Our results contribute to further elaborating the clinical implications of breast density measures estimated with DBT which may better capture the volumetric amount of dense tissue within the breast than area-based measures and visual assessment.
Soler, Zachary M; Pallanch, John F; Sansoni, Eugene Ritter; Jones, Cameron S; Lawrence, Lauren A; Schlosser, Rodney J; Mace, Jess C; Smith, Timothy L
2015-09-01
Commonly used computed tomography (CT) staging systems for chronic rhinosinusitis (CRS) focus on the sinuses and do not quantify disease in the olfactory cleft. The goal of the current study was to determine whether precise measurements of olfactory cleft opacification better correlate with olfaction in patients with CRS. Olfaction was assessed using the 40-item Smell Identification Test (SIT-40) before and after sinus surgery in adult patients. Olfactory cleft opacification was quantified precisely using three-dimensional (3D), computerized volumetric analysis, as well as via semiquantitative Likert scale estimations at predetermined anatomic sites. Sinus opacification was also quantified using the Lund-Mackay staging system. The overall cohort (n = 199) included 89 (44.7%) patients with CRS with nasal polyposis (CRSwNP) and 110 (55.3%) with CRS without nasal polyposis (CRSsNP). The olfactory cleft opacified volume correlated with objective olfaction as determined by the SIT-40 (Spearman's rank correlation coefficient [Rs ] = -0.461; p < 0.001). The correlation was significantly stronger in the CRSwNP subgroup (Rs = -0.573; p < 0.001), whereas no appreciable correlation was found in the CRSsNP group (Rs = -0.141; p = 0.141). Correlations between sinus-specific Lund-Mackay CT scoring and SIT-40 scores were weaker in the CRSwNP (Rs = -0.377; p < 0.001) subgroup but stronger in the CRSsNP (Rs = -0.225; p = 0.018) group when compared to olfactory cleft correlations. Greater intraclass correlations (ICCs) were found between quantitative volumetric measures of olfactory cleft opacification (ICC = 0.844; p < 0.001) as compared with semiquantitative Likert grading (ICC = 0.627; p < 0.001). Quantitative measures of olfactory cleft opacification correlate with objective olfaction, with the strongest correlations seen in patients with nasal polyps. © 2015 ARS-AAOA, LLC.
a Framework for Voxel-Based Global Scale Modeling of Urban Environments
NASA Astrophysics Data System (ADS)
Gehrung, Joachim; Hebel, Marcus; Arens, Michael; Stilla, Uwe
2016-10-01
The generation of 3D city models is a very active field of research. Modeling environments as point clouds may be fast, but has disadvantages. These are easily solvable by using volumetric representations, especially when considering selective data acquisition, change detection and fast changing environments. Therefore, this paper proposes a framework for the volumetric modeling and visualization of large scale urban environments. Beside an architecture and the right mix of algorithms for the task, two compression strategies for volumetric models as well as a data quality based approach for the import of range measurements are proposed. The capabilities of the framework are shown on a mobile laser scanning dataset of the Technical University of Munich. Furthermore the loss of the compression techniques is evaluated and their memory consumption is compared to that of raw point clouds. The presented results show that generation, storage and real-time rendering of even large urban models are feasible, even with off-the-shelf hardware.
Shah, Rita; Blustein, Leona; Kuffner, Ed; Davis, Lisa
2014-03-01
To identify and compare volumetric measures used by healthcare providers in communicating dosing instructions for pediatric liquid prescriptions to parents/caregivers. Dosing instructions were retrospectively reviewed for the 10 most frequently prescribed liquid medications dispensed from 4 community pharmacies for patients aged ≤ 12 years during a 3-month period. Volumetric measures on original prescriptions (ie, milliliters, teaspoons) were compared with those utilized by the pharmacist on the pharmacy label dispensed to the parent/caregiver. Of 649 prescriptions and corresponding pharmacy labels evaluated, 68% of prescriptions and 62% of pharmacy labels communicated dosing in milliliters, 24% of prescriptions and 29% of pharmacy labels communicated dosing in teaspoonfuls, 7% of prescriptions and 0% of pharmacy labels communicated dosing in other measures (ie, milligrams, cubic centimeters, "dose"), and 25% of dispensed pharmacy labels did not reflect units as written in the prescription. Volumetric measures utilized by healthcare professionals in dosing instructions for prescription pediatric oral liquid medications are not consistent. Healthcare professionals and parents/caregivers should be educated on safe dosing practices for liquid pediatric medications. Generalizability to the larger pediatric population may vary depending on pharmacy chain, location, and medications evaluated. Copyright © 2014 Mosby, Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Dalvi, Rupin; Hacihaliloglu, Ilker; Abugharbieh, Rafeef
2010-03-01
Stitching of volumes obtained from three dimensional (3D) ultrasound (US) scanners improves visualization of anatomy in many clinical applications. Fast but accurate volume registration remains the key challenge in this area.We propose a volume stitching method based on efficient registration of 3D US volumes obtained from a tracked US probe. Since the volumes, after adjusting for probe motion, are coarsely registered, we obtain salient correspondence points in the central slices of these volumes. This is done by first removing artifacts in the US slices using intensity invariant local phase image processing and then applying the Harris Corner detection algorithm. Fast sub-volume registration on a small neighborhood around the points then gives fast, accurate 3D registration parameters. The method has been tested on 3D US scans of phantom and real human radius and pelvis bones and a phantom human fetus. The method has also been compared to volumetric registration, as well as feature based registration using 3D-SIFT. Quantitative results show average post-registration error of 0.33mm which is comparable to volumetric registration accuracy (0.31mm) and much better than 3D-SIFT based registration which failed to register the volumes. The proposed method was also much faster than volumetric registration (~4.5 seconds versus 83 seconds).
Using Pressure and Volumetric Approaches to Estimate CO2 Storage Capacity in Deep Saline Aquifers
Thibeau, Sylvain; Bachu, Stefan; Birkholzer, Jens; ...
2014-12-31
Various approaches are used to evaluate the capacity of saline aquifers to store CO 2, resulting in a wide range of capacity estimates for a given aquifer. The two approaches most used are the volumetric “open aquifer” and “closed aquifer” approaches. We present four full-scale aquifer cases, where CO 2 storage capacity is evaluated both volumetrically (with “open” and/or “closed” approaches) and through flow modeling. These examples show that the “open aquifer” CO 2 storage capacity estimation can strongly exceed the cumulative CO 2 injection from the flow model, whereas the “closed aquifer” estimates are a closer approximation to themore » flow-model derived capacity. An analogy to oil recovery mechanisms is presented, where the primary oil recovery mechanism is compared to CO 2 aquifer storage without producing formation water; and the secondary oil recovery mechanism (water flooding) is compared to CO 2 aquifer storage performed simultaneously with extraction of water for pressure maintenance. This analogy supports the finding that the “closed aquifer” approach produces a better estimate of CO 2 storage without water extraction, and highlights the need for any CO 2 storage estimate to specify whether it is intended to represent CO 2 storage capacity with or without water extraction.« less
Theoretical and Experimental Estimations of Volumetric Inductive Phase Shift in Breast Cancer Tissue
NASA Astrophysics Data System (ADS)
González, C. A.; Lozano, L. M.; Uscanga, M. C.; Silva, J. G.; Polo, S. M.
2013-04-01
Impedance measurements based on magnetic induction for breast cancer detection has been proposed in some studies. This study evaluates theoretical and experimentally the use of a non-invasive technique based on magnetic induction for detection of patho-physiological conditions in breast cancer tissue associated to its volumetric electrical conductivity changes through inductive phase shift measurements. An induction coils-breast 3D pixel model was designed and tested. The model involves two circular coils coaxially centered and a human breast volume centrally placed with respect to the coils. A time-harmonic numerical simulation study addressed the effects of frequency-dependent electrical properties of tumoral tissue on the volumetric inductive phase shift of the breast model measured with the circular coils as inductor and sensor elements. Experimentally; five female volunteer patients with infiltrating ductal carcinoma previously diagnosed by the radiology and oncology departments of the Specialty Clinic for Women of the Mexican Army were measured by an experimental inductive spectrometer and the use of an ergonomic inductor-sensor coil designed to estimate the volumetric inductive phase shift in human breast tissue. Theoretical and experimental inductive phase shift estimations were developed at four frequencies: 0.01, 0.1, 1 and 10 MHz. The theoretical estimations were qualitatively in agreement with the experimental findings. Important increments in volumetric inductive phase shift measurements were evident at 0.01MHz in theoretical and experimental observations. The results suggest that the tested technique has the potential to detect pathological conditions in breast tissue associated to cancer by non-invasive monitoring. Further complementary studies are warranted to confirm the observations.
NASA Astrophysics Data System (ADS)
Liu, Zhiyuan; Wang, Shijie; Zhao, Haiyang; Wang, Lei; Li, Wei; Geng, Yudi; Tao, Shan; Zhang, Guangqing; Chen, Mian
2018-02-01
Natural fractures have a significant influence on the propagation geometry of hydraulic fractures in fractured reservoirs. True triaxial volumetric fracturing experiments, in which random natural fractures are created by placing cement blocks of different dimensions in a cuboid mold and filling the mold with additional cement to create the final test specimen, were used to study the factors that influence the hydraulic fracture propagation geometry. These factors include the presence of natural fractures around the wellbore, the dimension and volumetric density of random natural fractures and the horizontal differential stress. The results show that volumetric fractures preferentially formed when natural fractures occurred around the wellbore, the natural fractures are medium to long and have a volumetric density of 6-9%, and the stress difference is less than 11 MPa. The volumetric fracture geometries are mainly major multi-branch fractures with fracture networks or major multi-branch fractures (2-4 fractures). The angles between the major fractures and the maximum horizontal in situ stress are 30°-45°, and fracture networks are located at the intersections of major multi-branch fractures. Short natural fractures rarely led to the formation of fracture networks. Thus, the interaction between hydraulic fractures and short natural fractures has little engineering significance. The conclusions are important for field applications and for gaining a deeper understanding of the formation process of volumetric fractures.
2017-01-01
Background: The skin tightening effects induced by non-insulated microneedle radiofrequency have proved long-lasting. Our previous three-dimensional volumetric assessment showed significant facial tightening for up to six months. However, nasal and peri-oral tightening effects lasted longer. The objective of this study was to investigate the distribution of the long-term volumetric reduction in facial area induced by a single fractional non-insulated microneedle radiofrequency treatment. Methods: Fifteen Asian patients underwent full facial skin tightening using a sharply tapered non-insulated microneedle radiofrequency applicator with a novel fractionated pulse mode. Three-dimensional volumetric assessments were performed at six and 12 months post-treatment. Patients rated their satisfaction using a 5-point scale at each follow up. Results: Objective assessments with superimposed three-dimensional color images showed significant volumetric reduction in the nasal and peri-oral areas at 12 months post-treatment in all patients. Median volumetric reductions at six and 12 months post-treatment were 13.1 and 12.3ml, respectively. All of the patients were satisfied with their results 12 months post-treatment. Side effects were not observed. Conclusions: This single fractional NIMNRF treatment provided long-lasting nasal and peri-oral tightening as shown via 3D volumetric assessment. Moreover, NIMNRF produced minimal complications, downtime, and few side effects. This approach provides safe and effective treatment of skin tightening. PMID:28367261
Enhancement of breast periphery region in digital mammography
NASA Astrophysics Data System (ADS)
Menegatti Pavan, Ana Luiza; Vacavant, Antoine; Petean Trindade, Andre; Quini, Caio Cesar; Rodrigues de Pina, Diana
2018-03-01
Volumetric breast density has been shown to be one of the strongest risk factor for breast cancer diagnosis. This metric can be estimated using digital mammograms. During mammography acquisition, breast is compressed and part of it loses contact with the paddle, resulting in an uncompressed region in periphery with thickness variation. Therefore, reliable density estimation in the breast periphery region is a problem, which affects the accuracy of volumetric breast density measurement. The aim of this study was to enhance breast periphery to solve the problem of thickness variation. Herein, we present an automatic algorithm to correct breast periphery thickness without changing pixel value from internal breast region. The correction pixel values from periphery was based on mean values over iso-distance lines from the breast skin-line using only adipose tissue information. The algorithm detects automatically the periphery region where thickness should be corrected. A correction factor was applied in breast periphery image to enhance the region. We also compare our contribution with two other algorithms from state-of-the-art, and we show its accuracy by means of different quality measures. Experienced radiologists subjectively evaluated resulting images from the tree methods in relation to original mammogram. The mean pixel value, skewness and kurtosis from histogram of the three methods were used as comparison metric. As a result, the methodology presented herein showed to be a good approach to be performed before calculating volumetric breast density.
Ungerman, Andrew J; Heindel, Theodore J
2007-01-01
This study compares the power demand and gas-liquid volumetric mass transfer coefficient, kLa, in a stirred tank reactor (STR) (T = 0.211 m) using different impeller designs and schemes in a carbon monoxide-water system, which is applicable to synthesis gas (syngas) fermentation. Eleven different impeller schemes were tested over a range of operating conditions typically associated with the "after large cavity" region (ALC) of a Rushton-type turbine (D/T = 0.35). It is found that the dual Rushton-type impeller scheme exhibits the highest volumetric mass transfer rates for all operating conditions; however, it also displays the lowest mass transfer performance (defined as the volumetric mass transfer coefficient per unit power input) for all conditions due to its high power consumption. Dual impeller schemes with an axial flow impeller as the top impeller show improved mass transfer rates without dramatic increases in power draw. At high gas flow rates, dual impeller schemes with a lower concave impeller have kLa values similar to those of the Rushton-type dual impeller schemes but show improved mass transfer performance. It is believed that the mass transfer performance can be further enhanced for the bottom concave impeller schemes by operating at conditions beyond the ALC region defined for Rushton-type impellers because the concave impeller can handle higher gas flow rates prior to flooding.
Recent advances in intensity modulated radiotherapy and proton therapy for esophageal cancer.
Xi, Mian; Lin, Steven H
2017-07-01
Radiotherapy is an important component of the standard of care for esophageal cancer. In the past decades, significant improvements in the planning and delivery of radiation techniques have led to better dose conformity to the target volume and improved normal tissue sparing. Areas covered: This review focuses on the advances in radiotherapy techniques and summarizes the availably dosimetric and clinical outcomes of intensity-modulated radiation therapy (IMRT), volumetric modulated arc therapy, proton therapy, and four-dimensional radiotherapy for esophageal cancer, and discusses the challenges and future development of proton therapy. Expert commentary: Although three-dimensional conformal radiotherapy is the standard radiotherapy technique in esophageal cancer, the retrospectively comparative studies strongly suggest that the dosimetric advantage of IMRT over three-dimensional conformal radiotherapy can translate into improved clinical outcomes, despite the lack of prospective randomized evidence. As a novel form of conventional IMRT technique, volumetric modulated arc therapy can produce equivalent or superior dosimetric quality with significantly higher treatment efficiency in esophageal cancer. Compared with photon therapy, proton therapy has the potential to achieve further clinical improvement due to their physical properties; however, prospective clinical data, long-term results, and cost-effectiveness are needed.
Effects of thermal treatment on energy density and hardness of torrefied wood pellets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Jianghong; Wang, Jingsong; Bi, Xiaotao T.
Here, three types of wood pellets samples, including two types of commercial pellets and one type of lab-made control pellets were torrefied in a fixed bed unit to study the effect of thermal pretreatment on the quality of wood pellets. The quality of wood pellets was mainly characterized by the pellet density, bulk density, higher heating value, Meyer hardness, saturated moisture uptake, volumetric energy density, and energy yield. Results showed that torrefaction significantly decreased the pellet density, hardness, volumetric energy density, and energy yield. The higher heating value increased and the saturated moisture content decreased after torrefaction. In view ofmore » the lower density, lower hardness, lower volumetric energy density, and energy yield of torrefied pellets, it is recommended that biomass should be torrefied and then compressed to make strong pellets of high hydrophobicity and volumetric energy density.« less
Effects of thermal treatment on energy density and hardness of torrefied wood pellets
Peng, Jianghong; Wang, Jingsong; Bi, Xiaotao T.; ...
2014-09-27
Here, three types of wood pellets samples, including two types of commercial pellets and one type of lab-made control pellets were torrefied in a fixed bed unit to study the effect of thermal pretreatment on the quality of wood pellets. The quality of wood pellets was mainly characterized by the pellet density, bulk density, higher heating value, Meyer hardness, saturated moisture uptake, volumetric energy density, and energy yield. Results showed that torrefaction significantly decreased the pellet density, hardness, volumetric energy density, and energy yield. The higher heating value increased and the saturated moisture content decreased after torrefaction. In view ofmore » the lower density, lower hardness, lower volumetric energy density, and energy yield of torrefied pellets, it is recommended that biomass should be torrefied and then compressed to make strong pellets of high hydrophobicity and volumetric energy density.« less
Baldaçara, Leonardo; Borgio, João Guilherme Fiorani; Araújo, Célia; Nery-Fernandes, Fabiana; Lacerda, Acioly Luiz Taveres; Moraes, Walter André Dos Santos; Montaño, Maria Beatriz Marcondes Macedo; Rocha, Marlos; Quarantini, Lucas C; Schoedl, Aline; Pupo, Mariana; Mello, Marcelo F; Andreoli, Sergio B; Miranda-Scippa, Angela; Ramos, Luiz Roberto; Mari, Jair J; Bressan, Rodrigo Affonseca; Jackowski, Andrea Parolin
2012-01-01
New evidence suggests that the cerebellum has structural and functional abnormalities in psychiatric disorders. In this research, the goal was to measure the volume of the cerebellum and its subregions in individuals with psychiatric disorders and to relate these findings to their symptoms. Patients with different degrees of cognitive impairment (Epidemiology of the Elderly - UNIFESP) and patients with post-traumatic stress disorder (PTSD) from population studies were analyzed. Also, patients with bipolar disorder from an outpatient clinic (Center for the Study of Mood and Anxiety Disorders, Universidade Federal da Bahia) were recruited for this study. All subjects underwent a 1.5T structural magnetic resonance scan. Volumetric measures and symptom measurements, by psychometric scales, were performed and compared between patients and controls. The cerebellum volume was reduced in patients with cognitive impairment without dementia and with dementia, in patients with PTSD, and in patients with bipolar disorder compared to controls. In dementia and PTSD, the left cerebellar hemisphere and vermis volume were reduced. In bipolar disorder, volumes of both hemispheres and the vermis were reduced. In the first two studies, these cerebellar volumetric reductions correlated with symptoms of the disease. The exact nature of cerebellar involvement in mental processes is still not fully understood. However, abnormalities in cerebellar structure and its functions have been reported in some of these diseases. Future studies with larger samples are needed to clarify these findings and investigate whether they are important for treatment and prognosis.
Granados Sánchez, A M; Orejuela Zapata, J F
2018-05-25
The pathological classification of hippocampal sclerosis is based on the loss of neurons in the substructures of the hippocampus. This study aimed to evaluate these substructures in patients with hippocampal sclerosis by magnetic resonance imaging and to compare the usefulness of this morphological analysis compared to that of volumetric analysis of the entire hippocampus. We included 25 controls and 25 patients with hippocampal sclerosis whose diagnosis was extracted from the institutional epilepsy board. We used FreeSurfer to process the studies and obtain the volumetric data. We evaluated overall volume and volume by substructure: fimbria, subiculum, presubiculum, hippocampal sulcus, CA1, CA2-CA3, CA4, and dentate gyrus (DG). We considered p < 0.05 statistically significant. We observed statistically significant decreases in the volume of the hippocampus ipsilateral to the epileptogenic focus in 19 (76.0%) of the 25 cases. With the exception of the hippocampal sulcus, we observed a decrease in all ipsilateral hippocampal substructures in patients with right hippocampal sclerosis (CA1, p=0.0223; CA2-CA3, p=0.0066; CA4-GD, p=0.0066; fimbria, p=0.0046; presubiculum, p=0.0087; subiculum, p=0.0017) and in those with left hippocampal sclerosis (CA1, p<0.0001; CA2-CA3, p<0. 0001; CA4-GD, p<0. 0001; fimbria, p=0.0183; presubiculum, p<0. 0001; subiculum, p<0. 0001). In four patients with left hippocampal sclerosis, none of the substructures had statistically significant alterations, although a trend toward atrophy was observed, mainly in CA2-CA3 and CA4-GD. The findings suggest that it can be useful to assess the substructures of the hippocampus to improve the performance of diagnostic imaging in patients with hippocampal sclerosis. Copyright © 2018 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.
Wengert, Georg Johannes; Helbich, Thomas H; Vogl, Wolf-Dieter; Baltzer, Pascal; Langs, Georg; Weber, Michael; Bogner, Wolfgang; Gruber, Stephan; Trattnig, Siegfried; Pinker, Katja
2015-02-01
The purposes of this study were to introduce and assess an automated user-independent quantitative volumetric (AUQV) breast density (BD) measurement system on the basis of magnetic resonance imaging (MRI) using the Dixon technique as well as to compare it with qualitative and quantitative mammographic (MG) BD measurements. Forty-three women with normal mammogram results (Breast Imaging Reporting and Data System 1) were included in this institutional review board-approved prospective study. All participants were subjected to BD assessment with MRI using the following sequence with the Dixon technique (echo time/echo time, 6 milliseconds/2.45 milliseconds/2.67 milliseconds; 1-mm isotropic; 3 minutes 38 seconds). To test the reproducibility, a second MRI after patient repositioning was performed. The AUQV magnetic resonance (MR) BD measurement system automatically calculated percentage (%) BD. The qualitative BD assessment was performed using the American College of Radiology Breast Imaging Reporting and Data System BD categories. Quantitative BD was estimated semiautomatically using the thresholding technique Cumulus4. Appropriate statistical tests were used to assess the agreement between the AUQV MR measurements and to compare them with qualitative and quantitative MG BD estimations. The AUQV MR BD measurements were successfully performed in all 43 women. There was a nearly perfect agreement of AUQV MR BD measurements between the 2 MR examinations for % BD (P < 0.001; intraclass correlation coefficient, 0.998) with no significant differences (P = 0.384). The AUQV MR BD measurements were significantly lower than quantitative and qualitative MG BD assessment (P < 0.001). The AUQV MR BD measurement system allows a fully automated, user-independent, robust, reproducible, as well as radiation- and compression-free volumetric quantitative BD assessment through different levels of BD. The AUQV MR BD measurements were significantly lower than the currently used qualitative and quantitative MG-based approaches, implying that the current assessment might overestimate breast density with MG.
Tanpitukpongse, Teerath P.; Mazurowski, Maciej A.; Ikhena, John; Petrella, Jeffrey R.
2016-01-01
Background and Purpose To assess prognostic efficacy of individual versus combined regional volumetrics in two commercially-available brain volumetric software packages for predicting conversion of patients with mild cognitive impairment to Alzheimer's disease. Materials and Methods Data was obtained through the Alzheimer's Disease Neuroimaging Initiative. 192 subjects (mean age 74.8 years, 39% female) diagnosed with mild cognitive impairment at baseline were studied. All had T1WI MRI sequences at baseline and 3-year clinical follow-up. Analysis was performed with NeuroQuant® and Neuroreader™. Receiver operating characteristic curves assessing the prognostic efficacy of each software package were generated using a univariable approach employing individual regional brain volumes, as well as two multivariable approaches (multiple regression and random forest), combining multiple volumes. Results On univariable analysis of 11 NeuroQuant® and 11 Neuroreader™ regional volumes, hippocampal volume had the highest area under the curve for both software packages (0.69 NeuroQuant®, 0.68 Neuroreader™), and was not significantly different (p > 0.05) between packages. Multivariable analysis did not increase the area under the curve for either package (0.63 logistic regression, 0.60 random forest NeuroQuant®; 0.65 logistic regression, 0.62 random forest Neuroreader™). Conclusion Of the multiple regional volume measures available in FDA-cleared brain volumetric software packages, hippocampal volume remains the best single predictor of conversion of mild cognitive impairment to Alzheimer's disease at 3-year follow-up. Combining volumetrics did not add additional prognostic efficacy. Therefore, future prognostic studies in MCI, combining such tools with demographic and other biomarker measures, are justified in using hippocampal volume as the only volumetric biomarker. PMID:28057634
The Volumetric Rate of Calcium-rich Transients in the Local Universe
Frohmaier, Chris; Sullivan, Mark; Maguire, Kate; ...
2018-05-04
Here, we present a measurement of the volumetric rate of "calcium-rich" optical transients in the local universe, using a sample of three events from the Palomar Transient Factory (PTF). This measurement builds on a detailed study of the PTF transient detection efficiencies and uses a Monte Carlo simulation of the PTF survey. We measure the volumetric rate of calcium-rich transients to be higher than previous estimates: 1.21 -0.39 +1.13 10 -5 events yr -1Mpc -3. This is equivalent to 33%-94% of the local volumetric Type Ia supernova rate. This calcium-rich transient rate is sufficient to reproduce the observed calcium abundancesmore » in galaxy clusters, assuming an asymptotic calcium yield per calcium-rich event of ~0.05 M ⊙. As a result, we also study the PTF detection efficiency of these transients as a function of position within their candidate host galaxies. We confirm as a real physical effect previous results that suggest that calcium-rich transients prefer large physical offsets from their host galaxies.« less
The Volumetric Rate of Calcium-rich Transients in the Local Universe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frohmaier, Chris; Sullivan, Mark; Maguire, Kate
Here, we present a measurement of the volumetric rate of "calcium-rich" optical transients in the local universe, using a sample of three events from the Palomar Transient Factory (PTF). This measurement builds on a detailed study of the PTF transient detection efficiencies and uses a Monte Carlo simulation of the PTF survey. We measure the volumetric rate of calcium-rich transients to be higher than previous estimates: 1.21 -0.39 +1.13 10 -5 events yr -1Mpc -3. This is equivalent to 33%-94% of the local volumetric Type Ia supernova rate. This calcium-rich transient rate is sufficient to reproduce the observed calcium abundancesmore » in galaxy clusters, assuming an asymptotic calcium yield per calcium-rich event of ~0.05 M ⊙. As a result, we also study the PTF detection efficiency of these transients as a function of position within their candidate host galaxies. We confirm as a real physical effect previous results that suggest that calcium-rich transients prefer large physical offsets from their host galaxies.« less
Baikunje, Nandakishore; Sehgal, Inderpaul Singh; Dhooria, Sahajal; Prasad, Kuruswamy Thurai; Agarwal, Ritesh
2017-05-01
The tenets of mechanical ventilation in acute respiratory distress syndrome (ARDS) include the utilization of low tidal volume and optimal application of positive end-expiratory pressure (PEEP). Optimal PEEP in ARDS is characterized by reduction in alveolar dead space along with improvement in the lung compliance and resultant betterment in oxygenation. There are various methods of setting PEEP in ARDS. Herein, we report a patient of ARDS, wherein we employed measurement of dead space using volumetric capnography to compare two different PEEP strategies, namely, the lower inflection point and transpulmonary pressure monitoring.
Hominoid visual brain structure volumes and the position of the lunate sulcus.
de Sousa, Alexandra A; Sherwood, Chet C; Mohlberg, Hartmut; Amunts, Katrin; Schleicher, Axel; MacLeod, Carol E; Hof, Patrick R; Frahm, Heiko; Zilles, Karl
2010-04-01
It has been argued that changes in the relative sizes of visual system structures predated an increase in brain size and provide evidence of brain reorganization in hominins. However, data about the volume and anatomical limits of visual brain structures in the extant taxa phylogenetically closest to humans-the apes-remain scarce, thus complicating tests of hypotheses about evolutionary changes. Here, we analyze new volumetric data for the primary visual cortex and the lateral geniculate nucleus to determine whether or not the human brain departs from allometrically-expected patterns of brain organization. Primary visual cortex volumes were compared to lunate sulcus position in apes to investigate whether or not inferences about brain reorganization made from fossil hominin endocasts are reliable in this context. In contrast to previous studies, in which all species were relatively poorly sampled, the current study attempted to evaluate the degree of intraspecific variability by including numerous hominoid individuals (particularly Pan troglodytes and Homo sapiens). In addition, we present and compare volumetric data from three new hominoid species-Pan paniscus, Pongo pygmaeus, and Symphalangus syndactylus. These new data demonstrate that hominoid visual brain structure volumes vary more than previously appreciated. In addition, humans have relatively reduced primary visual cortex and lateral geniculate nucleus volumes as compared to allometric predictions from other hominoids. These results suggest that inferences about the position of the lunate sulcus on fossil endocasts may provide information about brain organization. Copyright 2010 Elsevier Ltd. All rights reserved.
Crowe, Scott B; Kairn, Tanya; Middlebrook, Nigel; Hill, Brendan; Christie, David R H; Knight, Richard T; Kenny, John; Langton, Christian M; Trapp, Jamie V
2013-01-01
Introduction This study examines and compares the dosimetric quality of radiotherapy treatment plans for prostate carcinoma across a cohort of 163 patients treated across five centres: 83 treated with three-dimensional conformal radiotherapy (3DCRT), 33 treated with intensity modulated radiotherapy (IMRT) and 47 treated with volumetric modulated arc therapy (VMAT). Methods Treatment plan quality was evaluated in terms of target dose homogeneity and organs at risk (OAR), through the use of a set of dose metrics. These included the mean, maximum and minimum doses; the homogeneity and conformity indices for the target volumes; and a selection of dose coverage values that were relevant to each OAR. Statistical significance was evaluated using two-tailed Welch's T-tests. The Monte Carlo DICOM ToolKit software was adapted to permit the evaluation of dose metrics from DICOM data exported from a commercial radiotherapy treatment planning system. Results The 3DCRT treatment plans offered greater planning target volume dose homogeneity than the other two treatment modalities. The IMRT and VMAT plans offered greater dose reduction in the OAR: with increased compliance with recommended OAR dose constraints, compared to conventional 3DCRT treatments. When compared to each other, IMRT and VMAT did not provide significantly different treatment plan quality for like-sized tumour volumes. Conclusions This study indicates that IMRT and VMAT have provided similar dosimetric quality, which is superior to the dosimetric quality achieved with 3DCRT. PMID:26229621
Roldan-Valadez, Ernesto; Garcia-Ulloa, Ana Cristina; Gonzalez-Gutierrez, Omar; Martinez-Lopez, Manuel
2011-01-01
Computed-assisted three-dimensional data (3D) allows for an accurate evaluation of volumes compared with traditional measurements. An in vitro method comparison between geometric volume and 3D volumetry to obtain reference data for pituitary volumes in normal pituitary glands (PGs) and PGs containing adenomas. Prospective, transverse, analytical study. Forty-eight subjects underwent brain magnetic resonance imaging (MRI) with 3D sequencing for computer-aided volumetry. PG phantom volumes by both methods were compared. Using the best volumetric method, volumes of normal PGs and PGs with adenoma were compared. Statistical analysis used the Bland-Altman method, t-statistics, effect size and linear regression analysis. Method comparison between 3D volumetry and geometric volume revealed a lower bias and precision for 3D volumetry. A total of 27 patients exhibited normal PGs (mean age, 42.07 ± 16.17 years), although length, height, width, geometric volume and 3D volumetry were greater in women than in men. A total of 21 patients exhibited adenomas (mean age 39.62 ± 10.79 years), and length, height, width, geometric volume and 3D volumetry were greater in men than in women, with significant volumetric differences. Age did not influence pituitary volumes on linear regression analysis. Results from the present study showed that 3D volumetry was more accurate than the geometric method. In addition, the upper normal limits of PGs overlapped with lower volume limits during early stage microadenomas.
Mani, Karthick Raj; Upadhayay, Sagar; Das, K J Maria
2017-03-01
To Study the dosimetric advantage of the Jaw tracking technique in intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) for Head and Neck Cancers. We retrospectively selected 10 previously treated head and neck cancer patients stage (T1/T2, N1, M0) in this study. All the patients were planned for IMRT and VMAT with simultaneous integrated boost technique. IMRT and VMAT plans were performed with jaw tracking (JT) and with static jaw (SJ) technique by keeping the same constraints and priorities for a particular patient. Target conformity, dose to the critical structures and low dose volumes were recorded and analyzed for IMRT and VMAT plans with and without JT for all the patients. The conformity index average of all patients followed by standard deviation ([Formula: see text] ± [Formula: see text]) of the JT-IMRT, SJ-IMRT, JT-VMAT, and SJ-VMAT were 1.72 ± 0.56, 1.67 ± 0.57, 1.83 ± 0.65, and 1.85 ± 0.64, and homogeneity index were 0.059 ± 0.05, 0.064 ± 0.05, 0.064 ± 0.04, and 0.064 ± 0.05. JT-IMRT shows significant mean reduction in right parotid and left parotid shows of 7.64% (p < 0.001) and 7.45% (p < 0.001) compare to SJ-IMRT. JT-IMRT plans also shows considerable dose reduction to thyroid, inferior constrictors, spinal cord and brainstem compared to the SJ-IMRT plans. Significant dose reductions were observed for critical structure in the JT-IMRT compared to SJ-IMRT technique. In JT-VMAT plans dose reduction to the critical structure were not significant compared to the SJ-IMRT due to relatively lesser monitor units.
Scientific Visualization of Radio Astronomy Data using Gesture Interaction
NASA Astrophysics Data System (ADS)
Mulumba, P.; Gain, J.; Marais, P.; Woudt, P.
2015-09-01
MeerKAT in South Africa (Meer = More Karoo Array Telescope) will require software to help visualize, interpret and interact with multidimensional data. While visualization of multi-dimensional data is a well explored topic, little work has been published on the design of intuitive interfaces to such systems. More specifically, the use of non-traditional interfaces (such as motion tracking and multi-touch) has not been widely investigated within the context of visualizing astronomy data. We hypothesize that a natural user interface would allow for easier data exploration which would in turn lead to certain kinds of visualizations (volumetric, multidimensional). To this end, we have developed a multi-platform scientific visualization system for FITS spectral data cubes using VTK (Visualization Toolkit) and a natural user interface to explore the interaction between a gesture input device and multidimensional data space. Our system supports visual transformations (translation, rotation and scaling) as well as sub-volume extraction and arbitrary slicing of 3D volumetric data. These tasks were implemented across three prototypes aimed at exploring different interaction strategies: standard (mouse/keyboard) interaction, volumetric gesture tracking (Leap Motion controller) and multi-touch interaction (multi-touch monitor). A Heuristic Evaluation revealed that the volumetric gesture tracking prototype shows great promise for interfacing with the depth component (z-axis) of 3D volumetric space across multiple transformations. However, this is limited by users needing to remember the required gestures. In comparison, the touch-based gesture navigation is typically more familiar to users as these gestures were engineered from standard multi-touch actions. Future work will address a complete usability test to evaluate and compare the different interaction modalities against the different visualization tasks.
Optical Addressing of Multi-Colour Photochromic Material Mixture for Volumetric Display.
Hirayama, Ryuji; Shiraki, Atsushi; Naruse, Makoto; Nakamura, Shinichiro; Nakayama, Hirotaka; Kakue, Takashi; Shimobaba, Tomoyoshi; Ito, Tomoyoshi
2016-08-16
This is the first study to demonstrate that colour transformations in the volume of a photochromic material (PM) are induced at the intersections of two control light channels, one controlling PM colouration and the other controlling decolouration. Thus, PM colouration is induced by position selectivity, and therefore, a dynamic volumetric display may be realised using these two control lights. Moreover, a mixture of multiple PM types with different absorption properties exhibits different colours depending on the control light spectrum. Particularly, the spectrum management of the control light allows colour-selective colouration besides position selectivity. Therefore, a PM-based, full-colour volumetric display is realised. We experimentally construct a mixture of two PM types and validate the operating principles of such a volumetric display system. Our system is constructed simply by mixing multiple PM types; therefore, the display hardware structure is extremely simple, and the minimum size of a volume element can be as small as the size of a molecule. Volumetric displays can provide natural three-dimensional (3D) perception; therefore, the potential uses of our system include high-definition 3D visualisation for medical applications, architectural design, human-computer interactions, advertising, and entertainment.
Optical Addressing of Multi-Colour Photochromic Material Mixture for Volumetric Display
NASA Astrophysics Data System (ADS)
Hirayama, Ryuji; Shiraki, Atsushi; Naruse, Makoto; Nakamura, Shinichiro; Nakayama, Hirotaka; Kakue, Takashi; Shimobaba, Tomoyoshi; Ito, Tomoyoshi
2016-08-01
This is the first study to demonstrate that colour transformations in the volume of a photochromic material (PM) are induced at the intersections of two control light channels, one controlling PM colouration and the other controlling decolouration. Thus, PM colouration is induced by position selectivity, and therefore, a dynamic volumetric display may be realised using these two control lights. Moreover, a mixture of multiple PM types with different absorption properties exhibits different colours depending on the control light spectrum. Particularly, the spectrum management of the control light allows colour-selective colouration besides position selectivity. Therefore, a PM-based, full-colour volumetric display is realised. We experimentally construct a mixture of two PM types and validate the operating principles of such a volumetric display system. Our system is constructed simply by mixing multiple PM types; therefore, the display hardware structure is extremely simple, and the minimum size of a volume element can be as small as the size of a molecule. Volumetric displays can provide natural three-dimensional (3D) perception; therefore, the potential uses of our system include high-definition 3D visualisation for medical applications, architectural design, human-computer interactions, advertising, and entertainment.
Noncalcified Lung Nodules: Volumetric Assessment with Thoracic CT
Gavrielides, Marios A.; Kinnard, Lisa M.; Myers, Kyle J.; Petrick, Nicholas
2009-01-01
Lung nodule volumetry is used for nodule diagnosis, as well as for monitoring tumor response to therapy. Volume measurement precision and accuracy depend on a number of factors, including image-acquisition and reconstruction parameters, nodule characteristics, and the performance of algorithms for nodule segmentation and volume estimation. The purpose of this article is to provide a review of published studies relevant to the computed tomographic (CT) volumetric analysis of lung nodules. A number of underexamined areas of research regarding volumetric accuracy are identified, including the measurement of nonsolid nodules, the effects of pitch and section overlap, and the effect of respiratory motion. The need for public databases of phantom scans, as well as of clinical data, is discussed. The review points to the need for continued research to examine volumetric accuracy as a function of a multitude of interrelated variables involved in the assessment of lung nodules. Understanding and quantifying the sources of volumetric measurement error in the assessment of lung nodules with CT would be a first step toward the development of methods to minimize that error through system improvements and to correctly account for any remaining error. © RSNA, 2009 PMID:19332844
Hologlyphics: volumetric image synthesis performance system
NASA Astrophysics Data System (ADS)
Funk, Walter
2008-02-01
This paper describes a novel volumetric image synthesis system and artistic technique, which generate moving volumetric images in real-time, integrated with music. The system, called the Hologlyphic Funkalizer, is performance based, wherein the images and sound are controlled by a live performer, for the purposes of entertaining a live audience and creating a performance art form unique to volumetric and autostereoscopic images. While currently configured for a specific parallax barrier display, the Hologlyphic Funkalizer's architecture is completely adaptable to various volumetric and autostereoscopic display technologies. Sound is distributed through a multi-channel audio system; currently a quadraphonic speaker setup is implemented. The system controls volumetric image synthesis, production of music and spatial sound via acoustic analysis and human gestural control, using a dedicated control panel, motion sensors, and multiple musical keyboards. Music can be produced by external acoustic instruments, pre-recorded sounds or custom audio synthesis integrated with the volumetric image synthesis. Aspects of the sound can control the evolution of images and visa versa. Sounds can be associated and interact with images, for example voice synthesis can be combined with an animated volumetric mouth, where nuances of generated speech modulate the mouth's expressiveness. Different images can be sent to up to 4 separate displays. The system applies many novel volumetric special effects, and extends several film and video special effects into the volumetric realm. Extensive and various content has been developed and shown to live audiences by a live performer. Real world applications will be explored, with feedback on the human factors.
Kim, Eun Seok; Yeo, Seung-Gu
2014-06-01
Previous studies on advanced radiotherapy (RT) techniques for early stage glottic cancer have focused on sparing the carotid artery. However, the aim of the present study was to evaluate the dosimetric advantages of volumetric modulated arc therapy (VMAT) in terms of sparing the thyroid gland in early-stage glottic cancer patients. In total, 15 cT1N0M0 glottic cancer patients treated with definitive RT using VMAT were selected, and for dosimetric comparison, a conventional RT plan comprising opposed-lateral wedged fields was generated for each patient. The carotid artery, thyroid gland and spinal cord were considered organs at risk. The prescription dose was 63 Gy at 2.25 Gy per fraction. For the thyroid gland and carotid artery, all compared parameters were significantly lower with VMAT compared with conventional RT. For the thyroid gland, the median reduction rates of the mean dose (D mean ), the volume receiving ≥30% of the prescription dose (V 30 ) and the V 50 were 32.6, 40.9 and 46.0%, respectively. The D mean was 14.7±2.6 Gy when using VMAT compared with 22.2±3.9 Gy when using conventional RT. The differences between the techniques in terms of planning target volume coverage and dose homogeneity were not significant. When considering a recent normal tissue complication probability model, which indicated the mean thyroid gland dose as the most significant predictor of radiation-induced hypothyroidism, the dosimetric advantage shown in this study may be valuable in reducing hypothyroidism following RT for early stage glottic cancer patients.
Hoeffelin, H; Jacquemin, D; Defaweux, V; Nizet, J L
2014-01-01
Breast surgery currently remains very subjective and each intervention depends on the ability and experience of the operator. To date, no objective measurement of this anatomical region can codify surgery. In this light, we wanted to compare and validate a new technique for 3D scanning (LifeViz 3D) and its clinical application. We tested the use of the 3D LifeViz system (Quantificare) to perform volumetric calculations in various settings (in situ in cadaveric dissection, of control prostheses, and in clinical patients) and we compared this system to other techniques (CT scanning and Archimedes' principle) under the same conditions. We were able to identify the benefits (feasibility, safety, portability, and low patient stress) and limitations (underestimation of the in situ volume, subjectivity of contouring, and patient selection) of the LifeViz 3D system, concluding that the results are comparable with other measurement techniques. The prospects of this technology seem promising in numerous applications in clinical practice to limit the subjectivity of breast surgery.
Hoeffelin, H.; Jacquemin, D.; Defaweux, V.; Nizet, J L.
2014-01-01
Breast surgery currently remains very subjective and each intervention depends on the ability and experience of the operator. To date, no objective measurement of this anatomical region can codify surgery. In this light, we wanted to compare and validate a new technique for 3D scanning (LifeViz 3D) and its clinical application. We tested the use of the 3D LifeViz system (Quantificare) to perform volumetric calculations in various settings (in situ in cadaveric dissection, of control prostheses, and in clinical patients) and we compared this system to other techniques (CT scanning and Archimedes' principle) under the same conditions. We were able to identify the benefits (feasibility, safety, portability, and low patient stress) and limitations (underestimation of the in situ volume, subjectivity of contouring, and patient selection) of the LifeViz 3D system, concluding that the results are comparable with other measurement techniques. The prospects of this technology seem promising in numerous applications in clinical practice to limit the subjectivity of breast surgery. PMID:24511536
NASA Astrophysics Data System (ADS)
Adhikari, Kapil; Flurchick, Kenneth M.; Valenzano, Loredana
2015-02-01
This work reports a study performed at hybrid semi-empirical density functional level (B3LYP-D2*) of the physico-chemical properties of aspirin (acetylsalicylic acid) and paracetamol (acetaminophen) in their most stable crystalline forms. It is shown how effects arising from volumetric expansions influence the properties of the materials. Structural, energetic, and vibrational properties are in good agreement with experimental values reported at temperatures far from 0 K. Results show that the proposed approach is reliable enough to reproduce effects of volumetric expansion on lattice energies and other measurable physico-chemical observables related to inter-molecular forces.
Tournis, S; Michopoulou, E; Fatouros, I G; Paspati, I; Michalopoulou, M; Raptou, P; Leontsini, D; Avloniti, A; Krekoukia, M; Zouvelou, V; Galanos, A; Aggelousis, N; Kambas, A; Douroudos, I; Lyritis, G P; Taxildaris, K; Pappaioannou, N
2010-06-01
Weight-bearing exercise during growth exerts positive effects on the skeleton. Our objective was to test the hypothesis that long-term elite rhythmic gymnastics exerts positive effects on volumetric bone mineral density and geometry and to determine whether exercise-induced bone adaptation is associated with increased periosteal bone formation or medullary contraction using tibial peripheral quantitative computed tomography and bone turnover markers. We conducted a cross-sectional study at a tertiary center. We studied 26 elite premenarcheal female rhythmic gymnasts (RG) and 23 female controls, aged 9-13 yr. We measured bone age, volumetric bone mineral density, bone mineral content (BMC), cortical thickness, cortical and trabecular area, and polar stress strength index (SSIp) by peripheral quantitative computed tomography of the left tibia proximal to the distal metaphysis (trabecular) at 14, 38 (cortical), and 66% (muscle mass) from the distal end and bone turnover markers. The two groups were comparable according to height and chronological and bone age. After weight adjustment, cortical BMC, area, and thickness at 38% were significantly higher in RG (P < 0.005-0.001). Periosteal circumference, SSIp, and muscle area were higher in RG (P < 0.01-0.001). Muscle area was significantly associated with cortical BMC, area, and SSIp, whereas years of training showed positive association with cortical BMC, area, and thickness independent of chronological age. RG in premenarcheal girls may induce positive adaptations on the skeleton, especially in cortical bone. Increased duration of exercise is associated with a positive response of bone geometry.
Towards the optimal design of an uncemented acetabular component using genetic algorithms
NASA Astrophysics Data System (ADS)
Ghosh, Rajesh; Pratihar, Dilip Kumar; Gupta, Sanjay
2015-12-01
Aseptic loosening of the acetabular component (hemispherical socket of the pelvic bone) has been mainly attributed to bone resorption and excessive generation of wear particle debris. The aim of this study was to determine optimal design parameters for the acetabular component that would minimize bone resorption and volumetric wear. Three-dimensional finite element models of intact and implanted pelvises were developed using data from computed tomography scans. A multi-objective optimization problem was formulated and solved using a genetic algorithm. A combination of suitable implant material and corresponding set of optimal thicknesses of the component was obtained from the Pareto-optimal front of solutions. The ultra-high-molecular-weight polyethylene (UHMWPE) component generated considerably greater volumetric wear but lower bone density loss compared to carbon-fibre reinforced polyetheretherketone (CFR-PEEK) and ceramic. CFR-PEEK was located in the range between ceramic and UHMWPE. Although ceramic appeared to be a viable alternative to cobalt-chromium-molybdenum alloy, CFR-PEEK seems to be the most promising alternative material.
Wieser, L; Fischer, G; Nowak, C N; Tilg, B
2007-05-01
Increased local load in branching atrial tissue (muscle fibers and bundle insertions) influences wave propagation during atrial fibrillation (AF). This computer model study reveals two principal phenomena: if the branching is distant from the driving rotor (>19 mm), the load causes local slowing of conduction or wavebreaks. If the driving rotor is close to the branching, the increased load causes first a slow drift of the rotor towards the branching. Finally, the rotor anchors, and a stable, repeatable pattern of activation can be observed. Variation of the bundle geometry from a cylindrical, volumetric structure to a flat strip of a comparable load in a monolayer model changed the local activation sequence in the proximity of the bundle. However, the global behavior and the basic effects are similar in all models. Wavebreaks in branching tissue contribute to the chaotic nature of AF (fibrillatory conduction). The stabilization (anchoring) of driving rotors by branching tissue might contribute to maintain sustained AF.
Zhang, Le; Luo, Feng; Xu, Ruina; ...
2014-12-31
The heat transfer and fluid transport of supercritical CO 2 in enhanced geothermal system (EGS) is studied numerically with local thermal non-equilibrium model, which accounts for the temperature difference between solid matrix and fluid components in porous media and uses two energy equations to describe heat transfer in the solid matrix and in the fluid, respectively. As compared with the previous results of our research group, the effect of local thermal non-equilibrium mainly depends on the volumetric heat transfer coefficient ah, which has a significant effect on the production temperature at reservoir outlet and thermal breakthrough time. The uniformity ofmore » volumetric heat transfer coefficient ah has little influence on the thermal breakthrough time, but the temperature difference become more obvious with time after thermal breakthrough with this simulation model. The thermal breakthrough time reduces and the effect of local thermal non-equilibrium becomes significant with decreasing ah.« less
Liang, Yun; Kim, Gwe-Ya; Pawlicki, Todd; Mundt, Arno J; Mell, Loren K
2013-03-04
The purpose of this study was to develop dosimetry verification procedures for volumetric-modulated arc therapy (VMAT)-based total marrow irradiation (TMI). The VMAT based TMI plans were generated for three patients: one child and two adults. The planning target volume (PTV) was defined as bony skeleton, from head to mid-femur, with a 3 mm margin. The plan strategy similar to published studies was adopted. The PTV was divided into head and neck, chest, and pelvic regions, with separate plans each of which is composed of 2-3 arcs/fields. Multiple isocenters were evenly distributed along the patient's axial direction. The focus of this study is to establish a dosimetry quality assurance procedure involving both two-dimensional (2D) and three-dimensional (3D) volumetric verifications, which is desirable for a large PTV treated with multiple isocenters. The 2D dose verification was performed with film for gamma evaluation and absolute point dose was measured with ion chamber, with attention to the junction between neighboring plans regarding hot/cold spots. The 3D volumetric dose verification used commercial dose reconstruction software to reconstruct dose from electronic portal imaging devices (EPID) images. The gamma evaluation criteria in both 2D and 3D verification were 5% absolute point dose difference and 3 mm of distance to agreement. With film dosimetry, the overall average gamma passing rate was 98.2% and absolute dose difference was 3.9% in junction areas among the test patients; with volumetric portal dosimetry, the corresponding numbers were 90.7% and 2.4%. A dosimetry verification procedure involving both 2D and 3D was developed for VMAT-based TMI. The initial results are encouraging and warrant further investigation in clinical trials.
ERIC Educational Resources Information Center
Ribeiro, Rui P. P. L.; Silva, Ricardo J. S.; Esteves, Isabel A. A. C.; Mota, Jose´ P. B.
2015-01-01
The construction of a simple volumetric adsorption apparatus is highlighted. The setup is inexpensive and provides a clear demonstration of gas phase adsorption concepts. The topic is suitable for undergraduate chemistry and chemical engineering students. Moreover, this unit can also provide quantitative data that can be used by young researchers…
NASA Astrophysics Data System (ADS)
Rossikhin, Yu A.; Shitikova, M. V.
2018-04-01
The fractional derivative Kelvin–Voigt model of viscoelasticity involving the time-dependent Poisson’s operator has been studied not only for the case of a time-independent bulk modulus, but also when the volumetric relaxation is taken into account. It has been shown that such a model could describe the features of auxetic materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vikraman, S; Karrthick, K; Rajesh, T
2014-06-15
Purpose: The purpose of this study was to evaluate quantitatively 2D versus 3D dosimetry for stereotactic volumetric modulated arc delivery using COMPASS with 2D array. Methods: Twenty-five patients CT images and RT structures of different sites like brain, head and neck, thorax, abdomen and spine were taken from Multiplan planning system for this study. All these patients underwent radical stereotactic treatment in Cyberknife. For each patient, linac based VMAT stereotactic plans were generated in Monaco TPS v 3.1 using Elekta Beam Modulator MLC. Dose prescription was in the range of 5-20Gy/fraction.TPS calculated VMAT plan delivery accuracy was quantitatively evaluated withmore » COMPASS measured dose and calculated dose based on DVH metrics. In order to ascertain the potential of COMPASS 3D dosimetry for stereotactic plan delivery, 2D fluence verification was performed with MatriXX using Multicube. Results: For each site, D{sub 9} {sub 5} was achieved with 100% of prescription dose with maximum 0.05SD. Conformity index (CI) was observed closer to 1.15 in all cases. Maximum deviation of 2.62 % was observed for D{sub 9} {sub 5} when compared TPS versus COMPASS measured. Considerable deviations were observed in head and neck cases compare to other sites. The maximum mean and standard deviation for D{sub 9} {sub 5}, average target dose and average gamma were -0.78±1.72, -1.10±1.373 and 0.39±0.086 respectively. Numbers of pixels passing 2D fluence verification were observed as a mean of 99.36% ±0.455 SD with 3% dose difference and 3mm DTA. For critical organs in head and neck cases, significant dose differences were observed in 3D dosimetry while the target doses were matched well within limit in both 2D and 3D dosimetry. Conclusion: The quantitative evaluations of 2D versus 3D dosimetry for stereotactic volumetric modulated plans showed the potential of highlighting the delivery errors. This study reveals that COMPASS 3D dosimetry is an effective tool for patient specific quality assurance compared to 2D fluence verification.« less
USDA-ARS?s Scientific Manuscript database
Understanding soil moisture is critical for landscape irrigation management. This landscaep irrigation seminar will compare volumetric and matric potential soil-moisture sensors, discuss the relationship between their readings and demonstrate how to use these data. Soil water sensors attempt to sens...
Rios Piedra, Edgar A; Taira, Ricky K; El-Saden, Suzie; Ellingson, Benjamin M; Bui, Alex A T; Hsu, William
2016-02-01
Brain tumor analysis is moving towards volumetric assessment of magnetic resonance imaging (MRI), providing a more precise description of disease progression to better inform clinical decision-making and treatment planning. While a multitude of segmentation approaches exist, inherent variability in the results of these algorithms may incorrectly indicate changes in tumor volume. In this work, we present a systematic approach to characterize variability in tumor boundaries that utilizes equivalence tests as a means to determine whether a tumor volume has significantly changed over time. To demonstrate these concepts, 32 MRI studies from 8 patients were segmented using four different approaches (statistical classifier, region-based, edge-based, knowledge-based) to generate different regions of interest representing tumor extent. We showed that across all studies, the average Dice coefficient for the superset of the different methods was 0.754 (95% confidence interval 0.701-0.808) when compared to a reference standard. We illustrate how variability obtained by different segmentations can be used to identify significant changes in tumor volume between sequential time points. Our study demonstrates that variability is an inherent part of interpreting tumor segmentation results and should be considered as part of the interpretation process.
NASA Astrophysics Data System (ADS)
Myc, Lukasz; Duric, Neb; Littrup, Peter; Li, Cuiping; Ranger, Bryan; Lupinacci, Jessica; Schmidt, Steven; Rama, Olsi; Bey-Knight, Lisa
2010-03-01
Since a 1976 study by Wolfe, high breast density has gained recognition as a factor strongly correlating with an increased incidence of breast cancer. These observations have led to mammographic density being designated a "risk factor" for breast cancer. Clinically, the exclusive reliance on mammography for breast density measurement has forestalled the inclusion of breast density into statistical risk models. This exclusion has in large part been due to the ionizing radiation associated with the method. Additionally, the use of mammography as valid tool for measuring a three dimensional characteristic (breast density) has been criticized for its prima facie incongruity. These shortfalls have prompted MRI studies of breast density as an alternative three-dimensional method of assessing breast density. Although, MRI is safe and can be used to measure volumetric density, its cost has prohibited its use in screening. Here, we report that sound speed measurements using a prototype ultrasound tomography device have potential for use as surrogates for breast density measurement. Accordingly, we report a strong positive linear correlation between volume-averaged sound speed of the breast and percent glandular tissue volume as assessed by MR.
Numerical study of underwater dispersion of dilute and dense sediment-water mixtures
NASA Astrophysics Data System (ADS)
Chan, Ziying; Dao, Ho-Minh; Tan, Danielle S.
2018-05-01
As part of the nodule-harvesting process, sediment tailings are released underwater. Due to the long period of clouding in the water during the settling process, this presents a significant environmental and ecological concern. One possible solution is to release a mixture of sediment tailings and seawater, with the aim of reducing the settling duration as well as the amount of spreading. In this paper, we present some results of numerical simulations using the smoothed particle hydrodynamics (SPH) method to model the release of a fixed volume of pre-mixed sediment-water mixture into a larger body of quiescent water. Both the sediment-water mixture and the “clean” water are modeled as two different fluids, with concentration-dependent bulk properties of the sediment-water mixture adjusted according to the initial solids concentration. This numerical model was validated in a previous study, which indicated significant differences in the dispersion and settling process between dilute and dense mixtures, and that a dense mixture may be preferable. For this study, we investigate a wider range of volumetric concentration with the aim of determining the optimum volumetric concentration, as well as its overall effectiveness compared to the original process (100% sediment).
Chen, Lingling; Alexandrov, Yuriy; Kumar, Sunil; Andrews, Natalie; Dallman, Margaret J.; French, Paul M. W.; McGinty, James
2015-01-01
We describe an angular multiplexed imaging technique for 3-D in vivo cell tracking of sparse cell distributions and optical projection tomography (OPT) with superior time-lapse resolution and a significantly reduced light dose compared to volumetric time-lapse techniques. We demonstrate that using dual axis OPT, where two images are acquired simultaneously at different projection angles, can enable localization and tracking of features in 3-D with a time resolution equal to the camera frame rate. This is achieved with a 200x reduction in light dose compared to an equivalent volumetric time-lapse single camera OPT acquisition with 200 projection angles. We demonstrate the application of this technique to mapping the 3-D neutrophil migration pattern observed over ~25.5 minutes in a live 2 day post-fertilisation transgenic LysC:GFP zebrafish embryo following a tail wound. PMID:25909009
Automated volumetric evaluation of stereoscopic disc photography
Xu, Juan; Ishikawa, Hiroshi; Wollstein, Gadi; Bilonick, Richard A; Kagemann, Larry; Craig, Jamie E; Mackey, David A; Hewitt, Alex W; Schuman, Joel S
2010-01-01
PURPOSE: To develop a fully automated algorithm (AP) to perform a volumetric measure of the optic disc using conventional stereoscopic optic nerve head (ONH) photographs, and to compare algorithm-produced parameters with manual photogrammetry (MP), scanning laser ophthalmoscope (SLO) and optical coherence tomography (OCT) measurements. METHODS: One hundred twenty-two stereoscopic optic disc photographs (61 subjects) were analyzed. Disc area, rim area, cup area, cup/disc area ratio, vertical cup/disc ratio, rim volume and cup volume were automatically computed by the algorithm. Latent variable measurement error models were used to assess measurement reproducibility for the four techniques. RESULTS: AP had better reproducibility for disc area and cup volume and worse reproducibility for cup/disc area ratio and vertical cup/disc ratio, when the measurements were compared to the MP, SLO and OCT methods. CONCLUSION: AP provides a useful technique for an objective quantitative assessment of 3D ONH structures. PMID:20588996
Chen, Lingling; Alexandrov, Yuriy; Kumar, Sunil; Andrews, Natalie; Dallman, Margaret J; French, Paul M W; McGinty, James
2015-04-01
We describe an angular multiplexed imaging technique for 3-D in vivo cell tracking of sparse cell distributions and optical projection tomography (OPT) with superior time-lapse resolution and a significantly reduced light dose compared to volumetric time-lapse techniques. We demonstrate that using dual axis OPT, where two images are acquired simultaneously at different projection angles, can enable localization and tracking of features in 3-D with a time resolution equal to the camera frame rate. This is achieved with a 200x reduction in light dose compared to an equivalent volumetric time-lapse single camera OPT acquisition with 200 projection angles. We demonstrate the application of this technique to mapping the 3-D neutrophil migration pattern observed over ~25.5 minutes in a live 2 day post-fertilisation transgenic LysC:GFP zebrafish embryo following a tail wound.
Shpotyuk, Olha; Adamiak, Stanislaw; Bezvushko, Elvira; Cebulski, Jozef; Iskiv, Maryana; Shpotyuk, Oleh; Balitska, Valentina
2017-12-01
Light-curing volumetric shrinkage in dimethacrylate-based dental resin composites Dipol® is examined through comprehensive kinetics research employing nanoindentation measurements and nanoscale atomic-deficient study with lifetime spectroscopy of annihilating positrons. Photopolymerization kinetics determined through nanoindentation testing is shown to be described via single-exponential relaxation function with character time constants reaching respectively 15.0 and 18.7 s for nanohardness and elastic modulus. Atomic-deficient characteristics of composites are extracted from positron lifetime spectra parameterized employing unconstrained x3-term fitting. The tested photopolymerization kinetics can be adequately reflected in time-dependent changes observed in average positron lifetime (with 17.9 s time constant) and fractional free volume of positronium traps (with 18.6 s time constant). This correlation proves that fragmentation of free-volume positronium-trapping sites accompanied by partial positronium-to-positron traps conversion determines the light-curing volumetric shrinkage in the studied composites.
Volumetric study in the development of paranasal sinuses by CT imaging in Asian: a pilot study.
Park, Il-Ho; Song, Jong Seok; Choi, Hyuk; Kim, Tae Hoon; Hoon, Seung; Lee, Sang Hag; Lee, Heung-Man
2010-12-01
The volume of the air cavities in the paranasal sinuses is not only the simplest, but also the most important index for paranasal sinus evaluation. However, few volumetric studies have been performed in all age groups. The purpose of the current study was to outline the normal development of paranasal sinuses in all age groups, and to determine normal adult volumetric values by means of computed tomographic (CT) scan of paranasal sinus using volumetric procedures. A prospective volumetric CT study was conducted with 260 patients (520 sides) <25 years of age by means of three-dimensional reconstruction. The frontal sinuses began to pneumatize at 2 years of age, exhibited a faster growth pattern between 6 and 19 years of age, and the mean volume after full growth was 3.46±0.78 cm(3). The maxillary sinuses were pneumatized at birth in all cases, exhibited a monomodal growth pattern increasing until 15 years of age, and the mean volume after full growth was 14.83±1.36 cm(3). The floor of the sinus was the same level as the floor of the nasal cavity was between 7 and 15 years of age. The ethmoid sinuses exhibited a faster initial tendency to increase until 7 years of age, were completed by 15-16 years of age, and the mean volume after full growth was 4.51±0.92 cm(3). The sphenoid sinuses exhibited a growth spurt between 6 and 10 years of age, were completed by 15 years of age, and the mean volume after full growth was 3.47±0.93 cm(3). The results of this study are presented to provide the basis for an objective normal volume of sinus development and for studies involving diseases of the sinuses. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Shelton, Zachary R.; Braga, Roberto R.; Windmoller, Dario; Machado, José C.
2011-01-01
The resin phase of dental composites is mainly composed of combinations of dimethacrylate comonomers, with final polymeric network structure defined by monomer type/reactivity and degree of conversion. This fundamental study evaluates how increasing concentrations of the flexible triethylene glycol dimethacrylate (TEGDMA) influences void formation in bisphenol A diglycidyl dimethacrylate (BisGMA) co-polymerizations and correlates this aspect of network structure with reaction kinetic parameters and macroscopic volumetric shrinkage. Photopolymerization kinetics was followed in real-time by a near-infrared (NIR) spectroscopic technique, viscosity was assessed with a viscometer, volumetric shrinkage was followed with a linometer, free volume formation was determined by positron annihilation lifetime spectroscopy (PALS) and the sol-gel composition was determined by extraction with dichloromethane followed by 1H-NMR analysis. Results show that, as expected, volumetric shrinkage increases with TEGDMA concentration and monomer conversion. Extraction/1H-NMR studies show increasing participation of the more flexible TEGDMA towards the limiting stages of conversion/crosslinking development. As the conversion progresses, either based on longer irradiation times or greater TEGDMA concentrations, the network becomes more dense, which is evidenced by the decrease in free volume and weight loss after extraction in these situations. For the same composition (BisGMA/TEGDMA 60–40 mol%) light-cured for increasing periods of time (from 10 to 600 s), free volume decreased and volumetric shrinkage increased, in a linear relationship with conversion. However, the correlation between free volume and macroscopic volumetric shrinkage was shown to be rather complex for variable compositions exposed for the same time (600 s). The addition of TEGDMA decreases free-volume up to 40 mol% (due to increased conversion), but above that concentration, in spite of the increase in conversion/crosslinking, free volume pore size increases due to the high concentration of the more flexible monomer. In those cases, the increase in volumetric shrinkage was due to higher functional group concentration, in spite of the greater free volume. Therefore, through the application of the PALS model, this study elucidates the network formation in dimethacrylates commonly used in dental materials. PMID:21499538
Pfeifer, Carmem S; Shelton, Zachary R; Braga, Roberto R; Windmoller, Dario; Machado, José C; Stansbury, Jeffrey W
2011-02-01
The resin phase of dental composites is mainly composed of combinations of dimethacrylate comonomers, with final polymeric network structure defined by monomer type/reactivity and degree of conversion. This fundamental study evaluates how increasing concentrations of the flexible triethylene glycol dimethacrylate (TEGDMA) influences void formation in bisphenol A diglycidyl dimethacrylate (BisGMA) co-polymerizations and correlates this aspect of network structure with reaction kinetic parameters and macroscopic volumetric shrinkage. Photopolymerization kinetics was followed in real-time by a near-infrared (NIR) spectroscopic technique, viscosity was assessed with a viscometer, volumetric shrinkage was followed with a linometer, free volume formation was determined by positron annihilation lifetime spectroscopy (PALS) and the sol-gel composition was determined by extraction with dichloromethane followed by (1)H-NMR analysis. Results show that, as expected, volumetric shrinkage increases with TEGDMA concentration and monomer conversion. Extraction/(1)H-NMR studies show increasing participation of the more flexible TEGDMA towards the limiting stages of conversion/crosslinking development. As the conversion progresses, either based on longer irradiation times or greater TEGDMA concentrations, the network becomes more dense, which is evidenced by the decrease in free volume and weight loss after extraction in these situations. For the same composition (BisGMA/TEGDMA 60-40 mol%) light-cured for increasing periods of time (from 10 to 600 s), free volume decreased and volumetric shrinkage increased, in a linear relationship with conversion. However, the correlation between free volume and macroscopic volumetric shrinkage was shown to be rather complex for variable compositions exposed for the same time (600 s). The addition of TEGDMA decreases free-volume up to 40 mol% (due to increased conversion), but above that concentration, in spite of the increase in conversion/crosslinking, free volume pore size increases due to the high concentration of the more flexible monomer. In those cases, the increase in volumetric shrinkage was due to higher functional group concentration, in spite of the greater free volume. Therefore, through the application of the PALS model, this study elucidates the network formation in dimethacrylates commonly used in dental materials.
Feasibility study of volumetric modulated arc therapy with constant dose rate for endometrial cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Ruijie; Wang, Junjie, E-mail: junjiewang47@yahoo.com; Xu, Feng
2013-10-01
To investigate the feasibility, efficiency, and delivery accuracy of volumetric modulated arc therapy with constant dose rate (VMAT-CDR) for whole-pelvic radiotherapy (WPRT) of endometrial cancer. The nine-field intensity-modulated radiotherapy (IMRT), VMAT with variable dose-rate (VMAT-VDR), and VMAT-CDR plans were created for 9 patients with endometrial cancer undergoing WPRT. The dose distribution of planning target volume (PTV), organs at risk (OARs), and normal tissue (NT) were compared. The monitor units (MUs) and treatment delivery time were also evaluated. For each VMAT-CDR plan, a dry run was performed to assess the dosimetric accuracy with MatriXX from IBA. Compared with IMRT, the VMAT-CDRmore » plans delivered a slightly greater V{sub 20} of the bowel, bladder, pelvis bone, and NT, but significantly decreased the dose to the high-dose region of the rectum and pelvis bone. The MUs decreased from 1105 with IMRT to 628 with VMAT-CDR. The delivery time also decreased from 9.5 to 3.2 minutes. The average gamma pass rate was 95.6% at the 3%/3 mm criteria with MatriXX pretreatment verification for 9 patients. VMAT-CDR can achieve comparable plan quality with significant shorter delivery time and smaller number of MUs compared with IMRT for patients with endometrial cancer undergoing WPRT. It can be accurately delivered and be an alternative to IMRT on the linear accelerator without VDR capability.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Manbae; Cho, Kukwon; Sluder, Scott
This study investigated the effects of soybean- and coconut-derived biodiesel fuels on combustion characteristics in a 1.7-liter direct injection, common rail diesel engine. Five sets of fuels were studied: 2007 ultra-low sulfur diesel (ULSD), 5% and 20% volumetric blends of soybean biodiesel with ULSD (soybean B5 and B20), and 5% and 20% volumetric blends of coconut biodiesel with ULSD (coconut B5 and B20). In conventional diesel combustion mode, particulate matter (PM) and nitrogen oxides (NO/dx) emissions were similar for all fuels studied except soybean B20. Soybean B20 produced the lowest PM but the highest NO/dx emissions. Compared with conventional dieselmore » combustion mode, high efficiency clean combustion (HECC) mode, achieved by increased EGR and combustion phasing, significantly reduced both PM and NO/dx emissions for all fuels studied at the expense of higher hydrocarbon (HC) and carbon monoxide (CO) emissions and an increase in fuel consumption (less than 4%). ULSD, soybean B5, and coconut B5 showed no difference in exhaust emissions. However, PM emissions increased slightly for soybean B20 and coconut B20. NO/dx emissions increased significantly for soybean B20, while those for coconut B20 were comparable to ULSD. Differences in the chemical and physical properties of soybean and coconut biodiesel fuels compared with ULSD, such as higher fuel-borne oxygen, greater viscosity, and higher boiling temperatures, play a key role in combustion processes and, therefore, exhaust emissions. Furthermore, the highly unsaturated ester composition in soybean biodiesel can be another factor in the increase of NO/dx emissions.« less
Jang, Jae-Won; Park, So Young; Park, Young Ho; Baek, Min Jae; Lim, Jae-Sung; Youn, Young Chul; Kim, SangYun
2015-01-01
Brain magnetic resonance imaging (MRI) shows cerebral structural changes. However, a unified comprehensive visual rating scale (CVRS) has seldom been studied. Thus, we combined brain atrophy and small vessel disease scales and used an MRI template as a CVRS. The aims of this study were to design a simple and reliable CVRS, validate it by investigating cerebral structural changes in clinical groups, and made comparison to the volumetric measurements. Elderly subjects (n = 260) with normal cognition (NC, n = 65), mild cognitive impairment (MCI, n = 101), or Alzheimer's disease (AD, n = 94) were evaluated with brain MRI according to the CVRS of brain atrophy and small vessel disease. Validation of the CVRS with structural changes, neuropsychological tests, and volumetric analyses was performed. The CVRS revealed a high intra-rater and inter-rater agreement and it reflected the structural changes of subjects with NC, MCI, and AD better than volumetric measures (CVRS-coronal: F = 13.5, p < 0.001; CVRS-axial: F = 19.9, p < 0.001). The area under the receiver operation curve (aROC) of the CVRS showed higher accuracy than volumetric analyses. (NC versus MCI aROC: CVRS-coronal, 0.777; CVRS-axial, 0.773; MCI versus AD aROC: CVRS-coronal, 0.680; CVRS-axial, 0.681). The CVRS can be used clinically to conveniently measure structural changes of brain. It reflected cerebral structural changes of clinical groups and correlated with the age better than volumetric measures.
Di, Xin; Gohel, Suril; Thielcke, Andre; Wehrl, Hans F; Biswal, Bharat B
2017-11-01
Relationships between spatially remote brain regions in human have typically been estimated by moment-to-moment correlations of blood-oxygen-level dependent signals in resting-state using functional MRI (fMRI). Recently, studies using subject-to-subject covariance of anatomical volumes, cortical thickness, and metabolic activity are becoming increasingly popular. However, question remains on whether these measures reflect the same inter-region connectivity and brain network organizations. In the current study, we systematically analyzed inter-subject volumetric covariance from anatomical MRI images, metabolic covariance from fluorodeoxyglucose positron emission tomography images from 193 healthy subjects, and resting-state moment-to-moment correlations from fMRI images of a subset of 44 subjects. The correlation matrices calculated from the three methods were found to be minimally correlated, with higher correlation in the range of 0.31, as well as limited proportion of overlapping connections. The volumetric network showed the highest global efficiency and lowest mean clustering coefficient, leaning toward random-like network, while the metabolic and resting-state networks conveyed properties more resembling small-world networks. Community structures of the volumetric and metabolic networks did not reflect known functional organizations, which could be observed in resting-state network. The current results suggested that inter-subject volumetric and metabolic covariance do not necessarily reflect the inter-regional relationships and network organizations as resting-state correlations, thus calling for cautions on interpreting results of inter-subject covariance networks.
Trontel, Haley G.; Duffield, Tyler C.; Bigler, Erin D.; Abildskov, Tracy J.; Froehlich, Alyson; Prigge, Molly B.D.; Travers, Brittany G.; Anderson, Jeffrey S.; Zielinski, Brandon A.; Alexander, Andrew; Lange, Nicholas; Lainhart, Janet E.
2015-01-01
Studies have shown that individuals with autism spectrum disorder (ASD) tend to perform significantly below typical developing individuals on standardized measures of memory, even when not significantly different on measures of IQ. The current study sought to examine within ASD whether anatomical correlates of memory performance differed between those with average-to-above-average IQ (AIQ Group) compared to those with low average to borderline ability (LIQ group) as well as in relations to typically-developing comparisons (TDC). Using automated volumetric analyses, we examined regional volume of classic memory areas including the hippocampus, parahippocampal gyrus, entorhinal cortex, and amygdala in an all-male sample AIQ (n = 38) and LIQ (n = 18) individuals with ASD along with 30 typically-developing comparisons (TDC). Memory performance was assessed using the Test of Memory and Learning (TOMAL) compared among the groups and then correlated with regional brain volumes. Analyses revealed group differences on almost all facets of memory and learning as assessed by the various subtests of the TOMAL. The three groups did not differ on any ROI memory-related brain volumes. However, significant size-memory function interactions were observed. Negative correlations were found between the volume of the amygdala and composite, verbal, and delayed memory indices for the LIQ ASD group indicating larger volume related to poorer performance. Implications for general memory functioning and dysfunctional neural connectivity in ASD are discussed. PMID:25749302
Khalil, Wael; EzEldeen, Mostafa; Van De Casteele, Elke; Shaheen, Eman; Sun, Yi; Shahbazian, Maryam; Olszewski, Raphael; Politis, Constantinus; Jacobs, Reinhilde
2016-03-01
Our aim was to determine the accuracy of 3-dimensional reconstructed models of teeth compared with the natural teeth by using 4 different 3-dimensional printers. This in vitro study was carried out using 2 intact, dry adult human mandibles, which were scanned with cone beam computed tomography. Premolars were selected for this study. Dimensional differences between natural teeth and the printed models were evaluated directly by using volumetric differences and indirectly through optical scanning. Analysis of variance, Pearson correlation, and Bland Altman plots were applied for statistical analysis. Volumetric measurements from natural teeth and fabricated models, either by the direct method (the Archimedes principle) or by the indirect method (optical scanning), showed no statistical differences. The mean volume difference ranged between 3.1 mm(3) (0.7%) and 4.4 mm(3) (1.9%) for the direct measurement, and between -1.3 mm(3) (-0.6%) and 11.9 mm(3) (+5.9%) for the optical scan. A surface part comparison analysis showed that 90% of the values revealed a distance deviation within the interval 0 to 0.25 mm. Current results showed a high accuracy of all printed models of teeth compared with natural teeth. This outcome opens perspectives for clinical use of cost-effective 3-dimensional printed teeth for surgical procedures, such as tooth autotransplantation. Copyright © 2016 Elsevier Inc. All rights reserved.
MobileFusion: real-time volumetric surface reconstruction and dense tracking on mobile phones.
Ondrúška, Peter; Kohli, Pushmeet; Izadi, Shahram
2015-11-01
We present the first pipeline for real-time volumetric surface reconstruction and dense 6DoF camera tracking running purely on standard, off-the-shelf mobile phones. Using only the embedded RGB camera, our system allows users to scan objects of varying shape, size, and appearance in seconds, with real-time feedback during the capture process. Unlike existing state of the art methods, which produce only point-based 3D models on the phone, or require cloud-based processing, our hybrid GPU/CPU pipeline is unique in that it creates a connected 3D surface model directly on the device at 25Hz. In each frame, we perform dense 6DoF tracking, which continuously registers the RGB input to the incrementally built 3D model, minimizing a noise aware photoconsistency error metric. This is followed by efficient key-frame selection, and dense per-frame stereo matching. These depth maps are fused volumetrically using a method akin to KinectFusion, producing compelling surface models. For each frame, the implicit surface is extracted for live user feedback and pose estimation. We demonstrate scans of a variety of objects, and compare to a Kinect-based baseline, showing on average ∼ 1.5cm error. We qualitatively compare to a state of the art point-based mobile phone method, demonstrating an order of magnitude faster scanning times, and fully connected surface models.
NASA Astrophysics Data System (ADS)
Campo-Bescós, M. A.; Flores-Cervantes, J. H.; Bras, R. L.; Casalí, J.; Giráldez, J. V.
2013-12-01
large fraction of soil erosion in temperate climate systems proceeds from gully headcut growth processes. Nevertheless, headcut retreat is not well understood. Few erosion models include gully headcut growth processes, and none of the existing headcut retreat models have been tested against long-term retreat rate estimates. In this work the headcut retreat resulting from plunge pool erosion in the Channel Hillslope Integrated Landscape Development (CHILD) model is calibrated and compared to long-term evolution measurements of six gullies at the Bardenas Reales, northeast Spain. The headcut retreat module of CHILD was calibrated by adjusting the shape factor parameter to fit the observed retreat and volumetric soil loss of one gully during a 36 year period, using reported and collected field data to parameterize the rest of the model. To test the calibrated model, estimates by CHILD were compared to observations of headcut retreat from five other neighboring gullies. The differences in volumetric soil loss rates between the simulations and observations were less than 0.05 m3 yr-1, on average, with standard deviations smaller than 0.35 m3 yr-1. These results are the first evaluation of the headcut retreat module implemented in CHILD with a field data set. These results also show the usefulness of the model as a tool for simulating long-term volumetric gully evolution due to plunge pool erosion.
A knowledge-guided active model method of cortical structure segmentation on pediatric MR images.
Shan, Zuyao Y; Parra, Carlos; Ji, Qing; Jain, Jinesh; Reddick, Wilburn E
2006-10-01
To develop an automated method for quantification of cortical structures on pediatric MR images. A knowledge-guided active model (KAM) approach was proposed with a novel object function similar to the Gibbs free energy function. Triangular mesh models were transformed to images of a given subject by maximizing entropy, and then actively slithered to boundaries of structures by minimizing enthalpy. Volumetric results and image similarities of 10 different cortical structures segmented by KAM were compared with those traced manually. Furthermore, the segmentation performances of KAM and SPM2, (statistical parametric mapping, a MATLAB software package) were compared. The averaged volumetric agreements between KAM- and manually-defined structures (both 0.95 for structures in healthy children and children with medulloblastoma) were higher than the volumetric agreement for SPM2 (0.90 and 0.80, respectively). The similarity measurements (kappa) between KAM- and manually-defined structures (0.95 and 0.93, respectively) were higher than those for SPM2 (both 0.86). We have developed a novel automatic algorithm, KAM, for segmentation of cortical structures on MR images of pediatric patients. Our preliminary results indicated that when segmenting cortical structures, KAM was in better agreement with manually-delineated structures than SPM2. KAM can potentially be used to segment cortical structures for conformal radiation therapy planning and for quantitative evaluation of changes in disease or abnormality. Copyright (c) 2006 Wiley-Liss, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, O; Lo, G; Yuan, J
Purpose: There is growing interests in applying MR-simulator(MR-sim) in radiotherapy but MR images subject to hardware, patient and pulse sequence dependent geometric distortion that may potentially influence target definition. This study aimed to evaluate the influence on head-and-neck tissue delineation, in terms of positional and volumetric variability, of two T1-weighted(T1w) MR sequences on a 1.5T MR-sim Methods: Four healthy volunteers were scanned (4 scans for each on different days) using both spin-echo (3DCUBE, TR/TE=500/14ms, TA=183s) and gradient-echo sequences (3DFSPGR, TE/TR=7/4ms, TA=173s) with identical coverage, voxel-size(0.8×0.8×1.0mm3), receiver-bandwidth(62.5kHz/pix) and geometric correction on a 1.5T MR-sim immobilized with personalized thermoplastic cast and head-rest.more » Under this setting, similar T1w contrast and signal-to-noise ratio were obtained, and factors other than sequence that might bias image distortion and tissue delineation were minimized. VOIs of parotid gland(PGR, PGL), pituitary gland(PIT) and eyeballs(EyeL, EyeR) were carefully drawn, and inter-scan coefficient-of-variation(CV) of VOI centroid position and volume were calculated for each subject. Mean and standard deviation(SD) of the CVs for four subjects were compared between sequences using Wilcoxon ranksum test. Results: The mean positional(<4%) and volumetric(<7%) CVs varied between tissues, majorly dependent on tissue inherent properties like volume, location, mobility and deformability. Smaller mean volumetric CV was found in 3DCUBE, probably due to its less proneness to tissue susceptibility, but only PGL showed significant difference(P<0.05). Positional CVs had no significant differences for all VOIs(P>0.05) between sequences, suggesting volumetric variation might be more sensitive to sequence-dependent delineation difference. Conclusion: Although 3DCUBE is considered less prone to tissue susceptibility-induced artifact and distortion, our preliminary data showed that both sequences had insignificant differences on positional and volumetric CV in most head-and-neck tissues except for PGL. This study is majorly limited in its small sample size. Influences of image contrasts(T1w v.s. T2w) and inter-observer difference have to be further investigated.« less
Vedantham, Srinivasan; Shi, Linxi; Michaelsen, Kelly E.; Krishnaswamy, Venkataramanan; Pogue, Brian W.; Poplack, Steven P.; Karellas, Andrew; Paulsen, Keith D.
2016-01-01
A multimodality system combining a clinical prototype digital breast tomosynthesis with its imaging geometry modified to facilitate near-infrared spectroscopic imaging has been developed. The accuracy of parameters recovered from near-infrared spectroscopy is dependent on fibroglandular tissue content. Hence, in this study, volumetric estimates of fibroglandular tissue from tomosynthesis reconstructions were determined. A kernel-based fuzzy c-means algorithm was implemented to segment tomosynthesis reconstructed slices in order to estimate fibroglandular content and to provide anatomic priors for near-infrared spectroscopy. This algorithm was used to determine volumetric breast density (VBD), defined as the ratio of fibroglandular tissue volume to the total breast volume, expressed as percentage, from 62 tomosynthesis reconstructions of 34 study participants. For a subset of study participants who subsequently underwent mammography, VBD from mammography matched for subject, breast laterality and mammographic view was quantified using commercial software and statistically analyzed to determine if it differed from tomosynthesis. Summary statistics of the VBD from all study participants were compared with prior independent studies. The fibroglandular volume from tomosynthesis and mammography were not statistically different (p=0.211, paired t-test). After accounting for the compressed breast thickness, which were different between tomosynthesis and mammography, the VBD from tomosynthesis was correlated with (r =0.809, p<0.001), did not statistically differ from (p>0.99, paired t-test), and was linearly related to, the VBD from mammography. Summary statistics of the VBD from tomosynthesis were not statistically different from prior studies using high-resolution dedicated breast computed tomography. The observation of correlation and linear association in VBD between mammography and tomosynthesis suggests that breast density associated risk measures determined for mammography are translatable to tomosynthesis. Accounting for compressed breast thickness is important when it differs between the two modalities. The fibroglandular volume from tomosynthesis reconstructions is similar to mammography indicating suitability for use during near-infrared spectroscopy. PMID:26941961
NASA Astrophysics Data System (ADS)
Ferrucci, M.; Muralikrishnan, B.; Sawyer, D.; Phillips, S.; Petrov, P.; Yakovlev, Y.; Astrelin, A.; Milligan, S.; Palmateer, J.
2014-10-01
Large volume laser scanners are increasingly being used for a variety of dimensional metrology applications. Methods to evaluate the performance of these scanners are still under development and there are currently no documentary standards available. This paper describes the results of extensive ranging and volumetric performance tests conducted on a large volume laser scanner. The results demonstrated small but clear systematic errors that are explained in the context of a geometric error model for the instrument. The instrument was subsequently returned to the manufacturer for factory calibration. The ranging and volumetric tests were performed again and the results are compared against those obtained prior to the factory calibration.
Dreizin, David; Bodanapally, Uttam K; Neerchal, Nagaraj; Tirada, Nikki; Patlas, Michael; Herskovits, Edward
2016-11-01
Manually segmented traumatic pelvic hematoma volumes are strongly predictive of active bleeding at conventional angiography, but the method is time intensive, limiting its clinical applicability. We compared volumetric analysis using semi-automated region growing segmentation to manual segmentation and diameter-based size estimates in patients with pelvic hematomas after blunt pelvic trauma. A 14-patient cohort was selected in an anonymous randomized fashion from a dataset of patients with pelvic binders at MDCT, collected retrospectively as part of a HIPAA-compliant IRB-approved study from January 2008 to December 2013. To evaluate intermethod differences, one reader (R1) performed three volume measurements using the manual technique and three volume measurements using the semi-automated technique. To evaluate interobserver differences for semi-automated segmentation, a second reader (R2) performed three semi-automated measurements. One-way analysis of variance was used to compare differences in mean volumes. Time effort was also compared. Correlation between the two methods as well as two shorthand appraisals (greatest diameter, and the ABC/2 method for estimating ellipsoid volumes) was assessed with Spearman's rho (r). Intraobserver variability was lower for semi-automated compared to manual segmentation, with standard deviations ranging between ±5-32 mL and ±17-84 mL, respectively (p = 0.0003). There was no significant difference in mean volumes between the two readers' semi-automated measurements (p = 0.83); however, means were lower for the semi-automated compared with the manual technique (manual: mean and SD 309.6 ± 139 mL; R1 semi-auto: 229.6 ± 88.2 mL, p = 0.004; R2 semi-auto: 243.79 ± 99.7 mL, p = 0.021). Despite differences in means, the correlation between the two methods was very strong and highly significant (r = 0.91, p < 0.001). Correlations with diameter-based methods were only moderate and nonsignificant. Mean semi-automated segmentation time effort was 2 min and 6 s and 2 min and 35 s for R1 and R2, respectively, vs. 22 min and 8 s for manual segmentation. Semi-automated pelvic hematoma volumes correlate strongly with manually segmented volumes. Since semi-automated segmentation can be performed reliably and efficiently, volumetric analysis of traumatic pelvic hematomas is potentially valuable at the point-of-care.
Inventory of File gdas1.t06z.sfluxgrbf00.grib2
analysis Volumetric Soil Moisture Content [Fraction] 007 0.1-0.4 m below ground SOILW analysis Volumetric Soil Moisture Content [Fraction] 008 0-0.1 m below ground TMP analysis Temperature [K] 009 0.1-0.4 m Volumetric Soil Moisture Content [Fraction] 068 1-2 m below ground SOILW analysis Volumetric Soil Moisture
Tsujimoto, Akimasa; Barkmeier, Wayne W; Takamizawa, Toshiki; Latta, Mark A; Miyazaki, Masashi
2017-03-31
The purpose of this study was to investigate the depth of cure, flexural properties and volumetric shrinkage of low and high viscosity bulk-fill giomers and resin composites. Depth of cure and flexural properties were determined according to ISO 4049, and volumetric shrinkage was measured using a dilatometer. The depths of cure of giomers were significantly lower than those of resin composites, regardless of photo polymerization times. No difference in flexural strength and modulus was found among either high or low viscosity bulk fill materials. Volumetric shrinkage of low and high viscosity bulk-fill resin composites was significantly less than low and high viscosity giomers. Depth of cure of both low and high viscosity bulk-fill materials is time dependent. Flexural strength and modulus of high viscosity or low viscosity bulk-fill giomer or resin composite materials are not different for their respective category. Resin composites exhibited less polymerization shrinkage than giomers.
NASA Astrophysics Data System (ADS)
Näppi, Janne J.; Hironaka, Toru; Yoshida, Hiroyuki
2018-02-01
Even though the clinical consequences of a missed colorectal cancer far outweigh those of a missed polyp, there has been little work on computer-aided detection (CADe) for colorectal masses in CT colonography (CTC). One of the problems is that it is not clear how to manually design mathematical image-based features that could be used to differentiate effectively between masses and certain types of normal colon anatomy such as ileocecal valves (ICVs). Deep learning has demonstrated ability to automatically determine effective discriminating features in many image-based problems. Recently, residual networks (ResNets) were developed to address the practical problems of constructing deep network architectures for optimizing the performance of deep learning. In this pilot study, we compared the classification performance of a conventional 2D-convolutional ResNet (2D-ResNet) with that of a volumetric 3D-convolutional ResNet (3D-ResNet) in differentiating masses from normal colon anatomy in CTC. For the development and evaluation of the ResNets, 695 volumetric images of biopsy-proven colorectal masses, ICVs, haustral folds, and rectal tubes were sampled from 196 clinical CTC cases and divided randomly into independent training, validation, and test datasets. The training set was expanded by use of volumetric data augmentation. Our preliminary results on the 140 test samples indicate that it is feasible to train a deep volumetric 3D-ResNet for performing effective image-based discriminations in CTC. The 3D-ResNet slightly outperformed the 2D-ResNet in the discrimination of masses and normal colon anatomy, but the statistical difference between their very high classification accuracies was not significant. The highest classification accuracy was obtained by combining the mass-likelihood estimates of the 2D- and 3D-ResNets, which enabled correct classification of all of the masses.
Barthassat, Emilienne; Afifi, Faik; Konala, Praveen; Rasch, Helmut; Hirschmann, Michael T
2017-05-08
It was the primary purpose of our study to evaluate the inter- and intra-observer reliability of a standardized SPECT/CT algorithm for evaluating patients with painful primary total hip arthroplasty (THA). The secondary purpose was a comparison of semi-quantitative and 3D volumetric quantification method for assessment of bone tracer uptake (BTU) in those patients. A novel SPECT/CT localization scheme consisting of 14 femoral and 4 acetabular regions on standardized axial and coronal slices was introduced and evaluated in terms of inter- and intra-observer reliability in 37 consecutive patients with hip pain after THA. BTU for each anatomical region was assessed semi-quantitatively using a color-coded Likert type scale (0-10) and volumetrically quantified using a validated software. Two observers interpreted the SPECT/CT findings in all patients two times with six weeks interval between interpretations in random order. Semi-quantitative and quantitative measurements were compared in terms of reliability. In addition, the values were correlated using Pearson`s correlation. A factorial cluster analysis of BTU was performed to identify clinically relevant regions, which should be grouped and analysed together. The localization scheme showed high inter- and intra-observer reliabilities for all femoral and acetabular regions independent of the measurement method used (semiquantitative versus 3D volumetric quantitative measurements). A high to moderate correlation between both measurement methods was shown for the distal femur, the proximal femur and the acetabular cup. The factorial cluster analysis showed that the anatomical regions might be summarized into three distinct anatomical regions. These were the proximal femur, the distal femur and the acetabular cup region. The SPECT/CT algorithm for assessment of patients with pain after THA is highly reliable independent from the measurement method used. Three clinically relevant anatomical regions (proximal femoral, distal femoral, acetabular) were identified.
Panigrahy, A; Barnes, P D; Robertson, R L; Back, S A; Sleeper, L A; Sayre, J W; Kinney, H C; Volpe, J J
2001-09-01
The purpose of this study was to compare both the volumes of the lateral ventricles and the cerebral white matter with gestational age at birth of children with periventricular white matter (PVWM) T2-signal hyperintensities on MR images. The spectrum of neuromotor abnormalities associated with these hyperintensities was also determined. We retrospectively reviewed the MR images of 70 patients who were between the ages of 1 and 5 years and whose images showed PVWM T2-signal hyperintensities. The patients were divided into premature (n = 35 children) and term (n = 35) groups depending on their gestational age at birth. Volumetric analysis was performed on four standardized axial sections using T2-weighted images. Volumes of interest were digitized on the basis of gray-scale densities of signal intensities to define the hemispheric cerebral white matter and lateral ventricles. Age-adjusted comparisons of volumetric measurements between the premature and term groups were performed using analysis of covariance. The volume of the cerebral white matter was smaller in the premature group (54 +/- 2 cm(3)) than in the term group (79 +/- 3 cm(3), p < 0.0001). The volume of the lateral ventricles was greater among the patients in the premature group (30 +/- 2 cm(3)) than among those in the term group (13 +/- 1 cm(3), p < 0.0001). Fifty percent of all the premature children had spastic diplegia or quadriplegia. Thirty-two percent of all the term children had hypotonia. There were patients in both groups whose PVWM T2-signal hyperintensities did not correlate with any neuromotor abnormalities but were associated with seizures or developmental delays. The differences in volumetric measurements of cerebral white matter and lateral ventricles in children with PVWM T2-signal hyperintensities are related to their gestational age at birth. Several neurologic motor abnormalities are found in children with such hyperintensities.
Wang, Jui-Kai; Kardon, Randy H.; Kupersmith, Mark J.; Garvin, Mona K.
2012-01-01
Purpose. To develop an automated method for the quantification of volumetric optic disc swelling in papilledema subjects using spectral-domain optical coherence tomography (SD-OCT) and to determine the extent that such volumetric measurements correlate with Frisén scale grades (from fundus photographs) and two-dimensional (2-D) peripapillary retinal nerve fiber layer (RNFL) and total retinal (TR) thickness measurements from SD-OCT. Methods. A custom image-analysis algorithm was developed to obtain peripapillary circular RNFL thickness, TR thickness, and TR volume measurements from SD-OCT volumes of subjects with papilledema. In addition, peripapillary RNFL thickness measures from the commercially available Zeiss SD-OCT machine were obtained. Expert Frisén scale grades were independently obtained from corresponding fundus photographs. Results. In 71 SD-OCT scans, the mean (± standard deviation) resulting TR volumes for Frisén scale 0 to scale 4 were 11.36 ± 0.56, 12.53 ± 1.21, 14.42 ± 2.11, 17.48 ± 2.63, and 21.81 ± 3.16 mm3, respectively. The Spearman's rank correlation coefficient was 0.737. Using 55 eyes with valid Zeiss RNFL measurements, Pearson's correlation coefficient (r) between the TR volume and the custom algorithm's TR thickness, the custom algorithm's RNFL thickness, and Zeiss' RNFL thickness was 0.980, 0.929, and 0.946, respectively. Between Zeiss' RNFL and the custom algorithm's RNFL, and the study's TR thickness, r was 0.901 and 0.961, respectively. Conclusions. Volumetric measurements of the degree of disc swelling in subjects with papilledema can be obtained from SD-OCT volumes, with the mean volume appearing to be roughly linearly related to the Frisén scale grade. Using such an approach can provide a more continuous, objective, and robust means for assessing the degree of disc swelling compared with presently available approaches. PMID:22599584
Shin, H-J; Song, J H; Jung, J-Y; Kwak, Y-K; Kay, C S; Kang, Y-N; Choi, B O; Jang, H S
2013-01-01
Objective: To evaluate the accuracy of pencil beam calculation (PBC) and Monte Carlo calculation (MCC) for dynamic arc therapy (DAT) in a cylindrically shaped homogenous phantom, by comparing the two plans with an ion chamber, a film and a three-dimensional (3D) volumetric dosemeter. Methods: For this study, an in-house phantom was constructed, and the PBC and MCC plans for DAT were performed using iPlan® RT (BrainLAB®, Heimstetten, Germany). The A16 micro ion chamber (Standard Imaging, Middleton, WI), Gafchromic® EBT2 film (International Specialty Products, Wayne, NJ) and ArcCHECK™ (Sun Nuclear, Melbourne, FL) were used for measurements. For comparison with each plan, two-dimensional (2D) and 3D gamma analyses were performed using 3%/3 mm and 2%/2 mm criteria. Results: The difference between the PBC and MCC plans using 2D and 3D gamma analyses was found to be 7.85% and 28.8%, respectively. The ion chamber and 2D dose distribution measurements did not exhibit this difference revealed by the comparison between the PBC and MCC plans. However, the 3D assessment showed a significant difference between the PBC and MCC (62.7% for PBC vs 93.4% for MCC, p = 0.034). Conclusion: Evaluation using a 3D volumetric dosemeter can be clinically useful for delivery quality assurance (QA), and the MCC should be used to achieve the most reliable dose calculation for DAT. Advances in knowledge: (1) The DAT plan calculated using the PBC has a limitation in the calculation methods, and a 3D volumetric dosemeter was found to be an adequate tool for delivery QA of DAT. (2) The MCC was superior to PBC in terms of the accuracy in dose calculation for DAT even in the homogenous condition. PMID:24234583
Estimation of Soil-Water Characteristic Curves in Multiple-Cycles Using Membrane and TDR System
Hong, Won-Taek; Jung, Young-Seok; Kang, Seonghun; Lee, Jong-Sub
2016-01-01
The objective of this study is to estimate multiple-cycles of the soil-water characteristic curve (SWCC) using an innovative volumetric pressure plate extractor (VPPE), which is incorporated with a membrane and time domain reflectometry (TDR). The pressure cell includes the membrane to reduce the experimental time and the TDR probe to automatically estimate the volumetric water content. For the estimation of SWCC using the VPPE system, four specimens with different grain size and void ratio are prepared. The volumetric water contents of the specimens according to the matric suction are measured by the burette system and are estimated in the TDR system during five cycles of SWCC tests. The volumetric water contents estimated by the TDR system are almost identical to those determined by the burette system. The experimental time significantly decreases with the new VPPE. The hysteresis in the SWCC is largest in the first cycle and is nearly identical after 1.5 cycles. As the initial void ratio decreases, the air entry value increases. This study suggests that the new VPPE may effectively estimate multiple-cycles of the SWCC of unsaturated soils. PMID:28774139
Ramírez-Nava, Gerardo J; Santos-Cuevas, Clara L; Chairez, Isaac; Aranda-Lara, Liliana
2017-12-01
The aim of this study was to characterize the in vivo volumetric distribution of three folate-based biosensors by different imaging modalities (X-ray, fluorescence, Cerenkov luminescence, and radioisotopic imaging) through the development of a tridimensional image reconstruction algorithm. The preclinical and multimodal Xtreme imaging system, with a Multimodal Animal Rotation System (MARS), was used to acquire bidimensional images, which were processed to obtain the tridimensional reconstruction. Images of mice at different times (biosensor distribution) were simultaneously obtained from the four imaging modalities. The filtered back projection and inverse Radon transformation were used as main image-processing techniques. The algorithm developed in Matlab was able to calculate the volumetric profiles of 99m Tc-Folate-Bombesin (radioisotopic image), 177 Lu-Folate-Bombesin (Cerenkov image), and FolateRSense™ 680 (fluorescence image) in tumors and kidneys of mice, and no significant differences were detected in the volumetric quantifications among measurement techniques. The imaging tridimensional reconstruction algorithm can be easily extrapolated to different 2D acquisition-type images. This characteristic flexibility of the algorithm developed in this study is a remarkable advantage in comparison to similar reconstruction methods.
Zero mortality in more than 300 hepatic resections: validity of preoperative volumetric analysis.
Itoh, Shinji; Shirabe, Ken; Taketomi, Akinobu; Morita, Kazutoyo; Harimoto, Norifumi; Tsujita, Eiji; Sugimachi, Keishi; Yamashita, Yo-Ichi; Gion, Tomonobu; Maehara, Yoshihiko
2012-05-01
We reviewed a series of patients who underwent hepatic resection at our institution, to investigate the risk factors for postoperative complications after hepatic resection of liver tumors and for procurement of living donor liver transplantation (LDLT) grafts. Between April 2004 and August 2007, we performed 304 hepatic resections for liver tumors or to procure grafts for LDLT. Preoperative volumetric analysis was done using 3-dimensional computed tomography (3D-CT) prior to major hepatic resection. We compared the clinicopathological factors between patients with and without postoperative complications. There was no operative mortality. According to the 3D-CT volumetry, the mean error ratio between the actual and the estimated remnant liver volume was 13.4%. Postoperative complications developed in 96 (31.6%) patients. According to logistic regression analysis, histological liver cirrhosis and intraoperative blood loss >850 mL were significant risk factors of postoperative complications after hepatic resection. Meticulous preoperative evaluation based on volumetric analysis, together with sophisticated surgical techniques, achieved zero mortality and minimized intraoperative blood loss, which was classified as one of the most significant predictors of postoperative complications after major hepatic resection.
Teistler, M; Breiman, R S; Lison, T; Bott, O J; Pretschner, D P; Aziz, A; Nowinski, W L
2008-10-01
Volumetric imaging (computed tomography and magnetic resonance imaging) provides increased diagnostic detail but is associated with the problem of navigation through large amounts of data. In an attempt to overcome this problem, a novel 3D navigation tool has been designed and developed that is based on an alternative input device. A 3D mouse allows for simultaneous definition of position and orientation of orthogonal or oblique multiplanar reformatted images or slabs, which are presented within a virtual 3D scene together with the volume-rendered data set and additionally as 2D images. Slabs are visualized with maximum intensity projection, average intensity projection, or standard volume rendering technique. A prototype has been implemented based on PC technology that has been tested by several radiologists. It has shown to be easily understandable and usable after a very short learning phase. Our solution may help to fully exploit the diagnostic potential of volumetric imaging by allowing for a more efficient reading process compared to currently deployed solutions based on conventional mouse and keyboard.
Tomographic imaging of OH laser-induced fluorescence in laminar and turbulent jet flames
NASA Astrophysics Data System (ADS)
Li, Tao; Pareja, Jhon; Fuest, Frederik; Schütte, Manuel; Zhou, Yihui; Dreizler, Andreas; Böhm, Benjamin
2018-01-01
In this paper a new approach for 3D flame structure diagnostics using tomographic laser-induced fluorescence (Tomo-LIF) of the OH radical was evaluated. The approach combined volumetric illumination with a multi-camera detection system of eight views. Single-shot measurements were performed in a methane/air premixed laminar flame and in a non-premixed turbulent methane jet flame. 3D OH fluorescence distributions in the flames were reconstructed using the simultaneous multiplicative algebraic reconstruction technique. The tomographic measurements were compared and validated against results of OH-PLIF in the laminar flame. The effects of the experimental setup of the detection system and the size of the volumetric illumination on the quality of the tomographic reconstructions were evaluated. Results revealed that the Tomo-LIF is suitable for volumetric reconstruction of flame structures with acceptable spatial resolution and uncertainty. It was found that the number of views and their angular orientation have a strong influence on the quality and accuracy of the tomographic reconstruction while the illumination volume thickness influences mainly the spatial resolution.
Xu, Kui; Lin, Zifeng; Merlet, Céline; Taberna, Pierre-Louis; Miao, Ling; Jiang, Jianjun; Simon, Patrice
2017-12-06
We present a molecular dynamics simulation study achieved on two-dimensional (2D) Ti 3 C 2 T x MXenes in the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM] + [TFSI] - ) electrolyte. Our simulations reproduce the different patterns of volumetric change observed experimentally for both the negative and positive electrodes. The analysis of ionic fluxes and structure rearrangements in the 2D material provide an atomic scale insight into the charge and discharge processes in the layer pore and confirm the existence of two different charge-storage mechanisms at the negative and positive electrodes. The ionic number variation and the structure rearrangement contribute to the dynamic volumetric changes of both electrodes: negative electrode expansion and positive electrode contraction. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mishra, Pankaj; Li, Ruijiang; Mak, Raymond H.; Rottmann, Joerg; Bryant, Jonathan H.; Williams, Christopher L.; Berbeco, Ross I.; Lewis, John H.
2014-01-01
Purpose: In this work the authors develop and investigate the feasibility of a method to estimate time-varying volumetric images from individual MV cine electronic portal image device (EPID) images. Methods: The authors adopt a two-step approach to time-varying volumetric image estimation from a single cine EPID image. In the first step, a patient-specific motion model is constructed from 4DCT. In the second step, parameters in the motion model are tuned according to the information in the EPID image. The patient-specific motion model is based on a compact representation of lung motion represented in displacement vector fields (DVFs). DVFs are calculated through deformable image registration (DIR) of a reference 4DCT phase image (typically peak-exhale) to a set of 4DCT images corresponding to different phases of a breathing cycle. The salient characteristics in the DVFs are captured in a compact representation through principal component analysis (PCA). PCA decouples the spatial and temporal components of the DVFs. Spatial information is represented in eigenvectors and the temporal information is represented by eigen-coefficients. To generate a new volumetric image, the eigen-coefficients are updated via cost function optimization based on digitally reconstructed radiographs and projection images. The updated eigen-coefficients are then multiplied with the eigenvectors to obtain updated DVFs that, in turn, give the volumetric image corresponding to the cine EPID image. Results: The algorithm was tested on (1) Eight digital eXtended CArdiac-Torso phantom datasets based on different irregular patient breathing patterns and (2) patient cine EPID images acquired during SBRT treatments. The root-mean-squared tumor localization error is (0.73 ± 0.63 mm) for the XCAT data and (0.90 ± 0.65 mm) for the patient data. Conclusions: The authors introduced a novel method of estimating volumetric time-varying images from single cine EPID images and a PCA-based lung motion model. This is the first method to estimate volumetric time-varying images from single MV cine EPID images, and has the potential to provide volumetric information with no additional imaging dose to the patient. PMID:25086523
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishra, Pankaj, E-mail: pankaj.mishra@varian.com; Mak, Raymond H.; Rottmann, Joerg
2014-08-15
Purpose: In this work the authors develop and investigate the feasibility of a method to estimate time-varying volumetric images from individual MV cine electronic portal image device (EPID) images. Methods: The authors adopt a two-step approach to time-varying volumetric image estimation from a single cine EPID image. In the first step, a patient-specific motion model is constructed from 4DCT. In the second step, parameters in the motion model are tuned according to the information in the EPID image. The patient-specific motion model is based on a compact representation of lung motion represented in displacement vector fields (DVFs). DVFs are calculatedmore » through deformable image registration (DIR) of a reference 4DCT phase image (typically peak-exhale) to a set of 4DCT images corresponding to different phases of a breathing cycle. The salient characteristics in the DVFs are captured in a compact representation through principal component analysis (PCA). PCA decouples the spatial and temporal components of the DVFs. Spatial information is represented in eigenvectors and the temporal information is represented by eigen-coefficients. To generate a new volumetric image, the eigen-coefficients are updated via cost function optimization based on digitally reconstructed radiographs and projection images. The updated eigen-coefficients are then multiplied with the eigenvectors to obtain updated DVFs that, in turn, give the volumetric image corresponding to the cine EPID image. Results: The algorithm was tested on (1) Eight digital eXtended CArdiac-Torso phantom datasets based on different irregular patient breathing patterns and (2) patient cine EPID images acquired during SBRT treatments. The root-mean-squared tumor localization error is (0.73 ± 0.63 mm) for the XCAT data and (0.90 ± 0.65 mm) for the patient data. Conclusions: The authors introduced a novel method of estimating volumetric time-varying images from single cine EPID images and a PCA-based lung motion model. This is the first method to estimate volumetric time-varying images from single MV cine EPID images, and has the potential to provide volumetric information with no additional imaging dose to the patient.« less
Ross, David E; Ochs, Alfred L; DeSmit, Megan E; Seabaugh, Jan M; Havranek, Michael D
2015-01-01
This study is an expanded version of an earlier study, which compared NeuroQuant measures of MRI brain volume with the radiologist's traditional approach in outpatients with mild or moderate traumatic brain injury. NeuroQuant volumetric analyses were compared with the radiologists' interpretations. NeuroQuant found significantly higher rates of atrophy (50.0%), abnormal asymmetry (83.3%), and progressive atrophy (70.0%) than the radiologists (12.5%, 0% and 0%, respectively). Overall, NeuroQuant was more sensitive for detecting at least one sign of atrophy, abnormal asymmetry, or progressive atrophy (95.8%) than the traditional radiologist's approach (12.5%).
Co-treatment of landfill leachate and domestic wastewater using a submerged aerobic biofilter.
Ferraz, F M; Povinelli, J; Pozzi, E; Vieira, E M; Trofino, J C
2014-08-01
This study used a pilot-scale submerged aerobic biofilter (SAB) to evaluate the co-treatment of domestic wastewater and landfill leachate that was pre-treated by air stripping. The leachate tested volumetric ratios were 0, 2, and 5%. At a hydraulic retention time of 24 h, the SAB was best operated with a volumetric ratio of 2% and removed 98% of the biochemical oxygen demand (BOD), 80% of the chemical oxygen demand (COD) and dissolved organic carbon (DOC), and 90% of the total suspended solids (TSS). A proposed method, which we called the "equivalent in humic acid" (Eq.HA) approach, indicated that the hardly biodegradable organic matter in leachate was removed by partial degradation (71% of DOC Eq.HA removal). Adding leachate at a volumetric ratio of 5%, the concentration of the hardly biodegradable organic matter was decreased primarily as a result of dilution rather than biodegradation, which was confirmed by Fourier transform infrared (FTIR) spectroscopy. The total ammoniacal nitrogen (TAN) was mostly removed (90%) by nitrification, and the SAB performances at the volumetric ratios of 0 and 2% were equal. For the three tested volumetric ratios of leachate (0, 2, and 5%), the concentrations of heavy metals in the treated samples were below the local limits. Copyright © 2014 Elsevier Ltd. All rights reserved.
The neural correlates of obsessive-compulsive disorder: a multimodal perspective.
Moreira, P S; Marques, P; Soriano-Mas, C; Magalhães, R; Sousa, N; Soares, J M; Morgado, P
2017-08-29
Obsessive-compulsive disorder (OCD) is one of the most debilitating psychiatric conditions. An extensive body of the literature has described some of the neurobiological mechanisms underlying the core manifestations of the disorder. Nevertheless, most reports have focused on individual modalities of structural/functional brain alterations, mainly through targeted approaches, thus possibly precluding the power of unbiased exploratory approaches. Eighty subjects (40 OCD and 40 healthy controls) participated in a multimodal magnetic resonance imaging (MRI) investigation, integrating structural and functional data. Voxel-based morphometry analysis was conducted to compare between-group volumetric differences. The whole-brain functional connectome, derived from resting-state functional connectivity (FC), was analyzed with the network-based statistic methodology. Results from structural and functional analysis were integrated in mediation models. OCD patients revealed volumetric reductions in the right superior temporal sulcus. Patients had significantly decreased FC in two distinct subnetworks: the first, involving the orbitofrontal cortex, temporal poles and the subgenual anterior cingulate cortex; the second, comprising the lingual and postcentral gyri. On the opposite, a network formed by connections between thalamic and occipital regions had significantly increased FC in patients. Integrative models revealed direct and indirect associations between volumetric alterations and FC networks. This study suggests that OCD patients display alterations in brain structure and FC, involving complex networks of brain regions. Furthermore, we provided evidence for direct and indirect associations between structural and functional alterations representing complex patterns of interactions between separate brain regions, which may be of upmost relevance for explaining the pathophysiology of the disorder.
Effect of low-shrinkage monomers on the physicochemical properties of experimental composite resin
He, Jingwei; Garoushi, Sufyan; Vallittu, Pekka K.; Lassila, Lippo
2018-01-01
Abstract This study was conducted to determine whether novel experimental low-shrinkage dimethacrylate co-monomers could provide low polymerization shrinkage composites without sacrifice to degree of conversion, and mechanical properties of the composites. Experimental composites were prepared by mixing 28.6 wt% of bisphenol-A-glycidyl dimethacrylate based resin matrix (bis-GMA) with various weight-fractions of co-monomers; tricyclo decanedimethanol dacrylate (SR833s) and isobornyl acrylate (IBOA) to 71.4 wt% of particulate-fillers. A composite based on bis-GMA/TEGDMA (triethylene glycol dimethacrylate) was used as a control. Fracture toughness and flexural strength were determined for each experimental material following international standards. Degree of monomer-conversion (DC%) was determined by FTIR spectrometry. The volumetric shrinkage in percent was calculated as a buoyancy change in distilled water by means of the Archimedes’ principle. Polymerization shrinkage-strain and -stress of the specimens were measured using the strain-gage technique and tensilometer, respectively with respect to time. Statistical analysis revealed that control group had the highest double-bond conversion (p < .05) among the experimental resins tested. All of the experimental composite resins had comparable flexural strength, modulus, and fracture toughness (p > .05). Volumetric shrinkage and shrinkage stress decreased with increasing IBOA concentration. Replacing TEGDMA with SR833s and IBOA can decrease the volumetric shrinkage, shrinkage strain, and shrinkage stress of composite resins without affecting the mechanical properties. However, the degree of conversion was also decreased. PMID:29536025
Effect of low-shrinkage monomers on the physicochemical properties of experimental composite resin.
He, Jingwei; Garoushi, Sufyan; Vallittu, Pekka K; Lassila, Lippo
2018-01-01
This study was conducted to determine whether novel experimental low-shrinkage dimethacrylate co-monomers could provide low polymerization shrinkage composites without sacrifice to degree of conversion, and mechanical properties of the composites. Experimental composites were prepared by mixing 28.6 wt% of bisphenol-A-glycidyl dimethacrylate based resin matrix ( bis -GMA) with various weight-fractions of co-monomers; tricyclo decanedimethanol dacrylate (SR833s) and isobornyl acrylate (IBOA) to 71.4 wt% of particulate-fillers. A composite based on bis -GMA/TEGDMA (triethylene glycol dimethacrylate) was used as a control. Fracture toughness and flexural strength were determined for each experimental material following international standards. Degree of monomer-conversion (DC%) was determined by FTIR spectrometry. The volumetric shrinkage in percent was calculated as a buoyancy change in distilled water by means of the Archimedes' principle. Polymerization shrinkage-strain and -stress of the specimens were measured using the strain-gage technique and tensilometer, respectively with respect to time. Statistical analysis revealed that control group had the highest double-bond conversion ( p < .05) among the experimental resins tested. All of the experimental composite resins had comparable flexural strength, modulus, and fracture toughness ( p > .05). Volumetric shrinkage and shrinkage stress decreased with increasing IBOA concentration. Replacing TEGDMA with SR833s and IBOA can decrease the volumetric shrinkage, shrinkage strain, and shrinkage stress of composite resins without affecting the mechanical properties. However, the degree of conversion was also decreased.
Kashou, Nasser H; Dar, Irfaan A; El-Mahdy, Mohamed A; Pluto, Charles; Smith, Mark; Gulati, Ish K; Lo, Warren; Jadcherla, Sudarshan R
2017-01-01
The usefulness of qualitative or quantitative volumetric magnetic resonance imaging (MRI) in early detection of brain structural changes and prediction of adverse outcomes in neonatal illnesses warrants further investigation. Our aim was to correlate certain brain injuries and the brain volume of feeding-related cortical and subcortical regions with feeding method at discharge among preterm dysphagic infants. Using a retrospective observational study design, we examined MRI data among 43 (22 male; born at 31.5 ± 0.8 week gestation) infants who went home on oral feeding or gastrostomy feeding (G-tube). MRI scans were segmented, and volumes of brainstem, cerebellum, cerebrum, basal ganglia, thalamus, and vermis were quantified, and correlations were made with discharge feeding outcomes. Chi-squared tests were used to evaluate MRI findings vs. feeding outcomes. ANCOVA was performed on the regression model to measure the association of maturity and brain volume between groups. Out of 43 infants, 44% were oral-fed and 56% were G-tube fed at hospital discharge (but not at time of the study). There was no relationship between qualitative brain lesions and feeding outcomes. Volumetric analysis revealed that cerebellum was greater ( p < 0.05) in G-tube fed infants, whereas cerebrum volume was greater ( p < 0.05) in oral-fed infants. Other brain regions did not show volumetric differences between groups. This study concludes that neither qualitative nor quantitative volumetric MRI findings correlate with feeding outcomes. Understanding the complexity of swallowing and feeding difficulties in infants warrants a comprehensive and in-depth functional neurological assessment.
Noordermeer, Siri D S; Luman, Marjolein; Greven, Corina U; Veroude, Kim; Faraone, Stephen V; Hartman, Catharina A; Hoekstra, Pieter J; Franke, Barbara; Buitelaar, Jan K; Heslenfeld, Dirk J; Oosterlaan, Jaap
2017-11-01
Attention-deficit/hyperactivity disorder (ADHD) is associated with structural abnormalities in total gray matter, basal ganglia, and cerebellum. Findings of structural abnormalities in frontal and temporal lobes, amygdala, and insula are less consistent. Remarkably, the impact of comorbid oppositional defiant disorder (ODD) (comorbidity rates up to 60%) on these neuroanatomical differences is scarcely studied, while ODD (in combination with conduct disorder) has been associated with structural abnormalities of the frontal lobe, amygdala, and insula. The aim of this study was to investigate the effect of comorbid ODD on cerebral volume and cortical thickness in ADHD. Three groups, 16 ± 3.5 years of age (mean ± SD; range 7-29 years), were studied on volumetric and cortical thickness characteristics using structural magnetic resonance imaging (surface-based morphometry): ADHD+ODD (n = 67), ADHD-only (n = 243), and control subjects (n = 233). Analyses included the moderators age, gender, IQ, and scan site. ADHD+ODD and ADHD-only showed volumetric reductions in total gray matter and (mainly) frontal brain areas. Stepwise volumetric reductions (ADHD+ODD < ADHD-only < control subjects) were found for mainly frontal regions, and ADHD+ODD was uniquely associated with reductions in several structures (e.g., the precuneus). In general, findings remained significant after accounting for ADHD symptom severity. There were no group differences in cortical thickness. Exploratory voxelwise analyses showed no group differences. ADHD+ODD and ADHD-only were associated with volumetric reductions in brain areas crucial for attention, (working) memory, and decision-making. Volumetric reductions of frontal lobes were largest in the ADHD+ODD group, possibly underlying observed larger impairments in neurocognitive functions. Previously reported striatal abnormalities in ADHD may be caused by comorbid conduct disorder rather than ODD. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Volumetric modulated arc therapy vs. IMRT for the treatment of distal esophageal cancer.
Van Benthuysen, Liam; Hales, Lee; Podgorsak, Matthew B
2011-01-01
Several studies have demonstrated that volumetric modulated arc therapy (VMAT) has the ability to reduce monitor units and treatment time when compared with intensity-modulated radiation therapy (IMRT). This study aims to demonstrate that VMAT is able to provide adequate organs at risk (OAR) sparing and planning target volume (PTV) coverage for adenocarcinoma of the distal esophagus while reducing monitor units and treatment time. Fourteen patients having been treated previously for esophageal cancer were planned using both VMAT and IMRT techniques. Dosimetric quality was evaluated based on doses to several OARs, as well as coverage of the PTV. Treatment times were assessed by recording the number of monitor units required for dose delivery. Body V(5) was also recorded to evaluate the increased volume of healthy tissue irradiated to low doses. Dosimetric differences in OAR sparing between VMAT and IMRT were comparable. PTV coverage was similar for the 2 techniques but it was found that IMRT was capable of delivering a slightly more homogenous dose distribution. Of the 14 patients, 12 were treated with a single arc and 2 were treated with a double arc. Single-arc plans reduced monitor units by 42% when compared with the IMRT plans. Double-arc plans reduced monitor units by 67% when compared with IMRT. The V(5) for the body was found to be 18% greater for VMAT than for IMRT. VMAT has the capability to decrease treatment times over IMRT while still providing similar OAR sparing and PTV coverage. Although there will be a smaller risk of patient movement during VMAT treatments, this advantage comes at the cost of delivering small doses to a greater volume of the patient. Copyright © 2011 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
Hydrodynamic study of an internal airlift reactor for microalgae culture.
Rengel, Ana; Zoughaib, Assaad; Dron, Dominique; Clodic, Denis
2012-01-01
Internal airlift reactors are closed systems considered today for microalgae cultivation. Several works have studied their hydrodynamics but based on important solid concentrations, not with biomass concentrations usually found in microalgae cultures. In this study, an internal airlift reactor has been built and tested in order to clarify the hydrodynamics of this system, based on microalgae typical concentrations. A model is proposed taking into account the variation of air bubble velocity according to volumetric air flow rate injected into the system. A relationship between riser and downcomer gas holdups is established, which varied slightly with solids concentrations. The repartition of solids along the reactor resulted to be homogenous for the range of concentrations and volumetric air flow rate studied here. Liquid velocities increase with volumetric air flow rate, and they vary slightly when solids are added to the system. Finally, liquid circulation time found in each section of the reactor is in concordance with those employed in microalgae culture.
Field Management of Hot Mix Asphalt Volumetric Properties
DOT National Transportation Integrated Search
1995-12-01
The Federal Highway Administration (FHWA) Demonstration Project No. 74 has clearly shown that significant differences exist between the volumetric properties of the laboratory designed and plant produced hot mix asphalt (HMA) mixes. The volumetric pr...
GEOMETRIC, VOLUMETRIC, COLOUR AND FRICTIONAL PROPERTIES OF SELECTED SALVIA SPECIES OF TURKEY.
Bayram, Mustafa; Altuntas, Ebubekir; Yilar, Melih
2017-01-01
Salvia seeds are promite to dietary and healthy oils because they contain essential fatty acids. Salvia seeds frequently produce mucilage on soaking, and this mucilage is used for the treatment of eye diseases in eastern countries. Salvia species studied for medicine, food and cosmetics, have the potential to be used in the various fields. In the present study, selected engineering (geometrical, volumetrical, colour and frictional) properties of 6 Salvia species seeds were determined and compared. This study was performed on selected engineering properties of seeds of 6 Salvia species ( Salvia viridis L., Salvia aethiopis L., Salvia cryptantha Montbert & Aucher ex Benthan., Salvia tomentosa Mill ., Salvia sclarea L., Salvia virgata Jacq.,) cultivated in Turkey. Plants were collected during the vegetation in 2012-2013 (May-Agust). The seeds were cleaned from foreign matter, dirt and broken seeds manually. The average length, width and thickness were found in the range of 2.61 to 3.53 mm, 1.59 to 2.92 mm and 1.14 to 2.52 mm, respectively. Salvia viridis L. specie had the lowest geometric mean diameter and surface area, whereas Salvia cryptantha L. had the least values among these 6 Salvia species for these properties. The bulk density, true density and the porosity were between 296.83 and 702.80 kg m -3 , 285.69 and 718.08 kg m -3 , 10.27 and 44.05%, respectively. The volume of unit seed and sphericity ranged between 2.56 and 13.64 mm 3 , 62.90 and 90.40%, respectively. The coefficient of friction of salvia species were largely influenced by the friction surfaces studied, and highest values were found for polywood in the Salvia crytantha L.. In the study, the static friction coefficient and the angle of repose of salvia species changed from 0.477 to 0.955, and from 14.09 to 23.57°, respectively. Determination of geometric, volumetric, colour and frictional properties of Salvia spp. seeds may increase their economic value.
Soft bilateral filtering volumetric shadows using cube shadow maps
Ali, Hatam H.; Sunar, Mohd Shahrizal; Kolivand, Hoshang
2017-01-01
Volumetric shadows often increase the realism of rendered scenes in computer graphics. Typical volumetric shadows techniques do not provide a smooth transition effect in real-time with conservation on crispness of boundaries. This research presents a new technique for generating high quality volumetric shadows by sampling and interpolation. Contrary to conventional ray marching method, which requires extensive time, this proposed technique adopts downsampling in calculating ray marching. Furthermore, light scattering is computed in High Dynamic Range buffer to generate tone mapping. The bilateral interpolation is used along a view rays to smooth transition of volumetric shadows with respect to preserving-edges. In addition, this technique applied a cube shadow map to create multiple shadows. The contribution of this technique isreducing the number of sample points in evaluating light scattering and then introducing bilateral interpolation to improve volumetric shadows. This contribution is done by removing the inherent deficiencies significantly in shadow maps. This technique allows obtaining soft marvelous volumetric shadows, having a good performance and high quality, which show its potential for interactive applications. PMID:28632740
Volumetric graphics in liquid using holographic femtosecond laser pulse excitations
NASA Astrophysics Data System (ADS)
Kumagai, Kota; Hayasaki, Yoshio
2017-06-01
Much attention has been paid to the development of three-dimensional volumetric displays in the fields of optics and computer graphics, and it is a dream of we display researchers. However, full-color volumetric displays are challenging because many voxels with different colors have to be formed to render volumetric graphics in real three-dimensional space. Here, we show a new volumetric display in which microbubble voxels are three-dimensionally generated in a liquid by focused femtosecond laser pulses. Use of a high-viscosity liquid, which is the key idea of this system, slows down the movement of the microbubbles, and as a result, volumetric graphics can be displayed. This "volumetric bubble display" has a wide viewing angle and simple refresh and requires no addressing wires because it involves optical access to transparent liquid and achieves full-color graphics composed on light-scattering voxels controlled by illumination light sources. In addition, a bursting of bubble graphics system using an ultrasonic vibrator also has been demonstrated. This technology will open up a wide range of applications in three-dimensional displays, augmented reality and computer graphics.
MR Imaging in Spinocerebellar Ataxias: A Systematic Review.
Klaes, A; Reckziegel, E; Franca, M C; Rezende, T J R; Vedolin, L M; Jardim, L B; Saute, J A
2016-08-01
Polyglutamine expansion spinocerebellar ataxias are autosomal dominant slowly progressive neurodegenerative diseases with no current treatment. MR imaging is the best-studied surrogate biomarker candidate for polyglutamine expansion spinocerebellar ataxias, though with conflicting results. We aimed to review quantitative central nervous system MR imaging technique findings in patients with polyglutamine expansion spinocerebellar ataxias and correlations with well-established clinical and molecular disease markers. We searched MEDLINE, LILACS, and Cochrane data bases of clinical trials between January 1995 and January 2016, for quantitative MR imaging volumetric approaches, MR spectroscopy, diffusion tensor imaging, or other quantitative techniques, comparing patients with polyglutamine expansion spinocerebellar ataxias (SCAs) with controls. Pertinent details for each study regarding participants, imaging methods, and results were extracted. After reviewing the 706 results, 18 studies were suitable for inclusion: 2 studies in SCA1, 1 in SCA2, 15 in SCA3, 1 in SCA7, 1 in SCA1 and SCA6 presymptomatic carriers, and none in SCA17 and dentatorubropallidoluysian atrophy. Cerebellar hemispheres and vermis, whole brain stem, midbrain, pons, medulla oblongata, cervical spine, striatum, and thalamus presented significant atrophy in SCA3. The caudate, putamen and whole brain stem presented similar sensitivity to change compared with ataxia scales after 2 years of follow-up in a single prospective study in SCA3. MR spectroscopy and DTI showed abnormalities only in cross-sectional studies in SCA3. Results from single studies in other polyglutamine expansion spinocerebellar ataxias should be replicated in different cohorts. Additional cross-sectional and prospective volumetric analysis, MR spectroscopy, and DTI studies are necessary in polyglutamine expansion spinocerebellar ataxias. The properties of preclinical disease biomarkers (presymptomatic) of MR imaging should be targeted in future studies. © 2016 by American Journal of Neuroradiology.
Tanpitukpongse, T P; Mazurowski, M A; Ikhena, J; Petrella, J R
2017-03-01
Alzheimer disease is a prevalent neurodegenerative disease. Computer assessment of brain atrophy patterns can help predict conversion to Alzheimer disease. Our aim was to assess the prognostic efficacy of individual-versus-combined regional volumetrics in 2 commercially available brain volumetric software packages for predicting conversion of patients with mild cognitive impairment to Alzheimer disease. Data were obtained through the Alzheimer's Disease Neuroimaging Initiative. One hundred ninety-two subjects (mean age, 74.8 years; 39% female) diagnosed with mild cognitive impairment at baseline were studied. All had T1-weighted MR imaging sequences at baseline and 3-year clinical follow-up. Analysis was performed with NeuroQuant and Neuroreader. Receiver operating characteristic curves assessing the prognostic efficacy of each software package were generated by using a univariable approach using individual regional brain volumes and 2 multivariable approaches (multiple regression and random forest), combining multiple volumes. On univariable analysis of 11 NeuroQuant and 11 Neuroreader regional volumes, hippocampal volume had the highest area under the curve for both software packages (0.69, NeuroQuant; 0.68, Neuroreader) and was not significantly different ( P > .05) between packages. Multivariable analysis did not increase the area under the curve for either package (0.63, logistic regression; 0.60, random forest NeuroQuant; 0.65, logistic regression; 0.62, random forest Neuroreader). Of the multiple regional volume measures available in FDA-cleared brain volumetric software packages, hippocampal volume remains the best single predictor of conversion of mild cognitive impairment to Alzheimer disease at 3-year follow-up. Combining volumetrics did not add additional prognostic efficacy. Therefore, future prognostic studies in mild cognitive impairment, combining such tools with demographic and other biomarker measures, are justified in using hippocampal volume as the only volumetric biomarker. © 2017 by American Journal of Neuroradiology.
Shibasaki, S; Takamizawa, T; Nojiri, K; Imai, A; Tsujimoto, A; Endo, H; Suzuki, S; Suda, S; Barkmeier, W W; Latta, M A; Miyazaki, M
The present study determined the mechanical properties and volumetric polymerization shrinkage of different categories of resin composite. Three high viscosity bulk fill resin composites were tested: Tetric EvoCeram Bulk Fill (TB, Ivoclar Vivadent), Filtek Bulk Fill posterior restorative (FB, 3M ESPE), and Sonic Fill (SF, Kerr Corp). Two low-shrinkage resin composites, Kalore (KL, GC Corp) and Filtek LS Posterior (LS, 3M ESPE), were used. Three conventional resin composites, Herculite Ultra (HU, Kerr Corp), Estelite ∑ Quick (EQ, Tokuyama Dental), and Filtek Supreme Ultra (SU, 3M ESPE), were used as comparison materials. Following ISO Specification 4049, six specimens for each resin composite were used to determine flexural strength, elastic modulus, and resilience. Volumetric polymerization shrinkage was determined using a water-filled dilatometer. Data were evaluated using analysis of variance followed by Tukey's honestly significant difference test (α=0.05). The flexural strength of the resin composites ranged from 115.4 to 148.1 MPa, the elastic modulus ranged from 5.6 to 13.4 GPa, and the resilience ranged from 0.70 to 1.0 MJ/m 3 . There were significant differences in flexural properties between the materials but no clear outliers. Volumetric changes as a function of time over a duration of 180 seconds depended on the type of resin composite. However, for all the resin composites, apart from LS, volumetric shrinkage began soon after the start of light irradiation, and a rapid decrease in volume during light irradiation followed by a slower decrease was observed. The low shrinkage resin composites KL and LS showed significantly lower volumetric shrinkage than the other tested materials at the measuring point of 180 seconds. In contrast, the three bulk fill resin composites showed higher volumetric change than the other resin composites. The findings from this study provide clinicians with valuable information regarding the mechanical properties and polymerization kinetics of these categories of current resin composite.
Ong, Kevin L; Rundell, Steve; Liepins, Imants; Laurent, Ryan; Markel, David; Kurtz, Steven M
2009-11-01
Press-fit implantation may result in acetabular component deformation between the ischial-ilial columns ("pinching"). The biomechanical and clinical consequences of liner pinching due to press-fit implantation have not been well studied. We compared the effects of pinching on the polyethylene fracture risk, potential wear rate, and stresses for two different thickness liners using computational methods. Line-to-line ("no pinch") reaming and 2 mm underreaming press fit ("pinch") conditions were examined for Trident cups with X3 polyethylene liner wall thicknesses of 5.9 mm (36E) and 3.8 mm (40E). Press-fit cup deformations were measured from a foam block configuration. A hybrid material model, calibrated to experimentally determined stress-strain behavior of sequentially annealed polyethylene, was applied to the computational model. Molecular chain stretch did not exceed the fracture threshold in any cases. Nominal shell pinch of 0.28 mm was estimated to increase the volumetric wear rate by 70% for both cups and peak contact stresses by 140 and 170% for the 5.9 and 3.8 mm-thick liners, respectively. Although pinching increases liner stresses, polyethylene fracture is highly unlikely, and the volumetric wear rates are likely to be low compared to conventional polyethylene. (c) 2009 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Volumetric Real-Time Imaging Using a CMUT Ring Array
Choe, Jung Woo; Oralkan, Ömer; Nikoozadeh, Amin; Gencel, Mustafa; Stephens, Douglas N.; O’Donnell, Matthew; Sahn, David J.; Khuri-Yakub, Butrus T.
2012-01-01
A ring array provides a very suitable geometry for forward-looking volumetric intracardiac and intravascular ultrasound imaging. We fabricated an annular 64-element capacitive micromachined ultrasonic transducer (CMUT) array featuring a 10-MHz operating frequency and a 1.27-mm outer radius. A custom software suite was developed to run on a PC-based imaging system for real-time imaging using this device. This paper presents simulated and experimental imaging results for the described CMUT ring array. Three different imaging methods—flash, classic phased array (CPA), and synthetic phased array (SPA)—were used in the study. For SPA imaging, two techniques to improve the image quality—Hadamard coding and aperture weighting—were also applied. The results show that SPA with Hadamard coding and aperture weighting is a good option for ring-array imaging. Compared with CPA, it achieves better image resolution and comparable signal-to-noise ratio at a much faster image acquisition rate. Using this method, a fast frame rate of up to 463 volumes per second is achievable if limited only by the ultrasound time of flight; with the described system we reconstructed three cross-sectional images in real-time at 10 frames per second, which was limited by the computation time in synthetic beamforming. PMID:22718870
Influence of operating microscope in the sealing of cervical perforations.
Schmidt, Bruna Schwingel; Zaccara, Ivana Maria; Reis Só, Marcus Vinícius; Kuga, Milton Carlos; Palma-Dibb, Regina Guenka; Kopper, Patrícia Maria Poli
2016-01-01
Accidental root canal perforations are among the main complications of endodontic treatment. This study evaluated the influence of operating microscope (OM) in the marginal adaptation of mineral trioxide aggregate (MTA) (Angelus(®)) and glass ionomer (Vitremer) inserted into cervical perforations. Perforations were made in the cervical third of the buccal wall of the root canal in mandibular incisors. Next, the teeth were divided into four groups (N = 10): MG - MTA without OM; VG - Vitremer without OM; MOMG - MTA with OM; VOMG - Vitremer with OM. The perforations were sealed according to the group and the teeth were prepared for analysis by confocal laser scanning microscope. Images of perforation region (1,024×) were made and the gap presented by the materials was measured using the Image J program. LEXT OLS4100 three dimensional (3D) measuring laser microscope measured the volumetric misfit. Data of gap were analyzed by Kruskal-Wallis and Dunn's tests. Analysis of variance (ANOVA) and Tukey's tests compared the volumetric misfits. The results showed lower volume and gap in the interface dentin/material in VOMG compared to the other groups (P < 0.05). The use of OM improved the quality of cervical perforations sealed with Vitremer, being indicated in clinical situations of iatrogenic cervical perforations.
Khare, Ketan S; Khare, Rajesh
2013-06-20
We have used atomistic molecular simulations to study the effect of nanofiller dispersion on the glass transition behavior of cross-linked epoxy-carbon nanotube (CNT) nanocomposites. Specific chemical interactions at the interface of CNTs and cross-linked epoxy create an interphase region, whose impact on the properties of their nanocomposites increases with an increasing extent of dispersion. To investigate this aspect, we have compared the volumetric, structural, and dynamical properties of three systems: neat cross-linked epoxy, cross-linked epoxy nanocomposite containing dispersed CNTs, and cross-linked epoxy nanocomposite containing aggregated CNTs. We find that the nanocomposite containing dispersed CNTs shows a depression in the glass transition temperature (Tg) by ~66 K as compared to the neat cross-linked epoxy, whereas such a large depression is absent in the nanocomposite containing aggregated CNTs. Our results suggest that the poor interfacial interactions between the CNTs and the cross-linked epoxy matrix lead to a more compressible interphase region between the CNTs and the bulk matrix. An analysis of the resulting dynamic heterogeneity shows that the probability of percolation of immobile domains becomes unity near the Tg calculated from volumetric properties. Our observations also lend support to the conceptual analogy between polymer nanocomposites and the nanoconfinement of polymer thin films.
Volumetric real-time imaging using a CMUT ring array.
Choe, Jung Woo; Oralkan, Ömer; Nikoozadeh, Amin; Gencel, Mustafa; Stephens, Douglas N; O'Donnell, Matthew; Sahn, David J; Khuri-Yakub, Butrus T
2012-06-01
A ring array provides a very suitable geometry for forward-looking volumetric intracardiac and intravascular ultrasound imaging. We fabricated an annular 64-element capacitive micromachined ultrasonic transducer (CMUT) array featuring a 10-MHz operating frequency and a 1.27-mm outer radius. A custom software suite was developed to run on a PC-based imaging system for real-time imaging using this device. This paper presents simulated and experimental imaging results for the described CMUT ring array. Three different imaging methods--flash, classic phased array (CPA), and synthetic phased array (SPA)--were used in the study. For SPA imaging, two techniques to improve the image quality--Hadamard coding and aperture weighting--were also applied. The results show that SPA with Hadamard coding and aperture weighting is a good option for ring-array imaging. Compared with CPA, it achieves better image resolution and comparable signal-to-noise ratio at a much faster image acquisition rate. Using this method, a fast frame rate of up to 463 volumes per second is achievable if limited only by the ultrasound time of flight; with the described system we reconstructed three cross-sectional images in real-time at 10 frames per second, which was limited by the computation time in synthetic beamforming.
Assessment of bone turnover markers and bone mineral density in normal short boys.
Gayretli Aydin, Zeynep Gökçe; Bideci, Aysun; Emeksiz, Hamdi C; Çelik, Nurullah; Döğer, Esra; Bukan, Neslihan; Yildiz, Ummügülsüm; Camurdan, Orhun M; Cinaz, Peyami
2015-11-01
To investigate whether there is a change in bone turnover-related biochemical markers and bone mineral density of children with constitutional delay of growth and puberty (CDGP) in the prepubertal period. We measured serum calcium, phosphorus, alkaline phosphatase, parathormone, 25-OH vitamin D, osteocalcin, osteoprotogerin and urinary deoxypyridinoline levels (D-pyd), and bone mineral density (BMD) in 31 prepubertal boys with CDGP. These children were compared with 22 prepubertal boys with familial short stature (FSS) and 27 normal prepubertal boys. Urinary D-pyd was significantly high in CDGP group as compared to control group (p=0.010). Volumetric BMD did not significantly differ between CDGP, FSS, and control groups (p=0.450). Volumetric BMD and urinary D-pyd levels of FSS and control groups were similar. Mean or median levels of calcium, phosphorus, alkaline phosphatase, parathormone, and osteoprotegerin did not significantly differ between CDGP, FSS, and control groups. Our data suggest that prepubertal boys with CDPG have normal bone turnover. However, their significantly higher urinary D-pyd levels relative to those of FSS and control groups might be an indicator of later development of osteoporosis. Therefore, long-term follow-up studies monitoring bone mineral status of prepubertal boys with CDPG from prepuberty to adulthood are needed to better understand bone metabolism of these patients.
Welsh, A W; Hou, M; Meriki, N; Martins, W P
2012-10-01
Volumetric impedance indices derived from spatiotemporal image correlation (STIC) power Doppler ultrasound (PDU) might overcome the influence of machine settings and attenuation. We examined the feasibility of obtaining these indices from spherical samples of anterior placentas in healthy pregnancies, and assessed intraobserver reliability and correlation with conventional umbilical artery (UA) impedance indices. Uncomplicated singleton pregnancies with anterior placenta were included in the study. A single observer evaluated UA pulsatility index (PI), resistance index (RI) and systolic/diastolic ratio (S/D) and acquired three STIC-PDU datasets from the placenta just above the placental cord insertion. Another observer analyzed the STIC-PDU datasets using Virtual Organ Computer-aided AnaLysis (VOCAL) spherical samples from every frame to determine the vascularization index (VI) and vascularization flow index (VFI); maximum, minimum and average values were used to determine the three volumetric impedance indices (vPI, vRI, vS/D). Intraobserver reliability was examined by intraclass correlation coefficients (ICC) and association between volumetric indices from placenta, and UA Doppler indices were assessed by Pearson's correlation coefficient. A total of 25 pregnant women were evaluated but five were excluded because of artifacts observed during analysis. The reliability of measurement of volumetric indices of both VI and VFI from three STIC-PDU datasets was similar, with all ICCs ≥ 0.78. Pearson's r values showed a weak and non-significant correlation between UA pulsed-wave Doppler indices and their respective volumetric indices from spherical samples of placenta (all r ≥ 0.23). VOCAL indices from specific phases of the cardiac cycle showed good repeatability (ICC ≥ 0.92). Volumetric impedance indices determined from spherical samples of placenta are sufficiently reliable but do not correlate with UA Doppler indices in healthy pregnancies. Copyright © 2012 ISUOG. Published by John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Chen, Biao; Ruth, Chris; Jing, Zhenxue; Ren, Baorui; Smith, Andrew; Kshirsagar, Ashwini
2014-03-01
Breast density has been identified to be a risk factor of developing breast cancer and an indicator of lesion diagnostic obstruction due to masking effect. Volumetric density measurement evaluates fibro-glandular volume, breast volume, and breast volume density measures that have potential advantages over area density measurement in risk assessment. One class of volume density computing methods is based on the finding of the relative fibro-glandular tissue attenuation with regards to the reference fat tissue, and the estimation of the effective x-ray tissue attenuation differences between the fibro-glandular and fat tissue is key to volumetric breast density computing. We have modeled the effective attenuation difference as a function of actual x-ray skin entrance spectrum, breast thickness, fibro-glandular tissue thickness distribution, and detector efficiency. Compared to other approaches, our method has threefold advantages: (1) avoids the system calibration-based creation of effective attenuation differences which may introduce tedious calibrations for each imaging system and may not reflect the spectrum change and scatter induced overestimation or underestimation of breast density; (2) obtains the system specific separate and differential attenuation values of fibroglandular and fat for each mammographic image; and (3) further reduces the impact of breast thickness accuracy to volumetric breast density. A quantitative breast volume phantom with a set of equivalent fibro-glandular thicknesses has been used to evaluate the volume breast density measurement with the proposed method. The experimental results have shown that the method has significantly improved the accuracy of estimating breast density.
Volumetric breast density affects performance of digital screening mammography.
Wanders, Johanna O P; Holland, Katharina; Veldhuis, Wouter B; Mann, Ritse M; Pijnappel, Ruud M; Peeters, Petra H M; van Gils, Carla H; Karssemeijer, Nico
2017-02-01
To determine to what extent automatically measured volumetric mammographic density influences screening performance when using digital mammography (DM). We collected a consecutive series of 111,898 DM examinations (2003-2011) from one screening unit of the Dutch biennial screening program (age 50-75 years). Volumetric mammographic density was automatically assessed using Volpara. We determined screening performance measures for four density categories comparable to the American College of Radiology (ACR) breast density categories. Of all the examinations, 21.6% were categorized as density category 1 ('almost entirely fatty') and 41.5, 28.9, and 8.0% as category 2-4 ('extremely dense'), respectively. We identified 667 screen-detected and 234 interval cancers. Interval cancer rates were 0.7, 1.9, 2.9, and 4.4‰ and false positive rates were 11.2, 15.1, 18.2, and 23.8‰ for categories 1-4, respectively (both p-trend < 0.001). The screening sensitivity, calculated as the proportion of screen-detected among the total of screen-detected and interval tumors, was lower in higher density categories: 85.7, 77.6, 69.5, and 61.0% for categories 1-4, respectively (p-trend < 0.001). Volumetric mammographic density, automatically measured on digital mammograms, impacts screening performance measures along the same patterns as established with ACR breast density categories. Since measuring breast density fully automatically has much higher reproducibility than visual assessment, this automatic method could help with implementing density-based supplemental screening.
Determining soil volumetric moisture content using time domain reflectometry
DOT National Transportation Integrated Search
1998-02-01
Time domain reflectometry (TDR) is a technique used to measure indirectly the in situ volumetric moisture content of soil. Current research provides a variety of prediction equations that estimate the volumetric moisture content using the dielectric ...
Domsik, Péter; Kalapos, Anita; Chadaide, Számi; Sepp, Róbert; Hausinger, Péter; Forster, Tamás; Nemes, Attila
2014-11-01
Hypertrophic cardiomyopathy (HCM) represents a generalized myopathic process affecting both ventricular and atrial myocardium. Reduced left atrial (LA) function was demonstrated in HCM by different methods. Three-dimensional (3D) speckle tracking echocardiography (STE) has just been introduced for the evaluation of LA. This study was designed to compare 3DSTE-derived LA volumetric and strain parameters in HCM with healthy controls. The study comprised 23 consecutive HCM patients (mean age: 48.5 ± 15.1 years, 14 men). Their results were compared to 23 age- and gender-matched healthy controls. Complete two-dimensional Doppler echocardiography and 3DSTE have been performed in all cases. Calculated LA maximum (66.4 ± 20.4 mL vs. 36.0 ± 6.1 mL, P < 0.0001) and minimum (39.2 ± 19.1 vs. 16.0 ± 4.6 mL, P < 0.0001) volumes and LA volume before atrial contraction (53.6 ± 19.9 vs. 24.0 ± 6.2 mL, P < 0.0001) were significantly increased in HCM patients. Atrial stroke volumes respecting cardiac cycles proved to be increased, while emptying fractions were decreased in subjects with HCM. Mean global radial (-12.2 ± 6.7% vs. -19.6 ± 11.7, P < 0.05), longitudinal (26.5 ± 16.5% vs. 29.8 ± 12.1%, P < 0.05) and 3D strain (-6.1 ± 4.4% vs. -12.5 ± 10.2%, P < 0.05) proved to be significantly reduced in HCM patients as compared with matched controls. Three-dimensional speckle tracking echocardiography allows detailed evaluation of LA (dys) function in HCM by volumetric and strain measurements. © 2014, Wiley Periodicals, Inc.
USDA-ARS?s Scientific Manuscript database
The aim of this study was to validate dual sap flow sensors that combine two heat pulse techniques to measure volumetric water use over the full range of sap flows found in grapevines. The heat ratio method (HRM), which works well at measuring low and reverse flows, was combined with the compensati...
Validation of a free software for unsupervised assessment of abdominal fat in MRI.
Maddalo, Michele; Zorza, Ivan; Zubani, Stefano; Nocivelli, Giorgio; Calandra, Giulio; Soldini, Pierantonio; Mascaro, Lorella; Maroldi, Roberto
2017-05-01
To demonstrate the accuracy of an unsupervised (fully automated) software for fat segmentation in magnetic resonance imaging. The proposed software is a freeware solution developed in ImageJ that enables the quantification of metabolically different adipose tissues in large cohort studies. The lumbar part of the abdomen (19cm in craniocaudal direction, centered in L3) of eleven healthy volunteers (age range: 21-46years, BMI range: 21.7-31.6kg/m 2 ) was examined in a breath hold on expiration with a GE T1 Dixon sequence. Single-slice and volumetric data were considered for each subject. The results of the visceral and subcutaneous adipose tissue assessments obtained by the unsupervised software were compared to supervised segmentations of reference. The associated statistical analysis included Pearson correlations, Bland-Altman plots and volumetric differences (VD % ). Values calculated by the unsupervised software significantly correlated with corresponding supervised segmentations of reference for both subcutaneous adipose tissue - SAT (R=0.9996, p<0.001) and visceral adipose tissue - VAT (R=0.995, p<0.001). Bland-Altman plots showed the absence of systematic errors and a limited spread of the differences. In the single-slice analysis, VD % were (1.6±2.9)% for SAT and (4.9±6.9)% for VAT. In the volumetric analysis, VD % were (1.3±0.9)% for SAT and (2.9±2.7)% for VAT. The developed software is capable of segmenting the metabolically different adipose tissues with a high degree of accuracy. This free add-on software for ImageJ can easily have a widespread and enable large-scale population studies regarding the adipose tissue and its related diseases. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Menéndez González, Manuel; Suárez-Sanmartin, Esther; García, Ciara; Martínez-Camblor, Pablo; Westman, Eric; Simmons, Andy
2016-03-26
Though a disproportionate rate of atrophy in the medial temporal lobe (MTA) represents a reliable marker of Alzheimer's disease (AD) pathology, measurement of the MTA is not currently widely used in daily clinical practice. This is mainly because the methods available to date are sophisticated and difficult to implement in clinical practice (volumetric methods), are poorly explored (linear and planimetric methods), or lack objectivity (visual rating). Here, we aimed to compare the results of a manual planimetric measure (the yearly rate of absolute atrophy of the medial temporal lobe, 2D-yrA-MTL) with the results of an automated volumetric measure (the yearly rate of atrophy of the hippocampus, 3D-yrA-H). A series of 1.5T MRI studies on 290 subjects in the age range of 65-85 years, including patients with AD (n = 100), mild cognitive impairment (MCI) (n = 100), and matched controls (n = 90) from the AddNeuroMed study, were examined by two independent subgroups of researchers: one in charge of volumetric measures and the other in charge of planimetric measures. The means of both methods were significantly different between AD and the other two diagnostic groups. In the differential diagnosis of AD against controls, 3D-yrA-H performed significantly better than 2D-yrA-MTL while differences were not statistically significant in the differential diagnosis of AD against MCI. Automated volumetry of the hippocampus is superior to manual planimetry of the MTL in the diagnosis of AD. Nevertheless, the 2D-yrAMTL is a simpler method that could be easily implemented in clinical practice when volumetry is not available.
Volumetric calculations in an oil field: The basis method
Olea, R.A.; Pawlowsky, V.; Davis, J.C.
1993-01-01
The basis method for estimating oil reserves in place is compared to a traditional procedure that uses ordinary kriging. In the basis method, auxiliary variables that sum to the net thickness of pay are estimated by cokriging. In theory, the procedure should be more powerful because it makes full use of the cross-correlation between variables and forces the original variables to honor interval constraints. However, at least in our case study, the practical advantages of cokriging for estimating oil in place are marginal. ?? 1993.
Lattice Strain Due to an Atomic Vacancy
Li, Shidong; Sellers, Michael S.; Basaran, Cemal; Schultz, Andrew J.; Kofke, David A.
2009-01-01
Volumetric strain can be divided into two parts: strain due to bond distance change and strain due to vacancy sources and sinks. In this paper, efforts are focused on studying the atomic lattice strain due to a vacancy in an FCC metal lattice with molecular dynamics simulation (MDS). The result has been compared with that from a continuum mechanics method. It is shown that using a continuum mechanics approach yields constitutive results similar to the ones obtained based purely on molecular dynamics considerations. PMID:19582230
NASA Technical Reports Server (NTRS)
Jergas, M.; Breitenseher, M.; Gluer, C. C.; Yu, W.; Genant, H. K.
1995-01-01
To determine whether estimates of volumetric bone density from projectional scans of the lumbar spine have weaker associations with height and weight and stronger associations with prevalent vertebral fractures than standard projectional bone mineral density (BMD) and bone mineral content (BMC), we obtained posteroanterior (PA) dual X-ray absorptiometry (DXA), lateral supine DXA (Hologic QDR 2000), and quantitative computed tomography (QCT, GE 9800 scanner) in 260 postmenopausal women enrolled in two trials of treatment for osteoporosis. In 223 women, all vertebral levels, i.e., L2-L4 in the DXA scan and L1-L3 in the QCT scan, could be evaluated. Fifty-five women were diagnosed as having at least one mild fracture (age 67.9 +/- 6.5 years) and 168 women did not have any fractures (age 62.3 +/- 6.9 years). We derived three estimates of "volumetric bone density" from PA DXA (BMAD, BMAD*, and BMD*) and three from paired PA and lateral DXA (WA BMD, WA BMDHol, and eVBMD). While PA BMC and PA BMD were significantly correlated with height (r = 0.49 and r = 0.28) or weight (r = 0.38 and r = 0.37), QCT and the volumetric bone density estimates from paired PA and lateral scans were not (r = -0.083 to r = 0.050). BMAD, BMAD*, and BMD* correlated with weight but not height. The associations with vertebral fracture were stronger for QCT (odds ratio [QR] = 3.17; 95% confidence interval [CI] = 1.90-5.27), eVBMD (OR = 2.87; CI 1.80-4.57), WA BMDHol (OR = 2.86; CI 1.80-4.55) and WA-BMD (OR = 2.77; CI 1.75-4.39) than for BMAD*/BMD* (OR = 2.03; CI 1.32-3.12), BMAD (OR = 1.68; CI 1.14-2.48), lateral BMD (OR = 1.88; CI 1.28-2.77), standard PA BMD (OR = 1.47; CI 1.02-2.13) or PA BMC (OR = 1.22; CI 0.86-1.74). The areas under the receiver operating characteristic (ROC) curves for QCT and all estimates of volumetric BMD were significantly higher compared with standard PA BMD and PA BMC. We conclude that, like QCT, estimates of volumetric bone density from paired PA and lateral scans are unaffected by height and weight and are more strongly associated with vertebral fracture than standard PA BMD or BMC, or estimates of volumetric density that are solely based on PA DXA scans.
NASA Astrophysics Data System (ADS)
Tamaddon, Maryam; Chen, Shen Mao; Vanaclocha, Leyre; Hart, Alister; El-Husseiny, Moataz; Henckel, Johann; Liu, Chaozong
2017-11-01
Osteoarthritis (OA) is the most common type of arthritis and a major cause of disability in the adult population. It affects both cartilage and subchondral bone in the joints. There has been some progress in understanding the changes in subchondral bone with progression of osteoarthritis. However, local changes in subchondral bone such as microstructure or volumetric bone mineral density in connection with the defect in cartilage are relatively unexplored. To develop an effective treatment for progression of OA, it is important to understand how the physical environment provided by the subchondral bone affects the overlying cartilage. In this study we examined the volumetric bone mineral density (vBMD) distribution in the osteoarthritic joint tissues obtained from total hip replacement surgeries due to osteoarthritis, using peripheral quantitative CT (pQCT). It was found that there is a significant decrease in volumetric bone mineral density, which co-localises with the damage in the overlying cartilage. This was not limited to the subchondral bone immediately adjacent to the cartilage defect but continued in the layers below. Bone resorption and cyst formation in the OA tissues were also detected. We observed that the bone surrounding subchondral bone cysts exhibited much higher volumetric bone mineral density than that of the surrounding bones. PQCT was able to detect significant changes in vBMD between OA and non-OA samples, as well as between areas of different cartilage degeneration, which points to its potential as a technique for detection of early OA.
Pichler, Josef; Pachinger, Corinna; Pelz, Manuela; Kleiser, Raimund
2013-05-01
To develop a magnetic resonance imaging (MRI) metric that is useful for therapy monitoring in patients with relapsed glioblastoma (GBM) during treatment with the antiangiogenic monoclonal antibody bevacizumab (Bev). We evaluated the feasibility of tumour volume measurement with our software tool in clinical routine and tried to establish reproducible and quantitative parameters for surveillance of patients on treatment with antiangiogenic drugs. In this retrospective institutional pilot study, 18 patients (11 men, 7 women; mean age 53.5) with recurrent GBM received bevacizumab and irinotecan every two weeks as second line therapy. Follow up scans were assessed every two to four months. Data were collected on a 1.5 T MR System (Siemens, Symphony) with the standard head coil using our standardized tumour protocol. Volumetric measurement was performed with a commercial available software stroketool in FLAIR and T1-c imaging with following procedure: Pre-processing involved cutting noise and electing a Gaussian of 3 × 3 to smooth images, selecting a ROI (region of interest) in healthy brain area of the contra lateral side with quantifying the intensity value, adding 20% to this value to define the threshold level. Only values above this threshold are left corresponding to the tumour lesion. For the volumetric measurement the detected tumour area was circuited in all slices and finally summing up all values and multiplied by slice thickness to get the whole volume. With McDonalds criteria progression was indicated in 14 out of 18 patients. In contrast, volumetric measurement showed an increase of contrast enhancement of >25%, defined as threshold for progression, in 11 patients (78%) and in 12 patients (85%) in FLAIR volume, respectively. 6 patients revealed that volumes in MRI increased earlier than the last scan, which was primarily defined as the date of progression with McDonald criteria, changing PFS after re-evaluation of the tumour volumes from 6.8 to 5.6 months. In this pilot study the applied imaging estimates objectively tumour response and progression compared to the bi-dimensional measurement. The quantitative parameters are reproducible and also applicable for the diffuse infiltrating lesions. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Asymmetric bias in user guided segmentations of brain structures
NASA Astrophysics Data System (ADS)
Styner, Martin; Smith, Rachel G.; Graves, Michael M.; Mosconi, Matthew W.; Peterson, Sarah; White, Scott; Blocher, Joe; El-Sayed, Mohammed; Hazlett, Heather C.
2007-03-01
Brain morphometric studies often incorporate comparative asymmetry analyses of left and right hemispheric brain structures. In this work we show evidence that common methods of user guided structural segmentation exhibit strong left-right asymmetric biases and thus fundamentally influence any left-right asymmetry analyses. We studied several structural segmentation methods with varying degree of user interaction from pure manual outlining to nearly fully automatic procedures. The methods were applied to MR images and their corresponding left-right mirrored images from an adult and a pediatric study. Several expert raters performed the segmentations of all structures. The asymmetric segmentation bias is assessed by comparing the left-right volumetric asymmetry in the original and mirrored datasets, as well as by testing each sides volumetric differences to a zero mean standard t-tests. The structural segmentations of caudate, putamen, globus pallidus, amygdala and hippocampus showed a highly significant asymmetric bias using methods with considerable manual outlining or landmark placement. Only the lateral ventricle segmentation revealed no asymmetric bias due to the high degree of automation and a high intensity contrast on its boundary. Our segmentation methods have been adapted in that they are applied to only one of the hemispheres in an image and its left-right mirrored image. Our work suggests that existing studies of hemispheric asymmetry without similar precautions should be interpreted in a new, skeptical light. Evidence of an asymmetric segmentation bias is novel and unknown to the imaging community. This result seems less surprising to the visual perception community and its likely cause is differences in perception of oppositely curved 3D structures.
Operative contractility: a functional concept of the inotropic state.
Curiel, Roberto; Perez-Gonzalez, Juan; Torres, Edwar; Landaeta, Ruben; Cerrolaza, Miguel
2005-10-01
1. Initial unsuccessful attempts to evaluate ventricular function in terms of the 'heart as a pump' led to focusing on the 'heart as a muscle' and to the concept of myocardial contractility. However, no clinically ideal index exists to assess the contractile state. The aim of the present study was to develop a mathematical model to assess cardiac contractility. 2. A tri-axial system was conceived for preload (PL), afterload (AL) and contractility, where stroke volume (SV) was represented as the volume of the tetrahedron. Based on this model, 'operative' contractility ('OperCon') was calculated from the readily measured values of PL, AL and SV. The model was tested retrospectively under a variety of different experimental and clinical conditions, in 71 studies in humans and 29 studies in dogs. A prospective echocardiographic study was performed in 143 consecutive subjects to evaluate the ability of the model to assess contractility when SV and PL were measured volumetrically (mL) or dimensionally (cm). 3. With inotropic interventions, OperCon changes were comparable to those of ejection fraction (EF), velocity of shortening (Vcf) and dP/dt-max. Only with positive inotropic interventions did elastance (Ees) show significantly larger changes. With load manipulations, OperCon showed significantly smaller changes than EF and Ees and comparable changes to Vcf and dP/dt-max. Values of OperCon were similar when AL was represented by systolic blood pressure or wall stress and when volumetric or dimensional values were used. 4. Operative contractility is a reliable, simple and versatile method to assess cardiac contractility.
Cerebella segmentation on MR images of pediatric patients with medulloblastoma
NASA Astrophysics Data System (ADS)
Shan, Zu Y.; Ji, Qing; Glass, John; Gajjar, Amar; Reddick, Wilburn E.
2005-04-01
In this study, an automated method has been developed to identify the cerebellum from T1-weighted MR brain images of patients with medulloblastoma. A new objective function that is similar to Gibbs free energy in classic physics was defined; and the brain structure delineation was viewed as a process of minimizing Gibbs free energy. We used a rigid-body registration and an active contour (snake) method to minimize the Gibbs free energy in this study. The method was applied to 20 patient data sets to generate cerebellum images and volumetric results. The generated cerebellum images were compared with two manually drawn results. Strong correlations were found between the automatically and manually generated volumetric results, the correlation coefficients with each of manual results were 0.971 and 0.974, respectively. The average Jaccard similarities with each of two manual results were 0.89 and 0.88, respectively. The average Kappa indexes with each of two manual results were 0.94 and 0.93, respectively. These results showed this method was both robust and accurate for cerebellum segmentation. The method may be applied to various research and clinical investigation in which cerebellum segmentation and quantitative MR measurement of cerebellum are needed.
Kim, Jae-Jin; Kim, Dae-Jin; Kim, Tae-Gyun; Seok, Jeong-Ho; Chun, Ji Won; Oh, Maeng-Keun; Park, Hae-Jeong
2007-12-01
The thalamus, which consists of multiple subnuclei, has been of particular interest in the study of schizophrenia. This study aimed to identify abnormalities in the connectivity-based subregions of the thalamus in patients with schizophrenia. Thalamic volume was measured by a manual tracing on superimposed images of T1-weighted and diffusion tensor images in 30 patients with schizophrenia and 22 normal volunteers. Cortical regional volumes automatically measured by a surface-based approach and thalamic subregional volumes measured by a connectivity-based technique were compared between the two groups and their correlations between the connected regions were calculated in each group. Volume reduction was observed in the bilateral orbitofrontal cortices and the left cingulate gyrus on the cortical side, whereas in subregions connected to the right orbitofrontal cortex and bilateral parietal cortices on the thalamic side. Significant volumetric correlations were identified between the right dorsal prefrontal cortex and its related thalamic subregion and between the left parietal cortex and its related thalamic subregion only in the normal group. Our results suggest that patients with schizophrenia have a structural deficit in the corticothalamic systems, especially in the orbitofrontal-thalamic system. Our findings may present evidence of corticothalamic connection problems in schizophrenia.
Hsu, Chun Liang; Best, John R.; Chiu, Bryan K.; Nagamatsu, Lindsay S; Voss, Michelle W.; Handy, Todd C.; Bolandzadeh, Niousha; Liu-Ambrose, Teresa
2016-01-01
Impaired mobility, such as falls, may be an early biomarker of subsequent cognitive decline and is associated with subclinical alterations in both brain structure and function. In this 12-month prospective study, we examined whether there are volumetric differences in gray matter and subcortical regions, as well as cerebral white matter, between older fallers and non-fallers. In addition, we assessed whether these baseline volumetric differences are associated with changes in cognitive function over 12 months. A total of 66 community-dwelling older adults were recruited and categorized by their falls status. Magnetic resonance imaging occurred at baseline and participants’ physical and cognitive performances were assessed at baseline and 12-months. At baseline, fallers showed significantly lower volumes in gray matter, subcortical regions, and cerebral white matter compared with non-fallers. Notably, fallers had significantly lower left lateral orbitofrontal white matter volume. Moreover, lower left lateral orbitofrontal white matter volume at baseline was associated with greater decline in set-shifting performance over 12 months. Our data suggest that falls may indicate subclinical alterations in regional brain volume that are associated with subsequent decline in executive functions. PMID:27079333
The dosimetric effects of photon energy on the quality of prostate volumetric modulated arc therapy.
Mattes, Malcolm D; Tai, Cyril; Lee, Alvin; Ashamalla, Hani; Ikoro, N C
2014-01-01
Studies comparing the dosimetric effects of high- and low-energy photons to treat prostate cancer using 3-dimensional conformal and intensity modulated radiation therapy have yielded mixed results. With the advent of newer radiation delivery systems like volumetric modulated arc therapy (VMAT), the impact of changing photon energy is readdressed. Sixty-five patients treated for prostate cancer at our institution from 2011 to 2012 underwent CT simulation. A target volume encompassing the prostate and entire seminal vesicles was treated to 50.4 Gy, followed by a boost to the prostate and proximal seminal vesicles to a total dose of 81 Gy. The VMAT plans were generated for 6-MV and 10-MV photons under identical optimization conditions using the Eclipse system version 8.6 (Varian Medical Systems, Palo Alto, CA). The analytical anisotropic algorithm was used for all dose calculations. Plans were normalized such that 98% of the planning target volume (PTV) received 100% of the prescribed dose. Dose-volumetric data from the treatment planning system was recorded for both 6-MV and 10-MV plans, which were compared for both the entire cohort and subsets of patients stratified according to the anterior-posterior separation. Plans using 10-MV photons had statistically significantly lower relative integral dose (4.1%), gradient measure (4.1%), skin Dmax (16.9%), monitor units (13.0%), and bladder V(30) (3.1%) than plans using 6-MV photons (P < .05). There was no difference in rectal dose, high-dose-region bladder dose, PTV coverage, or conformity index. The benefit of 10-MV photons was more pronounced for thicker patients (anterior-posterior separation >21 cm) for most parameters, with statistically significant differences in bladder V(30), bladder V(65), integral dose, conformity index, and monitor units. The main dosimetric benefits of 10-MV as compared with 6-MV photons are seen in thicker patients, though for the entire cohort 10-MV plans resulted in a lower integral dose, gradient measure, skin Dmax, monitor units, and bladder V(30), possibly at the expense of higher rectum V(81). Copyright © 2014 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.
Medvedofsky, Diego; Addetia, Karima; Patel, Amit R; Sedlmeier, Anke; Baumann, Rolf; Mor-Avi, Victor; Lang, Roberto M
2015-10-01
Echocardiographic assessment of the right ventricle is difficult because of its complex shape. Three-dimensional echocardiographic (3DE) imaging allows more accurate and reproducible analysis of the right ventricle than two-dimensional methodology. However, three-dimensional volumetric analysis has been hampered by difficulties obtaining consistently high-quality coronal views, required by the existing software packages. The aim of this study was to test a new approach for volumetric analysis without coronal views by using instead right ventricle-focused three-dimensional acquisition with multiple short-axis views extracted from the same data set. Transthoracic 3DE and cardiovascular magnetic resonance (CMR) images were prospectively obtained on the same day in 147 patients with wide ranges of right ventricular (RV) size and function. RV volumes and ejection fraction were measured from 3DE images using the new software and compared with CMR reference values. Comparisons included linear regression and Bland-Altman analyses. Repeated measurements were performed to assess measurement variability. Sixteen patients were excluded because of suboptimal image quality (89% feasibility). RV volumes and ejection fraction obtained with the new 3DE technique were in good agreement with CMR (end-diastolic volume, r = 0.95; end-systolic volume, r = 0.96; ejection fraction, r = 0.83). Biases were, respectively, -6 ± 11%, 0 ± 15%, and -7 ± 17% of the mean measured values. In a subset of patients with suboptimal 3DE images, the new analysis resulted in significantly improved accuracy against CMR and reproducibility, compared with previously used coronal view-based techniques. The time required for the 3DE analysis was approximately 4 min. The new software is fast, reproducible, and accurate compared with CMR over a wide range of RV size and function. Because right ventricle-focused 3DE acquisition is feasible in most patients, this approach may be applicable to a broader population of patients who can benefit from RV volumetric assessment. Copyright © 2015 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.
Prigge, Molly D; Bigler, Erin D; Fletcher, P Thomas; Zielinski, Brandon A; Ravichandran, Caitlin; Anderson, Jeffrey; Froehlich, Alyson; Abildskov, Tracy; Papadopolous, Evangelia; Maasberg, Kathryn; Nielsen, Jared A; Alexander, Andrew L; Lange, Nicholas; Lainhart, Janet
2013-04-01
Heightened auditory sensitivity and atypical auditory processing are common in autism. Functional studies suggest abnormal neural response and hemispheric activation to auditory stimuli, yet the neurodevelopment underlying atypical auditory function in autism is unknown. In this study, we model longitudinal volumetric growth of Heschl's gyrus gray matter and white matter during childhood and adolescence in 40 individuals with autism and 17 typically developing participants. Up to three time points of magnetic resonance imaging data, collected on average every 2.5 years, were examined from individuals 3-12 years of age at the time of their first scan. Consistent with previous cross-sectional studies, no group differences were found in Heschl's gyrus gray matter volume or asymmetry. However, reduced longitudinal gray matter volumetric growth was found in the right Heschl's gyrus in autism. Reduced longitudinal white matter growth in the left hemisphere was found in the right-handed autism participants. Atypical Heschl's gyrus white matter volumetric growth was found bilaterally in the autism individuals with a history of delayed onset of spoken language. Heightened auditory sensitivity, obtained from the Sensory Profile, was associated with reduced volumetric gray matter growth in the right hemisphere. Our longitudinal analyses revealed dynamic gray and white matter changes in Heschl's gyrus throughout childhood and adolescence in both typical development and autism. © 2013 International Society for Autism Research, Wiley Periodicals, Inc.
Recovery from Proactive Semantic Interference and MRI Volume: A Replication and Extension Study.
Loewenstein, David A; Curiel, Rosie E; DeKosky, Steven; Rosselli, Monica; Bauer, Russell; Grieg-Custo, Maria; Penate, Ailyn; Li, Chunfei; Lizagarra, Gabriel; Golde, Todd; Adjouadi, Malek; Duara, Ranjan
2017-01-01
The rise in incidence of Alzheimer's disease (AD) has led to efforts to advance early detection of the disease during its preclinical stages. To achieve this, the field needs to develop more sensitive cognitive tests that relate to biological markers of disease pathology. Failure to recover from proactive interference (frPSI) is one such cognitive marker that is associated with volumetric reductions in the hippocampus, precuneus, and other AD-prone regions, and to amyloid load in the brain. The current study attempted to replicate and extend our previous findings that frPSI is a sensitive marker of early AD, and related to a unique pattern of volumetric loss in AD prone areas. Three different memory measures were examined relative to volumetric loss and cortical thickness among 45 participants with amnestic mild cognitive impairment. frPSI was uniquely associated with reduced volumes in the hippocampus (r = 0.50) precuneus (r = 0.41), and other AD prone regions, replicating previous findings. Strong associations between frPSI and lower entorhinal cortex volumes and cortical thickness (r≥0.60) and precuneus (r = 0.50) were also observed. Unique and strong associations between volumetric reductions and frPSI as observed by Loewenstein and colleagues were replicated. Together with cortical thickness findings, these results indicate that frPSI is worthy of further study as a sensitive and early cognitive marker of AD.
A prospective pilot study measuring muscle volumetric change in amyotrophic lateral sclerosis.
Jenkins, Thomas M; Burness, Christine; Connolly, Daniel J; Rao, D Ganesh; Hoggard, Nigel; Mawson, Susan; McDermott, Christopher J; Wilkinson, Iain D; Shaw, Pamela J
2013-09-01
Our objective was to investigate the potential of muscle volume, measured with magnetic resonance (MR), as a biomarker to quantify disease progression in patients with amyotrophic lateral sclerosis (ALS). In this longitudinal pilot study, we first sought to determine the stability of volumetric muscle MR measurements in 11 control subjects at two time-points. We assessed feasibility of detecting atrophy in four patients with ALS, followed at three-month intervals for 12 months. Muscle power and MR volume were measured in thenar eminence (TEm), first dorsal interosseous (1DIO), tibialis anterior (TA) and tongue. Changes over time were assessed using linear regression models and t-tests. Results demonstrated that, in controls, no volumetric MR changes were seen (mean volume variation in all muscles < 5%, p > 0.1). In patients, between-subject heterogeneity was identified. Trends for volume loss were found in TEm (mean, - 26.84%, p = 0.056) and TA (- 8.29%, p = 0.077), but not in 1DIO (- 18.47%, p = 0.121) or tongue (< 5%, p = 0.367). In conclusion, volumetric muscle MR appears a stable measure in controls, and progressive volume loss was demonstrable in individuals with ALS in whom clinical weakness progressed. In this small study, subclinical atrophy was not demonstrable using muscle MR. Clinico-radiological discordance between muscle weakness and MR atrophy could reflect a contribution of upper motor neuron pathology.
Adaptation of video game UVW mapping to 3D visualization of gene expression patterns
NASA Astrophysics Data System (ADS)
Vize, Peter D.; Gerth, Victor E.
2007-01-01
Analysis of gene expression patterns within an organism plays a critical role in associating genes with biological processes in both health and disease. During embryonic development the analysis and comparison of different gene expression patterns allows biologists to identify candidate genes that may regulate the formation of normal tissues and organs and to search for genes associated with congenital diseases. No two individual embryos, or organs, are exactly the same shape or size so comparing spatial gene expression in one embryo to that in another is difficult. We will present our efforts in comparing gene expression data collected using both volumetric and projection approaches. Volumetric data is highly accurate but difficult to process and compare. Projection methods use UV mapping to align texture maps to standardized spatial frameworks. This approach is less accurate but is very rapid and requires very little processing. We have built a database of over 180 3D models depicting gene expression patterns mapped onto the surface of spline based embryo models. Gene expression data in different models can easily be compared to determine common regions of activity. Visualization software, both Java and OpenGL optimized for viewing 3D gene expression data will also be demonstrated.
NASA Astrophysics Data System (ADS)
Ertas, Gokhan; Doran, Simon; Leach, Martin O.
2011-12-01
In this study, we introduce a novel, robust and accurate computerized algorithm based on volumetric principal component maps and template matching that facilitates lesion detection on dynamic contrast-enhanced MR. The study dataset comprises 24 204 contrast-enhanced breast MR images corresponding to 4034 axial slices from 47 women in the UK multi-centre study of MRI screening for breast cancer and categorized as high risk. The scans analysed here were performed on six different models of scanner from three commercial vendors, sited in 13 clinics around the UK. 1952 slices from this dataset, containing 15 benign and 13 malignant lesions, were used for training. The remaining 2082 slices, with 14 benign and 12 malignant lesions, were used for test purposes. To prevent false positives being detected from other tissues and regions of the body, breast volumes are segmented from pre-contrast images using a fast semi-automated algorithm. Principal component analysis is applied to the centred intensity vectors formed from the dynamic contrast-enhanced T1-weighted images of the segmented breasts, followed by automatic thresholding to eliminate fatty tissues and slowly enhancing normal parenchyma and a convolution and filtering process to minimize artefacts from moderately enhanced normal parenchyma and blood vessels. Finally, suspicious lesions are identified through a volumetric sixfold neighbourhood connectivity search and calculation of two morphological features: volume and volumetric eccentricity, to exclude highly enhanced blood vessels, nipples and normal parenchyma and to localize lesions. This provides satisfactory lesion localization. For a detection sensitivity of 100%, the overall false-positive detection rate of the system is 1.02/lesion, 1.17/case and 0.08/slice, comparing favourably with previous studies. This approach may facilitate detection of lesions in multi-centre and multi-instrument dynamic contrast-enhanced breast MR data.
A novel approach to EPID-based 3D volumetric dosimetry for IMRT and VMAT QA
NASA Astrophysics Data System (ADS)
Alhazmi, Abdulaziz; Gianoli, Chiara; Neppl, Sebastian; Martins, Juliana; Veloza, Stella; Podesta, Mark; Verhaegen, Frank; Reiner, Michael; Belka, Claus; Parodi, Katia
2018-06-01
Intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) are relatively complex treatment delivery techniques and require quality assurance (QA) procedures. Pre-treatment dosimetric verification represents a fundamental QA procedure in daily clinical routine in radiation therapy. The purpose of this study is to develop an EPID-based approach to reconstruct a 3D dose distribution as imparted to a virtual cylindrical water phantom to be used for plan-specific pre-treatment dosimetric verification for IMRT and VMAT plans. For each depth, the planar 2D dose distributions acquired in air were back-projected and convolved by depth-specific scatter and attenuation kernels. The kernels were obtained by making use of scatter and attenuation models to iteratively estimate the parameters from a set of reference measurements. The derived parameters served as a look-up table for reconstruction of arbitrary measurements. The summation of the reconstructed 3D dose distributions resulted in the integrated 3D dose distribution of the treatment delivery. The accuracy of the proposed approach was validated in clinical IMRT and VMAT plans by means of gamma evaluation, comparing the reconstructed 3D dose distributions with Octavius measurement. The comparison was carried out using (3%, 3 mm) criteria scoring 99% and 96% passing rates for IMRT and VMAT, respectively. An accuracy comparable to the one of the commercial device for 3D volumetric dosimetry was demonstrated. In addition, five IMRT and five VMAT were validated against the 3D dose calculation performed by the TPS in a water phantom using the same passing rate criteria. The median passing rates within the ten treatment plans was 97.3%, whereas the lowest was 95%. Besides, the reconstructed 3D distribution is obtained without predictions relying on forward dose calculation and without external phantom or dosimetric devices. Thus, the approach provides a fully automated, fast and easy QA procedure for plan-specific pre-treatment dosimetric verification.
Limited-angle tomography for analyzer-based phase-contrast X-ray imaging
Majidi, Keivan; Wernick, Miles N; Li, Jun; Muehleman, Carol; Brankov, Jovan G
2014-01-01
Multiple-Image Radiography (MIR) is an analyzer-based phase-contrast X-ray imaging method (ABI), which is emerging as a potential alternative to conventional radiography. MIR simultaneously generates three planar parametric images containing information about scattering, refraction and attenuation properties of the object. The MIR planar images are linear tomographic projections of the corresponding object properties, which allows reconstruction of volumetric images using computed tomography (CT) methods. However, when acquiring a full range of linear projections around the tissue of interest is not feasible or the scanning time is limited, limited-angle tomography techniques can be used to reconstruct these volumetric images near the central plane, which is the plane that contains the pivot point of the tomographic movement. In this work, we use computer simulations to explore the applicability of limited-angle tomography to MIR. We also investigate the accuracy of reconstructions as a function of number of tomographic angles for a fixed total radiation exposure. We use this function to find an optimal range of angles over which data should be acquired for limited-angle tomography MIR (LAT-MIR). Next, we apply the LAT-MIR technique to experimentally acquired MIR projections obtained in a cadaveric human thumb study. We compare the reconstructed slices near the central plane to the same slices reconstructed by CT-MIR using the full angular view around the object. Finally, we perform a task-based evaluation of LAT-MIR performance for different numbers of angular views, and use template matching to detect cartilage in the refraction image near the central plane. We use the signal-to-noise ratio of this test as the detectability metric to investigate an optimum range of tomographic angles for detecting soft tissues in LAT-MIR. Both results show that there is an optimum range of angular view for data acquisition where LAT-MIR yields the best performance, comparable to CT-MIR only if one considers volumetric images near the central plane and not the whole volume. PMID:24898008
Limited-angle tomography for analyzer-based phase-contrast x-ray imaging
NASA Astrophysics Data System (ADS)
Majidi, Keivan; Wernick, Miles N.; Li, Jun; Muehleman, Carol; Brankov, Jovan G.
2014-07-01
Multiple-image radiography (MIR) is an analyzer-based phase-contrast x-ray imaging method, which is emerging as a potential alternative to conventional radiography. MIR simultaneously generates three planar parametric images containing information about scattering, refraction and attenuation properties of the object. The MIR planar images are linear tomographic projections of the corresponding object properties, which allows reconstruction of volumetric images using computed tomography (CT) methods. However, when acquiring a full range of linear projections around the tissue of interest is not feasible or the scanning time is limited, limited-angle tomography techniques can be used to reconstruct these volumetric images near the central plane, which is the plane that contains the pivot point of the tomographic movement. In this work, we use computer simulations to explore the applicability of limited-angle tomography to MIR. We also investigate the accuracy of reconstructions as a function of number of tomographic angles for a fixed total radiation exposure. We use this function to find an optimal range of angles over which data should be acquired for limited-angle tomography MIR (LAT-MIR). Next, we apply the LAT-MIR technique to experimentally acquired MIR projections obtained in a cadaveric human thumb study. We compare the reconstructed slices near the central plane to the same slices reconstructed by CT-MIR using the full angular view around the object. Finally, we perform a task-based evaluation of LAT-MIR performance for different numbers of angular views, and use template matching to detect cartilage in the refraction image near the central plane. We use the signal-to-noise ratio of this test as the detectability metric to investigate an optimum range of tomographic angles for detecting soft tissues in LAT-MIR. Both results show that there is an optimum range of angular view for data acquisition where LAT-MIR yields the best performance, comparable to CT-MIR only if one considers volumetric images near the central plane and not the whole volume.
Volumetric three-component velocimetry measurements of the turbulent flow around a Rushton turbine
NASA Astrophysics Data System (ADS)
Sharp, Kendra V.; Hill, David; Troolin, Daniel; Walters, Geoffrey; Lai, Wing
2010-01-01
Volumetric three-component velocimetry measurements have been taken of the flow field near a Rushton turbine in a stirred tank reactor. This particular flow field is highly unsteady and three-dimensional, and is characterized by a strong radial jet, large tank-scale ring vortices, and small-scale blade tip vortices. The experimental technique uses a single camera head with three apertures to obtain approximately 15,000 three-dimensional vectors in a cubic volume. These velocity data offer the most comprehensive view to date of this flow field, especially since they are acquired at three Reynolds numbers (15,000, 107,000, and 137,000). Mean velocity fields and turbulent kinetic energy quantities are calculated. The volumetric nature of the data enables tip vortex identification, vortex trajectory analysis, and calculation of vortex strength. Three identification methods for the vortices are compared based on: the calculation of circumferential vorticity; the calculation of local pressure minima via an eigenvalue approach; and the calculation of swirling strength again via an eigenvalue approach. The use of two-dimensional data and three-dimensional data is compared for vortex identification; a `swirl strength' criterion is less sensitive to completeness of the velocity gradient tensor and overall provides clearer identification of the tip vortices. The principal components of the strain rate tensor are also calculated for one Reynolds number case as these measures of stretching and compression have recently been associated with tip vortex characterization. Vortex trajectories and strength compare favorably with those in the literature. No clear dependence of trajectory on Reynolds number is deduced. The visualization of tip vortices up to 140° past blade passage in the highest Reynolds number case is notable and has not previously been shown.
40 CFR 610.64 - Track test procedures.
Code of Federal Regulations, 2011 CFR
2011-07-01
... truck or trailer. (4) Fuel economy will be determined by either a gravimetric or volumetric method. (c... dynamometer except that fuel economy will be measured by gravimetric or volumetric methods. ... either a volumetric or gravimetric procedure approved by the Administrator. (5) Vehicle speed and...
40 CFR 610.64 - Track test procedures.
Code of Federal Regulations, 2010 CFR
2010-07-01
... truck or trailer. (4) Fuel economy will be determined by either a gravimetric or volumetric method. (c... dynamometer except that fuel economy will be measured by gravimetric or volumetric methods. ... either a volumetric or gravimetric procedure approved by the Administrator. (5) Vehicle speed and...
Distinguishing sources of ground water recharge by using δ2H and δ18O
Blasch, Kyle W.; Bryson, Jeannie R.
2007-01-01
Stable isotope values of hydrogen and oxygen from precipitation and ground water samples were compared by using a volumetrically based mixing equation and stable isotope gradient to estimate the season and location of recharge in four basins. Stable isotopes were sampled at 11 precipitation sites of differing elevation during a 2-year period to quantify seasonal stable isotope contributions as a function of elevation. Supplemental stable isotope data collected by the International Atomic Energy Association during a 14-year period were used to reduce annual variability of the mean seasonal stable isotope data. The stable isotope elevation relationships and local precipitation elevation relationships were combined by using a digital elevation model to calculate the total volumetric contribution of water and stable isotope values as a function of elevation within the basins. The results of these precipitation calculations were compared to measured ground water stable isotope values at the major discharge points near the terminus of the basins. Volumetric precipitation contributions to recharge were adjusted to isolate contributing elevations. This procedure provides an improved representation of recharge contributions within the basins over conventional stable isotope methods. Stable isotope values from wells and springs at the terminus of each basin were used to infer the elevations of precipitation important for recharge of the regional ground water flow system. Ancillary climatic, geologic, and stable isotope values were used to further constrain the location where precipitation is entering the ground water flow system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, R; Wang, J
2014-06-01
Purpose: To investigate the feasibility, efficiency, and delivery accuracy of volumetric modulated arc therapy with constant dose rate (VMAT-CDR) for whole-pelvic radiotherapy (WPRT) of endometrial cancer. Methods: The nine-Field intensity-modulated radiotherapy (IMRT), VMAT with variable dose-rate (VMAT-VDR), and VMAT-CDR plans were created for 9 patients with endometrial cancer undergoing WPRT. The dose distribution of planning target volume (PTV), organs at risk (OARs), and normal tissue (NT) were compared. The monitor units (MUs) and treatment delivery time were also evaluated. For each VMAT-CDR plan, a dry Run was performed to assess the dosimetric accuracy with MatriXX from IBA. Results: Compared withmore » IMRT, the VMAT-CDR plans delivered a slightly greater V20 of the bowel, bladder, pelvis bone, and NT, but significantly decreased the dose to the high-dose region of the rectum and pelvis bone. The MUs Decreased from 1105 with IMRT to 628 with VMAT-CDR. The delivery time also decreased from 9.5 to 3.2 minutes. The average gamma pass rate was 95.6% at the 3%/3 mm criteria with MatriXX pretreatment verification for 9 patients. Conclusion: VMAT-CDR can achieve comparable plan quality with significant shorter delivery time and smaller number of MUs compared with IMRT for patients with endometrial cancer undergoing WPRT. It can be accurately delivered and be an alternative to IMRT on the linear accelerator without VDR capability. This work is supported by the grant project, National Natural; Science Foundation of China (No. 81071237)« less
Veronez, L; Moreira, M M; Soares, S T P; Pereira, M C; Ribeiro, M A G O; Ribeiro, J D; Terzi, R G G; Martins, L C; Paschoal, I A
2010-06-01
This study was designed to use volumetric capnography to evaluate the breathing pattern and ventilation inhomogeneities in patients with chronic sputum production and bronchiectasis and to correlate the phase 3 slope of the capnographic curve to spirometric measurements. Twenty-four patients with cystic fibrosis (CF) and 21 patients with noncystic fibrosis idiopathic bronchiectasis (BC) were serially enrolled. The diagnosis of cystic fibrosis was based on the finding of at least two abnormal sweat chloride concentrations (iontophoresis sweat test). The diagnosis of bronchiectasis was made when the patient had a complaint of chronic sputum production and compatible findings at high-resolution computed tomography (HRCT) scan of the thorax. Spirometric tests and volumetric capnography were performed. The 114 subjects of the control group for capnographic variables were nonsmoker volunteers, who had no respiratory symptoms whatsoever and no past or present history of lung disease. Compared with controls, patients in CF group had lower SpO(2) (P < 0.0001), higher respiratory rates (RR) (P < 0.0001), smaller expiratory volumes normalized for weight (V(E)/kg) (P < 0.028), smaller expiratory times (Te) (P < 0.0001), and greater phase 3 Slopes normalized for tidal volume (P3Slp/V(E)) (P < 0.0001). Compared with controls, patients in the BC group had lower SpO(2) (P < 0.0001), higher RR (P < 0.004), smaller V(E)/kg (P < 0.04), smaller Te (P < 0.007), greater P3Slp/V(E) (P < 0.0001), and smaller VCO(2) (P < 0.0002). The pooled data from the two patient groups compared with controls showed that the patients had lower SpO(2) (P < 0.0001), higher RR (P < 0.0001), smaller V(E)/kg (P < 0.05), smaller Te (P < 0.0001), greater P3Slp/V(E) (P < 0.0001), and smaller VCO(2) (P < 0.0003). All of the capnographic and spirometric variables evaluated showed no significant differences between CF and BC patients. Spirometric data in this study reveals that the patients had obstructive defects with concomitant low vital capacities and both groups had very similar abnormalities. The capnographic variables in the patient group suggest a restrictive respiratory pattern (greater respiratory rates, smaller expiratory times and expiratory volumes, normal peak expiratory flows). Both groups of patients showed increased phase III slopes compared with controls, which probably indicates the presence of diffuse disease of small airways in both conditions leading to inhomogeneities of ventilation.
Lu, Zhen; McKellop, Harry A
2014-03-01
This study compared the accuracy and sensitivity of several numerical methods employing spherical or plane triangles for calculating the volumetric wear of retrieved metal-on-metal hip joint implants from coordinate measuring machine measurements. Five methods, one using spherical triangles and four using plane triangles to represent the bearing and the best-fit surfaces, were assessed and compared on a perfect hemisphere model and a hemi-ellipsoid model (i.e. unworn models), computer-generated wear models and wear-tested femoral balls, with point spacings of 0.5, 1, 2 and 3 mm. The results showed that the algorithm (Method 1) employing spherical triangles to represent the bearing surface and to scale the mesh to the best-fit surfaces produced adequate accuracy for the wear volume with point spacings of 0.5, 1, 2 and 3 mm. The algorithms (Methods 2-4) using plane triangles to represent the bearing surface and to scale the mesh to the best-fit surface also produced accuracies that were comparable to that with spherical triangles. In contrast, if the bearing surface was represented with a mesh of plane triangles and the best-fit surface was taken as a smooth surface without discretization (Method 5), the algorithm produced much lower accuracy with a point spacing of 0.5 mm than Methods 1-4 with a point spacing of 3 mm.
Ishii, Kentaro; Okada, Wataru; Ogino, Ryo; Kubo, Kazuki; Kishimoto, Shun; Nakahara, Ryuta; Kawamorita, Ryu; Ishii, Yoshie; Tada, Takuhito; Nakajima, Toshifumi
2016-01-01
The purpose of this study was to determine appropriate beam arrangement for volumetric-modulated arc therapy (VMAT)-based stereotactic body radiation therapy (SBRT) in the treatment of patients with centrally located lung tumors. Fifteen consecutive patients with centrally located lung tumors treated at our institution were enrolled. For each patient, three VMAT plans were generated using two coplanar partial arcs (CP VMAT), two non-coplanar partial arcs (NCP VMAT), and one coplanar full arc (Full VMAT). All plans were designed to deliver 70 Gy in 10 fractions. Target coverage and sparing of organs at risk (OARs) were compared across techniques. PTV coverage was almost identical for all approaches. The whole lung V10Gy was significantly lower with CP VMAT plans than with NCP VMAT plans, whereas no significant differences in the mean lung dose, V5Gy, V20Gy or V40Gy were observed. Full VMAT increased mean contralateral lung V5Gy by 12.57% and 9.15% when compared with NCP VMAT and CP VMAT, respectively. Although NCP VMAT plans best achieved the dose–volume constraints for mediastinal OARs, the absolute differences in dose were small when compared with CP VMAT. These results suggest that partial-arc VMAT may be preferable to minimize unnecessary exposure to the contralateral lung, and use of NCP VMAT should be considered when the dose–volume constraints are not achieved by CP VMAT. PMID:26951076
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ekici, Kemal, E-mail: drkemal06@hotmail.com; Pepele, Eda K.; Yaprak, Bahaddin
2016-01-01
Various radiotherapy planning methods for T1N0 laryngeal cancer have been proposed to decrease normal tissue toxicity. We compare helical tomotherapy (HT), linac-based intensity-modulated radiation therapy (IMRT), volumetric-modulated arc therapy (VMAT), and 3-D conformal radiotherapy (3D-CRT) techniques for T1N0 laryngeal cancer. Overall, 10 patients with T1N0 laryngeal cancer were selected and evaluated. Furthermore, 10 radiotherapy treatment plans have been created for all 10 patients, including HT, IMRT, VMAT, and 3D-CRT. IMRT, VMAT, and HT plans vs 3D-CRT plans consistently provided superior planning target volume (PTV) coverage. Similar target coverage was observed between the 3 IMRT modalities. Compared with 3D-CRT, IMRT, HT,more » and VMAT significantly reduced the mean dose to the carotid arteries. VMAT resulted in the lowest mean dose to the submandibular and thyroid glands. Compared with 3D-CRT, IMRT, HT, and VMAT significantly increased the maximum dose to the spinal cord It was observed that the 3 IMRT modalities studied showed superior target coverage with less variation between each plan in comparison with 3D-CRT. The 3D-CRT plans performed better at the D{sub max} of the spinal cord. Clinical investigation is warranted to determine if these treatment approaches would translate into a reduction in radiation therapy–induced toxicities.« less
Watershed-based segmentation of the corpus callosum in diffusion MRI
NASA Astrophysics Data System (ADS)
Freitas, Pedro; Rittner, Leticia; Appenzeller, Simone; Lapa, Aline; Lotufo, Roberto
2012-02-01
The corpus callosum (CC) is one of the most important white matter structures of the brain, interconnecting the two cerebral hemispheres, and is related to several neurodegenerative diseases. Since segmentation is usually the first step for studies in this structure, and manual volumetric segmentation is a very time-consuming task, it is important to have a robust automatic method for CC segmentation. We propose here an approach for fully automatic 3D segmentation of the CC in the magnetic resonance diffusion tensor images. The method uses the watershed transform and is performed on the fractional anisotropy (FA) map weighted by the projection of the principal eigenvector in the left-right direction. The section of the CC in the midsagittal slice is used as seed for the volumetric segmentation. Experiments with real diffusion MRI data showed that the proposed method is able to quickly segment the CC without any user intervention, with great results when compared to manual segmentation. Since it is simple, fast and does not require parameter settings, the proposed method is well suited for clinical applications.
Klein, Scott A; Nyland, John; Caborn, David N M; Kocabey, Yavuz; Nawab, Akbar
2005-12-01
Adequate tibial bone mineral density (BMD) is essential to soft tissue graft fixation during anterior cruciate ligament (ACL) reconstruction. The purpose of this study was to compare volumetric bone plug density measurements at the tibial region of interest for ACL reconstruction using a standardized immersion technique and Archimedes' principle. Cancellous bone cores were harvested from the proximal, middle, and distal metaphyseal regions of the lateral tibia and from the standard tibial tunnel location used for ACL reconstruction of 18 cadaveric specimens. Proximal tibial cores displayed 32.6% greater BMD than middle tibial cores and 31.8% greater BMD than distal tibial cores, but did not differ from the BMD of the tibial tunnel cores. Correlational analysis confirmed that the cancellous BMD in the tibial tunnel related to the cancellous BMD of the proximal and distal lateral tibial metaphysis. In conjunction with its adjacent cortical bone, the cancellous BMD of the region used for standard tibial tunnel placement provides an effective foundation for ACL graft fixation. In tibia with poor BMD, bicortical fixation that incorporates cortical bone from the distal tibial tunnel region is recommended.
49 CFR 180.213 - Requalification markings.
Code of Federal Regulations, 2013 CFR
2013-10-01
... obliterated, except that, when the space originally provided for requalification dates becomes filled... volumetric expansion test, 10-year volumetric expansion test for UN cylinders and cylinders conforming to § 180.209(f) and (h), or 12-year volumetric expansion test for fire extinguishers conforming to § 173...
49 CFR 180.213 - Requalification markings.
Code of Federal Regulations, 2011 CFR
2011-10-01
... obliterated, except that, when the space originally provided for requalification dates becomes filled... volumetric expansion test, 10-year volumetric expansion test for UN cylinders and cylinders conforming to § 180.209(f) and (h), or 12-year volumetric expansion test for fire extinguishers conforming to § 173...
49 CFR 180.213 - Requalification markings.
Code of Federal Regulations, 2014 CFR
2014-10-01
... obliterated, except that, when the space originally provided for requalification dates becomes filled... volumetric expansion test, 10-year volumetric expansion test for UN cylinders and cylinders conforming to § 180.209(f) and (h), or 12-year volumetric expansion test for fire extinguishers conforming to § 173...
49 CFR 180.213 - Requalification markings.
Code of Federal Regulations, 2012 CFR
2012-10-01
... obliterated, except that, when the space originally provided for requalification dates becomes filled... volumetric expansion test, 10-year volumetric expansion test for UN cylinders and cylinders conforming to § 180.209(f) and (h), or 12-year volumetric expansion test for fire extinguishers conforming to § 173...
Park, Jae Mo; Josan, Sonal; Jang, Taichang; Merchant, Milton; Watkins, Ron; Hurd, Ralph E; Recht, Lawrence D; Mayer, Dirk; Spielman, Daniel M
2016-03-01
MRS of hyperpolarized [2-(13)C]pyruvate can be used to assess multiple metabolic pathways within mitochondria as the (13)C label is not lost with the conversion of pyruvate to acetyl-CoA. This study presents the first MR spectroscopic imaging of hyperpolarized [2-(13)C]pyruvate in glioma-bearing brain. Spiral chemical shift imaging with spectrally undersampling scheme (1042 Hz) and a hard-pulse excitation was exploited to simultaneously image [2-(13)C]pyruvate, [2-(13)C]lactate, and [5-(13)C]glutamate, the metabolites known to be produced in brain after an injection of hyperpolarized [2-(13)C]pyruvate, without chemical shift displacement artifacts. A separate undersampling scheme (890 Hz) was also used to image [1-(13)C]acetyl-carnitine. Healthy and C6 glioma-implanted rat brains were imaged at baseline and after dichloroacetate administration, a drug that modulates pyruvate dehydrogenase kinase activity. The baseline metabolite maps showed higher lactate and lower glutamate in tumor as compared to normal-appearing brain. Dichloroacetate led to an increase in glutamate in both tumor and normal-appearing brain. Dichloroacetate-induced %-decrease of lactate/glutamate was comparable to the lactate/bicarbonate decrease from hyperpolarized [1-(13)C]pyruvate studies. Acetyl-carnitine was observed in the muscle/fat tissue surrounding the brain. Robust volumetric imaging with hyperpolarized [2-(13)C]pyruvate and downstream products was performed in glioma-bearing rat brains, demonstrating changes in mitochondrial metabolism with dichloroacetate. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Park, Joonam; Choi, Eunsoo; Park, Kyoungsoo; Kim, Hong-Taek
2011-09-01
Shape memory alloy (SMA) wire jackets for concrete are distinct from conventional jackets of steel or fiber reinforced polymer (FRP) since they provide active confinement which can be easily achieved due to the shape memory effect of SMAs. This study uses NiTiNb SMA wires of 1.0 mm diameter to confine concrete cylinders with the dimensions of 300 mm × 150 mm (L × D). The NiTiNb SMAs have a relatively wider temperature hysteresis than NiTi SMAs; thus, they are more suitable for the severe temperature-variation environments to which civil structures are exposed. Steel jackets of passive confinement are also prepared in order to compare the cyclic behavior of actively and passively confined concrete cylinders. For this purpose, monotonic and cyclic compressive loading tests are conducted to obtain axial and circumferential strain. Both strains are used to estimate the volumetric strains of concrete cylinders. Plastic strains from cyclic behavior are also estimated. For the cylinders jacketed by NiTiNb SMA wires, the monotonic axial behavior differs from the envelope of cyclic behavior. The plastic strains of the actively confined concrete show a similar trend to those of passive confinement. This study proposed plastic strain models for concrete confined by SMA wire or steel jackets. For the volumetric strain, the active jackets of NiTiNb SMA wires provide more energy dissipation than the passive jacket of steel.
Narberhaus, A; Segarra-Castells, M D; Verger-Maestre, K; Serra-Grabulosa, J M; Salgado-Pineda, P; Bartomeus-Jené, F; Mercader-Sobrequés, J M
Diffuse damage secondary to traumatic brain injury (TBI) can be studied through volumetric analysis of several structures that are sensible to this kind of injury, such as corpus callosum, ventricular system, hippocampus, basal ganglia and the volume of cerebrospinal fluid spaces. Our aim is to describe how closed head injury (CHI) occurred in early years produce diffuse damage, and how this damage affects general cognitive functioning at long term. Initially the group of subjects was composed of 27 head injured children and adolescents following paediatric moderate to severe TBI. From this initial group we selected 15 patients without focal lesion, or in case of having suffered focal lesion, this was smaller than 2,600 mm3. These subjects were assessed by means of volumetric analysis of cerebrospinal fluid spaces, corpus callosum, hippocampus and caudate nucleus, comparing the results with a matched control group. We calculated the degree of general cognitive ability of these subjects through tests of intellectual, memory, frontal lobe and motor speed functioning. This study demonstrates that early CHI produce a volume decrease in all measured structures. Corpus callosum atrophy is the factor that better explains general cognitive impairment. Diffuse damage secondary to moderate to severe peadiatric TBI has long term effects on several cerebral structures and on cognitive performance. Corpus callosum atrophy is the best predictor for general cognitive impairment, compared with other affected structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, Jong-Han, E-mail: jonghanho@gmail.com; Hagler, Shane; Lujano, Carrie
Cancer is a global health issue that disproportionately kills based on stage of disease, cellular pathology, and genetics, to name a few. Another variable to consider in this ongoing fight is treatment machine complexity that leads to elevated development and purchasing cost, leading to a reduced use. Reducing the complexity (in hopes of lowering costs) would benefit underdeveloped, low- and middle-income countries by introducing newer treatment technology, as their currently accepted standards do not meet standards of more advanced, developed countries. In this study, unilateral head and neck (H&N), and prostate cases using volumetric modulated arc therapy (VMAT) were testedmore » with multiple segment widths of 5, 10, 15, and 20 mm to create treatable plans. Pinnacle 9.10v was used for planning purposes. A total of 12 cases were planned with varying multileaf collimator (MLC) widths. Treatment plans were evaluated retrospectively. Results show that altering the MLC widths from 5 through 20 mm produces both comparable and treatable plans up to 99% and 98% target coverage for H&N and prostate, respectively, albeit clinically significant hot spots were shown to increase with increasing segment width. Furthermore, the results show that increasing widths can produce comparable treatment plans as measured against our current Food and Drug Administration (FDA)–approved treatment devices—leading to an increase in treatment efficacy in economically underdeveloped countries.« less
Alshelleh, Mohammad; Inamdar, Sumant; McKinley, Matthew; Stewart, Molly; Novak, Jeffrey S; Greenberg, Ronald E; Sultan, Keith; Devito, Bethany; Cheung, Mary; Cerulli, Maurice A; Miller, Larry S; Sejpal, Divyesh V; Vegesna, Anil K; Trindade, Arvind J
2018-02-02
Volumetric laser endomicroscopy (VLE) is a new wide-field advanced imaging technology for Barrett's esophagus (BE). No data exist on incremental yield of dysplasia detection. Our aim is to report the incremental yield of dysplasia detection in BE using VLE. This is a retrospective study from a prospectively maintained database from 2011 to 2017 comparing the dysplasia yield of 4 different surveillance strategies in an academic BE tertiary care referral center. The groups were (1) random biopsies (RB), (2) Seattle protocol random biopsies (SP), (3) VLE without laser marking (VLE), and (4) VLE with laser marking (VLEL). A total of 448 consecutive patients (79 RB, 95 SP, 168 VLE, and 106 VLEL) met the inclusion criteria. After adjusting for visible lesions, the total dysplasia yield was 5.7%, 19.6%, 24.8%, and 33.7%, respectively. When compared with just the SP group, the VLEL group had statistically higher rates of overall dysplasia yield (19.6% vs 33.7%, P = .03; odds ratio, 2.1, P = .03). Both the VLEL and VLE groups had statistically significant differences in neoplasia (high-grade dysplasia and intramucosal cancer) detection compared with the SP group (14% vs 1%, P = .001 and 11% vs 1%, P = .003). A surveillance strategy involving VLEL led to a statistically significant higher yield of dysplasia and neoplasia detection compared with a standard random biopsy protocol. These results support the use of VLEL for surveillance in BE in academic centers. Copyright © 2018 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.
Kumar, S.A. Syam; Holla, Raghavendra; Sukumar, Prabakar; Padmanaban, Sriram; Vivekanandan, Nagarajan
2012-01-01
Aim To compare and evaluate the performance of two different volumetric modulated arc therapy delivery techniques. Background Volumetric modulated arc therapy is a novel technique that has recently been made available for clinical use. Planning and dosimetric comparison study was done for Elekta VMAT and Varian RapidArc for different treatment sites. Materials and methods Ten patients were selected for the planning comparison study. This includes 2 head and neck, 2 oesophagus, 1 bladder, 3 cervix and 2 rectum cases. Total dose of 50 Gy was given for all the plans. All plans were done for RapidArc using Eclipse and for Elekta VMAT with Monaco treatment planning system. All plans were generated with 6 MV X-rays for both RapidArc and Elekta VMAT. Plans were evaluated based on the ability to meet the dose volume histogram, dose homogeneity index, radiation conformity index, estimated radiation delivery time, integral dose and monitor units needed to deliver the prescribed dose. Results RapidArc plans achieved the best conformity (CI95% = 1.08 ± 0.07) while Elekta VMAT plans were slightly inferior (CI95% = 1.10 ± 0.05). The in-homogeneity in the PTV was highest with Elekta VMAT with HI equal to 0.12 ± 0.02 Gy when compared to RapidArc with 0.08 ± 0.03. Significant changes were observed between the RapidArc and Elekta VMAT plans in terms of the healthy tissue mean dose and integral dose. Elekta VMAT plans show a reduction in the healthy tissue mean dose (6.92 ± 2.90) Gy when compared to RapidArc (7.83 ± 3.31) Gy. The integral dose is found to be inferior with Elekta VMAT (11.50 ± 6.49) × 104 Gy cm3 when compared to RapidArc (13.11 ± 7.52) × 104 Gy cm3. Both Varian RapidArc and Elekta VMAT respected the planning objective for all organs at risk. Gamma analysis result for the pre-treatment quality assurance shows good agreement between the planned and delivered fluence for 3 mm DTA, 3% DD for all the evaluated points inside the PTV, for both VMAT and RapidArc techniques. Conclusion The study concludes that a variable gantry speed with variable dose rate is important for efficient arc therapy delivery. RapidArc presents a slight improvement in the OAR sparing with better target coverage when compared to Elekta VMAT. Trivial differences were noted in all the plans for organ at risk but the two techniques provided satisfactory conformal avoidance and conformation. PMID:24416535
Single camera volumetric velocimetry in aortic sinus with a percutaneous valve
NASA Astrophysics Data System (ADS)
Clifford, Chris; Thurow, Brian; Midha, Prem; Okafor, Ikechukwu; Raghav, Vrishank; Yoganathan, Ajit
2016-11-01
Cardiac flows have long been understood to be highly three dimensional, yet traditional in vitro techniques used to capture these complexities are costly and cumbersome. Thus, two dimensional techniques are primarily used for heart valve flow diagnostics. The recent introduction of plenoptic camera technology allows for traditional cameras to capture both spatial and angular information from a light field through the addition of a microlens array in front of the image sensor. When combined with traditional particle image velocimetry (PIV) techniques, volumetric velocity data may be acquired with a single camera using off-the-shelf optics. Particle volume pairs are reconstructed from raw plenoptic images using a filtered refocusing scheme, followed by three-dimensional cross-correlation. This technique was applied to the sinus region (known for having highly three-dimensional flow structures) of an in vitro aortic model with a percutaneous valve. Phase-locked plenoptic PIV data was acquired at two cardiac outputs (2 and 5 L/min) and 7 phases of the cardiac cycle. The volumetric PIV data was compared to standard 2D-2C PIV. Flow features such as recirculation and stagnation were observed in the sinus region in both cases.
NASA Astrophysics Data System (ADS)
Talaghat, Mohammad Reza; Jokar, Seyyed Mohammad
2018-03-01
The induction time is a time interval to detect the initial hydrate formation, which is counted from the moment when the stirrer is turned on until the first detection of hydrate formation. The main objective of the present work is to predict and measure the induction time of methane hydrate formation in the presence or absence of tetrahydrofuran (THF) as promoter in the flow loop system. A laboratory flow mini-loop apparatus was set up to measure the induction time of methane hydrate formation. The induction time is predicted using developed Kashchiev and Firoozabadi model and modified model of Natarajan for a flow loop system. Furthermore, the effects of volumetric flow rate of the fluid on the induction time were investigated. The results of the models were compared with experimental data. They show that the induction time of hydrate formation in the presence of THF is very short at high pressure and high volumetric flow rate of the fluid. It decreases with increasing pressure and liquid volumetric flow rate. It is also shown that the modified Natarajan model is more accurate than the Kashchiev and Firoozabadi ones in prediction of the induction time.
Analytic Intermodel Consistent Modeling of Volumetric Human Lung Dynamics.
Ilegbusi, Olusegun; Seyfi, Behnaz; Neylon, John; Santhanam, Anand P
2015-10-01
Human lung undergoes breathing-induced deformation in the form of inhalation and exhalation. Modeling the dynamics is numerically complicated by the lack of information on lung elastic behavior and fluid-structure interactions between air and the tissue. A mathematical method is developed to integrate deformation results from a deformable image registration (DIR) and physics-based modeling approaches in order to represent consistent volumetric lung dynamics. The computational fluid dynamics (CFD) simulation assumes the lung is a poro-elastic medium with spatially distributed elastic property. Simulation is performed on a 3D lung geometry reconstructed from four-dimensional computed tomography (4DCT) dataset of a human subject. The heterogeneous Young's modulus (YM) is estimated from a linear elastic deformation model with the same lung geometry and 4D lung DIR. The deformation obtained from the CFD is then coupled with the displacement obtained from the 4D lung DIR by means of the Tikhonov regularization (TR) algorithm. The numerical results include 4DCT registration, CFD, and optimal displacement data which collectively provide consistent estimate of the volumetric lung dynamics. The fusion method is validated by comparing the optimal displacement with the results obtained from the 4DCT registration.
Electrically driving large magnetic Reynolds number flows on the Madison plasma dynamo experiment
NASA Astrophysics Data System (ADS)
Weisberg, David; Wallace, John; Peterson, Ethan; Endrezzi, Douglass; Forest, Cary B.; Desangles, Victor
2015-11-01
Electrically-driven plasma flows, predicted to excite a large-scale dynamo instability, have been generated in the Madison plasma dynamo experiment (MPDX), at the Wisconsin Plasma Astrophysics Laboratory. Numerical simulations show that certain topologies of these simply-connected flows may be optimal for creating a plasma dynamo and predict critical thresholds as low as Rmcrit =μ0 σLV = 250 . MPDX plasmas are shown to exceed this critical Rm , generating large (L = 1 . 4 m), warm (Te > 10 eV), unmagnetized (MA > 1) plasmas where Rm < 600 . Plasma flow is driven using ten thermally emissive LaB6 cathodes which generate a J × B torque in Helium plasmas. Detailed Mach probe measurements of plasma velocity for two flow topologies will be presented: edge-localized drive using the multi-cusp boundary field, and volumetric drive using an axial Helmholtz field. Radial velocity profiles show that edge-driven flow is established via ion viscosity but is limited by a volumetric neutral drag force (χ ~ 1 / (ντin)), and measurements of velocity shear compare favorably to Braginskii transport theory. Volumetric flow drive is shown to produce stronger velocity shear, and is characterized by the radial potential gradient as determined by global charge balance.
Prognostic value of (18)F-FDG PET/CT volumetric parameters in recurrent epithelial ovarian cancer.
Mayoral, M; Fernandez-Martinez, A; Vidal, L; Fuster, D; Aya, F; Pavia, J; Pons, F; Lomeña, F; Paredes, P
2016-01-01
Metabolic tumour volume (MTV) and total lesion glycolysis (TLG) from (18)F-FDG PET/CT are emerging prognostic biomarkers in various solid neoplasms. These volumetric parameters and the SUVmax have shown to be useful criteria for disease prognostication in preoperative and post-treatment epithelial ovarian cancer (EOC) patients. The purpose of this study was to evaluate the utility of (18)F-FDG PET/CT measurements to predict survival in patients with recurrent EOC. Twenty-six patients with EOC who underwent a total of 31 (18)F-FDG PET/CT studies for suspected recurrence were retrospectively included. SUVmax and volumetric parameters whole-body MTV (wbMTV) and whole-body TLG (wbTLG) with a threshold of 40% and 50% of the SUVmax were obtained. Correlation between PET parameters and progression-free survival (PFS) and the survival analysis of prognostic factors were calculated. Serous cancer was the most common histological subtype (76.9%). The median PFS was 12.5 months (range 10.7-20.6 months). Volumetric parameters showed moderate inverse correlation with PFS but there was no significant correlation in the case of SUVmax. The correlation was stronger for first recurrences. By Kaplan-Meier analysis and log-rank test, wbMTV 40%, wbMTV 50% and wbTLG 50% correlated with PFS. However, SUVmax and wbTLG 40% were not statistically significant predictors for PFS. Volumetric parameters wbMTV and wbTLG 50% measured by (18)F-FDG PET/CT appear to be useful prognostic predictors of outcome and may provide valuable information to individualize treatment strategies in patients with recurrent EOC. Copyright © 2015 Elsevier España, S.L.U. and SEMNIM. All rights reserved.
2015-01-01
The molecular building block approach was employed effectively to construct a series of novel isoreticular, highly porous and stable, aluminum-based metal–organic frameworks with soc topology. From this platform, three compounds were experimentally isolated and fully characterized: namely, the parent Al-soc-MOF-1 and its naphthalene and anthracene analogues. Al-soc-MOF-1 exhibits outstanding gravimetric methane uptake (total and working capacity). It is shown experimentally, for the first time, that the Al-soc-MOF platform can address the challenging Department of Energy dual target of 0.5 g/g (gravimetric) and 264 cm3 (STP)/cm3 (volumetric) methane storage. Furthermore, Al-soc-MOF exhibited the highest total gravimetric and volumetric uptake for carbon dioxide and the utmost total and deliverable uptake for oxygen at relatively high pressures among all microporous MOFs. In order to correlate the MOF pore structure and functionality to the gas storage properties, to better understand the structure–property relationship, we performed a molecular simulation study and evaluated the methane storage performance of the Al-soc-MOF platform using diverse organic linkers. It was found that shortening the parent Al-soc-MOF-1 linker resulted in a noticeable enhancement in the working volumetric capacity at specific temperatures and pressures with amply conserved gravimetric uptake/working capacity. In contrast, further expansion of the organic linker (branches and/or core) led to isostructural Al-soc-MOFs with enhanced gravimetric uptake but noticeably lower volumetric capacity. The collective experimental and simulation studies indicated that the parent Al-soc-MOF-1 exhibits the best compromise between the volumetric and gravimetric total and working uptakes under a wide range of pressure and temperature conditions. PMID:26364990
Macroscopic anisotropic bone material properties in children with severe osteogenesis imperfecta.
Albert, Carolyne; Jameson, John; Tarima, Sergey; Smith, Peter; Harris, Gerald
2017-11-07
Children with severe osteogenesis imperfecta (OI) typically experience numerous fractures and progressive skeletal deformities over their lifetime. Recent studies proposed finite element models to assess fracture risk and guide clinicians in determining appropriate intervention in children with OI, but lack of appropriate material property inputs remains a challenge. This study aimed to characterize macroscopic anisotropic cortical bone material properties and investigate relationships with bone density measures in children with severe OI. Specimens were obtained from tibial or femoral shafts of nine children with severe OI and five controls. The specimens were cut into beams, characterized in bending, and imaged by synchrotron radiation X-ray micro-computed tomography. Longitudinal modulus of elasticity, yield strength, and bending strength were 32-65% lower in the OI group (p<0.001). Yield strain did not differ between groups (p≥0.197). In both groups, modulus and strength were lower in the transverse direction (p≤0.009), but anisotropy was less pronounced in the OI group. Intracortical vascular porosity was almost six times higher in the OI group (p<0.001), but no differences were observed in osteocyte lacunar porosity between the groups (p=0.086). Volumetric bone mineral density was lower in the OI group (p<0.001), but volumetric tissue mineral density was not (p=0.770). Longitudinal OI bone modulus and strength were correlated with volumetric bone mineral density (p≤0.024) but not volumetric tissue mineral density (p≥0.099). Results indicate that cortical bone in children with severe OI yields at the same strain as normal bone, and that their decreased bone material strength is associated with reduced volumetric bone mineral density. These results will enable the advancement of fracture risk assessment capability in children with severe OI. Copyright © 2017 Elsevier Ltd. All rights reserved.
Alezi, Dalal; Belmabkhout, Youssef; Suyetin, Mikhail; Bhatt, Prashant M; Weseliński, Łukasz J; Solovyeva, Vera; Adil, Karim; Spanopoulos, Ioannis; Trikalitis, Pantelis N; Emwas, Abdul-Hamid; Eddaoudi, Mohamed
2015-10-21
The molecular building block approach was employed effectively to construct a series of novel isoreticular, highly porous and stable, aluminum-based metal-organic frameworks with soc topology. From this platform, three compounds were experimentally isolated and fully characterized: namely, the parent Al-soc-MOF-1 and its naphthalene and anthracene analogues. Al-soc-MOF-1 exhibits outstanding gravimetric methane uptake (total and working capacity). It is shown experimentally, for the first time, that the Al-soc-MOF platform can address the challenging Department of Energy dual target of 0.5 g/g (gravimetric) and 264 cm(3) (STP)/cm(3) (volumetric) methane storage. Furthermore, Al-soc-MOF exhibited the highest total gravimetric and volumetric uptake for carbon dioxide and the utmost total and deliverable uptake for oxygen at relatively high pressures among all microporous MOFs. In order to correlate the MOF pore structure and functionality to the gas storage properties, to better understand the structure-property relationship, we performed a molecular simulation study and evaluated the methane storage performance of the Al-soc-MOF platform using diverse organic linkers. It was found that shortening the parent Al-soc-MOF-1 linker resulted in a noticeable enhancement in the working volumetric capacity at specific temperatures and pressures with amply conserved gravimetric uptake/working capacity. In contrast, further expansion of the organic linker (branches and/or core) led to isostructural Al-soc-MOFs with enhanced gravimetric uptake but noticeably lower volumetric capacity. The collective experimental and simulation studies indicated that the parent Al-soc-MOF-1 exhibits the best compromise between the volumetric and gravimetric total and working uptakes under a wide range of pressure and temperature conditions.
Volumetric and calorimetric properties of aqueous ionene solutions
Lukšič, Miha; Hribar-Lee, Barbara
2016-01-01
The volumetric (partial and apparent molar volumes) and calorimetric properties (apparent heat capacities) of aqueous cationic polyelectrolyte solutions – ionenes – were studied using the oscillating tube densitometer and differential scanning calorimeter. The polyion’s charge density and the counterion properties were considered as variables. The special attention was put to evaluate the contribution of electrostatic and hydrophobic effects to the properties studied. The contribution of the CH2 group of the polyion’s backbone to molar volumes and heat capacities was estimated. Synergistic effect between polyion and counterions was found. PMID:28503012
Efficient volumetric estimation from plenoptic data
NASA Astrophysics Data System (ADS)
Anglin, Paul; Reeves, Stanley J.; Thurow, Brian S.
2013-03-01
The commercial release of the Lytro camera, and greater availability of plenoptic imaging systems in general, have given the image processing community cost-effective tools for light-field imaging. While this data is most commonly used to generate planar images at arbitrary focal depths, reconstruction of volumetric fields is also possible. Similarly, deconvolution is a technique that is conventionally used in planar image reconstruction, or deblurring, algorithms. However, when leveraged with the ability of a light-field camera to quickly reproduce multiple focal planes within an imaged volume, deconvolution offers a computationally efficient method of volumetric reconstruction. Related research has shown than light-field imaging systems in conjunction with tomographic reconstruction techniques are also capable of estimating the imaged volume and have been successfully applied to particle image velocimetry (PIV). However, while tomographic volumetric estimation through algorithms such as multiplicative algebraic reconstruction techniques (MART) have proven to be highly accurate, they are computationally intensive. In this paper, the reconstruction problem is shown to be solvable by deconvolution. Deconvolution offers significant improvement in computational efficiency through the use of fast Fourier transforms (FFTs) when compared to other tomographic methods. This work describes a deconvolution algorithm designed to reconstruct a 3-D particle field from simulated plenoptic data. A 3-D extension of existing 2-D FFT-based refocusing techniques is presented to further improve efficiency when computing object focal stacks and system point spread functions (PSF). Reconstruction artifacts are identified; their underlying source and methods of mitigation are explored where possible, and reconstructions of simulated particle fields are provided.
Kim, Ji Youn; Kim, Hai-Joong; Hahn, Meong Hi; Jeon, Hye Jin; Cho, Geum Joon; Hong, Sun Chul; Oh, Min Jeong
2013-09-01
Our aim was to figure out whether volumetric gray-scale histogram difference between anterior and posterior cervix can indicate the extent of cervical consistency. We collected data of 95 patients who were appropriate for vaginal delivery with 36th to 37th weeks of gestational age from September 2010 to October 2011 in the Department of Obstetrics and Gynecology, Korea University Ansan Hospital. Patients were excluded who had one of the followings: Cesarean section, labor induction, premature rupture of membrane. Thirty-four patients were finally enrolled. The patients underwent evaluation of the cervix through Bishop score, cervical length, cervical volume, three-dimensional (3D) cervical volumetric gray-scale histogram. The interval days from the cervix evaluation to the delivery day were counted. We compared to 3D cervical volumetric gray-scale histogram, Bishop score, cervical length, cervical volume with interval days from the evaluation of the cervix to the delivery. Gray-scale histogram difference between anterior and posterior cervix was significantly correlated to days to delivery. Its correlation coefficient (R) was 0.500 (P = 0.003). The cervical length was significantly related to the days to delivery. The correlation coefficient (R) and P-value between them were 0.421 and 0.013. However, anterior lip histogram, posterior lip histogram, total cervical volume, Bishop score were not associated with days to delivery (P >0.05). By using gray-scale histogram difference between anterior and posterior cervix and cervical length correlated with the days to delivery. These methods can be utilized to better help predict a cervical consistency.
Xu, Jiantie; Lin, Yi; Connell, John W; Dai, Liming
2015-12-01
Nitrogen-doped holey graphene (N-hG) as an anode material for lithium-ion batteries has delivered a maximum volumetric capacity of 384 mAh cm(-3) with an excellent long-term cycling life up to 6000 cycles, and as an electrochemical capacitor has delivered a maximum volumetric energy density of 171.2 Wh L(-1) and a volumetric capacitance of 201.6 F cm(-3) . © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kim, Eunji; Wu, Hong-Gyun; Park, Jong Min; Kim, Jung-in; Kim, Hak Jae
2018-01-01
Radiation-induced lung damage is an important treatment-related toxicity after lung stereotactic ablative radiotherapy (SABR). After implementing a tri-60Co magnetic-resonance image guided system, ViewRayTM, we compared the associated early radiological lung density changes to those associated with a linear accelerator (LINAC). Eight patients treated with the tri-60Co system were matched 1:1 with patients treated with LINAC. Prescription doses were 52 Gy or 60 Gy in four fractions, and lung dose-volumetric parameters were calculated from each planning system. The first two follow-up computed tomography (CT) were co-registered with the planning CT through deformable registration software, and lung density was measured by isodose levels. Tumor size was matched between the two groups, but the planning target volume of LINAC was larger than that of the tri-60Co system (p = 0.036). With regard to clinically relevant dose-volumetric parameters in the lungs, the ipsilateral lung mean dose, V10Gy and V20Gy were significantly poorer in tri-60Co plans compared to LINAC plans (p = 0.012, 0.036, and 0.017, respectively). Increased lung density was not observed in the first follow-up scan compared to the planning scan. A significant change of lung density was shown in the second follow-up scan and there was no meaningful difference between the tri-60Co system and LINAC for all dose regions. In addition, no patient developed clinical radiation pneumonitis until the second follow-up scan. Therefore, there was no significant difference in the early radiological lung damage between the tri-60Co system and LINAC for lung SABR despite of the inferior plan quality of the tri-60Co system compared to that of LINAC. Further studies with a longer follow-up period are needed to confirm our findings. PMID:29608606
MACROALGAL VOLUME: A SURROGATE FOR BIOMASS IN SOME GREEN ALGAE
Two green algal morphotypes, filamentous species (e.g., Chaetomorpha spp.) and flattened or tubular (e.g.,Ulva spp. and Enteromorpha spp.) were collected from 63 sites within the Yaquina Bay estuary (Newport, OR) and used to compare an in situ volumetric biomass estimator to the...
Adams, Matthew S.; Scott, Serena J.; Salgaonkar, Vasant A.; Sommer, Graham; Diederich, Chris J.
2016-01-01
Purpose To investigate endoluminal ultrasound applicator configurations for volumetric thermal ablation and hyperthermia of pancreatic tumors using 3D acoustic and biothermal finite element models. Materials and Methods Parametric studies compared endoluminal heating performance for varying applicator transducer configurations (planar, curvilinear-focused, or radial-diverging), frequencies (1–5 MHz), and anatomical conditions. Patient-specific pancreatic head and body tumor models were used to evaluate feasibility of generating hyperthermia and thermal ablation using an applicator positioned in the duodenal or stomach lumen. Temperature and thermal dose were calculated to define ablation (>240 EM43°C) and moderate hyperthermia (40–45 °C) boundaries, and to assess sparing of sensitive tissues. Proportional-integral control was incorporated to regulate maximum temperature to 70–80 °C for ablation and 45 °C for hyperthermia in target regions. Results Parametric studies indicated that 1–3 MHz planar transducers are most suitable for volumetric ablation, producing 5–8 cm3 lesion volumes for a stationary 5 minute sonication. Curvilinear-focused geometries produce more localized ablation to 20–45 mm depth from the GI tract and enhance thermal sparing (Tmax<42 °C) of the luminal wall. Patient anatomy simulations show feasibility in ablating 60.1–92.9% of head/body tumor volumes (4.3–37.2 cm3) with dose <15 EM43°C in the luminal wall for 18–48 min treatment durations, using 1–3 applicator placements in GI lumen. For hyperthermia, planar and radial-diverging transducers could maintain up to 8 cm3 and 15 cm3 of tissue, respectively, between 40–45 °C for a single applicator placement. Conclusions Modeling studies indicate the feasibility of endoluminal ultrasound for volumetric thermal ablation or hyperthermia treatment of pancreatic tumor tissue. PMID:27097663
Venkatesiah, Sowmya S; Kale, Alka D; Hallikeremath, Seema R; Kotrashetti, Vijayalakshmi S
2013-01-01
Lichen planus is a chronic inflammatory mucocutaneous disease that clinically and histologically resembles lichenoid lesions, although the latter has a different etiology. Though criteria have been suggested for differentiating oral lichen planus from lichenoid lesions, confusion still prevails. To study the cellular and nuclear volumetric features in the epithelium of normal mucosa, lichen planus, and lichenoid lesions to determine variations if any. A retrospective study was done on 25 histologically diagnosed cases each of oral lichen planus, oral lichenoid lesions, and normal oral mucosa. Cellular and nuclear morphometric measurements were assessed on hematoxylin and eosin sections using image analysis software. Analysis of variance test (ANOVA) and Tukey's post-hoc test. The basal cells of oral lichen planus showed a significant increase in the mean nuclear and cellular areas, and in nuclear volume; there was a significant decrease in the nuclear-cytoplasmic ratio as compared to normal mucosa. The suprabasal cells showed a significant increase in nuclear and cellular areas, nuclear diameter, and nuclear and cellular volumes as compared to normal mucosa. The basal cells of oral lichenoid lesions showed significant difference in the mean cellular area and the mean nuclear-cytoplasmic ratio as compared to normal mucosa, whereas the suprabasal cells differed significantly from normal mucosa in the mean nuclear area and the nuclear and cellular volumes. Morphometry can differentiate lesions of oral lichen planus and oral lichenoid lesions from normal oral mucosa. Thus, morphometry may serve to discriminate between normal and premalignant lichen planus and lichenoid lesions. These lesions might have a high risk for malignant transformation and may behave in a similar manner with respect to malignant transformation.
NASA Astrophysics Data System (ADS)
Chen, Cheng; Jin, Dakai; Liu, Yinxiao; Wehrli, Felix W.; Chang, Gregory; Snyder, Peter J.; Regatte, Ravinder R.; Saha, Punam K.
2016-09-01
Osteoporosis is associated with increased risk of fractures, which is clinically defined by low bone mineral density. Increasing evidence suggests that trabecular bone (TB) micro-architecture is an important determinant of bone strength and fracture risk. We present an improved volumetric topological analysis algorithm based on fuzzy skeletonization, results of its application on in vivo MR imaging, and compare its performance with digital topological analysis. The new VTA method eliminates data loss in the binarization step and yields accurate and robust measures of local plate-width for individual trabeculae, which allows classification of TB structures on the continuum between perfect plates and rods. The repeat-scan reproducibility of the method was evaluated on in vivo MRI of distal femur and distal radius, and high intra-class correlation coefficients between 0.93 and 0.97 were observed. The method’s ability to detect treatment effects on TB micro-architecture was examined in a 2 years testosterone study on hypogonadal men. It was observed from experimental results that average plate-width and plate-to-rod ratio significantly improved after 6 months and the improvement was found to continue at 12 and 24 months. The bone density of plate-like trabeculae was found to increase by 6.5% (p = 0.06), 7.2% (p = 0.07) and 16.2% (p = 0.003) at 6, 12, 24 months, respectively. While the density of rod-like trabeculae did not change significantly, even at 24 months. A comparative study showed that VTA has enhanced ability to detect treatment effects in TB micro-architecture as compared to conventional method of digital topological analysis for plate/rod characterization in terms of both percent change and effect-size.
Comparison of volumetric breast density estimations from mammography and thorax CT
NASA Astrophysics Data System (ADS)
Geeraert, N.; Klausz, R.; Cockmartin, L.; Muller, S.; Bosmans, H.; Bloch, I.
2014-08-01
Breast density has become an important issue in current breast cancer screening, both as a recognized risk factor for breast cancer and by decreasing screening efficiency by the masking effect. Different qualitative and quantitative methods have been proposed to evaluate area-based breast density and volumetric breast density (VBD). We propose a validation method comparing the computation of VBD obtained from digital mammographic images (VBDMX) with the computation of VBD from thorax CT images (VBDCT). We computed VBDMX by applying a conversion function to the pixel values in the mammographic images, based on models determined from images of breast equivalent material. VBDCT is computed from the average Hounsfield Unit (HU) over the manually delineated breast volume in the CT images. This average HU is then compared to the HU of adipose and fibroglandular tissues from patient images. The VBDMX method was applied to 663 mammographic patient images taken on two Siemens Inspiration (hospL) and one GE Senographe Essential (hospJ). For the comparison study, we collected images from patients who had a thorax CT and a mammography screening exam within the same year. In total, thorax CT images corresponding to 40 breasts (hospL) and 47 breasts (hospJ) were retrieved. Averaged over the 663 mammographic images the median VBDMX was 14.7% . The density distribution and the inverse correlation between VBDMX and breast thickness were found as expected. The average difference between VBDMX and VBDCT is smaller for hospJ (4%) than for hospL (10%). This study shows the possibility to compare VBDMX with the VBD from thorax CT exams, without additional examinations. In spite of the limitations caused by poorly defined breast limits, the calibration of mammographic images to local VBD provides opportunities for further quantitative evaluations.
Volumetric modulated arc radiotherapy for esophageal cancer.
Vivekanandan, Nagarajan; Sriram, Padmanaban; Kumar, S A Syam; Bhuvaneswari, Narayanan; Saranya, Kamalakannan
2012-01-01
A treatment planning study was performed to evaluate the performance of volumetric arc modulation with RapidArc (RA) against 3D conformal radiation therapy (3D-CRT) and conventional intensity-modulated radiation therapy (IMRT) techniques for esophageal cancer. Computed tomgraphy scans of 10 patients were included in the study. 3D-CRT, 4-field IMRT, and single-arc and double-arc RA plans were generated with the aim to spare organs at risk (OAR) and healthy tissue while enforcing highly conformal target coverage. The planning objective was to deliver 54 Gy to the planning target volume (PTV) in 30 fractions. Plans were evaluated based on target conformity and dose-volume histograms of organs at risk (lung, spinal cord, and heart). The monitor unit (MU) and treatment delivery time were also evaluated to measure the treatment efficiency. The IMRT plan improves target conformity and spares OAR when compared with 3D-CRT. Target conformity improved with RA plans compared with IMRT. The mean lung dose was similar in all techniques. However, RA plans showed a reduction in the volume of the lung irradiated at V(₂₀Gy) and V(₃₀Gy) dose levels (range, 4.62-17.98%) compared with IMRT plans. The mean dose and D(₃₅%) of heart for the RA plans were better than the IMRT by 0.5-5.8%. Mean V(₁₀Gy) and integral dose to healthy tissue were almost similar in all techniques. But RA plans resulted in a reduced low-level dose bath (15-20 Gy) in the range of 14-16% compared with IMRT plans. The average MU needed to deliver the prescribed dose by RA technique was reduced by 20-25% compared with IMRT technique. The preliminary study on RA for esophageal cancers showed improvements in sparing OAR and healthy tissue with reduced beam-on time, whereas only double-arc RA offered improved target coverage compared with IMRT and 3D-CRT plans. Copyright © 2012 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
Jammy, Guru Rajesh; Boudreau, Robert M; Singh, Tushar; Sharma, Pawan Kumar; Ensrud, Kristine; Zmuda, Joseph M; Reddy, P S; Newman, Anne B; Cauley, Jane A
2018-05-22
Peripheral quantitative computed tomography (pQCT) provides biomechanical estimates of bone strength. Rural South Indian men have reduced biomechanical indices of bone strength compared to US Caucasian and Afro-Caribbean men. This suggests an underlying higher risk of osteoporotic fractures and greater future fracture burden among the rural South Indian men. Geographical and racial comparisons of bone mineral density (BMD) have largely focused on DXA measures of areal BMD. In contrast, peripheral quantitative computed tomography (pQCT) measures volumetric BMD (vBMD), bone structural geometry and provides estimates of biomechanical strength. To further understand potential geographical and racial differences in skeletal health, we compared pQCT measures among US Caucasian, Afro-Caribbean, and rural South Indian men. We studied men aged ≥ 60 years enrolled in the Mobility and Independent Living among Elders Study (MILES) in rural south India (N = 245), Osteoporotic Fractures in Men Study (MrOS) in the US (N = 1148), and the Tobago Bone Health Study (N = 828). The BMI (kg/m 2 ) of rural South Indian men (21.6) was significantly lower compared to the US Caucasians (28) and Afro-Caribbean men (26.9). Adjusting for age, height, body weight, and grip strength; rural South Indian men compared to US Caucasians had significantly lower trabecular vBMD [- 1.3 to - 1.5 standard deviation (SD)], cortical thickness [- 0.8 to - 1.2 SD]; significantly higher endosteal circumference [0.5 to 0.8 SD]; but similar cortical vBMD. Afro-Caribbean men compared to US Caucasians had similar trabecular vBMD but significantly higher cortical vBMD [0.9 to 1.2 SD], SSIp [0.2 to 1.4 SD], and tibial endosteal circumference [1 SD], CONCLUSIONS: In comparison to US Caucasians, rural South Indian men have reduced bone strength (lower trabecular vBMD) and Afro-Caribbean men have greater bone strength (higher cortical vBMD). These results suggest an underlying higher risk of osteoporotic fractures and greater future fracture burden among rural South Indian men.
Three-Dimensional Dynamic Rupture in Brittle Solids and the Volumetric Strain Criterion
NASA Astrophysics Data System (ADS)
Uenishi, K.; Yamachi, H.
2017-12-01
As pointed out by Uenishi (2016 AGU Fall Meeting), source dynamics of ordinary earthquakes is often studied in the framework of 3D rupture in brittle solids but our knowledge of mechanics of actual 3D rupture is limited. Typically, criteria derived from 1D frictional observations of sliding materials or post-failure behavior of solids are applied in seismic simulations, and although mode-I cracks are frequently encountered in earthquake-induced ground failures, rupture in tension is in most cases ignored. Even when it is included in analyses, the classical maximum principal tensile stress rupture criterion is repeatedly used. Our recent basic experiments of dynamic rupture of spherical or cylindrical monolithic brittle solids by applying high-voltage electric discharge impulses or impact loads have indicated generation of surprisingly simple and often flat rupture surfaces in 3D specimens even without the initial existence of planes of weakness. However, at the same time, the snapshots taken by a high-speed digital video camera have shown rather complicated histories of rupture development in these 3D solid materials, which seem to be difficult to be explained by, for example, the maximum principal stress criterion. Instead, a (tensile) volumetric strain criterion where the volumetric strain (dilatation or the first invariant of the strain tensor) is a decisive parameter for rupture seems more effective in computationally reproducing the multi-directionally propagating waves and rupture. In this study, we try to show the connection between this volumetric strain criterion and other classical rupture criteria or physical parameters employed in continuum mechanics, and indicate that the criterion has, to some degree, physical meanings. First, we mathematically illustrate that the criterion is equivalent to a criterion based on the mean normal stress, a crucial parameter in plasticity. Then, we mention the relation between the volumetric strain criterion and the failure envelope of the Mohr-Coulomb criterion that describes shear-related rupture. The critical value of the volumetric strain for rupture may be controlled by the apparent cohesion and apparent angle of internal friction of the Mohr-Coulomb criterion.
NASA Astrophysics Data System (ADS)
Shedekar, Vinayak S.; King, Kevin W.; Fausey, Norman R.; Soboyejo, Alfred B. O.; Harmel, R. Daren; Brown, Larry C.
2016-09-01
Three different models of tipping bucket rain gauges (TBRs), viz. HS-TB3 (Hydrological Services Pty Ltd.), ISCO-674 (Isco, Inc.) and TR-525 (Texas Electronics, Inc.), were calibrated in the lab to quantify measurement errors across a range of rainfall intensities (5 mm·h- 1 to 250 mm·h- 1) and three different volumetric settings. Instantaneous and cumulative values of simulated rainfall were recorded at 1, 2, 5, 10 and 20-min intervals. All three TBR models showed a substantial deviation (α = 0.05) in measurements from actual rainfall depths, with increasing underestimation errors at greater rainfall intensities. Simple linear regression equations were developed for each TBR to correct the TBR readings based on measured intensities (R2 > 0.98). Additionally, two dynamic calibration techniques, viz. quadratic model (R2 > 0.7) and T vs. 1/Q model (R2 = > 0.98), were tested and found to be useful in situations when the volumetric settings of TBRs are unknown. The correction models were successfully applied to correct field-collected rainfall data from respective TBR models. The calibration parameters of correction models were found to be highly sensitive to changes in volumetric calibration of TBRs. Overall, the HS-TB3 model (with a better protected tipping bucket mechanism, and consistent measurement errors across a range of rainfall intensities) was found to be the most reliable and consistent for rainfall measurements, followed by the ISCO-674 (with susceptibility to clogging and relatively smaller measurement errors across a range of rainfall intensities) and the TR-525 (with high susceptibility to clogging and frequent changes in volumetric calibration, and highly intensity-dependent measurement errors). The study demonstrated that corrections based on dynamic and volumetric calibration can only help minimize-but not completely eliminate the measurement errors. The findings from this study will be useful for correcting field data from TBRs; and may have major implications to field- and watershed-scale hydrologic studies.
A new contrast-assisted method in microcirculation volumetric flow assessment
NASA Astrophysics Data System (ADS)
Lu, Sheng-Yi; Chen, Yung-Sheng; Yeh, Chih-Kuang
2007-03-01
Microcirculation volumetric flow rate is a significant index in diseases diagnosis and treatment such as diabetes and cancer. In this study, we propose an integrated algorithm to assess microcirculation volumetric flow rate including estimation of blood perfused area and corresponding flow velocity maps based on high frequency destruction/contrast replenishment imaging technique. The perfused area indicates the blood flow regions including capillaries, arterioles and venules. Due to the echo variance changes between ultrasonic contrast agents (UCAs) pre- and post-destruction two images, the perfused area can be estimated by the correlation-based approach. The flow velocity distribution within the perfused area can be estimated by refilling time-intensity curves (TICs) after UCAs destruction. Most studies introduced the rising exponential model proposed by Wei (1998) to fit the TICs. Nevertheless, we found the TICs profile has a great resemblance to sigmoid function in simulations and in vitro experiments results. Good fitting correlation reveals that sigmoid model was more close to actual fact in describing destruction/contrast replenishment phenomenon. We derived that the saddle point of sigmoid model is proportional to blood flow velocity. A strong linear relationship (R = 0.97) between the actual flow velocities (0.4-2.1 mm/s) and the estimated saddle constants was found in M-mode and B-mode flow phantom experiments. Potential applications of this technique include high-resolution volumetric flow rate assessment in small animal tumor and the evaluation of superficial vasculature in clinical studies.
Exploring Volumetrically Indexed Cups
ERIC Educational Resources Information Center
Jones, Dustin L.
2011-01-01
This article was inspired by a set of 12 cylindrical cups, which are volumetrically indexed; that is to say, the volume of cup "n" is equal to "n" times the volume of cup 1. Various sets of volumetrically indexed cylindrical cups are explored. I demonstrate how this children's toy is ripe for mathematical investigation, with connections to…
Code of Federal Regulations, 2011 CFR
2011-07-01
..., Specification Test Procedures for Monitoring Systems for Effluent Stream Gas Volumetric Flow Rate E Appendix E... Stream Gas Volumetric Flow Rate 1. Principle and applicability. 1.1Principle. Effluent stream gas... method is applicable to subparts which require continuous gas volumetric flow rate measurement...
Code of Federal Regulations, 2010 CFR
2010-07-01
..., Specification Test Procedures for Monitoring Systems for Effluent Stream Gas Volumetric Flow Rate E Appendix E... Stream Gas Volumetric Flow Rate 1. Principle and applicability. 1.1Principle. Effluent stream gas... method is applicable to subparts which require continuous gas volumetric flow rate measurement...
40 CFR 63.1656 - Performance testing, test methods, and compliance demonstrations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... points. (2) Method 2 to determine the volumetric flow rate of the stack gas. (3) Method 3 to determine... matter concentration and volumetric flow rate of the stack gas for positive pressure baghouses without...) Determine the particulate matter concentration and volumetric flow rate using Method 5 or 5D, as applicable...
40 CFR 63.1656 - Performance testing, test methods, and compliance demonstrations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... points. (2) Method 2 to determine the volumetric flow rate of the stack gas. (3) Method 3 to determine... matter concentration and volumetric flow rate of the stack gas for positive pressure baghouses without...) Determine the particulate matter concentration and volumetric flow rate using Method 5 or 5D, as applicable...
40 CFR 63.1656 - Performance testing, test methods, and compliance demonstrations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... points. (2) Method 2 to determine the volumetric flow rate of the stack gas. (3) Method 3 to determine... matter concentration and volumetric flow rate of the stack gas for positive pressure baghouses without...) Determine the particulate matter concentration and volumetric flow rate using Method 5 or 5D, as applicable...
NASA Astrophysics Data System (ADS)
Zhong, Xuemin; Liu, Hongqi; Mao, Xinyong; Li, Bin; He, Songping; Peng, Fangyu
2018-05-01
Large multi-axis propeller-measuring machines have two types of geometric error, position-independent geometric errors (PIGEs) and position-dependent geometric errors (PDGEs), which both have significant effects on the volumetric error of the measuring tool relative to the worktable. This paper focuses on modeling, identifying and compensating for the volumetric error of the measuring machine. A volumetric error model in the base coordinate system is established based on screw theory considering all the geometric errors. In order to fully identify all the geometric error parameters, a new method for systematic measurement and identification is proposed. All the PIGEs of adjacent axes and the six PDGEs of the linear axes are identified with a laser tracker using the proposed model. Finally, a volumetric error compensation strategy is presented and an inverse kinematic solution for compensation is proposed. The final measuring and compensation experiments have further verified the efficiency and effectiveness of the measuring and identification method, indicating that the method can be used in volumetric error compensation for large machine tools.
Rodriguez, G Y; Valverde-Ramírez, M; Mendes, C E; Béttega, R; Badino, A C
2015-11-01
Global variables play a key role in evaluation of the performance of pneumatic bioreactors and provide criteria to assist in system selection and design. The purpose of this work was to use experimental data and computational fluid dynamics (CFD) simulations to determine the global performance parameters gas holdup ([Formula: see text]) and volumetric oxygen transfer coefficient (k L a), and conduct an analysis of liquid circulation velocity, for three different geometries of pneumatic bioreactors: bubble column, concentric-tube airlift, and split tube airlift. All the systems had 5 L working volumes and two Newtonian fluids of different viscosities were used in the experiments: distilled water and 10 cP glycerol solution. Considering the high oxygen demand in certain types of aerobic fermentations, the assays were carried out at high flow rates. In the present study, the performances of three pneumatic bioreactors with different geometries and operating with two different Newtonian fluids were compared. A new CFD modeling procedure was implemented, and the simulation results were compared with the experimental data. The findings indicated that the concentric-tube airlift design was the best choice in terms of both gas holdup and volumetric oxygen transfer coefficient. The CFD results for gas holdup were consistent with the experimental data, and indicated that k L a was strongly influenced by bubble diameter and shape.
Constrained surface controllers for three-dimensional image data reformatting.
Graves, Martin J; Black, Richard T; Lomas, David J
2009-07-01
This study did not require ethical approval in the United Kingdom. The aim of this work was to create two controllers for navigating a two-dimensional image plane through a volumetric data set, providing two important features of the ultrasonographic paradigm: orientation matching of the navigation device and the desired image plane in the three-dimensional (3D) data and a constraining surface to provide a nonvisual reference for the image plane location in the 3D data. The first constrained surface controller (CSC) uses a planar constraining surface, while the second CSC uses a hemispheric constraining surface. Ten radiologists were asked to obtain specific image reformations by using both controllers and a commercially available medical imaging workstation. The time taken to perform each reformatting task was recorded. The users were also asked structured questions comparing the utility of both methods. There was a significant reduction in the time taken to perform the specified reformatting tasks by using the simpler planar controller as compared with a standard workstation, whereas there was no significant difference for the more complex hemispheric controller. The majority of users reported that both controllers allowed them to concentrate entirely on the reformatting task and the related image rather than being distracted by the need for interaction with the workstation interface. In conclusion, the CSCs provide an intuitive paradigm for interactive reformatting of volumetric data. (c) RSNA, 2009.
NASA Technical Reports Server (NTRS)
Gelman, B. G.; Zolotukhin, V. G.; Lamonov, N. I.; Levchuk, B. V.; Mukhin, L. M.; Nenarokov, D. F.; Khotnikov, B. P.; Rotin, V. A.; Lipatov, A. N.
1979-01-01
Eight analyses of the atmosphere of Venus were made beginning at an altitude of 42 km right down to the surface of the planet. The following were detected in the atmosphere of Venus: nitrogen in concentrations of 2.5 plus or minus 0.5 volumetric %, argon ir concentrations (4 plus or minus 2) x 10 to the minus 3 power volumetric %, CO--(2.8 plus or minus 1.4) x 10 to the minus 3 power volumetric % and SO2 in concentrations (1.3 plus or minus 0.6) x 10 to the minus 2 power volumetric %. The upper limits were estimated for the content of oxygen and water equal to 2 x 10 to the minus 3 power and 10 to the minus 2 power volumetric %, respectively.
Studies on niobium triselenide cathode material for lithium rechargeable cells
NASA Technical Reports Server (NTRS)
Ratnakumar, B. V.; Ni, C. L.; Distefano, S.; Somoano, R. B.; Bankston, C. P.
1988-01-01
NbSe3 exhibits superior characteristics such as high capacity, high volumetric and gravimetric energy densities, and high discharge rate capability, as compared to other intercalating cathodes. This paper reports the preparation, characterization, and performance of NbSe3. Several electrochemical techniques, such as cyclic voltammetry, constant-current/constant-potential discharges, dc potentiodynamic scans, ac impedance, and ac voltammetry, have been used to give insight to the mechanisms of intercalation of three lithiums with NbSe3 and also into the rate determining process in the reduction of NbSe3.
NASA Technical Reports Server (NTRS)
Yu, C. L.
1976-01-01
A volumetric pattern analysis of fuselage-mounted airborne antennas at high frequencies was investigated. The primary goal of the investigation was to develop a numerical solution for predicting radiation patterns of airborne antennas in an accurate and efficient manner. An analytical study of airborne antenna pattern problems is presented in which the antenna is mounted on the fuselage near the top or bottom. Since this is a study of general-type commercial aircraft, the aircraft was modeled in its most basic form. The fuselage was assumed to be an infinitely long perfectly conducting elliptic cylinder in its cross-section and a composite elliptic cylinder in its elevation profile. The wing, cockpit, stabilizers (horizontal and vertical) and landing gear are modeled by "N" sided bent or flat plates which can be arbitrarily attached to the fuselage. The volumetric solution developed utilizes two elliptic cylinders, namely, the roll plane and elevation plane models to approximate the principal surface profile (longitudinal and transverse) at the antenna location. With the belt concept and the aid of appropriate coordinate system transformations the solution can be used to predict the volumetric patterns of airborne antennas in an accurate and efficient manner. Applications of this solution to various airborne antenna problems show good agreement with scale model measurements. Extensive data are presented for a microwave landing antenna system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veeraraghavan, H; Tyagi, N; Riaz, N
2014-06-01
Purpose: Identification and image-based monitoring of lymph nodes growing due to disease, could be an attractive alternative to prophylactic head and neck irradiation. We evaluated the accuracy of the user-interactive Grow Cut algorithm for volumetric segmentation of radiotherapy relevant lymph nodes from MRI taken weekly during radiotherapy. Method: The algorithm employs user drawn strokes in the image to volumetrically segment multiple structures of interest. We used a 3D T2-wturbo spin echo images with an isotropic resolution of 1 mm3 and FOV of 492×492×300 mm3 of head and neck cancer patients who underwent weekly MR imaging during the course of radiotherapy.more » Various lymph node (LN) levels (N2, N3, N4'5) were individually contoured on the weekly MR images by an expert physician and used as ground truth in our study. The segmentation results were compared with the physician drawn lymph nodes based on DICE similarity score. Results: Three head and neck patients with 6 weekly MR images were evaluated. Two patients had level 2 LN drawn and one patient had level N2, N3 and N4'5 drawn on each MR image. The algorithm took an average of a minute to segment the entire volume (512×512×300 mm3). The algorithm achieved an overall DICE similarity score of 0.78. The time taken for initializing and obtaining the volumetric mask was about 5 mins for cases with only N2 LN and about 15 mins for the case with N2,N3 and N4'5 level nodes. The longer initialization time for the latter case was due to the need for accurate user inputs to separate overlapping portions of the different LN. The standard deviation in segmentation accuracy at different time points was utmost 0.05. Conclusions: Our initial evaluation of the grow cut segmentation shows reasonably accurate and consistent volumetric segmentations of LN with minimal user effort and time.« less
Growing season ecosystem and leaf-level gas exchange of an exotic and native semiarid bunchgrass
USDA-ARS?s Scientific Manuscript database
The extensive spread of the South African grass, Lehmann lovegrass (Eragrostis lehmanniana) may potentially alter ecological and hydrological processes across semiarid grasslands and savannahs of western North America. We compared volumetric soil moisture (Q), ecosystem (i.e. whole-plant and soil) ...
BOREAS HYD-1 Volumetric Soil Moisture Data
NASA Technical Reports Server (NTRS)
Cuenca, Richard H.; Kelly, Shaun F.; Stangel, David E.; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Smith, David E. (Technical Monitor)
2000-01-01
The Boreal Ecosystem-Atmosphere Study (BOREAS) Hydrology (HYD)-1 team made measurements of volumetric soil moisture at the Southern Study Area (SSA) and Northern Study Area (NSA) tower flux sites in 1994 and at selected tower flux sites in 1995-97. Different methods were used to collect these measurements, including neutron probe and manual and automated Time Domain Reflectometry (TDR). In 1994, the measurements were made every other day at the NSA-OJP (Old Jack Pine), NSA-YJP (Young Jack Pine), NSA-OBS (Old Black Spruce), NSA-Fen, SSA-OJP, SSA-YJP, SSA-Fen, SSA-YA (Young Aspen), and SSA-OBS sites. In 1995-97, when automated equipment was deployed at NSA-OJP, NSA-YJP, NSA-OBS, SSA-OBS, and SSA-OA (Old Aspen), the measurements were made as often as every hour. The data are stored in tabular ASCII files. The volumetric soil moisture data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).
Study of microvascular non-Newtonian blood flow modulated by electroosmosis.
Tripathi, Dharmendra; Yadav, Ashu; Anwar Bég, O; Kumar, Rakesh
2018-05-01
An analytical study of microvascular non-Newtonian blood flow is conducted incorporating the electro-osmosis phenomenon. Blood is considered as a Bingham rheological aqueous ionic solution. An externally applied static axial electrical field is imposed on the system. The Poisson-Boltzmann equation for electrical potential distribution is implemented to accommodate the electrical double layer in the microvascular regime. With long wavelength, lubrication and Debye-Hückel approximations, the boundary value problem is rendered non-dimensional. Analytical solutions are derived for the axial velocity, volumetric flow rate, pressure gradient, volumetric flow rate, averaged volumetric flow rate along one time period, pressure rise along one wavelength and stream function. A plug swidth is featured in the solutions. Via symbolic software (Mathematica), graphical plots are generated for the influence of Bingham plug flow width parameter, electrical Debye length and Helmholtz-Smoluchowski velocity (maximum electro-osmotic velocity) on the key hydrodynamic variables. This study reveals that blood flow rate accelerates with decreasing the plug width (i.e. viscoplastic nature of fluids) and also with increasing the Debye length parameter. Copyright © 2018 Elsevier Inc. All rights reserved.
Wu, Haoyi; Chiang, Sum Wai; Yang, Cheng; Lin, Ziyin; Liu, Jingping; Moon, Kyoung-Sik; Kang, Feiyu; Li, Bo; Wong, Ching Ping
2015-01-01
Electrically small antennas (ESAs) are becoming one of the key components in the compact wireless devices for telecommunications, defence, and aerospace systems, especially for the spherical one whose geometric layout is more closely approaching Chu's limit, thus yielding significant bandwidth improvements relative to the linear and planar counterparts. Yet broad applications of the volumetric ESAs are still hindered since the low cost fabrication has remained a tremendous challenge. Here we report a state-of-the-art technology to transfer electrically conductive composites (ECCs) from a planar mould to a volumetric thermoplastic substrate by using pad-printing technology without pattern distortion, benefit from the excellent properties of the ECCs as well as the printing-calibration method that we developed. The antenna samples prepared in this way meet the stringent requirement of an ESA (ka is as low as 0.32 and the antenna efficiency is as high as 57%), suggesting that volumetric electronic components i.e. the antennas can be produced in such a simple, green, and cost-effective way. This work can be of interest for the development of studies on green and high performance wireless communication devices.
NASA Astrophysics Data System (ADS)
Lion, Alexander; Mittermeier, Christoph; Johlitz, Michael
2017-09-01
A novel approach to represent the glass transition is proposed. It is based on a physically motivated extension of the linear viscoelastic Poynting-Thomson model. In addition to a temperature-dependent damping element and two linear springs, two thermal strain elements are introduced. In order to take the process dependence of the specific heat into account and to model its characteristic behaviour below and above the glass transition, the Helmholtz free energy contains an additional contribution which depends on the temperature history and on the current temperature. The model describes the process-dependent volumetric and caloric behaviour of glass-forming materials, and defines a functional relationship between pressure, volumetric strain, and temperature. If a model for the isochoric part of the material behaviour is already available, for example a model of finite viscoelasticity, the caloric and volumetric behaviour can be represented with the current approach. The proposed model allows computing the isobaric and isochoric heat capacities in closed form. The difference c_p -c_v is process-dependent and tends towards the classical expression in the glassy and equilibrium ranges. Simulations and theoretical studies demonstrate the physical significance of the model.
Impact of morphological changes of LiNi1/3Mn1/3Co1/3O2 on lithium-ion cathode performances
NASA Astrophysics Data System (ADS)
Cabelguen, Pierre-Etienne; Peralta, David; Cugnet, Mikael; Maillet, Pascal
2017-04-01
Major advances in Li-ion battery technology rely on the nanostructuration of active materials to overcome the severe kinetics limitations of new - cheaper and safer - chemistries. However, opening porosities results in the decrease of volumetric performances, closing the door to significant applications such as portable electronics, electromobility, and grid storage. In this study, we analyze the link between morphologies and performances of model LiNi1/3Mn1/3Co1/3O2 materials. By quantifying exhaustively their microstructures using nitrogen adsorption, mercury intrusion porosimetry, and helium pycnometry, we can discuss how porosities and surface areas are linked to the electrochemical behavior. There is no geometrical parameters that can predict the performances of all our materials. The shape of agglomeration dictates the electrochemical behavior. A huge drop in volumetric performances is measured when microstructure is considered. We show that gravimetric and volumetric power performances are contrary to each other. Highly dense materials exhibit, by far, the best power performances in terms of volumetric figures, so that opening porosities might not be the best strategy, even in non-nanosized materials, for Li-ion battery technology.
Neukamm, Christian; Try, Kirsti; Norgård, Gunnar; Brun, Henrik
2014-01-01
A technique that uses two-dimensional images to create a knowledge-based, three-dimensional model was tested and compared to magnetic resonance imaging. Measurement of right ventricular volumes and function is important in the follow-up of patients after pulmonary valve replacement. Magnetic resonance imaging is the gold standard for volumetric assessment. Echocardiographic methods have been validated and are attractive alternatives. Thirty patients with tetralogy of Fallot (25 ± 14 years) after pulmonary valve replacement were examined. Magnetic resonance imaging volumetric measurements and echocardiography-based three-dimensional reconstruction were performed. End-diastolic volume, end-systolic volume, and ejection fraction were measured, and the results were compared. Magnetic resonance imaging measurements gave coefficient of variation in the intraobserver study of 3.5, 4.6, and 5.3 and in the interobserver study of 3.6, 5.9, and 6.7 for end-diastolic volume, end-systolic volume, and ejection fraction, respectively. Echocardiographic three-dimensional reconstruction was highly feasible (97%). In the intraobserver study, the corresponding values were 6.0, 7.0, and 8.9 and in the interobserver study 7.4, 10.8, and 13.4. In comparison of the methods, correlations with magnetic resonance imaging were r = 0.91, 0.91, and 0.38, and the corresponding coefficient of variations were 9.4, 10.8, and 14.7. Echocardiography derived volumes (mL/m(2)) were significantly higher than magnetic resonance imaging volumes in end-diastolic volume 13.7 ± 25.6 and in end-systolic volume 9.1 ± 17.0 (both P < .05). The knowledge-based three-dimensional right ventricular volume method was highly feasible. Intra and interobserver variabilities were satisfactory. Agreement with magnetic resonance imaging measurements for volumes was reasonable but unsatisfactory for ejection fraction. Knowledge-based reconstruction may replace magnetic resonance imaging measurements for serial follow-up, whereas magnetic resonance imaging should be used for surgical decision making.
NASA Astrophysics Data System (ADS)
Yu, Dingshan; Goh, Kunli; Wang, Hong; Wei, Li; Jiang, Wenchao; Zhang, Qiang; Dai, Liming; Chen, Yuan
2014-07-01
Micro-supercapacitors are promising energy storage devices that can complement or even replace batteries in miniaturized portable electronics and microelectromechanical systems. Their main limitation, however, is the low volumetric energy density when compared with batteries. Here, we describe a hierarchically structured carbon microfibre made of an interconnected network of aligned single-walled carbon nanotubes with interposed nitrogen-doped reduced graphene oxide sheets. The nanomaterials form mesoporous structures of large specific surface area (396 m2 g-1) and high electrical conductivity (102 S cm-1). We develop a scalable method to continuously produce the fibres using a silica capillary column functioning as a hydrothermal microreactor. The resultant fibres show a specific volumetric capacity as high as 305 F cm-3 in sulphuric acid (measured at 73.5 mA cm-3 in a three-electrode cell) or 300 F cm-3 in polyvinyl alcohol (PVA)/H3PO4 electrolyte (measured at 26.7 mA cm-3 in a two-electrode cell). A full micro-supercapacitor with PVA/H3PO4 gel electrolyte, free from binder, current collector and separator, has a volumetric energy density of ~6.3 mWh cm-3 (a value comparable to that of 4 V-500 µAh thin-film lithium batteries) while maintaining a power density more than two orders of magnitude higher than that of batteries, as well as a long cycle life. To demonstrate that our fibre-based, all-solid-state micro-supercapacitors can be easily integrated into miniaturized flexible devices, we use them to power an ultraviolet photodetector and a light-emitting diode.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Carbon Adsorber f Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s), and 1. Record of total regeneration stream mass or volumetric flow for each carbon bed regeneration cycle.2. Record and report the total regeneration stream mass or volumetric flow during each...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Carbon Adsorber f Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s), and 1. Record of total regeneration stream mass or volumetric flow for each carbon bed regeneration cycle.2. Record and report the total regeneration stream mass or volumetric flow during each...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Carbon Adsorber f Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s), and 1. Record of total regeneration stream mass or volumetric flow for each carbon bed regeneration cycle.2. Record and report the total regeneration stream mass or volumetric flow during each...
40 CFR 98.154 - Monitoring and QA/QC requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the concentrations of the process samples. (b) The mass flow of the product stream containing the HFC... concentration and volumetric flow rate determined by measurement of volumetric flow rate using EPA Method 2, 2A... volumetric flow rate at the inlet or by a metering device for HFC-23 sent to the device. Determine a new...
Eisenberg, David P; Bischof, John C; Rabin, Yoed
2016-01-01
This study focuses on thermomechanical effects in cryopreservation associated with a novel approach of volumetric heating by means on nanoparticles in an alternating electromagnetic field. This approach is studied for the application of cryopreservation by vitrification, where the crystalline phase is completely avoided-the cornerstone of cryoinjury. Vitrification can be achieved by quickly cooling the material to cryogenic storage, where ice cannot form. Vitrification can be maintained at the end of the cryogenic protocol by quickly rewarming the material back to room temperature. The magnitude of the rewarming rates necessary to maintain vitrification is much higher than the magnitude of the cooling rates that are required to achieve it in the first place. The most common approach to achieve the required cooling and rewarming rates is by exposing the specimen's surface to a temperature-controlled environment. Due to the underlying principles of heat transfer, there is a size limit in the case of surface heating beyond which crystallization cannot be prevented at the center of the specimen. Furthermore, due to the underlying principles of solid mechanics, there is a size limit beyond which thermal expansion in the specimen can lead to structural damage and fractures. Volumetric heating during the rewarming phase of the cryogenic protocol can alleviate these size limitations. This study suggests that volumetric heating can reduce thermomechanical stress, when combined with an appropriate design of the thermal protocol. Without such design, this study suggests that the level of stress may still lead to structural damage even when volumetric heating is applied. This study proposes strategies to harness nanoparticles heating in order to reduce thermomechanical stress in cryopreservation by vitrification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, C; Han, M; Baek, J
Purpose: To investigate the detectability of a small target for different slice direction of a volumetric cone beam CT image and its impact on dose reduction. Methods: Analytic projection data of a sphere object (1 mm diameter, 0.2/cm attenuation coefficient) were generated and reconstructed by FDK algorithm. In this work, we compared the detectability of the small target from four different backprojection Methods: hanning weighted ramp filter with linear interpolation (RECON 1), hanning weighted ramp filter with Fourier interpolation (RECON2), ramp filter with linear interpolation (RECON 3), and ramp filter with Fourier interpolation (RECON4), respectively. For noise simulation, 200 photonsmore » per measurement were used, and the noise only data were reconstructed using FDK algorithm. For each reconstructed volume, axial and coronal slice were extracted and detection-SNR was calculated using channelized Hotelling observer (CHO) with dense difference-of-Gaussian (D-DOG) channels. Results: Detection-SNR of coronal images varies for different backprojection methods, while axial images have a similar detection-SNR. Detection-SNR{sup 2} ratios of coronal and axial images in RECON1 and RECON2 are 1.33 and 1.15, implying that the coronal image has a better detectability than axial image. In other words, using coronal slices for the small target detection can reduce the patient dose about 33% and 15% compared to using axial slices in RECON 1 and RECON 2. Conclusion: In this work, we investigated slice direction dependent detectability of a volumetric cone beam CT image. RECON 1 and RECON 2 produced the highest detection-SNR, with better detectability in coronal slices. These results indicate that it is more beneficial to use coronal slice to improve detectability of a small target in a volumetric cone beam CT image. This research was supported by the MSIP (Ministry of Science, ICT and Future Planning), Korea, under the IT Consilience Creative Program (NIPA-2014-H0201-14-1002) supervised by the NIPA (National IT Industry Promotion Agency). Authors declares that s/he has no conflict of Interest in relation to the work in this abstract.« less
Kühn, Andreas; Meierhofer, Christian; Rutz, Tobias; Rondak, Ina-Christine; Röhlig, Christoph; Schreiber, Christian; Fratz, Sohrab; Ewert, Peter; Vogt, Manfred
2016-08-01
Ebstein's anomaly (EA) is often associated with right ventricular (RV) dysfunction. Data on echocardiographic quantification of RV function are, however, rare. The aim of this study was to determine how non-volumetric echocardiographic indices and qualitative assessment of global systolic RV function correlate with cardiovascular magnetic resonance (CMR)-derived RV ejection fraction (EF). We compared six echocardiographic indices and qualitative assessment of RV function with the gold standard CMR. A total of 49 unoperated patients with EA and a mean age of 32 ± 18 years were examined. Tricuspid annular plane systolic excursion, tissue Doppler myocardial velocities (peak S and IVA) and 2D strain and strain rate measures for the RV were compared with CMR-derived EF. Only 2D global longitudinal strain (2D-GLS), out of the six parameters investigated, showed a weak, although statistically significant correlation with CMR-derived RVEF (R = -0.4, P = 0.01). Using a cut-off value of -20.15, 2D-GLS sensitivity (77%) and specificity (46%) in detecting patients with a CMR-derived EF of <50% were comparable with qualitative assessment (sensitivity 77%, specificity 45%). Overall echocardiographic parameters of RV function correlate poorly with CMR-derived EF in patients with EA. Only 2D global longitudinal RV strain correlated weakly with CMR-derived RVEF. However, the sensitivity and specificity for detecting RV dysfunction using 2D strain imaging were comparable with qualitative RV functional assessment. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.
Lin, C-Y; Huang, W-Y; Jen, Y-M; Chen, C-M; Su, Y-F; Chao, H-L; Lin, C-S
2014-08-01
The aim of this study was to compare high-dose volumetric modulated arc therapy (VMAT) and fixed-field intensity-modulated radiotherapy (ff-IMRT) plans for the treatment of patients with middle-thoracic esophageal cancer. Eight patients with cT2-3N0M0 middle-thoracic esophageal cancer were enrolled. The treatment planning system was the version 9 of the Pinnacle(3) with SmartArc (Philips Healthcare, Fitchburg, WI, USA). VMAT and ff-IMRT treatment plans were generated for each case, and both techniques were used to deliver 50 Gy to the planning target volume (PTV(50)) and then provided a 16-Gy boost (PTV(66)). The VMAT plans provided superior PTV(66) coverage compared with the ff-IMRT plans (P = 0.034), whereas the ff-IMRT plans provided more appropriate dose homogeneity to the PTV(50) (P = 0.017). In the lung, the V(5) and V(10) were lower for the ff-IMRT plans than for the VMAT plans, whereas the V(20) was lower for the VMAT plans. The delivery time was significantly shorter for the VMAT plans than for the ff-IMRT plans (P = 0.012). In addition, the VMAT plans delivered fewer monitor units. The VMAT technique required a shorter planning time than the ff-IMRT technique (3.8 ± 0.8 hours vs. 5.4 ± 0.6 hours, P = 0.011). The major advantages of VMAT plans are higher efficiency and an approximately 50% reduction in delivery time compared with the ff-IMRT plans, with comparable plan quality. Further clinical investigations to evaluate the use of high-dose VMAT for the treatment of esophageal cancer are warranted. © 2013 Wiley Periodicals, Inc. and the International Society for Diseases of the Esophagus.
Krishnamurthy, Rajesh; Pednekar, Amol; Atweh, Lamya A; Vogelius, Esben; Chu, Zili David; Zhang, Wei; Maskatia, Shiraz; Masand, Prakash; Morris, Shaine A; Krishnamurthy, Ramkumar; Muthupillai, Raja
2015-01-14
Cine balanced steady-state free precession (SSFP), the preferred sequence for ventricular function, demands uninterrupted radio frequency (RF) excitation to maintain the steady-state during suspended respiration. This is difficult to accomplish in sedated children. In this work, we validate a respiratory triggered (RT) SSFP sequence that drives the magnetization to steady-state before commencing retrospectively cardiac gated cine acquisition in a sedated pediatric population. This prospective study was performed on 20 sedated children with congenital heart disease (8.6 ± 4 yrs). Identical imaging parameters were used for multiple number of signal averages (MN) and RT cine SSFP sequences covering both the ventricles in short-axis (SA) orientation. Image quality assessment and quantitative volumetric analysis was performed on the datasets by two blinded observers. One-sided Wilcoxon signed rank test and Box plot analysis were performed to compare the clinical scores. Bland-Altman (BA) analysis was performed on LV and RV volumes. Scan duration for SA stack using RT-SSFP (3.9 ± 0.8 min) was slightly shorter than MN-SSFP (4.6 ± 0.9 min) acquisitions. The endocardial edge definition was significantly better for RT than MN, blood to myocardial contrast was better for RT than MN without reaching statistical significance, and inter slice alignment was comparable. BA analysis indicates that the variability of volumetric indices between RT and MN is comparable to inter and intra-observer variability reported in the literature. The free breathing RT-SSFP sequence allows diagnostic images in sedated children with significantly better edge definition when compared to MN-SSFP, without any penalty for total scan time.
Lalani, Sanam J; Duffield, Tyler C; Trontel, Haley G; Bigler, Erin D; Abildskov, Tracy J; Froehlich, Alyson; Prigge, Molly B D; Travers, Brittany G; Anderson, Jeffrey S; Zielinski, Brandon A; Alexander, Andrew; Lange, Nicholas; Lainhart, Janet E
2018-06-01
Studies have shown that individuals with autism spectrum disorder (ASD) tend to perform significantly below typically developing individuals on standardized measures of attention, even when controlling for IQ. The current study sought to examine within ASD whether anatomical correlates of attention performance differed between those with average to above-average IQ (AIQ group) and those with low-average to borderline ability (LIQ group) as well as in comparison to typically developing controls (TDC). Using automated volumetric analyses, we examined regional volume of classic attention areas including the superior frontal gyrus, anterior cingulate cortex, and precuneus in ASD AIQ (n = 38) and LIQ (n = 18) individuals along with 30 TDC. Auditory attention performance was assessed using subtests of the Test of Memory and Learning (TOMAL) compared among the groups and then correlated with regional brain volumes. Analyses revealed group differences in attention. The three groups did not differ significantly on any auditory attention-related brain volumes; however, trends toward significant size-attention function interactions were observed. Negative correlations were found between the volume of the precuneus and auditory attention performance for the AIQ ASD group, indicating larger volume related to poorer performance. Implications for general attention functioning and dysfunctional neural connectivity in ASD are discussed.
Tanik, Nermin; Serin, Halil Ibrahim; Celikbilek, Asuman; Inan, Levent Ertugrul; Gundogdu, Fatma
2016-05-04
Parkinson's disease (PD) is a neurodegenerative disorder characterized by hyposmia in the preclinical stages. We investigated the relationships of olfactory bulb (OB) volume and olfactory sulcus (OS) depth with basal ganglia and hippocampal volumes. The study included 25 patients with PD and 40 age- and sex-matched control subjects. Idiopathic PD was diagnosed according to published diagnostic criteria. The Hoehn and Yahr (HY) scale, the motor subscale of the Unified Parkinson's Disease Rating Scale (UPDRS III), and the Mini-Mental State Examination (MMSE) were administered to participants. Volumetric measurements of olfactory structures, the basal ganglia, and hippocampus were performed using magnetic resonance imaging (MRI). OB volume and OS depth were significantly reduced in PD patients compared to healthy control subjects (p<0.001 and p<0.001, respectively). The OB and left putamen volumes were significantly correlated (p=0.048), and the depth of the right OS was significantly correlated with right hippocampal volume (p=0.018). We found significant correlations between OB and putamen volumes and OS depth and hippocampal volume. Our study is the first to demonstrate associations of olfactory structures with the putamen and hippocampus using MRI volumetric measurements. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
On the Uncertain Future of the Volumetric 3D Display Paradigm
NASA Astrophysics Data System (ADS)
Blundell, Barry G.
2017-06-01
Volumetric displays permit electronically processed images to be depicted within a transparent physical volume and enable a range of cues to depth to be inherently associated with image content. Further, images can be viewed directly by multiple simultaneous observers who are able to change vantage positions in a natural way. On the basis of research to date, we assume that the technologies needed to implement useful volumetric displays able to support translucent image formation are available. Consequently, in this paper we review aspects of the volumetric paradigm and identify important issues which have, to date, precluded their successful commercialization. Potentially advantageous characteristics are outlined and demonstrate that significant research is still needed in order to overcome barriers which continue to hamper the effective exploitation of this display modality. Given the recent resurgence of interest in developing commercially viable general purpose volumetric systems, this discussion is of particular relevance.
The missing link: evolution of the primate cerebellum.
MacLeod, Carol
2012-01-01
The cerebellum has too often been seen as the "little brain," subservient to the "big brain," the cerebrum. That is changing, as neuroimaging uncovers the cerebellum as the "missing link" in the neurological underpinnings of many cognitive domains. Connections between the neocortex and the cerebellum are now more precisely defined, with functionally localized areas of cerebellar cortex understood for cognitive tasks in humans. Comparative volumetric studies of the primate cerebellum have isolated some elements of circuitry, and our field is moving toward a better integration with the neurosciences in a systematic comparative framework. The next decade may show great advances, as relatively noninvasive techniques of neuroimaging have the potential to build a comparative model of the evolution of primate neurocircuitry. Copyright © 2012 Elsevier B.V. All rights reserved.
GEOMETRIC, VOLUMETRIC, COLOUR AND FRICTIONAL PROPERTIES OF SELECTED SALVIA SPECIES OF TURKEY
Bayram, Mustafa; Altuntas, Ebubekir; Yilar, Melih
2017-01-01
Background: Salvia seeds are promite to dietary and healthy oils because they contain essential fatty acids. Salvia seeds frequently produce mucilage on soaking, and this mucilage is used for the treatment of eye diseases in eastern countries. Salvia species studied for medicine, food and cosmetics, have the potential to be used in the various fields. In the present study, selected engineering (geometrical, volumetrical, colour and frictional) properties of 6 Salvia species seeds were determined and compared. Materials and Methods: This study was performed on selected engineering properties of seeds of 6 Salvia species (Salvia viridis L., Salvia aethiopis L., Salvia cryptantha Montbert & Aucher ex Benthan., Salvia tomentosa Mill., Salvia sclarea L., Salvia virgata Jacq.,) cultivated in Turkey. Plants were collected during the vegetation in 2012-2013 (May-Agust). The seeds were cleaned from foreign matter, dirt and broken seeds manually. Results: The average length, width and thickness were found in the range of 2.61 to 3.53 mm, 1.59 to 2.92 mm and 1.14 to 2.52 mm, respectively. Salvia viridis L. specie had the lowest geometric mean diameter and surface area, whereas Salvia cryptantha L. had the least values among these 6 Salvia species for these properties. The bulk density, true density and the porosity were between 296.83 and 702.80 kg m-3, 285.69 and 718.08 kg m-3, 10.27 and 44.05%, respectively. The volume of unit seed and sphericity ranged between 2.56 and 13.64 mm3, 62.90 and 90.40%, respectively. The coefficient of friction of salvia species were largely influenced by the friction surfaces studied, and highest values were found for polywood in the Salvia crytantha L.. In the study, the static friction coefficient and the angle of repose of salvia species changed from 0.477 to 0.955, and from 14.09 to 23.57°, respectively. Conclusion: Determination of geometric, volumetric, colour and frictional properties of Salvia spp. seeds may increase their economic value. PMID:28480423
Progression of brain atrophy in PSP and CBS over 6 months and 1 year.
Dutt, Shubir; Binney, Richard J; Heuer, Hilary W; Luong, Phi; Attygalle, Suneth; Bhatt, Priyanka; Marx, Gabe A; Elofson, Jonathan; Tartaglia, Maria C; Litvan, Irene; McGinnis, Scott M; Dickerson, Bradford C; Kornak, John; Waltzman, Dana; Voltarelli, Lisa; Schuff, Norbert; Rabinovici, Gil D; Kramer, Joel H; Jack, Clifford R; Miller, Bruce L; Rosen, Howard J; Boxer, Adam L
2016-11-08
To examine the utility and reliability of volumetric MRI in measuring disease progression in the 4 repeat tauopathies, progressive supranuclear palsy (PSP) and corticobasal syndrome (CBS), to support clinical development of new tau-directed therapeutic agents. Six- and 12-month changes in regional MRI volumes and PSP Rating Scale scores were examined in 55 patients with PSP and 33 patients with CBS (78% amyloid PET negative) compared to 30 normal controls from a multicenter natural history study. Longitudinal voxel-based morphometric analyses identified patterns of volume loss, and region-of-interest analyses examined rates of volume loss in brainstem (midbrain, pons, superior cerebellar peduncle), cortical, and subcortical regions based on previously validated atlases. Results were compared to those in a replication cohort of 226 patients with PSP with MRI data from the AL-108-231 clinical trial. Patients with CBS exhibited greater baseline atrophy and greater longitudinal atrophy rates in cortical and basal ganglia regions than patients with PSP; however, midbrain and pontine atrophy rates were similar. Voxel-wise analyses showed distinct patterns of regional longitudinal atrophy in each group as compared to normal controls. The midbrain/pons volumetric ratio differed between diagnoses but remained stable over time. In both patient groups, brainstem atrophy rates were correlated with disease progression measured using the PSP Rating Scale. Volume loss is quantifiable over a period of 6 months in CBS and PSP. Future clinical trials may be able to combine CBS and PSP to measure therapeutic effects. © 2016 American Academy of Neurology.
Tang, Qi; Li, Qiang; Xie, Dong; Chu, Ketao; Liu, Lidong; Liao, Chengcheng; Qin, Yunying; Wang, Zheng; Su, Danke
2018-05-21
This study aimed to investigate the utility of a volumetric apparent diffusion coefficient (ADC) histogram method for distinguishing non-puerperal mastitis (NPM) from breast cancer (BC) and to compare this method with a traditional 2-dimensional measurement method. Pretreatment diffusion-weighted imaging data at 3.0 T were obtained for 80 patients (NPM, n = 27; BC, n = 53) and were retrospectively assessed. Two readers measured ADC values according to 2 distinct region-of-interest (ROI) protocols. The first protocol included the generation of ADC histograms for each lesion, and various parameters were examined. In the second protocol, 3 freehand (TF) ROIs for local lesions were generated to obtain a mean ADC value (defined as ADC-ROITF). All of the ADC values were compared by an independent-samples t test or the Mann-Whitney U test. Receiver operating characteristic curves and a leave-one-out cross-validation method were also used to determine diagnostic deficiencies of the significant parameters. The ADC values for NPM were characterized by significantly higher mean, 5th to 95th percentiles, and maximum and mode ADCs compared with the corresponding ADCs for BC (all P < 0.05). However, the minimum, skewness, and kurtosis ADC values, as well as ADC-ROITF, did not significantly differ between the NPM and BC cases. Thus, the generation of volumetric ADC histograms seems to be a superior method to the traditional 2-dimensional method that was examined, and it also seems to represent a promising image analysis method for distinguishing NPM from BC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chvetsov, A
Purpose: To develop a tumor response model which could be uses to compute tumor hypoxic fraction using serial volumetric tumor imaging. This algorithm may be used for treatment response assessment and also for guidance of more expensive PET imaging of hypoxia. Methods: Previously developed two-level cell population tumor response model was modified to include a third cell level describing hypoxic and necrotic cells. This third level was considered constant value during radiotherapy treatment; therefore, inclusion additional parameter did not compromise stability of model fitting to imaging data. Fitting the model to serial volumetric imaging data was performed using a leastmore » squares objective function and simulated annealing algorithm. The problem of reconstruction of radiobiological parameters from serial imaging data was considered as inverse ill-posed problem described by the Fredholm integral equation of the first kind. Variational regularization was used to stabilize solutions. Results: To evaluate performance of the algorithm, we used a set of serial CT imaging data on tumor-volume for 14 head and neck cancer patients. The hypoxic fractions were reconstructed for each patient and the distribution of hypoxic fractions was compared to the distribution of initial hypoxic fractions previously measured using histograph. The measured and reconstructed from imaging data distributions of hypoxic fractions are in good agreement. The reconstructed distribution of cell surviving fraction was also in better agreement with in vitro data than previously obtained using the two-level cell population model. Conclusion: Our results indicate that it is possible to evaluate the initial hypoxic tumor fraction using serial volumetric imaging and a tumor response model. This algorithm can be used for treatment response assessment and guidance of more expensive PET imaging.« less
Kim, Song Soo; Seo, Joon Beom; Kim, Namkug; Chae, Eun Jin; Lee, Young Kyung; Oh, Yeon Mok; Lee, Sang Do
2014-01-01
To determine the improvement of emphysema quantification with density correction and to determine the optimal site to use for air density correction on volumetric computed tomography (CT). Seventy-eight CT scans of COPD patients (GOLD II-IV, smoking history 39.2±25.3 pack-years) were obtained from several single-vendor 16-MDCT scanners. After density measurement of aorta, tracheal- and external air, volumetric CT density correction was conducted (two reference values: air, -1,000 HU/blood, +50 HU). Using in-house software, emphysema index (EI) and mean lung density (MLD) were calculated. Differences in air densities, MLD and EI prior to and after density correction were evaluated (paired t-test). Correlation between those parameters and FEV1 and FEV1/FVC were compared (age- and sex adjusted partial correlation analysis). Measured densities (HU) of tracheal- and external air differed significantly (-990 ± 14, -1016 ± 9, P<0.001). MLD and EI on original CT data, after density correction using tracheal- and external air also differed significantly (MLD: -874.9 ± 27.6 vs. -882.3 ± 24.9 vs. -860.5 ± 26.6; EI: 16.8 ± 13.4 vs. 21.1 ± 14.5 vs. 9.7 ± 10.5, respectively, P<0.001). The correlation coefficients between CT quantification indices and FEV1, and FEV1/FVC increased after density correction. The tracheal air correction showed better results than the external air correction. Density correction of volumetric CT data can improve correlations of emphysema quantification and PFT. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Volumetric analysis of formation of the complex of G-quadruplex DNA with hemin using high pressure.
Takahashi, Shuntaro; Bhowmik, Sudipta; Sugimoto, Naoki
2017-01-01
DNA guanine-quadruplexes (G-quadruplexes) complexed with the Fe-containing porphyrin, hemin (iron(III)-protoporphyrin IX), can catalyze oxidation reactions. This so-called DNAzyme has been widely used in the field of DNA nanotechnology. To improve DNAzyme properties, we sought to elucidate the interaction mechanism between G-quadruplex DNA and hemin. Here, we performed volumetric analyses of formation of the complex between an oligonucleotide with the sequence of human telomeric DNA (h-telo) and hemin. The G-quadruplex DNA alone and the G-quadruplex DNA-hemin complex were destabilized with increasing pressure in Na + buffer. The pressure required to destabilize the h-telo-hemin complex was less in K + -containing buffer than in buffer with Na + , which indicates that there was a smaller volumetric change upon h-telo formation in K + buffer than in Na + buffer. The calculated change in h-telo-hemin binding volume (∆V b ) in the Na + buffer was 2.5mLmol -1 , whereas it was -41.7 in mLmol -1 the K + buffer. The DNAzyme activity in the K + buffer was higher than that in the Na + buffer at atmospheric pressure. Interestingly, the pressure effect on the destabilization of the h-telo-hemin complex in the presence of poly(ethylene glycol)200 (PEG200) was repressed compared to that in the absence of PEG200. These results suggest that differences in volumetric parameters reflect different mechanisms of interaction between hemin and h-telo due to differences in both the fit of hemin into the h-telo structure and hydration. Thus, the pressure-based thermodynamic analysis provided important information about complex formation and could be a useful index to improve function of DNAzymes. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodek-Wuerz, Roman; Martin, Jean-Baptiste; Wilhelm, Kai
Percutaneous vertebroplasty (PVP) is carried out under fluoroscopic control in most centers. The exclusion of implant leakage and the assessment of implant distribution might be difficult to assess based on two-dimensional radiographic projection images only. We evaluated the feasibility of performing a follow-up examination after PVP with rotational acquisitions and volumetric reconstructions in the angio suite. Twenty consecutive patients underwent standard PVP procedures under fluoroscopic control. Immediate postprocedure evaluation of the implant distribution in the angio suite (BV 3000; Philips, The Netherlands) was performed using rotational acquisitions (typical parameters for the image acquisition included a 17-cm field-of-view, 200 acquired imagesmore » for a total angular range of 180{sup o}). Postprocessing of acquired volumetric datasets included multiplanar reconstruction (MPR), maximum intensity projection (MIP), and volume rendering technique (VRT) images that were displayed as two-dimensional slabs or as entire three-dimensional volumes. Image evaluation included lesion and implant assessment with special attention given to implant leakage. Findings from rotational acquisitions were compared to findings from postinterventional CT. The time to perform and to postprocess the rotational acquisitions was in all cases less then 10 min. Assessment of implant distribution after PVP using rotational image acquisition methods and volumetric reconstructions was possible in all patients. Cement distribution and potential leakage sites were visualized best on MIP images presented as slabs. From a total of 33 detected leakages with CT, 30 could be correctly detected by rotational image acquisition. Rotational image acquisitions and volumetric reconstruction methods provided a fast method to control radiographically the result of PVP in our cases.« less
ERIC Educational Resources Information Center
Scanlon, Christopher; Gebeyehu, Zewdu; Griffin, Kameron; Dabke, Rajeev B.
2014-01-01
An undergraduate laboratory experiment for the volumetric quantitative analysis of ascorbic acid and iron in dietary supplement tablets is presented. Powdered samples of the dietary supplement tablets were volumetrically titrated against electrolytically generated reagents, and the mass of dietary reagent in the tablet was determined from the…
Code of Federal Regulations, 2013 CFR
2013-07-01
... collected—PR. d,e Carbon Adsorber f Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s), and 1. Record of total regeneration stream mass or volumetric flow for each carbon bed regeneration cycle.2. Record and report the total regeneration stream mass or volumetric flow during each...
Code of Federal Regulations, 2014 CFR
2014-07-01
... operating—PR. d e Carbon Adsorber f Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s), and 1. Record of total regeneration stream mass or volumetric flow for each carbon bed regeneration cycle.2. Record and report the total regeneration stream mass or volumetric flow during each...
Code of Federal Regulations, 2013 CFR
2013-07-01
... collected f—PR. Carbon adsorber h Total regeneration stream mass or volumetric or volumetric flow during carbon bed regeneration cycle(s) [63.127(b)(3)], and 1. Record of total regeneration stream mass or volumetric flow for each carbon bed regeneration cycle.2. Record and report the total regeneration stream...
Code of Federal Regulations, 2012 CFR
2012-07-01
... collected f—PR. Carbon adsorber h Total regeneration stream mass or volumetric or volumetric flow during carbon bed regeneration cycle(s) [63.127(b)(3)], and 1. Record of total regeneration stream mass or volumetric flow for each carbon bed regeneration cycle.2. Record and report the total regeneration stream...
Code of Federal Regulations, 2011 CFR
2011-07-01
... collected f—PR. Carbon adsorber h Total regeneration stream mass or volumetric or volumetric flow during carbon bed regeneration cycle(s) [63.127(b)(3)], and 1. Record of total regeneration stream mass or volumetric flow for each carbon bed regeneration cycle.2. Record and report the total regeneration stream...
Code of Federal Regulations, 2014 CFR
2014-07-01
... collected—PR. d e Carbon Adsorber f Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s), and 1. Record of total regeneration stream mass or volumetric flow for each carbon bed regeneration cycle.2. Record and report the total regeneration stream mass or volumetric flow during each...
Code of Federal Regulations, 2014 CFR
2014-07-01
... collected f—PR. Carbon adsorber h Total regeneration stream mass or volumetric or volumetric flow during carbon bed regeneration cycle(s) [63.127(b)(3)], and 1. Record of total regeneration stream mass or volumetric flow for each carbon bed regeneration cycle.2. Record and report the total regeneration stream...
Code of Federal Regulations, 2013 CFR
2013-07-01
... operating—PR. d,e Carbon Adsorber f Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s), and 1. Record of total regeneration stream mass or volumetric flow for each carbon bed regeneration cycle.2. Record and report the total regeneration stream mass or volumetric flow during each...
Code of Federal Regulations, 2010 CFR
2010-07-01
... collected f—PR. Carbon adsorber h Total regeneration stream mass or volumetric or volumetric flow during carbon bed regeneration cycle(s) [63.127(b)(3)], and 1. Record of total regeneration stream mass or volumetric flow for each carbon bed regeneration cycle.2. Record and report the total regeneration stream...
40 CFR 75.58 - General recordkeeping provisions for specific situations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... C to this part, for each hour of missing SO2 concentration or volumetric flow data: (i) The information required in § 75.57(c) for SO2 concentration and volumetric flow, if either one of these monitors... SO2 concentration and volumetric flow using Codes 1-55 in Table 4a of § 75.57; and (xii) Inlet and...
NASA Astrophysics Data System (ADS)
Yang, Chao; Zhang, Liling; Hu, Nantao; Yang, Zhi; Wei, Hao; Xu, Zhichuan J.; Wang, Yanyan; Zhang, Yafei
2016-08-01
Graphene-based all-solid-state supercapacitors (ASSSCs) are one of the most ideal candidates for high-performance flexible power sources. The achievement of high volumetric energy density is highly desired for practical application of this type of ASSSCs. Here, we present a facile method to boost volumetric performances of graphene-based flexible ASSSCs through incorporation of ultrafine polyaniline-poly(4-styrenesulfonate) (PANI-PSS) nanoparticles in reduced graphene oxide (rGO) papers. A compact structure is obtained via intimate contact and π-π interaction between PANI-PSS nanoparticles and rGO sheets. The hybrid paper electrode with the film thickness of 13.5 μm, shows an extremely high volumetric specific capacitance of 272 F/cm3 (0.37 A/cm3 in a three-electrode cell). The assembled ASSSCs show a large volumetric specific capacitance of 217 F/cm3 (0.37 A/cm3 in a two-electrode cell), high volumetric energy and power density, excellent capacitance stability, small leakage current as well as low self-discharge characteristics, revealing the usefulness of this robust hybrid paper for high-performance flexible energy storage devices.
Rijavec, B; Košak, R; Daniel, M; Kralj-Iglič, V; Dolinar, D
2015-01-01
In order to increase the lifetime of the total hip endoprosthesis, it is necessary to understand mechanisms leading to its failure. In this work, we address volumetric wear of the artificial cup, in particular the effect of its inclination with respect to the vertical. Volumetric wear was calculated by using mathematical models for resultant hip force, contact stress and penetration of the prosthesis head into the cup. Relevance of the dependence of volumetric wear on inclination of the cup (its abduction angle ϑA) was assessed by the results of 95 hips with implanted endoprosthesis. Geometrical parameters obtained from standard antero-posterior radiographs were taken as input data. Volumetric wear decreases with increasing cup abduction angle ϑA. The correlation within the population of 95 hips was statistically significant (P = 0.006). Large cup abduction angle minimises predicted volumetric wear but may increase the risk for dislocation of the artificial head from the cup in the one-legged stance. Cup abduction angle and direction of the resultant hip force may compensate each other to achieve optimal position of the cup with respect to wear and dislocation in the one-legged stance for a particular patient.
Local breast density assessment using reacquired mammographic images.
García, Eloy; Diaz, Oliver; Martí, Robert; Diez, Yago; Gubern-Mérida, Albert; Sentís, Melcior; Martí, Joan; Oliver, Arnau
2017-08-01
The aim of this paper is to evaluate the spatial glandular volumetric tissue distribution as well as the density measures provided by Volpara™ using a dataset composed of repeated pairs of mammograms, where each pair was acquired in a short time frame and in a slightly changed position of the breast. We conducted a retrospective analysis of 99 pairs of repeatedly acquired full-field digital mammograms from 99 different patients. The commercial software Volpara™ Density Maps (Volpara Solutions, Wellington, New Zealand) is used to estimate both the global and the local glandular tissue distribution in each image. The global measures provided by Volpara™, such as breast volume, volume of glandular tissue, and volumetric breast density are compared between the two acquisitions. The evaluation of the local glandular information is performed using histogram similarity metrics, such as intersection and correlation, and local measures, such as statistics from the difference image and local gradient correlation measures. Global measures showed a high correlation (breast volume R=0.99, volume of glandular tissue R=0.94, and volumetric breast density R=0.96) regardless the anode/filter material. Similarly, histogram intersection and correlation metric showed that, for each pair, the images share a high degree of information. Regarding the local distribution of glandular tissue, small changes in the angle of view do not yield significant differences in the glandular pattern, whilst changes in the breast thickness between both acquisition affect the spatial parenchymal distribution. This study indicates that Volpara™ Density Maps is reliable in estimating the local glandular tissue distribution and can be used for its assessment and follow-up. Volpara™ Density Maps is robust to small variations of the acquisition angle and to the beam energy, although divergences arise due to different breast compression conditions. Copyright © 2017 Elsevier B.V. All rights reserved.
Analysis of chronic aortic regurgitation by 2D and 3D echocardiography and cardiac MRI
Stoebe, Stephan; Metze, Michael; Jurisch, Daniel; Tayal, Bhupendar; Solty, Kilian; Laufs, Ulrich; Pfeiffer, Dietrich; Hagendorff, Andreas
2018-01-01
Purpose The study compares the feasibility of the quantitative volumetric and semi-quantitative approach for quantification of chronic aortic regurgitation (AR) using different imaging modalities. Methods Left ventricular (LV) volumes, regurgitant volumes (RVol) and regurgitant fractions (RF) were assessed retrospectively by 2D, 3D echocardiography and cMRI in 55 chronic AR patients. Semi-quantitative parameters were assessed by 2D echocardiography. Results 22 (40%) patients had mild, 25 (46%) moderate and 8 (14%) severe AR. The quantitative volumetric approach was feasible using 2D, 3D echocardiography and cMRI, whereas the feasibility of semi-quantitative parameters varied considerably. LV volume (LVEDV, LVESV, SVtot) analyses showed good correlations between the different imaging modalities, although significantly increased LV volumes were assessed by cMRI. RVol was significantly different between 2D/3D echocardiography and 2D echocardiography/cMRI but was not significantly different between 3D echocardiography/cMRI. RF was not statistically different between 2D echocardiography/cMRI and 3D echocardiography/cMRI showing poor correlations (r < 0.5) between the different imaging modalities. For AR grading by RF, moderate agreement was observed between 2D/3D echocardiography and 2D echocardiography/cMRI and good agreement was observed between 3D echocardiography/cMRI. Conclusion Semi-quantitative parameters are difficult to determine by 2D echocardiography in clinical routine. The quantitative volumetric RF assessment seems to be feasible and can be discussed as an alternative approach in chronic AR. However, RVol and RF did not correlate well between the different imaging modalities. The best agreement for grading of AR severity by RF was observed between 3D echocardiography and cMRI. LV volumes can be verified by different approaches and different imaging modalities. PMID:29519957
Brunocilla, E; Borghesi, M; Schiavina, R; Palmieri, F; Pernetti, R; Monti, C; Martorana, G
2014-01-01
Aim of this study is to provide our results after long-term active surveillance (AS) protocol for small renal masses (SRMs), and to report the outcomes of patients who remained in AS compared to those who underwent delayed surgical intervention. We retrospectively reviewed our database of 58 patients diagnosed with 60 contrast enhancing SRMs suspicious for renal cell carcinoma (RCC). All patients had clinical and radiological follow-up every 6 months. We evaluated the differences between patients who remained on AS and those who underwent surgical delayed intervention. The mean age was 75 years, the mean follow-up was 88.5 months. The median initial tumor size at presentation was 2.6cm, and the median estimated tumor volume was 8.7cm(3). The median linear growth rate of the cohort was 0.7cm/year, and the median volumetric growth rate was 8.8 cm(3)/year. Death for metastatic disease occurred in 2 patients (3.4%). No correlation was found between initial tumor size and size growth rate. The mean linear and volumetric growth rates of the group of patients who underwent surgery was higher than in those who remained on surveillance (1.9 vs. 0.4cm/year and 16.1 vs. 4.6 cm(3)/year, respectively; P<.001). Most of SRMs demonstrate to have an indolent course and low metastatic potential. Malignant disease could have faster linear and volumetric growth rates, thus suggesting the need for a delayed surgical intervention. In properly selected patients with low life-expectancy, AS could be a reasonable option in the management of SRMs. Copyright © 2013 AEU. Published by Elsevier Espana. All rights reserved.
Behzadian, Farnaz; Yerushalmi, Laleh; Alimahmoodi, Mahmood; Mulligan, Catherine N
2013-08-01
The hydrodynamic characteristics and the overall volumetric oxygen transfer coefficient of a new multi-environment bioreactor which is an integrated part of a wastewater treatment system, called BioCAST, were studied. This bioreactor contains several zones with different environmental conditions including aerobic, microaerophilic and anoxic, designed to increase the contaminant removal capacity of the treatment system. The multi-environment bioreactor is designed based on the concept of airlift reactors where liquid is circulated through the zones with different environmental conditions. The presence of openings between the aerobic zone and the adjacent oxygen-depleted microaerophilic zone changes the hydrodynamic properties of this bioreactor compared to the conventional airlift designs. The impact of operating and process parameters, notably the hydraulic retention time (HRT) and superficial gas velocity (U(G)), on the hydrodynamics and mass transfer characteristics of the system was examined. The results showed that liquid circulation velocity (V(L)), gas holdup (ε) and overall volumetric oxygen transfer coefficient (k(L)a(L)) increase with the increase of superficial gas velocity (U(G)), while the mean circulation time (t(c)) decreases with the increase of superficial gas velocity. The mean circulation time between the aerobic zone (riser) and microaerophilic zone (downcomer) is a stronger function of the superficial gas velocity for the smaller openings (1/2 in.) between the two zones, while for the larger opening (1 in.) the mean circulation time is almost independent of U(G) for U(G) ≥ 0.023 m/s. The smaller openings between the two zones provide higher mass transfer coefficient and better zone generation which will contribute to improved performance of the system during treatment operations.
Blanco, Sofía T; Gil, Laura; García-Giménez, Pilar; Artal, Manuela; Otín, Santos; Velasco, Inmaculada
2009-05-21
Critical properties and volumetric behavior for the {CO2(1)+C3H8(2)} system have been studied. The critical locus was measured with a flow apparatus and detected by critical opalescence. For the mixtures, repeatabilities in critical temperature and pressure are rTc
Mak, E; Bergsland, N; Dwyer, M G; Zivadinov, R; Kandiah, N
2014-12-01
The involvement of subcortical deep gray matter and cortical thinning associated with mild Parkinson disease remains poorly understood. We assessed cortical thickness and subcortical volumes in patients with Parkinson disease without dementia and evaluated their associations with cognitive dysfunction. The study included 90 patients with mild Parkinson disease without dementia. Neuropsychological assessments classified the sample into patients with mild cognitive impairment (n = 25) and patients without cognitive impairment (n = 65). Volumetric data for subcortical structures were obtained by using the FMRIB Integrated Registration and Segmentation Tool while whole-brain, gray and white matter volumes were estimated by using Structural Image Evaluation, with Normalization of Atrophy. Vertex-based shape analyses were performed to investigate shape differences in subcortical structures. Vertex-wise group differences in cortical thickness were also assessed. Volumetric comparisons between Parkinson disease with mild cognitive impairment and Parkinson disease with no cognitive impairment were performed by using ANCOVA. Associations of subcortical structures with both cognitive function and disease severity were assessed by using linear regression models. Compared with Parkinson disease with no cognitive impairment, Parkinson disease with mild cognitive impairment demonstrated reduced volumes of the thalamus (P = .03) and the nucleus accumbens (P = .04). Significant associations were found for the nucleus accumbens and putamen with performances on the attention/working memory domains (P < .05) and nucleus accumbens and language domains (P = .04). The 2 groups did not differ in measures of subcortical shape or in cortical thickness. Patients with Parkinson disease with mild cognitive impairment demonstrated reduced subcortical volumes, which were associated with cognitive deficits. The thalamus, nucleus accumbens, and putamen may serve as potential biomarkers for Parkinson disease-mild cognitive impairment. © 2014 by American Journal of Neuroradiology.
Coaxial volumetric velocimetry
NASA Astrophysics Data System (ADS)
Schneiders, Jan F. G.; Scarano, Fulvio; Jux, Constantin; Sciacchitano, Andrea
2018-06-01
This study describes the working principles of the coaxial volumetric velocimeter (CVV) for wind tunnel measurements. The measurement system is derived from the concept of tomographic PIV in combination with recent developments of Lagrangian particle tracking. The main characteristic of the CVV is its small tomographic aperture and the coaxial arrangement between the illumination and imaging directions. The system consists of a multi-camera arrangement subtending only few degrees solid angle and a long focal depth. Contrary to established PIV practice, laser illumination is provided along the same direction as that of the camera views, reducing the optical access requirements to a single viewing direction. The laser light is expanded to illuminate the full field of view of the cameras. Such illumination and imaging conditions along a deep measurement volume dictate the use of tracer particles with a large scattering area. In the present work, helium-filled soap bubbles are used. The fundamental principles of the CVV in terms of dynamic velocity and spatial range are discussed. Maximum particle image density is shown to limit tracer particle seeding concentration and instantaneous spatial resolution. Time-averaged flow fields can be obtained at high spatial resolution by ensemble averaging. The use of the CVV for time-averaged measurements is demonstrated in two wind tunnel experiments. After comparing the CVV measurements with the potential flow in front of a sphere, the near-surface flow around a complex wind tunnel model of a cyclist is measured. The measurements yield the volumetric time-averaged velocity and vorticity field. The measurements of the streamlines in proximity of the surface give an indication of the skin-friction lines pattern, which is of use in the interpretation of the surface flow topology.
Wu, Yicong; Ghitani, Alireza; Christensen, Ryan; Santella, Anthony; Du, Zhuo; Rondeau, Gary; Bao, Zhirong; Colón-Ramos, Daniel; Shroff, Hari
2011-01-01
The Caenorhabditis elegans embryo is a powerful model for studying neural development, but conventional imaging methods are either too slow or phototoxic to take full advantage of this system. To solve these problems, we developed an inverted selective plane illumination microscopy (iSPIM) module for noninvasive high-speed volumetric imaging of living samples. iSPIM is designed as a straightforward add-on to an inverted microscope, permitting conventional mounting of specimens and facilitating SPIM use by development and neurobiology laboratories. iSPIM offers a volumetric imaging rate 30× faster than currently used technologies, such as spinning-disk confocal microscopy, at comparable signal-to-noise ratio. This increased imaging speed allows us to continuously monitor the development of C, elegans embryos, scanning volumes every 2 s for the 14-h period of embryogenesis with no detectable phototoxicity. Collecting ∼25,000 volumes over the entirety of embryogenesis enabled in toto visualization of positions and identities of cell nuclei. By merging two-color iSPIM with automated lineaging techniques we realized two goals: (i) identification of neurons expressing the transcription factor CEH-10/Chx10 and (ii) visualization of their neurodevelopmental dynamics. We found that canal-associated neurons use somal translocation and amoeboid movement as they migrate to their final position in the embryo. We also visualized axon guidance and growth cone dynamics as neurons circumnavigate the nerve ring and reach their targets in the embryo. The high-speed volumetric imaging rate of iSPIM effectively eliminates motion blur from embryo movement inside the egg case, allowing characterization of dynamic neurodevelopmental events that were previously inaccessible. PMID:22006307
A study of low-cost reliable actuators for light aircraft. Part A: Chapters 1-8
NASA Technical Reports Server (NTRS)
Eijsink, H.; Rice, M.
1978-01-01
An analysis involving electro-mechanical, electro-pneumatic, and electro-hydraulic actuators was performed to study which are compatible for use in the primary and secondary flight controls of a single engine light aircraft. Actuator characteristics under investigation include cost, reliability, weight, force, volumetric requirements, power requirements, response characteristics and heat accumulation characteristics. The basic types of actuators were compared for performance characteristics in positioning a control surface model and then were mathematically evaluated in an aircraft to get the closed loop dynamic response characteristics. Conclusions were made as to the suitability of each actuator type for use in an aircraft.
Morey, Rajendra A; Haswell, Courtney C; Hooper, Stephen R; De Bellis, Michael D
2016-02-01
Posttraumatic stress disorder (PTSD) is considered a disorder of recovery where individuals fail to learn and retain extinction of the traumatic fear response. In maltreated youth, PTSD is common, chronic, and associated with comorbidity. Studies of extinction-related structural volumes (amygdala, hippocampus, anterior cingulate cortex (ACC), and ventral medial prefrontal cortex (vmPFC)) and this stress diathesis, in maltreated youth were not previously investigated. In this cross-sectional study, neuroanatomical volumes associated with extinction in maltreated youth with PTSD (N=31), without PTSD (N=32), and in non-maltreated healthy volunteers (n=57) were examined using magnetic resonance imaging. Groups were sociodemographically similar. Participants underwent extensive assessments for strict inclusion/exclusion criteria and DSM-IV disorders. Maltreated youth with PTSD demonstrated decreased right vmPFC volumes compared with both maltreated youth without PTSD and non-maltreated controls. Maltreated youth without PTSD demonstrated larger left amygdala and right hippocampal volumes compared with maltreated youth with PTSD and non-maltreated control youth. PTSD symptoms inversely correlated with right and left hippocampal and left amygdala volumes. Confirmatory masked voxel base morphometry analyses demonstrated greater medial orbitofrontal cortex gray matter intensity in controls than maltreated youth with PTSD. Volumetric results were not influenced by psychopathology or maltreatment variables. We identified volumetric differences in extinction-related structures between maltreated youth with PTSD from those without PTSD. Alterations of the vmPFC may be one mechanism that mediates the pathway from PTSD to comorbidity. Further longitudinal work is needed to determine neurobiological factors related to chronic and persistent PTSD, and to PTSD resilience despite maltreatment.
NASA Astrophysics Data System (ADS)
Schnell, Erich; Herman, Tania De La Fuente; Young, Julie; Hildebrand, Kim; Algan, Ozer; Syzek, Elizabeth; Herman, Terence; Ahmad, Salahuddin
2012-10-01
This study aims to evaluate treatment plans generated by Step-and-Shoot (SS), Sliding Window (SW) and Volumetric Modulated Arc Therapy (VMAT) in order to assess the differences in dose volume histograms of planning target volume (PTV) and organs at risk (OAR), conformity indices, radiobiological evaluations, and plan quality for prostate cancer cases. Six prostate cancer patients treated in our center were selected for this retrospective study. Treatment plans were generated with Eclipse version 8.9 using 10 MV photon beams. For VMAT, Varian Rapid Arc with 1 or 2 arcs, and for SS and SW IMRT, 7-9 fields were used. Each plan had three PTVs with prescription doses of 81, 59.4, and 45 Gy to prostate, to prostate and lymph nodes, and to pelvis, respectively. Doses to PTV and OAR and the conformal indices (COIN) were compared among three techniques. The equivalent uniform dose (EUD), tumor control probability (TCP) and normal tissue complication probability (NTCP) were calculated and compared. The mean doses to the PTV prostate on average were 83 Gy and the percent differences of mean dose among all techniques were below 0.28. For bladder and rectum, the percent differences of mean dose among all techniques were below 2.2. The COIN did not favour any particular delivery method over the other. The TCP was higher with SS and SW for four patients and higher with VMAT for two patients. The NTCP for the rectum was the lowest with VMAT in five out of the six patients. The results show similar target coverage in general.
Qu, Ji-Li; Zhao, Dong-Xue
2016-10-15
To improve soil texture and structure, techniques associated with physical, biological or chemical aspects are generally adopted, among which diatomite is an important soil conditioner. However, few studies have been conducted to investigate the physical, hydraulic and tillage performance of diatomite-improved soils. Consistency limits and compaction properties were investigated in this study, and several performance indicators were compared, such as the liquid limit, plastic limit and compactability, of silt, silt loam and silty-clay loam soils to which diatomite was added at volumetric ratios of 0%, 10%, 20%, and 30%. The results showed that diatomite significantly (p<0.05) improved the consistency limits, with the most preferred effects in the silt soil. The liquid limits were increased by 53.9%, 27.3%, and 14.7%, in the silt, silt loam and silty-clay loam soils, respectively, when the volumetric ratio was 30%. While diatomite lowered the maximum dry bulk density (MBD) of the classified soils, the optimum moisture content (OMC) was increased overall. The trend was consistent with the proportion of diatomite, and MBD decreased by 8.7%, 10.3%, and 13.2% in the silt, silt loam and silty-clay loam soils when 30% diatomite was mixed, whereas OMC increased by 28.7%, 22.4%, and 25.3%, respectively. Additionally, aggregate stability was negatively correlated with MBD but positively correlated with OMC. Diatomite exerts positive effects on soil mechanical strength, suggesting that soils from sludge farms are more tillable with a larger stabilized and workable matrix. Copyright © 2016 Elsevier B.V. All rights reserved.
Reflection impulsivity in binge drinking: behavioural and volumetric correlates
Banca, Paula; Lange, Iris; Worbe, Yulia; Howell, Nicholas A.; Irvine, Michael; Harrison, Neil A.; Moutoussis, Michael
2015-01-01
Abstract The degree to which an individual accumulates evidence prior to making a decision, also known as reflection impulsivity, can be affected in psychiatric disorders. Here, we study decisional impulsivity in binge drinkers, a group at elevated risk for developing alcohol use disorders, comparing two tasks assessing reflection impulsivity and a delay discounting task, hypothesizing impairments in both subtypes of impulsivity. We also assess volumetric correlates of reflection impulsivity focusing on regions previously implicated in functional magnetic resonance imaging studies. Sixty binge drinkers and healthy volunteers were tested using two different information‐gathering paradigms: the beads task and the Information Sampling Task (IST). The beads task was analysed using a behavioural approach and a Bayesian model of decision making. Delay discounting was assessed using the Monetary Choice Questionnaire. Regression analyses of primary outcomes were conducted with voxel‐based morphometry analyses. Binge drinkers sought less evidence prior to decision in the beads task compared with healthy volunteers in both the behavioural and computational modelling analysis. There were no group differences in the IST or delay discounting task. Greater impulsivity as indexed by lower evidence accumulation in the beads task was associated with smaller dorsolateral prefrontal cortex and inferior parietal volumes. In contrast, greater impulsivity as indexed by lower evidence accumulation in the IST was associated with greater dorsal cingulate and precuneus volumes. Binge drinking is characterized by impaired reflection impulsivity suggesting a deficit in deciding on the basis of future outcomes that are more difficult to represent. These findings emphasize the role of possible therapeutic interventions targeting decision‐making deficits. PMID:25678093
Nagle, Anna S.; Nageswaren, Ashok R.; Haridas, Balakrishna; Mast, T. D.
2014-01-01
Little is understood about the biomechanical changes leading to pelvic floor disorders such as stress urinary incontinence. In order to measure regional biomechanical properties of the pelvic floor muscles in vivo, a three dimensional (3D) strain tracking technique employing correlation of volumetric ultrasound images has been implemented. In this technique, local 3D displacements are determined as a function of applied stress and then converted to strain maps. To validate this approach, an in vitro model of the pubovisceral muscle, with a hemispherical indenter emulating the downward stress caused by intra-abdominal pressure, was constructed. Volumetric B-scan images were recorded as a function of indenter displacement while muscle strain was measured independently by a sonomicrometry system (Sonometrics). Local strains were computed by ultrasound image correlation and compared with sonomicrometry-measured strains to assess strain tracking accuracy. Image correlation by maximizing an exponential likelihood function was found more reliable than the Pearson correlation coefficient. Strain accuracy was dependent on sizes of the subvolumes used for image correlation, relative to characteristic speckle length scales of the images. Decorrelation of echo signals was mapped as a function of indenter displacement and local tissue orientation. Strain measurement accuracy was weakly related to local echo decorrelation. PMID:24900165
Elci, Hakan; Turk, Necdet
2014-01-01
Block volumes are generally estimated by analyzing the discontinuity spacing measurements obtained either from the scan lines placed over the rock exposures or the borehole cores. Discontinuity spacing measurements made at the Mesozoic limestone quarries in Karaburun Peninsula were used to estimate the average block volumes that could be produced from them using the suggested methods in the literature. The Block Quality Designation (BQD) ratio method proposed by the authors has been found to have given in the same order of the rock block volume to the volumetric joint count (J v) method. Moreover, dimensions of the 2378 blocks produced between the years of 2009 and 2011 in the working quarries have been recorded. Assuming, that each block surfaces is a discontinuity, the mean block volume (V b), the mean volumetric joint count (J vb) and the mean block shape factor of the blocks are determined and compared with the estimated mean in situ block volumes (V in) and volumetric joint count (J vi) values estimated from the in situ discontinuity measurements. The established relations are presented as a chart to be used in practice for estimating the mean volume of blocks that can be obtained from a quarry site by analyzing the rock mass discontinuity spacing measurements. PMID:24696642
Park, Jong Min; Park, So-Yeon; Kim, Jung-In; Carlson, Joel; Kim, Jin Ho
2017-03-01
To investigate the effect of dose calculation grid on calculated dose-volumetric parameters for eye lenses and optic pathways. A total of 30 patients treated using the volumetric modulated arc therapy (VMAT) technique, were retrospectively selected. For each patient, dose distributions were calculated with calculation grids ranging from 1 to 5 mm at 1 mm intervals. Identical structures were used for VMAT planning. The changes in dose-volumetric parameters according to the size of the calculation grid were investigated. Compared to dose calculation with 1 mm grid, the maximum doses to the eye lens with calculation grids of 2, 3, 4 and 5 mm increased by 0.2 ± 0.2 Gy, 0.5 ± 0.5 Gy, 0.9 ± 0.8 Gy and 1.7 ± 1.5 Gy on average, respectively. The Spearman's correlation coefficient between dose gradients near structures vs. the differences between the calculated doses with 1 mm grid and those with 5 mm grid, were 0.380 (p < 0.001). For the accurate calculation of dose distributions, as well as efficiency, using a grid size of 2 mm appears to be the most appropriate choice.
Elci, Hakan; Turk, Necdet
2014-01-01
Block volumes are generally estimated by analyzing the discontinuity spacing measurements obtained either from the scan lines placed over the rock exposures or the borehole cores. Discontinuity spacing measurements made at the Mesozoic limestone quarries in Karaburun Peninsula were used to estimate the average block volumes that could be produced from them using the suggested methods in the literature. The Block Quality Designation (BQD) ratio method proposed by the authors has been found to have given in the same order of the rock block volume to the volumetric joint count (J(v)) method. Moreover, dimensions of the 2378 blocks produced between the years of 2009 and 2011 in the working quarries have been recorded. Assuming, that each block surfaces is a discontinuity, the mean block volume (V(b)), the mean volumetric joint count (J(vb)) and the mean block shape factor of the blocks are determined and compared with the estimated mean in situ block volumes (V(in)) and volumetric joint count (J(vi)) values estimated from the in situ discontinuity measurements. The established relations are presented as a chart to be used in practice for estimating the mean volume of blocks that can be obtained from a quarry site by analyzing the rock mass discontinuity spacing measurements.
Tokunaga, Hiroshi; Uchino, Tadashi
2005-01-01
Cyproheptadine hydrochloride (CH) is nominated as the prohibited ingredients in cosmetics in Japanese Pharmaceutical Affairs Act. So the analytical method for CH was investigated by HPLC. The lotion or milky lotion of 0.5 g was put into a 10-ml volumetric flask. After adding 1.0ml of CH solution at 50 microg/ml into the volumetric flask, the mixture was made up to 10ml with methanol as the test solution. Creams were procedured as follows; 0.5 g of cream was put into a 10-ml volumetric flask. After adding 1.0 ml of tetrahydrofuran into the volumetric flask, the mixture was stirred for several minutes and the ingredients of the creams were dissolved. After adding 1.0 ml of CH solution at 50 microg/ml into the volumetric flask, the mixture was made up to 10ml with methanol. This mixture was transferred to a centrifuging tube with a cap and then the tube was centrifuged for 5 minutes at 3000 rpm. The supernatant was used as the test solution. The test solution of 20 microl was analyzed by HPLC using the ODS column (CAPCELL PAK C18 column, 4.6 x 250 mm), the mixture of 1% acetic acid with 10 mmol/l sodium octanesulfonate and acetonitrile (11:9) and the detection wavelength of 286 nm. The working curve from 0.5 to 6.0 microg/ml showed a linear line between the concentrations of CH and the peak areas. There was no interference of peak of CH with the ingredients such as methylparaben, ethylparaben in the lotions, milky lotion and creams.
Duclos, J; Bhangui, P; Salloum, C; Andreani, P; Saliba, F; Ichai, P; Elmaleh, A; Castaing, D; Azoulay, D
2016-01-01
The partial liver's ability to regenerate both as a graft and remnant justifies right lobe (RL) living donor liver transplantation. We studied (using biochemical and radiological parameters) the rate, extent of, and predictors of functional and volumetric recovery of the remnant left liver (RLL) during the first year in 91 consecutive RL donors. Recovery of normal liver function (prothrombin time [PT] ≥70% of normal and total bilirubin [TB] ≤20 µmol/L), liver volumetric recovery, and percentage RLL growth were analyzed. Normal liver function was regained by postoperative day's 7, 30, and 365 in 52%, 86%, and 96% donors, respectively. Similarly, mean liver volumetric recovery was 64%, 71%, and 85%; whereas the percentage liver growth was 85%, 105%, and 146%, respectively. Preoperative PT value (p = 0.01), RLL/total liver volume (TLV) ratio (p = 0.03), middle hepatic vein harvesting (p = 0.02), and postoperative peak TB (p < 0.01) were predictors of early functional recovery, whereas donor age (p = 0.03), RLL/TLV ratio (p = 0.004), and TLV/ body weight ratio (p = 0.02) predicted early volumetric recuperation. One-year post-RL donor hepatectomy, though functional recovery occurs in almost all (96%), donors had incomplete restoration (85%) of preoperative total liver volume. Modifiable predictors of regeneration could help in better and safer donor selection, while continuing to ensure successful recipient outcomes. © Copyright 2015 The American Society of Transplantation and the American Society of Transplant Surgeons.
Three-dimensional facial architecture in normodivergent class I Caucasian subjects.
Ghoubril, J V; Abou Obeid, F M
2013-06-01
The aims of this study were to (1) define facial architecture in Caucasian patients with normodivergent, skeletal and dental class I using Treil's cephalometric analysis, which is based on computed tomography (CT), and (2) develop a scheme to determine individual balance or normality in relation to linear, angular and volumetric parameters. The CT data of 60 adult subjects were equally divided between both genders. Based on anatomical points located along the trigeminal neuro-matricial facial growth axes, a three-dimensional maxillo-facial architecture was constructed. Volumetric and linear parameters were greater in males (0.000 < p < 0.044) except for the anterior and posterior mandibular width. Sexual dimorphism was not observed with angular parameters. There was no correlation between volumetric and angular parameters. The correlation tests showed that the total volume of the frame increases with infraorbital depth, supraorbital depth, posterior mandibular width and facial height (0.526 < r < 0.777), while it was not associated with the maxillo-orbital width (0.252 < r < 0.389). Total and orbital volumes were more correlated with posterior than with anterior mandibular width. Maxillo-mandibular volume of the frame was more cor-related with orbital depth (0.591 < r < 0.742) than the orbital volume (0.482 < r < 0.589). The results allowed us to establish three-dimensional cephalometric standards, and to replace the tenet of normality, which is a mean value of calculated parameters, by the concept of individual balance among volumetric entities. While sagittal and vertical dimensions affect volumetric changes of the frame, the transverse dimension does not.
Navarro-Ramirez, Rodrigo; Berlin, Connor; Lang, Gernot; Hussain, Ibrahim; Janssen, Insa; Sloan, Stephen; Askin, Gulce; Avila, Mauricio J; Zubkov, Micaella; Härtl, Roger
2018-01-01
Two-dimensional radiographic methods have been proposed to evaluate the radiographic outcome after indirect decompression through extreme lateral interbody fusion (XLIF). However, the assessment of neural decompression in a single plane may underestimate the effect of indirect decompression on central canal and foraminal volumes. The present study aimed to assess the reliability and consistency of a novel 3-dimensional radiographic method that assesses neural decompression by volumetric analysis using a new generation of intraoperative fan-beam computed tomography scanner in patients undergoing XLIF. Prospectively collected data from 7 patients (9 levels) undergoing XLIF was retrospectively analyzed. Three independent, blind raters using imaging analysis software performed volumetric measurements pre- and postoperatively to determine central canal and foraminal volumes. Intrarater and Interrater reliability tests were performed to assess the reliability of this novel volumetric method. The interrater reliability between the three raters ranged from 0.800 to 0.952, P < 0.0001. The test-retest analysis on a randomly selected subset of three patients showed good to excellent internal reliability (range of 0.78-1.00) for all 3 raters. There was a significant increase in mean volume ≈20% for right foramen, left foramen, and central canal volumes postoperatively (P = 0.0472; P = 0.0066; P = 0.0003, respectively). Here we demonstrate a new volumetric analysis technique that is feasible, reliable, and reproducible amongst independent raters for central canal and foraminal volumes in the lumbar spine using an intraoperative computed tomography scanner. Copyright © 2017. Published by Elsevier Inc.
Konishi, Jun; Asami, Takeshi; Hayano, Fumi; Yoshimi, Asuka; Hayasaka, Shunsuke; Fukushima, Hiroshi; Whitford, Thomas J.; Inoue, Tomio; Hirayasu, Yoshio
2014-01-01
Numerous brain regions are believed to be involved in the neuropathology of panic disorder (PD) including fronto-limbic regions, thalamus, brain stem, and cerebellum. However, while several previous studies have demonstrated volumetric gray matter reductions in these brain regions, there have been no studies evaluating volumetric white matter changes in the fiber bundles connecting these regions. In addition, although patients with PD typically exhibit social, interpersonal and occupational dysfunction, the neuropathologies underlying these dysfunctions remain unclear. A voxel-based morphometry study was conducted to evaluate differences in regional white matter volume between 40 patients with PD and 40 healthy control subjects (HC). Correlation analyses were performed between the regional white matter volumes and patients' scores on the Panic Disorder Severity Scale (PDSS) and the Global Assessment of Functioning (GAF). Patients with PD demonstrated significant volumetric reductions in widespread white matter regions including fronto-limbic, thalamo-cortical and cerebellar pathways (p<0.05, FDR corrected). Furthermore, there was a significant negative relationship between right orbitofrontal gyrus (OFG) white matter volume and the severity of patients' clinical symptoms, as assessed with the PDSS. A significant positive relationship was also observed between patients' right OFG volumes and their scores on the GAF. Our results suggest that volumetric reductions in widespread white matter regions may play an important role in the pathology of PD. In particular, our results suggest that structural white matter abnormalities in the right OFG may contribute to the social, personal and occupational dysfunction typically experienced by patients with PD. PMID:24663245
Volumetric neuroimaging in Usher syndrome: evidence of global involvement.
Schaefer, G B; Bodensteiner, J B; Thompson, J N; Kimberling, W J; Craft, J M
1998-08-27
Usher syndrome is a group of genetic disorders consisting of congenital sensorineural hearing loss and retinitis pigmentosa of variable onset and severity depending on the genetic type. It was suggested that the psychosis of Usher syndrome might be secondary to a metabolic degeneration involving the brain more diffusely. There have been reports of focal and diffuse atrophic changes in the supratentorial brain as well as atrophy of some of the structures of the posterior fossa. We previously performed quantitative analysis of magnetic resonance imaging studies of 19 Usher syndrome patients (12 with type I and 7 with type II) looking at the cerebellum and various cerebellar components. We found atrophy of the cerebellum in both types and sparing of cerebellar vermis lobules I-V in type II Usher syndrome patients only. We now have studied another group of 19 patients (with some overlap in the patients studied from the previous report) with Usher syndrome (8 with type I, 11 with type II). We performed quantitative volumetric measurements of various brain structures compared to age- and sex-matched controls. We found a significant decrease in intracranial volume and in size of the brain and cerebellum with a trend toward an increase in the size of the subarachnoid spaces. These data suggest that the disease process in Usher syndrome involves the entire brain and is not limited to the posterior fossa or auditory and visual systems.
Laso, Manuel; Karayiannis, Nikos Ch
2008-05-07
We present predictions for the static scaling exponents and for the cross-over polymer volumetric fractions in the marginal and concentrated solution regimes. Corrections for finite chain length are made. Predictions are based on an analysis of correlated fluctuations in density and chain length, in a semigrand ensemble in which mers and solvent sites exchange identities. Cross-over volumetric fractions are found to be chain length independent to first order, although reciprocal-N corrections are also estimated. Predicted scaling exponents and cross-over regimes are compared with available data from extensive off-lattice Monte Carlo simulations [Karayiannis and Laso, Phys. Rev. Lett. 100, 050602 (2008)] on freely jointed, hard-sphere chains of average lengths from N=12-500 and at packing densities from dilute ones up to the maximally random jammed state.
Kinematic reconstruction in cardiovascular imaging.
Bastarrika, G; Huebra Rodríguez, I J González de la; Calvo-Imirizaldu, M; Suárez Vega, V M; Alonso-Burgos, A
2018-05-17
Advances in clinical applications of computed tomography have been accompanied by improvements in advanced post-processing tools. In addition to multiplanar reconstructions, curved planar reconstructions, maximum intensity projections, and volumetric reconstructions, very recently kinematic reconstruction has been developed. This new technique, based on mathematical models that simulate the propagation of light beams through a volume of data, makes it possible to obtain very realistic three dimensional images. This article illustrates examples of kinematic reconstructions and compares them with classical volumetric reconstructions in patients with cardiovascular disease in a way that makes it easy to establish the differences between the two types of reconstruction. Kinematic reconstruction is a new method for representing three dimensional images that facilitates the explanation and comprehension of the findings. Copyright © 2018 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.
Tisdall, M Dylan; Reuter, Martin; Qureshi, Abid; Buckner, Randy L; Fischl, Bruce; van der Kouwe, André J W
2016-02-15
Recent work has demonstrated that subject motion produces systematic biases in the metrics computed by widely used morphometry software packages, even when the motion is too small to produce noticeable image artifacts. In the common situation where the control population exhibits different behaviors in the scanner when compared to the experimental population, these systematic measurement biases may produce significant confounds for between-group analyses, leading to erroneous conclusions about group differences. While previous work has shown that prospective motion correction can improve perceived image quality, here we demonstrate that, in healthy subjects performing a variety of directed motions, the use of the volumetric navigator (vNav) prospective motion correction system significantly reduces the motion-induced bias and variance in morphometry. Copyright © 2015 Elsevier Inc. All rights reserved.
Measurements of air entrainment by vertical plunging liquid jets
NASA Astrophysics Data System (ADS)
El Hammoumi, M.; Achard, J. L.; Davoust, L.
2002-06-01
This paper addresses the issue of the air-entrainment process by a vertical plunging liquid jet. A non-dimensional physical analysis, inspired by the literature on the stability of free jets submitted to an aerodynamic interaction, was developed and yielded two correlation equations for the laminar and the turbulent plunging jets. These correlation equations allow the volumetric flow rate of the air carryunder represented by the Weber number of entrainment We n to be predicted. The plunging jets under consideration issued from circular tubes long enough to achieve a fully developed flow at the outlet. A sensitive technique based on a rising soap meniscus was developed to measure directly the volumetric flow rate of the air carryunder. Our data are compared with other experimental data available in the literature; they also stand as a possible database for future theoretical modelling.
Aras, Isil; Unal, Idil; Huniler, Gencer; Aras, Aynur
2018-05-01
Purpose of the present study was to compare external root resorption (ERR) volumetrically in maxillary incisors induced by orthodontic treatment using self-ligating brackets (Damon Q, DQ) or conventional brackets (Titanium Orthos, TO) with the help of cone-beam computed tomography (CBCT). A sample of 32 subjects, with Angle Class I malocclusion and anterior crowding of 4-10 mm, was divided randomly into two groups: a DQ group, in which self-ligating DQ brackets with Damon archwires were used; and a TO group, in which conventional TO brackets with large Orthos archwires were applied. The study was conducted using CBCT scans taken before (T1), and near the end (9 months after the initiation of treatment; T2) of the orthodontic treatment. The extent of ERR was determined volumetrically using Mimics software. Changes in root volume were evaluated by repeated-measures analysis of variance as well as by paired and independent t-tests. While significant differences were found between T1 and T2 for root volume in both groups (p < 0.05), there was no difference between the groups regarding the amount (mm 3 or relative change) of ERR (p > 0.05). Maxillary central and lateral incisors showed similar volume loss (p > 0.05). Furthermore, the TO group showed a higher prevalence of palatinal and proximal slanted RR compared with the DQ group (p < 0.05). It is not possible to suggest superiority of one bracket system over the other only considering root resorption pattern or amount. Higher incidence of slanted RR found in patients treated with the TO system warrants further research to identify possible specific causes.
Varughese, J K; Wentzel-Larsen, T; Vassbotn, F; Moen, G; Lund-Johansen, M
2010-04-01
In this volumetric study of the vestibular schwannoma, we evaluated the accuracy and reliability of several approximation methods that are in use, and determined the minimum volume difference that needs to be measured for it to be attributable to an actual difference rather than a retest error. We also found empirical proportionality coefficients for the different methods. DESIGN/SETTING AND PARTICIPANTS: Methodological study with investigation of three different VS measurement methods compared to a reference method that was based on serial slice volume estimates. These volume estimates were based on: (i) one single diameter, (ii) three orthogonal diameters or (iii) the maximal slice area. Altogether 252 T1-weighted MRI images with gadolinium contrast, from 139 VS patients, were examined. The retest errors, in terms of relative percentages, were determined by undertaking repeated measurements on 63 scans for each method. Intraclass correlation coefficients were used to assess the agreement between each of the approximation methods and the reference method. The tendency for approximation methods to systematically overestimate/underestimate different-sized tumours was also assessed, with the help of Bland-Altman plots. The most commonly used approximation method, the maximum diameter, was the least reliable measurement method and has inherent weaknesses that need to be considered. This includes greater retest errors than area-based measurements (25% and 15%, respectively), and that it was the only approximation method that could not easily be converted into volumetric units. Area-based measurements can furthermore be more reliable for smaller volume differences than diameter-based measurements. All our findings suggest that the maximum diameter should not be used as an approximation method. We propose the use of measurement modalities that take into account growth in multiple dimensions instead.
Architecture of the Suprahyoid Muscles: A Volumetric Musculoaponeurotic Analysis.
Shaw, Stephanie M; Martino, Rosemary; Mahdi, Ali; Sawyer, Forrest Kip; Mathur, Sunita; Hope, Andrew; Agur, Anne M
2017-10-17
Suprahyoid muscles play a critical role in swallowing. The arrangement of the fiber bundles and aponeuroses has not been investigated volumetrically, even though muscle architecture is an important determinant of function. Thus, the purpose was to digitize, model in three dimensions, and quantify the architectural parameters of the suprahyoid muscles to determine and compare their relative functional capabilities. Fiber bundles and aponeuroses from 11 formalin-embalmed specimens were serially dissected and digitized in situ. Data were reconstructed in three dimensions using Autodesk Maya. Architectural parameters were quantified, and data were compared using independent samples t-tests and analyses of variance. Based on architecture and attachment sites, suprahyoid muscles were divided into 3 groups: anteromedial, superolateral, and superoposterior. Architectural parameters differed significantly (p < .05) across muscles and across the 3 groups, suggesting differential roles in hyoid movement during swallowing. When activated simultaneously, anteromedial and superoposterior muscle groups could work together to elevate the hyoid. The results suggest that the suprahyoid muscles can have individualized roles in hyoid excursion during swallowing. Muscle balance may be important for identifying and treating hyolaryngeal dysfunction in patients with dysphagia.
Dörr, Tobias S; Fleischmann, Simon; Zeiger, Marco; Grobelsek, Ingrid; de Oliveira, Peter W; Presser, Volker
2018-04-25
Free-standing, binder-free, and conductive additive-free mesoporous titanium dioxide/carbon hybrid electrodes were prepared from co-assembly of a poly(isoprene)-block-poly(styrene)-block-poly(ethylene oxide) block copolymer and a titanium alkoxide. By tailoring an optimized morphology, we prepared macroscopic mechanically stable 300 μm thick monoliths that were directly employed as lithium-ion battery electrodes. High areal mass loading of up to 26.4 mg cm -2 and a high bulk density of 0.88 g cm -3 were obtained. This resulted in a highly increased volumetric capacity of 155 mAh cm -3 , compared to cast thin film electrodes. Further, the areal capacity of 4.5 mAh cm -2 represented a 9-fold increase compared to conventionally cast electrodes. These attractive performance metrics are related to the superior electrolyte transport and shortened diffusion lengths provided by the interconnected mesoporous nature of the monolith material, assuring superior rate handling, even at high cycling rates. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mattelaer, Felix; Geryl, Kobe; Rampelberg, Geert; Dendooven, Jolien; Detavernier, Christophe
2017-04-19
Flexible wearable electronics and on-chip energy storage for wireless sensors drive rechargeable batteries toward thin-film lithium ion batteries. To enable more charge storage on a given surface, higher energy density materials are required, while faster energy storage and release can be obtained by going to thinner films. Vanadium oxides have been examined as cathodes in classical and thin-film lithium ion batteries for decades, but amorphous vanadium oxide thin films have been mostly discarded. Here, we investigate the use of atomic layer deposition, which enables electrode deposition on complex three-dimensional (3D) battery architectures, to obtain both amorphous and crystalline VO 2 and V 2 O 5 , and we evaluate their thin-film cathode performance. Very high volumetric capacities are found, alongside excellent kinetics and good cycling stability. Better kinetics and higher volumetric capacities were observed for the amorphous vanadium oxides compared to their crystalline counterparts. The conformal deposition of these vanadium oxides on silicon micropillar structures is demonstrated. This study shows the promising potential of these atomic layer deposited vanadium oxides as cathodes for 3D all-solid-state thin-film lithium ion batteries.
Montiel Corona, Virginia; Razo-Flores, Elías
2018-02-01
Continuous H 2 and CH 4 production in a two-stage process to increase energy recovery from agave bagasse enzymatic-hydrolysate was studied. In the first stage, the effect of organic loading rate (OLR) and stirring speed on volumetric hydrogen production rate (VHPR) was evaluated in a continuous stirred tank reactor (CSTR); by controlling the homoacetogenesis with the agitation speed and maintaining an OLR of 44 g COD/L-d, it was possible to reach a VHPR of 6 L H 2 /L-d, equivalent to 1.34 kJ/g bagasse. In the second stage, the effluent from CSTR was used as substrate to feed a UASB reactor for CH 4 production. Volumetric methane production rate (VMPR) of 6.4 L CH 4 /L-d was achieved with a high OLR (20 g COD/L-d) and short hydraulic retention time (HRT, 14 h), producing 225 mL CH 4 /g-bagasse equivalent to 7.88 kJ/g bagasse. The two-stage continuous process significantly increased energy conversion efficiency (56%) compared to one-stage hydrogen production (8.2%). Copyright © 2017 Elsevier Ltd. All rights reserved.
Mechanical properties of a collagen fibril under simulated degradation.
Malaspina, David C; Szleifer, Igal; Dhaher, Yasin
2017-11-01
Collagen fibrils are a very important component in most of the connective tissue in humans. An important process associated with several physiological and pathological states is the degradation of collagen. Collagen degradation is usually mediated by enzymatic and non-enzymatic processes. In this work we use molecular dynamics simulations to study the influence of simulated degradation on the mechanical properties of the collagen fibril. We applied tensile stress to the collagen fiber at different stages of degradation. We compared the difference in the fibril mechanical priorities due the removal of enzymatic crosslink, surface degradation and volumetric degradation. As anticipated, our results indicated that, regardless of the degradation scenario, fibril mechanical properties is reduced. The type of degradation mechanism (crosslink, surface or volumetric) expressed differential effect on the change in the fibril stiffness. Our simulation results showed dramatic change in the fibril stiffness with a small amount of degradation. This suggests that the hierarchical structure of the fibril is a key component for the toughness and is very sensitive to changes in the organization of the fibril. The overall results are intended to provide a theoretical framework for the understanding the mechanical behavior of collagen fibrils under degradation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Prostate cancer: computer-aided diagnosis on multiparametric MRI
NASA Astrophysics Data System (ADS)
Marin, Laura; Racoceanu, Daniel; Renard Penna, Raphaele; Ezziane, Malek
2017-11-01
Prostate cancer (PCa) is one of the most common cancers in men, being also the second most deadly cancer after lung cancer. There is increasing interest in active surveillance and minimally invasive focal therapies in PCa to avoid morbidities associated with whole gland therapy. Tumor volume represents an essential prognostic factor of PCa and the definition of index lesion volume is critical for appropriate decision making, especially for image guide focal treatment or in case of active surveillance. Multi-parametric Magnetic Resonance Imaging (mp-MRI) is the modality of choice for the detection and the localization of PCa foci. However, little has been published on mp-MRI accuracy in determining PCa volume, especially at 3T. There is insufficient evidence and no consensus to determine which of the methods for measuring volume is optimal. The objective of this study concerns the elaboration of an algorithm for automatic interpretation of mp-MRI. We determine the accuracy of the proposed method by comparing the prostate tumor volume issued from the automated volumetric mp-MRI measurements of the tumoral region, with manual and semi-automated volumetric measurements done by and respectively with radiologists. Information issued from whole mount histopathology is used to validate the whole approach.
Larsson, William; Jalbert, Jocelyn; Gilbert, Roland; Cedergren, Anders
2003-03-15
The efficiency of azeotropic distillation and oven evaporation techniques for trace determination of water in oils has recently been questioned by the National Institute of Standards and Technology (NIST), on the basis of measurements of the residual water found after the extraction step. The results were obtained by volumetric Karl Fischer (KF) titration in a medium containing a large excess of chloroform (> or = 65%), a proposed prerequisite to ensure complete release of water from the oil matrix. In this work, the extent of this residual water was studied by means of a direct zero-current potentiometric technique using a KF medium containing more than 80% chloroform, which is well above the concentration recommended by NIST. A procedure is described that makes it possible to correct the results for dilution errors as well as for chemical interference effects caused by the oil matrix. The corrected values were found to be in the range of 0.6-1.5 ppm, which should be compared with the 12-34 ppm (uncorrected values) reported by NIST for the same oils. From this, it is concluded that the volumetric KF method used by NIST gives results that are much too high.
Seragioli, Rafael; Simao, Marcelo Novelino; Simao, Gustavo Novelino; Herrero, Carlos Fernando P S; Nogueira-Barbosa, Marcello H
2018-03-01
Denticulate ligaments (DLs) are pial extensions on each side of the spinal cord, comprising about 20 to 21 pairs of fibrous structures connecting the dura mater to the spinal cord. These ligaments are significant anatomical landmarks in the surgical approach to intradural structures. To our knowledge, there is no previous study on the detection of DLs using MRI. After IRB approval, we retrospectively evaluated 116 consecutive MRI scans of the cervical spine, using the volumetric sequence 3D COSMIC, 65 and 51 studies with 1.5T and 3.0T respectively. We did not include trauma and tumor cases. Two independent radiologists assessed the detection of cervical spine DLs independently and blinded for each cervical vertebral level. We compared the frequency of detection of these ligaments in 1.5 Tesla and 3.0 Tesla MRI using Fisher exact test considering P<0.05 as significant. We evaluated interobserver agreement with Kappa coefficient. We observed high detection frequency of the cervical spine DLs using both 1.5T (70 to 91%) and 3.0T (68 to 98%). We found no statistically significant difference in the detection frequency of ligaments between the 1.5T and 3.0T MRI in all vertebral levels. Using 3.0T, radiologists identified ligaments better in higher vertebral levels than for lower cervical levels (P=0.0003). Interobserver agreement on the identification of DL was poor both for 1.5T (k=0.3744; CI 95% 0.28-0.46) and 3.0T (k=0.3044; CI 95% 0.18-0.42) MRI. Radiologists identified most of the cervical DLs using volumetric MRI acquisition. Our results suggest 1.5T and 3.0T MRI performed similarly in the detection of DLs. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moon, S; Kyung Hee University Hospital at Gangdong, Gangdong-gu; Kim, D
2015-06-15
Purpose: The hippocampus sparing during the cranial irradiation has become interesting because it may mitigate radiation-induced neurocognitive toxicity. Herein we report our preliminary study for sparing the hippocampus with and without tilling condition for patient with brain metastases. Methods: Ten patients previously treated with whole brain were reviewed. Five patients tilted the head to around 30 degrees and others were treated without tilting. Treatment plans of linear accelerator (Linac)-based volumetric modulated arc therapy (VMAT) and intensity modulated radiotherapy (IMRT) were generated for prescription dose of 30 Gy in 15 fractions. Hippocampal avoidance regions were created with 5-mm volumetric expansion aroundmore » the hippocampus. Whole brain, hippocampus and hippocampal avoidance volume were 1372cm3, 6cm3 and 30cm3 and hippocampal avoidance volume was 2.2% of the whole brain planned target volume in average. Organs at risk (OARs) are hippocampus, eyes, lens, and cochleae. Coverage index (CVI), conformity index (CI), homogeneity index (HI) and mean dose to OARs were used to compare dose characteristic of tilted and non-tilted cases. Results: In IMRT, when CI, CVI and HI of whole brain were 0.88, 0.09 and 0.98 in both tilted and non-tilted cases, absorbed dose of hippocampal avoidance volume in tilted cases were 10% lower than non-tilted cases. Doses in other OARs such as eyes, lens, and cochleae were also decreased about 20% when tilting the head. When CI, HI and CVI in VMAT were 0.9, 0.08 and 0.99, the dose-decreased ratio of OARs in both with and without tilting cases were almost the same with IMRT. But absolute dose of hippocampal avoidance volume in VMAT was 30% lower than IMRT. Conclusion: This study confirms that dose to hippocampus decreases if patients tilt the head. When treating the whole brain with head tilted, patients can acquire the same successful treatment Result and also preserve their valuable memory.« less
Yerges, Laura M.; Klei, Lambertus; Cauley, Jane A.; Roeder, Kathryn; Kammerer, Candace M.; Moffett, Susan P.; Ensrud, Kristine E.; Nestlerode, Cara S.; Marshall, Lynn M.; Hoffman, Andrew R.; Lewis, Cora; Lang, Thomas F.; Barrett-Connor, Elizabeth; Ferrell, Robert E.; Orwoll, Eric S.
2009-01-01
Genetics is a well-established but poorly understood determinant of BMD. Whereas some genetic variants may influence BMD throughout the body, others may be skeletal site specific. We initially screened for associations between 4608 tagging and potentially functional single nucleotide polymorphisms (SNPs) in 383 candidate genes and femoral neck and lumbar spine volumetric BMD (vBMD) measured from QCT scans among 862 community-dwelling white men ≥65 yr of age in the Osteoporotic Fractures in Men Study (MrOS). The most promising SNP associations (p < 0.01) were validated by genotyping an additional 1156 white men from MrOS. This analysis identified 8 SNPs in 6 genes (APC, DMP1, FGFR2, FLT1, HOXA, and PTN) that were associated with femoral neck vBMD and 13 SNPs in 7 genes (APC, BMPR1B, FOXC2, HOXA, IGFBP2, NFATC1, and SOST) that were associated with lumbar spine vBMD in both genotyping samples (p < 0.05). Although most associations were specific to one skeletal site, SNPs in the APC and HOXA gene regions were associated with both femoral neck and lumbar spine BMD. This analysis identifies several novel and robust genetic associations for volumetric BMD, and these findings in combination with other data suggest the presence of genetic loci for volumetric BMD that are at least to some extent skeletal-site specific. PMID:19453261
Creasy, John M; Midya, Abhishek; Chakraborty, Jayasree; Adams, Lauryn B; Gomes, Camilla; Gonen, Mithat; Seastedt, Kenneth P; Sutton, Elizabeth J; Cercek, Andrea; Kemeny, Nancy E; Shia, Jinru; Balachandran, Vinod P; Kingham, T Peter; Allen, Peter J; DeMatteo, Ronald P; Jarnagin, William R; D'Angelica, Michael I; Do, Richard K G; Simpson, Amber L
2018-06-19
This study investigates whether quantitative image analysis of pretreatment CT scans can predict volumetric response to chemotherapy for patients with colorectal liver metastases (CRLM). Patients treated with chemotherapy for CRLM (hepatic artery infusion (HAI) combined with systemic or systemic alone) were included in the study. Patients were imaged at baseline and approximately 8 weeks after treatment. Response was measured as the percentage change in tumour volume from baseline. Quantitative imaging features were derived from the index hepatic tumour on pretreatment CT, and features statistically significant on univariate analysis were included in a linear regression model to predict volumetric response. The regression model was constructed from 70% of data, while 30% were reserved for testing. Test data were input into the trained model. Model performance was evaluated with mean absolute prediction error (MAPE) and R 2 . Clinicopatholologic factors were assessed for correlation with response. 157 patients were included, split into training (n = 110) and validation (n = 47) sets. MAPE from the multivariate linear regression model was 16.5% (R 2 = 0.774) and 21.5% in the training and validation sets, respectively. Stratified by HAI utilisation, MAPE in the validation set was 19.6% for HAI and 25.1% for systemic chemotherapy alone. Clinical factors associated with differences in median tumour response were treatment strategy, systemic chemotherapy regimen, age and KRAS mutation status (p < 0.05). Quantitative imaging features extracted from pretreatment CT are promising predictors of volumetric response to chemotherapy in patients with CRLM. Pretreatment predictors of response have the potential to better select patients for specific therapies. • Colorectal liver metastases (CRLM) are downsized with chemotherapy but predicting the patients that will respond to chemotherapy is currently not possible. • Heterogeneity and enhancement patterns of CRLM can be measured with quantitative imaging. • Prediction model constructed that predicts volumetric response with 20% error suggesting that quantitative imaging holds promise to better select patients for specific treatments.
Wong, Andy K.O.; Beattie, Karen A.; Bhargava, Aakash; Cheung, Marco; Webber, Colin E.; Chettle, David R.; Papaioannou, Alexandra; Adachi, Jonathan D.
2016-01-01
Conflicting evidence suggests that bone lead or blood lead may reduce areal bone mineral density (BMD). Little is known about how lead at either compartment affects bone structure. This study examined postmenopausal women (N = 38, mean age 76 ± 8, body mass index (BMI): 26.74 ± 4.26 kg/m2) within the Hamilton cohort of the Canadian Multicentre Osteoporosis Study (CaMos), measuring bone lead at 66% of the non-dominant leg and at the calcaneus using 109Cadmium X-ray fluorescence. Volumetric BMD and structural parameters were obtained from peripheral quantitative computed tomography images (200 μm in-plane resolution, 2.3 ± 0.5 mm slice thickness) of the same 66% site and of the distal 4% site of the tibia length. Blood lead was measured using atomic absorption spectrometry and blood-to-bone lead partition coefficients (PBB, log ratio) were computed. Multivariable linear regression examined each of bone lead at the 66% tibia, calcaneus, blood lead and PBB as related to each of volumetric BMD and structural parameters, adjusting for age and BMI, diabetes or antiresorptive therapy. Regression coefficients were reported along with 95% confidence intervals. Higher amounts of bone lead at the tibia were associated with thinner distal tibia cortices (−0.972 (−1.882, −0.061) per 100 μg Pb/g of bone mineral) and integral volumetric BMD (−3.05 (−6.05, −0.05) per μg Pb/g of bone mineral). A higher PBB was associated with larger trabecular separation (0.115 (0.053, 0.178)), lower trabecular volumetric BMD (−26.83 (−50.37, −3.29)) and trabecular number (−0.08 (−0.14, −0.02)), per 100 μg Pb/g of bone mineral after adjusting for age and BMI, and remained significant while accounting for diabetes or use of antiresorptives. Total lead exposure activities related to bone lead at the calcaneus (8.29 (0.11, 16.48)) and remained significant after age and antiresorptives-adjustment. Lead accumulated in bone can have a mild insult on bone structure; but greater partitioning of lead in blood versus bone revealed more dramatic effects on both microstructure and volumetric BMD. PMID:25986335
3D Volumetric Strain Modelling of Eruptions at Soufrière Hills Volcano Montserrat
NASA Astrophysics Data System (ADS)
Young, N. K.; Gottsmann, J.
2015-12-01
Volumetric strain data has captured a number of Vulcanian explosions at Soufrière Hills Volcano, Montserrat, which involve the uppermost part of the magmatic system. We previously used volumetric strain data from during one of these explosions to elucidate the geometry of the shallow plumbing system and crustal mechanics at Montserrat for mechanically plausible depressurisation amplitudes. Our results from both forward and inverse 2D models found that it was necessary to incorporate a mechanically weak shallow crust and mechanically compliant halo of material around the highest part of the SHV magmatic system i.e. the conduit, in order to implement geologically realistic conditions of depressurisation and rock strength. However, this model lacks complexity that cannot be implemented in a 2D environment. Here, in the first study of its kind, we use Finite Element Analysis of volumetric strain data in a 3D domain incorporating topography and mechanical complexities as imaged by seismic and gravimetric data. Our model implements topography from a DEM covering the island and surrounding bathymetry and include the mechanically stiff extinct volcanic cores of the Silver Hills and the Centre Hills. Here we present our preliminary findings from the 3D strain modelling and the effect of the extinct volcanic cores on strain partitioning on Montserrat.
SPED light sheet microscopy: fast mapping of biological system structure and function
Tomer, Raju; Lovett-Barron, Matthew; Kauvar, Isaac; Andalman, Aaron; Burns, Vanessa M.; Sankaran, Sethuraman; Grosenick, Logan; Broxton, Michael; Yang, Samuel; Deisseroth, Karl
2016-01-01
The goal of understanding living nervous systems has driven interest in high-speed and large field-of-view volumetric imaging at cellular resolution. Light-sheet microscopy approaches have emerged for cellular-resolution functional brain imaging in small organisms such as larval zebrafish, but remain fundamentally limited in speed. Here we have developed SPED light sheet microscopy, which combines large volumetric field-of-view via an extended depth of field with the optical sectioning of light sheet microscopy, thereby eliminating the need to physically scan detection objectives for volumetric imaging. SPED enables scanning of thousands of volumes-per-second, limited only by camera acquisition rate, through the harnessing of optical mechanisms that normally result in unwanted spherical aberrations. We demonstrate capabilities of SPED microscopy by performing fast sub-cellular resolution imaging of CLARITY mouse brains and cellular-resolution volumetric Ca2+ imaging of entire zebrafish nervous systems. Together, SPED light sheet methods enable high-speed cellular-resolution volumetric mapping of biological system structure and function. PMID:26687363
Xu, Shusheng; Li, Xiaolin; Yang, Zhi; Wang, Tao; Jiang, Wenkai; Yang, Chao; Wang, Shuai; Hu, Nantao; Wei, Hao; Zhang, Yafei
2016-10-10
Three-dimensional free-standing film electrodes have aroused great interest for energy storage devices. However, small volumetric capacity and low operating voltage limit their practical application for large energy storage applications. Herein, a facile and novel nanofoaming process was demonstrated to boost the volumetric electrochemical capacitance of the devices via activation of Ni nanowires to form ultrathin nanosheets and porous nanostructures. The as-designed free-standing Ni@Ni(OH) 2 film electrodes display a significantly enhanced volumetric capacity (462 C/cm 3 at 0.5 A/cm 3 ) and excellent cycle stability. Moreover, the as-developed hybrid supercapacitor employed Ni@Ni(OH) 2 film as positive electrode and graphene-carbon nanotube film as negative electrode exhibits a high volumetric capacitance of 95 F/cm 3 (at 0.25 A/cm 3 ) and excellent cycle performance (only 14% capacitance reduction for 4500 cycles). Furthermore, the volumetric energy density can reach 33.9 mWh/cm 3 , which is much higher than that of most thin film lithium batteries (1-10 mWh/cm 3 ). This work gives an insight for designing high-volume three-dimensional electrodes and paves a new way to construct binder-free film electrode for high-performance hybrid supercapacitor applications.
Volumetric flow rate in simulations of microfluidic devices+
NASA Astrophysics Data System (ADS)
Kovalčíková, KristÍna; Slavík, Martin; Bachratá, Katarína; Bachratý, Hynek; Bohiniková, Alžbeta
2018-06-01
In this work, we examine the volumetric flow rate of microfluidic devices. The volumetric flow rate is a parameter which is necessary to correctly set up a simulation of a real device and to check the conformity of a simulation and a laboratory experiments [1]. Instead of defining the volumetric rate at the beginning as a simulation parameter, a parameter of external force is set. The proposed hypothesis is that for a fixed set of other parameters (topology, viscosity of the liquid, …) the volumetric flow rate is linearly dependent on external force in typical ranges of fluid velocity used in our simulations. To confirm this linearity hypothesis and to find numerical limits of this approach, we test several values of the external force parameter. The tests are designed for three different topologies of simulation box and for various haematocrits. The topologies of the microfluidic devices are inspired by existing laboratory experiments [3 - 6]. The linear relationship between the external force and the volumetric flow rate is verified in orders of magnitudes similar to the values obtained from laboratory experiments. Supported by the Slovak Research and Development Agency under the contract No. APVV-15-0751 and by the Ministry of Education, Science, Research and Sport of the Slovak Republic under the contract No. VEGA 1/0643/17.
Gradients estimation from random points with volumetric tensor in turbulence
NASA Astrophysics Data System (ADS)
Watanabe, Tomoaki; Nagata, Koji
2017-12-01
We present an estimation method of fully-resolved/coarse-grained gradients from randomly distributed points in turbulence. The method is based on a linear approximation of spatial gradients expressed with the volumetric tensor, which is a 3 × 3 matrix determined by a geometric distribution of the points. The coarse grained gradient can be considered as a low pass filtered gradient, whose cutoff is estimated with the eigenvalues of the volumetric tensor. The present method, the volumetric tensor approximation, is tested for velocity and passive scalar gradients in incompressible planar jet and mixing layer. Comparison with a finite difference approximation on a Cartesian grid shows that the volumetric tensor approximation computes the coarse grained gradients fairly well at a moderate computational cost under various conditions of spatial distributions of points. We also show that imposing the solenoidal condition improves the accuracy of the present method for solenoidal vectors, such as a velocity vector in incompressible flows, especially when the number of the points is not large. The volumetric tensor approximation with 4 points poorly estimates the gradient because of anisotropic distribution of the points. Increasing the number of points from 4 significantly improves the accuracy. Although the coarse grained gradient changes with the cutoff length, the volumetric tensor approximation yields the coarse grained gradient whose magnitude is close to the one obtained by the finite difference. We also show that the velocity gradient estimated with the present method well captures the turbulence characteristics such as local flow topology, amplification of enstrophy and strain, and energy transfer across scales.
Li, Ruijiang; Jia, Xun; Lewis, John H; Gu, Xuejun; Folkerts, Michael; Men, Chunhua; Jiang, Steve B
2010-06-01
To develop an algorithm for real-time volumetric image reconstruction and 3D tumor localization based on a single x-ray projection image for lung cancer radiotherapy. Given a set of volumetric images of a patient at N breathing phases as the training data, deformable image registration was performed between a reference phase and the other N-1 phases, resulting in N-1 deformation vector fields (DVFs). These DVFs can be represented efficiently by a few eigenvectors and coefficients obtained from principal component analysis (PCA). By varying the PCA coefficients, new DVFs can be generated, which, when applied on the reference image, lead to new volumetric images. A volumetric image can then be reconstructed from a single projection image by optimizing the PCA coefficients such that its computed projection matches the measured one. The 3D location of the tumor can be derived by applying the inverted DVF on its position in the reference image. The algorithm was implemented on graphics processing units (GPUs) to achieve real-time efficiency. The training data were generated using a realistic and dynamic mathematical phantom with ten breathing phases. The testing data were 360 cone beam projections corresponding to one gantry rotation, simulated using the same phantom with a 50% increase in breathing amplitude. The average relative image intensity error of the reconstructed volumetric images is 6.9% +/- 2.4%. The average 3D tumor localization error is 0.8 +/- 0.5 mm. On an NVIDIA Tesla C1060 GPU card, the average computation time for reconstructing a volumetric image from each projection is 0.24 s (range: 0.17 and 0.35 s). The authors have shown the feasibility of reconstructing volumetric images and localizing tumor positions in 3D in near real-time from a single x-ray image.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hua Chiaho; Shukla, Hemant I.; Merchant, Thomas E.
2007-02-01
Purpose: To estimate potential differences in volumetric bone growth in children with sarcoma treated with intensity-modulated (IMRT) and conformal (CRT) radiation therapy using an empiric dose-effect model. Methods and Materials: A random coefficient model was used to estimate potential volumetric bone growth of 36 pelvic bones (ischiopubis and ilium) from 11 patients 4 years after radiotherapy. The model incorporated patient age, pretreatment bone volume, integral dose >35 Gy, and time since completion of radiation therapy. Three dosimetry plans were entered into the model: the actual CRT/IMRT plan, a nontreated comparable IMRT/CRT plan, and an idealized plan in which dose wasmore » delivered only to the planning target volume. The results were compared with modeled normal bone growth. Results: The model predicted that by using the idealized, IMRT, and CRT approaches, patients would maintain 93%, 87%, and 84%, respectively (p = 0.06), of their expected normal growth. Patients older than 10 years would maintain 98% of normal growth, regardless of treatment method. Those younger than 10 years would maintain 87% (idealized), 76% (IMRT), or 70% (CRT) of their expected growth (p = 0.015). Post hoc testing (Tukey) revealed that the CRT and IMRT approaches differed significantly from the idealized one but not from each other. Conclusions: Dose-effect models facilitate the comparison of treatment methods and potential interventions. Although treatment methods do not alter the growth of flat bones in older pediatric patients, they may significantly impact bone growth in children younger than age 10 years, especially as we move toward techniques with high conformity and sharper dose gradient.« less
TTI (Texas Transportation Institute) track/dynamometer study. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reineman, M.; Thompson, G.
1983-01-01
Seven passenger cars and one light truck were operated over the EPA urban and highway driving cycles to compare fuel economy measurements obtained on a test track with the fuel economy results obtained on a chassis dynamometer. The test program was designed to duplicate, as closely as possible, the track force loading (as determined by standard EPA road coastdown procedures) on the dynamometer. Experimental parameters which were investigated included loading differences between front- and rear-wheel drive vehicles, volumetric versus carbon balance fuel measurement techniques, coupled versus uncoupled roll dynamometer tests, and curved track versus straight track coastdowns.
NASA Astrophysics Data System (ADS)
Pilawski, Tamara; Dumont, Gaël; Nguyen, Frédéric
2015-04-01
Landfills pose major environmental issues including long-term methane emissions, and local pollution of soil and aquifers but can also be seen as potential energy resources and mining opportunities. Water content in landfills determine whether solid fractions can be separated and recycled, and controls the existence and efficiency of natural or enhanced biodegradation. Geophysical techniques, such as electrical and electromagnetic methods have proven successful in the detection and qualitative investigation of sanitary landfills. However, their interpretation in terms of quantitative water content estimates makes it more challenging due to the influence of parameters such as temperature, compaction, waste composition or pore fluid. To improve the confidence given to bulk electrical resistivity data and to their interpretation, we established temperature and volumetric water content petrophysical relationships that we tested on field and laboratory electrical resistivity measurements. We carried out two laboratory experiments on leachates and waste samples from a landfill located in Mont-Saint-Guibert, Belgium. We determined a first relationship between temperature and electrical resistivity with pure and diluted leachates by progressively increasing the temperature from 5°C to 65°C, and then cooling down to 5°C. The second relationship was obtained by measuring electrical resistivity on waste samples of different volumetric water contents. First, we used the correlations obtained from the experiments to compare electrical resistivity measurements performed in a landfill borehole and on reworked waste samples excavated at different depths. Electrical resistivities were measured every 20cm with an electromagnetic logging device (EM39) while a temperature profile was acquired with optic fibres. Waste samples were excavated every 2m in the same borehole. We filled experimental columns with these samples and measured electrical resistivities at laboratory temperature. We made corrections according to the temperature profile and to volumetric water contents obtained previously on undisturbed samples. Corrected values tended to be superimposed on those obtained in the field. Then, we calculated the water content of the different reworked waste samples using the correlation between volumetric water content correlation and electrical resistivity and we compared this value to the one measured at the laboratory. Both values were correlated satisfactorily. In conclusion, we show that bulk electrical resistivity measurements are very promising to quantify water content in landfills if temperature can be estimated independently. In future applications, electrical resistivity tomography coupled with distributed temperature sensing could give important estimates of water content of the waste and thus helping in dealing with problematics such as boosting biodegradation and stabilization of the waste, reducing risks of soil and aquifers pollution, landfill mining, and controlled production of methane.
Lage, Andrea Z; Brandão, Cynthia A; Mendes, Judite R T; Huayllas, Martha K; Liberman, Bernardo; Mendonça, Berenice B; Costa, Elaine M F; Verreschi, Ieda T; Lazaretti-Castro, Marise
2005-01-01
Low bone mineral density (BMD) measured by dual-energy X-ray absorptiometry (DXA) has been described in Turner's syndrome (TS). One of the error factors of DXA is short stature, a common finding in TS patients. Aimed to evaluate the influence of a low stature on BMD, we compared the two-dimensional (2D) or conventional BMD (cBMD) with three-dimensional (3D) or volumetric BMD (vBMD) in 62 females (10 to 48 yr old) with TS diagnosis in a case control study. They were compared to 102 normal females (7 to 45 yr old) grouped by age-ranges. All patients were subjected to a lumbar spine densitometry by DXA in the PA and lateral projections, obtained the cBMD and vBMD and calculated for the apparent BMD (appBMD). In TS, the mean of Z-score for cBMD was significantly lower than that for vBMD and for appBMD (-2.31 +/- 1.42; -0.64 +/- 1.55; and -1.72 +/- 1.5; respectively). Most of the patients (83.8%) had a Z-score <-1 for cBMD, whereas the majority (58.1%) had a Z-score <-1 for vBMD. Concluding, the cBMD underestimates the bone mass of the lumbar spine in patients with TS inducing to false diagnoses of bone fragility. Volumetric BMD approached the bone mass of control patients, while appBMD just partially do that.