Soluble organic nutrient fluxes
Robert G. Qualls; Bruce L. Haines; Wayne Swank
2014-01-01
Our objectives in this study were (i) compare fluxes of the dissolved organic nutrients dissolved organic carbon (DOC), DON, and dissolved organic phosphorus (DOP) in a clearcut area and an adjacent mature reference area. (ii) determine whether concentrations of dissolved organic nutrients or inorganic nutrients were greater in clearcut areas than in reference areas,...
Isolation and chemical characterization of dissolved and colloidal organic matter
Aiken, G.; Leenheer, J.
1993-01-01
Commonly used techniques for the concentration and isolation of organic matter from water, such as preparative chromatography, ultrafiltration and reverse osmosis, and the methods used to analyze the organic matter obtained by these methods are reviewed. The development of methods to obtain organic matter that is associated with fractions of the dissolved organic carbon other than humic substances, such as organic bases, hydrophilic organic acids and colloidal organic matter are discussed. Methods specifically used to study dissolved organic nitrogen and dissolved organic phosphorous are also discussed. -from Authors
Terrestrially derived dissolved organic matter (DOM) impacts the optical properties of coastal seawater and affects carbon cycling on a global scale. We studied sequential long-term photochemical and biological degradation of estuarine dissolved organic matter from the
Satilla...
Photoreactions of dissolved organic matter can affect the oxidizing capacity, nutrient dynamics, trace gas exchange, and color of surface waters. This study focuses on factors that affect the photoreactions of the colored dissolved organic matter (CDOM) in the Satilla River, a co...
Daniel L. Tufford; Setsen Alton-Ochir; Warren Hankinson
2016-01-01
Dissolved organic matter (DOM) is recognized as a major component in the global carbon cycle and is an important driver of numerous biogeochemical processes in aquatic ecosystems, both in-stream and downstream in estuaries. This study sought to characterize chromophoric DOM (CDOM), dissolved organic carbon (DOC), and dissolved nutrients in major rivers and their...
Daniel Tufford; Setsen Alton-Ochir
2016-01-01
Dissolved organic matter (DOM) is recognized as a major component in the global carbon cycle and is an important driver of numerous biogeochemical processes in aquatic ecosystems, both in-stream and downstream in estuaries. This study sought to characterize chromophoric DOM (CDOM), dissolved organic carbon (DOC), and dissolved nutrients in major rivers and their...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunchak-Kariouk, K.
1992-01-01
Pore water dissolved organic matter is an overlooked pool of organic matter important to the environmental fate of hydrophobic organic pollutants. The association of polychlorinated biphenyls, polyaromatic hydrocarbons and chlorinated pesticides with pore water dissolved organic matter influences their distribution and mobility within the bottom sediment environment. Steep physical, biological and chemical gradients at the sediment/water interface isolate the pore water and create unique conditions within the sediment. This study indicates that any disturbance of this environment will alter the distribution and mobility of organic pollutants by changing their association to the pore water dissolved organic matter. A small volumemore » closed equilibration method was developed to measure the solubility enhancement of 2,2' 4,4'-tetrachlorobiphenyl (TeCB) by natural dissolved organic matter. Chemical coated micro-glass beads were equilibrated with anoxic and laboratory aerated (oxic) pore water samples in flame sealed ampules. The TeCB enhanced solubilities were used to determine the pore water dissolved organic matter partition coefficient, K[sub pwdom]. The measured TeCB solubility and K[sub pwdom] were much smaller for anoxic than oxic pore waters. The dissolved organic matter sorptive capacity for the TeCB increased as the water was aerated. This change is attributed to coagulative fractionation and structural changes of the pore water dissolved organic matter during aeration and was characterized by differences in the dissolved organic matter concentration, UV absorption at 254 nm, interfacial surface tension, and sorption capacity of molecular weight fractions of anoxic and oxic pore water dissolved organic matter. The increase in partitioning indicates that there will be an increase in the mobility of the TeCB as an anoxic bottom sediment environment is disturbed and aerated.« less
Albrechtova, Jana; Seidl, Zdenek; Aitkenhead-Peterson, Jacqueline; Lhotáková, Zuzana; Rock, Barrett N; Alexander, Jess E; Malenovský, Zbynek; McDowell, William H
2008-10-15
Dissolved organic matter in soils can be predicted from forest floor C:N ratio, which in turn is related to foliar chemistry. Little is known about the linkages between foliar constituents such as chlorophylls, lignin, and cellulose and the concentrations of water-extractable forest floor dissolved organic carbon and dissolved organic nitrogen. Lignin and cellulose are not mobile in foliage and thus may be indicative of growing conditions during prior years, while chlorophylls respond more rapidly to the current physiological status of a tree and reflect nutrient availability. The aim of this study was to examine potential links among spectral foliar data, and the organic C and N of forest soils. Two coniferous species (red spruce and balsam fir) were studied in the White Mountains of New Hampshire, USA. Six trees of each species were sampled at 5 watersheds (2 in the Hubbard Brook Experimental Forest, 3 in the Bartlett Experimental Forest). We hypothesized that in a coniferous forest, chemistry of old foliage would better predict the chemical composition of the forest floor litter layer than younger foliage, which is the more physiologically active and the most likely to be captured by remote sensing of the canopy. Contrary to our expectations, chlorophyll concentration of young needles proved to be most tightly linked to soil properties, in particular water-extractable dissolved organic carbon. Spectral indices related to the chlorophyll content of needles could be used to predict variation in forest floor dissolved organic carbon and dissolved organic nitrogen. Strong correlations were found between optical spectral indices based on chlorophyll absorption and forest floor dissolved organic carbon, with higher foliage chlorophyll content corresponding to lower forest floor dissolved organic carbon. The mechanisms behind these correlations are uncertain and need further investigation. However, the direction of the linkage from soil to tree via nutrient availability is hypothesized based on negative correlations found between foliar N and forest floor dissolved organic carbon.
Analytical method for dissolved-organic carbon fractionation
Leenheer, Jerry A.; Huffman, Edward W. D.
1979-01-01
A standard procedure for analytical-scale dissolved organic carbon fractionation is presented, whereby dissolved organic carbon in water is first fractionated by a nonionic macroreticular resin into acid, base, and neutral hydrophobic organic solute fractions, and next fractionated by ion-exchange resins into acid, base, and neutral hydrophilic solute fractions. The hydrophobic solutes are defined as those sorbed on a nonionic, acrylic-ester macroreticular resin and are differentiated into acid, base, and nautral fractions by sorption/desorption controlled by pH adjustment. The hydrophilic bases are next sorbed on strong-acid ion-exchange resin, followed by sorption of hydrophilic acids on a strong-base ion-exchange resin. Hydrophilic neutrals are not sorbed and remain dissolved in the deionized water at the end of the fractionation procedure. The complete fractionation can be performed on a 200-milliliter filtered water sample, whose dissolved organic carbon content is 5-25 mg/L and whose specific conductance is less than 2,000 μmhos/cm at 25°C. The applications of dissolved organic carbon fractionation analysis range from field studies of changes of organic solute composition with synthetic fossil fuel production, to fundamental studies of the nature of sorption processes.
Heddam, Salim
2014-11-01
The prediction of colored dissolved organic matter (CDOM) using artificial neural network approaches has received little attention in the past few decades. In this study, colored dissolved organic matter (CDOM) was modeled using generalized regression neural network (GRNN) and multiple linear regression (MLR) models as a function of Water temperature (TE), pH, specific conductance (SC), and turbidity (TU). Evaluation of the prediction accuracy of the models is based on the root mean square error (RMSE), mean absolute error (MAE), coefficient of correlation (CC), and Willmott's index of agreement (d). The results indicated that GRNN can be applied successfully for prediction of colored dissolved organic matter (CDOM).
The distribution of organic matter was studied in northern San Francisco Bay monthly through spring and summer 1996 along the salinity gradient from the Sacramento River to Central Bay. Dissolved constituents included monosaccharides (MONO), total carbohydrates (TCHO), dissolved ...
THE DETERMINATION OF TOTAL ORGANIC HALIDE IN WATER: A COMPARATIVE STUDY OF TWO INSTRUMENTS
Total organic halide (TOX) analyzers are commonly used to measure the amount of dissolved halogenated organic byproducts in disinfected waters. ecause of the lack of information on the identity of disinfection byproducts, rigorous testing of the dissolved organic halide (DOX) pro...
Chromophoric dissolved organic (CDOM) in aquatic environments is derived from the microbial decomposition of terrestrial and microbial organic matter. Here we present results of studies of the spectral properties and photoreactivity of the CDOM derived from several organic matter...
Total organic halide (TOX) analyzers are commonly used to measure the amount of dissolved halogenated organic byproducts in disinfected waters. Because of the lack of information on the identity of disinfection byproducts, rigorous testing of the dissolved organic halide (DOX) pr...
Fujii, Roger; Ranalli, Anthony J.; Aiken, George R.; Bergamaschi, Brian A.
1998-01-01
Water exported from the Sacramento-San Joaquin River delta (Delta) is an important drinking-water source for more than 20 million people in California. At times, this water contains elevated concentrations of dissolved organic carbon and bromide, and exceeds the U.S. Environmental Protection Agency's maximum contaminant level for trihalomethanes of 0.100 milligrams per liter if chlorinated for drinking water. About 20 to 50 percent of the trihalomethane precursors to Delta waters originates from drainage water from peat soils on Delta islands. This report elucidates some of the factors and processes controlling and affecting the concentration and quality of dissolved organic carbon released from peat soils and relates the propensity of dissolved organic carbon to form trihalomethanes to its chemical composition.Soil water was sampled from near-surface, oxidized, well-decomposed peat soil (upper soil zone) and deeper, reduced, fibrous peat soil (lower soil zone) from one agricultural field in the west central Delta over 1 year. Concentrations of dissolved organic carbon in the upper soil zone were highly variable, with median concentrations ranging from 46.4 to 83.2 milligrams per liter. Concentrations of dissolved organic carbon in samples from the lower soil zone were much less variable and generally slightly higher than samples from the upper soil zone, with median concentrations ranging from 49.3 to 82.3 milligrams per liter. The dissolved organic carbon from the lower soil zone had significantly higher aromaticity (as measured by specific ultraviolet absorbance) and contained significantly greater amounts of aromatic humic substances (as measured by XAD resin fractionation and carbon-13 nuclear magnetic resonance analysis of XAD isolates) than the dissolved organic carbon from the upper soil zone. These results support the conclusion that more aromatic forms of dissolved organic carbon are produced under anaerobic conditions compared to aerobic conditions. Dissolved organic carbon concentration, trihalomethane formation potential, and ultraviolet absorbance were all highly correlated, showing that trihalomethane precursors increased with increasing dissolved organic carbon and ultraviolet absorbance for whole water samples. Contrary to the generally accepted conceptual model for trihalomethane formation that assumes that aromatic forms of carbon are primary precursors to trihalomethanes, results from this study indicate that dissolved organic carbon aromaticity appears unrelated to trihalomethane formation on a carbon-normalized basis. Thus, dissolved organic carbon aromaticity alone cannot fully explain or predict trihalomethane precursor content, and further investigation of aromatic and nonaromatic forms of carbon will be needed to better identify trihalomethane precursors.
Measurements needed for on-line control of retention and drainage
Allan M. Springer; Jeffrey S. Noe; T. H. Wegner
1987-01-01
In a retention and drainage control strategy, it is necessary to monitor the concentration of dissolved inorganic material and the concentration of dissolved and colloidal organic material. Conductivity is successful as a sensor to monitor inorganic material. We studied TOC as a means to monitor dissolved and colloidal organic material and found it to work well. Both...
Xiao, Yi-Hua; Huang, Qing-Hui; Vähätalo, Anssi V; Li, Fei-Peng; Chen, Ling
2014-08-01
The authors studied the effects of dissolved organic matter (DOM) on the bioavailability of bisphenol A (BPA) and chloramphenicol by measuring the freely dissolved concentrations of the contaminants in solutions containing DOM that had been isolated from a mesocosm in a eutrophic lake. The abundance and aromaticity of the chromophoric DOM increased over the 25-d mesocosm experiment. The BPA freely dissolved concentration was 72.3% lower and the chloramphenicol freely dissolved concentration was 56.2% lower using DOM collected on day 25 than using DOM collected on day 1 of the mesocosm experiment. The freely dissolved concentrations negatively correlated with the ultraviolent absorption coefficient at 254 nm and positively correlated with the spectral slope of chromophoric DOM, suggesting that the bioavailability of these emerging organic contaminants depends on the characteristics of the DOM present. The DOM-water partition coefficients (log KOC ) for the emerging organic contaminants positively correlated with the aromaticity of the DOM, measured as humic acid-like fluorescent components C1 (excitation/emission=250[313]/412 nm) and C2 (excitation/emission=268[379]/456 nm). The authors conclude that the bioavailability of emerging organic contaminants in eutrophic lakes can be affected by changes in the DOM. © 2014 SETAC.
Dissolved organic matter in anoxic pore waters from Mangrove Lake, Bermuda
Orem, W.H.; Hatcher, P.G.; Spiker, E. C.; Szeverenyi, N.M.; Maciel, G.E.
1986-01-01
Dissolved organic matter and dissolved inorganic chemical species in anoxic pore water from Mangrove Lake, Bermuda sediments were studied to evaluate the role of pore water in the early diagenesis of organic matter. Dissolved sulphate, titration alkalinity, phosphate, and ammonia concentration versus depth profiles were typical of many nearshore clastic sediments and indicated sulphate reduction in the upper 100 cm of sediment. The dissolved organic matter in the pore water was made up predominantly of large molecules, was concentrated from large quantities of pore water by using ultrafiltration and was extensively tudied by using elemental and stable carbon isotope analysis and high-resolution, solid state 13C nuclear magnetic resonance and infrared spectroscopy. The results indicate that this material has a predominantly polysaccharide-like structure and in addition contains a large amount of oxygen-containing functional groups (e.g., carboxyl groups). The 13C nulcear magnetic resonance spectra of the high-molecular-weight dissolved organic matter resemble those of the organic matter in the surface sediments of Mangrove Lake. We propose that this high-molecular-weight organic matter in pore waters represents the partially degraded, labile organic components of the sedimentary organic matter and that pore waters serve as a conduit for removal of these labile organic components from the sediments. The more refractory components are, thus, selectively preserved in the sediments as humic substances (primarily humin). ?? 1986.
Chromophoric dissolved organic matter (CDOM) in aquatic environments is derived from the microbial decomposition of terrestrial and microbial organic matter. Here we present results of studies of the spectral properties and photoreactivity of the CDOM derived from several organi...
Importance of Dissolved Organic Nitrogen to Water Quality in Narragansett Bay
This preliminary analysis of the importance of the dissolved organic nitrogen (DON) pool in Narragansett Bay is being conducted as part of a five-year study of Narragansett Bay and its watershed. This larger study includes water quality and ecological modeling components that foc...
Kipka, Undine; Di Toro, Dominic M
2011-09-01
Predicting the association of contaminants with both particulate and dissolved organic matter is critical in determining the fate and bioavailability of chemicals in environmental risk assessment. To date, the association of a contaminant to particulate organic matter is considered in many multimedia transport models, but the effect of dissolved organic matter is typically ignored due to a lack of either reliable models or experimental data. The partition coefficient to dissolved organic carbon (K(DOC)) may be used to estimate the fraction of a contaminant that is associated with dissolved organic matter. Models relating K(DOC) to the octanol-water partition coefficient (K(OW)) have not been successful for many types of dissolved organic carbon in the environment. Instead, linear solvation energy relationships are proposed to model the association of chemicals with dissolved organic matter. However, more chemically diverse K(DOC) data are needed to produce a more robust model. For humic acid dissolved organic carbon, the linear solvation energy relationship predicts log K(DOC) with a root mean square error of 0.43. Copyright © 2011 SETAC.
Harvey, E Therese; Kratzer, Susanne; Andersson, Agneta
2015-06-01
Due to high terrestrial runoff, the Baltic Sea is rich in dissolved organic carbon (DOC), the light-absorbing fraction of which is referred to as colored dissolved organic matter (CDOM). Inputs of DOC and CDOM are predicted to increase with climate change, affecting coastal ecosystems. We found that the relationships between DOC, CDOM, salinity, and Secchi depth all differed between the two coastal areas studied; the W Gulf of Bothnia with high terrestrial input and the NW Baltic Proper with relatively little terrestrial input. The CDOM:DOC ratio was higher in the Gulf of Bothnia, where CDOM had a greater influence on the Secchi depth, which is used as an indicator of eutrophication and hence important for Baltic Sea management. Based on the results of this study, we recommend regular CDOM measurements in monitoring programmes, to increase the value of concurrent Secchi depth measurements.
NASA Astrophysics Data System (ADS)
Funakoshi, Kunio; Negishi, Rina; Nakagawa, Hiroshi; Kawasaki, Rentaro
2017-06-01
Dissolution of potassium sulphate (K2SO4) crystals was decelerated or stopped since the trivalent chrome ions (Cr(III)) or the iron ions were added into a K2SO4 aqueous solution, but inhibition mechanism of crystal dissolving by additives is not discussed well. Moreover, the melting inhibition of organic compound crystals by addition of the second components is not reported. In this study, inorganic or organic compound crystals are dissolved in a solution added the third component or were melted in a melt added the second one, and the dissolving and melting inhibition phenomena of the inorganic and organic crystals with additives are discussed. The dissolving rates of K2SO4 crystals decreased with the increasing of the amount of Cr(III) added into an K2SO4 unsaturated solution. The melting rates of m-chloronitrobenzene (CNB) crystals were also decreased by addition of p-CNB. The dissolving rates of a K2SO4 mother crystal and the melting rates of a m-CNB mother crystal were scattered during experiments and the dissolving and the melting phenomena would be caused by adsorption and detachments of additives on and from crystal surfaces.
Microbially driven export of labile organic carbon from the Greenland ice sheet
NASA Astrophysics Data System (ADS)
Musilova, Michaela; Tranter, Martyn; Wadham, Jemma; Telling, Jon; Tedstone, Andrew; Anesio, Alexandre M.
2017-04-01
Glaciers and ice sheets are significant sources of dissolved organic carbon and nutrients to downstream subglacial and marine ecosystems. Climatically driven increases in glacial runoff are expected to intensify the impact of exported nutrients on local and regional downstream environments. However, the origin and bioreactivity of dissolved organic carbon from glacier surfaces are not fully understood. Here, we present simultaneous measurements of gross primary production, community respiration, dissolved organic carbon composition and export from different surface habitats of the Greenland ice sheet, throughout the ablation season. We found that microbial production was significantly correlated with the concentration of labile dissolved organic species in glacier surface meltwater. Further, we determined that freely available organic compounds made up 62% of the dissolved organic carbon exported from the glacier surface through streams. We therefore conclude that microbial communities are the primary driver for labile dissolved organic carbon production and recycling on glacier surfaces, and that glacier dissolved organic carbon export is dependent on active microbial processes during the melt season.
NASA Astrophysics Data System (ADS)
Wymore, Adam S.; Potter, Jody; Rodríguez-Cardona, Bianca; McDowell, William H.
2018-04-01
The advent of high-frequency in situ optical sensors provides new opportunities to study the biogeochemistry of dissolved organic matter (DOM) in aquatic ecosystems. We used fDOM (fluorescent dissolved organic matter) to examine the spatial and temporal variability in dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) across a heterogeneous stream network that varies in NO3- concentration. Across the ten study streams fDOM explained twice the variability in the concentration of DOC (r2 = 0.82) compared to DON (r2 = 0.39), which suggests that the N-rich fraction of DOM is either more variable in its sources or more bioreactive than the more stable C-rich fraction. Among sites, DON molar fluorescence was approximately 3x more variable than DOC molar fluorescence and was correlated with changes in inorganic N, indicating that DON is both more variable in composition as well as highly responsive to changes in inorganic N. Laboratory results also indicate that the fDOM sensors we used perform as well as the excitation-emission wavelength pair generally referred to as the "tryptophan-like" peak when measured under laboratory conditions. However, since neither the field sensor not the laboratory measurements explained a large percentage of variation in DON concentrations, challenges still remain for monitoring the ambient pool of dissolved organic nitrogen. Sensor networks provide new insights into the potential reactivity of DOM and the variability in DOC and DON biogeochemistry across sites. These insights are needed to build spatially explicit models describing organic matter dynamics and water quality.
Sandra M. Clinton; Rick T. Edwards; Stuart E.G. Findlay
2010-01-01
We measured the hyporheic microbial exoenzyme activities in a floodplain river to determine whether dissolved organic matter (DOM) bioavailability varied with overlying riparian vegetation patch structure or position along flowpaths. Particulate organic matter (POM), dissolved organic carbon (DOC), dissolved oxygen (DO), electrical conductivity and temperature were...
Yang, Ning; Zou, Dongsheng; Yang, Manyuan; Lin, Zhonggui
2016-01-01
Crust restoration is increasingly being done but we lack quantitative information on soil improvements. The study aimed to elucidate the dynamics involving soil microbial biomass carbon and soil dissolved organic carbon in the re-vegetation chronosequences of a hillslope land with purple soil in Hengyang, Hunan Province. The soil can cause serious disasters with both soil erosion and seasonal drought, and also becomes a typical representative of ecological disaster area in South China. Using the space-for-time method, we selected six typical sampling plots, designated as follows: grassplot community, meadow thicket community, frutex community, frutex and arbor community, arbor community, and top-level vegetation community. These plots were established to analyze the changes in soil microbial biomass carbon, soil microbial quotien, dissolved organic carbon, dissolved organic carbon/soil organic carbon, and soil basal respiration in 0-10, 10-20, and 20-40 cm soil layers. The relationships of these parameters with soils physic-chemical properties were also determined. The ecological environment of the 6 plant communities is similar and typical; they denoted six different successive stages of restoration on hillslopes with purple soils in Hengyang, Hunan Province. The soil microbial biomass carbon and soil basal respiration contents decreased with increasing soil depth but increased with re-vegetation. By contrast, soil microbial quotient increased with increasing soil depth and re-vegetation. From 0-10 cm soil layer to 20-40 cm soil layer, the dissolved organic carbon content decreased in different re-vegetation stages. In the process of re-vegetation, the dissolved organic carbon content increased in the 0-10 and 10-20 cm soil layers, whereas the dissolved organic carbon content decreased after an initial increase in the 20-40 cm soil layers. Meanwhile, dissolved organic carbon/soil organic carbon increased with increasing soil depth but decreased with re-vegetation. Significant correlations existed among soil microbial biomass carbon, soil microbial quotient, dissolved organic carbon, soil basal respiration and soil physic-chemical properties associated with soil fertility. The results showed that re-vegetation was conducive to the soil quality improvement and the accumulation of soil organic carbon pool of the hillslope land with purple soil in Hengyang, Hunan Province.
Yang, Ning; Zou, Dongsheng; Yang, Manyuan; Lin, Zhonggui
2016-01-01
Crust restoration is increasingly being done but we lack quantitative information on soil improvements. The study aimed to elucidate the dynamics involving soil microbial biomass carbon and soil dissolved organic carbon in the re-vegetation chronosequences of a hillslope land with purple soil in Hengyang, Hunan Province. The soil can cause serious disasters with both soil erosion and seasonal drought, and also becomes a typical representative of ecological disaster area in South China. Using the space-for-time method, we selected six typical sampling plots, designated as follows: grassplot community, meadow thicket community, frutex community, frutex and arbor community, arbor community, and top-level vegetation community. These plots were established to analyze the changes in soil microbial biomass carbon, soil microbial quotien, dissolved organic carbon, dissolved organic carbon/soil organic carbon, and soil basal respiration in 0–10, 10–20, and 20–40 cm soil layers. The relationships of these parameters with soils physic-chemical properties were also determined. The ecological environment of the 6 plant communities is similar and typical; they denoted six different successive stages of restoration on hillslopes with purple soils in Hengyang, Hunan Province. The soil microbial biomass carbon and soil basal respiration contents decreased with increasing soil depth but increased with re-vegetation. By contrast, soil microbial quotient increased with increasing soil depth and re-vegetation. From 0–10 cm soil layer to 20–40 cm soil layer, the dissolved organic carbon content decreased in different re-vegetation stages. In the process of re-vegetation, the dissolved organic carbon content increased in the 0–10 and 10–20 cm soil layers, whereas the dissolved organic carbon content decreased after an initial increase in the 20–40 cm soil layers. Meanwhile, dissolved organic carbon/soil organic carbon increased with increasing soil depth but decreased with re-vegetation. Significant correlations existed among soil microbial biomass carbon, soil microbial quotient, dissolved organic carbon, soil basal respiration and soil physic-chemical properties associated with soil fertility. The results showed that re-vegetation was conducive to the soil quality improvement and the accumulation of soil organic carbon pool of the hillslope land with purple soil in Hengyang, Hunan Province. PMID:27977678
Morabito, Elisa; Radaelli, Marta; Corami, Fabiana; Turetta, Clara; Toscano, Giuseppa; Capodaglio, Gabriele
2018-04-01
In order to study the role of sediment re-suspension and deposition versus the role of organic complexation, we investigated the speciation of cadmium (Cd), copper (Cu) and lead (Pb) in samples collected in the Venice Lagoon during several campaigns from 1992 to 2006. The increment in Cd and Pb concentration in the dissolved phases, observed in the central and northern basins, can be linked to important alterations inside the lagoon caused by industrial and urban factors. The study focuses on metal partition between dissolved and particulate phases. The analyses carried out in different sites illustrate the complex role of organic matter in the sedimentation process. While Cd concentration in sediments can be correlated with organic matter, no such correlation can be established in the case of Pb, whose particulate concentration is related only to the dissolved concentration. In the case of Cu, the role of organic complexation remains unclear. Copyright © 2017 Elsevier Ltd. All rights reserved.
Spencer, R.G.M.; Aiken, G.R.; Butler, K.D.; Dornblaser, M.M.; Striegl, Robert G.; Hernes, P.J.
2009-01-01
The quality and quantity of dissolved organic matter (DOM) exported by Arctic rivers is known to vary with hydrology and this exported material plays a fundamental role in the biogeochemical cycling of carbon at high latitudes. We highlight the potential of optical measurements to examine DOM quality across the hydrograph in Arctic rivers. Furthermore, we establish chromophoric DOM (CDOM) relationships to dissolved organic carbon (DOC) and lignin phenols in the Yukon River and model DOC and lignin loads from CDOM measurements, the former in excellent agreement with long-term DOC monitoring data. Intensive sampling across the historically under-sampled spring flush period highlights the importance of this time for total export of DOC and particularly lignin. Calculated riverine DOC loads to the Arctic Ocean show an increase from previous estimates, especially when new higher discharge data are incorporated. Increased DOC loads indicate decreased residence times for terrigenous DOM in the Arctic Ocean with important implications for the reactivity and export of this material to the Atlantic Ocean. Citation: Spencer, R. G. M., G. R. Aiken, K. D. Butler, M. M. Dornblaser, R. G. Striegl, and P. J. Hernes (2009), Utilizing chromophoric dissolved organic matter measurements to derive export and reactivity of dissolved organic carbon exported to the Arctic Ocean: A case study of the Yukon River, Alaska, Geophys. Res. Lett., 36, L06401, doi:10.1029/ 2008GL036831. Copyright 2009 by the American Geophysical Union.
Insight into dissolved organic matter fractions in Lake Wivenhoe during and after a major flood.
Aryal, Rupak; Grinham, Alistair; Beecham, Simon
2016-03-01
Dissolved organic matter is an important component of biogeochemical processes in aquatic environments. Dissolved organic matter may consist of a myriad of different fractions and resultant processing pathways. In early January 2011, heavy rainfall occurred across South East Queensland, Australia causing significant catchment inflow into Lake Wivenhoe, which is the largest water supply reservoir for the city of Brisbane, Australia. The horizontal and vertical distributions of dissolved organic matter fractions in the lake during the flood period were investigated and then compared with stratified conditions with no catchment inflows. The results clearly demonstrate a large variation in dissolved organic matter fractions associated with inflow conditions compared with stratified conditions. During inflows, dissolved organic matter concentrations in the reservoir were fivefold lower than during stratified conditions. Within the dissolved organic matter fractions during inflow, the hydrophobic and humic acid fractions were almost half those recorded during the stratified period whilst low molecular weight neutrals were higher during the flood period compared to during the stratified period. Information on dissolved organic matter and the spatial and vertical variations in its constituents' concentrations across the lake can be very useful for catchment and lake management and for selecting appropriate water treatment processes.
NASA Astrophysics Data System (ADS)
Kim, Tae-Hoon; Kwon, Eunhwa; Kim, Intae; Lee, Shin-Ah; Kim, Guebuem
2013-04-01
We observed the origin, behavior, and flux of dissolved organic carbon (DOC), dissolved organic nitrogen (DON), colored dissolved organic matter (CDOM), and dissolved inorganic nitrogen (DIN) in the subterranean estuary of a volcanic island, Jeju, Korea. The sampling of surface seawater and coastal groundwater was conducted in Hwasun Bay, Jeju, in three sampling campaigns (October 2010, January 2011, and June 2011). We observed conservative mixing of these components in this subterranean environment for a salinity range from 0 to 32. The fresh groundwater was characterized by relatively high DON, DIN, and CDOM, while the marine groundwater showed relatively high DOC. The DON and DIN fluxes through submarine groundwater discharge (SGD) in the groundwater of Hwasun Bay were estimated to be 1.3 × 105 and 2.9 × 105 mol d- 1, respectively. In the seawater of Hwasun Bay, the groundwater-origin DON was almost conservative while about 91% of the groundwater-origin DIN was removed perhaps due to biological production. The DON flux from the entire Jeju was estimated to be 7.9 × 108 mol yr- 1, which is comparable to some of the world's large rivers. Thus, our study highlights that DON flux through SGD is potentially important for delivery of organic nitrogen to further offshore while DIN is readily utilized by marine plankton in near-shore waters under N-limited conditions.
Estuarine mixing behavior of colloidal organic carbon and colloidal mercury in Galveston Bay, Texas.
Lee, Seyong; Han, Seunghee; Gill, Gary A
2011-06-01
Mercury (Hg) in estuarine water is distributed among different physical phases (i.e. particulate, colloidal, and truly dissolved). This phase speciation influences the fate and cycling of Hg in estuarine systems. However, limited information exists on the estuarine distribution of colloidal phase Hg, mainly due to the technical difficulties involved in measuring it. In the present study, we determined Hg and organic carbon levels from unfiltered, filtered (<0.45 μm), colloidal (10 kDa-0.45 μm), and truly dissolved (<10 kDa) fractions of Galveston Bay surface water in order to understand the estuarine mixing behavior of Hg species as well as interactions of Hg with colloidal organic matter. For the riverine end-member, the colloidal fraction comprised 43 ± 11% of the total dissolved Hg pool and decreased to 17 ± 8% in brackish water. In the estuarine mixing zone, dissolved Hg and colloidal organic carbon showed non-conservative removal behavior, particularly in the low salinity (<15 ppt) region. This removal may be caused by salt-induced coagulation of colloidal matter and consequent removal of dissolved Hg. The particle-water interaction, K(d) ([particulate Hg (mol kg(-1))]/[dissolved Hg (mol L(-1))]) of Hg decreased as particle concentration increased, while the particle-water partition coefficient based on colloidal Hg and the truly dissolved Hg fraction, K(c) ([colloidal Hg (mol kg(-1))]/[truly dissolved Hg (mol L(-1))]) of Hg remained constant as particle concentration increased. This suggests that the particle concentration effect is associated with the amount of colloidal Hg, increasing in proportion to the amount of suspended particulate matter. This work demonstrates that, colloidal organic matter plays an important role in the transport, particle-water partitioning, and removal of dissolved Hg in estuarine waters.
Do soils loose phosphorus with dissolved organic matter?
NASA Astrophysics Data System (ADS)
Kaiser, K.; Brödlin, D.; Hagedorn, F.
2014-12-01
During ecosystem development and soil formation, primary mineral sources of phosphorus are becoming increasingly depleted. Inorganic phosphorus forms tend to be bound strongly to or within secondary minerals, thus, are hardly available to plants and are not leached from soil. What about organic forms of phosphorus? Since rarely studied, little is known on the composition, mobility, and bioavailability of dissolved organic phosphorus. There is some evidence that plant-derived compounds, such as phytate, bind strongly to minerals as well, while microbial compounds, such as nucleotides and nucleic acids, may represent more mobile fractions of soil phosphorus. In some weakly developed, shallow soils, leaching losses of phosphorus seem to be governed by mobile organic forms. Consequently, much of the phosphorus losses observed during initial stages of ecosystem development may be due to the leaching of dissolved organic matter. However, the potentially mobile microbial compounds are enzymatically hydrolysable. Forest ecosystems on developed soils already depleted in easily available inorganic phosphorus are characterized by rapid recycling of organic phosphors. That can reduce the production of soluble forms of organic phosphorus as well as increase the enzymatic hydrolysis and subsequent plant uptake of phosphorus bound within dissolved organic matter. This work aims at giving an outlook to the potential role of dissolved organic matter in the cycling of phosphorus within developing forest ecosystems, based on literature evidence and first results of ongoing research.
PRODUCTION OF HYDRATED ELECTRONS FROM PHOTOIONIZATION OF DISSOLVED ORGANIC MATTER IN NATURAL WATERS
Under UV irradiation, an important primary photochemical reaction of colored dissolved organic matter (CDOM) is electron ejection, producing hydrated electrons (e-aq). The efficiency of this process has been studied in both fresh and seawater samples with both steady-state scave...
INFLUENCE OF DISSOLVED ORGANIC MATTER ON AGROCHEMICAL PHOTOREACTIONS IN AQUATIC ENVIRONMENTS
Pioneering studies by Don Crosby and co-workers demonstrated that the sunlight-induced dissipation of agrochemicals in water often is strongly affected by natural constituents in the water such as nitrate and dissolved organic matter. In this presentation, the focus is on the rol...
NASA Astrophysics Data System (ADS)
Ruttenberg, Kathleen C.; Dyhrman, Sonya T.
2005-10-01
High-frequency temporal and spatial shifts in the various dissolved P pools (total, inorganic, and organic) are linked to upwelling/relaxation events and to phytoplankton bloom dynamics in the upwelling-dominated Oregon coastal system. The presence and regulation of alkaline phosphatase activity (APA) is apparent in the bulk phytoplankton population and in studies of cell-specific APA using Enzyme Labeled Fluorescence (ELF®). Spatial and temporal variability are also evident in phytoplankton community composition and in APA. The spatial pattern of dissolved phosphorus and APA variability can be explained by bottom-controlled patterns of upwelling, and flushing times of different regions within the study area. The presence of APA in eukaryotic taxa indicates that dissolved organic phosphorus (DOP) may contribute to phytoplankton P nutrition in this system, highlighting the need for a more complete understanding of P cycling and bioavailability in the coastal ocean.
Organic matter in central California radiation fogs.
Herckes, Pierre; Lee, Taehyoung; Trenary, Laurie; Kang, Gongunn; Chang, Hui; Collett, Jeffrey L
2002-11-15
Organic matter was studied in radiation fogs in the San Joaquin Valley of California during the California Regional Particulate Air Quality Study (CRPAQS). Total organic carbon (TOC) concentrations ranged from 2 to 40 ppm of C. While most organic carbon was found in solution as dissolved organic carbon (DOC), 23% on average was not dissolved inside the fog drops. We observe a clear variation of organic matter concentration with droplet size. TOC concentrations in small fog drops (<17 microm) were a factor of 3, on average, higher than TOC concentrations in larger drops. As much as half of the dissolved organic matter was determined to have a molecular weight higher than 500 Da. Deposition fluxes of organic matter in fog drops were high (0.5-4.3 microg of C m(-2) min(-1)), indicating the importance of fog processing as a vector for removal of organic matter from the atmosphere. Deposition velocities of organic matter, however, were usually found to be lower than deposition velocities for fogwater, consistent with the enrichment of the organic matter in smaller fog drops with lower terminal settling velocities.
NASA Astrophysics Data System (ADS)
xiaona, W.; Bao, H.; Wu, Y.
2013-12-01
As one of the largest river in the world, studying the properties of dissolved organic matter in Changjiang can help us reveal the change of terrestrial organic matter in typical large subtropical river system. Samples collected from mid-lower reaches of Changjiang and its main tributaries/lakes in July 2010 and August 2012 were analysed for dissolved organic carbon (DOC), dissolved lignin phenols and chromophoric dissolved organic carbon (CDOM). Based on the hydrological condition, both of the two cruises are in flood season, while the latter is extremely flood season. The hydrological condition can impact the signal of dissolved lignin phenols as well as DOC. The DOC concentration is similar for both the cruises, with an average of 139×21 μM in 2010 and 130×36 μM in 2012. But the dissolved lignin phenols show obvious difference, the concentration is 13.6×3.4 μg/L and 12.7×5.2 μg/L for the main stream and tributaries/lakes in 2010 respectively, but it decreases to 8.7×2.5 μg/L and 6.5×3.5 μg/L in 2012.The dissolved lignin phenols show positive correlation with DOC in August 2012, but no similar trend is observed in 2010. Excitation-emission matrix fluorescence spectroscopy combined with parallel factor analysis (EEMs-PARAFAC) decomposes the fluorescence matrices of CDOM into three humic-like (H1: 315(250)/400 nm, H2: 350(280)/460 nm, H3: 250/450~485 nm) and two protein-like (P1: 270/315 nm, P2: 285/350 nm) components. Good linear correlations are observed within three humic-like components and two protein-like components, indicating that the same types of components (humic-like or protein-like) have similar origin and geochemical behaviors. However, these two kinds of components show different tendency. The total content of dissolved lignin phenols is correlated with the absorption in 280 nm, indicating the optical property of CDOM is related to its structure. There are many factors impacting the composition of dissolved organic matter in large river system like Changjiang. We find the biomarkers have mutative geochemical behaviors in different hydrological conditions. The variation of biomarkers can reveal the alternation in hydrological factor.
The feasibility of using hard and soft wood tree mulch and processed jute fiber, as filter media, for treating mixtures of dissolved pollutants (toxic organic compounds and heavy metals) in urban stormwater (SW) runoff was evaluated. Copper (Cu), cadmium (Cd), chromium (Cr+6), l...
USDA-ARS?s Scientific Manuscript database
Limited information is available to understand the chemical structure of biochar’s labile dissolved organic carbon (DOC) fraction that will change amended soil’s DOC composition. This study utilized the high sensitivity of fluorescence excitation-emission (EEM) spectrophotometry to understand the s...
Performance of ultrafiltration membrane process combined with coagulation/sedimentation.
Jang, N Y; Watanabe, Y; Minegishi, S
2005-01-01
Effects of coagulation/sedimentation as a pre-treatment on the dead-end ultrafiltration (UF) membrane process were studied in terms of membrane fouling and removal efficiency of natural dissolved organic matter, using Chitose River water. Two types of experiment were carried out. One was a bench scale membrane filtration with jar-test and the other was membrane filtration pilot plant combined with the Jet Mixed Separator (JMS) as a pre-coagulation/sedimentation unit. In the bench scale experiment, the effects of coagulant dosage, pH and membrane operating pressure on the membrane fouling and removal efficiency of natural dissolved organic matter were investigated. In the pilot plant experiment, we also investigated the effect of pre-coagulation/sedimentation on the membrane fouling and the removal efficiency of natural dissolved organic matter. Coagulation/sedimentation prior to membrane filtration process controlled the membrane fouling and increased the removal efficiency of natural dissolved organic matter.
Autio, Iida; Soinne, Helena; Helin, Janne; Asmala, Eero; Hoikkala, Laura
2016-04-01
We studied the effects of catchment characteristics (soil type and land use) on the concentration and quality of dissolved organic matter (DOM) in river water and on the bacterial degradation of terrestrial DOM. The share of organic soil was the strongest predictor of high concentrations of dissolved organic carbon, nitrogen, and phosphorus (DOC, DON, and DOP, respectively), and was linked to DOM quality. Soil type was more important than land use in determining the concentration and quality of riverine DOM. On average, 5-9 % of the DOC and 45 % of the DON were degraded by the bacterial communities within 2-3 months. Simultaneously, the proportion of humic-like compounds in the DOM pool increased. Bioavailable DON accounted for approximately one-third of the total bioavailable dissolved nitrogen, and thus, terrestrial DON can markedly contribute to the coastal plankton dynamics and support the heterotrophic food web.
NASA Technical Reports Server (NTRS)
Hines, Mark E.
1992-01-01
The mechanisms by which certain animals and plants affect redox processes in sediments was examined by studying three environments: (1) subtidal sediments dominated by the deposit-feeding polychaete Heteromastus filiformis; (2) a saltmarsh inhabited by the tall form of Spartina alterniflora; and (3) tropical carbonate sediments inhabited by three species of seagrasses. S-35-sulfide production rates were compared to pool sizes of dissolved sulfide and dissolved iron. In all of the sediments studied, rates of sulfide reduction were enhanced by macroorganisms while the rate of turnover of dissolved sulfide increased. The polychaete enhanced microbial activity and redox cycling primarily by subducting particles of organic matter and oxidized iron during sediment reworking. The Spartina species enhanced anaerobic activity by transporting primarily dissolved organic matter and oxidants. Although the final result of both animal and plant activities was the enhancement of sub-surface cycling of sulfur and iron, decreased dissolved sulfide and increased dissolved iron concentrations, the mechanisms which produced these results differed dramatically.
Iron traps terrestrially derived dissolved organic matter at redox interfaces
Riedel, Thomas; Zak, Dominik; Biester, Harald; Dittmar, Thorsten
2013-01-01
Reactive iron and organic carbon are intimately associated in soils and sediments. However, to date, the organic compounds involved are uncharacterized on the molecular level. At redox interfaces in peatlands, where the biogeochemical cycles of iron and dissolved organic matter (DOM) are coupled, this issue can readily be studied. We found that precipitation of iron hydroxides at the oxic surface layer of two rewetted fens removed a large fraction of DOM via coagulation. On aeration of anoxic fen pore waters, >90% of dissolved iron and 27 ± 7% (mean ± SD) of dissolved organic carbon were rapidly (within 24 h) removed. Using ultra-high-resolution MS, we show that vascular plant-derived aromatic and pyrogenic compounds were preferentially retained, whereas the majority of carboxyl-rich aliphatic acids remained in solution. We propose that redox interfaces, which are ubiquitous in marine and terrestrial settings, are selective yet intermediate barriers that limit the flux of land-derived DOM to oceanic waters. PMID:23733946
Lee, Yeonjung; Lee, Bomi; Hur, Jin; Min, Jun-Oh; Ha, Sun-Yong; Ra, Kongtae; Kim, Kyung-Tae; Shin, Kyung-Hoon
2016-05-01
In order to understand the biodegradability of algal-derived organic matter, biodegradation experiments were conducted with (13)C and (15)N-labeled natural phytoplankton and periphytic algal populations in experimental conditions for 60 days. Qualitative changes in the dissolved organic matter were also determined using parallel factor analysis and the stable carbon isotopic composition of the hydrophobic dissolved organic matter through the experimental period. Although algal-derived organic matter is considered to be easily biodegradable, the initial amounts of total organic carbon newly produced by phytoplankton and periphytic algae remained approximately 16 and 44 % after 60 days, respectively, and about 22 and 43 % of newly produced particulate nitrogen remained. Further, the dissolved organic carbon derived from both algal populations increased significantly after 60 days. Although the dissolved organic matter gradually became refractory, the contributions of the algal-derived organic matter to the dissolved organic matter and hydrophobic dissolved organic matter increased. Our laboratory experimental results suggest that algal-derived organic matter produced by phytoplankton and periphytic algae could contribute significantly to the non-biodegradable organic matter through microbial transformations.
Xiao, Lie; Liu, Guo Bin; Li, Peng; Xue, Sha
2017-01-01
A pot experiment was conducted to study soil dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) in the rhizosphere and non-rhizosphere of Bothriochloa ischaemum in loess hilly-gully region under the different treatments of CO 2 concentrations (400 and 800 μmol·mol -1 ) and nitrogen addition (0, 2.5, 5.0 g N·m -2 ·a -1 ). The results showed that eleva-ted CO 2 treatments had no significant effect on the contents of DOC, dissolved total nitrogen (DTN), DON, dissolved ammonium nitrogen (NH 4 + -N) and dissolved nitrate nitrogen (NO 3 - -N) in the soil of rhizosphere and non-rhizosphere of B. ischaemum. The contents of DTN, DON, and NO 3 - -N in the rhizosphere soil were significantly increased with the nitrogen application and the similar results of DTN and NO 3 - -N also were observed in the non-rhizosphere of B. ischaemum. Nitrogen application significantly decreased DOC/DON in the rhizosphere of B. ischaemum. The contents of DTN, NO 3 - -N and DON in the soil of rhizosphere were significantly lower than that in the non-rhizosphere soil, and DOC/DON was significantly higher in the rhizosphere soil than that in the non-rhizosphere soil. It indicated that short-term elevated CO 2 concentration had no significant influence on the contents of soil dissolved organic carbon and nitrogen. Simulated nitrogen deposition, to some extent, increased the content of soil dissolved nitrogen, but it was still insufficient to meet the demand of dissolved nitrogen for plant growing.
Coupled cycling of dissolved organic nitrogen and carbon in a forest stream
E.N. Jack Brookshire; H. Maurice Valett; Steven A. Thomas; Jackson R. Webster
2005-01-01
Dissolved organic nitrogen (DON) is an abundant but poorly understood pool of N in many ecosystems. We assessed DON cycling in a N-limited headwater forest stream via whole-ecosystem additions of dissolved inorganic nitrogen (DIN) and labile dissolved organic matter (DOM), hydrologic transport and biogeochemical modeling, and laboratory experiments with native...
Methane hydrate-bearing seeps as a source of aged dissolved organic carbon to the oceans
Pohlman, J.W.; Bauer, J.E.; Waite, W.F.; Osburn, C.L.; Chapman, N.R.
2011-01-01
Marine sediments contain about 500-10,000 Gt of methane carbon, primarily in gas hydrate. This reservoir is comparable in size to the amount of organic carbon in land biota, terrestrial soils, the atmosphere and sea water combined, but it releases relatively little methane to the ocean and atmosphere. Sedimentary microbes convert most of the dissolved methane to carbon dioxide. Here we show that a significant additional product associated with microbial methane consumption is methane-derived dissolved organic carbon. We use ??14 C and ??13 C measurements and isotopic mass-balance calculations to evaluate the contribution of methane-derived carbon to seawater dissolved organic carbon overlying gas hydrate-bearing seeps in the northeastern Pacific Ocean. We show that carbon derived from fossil methane accounts for up to 28% of the dissolved organic carbon. This methane-derived material is much older, and more depleted in 13 C, than background dissolved organic carbon. We suggest that fossil methane-derived carbon may contribute significantly to the estimated 4,000-6,000 year age of dissolved organic carbon in the deep ocean, and provide reduced organic matter and energy to deep-ocean microbial communities. ?? 2011 Macmillan Publishers Limited. All rights reserved.
Distribution of pyrethroid insecticides in secondary wastewater effluent
Parry, Emily; Young, Thomas M.
2014-01-01
Although the freely dissolved form of hydrophobic organic chemicals may best predict aquatic toxicity, differentiating between dissolved and particle bound forms is challenging at environmentally relevant concentrations for compounds with low toxicity thresholds such as pyrethroid insecticides. We investigated the distribution of pyrethroids among three forms: freely dissolved, complexed with dissolved organic carbon (DOC), and sorbed to suspended particulate matter, during a yearlong study at a secondary wastewater treatment plant. Effluent was fractionated by laboratory centrifugation to determine if sorption was driven by particle size. Linear distribution coefficients were estimated for pyrethroid sorption to suspended particulate matter (Kid) and dissolved organic carbon (Kidoc) at environmentally relevant pyrethroid concentrations. Resulting Kid values were higher than those reported for other environmental solids, and variation between sampling events correlated well with available particle surface area. Fractionation results suggest that no more than 40% of the pyrethroid remaining in secondary effluent could be removed by extending settling periods. Less than 6%of the total pyrethroid load in wastewater effluent was present in the dissolved form across all sampling events and chemicals. PMID:23939863
USDA-ARS?s Scientific Manuscript database
Dissolved organic nitrogen (DON) represents a large percentage of the total nitrogen in rivers and estuaries, and can contribute to coastal eutrophication and hypoxia. This study reports on the composition and bioavailability of DON along the Caloosahatchee River (Florida), a heavily managed system ...
Photodecarboxylation (often stoichiometrically expressed as RCOOH + (1/2)O2 (ROH + CO2) has long been postulated to be principally responsible for generating CO2 from photooxidation of dissolved organic matter (DOM). In this study the quantitative relationships were investigated ...
Dissolved organic carbon loading from the field to watershed scale in tile-drained landscapes
USDA-ARS?s Scientific Manuscript database
Dissolved organic carbon (DOC) is an integral part to the functioning of aquatic ecosystems; yet, there is a paucity of data on DOC delivery and management in tile-drained agricultural headwater watersheds. The objective of this study was to quantify the contribution of subsurface tile drains to wat...
USDA-ARS?s Scientific Manuscript database
Dissolved organic matter (DOM) in surface waters plays an important role in biogeochemical and ecological processes. This study used solid-state NMR techniques to explore the molecular signatures of riverine DOM in relation to its point and nonpoint sources. DOM samples were isolated from (1) two st...
The distribution of dissolved and particulate organic matter was studied in northern San Francisco Bay on seven dates during declining flow conditions from April to October 1996. Measurements were made at 3 to 11 stations (usually 8) along the salinity gradient from the Sacrament...
Variability in organic carbon reactivity across lake residence time and trophic gradients
NASA Astrophysics Data System (ADS)
Evans, Chris D.; Futter, Martyn N.; Moldan, Filip; Valinia, Salar; Frogbrook, Zoe; Kothawala, Dolly N.
2017-11-01
The transport of dissolved organic carbon from land to ocean is a large dynamic component of the global carbon cycle. Inland waters are hotspots for organic matter turnover, via both biological and photochemical processes, and mediate carbon transfer between land, oceans and atmosphere. However, predicting dissolved organic carbon reactivity remains problematic. Here we present in situ dissolved organic carbon budget data from 82 predominantly European and North American water bodies with varying nutrient concentrations and water residence times ranging from one week to 700 years. We find that trophic status strongly regulates whether water bodies act as net dissolved organic carbon sources or sinks, and that rates of both dissolved organic carbon production and consumption can be predicted from water residence time. Our results suggest a dominant role of rapid light-driven removal in water bodies with a short water residence time, whereas in water bodies with longer residence times, slower biotic production and consumption processes are dominant and counterbalance one another. Eutrophication caused lakes to transition from sinks to sources of dissolved organic carbon. We conclude that rates and locations of dissolved organic carbon processing and associated CO2 emissions in inland waters may be misrepresented in global carbon budgets if temporal and spatial reactivity gradients are not accounted for.
Determining Inorganic and Organic Carbon.
Koistinen, Jaana; Sjöblom, Mervi; Spilling, Kristian
2017-11-21
Carbon is the element which makes up the major fraction of lipids and carbohydrates, which could be used for making biofuel. It is therefore important to provide enough carbon and also follow the flow into particulate organic carbon and potential loss to dissolved organic forms of carbon. Here we present methods for determining dissolved inorganic carbon, dissolved organic carbon, and particulate organic carbon.
David E. Pelster; Randall K. Kolka; Ellie E. Prepas
2009-01-01
Nitrate, ammonium, total dissolved nitrogen (TDN), dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) concentrations and flux were measured for one year in bulk deposition and throughfall from three stand types (upland deciduous, upland conifer and wetland conifer) on the Boreal Plain, Canada. Annual (November 2006 to October 2007 water year) flux...
Methane hydrate-bearing seeps as a source of aged dissolved organic carbon to the oceans
Pohlman, John; Waite, William F.; Bauer, James E.; Osburn, Christopher L.; Chapman, N. Ross
2011-01-01
Marine sediments contain about 500–10,000 Gt of methane carbon1, 2, 3, primarily in gas hydrate. This reservoir is comparable in size to the amount of organic carbon in land biota, terrestrial soils, the atmosphere and sea water combined1, 4, but it releases relatively little methane to the ocean and atmosphere5. Sedimentary microbes convert most of the dissolved methane to carbon dioxide6, 7. Here we show that a significant additional product associated with microbial methane consumption is methane-derived dissolved organic carbon. We use Δ14C and δ13C measurements and isotopic mass-balance calculations to evaluate the contribution of methane-derived carbon to seawater dissolved organic carbon overlying gas hydrate-bearing seeps in the northeastern Pacific Ocean. We show that carbon derived from fossil methane accounts for up to 28% of the dissolved organic carbon. This methane-derived material is much older, and more depleted in 13C, than background dissolved organic carbon. We suggest that fossil methane-derived carbon may contribute significantly to the estimated 4,000–6,000 year age of dissolved organic carbon in the deep ocean8, and provide reduced organic matter and energy to deep-ocean microbial communities.
Kott, Y; Ribas, F; Frías, J; Lucena, F
1997-09-01
In recent years, two different approaches to the study of biodegradable organic matter in distribution systems have been followed. The assimilable organic carbon (AOC) indicates the portion of the dissolved organic matter used by bacteria and converted to biomass, which is directly measured as total bacteria, active bacteria or colony-forming units and indirectly as ATP or increase in turbidity. In contrast, the biodegradable dissolved organic carbon (BDOC) is the portion of the dissolved organic carbon that can be mineralized by heterotrophic microorganisms, and it is measured as the difference between the inflow and the outflow of a bioreactor. In this study, at different steps in a water treatment plant, the bacterial regrowth capability was determined by the AOC method that measures the maximum growth rate by using a computerized Monitek turbidimeter. The BDOC was determined using a plug flow bioreactor. Measurements of colony-forming units and total organic carbon (TOC) evolution in a turbidimeter and of colony-forming units at the inflow/outflow of the bioreactor were also performed, calculating at all sampling points the coefficient yield (Y = cfu/delta TOC) in both systems. The correlations between the results from the bioreactor and turbidimeter have been calculated; a high correlation level was observed between BDOC values and all the other parameters, except for Y calculated from bacterial suspension measured in the turbidimeter.
A study examined the effect of sunlight-initiated photo-degradation of dissolved organic matter (DOM) on its carboxyl content, and the role of oxygen and iron in this process. Solar-simulated irradiations were performed on 0.2-mm filtered water samples collected from the highly c...
Dissolved organic carbon and chromophoric dissolved organic matter properties of rivers in the USA
NASA Astrophysics Data System (ADS)
Spencer, Robert G. M.; Butler, Kenna D.; Aiken, George R.
2012-09-01
Dissolved organic carbon (DOC) concentration and chromophoric dissolved organic matter (CDOM) parameters were measured over a range of discharge in 30 U.S. rivers, covering a diverse assortment of fluvial ecosystems in terms of watershed size and landscape drained. Relationships between CDOM absorption at a range of wavelengths (a254, a350, a440) and DOC in the 30 watersheds were found to correlate strongly and positively for the majority of U.S. rivers. However, four rivers (Colorado, Colombia, Rio Grande and St. Lawrence) exhibited statistically weak relationships between CDOM absorption and DOC. These four rivers are atypical, as they either drain from the Great Lakes or experience significant impoundment of water within their watersheds, and they exhibited values for dissolved organic matter (DOM) parameters indicative of autochthonous or anthropogenic sources or photochemically degraded allochthonous DOM and thus a decoupling between CDOM and DOC. CDOM quality parameters in the 30 rivers were found to be strongly correlated to DOM compositional metrics derived via XAD fractionation, highlighting the potential for examining DOM biochemical quality from CDOM measurements. This study establishes the ability to derive DOC concentration from CDOM absorption for the majority of U.S. rivers, describes characteristics of riverine systems where such an approach is not valid, and emphasizes the possibility of examining DOM composition and thus biogeochemical function via CDOM parameters. Therefore, the usefulness of CDOM measurements, both laboratory-based analyses and in situ instrumentation, for improving spatial and temporal resolution of DOC fluxes and DOM dynamics in future studies is considerable in a range of biogeochemical studies.
Dissolved organic carbon and chromophoric dissolved organic matter properties of rivers in the USA
Spencer, Robert G.M.; Butler, Kenna D.; Aiken, George R.
2012-01-01
Dissolved organic carbon (DOC) concentration and chromophoric dissolved organic matter (CDOM) parameters were measured over a range of discharge in 30 U.S. rivers, covering a diverse assortment of fluvial ecosystems in terms of watershed size and landscape drained. Relationships between CDOM absorption at a range of wavelengths (a254, a350, a440) and DOC in the 30 watersheds were found to correlate strongly and positively for the majority of U.S. rivers. However, four rivers (Colorado, Colombia, Rio Grande and St. Lawrence) exhibited statistically weak relationships between CDOM absorption and DOC. These four rivers are atypical, as they either drain from the Great Lakes or experience significant impoundment of water within their watersheds, and they exhibited values for dissolved organic matter (DOM) parameters indicative of autochthonous or anthropogenic sources or photochemically degraded allochthonous DOM and thus a decoupling between CDOM and DOC. CDOM quality parameters in the 30 rivers were found to be strongly correlated to DOM compositional metrics derived via XAD fractionation, highlighting the potential for examining DOM biochemical quality from CDOM measurements. This study establishes the ability to derive DOC concentration from CDOM absorption for the majority of U.S. rivers, describes characteristics of riverine systems where such an approach is not valid, and emphasizes the possibility of examining DOM composition and thus biogeochemical function via CDOM parameters. Therefore, the usefulness of CDOM measurements, both laboratory-based analyses and in situ instrumentation, for improving spatial and temporal resolution of DOC fluxes and DOM dynamics in future studies is considerable in a range of biogeochemical studies.
Arnold, W R; Diamond, R L; Smith, D S
2010-08-01
This paper presents data from original research for use in the development of a marine biotic ligand model and, ultimately, copper criteria for the protection of estuarine and marine organisms and their uses. Ten 48-h static acute (unfed) copper toxicity tests using the euryhaline rotifer Brachionus plicatilis ("L" strain) were performed to assess the effects of salinity, pH, and dissolved organic matter (measured as dissolved organic carbon; DOC) on median lethal dissolved copper concentrations (LC50). Reconstituted and natural saltwater samples were tested at seven salinities (6, 11, 13, 15, 20, 24, and 29 g/L), over a pH range of 6.8-8.6 and a range of dissolved organic carbon of <0.5-4.1 mg C/L. Water chemistry analyses (alkalinity, calcium, chloride, DOC, hardness, magnesium, potassium, sodium, salinity, and temperature) are presented for input parameters to the biotic ligand model. In stepwise multiple regression analysis of experimental results where salinity, pH, and DOC concentrations varied, copper toxicity was significantly related only to the dissolved organic matter content (pH and salinity not statistically retained; alpha=0.05). The relationship of the 48-h dissolved copper LC50 values and dissolved organic carbon concentrations was LC50 (microg Cu/L)=27.1xDOC (mg C/L)1.25; r2=0.94.
Effects of a controlled freeze-thaw event on dissolved and colloidal soil organic matter.
Kim, Eun-Ah; Lee, Ha Kyung; Choi, Jung Hyun
2017-01-01
This study investigated the effects of the freezing and thawing that accompany the warming process on the composition of the soil organic matter in the dissolved and colloidal fractions. Temperate soil samples were incubated in a refrigerator at 2 °C for 4 weeks and compared with those frozen at -20 °C in the second week followed by thawing at 2 °C to study a freeze-thaw effect with minimal effect from the thawing temperature. The freeze-thaw group was compared with those incubated at 25 °C in the last week to investigate a warming effect after thawing. Thawing at 2 °C after freezing at -20 °C increased the dissolved organic carbon (DOC), but decreased colloidal Ca. The subsequent warming condition greatly increased both DOC and colloidal Ca. The colloidal organic carbon (COC) and dissolved Ca showed rather subtle changes in response to the freeze-thaw and warming treatments compared to the changes in DOC and colloidal Ca. The fluorescence excitation-emission matrix (EEM) and Fourier transformation-infrared spectrometry (FT-IR) results showed that the freeze-thaw and warming treatments gave the opposite effects on the compositions of dissolved humic-like substances, polysaccharides or silicates, and aliphatic alcohols. A principal component analysis (PCA) with the DOC, fluorescence EEM, and FT-IR spectra produced two principal components that successfully distinguished the effects of the freeze-thaw and warming treatments. Due to the contrasting effects of the freeze-thaw and warming treatments, the overall effects of freeze-thaw events in nature on the dissolved and colloidal soil organic matter could vary depending on the thawing temperature.
Marine methane paradox explained by bacterial degradation of dissolved organic matter
NASA Astrophysics Data System (ADS)
Repeta, Daniel J.; Ferrón, Sara; Sosa, Oscar A.; Johnson, Carl G.; Repeta, Lucas D.; Acker, Marianne; Delong, Edward F.; Karl, David M.
2016-12-01
Biogenic methane is widely thought to be a product of archaeal methanogenesis, an anaerobic process that is inhibited or outcompeted by the presence of oxygen and sulfate. Yet a large fraction of marine methane delivered to the atmosphere is produced in high-sulfate, fully oxygenated surface waters that have methane concentrations above atmospheric equilibrium values, an unexplained phenomenon referred to as the marine methane paradox. Here we use nuclear magnetic resonance spectroscopy to show that polysaccharide esters of three phosphonic acids are important constituents of dissolved organic matter in seawater from the North Pacific. In seawater and pure culture incubations, bacterial degradation of these dissolved organic matter phosphonates in the presence of oxygen releases methane, ethylene and propylene gas. Moreover, we found that in mutants of a methane-producing marine bacterium, Pseudomonas stutzeri, disrupted in the C-P lyase phosphonate degradation pathway, methanogenesis was also disabled, indicating that the C-P lyase pathway can catalyse methane production from marine dissolved organic matter. Finally, the carbon stable isotope ratio of methane emitted during our incubations agrees well with anomalous isotopic characteristics of seawater methane. We estimate that daily cycling of only about 0.25% of the organic matter phosphonate inventory would support the entire atmospheric methane flux at our study site. We conclude that aerobic bacterial degradation of phosphonate esters in dissolved organic matter may explain the marine methane paradox.
Monitoring requirements for groundwaters under the influence of reclaimed water.
Fox, P
2001-07-01
Monitoring groundwaters under the influence of reclaimed water must consider the major constituents of concern in reclaimed water. This research focused on the fate of dissolved organic carbon and nitrogen species at field sites located throughout the Southwestern United States. A watershed approach was developed to predict the fate of dissolved organic carbon as a function of the drinking water dissolved organic carbon concentration and the total dissolved solids concentration in the reclaimed water. Extensive characterization of the dissolved organic carbon recovered from groundwaters under the influence of reclaimed water was done. With the exception of fluorescence spectroscopy, the dissolved organic carbon present in effluent organic matter was similar in structure, character and reactivity as compared to natural organic matter. Evidence for sustainable nitrogen removal mechanisms during groundwater recharge with reclaimed water was obtained. The autotrophic reaction between ammonia and nitrate appears to a mechanism for the removal nitrogen in a carbon-depleted environment. The monitoring tools and methodologies developed in this research can be used to assure protection of public health and determine the sustainability of indirect potable reuse projects.
Kalmykova, Yuliya; Björklund, Karin; Strömvall, Ann-Margret; Blom, Lena
2013-03-01
Partitioning of organic pollutants is essential to their fate, mobility and removal from water and soil. To study the partitioning behavior of selected alkylphenols, bisphenol A, phthalates and polycyclic aromatic hydrocarbons (PAHs), a method for separating the truly dissolved and colloidal phase of organic pollutants was developed, verified and applied to samples of landfill leachate and stormwater from urban areas and waste-sorting sites. Alkylphenols, bisphenol A, phthalates and PAHs were detected in all the untreated samples (total concentrations), most of the filtered samples and frequently in the colloid-bound phase. Concentrations of alkylphenols and PAHs in urban stormwater were one order of magnitude lower than in the landfill leachates and stormwater from waste-sorting sites. The difference between total, dissolved and colloid-bound concentrations in the water samples was not statistically significant for any phenols or phthalates, but for three of the PAHs; naphthalene (mostly dissolved), phenanthrene and fluoranthene (mostly particulate). These results indicate that in landfill leachates and stormwaters, organic pollutants are predominantly attached to colloids and/or truly dissolved in contrast to their expected strong sorption to particulate matter. Occurrence and concentrations of pollutants in dissolved and colloid-bound phases correlated negatively with the K(OW). However, even highly hydrophobic compounds were frequently detected in filtered samples, i.e. the dissolved phases, and it is suggested that the organic content in the colloids decreases the compounds' partition to particles. The results confirm that the K(OW) values of specific organic pollutants well describe the compounds partition-binding process to dissolved organic carbon (DOC) colloids. Our findings call for a re-assessment of the organic pollutants' mobility and associated risks. This knowledge can also serve as a base for selecting efficient treatment methods for stormwater and landfill leachates. Copyright © 2012 Elsevier Ltd. All rights reserved.
Gourlay-Francé, C; Bressy, A; Uher, E; Lorgeoux, C
2011-01-01
The occurrence and the partitioning of polycyclic aromatic hydrocarbons (PAHs) and seven metals (Al, Cd, Cr, Cu, Ni, Pb and Zn) were investigated in activated sludge wastewater treatment plants by means of passive and active sampling. Concentrations total dissolved and particulate contaminants were determined in wastewater at several points across the treatment system by means of grab sampling. Truly dissolved PAHs were sampled by means of semipermeable membrane devices. Labile (inorganic and weakly complexed) dissolved metals were also sampled using the diffusive gradient in thin film technique. This study confirms the robustness and the validity of these two passive sampling techniques in wastewater. All contaminant concentrations decreased in wastewater along the treatment, although dissolved and labile concentrations sometimes increased for substances with less affinity with organic matter. Solid-liquid and dissolved organic matter/water partitioning constants were estimated. The high variability of both partitioning constants for a simple substance and the poor relation between K(D) and K(OW) shows that the binding capacities of particles and organic matter are not uniform within the treatment and that other process than equilibrium sorption affect contaminant repartition and fate in wastewater.
Production of Dissolved Organic Matter During Doliolid Feeding
NASA Astrophysics Data System (ADS)
Castellane, N. J.; Paffenhofer, G. A.; Stubbins, A.
2016-02-01
The biological carbon pump (BCP) draws carbon dioxide out of the atmosphere and buries it at the seafloor. The efficiency of the BCP is determined in part by the sinking rates of particulate organic carbon (POC) from ocean surface waters. Zooplankton can package POC into fecal pellets with higher sinking rates than their food source (e.g. phytoplankton), increasing the efficiency of the BCP. However, dissolved organic carbon (DOC) is also produced as zooplankton ingest and egest food, reducing the efficiency of BCP. The pelagic tunicate Dolioletta gegenbauri (doliolid) is a gelatinous zooplankton found at high concentrations in shelf waters, including our study site: the South Atlantic Bight. Doliolids are efficient grazers capable of stripping large quantities of phytoplankton from the water column. To determine the balance between pellet formation and DOC production during feeding, doliolids (6-7 mm gonozooids) were placed in natural seawater amended with a live phytoplankton food source and incubated on a plankton wheel. Dissolved organic matter (DOM) released directly to the water as well as the water soluble fraction of pellet organic matter were quantified and optically characterized. Colored dissolved organic matter (CDOM) absorbance and fluorescence spectra revealed that doliolid feeding produces DOM with optical properties that are commonly indicative of newly produced, highly biolabile DOM of microbial origin. Based upon these optical characteristics, doliolid-produced DOM is expected to be highly bio-labile in the environment and therefore rapidly degraded by surface ocean microbes shunting phytoplankton-derived organic carbon out of the BCP and back to dissolved inorganic carbon.
Black Carbon in Estuarine and Coastal Ocean Dissolved Organic Matter
NASA Technical Reports Server (NTRS)
Mannino, Antonio; Harvey, H. Rodger
2003-01-01
Analysis of high-molecular-weight dissolved organic matter (DOM) from two estuaries in the northwest Atlantic Ocean reveals that black carbon (BC) is a significant component of previously uncharacterized DOM, suggesting that river-estuary systems are important exporters of recalcitrant dissolved organic carbon to the ocean.
Dittman, Jason A.; Shanley, James B.; Driscoll, Charles T.; Aiken, George R.; Chalmers, Ann T.; Towse, Janet E.; Selvendiran, Pranesh
2010-01-01
Mercury (Hg) contamination is widespread in remote areas of the northeastern United States. Forested uplands have accumulated a large reservoir of Hg in soil from decades of elevated anthropogenic deposition that can be released episodically to stream water during high flows. The objective of this study was to evaluate spatial and temporal variations in stream water Hg species and organic matter fractions over a range of hydrologic conditions in three forested upland watersheds (United States). Mercury and organic matter concentrations increased with discharge at all three sites; however, the partitioning of Hg fractions (dissolved versus particulate) differed among sites and seasons. Associated with increased discharge, flow paths shifted from mineral soil under base flow to upper soil horizons. As flow paths shifted, greater concentrations of dissolved organic carbon (DOC) richer in aromatic substances were flushed from upper soil horizons to stream water. The hydrophobic organic matter associated with humic material from upper soils appears to have had a greater capacity to bind Hg. Because of the strong correlation between Hg and DOC, we hypothesize that there was a concurrent shift in the source of Hg with DOC from lower mineral soil to upper soil horizons. Our study suggests that stream discharge is an effective predictor of dissolved total Hg flux.
Photochemical reactions involving colored dissolved organic matter (CDOM) in natural waters are important determinants of nutrient cycling, trace gas production and control of light penetration into the water column. In this study the role of the hydroxyl radical ((OH)-O-.) in CD...
Qualitative changes of riverine dissolved organic matter at low salinities due to flocculation
NASA Astrophysics Data System (ADS)
Asmala, Eero; Bowers, David G.; Autio, Riitta; Kaartokallio, Hermanni; Thomas, David N.
2014-10-01
The flocculation of dissolved organic matter (DOM) was studied along transects through three boreal estuaries. Besides the bulk concentration parameters, a suite of DOM quality parameters were investigated, including colored DOM (CDOM), fluorescent DOM, and the molecular weight of DOM as well as associated dissolved iron concentrations. We observed significant deviations from conservative mixing at low salinities (<2) in the estuarine samples of dissolved organic carbon (DOC), UV absorption (a(CDOM254)), and humic-like fluorescence. The maximum deviation from conservative mixing for DOC concentration was -16%, at salinities between 1 and 2. An associated laboratory experiment was conducted where an artificial salinity gradient between 0 and 6 was created. The experiment confirmed the findings from the estuarine transects, since part of the DOC and dissolved iron pools were transformed to particulate fraction (>0.2 µm) and thereby removing them from the dissolved phase. We also measured flocculation of CDOM, especially in the UV region of the absorption spectrum. Protein-like fluorescence of DOM decreased, while humic-like fluorescence increased because of salt-induced flocculation. Additionally, there was a decrease in molecular weight of DOM. Consequently, the quantity and quality of the remaining DOM pool was significantly changed after influenced to flocculation. Based on these results, we constructed a mechanistic, two-component flocculation model. Our findings underline the importance of the coastal filter, where riverine organic matter is flocculated and exported to the sediments.
Trihalomethane and nonpurgeable total organic-halide formation potentials of the Mississippi river
Rathbun, R.E.
1996-01-01
Trihalomethane and nonpurgeable total organic-hallide formation potentials were determined for water samples from 12 sites along the Mississippi River from Minneapolis, MN, to New Orleans, LA, for the summer and fall of 1991 and the spring of 1992. The formation potentials increased with distance upstream, approximately paralleling the increase of the dissolved organic- carbon concentration. The pH and the dissolved organic-carbon and free- chlorine concentrations were significant variables in the prediction of the formation potentials. The trihalomethane formation potential increased as the pH increased, whereas the nonpurgeable total organic-halide formation potential decreased. All formation potentials increased as the dissolved organic-carbon and free-chlorine concentrations increased, with the dissolved organic-carbon concentration having a much greater effect.
Liu, Shu-Yu; Xu, Jingling; Chen, Wen-Li; David, Berthold E; Wu, Minghong; Ma, Fang
2017-04-01
Cyanobacterial blooms generated by nutrient addition into aquatic systems pose serious risks to ecosystems and human health. Though there are established chemical, physical, and biological means of eradication, more efficient and environmentally friendly measures are desired. This study investigates the effect of potassium ferrate(VI) on the growth and intracellular and extracellular organic matter accumulations of the cyanobacterium Microcystis aeruginosa. Cultures were inoculated with three separate concentrations of potassium ferrate(VI) (3, 15, 30 mg L -1 ) and monitored by measuring chlorophyll-a (Chl-a) and intracellular/extracellular dissolved organic carbon. Results show that ferrate(VI) addition effectively removed the microalgae from the medium, as indicated by the reduction of Chl-a. Organic matter accumulation of the microalgae was also affected by ferrate(VI) treatment; fluorescence EEM spectra show details of changing intracellular dissolved organic matter (IDOM) and extracellular dissolved organic matter (EDOM). A new peak appeared in the EDOM indicating altered humic and proteinaceous compounds. This study demonstrates that ferrate(VI) is a potential treatment for the water contaminated with the toxic microalgae M. aeruginosa.
Abudalo, R.A.; Ryan, J.N.; Harvey, R.W.; Metge, D.W.; Landkamer, Lee L.
2010-01-01
To assess the effect of organic matter on the transport of Cryptosporidium parvum oocysts in a geochemically heterogeneous saturated porous medium, we measured the breakthrough and collision efficiencies of oocysts as a function of dissolved organic matter concentration in a flow-through column containing ferric oxyhydroxide-coated sand. We characterized the surface properties of the oocysts and ferric oxyhydroxide-coated sand using microelectrophoresis and streaming potential, respectively, and the amount of organic matter adsorbed on the ferric oxyhydroxide-coated sand as a function of the concentration of dissolved organic matter (a fulvic acid isolated from Florida Everglades water). The dissolved organic matter had no significant effect on the zeta potential of the oocysts. Low concentrations of dissolved organic matter were responsible for reversing the charge of the ferric oxyhydroxide-coated sand surface from positive to negative. The charge reversal and accumulation of negative charge on the ferric oxyhydroxide-coated sand led to increases in oocyst breakthrough and decreases in oocyst collision efficiency with increasing dissolved organic matter concentration. The increase in dissolved organic matter concentration from 0 to 20 mg L-1 resulted in a two-fold decrease in the collision efficiency. ?? 2009 Elsevier Ltd.
Adsorption of dissolved organics in lake water by aluminum oxide. Effect of molecular weight
Davis, J.A.; Gloor, R.
1981-01-01
Dissolved organic compounds in a Swiss lake were fractionated into three molecular size classes by gel exclusion chromatography, and adsorption of each fraction on colloidal alumina was studied as a function of pH. Organic compounds with molecular weight (Mr) greater than 1000 formed strong complexes with the alumina surface, but low molecular weight compounds were weakly adsorbed. Electrophoretic mobility measurements indicated that alumina particles suspended in the original lake water were highly negatively charged because of adsorbed organic matter. Most of the adsorbed organic compounds were in the Mr range 1000 < Mr < 3000. Adsorption of these compounds during the treatment of drinking water by alum coagulation may be responsible for the preferential removal of trihalomethane precursors. Adsorption may also influence the molecular-weight distribution of dissolved organic material in lakes. surface, the present work will focus on the influence of molecular size and pH on the adsorption behavior of dissolved organic material of a Swiss lake. From a geochemical point of view, it is important to know the molecular-weight distribution of adsorbed organic matter so that we may better assess its reactivity with trace elements. The study also serves as a first step in quantifying the role of adsorption in the geochemical cycle of organic carbon in lacustrine environments. For water-treatment practice, we need to determine whether molecular weight fractionation occurs during adsorption by aluminum oxide. Such a fractionation could be significant in the light of recent reports that chloroform and other organochlorine compounds are preferentially produced by particular molecular-weight fractions (25-27). ?? 1981 American Chemical Society.
Kelly L. Balcarczyk; Jeremy B. Jones; Rudolf Jaffe; Nagamitsu Maie
2009-01-01
We examined the impact of permafrost on dissolved organic matter (DOM) composition in Caribou-Poker Creeks Research Watershed (CPCRW), a watershed underlain with discontinuous permafrost, in interior Alaska. The stream draining the high permafrost watershed had higher DOC and dissolved organic nitrogen (DON) concentrations, higher DOCDON and greater specific...
Does DOM properties or the amount of DOC induces iron reduction in topsoil porewater?
NASA Astrophysics Data System (ADS)
Szalai, Zoltán; Ringer, Marianna; Kiss, Klaudia; Perényi, Katalin; Jakab, Gergely
2017-04-01
Iron content of porewater in hydromorphic soils shows high temporal variability. This usually correlates with dissolved organic carbon (DOC) content, but the correlation can be weak in some cases. Some studies suggest that ferrous iron stabilizes organic carbon in dissolved state. On the contrary, other papers report about dissolved iron stabilization by dissolved organic matter (DOM). Present study focuses on this apparent contradiction and on the interaction of organic carbon and iron in hydromorphic soils. Studied gleyic Phaeozems (3 profiles) and mollic Gleysols (3 profiles) are located in Geresdi-dombság (Hungary) and in Danube-Tisza Interfluve (Hungary) respectively. Dynamics of porewater pH, EH, have been recorded by field stations at 20, 40 and 100 cm depth during the growing season with 10 min temporal resolution. Porewater occasionally have also been sampled in each depth. The presence of ferrous iron was detected by dipyridil field test. DOC, dissolved nitrogen (DN) and iron were measured by TOC analyser and fl-AAS. Molecular size and molecular weight were measured by photon correlation spectroscope (DLS and SLS). Textural and mineralogical properties of studied soils were also determined. Relationships among studied parameters were tested by Spearman's rank correlation. The seasonal dynamics of redox potential is primarily controlled by saturation, but spatial differences are also driven by vegetation. The environment is usually reductive for iron oxides between March and July, but intensive daily redox fluctuations could be measured in June and July in some topsoils. Short term temporal variability of redox conditions is depended on the physiological activity of plants. Most of the papers published a range between +100 and +50 mV for iron reduction in aquatic systems. Topsoil porewater measurements show three redox ranges where concentration of dissolved iron has been increased: +320 to +200, +80 to +20 and below-160 mV. These ranges were identified independently from each other in various topsoils and subsoils. DOC was correlated with dissolved iron only in the most oxidative topsoils. Therefore we did not find correlation between DOC and dissolved iron in the studied topsoils of Gleysols. Molecular size and molecular weight of DOM have correlated with dissolved iron in all topsoils. We did not find any relationship between dissolved iron and any other properties at 100 cm depth. Presence of colour reaction and the colour intensity of dipyridil test also did not show correlation with measured dissolved iron in all studied topsoils. High ratio of dithionite and oxalate extractable iron of the solid phase and the molecular size measurements suggest that this observation can be explained by an intensive complex formation of ferric iron with low molecular size DOM. This research was supported by Hungarian Scientific Research Fund (OTKA K100180) and Gergely Jakab was supported by János Bolyai Fellowship of the MTA.
Guo, Yuedong; Song, Changchun; Wan, Zhongmei; Tan, Wenwen; Lu, Yongzheng; Qiao, Tianhua
2014-11-01
Permafrost soils act as large sinks of organic carbon but are highly sensitive to interference such as changes in land use, which can greatly influence dissolved carbon loads in streams. This study examines the effects of long-term land reclamation on seasonal concentrations of dissolved carbons in the upper reaches of the Nenjiang River, northeast China. A comparison of streams in natural and agricultural systems shows that the dissolved organic carbon (DOC) concentration is much lower in the agricultural stream (AG) than in the two natural streams (WAF, wetland dominated; FR, forest dominated), suggesting that land use change is associated with reduced DOC exporting capacity. Moreover, the fluorescence indexes and the ratio of dissolved carbon to nitrogen also differ greatly between the natural and agricultural streams, indicating that the chemical characteristics and the origin of the DOC released from the whole reaches are also altered to some extent. Importantly, the exporting concentration of dissolved inorganic carbon (DIC) and its proportion of total dissolved carbon (TDC) substantially increase following land reclamation, which would largely alter the carbon cycling processes in the downstream fluvial system. Although the strong association between the stream discharge and the DOC concentration was unchanged, the reduction in total soil organic carbon following land reclamation led to remarkable decline of the total flux and exporting coefficient of the dissolved carbons. The results suggest that dissolved carbons in permafrost streams have been greatly affected by changes in land use since the 1970s, and the changes in the concentration and chemical characteristics of dissolved carbons will last until the alteration in both the traditional agriculture pattern and the persistent reclamation activities.
Majumder, Santanu; Nath, Bibhash; Sarkar, Simita; Chatterjee, Debashis; Roman-Ross, Gabriela; Hidalgo, Manuela
2014-01-15
Dissolved organic carbon (DOC) and Fe mineral phases are known to influence the mobility of arsenic (As) in groundwater. Arsenic can be associated with colloidal particles containing organic matter and Fe. Currently, no data is available on the dissolved phase/colloidal association of As in groundwater of alluvial aquifers in West Bengal, India. This study investigated the fractional distribution of As (and other metals/metalloids) among the particulate, colloidal and dissolved phases in groundwater to decipher controlling behavior of organic and inorganic colloids on As mobility. The result shows that 83-94% of As remained in the 'truly dissolved' phases (i.e., <0.05 μm size). Strong positive correlation between Fe and As (r(2) between 0.65 and 0.94) is mainly observed in the larger (i.e., >0.05 μm size) colloidal particles, which indicates the close association of As with larger Fe-rich inorganic colloids. In smaller (i.e., <0.05 μm size) colloidal particles strong positive correlation is observed between As and DOC (r(2)=0.85), which highlights the close association of As with smaller organic colloids. As(III) is mainly associated with larger inorganic colloids, whereas, As(V) is associated with smaller organic/organometallic colloids. Scanning Electron Microscopy and Energy Dispersive X-ray spectroscopy confirm the association of As with DOC and Fe mineral phases suggesting the formation of dissolved organo-Fe complexes and colloidal organo-Fe oxide phases. Attenuated total reflectance-Fourier transform infrared spectroscopy further confirms the formation of As-Fe-NOM organometallic colloids, however, a detailed study of these types of colloids in natural waters is necessary to underpin their controlling behavior. © 2013 Elsevier B.V. All rights reserved.
Seasonal changes of concentrations of inorganic and organic nitrogen in coastal marine sediments
NASA Astrophysics Data System (ADS)
Yamada, Hisashi; Kayama, Mitsu; Fujisawa, Kuniyasu
1987-05-01
The seasonal fluctuations of the concentration of nitrogenous compounds in sediments was investigated for three regions of the Seto Inland Sea in Japan; the variation of nitrogenous compounds in sediments was also studied in a laboratory experiment. The amounts of ammonium, dissolved organic nitrogen, nitrite and nitrate, as percentages of the dissolved total nitrogen of the interstitial water, were in the ranges of 47-99%, 10-50%, 0·1-0·6% and 0·3-4·1%, respectively. Ammonium was the major component and organic nitrogen was the next most important. The concentrations of these nitrogenous compounds changed seasonally: dissolved total nitrogen was higher in the warm month of September than in May; ammonium increased in warm months and decreased in cold months, but nitrite and nitrate increased in cold months. It was possible to explain the seasonal fluctuation of nitrogenous compounds in terms of the rates of the metabolic pathways of nitrogen in the sediments. Ammonium was not necessarily correlated with dissolved organic nitrogen. From this, it was considered that ammonium did not occur from solubilization of particulate organic nitrogen followed by mineralization, but from direct mineralization of particulate organic nitrogen in sediments. For the sediments of Suho Nada, Hiuchi Nada and station B-47 in Beppu Bay, the ratio of dissolved ammonium to adsorbed ammonium in the sediments was in the range 10-25%, but the ratio was 60-70% of adsorbed ammonium in the considerably anaerobic sediments at station B-45 in Beppu Bay. The ratio of dissolved ammonium to adsorbed ammonium increased with the increase of the concentration of sulfide in sediments. It was recognized that the anaerobic conditions of the sediments led to the dissolution of adsorbed ammonium.
Mladenov, Natalie; Pulido-Villena, Elvira; Morales-Baquero, Rafael; Ortega-Retuerta, Eva; Sommaruga, Ruben; Reche, Isabel
2008-01-01
The effects of many environmental stressors such as UV radiation are mediated by dissolved organic matter (DOM) properties. Therefore, determining the factors shaping spatial and temporal patterns is particularly essential in the most susceptible, low dissolved organic carbon (DOC) lakes. We analyzed spatiotemporal variations in dissolved organic carbon concentration and dissolved organic matter optical properties (absorption and fluorescence) in 11 transparent lakes located above tree line in the Sierra Nevada Mountains (Spain), and we assessed potential external (evaporation and atmospheric deposition) and internal (bacterial abundance, bacterial production, chlorophyll a, and catchment vegetation) drivers of DOM patterns. At spatial and temporal scales, bacteria were related to chromophoric DOM (CDOM). At the temporal scale, water soluble organic carbon (WSOC) in dust deposition and evaporation were found to have a significant influence on DOC and CDOM in two Sierra Nevada lakes studied during the ice-free periods of 2000-2002. DOC concentrations and absorption coefficients at 320 nm were strongly correlated over the spatial scale (n = 11, R(2) = 0.86; p < 0.01), but inconsistently correlated over time, indicating seasonal and interannual variability in external factors and a differential response of DOC concentration and CDOM to these factors. At the continental scale, higher mean DOC concentrations and more CDOM in lakes of the Sierra Nevada than in lakes of the Pyrenees and Alps may be due to a combination of more extreme evaporation, and greater atmospheric dust deposition.
Mladenov, Natalie; Pulido-Villena, Elvira; Morales-Baquero, Rafael; Ortega-Retuerta, Eva; Sommaruga, Ruben; Reche, Isabel
2010-01-01
The effects of many environmental stressors such as UV radiation are mediated by dissolved organic matter (DOM) properties. Therefore, determining the factors shaping spatial and temporal patterns is particularly essential in the most susceptible, low dissolved organic carbon (DOC) lakes. We analyzed spatiotemporal variations in dissolved organic carbon concentration and dissolved organic matter optical properties (absorption and fluorescence) in 11 transparent lakes located above tree line in the Sierra Nevada Mountains (Spain), and we assessed potential external (evaporation and atmospheric deposition) and internal (bacterial abundance, bacterial production, chlorophyll a, and catchment vegetation) drivers of DOM patterns. At spatial and temporal scales, bacteria were related to chromophoric DOM (CDOM). At the temporal scale, water soluble organic carbon (WSOC) in dust deposition and evaporation were found to have a significant influence on DOC and CDOM in two Sierra Nevada lakes studied during the ice-free periods of 2000–2002. DOC concentrations and absorption coefficients at 320 nm were strongly correlated over the spatial scale (n = 11, R2 = 0.86; p < 0.01), but inconsistently correlated over time, indicating seasonal and interannual variability in external factors and a differential response of DOC concentration and CDOM to these factors. At the continental scale, higher mean DOC concentrations and more CDOM in lakes of the Sierra Nevada than in lakes of the Pyrenees and Alps may be due to a combination of more extreme evaporation, and greater atmospheric dust deposition. PMID:20582227
Kaelin M. Cawley; John Campbell; Melissa Zwilling; Rudolf. Jaffé
2014-01-01
Dissolved organic matter (DOM) source and composition are critical drivers of its reactivity, impact microbial food webs and influence ecosystem functions. It is believed that DOM composition and abundance represent an integrated signal derived from the surrounding watershed. Recent studies have shown that land-use may have a long-term effect on DOM composition....
Jason B. Fellman; David V. D' Amore; Eran Hood; Richard D. Boone
2008-01-01
Understanding how the concentration and chemical quality of dissolved organic matter (DOM) varies in soils is critical because DOM influences an array of biological, chemical, and physical processes. We used PARAFAC modeling of excitation-emission fluorescence spectroscopy, specific UV absorbance (SUVA254) and biodegradable dissolved organic...
Molecular weight distribution of phosphorus fraction of aquatic dissolved organic matter.
Ged, Evan C; Boyer, Treavor H
2013-05-01
This study characterized dissolved organic phosphorus (DOP) that is discharged from the Everglades Agricultural Area as part of the larger pool of aquatic dissolved organic matter (DOM). Whole water samples collected at the Everglades stormwater treat area 1 West (STA-1 W) were fractionated using a batch ultrafiltration method to separate organic compounds based on apparent molecular weight (AMW). Each AMW fraction of DOM was characterized for phosphorus, carbon, nitrogen, UV absorbance, and fluorescence. The DOP content of the Everglades water matrix was characteristically variable constituting 4-56% of total phosphorus (TP) and demonstrated no correlation with dissolved organic carbon (DOC). Measured values for DOP exceeded 14μgL(-1) in four out of five sampling dates making phosphorus load reductions problematic for the stormwater treatment areas (STAs), which target inorganic phosphorus and have a goal of 10μgL(-1) as TP. The molecular weight distributions revealed 40% of DOP is high molecular weight, aromatic-rich DOM. The results of this research are expected to be of interest to environmental chemists, environmental engineers, and water resources managers because DOP presents a major obstacle to achieving TP levels <10μgL(-1). Copyright © 2013 Elsevier Ltd. All rights reserved.
Reddy, Michael M.; Gunther, Charmaine D.
2012-01-01
This report presents results of chemical analysis for samples collected during March, 1995, as part of a study to quantify the interaction of aquatic organic material (referred to here as dissolved organic carbon with dissolved metal ions). The work was done in conjunction with the South Florida Water Management District, the U.S. Environmental Protection Agency, the U.S. Geological Survey South Florida Ecosystems Initiative, and the South Florida National Water Quality Assessment Study Unit. Samples were collected from surface canals and from marsh sites. Results are based on onsite and laboratory measurements for 27 samples collected at 10 locations. The data file contains sample description, dissolved organic carbon concentration and specific ultraviolet absorbance, and additional analytical data for samples collected at several sites in the Water Conservation Areas, the Everglades, south Florida.
The Case Against Charge Transfer Interactions in Dissolved Organic Matter Photophysics.
McKay, Garrett; Korak, Julie A; Erickson, Paul R; Latch, Douglas E; McNeill, Kristopher; Rosario-Ortiz, Fernando L
2018-01-16
The optical properties of dissolved organic matter influence chemical and biological processes in all aquatic ecosystems. Dissolved organic matter optical properties have been attributed to a charge-transfer model in which donor-acceptor complexes play a primary role. This model was evaluated by measuring the absorbance and fluorescence response of organic matter isolates to changes in solvent temperature, viscosity, and polarity, which affect the position and intensity of spectra for known donor-acceptor complexes of organic molecules. Absorbance and fluorescence spectral shape were largely unaffected by these changes, indicating that the distribution of absorbing and emitting species was unchanged. Overall, these results call into question the wide applicability of the charge-transfer model for explaining organic matter optical properties and suggest that future research should explore other models for dissolved organic matter photophysics.
L.R. Seifert-Monson; B.H. Hill; R.K. Kolka; T.M. Jicha; L.L. Lehto; C.M. Elonen
2014-01-01
Export of dissolved organic carbon from lakes and streams has increased throughout Europe and North America over the past several decades. One possible cause is altered deposition chemistry; specifically, decreasing sulfate inputs leading to changes in ionic strength and dissolved organic carbon solubility. To further investigate the relationship between deposition...
Jason B. Fellman; Eran Hood; David V. D' Amore; Richard T. Edwards; Dan White
2009-01-01
The composition and biodegradability of streamwater dissolved organic matter (DOM) varies with source material and degree of transformation. We combined PARAFAC modeling of fluorescence excitation-emission spectroscopy and biodegradable dissolved organic carbon (BDOC) incubations to investigate seasonal changes in the lability of DOM along a soil-stream continuum in...
The acid-base properties of humic substances, the major component of dissolved organic matter (DOM), area major control on the alkalinity, or acid neutralizing capacity of freshwater systems. Alkalinity is one of the fundamental parameters measured in aquatic sciences, and is an ...
John P. Gannon; Scott W. Bailey; Kevin J. McGuire; James B. Shanley
2015-01-01
We investigated potential source areas of dissolved organic carbon (DOC) in headwater streams by examining DOC concentrations in lysimeter, shallow well, and stream water samples from a reference catchment at the Hubbard Brook Experimental Forest. These observations were then compared to high-frequency temporal variations in fluorescent dissolved organic matter (FDOM)...
Goldman, Jami H.; Sullivan, Annett B.
2017-12-11
Concentrations of particulate organic carbon (POC) and dissolved organic carbon (DOC), which together comprise total organic carbon, were measured in this reconnaissance study at sampling sites in the Upper Klamath River, Lost River, and Klamath Straits Drain in 2013–16. Optical absorbance and fluorescence properties of dissolved organic matter (DOM), which contains DOC, also were analyzed. Parallel factor analysis was used to decompose the optical fluorescence data into five key components for all samples. Principal component analysis (PCA) was used to investigate differences in DOM source and processing among sites.At all sites in this study, average DOC concentrations were higher than average POC concentrations. The highest DOC concentrations were at sites in the Klamath Straits Drain and at Pump Plant D. Evaluation of optical properties indicated that Klamath Straits Drain DOM had a refractory, terrestrial source, likely extracted from the interaction of this water with wetland peats and irrigated soils. Pump Plant D DOM exhibited more labile characteristics, which could, for instance, indicate contributions from algal or microbial exudates. The samples from Klamath River also had more microbial or algal derived material, as indicated by PCA analysis of the optical properties. Most sites, except Pump Plant D, showed a linear relation between fluorescent dissolved organic matter (fDOM) and DOC concentration, indicating these measurements are highly correlated (R2=0.84), and thus a continuous fDOM probe could be used to estimate DOC loads from these sites.
THE ROLE OF NITROGEN IN CHROMOPHORIC AND FLUORESCENT DISSOLVED ORGANIC MATTER FORMATION
Microbial and photochemical processes affect chromophoric dissolved organic matter (CDOM) dynamics in the ocean. Some evidence suggests that dissolved nitrogen plays a role in CDOM formation, although this has received little systematic attention in marine ecosystems. Coastal sea...
Use of Passive Samplers to Measure Dissolved Organic Contaminants in a Temperate Estuary
Measuring dissolved concentrations of organic contaminants can be challenging given their low solubilities and high particle association. However, to perform accurate risk assessments of these chemicals, knowing the dissolved concentration is critical since it is considered to b...
Sekaran, G; Karthikeyan, S; Boopathy, R; Maharaja, P; Gupta, V K; Anandan, C
2014-01-01
The rice-husk-based mesoporous activated carbon (MAC) used in this study was precarbonized and activated using phosphoric acid. N2 adsorption/desorption isotherm, X-ray powder diffraction, electron spin resonance, X-ray photoelectron spectroscopy and scanning electron microscopy, transmission electron microscopy, (29)Si-NMR spectroscopy, and diffuse reflectance spectroscopy were used to characterize the MAC. The tannery wastewater carrying high total dissolved solids (TDS) discharged from leather industry lacks biodegradability despite the presence of dissolved protein. This paper demonstrates the application of free electron-rich MAC as heterogeneous catalyst along with Fenton reagent for the oxidation of persistence organic compounds in high TDS wastewater. The heterogeneous Fenton oxidation of the pretreated wastewater at optimum pH (3.5), H2O2 (4 mmol/L), FeSO4[Symbol: see text]7H2O (0.2 mmol/L), and time (4 h) removed chemical oxygen demand, biochemical oxygen demand, total organic carbon and dissolved protein by 86, 91, 83, and 90%, respectively.
NASA Astrophysics Data System (ADS)
Boylan, R. D.; Brooks, E. S.
2012-12-01
It has long been understood that soil organic matter (SOM) plays important role in the chemistry of agricultural soils. Promoting both cation exchange capacity and water retention, SOM also has the ability to sequester atmospheric carbon adding to a soils organic carbon content. Increasing soil organic carbon in the dryland agricultural region of the Inland Pacific Northwest is not only good for soil health, but also has the potential to mitigate greenhouse gas emissions. Implementing strategies that minimizing the loss of soil carbon thus promoting carbon sequestration require a fundamental understanding of the dominant hydrologic flow paths and runoff generating processes in this landscape. Global fluxes of organic carbon from catchments range from 0.4-73,979 kg C km-2 year-1 for particulate organic carbon and 1.2-56,946 kg C km-2 year-1 for dissolved organic carbon (Alvarez-Cobelas, 2010). This small component of the global carbon cycle has been relatively well studied but there have yet to be any studies that focus on the dryland agricultural region of the Inland Pacific Northwest. In this study event based samples were taken at 5 sites across the Palouse Basin varying in land use and management type as well as catchment size, ranging from 1km2 to 7000 km2. Data collection includes streamflow, suspended sediment, dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), particulate organic carbon (POC), dissolved organic nitrogen (TN), and nitrate concentrations as well as soil organic carbon (SOC) from distributed source areas. It is predicted that management type and streamflow will be the main drivers for DOC and POC concentrations. Relationships generated and historic data will then be used in conjunction with the Water Erosion Prediction Project (WEPP) to simulate field scale variability in the soil moisture, temperature, surface saturation, and soil erosion. Model assessment will be based on both surface runoff and sediment load measured at the outlet of these field catchments and distributed measurements capturing spatial variability within the catchments. We demonstrate how the accurate representation of the field scale variability in hydrology is an essential first step in the development of full scale cropping models capable of evaluating precision-based mitigation strategies.
NASA Astrophysics Data System (ADS)
Guéguen, C.; Mokhtar, M.; Perroud, A.; McCullough, G.; Papakyriakou, T.
2016-09-01
This work presents the results of a 4-year study (2009-2012) investigating the mixing and photoreactivity of dissolved organic matter (DOM) in the Nelson/Hayes estuary (Hudson Bay). Dissolved organic carbon (DOC), colored DOM, and humic-like DOM decreased with increasing salinity (r2 = 0.70-0.84). Removal of DOM was noticeable at low to mid salinity range, likely due to degradation and/or adsorption to particles. DOM photobleaching rates (i.e., decrease in DOM signal resulting from exposure to solar radiation) ranged from 0.005 to 0.030 h- 1, corresponding to half-lives of 4.9-9.9 days. Dissolved organic matter from the Nelson and Hayes Rivers was more photoreactive than from the estuary where the photodegradation of terrestrial DOM decreased with increasing salinity. Coincident with the loss of CDOM absorption was an increase in spectral slope S, suggesting a decrease in DOM molecular weight. Marked differences in photoreactivity of protein- and humic-like DOM were observed with highly humidified material being the most photosensitive. Information generated by our study will provide a valuable data set for better understanding the impacts of future hydroelectric development and climate change on DOM biogeochemical dynamics in the Nelson/Hayes estuary and coastal domain. This study will constitute a reference on terrestrial DOM fate prior to building additional generating capacity on the Nelson River.
Zhang, Shurong; Bai, Yijuan; Wen, Xin; Ding, Aizhong; Zhi, Jianhui
2018-04-22
Human activities impose important disturbances on both organic and inorganic chemistry in fluvial systems. In this study, we investigated the intra-annual and downstream variations of dissolved organic carbon (DOC), dissolved organic matter (DOM) excitation-emission matrix fluorescence (EEM) with parallel factor analysis (PARAFAC), major ions, and dissolved inorganic nitrogen (DIN) species in a mountainous tributary of the Yellow River, China. Both DOM quantity and quality, as represented by DOC and DOM fluorescence respectively, changed spatially and seasonally in the studied region. Fluorescence intensity of tryptophan-like components (C3) were found much higher at the populated downstream regions than in the undisturbed forested upstream regions. Seasonally, stronger fluorescence intensity of protein-like components (C3 and C4) was observed in the low-flow period (December) and in the medium-flow period (March) than in the high-flow period (May), particularly for the downstream reaches, reflecting the dominant impacts of wastewater pollution in the downstream regions. In contrast to the protein-like fluorescence, humic-like fluorescence components C1 and C2 exhibited distinctly higher intensity in the high-flow period with smaller spatial variation indicating strong flushing effect of increasing water discharge on terrestrial-sourced humic-like materials in the high-flow period. Pollution-affected dissolved inorganic ions, particularly Na + , Cl - , and NH 4 + -N, showed similar spatial and seasonal variations with protein-like fluorescence of DOM. The significant positive correlations between protein-like fluorescence of DOM and pollution-affected ions, particularly Na + , Cl - , and NH 4 + -N, suggested that there were similar pollution sources and transportation pathways of both inorganic and organic pollutants in the region. The combination of DOM fluorescence properties and inorganic ions could provide an important reference for the pollution source characterization and river basin management.
Self-organization of dissolved organic matter to micelle-like microparticles in river water.
Kerner, Martin; Hohenberg, Heinz; Ertl, Siegmund; Reckermann, Marcus; Spitzy, Alejandro
2003-03-13
In aquatic systems, the concept of the 'microbial loop' is invoked to describe the conversion of dissolved organic matter to particulate organic matter by bacteria. This process mediates the transfer of energy and matter from dissolved organic matter to higher trophic levels, and therefore controls (together with primary production) the productivity of aquatic systems. Here we report experiments on laboratory incubations of sterile filtered river water in which we find that up to 25% of the dissolved organic carbon (DOC) aggregates abiotically to particles of diameter 0.4-0.8 micrometres, at rates similar to bacterial growth. Diffusion drives aggregation of low- to high-molecular-mass DOC and further to larger micelle-like microparticles. The chemical composition of these microparticles suggests their potential use as food by planktonic bacterivores. This pathway is apparent from differences in the stable carbon isotope compositions of picoplankton and the microparticles. A large fraction of dissolved organic matter might therefore be channelled through microparticles directly to higher trophic levels--bypassing the microbial loop--suggesting that current concepts of carbon conversion in aquatic systems require revision.
NASA Astrophysics Data System (ADS)
Lawson, Michael; Polya, David A.; Boyce, Adrian J.; Bryant, Charlotte; Ballentine, Christopher J.
2016-04-01
Biogeochemical processes that utilize dissolved organic carbon are widely thought to be responsible for the liberation of arsenic from sediments to shallow groundwater in south and southeast Asia. The accumulation of this known carcinogen to hazardously high concentrations has occurred in the primary source of drinking water in large parts of densely populated countries in this region. Both surface and sedimentary sources of organic matter have been suggested to contribute dissolved organic carbon in these aquifers. However, identification of the source of organic carbon responsible for driving arsenic release remains enigmatic and even controversial. Here, we provide the most extensive interrogation to date of the isotopic signature of ground and surface waters at a known arsenic hotspot in Cambodia. We present tritium and radiocarbon data that demonstrates that recharge through ponds and/or clay windows can transport young, surface derived organic matter into groundwater to depths of 44 m under natural flow conditions. Young organic matter dominates the dissolved organic carbon pool in groundwater that is in close proximity to these surface water sources and we suggest this is likely a regional relationship. In locations distal to surface water contact, dissolved organic carbon represents a mixture of both young surface and older sedimentary derived organic matter. Ground-surface water interaction therefore strongly influences the average dissolved organic carbon age and how this is distributed spatially across the field site. Arsenic mobilization rates appear to be controlled by the age of dissolved organic matter present in these groundwaters. Arsenic concentrations in shallow groundwaters (<20 m) increase by 1 μg/l for every year increase in dissolved organic carbon age compared to only 0.25 μg/l for every year increase in dissolved organic carbon age in deeper (>20 m) groundwaters. We suggest that, while the rate of arsenic release is greatest in shallow aquifer sediments, arsenic release also occurs in deeper aquifer sediments and as such remains an important process in controlling the spatial distribution of arsenic in the groundwaters of SE Asia. Our findings suggest that any anthropogenic activities that alter the source of groundwater recharge or the timescales over which recharge takes place may also drive changes in the natural composition of dissolved organic carbon in these groundwaters. Such changes have the potential to influence both the spatial and temporal evolution of the current groundwater arsenic hazard in this region.
Sorption of benzimidazole anthelmintics to dissolved organic matter surrogates and sewage sludge.
Kim, Hyo-Jung; Lee, Dong Soo; Kwon, Jung-Hwan
2010-06-01
The sorption coefficients of four rarely studied zwitterionic pharmaceuticals (benzimidazoles: fenbendazole, albendazole, thiabendazole and flubendazole) and four metabolites of fenbendazole to various dissolved organic matter surrogates (humic acid, sodium dodecyl sulfate micelle, hydroxypropyl-beta-cyclodextrin and liposomes made of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), and sewage sludge) were measured to extend the available sorption coefficients and eventually to evaluate their environmental fate in soil and water environment. For the entire range of dissolved organic matters, the more hydrophobic fenbendazole and albendazole had higher sorption coefficients than thiabendazole and flubendazole, indicating that the traditional hypothesis of hydrophobic interaction holds for zwitterionic benzimidazole anthelmintics. However, the sorption coefficients of a given benzimidazole to selected dissolved organic matters (DOMs) varied within an order of magnitude. The measured K(oc) values decreased in the order of fenbendazole, albendazole, thiabendazole and flubendazole for sewage sludge and hydroxypropyl-beta-cyclodextrin whereas the orders were different for the other DOM surrogates, implying the hydrophilic nature of sewage sludge. This was also supported by the (N+O)/C elemental ratio of the sewage sludge sample used in this study. The correlations between log K(oc) and log K(ow) were weak (r(2)=0.28-0.64) and the magnitude of the sorption coefficients to the hydrophilic organic matters (hydroxypropyl-beta-cyclodextrin and sewage sludge) were similar to or slightly smaller than those for the hydrophobic organic matters (humic acids and liposome). This suggests that specific hydrophilic interactions also play a significant role in the sorption of moderately hydrophobic benzimidazoles to organic matters. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Photochemical Reactivity of Dissolved Organic Matter in Boreal Lakes
NASA Astrophysics Data System (ADS)
Gu, Y.; Vuorio, K.; Tiirola, M.; Perämäki, S.; Vahatalo, A.
2016-12-01
Boreal lakes are rich in dissolved organic matter (DOM) that terrestrially derived from forest soil and wetland, yet little is known about potential for photochemical transformation of aquatic DOM in boreal lakes. Transformation of chromophoric dissolved organic matter (CDOM) can decrease water color and enhance microbial mineralization, affecting primary production and respiration, which both affect the CO2 balance of the lakes. We used laboratory solar radiation exposure experiments with lake water samples collected from 54 lakes located in Finland and Sweden, representing different catchment composition and watershed location to assess photochemical reactivity of DOM. The pH of water samples ranged from 5.4 to 8.3, and the concentrations of dissolved iron (Fe) were between < 0.06 and 22 μmol L-1. The filtered water samples received simulated solar radiation corresponding to a daily dose of sunlight, and photomineralization of dissolved organic carbon (DOC) to dissolved inorganic carbon (DIC) was measured for determination of spectral apparent quantum yields (AQY). During irradiation, photobleaching decreased the absorption coefficients of CDOM at 330 nm between 4.9 and 79 m-1 by 0.5 to 11 m-1. Irradiation generated DIC from 2.8 to 79 μmol C L-1. The AQY at 330 nm ranged between 31 and 273 ×10-6 mol C mol photons-1 h-1, which was correlated positively with concentration of dissolved Fe, and negatively with pH. Further statistical analyze indicated that the interaction between pH and Fe may explain much of the photochemical reactivity of DOM in the examined lakes, and land cover concerns main catchment areas also can have impact on the photoreaction process. This study may suggest how environmental conditions regulate DOM photomineralization in boreal lakes.
Chemical and biological quality of streams at the Indiana Dunes National Lakeshore, Indiana, 1978-80
Hardy, M.A.
1984-01-01
Wetland drainage contributed significant amounts of organic materials to streams and at times increased concentrations of dissolved sulfate and iron. Dissolved-iron concentrations correlated with dissolved-organic-carbon concentrations in yellow-brown water of Kintzele and Derby ditches.
Zhang, Ming-Kui; Wang, Yang; Huang, Chao
2011-12-01
By the method of site-specific observation, and selecting 27 field plots with 7 planting patterns in Shaoxing county of Zhejiang Province as test objects, this paper studied the characteristics of nitrogen (N) and phosphorous (P) runoff losses, loads, and their affecting factors in the croplands with different planting patterns in riverine plain area of the Province under natural rainfall. The mean annual runoff loads of total P, dissolved P, and particulate P from the field plots were 4.75, 0.74 and 4.01 kg x hm(-2), respectively, and the load of particulate P was much higher than that of dissolved P. The mean annual runoff loads of total N, dissolved total N, dissolved organic N, NH4(+)-N, and NO3(-)-N were 21.87, 17.19, 0.61, 3.63 and 12.95 kg x hm(-2), respectively, and the load of different fractions of dissolved total N was in the sequence of NO3(-)-N > NH4(+)-N > dissolved organic N. As for the field plots with different planting patterns, the runoff loads of total N, dissolved total N, dissolved organic N, and NO3(-)-N were in the sequence of fallow land < nursery land < single late rice field < double rice field < rape (or wheat)-single late rice field < wheat-early rice-late rice field < vegetable field, while those of total P and particulate P were in the sequence of fallow land < nursery land < single late rice field and double rice field < wheat-early rice-late rice field < rape (wheat)-single late rice field < vegetable field. No significant difference was observed in the load of water-dissolved P among the test plots with different planting patterns. The runoff losses of N and P mainly occurred in crop growth period, and the proportions of N and P losses in the growth period increased with increasing multiple crop index. The runoff losses of total N, dissolved N, and NO3(-)-N were mainly related to the application rate of N fertilizer, and soil NO3(-)-N content also had obvious effects on the runoff losses of total N and dissolved N. The runoff loss of dissolved organic N was related not only to N application rate, but also to soil total N and organic carbon. The runoff loss of NH4(+)-N was mainly related to soil available NH4(+)-N, but not related to N application rate. The runoff losses of total P and particulate P were related to both P application rate and soil available P, while the runoff loss of water dissolved P was less related to P application rate but had relations to soil total P and available P.
Preunkert, S; Legrand, M; Stricker, P; Bulat, S; Alekhina, I; Petit, J R; Hoffmann, H; May, B; Jourdain, B
2011-01-15
The study of chemical impurities trapped in solid precipitation and accumulated in polar ice sheets and high-elevation, midlatitude cold glaciers over the last several hundreds of years provides a unique way to reconstruct our changing atmosphere from the preindustrial era to the present day. Numerous ice core studies of inorganic species have already evaluated the effects of growing anthropogenic emissions of SO(2) or NO(x) on the chemical composition of the atmosphere in various regions of the world. While it was recently shown that organic species dominate the atmospheric aerosol mass, the contribution of anthropogenic emissions to their budget remains poorly understood. The study of organics in ice is at the infancy stage, and it still is difficult to draw a consistent picture of the organic content of polar ice from sparse available data. A UV oxidation method and IR quantification of CO(2) was optimized to obtain measurements of dissolved organic carbon content as low as a few ppbC. Stringent working conditions were defined to prevent contamination during the cleaning of ice. Measurements in various ice cores corresponding to preindustrial times revealed dissolved organic carbon content of less than 10 ppbC in Antarctica and up to 75 ppbC in alpine ice.
Wang, Qing-kui; Wang, Si-long; Yu, Xiao-jun; Zhang, Jian; Liu, Yan-xin
2007-06-01
With incubation test, this paper studied the effects of Cunninghamia lanceolata leaf litter and its mixture with the litters of main broadleaved tree species in subtropical China, such as Alnus cremastogyne, Kalopanax septemlobus and Michelia macclurei on active soil organic matter. The results showed that adding leaf litters into soil could significantly increase soil microbial biomass C and N, respiration rate and dissolved organic C, and mixed leaf litters were more effective than C. lanceolata leaf litter in increasing soil dissolved organic C. By the end of the incubation, the increment of soil microbial biomass C and N, respiration rate, and dissolved organic C in treatments C. lanceolata leaf litter and C. lanceolata-broadleaved tree species mixed leaf litters was 49% and 63%, 35% and 75%, 65% and 100%, and 66% and 108%, respectively, compared with control. The addition of leaf litters had no significant effects on soil microbial quotient and microbial biomass C/N ratio.
Jiang, Tao; Chen, Xueshuang; Wang, Dingyong; Liang, Jian; Bai, Weiyang; Zhang, Cheng; Wang, Qilei; Wei, Shiqiang
2018-01-15
Dissolved organic matter (DOM) plays an important environmental and ecological role in inland aquatic systems, including lakes. In this study, using fluorescence analysis, we investigated the seasonal dynamics of DOM characteristics in Changshou Lake, which is a typical inland lake in the Three Gorges Reservoir (TGR) area. We also discuss the environmental implications of DOM for mercury (Hg) dynamics. Based on the origins of two end-members, the variations in DOM observed in this study in Changshou Lake suggest that hydrological processes (e.g., terrestrial inputs resulting from runoff and humic-like component residences) and biological activities (e.g., microbial and algae growth) are the two main principal components controlling the seasonal dynamics of DOM characteristics. Furthermore, the dynamics of dissolved Hg co-varied with variations in DOM properties, rather than with dissolved organic carbon (DOC) concentrations. This indicates that the previously reported simple correlations between DOC and Hg were not comprehensive and may lead to misunderstanding the interactions between DOM and Hg. Therefore, we recommend that when using DOM-Hg correlations to evaluate the role of DOM in the environmental fate of Hg, especially in field investigations of the spatial and temporal distribution of Hg, the properties of DOM must be taken into account. Copyright © 2017 Elsevier Ltd. All rights reserved.
Organic carbon accumulation and preservation in surface sediments on the Peru margin
Arthur, M.A.; Dean, W.E.; Laarkamp, K.
1998-01-01
Concentrations and characteristics of organic matter in surface sediments deposited under an intense oxygen-minimum zone on the Peru margin were studied in samples from deck-deployed box cores and push cores acquired by submersible on two transects spanning depths of 75 to 1000 m at 12??and 13.5??S. The source of organic matter to the seafloor in these areas is almost entirely marine material as confirmed by the narrow range of ??13C of organic carbon obtained in the present study (-20.3 to -21.6???; PDB) and the lack of any relationship between pyrolysis hydrogen index and carbon isotope composition. Organic carbon contents are highest (up to 16%) on the slope at depths between 75 and 350 m in sediments deposited under intermediate water masses with low dissolved oxygen concentrations (< 5 ??mol/kg). Even at these low concentrations of dissolved oxygen, however, the surface sediments that were recovered from these depths are dominantly unlaminated. Strong currents (up to 30 cm/s) associated with the poleward-flowing Peru Undercurrent were measured at depths between 160 and 300 m on both transects. The seafloor in this range of water depths is characterized by bedforms stabilized by bacterial mats, extensive authigenic mineral crusts, and (or) thick organic flocs. Constant advection of dissolved oxygen, although in low concentrations, active resuspension of surficial organic matter, activity of organisms, and transport of fine-grained sediment to and from more oxygenated zones all contribute to greater degradation and poorer initial preservation of organic matter than might be expected under oxygen-deficient conditions. Dissolved-oxygen concentrations ultimately may be the dominant affect on organic matter characteristics, but reworking of fine-grained sediment and organic matter by strong bottom currents and redeposition on the seafloor in areas of lower energy also exert important controls on organic carbon concentration and degree of oxidation in this region.
Berto, D; Giani, M; Savelli, F; Centanni, E; Ferrari, C R; Pavoni, B
2010-07-01
The light absorbing fraction of dissolved organic carbon (DOC), known as chromophoric dissolved organic matter (CDOM) showed wide seasonal variations in the temperate estuarine zone in front of the Po River mouth. DOC concentrations increased from winter through spring mainly as a seasonal response to increasing phytoplankton production and thermohaline stratification. The monthly dependence of the CDOM light absorption by salinity and chlorophyll a concentrations was explored. In 2003, neither DOC nor CDOM were linearly correlated with salinity, due to an exceptionally low Po river inflow. Though the CDOM absorbance coefficients showed a higher content of chromophoric dissolved organic matter in 2004 with respect to 2003, the spectroscopic features confirmed that the qualitative nature of CDOM was quite similar in both years. CDOM and DOC underwent a conservative mixing, only after relevant Po river freshets, and a change in optical features with an increase of the specific absorption coefficient was observed, suggesting a prevailing terrestrial origin of dissolved organic matter. Published by Elsevier Ltd.
Chromophoric dissolved organic matter (CDOM) spectral absorption, dissolved organic carbon (DOC) concentration, and the particulate fraction of inorganic (PIM) and organic matter (POM) were measured in Louisiana coastal waters at Vermilion, Atchafalaya, Terrebonne, Barataria, and...
Dissolved organic sulfur in the ocean: Biogeochemistry of a petagram inventory
NASA Astrophysics Data System (ADS)
Ksionzek, Kerstin B.; Lechtenfeld, Oliver J.; McCallister, S. Leigh; Schmitt-Kopplin, Philippe; Geuer, Jana K.; Geibert, Walter; Koch, Boris P.
2016-10-01
Although sulfur is an essential element for marine primary production and critical for climate processes, little is known about the oceanic pool of nonvolatile dissolved organic sulfur (DOS). We present a basin-scale distribution of solid-phase extractable DOS in the East Atlantic Ocean and the Atlantic sector of the Southern Ocean. Although molar DOS versus dissolved organic nitrogen (DON) ratios of 0.11 ± 0.024 in Atlantic surface water resembled phytoplankton stoichiometry (sulfur/nitrogen ~ 0.08), increasing dissolved organic carbon (DOC) versus DOS ratios and decreasing methionine-S yield demonstrated selective DOS removal and active involvement in marine biogeochemical cycles. Based on stoichiometric estimates, the minimum global inventory of marine DOS is 6.7 petagrams of sulfur, exceeding all other marine organic sulfur reservoirs by an order of magnitude.
NASA Astrophysics Data System (ADS)
Selbig, W.
2016-12-01
Organic detritus can be major sources of nutrients and organic carbon in urban stormwater, especially in areas with dense overhead tree canopy. In order to meet impending regulation to reduce nutrient loads, many cities will require information on structural and non-structural stormwater control measures that target organic detritus. Most cities already conduct some level of leaf collection and existing street cleaning programs; however, few studies have quantified their water-quality benefits. The U.S Geological Survey measured the water-quality benefits of a municipal leaf collection program coupled with street cleaning in Madison, WI, USA during the months of October through November of 2014 and 2015. The calibration phase of the study (2014) characterized nutrient and organic carbon concentrations and loads in runoff from two paired basins without leaf collection or street cleaning. During the treatment phase (2015), leaf collection and street cleaning was done in the test basin by city personnel on a weekly basis. Additionally, prior to each precipitation event, USGS personnel removed as much organic debris from the street surface as reasonably possible. The control remained without street cleaning or leaf collection for the entire monitoring period. During the fall, leaf collection and street cleaning was able to remove the increased amount of organic debris from the curb and street surface which resulted in statistically significant (p<0.05) reductions in loads of phosphorus, nitrogen and organic carbon. Total and dissolved phosphorus loads were reduced by 84 and 83 percent, respectively. Similarly, total and dissolved organic carbon was reduced by 81 and 86 percent, and total and dissolved nitrogen was reduced by 74 and 71 percent, respectively. In the control basin, 60 percent of the annual phosphorus load occurred in fall (winter excluded), the majority of which was dissolved as orthophosphorus, compared to only 16 percent in the test basin. While the leaf collection practices adopted during this study may surpass those used by most municipal programs, results from this study suggest a significant reduction of nutrient and organic carbon loads in urban stormwater is feasible when leaves and other organic detritus are removed from streets prior to precipitation events.
USDA-ARS?s Scientific Manuscript database
Dissolved organic nitrogen (DON) transport from animal agriculture to surface waters can lead to eutrophication and dissolved oxygen depletion. Biodegradable DON (BDON) is a portion of DON that is mineralized by bacteria while bioavailable DON (ABDON) is utilized by bacteria and/or algae. This stu...
Export of dissolved organic carbon from lakes and streams has increased throughout Europe and North America over the past several decades. One possible cause is altered deposition chemistry; specifically, decreasing sulfate inputs leading to changes in ionic strength and dissolve...
Morandi, Garrett D; Wiseman, Steve B; Guan, Miao; Zhang, Xiaowei W; Martin, Jonathan W; Giesy, John P
2017-11-01
Oil sands process-affected water (OSPW) is generated during extraction of bitumen in the surface-mining oil sands industry in Alberta, Canada, and is acutely and chronically toxic to aquatic organisms. It is known that dissolved organic compounds in OSPW are responsible for most toxic effects, but knowledge of the specific mechanism(s) of toxicity, is limited. Using bioassay-based effects-directed analysis, the dissolved organic fraction of OSPW has previously been fractionated, ultimately producing refined samples of dissolved organic chemicals in OSPW, each with distinct chemical profiles. Using the Escherichia coli K-12 strain MG1655 gene reporter live cell array, the present study investigated relationships between toxic potencies of each fraction, expression of genes and characterization of chemicals in each of five acutely toxic and one non-toxic extract of OSPW derived by use of effects-directed analysis. Effects on expressions of genes related to response to oxidative stress, protein stress and DNA damage were indicative of exposure to acutely toxic extracts of OSPW. Additionally, six genes were uniquely responsive to acutely toxic extracts of OSPW. Evidence presented supports a role for sulphur- and nitrogen-containing chemical classes in the toxicity of extracts of OSPW. Copyright © 2017 Elsevier Ltd. All rights reserved.
PCBs, PCDD/Fs and PAHs in dissolved, suspended and settling particulate matrixes from the Baltic Sea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naef, C.; Broman, D.; Zebuehr, Y.
The occurrence and dynamics of polychlorinated biphenyls (PCBs), dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and polycyclic aromatic hydrocarbons (PAHs) are discussed on the basis of results from samples taken at pristine coastal and off shore locations in the Baltic Sea. The sampling techniques used were high volume cross flow filtration and sediment traps for suspended and settling particulate matter, respectively, and polyurethane foam adsorbents for the compounds associated with the apparently dissolved fractions. All samples were Soxhlet extracted with toluene and separated on a HPLC system followed by quantification on GS/MS. The importance of parameters such as concentrations of particulate lipids, particulatemore » organic carbon and dissolved organic carbon, etc. for the distribution of the compounds between the suspended and settling particulate matrixes and the dissolved phase in the water are discussed. In situ determined particulate organic carbon-water partition coefficients as well as predicted dissolved organic carbon-water partition coefficients and approximations of the average ``truly`` dissolved concentrations are presented. The particulate and dissolved concentrations in the mixed surface layer are discussed in perspective to the particulate flux of PCBs, PCDD/Fs and PAHs.« less
NASA Astrophysics Data System (ADS)
Lübben, Andrea; Dellwig, Olaf; Koch, Sandra; Beck, Melanie; Badewien, Thomas H.; Fischer, Sibylle; Reuter, Rainer
2009-04-01
The spatial and temporal distributions of chromophoric dissolved organic matter (CDOM) and dissolved organic carbon (DOC) was studied in the East-Frisian Wadden Sea (Southern North Sea) during several cruises between 2002 and 2005. The spatial distribution of CDOM in the German Bight shows a strong gradient towards the coast. Tidal and seasonal variations of dissolved organic matter (DOM) identify freshwater discharge via flood-gates at the coastline and pore water efflux from tidal flat sediments as the most important CDOM sources within the backbarrier area of the Island of Spiekeroog. However, the amount and pattern of CDOM and DOC is strongly affected by various parameters, e.g. changes in the amount of terrestrial run-off, precipitation, evaporation, biological activity and photooxidation. A decoupling of CDOM and DOC, especially during periods of pronounced biological activity (algae blooms and microbial activity), is observed in spring and especially in summer. Mixing of the endmembers freshwater, pore water, and open sea water results in the formation of a coastal transition zone. Whilst an almost conservative behaviour during mixing is observed in winter, summer data point towards non-conservative mixing.
Determination of polar organic solutes in oil-shale retort water
Leenheer, J.A.; Noyes, T.I.; Stuber, H.A.
1982-01-01
A variety of analytical methods were used to quantitatively determine polar organic solutes in process retort water and a gas-condensate retort water produced in a modified in situ oil-shale retort. Specific compounds accounting for 50% of the dissolved organic carbon were identified in both retort waters. In the process water, 42% of the dissolved organic carbon consisted of a homologous series of fatty acids from C2 to C10. Dissolved organic carbon percentages for other identified compound classes were as follows: aliphatic dicarboxylic acids, 1.4%; phenols, 2.2%; hydroxypyridines, 1.1%; aliphatic amides, 1.2%. In the gas-condensate retort water, aromatic amines were most abundant at 19.3% of the dissolved organic carbon, followed by phenols (17.8%), nitriles (4.3%), aliphatic alcohols (3.5%), aliphatic ketones (2.4%), and lactones (1.3%). Steam-volatile organic solutes were enriched in the gas-condensate retort water, whereas nonvolatile acids and polyfunctional neutral compounds were predominant organic constituents of the process retort water.
Mercury and Dissolved Organic Matter Dynamics During Snowmelt in the Upper Provo River, Utah, USA
NASA Astrophysics Data System (ADS)
Packer, B. N.; Carling, G. T.; Nelson, S.; Aanderud, Z.; Shepherd Barkdull, N.; Gabor, R. S.
2017-12-01
Mercury (Hg) is deposited to mountains by atmospheric deposition and mobilized during snowmelt runoff, leading to Hg contamination in otherwise pristine watersheds. Mercury is typically transported with dissolved organic matter (DOM) from soils to streams and lakes. This study focused on Hg and DOM dynamics in the snowmelt-dominated upper Provo River watershed, northern Utah, USA. We sampled Hg, dissolved organic carbon (DOC) concentrations, and DOM fluorescence in river water, snowpack, and ephemeral streams over four years from 2014-2017 to investigate Hg transport mechanisms. During the snowmelt season (April through June), Hg concentrations typically increased from 1 to 8 ng/L showing a strong positive correlation with DOC. The dissolved Hg fraction was dominant in the river, averaging 75% of total Hg concentrations, suggesting that DOC is more important for transport than suspended particulate matter. Ephemeral channels, which represent shallow flow paths with strong interactions with soils, had the highest Hg (>10 ng/L) and DOC (>10 mg/L) concentrations, suggesting a soil water source of Hg and organic matter. Fluorescence spectroscopy results showed important changes in DOM type and quality during the snowmelt season and the soil water flow paths are activated. Changes in DOM characteristics during snowmelt improve the understanding of Hg dynamics with organic matter and elucidate transport pathways from the soil surface, ephemeral channels and groundwater to the Provo River. This study has implications for understanding Hg sources and transport mechanisms in mountain watersheds.
Ravichandran, Mahalingam; Aiken, George R.; Reddy, Michael M.; Ryan, Joseph N.
1998-01-01
Organic matter isolated from the Florida Everglades caused a dramatic increase in mercury release (up to 35 μM total dissolved mercury) from cinnabar (HgS), a solid with limited solubility. Hydrophobic (a mixture of both humic and fulvic) acids dissolved more mercury than hydrophilic acids and other nonacid fractions of dissolved organic matter (DOM). Cinnabar dissolution by isolated organic matter and natural water samples was inhibited by cations such as Ca2+. Dissolution was independent of oxygen content in experimental solutions. Dissolution experiments conducted in DI water (pH = 6.0) had no detectable (<2.5 nM) dissolved mercury. The presence of various inorganic (chloride, sulfate, or sulfide) and organic ligands (salicylic acid, acetic acid, EDTA, or cysteine) did not enhance the dissolution of mercury from the mineral. Aromatic carbon content in the isolates (determined by 13C NMR) correlated positively with enhanced cinnabar dissolution. ζ-potential measurements indicated sorption of negatively charged organic matter to the negatively charged cinnabar (pHpzc = 4.0) at pH 6.0. Possible mechanisms of dissolution include surface complexation of mercury and oxidation of surface sulfur species by the organic matter.
Effect of algal flocculation on dissolved organic matters using cationic starch modified soils.
Shi, Wenqing; Bi, Lei; Pan, Gang
2016-07-01
Modified soils (MSs) are being increasingly used as geo-engineering materials for the sedimentation removal of cyanobacterial blooms. Cationic starch (CS) has been tested as an effective soil modifier, but little is known about its potential impacts on the treated water. This study investigated dissolved organic matters in the bloom water after algal removal using cationic starch modified soils (CS-MSs). Results showed that the dissolved organic carbon (DOC) could be decreased by CS-MS flocculation and the use of higher charge density CS yielded a greater DOC reduction. When CS with the charge density of 0.052, 0.102 and 0.293meq/g were used, DOC was decreased from 3.4 to 3.0, 2.3 and 1.7mg/L, respectively. The excitation-emission matrix fluorescence spectroscopy and UV254 analysis indicated that CS-MS exhibits an ability to remove some soluble organics, which contributed to the DOC reduction. However, the use of low charge density CS posed a potential risk of DOC increase due to the high CS loading for effective algal removal. When CS with the charge density of 0.044meq/g was used, DOC was increased from 3.4 to 3.9mg/L. This study suggested, when CS-MS is used for cyanobacterial bloom removal, the content of dissolved organic matters in the treated water can be controlled by optimizing the charge density of CS. For the settled organic matters, other measures (e.g., capping treatments using oxygen loaded materials) should be jointly applied after algal flocculation. Copyright © 2016. Published by Elsevier B.V.
Malcolm, R.L.; Durum, W.H.
1976-01-01
The organic carbon load during 1969-70 of each of the six rivers in this study is substantial. The 3.4-billion-kilogram (3.7-million-ton) and 47-million-kilogram (52-thousandton) annual organic carbon loads of the Mississippi River and the Brazos River (Tex.), respectively, were approximately equally distributed between dissolved and suspended phases, whereas the 725-million-kilogram (79.8-million-ton) organic load of the Missouri River was primarily in the suspended phase. The major portion of the 6.4-million-kilogram (7.3 thousand-ton) and the 19-million-kilogram (21-thousand-ton) organic carbon loads of the Sopchoppy River (Fla.) and the Neuse River (N.C.), respectively, was in the dissolved phase. DOC (dissolved organic carbon) concentrations in most rivers were usually less than 8 milligrams per litre. SOC (suspended organic carbon) concentrations fluctuated markedly with discharge, ranging between 1 and 14 percent, by weight, in sediment of most rivers. DOC concentrations were found to be independent of discharge, whereas SOC and SIC (suspended inorganic carbon) concentrations were positively correlated with discharge. Seasonal fluctuations in DOC and SOC were exhibited by the Missouri, Neuse, Ohio, and Brazos Rivers, but both SOC and DOC concentrations were relatively constant throughout the year in the Mississippi and Sopchoppy Rivers. The carbon-nitrogen ratio in the sediment phase of all river waters averaged less than 8 1 as compared with 12:1 or greater for most soils. This high nitrogen content shows a nitrogen enrichment of the stream sediment over that in adjacent soils, which suggests that different decomposition and humification processes are operating in streams than in the soils. The abundance of organic material in the dissolved and suspended phase of all river waters in this study indicate a large capacity factor for various types of organic reactivity within all streams and the quantitative importance of organic constituents in relation to the water quality of rivers and streams.
Orlando, James L.; Jacobson, Lisa A.; Kuivila, Kathryn
2004-01-01
Field and laboratory studies were conducted to determine the effects of pesticide mixtures on Chinook salmon under various environmental conditions in surface waters of the northern Central Valley of California. This project was a collaborative effort between the U.S. Geological Survey (USGS) and the University of California. The project focused on understanding the environmental factors that influence the toxicity of pesticides to juvenile salmon and their prey. During the periods January through March 2001 and January through May 2002, water samples were collected at eight surface water sites in the northern Central Valley of California and analyzed by the USGS for dissolved pesticide and dissolved organic carbon concentrations. Water samples were also collected by the USGS at the same sites for aquatic toxicity testing by the Aquatic Toxicity Laboratory at the University of California Davis; however, presentation of the results of these toxicity tests is beyond the scope of this report. Samples were collected to characterize dissolved pesticide and dissolved organic carbon concentrations, and aquatic toxicity, associated with winter storm runoff concurrent with winter run Chinook salmon out-migration. Sites were selected that represented the primary habitat of juvenile Chinook salmon and included major tributaries within the Sacramento and San Joaquin River Basins and the Sacramento?San Joaquin Delta. Water samples were collected daily for a period of seven days during two winter storm events in each year. Additional samples were collected weekly during January through April or May in both years. Concentrations of 31 currently used pesticides were measured in filtered water samples using solid-phase extraction and gas chromatography-mass spectrometry at the U.S. Geological Survey's organic chemistry laboratory in Sacramento, California. Dissolved organic carbon concentrations were analyzed in filtered water samples using a Shimadzu TOC-5000A total organic carbon analyzer.
NASA Astrophysics Data System (ADS)
Gonnelli, M.; Galletti, Y.; Marchetti, E.; Mercadante, L.; Retelletti Brogi, S.; Ribotti, A.; Sorgente, R.; Vestri, S.; Santinelli, C.
2016-11-01
Dissolved organic carbon (DOC), chromophoric and fluorescent dissolved organic matter (CDOM and FDOM, respectively) surface distribution was studied during the Serious Game exercise carried out in the Eastern Ligurian Sea, where an oil spill was localized by using satellite images and models. This paper reports the first DOC, CDOM and FDOM data for this area together with an evaluation of fluorescence as a fast and inexpensive tool for early oil spill detection in marine waters. The samples collected in the oil spill showed a fluorescence intensity markedly higher ( 5 fold) than all the other samples. The excitation-emission matrixes, coupled with parallel factor analysis (PARAFAC), allowed for the identification in the FDOM pool of a mixture of polycyclic aromatic hydrocarbons, humic-like and protein-like fluorophores.
Transport and Fate of Organic and Inorganic Nitrogen from Biosolids leachates
NASA Astrophysics Data System (ADS)
Ilani, Talli; Trifonov, Pavel; Arye, Gilboa
2014-05-01
The use of biosolids as a means to ameliorate soil becomes prevalent in the last few years. In agricultural fields, the application of biosolids will be followed by irrigation; resulting in excessive leaching of the dissolved fraction of the organic matter. The dissolved organic matter (DOM) is one of the major players in the chemical, physical and biological processes in soils. The DOM mainly composed of dissolved organic carbon (DOC) and lower proportions of dissolved organic nitrogen (DON) and phosphate (DOP). The DON is considered to be the primary source of mineralisable nitrogen in the soil and can be used as an estimate of the nitrogen supplying capacity of the organic matter. Most of the researches which are dealing with nitrogen fate in terrestrial environments focused on its inorganic fractions (mainly nitrate and ammonium) and their transport toward the dipper soil layers. Since DON can be the source of the inorganic nitrogen (by providing nutrients and energy to nitrifying microbes, which in turn increases the nitrogen source for plants as nitrate), knowledge about the nature of its transport characteristics in the soil is important in the case of biosolids amendment. In addition, irrigation water quality (e.g. fresh water, wastewater or desalinized water) may significantly affect the transport and fate of the various nitrogen forms. The main objective of this study is to examine the fate and co-transport of organic and inorganics nitrogen, originating from biosolids leachates in the subsoil. The effect of water quality and flow rate under saturated steady-state flow is examined by a series of flow-through soil column experiments. The established breakthrough curves of the co-transport of total nitrogen, organic nitrogen (will be calculated from the differences between the total nitrogen measurements and the inorganic nitrogen measurements), nitrate, ammonium, dissolved organic carbon and chloride is presented and discussed.
NASA Astrophysics Data System (ADS)
Wiegner, T. N.
2005-05-01
Dissolved organic matter (DOM) is metabolically important in streams. Its bioavailability is influenced by organic matter sources to streams and inorganic nutrient availability. As forest canopies and soils develop over time, organic matter inputs to streams should switch from algal to watershed sources. Across this succession gradient, nutrient limitation should also change. This study examines how chemical composition and bioavailability of DOM from tropical montane rainforest streams on Hawaii change across a geologic age gradient from 4 ky to 150 ky. Dissolved organic C (DOC) and N (DON) concentrations, chemical characteristics, and bioavailability varied with site age. With increasing stream age, DOC and DON concentrations, DOM aromaticity, and the C:N of the stream DOM increased. Changes in stream DOM chemistry and inorganic nutrient availability affected DOM bioavailability. Fifty percent of the DOC from the 4 ky site was bioavailable, where little to none was bioavailable from the older streams. Inorganic nutrient availability did not affect DOC bioavailability. In contrast, DON bioavailability was similar (12%) across sites and was affected by inorganic nutrient availability. This study demonstrates that the chemistry and metabolism of streams draining forests change with ecosystem age and development.
Fate of natural organic matter at a full-scale Drinking Water Treatment Plant in Greece.
Papageorgiou, A; Papadakis, N; Voutsa, D
2016-01-01
The aim of this study was to investigate the fate of natural organic matter (NOM) and subsequent changes during the various treatment processes at a full-scale Drinking Water Treatment Plant (DWTP). Monthly sampling campaigns were conducted for 1 year at six sites along DWTP of Thessaloniki, Northern Greece including raw water from the Aliakmonas River that supplies DWTP and samples from various treatment processes (pre-ozonation, coagulation, sand filtration, ozonation, and granular activated carbon (GAC) filtration). The concentration of NOM and its characteristics as well as the removal efficiency of various treatment processes on the basis of dissolved organic carbon, UV absorbance, specific ultra-violet absorbance, fluorescence intensity, hydrophobicity, biodegradable dissolved organic carbon, and formation potential of chlorination by-products trihalomethanes (THMs) and haloacetic acids (HAAs) were studied. The concentration of dissolved organic carbon (DOC) in reservoir of the Aliakmonas River ranged from 1.46 to 1.84 mg/L, exhibiting variations regarding UV, fluorescence, and hydrophobic character through the year. Along DWTP, a significant reduction of aromatic, fluorophoric, and hydrophobic character of NOM was observed resulting in significant elimination of THM (63%) and HAAs (75%) precursors.
Badr, El-Sayed A
2016-10-01
Increases in human activity have resulted in enhanced anthropogenic inputs of nitrogen (N) and carbon (C) into the Nile River. The Damietta Branch of the Nile is subject to inputs from industrial, agricultural, and domestic wastewater. This study investigated the distribution and seasonality of dissolved organic nitrogen (DON), dissolved organic carbon (DOC), and nutrients in the Nile Damietta Branch. Water samples were collected from 24 sites between May 2009 and February 2010. Dissolved organic nitrogen concentrations averaged 251 ± 115 μg/l, with a range of 90.2-671 μg/l, and contributed 40.8 ± 17.7 % to the total dissolved nitrogen (TDN) pool. Relative to autumn and winter, DON was a larger fraction of the TDN pool during spring and summer indicating the influence of bacterioplankton on the nitrogen cycle. Concentrations of DOC ranged from 2.23 to 11.3 mg/l with an average of 5.15 ± 2.36 mg/l, reflecting a high organic matter load from anthropogenic sources within the study area, and were highest during autumn. Higher values of biochemical oxygen demand (BOD), chemical oxygen demand (COD), DON, nitrate, and phosphate occurred downstream of the Damietta Branch and were probably due to anthropogenic inputs to the Nile from the Damietta district. A bacterial incubation experiment indicated that 52.1-95.0 % of DON was utilized by bacteria within 21 days. The decrease in DON concentration was accompanied by an increase in nitrate concentration of 54.8-87.3 %, presumably through DON mineralization. Based on these results, we recommend that water quality assessments consider DON and DOC, as their omission may result in an underestimation of the total organic matter load and impact.
Storage and release of organic carbon from glaciers and ice sheets
NASA Astrophysics Data System (ADS)
Hood, Eran; Battin, Tom J.; Fellman, Jason; O'Neel, Shad; Spencer, Robert G. M.
2015-02-01
Polar ice sheets and mountain glaciers, which cover roughly 11% of the Earth's land surface, store organic carbon from local and distant sources and then release it to downstream environments. Climate-driven changes to glacier runoff are expected to be larger than climate impacts on other components of the hydrological cycle, and may represent an important flux of organic carbon. A compilation of published data on dissolved organic carbon from glaciers across five continents reveals that mountain and polar glaciers represent a quantitatively important store of organic carbon. The Antarctic Ice Sheet is the repository of most of the roughly 6 petagrams (Pg) of organic carbon stored in glacier ice, but the annual release of glacier organic carbon is dominated by mountain glaciers in the case of dissolved organic carbon and the Greenland Ice Sheet in the case of particulate organic carbon. Climate change contributes to these fluxes: approximately 13% of the annual flux of glacier dissolved organic carbon is a result of glacier mass loss. These losses are expected to accelerate, leading to a cumulative loss of roughly 15 teragrams (Tg) of glacial dissolved organic carbon by 2050 due to climate change -- equivalent to about half of the annual flux of dissolved organic carbon from the Amazon River. Thus, glaciers constitute a key link between terrestrial and aquatic carbon fluxes, and will be of increasing importance in land-to-ocean fluxes of organic carbon in glacierized regions.
Storage and release of organic carbon from glaciers and ice sheets
Hood, Eran; Battin, Tom J.; Fellman, Jason; O'Neel, Shad; Spencer, Robert G. M.
2015-01-01
Polar ice sheets and mountain glaciers, which cover roughly 11% of the Earth's land surface, store organic carbon from local and distant sources and then release it to downstream environments. Climate-driven changes to glacier runoff are expected to be larger than climate impacts on other components of the hydrological cycle, and may represent an important flux of organic carbon. A compilation of published data on dissolved organic carbon from glaciers across five continents reveals that mountain and polar glaciers represent a quantitatively important store of organic carbon. The Antarctic Ice Sheet is the repository of most of the roughly 6 petagrams (Pg) of organic carbon stored in glacier ice, but the annual release of glacier organic carbon is dominated by mountain glaciers in the case of dissolved organic carbon and the Greenland Ice Sheet in the case of particulate organic carbon. Climate change contributes to these fluxes: approximately 13% of the annual flux of glacier dissolved organic carbon is a result of glacier mass loss. These losses are expected to accelerate, leading to a cumulative loss of roughly 15 teragrams (Tg) of glacial dissolved organic carbon by 2050 due to climate change — equivalent to about half of the annual flux of dissolved organic carbon from the Amazon River. Thus, glaciers constitute a key link between terrestrial and aquatic carbon fluxes, and will be of increasing importance in land-to-ocean fluxes of organic carbon in glacierized regions.
GROUNDWATER TRANSPORT OF HYDROPHOBIC ORGANIC COMPOUNDS IN THE PRESENCE OF DISSOLVED ORGANIC MATTER
The effects of dissolved organic matter (DOM) on the transport of hydrophobic organic compounds in soil columns were investigated. Three compounds (naphthalene, phenanthrene and DDT) that spanned three orders of magnitude in water solubility were used. Instead of humic matter, mo...
Kim, Eun-Ah; Nguyen, Hang Vo-Minh; Oh, Hae Sung; Hur, Jin; Choi, Jung Hyun
2016-03-01
This study investigated the effects of various soil conditions, including drying-rewetting, nitrogen deposition, and temperature rise, on the quantities and the composition of dissolved organic matter leached from forest and wetland soils. A set of forest and wetland soils with and without the nitrogen deposition were incubated in the growth chambers under three different temperatures. The moisture contents were kept constant, except for two-week drying intervals. Comparisons between the original and the treated samples revealed that drying-rewetting was a crucial environmental factor driving changes in the amount of dissolved organic carbon (DOC). The DOC was also notably increased by the nitrogen deposition to the dry forest soil and was affected by the temperature of the dry wetland soil. A parallel factor (PARAFAC) analysis identified three sub-fractions of the fluorescent dissolved organic matter (FDOM) from the fluorescence excitation-emission matrices (EEMs), and their compositions depended on drying-rewetting. The data as a whole, including the DOC and PARAFAC components and other optical indices, were possibly explained by the two main variables, which were closely related with the PARAFAC components and DOC based on principal component analysis (PCA). Our results suggested that the DOC and PARAFAC component information could provide a comprehensive interpretation of the changes in the soil-leached DOM in response to the different environmental conditions.
Antarctic snow: metals bound to high molecular weight dissolved organic matter.
Calace, Nicoletta; Nardi, Elisa; Pietroletti, Marco; Bartolucci, Eugenia; Pietrantonio, Massimiliana; Cremisini, Carlo
2017-05-01
In this paper we studied some heavy metals (Cu, Zn, Cd, Pb, As, U) probably associated to high molecular weight organic compounds present in the Antarctic snow. Snow-pit samples were collected and analysed for high molecular weight fraction and heavy metals bound to them by means of ultrafiltration treatment. High molecular weight dissolved organic matter (HMW-DOM) recovered by ultrafiltration showed a dissolved organic carbon concentration (HMW-DOC) of about 18-83% of the total dissolved organic carbon measured in Antarctic snow. The characterisation of HMW-DOM fraction evidenced an ageing of organic compounds going from surface layers to the deepest ones with a shift from aliphatic compounds and proteins/amino sugars to more high unsaturated character and less nitrogen content. The heavy metals associated to HMW-DOM fraction follows the order: Zn > Cu > Pb > Cd ∼ As ∼ U. The percentage fraction of metals bound to HMW-DOM respect to total metal content follows the order: Cu > Pb > Zn, Cd in agreement with humic substance binding ability (Irwing-William series). Going down to depth of trench, all metals except arsenic, showed a high concentration peak corresponding to 2.0-2.5 m layer. This result was attributed to particular structural characteristic of organic matter able to form different type of complexes (1:1, 1:2, 1:n) with metals. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dissolved and colloidal copper in the tropical South Pacific
NASA Astrophysics Data System (ADS)
Roshan, Saeed; Wu, Jingfeng
2018-07-01
Copper (Cu) as a bioactive trace metal in the ocean has widely been studied in the context of chemical speciation. However, this trace metal is extremely understudied in the context of physical speciation (i.e., size- or molecular weight-partitioning), which may help in characterizing dissolved Cu species. In this study, we determine total dissolved Cu (<0.2 μm) distribution and its physical speciation along the US GEOTRACES 2013 cruise, a 4300-km east-west transect in the tropical South Pacific. The distribution of dissolved Cu is rather uniform horizontally and exhibits a linear increase with depth from surface to 2500-3000 m, below which it varies less significantly both vertically and horizontally. Dissolved Cu shows a strong correlation with silicate (SiO44-) in the upper 1500 m, which is in agreement with previous studies in other regions. This correlation is weaker but with higher slope at depths below 1500 m, which supports the sedimentary source hypothesis. Although hydrothermal activity at the East Pacific Rise (EPR) does not show a readily evident impact on the dissolved Cu distribution, high-quality data at 2300-2800 m allow for diagnosing a subtle westward decrease in the background-subtracted dissolved Cu component. This component of dissolved Cu poorly correlates with mantle-derived 3He (R2 = 0.41), indicating a possible hydrothermal source for dissolved Cu, in contrast to previous studies. For the first time in a major basin, we also determined the physical speciation of dissolved Cu, which shows that Cu species lighter than 10 kDa (Da = 1 g mol-1) dominate the pool of dissolved Cu (<0.2 μm) below 1000 m with a contribution of 61 ± 6% (fraction of total dissolved). 39 ± 6% of dissolved Cu at depths below 1000 m, thus, occurs in the pool of colloidal matter (10 kDa-0.2 μm). Moreover, using a suite of molecular weight cutoffs indicate that Cu species are distributed between two distinct molecular weight classes: the lighter than 5 kDa and heavier than 300 kDa classes, which form 53 ± 6% and 37 ± 7% of dissolved Cu at 2200-2800 m, respectively. The Cu species with molecular weight between 5 kDa and 300 kDa contribute only to 10 ± 12% of the pool at 2200-2800 m. These results offer new insights into structure, reactivity and bioavailability of oceanic Cu compounds. As an organic-dominating metal, Cu physical speciation may also shed light on size-reactivity spectrum of dissolved organic matter (DOM) in the deep ocean.
Bioavialability of Dom Photochemically Released from Resuspended Sediments
NASA Astrophysics Data System (ADS)
Avery, G. B., Jr.; Rainey, D. H.; Mead, R. N.; Skrabal, S. A.; Kieber, R. J.; Felix, J. D.; Helms, J. R.
2016-02-01
Little is known regarding the bioavailability of dissolved organic matter (DOM) released photochemically from resuspended estuarine sediments. Sediments were collected from two sites along the Cape Fear River estuary, NC, USA, size fractionated in 0.2 µm filtered Gulf Stream seawater and exposed to simulated sunlight for six hours. Light exposed samples resulted in increases of dissolved organic carbon (DOC) (34 ± 3 µM), chromophoric dissolved organic matter (CDOM) (a300nm, 2.7 m-1), and fluorescent dissolved organic matter (FDOM) (78.6 quinine sulfate equivalents (QSE)) compared to dark controls. Ultra high resolution mass spectrometric characterization indicated the photoreleased DOM was more oxidized and condensed based upon van Kreevlan analysis. Samples were then filtered and inoculated to a final ratio of 4% with coastal water sample filtered through a100 µm net to remove larger grazing organisms and particles while keeping most of bacterial community intact. All three parameters were monitored during a 30 day-long incubation in the dark to assess biological consumption and alteration. Previously light exposed samples had double (20 vs. 9 µM) the amount of DOC consumed compared to samples not previously exposed to light and twice the loss of CDOM (a300nm, 0.6 vs. 0.3 m-1) compared to samples not previously exposed to light. Previously light exposed samples resulted in a threefold loss of FDOM (9.5 QSE) compared to samples not previously exposed to light (2.8 QSE). Results of this study are important because they demonstrate dissolved organic matter released photochemically from resuspended sediments is more bioavailable than ambient material likely fueling secondary productivity and impacting ecosystem functioning in coastal regions.
Bianchi, Thomas S; Osburn, Christopher; Shields, Michael R; Yvon-Lewis, Shari; Young, Jordan; Guo, Laodong; Zhou, Zhengzhen
2014-08-19
Recent work has shown the presence of anomalous dissolved organic matter (DOM), with high optical yields, in deep waters 15 months after the Deepwater Horizon (DWH) oil spill in the Gulf of Mexico (GOM). Here, we continue to use the fluorescence excitation-emission matrix (EEM) technique coupled with parallel factor analysis (PARAFAC) modeling, measurements of bulk organic carbon, dissolved inorganic carbon (DIC), oil indices, and other optical properties to examine the chemical evolution and transformation of oil components derived from the DWH in the water column of the GOM. Seawater samples were collected from the GOM during July 2012, 2 years after the oil spill. This study shows that, while dissolved organic carbon (DOC) values have decreased since just after the DWH spill, they remain higher at some stations than typical deep-water values for the GOM. Moreover, we continue to observe fluorescent DOM components in deep waters, similar to those of degraded oil observed in lab and field experiments, which suggest that oil-related fluorescence signatures, as part of the DOM pool, have persisted for 2 years in the deep waters. This supports the notion that some oil-derived chromophoric dissolved organic matter (CDOM) components could still be identified in deep waters after 2 years of degradation, which is further supported by the lower DIC and partial pressure of carbon dioxide (pCO2) associated with greater amounts of these oil-derived components in deep waters, assuming microbial activity on DOM in the current water masses is only the controlling factor of DIC and pCO2 concentrations.
Export of dissolved organic matter in relation to land use along a European climatic gradient.
Mattsson, Tuija; Kortelainen, Pirkko; Laubel, Anker; Evans, Dylan; Pujo-Pay, Mireille; Räike, Antti; Conan, Pascal
2009-03-01
The terrestrial export of dissolved organic matter (DOM) is associated with climate, vegetation and land use, and thus is under the influence of climatic variability and human interference with terrestrial ecosystems, their soils and hydrological cycles. We present a data-set including catchments from four areas covering the major climate and land use gradients within Europe: a forested boreal zone (Finland), a temperate agricultural area (Denmark), a wet and temperate mountain region in Wales, and a warm Mediterranean catchment draining into the Gulf of Lyon. In all study areas, DOC (dissolved organic carbon) was a major fraction of DOM, with much lower proportions of DON (dissolved organic nitrogen) and DOP (dissolved organic phosphorus). A south-north gradient with highest DOC concentrations and export in the northernmost catchments was recorded: DOC concentrations and loads were highest in Finland and lowest in France. These relationships indicate that DOC concentrations/export are controlled by several factors including wetland and forest cover, precipitation and hydrological processes. DON concentrations and loads were highest in the Danish catchments and lowest in the French catchments. In Wales and Finland, DON concentrations increased with the increasing proportion of agricultural land in the catchment, whereas in Denmark and France no such relationship was found. DOP concentrations and loads were low compared to DOC and DON. The highest DOP concentrations and loads were recorded in catchments with a high extent of agricultural land, large urban areas or a high population density, reflecting the influence of human impact on DOP loads.
NASA Astrophysics Data System (ADS)
Oh, Seok Jin; Kwon, Hyeong Kyu; Noh, Il Hyeon; Yang, Han-Soeb
2010-09-01
This study investigated alkaline phosphatase (APase) activity and dissolved organic and inorganic phosphorus utilization by the harmful dinoflagellate Gymnodinium impudicum (Fraga et Bravo) Hansen et Moestrup isolated from the South Sea of Korea. Under conditions of limited phosphorus, observation of growth kinetics in batch culture yielded a maximum growth rate (μmax) of 0.41 /day and a half saturation constant (Ks) of 0.71 μM. In time-course experiments, APase was induced as dissolved inorganic phosphorus (DIP) concentrations fell below 0.83 μM, a threshold near the estimated Ks; APase activity increased with further DIP depletion to a maximum of 0.70 pmol/cell/h in the senescent phase. Thus, Ks may be an important index of the threshold DIP concentration for APase induction. G. impudicum utilizes a wide variety of dissolved organic phosphorus compounds in addition to DIP. These results suggest that DIP limitation in the Southern Sea of Korea may have led to the spread of G. impudicum along with the harmful dinoflagellate Cochlodinium polykrikoides in recent years.
Chlou, C.T.; Kile, D.E.; Brinton, T.I.; Malcolm, R.L.; Leenheer, J.A.; MacCarthy, P.
1987-01-01
Water solubility enhancements of 1,1-bis(p-chloro-phenyl)-2,2,2-trichloroethane (p,p???-DDT), 2,4,5,2???,5???-pentachlorobiphenyl (2,4,5,2???,5???-PCB), and 2,4,4???-tri-chlorobiphenyl (2,4,4???-PCB) by dissolved organic matter have been studied with the following samples: (1) acidic water samples from the Suwannee River, Georgia, and the Sopchoppy River, Florida; (2) a humic extract of a nearly neutral pH water from the Calcasieu River, Louisiana; (3) commercial humic acids from the Aldrich Chemical Co. and Fluka-Tridom Chemical Corp. The calculated partition coefficients on a dissolved organic carbon basis (Kdoc) for organic solutes with water samples and aquatic humic extracts from this and earlier studies indicate that the enhancement effect varies with the molecular composition of the aquatic humic materials. The Kdoc values with water and aquatic humic samples are, however, far less than the observed Kdoc values obtained with the two commercial samples, by factors of about 4-20. In view of this finding, one should be cautious in interpreting the effects of the dissolved organic matter on solubility enhancement of organic solutes on the basis of the use of commercial humic acids.
Degraded Litter Leachates as a Potential Control on Streamwater Nitrogen Dynamics
NASA Astrophysics Data System (ADS)
Hernes, P. J.; O'Geen, A. T.; Dahlgren, R. A.
2008-12-01
Dissolved organic nitrogen (DON) export from catchments is a critical element of overall nutrient cycling. An underlying assumption in most studies investigating DON export is that the source of this DON is from an aged soil organic matter (SOM) pool. However, recent investigations of dissolved organic carbon (DOC) have called into question the idea that dissolved organic matter (DOM) in streams is derived primarily from aged SOM. Evidence includes riverine DOC 14C ages (~5 years) that are much younger than SOM within the catchment as well as the riverine particulate organic matter (POM) pool (decades to 100s of years). Molecular fractionation due to litter leaching and sorption to mineral surfaces can completely account for the degraded molecular signatures observed in dissolved amino acid and dissolved lignin compositions within the DOM pool. Thus it is feasible that a significant portion of exported DON from catchments could come from a younger, less degraded organic matter pool such as litters. To evaluate this potential, we conducted a leaching incubation experiment using litters and degraded "duff" litters (estimated 2-5 yrs of degradation) from four vegetation types (live and blue oak leaves, foothill pine needles, and mixed annual grasses) in an oak woodland ecosystem in the foothills of the Sierra mountains of California. Litters and duffs were placed on sieves within funnels throughout the catchment, and leachates were collected during each rainfall event from Dec. 1, 2006 through May 31, 2007. DON accounted for 50-70% of nitrogen released from litters and DON plus particulate organic nitrogen (PON) constituted >90% of released nitrogen. In contrast, dissolved inorganic nitrogen (DIN) made up 60-80% of released nitrogen in the duff materials with the majority as ammonia. When scaled to the entire watershed, overall yields of dissolved nitrogen in leachates was estimated at 6.0 kg ha-1 for DON, 7.3 kg ha-1 for NH4-N, and 8.8 kg ha-1 for NO3-N, with 90% of the DON and 99% of the DIN derived from the duff materials. Areal yields are up to an order of magnitude greater than reported stream/riverine exports from catchments, indicating that much of this leachate must be degraded or sorbed along hydrologic flowpaths to streams, but that leachates could constitute a significant component of the DON/DOM pool within streams.
Influence of Gases Dissolved in Water to the Emergence of Ice Crystals
NASA Astrophysics Data System (ADS)
Mikula, V.
2010-04-01
Composition of gases dissolved in the body determines if the organism survives hypothermia or not. My work could have a major impact in terms of freezing and thawing of tissues, organs or whole organisms for their survival.
Naftz, D.L.; Rice, J.A.
1989-01-01
Geochemical data for samples of overburden from three mines in the Powder River Basin indicate a statistically significant (0.01 confidence level) positive correlation (r = 0.74) between Se and organic C. Results of factor analysis with varimax rotation on the major and trace element data from the rock samples indicate large (>50) varimax loadings for Se in two of the three factors. In Factor 1, the association of Se with constituents common to detrital grains indicates that water transporting the detrital particles into the Powder River Basin also carried dissolved Se. The large (>50) varimax loadings of Se and organic C in Factor 2 probably are due to the organic affinities characteristic of Se. Dissolved Se concentrations in water samples collected at one coal mine are directly related to the dissolved organic C concentrations. Hydrophilic acid concentrations in the water samples from the mine ranged from 35 to 43% of the total dissolved organic C, and hydrophobic acid concentrations ranged from 40 to 49% of the total dissolved organic C. The largest dissolved organic C concentrations in water from the same mine (34-302 mg/l), coupled with the large proportion of acidic components, may saturate adsorption sites on geothite and similar minerals that comprise the aquifer material, thus decreasing the extent of selenite (SeO32-) adsorption as a sink for Se as the redox state of ground water decreases. ?? 1989.
Summary and evaluation of the quality of stormwater in Denver, Colorado, 2006-2010
Stevens, Michael R.; Slaughter, Cecil B.
2012-01-01
Stormwater in the Denver area was sampled by the U.S. Geological Survey, in cooperation with the Urban Drainage and Flood Control District, in a network of 5 monitoring stations - 3 on the South Platte River and 2 on streams tributary to the South Platte River, Sand Creek, and Toll Gate Creek beginning in January 2006 and continuing through December 2010. Stormwater samples were analyzed at the U.S. Geological Survey National Water Quality Laboratory during 2006-2010 for water-quality properties such as pH, specific conductance, hardness, and residue on evaporation at 105 degrees Celsius; for constituents such as major ions (calcium, magnesium), organic carbon and nutrients, including ammonia plus organic nitrogen, ammonia, dissolved nitrite plus nitrate, total phosphorus, and orthophosphate; and for metals, including total recoverable and dissolved phases of copper, lead, manganese, and zinc. Samples collected during selected storms were also analyzed for bacteriological indicators such as Escherichia coli and fecal coliform at the Metro Wastewater Reclamation Laboratory. About 200 stormwater samples collected during storms characterize the quality of storm runoff during 2006-2010. In general, the quality of stormwater (2006-2010) has improved for many water-quality constituents, many of which had lower values and concentrations than those in stormwater collected in 2002-2005. However, the physical basis, processes, and the role of dilution that account for these changes are complex and beyond the scope of this report. The water-quality sampling results indicate few exceptions to standards except for dissolved manganese, dissolved zinc, and Escherichia coli. Stormwater collected at the South Platte River below Union Avenue station had about 10 percent acute or chronic dissolved manganese exceedances in samples; samples collected at the South Platte River at Denver station had less than 5 percent acute or chronic dissolved manganese exceedances. In contrast, samples collected at Toll Gate Creek above 6th Avenue at Aurora station, Sand Creek at mouth near Commerce City station, and the South Platte River at Henderson station, each had about 30 to 50 percent exceedances of both acute and chronic dissolved manganese standards. Of the samples collected at Sand Creek at mouth near Commerce City, 1 sample exceeded the acute standard and 4 samples exceeded the chronic standard for dissolved zinc, but no samples collected from the other sites exceeded either standard for zinc. Almost all samples of stormwater analyzed for Escherichia coli exceeded Colorado numeric standards. A numerical standard for fecal coliform is no longer applicable as of 2004. Results from the 2002-2005 study indicated that the general quality of stormwater had improved during 2002-2005 compared to 1998-2001, having fewer exceedances of Colorado standards, and showing downward trends for many water-quality values and concentrations. These trends coincided with general downward or relatively similar mean streamflows for the 2002-2005 compared to 1998-2001, which indicates that dilution may be a smaller influence on values and concentrations than other factors. For this report, downward trends were indicated for many constituents at each station during 2006-2010 compared to 2002-2005. The trends for mean streamflow for 2006-2010 compared to 2002-2005 are upward at all sites except for the South Platte River at Henderson, indicating that dilution by larger flows could be a factor in the downward concentration trends. At the South Platte River below Union Avenue station, downward trends were indicated for hardness, dissolved ammonia, dissolved orthophosphate, and dissolved copper. Upward trends at South Platte River below Union Avenue were indicated for pH. At the South Platte River at Denver station, downward trends were indicated for total ammonia plus organic nitrogen, dissolved ammonia, dissolved nitrite plus nitrate, dissolved orthophosphate, total phosphorus, dissolved organic carbon, and dissolved lead, manganese, and zinc, and total recoverable zinc. An upward trend in properties and constituents at South Platte River at Denver was indicated for pH. At Toll Gate Creek above 6th Avenue at Aurora, downward trends were indicated for residue on evaporation, total ammonia plus organic nitrogen, dissolved ammonia, dissolved orthophosphate, total phosphorus, and total recoverable copper, lead, manganese, and zinc. Upward trends in properties and constituents at Toll Gate Creek above 6th Avenue at Aurora were indicated for pH, specific conductance, and dissolved nitrite plus nitrate. At Sand Creek at mouth near Commerce City, downward trends were indicated for hardness, dissolved calcium, total ammonia plus organic nitrogen, and dissolved ammonia, orthophosphate, manganese, and zinc. An upward trend in properties and constituents at Sand Creek at mouth near Commerce City was indicated for pH. Downward trends at South Platte River at Henderson were indicated for specific conductance, hardness, dissolved magnesium, residue on evaporation, total ammonia plus organic nitrogen, dissolved ammonia, dissolved nitrite plus nitrate, dissolved orthophosphate, total phosphorus, dissolved lead and manganese, and total recoverable copper, lead, manganese, and zinc.
ERIC Educational Resources Information Center
Wedyan, Mohammed; Al Harahsheh, Ahmed; Qnaisb, Esam
2016-01-01
This research aimed to assess the composition of total dissolved nitrogen (TDN) species, particularly dissolved organic nitrogen (DON), over the traditional wastewater treatment operations in three biological nutrient removal (BNR) wastewater treatment plants (WWTPs) in Jordan. It had been found that the DON percentage was up to 30% of TDN within…
Chromophoric Dissolved Organic Matter Export from U.S. Rivers
NASA Astrophysics Data System (ADS)
Spencer, R. G.; Aiken, G.; Dornblaser, M.; Butler, K. D.; Holmes, R. M.; Fiske, G.; Mann, P. J.; Stubbins, A.
2012-12-01
Chromophoric dissolved organic matter (CDOM) fluxes and yields from 15 major U.S. rivers draining an assortment of terrestrial biomes are presented. Utilizing CDOM and dissolved organic carbon (DOC) flux data we establish a robust universal relationship between CDOM and DOC loads. The application of this relationship allows future studies to derive DOC loads from CDOM utilizing emerging in-situ or remote sensing technologies and thus refine river-to-ocean DOC fluxes, as well as exploit historic imagery to examine how fluxes may have changed. Calculated CDOM yields from the 15 U.S. rivers highlight the importance of certain regions with respect to CDOM flux to the coastal ocean. This approach indicates that future studies might predict CDOM and DOC yields for different watershed types that could then be readily converted to loads providing for the estimation of CDOM and DOC export from ungauged watersheds. Examination of CDOM yields also highlights important geographical regions for future study with respect to the role of terrigenous CDOM in ocean color budgets and CDOM's role in biogeochemical processes.
The distribution and stabilisation of dissolved Fe in deep-sea hydrothermal plumes
NASA Astrophysics Data System (ADS)
Bennett, Sarah A.; Achterberg, Eric P.; Connelly, Douglas P.; Statham, Peter J.; Fones, Gary R.; German, Christopher R.
2008-06-01
We have conducted a study of hydrothermal plumes overlying the Mid-Atlantic Ridge near 5° S to investigate whether there is a significant export flux of dissolved Fe from hydrothermal venting to the oceans. Our study combined measurements of plume-height Fe concentrations from a series of 6 CTD stations together with studies of dissolved Fe speciation in a subset of those samples. At 2.5 km down plume from the nearest known vent site dissolved Fe concentrations were ˜ 20 nM. This is much higher than would be predicted from a combination of plume dilution and dissolved Fe(II) oxidation rates, but consistent with stabilisation due to the presence of organic Fe complexes and Fe colloids. Using Competitive Ligand Exchange-Cathodic Stripping Voltammetry (CLE-CSV), stabilised dissolved Fe complexes were detected within the dissolved Fe fraction on the edges of one non-buoyant hydrothermal plume with observed ligand concentrations high enough to account for stabilisation of ˜ 4% of the total Fe emitted from the 5° S vent sites. If these results were representative of all hydrothermal systems, submarine venting could provide 12-22% of the global deep-ocean dissolved Fe budget.
Crustacean zooplankton release copious amounts of dissolved organic matter as taurine in the ocean.
Clifford, Elisabeth L; Hansell, Dennis A; Varela, Marta M; Nieto-Cid, Mar; Herndl, Gerhard J; Sintes, Eva
2017-11-01
Taurine (Tau), an amino acid-like compound, is present in almost all marine metazoans including crustacean zooplankton. It plays an important physiological role in these organisms and is released into the ambient water throughout their life cycle. However, limited information is available on the release rates by marine organisms, the concentrations and turnover of Tau in the ocean. We determined dissolved free Tau concentrations throughout the water column and its release by abundant crustacean mesozooplankton at two open ocean sites (Gulf of Alaska and North Atlantic). At both locations, the concentrations of dissolved free Tau were in the low nM range (up to 15.7 nM) in epipelagic waters, declining sharply in the mesopelagic to about 0.2 nM and remaining fairly stable throughout the bathypelagic waters. Pacific amphipod-copepod assemblages exhibited lower dissolved free Tau release rates per unit biomass (0.8 ± 0.4 μmol g -1 C-biomass h -1 ) than Atlantic copepods (ranging between 1.3 ± 0.4 μmol g -1 C-biomass h -1 and 9.5 ± 2.1 μmol g -1 C-biomass h -1 ), in agreement with the well-documented inverse relationship between biomass-normalized excretion rates and body size. Our results indicate that crustacean zooplankton might contribute significantly to the dissolved organic matter flux in marine ecosystems via dissolved free Tau release. Based on the release rates and assuming steady state dissolved free Tau concentrations, turnover times of dissolved free Tau range from 0.05 d to 2.3 d in the upper water column and are therefore similar to those of dissolved free amino acids. This rapid turnover indicates that dissolved free Tau is efficiently consumed in oceanic waters, most likely by heterotrophic bacteria.
NASA Astrophysics Data System (ADS)
Yan, Ge; Kim, Guebuem; Kim, Jeonghyun; Jeong, Yu-Sik; Kim, Young Il
2015-03-01
We analyzed dissolved organic carbon (DOC), dissolved organic nitrogen (DON), and dissolved enantiomeric amino acids in precipitation samples collected at two sites in Korea over a one-year period. The average concentrations of DOC, DON, and total hydrolyzable amino acids at Seoul (an inland urban area) were lower than those at Uljin (a coastal rural area). The different bulk compositions of dissolved organic matter (DOM) at these two sites (reflected by qualitative indicators) were mainly attributed to differences in contributing sources. The D-enantiomers of four individual amino acids (aspartic acid, glutamic acid, serine, and alanine) were ubiquitously present, with average enantiomeric (D/L) ratios of 0.34, 0.26, 0.21, and 0.61 for Seoul, and 0.18, 0.11, 0.09, and 0.31 for Uljin, respectively. The much higher D/L ratios observed at Seoul than at Uljin might result from more advanced diagenetic stages as well as higher contributions from bacteria inhabiting terrestrial environments. The C- and N-normalized yields of D-alanine in DOM of our samples were found to be comparable to literature values reported for aquatic systems, where a significant portion of DOM was suggested to be of bacterial origin. Our study suggests that bacteria and their remnants might constitute an important fraction of OM in the atmosphere, contributing significantly to the quality of atmospheric OM and its post-depositional bioavailability in the surface ecosystems.
Spatiotemporal variation of dissolved carbohydrates and amino acids in Jiaozhou Bay, China
NASA Astrophysics Data System (ADS)
Shi, Di; Yang, Guipeng; Sun, Yan; Wu, Guanwei
2017-03-01
Surface seawater samples were collected from Jiaozhou Bay, China, during six cruises (March-May 2010, September-November 2010) to study the distribution of dissolved organic matter including dissolved organic carbon (DOC), total dissolved carbohydrates, namely monosaccharides (MCHO) and polysaccharides (PCHO) and total hydrolysable amino acids. These included dissolved free amino acids (DFAA) and combined amino acids (DCAA). The goal was to investigate possible relationships between these dissolved organic compounds and environmental parameters. During spring, the concentrations of MCHO and PCHO were 9.6 (2.8-22.6) and 11.0 (2.9-42.5) μmol C/L, respectively. In autumn, MCHO and PCHO were 9.1 (2.6-27.0) and 10.8 (2.4-25.6) μmol C/L, respectively. The spring concentrations of DFAA and DCAA were 1.7 (1.1-4.1) and 7.6 (1.1-31.0) μmol C/L, respectively, while in autumn, DFAA and DCAA were 2.3 (1.1-8.0) and 3.3 (0.6-7.2) μmol C/L, respectively. Among these compounds, the concentrations of PCHO were the highest, accounting for nearly a quarter of the DOC, followed by MCHO, DCAA and DFAA. The concentrations of the organic compounds exhibited a decreasing trend from the coastal to the central regions of the bay. A negative correlation between concentrations of DOC and salinity in each cruise suggested that riverine inputs around the bay have an important impact on the distribution of DOC in the surface water. A significant positive correlation was found between DOC and total bacteria count in spring and autumn, suggesting bacteria play an important role in the marine carbon cycle.
Determining Passive Sampler Partition Coefficients for Dissolved-phase Organic Contaminants
Passive samplers are used for environmental and analytical purposes to measure dissolved nonionic organic contaminants (NOCs) by absorption from a contaminated medium into a clean phase, usually in the form of a synthetic organic film. Recently developed passive sampler techniqu...
Dust inputs and bacteria influence dissolved organic matter in clear alpine lakes.
Mladenov, N; Sommaruga, R; Morales-Baquero, R; Laurion, I; Camarero, L; Diéguez, M C; Camacho, A; Delgado, A; Torres, O; Chen, Z; Felip, M; Reche, I
2011-07-26
Remote lakes are usually unaffected by direct human influence, yet they receive inputs of atmospheric pollutants, dust, and other aerosols, both inorganic and organic. In remote, alpine lakes, these atmospheric inputs may influence the pool of dissolved organic matter, a critical constituent for the biogeochemical functioning of aquatic ecosystems. Here, to assess this influence, we evaluate factors related to aerosol deposition, climate, catchment properties, and microbial constituents in a global dataset of 86 alpine and polar lakes. We show significant latitudinal trends in dissolved organic matter quantity and quality, and uncover new evidence that this geographic pattern is influenced by dust deposition, flux of incident ultraviolet radiation, and bacterial processing. Our results suggest that changes in land use and climate that result in increasing dust flux, ultraviolet radiation, and air temperature may act to shift the optical quality of dissolved organic matter in clear, alpine lakes. © 2011 Macmillan Publishers Limited. All rights reserved.
NASA Astrophysics Data System (ADS)
Molodtsova, T.; Amon, R. M. W.
2016-12-01
In this study the optical properties (absorption and fluorescence intensity) of chromophoric dissolved organic matter (CDOM) were investigated in water samples collected during the cruise conducted in August and September 2007 across the Eastern and Central Arctic regions. The fluorescence spectroscopy analysis was complimented with the parallel factor analysis (PARAFAC) and the identified six components were compared to other water properties including salinity, in situ fluorescence, dissolved organic carbon, and specific ultraviolet absorbance at 254 nm. The principal component analysis was conducted to distinguish between the water masses and identify the features such as the Trans Polar Drift and the North Atlantic Current. The preliminary results indicate that investigation of the optical properties of CDOM are able to provide better understanding of Arctic Ocean circulation and environmental changes such as the loss of the perennial sea ice and more light penetrating the water column.
NASA Astrophysics Data System (ADS)
Li, Xin; Yue, Yi
2018-06-01
Endogenous organic nitrogen loadings in lake sediments have increased with human activity in recent decades. A 6-month field study from two disparate shallow eutrophic lakes could partly reveal these issues by analysing seasonal variations of biodegradation and phytoremediation in the sediment. This paper describes the relationship between oxidation reduction potential, temperature, microbial activity and phytoremediation in nitrogen cycling by calculation degradative index of dissolved organic nitrogen and amino acid decomposition. The index was being positive in winter and negative in summer while closely positive correlated with biodegradation. Our analysis revealed that rather than anoxic condition, biomass is the primary factor to dissolved organic nitrogen distribution and decomposition. Some major amino acids statistics also confirm the above view. The comparisons of organic nitrogen and amino acid in abundance and seasons in situ provides that demonstrated plants cue important for nitrogen removal by their roots adsorption and immobilization. In conclusion, enhanced microbial activity and phytoremediation with the seasons will reduce the endogenous nitrogen loadings by the coupled mineralization and diagenetic process.
Zhang, Tao; Wang, Xuchen
2017-12-15
Release and microbial degradation of dissolved organic matter (DOM) and chromophoric dissolved organic matter (CDOM) from the macroalgae Ulva prolifera were studied in laboratory incubation experiments. The release of DOM and CDOM from Ulva prolifera was a rapid process, and hydrolysis played an important role in the initial leaching of the organic compounds from the algae. Bacterial activity enhanced the release of DOM and CDOM during degradation of the algae and utilization of the released organic compounds. It is calculated that 43±2% of the C and 63±3% of the N from Ulva prolifera's biomass were released during the 20-day incubation, and 65±3% of the released C and 87±4% of the released N were utilized by bacteria. In comparison, only 18±1% of the algae's C and 17±1% of its N were released when bacterial activities were inhibited. The fluorescence characteristics of the CDOM indicate that protein-like DOM was the major organic component released from Ulva prolifera that was highly labile and biodegradable. Bacteria played an important role in regulating the chemical composition and fluorescence characteristics of the DOM. Our study suggests that the release of DOM from Ulva prolifera provides not only major sources of organic C and N, but also important food sources to microbial communities in coastal waters. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Szczepański, M.; Szajdak, L.; Bogacz, A.
2009-04-01
The investigation of peatland is used to show the water quality functioning with respect to different forms of nitrogen and carbon. The purification of ground water by the transect of 4.5 km long consisting organic soils (peat-moorsh soils) was estimated. This transect is located in the Agroecological Landscape Park in Turew, 40 km South-West of Poznan, West Polish Lowland. There is this transect along Wyskoć ditch. pH, the contents of total and dissolved organic carbon, total nitrogen, N-NO3-, N-NH4+ was measured. Additionally C/N factors of peats were estimated. The investigation has shown the impact of the peatland located on the secondary transformed peat - moorsh soils on the lowering of total nitrogen, ammonium, and nitrates as well as total and dissolved organic carbon in ground water. Peat-moorsh soils were described and classified according to Polish hydrogenic soil classification and World Reference Base Soil Notation. There are these investigated points along to Wyskoc ditch. Two times a month during entire vegetation season the following material was taken from four chosen sites marked as Zbechy, Bridge, Shelterbelt and Hirudo: samples of peat, from the depth of 0-20 cm, samples of water from the ditch, samples of ground water from wells established for this investigation. Samples of peat-moorsh soils were collected at the depth 0-20 cm. Soils were sampled two times a month from 10 sites of each site. Samples were air dried and crushed to pass a 1 mm-mesh sieve. These 10 sub-samples were mixed for the reason of preparing a "mean sample", which used for the determination of pH (in 1M KCl), dissolved organic carbon (DOC), total organic carbon (TOC), total nitrogen (Ntotal), and N-NO3- as well as N-NH4+. In water from Wyskoć ditch pH, Ntotal, N-NO3-, N-NH4+, DTC (dissolved total carbon) and DOC (dissolved organic carbon) was measured. Ground water samples were collected from four wells established for this investigation. The water was filtered by the middle velocity separation and pH, N-total, N-NO3-, N-NH4+, DTC (dissolved total carbon) and DOC (dissolved organic carbon) ware measured. Peatland located on the secondary transformed peat - moorsh soils has revealed the lowering in ground water: nitrates 38.5%, N-organic 10%, N-total 24.5%, ammonium 38.7%, dissolved total carbon 33.1%, dissolved total inorganic carbon 10%, and dissolved organic carbon 57.5%. The dissolution of soil organic matter from peat-moorsh soils in broad range of pH and ionic strength was investigated. The rates of the reaction were calculated from the kinetics of first order reaction model. The investigations have shown the impact of the properties of secondary transformed peat-moorsh soils on the rates of the dissolution of organic matter.
Dynamics of Dissolved Organic Matter in Amazon Basin: Insights into Negro River Contribution
NASA Astrophysics Data System (ADS)
Moreira-Turcq, P.; Perez, M. P.; Benedetti, M.; Oliveira, M. A.; Lagane, C.; Seyler, P.; Oliveira, E.
2006-12-01
The study of global carbon cycle requires a precise knowledge of spatial and temporal distributions and exportation from continents to oceans. Organic carbon fluxes represent approximately half of the total carbon budget carried by rivers. Tropical rivers transport two third of the total organic carbon discharged into the world oceans but important gaps still exist in the knowledge of the tropical river carbon biochemistry. The Amazon River is responsible for 10% of the annual amount of organic carbon transported from rivers to oceans. The most important portion of total organic matter transported in the Amazon Basin is the dissolved fraction (between 80% and 95%). Amazonian annual flux of dissolved organic matter is directly related to hydrological variations. All rivers in the Amazon basin are characterized by monomodal hydrograms, with a low water period in october/november and a high water period in may/june. Temporal variations in Amazon dissolved organic carbon (3.0 to 9.1 mg l^{- 1}) are mainly controled by Negro River inputs. DOC and DON contributions from the Negro River can vary between 120 kgC s-1 and 520 kg C s-1, and between 5 kgN s--1 and 15 kgN s-1, during low and high water period, respectivelly. In the Negro River, during high water stages, while DOC concentrations are stable from the upstream stations to the downstream ones (about 11 mg l-1), discharge increases from 16000 to 46000 m3 s-1 and NOD can quintuple from upstream (0.071 mg l-1) to downstream (0.341 mg l-1). Then the nature of dissolved organic matter is variable (C/N ratio varied from 33 to 120 from upstream to downstream). During low water stages DOC concentrations are lower (mean DOC of 8.1 mg l-1) while DON is in the same range, discharge is about 10000 m3 s-1 at downstream stations of Negro River and the C/N ratio is lower and steadier along the River. Finaly, despite a low basin surface (12%) compared with the two other main Amazon tributaries, Solimões and Madeira Rivers, and a mean annual water input to Amazonas of 15%, the Negro River contributes with about 38% of the total organic dissolved carbon transported by the Amazon River.
He, Yuhong; Song, Na; Jiang, He-Long
2018-04-01
In recent years, the black water phenomenon has become an environmental event in eutrophic shallow lakes in China, leading to deterioration of lake ecosystems and potable water crises. Decomposition of macrophyte debris has been verified as a key inducement for black water events. In this study, the effects of the decomposition of dissolved organic matter (Kottelat et al., WASP 187:343-351, 2008) derived from macrophyte leachate on the occurrence of black water events are investigated to clarify the detailed mechanisms involved. Results show that dissolved organic matter (DOM) is composed of a trace of chromophoric DOM and mostly non-chromophoric dissolved organic matter (CDOM). DOM decomposition is accompanied by varied concentration of CDOM components, generation of organic particles, and increased microbial concentrations. These processes increase water chroma only during initial 48 h, so the intensified water color cannot be maintained by DOM decomposition alone. During DOM decomposition, microorganisms first consume non-CDOM, increasing the relative CDOM concentration and turning the water color to black (or brown). Simultaneously, tryptophan and aromatic proteins, which are major ingredients of CDOM, enhance UV light absorption, further aggravating the macroscopic phenomenon of black color. Our results show that DOM leached from decayed macrophytes promotes or even triggers the occurrence of black water events and should be taken more seriously in the future.
NASA Astrophysics Data System (ADS)
Asmala, Eero; Stedmon, Colin A.; Thomas, David N.
2012-10-01
The quantity of chromophoric dissolved organic matter (CDOM) and dissolved organic carbon (DOC) in three Finnish estuaries (Karjaanjoki, Kyrönjoki and Kiiminkijoki) was investigated, with respect to predicting DOC concentrations and loadings from spectral CDOM absorption measurements. Altogether 87 samples were collected from three estuarine transects which were studied in three seasons, covering a salinity range between 0 and 6.8, and DOC concentrations from 1572 μmol l-1 in freshwater to 222 μmol l-1 in coastal waters. CDOM absorption coefficient, aCDOM(375) values followed the trend in DOC concentrations across the salinity gradient and ranged from 1.67 to 33.4 m-1. The link between DOC and CDOM was studied using a range of wavelengths and algorithms. Wavelengths between 250 and 270 nm gave the best predictions with single linear regression. Total dissolved iron was found to influence the prediction in wavelengths above 520 nm. Despite significant seasonal and spatial differences in DOC-CDOM models, a universal relationship was tested with an independent data set and found to be robust. DOC and CDOM yields (loading/catchment area) from the catchments ranged from 1.98 to 5.44 g C m-2 yr-1, and 1.67 to 11.5 aCDOM(375) yr-1, respectively.
Leenheer, J.A.; Noyes, T.I.; Brown, P.A.
1994-01-01
The Mississippi River and some of its tributaries were sampled for natural organic substances dissolved in water and in suspended and bed sediments during seven sampling cruises from 1987-90. The sampling cruises were made during different seasons, in the free-flowing reaches of the river from St. Louis, Missouri, to New Orleans, Louisiana. The first three cruises were made during low-water conditions, and the last four cruises during high-water conditions. The purpose for sampling and characterizing natural organic substances in the various phases in the river was to provide an understanding of how these substances facilitate contaminant transport and transformations in the Mississippi River. Significant conclusions of this study were: (1) Natural organic substances appear to stabilize ' certain colloids against aggregation; therefore, these colloids remain in suspension and can act as transport agents that are not affected by sedimentation. Bacteria were found to be a significant fraction of organic colloids. (2) A new class of organic contaminants (polyethylene glycols) derived from nonionic surfactant residues was discovered dissolved with natural organic substances in water. These polyethylene glycols have the potential to affect both organic and inorganic contaminant transport in water. (3) The entire dissolved organic-matter component under varying hydrologic and seasonal conditions was characterized. (4) A method was developed to characterize organic matter in sediment by solid-state, 13C-nuclear magnetic resonance spectrometry. (5) The organic matter in suspended sediments was characterized by a variety of spectral and nonspectral methods. The protein component (significant in trace-metal binding) and lipid component (significant in organic-contaminant binding) were found to be major constituents in natural organic matter in suspended sediment. (6) Pools are reservoirs acting as traps of sedimentary organic matter of allochthonous origin and export material of autochthonous nitrogen. (7) A major portion of the mass of organic colloids in transport consisted of bacterial cells.
Yang, Xiaofang; Zhou, Zhongbo; Raju, Maddela Naga; Cai, Xiaoxuan; Meng, Fangang
2017-07-01
Effluent organic matter (EfOM) from municipal wastewater treatment plants potentially has a detrimental effect on both aquatic organisms and humans. This study evaluated the removal and transformation of chromophoric dissolved organic matter (CDOM) and fluorescent dissolved organic matter (FDOM) in a full-scale wastewater treatment plant under different seasons. The results showed that bio-treatment was found to be more efficient in removing bulk DOM (in term of dissolved organic carbon, DOC) than CDOM and FDOM, which was contrary to the disinfection process. CDOM and FDOM were selectively removed at various stages during the treatment. Typically, the low molecular weight fractions of CDOM and protein-like FDOM were more efficiently removed during bio-treatment process, whereas the humic-like FDOM exhibited comparable decreases in both bio-treatment and disinfection processes. Overall, the performance of the WWTP was weak in terms of CDOM and FDOM removal, resulting in enrichment of CDOM and FDOM in effluent. Moreover, the total removal of the bulk DOM (P<0.05) and the protein-like FDOM (P<0.05) displayed a significant seasonal variation, with higher removal efficiencies in summer, whereas removal of CDOM and the humic-like FDOM showed little differences between summer and winter. In all, the results provide useful information for understanding the fate and transformation of DOM, illustrating that sub-fractions of DOM could be selectively removed depending on treatment processes and seasonality. Copyright © 2016. Published by Elsevier B.V.
The availability of dissolved organic phosphorus compounds to marine phytoplankton
NASA Astrophysics Data System (ADS)
Hua-Sheng, Hong; Hai-Li, Wang; Bang-Qin, Huang
1995-06-01
The availability of three dissolved organic phosphorus (DOP) compounds as nutrient sources for experimental culture of three algae was studied. Results indicated that these compounds could be utilized by algae, and that dissolved inorganic phosphorus (DIP) was first to be uptaken when various forms of phosphorus (DIP and DOP) co-existed. Dicrateria zhanjiangensis' uptake of sodium glycerophosphate was faster than that of D-ribose-5-phosphate. The increase of sodium glycerophosphate had little effect on the maximum uptake rate( V max) of Chlorella sp., but increased the semisaturation constant( K s) remarkably; the photosynthesis rates(PR) of Dicrateria zhanjiangensis and Chlorella sp. were rarely affected by using various forms of phosphorus in the culture experiments. The possible DOP pathways utilized by algae are discussed.
USDA-ARS?s Scientific Manuscript database
Chemical properties of whole organic matter (OM) and its dissolved organic matter (DOM) fraction from six dominant macrophytes in Lake Dianchi were comparatively characterized, and their environmental implications were discussed. Significant differences in chemical composition of the OM samples were...
The sunlight-absorbing (colored) component of dissolved organic matter (CDOM) in aquatic environments is widely distributed in freshwaters and coastal regions where it influences the fate and transport of toxic organic substances and biologically-important metals such as mercury,...
PHOTOCHEMICAL TRANSFORMATIONS OF DISSOLVED ORGANIC MATTER IN A BLACKWATER RIVER
We examined photochemical alterations of dissolved organic matter (DOM) from the Satilla River, a high DOC (10-40 mg/liter) blackwater river of southeast Georgia. Water samples were filtered to remove most organisms, placed in quartz tubes, and incubated under natural sunlight a...
BOREAS TGB-5 Dissolved Organic Carbon Data from NSA Beaver Ponds
NASA Technical Reports Server (NTRS)
Bourbonniere, Rick; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor)
2000-01-01
The BOReal Ecosystem-Atmosphere Study Trace Gas Biogeochemistry (BOREAS TGB-5) team collected several data sets related to carbon and trace gas fluxes and concentrations in the Northern Study Area (NSA). This data set contains concentrations of dissolved organic and inorganic carbon species from water samples collected at various NSA sites. In particular, this set covers the NSA Tower Beaver Pond Site and the NSA Gillam Road Beaver Pond Site, including data from all visits to open water sampling locations during the BOREAS field campaigns from April to September 1994. The data are provided in tabular ASCII files.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-08
... Organizations; NASDAQ OMX BX; Notice of Filing and Immediate Effectiveness of Proposed Rule Change To Dissolve... dissolve the BOX Committee of the Board of Directors. The text of the proposed rule change is available at... Basis for, the Proposed Rule Change 1. Purpose The Exchange proposes to dissolve the BOX Committee of...
Removal of lead by apatite and its stability in the presence of organic acids.
Katoh, Masahiko; Makimura, Akihiko; Sato, Takeshi
2016-12-01
In this study, lead sorption and desorption tests were conducted with apatite and organic acids (i.e. citric, malic, and formic acids) to understand lead removal by apatite in the presence of an organic acid and lead dissolution from the lead- and organic-acid-sorbed apatite by such organic acid exposure. The lead sorption test showed that the amount of lead removed by apatite in the presence of organic acid varied depending on the type of acid used. The molar amounts of calcium dissolved from apatite in the presence and absence of organic acid were exactly the same as those of lead removed even under different pH conditions as well as different organic acid concentrations, indicating that the varying amount of lead removal in the presence of different organic acids resulted from the magnitude of the dissolution of apatite and the precipitation of lead phosphate minerals. The percentages of lead dissolved from the organic-acid-sorbed and non-organic-acid-sorbed apatite by all the organic acid extractions were equal and higher than those by water extraction. In particular, the highest extractions were observed in the non-organic-acid-sorbed apatite by citric and malic acids. These results suggest that to immobilize lead by the use of apatite in the presence of organic acids, much more apatite must be added than in the absence of organic acid, and that measures must be taken to ensure that the immobilized lead is not dissolved.
Zhang, Lisha; Zhang, Songhe; Lv, Xiaoyang; Qiu, Zheng; Zhang, Ziqiu; Yan, Liying
2018-08-15
This study investigated the alterations in biomass, nutrients and dissolved organic matter concentration in overlying water and determined the bacterial 16S rRNA gene in biofilms attached to plant residual during the decomposition of Myriophyllum verticillatum. The 55-day decomposition experimental results show that plant decay process can be well described by the exponential model, with the average decomposition rate of 0.037d -1 . Total organic carbon, total nitrogen, and organic nitrogen concentrations increased significantly in overlying water during decomposition compared to control within 35d. Results from excitation emission matrix-parallel factor analysis showed humic acid-like and tyrosine acid-like substances might originate from plant degradation processes. Tyrosine acid-like substances had an obvious correlation to organic nitrogen and total nitrogen (p<0.01). Decomposition rates were positively related to pH, total organic carbon, oxidation-reduction potential and dissolved oxygen but negatively related to temperature in overlying water. Microbe densities attached to plant residues increased with decomposition process. The most dominant phylum was Bacteroidetes (>46%) at 7d, Chlorobi (20%-44%) or Proteobacteria (25%-34%) at 21d and Chlorobi (>40%) at 55d. In microbes attached to plant residues, sugar- and polysaccharides-degrading genus including Bacteroides, Blvii28, Fibrobacter, and Treponema dominated at 7d while Chlorobaculum, Rhodobacter, Methanobacterium, Thiobaca, Methanospirillum and Methanosarcina at 21d and 55d. These results gain the insight into the dissolved organic matter release and bacterial community shifts during submerged macrophytes decomposition. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, X. Y.; Chen, X.; Deng, H.; Du, Y.; Jin, H. Y.
2013-07-01
Chromophoric dissolved organic matter (CDOM) represents the light absorbing fraction of dissolved organic carbon (DOC). Studies have shown that the optical properties of CDOM can be used to infer the distribution and diffusion characteristics of DOC in the estuary and coastal zone. The inversion of DOC concentrations from remote sensing has been implemented in certain regions. In this study we investigate the potential of tracing DOC from CDOM by the measurement of DOC, absorption spectrum of CDOM, Chla concentration, suspended sediment (SS), and salinity from cruises in different seasons around the Changjiang estuary. Our results show that around the Changjiang estuary the absorption coefficients of CDOM in general have the similar spatial and temporal characteristics as that of DOC, but the strength of the correlation between CDOM and DOC varies locally and seasonally. The input of pollutants from outside the estuary, the bloom of phytoplankton in spring, re-suspension of deposited sediment, and light bleaching all contribute to the local and seasonal variation of the correlation between DOC and CDOM. An inversion model for the determination of DOC from CDOM is established, but the stability of model parameters and its application in different environments need further study. We find that relative to the absorption coefficient of CDOM, the fitted parameters of the absorption spectrum of DOM are better indictors for the composition of DOC. In addition, it is found that the terrestrial input of DOC to Changjiang estuary is a typical two-stage dilution process instead of a linear diffusion process.
River-derived dissolved organic matter (DOM) influences metabolism, light attenuation, and bioavailability of metals and nutrients in coastal ecosystems. Recent work suggests that DOM concentrations in surface waters vary seasonally because different organic matter pools are mobi...
ESTIMATING DISSOLVED ORGANIC CARBON PARTITION COEFFICIENTS FOR NONIONIC ORGANIC CHEMICALS
A literature search was performed for dissolved organic carbon/water partition coefficients for nonionic chemicals (Kdoc) and Kdoc data was taken from more than sixty references. The Kdoc data were evaluated as a function of the n-octanol/water partition coefficients (Kow). A pre...
Oxidative degradation of organic acids conjugated with sulfite oxidation in flue gas desulfurization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Y.I.
Organic acid degradation conjugated with sulfite oxidation has been studied under flue gas desulfurization (EGD) conditions. The oxidative degradation constant, k/sub 12/, is defined as the ratio of organic acid degradation rate and sulfite oxidation rate after being normalized by the concentrations of organic acid and dissolved S(IV). K/sub 12/, not significantly affected by pH or dissolved oxygen, is around 10/sup -3/ in the absence of manganese or iron. However, k/sub 12/ is increased by certain transition metals such as Co, Ni, and Fe and is decreased by Mn and halides. Lower dissolved S(IV) magnified these effects. No k/sub 12/more » greater than 4 x 10/sup -3/ or smaller than 0.1 x 10/sup -3/ has been observed. A free radical mechanism was proposed to describe the kinetics: (1) sulfate free radical is the major radical responsible to the degradation of organic acid; (2) ferrous generates sulfate radical by reacting with monoxypersulfate to enhance k/sub 12/; (3) manganous consumes sulfate radical to decrease k/sub 12/; (4) dissolved S(IV) competes with ferrous for monoxypersulfate and with manganous for sulfate radical to demonstrate the effects of dissolved S(IV) on k/sub 12/. Hydroxy and sulfonated carboxylic acids degrade approximately three times slower than saturated dicarboxylic acids; while maleic acid, an unsaturated dicarboxylic acid, degraded an order of magnitude faster. A wide spectrum of degradation products of adipic acid were found, including carbon dioxide - the major product, glutaric semialdehyde - the major retained product with low manganese, glutaric acid and valeric acids - the major retained product with high manganese, lower molecular weight mono- and dicarboxylic acids, other carbonyl compounds, and hydrocarbons.« less
Geochemical drivers of organic matter decomposition in Arctic tundra soils
Herndon, Elizabeth M.; Yang, Ziming; Graham, David E.; ...
2015-12-07
Climate change is warming tundra ecosystems in the Arctic, resulting in the decomposition of previously-frozen soil organic matter (SOM) and release of carbon (C) to the atmosphere; however, the processes that control SOM decomposition and C emissions remain highly uncertain. In this study, we evaluate geochemical factors that influence anaerobic production of carbon dioxide (CO 2) and methane (CH 4) in the active layers of four ice-wedge polygons. Surface and soil pore waters were collected during the annual thaw season over a two-year period in an area containing waterlogged, low-centered polygons and well-drained, high-centered polygons. We report spatial and seasonalmore » patterns of dissolved gases in relation to the geochemical properties of Fe and organic C as determined using spectroscopic and chromatographic techniques. Iron was present as Fe(II) in soil solution near the permafrost boundary but enriched as Fe(III) in the middle of the active layer, similar to dissolved aromatic-C and organic acids. Dissolved CH 4 increased relative to dissolved CO 2 with depth and varied with soil moisture in the middle of the active layer in patterns that were positively correlated with the proportion of dissolved Fe(III) in transitional and low-centered polygon soils but negatively correlated in the drier flat- and high-centered polygons. These results suggest that microbial-mediated Fe oxidation and reduction influence respiration/fermentation of SOM and production of substrates (e.g., low-molecular-weight organic acids) for methanogenesis. As a result, we infer that geochemical differences induced by water saturation dictate microbial products of SOM decomposition, and Fe geochemistry is an important factor regulating methanogenesis in anoxic tundra soils.« less
NASA Astrophysics Data System (ADS)
Dalzell, Brent J.; Filley, Timothy R.; Harbor, Jon M.
2007-03-01
Defining the control that hydrology exerts on organic carbon (OC) export at the watershed scale is important for understanding how the source and quantity of OC in streams and rivers is influenced by climate change or by landscape drainage. To this end, molecular (lignin phenol), stable carbon isotope, and dissolved organic carbon (DOC) data were collected over a range of flow conditions to examine the influence of hydrology on annual OC export from an 850 km 2 Midwestern United States agricultural watershed located in west central Indiana. In years 2002 and 2003, modeled annual DOC loads were 19.5 and 14.1 kg ha -1yr -1, while 71% and 85%, respectively, of the total annual OC was exported in flow events occurring during less than 20% of that time. These results highlight the importance of short-duration, high-discharge events (common in smaller watersheds) in controlling annual OC export. Based on reported increases in annual stream discharge coupled with current estimates of DOC export, annual DOC loads in this watershed may have increased by up to 40% over the past 50 years. Molecular (lignin phenol) characterization of quantity and relative degradation state of terrestrial OC shows as much temporal variability of lignin parameters (in high molecular weight dissolved organic carbon) in this one watershed as that demonstrated in previously published studies of dissolved organic matter in the Mississippi and Amazon Rivers. These results suggest that hydrologic variability is at least as important in determining the nature and extent of OC export as geographic variability. Moreover, molecular and bulk stable carbon isotope data from high molecular weight dissolved organic carbon and colloidal organic carbon showed that increased stream flow from the study watershed was responsible for increased export of agriculturally derived OC. When considered in the context of results from other studies that show the importance of flood events and in-stream processing of terrestrial organic carbon, our results show how hydrologic variability in smaller watersheds can reflect landscape-scale carbon dynamics in ways that cannot necessarily be measured at the outlets of large rivers due to multiple source signals and attenuated hydrology.
Iron persistence in a distal hydrothermal plume supported by dissolved-particulate exchange
NASA Astrophysics Data System (ADS)
Fitzsimmons, Jessica N.; John, Seth G.; Marsay, Christopher M.; Hoffman, Colleen L.; Nicholas, Sarah L.; Toner, Brandy M.; German, Christopher R.; Sherrell, Robert M.
2017-02-01
Hydrothermally sourced dissolved metals have been recorded in all ocean basins. In the oceans' largest known hydrothermal plume, extending westwards across the Pacific from the Southern East Pacific Rise, dissolved iron and manganese were shown by the GEOTRACES program to be transported halfway across the Pacific. Here, we report that particulate iron and manganese in the same plume also exceed background concentrations, even 4,000 km from the vent source. Both dissolved and particulate iron deepen by more than 350 m relative to 3He--a non-reactive tracer of hydrothermal input--crossing isopycnals. Manganese shows no similar descent. Individual plume particle analyses indicate that particulate iron occurs within low-density organic matrices, consistent with its slow sinking rate of 5-10 m yr-1. Chemical speciation and isotopic composition analyses reveal that particulate iron consists of Fe(III) oxyhydroxides, whereas dissolved iron consists of nanoparticulate Fe(III) oxyhydroxides and an organically complexed iron phase. The descent of plume-dissolved iron is best explained by reversible exchange onto slowly sinking particles, probably mediated by organic compounds binding iron. We suggest that in ocean regimes with high particulate iron loadings, dissolved iron fluxes may depend on the balance between stabilization in the dissolved phase and the reversibility of exchange onto sinking particles.
Evan S. Kane; Merritt R. Turetsky; Jennifer W. Harden; A. David McGuire; James M. Waddington
2010-01-01
Boreal wetland carbon cycling is vulnerable to climate change in part because hydrology and the extent of frozen ground have strong influences on plant and microbial functions. We examined the response of dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) across an experimental manipulation of water table position (both raised and lowered water table...
Dispersion of kaolinite by dissolved organic matter from Douglas-fir roots
Philip B. Durgin; Jesse G. Chaney
1984-01-01
The organic constituents of water extracts from Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco var. menziesii) roots that cause kaolinite dispersion were investigated. The dissolved organic matter was fractionated according to molecular size and chemical characteristics into acids, neutrals, and bases of the hydrophilic and hydrophobic groups.
At contaminated sediment sites, including U.S. EPA Superfund sites, it is critical to measure water column concentrations of freely dissolved contaminants to understand the complete exposure of aquatic organisms to hydrophobic organic contaminants (HOCs). However, historically a...
ORGANIC WASTE CONTAMINATION INDICATORS IN SMALL GEORGIA PIEDMONT STREAMS
We monitored concentrations of dissolved organic carbon(DOC) and dissolved oxygen (DO), and other parameters in 17 small streams of the South Fork Broad River watershed on a monthly basis for 15 months. Here we present estimates of the amounts of organic waste input to these wate...
CHEMISTRY OF DISSOLVED ORGANIC CARBON AND ORGANIC ACIDS IN TWO STREAMS DRAINING FORESTED WATERSHEDS
The concentration, major fractions, and contribution of dissolved organic carbon (DOG) to stream chemistry were examined in two paired streams draining upland catchments in eastern Maine. oncentrations of DOC in East and West Bear Brooks were 183 +/- 73 and 169 +/- 70 umol CL-1 (...
Raw liquid waste treatment process
NASA Technical Reports Server (NTRS)
Humphrey, Marshall F. (Inventor)
1980-01-01
A raw sewage treatment process is disclosed in which substantially all the non-dissolved matter, which is suspended in the sewage water is first separated from the water, in which at least organic matter is dissolved. The non-dissolved material is pyrolyzed to form an activated carbon and ash material without the addition of any conditioning agents. The activated carbon and ash material is added to the water from which the non-dissolved matter was removed. The activated carbon and ash material absorbs organic matter and heavy metal ions, it is believed, are dissolved in the water and is thereafter supplied in a counter current flow direction and combined with the incoming raw sewage to facilitate the separation of the non-dissolved settleable materials from the sewage water. The used carbon and ash material together with the non-dissolved matter which was separated from the sewage water are pyrolyzed to form the activated carbon and ash material.
Raw Liquid Waste Treatment System and Process
NASA Technical Reports Server (NTRS)
Humphrey, M. F. (Inventor)
1974-01-01
A raw sewage treatment process is disclosed in which substantially all the non-dissolved matter, suspended in the sewage water is first separated from the water, in which at least organic matter remains dissolved. The non-dissolved material is pyrolyzed to form an activated carbon and ash material without the addition of any conditioning agents. The activated carbon and ash material is added to the water from which the non-dissolved matter was removed. The activated carbon and ash material adsorbs the organic matter dissolved in the water and is thereafter supplied in a counter flow direction and combined with the incoming raw sewage to at least facilitate the separation of the non-dissolved settleable materials from the sewage water. Carbon and ash material together with the non-dissolved matter which was separated from the sewage water are pyrolyzed to form the activated carbon and ash material.
CHROMOPHORIC DISSOLVED ORGANIC MATTER (CDOM) SOURCE CHARACTERIZATION IN THE LOUISIANA BIGHT
Chromophoric dissolved organic matter (CDOM) in the Mississippi plume region may have several distinct sources: riverine (terrestrial soils), wetland (terrestrial plants), biological production (phytoplankton, zooplankton, microbial), and sediments. Complex mixing, photodegradati...
NASA Astrophysics Data System (ADS)
Gasparovic, Blazenka; Novak, Tihana; Godrijan, Jelena; Mlakar, Marina; MAric, Daniela; Djakovac, Tamara
2017-04-01
Marine dissolved organic matter (OM) represents one of the largest active pools of organic carbon in the global carbon cycle. Oceans and seas are responsible for half of global primary production. Ocean warming caused by climate change is already starting to impact the marine life that necessary will have impact on ocean productivity. The partition of OM production by phytoplankton (major OM producer in seas and ocens) in the conditions of rising temperatures may considerably change. This has implications for the export of organic matter from the photic zone. In this study, we set out to see how annual temperature changes between 10 and 30 C in the Northern Adriatic (Mediterranean) affect production of DOM and particularly dissolved lipids and lipid classes. We have sampled at two stations being oligotrophic and mesotrophic where we expected different system reaction to temperature changes. In addition, we performed microcosm incubations covering temperature range of the NA with nutrient amendments to test whether changes in the available nutrients would reflect those of dissolved OM in the NA. We have selected to work with extracellular OM produced during growth of diatom Chaetoceros curvisetus cultures according to the criteria that genera Chaetoceros are important component of the phytoplankton in the NA and are often among bloom-forming taxa. Details on the dissolved lipid and lipid classes production as plankton responce to rising temperature will be discussed.
Peer reviewed: Characterizing aquatic dissolved organic matter
Leenheer, Jerry A.; Croué, Jean-Philippe
2003-01-01
Whether it causes aesthetic concerns such as color, taste, and odor; leads to the binding and transport of organic and inorganic contaminants; produces undesirable disinfection byproducts; provides sources and sinks for carbon; or mediates photochemical processes, the nature and properties of dissolved organic matter (DOM) in water are topics of significant environmental interest. DOM is also a major reactant in and product of biogeochemical processes in which the material serves as a carbon and energy source for biota and controls levels of dissolved oxygen, nitrogen, phosphorus, sulfur, numerous trace metals, and acidity.
Method of separating lignocellulosic material into lignin, cellulose and dissolved sugars
Black, S.K.; Hames, B.R.; Myers, M.D.
1998-03-24
A method is described for separating lignocellulosic material into (a) lignin, (b) cellulose, and (c) hemicellulose and dissolved sugars. Wood or herbaceous biomass is digested at elevated temperature in a single-phase mixture of alcohol, water and a water-immiscible organic solvent (e.g., a ketone). After digestion, the amount of water or organic solvent is adjusted so that there is phase separation. The lignin is present in the organic solvent, the cellulose is present in a solid pulp phase, and the aqueous phase includes hemicellulose and any dissolved sugars.
Method of separating lignocellulosic material into lignin, cellulose and dissolved sugars
Black, Stuart K.; Hames, Bonnie R.; Myers, Michele D.
1998-01-01
A method for separating lignocellulosic material into (a) lignin, (b) cellulose, and (c) hemicellulose and dissolved sugars. Wood or herbaceous biomass is digested at elevated temperature in a single-phase mixture of alcohol, water and a water-immiscible organic solvent (e.g., a ketone). After digestion, the amount of water or organic solvent is adjusted so that there is phase separation. The lignin is present in the organic solvent, the cellulose is present in a solid pulp phase, and the aqueous phase includes hemicellulose and any dissolved sugars.
Papageorgiou, Alexandros; Stylianou, Stylianos K; Kaffes, Pavlos; Zouboulis, Anastasios I; Voutsa, Dimitra
2017-03-01
The aim of this study was to investigate possible implications of natural and wastewater derived organic matter in river water that is subsequently used following treatment for drinking purposes. River water was subjected to lab-scale ozonation experiments under different ozone doses (0.1, 0.4, 0.8, 1.0 and 2.0 mgO 3 /mgC) and contact times (1, 3, 5, 8 and 10 min). Mixtures of river water with humic acids or wastewaters (sewage wastewater and secondary effluents) at different proportions were also ozonated. Dissolved organic carbon and biodegradable dissolved organic carbon concentrations as well as spectroscopic characteristics (UV absorbance and fluorescence intensities) of different types of dissolved organic matter and possible changes due to the ozonation treatment are presented. River water, humic substances and wastewater exhibited distinct spectroscopic characteristics that could serve for pollution source tracing. Wastewater impacted surface water results in higher formation of carbonyl compounds. However, the formation yield (μg/mgC) of wastewaters was lower than that of surface water possibly due to different composition of wastewater derived organic matter and the presence of scavengers, which may limit the oxidative efficiency of ozone. Copyright © 2016 Elsevier Ltd. All rights reserved.
Rajesh Banu, J; Ushani, U; Rajkumar, M; Naresh Kumar, R; Parthiba Karthikeyan, O
2017-12-01
Approaches to (extracellular polymeric substance) EPS removal were studied with major aim to enhance the biodegradability and sludge solubilization. In this study, a novel approach of entrapment of bacterial strain was carried out to achieve long term activity of protease secreting bacteria Exiguobacterium sp. A mild treatment of potassium hydroxide (KOH) was applied to remove EPS which was followed by entrapment under the biological pretreatment. The efficiency of Exiguobacterium was predicted through dissolvable organic and suspended solids (SS) reduction. The maximum dissolvable organic matter released was 2300mg/L with the solubilization of 23% which was obtained for sludge without EPS (SWOE). For dissolvable organic release, SWOE showed higher final methane production of 232mL/g COD at the production rate of 16.2mL/g COD.d. The SWOE pretreatment was found to be cost effective and less energy intensive beneficial in terms of energy and cost (43.9KWh and -8.2USD) when compared to sludge with EPS (SWE) pretreatment (-177.6KWh and -91.23USD). Copyright © 2017 Elsevier Ltd. All rights reserved.
Sources, behaviors and degradation of dissolved organic matter in the East China Sea
NASA Astrophysics Data System (ADS)
Chen, Yan; Yang, Gui-Peng; Liu, Li; Zhang, Peng-Yan; Leng, Wei-Song
2016-03-01
Concentrations of dissolved organic carbon (DOC), dissolved inorganic nitrogen (DIN), dissolved organic nitrogen (DON) and its major compound classes-total hydrolysable amino acids (THAA) were measured at 4 cross-shelf transects of the East China Sea in July 2011. Surface concentrations of DOC, DIN, DON and THAA at the nearshore stations were mostly in excess of those found at the offshore sites, indicating either substantial autochthonous production or allochthonous inputs from the Changjiang River. The vertical distributions of DOC, DON and THAA showed similar trends with higher values in the surface layer, whereas the elevated concentrations of DIN were observed in the bottom layer. Major constituents of THAA presented in the study area were glycine, serine, alanine, glutamic acid, aspartic acid and valine. The mole percentages of neutral amino acids increased from surface water to bottom water, whereas acidic and hydroxy amino acids decreased with the water depth. Concentrations of DOC and THAA were negatively correlated to the ΔDIN values (the difference between the real concentration and theoretical concentration), respectively, indicating the coupling relation between dissolved organic matter (DOM) remineralization and nutrient regeneration in the water column. The C/N ratios in the water column exhibited different characteristics with elevated values appearing in the surface and bottom layers. Box and whisker plots showed that both degradation index (DI) values and THAA yields displayed a decreasing trend from the surface layer to the bottom layer, implying increasing degradation with the water depth. Our data revealed that glycine and alanine increased in relative abundance with decreasing DI, while tyrosine, valine, phenylalanine and isoleucine increased with increasing DI.
NASA Astrophysics Data System (ADS)
Yamashita, Youhei; McCallister, S. Leigh; Koch, Boris P.; Gonsior, Michael; Jaffé, Rudolf
2015-06-01
Annually, rivers and inland water systems deliver a significant amount of terrestrial organic matter (OM) to the adjacent coastal ocean in both particulate and dissolved forms; however, the metabolic and biogeochemical transformations of OM during its seaward transport remains one of the least understood components of the global carbon cycle. This transfer of terrestrial carbon to marine ecosystems is crucial in maintaining trophic dynamics in coastal areas and critical in global carbon cycling. Although coastal regions have been proposed as important sinks for exported terrestrial materials, most of the global carbon cycling data, have not included fjords in their budgets. Here we present distributional patterns on the quantity and quality of dissolved OM in Fiordland National Park, New Zealand. Specifically, we describe carbon dynamics under diverse environmental settings based on dissolved organic carbon (DOC) depth profiles, oxygen concentrations, optical properties (fluorescence) and stable carbon isotopes. We illustrate a distinct change in the character of DOC in deep waters compared to surface and mid-depth waters. Our results suggest that, both, microbial reworking of terrestrially derived plant detritus and subsequent desorption of DOC from its particulate counterpart (as verified in a desorption experiment) are the main sources of the humic-like enriched DOC in the deep basins of the studied fjords. While it has been suggested that short transit times and protection of OM by mineral sorption may ultimately result in significant terrestrial carbon burial and preservation in fjords, our data suggests the existence of an additional source of terrestrial OM in the form of DOC generated in deep, fjord water.
Zamora, Celia; Dahlgren, Randy A.; Kratzer, Charles R.; Downing, Bryan D.; Russell, Ann D.; Dileanis, Peter D.; Bergamaschi, Brian A.; Phillips, Steven P.
2013-01-01
The influence of groundwater on surface-water quality in the San Joaquin River, California, was examined for a 59-mile reach from the confluence with Salt Slough to Vernalis. The primary objective of this study was to quantify the rate of groundwater discharged to the lower San Joaquin River and the contribution of nitrate and dissolved organic carbon concentrations to the river. Multiple lines of evidence from four independent approaches were used to characterize groundwater contributions of nitrogen and dissolved organic carbon. Monitoring wells (in-stream and bank wells), streambed synoptic surveys (stream water and shallow groundwater), longitudinal profile surveys by boat (continuous water-quality parameters in the stream), and modeling (MODFLOW and VS2DH) provided a combination of temporal, spatial, quantitative, and qualitative evidence of groundwater contributions to the river and the associated quality. Monitoring wells in nested clusters in the streambed (in-stream wells) and on both banks (bank wells) along the river were monitored monthly from September 2006 to January 2009. Nitrate concentrations in the bank wells ranged from less than detection—that is, less than 0.01 milligrams per liter (mg/L) as nitrogen (N)—to approximately 13 mg/L as N. Nitrate was not detected at 17 of 26 monitoring wells during the study period. Dissolved organic carbon concentrations among monitoring wells were highly variable, but they generally ranged from 1 to 4 mg/L. In a previous study, 14 bank wells were sampled once in 1988 following their original installation. With few exceptions, specific conductivity and nitrate concentrations measured in this study were virtually identical to those measured 20 years ago. Streambed synoptic measurements were made by using a temporarily installed drive-point piezometer at 113 distinct transects across the stream during 4 sampling events. Nitrate concentrations exceeded the detection limit of 0.01 mg/L as N in 5 percent of groundwater samples collected from the in-stream wells as part of the synoptic surveys. Only 7 of the 113 cross-sectional transects had nitrate concentrations greater than 1 mg/L as N. In contrast, surface waters in the San Joaquin River tended to have nitrate concentrations in the 1–3 mg/L as N range. A zone of lower oxygen (less than 2 mg/L) in the streambed could limit nitrate contributions from regional groundwater flow because nitrate can be converted to nitrogen gas within this zone. Appreciable concentrations of ammonium (average concentration was 1.92 mg/L as N, and 95th percentile was 10.34 mg/L as N) in the shallow groundwater, believed to originate from anoxic mineralization of streambed sediments, could contribute nitrogen to the overlying stream as nitrate following in-stream nitrification, however. Dissolved organic carbon concentrations were highly variable in the shallow groundwater below the river (1 to 6 ft below streambed) and generally ranged between 1 and 5 mg/L, but had maximum concentrations in the 15–25 mg/L range. The longitudinal profile surveys were not particularly useful in identifying groundwater discharge areas. However, the longitudinal approach described in this report was useful as a baseline survey of measured water-quality parameters and for identifying tributary inflows that affect surface-water concentrations of nitrate. Results of the calibrated MODFLOW model indicated that the simulated groundwater discharge rate was approximately 1.0 cubic foot per second per mile (cfs/mi), and the predominant horizontal groundwater flow direction between the deep bank wells was westward beneath the river. The modeled (VS2DH) flux values (river gain versus river loss) were calculated for the irrigation and non-irrigation season, and these fluxes were an order of magnitude less than those from MODFLOW. During the irrigation season, the average river gain was 0.11 cfs/mi, and the average river loss was −0.05 cfs/mi. During the non-irrigation season, the average river gain was 0.10 cfs/mi, and the average river loss was -0.08 cfs/mi. Information on groundwater interactions and water quality collected for this study was used to estimate loads of nitrate and dissolved organic carbon from the groundwater to the San Joaquin River. Estimated loads of dissolved inorganic nitrogen and dissolved organic carbon were calculated by using concentrations measured during four streambed synoptic surveys and the estimated groundwater discharge rate to the San Joaquin River from MODFLOW of 1 cfs/mi. The estimated groundwater loads to the San Joaquin River for dissolved inorganic nitrogen and dissolved organic carbon were 300 and 350 kilograms per day, respectively. These loads represent 9 and 7 percent, respectively, of the estimated instantaneous surface-water loads for dissolved inorganic nitrogen and dissolved organic carbon at the most downstream site, Vernalis, measured during the four streambed synoptic surveys.
NASA Technical Reports Server (NTRS)
Ono, S.; Ennyu, A.; Najjar, R. G.; Bates, N.
1998-01-01
A diagnostic model of the mean annual cycles of dissolved inorganic carbon (DIC) and oxygen below the mixed layer at the Bermuda Atlantic Time-series Study (BATS) site is presented and used to estimate organic carbon remineralization in the seasonal thermocline. The model includes lateral and vertical advection as well as vertical, diffusion. Very good agreement is found for the remineralization estimates based on oxygen and DIC. Net remineralization averaged from mid-spring to early fall is found to be a maximum between 120 and 140 in. Remineralization integrated between 100 (the compensation depth) and 250 m during this period is estimated to be about 1 mol C/sq m. This flux is consistent with independent estimates of the loss of particulate and dissolved organic carbon.
Molecular signature of organic nitrogen in septic-impacted groundwater
Arnold, William A.; Longnecker, Krista; Kroeger, Kevin D.; Kujawinski, Elizabeth B.
2014-01-01
Dissolved inorganic and organic nitrogen levels are elevated in aquatic systems due to anthropogenic activities. Dissolved organic nitrogen (DON) arises from various sources, and its impact could be more clearly constrained if specific sources were identified and if the molecular-level composition of DON were better understood. In this work, the pharmaceutical carbamazepine was used to identify septic-impacted groundwater in a coastal watershed. Using ultrahigh resolution mass spectrometry data, the nitrogen-containing features of the dissolved organic matter in septic-impacted and non-impacted samples were compared. The septic-impacted groundwater samples have a larger abundance of nitrogen-containing formulas. Impacted samples have additional DON features in the regions ascribed as ‘protein-like’ and ‘lipid-like’ in van Krevelen space and have more intense nitrogen-containing features in a specific region of a carbon versus mass plot. These features are potential indicators of dissolved organic nitrogen arising from septic effluents, and this work suggests that ultrahigh resolution mass spectrometry is a valuable tool to identify and characterize sources of DON.
Linking LiDAR with streamwater biogeochemistry in coastal temperate rainforest watersheds
Jason B. Fellman; Brian Buma; Eran Hood; Richard T. Edwards; David V. D’Amore
2017-01-01
The goal of this study was to use watershed characteristics derived from light detection and ranging (LiDAR) data to predict stream biogeochemistry in Perhumid Coastal Temperate Rainforest (PCTR) watersheds. Over a 2-day period, we sampled 37 streams for concentrations of dissolved C, N, P, major cations, and measures of dissolved organic matter quality (specific...
Hu, Wenchao; Wu, Chunde
2016-01-01
The feasibility of using enhanced coagulation, which combined polyaluminum chloride (PAC) with diatomite for improving coagulation performance and reducing the residual aluminum (Al), was discussed. The effects of PAC and diatomite dosage on the coagulation performance and residual Al were mainly investigated. Results demonstrated that the removal efficiencies of turbidity, dissolved organic carbon (DOC), and UV254 were significantly improved by the enhanced coagulation, compared with PAC coagulation alone. Meaningfully, the five forms of residual Al (total Al (TAl), total dissolved Al (TDAl), dissolved organic Al (DOAl), dissolved monomeric Al (DMAl), and dissolved organic monomeric Al (DOMAl)) all had different degrees of reduction in the presence of diatomite and achieved the lowest concentrations (0.185, 0.06, 0.053, 0.014, and 0 mg L(-1), respectively) at a PAC dose of 15 mg L(-1) and diatomite dose of 40 mg L(-1). In addition, when PAC was used as coagulant, the majority of residual Al existed in dissolved form (about 31.14-70.16%), and the content of DOMAl was small in the DMAl.
Robert A. Slesak; Stephen H. Schoenholtz; Timothy B. Harrington; Brian D. Strahm
2009-01-01
We examined the effect of logging-debris retention and competing-vegetation control (CCC, initial or annual applications) on dissolved organic carbon (DOC), dissolved organic nitrogen, and nitrate-N leaching to determine the relative potential of these practices to contribute to soil C and N loss at two contrasting sites. Annual CVC resulted in higher soil water...
Bottino, Flávia; Cunha-Santino, Marcela Bianchessi; Bianchini, Irineu
2016-01-01
Considering the importance of lignocellulose macrophyte-derived for the energy flux in aquatic ecosystems and the nutrient concentrations as a function of force which influences the decomposition process, this study aims to relate the enzymatic activity and lignocellulose hydrolysis in different trophic statuses. Water samples and two macrophyte species were collected from the littoral zone of a subtropical Brazilian Reservoir. A lignocellulosic matrix was obtained using aqueous extraction of dried plant material (≈40°C). Incubations for decomposition of the lignocellulosic matrix were prepared using lignocelluloses, inoculums and filtered water simulating different trophic statuses with the same N:P ratio. The particulate organic carbon and dissolved organic carbon (POC and DOC, respectively) were quantified, the cellulase enzymatic activity was measured by releasing reducing sugars and immobilized carbon was analyzed by filtration. During the cellulose degradation indicated by the cellulase activity, the dissolved organic carbon daily rate and enzyme activity increased. It was related to a fast hydrolysable fraction of cellulose that contributed to short-term carbon immobilization (ca. 10 days). After approximately 20 days, the dissolved organic carbon and enzyme activity were inversely correlated suggesting that the respiration of microorganisms was responsible for carbon mineralization. Cellulose was an important resource in low nutrient conditions (oligotrophic). However, the detritus quality played a major role in the lignocelluloses degradation (i.e., enzyme activity) and carbon release. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.
Figueroa, D; Rowe, O F; Paczkowska, J; Legrand, C; Andersson, A
2016-05-01
Heterotrophic bacteria are, in many aquatic systems, reliant on autochthonous organic carbon as their energy source. One exception is low-productive humic lakes, where allochthonous dissolved organic matter (ADOM) is the major driver. We hypothesized that bacterial production (BP) is similarly regulated in subarctic estuaries that receive large amounts of riverine material. BP and potential explanatory factors were measured during May-August 2011 in the subarctic Råne Estuary, northern Sweden. The highest BP was observed in spring, concomitant with the spring river-flush and the lowest rates occurred during summer when primary production (PP) peaked. PLS correlations showed that ∼60% of the BP variation was explained by different ADOM components, measured as humic substances, dissolved organic carbon (DOC) and coloured dissolved organic matter (CDOM). On average, BP was threefold higher than PP. The bioavailability of allochthonous dissolved organic carbon (ADOC) exhibited large spatial and temporal variation; however, the average value was low, ∼2%. Bioassay analysis showed that BP in the near-shore area was potentially carbon limited early in the season, while BP at seaward stations was more commonly limited by nitrogen-phosphorus. Nevertheless, the bioassay indicated that ADOC could contribute significantly to the in situ BP, ∼60%. We conclude that ADOM is a regulator of BP in the studied estuary. Thus, projected climate-induced increases in river discharge suggest that BP will increase in subarctic coastal areas during the coming century.
The sorption kinetics and isotherms of sulfamethoxazole with polyethylene microplastics.
Xu, Baile; Liu, Fei; Brookes, Philip C; Xu, Jianming
2018-06-01
Microplastics and sulfamethoxazole coexist ubiquitously in the marine environment, and microplastics tend to sorb organic pollutants from the surrounding environment. Here, the sorption kinetics and isotherms of sulfamethoxazole on polyethylene (PE) microplastics closely fitted a pseudo-second-order model (R 2 = 0.98) and linear model (R 2 = 0.99), respectively, indicating that the sorption process was partition-dominant interaction. The main binding mechanism was possibly the van der Waals interaction for hydrophilic sulfamethoxazole onto hydrophobic PE microplastics. The effects of pH, dissolved organic matter and salinity on sorption behavior were also studied. The sorption behavior of sulfamethoxazole on PE microplastics was not significantly influenced by pH and salinity, probably because the electrostatic repulsion played a minor role. In addition, the negligible effect of dissolved organic matter was attributed to the greater affinity of sulfamethoxazole to PE microplastics than to dissolved organic matter. Our results demonstrated that PE microplastics may serve as a carrier for sulfamethoxazole in the aquatic environment. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Shah Walter, S. R.; Jaekel, U.; Huber, J. A.; Dittmar, T.; Girguis, P. R.
2015-12-01
On the western flank of the Mid-Atlantic Ridge, oxic seawater from the deep ocean is downwelled into the basaltic crust, supplying the crustal aquifer with an initial inoculum of organic matter and electron acceptors. Studies have shown that fluids circulating within the crust are minimally altered from original seawater, making this subsurface environment a unique natural experiment in which the fate of marine organic matter and the limitations of microbial adaptability in the context of reduced carbon supply can be examined. To make the subsurface crustal aquifer accessible, two CORK (Circulation Obviation Retrofit Kit) observatories have been installed at North Pond, a sediment-filled depression beneath the oligotrophic Sargasso Sea. Radiocarbon analysis of dissolved inorganic (DIC) and organic carbon (DOC) in samples recovered from these observatories show uncoupled aging between DOC and DIC with Δ14C values of DOC as low as -933‰ despite isolation from the open ocean for, at most, 2,100 years. This extreme value is part of a general trend of decreasing DOC δ13C and Δ14C values with increasing incubation time within the aquifer. Combined with reduced concentrations of DOC, our results argue for selective microbial oxidation of the youngest, most 13C-enriched components of downwelled DOC, possibly identifying these as characteristics of the more bioavailable fractions of deep-ocean dissolved organic matter. They also suggest that microbial oxidation during low-temperature hydrothermal circulation could be an important sink for aged marine dissolved organic matter.
Response of soil dissolved organic matter to microplastic addition in Chinese loess soil.
Liu, Hongfei; Yang, Xiaomei; Liu, Guobin; Liang, Chutao; Xue, Sha; Chen, Hao; Ritsema, Coen J; Geissen, Violette
2017-10-01
Plastic debris is accumulating in agricultural land due to the increased use of plastic mulches, which is causing serious environmental problems, especially for biochemical and physical properties of the soil. Dissolved organic matter (DOM) plays a central role in driving soil biogeochemistry, but little information is available on the effects of plastic residues, especially microplastic, on soil DOM. We conducted a soil-incubation experiment in a climate-controlled chamber with three levels of microplastic added to loess soil collected from the Loess Plateau in China: 0% (control, CK), 7% (M1) and 28% (M2) (w/w). We analysed the soil contents of dissolved organic carbon (DOC), dissolved organic nitrogen (DON), NH 4 + , NO 3 - , dissolved organic phosphorus (DOP), and PO 4 3- and the activities of fluorescein diacetate hydrolase (FDAse) and phenol oxidase. The higher level of microplastic addition significantly increased the nutrient contents of the DOM solution. The lower level of addition had no significant effect on the DOM solution during the first seven days, but the rate of DOM decomposition decreased in M1 between days 7 and 30, which increased the nutrient contents. The microplastic facilitated the accumulation of high-molecular-weight humic-like material between days 7 and 30. The DOM solutions were mainly comprised of high-molecular-weight humic-like material in CK and M1 and of high-molecular-weight humic-like material and tyrosine-like material in M2. The Microplastic stimulated the activities of both enzymes. Microplastic addition thus stimulated enzymatic activity, activated pools of organic C, N, and P, and was beneficial for the accumulation of dissolved organic C, N and P. Copyright © 2017 Elsevier Ltd. All rights reserved.
Qi, Jing; Lan, Huachun; Liu, Ruiping; Miao, Shiyu; Liu, Huijuan; Qu, Jiuhui
2016-10-01
The prechlorination-induced algal organic matter (AOM) released from Microcystis aeruginosa (M. aeruginosa) cells has been reported to serve as a source of precursors for chlorinated disinfection byproducts (DBPs). However, previous studies have mainly focused on the precursors either extracted directly from the cell suspension or derived immediately after algal suspension prechlorination. This study aims to investigate the impacts of water transportation time after algal suspension prechlorination on cell integrity, AOM release, and DBP formation during the dissolved phase chlorination. The damage to cell integrity after prechlorination was indicated to depend not only on chlorine dose but also on transportation time. The highest dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) values were observed at 2 mg/L chlorine preoxidation before transportation, but were obtained at 0.4 mg/L chlorine after 480-min simulated transportation. The variation of DON with transportation time was indicated to be mainly influenced by the small molecular weight nitrogenous organic compounds, such as amino acids. Additionally, formation of the corresponding chlorinated carbonaceous disinfection byproducts (C-DBPs) and nitrogenous disinfection byproducts (N-DBPs) during the dissolved phase chlorination showed the same variation tendency as DOC and DON respectively. The highest C-DBP (98.4 μg/L) and N-DBP (5.5 μg/L) values were obtained at 0.4 mg/L chlorine preoxidation after 480-min simulated transportation. Therefore, when prechlorination is applied for algae-laden water pretreatment, not only chlorine dose but also transportation time needs to be considered with regard to their effects on cell integrity, AOM release, and chlorinated DBP formation. Copyright © 2016. Published by Elsevier Ltd.
At contaminated sediment sites, including U.S. EPA Superfund sites, it is critical to measure water column concentrations of freely dissolved contaminants to understand the complete exposure of aquatic organisms to hydrophobic organic contaminants (HOCs). Historically acquiring ...
At contaminated sediment sites, including U.S. EPA Superfund sites, it is critical to measure water column concentrations of freely dissolved contaminants to understand the complete exposure of aquatic organisms to hydrophobic organic contaminants (HOCs). Historically, acquiring...
Eighteen Dutch soils were extracted in aqueous solutions at varying pH. Extracts were analyzed for Cd, Cu, Ni, Pb, and Zn by ICP-AES. Extract dissolved organic carbon (DOC) was fractionated into three operationally defined fractions: hydrophilic acids (Hyd), fulvic acids (FA), an...
Hulatt, Chris J; Thomas, David N
2010-11-01
Microalgae are considered to be a potential alternative to terrestrial crops for bio-energy production due to their relatively high productivity per unit area of land. In this work we examined the amount of dissolved organic matter exuded by algal cells cultured in photobioreactors, to examine whether a significant fraction of the photoassimilated biomass could potentially be lost from the harvestable biomass. We found that the mean maximum amount of dissolved organic carbon (DOC) released measured 6.4% and 17.3% of the total organic carbon in cultures of Chlorellavulgaris and Dunaliella tertiolecta, respectively. This DOM in turn supported a significant growth of bacterial biomass, representing a further loss of the algal assimilated carbon. The release of these levels of DOC indicates that a significant fraction of the photosynthetically fixed organic matter could be lost into the surrounding water, suggesting that the actual biomass yield per hectare for industrial purposes could be somewhat less than expected. A simple and inexpensive optical technique, based on chromophoric dissolved organic matter (CDOM) measurements, to monitor such losses in commercial PBRs is discussed.
Bird, Susan M.; Fram, Miranda S.; Crepeau, Kathryn L.
2003-01-01
An analytical method has been developed for the determination of dissolved organic carbon concentration in water samples. This method includes the results of the tests used to validate the method and the quality-control practices used for dissolved organic carbon analysis. Prior to analysis, water samples are filtered to remove suspended particulate matter. A Shimadzu TOC-5000A Total Organic Carbon Analyzer in the nonpurgeable organic carbon mode is used to analyze the samples by high temperature catalytic oxidation. The analysis usually is completed within 48 hours of sample collection. The laboratory reporting level is 0.22 milligrams per liter.
NASA Astrophysics Data System (ADS)
Cherukuru, Nagur; Ford, Phillip W.; Matear, Richard J.; Oubelkheir, Kadija; Clementson, Lesley A.; Suber, Ken; Steven, Andrew D. L.
2016-10-01
Dissolved Organic Carbon (DOC) is an important component in the global carbon cycle. It also plays an important role in influencing the coastal ocean biogeochemical (BGC) cycles and light environment. Studies focussing on DOC dynamics in coastal waters are data constrained due to the high costs associated with in situ water sampling campaigns. Satellite optical remote sensing has the potential to provide continuous, cost-effective DOC estimates. In this study we used a bio-optics dataset collected in turbid coastal waters of Moreton Bay (MB), Australia, during 2011 to develop a remote sensing algorithm to estimate DOC. This dataset includes data from flood and non-flood conditions. In MB, DOC concentration varied over a wide range (20-520 μM C) and had a good correlation (R2 = 0.78) with absorption due to coloured dissolved organic matter (CDOM) and remote sensing reflectance. Using this data set we developed an empirical algorithm to derive DOC concentrations from the ratio of Rrs(412)/Rrs(488) and tested it with independent datasets. In this study, we demonstrate the ability to estimate DOC using remotely sensed optical observations in turbid coastal waters.
Li, Siqi; Zheng, Xunhua; Liu, Chunyan; Yao, Zhisheng; Zhang, Wei; Han, Shenghui
2018-08-01
Quantifications of soil dissolvable organic carbon concentrations, together with other relevant variables, are needed to understand the carbon biogeochemistry of terrestrial ecosystems. Soil dissolvable organic carbon can generally be grouped into two incomparable categories. One is soil extractable organic carbon (EOC), which is measured by extracting with an aqueous extractant (distilled water or a salt solution). The other is soil dissolved organic carbon (DOC), which is measured by sampling soil water using tension-free lysimeters or tension samplers. The influences of observation methods, natural factors and management practices on the measured concentrations, which ranged from 2.5-3970 (mean: 69) mg kg -1 of EOC and 0.4-200 (mean: 12) mg L -1 of DOC, were investigated through a meta-analysis. The observation methods (e.g., extractant, extractant-to-soil ratio and pre-treatment) had significant effects on EOC concentrations. The most significant divergence (approximately 109%) occurred especially at the extractant of potassium sulfate (K 2 SO 4 ) solutions compared to distilled water. As EOC concentrations were significantly different (approximately 47%) between non-cultivated and cultivated soils, they were more suitable than DOC concentrations for assessing the influence of land use on soil dissolvable organic carbon levels. While season did not significantly affect EOC concentrations, DOC concentrations showed significant differences (approximately 50%) in summer and autumn compared to spring. For management practices, applications of crop residues and nitrogen fertilizers showed positive effects (approximately 23% to 91%) on soil EOC concentrations, while tillage displayed negative effects (approximately -17%), compared to no straw, no nitrogen fertilizer and no tillage. Compared to no nitrogen, applications of synthetic nitrogen also appeared to significantly enhance DOC concentrations (approximately 32%). However, further studies are needed in the future to confirm/investigate the effects of ecosystem management practices using standardized EOC measurement protocols or more DOC cases of field experiments. Copyright © 2018 Elsevier B.V. All rights reserved.
Dissolved Organic Carbon Mobilisation in a Groundwater System Stressed by Pumping
Graham, P. W.; Baker, A.; Andersen, M. S.
2015-01-01
The concentration and flux of organic carbon in aquifers is influenced by recharge and abstraction, and surface and subsurface processing. In this study groundwater was abstracted from a shallow fractured rock aquifer and dissolved organic carbon (DOC) was measured in observation bores at different distances from the abstraction bore. Groundwater abstraction at rates exceeding the aquifers yield resulted in increased DOC concentration up to 3,500 percent of initial concentrations. Potential sources of this increased DOC were determined using optical fluorescence and absorbance analysis. Groundwater fluorescent dissolved organic material (FDOM) were found to be a combination of terrestrial-derived humic material and microbial or protein sourced material. Relative molecular weight of FDOM within four metres of the abstraction well increased during the experiment, while the relative molecular weight of FDOM between four and ten metres from the abstraction well decreased. When the aquifer is not being pumped, DOC mobilisation in the aquifer is low. We hypothesise that the physical shear stress on aquifer materials caused by intense abstraction significantly increases the temporary release of DOC from sloughing of biofilms and release of otherwise bound colloidal and sedimentary organic carbon (SOC). PMID:26691238
Sipler, Rachel E; Kellogg, Colleen T E; Connelly, Tara L; Roberts, Quinn N; Yager, Patricia L; Bronk, Deborah A
2017-01-01
Warming at nearly twice the global rate, higher than average air temperatures are the new 'normal' for Arctic ecosystems. This rise in temperature has triggered hydrological and geochemical changes that increasingly release carbon-rich water into the coastal ocean via increased riverine discharge, coastal erosion, and the thawing of the semi-permanent permafrost ubiquitous in the region. To determine the biogeochemical impacts of terrestrially derived dissolved organic matter (tDOM) on marine ecosystems we compared the nutrient stocks and bacterial communities present under ice-covered and ice-free conditions, assessed the lability of Arctic tDOM to coastal microbial communities from the Chukchi Sea, and identified bacterial taxa that respond to rapid increases in tDOM. Once thought to be predominantly refractory, we found that ∼7% of dissolved organic carbon and ∼38% of dissolved organic nitrogen from tDOM was bioavailable to receiving marine microbial communities on short 4 - 6 day time scales. The addition of tDOM shifted bacterial community structure toward more copiotrophic taxa and away from more oligotrophic taxa. Although no single order was found to respond universally (positively or negatively) to the tDOM addition, this study identified 20 indicator species as possible sentinels for increased tDOM. These data suggest the true ecological impact of tDOM will be widespread across many bacterial taxa and that shifts in coastal microbial community composition should be anticipated.
Interpretation of the coastal zone color scanner signature of the Orinoco River plume
NASA Technical Reports Server (NTRS)
Hochman, Herschel T.; Mueller-Karger, F. E.; Walsh, John J.
1994-01-01
The Caribbean Sea is an area that traditionally has been considered oligotrophic, even though the Orinoco River contributes large quantities of fresh water, nutrients, and other dissolved material to this region during the wet boreal (fall) season. Little is known about the impact of this seasonal river plume, which extends from Venezuela to Puetro Rico shortly after maximum discharge. Here, we present results from a study of the bio-optical characteristics of the Orinoco River plume during the rainy season. The objective was to determine whether the coastal zone color scanner (CZCS) and the follow-on sea-viewing wide-field-of-view sensor (SeaWiFS) satellite instrument can be used to assess the concentrations of substances in large river plumes. Recent in situ shipboard measurements were compared to values from representative historical CZCS images using established bio-optical models. Our goal was to deconvolve the signatures of colored dissolved organic carbon and phytoplankton pigments within satellite images of the Orinoco River plume. We conclude that the models may be used for case 2 waters and that as much as 50 percent of the remotely sensored chlorophyll biomass within the plume is an artifact due to the presence of dissolved organic carbon. Dissolved organic carbon originates from a number of sources, including decay of dead organisms, humic materials from the soil, and gelbstoff.
Fu, Heyun; Wei, Chenhui; Qu, Xiaolei; Li, Hui; Zhu, Dongqiang
2018-01-01
Dissolved black carbon (DBC), the soluble fraction of black carbon (BC), is an important constituent of dissolved organic matter pool. However, little is known about the binding interactions between hydrophobic organic contaminants (HOCs) and DBC and their significance in the fate process. This study determined the binding ability of DBC released from rice-derived BC for a series of apolar HOCs, including four polycyclic aromatic hydrocarbons and four chlorinated benzenes, using batch sorption and solubility enhancement techniques. Bulk BC and a dissolved soil humic acid (DSHA) were included as benchmark sorbents. The organic carbon-normalized sorption coefficient of phenanthrene to DBC was slightly lower than bulk BC, but was over ten folds higher than DSHA. Consistently, DBC was more effective than DSHA in enhancing the apparent water solubility of the tested HOCs, and the enhancement positively correlated with solute n-octanol-water partition coefficient, indicating the predominance of hydrophobic partition. The much higher binding ability of DBC relative to DSHA was mainly attributed to its higher tendency to form pseudomicellar structures as supported by the fluorescence quenching and the pH-edge data. Our findings suggest that DBC might play a significant role in the environmental fate and transport of HOCs as both sorbent and carrier. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dynamics of dissolved organic carbon in a stream during a quarter century of forest succession
Judy L. Meyer; Jackson Webster; Jennifer Knoepp; E.F. Benfield
2014-01-01
Dissolved organic carbon (DOC) is a heterogeneous mixture of compounds that makes up a large fraction of the organic matter transported in streams. It plays a significant role in many ecosystems. Riverine DOC links organic carbon cycles of continental and oceanic ecosystems. It is a significant trophic resource in stream food webs. DOC imparts color to lakes,...
P. Charles Goebel; Kurt S. Pregitzer; Brain J. Palik
2003-01-01
We quantified large wood loadings and seasonal concentrations of particulate organic matter (POM) and dissolved organic carbon (DOC) in three different geomonghic zones (each with unique hydrogeomorphic characteristics) of a pristine, old-growth northern hardwood watershed. The highest large wood dam loadings were in the high-gradient, bedrock controlled geomorphic...
Chabauty, Florian; Pot, Valérie; Bourdat-Deschamps, Marjolaine; Bernet, Nathalie; Labat, Christophe; Benoit, Pierre
2016-04-01
Compost amendment on agricultural soil is a current practice to compensate the loss of organic matter. As a consequence, dissolved organic carbon concentration in soil leachates can be increased and potentially modify the transport of other solutes. This study aims to characterize the processes controlling the mobility of dissolved organic matter (DOM) in deep soil layers and their potential impacts on the leaching of organic contaminants (pesticides and pharmaceutical compounds) potentially present in cultivated soils receiving organic waste composts. We sampled undisturbed soil cores in the illuviated horizon (60-90 cm depth) of an Albeluvisol. Percolation experiments were made in presence and absence of DOM with two different pesticides, isoproturon and epoxiconazole, and two pharmaceutical compounds, ibuprofen and sulfamethoxazole. Two types of DOM were extracted from two different soil surface horizons: one sampled in a plot receiving a co-compost of green wastes and sewage sludge applied once every 2 years since 1998 and one sampled in an unamended plot. Results show that DOM behaved as a highly reactive solute, which was continuously generated within the soil columns during flow and increased after flow interruption. DOM significantly increased the mobility of bromide and all pollutants, but the effects differed according the hydrophobic and the ionic character of the molecules. However, no clear effects of the origin of DOM on the mobility of the different contaminants were observed.
Linlin, Wu; Xuan, Zhao; Meng, Zhang
2010-01-01
Water shortage leads to increasing attention to artificial groundwater recharge by reclaimed water. An injection well is the most common recharge approach. In this paper, a new kind of integrated technology-short-term vadose soil treatment followed by nanofiltration-is recommended as pretreatment for artificial groundwater recharge by an injection well. Laboratory-scale experiments demonstrate that the short-term vadose soil can remove approximately 30% of the total dissolved organic carbon (DOC) content and 40% of dissolved organic matter with a molecular weight less than 1 kDa. As a compensatory process of soil treatment, nanofiltration offers a favorable desalination and additional organics removal. The removal efficiencies for total dissolved solids and conductivity amount to 45 and 48%, respectively. The residual DOC in the final effluent is below 1.0 mg/L. In addition, short-term vadose soil offers effective elimination of aromatic protein-like and polysaccharide-like substances, which are detected as components of the membrane foulant.
Zawieja, Iwona; Lidia, Wolny; Marta, Próba
2017-07-01
Submission of excess sludge initial disintegration process significantly affects the efficiency of anaerobic stabilization process. Expression of increasing the concentration of organic matter in dissolved form is to increase sludge disintegration. As a result of chemical modification is an increase of the chemical oxygen demand and the concentration of volatile fatty acids. The aim of this study was to determine the impact of the disintegration process with selected chemical reagents to increase the concentration of organic substances in dissolved form. The process of chemical disintegration of excess sludge was treated using the following reagents: Mg(OH) 2 , Ca(OH) 2 , HCl, H 2 SO 4 , H 2 O 2 . The modification was carried out at ambient temperature for 2, 6 and 24h. During sludge disintegration it was noticed the growth of indicators values that confirmed the susceptibility of prepared sludge to biodegradation. Copyright © 2017 Elsevier Inc. All rights reserved.
Effect of Pre-ozonation on Haloacetic Acids Formation in Ganga River Water at Kanpur, India
NASA Astrophysics Data System (ADS)
Naladala, Nagasrinivasa Rao; Singh, Rambabu; Katiyar, Kumud Lata Devi; Bose, Purnendu; Dutta, Venkatesh
2017-11-01
Almost all natural water bodies which are considered to be sustainable sources of drinking water contain organic matter in dissolved form and pathogens. This dissolved organic matter and pathogens cannot be removed effectively through traditional filtering processes in drinking water treatment plants. Chlorination of such water for disinfection results in large amounts of disinfection by-products (DBPs), mainly trihalomethanes and haloacetic acids (HAAs), which showed many health effects like cancer and reproductive problems in lab animals and in human beings as well. Complete removal of dissolved organic carbon (DOC), which is a precursor compound for HAAs formation, is impossible from a practical point of view; hence, it will be better if DOC activity towards DBPs formation can be reduced via some process. The present article describes the process of pre-ozonating post-coagulated Ganga River water at Kanpur in a continuous flow mode and its effect on HAAs formation. Nearly 58% reduction in HAAs formation was observed during this study at higher doses of ozone.
NASA Astrophysics Data System (ADS)
Detweiler, D. J.; Loh, A. N.
2016-02-01
Spartina alterniflora salt marshes are among the most productive and biogeochemically active ecosystems on Earth. While they have been shown to be sources of dissolved organic carbon (DOC) and nutrient export to the coastal ocean via tidal processes, it has not been well quantified experimentally. The purpose of this study was to quantify DOC and nutrient fluxes from a fringing S. alterniflora salt marsh in North Carolina. The experiment was conducted using in situ benthic microcosm chambers filled with seawater during a flooding tide; the chambers were then plugged, and samples were collected during an ebbing tide over the course of 270 minutes while simulating light and dark conditions. Water samples were filtered and analyzed for DOC and nutrient concentrations over time and used to calculate fluxes from vegetated (S. alterniflora) and non-vegetated marsh sediments. Preliminary daily flux calculations show that fluxes from vegetated sediments have a higher magnitude when compared to fluxes from non-vegetated sediments. Daily flux calculations also suggest that vegetated sediments act as a DOC source while non-vegetated sediments act as a DOC sink. Additional flux data for dissolved inorganic and organic nitrogen (DIN, DON) and dissolved inorganic and organic phosphorus (DIP, DOP) as well as marsh sediment characterization will also be presented. Ultimately, these data will provide seasonal daily flux calculations for S. alterniflora salt marshes and insight as to how changing environmental conditions such as wetland modification, wetland destruction, nutrient input, and climate change are affecting coastal biogeochemical cycles.
Production of fluorescent dissolved organic matter in Arctic Ocean sediments.
Chen, Meilian; Kim, Ji-Hoon; Nam, Seung-Il; Niessen, Frank; Hong, Wei-Li; Kang, Moo-Hee; Hur, Jin
2016-12-16
Little is known about the production of fluorescent dissolved organic matter (FDOM) in the anoxic oceanic sediments. In this study, sediment pore waters were sampled from four different sites in the Chukchi-East Siberian Seas area to examine the bulk dissolved organic carbon (DOC) and their optical properties. The production of FDOM, coupled with the increase of nutrients, was observed above the sulfate-methane-transition-zone (SMTZ). The presence of FDOM was concurrent with sulfate reduction and increased alkalinity (R 2 > 0.96, p < 0.0001), suggesting a link to organic matter degradation. This inference was supported by the positive correlation (R 2 > 0.95, p < 0.0001) between the net production of FDOM and the modeled degradation rates of particulate organic carbon sulfate reduction. The production of FDOM was more pronounced in a shallow shelf site S1 with a total net production ranging from 17.9 to 62.3 RU for different FDOM components above the SMTZ depth of ca. 4.1 mbsf, which presumably underwent more accumulation of particulate organic matter than the other three deeper sites. The sediments were generally found to be the sources of CDOM and FDOM to the overlying water column, unearthing a channel of generally bio-refractory and pre-aged DOM to the oceans.
Production of fluorescent dissolved organic matter in Arctic Ocean sediments
NASA Astrophysics Data System (ADS)
Chen, Meilian; Kim, Ji-Hoon; Nam, Seung-Il; Niessen, Frank; Hong, Wei-Li; Kang, Moo-Hee; Hur, Jin
2016-12-01
Little is known about the production of fluorescent dissolved organic matter (FDOM) in the anoxic oceanic sediments. In this study, sediment pore waters were sampled from four different sites in the Chukchi-East Siberian Seas area to examine the bulk dissolved organic carbon (DOC) and their optical properties. The production of FDOM, coupled with the increase of nutrients, was observed above the sulfate-methane-transition-zone (SMTZ). The presence of FDOM was concurrent with sulfate reduction and increased alkalinity (R2 > 0.96, p < 0.0001), suggesting a link to organic matter degradation. This inference was supported by the positive correlation (R2 > 0.95, p < 0.0001) between the net production of FDOM and the modeled degradation rates of particulate organic carbon sulfate reduction. The production of FDOM was more pronounced in a shallow shelf site S1 with a total net production ranging from 17.9 to 62.3 RU for different FDOM components above the SMTZ depth of ca. 4.1 mbsf, which presumably underwent more accumulation of particulate organic matter than the other three deeper sites. The sediments were generally found to be the sources of CDOM and FDOM to the overlying water column, unearthing a channel of generally bio-refractory and pre-aged DOM to the oceans.
Production of fluorescent dissolved organic matter in Arctic Ocean sediments
Chen, Meilian; Kim, Ji-Hoon; Nam, Seung-Il; Niessen, Frank; Hong, Wei-Li; Kang, Moo-Hee; Hur, Jin
2016-01-01
Little is known about the production of fluorescent dissolved organic matter (FDOM) in the anoxic oceanic sediments. In this study, sediment pore waters were sampled from four different sites in the Chukchi-East Siberian Seas area to examine the bulk dissolved organic carbon (DOC) and their optical properties. The production of FDOM, coupled with the increase of nutrients, was observed above the sulfate-methane-transition-zone (SMTZ). The presence of FDOM was concurrent with sulfate reduction and increased alkalinity (R2 > 0.96, p < 0.0001), suggesting a link to organic matter degradation. This inference was supported by the positive correlation (R2 > 0.95, p < 0.0001) between the net production of FDOM and the modeled degradation rates of particulate organic carbon sulfate reduction. The production of FDOM was more pronounced in a shallow shelf site S1 with a total net production ranging from 17.9 to 62.3 RU for different FDOM components above the SMTZ depth of ca. 4.1 mbsf, which presumably underwent more accumulation of particulate organic matter than the other three deeper sites. The sediments were generally found to be the sources of CDOM and FDOM to the overlying water column, unearthing a channel of generally bio-refractory and pre-aged DOM to the oceans. PMID:27982085
DISSOLVED ORGANIC CARBON TRENDS RESULTING FROM CHANGES IN ATMOSPHERIC DEPOSITION CHEMISTRY
Several hypotheses have been proposed to explain recent, widespread increases in concentrations of dissolved organic carbon (DOC) in the surface waters of glaciated landscapes across eastern North America and northern and central Europe. Some invoke anthropogenic forcing through ...
PHOTOCHEMICALLY-INDUCED TRANSFORMATIONS OF DISSOLVED ORGANIC MATTER IN RIVERINE WATERS
We demonstrated that exposure of riverine water to natural sunlight initiated degradation and corresponding alteration to the stable carbon isotope ratio and biochemical composition of the associated dissolved organic carbon (DOC). Water samples were collected from two distinct ...
NASA Astrophysics Data System (ADS)
Wang, Deli; Xia, Weiwei; Lu, Shuimiao; Wang, Guizhi; Liu, Qian; Moore, Willard S.; Arthur Chen, Chen-Tung
2016-01-01
This study examined dissolved Mo and sedimentary Mo along with hydrochemical parameters in the western Taiwan Strait (WTS) in May and August 2012. The results demonstrate that dissolved Mo could be depleted of as high as 10-20 nM during our May sampling period when the nutrient-enriched Min-Zhe coastal current ceased and spring blooms developed. The negative correlation between Chl-a and dissolved Mo suggests the possible involvement of high algal productivity in removing dissolved Mo out of the water column. Specific oceanographic settings (little currents) permitted a high sedimentary enrichment of Mo (>6 µg/g Mo) within the highly productive waters outside the Jiulong River mouth. Possibly, the high algal productivities and consequent organic matter sinks provide a pathway of Mo burial from water columns into sediments. Dissolved Mo was relatively high in groundwater samples, but we observed that submarine groundwater discharges (SGDs) only contributed to a relatively small percentage of the total dissolved Mo pool in WTS. It is probably attributable to the immediate removal of SGD-released Mo ions via adsorption onto newly formed Mn oxides once exposed to oxygenated seawater, followed by an elevated sedimentary Mo accumulation near the SGDs (˜5 µg/g). In addition to metal oxide particle scavenging and sulfide precipitation, we estimated that biological uptake along with Mo adsorption onto organic matter carriers could finally provide more than 10% of the annual sedimentary Mo accumulation in WTS.
Retenation of soluble organic nutrients by a forested ecosystem
R.G. Qualls; B.L. Haines; Wayne T. Swank; S.W. Tyler
2002-01-01
We document an example of a forested watershed at the Coweeta Hydrologic Laboratory with an extraordinary tendency to retain dissolved organic matter (DOM) generated in large quantities within the ecosystem. Our objectives were to determine fluxes of dissolved organic C, N, and P (DOC,D ON, DOP, respectively), in water draining through each stratum of the ecosystem and...
USDA-ARS?s Scientific Manuscript database
Interaction and coagulation of plant-derived dissolved organic matter (DOM) by metal cations are important biogeochemical processes of organic matter in lake systems. Thus, coagulation and fractionation of plant-derived DOM by di- and tri-valent Ca, Al, and Fe ions were investigated. Metal ion-induc...
Tracy N. Wiegner; Randee L. Tubal; Richard A. MacKenzie
2009-01-01
Concentrations, bioavailability, and export of dissolved organic matter (DOM), particulate organic matter (POM), and nutrients from the Wailuku River, Hawai'i, U.S.A., were examined under base- and stormflow conditions. During storms, DOM and POM concentrations increased approximately by factors of 2 and 11, respectively, whereas NO3...
F.S. Peterson; K. Lajtha
2013-01-01
Factors influencing soil organic matter (SOM) stabilization and dissolved organic carbon (DOC) content in complex terrain, where vegetation, climate, and topography vary over the scale of a few meters, are not well understood. We examined the spatial correlations of lidar and geographic information system-derived landscape topography, empirically measured soil...
Henneberry, Y.K.; Kraus, T.E.C.; Fleck, J.A.; Krabbenhoft, D.P.; Bachand, P.M.; Horwath, W.R.
2011-01-01
The presence of inorganic mercury (IHg) and methylmercury (MeHg) in surface waters is a health concern worldwide. This study assessed the removal potential use of metal-based coagulants as a means to remove both dissolved IHg and MeHg from natural waters and provides information regarding the importance of Hg associations with the dissolved organic matter (DOM) fraction and metal hydroxides. Previous research indicated coagulants were not effective at removing Hg from solution; however these studies used high concentrations of Hg and did not reflect naturally occurring concentrations of Hg. In this study, water collected from an agricultural drain in the Sacramento-San Joaquin Delta was filtered to isolate the dissolved organic matter (DOM) fraction. The DOM was then treated with a range of coagulant doses to determine the efficacy of removing all forms of Hg from solution. Three industrial-grade coagulants were tested: ferric chloride, ferric sulfate, and polyaluminum chloride. Coagulation removed up to 85% of DOM from solution. In the absence of DOM, all three coagulants released IHg into solution, however in the presence of DOM the coagulants removed up to 97% of IHg and 80% of MeHg. Results suggest that the removal of Hg is mediated by DOM-coagulant interactions. There was a preferential association of IHg with the more aromatic, higher molecular weight fraction of DOM but no such relationship was found for MeHg. This study offers new fundamental insights regarding large-scale removal of Hg at environmentally relevant regarding large-scale removal of Hg at environmentally relevant concentrations.
Telling, Jon; Anesio, Alexandre M.; Tranter, Martyn; Fountain, Andrew G.; Nylen, Thomas; Hawkings, Jon; Singh, Virendra B.; Kaur, Preeti; Musilova, Michaela; Wadham, Jemma L.
2014-01-01
The seasonal melting of ice entombed cryoconite holes on McMurdo Dry Valley glaciers provides oases for life in the harsh environmental conditions of the polar desert where surface air temperatures only occasionally exceed 0°C during the Austral summer. Here we follow temporal changes in cryoconite hole biogeochemistry on Canada Glacier from fully frozen conditions through the initial stages of spring thaw toward fully melted holes. The cryoconite holes had a mean isolation age from the glacial drainage system of 3.4 years, with an increasing mass of aqueous nutrients (dissolved organic carbon, total nitrogen, total phosphorus) with longer isolation age. During the initial melt there was a mean nine times enrichment in dissolved chloride relative to mean concentrations of the initial frozen holes indicative of an ionic pulse, with similar mean nine times enrichments in nitrite, ammonium, and dissolved organic matter. Nitrate was enriched twelve times and dissolved organic nitrogen six times, suggesting net nitrification, while lower enrichments for dissolved organic phosphorus and phosphate were consistent with net microbial phosphorus uptake. Rates of bacterial production were significantly elevated during the ionic pulse, likely due to the increased nutrient availability. There was no concomitant increase in photosynthesis rates, with a net depletion of dissolved inorganic carbon suggesting inorganic carbon limitation. Potential nitrogen fixation was detected in fully melted holes where it could be an important source of nitrogen to support microbial growth, but not during the ionic pulse where nitrogen availability was higher. This study demonstrates that ionic pulses significantly alter the timing and magnitude of microbial activity within entombed cryoconite holes, and adds credence to hypotheses that ionic enrichments during freeze-thaw can elevate rates of microbial growth and activity in other icy habitats, such as ice veins and subglacial regelation zones. PMID:25566210
Telling, Jon; Anesio, Alexandre M; Tranter, Martyn; Fountain, Andrew G; Nylen, Thomas; Hawkings, Jon; Singh, Virendra B; Kaur, Preeti; Musilova, Michaela; Wadham, Jemma L
2014-01-01
The seasonal melting of ice entombed cryoconite holes on McMurdo Dry Valley glaciers provides oases for life in the harsh environmental conditions of the polar desert where surface air temperatures only occasionally exceed 0°C during the Austral summer. Here we follow temporal changes in cryoconite hole biogeochemistry on Canada Glacier from fully frozen conditions through the initial stages of spring thaw toward fully melted holes. The cryoconite holes had a mean isolation age from the glacial drainage system of 3.4 years, with an increasing mass of aqueous nutrients (dissolved organic carbon, total nitrogen, total phosphorus) with longer isolation age. During the initial melt there was a mean nine times enrichment in dissolved chloride relative to mean concentrations of the initial frozen holes indicative of an ionic pulse, with similar mean nine times enrichments in nitrite, ammonium, and dissolved organic matter. Nitrate was enriched twelve times and dissolved organic nitrogen six times, suggesting net nitrification, while lower enrichments for dissolved organic phosphorus and phosphate were consistent with net microbial phosphorus uptake. Rates of bacterial production were significantly elevated during the ionic pulse, likely due to the increased nutrient availability. There was no concomitant increase in photosynthesis rates, with a net depletion of dissolved inorganic carbon suggesting inorganic carbon limitation. Potential nitrogen fixation was detected in fully melted holes where it could be an important source of nitrogen to support microbial growth, but not during the ionic pulse where nitrogen availability was higher. This study demonstrates that ionic pulses significantly alter the timing and magnitude of microbial activity within entombed cryoconite holes, and adds credence to hypotheses that ionic enrichments during freeze-thaw can elevate rates of microbial growth and activity in other icy habitats, such as ice veins and subglacial regelation zones.
Dissolved organic nitrogen budgets for upland, forested ecosystems in New England
John L. Campbell; James W. Hornbeck; William H. McDowell; Donald C. Buso; James B. Shanley; Gene E. Likens
2000-01-01
Relatively high deposition of nitrogen (N) in the northeastern United States has caused concern because sites could become N saturated. In the past, mass-balance studies have been used to monitor the N status of sites and to investigate the impact of increased N deposition. Typically, these efforts have focused on dissolved inorganic forms of N (DIN = NH4-...
ERIC Educational Resources Information Center
Carpenter, Matt
2009-01-01
The purpose of this study was to determine whether increased levels of UV radiation and temperatures from global warming have a significant impact on dissolved oxygen (DO) output from the alga, "Euglena," which affects other organisms in the ecosystem. The original hypothesis stated that if temperature was increased along with exposure time to…
Effects of water quality parameters on boron toxicity to Ceriodaphnia dubia.
Dethloff, Gail M; Stubblefield, William A; Schlekat, Christian E
2009-07-01
The potential modifying effects of certain water quality parameters (e.g., hardness, alkalinity, pH) on the acute toxicity of boron were tested using a freshwater cladoceran, Ceriodaphnia dubia. By comparison, boron acute toxicity was less affected by water quality characteristics than some metals (e.g., copper and silver). Increases in alkalinity over the range tested did not alter toxicity. Increases in water hardness appeared to have an effect with very hard waters (>500 mg/L as CaCO(3)). Decreased pH had a limited influence on boron acute toxicity in laboratory waters. Increasing chloride concentration did not provide a protective effect. Boron acute toxicity was unaffected by sodium concentrations. Median acute lethal concentrations (LC(50)) in natural water samples collected from three field sites were all greater than in reconstituted laboratory waters that matched natural waters in all respects except for dissolved organic carbon. Water effect ratios in these waters ranged from 1.4 to 1.8. In subsequent studies using a commercially available source of natural organic matter, acute toxicity decreased with increased dissolved organic carbon, suggesting, along with the natural water studies, that dissolved organic carbon should be considered further as a modifier of boron toxicity in natural waters where it exceeds 2 mg/L.
Spencer, R.G.M.; Pellerin, B.A.; Bergamaschi, B.A.; Downing, B.D.; Kraus, T.E.C.; Smart, D.R.; Dahlgren, R.A.; Hernes, P.J.
2007-01-01
Dissolved organic matter (DOM) concentration and composition in riverine and stream systems are known to vary with hydrological and productivity cycles over the annual and interannual time scales. Rivers are commonly perceived as homogeneous with respect to DOM concentration and composition, particularly under steady flow conditions over short time periods. However, few studies have evaluated the impact of short term variability ( < 1 day) on DOM dynamics. This study examined whether diurnal processes measurably altered DOM concentration and composition in the hypereutrophic San Joaquin River (California) during a relatively quiescent period. We evaluated the efficacy of using optical in situ measurements to reveal changes in DOM which may not be evident from bulk dissolved organic carbon (DOC) measurement alone. The in situ optical measurements described in this study clearly showed for the first time diurnal variations in DOM measurements, which have previously been related to both composition and concentration, even though diurnal changes were not well reflected in bulk DOC concentrations. An apparent asynchronous trend of DOM absorbance and chlorophyll-a in comparison to chromophoric dissolved organic matter (CDOM) fluorescence and spectral slope S290-350 suggests that no one specific CDOM spectrophotometric measurement explains absolutely DOM diurnal variation in this system; the measurement of multiple optical parameters is therefore recommended. The observed diurnal changes in DOM composition, measured by in situ optical instrumentation likely reflect both photochemical and biologically-mediated processes. The results of this study highlight that short-term variability in DOM composition may complicate trends for studies aiming to distinguish different DOM sources in riverine systems and emphasizes the importance of sampling specific study sites to be compared at the same time of day. The utilization of in situ optical technology allows short-term variability in DOM dynamics to be monitored and serves to increase our understanding of its processing and fundamental role in the aquatic environment. Copyright ?? 2007 John Wiley & Sons, Ltd.
Sullivan, Annett B.; Rounds, Stewart A.; Deas, Michael L.; Sogutlugil, I. Ertugrul
2012-01-01
Efforts are underway to identify actions that would improve water quality in the Link River to Keno Dam reach of the Upper Klamath River in south-central Oregon. To provide further insight into water-quality improvement options, three scenarios were developed, run, and analyzed using previously calibrated CE-QUAL-W2 hydrodynamic and water-quality models. Additional scenarios are under development as part of this ongoing study. Most of these scenarios evaluate changes relative to a "current conditions" model, but in some cases a "natural conditions" model was used that simulated the reach without the effect of point and nonpoint sources and set Upper Klamath Lake at its Total Maximum Daily Load (TMDL) targets. These scenarios were simulated using a model developed by the U.S. Geological Survey (USGS) and Watercourse Engineering, Inc. for the years 2006–09, referred to here as the "USGS model." Another model of the reach was developed by Tetra Tech, Inc. for years 2000 and 2002 to support the Klamath River TMDL process; that model is referred to here as the "TMDL model." The three scenarios described in this report included (1) an analysis of whether this reach of the Upper Klamath River would be in compliance with dissolved oxygen standards if sources met TMDL allocations, (2) an application of more recent datasets to the TMDL model with comparison to results from the USGS model, and (3) an examination of the effect on dissolved oxygen in the Klamath River if particulate material were stopped from entering Klamath Project diversion canals. Updates and modifications to the USGS model are in progress, so in the future these scenarios will be reanalyzed with the updated model and the interim results presented here will be superseded. Significant findings from this phase of the investigation include: * The TMDL analysis used depth-averaged dissolved oxygen concentrations from model output for comparison with dissolved oxygen standards. The Oregon dissolved oxygen standards do not specify whether the numeric criteria are based on depth-averaged dissolved oxygen concentration; this was an interpretation of the standards rule by the Oregon Department of Environmental Quality (ODEQ). In this study, both depth-averaged and volume-averaged dissolved oxygen concentrations were calculated from model output. Results showed that modeled depth-averaged concentrations typically were lower than volume-averaged dissolved oxygen concentrations because depth-averaging gives a higher weight to small volume areas near the channel bottom that often have lower dissolved oxygen concentrations. Results from model scenarios in this study are reported using volume-averaged dissolved oxygen concentrations. * Under all scenarios analyzed, violations of the dissolved oxygen standard occurred most often in summer. Of the three dissolved oxygen criteria that must be met, the 30-day standard was violated most frequently. Under the base case (current conditions), fewer violations occurred in the upstream part of the reach. More violations occurred in the down-stream direction, due in part to oxygen demand from the decay of algae and organic matter from Link River and other inflows. * A condition in which Upper Klamath Lake and its Link River outflow achieved Upper Klamath Lake TMDL water-quality targets was most effective in reducing the number of violations of the dissolved oxygen standard in the Link River to Keno Dam reach of the Klamath River. The condition in which point and nonpoint sources within the Link River to Keno Dam reach met Klamath River TMDL allocations had no effect on dissolved oxygen compliance in some locations and a small effect in others under current conditions. On the other hand, meeting TMDL allocations for nonpoint and point sources was predicted to be important in meeting dissolved oxygen criteria when Upper Klamath Lake and Link River also met Upper Klamath TMDL water-quality targets. * The location of greatest dissolved oxygen improvement from nutrient and organic matter reductions was downstream from point and nonpoint source inflows because time and distance are required for decay to occur and for oxygen demand to be exerted. * After assessing compliance with dissolved oxygen standards at all 102 model segments in the Link River to Keno Dam reach, it was determined that the seven locations used by ODEQ appear to be a representative subset of the reach for dissolved oxygen analysis. * The USGS and TMDL models were qualitatively compared by running both models for the 2006–09 period but preserving the essential characteristics of each, such as organic matter partitioning, bathymetric representation, and parameter rates. The analysis revealed that some constituents were not greatly affected by the differing algorithms, rates, and assumptions in the two models. Conversely, other constituents, especially organic matter, were simulated differently by the two models. Organic matter in this river system is best represented by a mixture of relatively labile particulate material and a substantial concentration of refractory dissolved material. In addition, the use of a first-order sediment oxygen demand, as in the USGS model, helps to capture the seasonal and dynamic effect of settled organic and algal material. * Simulation of shunting (diverting) particulate material away from the intake of four Klamath Project diversion canals, so that the material stayed in the river and out of the Project area, caused higher concentrations of particulate material to occur in the river. In all cases modeled, the increase in in-river particulate material also produced decreased dissolved oxygen concentrations and an increase in the number of days when dissolved oxygen standards were violated. * If particulate material were shunted back into the river at the Klamath Project diversion canals, less organic matter and nutrients would be taken into the Klamath Project area and the Lost River basin, resulting in return flows to the Klamath River via Lost River Diversion Channel that may have reduced nutrient concentrations. Model scenarios bracketing potential end-member nutrient concentrations showed that the composition of the return flows had little to no effect on dissolved oxygen compliance under simulated conditions.
Acid-base properties of Baltic Sea dissolved organic matter
NASA Astrophysics Data System (ADS)
Hammer, Karoline; Schneider, Bernd; Kuliński, Karol; Schulz-Bull, Detlef E.
2017-09-01
Calculations related to the marine CO2 system that are based on alkalinity data may be strongly biased if the contributions of organic compounds are ignored. In coastal seas, concentrations of dissolved organic matter (DOM) are frequently high and alkalinity from inorganic compounds is low. In this study, based on measurements of total alkalinity, total CO2, and pH, we determined the organic alkalinity, Aorg, in water from the central Baltic Sea. The maximum Aorg measured in the surface mixed layer during the spring bloom was > 50 μmol/kg-SW but the Aorg decreased with depth and approached zero below the permanent halocline. This behavior could be attributed to the decreased pH of deeper water layers. The data were used to calculate the bulk dissociation constant, KDOM, for marine DOM and the fraction f of dissolved organic carbon (DOC) that acts as a carrier for acid-base functional groups. The p KDOM (7.27) agreed well with the value (7.34) previously estimated in a preliminary study of organic alkalinity in the Baltic Sea. The fraction of carbon atoms carrying acid-base groups was 17% and was somewhat higher than previously reported (12%). Spike experiments performed using artificial seawater and three different humic/fulvic substances tested whether the acid-base properties of these substances explain the results of our field study. Specifically, Aorg was determined at different concentrations (DOC) of the added humic/fulvic substances. The relationship between Aorg and the DOC concentrations indicated that humic/fulvic substances are more acidic (p KDOM < 6.5) than the bulk DOC natural occurring in the Baltic Sea.
Aravena, R.; Wassenaar, L.I.; Spiker, E. C.
2004-01-01
This study demonstrates the advantage of a combined use of chemical and isotopic tools to understand the dissolved organic carbon (DOC) cycle in a regional confined methanogenic aquifer. DOC concentration and carbon isotopic data demonstrate that the soil zone is a primary carbon source of groundwater DOC in areas close to recharge zones. An in-situ DOC source linked to organic rich sediments present in the aquifer matrix is controlling the DOC pool in the central part of the groundwater flow system. DOC fractions, 13C-NMR on fulvic acids and 14C data on DOC and CH4 support the hypothesis that the in-situ DOC source is a terrestrial organic matter and discard the Ordovician bedrock as a source of DOC. ?? 2004 Taylor and Francis Ltd.
Characterization of dissolved organic matter in an urbanized estuary located in Northeastern Brazil.
Arguelho, Maria de Lara Palmeira de Macedo; Alves, José do Patrocínio Hora; Monteiro, Adnívia Santos Costa; Garcia, Carlos Alexandre Borges
2017-06-01
The Sal River estuary, which is located in the state of Sergipe, Northeastern Brazil, stands out as an urban estuary, anthropogenically impacted by untreated and treated wastewater discharge. Synchronous fluorescence spectroscopy and measurement of dissolved organic carbon (DOC) were used for characterization of dissolved organic matter (DOM) in the estuarine water. Dissolved organic carbon concentrations ranged from 7.5 to 19.0 mg L -1 and, in general, the highest values were recorded during dry season. For both seasons (dry and rainy), DOC presented an inverse linear relationship with salinity, which indicates a conservative dilution of organic matter coming into the estuary. During rainy season, anthropogenic organic constituents and humic substances from land-based sources predominated in DOM composition, carried by river flow. Whereas during the dry season, it has been observed a significant increase of products generated by microbial degradation of anthropogenic organic matter. The relationships between fluorescence intensity and salinity suggest a conservative behavior during rainy season and a non-conservative behavior during dry season, with addition of fluorescent organic matter into the intermediate zone of the estuary. Photodegradation by action of sunlight caused a decrease in fluorescence intensity of humic and tryptophan-like constituents and the release of photoproducts, resulting in an increase in fluorescence intensity of protein-like constituents.
NASA Technical Reports Server (NTRS)
Druon, J.N.; Mannino, A.; Signorini, Sergio R.; McClain, Charles R.; Friedrichs, M.; Wilkin, J.; Fennel, K.
2009-01-01
Continental shelves are believed to play a major role in carbon cycling due to their high productivity. Particulate organic carbon (POC) burial has been included in models as a carbon sink, but we show here that seasonally produced dissolved organic carbon (DOC) on the shelf can be exported to the open ocean by horizontal transport at similar rates (1-2 mol C/sq m/yr) in the southern U.S. Mid-Atlantic Bight (MAB). The dissolved organic matter (DOM) model imbedded in a coupled circulation-biogeochemical model reveals a double dynamics: the progressive release of dissolved organic nitrogen (DON) in the upper layer during summer increases the regenerated primary production by 30 to 300%, which, in turns ; enhances the DOC production mainly from phytoplankton exudation in the upper layer and solubilization of particulate organic matter (POM) deeper in the water column. This analysis suggests that DOM is a key element for better representing the ecosystem functioning and organic fluxes in models because DOM (1) is a major organic pool directly related to primary production, (2) decouples partially the carbon and nitrogen cycles (through carbon excess uptake, POM solubilization and DOM mineralization) and (3) is intimately linked to the residence time of water masses for its distribution and export.
Sediment-water partitioning of inorganic mercury in estuaries.
Turner, A; Millward, G E; Le Roux, S M
2001-12-01
The sediment-water partitioning and speciation of inorganic mercury have been studied under simulated estuarine conditions by monitoring the hydrophobicity and uptake of dissolved 203Hg(II) in samples from a variety of estuarine environments. A persistent increase in the distribution coefficientwith increasing salinity is inconsistent with inorganic speciation calculations, which predict an increase in the concentration of the soluble HgCl4(2-) complex (or reduction in sediment-water distribution coefficient) with increasing salinity. Partition data are, however, defined by an empirical equation relating to the salting out of nonelectrolytes via electrostriction and are characterized by salting constants between about 1.4 and 2.0 L mol(-1). Salting out of the neutral, covalent chloro-complex, HgCl2(0), is predicted but cannot account for the magnitude of salting out observed. Since Hg(II) strongly complexes with dissolved (and particulate) organic matter in natural environments, of more significance appears to be the salting out of Hg(II)-organic complexes. Operational measurements of the speciation of dissolved Hg(II) using Sep-Pak C18 columns indicate a reduction in the proportion of hydrophobic (C18-retained) dissolved Hg(II) complexes with increasing salinity, both in the presence and absence of suspended particles. Ratios of hydrophobic Hg(ll) before and after particle addition suggest a coupled salting out-sorption mechanism, with the precise nature of Hg(II) species salted out being determined bythe characteristics and concentrations of dissolved and sediment organic matter.
Localized zones of denitrification in a floodplain aquifer in southern Wisconsin, USA
NASA Astrophysics Data System (ADS)
Craig, Laura; Bahr, Jean M.; Roden, Eric E.
2010-12-01
A floodplain aquifer within an agricultural watershed near Madison, Wisconsin (USA), was studied to determine whether denitrification was occurring below the surface organic layer. Groundwater levels and concentrations of O2, Cl-, NO{3/-}, SO{4/2-}, dissolved organic carbon (DOC), and major cations were monitored over a 1-year period along a 230-m transect between an agricultural field and a stream discharge point. Seventeen groundwater samples were analyzed for δ15NNO3 and δ18ONO3 composition. Samples in which NO{3/-} was too low for stable isotope analysis were analyzed for excess dissolved N2. Groundwater NO{3/-} concentrations declined between the agricultural field and the discharge point. Chloride and δ15NNO3/δ18ONO3 data indicated that the drop in NO{3/-} was caused primarily by dilution of shallow NO{3/-}-rich water with deeper, NO{3/-}-depleted groundwater. Two localized zones of denitrification were identified in the upland-wetland transition by their δ15NNO3 and δ18ONO3 signatures, and two in the stream hyporheic zone by the presence of excess dissolved N2. The combined stratigraphic, hydrologic, and geochemical data in these locations correspond to groundwater mixing zones where NO{3/-} is delivered to subsurface layers that support denitrification fueled by dissolved (e.g. DOC or dissolved Fe(II)) and/or solid-phase (e.g. particulate organic carbon, solid-associated Fe(II), or pyrite) electron donors.
Northern Gulf of Mexico estuarine coloured dissolved organic matter derived from MODIS data
Coloured dissolved organic matter (CDOM) is relevant for water quality management and may become an important measure to complement future water quality assessment programmes. An approach to derive CDOM using the Moderate Resolution Imaging Spectroradiometer (MODIS) was developed...
PHOTOCHEMICAL MINERALIZATION OF DISSOLVED ORGANIC NITROGEN TO AMMONIUM IN THE BALTIC SEA
Solar radiation-induced photochemistry can be considered as a new source of nutrients when photochemical reactions release bioavailable nitrogen from biologically non-reactive dissolved organic nitrogen (DON). Pretreatments of Baltic Sea waters in the dark indicated that >72% of ...
Effects of Enhanced Thaw Depth on the Composition of Arctic Soil Organic Matter Leachate
NASA Astrophysics Data System (ADS)
Hutchings, J.; Zhang, X.; Bianchi, T. S.; Schuur, E.; Arellano, A. R.; Liu, Y.
2016-12-01
Pan-Arctic permafrost is increasingly susceptible to thaw due to the disproportionally high rate of temperature change in high latitudes. These soils contain a globally significant quantity of organic carbon that, when thawed, interacts with the modern carbon cycle. Current research has focused on atmospheric carbon fluxes and transport by rivers and streams to continental shelves, but has overlooked the lateral flux of carbon within watershed soils, which is the primary link between terrestrial and riverine ecosystems. Understanding the effects of water movement through permafrost soils on dissolved organic carbon is critical to better modelling of lateral carbon fluxes and interpreting the resulting observed riverine carbon fluxes with applications to investigations of the past, present, and future of the pan-Arctic. We conducted a laboratory leaching experiment using active layer soils from the Eight Mile Lake region of interior Alaska. Cores were sampled into surface and deep sections. Surface sections were subjected to a three-stage leaching process using artificial rain, with cores stored frozen overnight between stages (which crudely simulated freeze-thaw mechanisms). Surface leachates were sampled for analysis and the remainder percolated through deep soils using the same three-staged approach. Measurements of surface and deep leachates were selected to characterize transport-related changes to dissolved organic matter and included dissolved organic carbon, fluorescent dissolved organic matter via excitation emission matrices, and molecular composition via Fourier transform ion cyclotron resonance mass spectrometry. Primary findings from the experiment include a net retention of 2.4 to 27% of dissolved organic carbon from surface leachates in deep soils, a net release of fluorescent dissolved organic matter from deep soils that was 43 to 106% greater than surface leachates, increased hydrophobicity during stage three of leaching, and the preferential leaching of lignin- and tannin-like formulas from deep soils, consistent with fluorescence measurements.
Mercury distribution in Douro estuary (Portugal).
Ramalhosa, E; Pereira, E; Vale, C; Válega, M; Monterroso, P; Duarte, A C
2005-11-01
Determinations of dissolved reactive and total dissolved mercury, particulate and sedimentary mercury, dissolved organic carbon (DOC), particulate organic carbon (POC) and suspended particulate matter (SPM) have been made in the estuary of river Douro, in northern Portugal. The estuary was stratified by salinity along most of its length, it had low concentrations of SPM, typically <20 mg dm(-3), and concentrations of DOC in the range <1.0-1.8 mg dm(-3). The surface waters had a maximum dissolved concentration of reactive mercury of about 10 ng dm(-3), whereas for the more saline bottom waters it was about 65 ng dm(-3). The surface waters had maximum concentrations of total suspended particulate mercury of approximately 7 microg g(-1) and the bottom waters were always <1 microg g(-1). Concentrations of mercury in sediments was low and in the range from 0.06 to 0.18 microg g(-1). The transport of mercury in surface waters was mainly associated with organic-rich particulate matter, while in bottom waters the dissolved phase transport of mercury is more important. Lower particulate organic matter, formation of chlorocomplexes in more saline waters and eventually the presence of colloids appear to explain the difference of mercury partitioning in Douro estuarine waters.
Stumpner, Elizabeth B.; Kraus, Tamara E.C.; Fleck, Jacob A.; Hansen, Angela M.; Bachand, Sandra M.; Horwath, William R.; DeWild, John F.; Krabbenhoft, David P.; Bachand, Philip A.M.
2015-09-02
Following coagulation, but prior to passage through the wetland cells, coagulation treatments transferred dissolved mercury and carbon to the particulate fraction relative to untreated source water: at the wetland cell inlets, the coagulation treatments decreased concentrations of filtered total mercury by 59–76 percent, filtered monomethyl mercury by 40–70 percent, and dissolved organic carbon by 65–86 percent. Passage through the wetland cells decreased the particulate fraction of mercury in wetland cells that received coagulant-treated water. Changes in total mercury, monomethyl mercury, and dissolved organic carbon concentrations resulting from wetland passage varied both by treatment and season. Despite increased monomethyl mercury in the filtered fraction during wetland passage between March and August, the coagulation-wetland systems generally decreased total mercury (filtered plus particulate) and monomethyl mercury (filtered plus particulate) concentrations relative to source water. Coagulation—either alone or in association with constructed wetlands—could be an effective way to decrease concentrations of mercury and dissolved organic carbon in surface water as well as the bioavailability of mercury in the Sacramento–San Joaquin Delta.
NASA Astrophysics Data System (ADS)
Conan, Pascal; Pujo-Pay, Mireille; Agab, Marina; Calva-Benítez, Laura; Chifflet, Sandrine; Douillet, Pascal; Dussud, Claire; Fichez, Renaud; Grenz, Christian; Gutierrez Mendieta, Francisco; Origel-Moreno, Montserrat; Rodríguez-Blanco, Arturo; Sauret, Caroline; Severin, Tatiana; Tedetti, Marc; Torres Alvarado, Rocío; Ghiglione, Jean-François
2017-03-01
The 2009-2010 period was marked by an episode of intense drought known as the El Niño Modoki event. Sampling of the Términos Lagoon (Mexico) was carried out in November 2009 in order to understand the influence of these particular environmental conditions on organic matter fluxes within the lagoon's pelagic ecosystem and, more specifically, on the relationship between phyto- and bacterioplankton communities. The measurements presented here concern biogeochemical parameters (nutrients, dissolved and particulate organic matter [POM], and dissolved polycyclic aromatic hydrocarbons [PAHs]), phytoplankton (biomass and photosynthesis), and bacteria (diversity and abundance, including PAH degradation bacteria and ectoenzymatic activities). During the studied period, the water column of the Términos Lagoon functioned globally as a sink and, more precisely, as a nitrogen assimilator
. This was due to the high production of particulate and dissolved organic matter (DOM), even though exportation of autochthonous matter to the Gulf of Mexico was weak. We found that bottom-up
control accounted for a large portion of the variability of phytoplankton productivity. Nitrogen and phosphorus stoichiometry mostly accounted for the heterogeneity in phytoplankton and free-living prokaryote distribution in the lagoon. In the eastern part, we found a clear decoupling between areas enriched in dissolved inorganic nitrogen near the Puerto Real coastal inlet and areas enriched in phosphate (PO4) near the Candelaria estuary. Such a decoupling limited the potential for primary production, resulting in an accumulation of dissolved organic carbon and nitrogen (DOC and DON, respectively) near the river mouths. In the western part of the lagoon, maximal phytoplankton development resulted from bacterial activity transforming particulate organic phosphorus (PP) and dissolved organic phosphorus (DOP) to available PO4 and the coupling between Palizada River inputs of nitrate (NO3) and PP. The Chumpan River contributed only marginally to PO4 inputs due to its very low contribution to overall river inputs. The highest dissolved total PAH concentrations were measured in the El Carmen Inlet, suggesting that the anthropogenic pollution of the zone is probably related to the oil-platform exploitation activities in the shallow waters of the southern of the Gulf of Mexico. We also found that a complex array of biogeochemical and phytoplanktonic parameters were the driving force behind the geographical distribution of bacterial community structure and activities. Finally, we showed that nutrients brought by the Palizada River supported an abundant bacterial community of PAH degraders, which are of significance in this important oil-production zone.
Organic geochemistry and brine composition in Great Salt, Mono, and Walker Lakes
Domagalski, Joseph L.; Orem, W.H.; Eugster, H.P.
1989-01-01
Samples of Recent sediments, representing up to 1000 years of accumulation, were collected from three closed basin lakes (Mono Lake, CA, Walker Lake, NV, and Great Salt Lake, UT) to assess the effects of brine composition on the accumulation of total organic carbon, the concentration of dissolved organic carbon, humic acid structure and diagenesis, and trace metal complexation. The Great Salt Lake water column is a stratified Na-Mg-Cl-SO4 brine with low alkalinity. Algal debris is entrained in the high density (1.132-1.190 g/cc) bottom brines, and in this region maximum organic matter decomposition occurs by anaerobic processes, with sulfate ion as the terminal electron acceptor. Organic matter, below 5 cm of the sediment-water interface, degrades at a very slow rate in spite of very high pore-fluid sulfate levels. The organic carbon concentration stabilizes at 1.1 wt%. Mono Lake is an alkaline (Na-CO3-Cl-SO4) system. The water column is stratified, but the bottom brines are of lower density relative to the Great Salt Lake, and sedimentation of algal debris is rapid. Depletion of pore-fluid sulfate, near l m of core, results in a much higher accumulation of organic carbon, approximately 6 wt%. Walker Lake is also an alkaline system. The water column is not stratified, and decomposition of organic matter occurs by aerobic processes at the sediment-water interface and by anaerobic processes below. Total organic carbon and dissolved organic carbon concentrations in Walker Lake sediments vary with location and depth due to changes in input and pore-fluid sulfate concentrations. Nuclear magnetic resonance studies (13C) of humic substances and dissolved organic carbon provide information on the source of the Recent sedimentary organic carbon (aquatic vs. terrestrial), its relative state of decomposition, and its chemical structure. The spectra suggest an algal origin with little terrestrial signature at all three lakes. This is indicated by the ratio of aliphatic to aromatic carbon and the absence of chemical structures indicative of the lignin of vascular plants. The dissolved organic carbon of the Mono Lake pore fluids is structurally related to humic acid and is also related to carbohydrate metabolism. The alkaline pore fluids, due to high pH, solubilize high molecular weight organic matter from the sediments. This hydrophilic material is a metal complexing agent. Despite very high algal productivities, organic carbon accumulation can be low in stratified lakes if the anoxic bottom waters are hypersaline with high concentrations of sulfate ion. Labile organic matter is recycled to the water column and the sedimentary organic matter is relatively nonsusceptible to bacterial metabolism. As a result, pore-fluid dissolved organic carbon and metal-organic complexation are low. ?? 1989.
A Global Assessment of Rain-Dissolved Organic Carbon
NASA Astrophysics Data System (ADS)
Safieddine, S.; Heald, C. L.
2017-12-01
Precipitation is the largest physical removal pathway of atmospheric organic carbon from the atmosphere. The removed carbon is transferred to the land and ocean in the form of dissolved organic carbon (DOC). Limited measurements have hindered efforts to characterize global DOC. In this poster presentation, we show the first simulated global DOC distribution based on a GEOS-Chem model simulation of the atmospheric reactive carbon budget. Over the ocean, simulated DOC concentrations are between 0.1 to 1 mgCL-1 with a total of 85 TgCyr-1 deposited. DOC concentrations are higher inland, ranging between 1 and 10 mgCL-1, producing a total of 188 TgCyr-1 terrestrial organic wet deposition. We compare the 2010 simulated DOC to a 30-year synthesis of available DOC measurements over different environments. Despite imperfect matching of observational and simulated time intervals, the model is able to reproduce much of the spatial variability of DOC (r= 0.63), with a low bias of 35%. We compare the global average carbon oxidation state (OSc) of both atmospheric and dissolved organic carbon, as a simple metric for describing the chemical composition of organics. In the global atmosphere reactive organic carbon (ROC) is dominated by hydrocarbons and ketones, and OSc, ranges from -1.8 to -0.6. In the dissolved form, formaldehyde, formic acid, primary and secondary semi-volatiles organic aerosol dominate the DOC concentrations. The increase in solubility upon oxidation leads to a global increase in OSc in rainwater with -0.6<=OSc <=0. This simulation provides new insight into the current model representation of the flow of atmospheric and rain-dissolved organic carbon, and new opportunities to use observations and simulations to understand the DOC reaching land and ocean.
The size distribution of organic carbon in headwater streams in the Amazon basin.
de Paula, Joana D'Arc; Luizão, Flávio Jesus; Piedade, Maria Teresa Fernandez
2016-06-01
Despite the strong representativeness of streams in the Amazon basin, their role in the accumulation of coarse particulate organic carbon (CPOC), fine particulate organic carbon (FPOC), and dissolved organic carbon (DOC) in transport, an important energy source in these environments, is poorly known. It is known that the arboreal vegetation in the Amazon basin is influenced by soil fertility and rainfall gradients, but would these gradients promote local differences in organic matter in headwater streams? To answer this question, 14 low-order streams were selected within these gradients along the Amazon basin, with extensions that varied between 4 and 8 km. The efficiency of the transformation of particulate into dissolved carbon fractions was assessed for each stream. The mean monthly benthic organic matter storage ranged between 1.58 and 9.40 t ha(-1) month(-1). In all locations, CPOC was the most abundant fraction in biomass, followed by FPOC and DOC. Rainfall and soil fertility influenced the distribution of the C fraction (p = 0.01), showing differentiated particulate organic carbon (POC) storage and DOC transportation along the basin. Furthermore, the results revealed that carbon quantification at the basin level could be underestimated, ultimately influencing the global carbon calculations for the region. This is especially due to the fact that the majority of studies consider only fine particulate organic matter and dissolved organic matter, which represent less than 50 % of the stored and transported carbon in streambeds.
Podgorski, David C; McKenna, Amy M; Rodgers, Ryan P; Marshall, Alan G; Cooper, William T
2012-06-05
Dissolved organic nitrogen (DON) comprises a heterogeneous family of organic compounds that includes both well-known biomolecules such as urea or amino acids and more complex, less characterized compounds such as humic and fulvic acids. Typically, DON represents only a small fraction of the total dissolved organic carbon pool and therefore presents inherent problems for chemical analysis and characterization. Here, we demonstrate that DON may be selectively ionized by atmospheric pressure photionization (APPI) and characterized at the molecular level by Fourier transform ion cyclotron resonance mass spectrometry. Unlike electrospray ionization (ESI), APPI ionizes polar and nonpolar compounds, and ionization efficiency is not determined by polarity. APPI is tolerant to salts, due to the thermal treatment inherent to nebulization, and thus avoids salt-adduct formation that can complicate ESI mass spectra. Here, for dissolved organic matter from various aquatic environments, we selectively ionize DON species that are not efficiently ionized by other ionization techniques and demonstrate significant signal-to-noise increase for nitrogen species by use of APPI relative to ESI.
Santos, Patrícia S M; Santos, Eduarda B H; Duarte, Armando C
2013-01-01
Rainwater contains a complex mixture of organic compounds which may influence climate, terrestrial and maritime ecosystems and thus human health. In this work, the characteristics of DOM of bulk deposition at a coastal town on the southwest of Europe were assessed by UV-visible and three-dimensional excitation-emission matrix fluorescence spectroscopies and by dissolved organic carbon (DOC) content. The seasonal and air mass trajectory effects on dissolved organic matter (DOM) of bulk deposition were evaluated. The absorbance at 250 nm (UV(250 nm)) and integrated fluorescence showed to be positively correlated with each other, and they were also positively correlated to the DOC in bulk deposition, which suggest that a constant fraction of DOM is likely to fluoresce. There was more chromophoric dissolved organic matter (CDOM) present in summer and autumn seasons than in winter and spring. Bulk deposition associated with terrestrial air masses contained a higher CDOM content than bulk deposition related to marine air masses, thus highlighting the contribution of terrestrial/anthropogenic sources.
Zhu, Li-Xia; Xiao, Qian; Shen, Yu-Fang; Li, Shi-Qing
2017-01-01
Application of maize straw and biochar can potentially improve soil fertility and sequester carbon (C) in the soil, but little information is available about the effects of maize straw and biochar on the mineralization of soil C and nitrogen (N). We conducted a laboratory incubation experiment with five treatments of a cultivated silty loam, biochar produced from maize straw and/or maize straw: soil only (control), soil + 1 % maize straw (S), soil + 4 % biochar (B1), soil + 4 % biochar + 1 % maize straw (B1S), and soil + 8 % biochar + 1 % maize straw (B2S). CO 2 emissions, soil organic C, dissolved organic C, easily oxidized C, total N, mineral N, net N mineralization, and microbial biomass C and N of three replicates were measured periodically during the 60-day incubation using destructive sampling method. C mineralization was highest in treatment S, followed by B2S, B1S, the control, and B1. Total net CO 2 emissions suggested that negative or positive priming effect may occur between the biochar and straw according to the biochar addition rate, and biochar mineralization was minimal. By day 35, maize straw, irrespective of the rate of biochar addition, significantly increased microbial biomass C and N but decreased dissolved organic N. Biochar alone, however, had no significant effect on either microbial biomass C or N but decreased dissolved organic N. Mixing the soil with biochar and/or straw significantly increased soil organic C, easily oxidized C and total N contents, and decreased dissolved organic N content. Dissolved organic C contents showed mixed results. Notably, N was immobilized in soil mixed with straw and/or biochar, but the effect was stronger for soil mixed with straw, which may cause N deficiency for plant growth. The application of biochar and maize straw can thus affect soil C and N cycles, and the appropriate proportion of biochar and maize straw need further studies to increase C sequestration.
2012-01-01
The analysis of the dissolved organic fraction of hydrothermal fluids has been considered a real challenge due to sampling difficulties, complexity of the matrix, numerous interferences and the assumed ppb concentration levels. The present study shows, in a qualitative approach, that Stir Bar Sorptive Extraction (SBSE) followed by Thermal Desorption – Gas Chromatography – Mass Spectrometry (TD-GC-MS) is suitable for extraction of small sample volumes and detection of a wide range of volatile and semivolatile organic compounds dissolved in hydrothermal fluids. In a case study, the technique was successfully applied to fluids from the Rainbow ultramafic-hosted hydrothermal field located at 36°14’N on the Mid-Atlantic Ridge (MAR). We show that n-alkanes, mono- and poly- aromatic hydrocarbons as well as fatty acids can be easily identified and their retention times determined. Our results demonstrate the excellent repeatability of the method as well as the possibility of storing stir bars for at least three years without significant changes in the composition of the recovered organic matter. A preliminary comparative investigation of the organic composition of the Rainbow fluids showed the great potential of the method to be used for assessing intrafield variations and carrying out time series studies. All together our results demonstrate that SBSE-TD-GC-MS analyses of hydrothermal fluids will make important contributions to the understanding of geochemical processes, geomicrobiological interactions and formation of mineral deposits. PMID:23134621
Dissolved Solids as HD Bioeffluent Toxicants.
1998-12-01
12 The question still remains about whether the toxicity of the SBR effluent was caused by either the animals’ inability to osmoregulate in a high...the dissolved solids. The inability of freshwater organisms to osmoregulate in such high saline environments caused toxicity. Freshwater organisms are
SOURCE ASSESSMENT: RECLAIMING OF WASTE SOLVENTS, STATE OF THE ART
This document reviews the state of the art of air emissions from the reclaiming of waste solvents. The composition, quantity, and rate of emissions are described. Waste solvents are organic dissolving agents which are contaminated with suspended and dissolved solids, organics, wa...
POTENTIAL IMPACTS OF ORGANIC WASTES ON SMALL STREAM WATER QUALITY
We monitored concentrations of dissolved organic carbon (DOC), dissolved oxygen (DO) and other parameters in 17 small streams of the South Fork Broad River (SFBR) watershed on a monthly basis for 15 months. Our monthly monitoring results showed a strong inverse relationship betwe...
Labile dissolved organic carbon supply limits hyporheic denitrification
Jay P. Zarnetske; Roy Haggerty; Steven M. Wondzell; Michelle A. Baker
2012-01-01
We used an in situ steady state 15N-labeled nitrate and acetate well-to-wells injection experiment to determine how the availability of labile dissolved organic carbon as acetate influences microbial denitrification in the hyporheic zone of an upland (third-order) agricultural stream.
Jason B. Fellman; Eran Hood; Richard T. Edwards; Jeremy B. Jones
2009-01-01
Dissolved organic matter (DOM) is an important component of aquatic food webs. We compare the uptake kinetics for NH4-N and different fractions of DOM during soil and salmon leachate additions by evaluating the uptake of organic forms of carbon (DOC) and nitrogen (DON), and proteinaceous DOM, as measured by parallel factor (PARAFAC) modeling of...
NASA Astrophysics Data System (ADS)
Qiong, Liu; Pan, Delu; Huang, Haiqing; Lu, Jianxin; Zhu, Qiankun
2011-11-01
A cruise was conducted in the East China Sea (ECS) in autumn 2010 to collect Dissolved Organic Carbon (DOC) and Colored Dissolved Organic Matter (CDOM) samples. The distribution of DOC mainly controlled by the hydrography since the relationship between DOC and salinity was significant in both East China Sea. The biological activity had a significant influence on the concentration of DOC with a close correlation between DOC and Chl a. The absorption coefficient of CDOM (a355) decreased with the salinity increasing in the shelf of East China Sea (R2=0.9045). CDOM and DOC were significantly correlated in ECS where DOC distribution was dominated largely by the Changjiang diluted water. Based on the relationship of CDOM and DOC, we estimated the DOC concentration of the surface in ECS from satellite-derived CDOM images. Some deviations induced by the biological effect and related marine DOC accumulations were discussed.
Kletetschka, Gunther; Hruba, Jolana
2015-01-01
Abstract Three issues are critical for successful cryopreservation of multicellular material: gases dissolved in liquid, thermal conductivity of the tissue, and localization of microstructures. Here we show that heat distribution is controlled by the gas amount dissolved in liquids and that when changing the liquid into solid, the dissolved gases either form bubbles due to the absence of space in the lattice of solids and/or are migrated toward the concentrated salt and sugar solution at the cost of amount of heat required to be removed to complete a solid-state transition. These factors affect the heat distribution in the organs to be cryopreserved. We show that the gas concentration issue controls fracturing of ice when freezing. There are volumetric changes not only when changing the liquid into solid (volume increases) but also reduction of the volume when reaching lower temperatures (volume decreases). We discuss these issues parallel with observations of the cryosurvivability of multicellular organisms, tardigrades, and discuss their analogy for cryopreservation of large organs. PMID:26309797
Meridional fluxes of dissolved organic matter in the North Atlantic Ocean
NASA Technical Reports Server (NTRS)
Walsh, John J.; Carder, Kendall L.; Mueller-Karger, Frank E.
1992-01-01
Biooptical estimates of gelbstoff and a few platinum measurements of dissolved organic carbon (DOCpt) are used to construct a budget of the meridional flux of DOC and dissolved organic nitrogen (DON) across 36 deg 25 min N in the North Atlantic from previous inverse models of water and element transport. Distinct southward subsurface fluxes of dissolved organic matter within subducted shelf water, cabelled slope water, and overturned basin water are inferred. Within two cases of a positive gradient of DOCpt between terrestrial/shelf and offshore stocks, the net equatorward exports of O2 and DOCpt from the northern North Atlantic yield molar ratios of 2.1 to 9.1, compared to the expected Redfield O2/C ratio of 1.3. It is concluded that some shelf export of DOC, with a positive gradient between coastal and oceanic stocks, as well as falling particles, are required to balance carbon, nitrogen, and oxygen budgets of the North Atlantic.
Kletetschka, Gunther; Hruba, Jolana
2015-01-01
Three issues are critical for successful cryopreservation of multicellular material: gases dissolved in liquid, thermal conductivity of the tissue, and localization of microstructures. Here we show that heat distribution is controlled by the gas amount dissolved in liquids and that when changing the liquid into solid, the dissolved gases either form bubbles due to the absence of space in the lattice of solids and/or are migrated toward the concentrated salt and sugar solution at the cost of amount of heat required to be removed to complete a solid-state transition. These factors affect the heat distribution in the organs to be cryopreserved. We show that the gas concentration issue controls fracturing of ice when freezing. There are volumetric changes not only when changing the liquid into solid (volume increases) but also reduction of the volume when reaching lower temperatures (volume decreases). We discuss these issues parallel with observations of the cryosurvivability of multicellular organisms, tardigrades, and discuss their analogy for cryopreservation of large organs.
Ground-water flow and water quality in northeastern Union County, Ohio
Wilson, K.S.
1987-01-01
A study was done by the U.S. Geological Survey, in cooperation with the Village of Richwood, Ohio, to determine directions of ground-water flow, ground-water-level fluctuations, and water quality in the northeastern part of Union County. The topography of the study area generally is featureless, and the land surfaces slopes gently eastward from 985 to 925 feet above sea level. Glacial deposits up to 48 feet thick cover the carbonate-bedrock aquifer. Three municipal wells and an adjoining abandoned landfill are located in an area previously excavated for clay deposits. An agricultural supply company is adjacent to the well field. Ground water flows from west to east with local variation to the northeast and southeast because of the influence of Fulton Creek. Richwood Lake occupies an abandoned sand-and-gravel quarry. Water-level fluctuations indicate that the and gravel deposits beneath the lake may be hydraulically connected to the bedrock aquifer. Water-quality data collected from 14 wells and Richwood Lake indicate that a hard to very hard calcium bicarbonate type water is characteristic of the study area. Dissolved solids ranged from 200 to 720 mg/L (Milligrams per liter) throughout the study area. Potassium ranged from 1.3 to 15 mg/L, with a median concentration of 2.0 mg/L. Concentration of 10 and 15 mg/L at one municipal well were five to eight times greater than the median concentration. Total organic carbon, ammonia, and organic nitrogen were present at every site. Concentrations of ammonia above 1 mg/L as nitrogen were found in water from two municipal wells and one domestic well. Total organic carbon was detected at a municipal well, a landfill well, and a domestic well at concentrations above 5 mg/L. Ground-water quality is similar throughout the study area except in the vicinity of the municipal well field, where water from one well had elevated concentrations of ammonia, dissolved manganese, dissolved chloride, dissolved, sodium, and total organic carbon.
Dissolved Organic Carbon and Disinfection By-Product Precursor Release from Managed Peat Soils
Fleck, J.A.; Bossio, D.A.; Fujii, R.
2004-01-01
A wetland restoration demonstration project examined the effects of a permanently flooded wetland on subsidence of peat soils. The project, started in 1997, was done on Twitchell Island, in the Sacramento-San Joaquin Delta of California. Conversion of agricultural land to a wetland has changed many of the biogeochemical processes controlling dissolved organic carbon (DOC) release from the peat soils, relative to the previous land use. Dissolved organic C in delta waters is a concern because it reacts with chlorine, added as a disinfectant in municipal drinking waters, to form carcinogenic disinfection byproducts (DBPs), including trihalomethanes (THMs) and haloacetic acids (HAAs). This study explores the effects of peat soil biogeochemistry on DOC and DBP release under agricultural and wetland management. Results indicate that organic matter source, extent of soil organic matter decomposition, and decomposition pathways all are factors in THM formation. The results show that historical management practices dominate the release of DOC and THM precursors. However, within-site differences indicate that recent management decisions can contribute to changes in DOC quality and THM precursor formation. Not all aromatic forms of carbon are highly reactive and certain environmental conditions produce the specific carbon structures that form THMs. Both HAA and THM precursors are elevated in the DOC released under wetland conditions. The findings of this study emphasize the need to further investigate the roles of organic matter sources, microbial decomposition pathways, and decomposition status of soil organic matter in the release of DOC and DBP precursors from delta soils under varying land-use practices.
Davis, Jerri V.; Bell, Richard W.
1998-01-01
Nutrient, bacteria, organic carbon, and suspended- sediment samples were collected from 1993-95 at 43 surface-water-quality sampling sites within the Ozark Plateaus National Water- Quality Assessment Program study unit. Most surface-water-quality sites have small or medium drainage basins, near-homogenous land uses (primarily agricultural or forest), and are located predominantly in the Springfield and Salem Plateaus. The water-quality data were analyzed using selected descriptive and statistical methods to determine factors affecting occurrence in streams in the study unit. Nitrogen and phosphorus fertilizer use increased in the Ozark Plateaus study unit for the period 1965-85, but the application rates are well below the national median. Fertilizer use differed substantially among the major river basins and physiographic areas in the study unit. Livestock and poultry waste is a major source of nutrient loading in parts of the study unit. The quantity of nitrogen and phosphorus from livestock and poultry wastes differed substantially among the river basins of the study unit's sampling network. Eighty six municipal sewage-treatment plants in the study unit have effluents of 0.5 million gallons per day or more (for the years 1985-91). Statistically significant differences existed in surface-water quality that can be attributed to land use, physiography, and drainage basin size. Dissolved nitrite plus nitrate, total phosphorus, fecal coliform bacteria, and dissolved organic carbon concentrations generally were larger at sites associated with agricultural basins than at sites associated with forested basins. A large difference in dissolved nitrite plus nitrate concentrations occurred between streams draining basins with agricultural land use in the Springfield and Salem Plateaus. Streams draining both small and medium agricultural basins in the Springfield Plateau had much larger concentrations than their counterparts in the Salem Plateau. Drainage basin size was not a significant factor in affecting total phosphorus, fecal coliform bacteria, or dissolved organic carbon concentrations. Suspended-sediment concentrations generally were small and indicative of the clear water in streams in the Ozark Plateaus. A comparison of the dissolved nitrite plus nitrate, total phosphorus, and fecal coliform data collected at the fixed and synoptic sites indicates that generally the data for streams draining basins of similar physiography, land-use setting, and drainage basin size group together. Many of the variations are most likely the result of differences in percent agricultural land use between the sites being compared or are discharge related. The relation of dissolved nitrite plus nitrate, total phosphorus, and fecal coliform concentration to percent agricultural land use has a strong positive 2 Water-Quality Assessment-Nutrients, Bacteria, Organic Carbon, and Suspended Sediment in Surface Water, 1993-95 correlation, with percent agricultural land use accounting for between 42 and 60 percent of the variation in the observed concentrations.
NASA Astrophysics Data System (ADS)
Melentyev, K. V.; Worontsov, A. M.
Current control of dissolved organic matter in natural and waste waters is the definition traditionally of chemical oxygen demand (COD) -- one of the basic parameters of quality of water. According to the International Standard (ISO 6060), it requires not less than one hour, while in many cases the operative information about amount of dissolved organic matter in aquatic environments have importance for prevention of an emergency. The standard method is applicable to waters with meaning of COD above 30 mg O2/l and, as the chloride ion prevents, it could be difficult for assessment of organic matter in sea water. Besides it is based on dichromate oxidation of the sum of organic substances in strong acid conditions at the presence of silver and mercury, that resulted in formation toxic pollutants. Till now attempts of automation of the COD definition in aquatic system were limited, basically, to duplication of the technology submitted the above standard (automatic COD analyzers "SERES Co."-- France, or "Tsvet Co." - Russia). The system of ozone-chemiluminescence automatic control of organic matter in water (CS COD) is offered and designed. Its based on the ozone oxidation of these substances in flowing water system and measurement arising from luminescent effects. CS COD works in real time. An instrument uses for reaction the atmospheric air, doesn't require fill of reagents and doesn't make new toxic pollutants. The system was tested in laboratory, and biochemical control of organic matter in water samples gathered from the river Neva and other polluted inland water areas and basins in St. Petersburg region was fulfilled (distilled water was used as "zero" media). The results of systematization of these measurements are presented. The new special ozone generator and flowing reactor for real-time running control of different waters in natural conditions were developed, and several series of large - scale field experiments onboard research ship were provided. Comprehensive study of the natural waters (including biohydro-chemical parameters control) for large part of the inland waterway St. Petersburg White Sea (river Neva - Ladoga Lake river Svir - Onega Lake Petrozavodsk) was provided in frame the experimental voyage onboard the m/v «St. Peterburg» (J uly 1998 and June 1999). The results of organic matter charting for the different water masses for vast water basin in the northwestern of Russia were analyzed and classified. The arrangement of dissolved organic for the largest in Europe lakes Ladoga and Onega is analyzed in comparison with hydrological and meteorological processes and phenomena, including thermal regime modification. Spatial and temporal (seasonal and annual) transformation of organic matter for these water basins are studied. Aquatic environment conditions of the coastal zones, different bays and gulfs more pressed by livestock and agricultural farms, and industry are assessed also. According to the shipborne data more polluted water areas are the Svir Bay (Ladoga Lake) and Petrozavodskaya Guba (Onega Lake). These results are well correlated with in situ data and literature data. Thus, first time in practice is carried out the running control of a COD and spatial profile of the organic matter for different natural waters. Accuracy of measurements in comparison with traditional approaches and new technologies (including ideas and results practical application of sonoluminiscence of dissolved organic) are discussed also. The modification of CS COD was used for the cont rol of dissolved organic in different marine aquatic system. Sea water samples and preserved ice cores, gathered in the Barents, White and Kara Seas, were investigated. Probes of saltish and brackish-water (as ice cores) from the estuary of great Siberian rivers (Ob Bay and Yenisey Gulf) were analyzed in laboratory (biochemical analysis of these probes was fulfilled also). It was demonstrat ed that CS COD system can be used till range a salinity 25-33% ?, that opens to use this method for operative assessment of water parameters and dissolved organic control in different types of sea water. The result of classification of spatial and temporal modification of the organic matter in the different part of Russian Arctic are presented. As a near-term perspective we plan to connect CS COD system with the State Regional Network of Ecological Control (SRNEC). Another task is organizing comprehensive study of dissolved organic and biochemistry of sea waters at the White Sea: long-term in situ measurements will started in March'02 at the Biological Station of Moscow State University in Kandalaksha (Karelya).
Advances in the Control System for a High Precision Dissolved Organic Carbon Analyzer
NASA Astrophysics Data System (ADS)
Liao, M.; Stubbins, A.; Haidekker, M.
2017-12-01
Dissolved organic carbon (DOC) is a master variable in aquatic ecosystems. DOC in the ocean is one of the largest carbon stores on earth. Studies of the dynamics of DOC in the ocean and other low DOC systems (e.g. groundwater) are hindered by the lack of high precision (sub-micromolar) analytical techniques. Results are presented from efforts to construct and optimize a flow-through, wet chemical DOC analyzer. This study focused on the design, integration and optimization of high precision components and control systems required for such a system (mass flow controller, syringe pumps, gas extraction, reactor chamber with controlled UV and temperature). Results of the approaches developed are presented.
Assessing the Role of Dissolved Organic Phosphate on Rates of Microbial Phosphorus Cycling
NASA Astrophysics Data System (ADS)
Gonzalez, A. C.; Popendorf, K. J.; Duhamel, S.
2016-02-01
Phosphorus (P) is an element crucial to life, and it is limiting in many parts of the ocean. In oligotrophic environments, the dissolved P pool is cycled rapidly through the activity of microbes, with turnover times of several hours or less. The overarching aim of this study was to assess the flux of P from picoplankton to the dissolved pool and the role this plays in fueling rapid P cycling. To determine if specific microbial groups are responsible for significant return of P to the dissolved pool during cell lifetime, we compared the rate of cellular P turnover (cell-Pτ, the rate of cellular P uptake divided by cellular P content) to the rate of cellular biomass turnover (cellτ). High rates of P return to the dissolved pool during cell lifetime (high cell-Pτ/cellτ) indicate significant P regeneration, fueling more rapid turnover of the dissolved P pool. We hypothesized that cell-Pτ/cellτ varies widely across picoplankton groups. One factor influencing this variation may be each microbial group's relative uptake of dissolved organic phosphorus (DOP) versus dissolved inorganic phosphorus (DIP). As extracellular hydrolysis is necessary for P incorporation from DOP, this process may return more P to the dissolved pool than DIP incorporation. This leads to the question: does a picoplankton's relative uptake of DOP (versus DIP) affect the rate at which it returns phosphorus to the dissolved pool? To address this question, we compared the rate of cellular P turnover based on uptake of DOP and uptake DIP using cultured representatives of three environmentally significant picoplankton groups: Prochlorococcus, Synechococcus, and heterotrophic bacteria. These different picoplankton groups are known to take up different ratios of DOP to DIP, and may in turn make significantly different contributions to the regeneration and cycling phosphorus. These findings have implications towards our understanding of the timeframes of biogeochemical cycling of phosphorus in the ocean.
Ju, Lu-Kwang; Huang, Lin; Trivedi, Hiren
2007-08-01
Simultaneous nitrification and denitrification (SND or SNdN) may occur at low dissolved oxygen concentrations. In this study, bench-scale (approximately 6 L) bioreactors treating a continuous feed of synthetic wastewater were used to evaluate the effects of solids retention time and low dissolved oxygen concentration, under cyclic aeration, on the removal of organics, nitrogen, and phosphorus. The cyclic aeration was carried out with repeated cycles of 1 hour at a higher dissolved oxygen concentration (HDO) and 30 minutes at a lower (or zero) dissolved oxygen concentration (LDO). Compared with aeration at constant dissolved oxygen concentrations, the cyclic aeration, when operated with proper combinations of HDO and LDO, produced better-settling sludge and more complete nitrogen and phosphorus removal. For nitrogen removal, the advantage resulted from the more readily available nitrate and nitrite (generated by nitrification during the HDO period) for denitrification (during the LDO period). For phosphorus removal, the advantage of cyclic aeration came from the development of a higher population of polyphosphate-accumulating organisms, as indicated by the higher phosphorus contents in the sludge solids of the cyclically aerated systems. Nitrite shunt was also observed to occur in the LDO systems. Higher ratios of nitrite to nitrate were found in the systems of lower HDO (and, to less dependency, higher LDO), suggesting that the nitrite shunt took place mainly because of the disrupted nitrification at lower HDO. The study results indicated that the HDO used should be kept reasonably high (approximately 0.8 mg/L) or the HDO period prolonged, to promote adequate nitrification, and the LDO kept low (< or =0.2 mg/L), to achieve more complete denitrification and higher phosphorus removal. The above findings in the laboratory systems find strong support from the results obtained in full-scale plant implementation. Two plant case studies using the cyclic low-dissolved-oxygen aeration for creating and maintaining SND are also presented.
Godwin, Sean C.; Jones, Stuart E.; Weidel, Brian C.; Solomon, Christopher T.
2014-01-01
We evaluated several potential drivers of primary production by benthic algae (periphyton) in north-temperate lakes. We used continuous dissolved oxygen measurements from in situ benthic chambers to quantify primary production by periphyton at multiple depths across 11 lakes encompassing a broad range of dissolved organic carbon (DOC) and total phosphorous (TP) concentrations. Light-use efficiency (primary production per unit incident light) was inversely related to average light availability (% of surface light) in 7 of the 11 study lakes, indicating that benthic algal assemblages exhibit photoadaptation, likely through physiological or compositional changes. DOC alone explained 86% of the variability in log-transformed whole-lake benthic production rates. TP was not an important driver of benthic production via its effects on nutrient and light availability. This result is contrary to studies in other systems, but may be common in relatively pristine north-temperate lakes. Our simple empirical model may allow for the prediction of whole-lake benthic primary production from easily obtained measurements of DOC concentration.
Pagilla, K R; Urgun-Demirtas, M; Czerwionka, K; Makinia, J
2008-01-01
The fate of N species, particularly dissolved organic nitrogen (DON), through process trains of a wastewater treatment plant (WWTP) was investigated. In this study, three fully nitrifying plants in Illinois, USA and biological nutrient removal (BNR) plants in northern Poland were sampled for N characterization in the primary and secondary effluents as a function of the particle size distribution. The correlations between dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) concentrations were examined. The key findings are that DON becomes significant portion (about 20%) of the effluent N, reaching up to 50% of effluent total N in one of the Polish plants. The DON constituted 56-95% of total ON (TON) in the secondary effluents, whereas in the Polish plants the DON contribution was substantially lower (19-62%) and in one case (Gdansk WWTP) colloidal ON was the dominating fraction (62% of TON). The DOC to DON ratio in the US plants is significantly lower than that in the receiving waters indicating potential for deterioration of receiving water quality. In Polish plants, the influent and effluent C:N ratios are similar, but not in the US plants. IWA Publishing 2008.
Effects of pore size and dissolved organic matters on diffusion of arsenate in aqueous solution.
Wang, Yulong; Wang, Shaofeng; Wang, Xin; Jia, Yongfeng
2017-02-01
Presented here is the influence of membrane pore size and dissolved organic matters on the diffusion coefficient (D) of aqueous arsenate, investigated by the diffusion cell method for the first time. The pH-dependent diffusion coefficient of arsenate was determined and compared with values from previous studies; the coefficient was found to decrease with increasing pH, showing the validity of our novel diffusion cell method. The D value increased dramatically as a function of membrane pore size at small pore sizes, and then increased slowly at pore sizes larger than 2.0μm. Using the ExpAssoc model, the maximum D value was determined to be 11.2565×10 -6 cm 2 /sec. The presence of dissolved organic matters led to a dramatic increase of the D of arsenate, which could be attributed to electrostatic effects and ionic effects of salts. These results improve the understanding of the diffusion behavior of arsenate, especially the important role of various environmental parameters in the study and prediction of the migration of arsenate in aquatic water systems. Copyright © 2016. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Zhu, Wen-Zhuo; Zhang, Hong-Hai; Zhang, Jing; Yang, Gui-Peng
2018-04-01
The absorption coefficient and fluorescent components of chromophoric dissolved organic matter (CDOM) in the Bohai Sea (BS), Yellow Sea (YS), and East China Sea (ECS) in spring and autumn were analyzed in this study. Excitation-emission matrices (EEMs) combined with parallel factor analysis (PARAFAC) identified three components, namely, humic-like C1, tyrosine-like C2 and tryptophan-like C3. The seasonal variations in the vertical patterns of the CDOM absorption coefficient (aCDOM(355)) and fluorescent components were influenced by the seasonal water mass except for the terrestrial input. The relationship between aCDOM(355) and dissolved organic matter (DOC) was attributed to their own mixing behavior. The correlation of the fluorescent components with DOC was disturbed by other non-conservative processes during the export of CDOM to the open ocean. The different chemical compositions and origins of DOC and CDOM led to variability in carbon-specific CDOM absorption (a*CDOM(355)) and fluorescent component ratios (ICn/IC1). The relationship between a*CDOM(355) and aCDOM(355) demonstrated that dissolved organic matter (DOM) in the BS, but not in the ECS, highly contributed non-absorbing DOC to the total DOC concentration. The photodegradation of dominant terrestrially derived CDOM in the ECS contributed to the positive relationship between a*CDOM(355) and ICn/IC1. By contrast, the abundant autochthonous CDOM in the YS was negatively correlated with ICn/IC1 in autumn. Our established box models showed that water exchange is a potentially important source of the aromatic components in the BS, YS, and ECS. Hence, the seasonal variations in water exchange might contribute to the variability of CDOM chemical composition in the BS, YS, and ECS, and significantly influence the structure and function of their ecosystems.
Hailstones: a window into the microbial and chemical inventory of a storm cloud.
Šantl-Temkiv, Tina; Finster, Kai; Dittmar, Thorsten; Hansen, Bjarne Munk; Thyrhaug, Runar; Nielsen, Niels Woetmann; Karlson, Ulrich Gosewinkel
2013-01-01
Storm clouds frequently form in the summer period in temperate climate zones. Studies on these inaccessible and short-lived atmospheric habitats have been scarce. We report here on the first comprehensive biogeochemical investigation of a storm cloud using hailstones as a natural stochastic sampling tool. A detailed molecular analysis of the dissolved organic matter in individual hailstones via ultra-high resolution mass spectrometry revealed the molecular formulae of almost 3000 different compounds. Only a small fraction of these compounds were rapidly biodegradable carbohydrates and lipids, suitable for microbial consumption during the lifetime of cloud droplets. However, as the cloud environment was characterized by a low bacterial density (Me = 1973 cells/ml) as well as high concentrations of both dissolved organic carbon (Me = 179 µM) and total dissolved nitrogen (Me = 30 µM), already trace amounts of easily degradable organic compounds suffice to support bacterial growth. The molecular fingerprints revealed a mainly soil origin of dissolved organic matter and a minor contribution of plant-surface compounds. In contrast, both the total and the cultivable bacterial community were skewed by bacterial groups (γ-Proteobacteria, Sphingobacteriales and Methylobacterium) that indicated the dominance of plant-surface bacteria. The enrichment of plant-associated bacterial groups points at a selection process of microbial genera in the course of cloud formation, which could affect the long-distance transport and spatial distribution of bacteria on Earth. Based on our results we hypothesize that plant-associated bacteria were more likely than soil bacteria (i) to survive the airborne state due to adaptations to life in the phyllosphere, which in many respects matches the demands encountered in the atmosphere and (ii) to grow on the suitable fraction of dissolved organic matter in clouds due to their ecological strategy. We conclude that storm clouds are among the most extreme habitats on Earth, where microbial life exists.
Hailstones: A Window into the Microbial and Chemical Inventory of a Storm Cloud
Šantl-Temkiv, Tina; Finster, Kai; Dittmar, Thorsten; Hansen, Bjarne Munk; Nielsen, Niels Woetmann; Karlson, Ulrich Gosewinkel
2013-01-01
Storm clouds frequently form in the summer period in temperate climate zones. Studies on these inaccessible and short-lived atmospheric habitats have been scarce. We report here on the first comprehensive biogeochemical investigation of a storm cloud using hailstones as a natural stochastic sampling tool. A detailed molecular analysis of the dissolved organic matter in individual hailstones via ultra-high resolution mass spectrometry revealed the molecular formulae of almost 3000 different compounds. Only a small fraction of these compounds were rapidly biodegradable carbohydrates and lipids, suitable for microbial consumption during the lifetime of cloud droplets. However, as the cloud environment was characterized by a low bacterial density (Me = 1973 cells/ml) as well as high concentrations of both dissolved organic carbon (Me = 179 µM) and total dissolved nitrogen (Me = 30 µM), already trace amounts of easily degradable organic compounds suffice to support bacterial growth. The molecular fingerprints revealed a mainly soil origin of dissolved organic matter and a minor contribution of plant-surface compounds. In contrast, both the total and the cultivable bacterial community were skewed by bacterial groups (γ-Proteobacteria, Sphingobacteriales and Methylobacterium) that indicated the dominance of plant-surface bacteria. The enrichment of plant-associated bacterial groups points at a selection process of microbial genera in the course of cloud formation, which could affect the long-distance transport and spatial distribution of bacteria on Earth. Based on our results we hypothesize that plant-associated bacteria were more likely than soil bacteria (i) to survive the airborne state due to adaptations to life in the phyllosphere, which in many respects matches the demands encountered in the atmosphere and (ii) to grow on the suitable fraction of dissolved organic matter in clouds due to their ecological strategy. We conclude that storm clouds are among the most extreme habitats on Earth, where microbial life exists. PMID:23372660
Water-quality data for Smith and Bybee Lakes, Portland, Oregon, June to November, 1982
Clifton, Daphne G.
1983-01-01
Water-quality monitoring at Smith and Bybee Lakes included measurement of water temperature, dissolved oxygen concentration and percent saturation, pH, specific conductance, lake depth, alkalinity, dissolved carbon, total dissolved solids, secchi disk light transparency, nutrients, and chlorophyll a and b. In addition, phytoplankton, zooplankton, and benthic invertebrate populations were identified and enumerated. Lakebed sediment was analyzed for particle size, volatile solids, immediate oxygen demand, trace metals, total organic carbon, nutrients, and organic constituents. (USGS)
NASA Astrophysics Data System (ADS)
McKnight, Diane
2017-04-01
As Dr. George Aiken emphasized throughout his distinguished research career, the diversity of sources of dissolved organic material (DOM) is associated with a diversity of dissolved organic compounds with a range of chemistries and reactivities that are present in the natural environment. From a limnological perspective, dissolved organic matter (DOM) can originate from allochthonous sources on the landscape which drains into a lake, river, wetland, coastal region, or other aquatic ecosystem, or from autochthonous sources within the given aquatic ecosystem. In many landscapes, the precursor organic materials that contribute to the DOM of the associated aquatic ecosystem can be derived from diverse sources, e.g. terrestrial plants, plant litter, organic material in different soil horizons, and the products of microbial growth and decay. Yet, through his focus on the underlying chemical processes a clear, chemically robust foundation for understanding DOM reactivity has emerged from Aiken's research. These processes include the enhancement in solubility due to ionized carboxylic acid functional groups and the reactions of organic sulfur groups with mercury. This approach has advanced understand of carbon cycling in the lakes of the Mars-like barren landscapes of the McMurdo Dry Valleys in Antarctica and the rivers draining the warming tundra of the Arctic.
We examined the photoreactivity of chromophoric dissolved organic matter (CDOM) derived from Rhizophora mangle (red mangrove) leaf litter and floating Sargassum colonies as these marine plants can be important contributors to coastal and open ocean CDOM pools, respectively. Mangr...
Nitroaromatic pesticides (NAPs) are hydrophobic contaminants that can accumulate in sediments by the deposition of suspended solids from surface waters. Fe(II) and dissolved organic matter (DOM), present in suboxic and anoxic zones of freshwater sediments, can transform NAPs in n...
Colored dissolved organic matter (CDOM) is the primary determinant of UV penetration and exposure in freshwater and coastal environments. CDOM is photochemically reactive and its photoreactions can lead to reductions in UV absorbance and increased UV exposure in aquatic ecosystem...
Effect of dissolved organic carbon in recycled wastewaters on boron adsorption by soils
USDA-ARS?s Scientific Manuscript database
In areas of water scarcity, recycled municipal wastewaters are being used as water resources for non-potable applications, especially for irrigation. Such wastewaters often contain elevated levels of dissolved organic carbon (DOC) and solution boron (B). Boron adsorption was investigated on eight ...
USDA-ARS?s Scientific Manuscript database
Dissolved organic nitrogen (DON) and its biodegradability in treated wastewater have recently gained attention because DON potentially causes oxygen depletion and/or eutrophication in receiving waters. Laboratory scale chemostat experiments were conducted at 9 different solids retention times (SRTs)...
DISSOLVED ORGANIC MATTER AND METALS: EFFECTS OF PH ON PARTITIONING
Eighteen Dutch soils were extracted in aqueous solutions at varying pH. Extracts were analyzed for Cd, Cu, Ni, Pb, and Zn by ICP-AES. Extract dissolved organic carbon (DOC) was fractionated into three operationally defined fractions: hydrophilic acids (Hyd), fulvic acids (FA), an...
Treatment of kitchen wastewater using Eichhornia crassipes
NASA Astrophysics Data System (ADS)
Parwin, Rijwana; Karar Paul, Kakoli
2018-03-01
The efficiency of Eichhornia crassipes for treatment of raw kitchen wastewater was studied in the present research work. An artificial wetland of 30 liter capacity was created for phytoremediation of kitchen wastewater using Eichhornia crassipes. Kitchen wastewater samples were collected from hostel of an educational institute in India. Samples were characterized based on physical and chemical parameters such as pH, turbidity, total hardness, nitrate-nitrogen, ammonium-nitrogen, sulphate, dissolved oxygen, total organic carbon and total dissolved solid. The physico-chemical parameter of kitchen wastewater samples were analysed for durations of 0 (initial day), 4 and 8 days. After 8 days of retention period, it was observed that pH value increases from 6.25 to 6.63. However, percentage reduction for turbidity, total hardness, nitrate-nitrogen, ammonium-nitrogen, sulphate, dissolved oxygen, total organic carbon and total dissolved solid were found to be 74.71%, 50%, 78.75%, 60.28%, 25.31%, 33.33%, 15.38% and 69.97%, respectively. Hence water hyacinth (Eichhornia crassipes) is found efficient and easy to handle and it can be used for low cost phytoremediation technique.
Hydrologic and water-quality data from Mountain Island Lake, North Carolina, 1994-97
Sarver, K.M.; Steiner, B.C.
1998-01-01
Continuous-record water-level gages were established at three sites on Mountain Island Lake and one site downstream from Mountain Island Dam. The water level of Mountain Island Lake is controlled by Duke Power Company releases at Cowans Ford Dam (upstream) and Mountain Island Dam (downstream). Water levels on Mountain Island Lake measured just downstream from Cowans Ford Dam fluctuated 11.15 feet during the study. Water levels just upstream from the Mountain Island Lake forebay fluctuated 6.72 feet during the study. About 3 miles downstream from Mountain Island Dam, water levels fluctuated 5.31 feet. Sampling locations included 14 sites in Mountain Island Lake, plus one downstream river site. At three sites, automated instruments recorded water temperature, dissolved-oxygen concentration, and specific conductance at 15-minute intervals throughout the study. Water temperatures recorded continuously during the study ranged from 4.2 to 35.2 degrees Celsius, and dissolved-oxygen concentrations ranged from 2.1 to 11.8 milligrams per liter. Dissolved-oxygen concentrations generally were inversely related to water temperature, with lowest dissolved-oxygen concentrations typically recorded in the summer. Specific conductance values recorded continuously during the study ranged from 33 to 89 microsiemens per centimeter; however, mean monthly values were fairly consistent throughout the study at all sites (50 to 61 microsiemens per centimeter). In addition, vertical profiles of water temperature, dissolved-oxygen concentration, specific conductance, and pH were measured at all sampling locations during 24 site visits. Water-quality constituent concentrations were determined for seven reservoir sites and the downstream river site during 17 sampling trips. Water-quality samples were routinely analyzed for biochemical oxygen demand, fecal coliform bacteria, hardness, alkalinity, total and volatile suspended solids, nutrients, total organic carbon, chlorophyll, iron, calcium, and magnesium; the samples were analyzed less frequently for trace metals, volatile organic compounds, semivolatile organic compounds, and pesticides. Maximum dissolved nitrite plus nitrate concentrations determined during the study were 0.348 milligram per liter in the mainstem sites and 2.77 milligrams per liter in the coves. Maximum total phosphorus concentrations were 0.143 milligram per liter in the mainstem sites and 0.600 milligram per liter in the coves. Fecal coliform and chlorophyll a concentrations were less than or equal to 160 colonies per 100 milliliters and 13 micrograms per liter, respectively, in all samples. Trace metals detected in at least one sample included arsenic, chromium, copper, lead, nickel, zinc, and antimony. Concentrations of all trace metals (except zinc) were 5.0 micrograms per liter or less; the maximum zinc concentration was 80 micrograms per liter. One set of bottom material samples was collected from Gar Creek and McDowell Creek for chemical analysis and analyzed for nutrients, trace metals, organochlorine pesticides, and semivolatile organic compounds. The only organochlorine pesticide identified in either sample was p,p'-DDE at an estimated concentration of 0.8 microgram per kilogram. Twenty semivolatile organic compounds, mainly polyaromatic hydrocarbons and plasticizers, were identified.
Microbial Community Response to Terrestrially Derived Dissolved Organic Matter in the Coastal Arctic
Sipler, Rachel E.; Kellogg, Colleen T. E.; Connelly, Tara L.; Roberts, Quinn N.; Yager, Patricia L.; Bronk, Deborah A.
2017-01-01
Warming at nearly twice the global rate, higher than average air temperatures are the new ‘normal’ for Arctic ecosystems. This rise in temperature has triggered hydrological and geochemical changes that increasingly release carbon-rich water into the coastal ocean via increased riverine discharge, coastal erosion, and the thawing of the semi-permanent permafrost ubiquitous in the region. To determine the biogeochemical impacts of terrestrially derived dissolved organic matter (tDOM) on marine ecosystems we compared the nutrient stocks and bacterial communities present under ice-covered and ice-free conditions, assessed the lability of Arctic tDOM to coastal microbial communities from the Chukchi Sea, and identified bacterial taxa that respond to rapid increases in tDOM. Once thought to be predominantly refractory, we found that ∼7% of dissolved organic carbon and ∼38% of dissolved organic nitrogen from tDOM was bioavailable to receiving marine microbial communities on short 4 – 6 day time scales. The addition of tDOM shifted bacterial community structure toward more copiotrophic taxa and away from more oligotrophic taxa. Although no single order was found to respond universally (positively or negatively) to the tDOM addition, this study identified 20 indicator species as possible sentinels for increased tDOM. These data suggest the true ecological impact of tDOM will be widespread across many bacterial taxa and that shifts in coastal microbial community composition should be anticipated. PMID:28649233
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haitzer, M.; Hoess, S.; Burnison, B.K.
1999-03-01
Quantity and quality of dissolved organic matter (DOM) and the time allowed for DOM to interact with organic contaminants can influence their bioavailability. The authors studied the effect of natural aquatic DOM that had been in contact with benzo[a]pyrene (B[a]P) for 1 to 12 d on the bioconcentration of B[a]P in the nematode Caenorhabditis elegans. Dissolved organic matter quality and quantity was varied by using DOM from three different sources, each in three different concentrations. A model, based on the assumption that only freely dissolved B[a]P is bioavailable, was employed to estimate biologically determined partition coefficients [K{sub p}(biol.)]. Expressing themore » data for each combination of DOM source and contact time in a single K{sub p} (biol.) value allowed a direct comparison of the effects of different DOM qualities and contact times. The results show that the effect of DOM from a specific source was dependent on DOM quantity, but they also observed a distinct effect of DOM quality (represented by different sampling locations) on the bioconcentration of B[a]P. Contact time had no significant influence for the effects of two DOM sources on the bioconcentration of B[a]P. However, the third DOM source was significantly more effective with increased contact time, leading to lower B[a]P bioconcentration in the nematodes.« less
Yuan, Xiao Chun; Lin, Wei Sheng; Pu, Xiao Ting; Yang, Zhi Rong; Zheng, Wei; Chen, Yue Min; Yang, Yu Sheng
2016-06-01
Using the negative pressure sampling method, the concentrations and spectral characte-ristics of dissolved organic matter (DOM) of soil solution were studied at 0-15, 15-30, 30-60 cm layers in Castanopsis carlesii forest (BF), human-assisted naturally regenerated C. carlesii forest (RF), C. carlesii plantation (CP) in evergreen broad-leaved forests in Sanming City, Fujian Pro-vince. The results showed that the overall trend of dissolved organic carbon (DOC) concentrations in soil solution was RF>CP>BF, and the concentration of dissolved organic nitrogen (DON) was highest in C. carlesii plantation. The concentrations of DOC and DON in surface soil (0-15 cm) were all significantly higher than in the subsurface (30-60 cm). The aromatic index (AI) was in the order of RF>CP>BF, and as a whole, the highest AI was observed in the surface soil. Higher fluorescence intensity and a short wave absorption peak (320 nm) were observed in C. carlesii plantation, suggesting the surface soil of C. carlesii plantation was rich in decomposed substance content, while the degree of humification was lower. A medium wave absorption peak (380 nm) was observed in human-assisted naturally regenerated C. carlesii forest, indicating the degree of humification was higher which would contribute to the storage of soil fertility. In addition, DOM characte-ristics in 30-60 cm soil solution were almost unaffected by forest regeneration patterns.
Haftka, Joris J-H; Scherpenisse, Peter; Jonker, Michiel T O; Hermens, Joop L M
2013-05-07
A passive sampling method using polyacrylate-coated solid-phase microextraction (SPME) fibers was applied to determine sorption of polar and ionic organic contaminants to dissolved organic carbon (DOC). The tested contaminants included pharmaceuticals, industrial chemicals, hormones, and pesticides and represented neutral, anionic, and cationic structures. Prior to the passive sampler application, sorption of the chemicals to the fibers was characterized. This was needed in order to accurately translate concentrations measured in fibers to freely dissolved aqueous concentrations during the sorption tests with DOC. Sorption isotherms of neutral compounds to the fiber were linear, whereas isotherms of basic chemicals covered a nonlinear and a linear range. Sorption of acidic and basic compounds to the fiber was pH-dependent and was dominated by sorption of the neutral sorbate species. Fiber- and DOC-water partition coefficients of neutral compounds were both linearly related to octanol-water partition coefficients (log Kow). The results of this study show that polyacrylate fibers can be used to quantify sorption to DOC of neutral and ionic contaminants, having multiple functional groups and spanning a wide hydrophobicity range (log Kow = 2.5-7.5).
[Effects of simulated nitrogen deposition on organic matter leaching in forest soil].
Duan, Lei; ma, Xiao-Xiao; Yu, De-Xiang; Tan, Bing-Quan
2013-06-01
The impact of nitrogen deposition on the dynamics of carbon pool in forest soil was studied through a field experiment at Tieshanping, Chongqing in Southwest China. The changes of dissolved organic matter (DOM) concentration in soil water in different soil layers were monitored for five years after addition of ammonium nitrate (NH4NO3) or sodium nitrate (NaNO3) at the same dose as the current nitrogen deposition to the forest floor. The results indicated that the concentration and flux of dissolved organic carbon (DOC) were increased in the first two years and then decreased by fertilizing. Fertilizing also reduced the DOC/DON (dissolved organic nitrogen) ratio of soil water in the litter layer and the DOC concentration of soil water in the upper mineral layer, but had no significant effect on DOC flux in the lower soil layer. Although there was generally no effect of increasing nitrogen deposition on the forest carbon pool during the experimental period, the shift from C-rich to N-rich DOM might occur. In addition, the species of nitrogen deposition, i. e., NH4(+) and NO3(-), did not show difference in their effect on soil DOM with the same equivalence.
Bobo, Linda L.; Renn, Danny E.
1980-01-01
Water type in the 241-square mile Porter County watershed in Indiana, was calcium bicarbonate or mixed calcium bicarbonate and calcium sulfate. Concentrations of dissolved chemical constituents in surface water and contents of chlorinated hydrocarbons in streambed samples in the watershed were generally less than water-quality alert limits set by the U.S. Environmental Protection Agency, except in Crooked Creek. During sampling, this stream was affected by sewage, chlorinated hydrocarbons, and two chemical spills. Ranges of on-site field measurements were: specific conductance, from 102 to 1,060 micromhos per centimeter at 25 Celcius; water temperature, from 7.0 to 31.8 Celsius; pH, from 6.8 to 8.9; dissolved oxygen, from 2.5 to 14.9 milligrams per liter and from 27 to 148% saturation; and instantaneous discharge from 0 to 101 cubic feet per second. Concentrations of most dissolved-inorganic constituents (heavy metals and major ions) and dissolved solids did not vary significantly from one sampling period to the next at each site. Dissolved constituents whose concentrations varied significantly were iron, manganese, organic carbon, ammonia, nitrate plus nitrite, organic nitrogen, Kjeldahl nitrogen, and phosphorus. Concentrations of dissolved manganese, organic carbon, dissolved nitrite plus nitrate, and suspended sediment varied seasonally at most sites. Populations and identification of bacteria, phytoplankton, periphyton, and benthic invertebrates indicate a well-balanced environment at most sites, except in Crooked Creek.
Bioavailability of riverine dissolved organic matter to phytoplankton in the marine coastal waters
NASA Astrophysics Data System (ADS)
Jurgensone, Iveta; Aigars, Juris
2012-07-01
Nutrient inputs from catchments with intensive agriculture are mostly dominated by inorganic nutrients, whereas the contribution of organic nutrients from catchments with natural forests can be considerable but there is a pooere understanding of this nutrient source. Consequently this study investigated spring, summer and autumn phytoplankton community responses to enrichment by riverine dissolved organic matter (DOM). Dissolved organic substances were extracted from the Daugava River, fractionated into three molecular size classes: 1) 5-100 kDa, 2) 100-1000 kDa, and 3) >1000 kDa, and added to a microcosm with natural assemblages from the Gulf of Riga. During the spring the phytoplankton community was dominated (97%) by diatoms and the species composition did not change over the course of the experiment. Specific species and functional groups of the summer and autumn phytoplankton communities responded positively to these treatments. Small-celled cyanobacteria and Monoraphidium contortum responded to almost all size fractions of DOM for the summer and autumn experiments. Oocystis spp. characteristic for the summer and Chaetoceros wighamii, Cyclotella spp., Thalassiosira baltica for the autumn responded to treatment by two and three size classes of organic substances, respectively, while Merismopedia spp. shifted from one food source to another during the summer experiment.
[Determination of chromphoric dissolved organic matter in water from different sources].
Liu, Xian-ping; Li, Lei; Dai, Jin-feng; Wang, Xiao-ru; Lee, Frank S C
2007-10-01
Chromophoric dissolved organic matter (CDOM) represents the fraction of the dissolved organic pool which absorbs light in the visible as well as UV ranges. It could affect the color of the waters. It is necessary to study it during in research on ecosystem, remote sensing of the water color and the cycle of carbon in waters. CDOM can fluoresce when excited, so fluorescence spectrum has been used to study its origin, distribution, and change. In the present article the fluorescence spectrophotometer was used to study the relation between the fluorescence intensity, spectrum area and the concentration of CDOM. When the concentration of CDOM is low (less than 75 mg x L(-1)), there is a better linear relationship (r2 > 0.98) between the fluorescence intensity, the spectrum area and the concentration of CDOM. Meanwhile good linear relations were found between the fluorescence intensity and spectrum area, which showed the same changeable trend of the fluorescence intensity and spectrum area with the concentration change of CDOM. A method was established to quantify the concentration of CDOM in water from different source using the linear relationship between the spectrum area and the concentration. It suits the complicated constituent analysis of CDOM and could really and accurately show the concentration of CDOM in natural water.
How does predation affect the bioaccumulation of hydrophobic organic compounds in aquatic organisms?
Xia, Xinghui; Li, Husheng; Yang, Zhifeng; Zhang, Xiaotian; Wang, Haotian
2015-04-21
It is well-known that the body burden of hydrophobic organic compounds (HOCs) increases with the trophic level of aquatic organisms. However, the mechanism of HOC biomagnification is not fully understood. To fill this gap, this study investigated the effect of predation on the bioaccumulation of polycyclic aromatic hydrocarbons (PAHs), one type of HOC, in low-to-high aquatic trophic levels under constant freely dissolved PAH concentrations (1, 5, or 10 μg L(-1)) maintained by passive dosing systems. The tested PAHs included phenanthrene, anthracene, fluoranthene, and pyrene. The test organisms included zebrafish, which prey on Daphnia magna, and cichlids, which prey on zebrafish. The results revealed that for both zebrafish and cichlids, predation elevated the uptake and elimination rates of PAHs. The increase of uptake rate constant ranged from 20.8% to 39.4% in zebrafish with the amount of predation of 5 daphnids per fish per day, and the PAH uptake rate constant increased with the amount of predation. However, predation did not change the final bioaccumulation equilibrium; the equilibrium concentrations of PAHs in fish only depended on the freely dissolved concentration in water. Furthermore, the lipid-normalized water-based bioaccumulation factor of each PAH was constant for fish at different trophic levels. These findings infer that the final bioaccumulation equilibrium of PAHs is related to a partition between water and lipids in aquatic organisms, and predation between trophic levels does not change bioaccumulation equilibrium but bioaccumulation kinetics at stable freely dissolved PAH concentrations. This study suggests that if HOCs have not reached bioaccumulation equilibrium, biomagnification occurs due to enhanced uptake rates caused by predation in addition to higher lipid contents in higher trophic organisms. Otherwise, it is only due to the higher lipid contents in higher trophic organisms.
Perakis, S.S.; Hedin, L.O.
2007-01-01
We sampled 100 unpolluted, old-growth forested watersheds, divided among 13 separate study areas over 5 years in temperate southern Chile and Argentina, to evaluate relationships among dominant soil-forming state factors and dissolved carbon and nitrogen concentrations in watershed streams. These watersheds provide a unique opportunity to examine broad-scale controls over carbon (C) and nitrogen (N) biogeochemistry in the absence of significant human disturbance from chronic N deposition and land use change. Variations in the ratio dissolved organic carbon (DOC) to nitrogen (DON) in watershed streams differed by underlying soil parent material, with average C:N = 29 for watersheds underlain by volcanic ash and basalt versus C:N = 73 for sedimentary and metamorphic parent materials, consistent with stronger adsorption of low C:N hydrophobic materials by amorphous clays commonly associated with volcanic ash and basalt weathering. Mean annual precipitation was related positively to variations in both DOC (range: 0.2-9.7 mg C/L) and DON (range: 0.008-0.135 mg N/L) across study areas, suggesting that variations in water volume and concentration may act synergistically to influence C and N losses across dry to wet gradients in these forest ecosystems. Dominance of vegetation by broadleaf versus coniferous trees had negligible effects on organic C and N concentrations in comparison to abiotic factors. We conclude that precipitation volume and soil parent material are important controls over chemical losses of dissolved organic C and N from unpolluted temperate forest watersheds. Our results raise the possibility that biotic imprints on watershed C and N losses may be less pronounced in naturally N-poor forests than in areas impacted by land use change and chronic N deposition. Copyright 2007 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Matsuoka, A.; Hooker, S. B.; Bricaud, A.; Gentili, B.; Babin, M.
2013-02-01
A series of papers have suggested that freshwater discharge, including a large amount of dissolved organic matter (DOM), has increased since the middle of the 20th century. In this study, a semi-analytical algorithm for estimating light absorption coefficients of the colored fraction of DOM (CDOM) was developed for southern Beaufort Sea waters using remote sensing reflectance at six wavelengths in the visible spectral domain corresponding to MODIS ocean color sensor. This algorithm allows the separation of colored detrital matter (CDM) into CDOM and non-algal particles (NAP) through the determination of NAP absorption using an empirical relationship between NAP absorption and particle backscattering coefficients. Evaluation using independent datasets, which were not used for developing the algorithm, showed that CDOM absorption can be estimated accurately to within an uncertainty of 35% and 50% for oceanic and coastal waters, respectively. A previous paper (Matsuoka et al., 2012) showed that dissolved organic carbon (DOC) concentrations were tightly correlated with CDOM absorption in our study area (r2 = 0.97). By combining the CDOM absorption algorithm together with the DOC versus CDOM relationship, it is now possible to estimate DOC concentrations in the near-surface layer of the southern Beaufort Sea using satellite ocean color data. DOC concentrations in the surface waters were estimated using MODIS ocean color data, and the estimates showed reasonable values compared to in situ measurements. We propose a routine and near real-time method for deriving DOC concentrations from space, which may open the way to an estimate of DOC budgets for Arctic coastal waters.
Origins, seasonality, and fluxes of organic matter in the Congo River
NASA Astrophysics Data System (ADS)
Spencer, Robert G. M.; Hernes, Peter J.; Dinga, Bienvenu; Wabakanghanzi, Jose N.; Drake, Travis W.; Six, Johan
2016-07-01
The Congo River in central Africa represents a major source of organic matter (OM) to the Atlantic Ocean. This study examined elemental (%OC, %N, and C:N), stable isotopic (δ13C and δ15N), and biomarker composition (lignin phenols) of particulate OM (POM) and dissolved OM (DOM) across the seasonal hydrograph. Even though the Congo exhibits an extremely stable intra-annual discharge regime, seasonal variability in OM composition was evident. DOM appears predominantly derived from vascular plant inputs with greater relative contribution during the rising limb and peak in discharge associated with the major November-December discharge maximum. Generally, POM appears to be sourced from soil-derived mineral-associated OM (low C:N, low Λ8, and higher (Ad:Al)v) but the relative proportion of fresh vascular plant material (higher C:N, higher Λ8, and lower (Ad:Al)v) increases with higher discharge. During the study period (September 2009 to November 2010) the Congo exported 29.21 Tg yr-1 of total suspended sediment (TSS), 1.96 Tg yr-1 of particulate organic carbon (POC), and 12.48 Tg yr-1 of dissolved organic carbon. The Congo exports an order of magnitude lower TSS load in comparison to other major riverine sources of TSS (e.g., Ganges and Brahmaputra), but due to its OM-rich character it actually exports a comparable amount of POC. The Congo is also 2.5 times more efficient at exporting dissolved lignin per unit volume compared to the Amazon. Including Congo dissolved lignin data in residence time calculations for lignin in the Atlantic Ocean results in an approximately 10% reduction from the existing estimate, suggesting that this material is more reactive than previously thought.
Mladenov, Natalie; Zheng, Yan; Simone, Bailey; Bilinski, Theresa M; McKnight, Diane M; Nemergut, Diana; Radloff, Kathleen A; Rahman, M Moshiur; Ahmed, Kazi Matin
2015-09-15
In some high arsenic (As) groundwater systems, correlations are observed between dissolved organic matter (DOM) and As concentrations, but in other systems, such relationships are absent. The role of labile DOM as the main driver of microbial reductive dissolution is not sufficient to explain the variation in DOM-As relationships. Other processes that may also influence As mobility include complexation of As by dissolved humic substances, and competitive sorption and electron shuttling reactions mediated by humics. To evaluate such humic DOM influences, we characterized the optical properties of filtered surface water (n = 10) and groundwater (n = 24) samples spanning an age gradient in Araihazar, Bangladesh. Further, we analyzed large volume fulvic acid (FA) isolates (n = 6) for optical properties, C and N content, and (13)C NMR spectroscopic distribution. Old groundwater (>30 years old) contained primarily sediment-derived DOM and had significantly higher (p < 0.001) dissolved As concentration than groundwater that was younger than 5 years old. Younger groundwater had DOM spectroscopic signatures similar to surface water DOM and characteristic of a sewage pollution influence. Associations between dissolved As, iron (Fe), and FA concentration and fluorescence properties of isolated FA in this field study suggest that aromatic, terrestrially derived FAs promote As-Fe-FA complexation reactions that may enhance As mobility.
NASA Astrophysics Data System (ADS)
Murphy, K.; Stedmon, C. A.; Wunsch, U.
2017-12-01
The study of dissolved organic matter in aquatic milieu frequently involves measuring and interpreting fluorescence excitation emission matrices (EEMs) as a proxy for studying the total organic matter pool. Parallel Factor Analysis (PARAFAC) is used widely to identify and track independent organic matter fractions. This approach assumes that each EEM reflects the combined fluorescence signal from a limited number of unique, non-interacting chemical components, which are determined via a fitting algorithm. During the past fifteen years, considerable progress in understanding dissolved organic matter fluorescence has been achieved with the aid of PARAFAC; however, very few identical or ubiquitous fluorescence spectra have been independently identified. We studied the influence of wavelength selection on PARAFAC models and found this factor to have a decisive impact on PARAFAC spectra despite receiving little attention in most studies. Because large, chemically-diverse datasets may be too complex to analyse with PARAFAC, we are exploring novel methods for increasing variability in small datasets in order to reduce biases and increase interpretability. Our results suggest that spectral variability in PARAFAC models between studies are in many cases due to artefacts that could be minimised by careful experimental and modelling approaches.
Lincoln, Tricia A.; Horan-Ross, Debra A.; McHale, Michael R.; Lawrence, Gregory B.
2001-01-01
A laboratory for analysis of low-ionic strength water has been developed at the U.S. Geological Survey (USGS) office in Troy, N.Y., to analyze samples collected by USGS projects in the Northeast. The laboratory's quality-assurance program is based on internal and interlaboratory quality-assurance samples and quality-control procedures developed to ensure proper sample collection, processing, and analysis. The quality-assurance/quality-control data are stored in the laboratory's SAS data-management system, which provides efficient review, compilation, and plotting of quality-assurance/quality-control data. This report presents and discusses samples analyzed from July 1993 through June 1995. Quality-control results for 18 analytical procedures were evaluated for bias and precision. Control charts show that data from seven of the analytical procedures were biased throughout the analysis period for either high-concentration or low-concentration samples but were within control limits; these procedures were: acid-neutralizing capacity, dissolved inorganic carbon, dissolved organic carbon (soil expulsions), chloride, magnesium, nitrate (colorimetric method), and pH. Three of the analytical procedures were occasionally biased but were within control limits; they were: calcium (high for high-concentration samples for May 1995), dissolved organic carbon (high for highconcentration samples from January through September 1994), and fluoride (high in samples for April and June 1994). No quality-control sample has been developed for the organic monomeric aluminum procedure. Results from the filter-blank and analytical-blank analyses indicate that all analytical procedures in which blanks were run were within control limits, although values for a few blanks were outside the control limits. Blanks were not analyzed for acid-neutralizing capacity, dissolved inorganic carbon, fluoride, nitrate (colorimetric method), or pH. Sampling and analysis precision are evaluated herein in terms of the coefficient of variation obtained for triplicate samples in 14 of the 18 procedures. Data-quality objectives were met by more than 90 percent of the samples analyzed in all procedures except total monomeric aluminum (85 percent of samples met objectives), total aluminum (70 percent of samples met objectives), and dissolved organic carbon (85 percent of samples met objectives). Triplicate samples were not analyzed for ammonium, fluoride, dissolved inorganic carbon, or nitrate (colorimetric method). Results of the USGS interlaboratory Standard Reference Sample Program indicated high data quality with a median result of 3.6 of a possible 4.0. Environment Canada's LRTAP interlaboratory study results indicated that more than 85 percent of the samples met data-quality objectives in 6 of the 12 analyses; exceptions were calcium, dissolved organic carbon, chloride, pH, potassium, and sodium. Data-quality objectives were not met for calcium samples in one LRTAP study, but 94 percent of samples analyzed were within control limits for the remaining studies. Data-quality objectives were not met by 35 percent of samples analyzed for dissolved organic carbon, but 94 percent of sample values were within 20 percent of the most probable value. Data-quality objectives were not met for 30 percent of samples analyzed for chloride, but 90 percent of sample values were within 20 percent of the most probable value. Measurements of samples with a pH above 6.0 were biased high in 54 percent of the samples, although 85 percent of the samples met data-quality objectives for pH measurements below 6.0. Data-quality objectives for potassium and sodium were not met in one study (only 33 percent of the samples analyzed met the objectives), although 85 percent of the sample values were within control limits for the other studies. Measured sodium values were above the upper control limit in all studies. Results from blind reference-sample analyses indicated that data
Chromophoric dissolved organic matter (CDOM) strongly absorbs solar radiation in the blue-green and serves as the primary attenuator of water column ultraviolet radiation (UV-R). CDOM interferes with remote sensing of ocean chlorophyll and can control UV-R-induced damage to light...
Exposure of riverine waters to natural sunlight initiated alterations in stable carbon isotope ratios (delta C-13) of the associated dissolved organic carbon (DOC). Water samples were collected from two compositionally distinct coastal river systems in the southeastern United Sta...
Satellite remote sensing offers synoptic and frequent monitoring of optical water quality parameters, such as chlorophyll-a, turbidity, and colored dissolved organic matter (CDOM). While traditional satellite algorithms were developed for the open ocean, these algorithms often do...
Fluorescence-based observations provide useful, sensitive information concerning the nature and distribution of colored dissolved organic matter (CDOM) in coastal and freshwater environments. The excitation-emission matrix (EEM) technique has become widely used for evaluating sou...
The dissolved organic matter (DOM) exported from rivers and intertidal marshes to coastal oceans is rich in light-absorbing, fluorescent constituents, including humic substances and other polyphenolic moieties. Interactions between microbial and photochemical processes have impor...
The disinfection by-product (DBP) reactivity (yield and speciation upon reaction with chlorine) of dissolved organic matter (DOM) isolated from two surface waters was investigated. The source waters, each having significantly different specific ultraviolet absorbance (SUVA
Photochemical hydroxyl radical (OH) production was measured in several natural waters to investigate the importance of colored dissolved organic matter (CDOM) and iron-CDOM complexes as sources of OH. High rates of OH photoproduction in highly colored, iron-rich, acidic waters a...
The photoreactivity to UV light of ultrafiltered dissolved organic matter (DOM) collected during cruises along salinity transects in the Mississippi and Atchafalaya River plumes was examined by measuring photogenerated free radicals and singlet molecular oxygen (1O2) photosensiti...
Direct photodecomposition and photochemically-mediated bacterial degradation (via photochemical modification of otherwise refractory DOM into biologically labile forms) provide
important pathways for the loss of dissolved organic matter in coastal waters. Here we report
lab...
Dissolved organic matter (DOM) has been implicated as an important complexing agent for Hg that can affect its mobility and bioavailability in aquatic ecosystems. However, binding constants for natural Hg-DOM complexes are not well known. We employed a competitive ligand appro...
ISOTOPIC BIOGEOCHEMISTRY OF DISSOLVED ORGANIC NITROGEN: A NEW TECHNIQUE AND APPLICATION. (R825151)
We present a new technique for isolating and isotopically characterizing dissolved organic nitrogen (DON) for non-marine waters,
15N values for DON from lacustrine samples and data suggesting that this technique will be a...
Elucidating the Role of Electron Shuttles in Reductive Transformations in Anaerobic Sediments
Model studies have demonstrated that electron shuttles (ES) such as dissolved organic matter (DOM) can participate in the reduction of organic contaminants; however, much uncertainty exists concerning the significance of this solution phase pathway for contaminant reduction in na...
Van Oostende, Nicolas; Moerdijk-Poortvliet, Tanja C W; Boschker, Henricus T S; Vyverman, Wim; Sabbe, Koen
2013-05-01
The coccolithophore Emiliania huxleyi plays a pivotal role in the marine carbon cycle. However, we have only limited understanding of how its life cycle and bacterial interactions affect the production and composition of dissolved extracellular organic carbon and its transfer to the particulate pool. We traced the fate of photosynthetically fixed carbon during phosphate-limited stationary growth of non-axenic, calcifying E. huxleyi batch cultures, and more specifically the transfer of this carbon to bacteria and to dissolved high molecular weight neutral aldoses (HMW NAld) and extracellular particulate carbon. We then compared the dynamics of dissolved carbohydrates and transparent exopolymer particles (TEP) between cultures of non-axenic and axenic diploid E. huxleyi. In addition, we present the first data on extracellular organic carbon in (non-axenic) haploid E. huxleyi cultures. Bacteria enhanced the accumulation of dissolved polysaccharides and altered the composition of dissolved HMW NAld, while they also stimulated the formation of TEP containing high densities of charged polysaccharides in diploid E. huxleyi cultures. In haploid E. huxleyi cultures we found a more pronounced accumulation of dissolved carbohydrates, which had a different NAld composition than the diploid cultures. TEP formation was significantly lower than in the diploid cultures, despite the presence of bacteria. In diploid E. huxleyi cultures, we measured a high level of extracellular release of organic carbon (34-76%), retrieved mainly in the particulate pool instead of the dissolved pool. Enhanced formation of sticky TEP due to bacteria-alga interactions, in concert with the production of coccoliths, suggests that especially diploid E. huxleyi blooms increase the efficiency of export production in the ocean during dissolved phosphate-limited conditions. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.
Water quality in the New River from Calexico to the Salton Sea, Imperial County, California
Setmire, James G.
1984-01-01
The New River enters the United States at Calexico, Calif., after it crosses the international boundary. Water-quality data from routine collection indicated that the New River was degraded by high organic and bacterial content. Intensive sampling for chemical and physical constituents and properties of the river was done May 9-13, 1977, to quantify the chemical composition of the water and to identify water-quality problems. Concentrations of total organic carbon in the New River at Calexico ranged from 80 to 161 milligrams per liter and dissolved organic carbon ranged from 34 to 42 milligrams per liter; the maximum chemical oxygen demand was 510 milligrams per liter. Intensive sampling for chemical and biological characteristics was done in the New River from May 1977 to June 1978 to determine the occurrence of the organic material and its effects on downstream water quality. Dissolved-oxygen concentration was measured along longitudinal profiles of the river from Calexico to the Salton Sea. A dissolved-oxygen sag downstream from the Calexico gage varied seasonally. The sag extended farther downstream and had lower concentrations of dissolved oxygen during the summer months than during the winter months. The sag of zero dissolved-oxygen concentration extended 26 miles in July 1977. In December 1976, the sag extended 20 miles but the minimum dissolved-oxygen concentration was 2.5 milligrams per liter. The greatest diel (24-hour) variation in dissolved-oxygen concentration occurred in the reach from the Calexico gage to Lyons Crossing, 8.8 miles downstream. High concentrations of organic material were detected as far as Highway 80, 19.5 miles downstream from the international boundary. Biological samples analyzed for benthic invertebrates showed that water at the Calexico and Lyons Crossing sites, nearest the international boundary, was of such poor quality that very few bottom-dwelling organisms could survive. Although the water was of poor quality at Keystone Road, 36 miles downstream, it was able to support a benthic community. The April sample had more than 9,150 organisms on a multiplate sampler, 8,770 of which were of one species. Farther downstream at the Westmorland gage, the water quality, as indicated by the number and diversity of organisms, had improved over that at the Keystone site. The Alamo River at its outlet to the Salton Sea--the control site--had the greatest diversity of all the study sites. This diversity, when compared with the diversity at the Westmorland gage, indicated that the effects of the degraded water quality observed at the New River at Calexico are detected as far as 62 miles downstream. Standard bacteria indicator tests indicate that fecal contamination exists in the New River. Counts of fecal coliform bacteria ranged from 180,000 to 2,800,000 colonies per 100 milliliters for the 20-mile reach from Calexico to Highway 80, and fecal streptococcal bacteria ranged from 5,000 to 240,000 colonies per 100 milliliters.
NASA Astrophysics Data System (ADS)
Hamilton, S. K.; McGill, B.
2017-12-01
The top meter of the earth's soil contains about twice the amount of carbon than the atmosphere. Agricultural management practices influence whether a cropland soil is a net carbon source or sink. These practices affect both organic and inorganic carbon cycling although the vast majority of studies examine the former. We will present results from several rarely-compared carbon fluxes: carbon dioxide emissions and sequestration from lime (calcium carbonate) weathering, dissolved gases emitted from groundwater-fed irrigation, dissolved organic carbon (DOC) leaching to groundwater, and soil organic matter storage. These were compared in a corn-soybean-wheat rotation under no-till management across a nitrogen fertilizer gradient where half of the replicated blocks are irrigated with groundwater. DOC and liming fluxes are also estimated from a complementary study in neighboring plots comparing a gradient of management practices from conventional to biologically-based annuals and perennials. These studies were conducted at the Kellogg Biological Station Long Term Ecological Research site in Michigan where previous work estimated that carbon dioxide emissions from liming accounted for about one quarter of the total global warming impact (GWI) from no-till systems—our work refines that figure. We will present a first time look at the GWI of gases dissolved in groundwater that are emitted when the water equilibrates with the atmosphere. We will explore whether nitrogen fertilizer and irrigation increase soil organic carbon sequestration by producing greater crop biomass and residues or if they enhance microbial activity, increasing decomposition of organic matter. These results are critical for more accurately estimating how intensive agricultural practices affect the carbon balance of cropping systems.
Qu, Chang-feng; Song, Jin-ming; Li, Ning; Li, Xue-gang; Yuan, Hua-mao; Duan, Li-qin
2016-01-01
Abstract: Jellyfish bloom has been increasing in Chinese seas and decomposition after jellyfish bloom has great influences on marine ecological environment. We conducted the incubation of Nemopilema nomurai decomposing to evaluate its effect on carbon, nitrogen and phosphorus recycling of water column by simulated experiments. The results showed that the processes of jellyfish decomposing represented a fast release of biogenic elements, and the release of carbon, nitrogen and phosphorus reached the maximum at the beginning of jellyfish decomposing. The release of biogenic elements from jellyfish decomposition was dominated by dissolved matter, which had a much higher level than particulate matter. The highest net release rates of dissolved organic carbon and particulate organic carbon reached (103.77 ± 12.60) and (1.52 ± 0.37) mg · kg⁻¹ · h⁻¹, respectively. The dissolved nitrogen was dominated by NH₄⁺-N during the whole incubation time, accounting for 69.6%-91.6% of total dissolved nitrogen, whereas the dissolved phosphorus was dominated by dissolved organic phosphorus during the initial stage of decomposition, being 63.9%-86.7% of total dissolved phosphorus and dominated by PO₄³⁻-P during the late stage of decomposition, being 50.4%-60.2%. On the contrary, the particulate nitrogen was mainly in particulate organic nitrogen, accounting for (88.6 ± 6.9) % of total particulate nitrogen, whereas the particulate phosphorus was mainly in particulate. inorganic phosphorus, accounting for (73.9 ±10.5) % of total particulate phosphorus. In addition, jellyfish decomposition decreased the C/N and increased the N/P of water column. These indicated that jellyfish decomposition could result in relative high carbon and nitrogen loads.
NASA Astrophysics Data System (ADS)
Borgen, M.; Spencer, R. G.; Mann, P. J.; Vonk, J. E.; Bulygina, E. B.; Holmes, R. M.
2012-12-01
Terrigenous dissolved organic matter (DOM) has historically been thought to be refractory as it is mobilized into and transported through Arctic fluvial networks. However, a growing body of evidence suggests that this DOM, largely leached from vegetation, soils, and litter during the annual freshet, is highly biolabile. This study examined DOM leached from these dominant endmembers of the Kolyma River watershed in the Siberian Arctic. As leachates progressed through time, measurements of dissolved organic carbon (DOC), optical parameters to assess DOM composition, and biodegradation incubations were undertaken. This suite of measurements allowed examination of the rate and composition of leached DOC into the aquatic system and quantification of the biolability of the DOM from the diverse range of endmembers examined. Of all the endmembers, vascular plants leached the greatest amount of DOC and results will be presented relating DOC concentration and DOM composition to initial source material. Furthermore, controls on DOM biolability, enzymatic activity, and the ultimate fate of terriginous DOC in Siberian fluvial systems will be discussed.
Molecular-level dynamics of refractory dissolved organic matter
NASA Astrophysics Data System (ADS)
Niggemann, J.; Gerdts, G.; Dittmar, T.
2012-04-01
Refractory dissolved organic matter (DOM) accounts for most of the global oceanic organic carbon inventory. Processes leading to its formation and factors determining its stability are still largely unknown. We hypothesize that refractory DOM carries a universal molecular signature. Characterizing spatial and temporal variability in this universal signature is a key to understanding dynamics of refractory DOM. We present results from a long-term study of the DOM geo-metabolome in the open North Sea. Geo-metabolomics considers the entity of DOM as a population of compounds, each characterized by a specific function and reactivity in the cycling of energy and elements. Ten-thousands of molecular formulae were identified in DOM by ultrahigh resolution mass spectrometry analysis (FT-ICR-MS, Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry). The DOM pool in the North Sea was influenced by a complex interplay of processes that produced, transformed and degraded dissolved molecules. We identified a stable fraction in North Sea DOM with a molecular composition similar to deep ocean DOM. Molecular-level changes in this stable fraction provide novel information on dynamics and interactions of refractory DOM.
Kragh, Theis; Søndergaard, Morten; Tranvik, Lars
2008-05-01
This study reports on the interacting effect of photochemical conditioning of dissolved organic matter and inorganic phosphorus on the metabolic activity of bacteria in freshwater. Batch cultures with lake-water bacteria and dissolved organic carbon (DOC) extracted from a humic boreal river were arranged in an experimental matrix of three levels of exposure to simulated sunlight and three levels of phosphorus concentration. We measured an increase in bacterial biomass, a decrease in DOC and bacterial respiration as CO(2) production and O(2) consumption over 450 h. These measurements were used to calculate bacterial growth efficiency (BGE). Bacterial degradation of DOC increased with increasing exposure to simulated sunlight and availability of phosphorus and no detectable growth occurred on DOC that was not pre-exposed to simulated sunlight. The outcome of photochemical degradation of DOC changed with increasing availability of phosphorus, resulting in an increase in BGE from about 5% to 30%. Thus, the availability of phosphorus has major implications for the quantitative transfer of carbon in microbial food webs.
Dong, Qian-Qian; Zhang, Ai; Li, Yong-Mei; Chen, Ling; Huang, Qing-Hui
2014-03-01
Surface water samples from the Huangpu River were filtered to measure the UV absorption and fluorescence spectrum. Dissolved organic carbon (DOC), N-nitrosodimethylamine (NDMA), and its formation potential (NDMA-FP) were also analyzed to explore relationships between the properties of dissolved organic matter (DOM) and the formation potential of disinfection byproducts-NDMA in the Huangpu River. The study found that: NDMA-FP concentration increased with the increasing of DOC concentration (r = 0.487, P < 0.01), but it had negative relationships with SUVA254 and HIX (r = -0.605, P < 0.01; r = -0.396, P < 0.01). NDMA-FP concentration had positive relationships with the fluorescence intensity of protein-like substances such as low-molecular-weight (LMW) tyrosine-like and tryptophan-like substances (r = 0.421, P < 0.01; r = 0.426, P < 0.01), but had a negative relationship with humic-like substance (r = -0.422, P < 0.01). Therefore, NDMA formation potential increases with the increasing DOM content in the Huangpu River, which is significantly related with the protein-like substances, but decreases with the increasing aromaticity and humification of DOM.
The Effects of Elevated pCO2, Hypoxia and Temperature on ...
Estuarine fish are acclimated to living in an environment with rapid and frequent changes in temperature, salinity, pH, and dissolved oxygen (DO) levels; the physiology of these organisms is well suited to cope with extreme thermal, hypercapnic, and hypoxic stress. While the adverse effects of low dissolved oxygen levels on estuarine fish has been well-documented, the interaction between low DO and elevated pCO2 is not well understood. There is some evidence that low DO and elevated pCO2 interact antagonistically, however little information exists on how projected changes of pCO2 levels in near-shore waters may affect estuarine species, and how these changes may specifically interact with dissolved oxygen and temperature. We explored the survivability of 7-day post fertilization sheepshead minnow, Cyprinodon variegatus, using short term exposure to the combined effects of elevated pCO2 (~1300 µatm; IPCC RCP 8.5) and low dissolved oxygen levels (~2 mg/L). Additionally, we determined if the susceptibility of these fish to elevated pCO2 and low DO was influenced by increases in temperature from 27.5°C to 35°C. Results from this study and future studies will be used to identify estuarine species and lifestages sensitive to the combined effects of elevated pCO2 and low dissolved oxygen. This project was created in order to better understand the interactive effects of projected pCO2 levels and hypoxia in estuarine organisms. This work is currently focused on the se
Selenium biogeochemistry in the San Francisco Bay estuary: changes in water column behavior
NASA Astrophysics Data System (ADS)
Cutter, Gregory A.; Cutter, Lynda S.
2004-11-01
The cycling of dissolved selenium was examined in the North San Francisco Bay estuary using 5 surface water transects from the Pacific Ocean (Golden Gate) to the Sacramento and San Joaquin Rivers, monthly river sampling, and three collections of oil refinery effluents during 1997-2000. By combining these data with earlier results from the mid-1980s, a nearly 16-year record of riverine fluxes, estuarine processes, and anthropogenic inputs was obtained. The Sacramento River concentrations and speciation have remained unchanged over the period, and while the speciation of selenium in the San Joaquin is similar, its dissolved selenium concentrations have decreased by almost one half. More significantly, the concentration of selenium from oil refinery discharges to the mid-estuary has decreased 66% and its speciation changed from one dominated by selenite (66%) to one that is only 14% selenite. This change in refinery effluents occurred while our study was underway, with the result being a pronounced decrease in selenite concentrations (82%), and hence total dissolved selenium, in the mid-estuary. A companion study found that sediment/water exchange is a minor flux to the estuary, and hence selenium inputs from the Sacramento River, as well as refineries during low flow (summer, fall) periods exert major controls on the dissolved selenium behavior in this estuary. Nevertheless, in situ processes associated with organic matter cycling (photosynthesis and respiration) still modify the distributions and internal transformations of dissolved selenium, notably organic selenide.
Removal of organic compounds from shale gas flowback water.
Butkovskyi, Andrii; Faber, Ann-Hélène; Wang, Yue; Grolle, Katja; Hofman-Caris, Roberta; Bruning, Harry; Van Wezel, Annemarie P; Rijnaarts, Huub H M
2018-07-01
Ozonation, sorption to granular activated carbon and aerobic degradation were compared as potential treatment methods for removal of dissolved organic carbon (DOC) fractions and selected organic compounds from shale gas flowback water after pre-treatment in dissolved air flotation unit. Flowback water was characterised by high chemical oxygen demand and DOC. Low molecular weight (LMW) acids and neutral compounds were the most abundant organic fractions, corresponding to 47% and 35% of DOC respectively. Ozonation did not change distribution of organic carbon fractions and concentrations of detected individual organic compounds significantly. Sorption to activated carbon targeted removal of individual organic compounds with molecular weight >115 Da, whereas LMW compounds remained largely unaffected. Aerobic degradation was responsible for removal of LMW compounds and partial ammonium removal, whereas formation of intermediates with molecular weight of 200-350 Da was observed. Combination of aerobic degradation for LMW organics removal with adsorption to activated carbon for removal of non-biodegradable organics is proposed to be implemented between pre-treatment (dissolved air floatation) and desalination (thermal or membrane desalination) steps. Copyright © 2018 Elsevier Ltd. All rights reserved.
Water quality in the tidal Potomac River and Estuary, hydrologic data report, 1979 water year
Blanchard, Stephen F.; Hahl, D.C.
1981-01-01
This report contains data on the physical and chemical properties measured during the 1979 water year for the tidal Potomac River and estuary. Data were collected routinely at five major stations and periodically at 14 intervening stations. Each major station represents a cross section through which the transport of selected dissolved and suspended materials will be computed. The intervening stations represent locations at which data were collected for special studies such as: salt water migration, dissolved oxygen dynamics, and other synoptic studies. About 960 samples were analyzed for silicate, Kjeldhal nitrogen, nitrite, phosphorus, chlorophyll and suspended sediment, with additional samples analyzed for organic carbon, calcium, magnesium, sodium, bicarbonate, sulfate, potassium, chloride, fluoride, seston and dissolved solids residue. In addition, about 1400 in-situ measurements of dissolved oxygen, specific conductance, temperature, and Secchi disk transparency are reported. (USGS)
Environmental setting of benchmark streams in agricultural areas of eastern Wisconsin
Rheaume, S.J.; Stewart, J.S.; Lenz, B.N.
1996-01-01
Differences in land use/land cover, and riparian vegetation and instream habitat characteristics are presented. Summaries of field measurements of water temperature, pH, specific conductance and concentrations of dissolved oxygen, total organic plus ammonia nitrogen, dissolved ammonium, nitrate plus nitrte as nitrogen, total phosphorus, dissolved orthophosphate, and atrazine are listed. Concentrations of dissolved oxygen for the sampled streams ranged from 6 A to 14.3 and met the standards set by the Wisconsin Department of Natural Resources (WDNR) for supporting fish and aquatic life. Specific conductance ranged from 98 to 753 u,Scm with values highest in RHU's 1 and 3, where streams are underlain by carbonate bedrock. Median pH did not vary greatly among the four RHU's and ranged from 6.7 to 8.8 also meeting the WDNR standards. Concentrations of total organic plus ammonia nitrogen, dissolved ammonium, total phosphorus, and dissolved orthophosphate show little variation between streams and are generally low, compared to concentrations measured in agriculturally-affected streams in the same RHU's during the same sampling period. Concentrations of the most commonly used pesticide in the study unit, atrazine, were low in all streams, and most concentrations were below trn 0.1 u,g/L detection limit. Riparian vegetation for the benchmark streams were characterized by lowland species of the native plant communities described by John T. Curtis in the "Vegetation of Wisconsin." Based on the environmental setting and water-quality information collected to date, these streams appear to show minimal adverse effects from human activity.
Oemisch, Luise; Goss, Kai-Uwe; Endo, Satoshi
2014-11-28
Many studies in pharmacology, toxicology and environmental science require a method for determining the freely dissolved concentration of a target substance. A recently developed tool for this purpose is equilibrium passive sampling with polymeric materials. However, this method has rarely been applied to ionic organic substances, primarily due to limited availability of convenient sorption materials. This study introduces ion exchange membranes (IEMs) as a novel passive sampling material for organic ions. The partitioning of 4-ethylbenzene-1-sulfonate, 2,4-dichlorophenoxyacetic acid and pentachlorophenol to one anion exchange membrane (FAS) and of difenzoquat, nicotine and verapamil to one cation exchange membrane (FKS) was investigated. All test substances exhibited a sufficiently high affinity for the respective IEM with logarithmic IEM-water partition coefficients >2.3. Sorption equilibrium was established quickly, within several hours for the FAS membrane and within 1-3 days for the FKS membrane. For permanently charged substances the partitioning to the IEMs was independent of pH, but was influenced by the salt composition of the test solution. For all test substances sorption to IEM was dependent on the substance concentration. Bovine serum albumin-water partition coefficients determined by passive sampling with IEMs agree well with those determined by the conventional dialysis method. The results of this study indicate that IEMs exhibit the potential to measure freely dissolved concentrations of organic ions in a simple and time-saving manner. Copyright © 2014 Elsevier B.V. All rights reserved.
Fan, Lu; Brett, Michael T; Jiang, Wenju; Li, Bo
2017-10-01
The objective of this study was to determine the composition of nitrogen (N) in the effluents of advanced N removal (ANR) wastewater treatment plants (WWTPs). This study also tested two different experimental protocols for determining dissolved N recalcitrance. An analysis of 15 effluent samples from five WWTPs, showed effluent concentrations and especially effluent composition varied greatly from one system to the other, with total nitrogen (TN) ranging between 1.05 and 8.10 mg L -1 . Nitrate (NO 3 - ) accounted for between 38 ± 32% of TN, and ammonium accounted for a further 29 ± 28%. All of these samples were dominated by dissolved inorganic nitrogen (DIN; NO 3 - + NH 4 + ), and uptake experiments indicated the DIN fraction was as expected highly bioavailable. Dissolved organic N (DON) accounted for 20 ± 11% for the total dissolved N in these effluents, and uptake experiments indicated the bioavailability of this fraction varied between 27 ± 26% depending on the WWTP assessed. These results indicate near complete DIN removal should be the primary goal of ANR treatment systems. The comparison of bioavailable nitrogen (BAN) quantification protocols showed that the dissolved nitrogen uptake bioassay approach was clearly a more reliable way to determine BAN concentrations compared to the conventional cell yield protocol. Moreover, because the nitrogen uptake experiment was much more sensitive, this protocol made it easier to detect extrinsic factors (such as biological contamination or toxicity) that could affect the accuracy of these bioassays. Based on these results, we recommend the nitrogen uptake bioassay using filtered and autoclaved samples to quantify BAN concentrations. However, for effluent samples indicating toxicity, algal bioassays will not accurately quantify BAN. Copyright © 2017 Elsevier Ltd. All rights reserved.
Behavioral Response of Hermit Crabs (Clibanarius digueti) to Dissolved Carbon Dioxide
NASA Astrophysics Data System (ADS)
Maier, H. J.
2016-02-01
CO2 induced ocean acidification is currently changing the population dynamics of marine organisms. This can involve increased stress in populations, and alteration in individual physiology, which can eventually be expressed through an organism's behavior. If sustained, CO2 induced ocean acidification has the potential to cause major impacts on marine food chains, including on services they provide. The purpose of this study was to understand whether and how ocean acidification affects the behavior of hermit crab Clibanarius digueti, a crustacean inhabiting the littoral zone. We hypothesized that an increase in dissolved carbonic acid would modify grazing and individual movement, because an increase in acidification alters the normal chemical composition of the water and potentially the physiology of C. digueti. A model tidal pool experiment consisting of two tanks (control and treatment) inhabited with seven living C. digueti was set up in the Ocean Biome of Biosphere-2. Each tank was also provided with uninhabited shells: two Turbo fluctuosa and four Cerithium sp. Gaseous CO2 was dissolved into the treatment tank and measured as dissolved CO2 by using a NaOH titration method. Additionally, water conditions were characterized for light and temperature. Two trials were run in this experiment with tanks and treatments interchanged in each trial. We found a marked treatment effect on C. digueti behavior. The population experiencing increased CO2 performed daily shell changes after first day of exposure for each of the 4-day trials, as compared to individuals unexposed to dissolved CO2, that experienced no shell changes. From this study we conclude that the behavior of C. Digueti can be a good indicator of changes in dissolved CO2. This would allow us to better interpret patterns in marine animal behavior in response to climate change.
Smith, S; Lizotte, R E
2007-11-01
This study was conducted to assess the influence of suspended solids, dissolved organic carbon, and phytoplankton (as chlorophyll a) water quality characteristics on lambda-cyhalothrin and gamma-cyhalothrin aqueous toxicity to Hyalella azteca using natural water from 12 ponds and lakes in Mississippi, USA with varying water quality characteristics. H. azteca 48-h immobilization EC50 values ranged from 1.4 to 15.7 ng/L and 0.6 to 13.4 ng/L for lambda-cyhalothrin and gamma-cyhalothrin, respectively. For both pyrethroids, EC50 values linearly increased as turbidity, suspended solids, dissolved organic carbon and chlorophyll a concentrations increased.
Cod Fractions In Mechanical-Biological Wastewater Treatment Plant
NASA Astrophysics Data System (ADS)
Płuciennik-Koropczuk, Ewelina; Jakubaszek, Anita; Myszograj, Sylwia; Uszakiewicz, Sylwia
2017-03-01
The paper presents results of studies concerning the designation of COD fraction in the raw, mechanically treated and biologically treated wastewater. The test object was a wastewater treatment plant with the output of over 20,000 PE. The results were compared with data received in the ASM models. During investigation following fractions of COD were determined: dissolved non-biodegradable SI, dissolved easily biodegradable SS, in organic suspension slowly degradable XS and in organic suspension non-biodegradable XI. Methodology for determining the COD fraction was based on the guidelines ATV-A 131. The real percentage of each fraction in total COD in raw wastewater are different from data received in ASM models.
Temperature-driven decoupling of key phases of organic matter degradation in marine sediments.
Weston, Nathaniel B; Joye, Samantha B
2005-11-22
The long-term burial of organic carbon in sediments results in the net accumulation of oxygen in the atmosphere, thereby mediating the redox state of the Earth's biosphere and atmosphere. Sediment microbial activity plays a major role in determining whether particulate organic carbon is recycled or buried. A diverse consortium of microorganisms that hydrolyze, ferment, and terminally oxidize organic compounds mediates anaerobic organic matter mineralization in anoxic sediments. Variable temperature regulation of the sequential processes, leading from the breakdown of complex particulate organic carbon to the production and subsequent consumption of labile, low-molecular weight, dissolved intermediates, could play a key role in controlling rates of overall organic carbon mineralization. We examined sediment organic carbon cycling in a sediment slurry and in flow through bioreactor experiments. The data show a variable temperature response of the microbial functional groups mediating organic matter mineralization in anoxic marine sediments, resulting in the temperature-driven decoupling of the production and consumption of organic intermediates. This temperature-driven decoupling leads to the accumulation of labile, low-molecular weight, dissolved organic carbon at low temperatures and low-molecular weight dissolved organic carbon limitation of terminal metabolism at higher temperatures.
NASA Astrophysics Data System (ADS)
Koch, Boris P.; Ksionzek, Kerstin B.; Lechtenfeld, Oliver J.; McCallister, S. Leigh; Schmitt-Kopplin, Philippe; Geuer, Jana K.; Geibert, Walter
2017-05-01
Dittmar et al. proposed that mixing alone can explain our observed decrease in marine dissolved organic sulfur with age. However, their simple model lacks an explanation for the origin of sulfur-depleted organic matter in the deep ocean and cannot adequately reproduce our observed stoichiometric changes. Using radiocarbon age also implicitly models the preferential cycling of sulfur that they are disputing.
Slade, A H; Anderson, S M; Evans, B G
2003-01-01
N-ViroTech, a novel technology which selects for nitrogen-fixing bacteria as the bacteria primarily responsible for carbon removal, has been developed to treat nutrient limited wastewaters to a high quality without the addition of nitrogen, and only minimal addition of phosphorus. Selection of the operating dissolved oxygen level to maximise nitrogen fixation forms a key component of the technology. Pilot scale activated sludge treatment of a thermomechanical pulping wastewater was carried out in nitrogen-fixing mode over a 15 month period. The effect of dissolved oxygen was studied at three levels: 14% (Phase 1), 5% (Phase 2) and 30% (Phase 3). The plant was operated at an organic loading of 0.7-1.1 kg BOD5/m3/d, a solids retention time of approximately 10 d, a hydraulic retention time of 1.4 d and a F:M ratio of 0.17-0.23 mg BOD5/mg VSS/d. Treatment performance was very stable over the three dissolved oxygen operating levels. The plant achieved 94-96% BOD removal, 82-87% total COD removal, 79-87% soluble COD removal, and >99% total extractives removal. The lowest organic carbon removals were observed during operation at 30% DO but were more likely to be due to phosphorus limitation than operation at high dissolved oxygen, as there was a significant decrease in phosphorus entering the plant during Phase 3. Discharge of dissolved nitrogen, ammonium and oxidised nitrogen were consistently low (1.1-1.6 mg/L DKN, 0.1-0.2 mg/L NH4+-N and 0.0 mg/L oxidised nitrogen). Discharge of dissolved phosphorus was 2.8 mg/L, 0.1 mg/L and 0.6 mg/L DRP in Phases 1, 2 and 3 respectively. It was postulated that a population of polyphosphate accumulating bacteria developed during Phase 1. Operation at low dissolved oxygen during Phase 2 appeared to promote biological phosphorus uptake which may have been affected by raising the dissolved oxygen to 30% in Phase 3. Total nitrogen and phosphorus discharge was dependent on efficient secondary clarification, and improved over the course of the study as suspended solids discharge improved. Nitrogen fixation was demonstrated throughout the study using an acetylene reduction assay. Based on nitrogen balances around the plant, there was a 55, 354 and 98% increase in nitrogen during Phases 1, 2 and 3 respectively. There was a significant decrease in phosphorus between Phases 1 and 2, and Phase 3 of the study, as well as a significant increase in nitrogen between Phases 2 and 3 which masked the effect of changing the dissolved oxygen. Operation at low dissolved oxygen appeared to confer a competitive advantage to the nitrogen-fixing bacteria.
Ground-Water Geochemistry of Kwajalein Island, Republic of the Marshall Islands, 1991
Tribble, Gordon W.
1997-01-01
Ground water on Kwajalein Island is an important source of drinking water, particularly during periods of low rainfall. Fresh ground water is found as a thin lens underlain by saltwater. The concentration of dissolved ions increases with depth below the water table and proximity to the shoreline as high-salinity seawater mixes with fresh ground water. The maximum depth of the freshwater lens is 37 ft. Chloride is assumed to be non-reactive under the range of geochemical conditions on the atoll. The concentration of chloride thus is used as a conservative constituent to evaluate freshwater-saltwater mixing within the aquifer. Concentrations of sodium and for the most part, potassium and sulfate, also appear to be determined by conservative mixing between saltwater and rain. Concentrations of calcium, magnesium, and strontium are higher than expected from conservative mixing; these higher concentrations are a result of the dissolution of carbonate minerals. An excess in dissolved inorganic carbon results from carbonate-mineral dissolution and from the oxidation of organic matter in the aquifer; the stoichiometric difference between excess dissolved inorganic carbon and excess bivalent cations is used as a measure of the amount of organic-matter oxidation. Organic-matter oxidation also is indicated by the low concentration of dissolved oxygen, high concentrations of nutrients, and the presence of hydrogen sulfide in many of the water samples. Low levels of dissolved oxygen indicate oxic respiration, and sulfate reduction is indicated by hydrogen sulfide. The amount of dissolved inorganic carbon released during organic-matter oxidation is nearly equivalent to the amount of carbonate-mineral dissolution. Organic-matter oxidation and carbonate-mineral dissolution seem to be most active either in the unsaturated zone or near the top of the water table. The most plausible explanation is that high amounts of oxic respiration in the unsaturated zone generate carbon dioxide, which causes carbonate minerals to dissolve. Ground water contaminated by petroleum hydrocarbons had the highest levels of mineral dissolution and organic respiration (including sulfate reduction), indicating that bacteria are oxidizing the contaminants.
Santos, Patrícia S M; Santos, Eduarda B H; Duarte, Armando C
2014-12-01
Bulk deposition can remove atmospheric organic and inorganic pollutants that may be associated with gaseous, liquid or particulate phases. To the best of our knowledge, few studies have been carried out, which simultaneously analyse the presence of organic and inorganic fractions in rainwater. In the present work, the complementarity of organic and inorganic data was assessed, through crossing data of some organic [DOC (dissolved organic carbon), absorbance at 250 nm (UV250nm), integrated fluorescence] and inorganic [H(+), NH4(+), NO3(-), non sea salt sulphate (NSS-SO4(2-))] parameters measured in bulk deposition in the coastal urban area of Aveiro. The organic and inorganic parameters analysed were positively correlated (p<0.001) except for H(+), which suggests that a constant fraction of chromophoric dissolved organic matter (CDOM) came from anthropogenic sources. Furthermore, the inverse correlations observed for the organic and inorganic parameters with the precipitation amount suggest that organic and inorganic fractions were incorporated into the rainwater partially by below-cloud scavenging of airborne particulate matter. This is in accordance with the high values of DOC and NO3(-) found in samples associated with marine air masses, which were linked in part to the contribution of local emissions from vehicular traffic. DOC of bulk deposition was the predominant constituent when compared with the constituents H(+), NH4(+), NO3(-) and NSS-SO4(2-), and consequently bulk deposition flux was also highest for DOC, highlighting the importance of DOC and of anthropogenic ions being simultaneously removed from the atmosphere by bulk deposition. However, it was verified that the contribution of anthropogenic sources to the DOC of bulk deposition may be different for distinct urban areas. Thus, it is recommended that organic and inorganic fractions of bulk deposition are studied together. Copyright © 2014. Published by Elsevier Ltd.
The size-reactivity continuum of major bioelements in the ocean.
Benner, Ronald; Amon, Rainer M W
2015-01-01
Most of the carbon fixed in primary production is rapidly cycled and remineralized, leaving behind various forms of organic carbon that contribute to a vast reservoir of nonliving organic matter in seawater. Most of this carbon resides in dissolved molecules of varying bioavailability and reactivity, and aspects of the cycling of this carbon remain an enigma. The size-reactivity continuum model provides a conceptual framework for understanding the mechanisms governing the formation and mineralization of this carbon. In the seawater bioassay experiments that served as the original basis for this model, investigators observed that larger size classes of organic matter were more bioavailable and more rapidly remineralized by microbes than were smaller size classes. Studies of the chemical composition and radiocarbon content of marine organic matter have further indicated that the complexity and age of organic matter increase with decreasing molecular size. Biodegradation processes appear to shape the size distribution of organic matter and the nature of the small dissolved molecules that persist in the ocean.
Chauhan, Ashvini; Cherrier, Jennifer; Williams, Henry N
2009-03-17
In aquatic systems, bacterial community succession is a function of top-down and bottom-up factors, but little information exists on "sideways" controls, such as bacterial predation by Bdellovibrio-like organisms (BLOs), which likely impacts nutrient cycling within the microbial loop and eventual export to higher trophic groups. Here we report transient response of estuarine microbiota and BLO spp. to tidal-associated dissolved organic matter supply in a river-dominated estuary, Apalachicola Bay, Florida. Both dissolved organic carbon and dissolved organic nitrogen concentrations oscillated over the course of the tidal cycle with relatively higher concentrations observed at low tide. Concurrent with the shift in dissolved organic matter (DOM) supply at low tide, a synchronous increase in numbers of bacteria and predatorial BLOs were observed. PCR-restriction fragment length polymorphism of small subunit rDNA, cloning, and sequence analyses revealed distinct shifts such that, at low tide, significantly higher phylotype abundances were observed from gamma-Proteobacteria, delta-Proteobacteria, Bacteroidetes, and high G+C gram-positive bacteria. Conversely, diversity of alpha-Proteobacteria, beta-Proteobacteria, and Chlamydiales-Verrucomicrobia group increased at high tides. To identify metabolically active BLO guilds, tidal microcosms were spiked with six (13)C-labeled bacteria as potential prey and studied using an adaptation of stable isotope probing. At low tide, representative of higher DOM and increased prey but lower salinity, BLO community also shifted such that mesohaline clusters I and VI were more active; with an increased salinity at high tide, halotolerant clusters III, V, and X were predominant. Eventually, (13)C label was identified from higher micropredators, indicating that trophic interactions within the estuarine microbial food web are potentially far more complex than previously thought.
Landfill-stimulated iron reduction and arsenic release at the Coakley Superfund Site (NH).
deLemos, Jamie L; Bostick, Benjamin C; Renshaw, Carl E; Stürup, Stefan; Feng, Xiahong
2006-01-01
Arsenic is a contaminant at more than one-third of all Superfund Sites in the United States. Frequently this contamination appearsto resultfrom geochemical processes rather than the presence of a well-defined arsenic source. Here we examine the geochemical processes that regulate arsenic levels at the Coakley Landfill Superfund Site (NH), a site contaminated with As, Cr, Pb, Ni, Zn, and aromatic hydrocarbons. Long-term field observations indicate that the concentrations of most of these contaminants have diminished as a result of treatment by monitored natural attenuation begun in 1998; however, dissolved arsenic levels increased modestly over the same interval. We attribute this increase to the reductive release of arsenic associated with poorly crystalline iron hydroxides within a glaciomarine clay layer within the overburden underlying the former landfill. Anaerobic batch incubations that stimulated iron reduction in the glaciomarine clay released appreciable dissolved arsenic and iron. Field observations also suggest that iron reduction associated with biodegradation of organic waste are partly responsible for arsenic release; over the five-year study period since a cap was emplaced to prevent water flow through the site, decreases in groundwater dissolved benzene concentrations at the landfill are correlated with increases in dissolved arsenic concentrations, consistent with the microbial decomposition of both benzene and other organics, and reduction of arsenic-bearing iron oxides. Treatment of contaminated groundwater increasingly is based on stimulating natural biogeochemical processes to degrade the contaminants. These results indicate that reducing environments created within organic contaminant plumes may release arsenic. In fact, the strong correlation (>80%) between elevated arsenic levels and organic contamination in groundwater systems at Superfund Sites across the United States suggests that arsenic contamination caused by natural degradation of organic contaminants may be widespread.
NASA Astrophysics Data System (ADS)
Spector, J.
2016-12-01
The Lower Colorado River in Austin, Texas receives nitrogen-rich runoff and treated wastewater effluent and is subject to periodic water releases from the Longhorn Dam, which cause fluctuations in groundwater stage downstream. This research examined groundwater denitrification at the Hornsby Bend riparian area (located approximately 24 km downstream of downtown Austin) and characterized how dam-induced hyporheic exchange affects denitrification rates. Conductivity, temperature, water level, and dissolved oxygen concentrations were measured continuously throughout flood pulses for six months using dataloggers installed in a transect of seven monitoring wells on the river bank. Hourly samples were collected using an autosampler in one monitoring well (MW-5) during various flood conditions during the six month monitoring period. Water samples were analyzed for total organic carbon, total nitrogen, anions (NO3- and NO2-), NH4+ concentrations, alkalinity, and specific ultraviolet absorbance (SUVA) to characterize dissolved organic matter. Following large flood events (up to 4 m of water level stage increase), average conductivity increased 300 µs/centimeter in MW-5 as the water level receded. Analysis of water samples indicated that NO3- reduction occurred as conductivity and alkalinity increased. In addition, NH4+ concentrations increased during high conductivity periods. Increased denitrification activity corresponded with high SUVA. High conductivity and alkalinity increase the availability of electron donors (HCO3- and CO32-) and enhances denitrification potential. Higher SUVA values indicate increased dissolved organic carbon aromaticity and corresponding NO3- reduction. Additionally, changes in dissolved organic matter lability indicate the residence times of possible reactive organic carbon in the riparian area. This study has implications for determining advantageous geochemical conditions for hyporheic zone denitrification following large flood events.
Cleveland, C.C.; Neff, J.C.; Townsend, A.R.; Hood, E.
2004-01-01
Fluxes of dissolved organic matter (DOM) are an important vector for the movement of carbon (C) and nutrients both within and between ecosystems. However, although DOM fluxes from throughfall and through litterfall can be large, little is known about the fate of DOM leached from plant canopies, or from the litter layer into the soil horizon. In this study, our objectives were to determine the importance of plant-litter leachate as a vehicle for DOM movement, and to track DOM decomposition [including dissolve organic carbon (DOC) and dissolved organic nitrogen (DON) fractions], as well as DOM chemical and isotopic dynamics, during a long-term laboratory incubation experiment using fresh leaves and litter from several ecosystem types. The water-extractable fraction of organic C was high for all five plant species, as was the biodegradable fraction; in most cases, more than 70% of the initial DOM was decomposed in the first 10 days of the experiment. The chemical composition of the DOM changed as decomposition proceeded, with humic (hydrophobic) fractions becoming relatively more abundant than nonhumic (hydrophilic) fractions over time. However, in spite of proportional changes in humic and nonhumic fractions over time, our data suggest that both fractions are readily decomposed in the absence of physicochemical reactions with soil surfaces. Our data also showed no changes in the ??13C signature of DOM during decomposition, suggesting that isotopic fractionation during DOM uptake is not a significant process. These results suggest that soil microorganisms preferentially decompose more labile organic molecules in the DOM pool, which also tend to be isotopically heavier than more recalcitrant DOM fractions. We believe that the interaction between DOM decomposition dynamics and soil sorption processes contribute to the ??13C enrichment of soil organic matter commonly observed with depth in soil profiles.
NASA Astrophysics Data System (ADS)
Frank, Stefan; Tiemeyer, Bärbel; Bechtold, Michel; Lücke, Andreas; Bol, Roland
2016-04-01
Dissolved organic carbon (DOC) is an important link between terrestrial and aquatic ecosystems. This is especially true for peatlands which usually show high concentrations of DOC due to the high stocks of soil organic carbon (SOC). Most previous studies found that DOC concentrations in the soil solution depend on the SOC content. Thus, one would expect low DOC concentrations in peatlands which have anthropogenically been altered by mixing with sand. Here, we want to show the effect of SOC and groundwater level on the quantity and quality of the dissolved organic matter (DOM). Three sampling sites were installed in a strongly disturbed bog. Two sites differ in SOC (Site A: 48%, Site B: 9%) but show the same mean annual groundwater level of 15 and 18 cm below ground, respectively. The SOC content of site C (11%) is similar to Site B, but the groundwater level is much lower (-31 cm) than at the other two sites. All sites have a similar depth of the organic horizon (30 cm) and the same land-use (low-intensity sheep grazing). Over two years, the soil solution was sampled bi-weekly in three depths (15, 30 and 60 cm) and three replicates. All samples were analyzed for DOC and selected samples for dissolved organic nitrogen (DON) and delta-13C and delta-15N. Despite differences in SOC and groundwater level, DOC concentrations did not differ significantly (A: 192 ± 62 mg/L, B: 163 ± 55 mg/L and C: 191 ± 97 mg/L). At all sites, DOC concentrations exceed typical values for peatlands by far and emphasize the relevance even of strongly disturbed organic soils for DOC losses. Individual DOC concentrations were controlled by the temperature and the groundwater level over the preceding weeks. Differences in DOM quality were clearer. At site B with a low SOC content, the DOC:DON ratio of the soil solution equals the soil's C:N ratio, but the DOC:DON ratio is much higher than the C:N ratio at site A. In all cases, the DOC:DON ratio strongly correlates with delta-13C. There is no isotope data for site C. Delta-15N is more enriched at site B than at site A, indicating differences in C and N cycling and potential influence of the dominant vegetation (grasses vs. Sphagnum mosses).
One indicator of health in estuarine and coastal ecosystems is the ability of local waters to transmit sunlight to planktonic, macrophytic, and other submerged vegetation for photosynthesis. The concentration of coloured dissolved organic matter (CDOM) is a primary factor affecti...
A positive linear relationship between salinity and fluorescent dissolved organic matter (FDOM) was observed on several occasions along the West Florida shelf at salinities greater than 36.5. This represents a departure from the typical inverse relationship between FDOM and salin...
Laura T. Johnson; Jennifer L. Tank; Robert O. Hall; Patrick J. Mullholland; Stephen K. Hamilton; H. Maurice Valett; Jackson R. Webster; Melody J. Bernot; William H. McDowell; Bruce J. Peterson; Suzanne M. Thomas
2013-01-01
Most nitrogen (N) assimilation in lake and marine ecosystems is often subsequently released via autochthonous dissolved organic nitrogen (DON) production, but autochthonous DON production has yet to be quantified in flowing waters. We measured in-stream DON production following 24 h 15N-nitrate (NO3-...
Solar UV radiation can have deleterious effects on coral assemblages in tropical and subtropical marine environments. We present evidence that UV exposure of coral reefs in the Florida Keys is controlled primarily by chromophoric dissolved organic matter (CDOM) in waters overlyin...
Major structural components in freshwater dissolved organic matter.
Lam, Buuan; Baer, Andrew; Alaee, Mehran; Lefebvre, Brent; Moser, Arvin; Williams, Antony; Simpson, André J
2007-12-15
Dissolved organic matter (DOM) contains a complex array of chemical components that are intimately linked to many environmental processes, including the global carbon cycle, and the fate and transport of chemical pollutants. Despite its importance, fundamental aspects, such as the structural components in DOM remain elusive, due in part to the molecular complexity of the material. Here, we utilize multidimensional nuclear magnetic resonance spectroscopy to demonstrate the major structural components in Lake Ontario DOM. These include carboxyl-rich alicyclic molecules (CRAM), heteropolysaccharides, and aromatic compounds, which are consistent with components recently identified in marine dissolved organic matter. In addition, long-range proton-carbon correlations are obtained for DOM, which support the existence of material derived from linear terpenoids (MDLT). It is tentatively suggested that the bulk of freshwater dissolved organic matter is aliphatic in nature, with CRAM derived from cyclic terpenoids, and MDLT derived from linear terpenoids. This is in agreement with previous reports which indicate terpenoids as major precursors of DOM. At this time it is not clear in Lake Ontario whether these precursors are of terrestrial or aquatic origin or whether transformations proceed via biological and/ or photochemical processes.
Photosensitized Formation of Secondary Organic Aerosols above the Air/Water Interface
2016-01-01
In this study, we evaluated photosensitized chemistry at the air–sea interface as a source of secondary organic aerosols (SOA). Our results show that, in addition to biogenic emissions, abiotic processes could also be important in the marine boundary layer. Photosensitized production of marine secondary organic aerosol was studied in a custom-built multiphase atmospheric simulation chamber. The experimental chamber contained water, humic acid (1–10 mg L–1) as a proxy for dissolved organic matter, and nonanoic acid (0.1–10 mM), a fatty acid proxy which formed an organic film at the air–water interface. Dark secondary reaction with ozone after illumination resulted in SOA particle concentrations in excess of 1000 cm–3, illustrating the production of unsaturated compounds by chemical reactions at the air–water interface. SOA numbers via photosensitization alone and in the absence of ozone did not exceed background levels. From these results, we derived a dependence of SOA numbers on nonanoic acid surface coverage and dissolved organic matter concentration. We present a discussion on the potential role of the air–sea interface in the production of atmospheric organic aerosol from photosensitized origins. PMID:27434860
A Comparison of Dissolved and Particulate Organic Material in Two Southwestern Desert River Systems
NASA Astrophysics Data System (ADS)
Haas, P. A.; Brooks, P.
2001-12-01
Desert river systems of the southwestern U.S. acquire a substantial fraction of their dissolved organic matter (DOM) from the terrestrial environment during episodic rain events. This DOM provides carbon for stream metabolism and nitrogen, which is limiting in lower order streams in this environment. The San Pedro and Rio Grande Rivers represent two endpoints of catchment scale, discharge, and land use in the southwest. The San Pedro is a protected riparian corridor (San Pedro Riparian National Conservation Area), while the middle Rio Grande is a large river with extensive agriculture, irrigation, and reservoirs. Relative abundance and spectral properties of fulvic acids isolated from filtered samples were used to determine the source of dissolved organic carbon (DOC). Total DOC and particulate organic carbon (POC) changes with respect to episodic flooding events were compared for the two river systems. The San Pedro River DOC concentrations remain low approximately 2.2 to 3.3 ppm unless a relatively large storm event occurs when concentrations may go above 5.5 ppm (1000cfs flow). In contrast typical concentrations for the Rio Grande were approximately 5 ppm during the monsoon season. Particulate organic matter (POM) appears to be a more significant source of organic matter to the San Pedro than DOM. The relative importance of terrestrial vs. aquatic and dissolved vs. particulate organic matter with respect to aquatic ecosystems will be discussed.
Gurumurthy, G P; Balakrishna, K; Tripti, M; Audry, Stéphane; Riotte, Jean; Braun, J J; Udaya Shankar, H N
2014-04-01
The study presents a 3-year time series data on dissolved trace elements and rare earth elements (REEs) in a monsoon-dominated river basin, the Nethravati River in tropical Southwestern India. The river basin lies on the metamorphic transition boundary which separates the Peninsular Gneiss and Southern Granulitic province belonging to Archean and Tertiary-Quaternary period (Western Dharwar Craton). The basin lithology is mainly composed of granite gneiss, charnockite and metasediment. This study highlights the importance of time series data for better estimation of metal fluxes and to understand the geochemical behaviour of metals in a river basin. The dissolved trace elements show seasonality in the river water metal concentrations forming two distinct groups of metals. First group is composed of heavy metals and minor elements that show higher concentrations during dry season and lesser concentrations during the monsoon season. Second group is composed of metals belonging to lanthanides and actinides with higher concentration in the monsoon and lower concentrations during the dry season. Although the metal concentration of both the groups appears to be controlled by the discharge, there are important biogeochemical processes affecting their concentration. This includes redox reactions (for Fe, Mn, As, Mo, Ba and Ce) and pH-mediated adsorption/desorption reactions (for Ni, Co, Cr, Cu and REEs). The abundance of Fe and Mn oxyhydroxides as a result of redox processes could be driving the geochemical redistribution of metals in the river water. There is a Ce anomaly (Ce/Ce*) at different time periods, both negative and positive, in case of dissolved phase, whereas there is positive anomaly in the particulate and bed sediments. The Ce anomaly correlates with the variations in the dissolved oxygen indicating the redistribution of Ce between particulate and dissolved phase under acidic to neutral pH and lower concentrations of dissolved organic carbon. Unlike other tropical and major world rivers, the effect of organic complexation on metal variability is negligible in the Nethravati River water.
NASA Astrophysics Data System (ADS)
Ounissi, Makhlouf; Amira, Aicha Beya; Dulac, François
2018-07-01
This study simultaneously assesses for the first time the relative contributions of riverine and wet atmospheric inputs of materials into the Algerian Annaba Bay on the Mediterranean coast of North Africa. Surface water sampling and water discharge estimates were performed weekly in 2014 at the outlets of the Mafragh River (MR) and Seybouse River (SR). Riverine samples were analyzed for dissolved nutrients and particulate matter (suspended particulate matter: SPM; particulate organic carbon: POC; biogenic silica: BSi; chlorophyll a: Chl a; particulate organic nitrogen: PON and particulate organic phosphorus (POP). Rainwater samples were jointly collected at a close weather station on a daily basis and analyzed for dissolved nutrients. The rainwater from the Annaba region was characterized by high concentrations of phosphate (PO4) and silicic acid (Si(OH)4) that are several times the average Mediterranean values, and by strong deposition fluxes. Conversely, the levels of dissolved inorganic nitrogen (DIN) and dissolved organic nitrogen (DON) and associated fluxes were remarkably low. The dissolved nutrient fluxes for the two catchments were low following the lowering of the river flows, but those of particulate matter (POC, Chl a, BSi) displayed significant amounts, especially for the MR catchment. BSi and POP represented approximately a third of the total silicon and total phosphorus fluxes, respectively. The levels of dissolved N and P in the MR water were comparable to those in rainwater. MR appeared to be a nearly pristine ecosystem with low nutrient levels and almost balanced N:P and Si:N ratios. SR water had low Si(OH)4 levels but was highly charged with NH4 and PO4 and showed unbalanced N:P and Si:N ratios in almost all samples. These conditions have resulted in large phytoplankton biomasses, which may lead to eutrophication. More importantly, the rainwater was identified as a relevant source of fertilizers for marine waters and agricultural land in the Annaba area and can partially balance the loss of Si(OH)4 from rivers to the bay due to dam retention.
Transacylation and Transamidation Reactions in Neat and Dissolved Systems.
reaction of non-cyclic carboxy anhydrides with amides and specifically acetanilide has been studied. Preliminary results of the kinetic studies of the reaction of organic bromides with benzoin are reported. (Author)
Jiang, Tao; Wang, Dingyong; Wei, Shiqiang; Yan, Jinlong; Liang, Jian; Chen, Xueshuang; Liu, Jiang; Wang, Qilei; Lu, Song; Gao, Jie; Li, Lulu; Guo, Nian; Zhao, Zheng
2018-04-26
Dissolved organic matter (DOM) is a crucial driver of various biogeochemical processes in aquatic systems. Thus, many lakes and streams have been investigated in the past several decades. However, fewer studies have sought to understand the changes in DOM characteristics in the waters of the Three Gorges Reservoir (TGR) areas, which are the largest artificial reservoir areas in the world. Thus, a field investigation of dissolved organic carbon (DOC) concentrations and of chromophoric dissolved organic matter (CDOM) properties was conducted from 2013 to 2015 to track the spatial-temporal variability of DOM properties in the TGR areas. The results showed that the alternations of wet and dry periods due to hydrological management have a substantial effect on the quantity and quality of aquatic DOM in TGR areas. Increases in DOC concentrations in the wet period show an apparent "dilution effect" that decreases CDOM compounds with relatively lower aromaticity (i.e., SUVA 254 ) and molecular weight (i.e., S R ). In contrast to the obvious temporal variations of DOM, significant spatial variability was not observed in this study. Additionally, DOM showed more terrigenous characteristics in the dry period but weak terrigenous characteristics in the wet period. Furthermore, the positive correlation between SUVA 254 and CDOM suggests that the aromatic component controls the CDOM dynamics in TGR areas. The first attempt to investigate the DOM dynamics in TGR areas since the Three Gorges Dam was conducted in 2012, and the unique patterns of spatial-temporal variations in DOM that are highlighted in this study might provide a new insight for understanding the role of DOM in the fates of contaminants and may help in the further management of flow loads and water quality in the TGR area. Copyright © 2018 Elsevier B.V. All rights reserved.
Element budgets in an Arctic mesocosm CO2 perturbation study
NASA Astrophysics Data System (ADS)
Czerny, J.; Schulz, K. G.; Boxhammer, T.; Bellerby, R. G. J.; Büdenbender, J.; Engel, A.; Krug, S. A.; Ludwig, A.; Nachtigall, K.; Nondal, G.; Niehoff, B.; Siljakova, A.; Riebesell, U.
2012-08-01
Recent studies on the impacts of ocean acidification on pelagic communities have identified changes in carbon to nutrient dynamics with related shifts in elemental stoichiometry. In principle, mesocosm experiments provide the opportunity of determining the temporal dynamics of all relevant carbon and nutrient pools and, thus, calculating elemental budgets. In practice, attempts to budget mesocosm enclosures are often hampered by uncertainties in some of the measured pools and fluxes, in particular due to uncertainties in constraining air/sea gas exchange, particle sinking, and wall growth. In an Arctic mesocosm study on ocean acidification using KOSMOS (Kiel Off-Shore Mesocosms for future Ocean Simulation) all relevant element pools and fluxes of carbon, nitrogen and phosphorus were measured, using an improved experimental design intended to narrow down some of the mentioned uncertainties. Water column concentrations of particulate and dissolved organic and inorganic constituents were determined daily. New approaches for quantitative estimates of material sinking to the bottom of the mesocosms and gas exchange in 48 h temporal resolution, as well as estimates of wall growth were developed to close the gaps in element budgets. Future elevated pCO2 was found to enhance net autotrophic community carbon uptake in 2 of the 3 experimental phases but did not significantly affect particle elemental composition. Enhanced carbon consumption appears to result in accumulation of dissolved organic compounds under nutrient recycling summer conditions. This carbon over-consumption effect becomes evident from budget calculations, but was too small to be resolved by direct measurements of dissolved organics. The out-competing of large diatoms by comparatively small algae in nutrient uptake caused reduced production rates under future ocean CO2 conditions in the end of the experiment. This CO2 induced shift away from diatoms towards smaller phytoplankton and enhanced cycling of dissolved organics was pushing the system towards a retention type food chain with overall negative effects on export potential.
NASA Astrophysics Data System (ADS)
Lee, Mi-Hee; Payeur-Poirier, Jean-Lionel; Park, Ji-Hyung; Matzner, Egbert
2016-09-01
Heavy storm events may increase the amount of organic matter in runoff from forested watersheds as well as the relation of dissolved to particulate organic matter. This study evaluated the effects of monsoon storm events on the runoff fluxes and on the composition of dissolved (< 0.45 µm) and particulate (0.7 µm to 1 mm) organic carbon and nitrogen (DOC, DON, POC, PON) in a mixed coniferous/deciduous (mixed watershed) and a deciduous forested watershed (deciduous watershed) in South Korea. During storm events, DOC concentrations in runoff increased with discharge, while DON concentrations remained almost constant. DOC, DON and NO3-N fluxes in runoff increased linearly with discharge pointing to changing flow paths from deeper to upper soil layers at high discharge, whereas nonlinear responses of POC and PON fluxes were observed likely due to the origin of particulate matter from the erosion of mineral soil along the stream benches. The integrated C and N fluxes in runoff over the 2-month study period were in the order of DOC > POC and NO3-N > DON > PON. The integrated DOC fluxes in runoff during the study period were much larger at the deciduous watershed (16 kg C ha-1) than at the mixed watershed (7 kg C ha-1), while the integrated NO3-N fluxes were higher at the mixed watershed (5.2 kg N ha-1) than at the deciduous watershed (2.9 kg N ha-1). The latter suggests a larger N uptake by deciduous trees. Integrated fluxes of POC and PON were similar at both watersheds. The composition of organic matter in soils and runoff indicates that the contribution of near-surface flow to runoff was larger at the deciduous than at the mixed watershed. Our results demonstrate different responses of particulate and dissolved C and N in runoff to storm events as a combined effect of tree species composition and watershed specific flow paths.
Separation of organic ion exchange resins from sludge -- engineering study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duncan, J.B.
1998-08-25
This engineering study evaluates the use of physical separation technologies to separate organic ion exchange resin from KE Basin sludge prior to nitric acid dissolution. This separation is necessitate to prevent nitration of the organics in the acid dissolver. The technologies under consideration are: screening, sedimentation, elutriation. The recommended approach is to first screen the Sludge and resin 300 microns then subject the 300 microns plus material to elutriation.
Tsai, Hung-Sheng; Tsai, Teh-Hua
2012-01-04
The extraction equilibrium of indium(III) from a nitric acid solution using di(2-ethylhexyl) phosphoric acid (D2EHPA) as an acidic extractant of organophosphorus compounds dissolved in kerosene was studied. By graphical and numerical analysis, the compositions of indium-D2EHPA complexes in organic phase and stoichiometry of the extraction reaction were examined. Nitric acid solutions with various indium concentrations at 25 °C were used to obtain the equilibrium constant of InR₃ in the organic phase. The experimental results showed that the extraction distribution ratios of indium(III) between the organic phase and the aqueous solution increased when either the pH value of the aqueous solution and/or the concentration of the organic phase extractant increased. Finally, the recovery efficiency of indium(III) in nitric acid was measured.
Yu, Shang-yun; Zhou, Yan-mei
2015-08-01
This paper studied the effects of different concentrations of natural dissolved organic matter (DOM) on the passive sampling technique. The results showed that the presence of DOM affected the organic pollutant adsorption ability of the membrane. For lgK(OW), 3-5, DOM had less impact on the adsorption of organic matter by the membrane; for lgK(OW), > 5.5, DOM significantly increased the adsorption capacity of the membrane. Meanwhile, LDPE passive sampling technique was applied to monitor PAHs and PAEs in pore water of three surface sediments in Taizi River. All of the target pollutants were detected in varying degrees at each sampling point. Finally, the quotient method was used to assess the ecological risks of PAHs and PAEs. The results showed that fluoranthene exceeded the reference value of the aquatic ecosystem, meaning there was a big ecological risk.
Balistrieri, L.S.; Blank, R.G.
2008-01-01
In order to evaluate thermodynamic speciation calculations inherent in biotic ligand models, the speciation of dissolved Cd, Cu, Pb, and Zn in aquatic systems influenced by historical mining activities is examined using equilibrium computer models and the diffusive gradients in thin films (DGT) technique. Several metal/organic-matter complexation models, including WHAM VI, NICA-Donnan, and Stockholm Humic model (SHM), are used in combination with inorganic speciation models to calculate the thermodynamic speciation of dissolved metals and concentrations of metal associated with biotic ligands (e.g., fish gills). Maximum dynamic metal concentrations, determined from total dissolved metal concentrations and thermodynamic speciation calculations, are compared with labile metal concentrations measured by DGT to assess which metal/organic-matter complexation model best describes metal speciation and, thereby, biotic ligand speciation, in the studied systems. Results indicate that the choice of model that defines metal/organic-matter interactions does not affect calculated concentrations of Cd and Zn associated with biotic ligands for geochemical conditions in the study area, whereas concentrations of Cu and Pb associated with biotic ligands depend on whether the speciation calculations use WHAM VI, NICA-Donnan, or SHM. Agreement between labile metal concentrations and dynamic metal concentrations occurs when WHAM VI is used to calculate Cu speciation and SHM is used to calculate Pb speciation. Additional work in systems that contain wide ranges in concentrations of multiple metals should incorporate analytical speciation methods, such as DGT, to constrain the speciation component of biotic ligand models. ?? 2008 Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Swett, M. P.; Amirbahman, A.; Boss, E.
2009-12-01
Wetland and estuarine sediments release significant amounts of dissolved organic carbon (DOC) due to high levels of microbial activity, particularly sulfate reduction. Changes in climate and hydrologic conditions have a potential to alter DOC release from these systems as well. This is a concern, as high levels of DOC can lead to mobilization of toxic metals and organics in natural waters. In addition, source waters high in DOC produce undesirable disinfection byproducts in water treatment. Various in situ methods, such as peepers and sediment core centrifugation, exist to quantify vertical benthic fluxes of DOC and other dissolved species from the sediment-water interface (SWI). These techniques, however, are intrusive and involve disturbance of the sediment environment. Eddy-correlation allows for real-time, non-intrusive, in situ flux measurement of important analytes, such as O2 and DOC. An Acoustic Doppler Velocimeter (ADV) is used to obtain three-dimensional fluid velocity measurements. The eddy-correlation technique employs the mathematical separation of fluid velocity into mean velocity and fluctuating velocity components, with the latter representing turbulent eddy velocity. DOC concentrations are measured using a colored dissolved organic matter (CDOM) fluorometer, and instantaneous vertical flux is determined from the correlated data. This study assesses DOC flux at three project sites: a beaver pond in the Lower Penobscot Watershed, Maine; a mudflat in Penobscot River, Maine; and a mudflat in Great Bay, New Hampshire. Eddy flux values are compared with results obtained using peepers and centrifugation, as well as vertical profiling.
NASA Astrophysics Data System (ADS)
Cao, F.; Tzortziou, M.; Hu, C.; Najjar, R.
2016-02-01
Tidal wetlands and estuaries are dynamic features of coastal ocean and play critical roles in the global carbon cycle. Exchanges of dissolved organic carbon (DOC) between tidal wetlands and adjacent estuaries have important implications for carbon sequestration in tidal wetlands as well as biogeochemical cycling of wetlands derived material in the coastal zones. Recent studies demonstrated that the absorption coefficients of chromophoric dissolved organic matter at λ= 275 and 295 nm, which can be derived from satellite ocean color observations, can be used to accurately retrieve dissolved organic carbon (DOC) in some coastal waters. Based on a synthesis of existing field observations collected covering wide spatial and temporal variability in the Mid-Atlantic Bight and the Gulf of Mexico, here we developed and validated new empirical models to estimate coastal DOC from remotely sensed bio-optical properties of the surface water. We focused on the interfaces between tidal wetland-estuary and estuary-shelf water domains. The DOC algorithms were applied to SeaWiFs and MODIS observations to generate long-term climatological DOC distributions from 1998 to 2014. Empirical orthogonal function analysis revealed strong seasonality and spatial gradients in the satellite retrieved DOC in the tidal wetlands and estuaries. Combined with field observations and biogeochemical models, satellite retrievals can be used to scale up carbon fluxes from individual marshes and sub-estuaries to the whole estuarine system, and improve understanding of biogeochemical exchanges between terrestrial and aquatic ecosystems.
Optical Proxies for Dissolved Organic Matter in Estuaries and Coastal Waters
NASA Astrophysics Data System (ADS)
Osburn, C. L.; Montgomery, M. T.; Boyd, T. J.; Bianchi, T. S.; Coffin, R. B.; Paerl, H. W.
2016-02-01
The flux of terrestrial dissolved organic carbon (DOC) into the coastal ocean from rivers and estuaries is a major part of the ocean's carbon cycle. Absorbing and fluorescing properties of chromophoric dissolved organic matter (CDOM) often are used to fingerprint its sources and to track fluxes of terrestrial DOM into the ocean. They also are used as proxies for organic matter to calibrate remote sensing observations from air and space and from in situ platforms. In general, strong relationships hold for large river dominated estuaries (e.g., the Mississippi River) but little is known about how widely such relationships can be developed in estuaries that have relatively small or multiple riverine inputs. Results are presented from a comparison of six diverse estuarine systems: the Atchafalaya River (ARE), the Mackenzie River (MRE), the Chesapeake Bay (CBE), Charleston Harbor (CHE), Puget Sound (PUG), and the Neuse River (NRE). Mean DOM concentrations ranged from 100 to 700 µM and dissolved lignin concentrations ranged from ca. 3-30 µg L-1. Overall trends were linear between CDOM measured at 350 nm (a350) and DOC concentration (R2=0.77) and between a350 and lignin (R2=0.87). Intercepts of a350 vs lignin were not significantly different from zero (P=0.43) suggesting that most of the CDOM was terrestrial in nature. Deviations from these regressions were strongest in the Neuse River Estuary, the most eutrophic of the six estuaries studied. After this calibration procedure, fluorescence modeling via parallel factor analysis (PARAFAC) was used to make estimates of terrigenous and planktonic DOC in these estuaries.
Chromophoric Dissolved Organic Matter in Southwestern Greenland Lakes
NASA Astrophysics Data System (ADS)
Osburn, C. L.; Giles, M. E.; Underwood, G. J. C.
2014-12-01
Dissolved organic matter (DOM) is an important property of Arctic lake ecosystems, originating from allochthonous inputs from catchments and autochthonous production by plankton in the water column. Little is known about the quality of DOM in Arctic lakes that lack substantial inputs from catchments and such lakes are abundant in southwestern Greenland. Colored dissolved organic matter (CDOM), the fraction that absorbs ultraviolet (UV) and visible light, is the controlling factor for the optical properties of many surface waters and as well informs on the quality of DOM. We examined the quality of CDOM in 21 lakes in southwestern Greenland, from the ice sheet to the coast, as part of a larger study examining the role of DOM in regulating microbial communities in these lakes. DOM was size fractioned and absorbance and fluorescence was measured on each size fraction, as well as on bulk DOM. The specific ultraviolet absorbance (SUVA) at 254 nm (SUVA254), computed by normalizing absorption (a254) to dissolved organic carbon (DOC) concentration, provided an estimate of the aromatic carbon content of DOM. SUVA values were generally <2, indicating low aromatic content. Parallel factor analysis (PARAFAC) of CDOM fluorescence was used to determine the relative abundance of allochthonous and autochthonous DOM in all size fractions. Younger lakes near the ice sheet and lakes near the coast had lower amounts of CDOM and appeared more microbial in quality. However, lakes centrally located between the ice sheet and the coast had the highest CDOM concentrations and exhibited strong humic fluorescence. Overall distinct differences in CDOM quality were observed between lake locations and among DOM size fractions.
NASA Astrophysics Data System (ADS)
Matsuoka, A.; Hooker, S. B.; Bricaud, A.; Gentili, B.; Babin, M.
2012-10-01
A series of papers have suggested that freshwater discharge, including a large amount of dissolved organic matter (DOM), has increased since the middle of the 20th century. In this study, a semi-analytical algorithm for estimating light absorption coefficients of the colored fraction of DOM (CDOM) was developed for Southern Beaufort Sea waters using remote sensing reflectance at six wavelengths in the visible spectral domain corresponding to MODIS ocean color sensor. This algorithm allows to separate colored detrital matter (CDM) into CDOM and non-algal particles (NAP) by determining NAP absorption using an empirical relationship between NAP absorption and particle backscattering coefficients. Evaluation using independent datasets, that were not used for developing the algorithm, showed that CDOM absorption can be estimated accurately to within an uncertainty of 35% and 50% for oceanic and turbid waters, respectively. In situ measurements showed that dissolved organic carbon (DOC) concentrations were tightly correlated with CDOM absorption (r2 = 0.97). By combining the CDOM absorption algorithm together with the DOC versus CDOM relationship, it is now possible to estimate DOC concentrations in the near-surface layer of the Southern Beaufort Sea using satellite ocean color data. DOC concentrations in the surface waters were estimated using MODIS ocean color data, and the estimates showed reasonable values compared to in situ measurements. We propose a routine and near real-time method for deriving DOC concentrations from space, which may open the way to an estimate of DOC budgets for Arctic coastal waters.
NASA Astrophysics Data System (ADS)
Reckhardt, Anja; Beck, Melanie; Seidel, Michael; Riedel, Thomas; Wehrmann, Achim; Bartholomä, Alexander; Schnetger, Bernhard; Dittmar, Thorsten; Brumsack, Hans-Jürgen
2015-06-01
In order to evaluate the importance of coastal sandy sediments and their contribution to carbon, nutrient and metal cycling we investigated two beach sites on Spiekeroog Island, southern North Sea, Germany, and a tidal flat margin, located in Spiekeroog's backbarrier area. We also analyzed seawater and fresh groundwater on Spiekeroog Island, to better define endmember concentrations, which influence our study sites. Intertidal sandy flats and beaches are characterized by pore water advection. Seawater enters the sediment during flood and pore water drains out during ebb and at low tide. This pore water circulation leads to continuous supply of fresh organic substrate to the sediments. Remineralization products of microbial degradation processes, i.e. nutrients, and dissolved trace metals from the reduction of particulate metal oxides, are enriched in the pore water compared to open seawater concentrations. The spatial distribution of dissolved organic carbon (DOC), nutrients (PO43-, NO3-, NO2-, NH4+, Si(OH)4 and total alkalinity), trace metals (dissolved Fe and Mn) as well as sulfate suggests that the exposed beach sites are subject to relatively fast pore water advection, which leads to organic matter and oxygen replenishment. Frequent pore water exchange further leads to comparatively low nutrient concentrations. Sulfate reduction does not appear to play a major role during organic matter degradation. High nitrate concentrations indicate that redox conditions are oxic within the duneward freshwater influenced section, while ammonification, denitrification, manganese and iron reduction seem to prevail in the ammonium-dominated seawater circulation zone. In contrast, the sheltered tidal flat margin site exhibits a different sedimentology (coarser beach sands versus finer tidal flat sands) and nutrients, dissolved manganese and DOC accumulate in the pore water. Ammonium is the dominant pore water nitrogen species and intense sulfate reduction leads to the formation of sulfide, which precipitates dissolved iron as iron sulfide. These findings are due to slower advective pore water exchange in the tidal flat sediments. This study illustrates how different energy regimes affect biogeochemical cycling in intertidal permeable sediments.
The Case Against Charge Transfer Interactions in Dissolved Organic Matter Optical Properties
NASA Astrophysics Data System (ADS)
McKay, G.; Korak, J.; Erickson, P. R.; Latch, D. E.; McNeill, K.; Rosario-Ortiz, F.
2017-12-01
The optical properties of dissolved organic matter influence chemical and biological processes in all aquatic ecosystems. Organic matter optical properties have been used by scientists and engineers for decades for remote sensing, in situ monitoring, and characterizing laboratory samples to track dissolved organic carbon concentration and character. However, there is still a lack of understanding of the origin of organic matter optical properties, which could conflict with other empirical fluorescence interpretation methods (e.g. PARAFAC). Organic matter optical properties have been attributed to a charge-transfer model in which donor-acceptor complexes play a primary role. This model was evaluated by measuring the absorbance and fluorescence response of organic matter isolates to perturbations in solvent temperature, viscosity, and polarity, which affect the position and intensity of spectra for known donor-acceptor complexes of organic molecules. Absorbance and fluorescence spectral shape were unaffected by these perturbations, indicating that the distribution of absorbing and emitting species was unchanged. These results call into question the wide applicability of the charge-transfer model for explaining organic matter optical properties and suggest that future research should explore other models for organic matter photophysics.
Deep instability of deforested tropical peatlands revealed by fluvial organic carbon fluxes.
Moore, Sam; Evans, Chris D; Page, Susan E; Garnett, Mark H; Jones, Tim G; Freeman, Chris; Hooijer, Aljosja; Wiltshire, Andrew J; Limin, Suwido H; Gauci, Vincent
2013-01-31
Tropical peatlands contain one of the largest pools of terrestrial organic carbon, amounting to about 89,000 teragrams (1 Tg is a billion kilograms). Approximately 65 per cent of this carbon store is in Indonesia, where extensive anthropogenic degradation in the form of deforestation, drainage and fire are converting it into a globally significant source of atmospheric carbon dioxide. Here we quantify the annual export of fluvial organic carbon from both intact peat swamp forest and peat swamp forest subject to past anthropogenic disturbance. We find that the total fluvial organic carbon flux from disturbed peat swamp forest is about 50 per cent larger than that from intact peat swamp forest. By carbon-14 dating of dissolved organic carbon (which makes up over 91 per cent of total organic carbon), we find that leaching of dissolved organic carbon from intact peat swamp forest is derived mainly from recent primary production (plant growth). In contrast, dissolved organic carbon from disturbed peat swamp forest consists mostly of much older (centuries to millennia) carbon from deep within the peat column. When we include the fluvial carbon loss term, which is often ignored, in the peatland carbon budget, we find that it increases the estimate of total carbon lost from the disturbed peatlands in our study by 22 per cent. We further estimate that since 1990 peatland disturbance has resulted in a 32 per cent increase in fluvial organic carbon flux from southeast Asia--an increase that is more than half of the entire annual fluvial organic carbon flux from all European peatlands. Our findings emphasize the need to quantify fluvial carbon losses in order to improve estimates of the impact of deforestation and drainage on tropical peatland carbon balances.
NASA Astrophysics Data System (ADS)
He, Zhen; Wang, Qi; Yang, Gui-Peng; Gao, Xian-Chi; Wu, Guan-Wei
2015-10-01
Carbohydrates are the largest identified fraction of dissolved organic carbon and play an important role in biogeochemical cycling in the ocean. Seawater samples were collected from the East China Sea (ECS) during June and October 2012 to study the spatiotemporal distributions of total dissolved carbohydrates (TCHOs) constituents, including dissolved monosaccharides (MCHOs) and polysaccharides (PCHOs). The concentrations of TCHOs, MCHOs and PCHOs showed significant differences between summer and autumn 2012, and exhibited an evident diurnal variation, with high values occurring in the daytime. Phytoplankton biomass was identified as the primary factor responsible for seasonal and diurnal variations of dissolved carbohydrates in the ECS. The TCHOs, MCHOs and PCHOs distributions in the study area displayed similar distribution patterns, with high concentrations appearing in the coastal water. The influences of chlorophyll-a, salinity and nutrients on the distributions of these carbohydrates were examined. A carbohydrate enrichment in the near-bottom water was found at some stations, implying that there might be an important source of carbohydrate in the deep water or bottom sediment.
Huang, Zhuo; Ito, Kazuaki; Morita, Isamu; Yokota, Kuriko; Fukushi, Keiichi; Timerbaev, Andrei R; Watanabe, Shuichi; Hirokawa, Takeshi
2005-08-01
Using a novel high-sensitivity capillary electrophoretic method, vertical distributions of iodate, iodide, total inorganic iodine, dissolved organic iodine and total iodine in the North Pacific Ocean (0-5500 m) were determined without any sample pre-treatment other than UV irradiation before total iodine analysis. An extensive set of data demonstrated that the iodine behaviour in the ocean water collected during a cruise in the North Pacific Ocean in February-March 2003 was not conservative but correlated with variations in concentrations of dissolved oxygen and nutrient elements such as silicon, nitrogen and phosphorus. This suggests that the vertical distribution of iodine is associated with biological activities. The dissolved organic iodine was found in the euphotic zone in accord with observations elsewhere in the oceans. The vertical profile of dissolved organic iodine also appears to be related to biogeochemical activity. The concentrations of all measured iodine species vary noticeably above 1000 m but only minor latitudinal changes occur below 1000 m and slight vertical alterations can be observed below 2400 m. These findings are thought to reflect the stratification of nutrients and iodine species with different biological activities in the water column.
Hawkins, Jane M B; Scholefield, David; Braven, Jim
2006-08-15
Organic matter is a valuable resource on which the sustainability and productivity of soils relies heavily. Thus, it is important to understand the mechanisms for the loss of organic compounds from soil. It is also essential to determine how these losses can be minimized, especially those resulting from anthropogenic activity. Grazed grassland lysimeters (1 hectare) were used to examine the contribution and distribution patterns of dissolved free and combined amino acids to dissolved organic nitrogen and carbon in surface runoff and drainage waters from a grassland soil over three winter drainage periods. The waters were collected from soils beneath drained and undrained permanent ryegrass swards, receiving 0 and 280 kg ha(-1) year(-1) mineral nitrogen (N) input. Total dissolved free amino acid (DFAA) and dissolved combined amino acid (DCAA) concentrations ranged between 1.9 nM and 6.1 microM and between 1.3 and 87 microM, respectively. Although addition of mineral N fertilizer increased both DFAA and DCAA concentrations in waters, there was no detectable effect of soil hydrology or fertilizer addition on distribution patterns.
Eighteen Dutch soils were extracted in aqueous solutions at varying pH. Extracts were analyzed for Cd, Cu, Ni, Pb and Zn by ICP-AES. Extract dissolved organic carbon (DOC) was also concentrated onto a macroreticular resin and fractionation into three operationally defined fract...
The amount, chemical composition, and source of dissolved organic carbon (DOC), together with in situ ultraviolet-B radiation (UV -B; 280 to 320 nm) attenuation, were measured at one to two week intervals throughout the summers of 1999,2000, and 2001 at four sites in Rocky Mounta...
Pathways and mechanisms for removal of dissolved organic carbon from leaf leachate in streams
Clifford N. Dahm
1981-01-01
Removal of dissolved organic carbon (DOC) from water resulting from adsorption and microbial uptake was examined to determine the importance of biotic and abiotic pathways. Physicalâchemical adsorption to components of the stream sediment or water and biotic assimilation associated with the microbial population was determined in recirculating chambers utilizing...
Michael D. SanClements; Ivan J. Fernandez; Robert H. Lee; Joshua A. Roberti; Mary Beth Adams; Garret A. Rue; Diane M. McKnight
2018-01-01
Over the last several decades dissolved organic carbon concentrations (DOC) in surface waters have increased throughout much of the northern hemisphere. Several hypotheses have been proposed regarding the drivers of this phenomenon including decreased sulfur (S) deposition working via an acidity- change mechanism. Using fluorescence spectroscopy and data from two long-...
Kimberly P. Wickland; Jason C. Neff; George R. Aiken
2007-01-01
The fate of terrestrially-derived dissolved organic carbon (DOC) is important to carbon (C) cycling in both terrestrial and aquatic environments, and recent evidence suggests that climate warming is influencing DOC dynamics in northern ecosystems. To understand what determines the fate of terrestrial DOC, it is essential to quantify the chemical nature and potential...
Predicting Chromophoric Dissolved Organic Matter Distributions in Coastal Waters
2006-01-01
Predicting Chromophoric Dissolved Organic Matter Distributions in Coastal Waters Robert F. Chen Environmental , Earth and Ocean Sciences...G. Bernard Gardner Environmental , Coastal and Ocean Sciences University of Massachusetts Boston 100 Morrissey Boulevard Boston, MA 02125-3393...phone: (617)287-7451 fax: (617)287-7474 email: bernie.gardner@umb.edu Yong Tian Environmental , Coastal and Ocean Sciences University of
Predicting Chromophoric Dissolved Organic Matter Distributions in Coastal Waters
2007-09-30
Predicting Chromophoric Dissolved Organic Matter Distributions in Coastal Waters Robert F. Chen Environmental , Earth and Ocean Sciences...G. Bernard Gardner Environmental , Coastal and Ocean Sciences University of Massachusetts Boston 100 Morrissey Boulevard Boston, MA 02125-3393...phone: (617)287-7451 fax: (617)287-7474 email: bernie.gardner@umb.edu Yong Tian Environmental , Coastal and Ocean Sciences University of
Predicting Chromophoric Dissolved Organic Matter Distributions in Coastal Waters
2008-09-30
Predicting Chromophoric Dissolved Organic Matter Distributions in Coastal Waters Robert F. Chen Environmental , Earth and Ocean...umb.edu G. Bernard Gardner Environmental , Coastal and Ocean Sciences University of Massachusetts Boston 100 Morrissey Boulevard Boston, MA...02125-3393 phone: (617) 287-7451 fax: (617) 287-7474 email: bernie.gardner@umb.edu Yong Tian Environmental , Coastal and Ocean Sciences
A field reverse osmosis system was used to isolate dissolved organic matter (DOM) from two lacustrine and two riverine surface water sources. The rejection of DOM was on the order of 99% and did not vary significantly with pressure. A simple mass balance model using a single m...
NASA Astrophysics Data System (ADS)
Du, Yong; Zhang, Xiaoyu; Jiang, Binbin; Huang, Dasong; Yao, Lingling
2015-04-01
In this paper, a total of 28 water samples were collected mainly from three sections(C section in the Yangtze river inner estuary, PN section and F section on the spindle of Changjiang diluted water influenced by different hydrodynamic processes),which taken on two cruises in spring and summer of 2011. Absorption and fluorescence spectroscopy were measured along with dissolved organic carbon(DOC) concentrations and temperature, salinity and another environmental parameters to characterize the material sources and environmental implications of dissolved organic matter(DOM). Two protein-like components(tyrosine-like peak B and tryptophan-like peak T1), and two humic-like components(marine humic-like peak M and ultraviolet region humic-like peak A ) were identified by PARAFAC. We discussed CDOM distribution characteristic, material composition, and influence factors during the slowly dilution process of Changjiang diluted water into the east China sea by comparing the correlation of the CDOM absorption, fluorescence intensity, and fluorescence peak with DOC, in order to provide the based biogeochemistry theory basis for building DOC implications using CDOM fluorescence properties. The results revealed that:1) the Yangtze river and its inner estuary (upstream of the river mouth) were detected a higher amount of humic-like components. With the rapid dilution (or settlement) at the inner estuary, the humic-like components would further spread and dilute slowly on PN section and F section. On PN section, the terrigenous material is the main source material, and the main mechanism of CDOM distribution characteristics is controlled by dilution diffusion. Affected by the water mass convergence, marine dissolved organic matter in local waters had obvious input. However, due to the complexed hydrodynamic environment on F section, the input of terrigenous material has many ways. The influence of marine dissolved organic matter increased with the offshore distance increases.2) Although the absorption coefficient of DOC has good instruction significance, CDOM fluorescence intensity can more accurately express the amount of DOC in water than that of absorption coefficient with the source of dissolved organic matter enhanced.3) In general, CDOM fluorescence intensity and DOC show good linear relationship in the study region. But the correlation would change in different sea, and may ignore the rapidly dilution(or possibly sedimentation process) of estuarine waters, which need to be further depth study. Keywords: CDOM; F section; PN section; sources tracing; hydrodynamic environment
NASA Astrophysics Data System (ADS)
Wong, J. C.; Williams, D.
2009-05-01
Detrital energy in temperate headwater streams is mainly derived from the annual input of leaf litter from the surrounding landscape. Presumably, its decomposition and other sources of autochthonous organic matter will change dissolved organic carbon (DOC) concentrations and dissolved organic matter (DOM) quality. To investigate this, DOM was leached from two allochthonous sources: white birch (Betula papyrifera) and white cedar (Thuja occidentalis); and one autochthonous source, streambed biofilm, for a period of 7 days on 3 separate occasions in fall 2007. As a second treatment, microorganisms from the water column were filtered out. Deciduous leaf litter was responsible for high, short-term increases to DOC concentrations whereas the amounts leached from conifer needles were relatively constant in each month. Using UV spectroscopy, changes to DOM characteristics like aromaticity, spectral slopes, and molecular weight were mainly determined by source and indicated a preferential use of the labile DOM pool by the microorganisms. Excitation-emission matrices (EEMs) collected using fluorescence spectroscopy suggested that cedar litter was an important source of protein-like fluorescence and that the nature of the fluorescing DOM components changed in the presence of microorganisms. This study demonstrates that simultaneous examination of DOC concentrations and DOM quality will allow a better understanding of the carbon dynamics that connect terrestrial with aquatic ecosystems.
Drake, Travis W.; Wickland, Kimberly P.; Spencer, Robert G. M.; McKnight, Diane M.; Striegl, Robert G.
2015-01-01
Northern permafrost soils store a vast reservoir of carbon, nearly twice that of the present atmosphere. Current and projected climate warming threatens widespread thaw of these frozen, organic carbon (OC)-rich soils. Upon thaw, mobilized permafrost OC in dissolved and particulate forms can enter streams and rivers, which are important processors of OC and conduits for carbon dioxide (CO2) to the atmosphere. Here, we demonstrate that ancient dissolved organic carbon (DOC) leached from 35,800 y B.P. permafrost soils is rapidly mineralized to CO2. During 200-h experiments in a novel high–temporal-resolution bioreactor, DOC concentration decreased by an average of 53%, fueling a more than sevenfold increase in dissolved inorganic carbon (DIC) concentration. Eighty-seven percent of the DOC loss to microbial uptake was derived from the low–molecular-weight (LMW) organic acids acetate and butyrate. To our knowledge, our study is the first to directly quantify high CO2 production rates from permafrost-derived LMW DOC mineralization. The observed DOC loss rates are among the highest reported for permafrost carbon and demonstrate the potential importance of LMW DOC in driving the rapid metabolism of Pleistocene-age permafrost carbon upon thaw and the outgassing of CO2 to the atmosphere by soils and nearby inland waters.
Drake, Travis W; Wickland, Kimberly P; Spencer, Robert G M; McKnight, Diane M; Striegl, Robert G
2015-11-10
Northern permafrost soils store a vast reservoir of carbon, nearly twice that of the present atmosphere. Current and projected climate warming threatens widespread thaw of these frozen, organic carbon (OC)-rich soils. Upon thaw, mobilized permafrost OC in dissolved and particulate forms can enter streams and rivers, which are important processors of OC and conduits for carbon dioxide (CO2) to the atmosphere. Here, we demonstrate that ancient dissolved organic carbon (DOC) leached from 35,800 y B.P. permafrost soils is rapidly mineralized to CO2. During 200-h experiments in a novel high-temporal-resolution bioreactor, DOC concentration decreased by an average of 53%, fueling a more than sevenfold increase in dissolved inorganic carbon (DIC) concentration. Eighty-seven percent of the DOC loss to microbial uptake was derived from the low-molecular-weight (LMW) organic acids acetate and butyrate. To our knowledge, our study is the first to directly quantify high CO2 production rates from permafrost-derived LMW DOC mineralization. The observed DOC loss rates are among the highest reported for permafrost carbon and demonstrate the potential importance of LMW DOC in driving the rapid metabolism of Pleistocene-age permafrost carbon upon thaw and the outgassing of CO2 to the atmosphere by soils and nearby inland waters.
Drake, Travis W.; Wickland, Kimberly P.; Spencer, Robert G. M.; McKnight, Diane M.; Striegl, Robert G.
2015-01-01
Northern permafrost soils store a vast reservoir of carbon, nearly twice that of the present atmosphere. Current and projected climate warming threatens widespread thaw of these frozen, organic carbon (OC)-rich soils. Upon thaw, mobilized permafrost OC in dissolved and particulate forms can enter streams and rivers, which are important processors of OC and conduits for carbon dioxide (CO2) to the atmosphere. Here, we demonstrate that ancient dissolved organic carbon (DOC) leached from 35,800 y B.P. permafrost soils is rapidly mineralized to CO2. During 200-h experiments in a novel high–temporal-resolution bioreactor, DOC concentration decreased by an average of 53%, fueling a more than sevenfold increase in dissolved inorganic carbon (DIC) concentration. Eighty-seven percent of the DOC loss to microbial uptake was derived from the low–molecular-weight (LMW) organic acids acetate and butyrate. To our knowledge, our study is the first to directly quantify high CO2 production rates from permafrost-derived LMW DOC mineralization. The observed DOC loss rates are among the highest reported for permafrost carbon and demonstrate the potential importance of LMW DOC in driving the rapid metabolism of Pleistocene-age permafrost carbon upon thaw and the outgassing of CO2 to the atmosphere by soils and nearby inland waters. PMID:26504243
Influence of dissolved organic matter on the complexation of mercury under sulfidic conditions.
Miller, Carrie L; Mason, Robert P; Gilmour, Cynthia C; Heyes, Andrew
2007-04-01
The complexation of Hg under sulfidic conditions influences its bioavailability for microbial methylation. Neutral dissolved Hg-sulfide complexes are readily available to Hg-methylating bacteria in culture, and thermodynamic models predict that inorganic Hg-sulfide complexes dominate dissolved Hg speciation under natural sulfidic conditions. However, these models have not been validated in the field. To examine the complexation of Hg in natural sulfidic waters, octanol/water partitioning methods were modified for use under environmentally relevant conditions, and a centrifuge ultrafiltration technique was developed. These techniques demonstrated much lower concentrations of dissolved Hg-sulfide complexes than predicted. Furthermore, the study revealed an interaction between Hg, dissolved organic matter (DOM), and sulfide that is not captured by current thermodynamic models. Whereas Hg forms strong complexes with DOM under oxic conditions, these complexes had not been expected to form in the presence of sulfide because of the stronger affinity of Hg for sulfide relative to its affinity for DOM. The observed interaction between Hg and DOM in the presence of sulfide likely involves the formation of a DOM-Hg-sulfide complex or results from the hydrophobic partitioning of neutral Hg-sulfide complexes into the higher-molecular-weight DOM. An understanding of the mechanism of this interaction and determination of complexation coefficients for the Hg-sulfide-DOM complex are needed to adequately assess how our new finding affects Hg bioavailability, sorption, and flux.
Turney, G.L.; Dion, N.P.; Sumioka, S.S.
1986-01-01
Thirteen lakes in Mount Rainier National Park were evaluated for general chemical characteristics, sensitivity to acidification by acidic precipitation, and degree of existing acidification. The lakes studies were Allen, one of the Chenuis group, Crescent , Crystal, Eleanor, Fan, one of the Golden group, Marsh, Mowich, Mystic, Shriner, and two unnamed lakes. The lakes were sampled in August 1983. Specific conductance values were generally 21 microsiemens/cm at 25 C or less, and dissolved solids concentrations were generally 20 mg/L or less. The major cations were calcium and sodium, and the major anion was bicarbonate. Alkalinity concentrations ranged from 2.1 to 9.0 mg/L in 12 of the lakes. Allen Lake was the exception, having an alkalinity concentration of 27 mg/L. The pH values for all of the lakes ranged from 5.8 to 6.5. In most of the lakes, vertical profiles of temperature, dissolved oxygen, pH, and specific conductance were relatively uniform. In the deeper lakes, temperature decreased with depth and dissolved-oxygen concentrations increased to about 20 feet, remained constant to 80 ft, then decreased with increasing depth. Exceptions to general water quality patterns were observed in three lakes. Allen Lake had a specific conductance value of 58 Microsiemens/cm. The lake of the Golden group was anaerobic at the bottom and had relatively high concentrations of dissolved organic carbon and dissolved metals, and a lower light transmission than the other lakes studied. One of the unnamed lakes had relatively high concentrations of phytoplankton and dissolved organic carbon and relatively low levels of light transmission. Comparisons of lake data to acid-sensitivity thresholds for specific conductance and alkalinity indicated that all of the lakes except Allen would be sensitive to acidic precipitation. The small sizes of the lakes, and their locations in basins of high precipitation and weathering-resistant rock types, enhance their sensitivity. None of the lakes in this study appeared to be presently acidified. (Lantz-PTT)
USDA-ARS?s Scientific Manuscript database
Incorporation of animal manures into soils is a key nutrient management strategy for sustainable agricultural systems by supplying plant nutrients and maintaining soil quality. Dissolved organic matter (DOM) released from manures affects many soil chemical processes due to its reactivity with soil ...
NASA Astrophysics Data System (ADS)
Encina Aulló-Maestro, María; Hunter, Peter; Spyrakos, Evangelos; Mercatoris, Pierre; Kovács, Attila; Horváth, Hajnalka; Preston, Tom; Présing, Mátyás; Torres Palenzuela, Jesús; Tyler, Andrew
2017-03-01
The development and validation of remote-sensing-based approaches for the retrieval of chromophoric dissolved organic matter (CDOM) concentrations requires a comprehensive understanding of the sources and magnitude of variability in the optical properties of dissolved material within lakes. In this study, spatial and seasonal variability in concentration and composition of CDOM and the origin of its variation was studied in Lake Balaton (Hungary), a large temperate shallow lake in central Europe. In addition, we investigated the effect of photobleaching on the optical properties of CDOM through in-lake incubation experiments. There was marked variability throughout the year in CDOM absorption in Lake Balaton (aCDOM(440) = 0. 06-9.01 m-1). The highest values were consistently observed at the mouth of the main inflow (Zala River), which drains humic-rich material from the adjoining Kis-Balaton wetland, but CDOM absorption decreased rapidly towards the east where it was consistently lower and less variable than in the westernmost lake basins. The spectral slope parameter for the interval of 350-500 nm (SCDOM(350-500)) was more variable with increasing distance from the inflow (observed range 0.0161-0.0181 nm-1 for the mouth of the main inflow and 0.0158-0.0300 nm-1 for waters closer to the outflow). However, spatial variation in SCDOM was more constant exhibiting a negative correlation with aCDOM(440). Dissolved organic carbon (DOC) was strongly positively correlated with aCDOM(440) and followed a similar seasonal trend but it demonstrated more variability than either aCDOM or SCDOM with distance through the system. Photobleaching resulting from a 7-day exposure to natural solar UV radiation resulted in a marked decrease in allochthonous CDOM absorption (7.04 to 3.36 m-1, 42 % decrease). Photodegradation also resulted in an increase in the spectral slope coefficient of dissolved material.
The estuarine mixing zone is an effective trap for particulate and dissolved organic matter From many sources, and thus greatly affects transport and deposition of organic matter between the land and ocean. This study examined sedimentary distributions of various fatty acids and ...
Balistrieri, L.S.; Seal, R.R.; Piatak, N.M.; Paul, B.
2007-01-01
The authors determine the composition of a river that is impacted by acid-mine drainage, evaluate dominant physical and geochemical processes controlling the composition, and assess dissolved metal speciation and toxicity using a combination of laboratory, field and modeling studies. Values of pH increase from 3.3 to 7.6 and the sum of dissolved base metal (Cd + Co + Cu + Ni + Pb + Zn) concentrations decreases from 6270 to 100 ??g/L in the dynamic mixing and reaction zone that is downstream of the river's confluence with acid-mine drainage. Mixing diagrams and PHREEQC calculations indicate that mixing and dilution affect the concentrations of all dissolved elements in the reach, and are the dominant processes controlling dissolved Ca, K, Li, Mn and SO4 concentrations. Additionally, dissolved Al and Fe concentrations decrease due to mineral precipitation (gibbsite, schwertmannite and ferrihydrite), whereas dissolved concentrations of Cd, Co, Cu, Ni, Pb and Zn decrease due to adsorption onto newly formed Fe precipitates. The uptake of dissolved metals by aquatic organisms is dependent on the aqueous speciation of the metals and kinetics of complexation reactions between metals, ligands and solid surfaces. Dissolved speciation of Cd, Cu, Ni and Zn in the mixing and reaction zone is assessed using the diffusive gradients in thin films (DGT) technique and results of speciation calculations using the Biotic Ligand Model (BLM). Data from open and restricted pore DGT units indicate that almost all dissolved metal species are inorganic and that aqueous labile or DGT available metal concentrations are generally equal to total dissolved concentrations in the mixing zone. Exceptions occur when labile metal concentrations are underestimated due to competition between H+ and metal ions for Chelex-100 binding sites in the DGT units at low pH values. Calculations using the BLM indicate that dissolved Cd and Zn species in the mixing and reaction zone are predominantly inorganic, which is consistent with the DGT results. Although the DGT method indicates that the majority of aqueous Cu species are inorganic, BLM calculations indicate that dissolved Cu is inorganic at pH 5.5. Integrated dissolved labile concentrations of Cd, Cu and Zn in the mixing and reaction zone are compared to calculated acute toxicity concentrations (LC50 values) for fathead minnows (Pimephales promelas) (Cd, Cu and Zn) and water fleas (Ceriodaphnia dubia) (Cd and Cu) using the BLM, and to national recommended water quality criteria [i.e., criteria maximum concentration (CMC) and criterion continuous concentration (CCC)]. Observed labile concentrations of Cd and Zn are below LC50 values and CMC for Cd, but above CCC and CMC for Zn at sites <30 m downstream of the confluence. In contrast, labile Cu concentrations exceed LC50 values for the organisms as well as CCC and CMC at sites <30 m downstream of the confluence. These results suggest that environmental conditions at sites closest to the confluence of the river and acid-mine drainage should not support healthy aquatic organisms. ?? 2007 Elsevier Ltd. All rights reserved.
Oturan, Nihal; van Hullebusch, Eric D; Zhang, Hui; Mazeas, Laurent; Budzinski, Hélène; Le Menach, Karyn; Oturan, Mehmet A
2015-10-20
In recent years, electrochemical advanced oxidation processes have been shown to be an effective alternative for the removal of refractory organic compounds from water. This study is focused on the effective removal of recalcitrant organic matter (micropollutants, humic substances, etc.) present in municipal solid waste landfill leachates. A mixture of eight landfill leachates has been studied by the electro-Fenton process using a Pt or boron-doped diamond (BDD) anode and a carbon felt cathode or by the anodic oxidation process with a BDD anode. These processes exhibit great oxidation ability due to the in situ production of hydroxyl radicals ((•)OH), a highly powerful oxidizing species. Both electrochemical processes were shown to be efficient in the removal of dissolved total organic carbon (TOC) from landfill leachates. Regarding the electro-Fenton process, the replacement of the classical anode Pt by the anode BDD allows better performance in terms of dissolved TOC removal. The occurrence and removal yield of 19 polycyclic aromatic hydrocarbons, 15 volatile organic compounds, 7 alkylphenols, 7 polychlorobiphenyls, 5 organochlorine pesticides, and 2 polybrominated diphenyl ethers in landfill leachate were also investigated. Both electrochemical processes allow one to reach a quasicomplete removal (about 98%) of these organic micropollutants.
NASA Astrophysics Data System (ADS)
Wang, Xuri; Cai, Yihua; Guo, Laodong
2013-07-01
Riverine export of dissolved and particulate organic matter to the sea is one of the major components in marine carbon cycles, affecting biogeochemical processes in estuarine and coastal regions. However, the detailed composition of organic material and the relative partitioning among the dissolved, colloidal, and particulate phases are poorly quantified. The abundance of carbohydrate species and their partitioning among dissolved, colloidal, and particulate phases were examined in the waters from the lower Mississippi River (MR), the lower Pearl River (PR), and the Bay of St. Louis (BSL). Particulate carbohydrates (PCHO) represented a small fraction of the particulate organic carbon (POC) pool, with 4.7 ± 3.1%, 4.5 ± 2.4% and 1.8 ± 0.83% in the MR, PR, and BSL, respectively. Dissolved carbohydrates (DCHO) were a major component of the bulk dissolved organic carbon (DOC) pool, comprising 23%, 35%, and 18% in the MR, PR, and BSL, respectively. Differences in the DCHO/DOC ratio between the MR, PR, and BSL were related to their distinct characteristics in drainage basins, anthropogenic impacts, and hydrological conditions, reflecting differences in sources and composition of organic matter in different aquatic environments. Within the total carbohydrates (TCHO) pool, the high-molecular-weight carbohydrates (HMW-CHO, 1 kDa-0.45 μm) were the dominant species, representing 52-71% of the TCHO pool, followed by the low-molecular-weight carbohydrates (LMW-CHO, <1 kDa), representing 14-44% of the TCHO. The PCHO accounted for 4-16% of the bulk TCHO. Variations in the size distribution of carbohydrates among the MR, PR, and BSL were closely linked to the cycling pathway of organic matter and the interactions between different size fractions of the carbohydrates.
Wang, Li-Jun; Liu, Yu-Zhong; Zhang, Lie-Yu; Xi, Bei-Dou; Xia, Xun-Feng; Liu, Ya-Ru
2013-08-01
In the present study, the soil column with radius of 30 cm and height of 200 cm was used to simulate a subsurface wastewater infiltration system. Under the hydraulic loading of 4 cm x d(-1), composition and transformation of dissolved organic matter (DOM) from different depths were analyzed in a subsurface wastewater infiltration system for treatment of septic tank effluent using three-dimensional excitation emission matrix fluorescence spectroscopy (3D-EEM) with regional integration analysis (FRI). The results indicate that: (1) from different depth, the composition of DOM was also different; influent with the depth of 0.5 m was mainly composed of protein-like substances, and that at other depths was mainly composed of humic- and fulvic-like substances. (2) DOM stability gradually increased and part of the nonbiodegradable organic matter can be removed during organic pollutants degradation process. (3) Not only the organic pollutants concentration was reduced effectively, but also the stability of the DOM improved in subsurface wastewater infiltration system.
Phytoplankton Do Not Produce Carbon-Rich Organic Matter in High CO2 Oceans
NASA Astrophysics Data System (ADS)
Kim, Ja-Myung; Lee, Kitack; Suh, Young-Sang; Han, In-Seong
2018-05-01
The ocean is a substantial sink for atmospheric carbon dioxide (CO2) released as a result of human activities. Over the coming decades the dissolved inorganic C concentration in the surface ocean is predicted to increase, which is expected to have a direct influence on the efficiency of C utilization (consumption and production) by phytoplankton during photosynthesis. Here we evaluated the generality of C-rich organic matter production by examining the elemental C:N ratio of organic matter produced under conditions of varying pCO2. The data used in this analysis were obtained from a series of pelagic in situ pCO2 perturbation studies that were performed in the diverse ocean regions and involved natural phytoplankton assemblages. The C:N ratio of the resulting particulate and dissolved organic matter did not differ across the range of pCO2 conditions tested. In particular, the ratio for particulate organic C and N was found to be 6.58 ± 0.05, close to the theoretical value of 6.6.
NASA Astrophysics Data System (ADS)
McLeod, Heather C.; Roy, James W.; Slater, Gregory F.; Smith, James E.
2018-01-01
The use of ethanol in alternative fuels has led to contamination of groundwater with high concentrations of this easily biodegradable organic compound. Previous laboratory and field studies have shown vigorous biodegradation of ethanol plumes, with prevalence of reducing conditions and methanogenesis. The objective of this study was to further our understanding of the dynamic biogeochemistry processes, especially dissolved gas production, that may occur in developing and aging plume cores at sites with ethanol or other organic contamination of groundwater. The experiment performed involved highly-detailed spatial and temporal monitoring of ethanol biodegradation in a 2-dimensional (175 cm high × 525 cm long) sand aquifer tank for 330 days, with a vertical shift in plume position and increased nutrient inputs occurring at Day 100. Rapid onset of fermentation, denitrification, sulphate-reduction and iron(III)-reduction occurred following dissolved ethanol addition, with the eventual widespread development of methanogenesis. The detailed observations also demonstrate a redox zonation that supports the plume fringe concept, secondary reactions resulting from a changing/moving plume, and time lags for the various biodegradation processes. Additional highlights include: i) the highest dissolved H2 concentrations yet reported for groundwater, possibly linked to vigorous fermentation in the absence of common terminal electron-acceptors (i.e., dissolved oxygen, nitrate, and sulphate, and iron(III)-minerals) and methanogenesis; ii) evidence of phosphorus nutrient limitation, which stalled ethanol biodegradation and perhaps delayed the onset of methanogenesis; and iii) the occurrence of dissimilatory nitrate reduction to ammonium, which has not been reported for ethanol biodegradation to date.
Effect of past peat cultivation practices on present dynamics of dissolved organic carbon.
Frank, S; Tiemeyer, B; Bechtold, M; Lücke, A; Bol, R
2017-01-01
Peatlands are a major source of dissolved organic carbon (DOC) for aquatic ecosystems. Naturally high DOC concentrations in peatlands may be increased further by drainage. For agricultural purposes, peat has frequently been mixed with sand, but the effect of this measure on the release and cycling of DOC has rarely been investigated. This study examined the effects of (i) mixing peat with sand and (ii) water table depth (WTD) on DOC concentrations at three grassland sites on shallow organic soils. The soil solution was sampled bi-weekly for two years with suction plates at 15, 30 and 60cm depth. Selected samples were analysed for dissolved organic nitrogen (DON), δ 13 C DOM and δ 15 N DOM . Average DOC concentrations were surprisingly high, ranging from 161 to 192mgl -1 . There was no significant impact of soil organic carbon (SOC) content or WTD on mean DOC concentrations. At all sites, DOC concentrations were highest at the boundary between the SOC-rich horizon and the mineral subsoil. In contrast to the mean concentrations, the temporal patterns of DOC concentrations, their drivers and the properties of dissolved organic matter (DOM) differed between peat-sand mixtures and peat. DOC concentrations responded to changes in environmental conditions, but only after a lag period of a few weeks. At the sites with a peat-sand mixture, temperature and therefore probably biological activity determined the DOC concentrations. At the peat site, the contribution of vegetation-derived DOM was higher. The highest concentrations occurred during long, cool periods of waterlogging, suggesting a stronger physicochemical-based DOC mobilisation. Overall, these results indicate that mixing peat with sand does not improve water quality and may result in DOC losses of around 200kg DOCha -1 a -1 . Copyright © 2016 Office national des forêts. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Goffin, Angélique; Guérin, Sabrina; Rocher, Vincent; Varrault, Gilles
2016-04-01
Dissolved organic matter (DOM) influences wastewater treatment plants efficiency (WTTP): variations in its quality and quantity can induce a foaming phenomenon and a fouling event inside biofiltration processes. Moreover, in order to manage denitrification step (control and optimization of the nitrate recirculation), it is important to be able to estimate biodegradable organic matter quantity before biological treatment. But the current methods used to characterize organic matter quality, like biological oxygen demand are laborious, time consuming and sometimes not applicable to directly monitor organic matter in situ. In the context of MOCOPEE research program (www.mocopee.com), this study aims to assess the use of optical techniques, such as UV-Visible absorbance and more specifically fluorescence spectroscopy in order to monitor and to optimize process efficiency in WWTP. Fluorescence excitation-emission matrix (EEM) spectroscopy was employed to prospect the possibility of using this technology online and in real time to characterize dissolved organic matter in different effluents of the WWTP Seine Centre (240,000 m3/day) in Paris, France. 35 sewage water influent samples were collected on 10 days at different hours. Data treatment were performed by two methods: peak picking and parallel factor analysis (PARAFAC). An evolution of DOM quality (position of excitation - emission peaks) and quantity (intensity of fluorescence) was observed between the different treatment steps (influent, primary treatment, biological treatment, effluent). Correlations were found between fluorescence indicators and different water quality key parameters in the sewage influents. We developed different multivariate linear regression models in order to predict a variety of water quality parameters by fluorescence intensity at specific excitation-emission wavelengths. For example dissolved biological oxygen demand (r2=0,900; p<0,0001) and ammonium concentration (r2=0,898; p<0,0001) present good correlation with specific fluorescence peaks and indicators. These indicators derived from 3D spectrofluorescence could be used in order to characterize DOM online and thus to optimize process efficiency in WWTP.
Low biodegradability of dissolved organic matter and trace metals from subarctic waters.
Oleinikova, Olga V; Shirokova, Liudmila S; Drozdova, Olga Y; Lapitskiy, Sergey A; Pokrovsky, Oleg S
2018-03-15
The heterotrophic mineralization of dissolved organic matter (DOM) controls the CO 2 flux from the inland waters to the atmosphere, especially in the boreal waters, although the mechanisms of this process and the fate of trace metals associated with DOM remain poorly understood. We studied the interaction of culturable aquatic (Pseudomonas saponiphila) and soil (Pseudomonas aureofaciens) Gammaproteobacteria with seven different organic substrates collected in subarctic settings. These included peat leachate, pine crown throughfall, fen, humic lake, stream, river, and oligotrophic lake with variable dissolved organic carbon (DOC) concentrations (from 4 to 60mgL -1 ). The highest removal of DOC over 4days of reaction was observed in the presence of P. aureofaciens (33±5%, 43±3% and 53±7% of the initial amount in fen water, humic lake and stream, respectively). P. saponiphila degraded only 5% of DOC in fen water but did not affect all other substrates. Trace elements (TE) were essentially controlled by short-term (0-1h) adsorption on the surface of cells. Regardless of the nature of organic substrate and the identity of bacteria, the degree of adsorption ranged from 20 to 60% for iron (Fe 3+ ), 15 to 55% for aluminum (Al), 10 to 60% for manganese (Mn), 10 to 70% for nickel (Ni), 20 to 70% for copper (Cu), 10 to 60% for yttrium (Y), 30 to 80% for rare earth elements (REE), and 15 to 50% for uranium (U VI ). Rapid adsorption of organic and organo-mineral colloids on bacterial cell surfaces is novel and potentially important process, which deserves special investigation. The long-term removal of dissolved Fe and Al was generally consistent with solution supersaturation degree with respect to Fe and Al hydroxides, calculated by visual Minteq model. Overall, the biomass-normalized biodegradability of various allochthonous substrates by culturable bacteria is much lower than that of boreal DOM by natural microbial consortia. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Villafañe-Barajas, Saúl A.; Baú, João Paulo T.; Colín-García, María; Negrón-Mendoza, Alicia; Heredia-Barbero, Alejandro; Pi-Puig, Teresa; Zaia, Dimas A. M.
2018-02-01
Any proposed model of Earth's primitive environments requires a combination of geochemical variables. Many experiments are prepared in aqueous solutions and in the presence of minerals. However, most sorption experiments are performed in distilled water, and just a few in seawater analogues, mostly inconsistent with a representative primitive ocean model. Therefore, it is necessary to perform experiments that consider the composition and concentration of dissolved salts in the early ocean to understand how these variables could have affected the absorption of organic molecules into minerals. In this work, the adsorption of adenine, adenosine, and 5'AMP onto Na+montmorillonite was studied using a primitive ocean analog (4.0 Ga) from experimental and computational approaches. The order of sorption of the molecules was: 5'AMP > adenine > adenosine. Infrared spectra showed that the interaction between these molecules and montmorillonite occurs through the NH2 group. In addition, electrostatic interaction between negatively charged montmorillonite and positively charge N1 of these molecules could occur. Results indicate that dissolved salts affect the sorption in all cases; the size and structure of each organic molecule influence the amount sorbed. Specifically, the X-ray diffraction patterns show that dissolved salts occupy the interlayer space in Na-montmorillonite and compete with organic molecules for available sites. The adsorption capacity is clearly affected by dissolved salts in thermodynamic terms as deduced by isotherm models. Indeed, molecular dynamic models suggest that salts are absorbed in the interlamellar space and can interact with oxygen atoms exposed in the edges of clay or in its surface, reducing the sorption of the organic molecules. This research shows that the sorption process could be affected by high concentration of salts, since ions and organic molecules may compete for available sites on inorganic surfaces. Salt concentration in primitive oceans may have strongly affected the sorption, and hence the concentration processes of organic molecules on minerals.
Long-term dynamics of dissolved organic carbon: implications for drinking water supply.
Ledesma, José L J; Köhler, Stephan J; Futter, Martyn N
2012-08-15
Surface waters are the main source of drinking water in many regions. Increasing organic carbon concentrations are a cause for concern in Nordic countries since both dissolved and particulate organic carbon can transport contaminants and adversely affect drinking water treatment processes. We present a long-term study of dynamics of total (particulate and dissolved) organic carbon (TOC) concentrations in the River Fyris. This river supplies drinking water to approximately 200000 people in Uppsala, Sweden. The River Fyris is a main tributary to Lake Mälaren, which supplies drinking water to approximately 2 million people in the greater Stockholm area. Utilities responsible for drinking water supply in both Uppsala and Stockholm have expressed concerns about possible increases in TOC. We evaluate organic carbon dynamics within the Fyris catchment by calculating areal mass exports using observed TOC concentrations and modeled flows and by modeling dissolved organic carbon (as a proxy for TOC) using the dynamic, process based INCA-C model. Exports of TOC from the catchment ranged from 0.8 to 5.8 g m(-2) year(-1) in the period 1995-2010. The variation in annual exports was related to climatic variability which influenced seasonality and amount of runoff. Exports and discharge uncoupled at the end of 2008. A dramatic increase in TOC concentrations was observed in 2009, which gradually declined in 2010-2011. INCA-C successfully reproduced the intra- and inter-annual variation in concentrations during 1996-2008 and 2010-2011 but failed to capture the anomalous increase in 2009. We evaluated a number of hypotheses to explain the anomaly in 2009 TOC values, ultimately none proved satisfactory. We draw two main conclusions: there is at least one unknown or unmeasured process controlling or influencing surface water TOC and INCA-C can be used as part of the decision-making process for current and future use of rivers for drinking water supply. Copyright © 2012 Elsevier B.V. All rights reserved.
Stallard, Robert F.; Murphy, Sheila F.; Stallard, Robert F.
2012-01-01
The U.S. Geological Survey's Water, Energy, and Biogeochemical Budgets (WEBB) program research in eastern Puerto Rico involves a double pair-wise comparison of four montane river basins, two on granitic bedrock and two on fine-grained volcaniclastic bedrock; for each rock type, one is forested and the other is developed. A confounding factor in this comparison is that the developed watersheds are substantially drier than the forested (runoff of 900–1,600 millimeters per year compared with 2,800–3,700 millimeters per year). To reduce the effects of contrasting runoff, the relation between annual runoff and annual constituent yield were used to estimate mean-annual yields at a common, intermediate mean-annual runoff of 1,860 millimeters per year. Upon projection to this intermediate runoff, the ranges of mean-annual yields among all watersheds became more compact or did not substantially change for dissolved bedrock, sodium, silica, chloride, dissolved organic carbon, and calcium. These constituents are the primary indicators of chemical weathering, biological activity on the landscape, and atmospheric inputs; the narrow ranges indicate little preferential influence by either geology or land cover. The projected yields of biologically active constituents (potassium, nitrate, ammonium ion, phosphate), and particulate constituents (suspended bedrock and particulate organic carbon) were considerably greater for developed landscapes compared with forested watersheds, consistent with the known effects of land clearing and human waste inputs. Equilibrium rates of combined chemical and physical weathering were estimated by using a method based on concentrations of silicon and sodium in bedrock, river-borne solids, and river-borne solutes. The observed rates of landscape denudation greatly exceed rates expected for a dynamic equilibrium, except possibly for the forested watershed on volcaniclastic rock. Deforestation and agriculture can explain the accelerated physical erosion in the two developed watersheds. Because there has been no appreciable deforestation, something else, possibly climate or forest-quality change, must explain the accelerated erosion in the forested watersheds on granitic rocks. Particulate organic carbon yields are closely linked to sediment yields. This relation implies that much of the particulate organic carbon transport in the four rivers is being caused by this enhanced erosion aided by landslides and fast carbon recovery. The increase in particulate organic carbon yields over equilibrium is estimated to range from 300 kilomoles per square kilometer per year (6 metric tons carbon per square kilometer per year) to 1,700 kilomoles per square kilometer per year (22 metric tons carbon per square kilometer per year) and is consistent with human-accelerated particulate-organic-carbon erosion and burial observed globally. There is no strong evidence of human perturbation of silicate weathering in the four study watersheds, and differences in dissolved inorganic carbon are consistent with watershed geology. Although dissolved organic carbon is slightly elevated in the developed watersheds, that elevation is not enough to unambiguously demonstrate human causes; more work is needed. Accordingly, the dissolved organic carbon and dissolved inorganic carbon yields of tropical rivers, although large, are of secondary importance in the study of the anthropgenically perturbed carbon cycle.
40 CFR 63.1595 - List of definitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., typically biological, designed to reduce the concentrations of dissolved and colloidal organic matter in... contain dissolved or suspended matter, and that is discarded, discharged, or is being accumulated, stored...
40 CFR 63.1595 - List of definitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., typically biological, designed to reduce the concentrations of dissolved and colloidal organic matter in... contain dissolved or suspended matter, and that is discarded, discharged, or is being accumulated, stored...
40 CFR 63.1595 - List of definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., typically biological, designed to reduce the concentrations of dissolved and colloidal organic matter in... contain dissolved or suspended matter, and that is discarded, discharged, or is being accumulated, stored...
Smith, Kathleen S.; Ranville, James F.; Lesher, Emily K.; Diedrich, Daniel J.; McKnight, Diane M.; Sofield, Ruth M.
2014-01-01
This study examines the effect on aquatic copper toxicity of the chemical fractionation of fulvic acid (FA) that results from its association with iron and aluminum oxyhydroxide precipitates. Fractionated and unfractionated FAs obtained from streamwater and suspended sediment were utilized in acute Cu toxicity tests on ,i>Ceriodaphnia dubia. Toxicity test results with equal FA concentrations (6 mg FA/L) show that the fractionated dissolved FA was 3 times less effective at reducing Cu toxicity (EC50 13 ± 0.6 μg Cu/L) than were the unfractionated dissolved FAs (EC50 39 ± 0.4 and 41 ± 1.2 μg Cu/L). The fractionation is a consequence of preferential sorption of molecules having strong metal-binding (more aromatic) moieties to precipitating Fe- and Al-rich oxyhydroxides, causing the remaining dissolved FA to be depleted in these functional groups. As a result, there is more bioavailable dissolved Cu in the water and hence greater potential for Cu toxicity to aquatic organisms. In predicting Cu toxicity, biotic ligand models (BLMs) take into account dissolved organic carbon (DOC) concentration; however, unless DOC characteristics are accounted for, model predictions can underestimate acute Cu toxicity for water containing fractionated dissolved FA. This may have implications for water-quality criteria in systems containing Fe- and Al-rich sediment, and in mined and mineralized areas in particular. Optical measurements, such as specific ultraviolet absorbance at 254 nm (SUVA254), show promise for use as spectral indicators of DOC chemical fractionation and inferred increased Cu toxicity.
NASA Astrophysics Data System (ADS)
Pogosyan, S. I.; Durgaryan, A. M.; Konyukhov, I. V.; Chivkunova, O. B.; Merzlyak, M. N.
2009-12-01
A device for integrating cavity absorption measurements (ICAM) with an internal diameter of 80 mm suitable for field research is described. The spectral features of the light absorption by some cyanobacteria, green algae, and diatoms in the integrating sphere were studied and the dependences of the absorption on the cell concentration were determined in comparison with the conventional measurements in a 1-cm cuvette. The sensitivity of the chlorophyll estimation with the ICAM reached 0.2-0.5 mg m-3. The results of the ICAM application for the direct analysis of the natural phytoplankton and dissolved organic (“yellow“) matter in the Black Sea and the Sea of Japan are described.
Continuous flux of dissolved black carbon from a vanished tropical forest biome
NASA Astrophysics Data System (ADS)
Dittmar, T.; Rezende, C. E.; Manecki, M.; Niggemann, J.; Coelho Ovalle, A. R.; Bernardes, M. C.
2012-04-01
Humans have extensively used fire as a tool to shape Earth's vegetation. One of the biggest events in this context was the destruction of Brazilian's Atlantic forest, once among the largest tropical forest biomes on Earth. We estimate that the slash-and-burn practice produced 200 to 500 million tons of black carbon from the 1850' to 1973. The fate of this charred organic matter is unknown. Here we show continuous runoff of dissolved black carbon from the cleared forest biome, more than 35 years after the widespread burning of the forest ended. During the 11-year observation period (1997-2008) of this study, on average 0.04 to 0.08 tons of dissolved black carbon were annually exported per square kilometer land. We estimate an annual runoff of 48,000 to 97,000 tons dissolved black carbon from the former Atlantic forest biome. Dissolved black carbon was mobilized by water percolating through the soil during the rainy season. During base flow conditions, dissolved organic carbon (DOC) did not contain black carbon, whereas at peak flow up to 6% of DOC was combustion-derived. If runoff was the only removal mechanism of black carbon from soils, even the highly condensed and presumably refractory component of black carbon would have a half-life of only 440 to 2300 years in the soil. In areas with higher precipitation, stronger runoff and consequently a shorter half-life can be expected. In the deep ocean, dissolved black carbon is virtually inert on this time scale. The disappearance of the Atlantic forest provides a worst-case scenario for tropical forests worldwide, most of which are cleared at increasing rate. Because of the comparably fast mobilization of dissolved black carbon from soils and its resistivity in the deep ocean, an increase of black carbon production on land may alter the size of the global pool of >12 Pg carbon of thermally altered DOC in the ocean on the long term.
Boss, E.S.; Collier, R.; Larson, G.; Fennel, K.; Pegau, W.S.
2007-01-01
Spectral inherent optical properties (IOPs) have been measured at Crater Lake, OR, an extremely clear sub-alpine lake. Indeed Pure water IOPs are major contributors to the total IOPs, and thus to the color of the lake. Variations in the spatial distribution of IOPs were observed in June and September 2001, and reflect biogeochemical processes in the lake. Absorption by colored dissolved organic material increases with depth and between June and September in the upper 300 m. This pattern is consistent with a net release of dissolved organic materials from primary and secondary production through the summer and its photo-oxidation near the surface. Waters fed by a tributary near the lake's rim exhibited low levels of absorption by dissolved organic materials. Scattering is mostly dominated by organic particulate material, though inorganic material is found to enter the lake from the rim following a rain storm. Several similarities to oceanic oligotrophic regions are observed: (a) The Beam attenuation correlates well with particulate organic material (POM) and the relationship is similar to that observed in the open ocean. (b) The specific absorption of colored dissolved organic material has a value similar to that of open ocean humic material. (c) The distribution of chlorophyll with depth does not follow the distribution of particulate organic material due to photo-acclimation resulting in a subsurface pigment maximum located about 50 m below the POM maximum. ?? 2007 Springer Science+Business Media B.V.
NASA Astrophysics Data System (ADS)
Czerny, J.; Schulz, K. G.; Boxhammer, T.; Bellerby, R. G. J.; Büdenbender, J.; Engel, A.; Krug, S. A.; Ludwig, A.; Nachtigall, K.; Nondal, G.; Niehoff, B.; Silyakova, A.; Riebesell, U.
2013-05-01
Recent studies on the impacts of ocean acidification on pelagic communities have identified changes in carbon to nutrient dynamics with related shifts in elemental stoichiometry. In principle, mesocosm experiments provide the opportunity of determining temporal dynamics of all relevant carbon and nutrient pools and, thus, calculating elemental budgets. In practice, attempts to budget mesocosm enclosures are often hampered by uncertainties in some of the measured pools and fluxes, in particular due to uncertainties in constraining air-sea gas exchange, particle sinking, and wall growth. In an Arctic mesocosm study on ocean acidification applying KOSMOS (Kiel Off-Shore Mesocosms for future Ocean Simulation), all relevant element pools and fluxes of carbon, nitrogen and phosphorus were measured, using an improved experimental design intended to narrow down the mentioned uncertainties. Water-column concentrations of particulate and dissolved organic and inorganic matter were determined daily. New approaches for quantitative estimates of material sinking to the bottom of the mesocosms and gas exchange in 48 h temporal resolution as well as estimates of wall growth were developed to close the gaps in element budgets. However, losses elements from the budgets into a sum of insufficiently determined pools were detected, and are principally unavoidable in mesocosm investigation. The comparison of variability patterns of all single measured datasets revealed analytic precision to be the main issue in determination of budgets. Uncertainties in dissolved organic carbon (DOC), nitrogen (DON) and particulate organic phosphorus (POP) were much higher than the summed error in determination of the same elements in all other pools. With estimates provided for all other major elemental pools, mass balance calculations could be used to infer the temporal development of DOC, DON and POP pools. Future elevated pCO2 was found to enhance net autotrophic community carbon uptake in two of the three experimental phases but did not significantly affect particle elemental composition. Enhanced carbon consumption appears to result in accumulation of dissolved organic carbon under nutrient-recycling summer conditions. This carbon over-consumption effect becomes evident from mass balance calculations, but was too small to be resolved by direct measurements of dissolved organic matter. Faster nutrient uptake by comparatively small algae at high CO2 after nutrient addition resulted in reduced production rates under future ocean CO2 conditions at the end of the experiment. This CO2 mediated shift towards smaller phytoplankton and enhanced cycling of dissolved matter restricted the development of larger phytoplankton, thus pushing the system towards a retention type food chain with overall negative effects on export potential.
Coleman, Jessica G; Lotufo, Guilherme R; Kennedy, Alan J; Poda, Aimee R; Rushing, Todd S; Ruiz, Carlos E; Bridges, Todd S
2014-07-01
In benthic sediment bioassays, determining the relative contribution to exposure by contaminants in overlying water, porewater, and sediment particles is technically challenging. The purpose of the present study was to assess the potential for membranes to be utilized as a mechanism to allow freely dissolved hydrophobic organic contaminants into a pathway isolation exposure chamber (PIC) while excluding all sediment particles and dissolved organic carbon (DOC). This investigation was conducted in support of a larger effort to assess contaminant exposure pathways to benthos. While multiple passive samplers exist for estimating concentrations of contaminants in porewater such as those using solid-phase micro extraction (SPME) and polyoxymethylene (POM), techniques to effectively isolate whole organism exposure to porewater within a sediment system are not available. We tested the use of four membranes of different pore sizes (0.1-1.2μm) including nylon, polycarbonate, polyethylsulfone, and polytetrafluoroethylene with a hydrophilic coating. Exposures included both diffusion of radiolabeled and non-labeled contaminants across membranes from aqueous, sediment slurry, and whole sediment sources to assess and evaluate the best candidate membrane. Data generated from the present study was utilized to select the most suitable membrane for use in the larger bioavailability project which sought to assess the relevance of functional ecology in bioavailability of contaminated sediments at remediation sites. The polytetrafluoroethylene membrane was selected for use in the PIC, although exclusion of dissolved organic carbon was not achieved. Published by Elsevier Ltd.
Boughton, Gregory K.
2014-01-01
Groundwater samples were collected from 146 shallow (less than or equal to 500 feet deep) wells for the Wyoming Groundwater-Quality Monitoring Network, from November 2009 through September 2012. Groundwater samples were analyzed for physical characteristics, major ions and dissolved solids, trace elements, nutrients and dissolved organic carbon, uranium, stable isotopes of hydrogen and oxygen, volatile organic compounds, and coliform bacteria. Selected samples also were analyzed for gross alpha radioactivity, gross beta radioactivity, radon, tritium, gasoline range organics, diesel range organics, dissolved hydrocarbon gases (methane, ethene, and ethane), and wastewater compounds. Water-quality measurements and concentrations in some samples exceeded numerous U.S. Environmental Protection Agency (EPA) drinking water standards. Physical characteristics and constituents that exceeded EPA Maximum Contaminant Levels (MCLs) in some samples were arsenic, selenium, nitrite, nitrate, gross alpha activity, and uranium. Total coliforms and Escherichia coli in some samples exceeded EPA Maximum Contaminant Level Goals. Measurements of pH and turbidity and concentrations of chloride, sulfate, fluoride, dissolved solids, aluminum, iron, and manganese exceeded EPA Secondary Maximum Contaminant Levels in some samples. Radon concentrations in some samples exceeded the alternative MCL proposed by the EPA. Molybdenum and boron concentrations in some samples exceeded EPA Health Advisory Levels. Water-quality measurements and concentrations also exceeded numerous Wyoming Department of Environmental Quality (WDEQ) groundwater standards. Physical characteristics and constituents that exceeded WDEQ Class I domestic groundwater standards in some samples were measurements of pH and concentrations of chloride, sulfate, dissolved solids, iron, manganese, boron, selenium, nitrite, and nitrate. Measurements of pH and concentrations of chloride, sulfate, dissolved solids, aluminum, iron, manganese, boron, and selenium exceeded WDEQ Class II agriculture groundwater standards in some samples. Measurements of pH and concentrations of sulfate, dissolved solids, aluminum, boron, and selenium exceeded WDEQ Class III livestock groundwater standards in some samples. The concentrations of dissolved solids in two samples exceeded the WDEQ Class IV industry groundwater standard. Measurements of pH and concentrations of dissolved solids, aluminum, iron, manganese, and selenium exceeded WDEQ Class special (A) fish and aquatic life groundwater standards in some samples. Stable isotopes of hydrogen and oxygen measured in water samples were compared to the Global Meteoric Water Line and Local Meteoric Water Lines. Results indicated that recharge to all of the wells was derived from precipitation and that the water has undergone some fractionation, possibly because of evaporation. Concentrations of organic compounds did not exceed any State or Federal water-quality standards. Few volatile organic compounds were detected in samples, whereas gasoline range organics, diesel range organics, and methane were detected most frequently. Concentrations of wastewater compounds did not exceed any State or Federal water-quality standards. The compounds N,N-diethyl-meta-toluamide (DEET), benzophenone, and phenanthrene were detected most frequently. Bacteria samples were collected, processed, incubated, and enumerated in the field or at the U.S. Geological Survey Wyoming-Montana Water Science Center. Total coliforms and Escherichia coli were detected in some samples.
Prudic, David E.; Sager, Sienna J.; Wood, James L.; Henkelman, Katherine K.; Caskey, Rachel M.
2005-01-01
A study at the Cattlemans detention basin site began in November 2000. The site is adjacent to Cold Creek in South Lake Tahoe, California. The purpose of the study is to evaluate the effects of the detention basin on ground-water discharge and changes in nutrient loads to Cold Creek, a tributary to Trout Creek and Lake Tahoe. The study is being done in cooperation with the Tahoe Engineering Division of the El Dorado County Department of Transportation. This report summarizes data collected prior to and during construction of the detention basin and includes: (1) nutrient and total suspended solid concentrations of urban runoff; (2) distribution of unconsolidated deposits; (3) direction of ground-water flow; and (4) chemistry of shallow ground water and Cold Creek. Unconsolidated deposits in the area of the detention basin were categorized into three classes: fill material consisting of a red-brown loamy sand with some gravel and an occasional cobble that was placed on top of the meadow; meadow deposits consisting of gray silt and sand with stringers of coarse sand and fine gravel; and a deeper brown to yellow-brown sand and gravel with lenses of silt and sand. Prior to construction of the detention basin, ground water flowed west-northwest across the area of the detention basin toward Cold Creek. The direction of ground-water flow did not change during construction of the detention basin. Median concentrations of dissolved iron and chloride were 500 and 30 times higher, respectively, in ground water from the meadow deposits than dissolved concentrations in Cold Creek. Median concentration of sulfate in ground water from the meadow deposits was 0.4 milligrams per liter and dissolved oxygen was below the detection level of 0.3 milligrams per liter. The relatively high concentrations of iron and the lack of sulfate in the shallow ground water likely are caused by chemical reactions and biological microbial oxidation of organic matter in the unconsolidated deposits that result in little to no dissolved oxygen in the ground water. The higher chloride concentrations in ground water compared with Cold Creek likely are caused from the application of salt on Pioneer Trail and streets in Montgomery Estates subdivision during the winter. Runoff from these roads contributes to the recharge of the shallow ground water. The range of dissolved constituents generally was greater in the meadow deposits than in the deeper sand and gravel. Ammonia plus organic nitrogen were the dominant forms of dissolved nitrogen and concentrations ranged from 0.04 to 18 milligrams per liter as nitrogen. Highest concentration was beneath the middle of the detention basin. Nitrate plus nitrite concentrations were low (<0.33 milligrams per liter as nitrogen) throughout the area and dissolved phosphorus concentrations ranged from 0.001 to 0.34 milligrams per liter. Nitrogen and dissolved organic carbon showed no consistent pattern in the direction of ground-water flow, which suggests that, similar to iron and sulfate, local variations in the chemical and biological reactions within the meadow deposits controlled the variation in nitrogen concentrations. The gradual increase in dissolved phosphorus along the direction of ground-water flow suggest that phosphorus may be slowly dissolving into ground water. Dissolved phosphorus was consistently low in July, which may be the result of greater microbial activity in the unconsolidated deposits or from uptake by roots during the summer.
Daniels, Edward J.; Jody, Bassam J.; Bonsignore, Patrick V.
1994-01-01
A process and system for treating aluminum salt cake containing water soluble halide salts by contacting the salt cake with water to dissolve water soluble halide salts forming a saturated brine solution. Transporting a portion of about 25% of the saturated brine solution to a reactor and introducing into the saturated brine solution at least an equal volume of a water-miscible low-boiling organic material such as acetone to precipitate a portion of the dissolved halide salts forming a three-phase mixture of an aqueous-organic-salt solution phase and a precipitated salt phase and an organic rich phase. The precipitated salt phase is separated from the other phases and the organic rich phase is recycled to the reactor. The remainder of the saturated brine solution is sent to a multiple effect evaporator having a plurality of stages with the last stage thereof producing low grade steam which is used to boil off the organic portion of the solution which is recycled.
Daniels, E.J.; Jody, B.J.; Bonsignore, P.V.
1994-07-19
A process and system are disclosed for treating aluminum salt cake containing water soluble halide salts by contacting the salt cake with water to dissolve water soluble halide salts forming a saturated brine solution. Transporting a portion of about 25% of the saturated brine solution to a reactor and introducing into the saturated brine solution at least an equal volume of a water-miscible low-boiling organic material such as acetone to precipitate a portion of the dissolved halide salts forming a three-phase mixture of an aqueous-organic-salt solution phase and a precipitated salt phase and an organic rich phase. The precipitated salt phase is separated from the other phases and the organic rich phase is recycled to the reactor. The remainder of the saturated brine solution is sent to a multiple effect evaporator having a plurality of stages with the last stage thereof producing low grade steam which is used to boil off the organic portion of the solution which is recycled. 3 figs.
Li, Keqiang; Ma, Yunpeng; Dai, Aiquan; Wang, Xiulin
2017-11-30
Dissolved organic nitrogen (DON) is the major nitrogen form in the Bohai Sea. Land-based DON is released into the nitrogen pool and degraded by planktonic microbiota in coastal ocean. In this study, we evaluated the degradation of land-based DON, particularly its dynamics and bioavailability, in coastal water by linking experiment and modeling. Results showed that the degradation rate constant of DON from sewage treatment plant was significantly faster than those of other land-based sources (P<0.05). DON was classified into three categories based on dynamics and bioavailability. The supply of dissolved inorganic nitrogen (DIN) pool from the DON pool of Liao River, Hai River, and Yellow River was explored using a 3D hydrodynamic multi-DON biogeochemical model in the Bohai Sea. In the model, large amounts of DIN were supplied from DON of Liao River than the other rivers because of prolonged flushing time in Liaodong Bay. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tejeda-Agredano, Maria-Carmen; Mayer, Philipp; Ortega-Calvo, Jose-Julio
2014-01-01
Binding of polycyclic aromatic hydrocarbons (PAHs) to dissolved organic matter (DOM) can reduce the freely dissolved concentration, increase apparent solubility or enhance diffusive mass transfer. To study the effects of DOM on biodegradation, we used phenanthrene and pyrene as model PAHs, soil humic acids as model DOM and a soil Mycobacterium strain as a representative degrader organism. Humic acids enhanced the biodegradation of pyrene when present as solid crystals but not when initially dissolved or provided by partitioning from a polymer. Synchronous fluorescence spectrophotometry, scintillation counting and a microscale diffusion technique were applied in order to determine the kinetics of dissolution and diffusive mass transfer of pyrene. We suggest that humic acids can enhance or inhibit biodegradation as a result of the balance of two opposite effects, namely, solubilization of the chemicals on the one hand and inhibition of cell adhesion to the pollutant source on the other. Copyright © 2013 Elsevier Ltd. All rights reserved.
Effects of watershed history on dissolved organic matter characteristics in headwater streams
Youhei Yamashita; Brian D. Kloeppel; Jennifer Knoepp; Gregory L. Zausen; Rudolf Jaffe'
2011-01-01
Dissolved organic matter (DOM) is recognized as a major component in the global carbon cycle and is an important driver in aquatic ecosystem function. Climate, land use, and forest cover changes all impact stream DOM and alter biogeochemical cycles in terrestrial environments. We determined the temporal variation in DOM quantity and quality in headwater streams at a...
Tomorra E. Smith; Randall K. Kolka; Xiaobo Zhou; Matthew J. Helmers; Richard M. Cruse; Mark D. Tomer
2014-01-01
Dissolved organic carbon (DOC) constitutes a small yet important part of a watershed's carbon budget because it is mobile and biologically active. Agricultural conservation practices such as native perennial vegetation (NPV) strips will influence carbon cycling of an upland agroecosystem, and could affect how much DOC enters streams in runoff, potentially...
E. Hood; J. Fellman; R.T. Edwards
2007-01-01
The annual return of spawning Pacific salmon (genus Oncorhynchus) can have a dramatic effect on the nutrient budgets of recipient freshwater ecosystems. We examined how spawning salmon affect streamwater concentrations of inorganic nitrogen and phosphorus and dissolved organic carbon (DOC) in Peterson Creek, a salmon stream in southeast Alaska. In...
David V. D' Amore; Rick T. Edwards; Paul A. Herendeen; Eran Hood; Jason B. Fellman
2015-01-01
Dissolved organic C (DOC) transfer from the landscape to coastal margins is a key component of regional C cycles. Hydropedology provides a conceptual and observational framework for linking soil hydrologic function to landscape C cycling. We used hydropedology to quantify the export of DOC from the terrestrial landscape and understand how soil temperature and water...
Case, F.N.; Ketchen, E.E.
1975-10-14
A method is provided for treating organic waste material dissolved or dispersed in an aqueous effluent, which comprises contacting the effluent with an inert particulate carbonaceous sorbent at an oxygen pressure up to 2000 psi, irradiating the resultant mixture with high energy radiation until a decolorized liquid is produced, and then separating the decolorized liquid.
Measurement and importance of dissolved organic carbon. Chapter 13
Randall Kolka; Peter Weishampel; Mats Froberg
2008-01-01
The flux of dissolved organic carbon (DOC) from an ecosystem can be a significant component of carbon (C) budgets especially in watersheds containing wetlands. Although internal ecosystem cycling of DOC is generally greater than the fluxes to ground or surface waters, it is the transport out of the system that is a main research focus for carbon accounting. In...
Jacob A. Zwart; Nicola Craig; Patrick T. Kelly; Stephen D. Sebestyen; Christopher T. Solomon; Brian C. Weidel; Stuart E. Jones
2016-01-01
Over the last several decades, many lakes globally have increased in dissolved organic carbon (DOC), calling into question how lake functions may respond to increasing DOC. Unfortunately, our basis for making predictions is limited to spatial surveys, modeling, and laboratory experiments, which may not accurately capture important whole-ecosystem processes. In this...
Dissolved Organic Matter (DOM) Export from Watersheds to Coastal Oceans
NASA Astrophysics Data System (ADS)
Chen, R. F.; Gardner, G. B.; Peri, F.
2016-02-01
Dissolved organic matter (DOM) from terrestrial plants and soils is transported by surface waters and groundwaters to coastal ocean waters. Along the way, photochemical and biological degradation can remove DOM, and in situ processes such as phytoplankton leaching and sediment sources can add to the DOM in the river water. Wetlands, especially coastal wetlands can add significant amounts of DOM that is carried by rivers and is exported through estuaries to coastal systems. We will present observational data from a variety of coastal systems (San Francisco Bay, Boston Harbor, Chesapeake Bay, Hudson River, the Mississippi River, and a small salt marsh in the Gulf of Mexico). High resolution measurements of chromophoric dissolved organic matter (CDOM) can be correlated with dissolved organic carbon (DOC) so can be used to estimate DOC in specific systems and seasons. Gradients in CDOM/DOC combined with water fluxes can be used to estimate DOC fluxes from a variety of coastal watersheds to coastal systems. Influences of land use, system size, residence time, DOM quality, and photochemical and biological degradation will be discussed. The significance of coastal wetlands in the land-to-ocean export of DOC will be emphasized.
Tsuchida, Daisuke; Kajihara, Yusuke; Shimidzu, Nobuhiro; Hamamura, Kengo; Nagase, Makoto
2011-06-01
In the present study it was demonstrated that organic additives eluted from plastic resins could be utilized as substrates by sulfate-reducing bacteria. Two laboratory-scale experiments, a microcosm experiment and a leaching experiment, were conducted using polyvinyl chloride (PVC) as a model plastic resin. In the former experiment, the conversion of sulfate to sulfide was evident in microcosms that received plasticized PVC as the sole carbon source, but not in those that received PVC homopolymer. Additionally, dissolved organic carbon accumulated only in microcosms that received plasticized PVC, indicating that the dissolved organic carbon originated from additives. In the leaching experiment, phenol and bisphenol A were found in the leached solutions. These results suggest that the disposal of waste plastics in inert waste landfills may result in the production of H(2)S.
Luning Prak, Dianne J; Breuer, James E T; Rios, Evelyn A; Jedlicka, Erin E; O'Sullivan, Daniel W
2017-01-30
The influence of salinity, pH, temperature, and dissolved organic matter on the photolysis rate of 2,4,6-trinitrotoluene (TNT) in marine, estuary, and laboratory-prepared waters was studied using a Suntest CPS+® solar simulator equipped with optical filters. TNT degradation rates were determined using HPLC analysis, and products were identified using LC/MS. Minimal or no TNT photolysis occurred under a 395-nm long pass filter, but under a 295-nm filter, first-order TNT degradation rate constants and apparent quantum yields increased with increasing salinity in both natural and artificial seawater. TNT rate constants increased slightly with increasing temperature (10 to 32°C) but did not change significantly with pH (6.4 to 8.1). The addition of dissolved organic matter (up to 5mg/L) to ultrapure water, artificial seawater, and natural seawater increased the TNT photolysis rate constant. Products formed by TNT photolysis in natural seawater were determined to be 2,4,6-trinitrobenzaldehyde, 1,3,5-trinitrobenzene, 2,4,6-trinitrobenzoic acid, and 2-amino-4,6-dinitrobenzoic acid. Published by Elsevier Ltd.
Li, Wen-Tao; Xu, Zi-Xiao; Shuang, Chen-Dong; Zhou, Qing; Li, Hai-Bo; Li, Ai-Min
2016-03-01
The efficiency and mechanism of anion exchange resin Nanda Magnetic Polymer (NDMP) for removal of fluorescent dissolved organic matter in biologically treated textile effluents were studied. The bench-scale experiments showed that as well as activated carbon, anion exchange resin could efficiently remove both aniline-like and humic-like fluorescent components, which can be up to 40 % of dissolved organic matter. The humic-like fluorescent component HS-Em460-Ex3 was more hydrophilic than HS-Em430-Ex2 and contained fewer alkyl chains but more acid groups. As a result, HS-Em460-Ex3 was eliminated more preferentially by NDMP anion exchange. However, compared with adsorption resins, the polarity of fluorescent components had a relatively small effect on the performance of anion exchange resin. The long-term pilot-scale experiments showed that the NDMP anion exchange process could remove approximately 30 % of the chemical oxygen demand and about 90 % of color from the biologically treated textile effluents. Once the issue of waste brine from resin desorption is solved, the NDMP anion exchange process could be a promising alternative for the advanced treatment of textile effluents.
Jiang, Yulin; Zhao, Jianfu; Li, Penghui; Huang, Qinghui
2016-10-12
Because of the significance in photosynthesis, nutrient dynamics, trophodynamics and biological activity, dissolved organic matter (DOM) is important to the microbial community in the coastal plume zone. In this study, we investigated the hydrodynamic processes, photodegradation and biodegradation of DOM at the Yangtze River plume in the East China Sea through analyzing water quality and optical properties of DOM. Surface water samples were collected to examine water quality and fluorescence properties of fluorescent dissolved organic matter (FDOM). The results indicated that dilution was the key factor in the multiple processes, and the mixing process gradually increased from nearshore to offshore in coastal water. Four components of FDOM representing humic-like substances (C1 & C4) and protein-like substances (C2 & C3) were identified, and all components showed nearly conservative behaviors. Protein-like substances were more mutable compared to humic-like substances. The photodegradation of humic-like substances caused brown algae blooms to some extent. The molecular weight of humic substances gradually decreased along the mixing process. FDOM in the plume zone was both of terrigenous and autochthonous origins, and the characteristic of terrigenous origin was obvious compared to that of autochthonous origin.
Sun, Jingyi; Khan, Eakalak; Simsek, Senay; Ohm, Jae-Bom; Simsek, Halis
2017-11-01
Dissolved organic nitrogen (DON) from animal wastes can contribute to pollution of surface waters. Bioavailable DON (ABDON) is a portion of DON utilized by algae with or without bacteria. This study determined DON and ABDON levels in animal wastewater collected from two different sources: an animal feedlot wastewater storage tank and a sheep wastewater storage lagoon. Inocula for the ABDON bioassays were comprised of individual species and several combinations involving two algae (Chlamydomonas reinhardtii and Chlorella vulgaris) and a mixed liquor suspended solids (MLSS) bacterial culture. The ratio of initial DON to initial total dissolved nitrogen was 18% in the feedlot wastewater samples and 70% in the lagoon wastewater samples. The results showed that between 1.6 and 4.5 mg-NL-1 DON (45-79% of initial DON) in the feedlot samples and between 3.4 and 7.5 mg-NL-1 DON (36%-79% of initial DON) in the lagoon samples were bioavailable with the inocula tested. These results suggest that when considering eutrophication potential of livestock wastewater, organic nitrogen should be included in addition to the obvious culprits, ammonia and nitrate. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fallon, J.D.; McChesney, J.A.
1993-01-01
Surface-water-quality data were collected from the lower Kansas River Basin in Kansas and Nebraska. The data are presented in 17 tables consisting of physical properties, concentrations of dissolved solids and major ions, dissolved and total nutrients, dissolved and total major metals and trace elements, radioactivity, organic carbon, pesticides and other synthetic-organic compounds, bacteria and chlorophyll-a, in water; particle-size distributions and concentrations of major metals and trace elements in suspended and streambed sediment; and concentrations of synthetic-organic compounds in streambed sediment. The data are grouped within each table by sampling sites, arranged in downstream order. Ninety-one sites were sampled in the study area. These sampling sites are classified in three, non-exclusive categories (fixed, synoptic, and miscellaneous sites) on the basis of sampling frequency and location. Sampling sites are presented on a plate and in 3 tables, cross-referenced by downstream order, alphabetical order, U.S. Geological Survey identification number, sampling-site classification category, and types of analyses performed at each site. The methods used to collect, analyze, and verify the accuracy of the data also are presented. (USGS)
Unifying concepts linking dissolved organic matter composition to persistence in aquatic ecosystems
Kellerman, Anne M.; Guillemette, François; Podgorski, David C.; Aiken, George R.; Butler, Kenna D.; Spencer, Robert G. M.
2018-01-01
The link between composition and reactivity of dissolved organic matter (DOM) is central to understanding the role aquatic systems play in the global carbon cycle; yet, unifying concepts driving molecular composition have yet to be established. We characterized 37 DOM isolates from diverse aquatic ecosystems, including their stable and radiocarbon isotopes (δ13C-dissolved organic carbon (DOC) and Δ14C-DOC), optical properties (absorbance and fluorescence), and molecular composition (ultrahigh resolution mass spectrometry). Isolates encompassed end-members of allochthonous and autochthonous DOM from sites across the United States, the Pacific Ocean, and Antarctic lakes. Modern Δ14C-DOC and optical properties reflecting increased aromaticity, such as carbon specific UV absorbance at 254 nm (SUVA254), were directly related to polyphenolic and polycyclic aromatic compounds, whereas enriched δ13C-DOC and optical properties reflecting autochthonous end-members were positively correlated to more aliphatic compounds. Furthermore, the two sets of autochthonous end-members (Pacific Ocean and Antarctic lakes) exhibited distinct molecular composition due to differences in extent of degradation. Across all sites and end-members studied, we find a consistent shift in composition with aging, highlighting the persistence of certain biomolecules concurrent with degradation time.
Huang, Huiping; Chow, Christopher W K; Jin, Bo
2016-04-01
Understanding the complexity of dissolved organic matter (DOM) in stormwater has drawn a lot of interest, since DOM from stormwater causes not only environmental impacts, but also worsens downstream aquatic quality associated with water supply and treatability. This study introduced and employed high-performance size exclusion chromatography (HPSEC) coupled with an ultraviolet-visible (UV-vis) diode array detector to assess changes in stormwater-associated DOM characteristics. Stormwater DOM was also analysed in relation to storm event characteristics, water quality and spectroscopic analysis. Statistical tools were used to determine the correlations within DOM and water quality measurements. Results showed that dissolved organic carbon (DOC) and UV absorbance at 254 nm (UV254) as conventional DOM parameters were found to be correlated well to the changes in stormwater quality during each of the three storm events studied. Both detector wavelengths (210 and 254 nm) and their ratio (A210/A254) were found to provide additional information on the physiochemical properties of stormwater-associated DOM. This study indicated that A210/A254 is an important parameter which could be used to estimate the DOM proportions of functional groups and conjugated carbon species. This study provided also an understanding of stormwater quality constituents through assessing variability and sensitivity for various parameters, and the additional information of rainfall characteristics on runoff quality data for a better understanding of parameter correlations and influences. Copyright © 2015. Published by Elsevier B.V.
Origin and sources of dissolved organic matter in snow on the East Antarctic ice sheet.
Antony, Runa; Grannas, Amanda M; Willoughby, Amanda S; Sleighter, Rachel L; Thamban, Meloth; Hatcher, Patrick G
2014-06-03
Polar ice sheets hold a significant pool of the world's carbon reserve and are an integral component of the global carbon cycle. Yet, organic carbon composition and cycling in these systems is least understood. Here, we use ultrahigh resolution mass spectrometry to elucidate, at an unprecedented level, molecular details of dissolved organic matter (DOM) in Antarctic snow. Tens of thousands of distinct molecular species are identified, providing clues to the nature and sources of organic carbon in Antarctica. We show that many of the identified supraglacial organic matter formulas are consistent with material from microbial sources, and terrestrial inputs of vascular plant-derived materials are likely more important sources of organic carbon to Antarctica than previously thought. Black carbon-like material apparently originating from biomass burning in South America is also present, while a smaller fraction originated from soil humics and appears to be photochemically or microbially modified. In addition to remote continental sources, we document signals of oceanic emissions of primary aerosols and secondary organic aerosol precursors. The new insights on the diversity of organic species in Antarctic snowpack reinforce the importance of studying organic carbon associated with the Earth's polar regions in the face of changing climate.
Chakraborty, Parthasarathi; Chakraborty, Sucharita; Jayachandran, Saranya; Madan, Ritu; Sarkar, Arindam; Linsy, P; Nath, B Nagender
2016-10-01
This study describes the effect of varying bottom-water oxygen concentration on geochemical fractionation (operational speciation) of Cu and Pb in the underneath sediments across the oxygen minimum zone (Arabian Sea) in the west coast of India. Both, Cu and Pb were redistributed among the different binding phases of the sediments with changing dissolved oxygen level (from oxic to hypoxic and close to suboxic) in the bottom water. The average lability of Cu-sediment complexes gradually decreased (i.e., stability increased) with the decreasing dissolved oxygen concentrations of the bottom water. Decreasing bottom-water oxygen concentration increased Cu association with sedimentary organic matter. However, Pb association with Fe/Mn-oxyhydroxide phases in the sediments gradually decreased with the decreasing dissolved oxygen concentration of the overlying bottom water (due to dissolution of Fe/Mn oxyhydroxide phase). The lability of Pb-sediment complexes increased with the decreasing bottom-water oxygen concentration. This study suggests that bottom-water oxygen concentration is one of the key factors governing stability and lability of Cu and Pb complexes in the underneath sediment. Sedimentary organic matter and Fe/Mn oxyhydroxide binding phases were the major hosting phases for Cu and Pb respectively in the study area. Increasing lability of Pb-complexes in bottom sediments may lead to positive benthic fluxes of Pb at low oxygen environment. Copyright © 2016 Elsevier B.V. All rights reserved.
Chapman, Melinda J.; Gurley, Laura N.; Fitzgerald, Sharon A.
2014-01-01
Records were obtained for 305 wells and 1 spring in northwestern Lee and southeastern Chatham counties, North Carolina. Well depths ranged from 26 to 720 feet and yields ranged from 0.25 to 100 gallons per minute. A subset of 56 wells and 1 spring were sampled for baseline groundwaterquality constituents including the following: major ions; dissolved metals; nutrients; dissolved gases (including methane); volatile and semivolatile organic compounds; glycols; isotopes of strontium, radium, methane (if sufficient concentration), and water; and dissolved organic and inorganic carbon. Dissolved methane gas concentrations were low, ranging from less than 0.00007 (lowest reporting level) to 0.48 milligrams per liter. Concentrations of nitrate, boron, iron, manganese, sulfate, chloride, total dissolved solids, and measurements of pH exceeded federal and state drinking water standards in a few samples. Iron and manganese concentrations exceeded the secondary (aesthetic) drinking water standard in approximately 35 to 37 percent of the samples.
NASA Astrophysics Data System (ADS)
Wojciech Szajdak, Lech; Szczepański, Marek
2010-05-01
The investigation of peatland is used to show the water quality functioning with respect to different forms of nitrogen and carbon. The purification of ground water by the transect of 4.5 km long consisting organic soils (peat-moorsh soils) was estimated. This transect is located in the Agroecological Landscape Park in Turew, 40 km South-West of Poznan, West Polish Lowland. There is this transect along Wyskoć ditch. pH, the contents of total and dissolved organic carbon, total nitrogen, N-NO3-, N-NH4+ was measured. Additionally C/N factors of peats were estimated. The investigation has shown the impact of the peatland located on the secondary transformed peat - moorsh soils on the lowering of total nitrogen, ammonium, and nitrates as well as total and dissolved organic carbon in ground water. Peat-moorsh soils were described and classified according to Polish hydrogenic soil classification and World Reference Base Soil Notation. There are four investigated points along to Wyskoc ditch. Two times a month during entire vegetation season the following material was taken from this four chosen sites: samples of peat, from the depth of 0-20 cm, samples of water from the ditch, samples of ground water from wells established for this investigation. Samples of peat-moorsh soils were collected at the depth 0-20 cm. Soils were sampled two times a month from 10 sites of each site. Samples were air dried and crushed to pass a 1 mm-mesh sieve. These 10 sub-samples were mixed for the reason of preparing a 'mean sample', which used for the determination of pH (in 1M KCl), dissolved organic carbon (DOC), total organic carbon (TOC), total nitrogen (Ntotal), and N-NO3- as well as N-NH4+. In water from Wyskoć ditch pH, Ntotal, N-NO3-, N-NH4+, DTC (dissolved total carbon) and DOC (dissolved organic carbon) was measured. Ground water samples were collected from four wells established for this investigation. The water was filtered by the middle velocity separation and pH, N-total, N-NO3-, N-NH4+, DTC (dissolved total carbon) and DOC (dissolved organic carbon) ware measured. Peatland located on the secondary transformed peat - moorsh soils has revealed the lowering in ground water: nitrates 38.5%, N-organic 10%, N-total 24.5%, ammonium 38.7%, dissolved total carbon 33.1%, dissolved total inorganic carbon 10%, and dissolved organic carbon 57.5%. The elution of soil organic matter from peat-moorsh soils in broad range of pH and ionic strength was investigated. The rates of the reaction were calculated from the kinetics of first order reaction model. All experiments were repeated at different pH 6.0, 6.5, 7.0, 8.0, 8.5 of 0.5 M ammonium acetate buffer solution. The investigations have shown the impact of the properties of secondary transformed peat-moorsh soils on the rates of the dissolution of organic matter. The rates of organic matter elution for all samples of peats were significant different at four used wavelengths λ=272 nm, λ=320 nm, λ=465 nm, and λ=665 nm. It was observed that the rates increased between λ=272 nm and λ=320 nm and decreased from λ=465 nm to λ=665 nm. Although, the lowest values of the pseudo first-order rate constants measured at λ=665 nm for all samples of peats from four places ranged from 1.9524 10-4 s-1 to 2.7361 10-4 s-1. Therefore, the highest values of t0.5 ranged from 42.2 to 59.2 min for all samples from Zbęchy, Shelterbelt, Mostek and Hirudo. This work was supported by a grant No. N N305 3204 36 founded by Polish Ministry of Education.
Zhu, P; Chen, Y; Wang, L Y; Zhou, M; Zhou, J
2013-02-01
Separation of waste printed circuit boards (WPCBs) has been a bottleneck in WPCBs resource processing. In this study, the separation of WPCBs was performed using dimethyl sulfoxide (DMSO) as a solvent. Various parameters, which included solid to liquid ratio, temperature, WPCB sizes, and time, were studied to understand the separation of WPCBs by dissolving bromine epoxy resin using DMSO. Experimental results showed that the concentration of dissolving the bromine epoxy resin increased with increasing various parameters. The optimum condition of complete separation of WPCBs was solid to liquid ratio of 1:7 and WPCB sizes of 16 mm(2) at 145°C for 60 min. The used DMSO was vapored under the decompression, which obtained the regenerated DMSO and dissolved bromine epoxy resin. This clean and non-polluting technology offers a new way to separate valuable materials from WPCBs and prevent the environmental pollution of waste printed circuit boards effectively. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.
Taylor, Howard E.; Peart, D.B.; Antweiler, Ronald C.; Brinton, T.I.; Campbell, W.L.; Barbarino, J.R.; Roth, D.A.; Hart, R.J.; Averett, R.C.
1996-01-01
Two water-quality synoptic studies were made on the Colorado River in the Grand Canyon, Arizona. Field measurements and the collection of water samples for laboratory analysis were made at 10 mainstem and 6 tributary sites every 6 hours for a 48-hour period on November 5-6, 1990, and again on June 18-20, 1991. Field measurements included discharge, alkalinity, water temperature, light penetration, pH, specific conductance, and dissolved oxygen. Water samples were collected for the laboratory analysis of major and minor ions (calcium, magnesium, sodium, potassium, strontium, chloride, sulfate, silica as SiO2), trace elements (aluminum, arsenic, boron, barium, beryllium, cadmium, cobalt, chromium, copper, iron, lead, lithium, manganese, molybdenum, nickel, selenium, thallium, uranium, vanadium and zinc), and nutrients (phosphate, nitrate, ammonium, nitrite, total dissolved nitrogen, total dissolved phosphorus and dissolved organic carbon). Biological measurements included drift (benthic invertebrates and detrital material), and benthic invertebrates from the river bottom.
NASA Astrophysics Data System (ADS)
Rahikainen, Mika; Hoikkala, Laura; Soinne, Helena
2013-04-01
Bayesian belief nets (BBN) are capable of developing holistic understanding of the origin, transportation, and effects of dissolved organic matter (DOM) in ecosystems. The role of riverine DOM, transporting carbon and macronutrients N and P into lakes and coastal areas, has been largely neglected in research about processes influencing aquatic ecosystem functions although dissolved organic matter provides a significant nutrient source for primary producers in aquatic environments. This neglect has also contributed to the environmental policies which are focused in the control of inorganic N and P load. It is of great social and economic interest to gain improved knowledge of whether the currently applied policy instruments act in synchrony in mitigating eutrophication caused by N and P versus DOM load. DOM is a complex mixture of compounds that are poorly characterized. DOM export is strongly regulated by land use (urban, forest, agricultural land, peat land), in addition to soil type and soil organic carbon concentration. Furthermore, the composition of DOM varies according to its origin. The fate and effects of DOM loads in the fresh water and coastal environments depend, for example, on their biodegradability. Degradation kinetics again depends on the interactions between composition of the DOM pool and the receiving environment. Impact studies of dissolved organic matter pose a complicated environmental impact assessment challenge for science. There exists strategic uncertainty in the science about the causal dependencies and about the quality of knowledge related to DOM. There is a clear need for systematization in the approach as uncertainty is typically high about many key processes. A cross-sectorial, integrative analysis will aid in focusing on the most relevant issues. A holistic and unambiguous analysis will provide support for policy-decisions and management by indicating which outcome is more probable than another. The task requires coupling complex models of different environmental compartments (soil chemistry, agricultural management practices, aquatic processes, costs and benefits for society) with explicit treatment of uncertainty. In order to achieve policy relevance, these models have to be integrated into resource management. We use a Bayesian belief net to describe the probabilistic dependencies among the driving forces, processes, and impacts relevant to dissolved organic matter in boreal waterways.
Wright, Peter R.
2013-01-01
The hydrogeology and water quality of the Snake River alluvial aquifer at the Jackson Hole Airport in northwest Wyoming was studied by the U.S. Geological Survey, in cooperation with the Jackson Hole Airport Board, during water years 2011 and 2012 as part of a followup to a previous baseline study during September 2008 through June 2009. Hydrogeologic conditions were characterized using data collected from 19 Jackson Hole Airport wells. Groundwater levels are summarized in this report and the direction of groundwater flow, hydraulic gradients, and estimated groundwater velocity rates in the Snake River alluvial aquifer underlying the study area are presented. Analytical results of groundwater samples collected from 10 wells during water years 2011 and 2012 are presented and summarized. The water table at Jackson Hole Airport was lowest in early spring and reached its peak in July or August, with an increase of 12.5 to 15.5 feet between April and July 2011. Groundwater flow was predominantly horizontal but generally had the hydraulic potential for downward flow. Groundwater flow within the Snake River alluvial aquifer at the airport was from the northeast to the west-southwest, with horizontal velocities estimated to be about 25 to 68 feet per day. This range of velocities slightly is broader than the range determined in the previous study and likely is due to variability in the local climate. The travel time from the farthest upgradient well to the farthest downgradient well was approximately 52 to 142 days. This estimate only describes the average movement of groundwater, and some solutes may move at a different rate than groundwater through the aquifer. The quality of the water in the alluvial aquifer generally was considered good. Water from the alluvial aquifer was fresh, hard to very hard, and dominated by calcium carbonate. No constituents were detected at concentrations exceeding U.S. Environmental Protection Agency maximum contaminant levels or health advisories; however, reduction and oxidation (redox) measurements indicate oxygen-poor water in many of the wells. Gasoline-range organics, three volatile organic compounds, and triazoles were detected in some groundwater samples. The quality of groundwater in the alluvial aquifer generally was suitable for domestic and other uses; however, dissolved iron and manganese were detected in samples from many of the monitor wells at concentrations exceeding U.S. Environmental Protection Agency secondary maximum contaminant levels. Iron and manganese likely are both natural components of the geologic materials in the area and may have become mobilized in the aquifer because of redox processes. Additionally, measurements of dissolved-oxygen concentrations and analyses of major ions and nutrients indicate reducing conditions exist at 7 of the 10 wells sampled. Measurements of dissolved-oxygen concentrations (less than 0.1 to 9 milligrams per liter) indicated some variability in the oxygen content of the aquifer. Dissolved-oxygen concentrations in samples from 3 of the 10 wells indicated oxic conditions in the aquifer, whereas low dissolved-oxygen concentrations (less than 1 milligram per liter) in samples from 7 wells indicated anoxic conditions. Nutrients were present in low concentrations in all samples collected. Nitrate plus nitrite was detected in samples from 6 of the 10 monitored wells, whereas dissolved ammonia was detected in small concentrations in 8 of the 10 monitored wells. Dissolved organic carbon concentrations generally were low. At least one dissolved organic carbon concentration was quantified by the laboratory in samples from all 10 wells; one of the concentrations was an order of magnitude higher than other detected dissolved organic carbon concentrations, and slightly exceeded the estimated range for natural groundwater. Samples were collected for analyses of dissolved gases, and field analyses of ferrous iron, hydrogen sulfide, and low-level dissolved oxygen were completed to better understand the redox conditions of the alluvial aquifer. Dissolved gas analyses confirmed low concentrations of dissolved oxygen in samples from wells where reducing conditions exist and indicated the presence of methane gas in samples from several wells. Redox processes in the alluvial aquifer were identified using a model designed to use a multiple-lines-of-evidence approach to distinguish reduction processes. Results of redox analyses indicate iron reduction was the dominant redox process; however, the model indicated manganese reduction and methanogenesis also were taking place in the aquifer. Each set of samples collected during this study included analysis of at least two, but often many anthropogenic compounds. During the previous 2008–09 study at Jackson Hole Airport, diesel-range organics were measured in small (estimated) concentrations in several samples. Samples collected from all 10 wells sampled during the 2011–12 study were analyzed for diesel-range organics, and there were no detections; however, several other anthropogenic compounds were detected in groundwater samples during water years 2011—12 that were not detected during the previous 2008–09 study. Gasoline-range organics, benzene, ethylbenzene, and total xylene were each detected (but reported as estimated concentrations) in at least one groundwater sample. These compounds were not detected during the previous study or consistently during this study. Several possible reasons these compounds were not detected consistently include (1) these compounds are present in the aquifer at concentrations near the analytical method detection limit and are difficult to detect, (2) these compounds were not from a persistent source during this study, and (3) these compounds were detected because of contamination introduced during sampling or analysis. During water years 2011–2012, groundwater samples were analyzed for triazoles, specifically benzotriazole, 4-methyl-1H-benzotriazole, and 5-methyl-1H-benzotriazole. Triazoles are anthropogenic compounds often used as an additive in deicing and anti-icing fluids as a corrosion inhibitor, and can be detected at lower laboratory reporting levels than glycols, which previously had not been detected. Two of the three triazoles measured, 4-methyl-1H-benzotriazole and 5-methyl-1H-benzotriazole, were detected at low concentrations in groundwater at 7 of the 10 wells sampled. The detection of triazole compounds in groundwater downgradient from airport operations makes it unlikely there is a natural cause for the high rates of reduction present in many airport monitor wells. It is more likely that aircraft deicers, anti-icers, or pavement deicers have seeped into the groundwater system and caused the reducing conditions.
Sabater, S; Barceló, D; De Castro-Català, N; Ginebreda, A; Kuzmanovic, M; Petrovic, M; Picó, Y; Ponsatí, L; Tornés, E; Muñoz, I
2016-03-01
Land use type, physical and chemical stressors, and organic microcontaminants were investigated for their effects on the biological communities (biofilms and invertebrates) in several Mediterranean rivers. The diversity of invertebrates, and the scores of the first principal component of a PCA performed with the diatom communities were the best descriptors of the distribution patterns of the biological communities against the river stressors. These two metrics decreased according to the progressive site impairment (associated to higher area of agricultural and urban-industrial, high water conductivity, higher dissolved organic carbon and dissolved inorganic nitrogen concentrations, and higher concentration of organic microcontaminants, particularly pharmaceutical and industrial compounds). The variance partition analyses (RDAs) attributed the major share (10%) of the biological communities' response to the environmental stressors (nutrients, altered discharge, dissolved organic matter), followed by the land use occupation (6%) and of the organic microcontaminants (2%). However, the variance shared by the three groups of descriptors was very high (41%), indicating that their simultaneous occurrence determined most of the variation in the biological communities. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
The Utility of CDOM for Improving the Resolution of Riverine DOM Fluxes and Biogeochemical Function
NASA Astrophysics Data System (ADS)
Spencer, R. G.; Aiken, G.; Mann, P. J.; Holmes, R. M.; Niggemann, J.; Dittmar, T.; Hernes, P.; Stubbins, A.
2014-12-01
A major historical limitation to geochemical studies assessing fluvial fluxes of dissolved organic matter (DOM) has been the issue of both temporal and spatial scaling. Examples will be presented from watersheds around the world highlighting how chromophoric dissolved organic matter (CDOM) measurements can be utilized as proxies for more intensive and expensive analytical analyses (e.g. molecular-level organic biomarkers). Utilizing these refined CDOM loads for terrigenous biomarkers results in improved temporal resolution and a significant change in flux estimates. Examining CDOM and dissolved organic carbon (DOC) flux data from an assortment of terrestrial biomes we establish a robust relationship between CDOM and DOC loads. The application of this relationship allows future studies to derive DOC loads from CDOM utilizing emerging in-situ or remote sensing technologies and thus refine river-to-ocean DOC fluxes, as well as exploit historic imagery to examine how fluxes may have changed. Calculated CDOM yields from a range of rivers are correlated to watershed percent wetland and highlight the importance of certain regions with respect to CDOM flux to the coastal ocean. This approach indicates that future studies might predict CDOM and DOC yields for different watershed types that could then be readily converted to loads providing for the estimation of CDOM and DOC export from ungauged watersheds. Examination of CDOM yields also highlights important geographical regions for future study with respect to the role of terrigenous CDOM in ocean color budgets and CDOM's role in biogeochemical processes. Finally, examples will be presented linking CDOM parameters to DOM composition and biogeochemical properties with the aim of providing measurements to improve the spatial and especially temporal resolution of the role DOM plays in fluvial networks.
Iwagami, Sho; Onda, Yuichi; Tsujimura, Maki; Abe, Yutaka
2017-01-01
Radiocesium ( 137 Cs) migration from headwaters in forested areas provides important information, as the output from forest streams subsequently enters various land-use areas and downstream rivers. Thus, it is important to determine the composition of 137 Cs fluxes (dissolved fraction, suspended sediment, or coarse organic matter) that migrate through a headwater stream. In this study, the 137 Cs discharge by suspended sediment and coarse organic matter from a forest headwater catchment was monitored. The 137 Cs concentrations in suspended sediment and coarse organic matter, such as leaves and branches, and the amounts of suspended sediment and coarse organic matter were measured at stream sites in three headwater catchments in Yamakiya District, located ∼35 km northwest of Fukushima Dai-ichi Nuclear Power Plant (FDNPP) from August 2012 to September 2013, following the earthquake and tsunami disaster. Suspended sediment and coarse organic matter were sampled at intervals of approximately 1-2 months. The 137 Cs concentrations of suspended sediment and coarse organic matter were 2.4-49 kBq/kg and 0.85-14 kBq/kg, respectively. The 137 Cs concentrations of the suspended sediment were closely correlated with the average deposition density of the catchment. The annual proportions of contribution of 137 Cs discharge by suspended sediment, coarse organic matter, and dissolved fraction were 96-99%, 0.0092-0.069%, and 0.73-3.7%, respectively. The total annual 137 Cs discharge from the catchment was 0.02-0.3% of the deposition. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Iwagami, S.; Onda, Y.; Tsujimura, M.; Sakakibara, K.; Konuma, R.
2015-12-01
Radiocesium migration from headwater forested catchment is important perception as output from the forest which is also input to the subsequent various land use and downstream rivers after Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident. In this study, Cs-137 concentration of dissolved water, suspended sediment and coarse organic matter such as leaf and branch were monitored. Discharge amount of stream water, suspended sediment and coarse organic matter were measured to investigate the discharge amount of radiocesium and composition of radiocesium discharge form through the headwater stream. Observation were conducted at stream site in four headwater catchments in Yamakiya district, located ~35 km north west of FDNPP from June 2011 (suspended sediment and coarse organic matter: August 2012) to December 2014.The Cs-137 concentration of dissolved water was around 1Bq/l at June 2011. Then declined to 0.1 Bq/l at December 2011. And in December 2014, it declined to 0.01 Bq/l order. Declining trend of Cs-137 concentration in dissolved water was expressed in double exponential model. Also temporary increase was observed in dissolved Cs-137 during the rainfall event. The Cs-137 concentration of suspended sediment and coarse organic matter were 170-49000 Bq/kg and 350-14000 Bq/kg respectably. The Cs-137 concentration of suspended sediment showed good correlation with average deposition density of catchment. The effect of decontamination works appeared in declining of Cs-137 concentration in suspended sediment. Contribution rate of Cs-137 discharge by suspended sediment was 96-99% during a year. Total annual Cs-137 discharge from the catchment were 0.02-0.3% of the deposition.
NASA Astrophysics Data System (ADS)
Stoken, Olivia M.; Riscassi, Ami L.; Scanlon, Todd M.
2016-04-01
Streams and rivers are important pathways for the export of atmospherically deposited mercury (Hg) from watersheds. Dissolved Hg (HgD) is strongly associated with dissolved organic carbon (DOC) in stream water, but the ratio of HgD to DOC is highly variable between watersheds. In this study, the HgD:DOC ratios from 19 watersheds were evaluated with respect to Hg wet deposition and watershed soil organic carbon (SOC) content. On a subset of sites where data were available, DOC quality measured by specific ultra violet absorbance at 254 nm, was considered as an additional factor that may influence HgD:DOC . No significant relationship was found between Hg wet deposition and HgD:DOC, but SOC content (g m-2) was able to explain 81% of the variance in the HgD:DOC ratio (ng mg-1) following the form: HgD:DOC=17.8*SOC-0.41. The inclusion of DOC quality as a secondary predictor variable explained only an additional 1% of the variance. A mathematical framework to interpret the observed power-law relationship between HgD:DOC and SOC suggests Hg supply limitation for adsorption to soils with relatively large carbon pools. With SOC as a primary factor controlling the association of HgD with DOC, SOC data sets may be utilized to predict stream HgD:DOC ratios on a more geographically widespread basis. In watersheds where DOC data are available, estimates of HgD may be readily obtained. Future Hg emissions policies must consider soil-mediated processes that affect the transport of Hg and DOC from terrestrial watersheds to streams for accurate predictions of water quality impacts.
Organic chloramines in chlorine-based disinfected water systems: A critical review.
How, Zuo Tong; Kristiana, Ina; Busetti, Francesco; Linge, Kathryn L; Joll, Cynthia A
2017-08-01
This paper is a critical review of current knowledge of organic chloramines in water systems, including their formation, stability, toxicity, analytical methods for detection, and their impact on drinking water treatment and quality. The term organic chloramines may refer to any halogenated organic compounds measured as part of combined chlorine (the difference between the measured free and total chlorine concentrations), and may include N-chloramines, N-chloramino acids, N-chloraldimines and N-chloramides. Organic chloramines can form when dissolved organic nitrogen or dissolved organic carbon react with either free chlorine or inorganic chloramines. They are potentially harmful to humans and may exist as an intermediate for other disinfection by-products. However, little information is available on the formation or occurrence of organic chloramines in water due to a number of challenges. One of the biggest challenges for the identification and quantification of organic chloramines in water systems is the lack of appropriate analytical methods. In addition, many of the organic chloramines that form during disinfection are unstable, which results in difficulties in sampling and detection. To date research has focussed on the study of organic monochloramines. However, given that breakpoint chlorination is commonly undertaken in water treatment systems, the formation of organic dichloramines should also be considered. Organic chloramines can be formed from many different precursors and pathways. Therefore, studying the occurrence of their precursors in water systems would enable better prediction and management of their formation. Copyright © 2017. Published by Elsevier B.V.
Copper speciation and binding by organic matter in copper-contaminated streamwater
Breault, R.F.; Colman, J.A.; Aiken, G.R.; McKnight, D.
1996-01-01
Fulvic acid binding sites (1.3-70 ??M) and EDTA (0.0017-0.18 ??M) accounted for organically bound Cu in seven stream samples measured by potentiometric titration. Cu was 84-99% organically bound in filtrates with 200 nM total Cu. Binding of Cu by EDTA was limited by competition from other trace metals. Water hardness was inversely related to properties of dissolved organic carbon (DOC) that enhance fulvic acid binding: DOC concentration, percentage of DOC that is fulvic acid, and binding sites per fulvic acid carbon. Dissolved trace metals, stabilized by organic binding, occurred at increased concentration in soft water as compared to hard water.
Liu, Shasha; Zhu, Yuanrong; Liu, Leizhen; He, Zhongqi; Giesy, John P; Bai, Yingchen; Sun, Fuhong; Wu, Fengchang
2018-03-01
Complexation and coagulation of plant-derived dissolved organic matter (DOM) by metal cations are important biogeochemical processes of organic matter in aquatic systems. Thus, coagulation and fractionation of DOM derived from aquatic plants by Ca(II), Al(III), and Fe(III) ions were investigated. Metal ion-induced removal of DOM was determined by analyzing dissolved organic carbon in supernatants after addition of these metal cations individually. After additions of metal ions, both dissolved and coagulated organic fractions were characterized by use of fluorescence excitation emission matrix-parallel factor (EEM-PARAFAC) analysis and Fourier transform infrared (FT-IR) spectroscopy. Addition of Ca(II), Fe(III) or Al(III) resulted in net removal of aquatic plant-derived DOM. Efficiencies of removal of DOM by Fe(III) or Al(III) were greater than that by Ca(II). However, capacities to remove plant-derived DOM by the three metals were less than which had been previously reported for humic materials. Molecular and structural features of plant-derived DOM fractions in associations with metal cations were characterized by changes in fluorescent components and infrared absorption peaks. Both aromatic and carboxylic-like organic matters could be removed by Ca(II), Al(III) or Fe(III) ions. Whereas organic matters containing amides were preferentially removed by Ca(II), and phenolic materials were selectively removed by Fe(III) or Al(III). These observations indicated that plant-derived DOM might have a long-lasting effect on water quality and organisms due to its poor coagulation with metal cations in aquatic ecosystems. Plant-derived DOM is of different character than natural organic matter and it is not advisable to attempt removal through addition of metal salts during treatment of sewage. Copyright © 2017 Elsevier Ltd. All rights reserved.
Organic-aqueous crossover coating process for the desmopressin orally disintegrating microparticles.
Kim, Ju-Young; Hwang, Kyu-Mok; Park, Chun-Woong; Rhee, Yun-Seok; Park, Eun-Seok
2015-02-01
The purpose of the present study was to prepare desmopressin orally disintegrating microparticles (ODMs) using organic-aqueous crossover coating process which featured an organic sub-coating followed by an aqueous active coating. Sucrose beads and hydroxypropyl cellulose (HPC) were used as inert cores and a coating material, respectively. Characterizations including size distribution analysis, in-vitro release studies and in-vitro disintegration studies were performed. A pharmacokinetic study of the ODMs was also conducted in eight beagle dogs. It was found that sucrose beads should be coated using organic solvents to preserve their original morphology. For the active coating, the aqueous coating solution should be used for drug stability. When sucrose beads were coated using organic-aqueous crossover coating process, double-layer ODMs with round shapes were produced with detectable impurities below limit of US Pharmacopeia. The median size of ODMs was 195.6 μm, which was considered small enough for a good mouthfeel. The ODMs dissolved in artificial saliva within 15 s because of hydrophilic materials including sucrose and HPC in the ODMs. Because of its fast-dissolving properties, 100% release of the drug was reached within 5 min. Pharmacokinetic parameters including Cmax and AUC24 indicated bioequivalence of the ODMs and the conventional immediate release tablets. Therefore, by using the organic-aqueous crossover coating process, double-layer ODMs were successively prepared with small size, round shapes and good drug stability.
Neace, J.C.
1984-03-13
A process is claimed for removing diluent degradation products from a solvent extraction solution, which has been used to recover uranium and plutonium from spent nuclear fuel. A wash solution and the solvent extraction solution are combined. The wash solution contains (a) water and (b) up to about, and including, 50 vol % of at least one-polar water-miscible organic solvent based on the total volume of the water and the highly-polar organic solvent. The wash solution also preferably contains at least one inorganic salt. The diluent degradation products dissolve in the highly-polar organic solvent and the organic solvent extraction solvent do not dissolve in the highly-polar organic solvent. The highly-polar organic solvent and the extraction solvent are separated.
Neace, James C.
1986-01-01
Process for removing diluent degradation products from a solvent extraction solution, which has been used to recover uranium and plutonium from spent nuclear fuel. A wash solution and the solvent extraction solution are combined. The wash solution contains (a) water and (b) up to about, and including, 50 volume percent of at least one-polar water-miscible organic solvent based on the total volume of the water and the highly-polar organic solvent. The wash solution also preferably contains at least one inorganic salt. The diluent degradation products dissolve in the highly-polar organic solvent and the organic solvent extraction solvent do not dissolve in the highly-polar organic solvent. The highly-polar organic solvent and the extraction solvent are separated.
Water-quality conditions in the New River, Imperial County, California
Setmire, James G.
1979-01-01
The New River, when entering the United States at Calexico, Calif., often contains materials which have the appearance of industrial and domestic wastes. Passage of some of these materials is recognized by a sudden increase in turbidity over background levels and the presence of white particulate matter. Water samples taken during these events are usually extremely high in organic content. During a 4-day reconnaissance of water quality in May 1977, white-to-brown extremely turbid water crossed the border on three occasions. On one of these occasions , the water was intensively sampled. The total organic-carbon concentration ranged from 80 to 161 milligrams per liter (mg/l); dissolved organic carbon ranged from 34 to 42 mg/l, and the chemical oxygen demand was as high as 510 mg/l. River profiles showed a dissolved-oxygen sag, with the length of the zone of depressed dissolved-oxygen concentrations varying seasonally. During the summer months, dissolved-oxygen concentrations in the river were lower and the zone of depressed dissolved-oxygen concentrations was longer. The largest increases in dissolved-oxygen concentration from reaeration occurred at the three drop structures and the rock weir near Seeley. The effects of oxygen demanding materials crossing the border extended as far as Highway 80, 19.5 miles downstream from the international boundary at Calexico. Fish kills and anaerobic conditions were also detected as far as Highway 80. Standard bacteria indicator tests for fecal contamination showed a very high health-hazard potential near the border. (Woodard-USGS)
NASA Astrophysics Data System (ADS)
Arellano, A. R.; Bianchi, T. S.; Osburn, C. L.; D'Sa, E. J.; Oviedo Vargas, D.; Ward, N. D.; Joshi, I.; Ko, D. S.
2016-12-01
Globally, coastal blue carbon environments (wetlands, seagrass beds and mangroves) sequester an estimated 67-215 Tg C yr-1. While most blue carbon research has focused on carbon burial/stocks and habitat fragmentation of these communities, few studies have examined the export and loss of blue carbon sources of particulate organic matter (POM) and dissolved organic matter (DOM) to adjacent coastal waters. These shifts in losses of DOM and POM are also partly due to large-scale changes in land-use and climate change. Due to the complexity of vascular plant inputs to estuarine systems (e.g. terrestrial vs. blue carbon), being able to separate blue carbon sources of POM and DOM are critical. Here, we investigate the temporal variability of the abundance, sources and breakdown of particulate and dissolved organic carbon (POC and DOC) in particle-dominated (Barataria Bay) and blackwater river-dominated (Apalachicola Bay) estuaries in the northern Gulf of Mexico, using bulk carbon, dissolved lignin phenols, δ13C and dissolved CO2. The range of DOC:POC ratios for Barataria and Apalachicola bays were 0.5-3.1 and 2.3-57.0, respectively. δ13C-POC values were more depleted in Apalachicola (x̅=-27.3‰) compared to those in Barataria (x̅=-24.8‰), and C:N ratios were higher in Apalachicola (x̅=10.8) than in Barataria (x̅=9.3). Although there was no significant temporal variability with δ13C-POC in both systems, Barataria Bay had the highest POC (0.08-0.23 mM) and C:N (7.0-13.4) values during spring, when enhanced southerly winds likely resulted in higher resuspension and marsh erosion rates. Additionally, in Apalachicola, the lowest C:N values (6.2-16.1) were observed during the dry season when fluvial DOM inputs were minimal. The highest dissolved lignin phenol and DOC (0.10-2.98 mM) concentrations in Apalachicola occurred during the wet season, reflecting the importance of riverine inputs to this system. In particular, the Carabelle River plume region had C:V and S:V values that indicated woody inputs (long-leaf pine communities), while the bay proper/East Bay were more indicative of blue carbon sources. Spatial and temporal variability of dissolved CO2 concentrations will be discussed as it relates to possible linkages with the export and losses of blue carbon-derived DOC and POC.
Comment on “Dissolved organic sulfur in the ocean: Biogeochemistry of a petagram inventory”
NASA Astrophysics Data System (ADS)
Dittmar, Thorsten; Stubbins, Aron; Ito, Takamitsu; Jones, Daniel C.
2017-05-01
Ksionzek et al. (Reports, 28 October 2016, p. 456) provide important data describing the distribution of dissolved organic sulfur (DOS) in the Atlantic Ocean. Here, we show that mixing between water masses is sufficient to explain the observed distribution of DOS, concluding that the turnover time of refractory DOS that Ksionzek et al. present cannot be deduced from their data.
Nitin K. Singh; Wilmer M. Reyes; Emily S. Bernhardt; Ruchi Bhattacharya; Judy L. Meyer; Jennifer D. Knoepp; Ryan E. Emanuel
2016-01-01
In the past decade, significant increases in surface water dissolved organic carbon (DOC) have been reported for large aquatic ecosystems of the Northern Hemisphere and have been attributed variously to global warming, altered hydrologic conditions, and atmospheric deposition, among other factors. We analyzed a 25-yr DOC record (1988â2012) available for a...
J.R. Corman; B.L. Bertolet; N.J. Casson; S.D. Sebestyen; R.K. Kolka; E.H. Stanley
2018-01-01
Terrestrial loads of dissolved organic matter (DOM) have increased in recent years in many north temperate lakes. While much of the focus on the "browning" phenomena has been on its consequences for carbon cycling, much less is known about how it influences nutrient loading to lakes. We characterize potential loads of nitrogen and phosphorus to seepage lakes...
Stephen D. Sebestyen; Elizabeth W. Boyer; James B. Shanley; Carol Kendall; Daniel H. Doctor; George R. Aiken; Nobuhito Ohte
2008-01-01
We explored catchment processes that control stream nutrient concentrations at an upland forest in northeastern Vermont, USA, where inputs of nitrogen via atmospheric deposition are among the highest in the nation and affect ecosystem functioning. We traced sources of water, nitrate, and dissolved organic matter (DOM) using stream water samples collected at high...
Natalia Tesón; Víctor H Conzonno; Marcelo F Arturi; Jorge L Frangi
2014-01-01
Water fluxes in tree plantations and other ecosystems carry dissolved organic carbon (DOC) provided by atmospheric inputs, autotrophic and heterotrophic metabolisms and from the lysis of dead material. These compounds may be colorless or provide a yellow-to-brown color to water and may also absorb visible light due to the presence of chromophores in the chemical...
Brian A. Pellerin; John Franco Saraceno; James B. Shanley; Stephen D. Sebestyen; George R. Aiken; Wilfred M. Wollheim; Brian A. Bergamaschi
2012-01-01
Highly resolved time series data are useful to accurately identify the timing, rate, and magnitude of solute transport in streams during hydrologically dynamic periods such as snowmelt. We used in situ optical sensors for nitrate (NO3-) and chromophoric dissolved organic matter fluorescence (FDOM) to measure surface water...
Jonathan A. O' Donnell; George R. Aiken; Evan S. Kane; Jeremy B. Jones
2010-01-01
Climate warming and permafrost degradation at high latitudes will likely impact watershed hydrology, and consequently, alter the concentration and character of dissolved organic carbon (DOC) in northern rivers. We examined seasonal variation of DOC chemistry in 16 streams of the Yukon River basin, Alaska. Our primary objective was to evaluate DOC chemical composition....
Ying Ouyang
2012-01-01
Understanding the dynamics of naturally occurring dissolved organic carbon (DOC) in a river is central to estimating surface water quality, aquatic carbon cycling, and global climate change. Currently, determination of the DOC in surface water is primarily accomplished by manually collecting samples for laboratory analysis, which requires at least 24 h. In other words...
Stelzer, Robert S.; Scott, J. Thad; Bartsch, Lynn
2015-01-01
The interface between ground water and surface water in streams is a hotspot for N processing. However, the role of buried organic C in N transformation at this interface is not well understood, and inferences have been based largely on descriptive studies. Our main objective was to determine how buried particulate organic C (POC) affected denitrification and NO3− retention in the sediments of an upwelling reach in a sand-plains stream in Wisconsin. We manipulated POC in mesocosms inserted in the sediments. Treatments included low and high quantities of conditioned red maple leaves (buried beneath combusted sand), ambient sediment (sand containing background levels of POC), and a control (combusted sand). We measured denitrification rates in sediments by acetylene-block assays in the laboratory and by changes in N2 concentrations in the field using membrane inlet mass spectrometry. We measured NO3−, NH4+, and dissolved organic N (DON) retention as changes in concentrations and fluxes along groundwater flow paths in the mesocosms. POC addition drove oxic ground water to severe hypoxia, led to large increases in dissolved organic C (DOC), and strongly increased denitrification rates and N (NO3− and total dissolved N) retention relative to the control. In situ denitrification accounted for 30 to 60% of NO3− retention. Our results suggest that buried POC stimulated denitrification and NO3− retention by producing DOC and by creating favorable redox conditions for denitrification.
Qiu, Linlin; Cui, Hongyang; Wu, Junqiu; Wang, Baijie; Zhao, Yue; Li, Jiming; Jia, Liming; Wei, Zimin
2016-06-15
Bacterioplankton plays a significant role in the circulation of materials and ecosystem function in the biosphere. Dissolved organic matter (DOM) from dead plant material and surface soil leaches into water bodies when snow melts. In our study, water samples from nine sampling sites along the Heilongjiang watershed were collected in February and June 2014 during which period snowmelt occurred. The goal of this study was to characterize changes in DOM and bacterioplankton community composition (BCC) associated with snowmelt, the effects of DOM, environmental and geographical factors on the distribution of BCC and interactions of aquatic bacterioplankton populations with different sources of DOM in the Heilongjiang watershed. BCC was measured by denaturing gradient gel electrophoresis (DGGE). DOM was measured by excitation-emission matrix (EEM) fluorescence spectroscopy. Bacterioplankton exhibited a distinct seasonal change in community composition due to snowmelt at all sampling points except for EG. Redundancy analysis (RDA) indicated that BCC was more closely related to DOM (Components 1 and 4, dissolved organic carbon, biochemical oxygen demand and chlorophyll a) and environmental factors (water temperature and nitrate nitrogen) than geographical factors. Furthermore, DOM had a greater impact on BCC than environmental factors (29.80 vs. 15.90% of the variation). Overall, spring snowmelt played an important role in altering the quality and quantity of DOM and BCC in the Heilongjiang watershed. Copyright © 2016 Elsevier B.V. All rights reserved.
Wan, Xiao-Hua; Huang, Zhi-Qun; He, Zong-Ming; Hu, Zhen-Hong; Yu, Zai-Peng; Wang, Min-Huang; Yang, Yu-Sheng; Fan, Shao-Hui
2014-01-01
Based on the comparison between reforested 19-year-old Mytilaria laosensis and Cunninghamia lanceolata plantations on cut-over land of C. lanceolata, effects of tree species transfer on soil dissolved organic matter were investigated. Cold water, hot water and 2 mol x L(-1) KCl solution were used to extract soil dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) from 0-5, 5-10 and 10-20 cm soil layers. In M. laosensis plantaion, the concentrations of soil DOC extracted by cold water, hot water and 2 mol L(-1) KCl solutions were significantly higher than that in C. lanceolata plantation. In the 0-5 and 5-10 cm layers, the concentrations of soil DON extracted by cold water and hot water in M. laosensis plantation were significantly higher than that in C. lanceolata plantation. The extracted efficiencies for DOC and DON were both in order of KCl solution > hot water > cold water. In the 0-5 cm layers, soil microbial biomass carbon (MBC) under M. laosensis was averagely 76.3% greater than under C. lanceolata. Correlation analysis showed that there were significant positive relationships between hot water extractable organic matter and soil MBC. Differences in the sizes of soil DOC and DON pools between the M. laosensis and C. lanceolata forests might be attributed to the quality and quantity of organic matter input. The transfer from C. lanceolata to M. laosensis could improve soil fertility in the plantation.
NASA Astrophysics Data System (ADS)
Fox, P. M.; Nico, P. S.; Hao, Z.; Gilbert, B.; Tfaily, M. M.; Devadoss, J.
2015-12-01
Sediment-associated natural organic matter (NOM) is an extremely complex assemblage of organic molecules with a wide range of sizes, functional groups, and structures, which is intricately associated with mineral particles. The chemical nature of NOM may control its' reactivity towards metals, minerals, enzymes, and bacteria. Organic carbon concentrations in subsurface sediments are typically much lower than in surface soils, posing a distinct challenge for characterization. In this study, we investigated NOM associated with shallow alluvial aquifer sediments in a floodplain of the Colorado River. Total organic carbon (TOC) contents in these subsurface sediments are typically around 0.1%, but can range from 0.03% up to approximately 1.5%. Even at the typical TOC values of 0.1%, the mass of sediment-associated OC is approximately 5000 times higher than the mass of dissolved OC, representing a large pool of carbon that may potentially be mobilized or degraded under changing environmental conditions. Sediment-associated OC is much older than both the depositional age of the alluvial sediments and dissolved OC in the groundwater, indicating that the vast majority of NOM was sequestered by the sediment long before it was deposited in the floodplain. We have characterized the sediment-bound NOM from two locations within the floodplain with differing physical and geochemical properties. One location has relatively low organic carbon (<0.2%) and is considered suboxic [dissolved oxygen is low or absent, but no dissolved Fe(II) observed], while the other is a naturally reducing zone with higher organic carbon (0.2-1.5%) and Fe(II)-reducing conditions. An extraction scheme was developed using a combination of sequential extraction [water and sodium pyrophosphate (pH 10)] and purification in order to isolate different fractions of sediment-associated NOM. Analysis of these different NOM fractions was then carried out by FTIR and ESI-FTICR-MS to allow for comparison of NOM structure and composition both across sites and across fractions for a single location. Using this combination of analytical techniques we can probe the variation in NOM chemical composition and mineral association across different biogeochemical regimes and assess the potential reactivity of various NOM pools.
NASA Astrophysics Data System (ADS)
Eckard, Robert S.; Pellerin, Brian A.; Bergamaschi, Brian A.; Bachand, Philip A. M.; Bachand, Sandra M.; Spencer, Robert G. M.; Hernes, Peter J.
2017-10-01
Agricultural watersheds are globally pervasive, supporting fundamentally different organic matter source, composition, and concentration profiles in comparison to natural systems. Similar to natural systems, agricultural storm runoff exports large amounts of organic carbon from agricultural land into waterways. But intense management of upper soil layers, waterway channelization, wetland and riparian habitat removal, and postharvest vegetation removal promise to uniquely drive organic matter release to waterways. During a winter first flush and a subsequent storm event, this study investigated the influence of a small agricultural watershed on dissolved organic matter (DOM) source, composition, and biolability. Storm water discharge released strongly terrestrial yet biolabile (23 to 32%) dissolved organic carbon (DOC). Following a 21 day bioassay, a parallel factor analysis identified an 80% reduction in a protein-like (phenylpropyl) component (C2) that was previously correlated to lignin phenol concentration, and a 10% reduction in a humic-like, terrestrially sourced component (C4). Storm-driven releases tripled DOC concentration (from 2.8 to 8.7 mg L-1) during the first flush event in comparison to base flow and were terrestrially sourced, with an eightfold increase in vascular plant derived lignin phenols (23.0 to 185 μg L-1). As inferred from system hydrology, lignin composition, and nitrate as a groundwater tracer, an initial pulse of dilute water from the upstream watershed caused a counterclockwise DOC hysteresis loop. DOC concentrations peaked after 3.5 days, with the delay between peak discharge and peak DOC attributed to storm water hydrology and a period of initial water repellency of agricultural soils, which delayed DOM leaching.
Yi, Y; Birks, S J; Cho, S; Gibson, J J
2015-06-15
This study was conducted to characterize the composition of dissolved organic compounds present in snow and surface waters in the Athabasca Oil Sands Region (AOSR) with the goal of identifying whether atmospherically-derived organic compounds present in snow are a significant contributor to the compounds detected in surface waters (i.e., rivers and lakes). We used electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR MS) to characterize the dissolved organic compound compositions of snow and surface water samples. The organic profiles obtained for the snow samples show compositional differences between samples from near-field sites (<5 km from oil sands activities) and those from more distant locations (i.e., far-field sites). There are also significant compositional differences between samples collected in near-field sites and surface water samples in the AOSR. The composition of dissolved organic compounds at the upstream Athabasca River site (i.e., Athabasca River at Athabasca) is found to be different from samples obtained from downstream sites in the vicinity of oil sands operations (i.e., Athabasca River at Fort McMurray and Athabasca River at Firebag confluence). The upstream Athabasca River sites tended to share some compositional similarities with far-field snow deposition, while the downstream Athabasca River sites are more similar to local lakes and tributaries. This contrast likely indicates the relative role of regional snowmelt contributions to the Athabasca River vs inputs from local catchments in the reach downstream of Fort McMurray. Copyright © 2015 Elsevier B.V. All rights reserved.
Dissolved trace elements in a nitrogen-polluted river near to the Liaodong Bay in Northeast China.
Bu, Hongmei; Song, Xianfang; Guo, Fen
2017-01-15
Dissolved trace element concentrations (Ba, Fe, Mn, Si, Sr, and Zn) were investigated in the Haicheng River near to the Liaodong Bay in Northeast China during 2010. Dissolved Ba, Fe, Mn, and Sr showed significant spatial variation, whereas dissolved Fe, Mn, and Zn displayed seasonal variations. Conditions such as water temperature, pH, and dissolved oxygen were found to have an important impact on redox reactions involving dissolved Ba, Fe, and Zn. Dissolved Fe and Mn concentrations were regulated by adsorption or desorption of Fe/Mn oxyhydroxides and the effects of organic carbon complexation on dissolved Ba and Sr were found to be significant. The sources of dissolved trace elements were found to be mainly from domestic sewage, industrial waste, agricultural surface runoff, and natural origin, with estimated seasonal and annual river fluxes established as important inputs of dissolved trace elements from the Haicheng River into the Liaodong Bay or Bohai Sea. Copyright © 2016 Elsevier Ltd. All rights reserved.
Yu, Soon Ju; Lee, Jae Yil; Ha, Sung Ryong
2010-01-01
This article aims to describe the influence of diffuse pollution on the temporal and spatial characteristics of natural organic matter (NOM) in a stratified dam reservoir, the Daecheong Dam, on the basis of intensive observation results and the dynamic water quality simulation using CE-QUAL-W2. Turbidity is regarded as a comprehensive representation of allochothonous organic matter from diffuse sources in storm season because the turbidity concentration showed reasonable significance in a statistical correlation with the UV absorbance at 254 nm and total phosphorus. CE-QUAL-W2 simulation results showed good consistency with the observed data in terms of dissolved organic matter (DOM) including refractory dissolved organic carbon (RDOC) and labile DOC and also well explained the internal movement of constituents and stratification phenomenon in the reservoir. Instead turbidity and NOM were related well in the upper region of the reservoir according to flow distance, gradually as changing to dissolved form of organic matter, RDOM affected organic matter concentration of reservoir water quality compared to turbidity. To control the increase of soluble organic matters in the dam reservoir, appropriate dam water discharge gate operation provided effective measurement. Because of the gate operation let avoid the accumulation of organic matter within a dam reservoir by shorten of turbid regime retention time.
Photochemical studies of the Eastern Caribbean: An introductory overview
NASA Astrophysics Data System (ADS)
Zika, Rod G.; Milne, Peter J.; Zafiriou, Oliver C.
1993-02-01
This special section of the Journal of Geophysical Research reports a multi-investigator study of a number of sunlight-initiated photoprocesses taking place in the varied biogeochemical and oceanographic environment found in the tropical Eastern Caribbean and Orinoco River delta in the spring and fall of 1988. Principal conceptual themes that were addressed by the program included (1) the characterization of the role of dissolved organic matter as the main chromophore initiating photoprocesses in surface seawater, (2) the determination of the fluxes and pathways of reactants and transient species involved in oxygen photoredox chemistry, and (3) the continuing development of chemical mapping strategies, including observing and modelling reactive phototransient distribution in terms of their sources, mixing, and fates. Ancillary supporting studies included observation of water mass tracers, dissolved trace gases, atmospheric components, nutrients and the geochemistry of estuarine mixing processes in an important continental margin. The observational and mechanistic investigations reported here feature a number of novel or improved methods allied with some advanced underway sampling, sensing and computing facilities that were implemented aboard the R/V Columbus Iselin. Results from the study showed large-scale (˜1000 km) seasonal variations in surface water photoreactivity, optical and biooptical characteristics over much of the Caribbean basin. These changes resulted from seasonally varying riverine inputs of organic chromophores, nutrients and suspended material. Smaller scale (10-100 km) studies carried out in the Orinoco delta and the Gulf of Paria showed that estuarine mixing processes did not affect major net removal of dissolved organic matter, consistent with the hypothesis that riverine chromophore input plays a dominant role in open-water photochemistry.
Applicability of NASQAN data for ecosystem assessments on the Missouri River
Blevins, Dale W.; Fairchild, James
2001-01-01
The effectiveness of ecological restoration efforts on large developed rivers is often unknown because comprehensive ecological monitoring programs are often absent. Although Eulerian water-quality monitoring programs, such as the National Stream Quality Accounting Network (NASQAN) program, are more common, they are usually not designed for ecological assessment. Therefore, this paper addresses the value of NASQAN for ecological assessments on the Missouri River and identifies potential program additions and modifications to assess certain ecological changes in physical habitat, biological structure and function, and ecotoxicity. Five additional sites: The analysis of chlorophyll, mercury, ATP, potential endocrine disruptors, total trace elements, and selected total hydrophobic organics; and the hourly measurement of dissolved oxygen, turbidity, and temperature are recommended. Hourly measurements would require an entirely new operational aspect to NASQAN. However, the presence of data loggers and satellite transmitters in the gauging stations at all NASQAN sites substantially improves the feasibility of continuous water-quality monitoring. The use of semipermeable membrane devices (SPMDs) to monitor dissolved bioaccumulating organics and trace elements, identification and enumeration of zooplankton, and characterization of the bioavailability of organic matter are also recommended. The effect of biological processes on the conservative assumptions that are used in flux and source determinations of NASQAN constituents are also evaluated. Organic carbon, organic nitrogen, dissolved phosphate, and dissolved inorganic nitrogen are the NASQAN constituents most vulnerable to biological processes and thus violation of conservative assumptions.
Dissolved organic phosphorus (DOP) and its potential role for ecosystem nutrition
NASA Astrophysics Data System (ADS)
Brödlin, Dominik; Hagedorn, Frank; Kaiser, Klaus
2016-04-01
During ecosystem development and soil formation, primary mineral sources of phosphorus are becoming increasingly depleted. Inorganic phosphorus forms tend to be bound strongly to or within secondary minerals, thus, are hardly available to plants and are not leached from soil. What about organic forms of phosphorus? Since rarely studied, little is known about the fluxes of dissolved organic phosphorus (DOP) forms and their role in the P cycle. However, there is evidence that DOP is composed of some plant-derived organic phosphorus compounds, such as phytate, which are less mobile and prone to be sorbed to mineral surfaces, whereas microbial-derived compounds like nucleic acids and simple phospho-monoester may represent more mobile forms of soil phosphorus. In our study, we estimated fluxes, composition, and bioavailability of DOP along a gradient in phosphorus availability at five sites on silicate bedrock across Germany (Bad Brückenau, Conventwald, Vessertal, Mitterfels and Lüss) and at a calcareous site in Switzerland (Schänis). Soil solution was collected at 0 down to 60 to 150 cm soil depth at different intervals. Since most solutions had very low P concentrations (<0.05 mg total dissolved P/L), soil solutions had to be concentrated by freeze-drying for the enzymatic characterization of DOP. In order to test the potential bioavailability, we used an enzyme assay distinguishing between phytate-like P (phytate), diester-like P (nucleic acids), monoester-like P (glucose-6-phosphate), and pyrophosphate of bulk molybdate unreactive phosphorus (MUP). First results from the enzymatic assay indicated that monoester-like P and diester-like P were the most prominent form of the hydrolysable DOP constituents. In leachates from the organic layer, there was a high enzymatic activity for monoester-like P, indicating high recycling efficiency and rapid hydrolysis of labile DOP constituents. DOP was the dominating P form in soil solution at some of the sites, with a greater contribution to total dissolved P in winter than in summer. Concentrations of DOP decreased along the phosphorus availability gradient from less to the more developed forest ecosystems.
NASA Astrophysics Data System (ADS)
Meador, Travis B.; Aluwihare, Lihini I.
2014-10-01
In North Atlantic waters impacted by discharges from the Amazon and Orinoco Rivers, where planktonic diatom-diazotroph associations (DDA) were active, we observed that an average (± standard deviation) of 61 ± 12% of the biological drawdown of dissolved inorganic carbon (DIC) was partitioned into the accumulating total organic carbon pool, representing a flux of up to 9 ± 4 Tg C yr-1. This drawdown corresponded with chemical alteration of ultrafiltered dissolved organic matter (UDOM), including increases in stable C isotopic composition (δ13C) and C:N. The dissolved carbohydrate component of UDOM also increased with biological DIC drawdown and diatom-associated diazotroph (i.e., Richelia) abundance. New carbohydrates could be distinguished by distinctively high relative abundances of deoxy sugars (up to 55% of monosaccharides), which may promote aggregate formation and enhance vertical carbon export. The identified production of non-Redfieldian, C-enriched UDOM thus suggests a mechanism to explain enhanced C sequestration associated with DDA N2 fixation, which may be widespread in mesohaline environments.
McKnight, Diane M.; Harnish, R.; Wershaw, R. L.; Baron, Jill S.; Schiff, S.
1997-01-01
The chemical relationships among particulate and colloidal organic material and dissolved fulvic acid were examined in an alpine and subalpine lake and two streams in Loch Vale Watershed, Rocky Mountain National Park. The alpine lake, Sky Pond, had the lowest dissolved organic carbon (DOC) (0.37 mgC/L), the highest particulate carbon (POC) (0.13 mgC/L), and high algal biomass. The watershed of Sky Pond is primarily talus slope, and DOC and POC may be autochthonous. Both Andrews Creek and Icy Brook gain DOC as they flow through wet sedge meadows. The subalpine lake, The Loch, receives additional organic material from the surrounding forest and had a higher DOC (0.66 mgC/L). Elemental analysis, stable carbon isotopic compositon, and 13C-NMR characterization showed that: 1) particulate material had relatively high inorganic contents and was heterogeneous in compositon, 2) colloidal material was primarily carbohydrate material with a low inorganic content at all sites; and 3) dissolved fulvic acid varied in compositon among sites. The low concentration and carbohydrate-rich character of the colloidal material suggests that this fraction is labile to microbial degradation and may be turning over more rapidly than particulate fractions or dissolved fulvic acid. Fulvic acid from Andrews Creek had the lowest N content and aromaticity, whereas Sky Pond fulvic acid had a higher N content and lower aromaticity than fulvic acid from The Loch. The UV-visible spectra of the fulvic acids demonstrate that variation in characteristics with sources of organic carbon can explain to some extent the observed nonlinear relationship between UV-B extinction coefficients and DOC concentrations in lakes.
Brown, Lisa D; Pérez-Estrada, Leonidas; Wang, Nan; El-Din, Mohamed Gamal; Martin, Jonathan W; Fedorak, Phillip M; Ulrich, Ania C
2013-11-01
The oil sands industry faces significant challenges in developing effective remediation technologies for process-affected water stored in tailings ponds. Naphthenic acids, a complex mixture of cycloaliphatic carboxylic acids, have been of particular concern because they concentrate in tailings ponds and are a component of the acutely toxic fraction of process water. Ozone treatment has been demonstrated as an effective means of rapidly degrading naphthenic acids, reducing process water toxicity, and increasing its biodegradability following seeding with the endogenous process water bacteria. This study is the first to examine subsequent in situ biodegradation following ozone pretreatment. Two aged oil sands process-affected waters from experimental reclamation tailings ponds were ozonated to reduce the dissolved organic carbon, to which naphthenic acids contributed minimally (<1mgL(-1)). Treatment with an ozone dose of 50mgL(-1) improved the 84d biodegradability of remaining dissolved organic carbon during subsequent aerobic incubation (11-13mgL(-1) removed from aged process-affected waters versus 5mgL(-1) when not pretreated with ozone). The ozone-treated indigenous microbial communities were as capable of degrading organic matter as the same community not exposed to ozone. This supports ozonation coupled with biodegradation as an effective and feasible treatment option. Copyright © 2013 Elsevier Ltd. All rights reserved.
Liao, Xiaobin; Zou, Rusen; Chen, Chao; Yuan, Baoling; Zhou, Zhenming; Zhang, Xiaojian
2018-01-01
It is the priority to guarantee biosafety for drinking water treatment. The objective of this study was to evaluate the impact of widely applied conventional and ozone-biological activated carbon (O 3 -BAC) advanced treatment technology on biosafety of drinking water. The items, including assimilable organic carbon (AOC), biodegradable dissolved organic carbon (BDOC), heterotrophic plate counts (HPCs) and the microorganism community structures, were used to evaluate the biosafety. Moreover, their relationships with molecular weights (MWs) and fluorescence intensity of dissolved organic matter were investigated. The results indicated that the technology provided a considerable gain in potable water quality by decreasing dissolved organic carbon (DOC, from 5.05 to 1.71 mg/L), AOC (from 298 to 131 μg/L), BDOC (from 1.39 to 0.24 mg/L) and HPCs (from 275 to 10 CFU/mL). Ozone brought an increase in DOC with low MW <1 kDa, which accompanies with an increase in AOC/BDOC concentration, which could be reduced effectively by subsequent BAC process. The formation of AOC/BDOC was closely related to DOC with low MWs and aromatic protein. Bacteria could be released from BAC filter, resulting in an increase in HPC and the presence of pathogenic bacteria in effluent, while the post sand filter could further guarantee the biosafety of finished water.
Wershaw, Robert L.
2004-01-01
Natural organic matter (NOM) has been studied for more than 200 years because of its importance in enhancing soil fertility, soil structure, and water-holding capacity and as a carbon sink in the global carbon cycle. Two different types of models have been proposed for NOM: (1) the humic polymer models and (2) the molecular aggregate models. In the humic polymer models, NOM molecules are depicted as large (humic) polymers that have unique chemical structures that are different from those of the precursor plant degradation products. In the molecular aggregate models, NOM is depicted as being composed of molecular aggregates (supramolecular aggregates) of plant degradation products held together by non-covalent bonds. The preponderance of evidence favors the supramolecular aggregate models. These models were developed by studying the properties of NOM extracted from soils and natural waters, and as such, they provide only a very generalized picture of the structure of NOM aggregates in soils and natural waters prior to extraction. A compartmental model, in which the structure of the NOM in each of the compartments is treated separately, should provide a more accurate representation of NOM in soil and sediment systems. The proposed NOM compartments are: (1) partially degraded plant tissue, (2) biomass from microorganisms, (3) organic coatings on mineral grains, (4) pyrolytic carbon, (5) organic precipitates, and (6) dissolved organic matter (DOM) in interstitial water. Within each of these compartments there are NOM supramolecular aggregates that will be dissolved by the solvent systems that are used by researchers for extraction of NOM from soils and sediments. In natural water systems DOM may be considered as existing in two subcompartments: (1) truly dissolved DOM and (2) colloidal DOM.
Proteolytic enzymes in seawater: contribution of prokaryotes and protists
NASA Astrophysics Data System (ADS)
Obayashi, Y.; Suzuki, S.
2016-02-01
Proteolytic enzyme is one of the major catalysts of microbial processing of organic matter in biogeochemical cycle. Here we summarize some of our studies about proteases in seawater, including 1) distribution of protease activities in coastal and oceanic seawater, 2) responses of microbial community and protease activities in seawater to organic matter amending, and 3) possible contribution of heterotrophic protists besides prokaryotes to proteases in seawater, to clarify cleared facts and remaining questions. Activities of aminopeptidases, trypsin-type and chymotrypsin-type proteases were detected from both coastal and oceanic seawater by using MCA-substrate assay. Significant activities were detected from not only particulate (cell-associated) fraction but also dissolved fraction of seawater, especially for trypsin-type and chymotrypsin-type proteases. Hydrolytic enzymes in seawater have been commonly thought to be mainly derived from heterotrophic prokaryotes; however, it was difficult to determine actual source organisms of dissolved enzymes in natural seawater. Our experiment with addition of dissolved protein to subtropical oligotrophic Pacific water showed drastically enhancement of the protease activities especially aminopeptidases in seawater, and the prokaryotic community structure simultaneously changed to be dominant of Bacteroidetes, indicating that heterotrophic bacteria were actually one of the sources of proteases in seawater. Another microcosm experiment with free-living marine heterotrophic ciliate Paranophrys marina together with an associated bacterium showed that extracellular trypsin-type activity was mainly attributed to the ciliate. The protist seemed to work in organic matter digestion in addition to be a grazer. From the results, we propose a system of organic matter digestion by prokaryotes and protists in aquatic environments, although their actual contribution in natural environments should be estimated in future studies.
Guo, Jianning; Wang, Lingyun; Zhu, Jia; Zhang, Jianguo; Sheng, Deyang; Zhang, Xihui
2013-01-01
This article presents a highly integrated hybrid process for the advanced treatment of drinking water in dealing with the micro-polluted raw water. A flat sheet ceramic membrane with the pore size of 50∼60 nm for ultrafiltration (UF) is used to integrate coagulation and ozonation together. At the same time, biological activated carbon filtration (BAC) is used to remove the ammonia and organic pollutants in raw water. A pilot study in the scale of 120 m(3)/d has been conducted in Southern China. The mainly-analyzed parameters include turbidity, particle counts, ammonia, total organic carbon (TOC), UV254, biological dissolved organic carbon (BDOC), dissolved oxygen (DO) as well as trans-membrane pressure (TMP). The experiments demonstrated that ceramic UF-membrane was able to remove most of turbidity and suspended particulate matters. The final effluent turbidity reached to 0.14 NTU on average. BAC was effective in removing ammonia and organic matters. Dissolved oxygen (DO) is necessary for the biodegradation of ammonia at high concentration. The removal efficiencies reached to 90% for ammonia with the initial concentration of 3.6 mg/L and 76% for TOC with the initial concentration of 3.8 mg/L. Ozonation can alter the molecular structure of organics in terms of UV254, reduce membrane fouling, and extend the operation circle. It is believed the hybrid treatment process developed in this article can achieve high performance with less land occupation and lower cost compared with the conventional processes. It is especially suitable for the developing countries in order to obtain high-quality drinking water in a cost-effective way.
NASA Astrophysics Data System (ADS)
Young, Caitlin; Kroeger, Kevin D.; Hanson, Gilbert
2013-12-01
The goal of this study was to demonstrate how the extent of denitrification, which is indirectly related to dissolved organ carbon and directly related to oxygen concentrations, can also be linked to unsaturated-zone thickness, a mappable aquifer property. Groundwater from public supply and monitoring wells in Northport on Long Island, New York state (USA), were analyzed for denitrification reaction progress using dissolved N2/Ar concentrations by membrane inlet mass spectrometry. This technique allows for discernment of small amounts of excess N2, attributable to denitrification. Results show an average 15 % of total nitrogen in the system was denitrified, significantly lower than model predictions of 35 % denitrification. The minimal denitrification is due to low dissolved organic carbon (29.3-41.1 μmol L-1) and high dissolved oxygen concentrations (58-100 % oxygen saturation) in glacial sediments with minimal solid-phase electron donors to drive denitrification. A mechanism is proposed that combines two known processes for aquifer re-aeration in unconsolidated sands with thick (>10 m) unsaturated zones. First, advective flux provides 50 % freshening of pore space oxygen in the upper 2 m due to barometric pressure changes. Then, oxygen diffusion across the water-table boundary occurs due to high volumetric air content in the unsaturated-zone catchment area.
Chen, Xiaolin; O'Halloran, John; Jansen, Marcel A K
2016-05-01
Nano-ZnO particles have been reported to be toxic to many aquatic organisms, although it is debated whether this is caused by nanoparticles per sé, or rather dissolved Zn. This study investigated the role of dissolved Zn in nano-ZnO toxicity to Lemna minor. The technical approach was based on modulating nano-ZnO dissolution by either modifying the pH of the growth medium and/or surface coating of nano-ZnO, and measuring resulting impacts on L. minor growth and physiology. Results show rapid and total dissolution of nano-ZnO in the medium (pH 4.5). Quantitatively similar toxic effects were found when L. minor was exposed to nano-ZnO or the "dissolved Zn equivalent of dissolved nano-ZnO". The conclusion that nano-ZnO toxicity is primarily caused by dissolved Zn was further supported by the observation that phytotoxicity was absent on medium with higher pH-values (>7), where dissolution of nano-ZnO almost ceased. Similarly, the reduced toxicity of coated nano-ZnO, which displays a slower Zn dissolution, is also consistent with a major role for dissolved Zn in nano-ZnO toxicity. Copyright © 2016 Elsevier B.V. All rights reserved.
Sink or link? The bacterial role in benthic carbon cycling in the Arabian Sea's oxygen minimum zone
NASA Astrophysics Data System (ADS)
Pozzato, L.; Van Oevelen, D.; Moodley, L.; Soetaert, K.; Middelburg, J. J.
2013-11-01
The bacterial loop, the consumption of dissolved organic matter (DOM) by bacteria and subsequent transfer of bacterial carbon to higher trophic levels, plays a prominent role in pelagic food webs. However, its role in sedimentary ecosystems is not well documented. Here we present the results of isotope tracer experiments performed under in situ oxygen conditions in sediments from inside and outside the Arabian Sea's oxygen minimum zone (OMZ) to study the importance of the microbial loop in this setting. Particulate organic matter, added as phytodetritus, was processed by bacteria, protozoa and metazoans, while dissolved organic matter was processed only by bacteria and there was very little, if any, transfer to higher trophic levels within the 7 day experimental period. This lack of significant transfer of bacterial-derived carbon to metazoan consumers indicates that the bacterial loop is rather inefficient, in sediments both inside and outside the OMZ. Moreover, metazoans directly consumed labile particulate organic matter resources and thus competed with bacteria for phytodetritus.
Sink or link? The bacterial role in benthic carbon cycling in the Arabian sea oxygen minimum zone
NASA Astrophysics Data System (ADS)
Pozzato, L.; Van Oevelen, D.; Moodley, L.; Soetaert, K.; Middelburg, J. J.
2013-06-01
The bacterial loop, the consumption of dissolved organic matter (DOM) by bacteria and subsequent transfer of bacterial carbon to higher trophic levels, plays a prominent role in pelagic aquatic food webs. However, its role in sedimentary ecosystems is not well documented. Here we present the results of isotope tracer experiments performed under in situ oxygen conditions in sediments from inside and outside the Arabian Sea Oxygen Minimum Zone (OMZ) to study the importance of the microbial loop in this setting. Particulate organic matter, added as phytodetritus, was processed by bacteria, protozoa and metazoans, while dissolved organic matter was processed only by bacteria and there was very little, if any, transfer to higher trophic levels within the experimental period. This lack of significant transfer of bacterial-derived carbon to metazoan consumers indicates that the bacterial loop is rather inefficient in these sediments. Moreover, metazoans directly consume labile particulate organic matter resources and thus compete with bacteria for phytodetritus.
Nature and transformation of dissolved organic matter in treatment wetlands
Barber, L.B.; Leenheer, J.A.; Noyes, T.I.; Stiles, E.A.
2001-01-01
This investigation into the occurrence, character, and transformation of dissolved organic matter (DOM) in treatment wetlands in the western United States shows that (i) the nature of DOM in the source water has a major influence on transformations that occur during treatment, (ii) the climate factors have a secondary effect on transformations, (iii) the wetlands receiving treated wastewater can produce a net increase in DOM, and (iv) the hierarchical analytical approach used in this study can measure the subtle DOM transformations that occur. As wastewater treatment plant effluent passes through treatment wetlands, the DOM undergoes transformation to become more aromatic and oxygenated. Autochthonous sources are contributed to the DOM, the nature of which is governed by the developmental stage of the wetland system as well as vegetation patterns. Concentrations of specific wastewaterderived organic contaminants such as linear alkylbenzene sulfonate, caffeine, and ethylenediaminetetraacetic acid were significantly attenuated by wetland treatment and were not contributed by internal loading.
Burnout of the organic vehicle in an electrically conductive thick-film paste
NASA Astrophysics Data System (ADS)
Liu, Zongrong; Chung, D. D. L.
2004-11-01
The burnout of the organic vehicle in a silver-particle, glass-free, electrically conductive, thick-film paste during firing in air was studied. For a vehicle consisting of ethyl cellulose dissolved in ether, burnout primarily involves the thermal decomposition of ethyl cellulose. The presence of ether with dissolved ethyl cellulose facilitates the burnout of ethyl cellulose. Excessive ethyl cellulose hinders the burnout. A high heating rate results in more residue after burnout. By interrupting the heating at 160°C for 15 min, the residue after subsequent burnout is diminished probably because of reduced temporal overlap of the processes of organic burnout and silver particle necking. By interrupting the heating at either 300°C or 385°C for 30 min, the temperature required for complete burnout is reduced. The addition of silver particles facilitates drying at room temperature and burnout upon heating.
Al-Shamsi, Mohammed Ahmad; Thomson, Neil R
2013-10-01
It has been suggested in the literature that aquifer materials can compete with the target organic compounds in an activated peroxygen system. In this study, we employed a rapid treatment method using persulfate activated with bimetallic nanoparticles to investigate the competition between aquifer materials and the dissolved phase of a target organic compound. The concentration of dissolved trichloroethylene (TCE) remaining after using the activated persulfate system was two- to three-fold higher in a soil slurry batch system than in an aqueous batch system. For all five aquifer materials investigated, an increase in the mass of the aquifer solids significantly decreased the degradation of TCE. A linear relationship was observed between the mass of aquifer materials and the initial TCE degradation rate, suggesting that the organic carbon and/or aquifer material constituents (e.g., carbonates and bicarbonates) compete with the oxidation of TCE.
NASA Astrophysics Data System (ADS)
García, E.; Morell, J. M.
2016-02-01
Low energy tropical Caribbean shores are often dominated by highly productive mangrove ecosystems that thrive on land borne inorganic nutrient inputs and whose net production results in significant export of litter and dissolved organic compounds (DOC). These organic matrixes can be effectively transported to nearby ecosystems, including coral reefs whose vulnerability to excessive organic loading has been widely documented. This study documents the seaward transport and transformation of organic carbon from mangrove bays, trough near-shore reef ecosystems and out to open waters in the La Parguera Marine Reserve (LPMR). Considering in-situ colored dissolved organic matter (CDOM) as a tracer for DOC, absorption coefficient values (a350) were observed in the 6.13-0.02 m-1 and 14.08-0.06 m-1 during the dry (from 0 to 0.18 inches of rain) and wet seasons (from 0.68 to 4.76 inches of rain), respectively. Spectral properties (S275-295 and SR) calculations indicate that DOC is predominantly of terrestrial origin and found in high concentrations in enclosed mangrove bays and canals. Data evidences a strong gradient in CDOM concentration decreasing t from inshore to outer shelf waters. Rain precipitation correlated well with high CDOM values (aλ values doubled) and forced LPMR to behave similarly to a river influenced estuary as shown when CDOM is correlated with salinity, contrary to its predominant negative estuary profile. When correlating CDOM with pH and dissolved oxygen concentrations, it is evident that high organic matter content is driving ocean acidification in the nearshore areas. The non-conservative behavior of CDOM implies that other processes besides dilution may play a significant role in its spatial distribution.
Fox, P; Narayanaswamy, K; Genz, A; Drewes, J E
2001-01-01
Water quality transformations during soil aquifer treatment at the Mesa Northwest Water Reclamation Plant (NWWRP) were evaluated by sampling a network of groundwater monitoring wells located within the reclaimed water plume. The Mesa Northwest Water Reclamation Plant has used soil aquifer treatment (SAT) since it began operation in 1990 and the recovery of reclaimed water from the impacted groundwater has been minimal. Groundwater samples obtained represent travel times from several days to greater than five years. Samples were analyzed for a wide range of organic and inorganic constituents. Sulfate was used as a tracer to estimate travel times and define reclaimed water plume movement. Dissolved organic carbon concentrations were reduced to approximately 1 mg/L after 12 to 24 months of soil aquifer treatment with an applied DOC concentration from the NWWRP of 5 to 7 mg/L. The specific ultraviolet absorbance (SUVA) increased during initial soil aquifer treatment on a time-scale of days and then decreased as longer term soil aquifer treatment removed UV absorbing compounds. The trihalomethane formation potential (THMFP) was a function of the dissolved organic carbon concentration and ranged from 50 to 65 micrograms THMFP/mg DOC. Analysis of trace organics revealed that the majority of trace organics were removed as DOC was removed with the exception of organic iodine. The majority of nitrogen was applied as nitrate-nitrogen and the reclaimed water plume had lower nitrate-nitrogen concentrations as compared to the background groundwater. The average dissolved organic carbon concentrations in the reclaimed water plume were less than 50% of the drinking water dissolved organic concentrations from which the reclaimed water originated.
Effect of membrane filtration artifacts on dissolved trace element concentrations
Horowitz, Arthur J.; Elrick, Kent A.; Colberg, Mark R.
1992-01-01
Among environment scientists, the current and almost universally accepted definition of dissolved constituents is an operational one; only those materials which pass through a 0.45-??m membrane filter are considered to be dissolved. Detailed laboratory and field studies on Fe and Al indicate that a number of factors associated with filtration, other than just pore size, can substantially alter 'dissolved' trace element concentrations; these include: filter type, filter diameter, filtration method, volume of sample processed, suspended sediment concentration, suspended sediment grain-size distribution, concentration of colloids and colloidally associated trace elements and concentration of organic matter. As such, reported filtered-water concentrations employing the same pore size filter may not be equal. Filtration artifacts may lead to the production of chemical data that indicate seasonal or annual 'dissolved' chemical trends which do not reflect actual environmental conditions. Further, the development of worldwide averages for various dissolved chemical constituents, the quantification of geochemical cycles, and the determination of short- or long-term environmental chemical trends may be subject to substantial errors, due to filtration artifacts, when data from the same or multiple sources are combined. Finally, filtration effects could have a substantial impact on various regulatory requirements.
The effect of membrane filtration artifacts on dissolved trace element concentrations
Horowitz, A.J.; Elrick, K.A.; Colberg, M.R.
1992-01-01
Among environment scientists, the current and almost universally accepted definition of dissolved constituents is an operational one only those materials which pass through a 0.45-??m membrane filter are considered to be dissolved. Detailed laboratory and field studies on Fe and Al indicate that a number of factors associated with filtration, other than just pore size, can substantially alter 'dissolved' trace element concentrations; these include: filter type, filter diameter, filtration method, volume of sample processed, suspended sediment concentration, suspended sediment grain-size distribution, concentration of colloids and colloidally-associated trace elements and concentration of organic matter. As such, reported filtered-water concentrations employing the same pore size filter may not be equal. Filtration artifacts may lead to the production of chemical data that indicate seasonal or annual 'dissolved' chemical trends which do not reflect actual environmental conditions. Further, the development of worldwide averages for various dissolved chemical constituents, the quantification of geochemical cycles, and the determination of short- or long-term environmental chemical trends may be subject to substantial errors, due to filtration artifacts, when data from the same or multiple sources are combined. Finally, filtration effects could have a substantial impact on various regulatory requirements.
A statistic-thermodynamic model for the DOM degradation in the estuary
NASA Astrophysics Data System (ADS)
Zheng, Quanan; Chen, Qin; Zhao, Haihong; Shi, Jiuxin; Cao, Yong; Wang, Dan
2008-03-01
This study aims to clarify the role of dissolved salts playing in the degradation process of terrestrial dissolved organic matter (DOM) at a scale of molecular movement. The molecular thermal movement is perpetual motion. In a multi-molecular system, this random motion also causes collision between the molecules. Seawater is a multi-molecular system consisting from water, salt, and terrestrial DOM molecules. This study attributes the DOM degradation in the estuary to the inelastic collision of DOM molecule with charged salt ions. From statistic-thermodynamic theories of molecular collision, the DOM degradation model and the DOM distribution model are derived. The models are validated by the field observations and satellite data. Thus, we conclude that the inelastic collision between the terrestrial DOM molecules and dissolved salt ions in seawater is a decisive dynamic mechanism for rapid loss of terrestrial DOM.
NASA Astrophysics Data System (ADS)
Gu, Sen; Gruau, Gérard; Malique, François; Dupas, Rémi; Gascuel-Odoux, Chantal; Petitjean, Patrice; Bouhnik-Le Coz, Martine
2017-04-01
Riparian vegetated buffer strip (RVBS) are currently used to protect surface waters from phosphorus (P) emissions because of their ability to retain P-enriched soil particles. However, this protection role may be counterbalanced by the development in these zones of conditions able to trigger the release of highly mobile dissolved or colloidal P forms. Rewetting after drying is one of these conditions. So far, the potential sources of P mobilized during rewetting after drying are not clearly identified, nor are clearly identified the chemical nature of the released dissolved P species, or the role of the soil P speciation on these forms. In this study, two riparian soils (G and K) showing contrasting soil P speciation (65% of inorganic P species in soil G, as against 70% of organic P) were submitted to three successive dry/wet cycles in the laboratory. Conventional colorimetric determination of P concentrations combined with ultrafiltration, and measurements of iron (Fe) and aluminum (Al) and dissolved organic carbon (DOC) contents using ICP-MS and TOC analyzers, respectively, were used to study the response of the different P forms to rewetting after drying and also their release kinetics during soil leaching. For both soils, marked P release peaks were observed at the beginning of each wet cycles, with the organic-rich K soils giving, however, larger peaks than the inorganic one (G soil). For both soils also, concentrations in molybdate reactive P (MRP) remained quite constant throughout each leaching episode, contrary to the molybdate unreactive P (MUP) concentrations which were high immediately after rewetting and then decreased rapidly during leaching. A speciation change was observed from the beginning to the end of all leaching cycles. Colloidal P was found to be a major fraction of the total P immediately after rewetting (up to 50-70%) and then decreased to the end of each wet cycle where most of the eluted P was true dissolved inorganic P. Colloidal-P exhaustion was tightly associated with DOC, Fe and Al exhaustions. Colloids were larger in size at the beginning than at the end of all cycles. Peak at the beginning of each wet cycles remained quite constant even after two drying/leaching cycles, evidencing the existence of mechanisms able to rebuild a pool of leachable P during drying process. Thus, there was clearly a control of soil characteristics on the released P forms in leachates. Colloidal P carriers appeared to consist of Fe and/or Al oxyhydroxide nano/microparticles associated with organic matter. Most importantly, a survey of colloidal size distribution during leaching indicated that the rapidly exhausted MUP pool consisted of larger size MUP and colloidal P phases, which probably originated from soil macropores, while the relatively infinite MRP pool consisted of smaller size colloidal P and true dissolved MRP phases, which was mobilized from soil micropores. These results further demonstrate the ability of rewetting after drying to lead to pulses of dissolved and colloidal P in riparian soils, thereby evidencing the risks that P-enriched soil particles accumulated in RVBS could constitute a long-term threat for surface water.
Shirokova, L S; Pokrovsky, O S; Moreva, O Yu; Chupakov, A V; Zabelina, S A; Klimov, S I; Shorina, N V; Vorobieva, T Ya
2013-10-01
The colloidal distribution and size fractionation of organic carbon (OC), major elements and trace elements (TE) were studied in a seasonally stratified, organic-rich boreal lake, Lake Svyatoe, located in the European subarctic zone (NW Russia, Arkhangelsk region). This study took place over the course of 4 years in both winter and summer periods using an in situ dialysis technique (1 kDa, 10 kDa and 50 kDa) and traditional frontal filtration and ultrafiltration (5, 0.22 and 0.025 μm). We observed a systematic difference in dissolved elements and colloidal fractions between summer and winter periods with the highest proportion of organic and organo-ferric colloids (1 kDa-0.22 μm) observed during winter periods. The anomalously hot summer of 2010 in European Russia produced surface water temperatures of approximately 30°C, which were 10° above the usual summer temperatures and brought about crucial changes in element speciation and size fractionation. In August 2010, the concentration of dissolved organic carbon (DOC) decreased by more than 30% compared to normal period, while the relative proportion of organic colloids decreased from 70-80% to only 20-30% over the full depth of the water column. Similarly, the proportion of colloidal Fe decreased from 90-98% in most summers and winters to approximately 60-70% in August 2010. During this hot summer, measurable and significant (>30% compared to other periods) decreases in the colloidal fractions of Ca, Mg, Sr, Ba, Al, Ti, Ni, As, V, Co, Y, all rare earth elements (REEs), Zr, Hf, Th and U were also observed. In addition, dissolved (<0.22 μm) TE concentrations decreased by a factor of 2 to 6 compared to previously investigated periods. The three processes most likely responsible for such a crucial change in element biogeochemistry with elevated water temperature are 1) massive phytoplankton bloom, 2) enhanced mineralization (respiration) of allochthonous dissolved organic matter by heterotrophic aerobic bacterioplankton and 3) photo-degradation of DOM and photo-chemical liberation of organic-bound TE. While the first process may have caused significant decreases in the total dissolved concentration of micronutrients (a factor of 2 to 5 for Cr, Mn, Fe, Ni, Cu, Zn and Cd and a factor of >100 for Co), the second and third factors could have brought about the decrease of allochthonous DOC concentration as well as the concentration and proportion of organic and organo-mineral colloidal forms of non-essential low-soluble trace elements present in the form of organic colloids (Al, Y, Ti, Zr, Hf, Th, Pb, all REEs). It can be hypothesized that climate warming in high latitudes capable of significantly raising surface water temperatures will produce a decrease in the colloidal fraction of most trace elements and, as a result, an increase in the most labile low molecular weight LMW(<1 kDa) fraction. Copyright © 2013 Elsevier B.V. All rights reserved.